
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF ECONOMICS AND BUSINESS MANAGEMENT

Essays on Requirements Optimization Problems in the Core Ontology for
Requirements Engineering

Gillain, Joseph

Award date:
2017

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/8255f59c-ccaa-485a-a73b-acce6eadd5ba

University of Namur

Faculty of Economics, Social Sciences and Business Administration
Department of Business Administration

ESSAYS ON REQUIREMENTS OPTIMIZATION PROBLEMS IN THE
CORE ONTOLOGY FOR REQUIREMENTS ENGINEERING

Thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy in Management Sciences

Joseph Gillain

June 2017

Supervisors Jury
Prof. Stéphane Faulkner (UNamur) Dr. Ivan J. Jureta (UNamur)

Prof. Monique Snoeck (KULeuven) Prof. Yves Wautelet (KULeuven)

Prof. Nauman A. Qureshi (KFU)

President
Prof. Annick Castiaux (UNamur)

Graphisme de couverture : ©Presses Universitaires de Namur

©Presses Universitaires de Namur & Joseph Gillain
Rempart de la Vierge, 13
B-5000 Namur (Belgique)

Toute reproduction d’un extrait quelconque de ce livre, hors des limites restrictives
prévues par la loi, par quelque procédé que ce soit, et notamment par photocopie ou

scanner, est strictement interdite pour tous pays.

Imprimé en Belgique
ISBN: 978-2-87037-993-6

Dépôt légal: D/2017/1881/32
Impression Université de Namur

Abstract

In contemporary societies, Information Systems have become ubiquitous. We use them, for
instance, in accounting, marketing, human resource and also beyond the business world in
health care, education or even daily life activities. It has become common to say that such
systems should be of high quality, that is, they should ensure the satisfaction of the needs
they were intended for.

Requirements Engineering is the field dedicated to investigate those requirements as
well as the conditions for their satisfaction. However, previous and current research has
mainly concentrated its effort on methods and concepts able to prove that a particular
system could fulfill the requirements. In contrast, few effort had the purpose of discussing
about how we should compare alternative solutions and select the optimal one.

This thesis suggests a new formulation of the Requirement Problem which sets the pro-
cess of optimization in the center of concerns. It shows how different criteria can be used
to design optimization models and provides tools to resolve them. Through those models,
we describe how the fields of Requirement Engineering and Mathematical Optimization
can be connected. The present work divides into four parts.

Part I introduces the problem and outlines the overall context. A case, which is used
as example through this thesis, is also presented. Then, we lay the foundations for deeper
considerations by describing basic theoretical concepts. This first part is concluded with a
discussion about the underlying hypothesis and limitations.

Part II presents four distinct Requirements Problems that we formalize as Optimiza-
tion Problems. We describe how to model them with Techne, a Requirement Modeling
Language, and show how to map them to a mathematical model. The first model ad-
dresses the issue of providing an optimal planning. Secondly, we present the problem of
finding the optimal reusability level when developing information systems for different
customers. The third model focuses on finding the minimal cost between alternative solu-
tions. Eventually, we present self-configurable systems, i.e. systems that provide users with
configuration capabilities, and suggest a trade-off model to determine the right amount of
configurability those systems should have.

Part III presents AnalyticGraph, the tool we developed to support our contributions.
AnalyticGraph proves the feasibility of the discussed optimization models and extends
current RE software capabilities.

Part IV sketches possible further research directions on Requirements Optimization
and concludes the present work.

Acknowledgments

I thank my thesis supervisor Stéphane Faulkner for guiding and supporting me
over the years. He sets the environment necessary to complete this work. His
guidance helped me all the time of research and writing.

I also would like to thank my co-supervisor, Monique Snoeck, her advices have
been particularly beneficial and her availability was very precious.

I thank Ivan Jureta without whom this work would have not achieved the cur-
rent maturity. His availability, his straightforwardness and his inestimable ad-
vices helped me to elaborate and refine my ideas into more rigorous statements.

I thank the other members of the jury, Yves Wautelet and Nauman Qureshi,
for their very valuable feedback that help me to improve the final version of this
thesis.

I thank my colleagues and the members of the faculty. Their suggestions were
very inestimable. In particular, I would like to thank Corentin Burnay for his col-
laboration regarding the design, implementation and test of AnalyticGraph.com.

I could not finish these acknowledgments without thanking my family and
my close friends. They all were incredibly supportive. Especially Sarah, whose
patience, I have to admit, was extremely challenged several times but she never
stopped support me.

Finally, I dedicate this work to my mother who, I am sure of that, would have
been much more proud of this achievement that I will ever be. Thank you.

Contents

I Research Context 1

1 Introduction 3
1.1 Research Context: Requirement Engineering 3
1.2 Research Scope: Requirement Optimization 5
1.3 Research Problem: Formulation of ROP instances in CORE 8
1.4 Research Contribution: Models, MIPs and POCs 11
1.5 Research Methodology: Design Science Research for IS 12
1.6 Research Positioning: Deviation from the ZJ framework 15
1.7 Thesis Outline . 15

2 Case Study 19
2.1 Introduction . 19
2.2 History . 19
2.3 Identified Requirement Issues . 25

3 Mapping Techne on a MIP 27
3.1 Description of the Requirement Modeling Language Techne 27
3.2 Mapping between Techne and MIP 30
3.3 AnalyticGraph.com for Simple ROP 37

4 Limitations 39
4.1 Validation and Value for Requirements Engineering 39
4.2 Utility Function . 40
4.3 Computation Complexity and Scalability 45
4.4 Considered and Required Information 48
4.5 Implementation Limits . 51

II Optimization Models 53

5 Optimization of Agile Planning 55

vi CONTENTS

5.1 Forewords . 55
5.2 Introduction . 55
5.3 Modeling Agile Requirements with Techne 58
5.4 Mathematical Model . 62
5.5 MIP Solution . 67
5.6 AnalyticGraph as Supporting Tool 69
5.7 Related Work . 70
5.8 Conclusion . 71

6 Optimization of a Software Product Line Portfolio 73
6.1 Forewords . 73
6.2 Introduction . 73
6.3 Features and Goals for Scope Optimization 75
6.4 Optimization Model for the SPL Scope 79
6.5 Further Commonality and Variability Analysis 84
6.6 Context-Aware Considerations . 85
6.7 Change and Iterative Development 87
6.8 Application on MystShop Case . 88
6.9 Related Work . 93
6.10 Conclusion and Further Work . 94

7 Optimization with Cost Estimation Method 97
7.1 Forewords . 97
7.2 Introduction . 97
7.3 Software Product Line Cost . 102
7.4 Optimizing the SPL Scope . 111
7.5 Application on an Example . 118
7.6 Related Work . 124
7.7 Conclusion and Further Work . 125

8 Optimization of Self-Configurable Systems 129
8.1 Introduction . 129
8.2 Illustration - Self-Configurable in Business Intelligence 132
8.3 Why Make Self-Configurable Systems? 133
8.4 Indirect Requirements Satisfaction 134
8.5 Requirements from SCS and non-SCS 135
8.6 Requirement Engineering for SCS . 137
8.7 Challenges of SCS for Requirements Engineering 139
8.8 MystShop Case Study . 141
8.9 Modeling . 141

vi

CONTENTS vii

8.10 Problem Formulation . 146
8.11 Resolution . 148
8.12 Limitations . 148
8.13 Related Work . 150
8.14 Conclusion and Further Work . 151

III Supporting Tool 153

9 Introducing AnalyticGraph.com 155
9.1 Introduction . 155
9.2 Brief Tour of Existing GRM Software Tools 156
9.3 Strengths and Weaknesses of Existing Tools 156
9.4 Analytic Graph Architecture . 158
9.5 Candidate Features for Next Generation Tools 159
9.6 Conclusion and Further Work - Toward Analytic Graph 2.0 167

IV Conclusion 169

10 Further Work 171
10.1 Requirements Optimization for Self-Adaptive Systems 171
10.2 Abstracting from Software Engineering 173

11 Summary 175

Glossary 177

Bibliography 179

Part I

Research Context

1

1Introduction

1.1 Research Context: Requirement Engineering

Information Systems (ISs) are any organized system for the collection, organiza-
tion, storage and communication of information. Since the mid 20th century, they
never stop to spread in business environment. Running on mainframe at the be-
ginning until they evaporate into the Cloud, Information Systems spread in all
functional units of organizations: first in operation departments, then in account-
ing, marketing, human resources and so on. Nowadays, their presence goes far
beyond the business world. Health care, education, government, all domains cur-
rently rely heavily on them. With the emergence of micro-computers, the Internet
and now smartphones, they have also invaded individuals daily life. We use In-
formation Systems for running, entertaining or even cooking (storing preferred
recipes, computing calories, ordering ingredients...). IS are now ubiquitous.

Obviously, the information systems we are talking about are automatic sys-
tems which copiously rely on software and software engineering. It has become
common to say that such software should be of high quality. By high quality, it is
not only understood that it should be defect free, but first of all, it should ensure
the satisfaction of the needs it was intended for. Indeed, when considering the
ISO definition of quality, i.e. the “degree to which a set of inherent characteristics
fulfills requirements.” [3], the focus is not put on the absence of bugs but the ability
to satisfy requirements.

However, it was early identified that getting the requirements right is diffi-
cult [21]. Wrong selection of requirements has always been something to avoid
since it is significantly more expensive to correct problems later in the develop-
ment process [17]. It was one of the main purposes of waterfall methods as well
as agile methods (although being diametrically opposed)[14]. This is also why so
much effort were dedicated by academics and industry to what is called the Re-
quirements Engineering (RE). This process is aimed at eliciting, modeling, and
analyzing goals of a system in order to produce its specification. Pamela Zave de-
scribed it as “the branch of software engineering concerned with the real-world goals
for, functions of and constraints on software systems. It is also concerned with the

4 CHAPTER 1. INTRODUCTION

relationship of these factors to precise specifications of software behavior, and to their
evolution over time and across software families” [156].

RE focuses on what is called the Requirements Problem (RP). Zave & Jackson
provided an elegant formalization of this problem in their seminal paper [156]
(hereafter called Zave & Jackson framework (ZJ)). They said that the RP amounts
to find the specification S that, for given domain assumptionsK , satisfies the given
requirements R. Formally:

Definition 1.1 (Requirement Problem).

K,S ` R (1.1)

Jureta et al. pinpointed some limitations to this formulation of the RP [89].
First, it does not allows partial fulfillment of requirements. Secondly, there is no
room for one specification to be better than another one. Consequently, we think
that this formulation limits possibility to design high-quality systems.

For example, consider parents, whose children are traveling abroad, who want
to talk with and see them. The ZJ framework focuses on finding a solution (a spec-
ification) considering the parent’s requirements and some domain assumptions.
A solution could be to install a video conference application on both children’s
smartphones and parents’ laptop such that, given the assumption that they have
wifi in the hotel, they could speak with them.

However, if there are no means to ensure video conference (because there is
no wifi, they have no smartphone. . .), an acceptable solution could simply be a
mobile call. Even if the requirements are not all satisfied, simple GSM conversa-
tion should still be an acceptable solution. ZJ framework lets no room for such
reasoning and consequently partial solution.

The second criticism raises the fact that the ZJ framework is just focused on
finding only one solution. However, going into an Internet café and start a Skype
conversation is also a possible solution. This illustrates that instead of only one
solution, there can exist several solutions for one particular problem. All possible
solutions are what we call the solution space. When considering a solution space,
we should be able to compare those solutions. Something that the ZJ framework
does not integrate since it limits the RP to just find one point in this space and it
says no word about criteria that would be used to compare solutions.

Several researchers highlighted that the concept of preferences should be in-
troduced in the RP framework in order to compare several solutions [89, 100].
However, preferences allow only to get ordinal solutions. You can say that one
solution is better than the other but there is no mean with ordinal solutions to say
how much is a solution better than another. Moreover, it is often difficult to com-
pare solutions on the basis of preferences on requirements: A can be preferred

1.2. RESEARCH SCOPE: REQUIREMENT OPTIMIZATION 5

to C, B can also be preferred to C but you could be in a situation where it is not
possible to decide between A or B. Furthermore, too much preferences threaten
their consistency (e.g. it becomes difficult to ensure transitivity between all possi-
ble solutions). Therefore, we think that it is relevant to formulate a RP framework
which defines cardinal spaces based on an utility function, i.e. a space where you
can say that one particular point is twice better than another.

We would like to stress another important limitation of the ZJ framework.
The requirement problem (and consequently the RE process) is reduced to find
the specification. Requirements are considered as given. This formulation removes
the dimension that RE also determines the adequate set of requirements to con-
sider. Still, RE is not just finding the specification but also determining the re-
quirements. For the parent/children problem, engineers should be able to con-
sider other requirements. Indeed, after discussing with the parents, they could
abstract previous requirements into “be sure children are safe”. Then, all new
requirements could be identified such as “track children localization”. It implies
that the RP framework should also define and evaluate the problem space, what
the ZJ framework explicitly rejects [156].

With the above criticisms, we do not mean that no progress have been made
in RE research because all work would have been confined in this framework.
For example, Goal Modeling (GM) has been deeply investigated as an interesting
method to study the intention of the system, opening some doors regarding solu-
tion comparison (e.g. with Non-functional Requirements (NFR) [30]) or problem
space definition (by goal refinement/absraction mechanism). A goal model states
what should be satisfied by the system-to-be and refines it under sub goals until
it specifies some tasks to do. This refinement process allows to consider several
alternatives in the solution but also in the problem definition. As example, sev-
eral approaches have been developed to study the variability resulting from this
mechanism [64, 99].

In summary, we are interested in studying in this thesis a Requirement Prob-
lem formulation in which we define both problem and solution spaces in order to
define a system which optimizes a particular cardinal utility function.

1.2 Research Scope: Requirement Optimization

From our previous discussion, we can introduce a new class of problem called the
Requirements Optimization Problem (ROP) which consists in defining a tuple
composed of domain assumptions, specifications and requirements optimizing
stakeholder-defined criteria, formally:

6 CHAPTER 1. INTRODUCTION

Definition 1.2 (Requirement Optimization Problem).

maximize f (K,S,R) (1.2)

s.t. K,S � R (1.3)

The first modification this formulation brings is the use of an utility func-
tion able to compare different systems in order to find the optimal one (regarding
the utility function). We also changed the ` relation from ZJ framework, which
stresses the focus on the provability, against �which models that we just want that
K and S satisfy R. The focus on our RP formulation being more on the optimiza-
tion than the provability. It highlights that rather than an attempt to replace the
ZJ framework, our approach should be considered as a complementary frame-
work.

From a mathematical point of view, our formulation directly refers to opti-
mization problems which are defined as [20]:

Definition 1.3 (Linear Optimization Problem).

minimize f0(x) (1.4)

s.t. fi(x) ≤ bi , i = 1, . . . ,m (1.5)

where

• the vector x = (x1, . . . ,xn) is the optimization variables of the problem,

• the function f0 : Rn→R is the objective function,

• the functions fi : Rn → R, i = 1, . . . ,m are the (inequality) constraint func-
tions,

• and the constants b1, . . . , bm are the limits, or bounds, for the constraints.

An optimal solution of this problem is a vector x∗ if it has the smallest ob-
jective value among all vectors that satisfy the constraints: for any z with f1(z) ≤
b1, . . . , fm(z) ≤ bm, we have f0(z) ≥ f0(x∗).

Using optimization for software engineering is not new. It is called Search-
based Software Engineering [69, 157] and has been used in several disciplines, e.g.
project planning, cost estimation, testing or automated maintenance. Optimiza-
tion of requirements has also been studied [112, 84]. Most of the time, it takes the
form of a list of requirements described by value and cost for which we have to
find the optimal subset.

However, those requirement optimization approaches are not rooted in any
particular ontology for requirements engineering. We yet think that it is impor-
tant to position the Requirement Optimization Problem in a particular ontology if

1.2. RESEARCH SCOPE: REQUIREMENT OPTIMIZATION 7

we want to benefit from all research progress that was previously made regarding
this ontology. Indeed with a framework grounded in a requirements ontology, it
should open our ROP framework to all concepts that were developed on the basis
of this ontology such as its Requirements Modeling Language (RML).

In their work to define such an ontology (referred as Core Ontology for Re-
quirements Engineering (CORE) hereafter) [89], Jureta et al. identified ontological
requirement concepts as being goal, softgoal, quality constraint, domain assump-
tion and task. We root our thesis in this ontology what brings us to the following
definition of a Requirement Optimization Problem in CORE:

Definition 1.4 (Requirement Optimization Problem in CORE).

maximize f (K,T ,Q,G) (1.6)

s.t. K,T �Q,G (1.7)

where

• G is the set of binary decision variables on goals satisfaction,

• S is the set of decision variables on softgoals,

• Q is the set of constants, constraints and decision variables (integer and real)
used to model quality constraints satisfaction,

• T is the set of binary decision variables on tasks realization,

• K is the set of domain assumptions which covers domain statements, con-
tribution links and any other concepts related to the domain. It can takes
the form of constants, decision variables (integer, binary and real) and con-
straints.

However by doing this, we need to adopt another mathematical formulation of
optimization because CORE requires also binary and integer variables while the
model suggested in Definition 1.3 is only based on real variables.

Use of binary variables for goal satisfaction can be easily understood: the goal
is satisfied or not. How it can be satisfied belongs to the scope of domain as-
sumptions. If stakeholders specify that some task realization can contribute to
the satisfaction of a goal, it is a domain assumption. Consequently, G does not
have to integrate more than binary decision variables.

Regarding quality constraintsQ, let’s take as example the following statement:
“Duration time for uploading a file should be less than 5 seconds.” This statement
is by itself an inequality constraint consisting of a constant (5 seconds) and a real-
decision variable (the duration time).

8 CHAPTER 1. INTRODUCTION

From this discussion, we see that it is then necessary to integrate non-continuous
variables (especially binary variables) into the mathematical model. The ROP
would then rely on Mixed-Integer Programs (MIPs) which are optimization prob-
lems in which a nonempty subset of integer variables (binary variables being a
specific case of integer variables) and a subset of real-valued variables exist, the
constraints are all linear equations or inequalities, and the objective is a linear
function to be minimized (or maximized) [153]. In mathematics, such problems
are defined as:

Definition 1.5 (Mixed-Integer Optimization Problem).

minimize fa(x) + fb(y) + fc(z) (1.8)

s.t. f 1
i (x) + f 2

i (y) + f 3
i (z) ≤ bi , i = 1, . . . , q (1.9)

x ∈Rn

y ∈Bm

z ∈Zo

where

• the vector x = (x1, . . . ,xn) is the real optimization variables,

• the vector y = (y1, . . . , ym) is the binary optimization variables,

• the vector z = (z1, . . . , zo) is the integer optimization variables,

• the functions fa : Rn → R, fb : Bm → R and fc : Zo → R are the objective
functions,

• the functions f 1
i : Rn→ R, f 2

i : Bm→ R and f 3
i : Zo → R with i = 1, . . . , q are

the (inequality) constraint functions,

• and the constants b1, . . . , bq are the limits, or bounds, for the constraints.

1.3 Research Problem: Formulation of ROP instances in CORE

With the given ROP formulation we provided in the previous section, different
research questions arise. They are depicted in Tab. 1.1 and are individually de-
scribed in this section.

First of all, it seems important to determine to which kind of problems Re-
quirement Optimization can apply. Indeed, during RE several issues can appear:

1.3. RESEARCH PROBLEM: FORMULATION OF ROP INSTANCES IN CORE 9

Table 1.1: Research Questions

RQ1 Is there any RE issue with a non-trivial solution for which it is
useful to formulate it as an optimization problem using concepts
in CORE ?

RQ2 Given a RE issue formulated as a Requirement Optimization
Problem, how can instances of this ROP be formulated with tra-
ditional RP models and is there any extension required to those
models ?

RQ3 Given a specific ROP modeled with existing models, how can it
be formulated as a Mixed-Integer Program ? In other words, what
are the different decision variables, constraints and parameters
to consider and how to transform the requirements model into a
mixed-integer program ?

how to gather the information? how to clarify it? how to model it? Examples1

of issues arising in RP solving as well as representative references are depicted in
Tab. 1.2.

Given those RE issues, the first research question is to determine if there is
any of the RE issues for which RO is relevant. This question is not about if opti-
mization is relevant to RE issues; it is relevant and it has already been discussed
by researchers (as we said in previous section). The question is rather if the for-
mulation of ROP we provided in Definition 1.4 can be applied on any of those RE
issues. This limits the scope of this research question to prove that some of the
mentioned issues can be tackled as ROP rooted in CORE and not to exhaustively
identify all issues in which ROP in CORE is relevant.

Research Question 1. Is there any RE issue with a non-trivial solution for which it
is useful to formulate it as an optimization problem using concepts in CORE?

If the previous question is answered by the affirmative, then it becomes inter-
esting to show how can ROP instances of this particular issue be modeled. The
idea here being to rely on existing RE tools, in particular existing Requirements
Modeling Languages. This implies that we should see if such existing modeling
techniques can be used to model instances of ROP and if extensions are required.

1Those examples were identified during our readings of the RE literature. It was also significantly
enriched by some research colleagues suggestions based on their own experience and readings. This
table is not aimed to be exhaustive regarding the RE issues neither regarding the suggested references.
It just proposes some significant RE research papers and illustrates the variety of the tackled issues in
RE.

10 CHAPTER 1. INTRODUCTION

Table 1.2: Examples of RE issues arising in RP solving. Bold issues refers to prob-
lem treated in more details in this thesis as ROP.

Issue Representative
references

RI1 How to gather information about requirements, a
system-to-be and its environment?

[62, 76, 41]

RI2 Which of the gathered information is relevant to RE? [40, 155, 88]

RI3 How to clarify the elicited information, to avoid such
problems as vagueness and ambiguity?

[108, 98, 87]

RI4 How to determine which requirements have highest
priority, for whom, and why?

[91, 10, 75]

RI5 How to help stakeholders agree on common priorities
over requirements?

[97, 16, 86]

RI6 How to distribute the responsibility for the satisfaction
of requirements to the system-to-be, systems it might
interact with, and people in its environment?

[40, 25, 53]

RI7 How to estimate costs, risks, and deadlines for making
systems that satisfy requirements?

[13, 15, 135]

RI8 How to evaluate how complete requirements are, and if
any important requirements may have been missed?

[72, 136, 160]

RI9 How to evaluate if the requirements are consistent, and
to manage inconsistent requirements?

[146, 73, 52]

RI10 How to specify and compare alternative strategies to
satisfy the same requirements?

[108, 98, 100]

RI11 How to evaluate the quality to which requirements would
be satisfied by the system-to-be?

[108, 18, 95]

RI12 How to check if a system-to-be specification satisfies re-
quirements?

[53, 61]

RI13 How to keep track of changes to requirements, reasons
for these changes, their impact on existing requirements
and systems, and how to propagate these changes in an
existing specification of a system-to-be?

[66, 121, 33]

RI14 How to do RE for systems that should adapt to different
environments and requirements?

[117, 35, 101]

RI15 How to do RE for systems that should autonomously
adapt to their environment?

[29, 152, 22]

1.4. RESEARCH CONTRIBUTION: MODELS, MIPS AND POCS 11

This step is necessary because modeling RP instances is difficult by itself and try-
ing to write the mathematical model directly seems unpractical. It is then more
convenient to allow requirement engineers to use available tools to model RP in-
stances, allow them to integrate specific considerations for the optimization and
then automatically generate the optimization mathematical model. This brings us
to the second research question:

Research Question 2. Given a RE issue formulated as a Requirement Optimization
Problem, how can instances of this ROP be formulated with existing RML and is there
any extension required to those RML ?

Finally, once (and if) we have showed that a relevant ROP could be described
with existing RML (which implies to define the objective function and what are
K, T, S, Q, G in this models), it arises the question of how to formulate the ROP as
a Mixed-Integer Program. In other words, what are the specific decision variables
(related to K, T, S, Q and G) that should be considered and how to transform
constraints or relations from the model in mathematical inequalities. This is the
concern of our third research question:

Research Question 3. Given a specific ROP modeled with existing models, how can
it be formulated as a Mixed-Integer Program ? In other words, what are the different
decision variables, constraints and parameters to consider and how to transform the
requirements model into a mixed-integer program ?

1.4 Research Contribution: Models, MIPs and POCs

This thesis brings four types of contributions into the field of ROP. Three types
directly related to each research question previously described and one additional
contribution related to the definition of a tool supporting contributions of RQ2
and RQ3.

First, on the basis of a case study, we identified several situations where ROP
are relevant: (i) determining a planning which maximizes customer expected
value, (ii) selecting a solution which minimizes the cost, (iii) determining the opti-
mal product portfolio in a software product line and (iv) determining the amount
of configurability a solution should present. For each of those situations, we dis-
cuss why those issues should be considered as ROP and which criteria should be
optimized. Those identified problems are all related to specific RE issues pre-
sented in Table 1.2.

The second type of contribution consists in formalizations of the identified
ROP into requirements models. We show how instances of those problems can be
modeled with existing RML. When required, we suggest some extensions to the

12 CHAPTER 1. INTRODUCTION

RML which take various forms: introduction of new concepts (nodes or relation-
ships), introduction of new properties for existing concepts (e.g. a cost related to
a task), mapping with other languages (e.g. using goal-oriented languages with
features diagrams or entity-relationship diagrams).

Thirdly, for each identified ROP, we defined the underlying MIP and provided
the mapping with the ROP model. Those mappings define how to translate re-
quirement concepts and relations into decision variables and mathematical con-
straints.

Finally, a tool able to support the previously discussed contributions is pro-
vided. It allows to model RP instances with existing RML. It supports user-
defined extensions of existing RML (for instance by adding new concept nodes
or new labels on existing nodes) and also allows translation of RP instances into a
MIP that can be executed by the tool.

1.5 Research Methodology: Design Science Research for IS

This research follows a methodology dedicated to design science research for In-
formation Systems. Indeed, “whereas natural sciences and social sciences try to un-
derstand reality, design science attempts to create things that serve human purposes”
[134]. That is what this thesis attempts to do. More precisely, we followed a
methodology suggested by Peffers et al. [115] which consists of 6 steps: (1) Prob-
lem identification and motivating, (2) definition of the objectives for a solution,
(3) design and development, (4) demonstration, (5) evaluation and (6) commu-
nication. This particular methodology has the advantage to synthesize previous
Design Science Research Methodologies in IS such as work of Eekels et al. [46] or
Hevner et al. [147].

The application of this methodology to our research is discussed in this section
and is summarized in Fig. 1.1. But before describing each step, it is important to
notice that our research is an Objective-centered research. It means that the entry
point in the process was the definition of the objectives of the solution we wanted
to provide: a Requirement Engineering framework which provides an optimal
solution in the problem and solution spaces it defined.

Problem Identification and Motivating

Motivate our research of providing a framework for resolving ROP was done in
two steps. First, we investigated the research literature in order to evaluate what
were the different issues RE has to tackle and what was the state-of-the-art of RE
regarding optimization of these issues. We did not exhaustively investigate all RE

1.5. RESEARCH METHODOLOGY: DESIGN SCIENCE RESEARCH FOR IS 13

Figure 1.1: Description of the methodology followed in this thesis

14 CHAPTER 1. INTRODUCTION

issues but focused on RI4, RI6, RI7, R10 and R14. This selection resulted from
observed problems in our case study which will be presented in Chapter 2.

Definition of the Objectives for a Solution

The objectives of the intended solution have been discussed in previous sections
and related research questions are depicted in Tab. 1.1. As a reminder, we are
interested in studying in this thesis a Requirement Problem formulation in which
we define both problem and solution spaces in order to define a system which op-
timizes a particular cardinal utility function.

Design and Development

The results of the design effort were extensions of some RML and the formulation
of MIPs. This design required to make decisions on what criteria to take into
account in order to formalize the objective function, in other words what should
be optimized. The reasoning behind each of these decisions is presented in Part
II, where each chapter is dedicated to specific RI.

Demonstration

Implementing our optimization model in a web-based tool called AnalyticGraph.com
(AnalyticGraph) and applying it (a posteriori) on our case study demonstrated the
feasibility and efficacy of our approach. This was done for each tackled Require-
ment Issue. During this step, some limitations were nonetheless identified such
as MIP resolution duration that could become excessive depending on particular
parameters. They are more discussed in Chapter 4.

Evaluation

Evaluate our approach would have required applying it (a priori) on another case
study which was not done. It could be the purpose of further research.

Communication

Finally, results of this research were communicated in several conferences and
workshops. All scientific papers are depicted in Tab. 1.3. Further publications in
journals should be done.

1.6. RESEARCH POSITIONING: DEVIATION FROM THE ZJ FRAMEWORK 15

1.6 Research Positioning: Deviation from the ZJ framework

In comparison with the ZJ framework, our work has a different positioning. In-
deed, due to its specific formulation of the RP, the ZJ framework has epistemo-
logical consequences. Epistemology refers to the theory of knowledge, and in
particular, how we acquire knowledge. Using a monotonic relation ` in order to
formulate the RP implies that all information is considered as existing a priori and
should be discovered. We can (and therefore should) collect and analyze all re-
quirements in the early phase of the project before going further. There is no room
for additional information that could latter appear and would contradict previous
inferences. It totally fits with the waterfall methodology. However, it omits the
fact that all information acquired during RE comes from human speeches and/or
constructs. It implies that some information could be omitted (deliberately or
not), could become considered as false or true latter in the process. Moreover,
requirements are never fully objective but firmly depends on stakeholders inten-
tions, judgments, and values.

Moreover using the term find a specification suggests that, aside from the a
priori existence of the solution, the role of the engineer is to discover it. It is
rooted in a technical perspective of how RE should be performed. Engineer’s role
is mainly to prove that his specification will satisfy the requirements considered
as given. We rather think that the solution is constructed (and not discovered) by
engineers and stakeholders. By extension, if the solution is constructed, also is
the problem. A formulation of the requirements problem should also take that
into account. Engineer’s role get a social dimension where he negotiates and con-
structs both the solution as well as the problem. This is why we prefer to use
define instead of find in the RP formulation and we extent the formulation on both
solution and problem spaces. Although it seems anecdotal, this is important for
the research, education and practice in RE. One of the main consequences is that
the ROP should rely on iterative and incremental processes and allows previous
conclusions to be defeated. It also has an important influence on the role of the
Requirement Engineer.

1.7 Thesis Outline

The present thesis divides into four parts:

Part I introduces the case study that is used through the thesis. It also describes
the basic concepts on which this thesis is build. Among other it introduces Techne
as the RML mainly used. Techne being defined using CORE, it makes it the most
fitted RML for our purpose. This part also describes how to transform a Techne

16 CHAPTER 1. INTRODUCTION

model into a MIP. Eventually, before going into further details regarding ROPs,
we discuss underlying assumptions and the derived limitations.

Part II presents four distinct RE issues for which we formalize a Requirement
Optimization Problem, we describe how to model instances with Techne (and
other existing languages if required) and we map the extended Techne model to
a Mixed-Integer Program. Chapter 5 discusses the issue of providing an optimal
planning. Chapter 6 presents the problem of finding the optimal balance between
commonality and variability when developing information systems for different
customers. Chapter 7 is about cost minimization. It suggests a ROP formula-
tion using the Functional Point Counting to measure the effort required for each
solution. Eventually, Chapter 8 presents self-configurable systems and suggest a
trade-off model to determine the amount of configurability those systems should
have.

Part III presents AnalyticGraph, the supporting tool we developed to support
our contributions. It is an online platform in which all examples, MIP or RML
extensions discussed in this thesis are accessible for free. Chapter 9 is dedicated
to present how AnalyticGraph can support creation of RE models. It also shows
how it improves previous RE existing software.

Part IV concludes this work by exploring , in Chapter 10, potential research
tracks that, we think, could extent or improve the present work. Then, we provide
a summary of the work and its main contributions.

Several chapters of this thesis resulted in publications. These latter are de-
picted in Tab. 1.3. Chapter 7 and the second part of Chapter 8 still need to be
published.

1.7. THESIS OUTLINE 17

Table 1.3: Summary of the publications and related chapters.

Paper reference Related Chapter

J. Gillain, I. Jureta, and F. Stéphane. Planning optimal
agile releases via requirements optimization. In Third In-
ternational Workshop on Artificial Intelligence for Require-
ments Engineering (AIRE’16). Springer, 2016

Chapter 5

J. Gillain, S. Faulkner, P. Heymans, I. Jureta, and
M. Snoeck. Product portfolio scope optimization based
on features and goals. In Proceedings of the 16th Inter-
national Software Product Line Conference-Volume 1, pages
161–170. ACM, 2012

Chapter 6

C. Burnay, J. Gillain, I. J. Jureta, and S. Faulkner. On the
definition of self-service systems. In Advances in Concep-
tual Modeling, pages 107–116. Springer, 2014

Chapter 8

J. Gillain, C. Burnay, I. Jureta, and S. Faulkner. Analytic-
graph.com: Toward next generation requirements model-
ing and reasoning tools. In Proceedings of the 24th IEEE In-
ternational Requirements Engineering Conference (RE’16).
IEEE, 2016

Chapter 9

J. Gillain, S. Faulkner, I. J. Jureta, and M. Snoeck. Using
goals and customizable services to improve adaptability
of process-based service compositions. In IEEE 7th Inter-
national Conference on Research Challenges in Information
Science (RCIS), pages 1–9. IEEE, 2013

Briefly discussed
in Chapter 10

2Case Study

2.1 Introduction

In this chapter, we present the case study that will be used through this thesis in
order to illustrate our contributions. This case covers the start of a Belgian mys-
tery shopping company and focuses on the requirement issues it faced from its
start in 2010 until 2015. The case contributes mainly to the first research ques-
tion of this thesis, that is, the identification of requirement issues that could rele-
vantly be formulated as an optimization problem. Indeed, as we will present, the
company faced different RE issues at different stages of its development. Those
specific RE issues often presented trade-off situations which were used as starting
points for ROP formalization.

Solutions suggested in this thesis were not validated with application on this
case since they were designed a posteriori of the problem occurrence. Nonetheless,
this case contributed to the following work by answering these questions:

• What are the trade-off problems of requirement engineering an organization
could face ?

• Can those problems be formalized as optimization problems ?

• Does it bring a non-trivial solution?

In the next section, we present a brief history of the case study as well as
information systems that were implemented. We summarize in section 2.3 the
different optimization problems identified in the case study.

2.2 History

ASC Concept is a small Walloon mystery shopping company founded in 2010. At
the beginning, the organization mission was to provide three types of services:
mystery shopping, customer service training and customer satisfaction surveys.

The society started with 3 customers for mystery shopping services:

20 CHAPTER 2. CASE STUDY

Figure 2.1: Example of the Excel checklist used to evaluate stores during mystery
visits.

• Night&Day: late night grocery shops,

• Yves-Rocher: beauty supply stores,

• Mestdagh: supermarkets,

Each customers had between 30 to 50 stores to be checked at a frequency vary-
ing between 6 to 12 times a year. The provided service consisted in visiting pe-
riodically the different stores and evaluate each of them following a checklist of
predefined criteria. An additional written report of one page was also provided.
Checklists were filled in with an Excel spreadsheet and then send by email with
the written report. The different criteria to be checked were grouped by shelves
and a three level-scale was used to evaluate each criteria. Additional comments
could be added to each checked criteria. An example of this criteria list is pro-
vided in Fig. 2.1.

In addition to the visit checklists, ASC Concept also provided its customer
with a table summarizing by store the average score of each shelve group for all
previously performed visits. The summarizing table were maintained manually
by the company employees. An example of this table is provided in Fig. 2.2. Fi-
nally, at the end of the year, the supermarket company also asked for an additional
table summarizing the global score for all stores. This table being used to reward
the best store.

At the end of 2010, ASC Concept decided to create a website in order to im-
prove its visibility. The website purpose was limited to the activity presentation.
In order to realize the website, ASC Concept contacted a small IT company.

2.2. HISTORY 21

Figure 2.2: Example of the Excel spreadsheet summarizing global scores of each
store.

Once the website was developed, ASC Concept asked the IT company to de-
velop an access-limited webplatform where it would be possible to upload the
different reports. Specific access to the platform was provided to each customer.
First requirements were quite simple. An employee of ASC Concept should be
able to upload a report by specifying the customer, the store and the report type
(i.e. a visit checklist, a visit written report or a summary spreadsheet). Old re-
ports could be archived. For each customer, stores could be added, modified or
archived as well as new access accounts could be created and linked to this par-
ticular customer. A screenshot of the web application is provided in Fig. This
version required approximately 120 man-hours of development. 2.3.

At this time, the IT Team was asked by a property management company to
develop a platform where it was possible to upload documents related to the prop-
erties (e.g. invoices for shared local maintenance). Document access needed to be
limited to granted persons. This situation rises the possibility to reuse the cre-
ated platform for ASC Concept as a basis for this new customer. It finally never
materializes.

Until 2012, ASC Concept requirements had remained quite stable when an im-
portant business fact implied some changes. Contracts with the cosmetic stores
and grocery shops ended while the store numbers to be visited for the supermar-
ket company dramatically increased. This increase largely compensated the loss.
The supermarkets’ needs regarding analytics increased while the written report
was given up. In order to ease the analytics generation which consumed a lot of
time, ASC Concept decided to automatize this process. Two solutions were con-
sidered at the time:

22 CHAPTER 2. CASE STUDY

Figure 2.3: Screenshot of the first webapplication developed for ASC Concept.

1. Continue to use the current platform with the spreadsheet and create a VBA
script able to extract data from the Excel files,

2. Create a webapp with the checklist to be filled online and then stored in a
database allowing both visit result viewing as well as analytics computation.
Being web-based, results and analytics would be accessible in a browser (and
consequently on tablets or smartphones).

Although much more expensive for the company, the second solution was se-
lected. It was justified mainly for three reasons. First, it would ease daily opera-
tions regarding the company activity. Secondly, it would improve company image
thanks to more professional services. Thirdly, the cost could be reduced thanks to
Walloon government subsidies dedicated to Internet-based applications.

Due to time and budget limitations, the platform was designed for a single
customer with an unique checklist. At the early stage of this new information
system, an employee of ASC Concept could fill results of a visit in a webform
(depicted in Fig. 2.4). Contacts of the supermarket stores could access visit results
as well as summary dashboards (depicted in Fig. 2.5). Moreover, due to its growth,
ASC Concept was required to hire some external mystery shoppers. In order to be
sure that visits results were correctly filled in, ASC Concept asked to distinguish

2.2. HISTORY 23

Figure 2.4: The checklist of the web-based application.

Figure 2.5: Analytics provided by the web-based application.

24 CHAPTER 2. CASE STUDY

administrator accounts and mystery shopper accounts. The fill-in process became
a two step process consisting of filling and then validating the report. This new
version of the platform required 250 man-hours of work.

During one year of activity, few changes were recorded. The only requests
from ASC Concept to the IT company was to add a contact account for the cus-
tomer (e.g. a new sales manager) or to add/remove some criteria from the check-
list. Since this occurred seldom, no administration interface was designed for it,
insertion occurring directly in the database. A maintenance of approximately 1
man-day per month was necessary.

After this first year using the new application, ASC Concept gets a new con-
tract with franchised stores from the same supermarket brand (until there, only
the integrated stores were visited). Having separate management, results of the
integrated stores should not be visible for the franchised stores and reciprocally.
The franchised stores accepted to use the same criteria list. The only new feature
was the possibility to manage different customers in the platform brands (but
there was still only a single checklist common to all customers). This new feature
required about 3 man-days to be integrated.

After an additional year of activity with the same question list for the two
separate customers, some changes were required from both customers. It was
decided to integrate the possibility to have a dedicated question list for each cus-
tomer. Since there were only two question lists, no questionnaire designer was
developed, the question list being inserted by developers in the database. It re-
quires 4 additional man-days.

In 2014, the company decided to focus its activities on the mystery shopping
and give up all other services (i.e. training and satisfaction surveys). It changes
his name into MyMysteryShopper (hereafter called MystShop). The supermarket
company asked some change in the application. First, it needed to provide to each
store manager an access to his own store results. So, instead of having only global
access for all store results, each store manager would be able to view its own
results without accessing others results (brand manager being still able to access
results of all stores of the brand). Moreover, it also asked to be warned by mail
of any new visit report on the website. Eventually, it asked to have print-friendly
template of visit reports.

During this period, two additional companies were prospected by MystShop:
a kitchen selling company and an underwear brand company. In order to con-
vince these potential customers, MystShop asked to implement custom checklist
to be presented to the prospects. The IT Team being busy with the new store man-
ager access and the warning system, this situation rises the question of a checklist
designer. Indeed, being annoyed by the time required by the IT Team to design
and implement new checklists, administrators of MystShop rise the possibility

2.3. IDENTIFIED REQUIREMENT ISSUES 25

Figure 2.6: E-R diagram of current MystShop application data structure.

of designing the questionnaire them selves in order to prospect new customers.
A checklist designer was eventually developed and accessible to administrators
only.

In the current state, the application allows the following use case. The entity-
relationship diagram of the application is depicted in Fig. 2.6.

2.3 Identified Requirement Issues

Regarding the previously described case, MystShop faced many requirement prob-
lems. Those problems are not new and have already been studied by the research
community. For some of them, there already exist some attempts to solve them.
The purpose of this thesis is to approach them from an optimization perspective
and capitalize on what has been done before.

That being said, a first temptation when looking at those previously mentioned

26 CHAPTER 2. CASE STUDY

requirement issues, could be to argue that applying a waterfall process starting
with an in-depth requirements analysis could have avoid many problems. But
it would have required that MystShop clearly knew a priori all its requirements.
However, many unpredictable changes guided the evolution of MystShop’s re-
quirements (gain/loss of customers, focus on mystery shopping and withdrawal
of training activities...). Moreover, MystShop’s available resources at the begin-
ning was quite limited forcing it to reduce the IS scope to the minimum which
maximized return on investment. Eventually, many features were required in a
short opportunity window which implied to focus on the very urgent require-
ments and leaving no room for comprehensive requirement analysis.

Nonetheless, when facing each of those RE issues, MystShop was confronted to
multiple solutions. The choice was guided by informal reasoning processes on the
basis of unclear criteria. In this thesis, we decided to approach them with a more
formal optimization perspective which formulates both the selection criteria and
the decision process. Here are a summary of the tackled problems with references
to the Requirements Issues (RIs) discussed in Tab. 1.2:

• Due to limited resource, the IT team could not deliver all required features
in the desired time. Three approaches were investigated to tackle this prob-
lem.

– First, several solutions were considered in order to minimize its cost.
This problem was formalized in Chapter 3 and a more comprehensive
approach is suggested in Chapter 7. Finding the alternatives which
minimize the cost relates to RI10 and RI7.

– Then, the specification of some priorities on the requirements in or-
der to set a release planning following those priorities was considered.
This problem is known as the Next Release Problem [7]. We present
our contribution to this optimization problem in Chapter 5. This issue
relates to RI4 and also RI7.

– The third considered approach was to transfer some design responsi-
bility from the IT team to the business users. This is the case for the
checklist designer. Our contribution (related to RI6) is presented in
Chapter 8 and it deals with RI6.

• The IT company faced the possibility to reuse parts of the web application
for another context. This reuse problem has been deeply studied by the Soft-
ware Product Line Community. Our contribution to formalize this problem
RI14 as an optimization problem is described in Chapters 6 and 7.

3Mapping Techne on a MIP

In this Chapter, we describe in details how to transform a goal-model described
with the Requirements Modeling Language Techne into a Mixed-Integer Program.
As it is, this chapter already contributes to answer research questions since:

• it suggests a model to compare alternative strategies to satisfy some require-
ments (RI10) and briefly discusses cost estimation (RI7) since alternative
strategies are compared, among other factors, on the basis of their cost,

• it sets the foundation of the mapping between RP models and Mixed-Integer
Programs that will be used through all the rest of this thesis (i.e. for each
specific RE issue),

• Techne being a RML based on the CORE ontology, it respects our ROP for-
mulation given in Def. 1.4.

This chapter divides into three parts. In section 3.1, we present Techne [85],
the Goal Modeling Language that we will use through this thesis in order to model
the ROP instances. Secondly, in section 3.2, we present all sets, parameters, deci-
sion variables and constraints required to map Techne to a MIP. Finally, in section
3.3, we introduce AnalyticGraph.com, the web-based application supporting the
suggested approaches presented in this thesis.

3.1 Description of the Requirement Modeling Language Techne

Techne is described as “an abstract requirements modeling language that lays formal
foundations for [. . .] modeling languages applicable during early phases of the require-
ments engineering process.” [85]. Three reasons motivates our choice of Techne as
the selected RML. First, Techne is an abstract goal modeling language based on
the CORE ontology. It makes it applicable in a large spectrum of requirement
problems. Secondly, it is straightforward how to translate Techne models into
models in other goal modeling languages [154, 144]. It implies that conclusions
and models suggested in this report can be applied with other languages. Finally,

28 CHAPTER 3. MAPPING TECHNE ON A MIP

C0 Inference

G1
Goal

S2 Softgoal

Q3 Quality
Constraint

T4
Task

K5
Domain
Assumption

I6

C7 Conflict

P8
Preference

Figure 3.1: Graphical notation of Techne Nodes

because of its reasoning rules (e.g. Inference node is based on the modus ponens
inference rule) Techne can be quite easily mapped to a MIP.

There are two types of primitive in Techne: concepts (goal, task, softgoal, qual-
ity constraint and domain assumption) and relations (inference, conflict, prefer-
ence, is-optional and is-mandatory). These primitives are respectively aimed at
classifying and specifying relations between the collected information during re-
quirements elicitation. When used for modeling instance of a RP, both concepts
and relations are depicted as labeled nodes which can be connected to each other
with directed links. Those links have no label and consenquently no distinguish-
able meaning. It means that a conflict relation between two concepts will be de-
picted with three nodes, i.e. two nodes for the concepts and one for the relation.

Techne does not come with a graphical notation. For convenience, we adopt
the notation depicted in Fig. 3.1. For modeling ease, we decided to not represent
is-optional and is-mandatory relations as nodes but as additional labels on related
nodes. In order to describe and illustrate those concepts, an example of a goal
model formalized with Techne is provided in Fig. 3.2. It is based on the MystShop
case study 1. Here is the description of each Techne primitive [85]:

Goal:
Stakeholder desires become instances of the goal concept, if they refer to
conditions, the satisfaction of which is desired, binary and verifiable. It is

1This example is accessible to http://analyticgraph.com/dev/?g=Go1g0rLDxO

http://analyticgraph.com/dev/?g=Go1g0rLDxO

3.1. DESCRIPTION OF THE REQUIREMENT MODELING LANGUAGE TECHNE 29

represented by a circle labeled “G”. As an example G0 is a goal which states
that “Mystery visit results should be made available to the customer”.

Quality constraint:
Stakeholder desires become instances of the quality constraint concept, if
they refer to conditions, the satisfaction of which is desired, non-binary and
verifiable. It is represented by a circle labeled “Q”. An example of a qual-
ity constraint could be “Duration time for uploading a mystery visit report
should be lesser than 5 seconds.”

Softgoal:
Stakeholder desires become instances of the softgoal concept, if they refer to
conditions, the satisfaction of which is desired, vaguely constraint and not
necessary directly mesurable. It is represented by a cloud labeled “S”. As
an example S107 is a softgoal which states that “Mystery visit results are
accessible everywhere”.

Task:
Stakeholder intentions to act in specific ways become instances of tasks to
be accomplished either by the system-to-be, or in cooperation with it, or by
stakeholders themselves. It is represented by a square labeled “T”. As an
example T4 is a task which states the intention of developers to “Deploy a
webplatform”.

Domain assumption:
Beliefs are instances of domain assumption, stating conditions within which
the system-to-be will be performing tasks in order to achieve the goals, qual-
ity constraints, and satisfy as best as feasible the softgoals. It is represented
by a diamond labeled “K”. As an example K12 is a domain assumption
which states the “Regional government subsidises Internet-based services”.

Inference:
This relation conveys the idea that a requirement can be the immediate con-
sequence of another set of requirements. Since Techne considers that goal
refinement and task decomposition ask basically the same problem, this re-
lation is used to depict both relations. It is represented by a yellow triangle
labeled “I”. Incoming nodes are called “premises” while the outgoing node
(which is unique) is called the “conclusion”. As an example I1 states that the
conclusion G0 “Mystery visit results should be made available to the cus-
tomer” will be satisfied if both premises G5 “Visit reports are recorded in a
spreadsheet” and G6 “Visit reports are sent by email” are satisfied.

30 CHAPTER 3. MAPPING TECHNE ON A MIP

Conflict:
The conflict relation states that if conflict members (two or more) of this
relation are satisfied in the solution, this latter will be inconsistent. Conse-
quently, a solution should be conflict-free. It is represented by a red triangle
labeled “C”. It can have only incoming nodes (its members). As an exam-
ple, nodes G6 and G16 are in conflict (depicted by node C94) which means
that a solution where reports are sent by mail can not ensure that they are
available in a central repository.

Preference:
Stakeholder evaluations of requirements convey that not all requirements
are equally desirable. If a requirement is strictly more desirable than an-
other one, then there is a preference relation between them and by strictly,
we mean that they cannot be equally desirable. The preference relation leads
to ordinal solutions, i.e. solutions that can only be ordered but for which it
is impossible to compare how much it is preferable than another one. How-
ever, it is important to remind that we want cardinal solutions in our opti-
mization framework. Then, the preference relation would not be necessary
in our framework.

isMandatory/isOptional:
The is-mandatory relation on a requirement indicates that the requirement
must be satisfied, or equivalently, that a conflict-free set of requirements
which does not include that requirement cannot be a candidate solution.
In contrast to the is-mandatory relation, the is-optional relation on a re-
quirement indicates that it would be desirable for a conflict-free set of re-
quirements to include that requirement, but that set can still be a candidate
solution if it fails to include the optional requirement.

3.2 Mapping between Techne and MIP

In this section, we present a first mapping between Techne and a MIP. We first
focus on concept nodes, then we describe how to map relation nodes.

Concept nodes

When mapping concept nodes to a mathematical model, there are two impor-
tant aspects to consider. First, we need to be able to make references to specific
nodes in the goal model. We do this by defining several sets which relate to some
nodes in the goal model. Knowing that we have 5 different types of concept nodes

3.2. MAPPING BETWEEN TECHNE AND MIP 31

G
0

M
ys

te
ry

 s
ho

pp
er

s
m

ak
e

vi
si

t r
es

ul
ts

 a
va

ila
bl

e
to

 th
e

cu
st

om
er

I1
I2

T
4

D
ep

lo
y

a
w

eb
pl

at
fo

rm

G
5

V
is

it
re

su
lts

 a
re

 r
ec

or
de

d
in

 a
 s

pr
ea

ds
he

et

by
 m

ys
te

ry
 s

ho
pp

er
s

G
6

V
is

it
re

po
rt

s
ar

e
se

nt
by

 m
ai

l t
o

cu
st

om
er

s
by

 m
ys

te
ry

 s
ho

pp
er

s

I1
0

G
12

V
is

it
re

su
lts

 a
re

pu
bl

is
he

d
on

 a
 w

eb
pl

at
fo

rm
 b

y
m

ys
te

ry
sh

op
pe

rs

G
16

C
us

to
m

er
 c

an
ac

ce
ss

 v
is

it
re

su
lts

in
 a

 c
en

tr
al

 r
ep

os
ito

ry

I1
8

G
23

V
is

it
re

su
lts

 a
re

re
co

rd
ed

 in
 a

 w
eb

fo
rm

by
 m

ys
te

ry
 s

ho
pp

er
s

I2
4

I2
7

T
30

C
re

at
e

a
w

eb
fo

rm
T

31
C

re
at

e
an

 E
xc

el
 te

m
pl

at
e

I3
2

G
37

V
is

it
da

ta
 c

an
 b

e
ex

pl
or

ed
 th

ro
ug

h
vi

zu
al

is
at

io
ns

 b
y

cu
st

om
er

s

I3
8

T
42

D
ep

lo
y

B
I s

ol
ut

io
n

I4
4

T
45

C
re

at
e

an
 E

xc
el

te
m

pl
at

e
w

ith

m
ac

ro
 fo

r
ex

tr
ac

tin
g

vi
si

t r
es

ul
ts

S
49

U
se

r-
fr

ie
nd

ly
 a

pp
ro

ac
h

I5
0

C
57

C
79

C
91

C
94

I1
05

S
10

7
A

cc
es

si
bl

e
on

 e
ve

ry
de

vi
ce

s

T
10

9

K
11

2
R

eg
io

na
l g

ov
er

nm
en

t
su

bs
id

is
es

 In
te

rn
et

-b
as

ed
se

rv
ic

es
I1

17
G

12
0

G
ov

er
nm

en
t s

ub
ve

nt
io

n
ca

n
be

 a
sk

ed

Figure 3.2: Modeling of the Mystery Shopper Case. Model accessible and editable
at http://www.analyticgraph.com/dev/?g=Go1g0rLDxO

http://www.analyticgraph.com/dev/?g=Go1g0rLDxO

32 CHAPTER 3. MAPPING TECHNE ON A MIP

in Techne, namely goals, softgoals, quality constraints, domain assumption and
tasks, we respectively define 5 sets: G,S,Q,K and T with

N = G∪ S ∪Q∪K ∪ T (3.1)

Then, we define for each concept node (except for quality constraints) a binary
decision variable in the mathematical model. When the decision variable value
equals 1, it means that the concept is satisfied, when its value is set to 0 it means
that it is not satisfied.

∀n ∈N \Q : σn ∈B (3.2)

For example, if σG5 is set to 1, it states that “Visits results are recorded in a
spreadsheet by mystery shoppers”.

However, quality constraints are not mapped to binary decision variables but
rather to constraints and integers or reals. Consider the following quality con-
straint Q1: average time an ambulance spend to reach an accident location should be
less than 200 sec. Now, let us consider that we identified two tasks able to re-
duce this average time: T1 Replace old Renault vehicles with high-speed BMW and
T2 Install a fire pole. If we consider that the current average time is 220 and that
the tasks can respectively reduce the time by 40s and 30s, we have the following
quality constraint:

220− 40σT1 − 30σT2 = σQ1

Then, the value of Q1 can have a particular utility function (which is used in
other constraints and/or in the objective function). However, this approach has
several limitations:

• if the duration time contributes to the objective function, the relation be-
tween the objective value and the decision variable σQ1 is always linear,

• although we can show that it is possible to model non additive relations
between the tasks and σQ1, it requires the introduction in the model of ad-
ditional binary decision variables. For example, if the combined use of T1
and T2 reduces the average time of 60s instead of 70s, the mathematical
constraints should be:

220− 40σT1 − 30σT2 + 10σx ≤ σQ1 (3.3)
σT1 + σT2

2
≥ σx (3.4)

where σx is a binary decision variable representing the simultaneous use of
both σT1 and σT2.

3.2. MAPPING BETWEEN TECHNE AND MIP 33

Then, for all quality constraint nodes in the model, we have at least both a
mathematical constraint and a decision variable defined on real or integer:

∀q ∈Q : σq ∈R⊕ σq ∈N (3.5)

∀q ∈Q : c +
∑
x∈in(q)

σx ∗wx,q = σq (3.6)

where wx,q is the contribution of the satisfaction of the node x to the quality
constraint q, e.g. it is -40 for T1 in our previous example. in(q) is the set of
incoming nodes of q and c is a constant.

Additional consideration as node labels

In order to make the optimization, it is necessary to introduce additional consider-
ations that will be part of the optimization criteria. Such criteria is introduced by
defining a label on particular nodes (i.e. on all goals) and specifying for each indi-
vidual goal a specific value. For example, we could introduce the notion of utility
in the goal-model by defining an utility function noted u(x). For goals, this utility
value has to be considered as expected revenue resulting from their satisfaction.
For instance, if goal G16 “Customer can access visit results in a central repository”
is satisfied, it should leverage 500 units of utility2. Reasoning is similar for soft-
goals and quality constraints. For tasks, utility should better be considered as a
cost (and being negative). For instance, implementing task T4 “Deploy a webplat-
form”, for example, will cost 200. Formally, u is defined on set N and has real as
images.

u :N →R (3.7)

Objective function

In all MIP, we will define an objective function that the program will maximize
or minimize. This objective function will be specific for each problem tackled by
the model. As an illustration in this basic model, we define the objective function
as being the maximization of the utility achievable by the model.

max
∑
x∈N

(u(x) ∗ σx) (3.8)

2How to estimate the utility value of a goal is out of the scope of this thesis. Still, a brief discussion
about this problem is provided in the next chapter.

34 CHAPTER 3. MAPPING TECHNE ON A MIP

Figure 3.3: Example of goal model

Relation nodes

We will now discuss how we map semantics of relation nodes into a MIP. This
takes the form of several sets of constraints and additional decision nodes. How-
ever, before going further into the definition of those constraints sets, it is useful to
define two additional functions, namely incoming nodes and typed incoming nodes.
Let us denote incoming nodes of node x as in(x) with

in(x) ⊆N (3.9)

By extension, we defined as incoming node of a particular type, let say incoming
inferences of node g, the following function:

inY (x) = in(x)∩Y (3.10)

In order to illustrate these functions, consider the example depicted in Fig.
3.3.

in(G0) = {I1, I2} (3.11)

in(I2) = {G5,G6,T7} (3.12)

inG(I2) = {G5,G6} (3.13)

Mapping an inference node

An inference node is mapped into the MIP as a decision variable and two addi-
tional constraints in the mathematical model. Those constraints are called the
premises constraint and the conclusion constraint. For instance, let us consider the

3.2. MAPPING BETWEEN TECHNE AND MIP 35

inference I2 in Fig. 3.3. This inference node I2 will be satisfied iff all premises
nodes are also satisfied. It can be translated into decision variables as:

σI2 ≤
σG5 + σG6 + σT7

3
(3.14)

In other words, I2 can be considered as satisfied (i.e. σI2 = 1) only if premises
nodes (i.e. G5, G6 and T7) are all of them also satisfied (i.e. σG5 = σG6 = σT7 = 1).
This is the premises constraint of I2. For all inference nodes, it can be generalized
as:

∀i ∈ I : σi ≤
∑
x∈in(i)

σx
|in(i)|

(3.15)

where |in(i)| is the cardinality of set in(i).
The second set of constraints is defined as conclusion constraints. They say that

all concept nodes which have incoming inferences can be satisfied only if at least
one of the incoming inference is also satisfied.

∀n ∈ {x|x ∈N ∧ inI (x) ≥ 0} : σn ≤
∑

i∈inI (n)

σi (3.16)

Mapping a conflict node

Two concept nodes (e.g. goal nodes) can be in conflict. This means that those goals
cannot be satisfied together. For example consider C94 which states that nodes
G16 Customer can access visit results in a central repository and G6 Visit reports are
sent by mails to customers are incompatible.

Let us consider the set of conflict nodes C. There are conflict constraints

∀c ∈ C :
∑

σx∈in(c)

x ≤ 1 (3.17)

Optional vs. Mandatory Nodes

A concept node which is mandatory must be satisfied in the solution. In other
words, the solution must imperatively have the value of its corresponding decision
variable to 1.

It is translated in the following equality constraint:

∀n ∈M : σn = 1 (3.18)

All other nodes which are not mandatory (i.e. optional nodes) do not require
particular constraints.

36 CHAPTER 3. MAPPING TECHNE ON A MIP

MIP 3.1. Description of the basic MIP for a Techne goal model.

Sets

G = {g0, . . . , gi } Goal nodes
M ⊆N Mandatory nodes
T = {t0, . . . , ti } Task nodes
S = {s0, . . . , si } Softgoal nodes
Q = {q0, . . . , qi } Quality Constraint nodes
K = {k0, . . . , ki } Domain assumption nodes
N = G∪ T ∪ S ∪K Concept nodes
I = {i0, . . . , ii } Inference nodes
C = {c0, . . . , ci } Conflict nodes
N ∗ =N ∪ I ∪C \Q Binary-based satisfaction nodes

Decision Variable

σN ∗ = {σi ∈B : i ∈N ∗} Binary variables representing node satisfaction.

Functions

u :N →R Utility function
in(x) ⊆N ∗ Incoming nodes function
inY (x) = in(x)∩Y Typed incoming nodes function

Objective function

max
∑
n∈N

u(n) ∗ σn
Constraints

Premises constraints σi ≤
∑

x∈in(i)

σx
|in(i)|∀i ∈ I :

Conclusion constraints σn ≤
∑

i∈inI (n)
σi

∀n ∈ {x ∈N : |inI (x)| > 0} :

Conflict constraints
∑

x∈in(c)
σx,p ≤ 1

∀c ∈ C :

Mandatory constraints 1 ≥
∑
p∈P

σi,p
∀i ∈M :

3.3. ANALYTICGRAPH.COM FOR SIMPLE ROP 37

Figure 3.4: Workspace of AnalyticGraph.com

3.3 AnalyticGraph.com for Simple ROP

In order to support the whole approach presented in this thesis, a tool named
AnalyticGraph was developed. The tool supports modeling of goal diagrams in
Techne (or other RML) and runs the optimization underlying the requirement
problem. Tutorials on how to use it are provided 3. Examples used in this the-
sis are also available via urls. Part III of this thesis being dedicated to Analytic-
Graph.com, more information can be found there.

Figure 3.4 shows a screenshot of the workbench of AnalyticGraph.com with
the MystShop case. Techne primitives are accessible on the left panel, while the
right panel allows to specify some labels attached to the selected node (e.g. utility,
the mandatory aspect).

3http://analyticgraph.com/tutorial-on-the-optimization-of-goal-models/

4Limitations

Before focusing on specific ROPs, we will discuss in more details assumptions
used in our approach and consequently the resulting limitations. Those assump-
tions and limitations are general to our approach, the more specific ones (i.e. those
related to each model) will be discussed within the dedicated chapters. Such dis-
cussion is nonetheless important to precisely scope the present work. We also
discuss how the identified limitations can be mitigated or what research should
be conducted in order to tackle them.

4.1 Validation and Value for Requirements Engineering

The first limitation of this thesis is its lack of validation. Indeed, despite we en-
sured some internal validation by applying the methodology for design science
research, we had validation of some chapters by peer-reviewing through the pub-
lication process and we implemented a tool that proves our MIPs are feasible, no
validation step has been performed to assess the practical value of our framework
for requirement engineers. By practical value, we mean that our models should
bring them some interesting conclusions or advice that support the decision mak-
ing process. Moreover, this value should be high enough to justify all the effort
required to apply the current framework. The best way to validate the provided
benefits is to apply our approach on a case study.

That being said, we believe that the present RP formulation at least brings new
considerations and ideas in the field of RE by acknowledging the importance on
solution comparison and optimization. This means that even if further validation
research should highlight that some models, as they are currently formulated,
do not bring expected returns, it would not necessary mean that requirements
optimization problems are irrelevant.

In that case, we should maybe change some aspect of the models or apply
another methodology. In no case, it should lead to a falsification of the present
theory. Indeed, as suggested by Wauthelet et al. in [150], research in software
engineering should be more based on an Lakatosian vision of science rather than
a too radical Popperian perspective. This suggests that instead of abandoning the

40 CHAPTER 4. LIMITATIONS

present framework in case of inadequate validation results, we could still try to
improve the framework (either the models or the methodology to use it).

4.2 Utility Function

Other limitations are related to the fact that our optimization models are based
on utility functions. These functions are necessary to assess the value of nodes
(revenues, costs...) that are then used in the objective functions or constraints.
Using such function instead of preferences brings some advantages (discussed
through the next chapters of this thesis) but have also different drawbacks. Here
are the four main limitations we identified:

Evaluation: How to know utility value

The first limitation is concerned with the way the value of nodes would be as-
sessed. Sometimes, this value can be quite easily estimated because there already
exists some techniques or methodologies to evaluate it. We can take as example
the evaluation of task effort in agile planning. In this context, the Poker Planning is
used to estimate required efforts in terms of story points [71]. We show in Chapter
5 that the output of this method can be used with our approach.

However, many obstacles can appear in other situations when estimating the
value of nodes is less straightforward. For instance, it might be really difficult to
evaluate how much revenue can bring the satisfaction of the goal “Customers can
access visit results in a central repository”. In order to do that, we need to know how
much the customers are ready to pay in order to get the goal satisfied. Answering
this question is out of the scope of this thesis. Nonetheless, possible solutions
could be found in techniques such as Analytical Hierarchy Process [126].

Cardinal Utility Functions

Secondly, using a cardinal utility function brings many interrogations. Among
them is the question if we can consider that individual utility functions can be
summed [70]. The question is relevant since many stakeholders could have differ-
ent utility functions and consequently, we might not be able to sum utility values.
Even if we can, we could ask if some stakeholders are more important than others?
In this case, should we weight the stakeholder utilities? Or maybe the objective
should rather be to maximize the minimal value obtained by the stakeholders in-
stead of maximizing the aggregated utility function?

We think that those questions although being of prime importance are not an
obstacle in the application of the present framework. Even if the models should be

4.2. UTILITY FUNCTION 41

transformed to apply one option rather than another one, it would be still possible
to design such situations. In this thesis, we decided to restrain our maximization
to an aggregated utility function. However, the reader should not forget that other
maximization could be preferred but are still feasible. It would depends on the
problem and could be seen as extension of our approach. We briefly discuss some
potential further research regarding this problem in the conclusion (see Section
10.2).

Additive Utility Functions

A third main limitation regarding the utility function is that basic modeling of
value-based goal models results in additive utility functions. An additive function
is a function such that f (a,b) = f (a) + f (b). In terms of nodes, it means that a
solution satisfying goals G1 and G2 have the same utility that the sum of utility
coming from those two goals considered individually. Formally:

u({G1,G2}) = u({G1}) + u({G2})

However, it could be interesting to have non additive utility function. For
example, the satisfaction of two goals could bring more utility because of some
interactions. It is quite simple to illustrate: let us consider we are going to buy
a car. A first requirement could be that the car is able to brake while a second
requirement could be that it can accelerate. Although, each goal can have its own
utility, the satisfaction of both would leverage more utility than the sum of indi-
vidual satisfaction. Indeed, having a car that can brake but not accelerate have
nearly no value. On the other hand, having a car that can both brake and accel-
erate have much more value that if the car could only accelerate. This situation is
represented by:

u({G1,G2}) > u({G1}) + u({G2})

It can be modeled in a goal model by inserting a third node which has the two
others as premises. The utility of this node represents the marginal utility coming
from the simultaneous satisfaction of G1 and G2.

For example, consider the situation depicted in Figure 4.1, where an individ-
ual has two goals: G1 Watch high-resolution movies and G2 Watch movies on big
screen. Those goals could respectively leverage an utility of 5 and 15 units. The
individual already owns a laptop equipped with a HD screen and a DVD reader.
So, if he buys a Blu-ray player that he plugs on his laptop (assuming connectors
are compatible) G1 will be satisfied. However, this purchasing will cost him 10
units of utility. Consequently, he prefers not buying the Blu-ray player: watching

42 CHAPTER 4. LIMITATIONS

G0
Watch high resolution
movies on big screen
Val:10

G1
Watch
high-resolution
movies
Val:5

G2
Watch movies
on big screen
Val:15

I3 I4

T5
Buy a
Blu-ray
player
Val:-10

T6
Buy a
58 inch
television
Val:-10

K7
I have a HD
laptop with
DVD player
Val:0

Figure 4.1: Example illustrating additivity property between utility of goal satis-
faction.

HD movies on a small screen does not worth the 10 units of cost. Nonetheless, he
can also buy a new 58 inch television in order to satisfy G2. If the television costs
10 units of utility, the individual will select this solution.

However, he feels that buying both Blu-ray player and the large screen would
be even better than just the large television. This means that the simultaneous
satisfaction of both goals has more value than the addition of individual goal sat-
isfactions. In order to model this situation, depicted in Figure 4.2, we need to
introduce an additional goal G0 which could be satisfied only if both sub-goals
are satisfied. In this case, the three utility will be added. The total utility will be
10(= 30− 20).

Another situation is the decreasing marginal utility:

u({G1,G2}) < u({G1}) + u({G2})

As an example, we can consider a set of requirements about a warehouse informa-
tion system. The requirements state that a particular product in a large amount
of many product references could be found by name, by description, by color and
so on. We can easily understand that each new additional way to find the product
bring marginally less value than the former one. Similar to the previous situation,
it can be modeled by using additional nodes.

Although we showed that our utility function is not necessary additive, the
method of inserting intermediate nodes is not scalable and still remains a limita-
tion of our approach.

4.2. UTILITY FUNCTION 43

G0
Watch high resolution
movies on big screen
Val:10

G1
Watch
high-resolution
movies
Val:5

G2
Watch movies
on big screen
Val:15

I3 I4

T5
Buy a
Blu-ray
player
Val:-10

T6
Buy a
58 inch
television
Val:-10

K7
I have a HD
laptop with
DVD player
Val:0

I18

Figure 4.2: Example illustrating non-additivity property between utility of goal
satisfaction by inserting a third top-goal.

Satisfaction as a binary variable

A final limitation is related to the satisfaction of softgoals. As defined in Chapter
3, softgoals are stakeholder desires that refer to conditions, the satisfaction of
which is desired, vaguely constraint and not necessary directly mesurable. This
last point, i.e. not necessary mesurable, makes them difficult to be integrated in our
framework. The reason is that we use quantitative variables in the mathematical
model while softgoals can explicitly be qualitative measures.

Nonetheless, it does not mean that they cannot be into account in our frame-
work. We envisage two possible approaches.

1. Softgoals could be considered with a binary satisfaction. In that case, we
should just find some sub-goals, tasks or any other concepts that could bring
the softgoal in an acceptable level of satisfaction. Then, the goal model
should be designed with those concepts as premises of the softgoals. Once
the premises are satisfied, we consider the softgoal as satisfied as well. The
limit of this approach is that it does not take into account the complete spec-
trum of softgoal satisfaction. It just defined a threshold from which we say

44 CHAPTER 4. LIMITATIONS

T0
Avoid
junk food

T1
Go to a
fitness
club

T2
Go to work
by bike

Q3 Lose weight

I4

I5

I6

S13 Improve healthI14

Figure 4.3: Goal model for the Health Improvement example.

Table 4.1: Task description for the Health Improvement example.

Task Cost Gain in weight

T0 Avoid junk food -10 10kg
T1 Go to a fitness club 300 15kg
T2 Go to work by bike 10 10kg

that the softgoal is satisfied. This is the most simple integration of softgoals
in our framework and this is the way it has been actually integrated.

2. We could also discretize the softgoal satisfaction and map each level to an
utility value. Then with a quality constraint, we could map other concepts
to the softgoal utility level. For example, let consider an individual who
wants to improve his health. His goal model is depicted in Figure 4.3. He
distinguishes three levels of improvement: Highly improved, Improved and
No improvement. He is ready to pay respectively 250, 150 and 0 monetary
units to achieve those states. We consider those amounts as his utility value.
Then, a physician suggested him that if he loosed some weight, it will im-
proved his health. Actually, he needs to lose more than 30kg to reach the
Highly improved level, 20kg to reach the Improved and less than 20kg will
not significantly affect his health. The individual identifies three tasks that
can help him to lose weight. Their cost and the potential loosed weight are
depicted in Table 4.1. The corresponding MIP is:

4.3. COMPUTATION COMPLEXITY AND SCALABILITY 45

maximize : p − c (4.1)

p = 250sH + 150sM (4.2)

1 ≥ sH + sM (4.3)

sH ≤ w/30 (4.4)

sM ≤ w/20 (4.5)

c = −10σT0 + 300σT1 + 15σT2 (4.6)

w = 10σT0 + 15σT1 + 10σT2 (4.7)

where:

• p is the utility value resulted from the improved health,

• c is the cost to perform the tasks,

• sH and sM are binary variables representing the softgoal satisfaction
level,

• w is the loosed weight,

• σT0,σT1,σT2 are binary variables representing the execution of the tasks.

These two suggestions are not aimed to be exhaustive. They simply suggest
some potential integration of softgoals in our framework. Moreover, they are not
incompatible to each other and could be used together if necessary. Nonetheless,
we think that the second suggestion is probably the most adequate handling of
softgoals although we limited this thesis to the first approach.

4.3 Computation Complexity and Scalability

Because our optimization problems are formulated as Mixed-Integer Problems,
and due to their structure, they are close to the knapsack problem [54]. This
latter is On complex which implies that the computation time goes exponentially
with the number of decision variables (the graph size, the number of iterations...)
This unfortunately means that our approach does not scale.

This limitation can however be balanced by using non-deterministic algo-
rithms such as genetic algorithms [7]. Applying such methods as well as inte-
grating them into AnalyticGraph.com is a possible track for further research.

That said, computation times are still acceptable with the basic branch-and-
bound (B&B) algorithm for most goal models composed of maximum one hun-
dred nodes. In order to estimate computation times in function of the node num-

46 CHAPTER 4. LIMITATIONS

Figure 4.4: Resolution time in function of nodes number for 50 automatically
generated goal models.

bers, a dummy model generator was developed 1. Simulations are depicted in
Figure 4.4. 150 nodes seems to be a turning point.

From an empirical basis, as we can expected, we identified that the resolving
time depended, among other factors, on (1) the number of decision variables and
(2) the density of the model. In this precise framework it has several implications.

For the first point, it is important to highlight that the number of decision
variables does not only depends on the number of nodes. For example, if we
introduce a time dimension (such as in Chapters 5 and 6), all nodes will have
a specific decision variable for each period of time considered. For instance, a
model with 50 nodes computed on 5 periods will consequently have at least 250
decision variables. Increasing the number of period could then rapidly threat the
practicability of the approach. Consequently, our framework has the following
empirical limit for model resolution with the branch-and-bound algorithm and
no pre-processing optimizations :

nodes × periods ≤ 150

The second point is the density of the graph, i.e. the concentration of links
between the nodes. In the context of Techne goal model, density is related to the

1The dummy model generator is accessible at http://www.analyticgraph.com/dev/mod_opti/
dummyConfigurator.html

http://www.analyticgraph.com/dev/mod_opti/dummyConfigurator.html
http://www.analyticgraph.com/dev/mod_opti/dummyConfigurator.html

4.3. COMPUTATION COMPLEXITY AND SCALABILITY 47

Figure 4.5: Example of a goal model resolved in 16.37 seconds

48 CHAPTER 4. LIMITATIONS

number of alternatives a goal can have (i.e. how many incoming links from infer-
ence node) and their own contribution to other node satisfaction (i.e. the number
of outgoing links to inference a goal has). It has as consequence that a really sparse
goal model consisting of 300 nodes can be resolved nearly instantaneously, while
a very dense model will be no more computable after 80 nodes.

Finally, in order to help the reader to realize what means a goal model consist-
ing of about 150 nodes, let consider the goal model depicted in Figure 4.5. It was
resolved in 16.37 seconds and it is constituted of 167 nodes and 259 links. Top
goals had a revenue varying from 0 to 300 units while the tasks (the bottom line
of squares) had a cost varying from 0 to 30.

4.4 Considered and Required Information

One should be careful when using our approach. Eliciting, acquiring and evalu-
ating exhaustively all possible requirements at the beginning of a project in order
to compute the absolute optimal solution is impossible. The current approach is
not intended to be used in such a way (as advocated by the waterfall methodol-
ogy). The optimal solution our approach can compute has to be balanced with
the available information at the moment of the optimization. In most cases, this
information is unstable and incomplete. Consequently, we advocate to use this
approach in an iterative way. The model can be run again when new information
is acquired and integrated. This is why it is necessary to provide accessible and
easy-to-use tools supporting our approach, making reevaluation of the model as
easy as possible.

What information is available?

This perspective echoes Herbert Simon’s bounded rationality [133]. Indeed, soft-
ware engineering implies many stakeholders in the process of system develop-
ment. Each stakeholder being nourished by beliefs, desires and assumptions,
having time constraints, no one has a perfect reasoning. It is thus necessary to
take into account that it is impossible to exhaustively study a problem by getting
all information and process it ideally.

It means that our approach although trying to find the optimal solution to
a requirement problem is not intended to find the ideal optimal solution. Since
engineers cannot perfectly evaluate all the situations, rather than finding the best
solution, they should seek to find the best perceived/expected solution.

To illustrate this discussion, let us consider a possible project that, in the best
case, is believed to bring 30 units of utility while it is believed that it could bring
nothing in the worst case. It is depicted in Figure 4.6. In the classical RE frame-

4.4. CONSIDERED AND REQUIRED INFORMATION 49

work, as soon as a satisfactory solution of the problem would have been identified,
it would have been selected and used for the next steps of software engineering. In
this thesis, we suggest that, at the early phases of the project, preliminary alterna-
tives should be identified and evaluated. This is depicted in part (a) of the Figure.
There, three potential solutions have been identified. Given some selection crite-
ria, one optimal solution is selected (B in our example). As the project goes on,
engineers discover that there are sub alternatives to B. After collecting more in-
formation on each alternatives, they decide to select the B2 solution (which is a
local optimum for B).

In a perfect world (i.e. with complete information), one would have selected
the C3 solution (see part (d) of Figure 4.6). However, at the early phases of the
project, the available information did not let guess that the C path would have
eventually been better. This illustrates that rather to reach the ideal optimal, our
framework, because of the bounded rationality, can only claim for local optimum.

What amount of information do we want to collect?

From the previous discussion, it becomes interesting to wonder if the approach
suggested through this thesis could be applied on short iterations of work, let
consider 2 weeks?

We think that it could actually be applied in such context but it is necessary
to provide guidelines on how to apply it. As an expressive example, consider the
case of UML2. This specification language can be used very formally with many
details and plenty of very specific concepts (e.g. qualified names, association nav-
igability, isOrdered/isUnique attribute on multi-valued properties). Using UML
like this, requires much more effort and probably a dedicated software because
many details will not be graphically represented. However, although it will re-
quire much more time, it is interesting when we want to, for example, use it for
code generation or when we want to end up with a detailed design allowing out-
sourcing. Nonetheless, UML can also be used in a more “sketching-way” in which
it is used to discuss, suggest and communicate some ideas about a situation. In
this type of use, the model is sketched on a white board in few minutes and re-
quires much less effort. This is a more brainstorming fashion that can be used in
short iteration projects.

The application of RO can also be distinguished in the same way. Depending
on the purpose, the available time and the available information, the approach
can be more elaborated and detailed or more lightweight. The latter case means
that we will reduce one (or several) of these aspects:

2http://www.uml.org/

http://www.uml.org/

50 CHAPTER 4. LIMITATIONS

A
~[5;10]

B
~[15;25]

C
~[0;30]

A
~[5;10]

B
~[17;22]

C
~[0;30]

B1
~[17;20]

B2
~[20;22]

A
[5;10]

B1
[17]

A1
[5]

A2
[10]

B
[17;20]

B2
[20]

~[0;30] ~[0;30]

[0;30]

C
[5;30]

C1
[5]

C2
[10]

C3
[30]

A
~[5;10]

B
~[17;20]

C
~[0;30]

B1
~[17;20]

B2
[20]

~[0;30]

a) b)

c) d)

Figure 4.6: Illustration of three iterations (a,b,c) of use of the current framework
when comparing alternative solutions under a bounded rationality hypothesis.
Green circles are selected alternative. Numbers between brackets are worst case
estimation (left) and best case estimation (right). A tilt represents an estimation.
As information is collected, estimations are corrected. Case d is the perfect infor-
mation situation (unreachable with the bounded rationality assumption).

4.5. IMPLEMENTATION LIMITS 51

• The depth of the goal model (i.e. how much details we want to provide
regarding the refinement)

• The width of the goal model (i.e. the number of alternatives we are ready to
consider)

• The precision of the estimation of the utility values

But even if the model is very simplified, we think that the current approach
can be used for short iterations and bring some interesting thinking about the
problem.

4.5 Implementation Limits

A final limitation is related to the current state of the tool. Some elements pre-
sented in this thesis have not yet been implemented. For example, we can cite the
quality constraint concept such as presented in section 3.2. Moreover, defining
a new language or a new Mixed-Integer Program still needs programming skills.
A better solution should provide users with a graphical user interface designed
to ease such creation. Although AnalyticGraph.com does not yet integrate those
elements, the platform would be able to provide them in the near future.

Part II

Optimization Models

53

5Optimization of Agile Planning

5.1 Forewords

This Chapter, the first among four chapters dedicated to specific optimization
problems, tackles RI4 which states “How to determine which requirements have
highest priority, for whom, and why?” as well as RI7 “How to estimate costs, risks, and
deadlines for making systems that satisfy requirements?”. The choice of these par-
ticular Requirement Issues was quite obvious. First, priorities and planning es-
timation are considered as highly important issues in the literature (cf. the Next
Release Problem) as well as in the industry (e.g. adoption of iterative method-
ologies). Secondly, it is the most recurrent optimization problem that MystShop
faced.

We set our ROP formulation in the context of the Agile methods. Three motiva-
tions drove this choice: (1) this method family is gaining more and more popular-
ity in software engineering what makes it a relevant and current problem, (2) as
we discussed in the introduction, it is important to root Requirements Optimiza-
tion in incremental and iterative environment, what agile methods are, (3) the
similarity between user story refinement and goal refinement makes agile method
the best candidate for this chapter. Results of this chapter has been presented in:

J. Gillain, I. Jureta, and F. Stéphane. Planning optimal agile releases via re-
quirements optimization. In Third International Workshop on Artificial Intelligence
for Requirements Engineering (AIRE’16). Springer, 2016

5.2 Introduction

Context: Requirements Priority in Agile Projects

Agile methods have become popular for organizing software development. Many
benefits have been touted [116]: better knowledge transfer, active participation of
the customer in the project, incremental deliveries, and so on.

Relative to more established methodologies (e.g., waterfall), which are based
on the assumption that the problem is fully specifiable and a solution can be en-

56 CHAPTER 5. OPTIMIZATION OF AGILE PLANNING

tirely predicted [26], agile methods are based on the assumption that customers,
users, stakeholders in general are not able to specify all requirements of the system-
to-be at the beginning of the software process, due to requirement or environment
change, lack of experience in the problem domain, etc. [114].

Agile tries to treat requirements continuously through the whole project life
cycle. Development is iterative, the development team periodically delivers incre-
ments of functionality by focusing on requirements with highest priority at each
release planning. It ensures that value comes continuously during the complete
process and stakeholders are then being able to test and validate the highest prior-
ity requirements. Those tests helping the customer clarify and refine subsequent
requirements, for later releases.

To make such an approach working for customers, requirements prioritiza-
tion is important. The Agile Requirements Problem (ARP) is driven by elicitation
of User Stories. It starts with the definition of high-level statements, epics, writ-
ten from the system user’s perspective, then refined into shorter, more narrowly
scoped user stories. This refinement process is ongoing, running throughout the
system engineering process. The literature suggests that the priority of each user
story should be given by the customer to the Product Owner.

In practice, it is known that other criteria (than the value for the customer)
enter into account when prioritizing user stories. They can be, for instance, the
effort estimated to implement each user story, or the functional dependencies [8].
It seems important that an effective method for ARP solving should take those
additional criteria into account.

Scope: Goal Models Agile Requirement Problems

Agile requirement methods and tools have often been opposed to traditional re-
quirements methods [114]. However, it also has been demonstrated that map-
pings between agile concepts and traditional requirement engineering methods
are possible, especially with goal modeling (GM) [148]. As suggested by Wautelet
et al. in [149] agile planning could benefit from the use of goal models which
could improve the consistency of the sets of User Stories to be implemented. We
also think that such models could be used to prioritize those sets of User Stories.

As described in [148], the three dimensions are traditionally suggested in User
Stories (i.e. the WHO, the WHAT and the WHY) finds their corollary in goal mod-
eling. Moreover, similarly to user stories, goal models are based on a refinement
process in which abstract goals are refined into more concrete ones. In both cases
(goal modeling and user story writing), the refinement process ends up with an
operationalization into tasks. Another common point is that both user stories and
goals are desired states the system should satisfy, or bring about.

5.2. INTRODUCTION 57

However, goal models differ from user stories since they allow among others
to explore alternative solutions or to assess conflicts between goals. They also
support modeling of non-functional requirements while it is not obvious how
such requirements should be incorporated into user stories1.

The variability of goal models (i.e. the exploration of alternative solutions)
seems truly interesting for agile projects since they do not define the whole prod-
uct in the early stages. They instead specify a vision, which is imprecise and
abstract, and gives thereby a space with potentially many alternative solutions
(functionalities) that the system could implement [130]. Variability is even more
interesting when considering that a first “fast and cheap” version of the sys-
tem could be delivered, before investing in a more comprehensive solution to be
brought to market via subsequent releases.

Problem: Which requirements to satisfy when?

As we just discussed, the Agile Requirements Problem is to provide first the high-
est valuable requirements on the basis of business value. It involves the following
sub-problems:

Evaluation problem: How to assess this business value because it is not inde-
pendent of the implementation cost. As an example, consider 2 candidate user
stories for the next release of a system, let’s say a and b (with respective busi-
ness value of $8000 and $5000). Before deciding which one should be selected,
it seems reasonable to also take into account their relative cost. If a costs $5000
to be implemented while b costs $2000, it is clear that b should be implemented
first. Then, business value should be balanced with effort estimation.

Selection problem: A second problem comes from the difficulty to select
which alternative should be implemented when facing a lot of variability in re-
quirements. The customer has to select between potentially dozens of combina-
tion of features. This is very difficult and time consuming without a decision
support tool.

Release problem: A third problem is to determine in which order the selected
solution should be delivered. It is about deciding a release planning. The main
criteria being to provide the most value as soon as feasible in the life cycle.

Contribution: An Optimization Problem and its Resolution

In this chapter, we suggest how to model ARP with goal models and provides
a mapping to a Mixed-Integer Program rooted in CORE. The solutions of this

1One can cite Alistair Cockburn’s suggestion to formulate them as constraints [36]. This approach
can be transposed to goal models

58 CHAPTER 5. OPTIMIZATION OF AGILE PLANNING

MIP automatically define a planning release taking into account business value,
functional constraints and required effort. We also present the implementation of
the approach in AnalyticGraph.com.

The chapter is structured as follows. First, we show in section 5.3 how to model
ARP instances with goal models. Then, in section 5.4, we present the mapping
between the goal model and a mixed-integer program. Section 5.5 presents the
solution of the MIP. We present features developed in AnalyticGraph.com in order
to support this approach in section 5.6. Eventually, we discuss related work and
we conclude respectively in sections 5.7 and 5.8.

5.3 Modeling Agile Requirements with Techne

In this section, we present how we model ARP instances with Techne. We first
discuss the goal refinement process and relates it to the refinement of user stories.
Then, we show how to take into account of the business value and task effort in
the goal model.

Refinement

In order to illustrate the refinement process of user stories with a goal model, let’s
consider the goal model of MystShop we introduced in the previous chapter in
Fig. 3.2. All the requirements have been reformulated as user stories. Actually,
this mapping between goal modeling concepts and user story concepts is far being
simply a rephrasal as we did between the two models [149]. However this process
is out of the scope of this thesis.

As we discussed in Chapter 2, MystShop sends out mystery shoppers, that is,
individuals unknown at a shop, to make a purchase and subsequently evaluate
the purchasing experience. This modified version of the goal model 3.2 fitting
User Story redaction prescripts [37] is depicted in Fig. 5.1. This is the model that
will be used in this chapter.

There are three abstract user stories (i.e epics):

• G0: As a Mystery Shopper (MS), I want to make visit results available to the
customer,

• G16: As a Customer2, I can access visit results in a central repository,

• G37: As a Customer, I can explore data through visualizations

2By Customer, it is understood the Mystery Shopper company’s customers.

5.3. MODELING AGILE REQUIREMENTS WITH TECHNE 59

G
0

A
s

a
M

S
, I

 w
an

t t
o

m
ak

e
vi

si
t r

es
ul

ts
 a

va
ila

bl
e

to
 th

e
cu

st
om

er
V

al
:2

00

I1
I2

T
4

D
ep

lo
y

a
w

eb
pl

at
fo

rm
V

al
:-

50

G
5

A
s

a
M

S
, I

 r
ec

or
d

vi
si

t
re

su
lts

 in
 a

n
E

xc
el

sp
re

ad
sh

ee
t

V
al

:0

G
6

A
s

a
M

S
, I

 c
an

 s
en

d
m

y
re

po
rt

 v
ia

 m
ai

l
to

 th
e

cu
st

om
er

V
al

:0

I1
0

G
12

A
s

a
M

S
, I

 p
os

t
vi

si
t r

es
ul

ts
on

 a
 w

eb
pl

at
fo

rm
V

al
:0

G
16

A
s

a
C

us
to

m
er

, I
 c

an
ac

ce
ss

 v
is

it
re

su
lts

in
 a

 c
en

tr
al

 r
ep

os
ito

ry
V

al
:1

00

I1
8

G
23

A
s

a
M

S
, I

 r
ec

or
d

vi
si

t
re

su
lts

 in
 a

 w
eb

fo
rm

V
al

:0

I2
4

I2
7

T
30

C
re

at
e

a
w

eb
fo

rm
V

al
:-

50
T

31
C

re
at

e
an

 E
xc

el
 te

m
pl

at
e

V
al

:-
25

I3
2

G
37

A
s

a
C

us
to

m
er

,
I c

an
 e

xp
lo

re
 d

at
a

th
ro

ug
h

vi
zu

al
is

at
io

ns
V

al
:2

00

I3
8

T
42

D
ep

lo
y

B
I s

ol
ut

io
n

V
al

:-
50

I4
4

T
45

C
re

at
e

an
 E

xc
el

te
m

pl
at

e
w

ith

m
ac

ro
 fo

r
ex

tr
ac

tin
g

vi
si

t r
es

ul
ts

V

al
:-

25

S
49

U
se

r-
fr

ie
nd

ly
 a

pp
ro

ac
h

V
al

:5
00

I5
0

C
57

C
79

C
91

C
94

T
10

3
C

re
at

e
a

da
sh

bo
ar

d
V

al
:-

50

I1
05

S
10

7
A

cc
es

si
bl

e
on

 e
ve

ry
de

vi
ce

s
V

al
:2

50

T
10

9
S

to
re

 v
is

it
re

su
lts

 in
a

da
ta

ba
se

V
al

:-
50

K
11

2
R

eg
io

na
l g

ov
er

nm
en

t
su

bs
id

is
es

 In
te

rn
et

-b
as

ed
se

rv
ic

es
V

al
:0

I1
17

G
12

0
A

s
a

th
e

co
m

pa
ny

,
I c

an
 g

et
 th

e
go

ve
rn

m
en

t s
ub

ve
nt

io
n

V
al

:2
00

Figure 5.1: Modeling of the MystShop Case. Accessible and editable at http:

//analyticgraph.com/dev/?g=R2CinFhvUK

http://analyticgraph.com/dev/?g=R2CinFhvUK
http://analyticgraph.com/dev/?g=R2CinFhvUK

60 CHAPTER 5. OPTIMIZATION OF AGILE PLANNING

Each of these user stories are depicted as a goal in the goal model. However, to
make them practical for development, they need to be refined into more concrete
ones. For example, we could consider that G0 will be satisfied if a mystery shopper
can record visit results in a spreadsheet (G5) and then he can send it via mail to
the customer (G6). This refinement can be depicted in the goal model. In Techne,
we use an inference relation node (I1 in Fig. 5.1) between G0, G5 and G6. This
relation says that

I1 : G5∧G6→ G0. (5.1)

It is also possible to model some more functional dependencies between goals.
For example, we cannot consider that G16 is satisfied if G0 has not been. This
is done by adding G0 in the premises of all inference relationships which would
conclude G16 as satisfied.

In an agile methodology (e.g. SCRUM, XP), once user stories have been refined
to an adequate level of granularity, we can ask developers to define underlying
tasks to be done [104]. Those tasks would integrate the Sprint Backlog, i.e. a set
of tasks to be done during the next implementation iteration. In our goal model,
this is achieved by operationalizing goals into tasks. For example, G5 could be
considered as “done” if developers create an Excel template that will be used by
mystery shoppers (T31).

This approach fits a SCRUM approach [131]. There, a Product Backlog (PB) is
created and iteratively filled. Each item of the PB is a user story that can be refined
more and more as the project progresses. User stories are always a description of
a functionality of the system-to-be from a user perspective. In other words, it is
a desired state that the user would like. It is similar to the goal concept in goal
modeling. Once a user story is selected for the next sprint, developers filled a
Sprint Backlog with the underlying tasks for a given amount of effort.

The effort required to implement those tasks (or user stories not yet refined
into tasks) are estimated in story points. For this, one can use poker planning
[104]. It is however necessary to take into account these story points in our goal
model.

Business Value and Story Points as Node Label

Another important concept in agile processes is requirements prioritization. Re-
quirements (user stories) with the highest priority would be implemented first.
The agile literature insists on the fact that the business value should be the first
driver for prioritizing. However, in practice we can see that it is not the only
element to be considered for prioritizing [116]. Another important criterion to
consider when prioritizing is the required effort, which determines development
cost.

5.3. MODELING AGILE REQUIREMENTS WITH TECHNE 61

Both business value and cost can be integrated in our goal model. It takes the
form of a label which is associated to each node (goal or task). In the MystShop
example depicted in Fig. 5.1, values are depicted as node labels prefixed by Val.
For example, the goal G0 will leverage 200 units of value if it is satisfied, while
T31 will consume 25 units of resources (it could be story points).

When speaking about revenue acquired from goals, it is important to distin-
guish two types of revenue: recurrent revenue and unique revenue.

In the case of the recurrent revenue, the achieved goal will yield revenue con-
tinuously as long as it is satisfied. For instance, consider goal G37 stating that a
“Customer can explore data through visualizations”. Once this goal is achieved,
MystShop will asks additional $10 per visits since the service offered has higher
value. In this case, this goal has a recurrent revenue. For this type of goal, the
earlier they are satisfied, the better it is.

With unique revenue, we model goal which yields a single amount of value.
For example, we discussed in Chapter 2 that MystShop had the possibility to get
a subvention from government as soon as the company had an Internet platform
(G120). However, it can be accorded only once when goal G16 is satisfied and
under the assumption (K112) that the government effectively subsidies it.

Regarding task implementation, some tasks need to be done only once and can
be considered as definitely done. We call them persistent task. Others do not have
this property. For instance, a maintenance task. It becomes then interesting to
consider that a goal could be satisfied either by a cheaper but repetitive task or by
a more expensive task that automatize the repetitive task.

Both recurrent revenues and persistence tasks are boolean properties associ-
ated with nodes in our goal model.

Conflicts between goals

Conflict management is important in this approach, because the solution should
not produce a release planning whose increments are individually conflict-free
but the integrated solution presents several conflicts. It implies that the conflict
needs to be checked at each iteration.

Nonetheless, it can be interesting to deliver a first version of a system pro-
viding some features and removing them when a next release introduces more
elaborated features (conflicting with the previous release).

In our example, we know that if mystery shoppers record their visits in a web-
based form it will be conflicting with recording them in a spreadsheet. This is
depicted with conflict C79. Moreover, the spreadsheet macro would be useless
to preparing visualization if data are no more recorded in a spreadsheet (conflict
C57).

62 CHAPTER 5. OPTIMIZATION OF AGILE PLANNING

Another interesting conflict is that if customer can access visit results on a
central repository and that some analytics are deployed, the solution should be
more user-friendly than simple excel reports. Of course, it requires than no more
reports should be registered in spreadsheet (conflict C91).

Eventually, the central repository would be useful iff mystery shopper stop
sending their report via mail (conflict C94).

Project progress

An important aspect of agile projects is that requirements are expected to evolve
through the whole project. One should be able to modify the goal model in the
same way the product backlog evolves.

After a particular sprint has ended, one should change the story point of a task
to 0 if that sprint completed the task. If only part of the task is completed, task
effort can be reduced proportionally to the work done.

For new goals or tasks that are identified throughout the project, they can be
integrated later and the model can be reevaluated.

5.4 Mathematical Model

This section presents our mapping between the ARP modeled with Techne and
a Mixed-Integer Program that extends the basic MIP model 3.1. The complete
program is given in Tab. 5.1 and Tab. 5.2. Here after, we discuss in more details
specific modifications brought to the basic MIP presented in Chapter 3. One of
the most fundamental change is the introduction of a multi-period reasoning able
to take into account iterative development of agile projects (namely the sprints in
Scrum).

Objective function

Priority in agile methods should be to maximize business value delivered to the
customer. If we define u as an utility function mapping each goal to a business
value at each sprint, we can define the objective function as:

max
∑
p∈P

∑
r∈R

u(r,p) ∗ σr,p

where:

• P is the set of sprints {1, . . . ,p},

5.4. MATHEMATICAL MODEL 63

• R is the set of goal model nodes (goals, softgoals, quality constraints and
domain assumptions),

• σr,p is a binary decision variable setting if the goal r has been achieved for
period p (equals to 1 iff the node is satisfied, 0 otherwise),

• u(r,p) is a function relating a node r to a specific utility value for the given
sprint p.

For modeling the importance of delivering features as soon as possible (in
other words, the urgency), a discount rate can be applied on the utility function,
resulting in a situation where u(r, i) > u(r, j) if i < j with i and j being the sprint
number. In the same idea, we can also model a window of opportunity for some
features, i.e. some features will have no more value if delivered after a particular
deadline.

64 CHAPTER 5. OPTIMIZATION OF AGILE PLANNING

MIP 5.1. First part of the MIP description for ARP.

Constants

v Velocity
s Sprint numbers

Sets

P = {1, . . . , s} Iterations (Sprints)
N = G∪ T ∪ S ∪Q∪K Concept nodes (goals, tasks,

softgoals, quality constaints
and domain assumptions)

G∗ ⊆ G Unique revenue goals
T ⊆ T Persistent tasks
T̃ = T \ T Non-persistent tasks
M ⊆N Mandatory nodes
C = {c0, . . . , ci} Conflict nodes
I = {i0, . . . , ii} Inference nodes
N ∗ =N ∪ I Graph nodes
R =N \ T Revenues nodes

Decision Variables

σN ∗,P = {σi,p ∈B : i ∈N ∗,p ∈ P } Binary variables representing
node satisfaction.

αT ,P = {αi,p ∈B : i ∈ T ,p ∈ P } Binary variables representing
satisfaction of persistent tasks.

Functions

u :N × P →R Utility function
in(x) ⊆N ∪ I Incoming nodes function
inY (x) = in(x)∩Y Typed incoming nodes function

5.4. MATHEMATICAL MODEL 65

MIP 5.2. Second part of the MIP description for ARP.

Objective function

max
∑
p∈P

∑
r∈R

u(r,p) ∗ σr,p

Constraints

Premises constraints σi,p ≤
∑

x∈in(i)

σx,p
|in(i)|∀p ∈ P ,∀i ∈ I :

Conclusion constraints σn,p ≤
∑

i∈inI (n)
σi,p

∀p ∈ P ,∀n ∈ {x ∈N : |inI (x)| > 0} :

Persistent task realization σi,p ≤
∑

q∈{1...p}
αi,q

∀p ∈ P ,∀i ∈ T :

Unique revenue constraints 1 ≥
∑
p∈P

σg,p
∀g ∈ G∗ :

Conflict constraints ∑
x∈in(c)

σx,p ≤ 1
∀p ∈ P ,∀c ∈ C :

Mandatory constraints 1 ≤
∑
p∈P

σi,p
∀i ∈M :

Velocity constraints v ≥
∑
t∈T̃

u(t) ∗ σt,p +
∑
t∈T

u(t) ∗αt,p
∀p ∈ P

66 CHAPTER 5. OPTIMIZATION OF AGILE PLANNING

Constraints for Value Persistence

As discussed in section 5.3, their are different types of goals and tasks regarding
how their business value/cost should be considered. Goals can bring recurrent
revenues as long as they are considered as satisfied or on the contrary, they can
bring a unique revenue even if their satisfaction last several sprints. By default,
the model supports recurrent revenue. An additional constraint set is needed to
model single revenue goal, we call it Unique Revenue Constraints.

Regarding task persistence, some tasks need to be done each time it is nec-
essary to use them, while other tasks are required to be executed once. Default
behavior of the MIP is the non persistent tasks while an additional set of con-
straints is required for persistent tasks.

Unique Revenue Constraints

Ensuring unique revenue of some goals is done with:

∀g ∈ G∗ : 1 ≥
∑
p∈P

σg,p

where G∗ being the set of goals with unique revenue.

Persistent Task Realization

For persistent task, we need to specify that if the task has been developed during
a previous iteration, it can be considered as satisfied for the following iterations.
It is done with the following constraints:

∀p ∈ P ,∀i ∈ T : σi,p ≤
∑

q∈{1...p}
αi,q

where:

• T is the set of persistent task

• αi,q is a binary decision variable assessing that the task i has been realized
during sprint q.

The constraint is read as following, the task i can be considered as satisfied
for period p (i.e. σi,p is set to one) iff it has been realized during the current or a
previous sprint.

5.5. MIP SOLUTION 67

Velocity Constraint

Agile methods work iteratively. For example, a SCRUM project is divided into
Sprints (i.e. an duration-fixed iteration of work) in which developers have to de-
velop a certain amount of story points. This amount is called the team velocity.

Adding this aspect into the MIP is done by adding a new set of constraints
called hereafter velocity constraints. If we define v as the team’s velocity and P as
the set of all sprints in the project, we formalize the constraints as:

∀p ∈ P : v ≥
∑
t∈T̃

u(t) ∗ σt,p
∑
t∈T

u(t) ∗αt,p

where:

• T is the set of persistent tasks

• T̃ is the set of non-persistent tasks

Mandatory Constraint

In comparison with the basic MIP 3.1, mandatory nodes have to be handle differ-
ently. Indeed, since the optimization is computed on several iterations, manda-
tory requirements are not necessarily satisfied for the first iteration. Consequently,
we just want to ensure that they have been satisfied once during the whole pro-
cess.

∀i ∈M : 1 ≤
∑
p∈P

σi,p

5.5 MIP Solution

The provided solution of the mathematical program states in which sprint should
a task be planned and it also describes how to achieve each goal in each sprint. It
is depicted in Table 5.1.

After the first sprint, MystShop will get a first release in which employees
would be able to use an Excel template in order to send results by mail to the
customers. This Excel would integrate some analytics allowing the customer to
visually explore the results. After the second sprint, a web-platform would be
deployed, enabling MystShop employees to publish Excel spreadsheet on it and
stopping the use of mails. Having a web-based application should allow Myst-
Shop to get the government subvention. There is no release after sprint 3 which is
dedicated to create a web-based form implementing the checklist. After the sprint

68 CHAPTER 5. OPTIMIZATION OF AGILE PLANNING

Table
5.1:Solu

tion
of

m
ystery

shop
p

er
case

Sp
rint

1
Sp

rint
2

Sp
rint

3
Sp

rint
4

Sp
rint

5
Sp

rint
6

Tasks
Story

Points
T

3
1

E
xceltem

p
l.

25
x

T
4

5
E

xcelrep
orting

25
x

T
4

D
ep

loy
w

eb-p
latform

50
x

T
3

0
C

reate
a

w
ebform

50
x

T
1

0
9

Store
resu

lts
in

a
d

b
50

x
T

4
2

D
ep

loy
B

I
Solu

tion
50

x
T

1
0

3
C

reate
a

d
ashboard

50
x

SP
size

50
50

50
50

50
50

G
oals

R
evenu

e
G

0
R

egister
visit

200
x

x
x

x
x

x
G

5
Insert

xls
0

x
x

x
G

6
Send

by
m

ail
0

x
G

1
2

Post
on

w
eb

0
x

x
x

x
x

G
1

6
R

egister
central

100
x

x
x

x
x

G
2

3
Insert

w
eb

0
x

x
x

G
3

7
X

p
lore

d
ata

200
x

x
x

x
G

1
2

0
G

et
su

bvention
200

x
S

4
9

U
ser-friend

ly
500

x
S

1
0

7
A

ccess.on
m

any
d

evices
250

x
x

x
R

evenu
e

400
700

500
550

550
1250

C
u

m
u

l.R
ev.

400
1100

1600
2150

2700
3950

5.6. ANALYTICGRAPH AS SUPPORTING TOOL 69

Figure 5.2: Parameters for Agile Planning Optimization in AnalyticGraph.com

4, where developers should work on storing in a database information acquired
from the form, MystShop employees should give up Excel spreadsheets in order
to start working with the web-based application. However, since there is no spe-
cific analytics developed for this application, visual exploration of data will not
be possible until sprint 6.

An interesting conclusion from this planning is that it would be more prof-
itable for MystShop to have a first solution using Excel files while another more
integrated solution would come in next sprints. This migration would result in
two periods (after sprints 4 and 5) where the customer will have no more access
to data exploration because of the migration. Nonetheless, it is still the planning
maximizing its global satisfaction.

5.6 AnalyticGraph as Supporting Tool

All previously presented models and modeling primitives are accessible on An-
alyticGraph. Specific aspects related to optimization of ARP are supported by
the tool (node values, goal revenue recurrence and task persistence). It is also
possible to specify the number of sprints to be considered as well as the velocity
constant 5.2. Results of the optimization are presented both graphically and as
a list in AnalyticGraph.com. The case presented in Fig. 5.1 can be accessed at
http://analyticgraph.com/dev/?g=R2CinFhvUK.

http://analyticgraph.com/dev/?g=R2CinFhvUK

70 CHAPTER 5. OPTIMIZATION OF AGILE PLANNING

5.7 Related Work

The issue discussed in this chapter is on the boarder of two research disciplines.
First, it deals with requirements optimization since it tries to identified an opti-
mzation set of requirements between different alternatives. Secondly, it is directly
related with what is called the Next Release Problem [7].

Several approaches have already been suggested for applying optimization
techniques on requirements engineering. In their paper, Zhang et al. discussed
them in general by presenting advantages and challenges [157].

One of the first application is suggested by Jung [84]. It gives developers a
method to balance the cost and value of the requirements, and then implement
the most cost-effective set.

Bagnall et al. were the firsts to coined the term Next Release Problem [7]. It
is about selecting a set of requirements that is deliverable within a budget and
which meets the demands of the customers. Our approach goes a step further by
providing a mapping between an actual requirement modeling language (Techne)
to a MIP. We also further elaborate the notion of customer satisfaction by distin-
guishing two types of revenues.

In their work, Zhang et al. explored the multi-objective next release prob-
lem by distinguishing the revenue maximization and the cost minimization [158].
Their work mainly consists of comparing search techniques for multi-objective
optimization problems. Although separating cost and customer values seems in-
teresting, our approach can be applied with a profit function (i.e. a fitness func-
tion summarizing revenue maximization and cost minimization) [57]. Moreover,
our work is less focused on comparing search algorithms but rather on providing
a mapping between goal modeling and MIP.

In their work, Ruhe et al. suggested an approach mixing what they call the art
of release planning and the science of release planning [125]. It results in a model
taking into account dependencies between features, resource constraints, urgency
of features and different stakeholders point of view. Our approach differs from
theirs because there is no attempt to balance multiple stakeholders satisfaction
and urgency rates. However, urgency is managed with diminishing values of goals
through time.

Saliu et al. focused on release planning optimization for evolving systems
[127]. They proposed a new release planning framework that considers the effect
of existing system characteristics on release planning decisions.

In comparison with all previously mentioned work, our approach is more fo-
cused on providing a mapping between an existing requirement modeling lan-
guage than a study on performance of various algorithms. They should then be
considered as complementary to ours.

5.8. CONCLUSION 71

5.8 Conclusion

This first formalization of a ROP suggested a method able to support optimization
of release planning in agile projects. It directly relates to RI4 from Tab. 1.2. A
first contribution was to suggest modeling of the Agile Requirement Problem with
goal models. A second contribution was a mapping between the goal model and
a Mixed-Intger Program. Eventually, we briefly presented an implementation of
the approach on AnalyticGraph.com.

Although our optimization problem focuses on business value delivery (as ag-
ile principles prescribes), it also takes into account implementation effort and
feature dependencies (through inference relationships).

The approach allows each user to focus on their domain, the product owner
defines a product backlog in the form of a goal model (which replaces the tradi-
tional list of user stories), developers identify implementation tasks to be done
during sprints and evaluate their required efforts with story points. Then the
release planning (and consequently priorities) is computed by resolution of the
mixed-integer program.

In summary, this chapter contributes to our three research questions since (1)
it showed that RI4 could be relevantly formalized as a ROP in CORE, (2) we de-
scribed some extensions of Techne with labels on nodes for satisfaction persis-
tence, and (3) we described the mapping with a MIP.

6Optimization of a Software Product Line
Portfolio

6.1 Forewords

This second chapter of Part II tackles RI14 which states “How to do RE for sys-
tems that should adapt to different environments and requirements?”. The underlying
problem behind this formulation relates directly to reusability. This problem was
faced in the MystShop case when the possibility to reuse what have been done for
MystShop could be reused for other purposes. This problem has been the main
focus of the Software Product Line Community [35, 117]. This is why we set this
optimization problem in the Software Product Line context.

Results of this chapter has been presented in:
J. Gillain, S. Faulkner, P. Heymans, I. Jureta, and M. Snoeck. Product portfolio

scope optimization based on features and goals. In Proceedings of the 16th Interna-
tional Software Product Line Conference-Volume 1, pages 161–170. ACM, 2012

6.2 Introduction

Context: Software Product Line

A Software Product Line (SPL) is defined as a set of software-intensive systems shar-
ing a common, managed set of features that satisfy the specific needs of a particular
market segment or mission and that are developed from a common set of core assets in
a prescribed way [35]. Even if it provides customized software products, Software
Product Line Engineering (SPLE) is currently regarded as an efficient approach
to achieve large scale reuse. By adopting SPLE, an organization can help achieve
different objectives, e.g., reduce their cost, provide adapted solutions for a variety
of customers or decrease the time-to-market of software products.

Scope: Product Line Portfolio Scoping

When developing a SPL, one of the main factors impacting the previously cited
objectives is the product line scope. As described by P. Clements in [34], scoping

74 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

is defined as the “ activity that bounds a system or set of systems by defining those
behaviors or aspects that are in and those behaviors or aspects that are out”.

According to Schmid [128], there are three types of scoping. Product portfolio
scoping aims at identifying the particular products that should be developed as
well as the features they should provide. Domain scoping is the task of bounding
the domains that are relevant to the product line. Assets scoping aims at identi-
fying functional parts of the product line that should be developed in a reusable
manner. Three goal levels for each scoping type can be distinguished: identifi-
cation, evaluation and optimization of scope. As highlighted by recent reviews,
current scoping methods fail in providing optimization methods. Some provide
optimization for the product portfolio scope but there are no domain or feature
optimization methods yet [106][79].

Problem: Finding the mix between commonality and variability

Determining an optimal scope is mainly a trade off question. On the one hand,
if the scope is too large (i.e. the SPL includes many products which cover a large
set of different markets), product members vary too much and the commonality
is reduced. Consequently, economies of scales eventually drop and the time-to-
market reduction is not achieved. On the other hand, if the scope is too narrow,
the core asset base (i.e. the common part) does not satisfy the needs of enough
customers and the return on investment never materializes. It is then necessary
to carrefully define the scope in such a way that the optimal balance between
commonality and variability is leveraged.

Contribution: A MIP to optimize software product portfolio scope

In this chapter, we present a mathematical model based on the joint use of goals
and features. We show how this approach can help when optimizing the prod-
uct line scope, especially product portfolio and assets scoping. We suggest that
when scoping, identification and evaluation of the three types of scoping can be
performed separately. Nonetheless, finding a global optimum for the product line
scope requires that the optimization of the three scoping types are performed in
an integrated model. Deciding which features will be included in each product,
as well as determining which features will be reusable or choosing domains can
not be executed independently. Otherwise the optimization would likely return a
local optimum.

In order to integrate those three considerations into a single model we decided
to use both goals and features in a product line life cycle profit optimization. The
reasoning behind such an approach is that the final purpose of all product line

6.3. FEATURES AND GOALS FOR SCOPE OPTIMIZATION 75

objectives is to deliver value. Moreover, we assume customers’ Willingness-to-
pay (WTP) for a system-to-be is function of the utility it provides and this utility
is function of the satisfied goals and not of the provided features. Indeed, some
features have value only when used with others, e.g., because of feature interac-
tions. Goal models are thus used as a problem-oriented approach while features
are solution-oriented aspects and the proposed method of scoping optimizes the
matching between both aspects. This approach has to be considered as a comple-
mentary method with current approaches such as PuLSE-Eco [128].

In the next section, we present the idea of using both goals and features with
illustration on the MystShop case. We also discuss how profit maximization ob-
jective has consequences on the other SPL objectives. The mathematical model is
presented in section 6.4. In section 6.5, we explain why further commonality and
variability analysis are required after the execution of the MIP. The adaptation
of the model to different development contexts is described in section 6.6. We
then illustrate the applicability of our model by applying it on an extension of
MystShop case study. We finally discuss related work and conclude this chapter
in Sect. 6.10.

6.3 Features and Goals for Scope Optimization

As highlighted by K. Schmid in [128] and D. Nazareth et al. in [110], advantages
resulting from software reuse in SPLE can take several forms. It is important to
realize that such advantages are mainly raised by economic considerations rather
than technical factors. These potential reuse benefits are:

• reduction in development cost,

• reduction in time-to-market,

• increase in programmer productivity,

• improvement in software quality,

• improvement in maintainability,

• improvement in project planning.

Determining the scope of the product portfolio will have an impact on those
benefits. However, assessing and predicting those benefits are difficult since vary-
ing the scope can have different effects on those benefits. Determining an optimal
scope regarding all those advantages could require the use of a multiple objec-
tive decision framework. However, such process raises several difficulties such as
expressing the preferences between those objectives.

76 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

Our method is based on the assumption that all the above objectives are driven
by the same general purpose: profit maximization. For example, reducing the
time-to-market aims at getting revenue earlier and benefit from market oppor-
tunities. Considering only this single objective allows to design a mathematical
model taking into account the previous cited considerations. Generally speaking,
the software product line profit is the difference between the revenue and the cost
of this product line. The scope of the product line is an important factor influenc-
ing profit. By increasing the scope, an organization can increase its revenue since
the set of potential customers will increase due to a larger set of products. How-
ever, as discussed in section 6.2, it will increase the variability and decrease the
commonality between product members implying a reduction of the economies of
scale on the side of the development cost. As discussed above, identification and
evaluation of the product line scopes have to be performed before optimization.
Regarding our model, identification, the first step of scoping, will result in a set of
goal models for different customers or domains, a set of relevant features to be in-
cluded in the future products and an identification of reusability of these features.
The second step, namely the evaluation phase, will consist in assessing the value
of goals, costs of features and costs of reuse. The final step is the optimization of
the SPL scope on the basis of the previously identified and evaluated artifacts. We
briefly discuss the identification and evaluation steps in this section but a com-
plete description of those first two steps is out of the scope of this approach. We
will focus on the third step of scoping in the next sections of this chapter.

Software Product Line Revenue

In order to generate revenue (e.g. by being sold), products from a SPL have to
satisfy requirements of customers. Before deciding which product will be part of
the SPL, we need to know what are the requirements of potential customers. In
this context, goal models present two advantages in comparison to other require-
ment methods such as object-oriented requirement modeling. First, it allows us to
analyze alternative ways to satisfy same requirements. E.g., two customers from
different domain can have several alternative solutions satisfying their require-
ments, two of which are satisfiable with a common SPL. Comparing alternative
solutions allows to find the largest possible core assets base for the product line
to-be. Secondly, goal models capture the purpose of the software which is likely
to have some stability. It does not address how it will achieve that purpose. Those
requirements are more stable which is important because determining the scope
need to be performed on quite stable considerations. Indeed, it is more difficult
to modify the scope than a feature.

Moreover, as previously discussed, goals are good utility indicators. Cus-

6.3. FEATURES AND GOALS FOR SCOPE OPTIMIZATION 77

tomers are willing to pay for a system which satisfies their goals, as this is how the
client can understand the value of the system-to-be, rather than consider the spe-
cific features. For instance, mystery shoppers of MystShop do not care if they fill
data in a webform or in a spreadsheet. What really matters is the value that can be
leveraged from the use of this feature (e.g. storing data in a database make them
available for other application). As highlighted in [106], methods such as the con-
joint analysis can be used to evaluate the willingness to pay of a customer. How-
ever, further considerations about the identification process of customer needs
and the method to be used in order to evaluate them is out of the scope of our
research questions. What interests us in this thesis is that the requirement prob-
lem for SPL can be stated as follows: finding a set of tasks (i.e., ways of achieving
goals) such that under some domain assumptions, stakeholders goals are satisfied
[89].

As already discussed in the introduction of this thesis, using the CORE on-
tology for requirement engineering [89], the requirement problem can be formal-
ized as follows K,T ` G,S,Q, where K,T ,G,S,Q are respectively sets of domain
assumption, tasks, goals, softgoals and quality constraints. Given a requirement
problem, SPL engineers are interested in finding a product (i.e. a valid set of fea-
tures) able to realize tasks of the requirements problem, formally K ′ ,p ` T where
K ′ states the conditions of tasks realization by the product and p ∈ P (F)1. For
instance, if we want to realize task t and we know that f → t then, a possible
product could be the single feature {f }. In this trivial example, K ′ = {f → t}. Con-
sequently, the extended requirement problem for a particular customer becomes
K ′′ ,p ` G,S,Q where K ∪K ′ = K ′′ Then, the process of developing a product line
consist in finding a P L = {p1, . . . ,pn} such that for a given set of n customers with
i = (0 . . .n), there is a product pi ∈ P L such that K ′′i ,pi ` Gi ,Si ,Qi with pi being a
product member of the SPL.

Software Product Line Cost

In this research, we consider that a product member from a SPL is defined by the
set of features F it is made of. This description requires a clear definition of what
a feature is. Among the different feature definitions [32], our model is compli-
ant with Batory’s definition which states that a feature is an increment of product
functionalities [9]. Those features will be used to model the software variability
which refers to the ability of a software system or artefact to be efficiently ex-
tended, changed, customized or configured for use in a particular context [139].

We influence scope by deciding which features we include. Particularly dur-
ing the product portfolio scoping phase. Features are a means to realize tasks,

1P (F) is the powerset of a set F which represents a set of features

78 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

and thereby assess the cost of a product line needed to satisfy a particular set
of tasks. Developers can more easily give an estimation of the development cost
of a feature than of the cost to satisfy a goal. On the contrary, they are no good
measurements for the willingness-to-pay of customers regarding a product. For
reasons mentioned above, we see goals as a better means than features to evaluate
revenue that can be generated. When evaluating a software product, customers
will not assess features in an isolated way, but how this feature can help to satisfy
their requirements, i.e. their goals, softgoals and quality constraints.

For assessing a SPL cost, we have to underline that SPLE consists of two main
processes, namely domain engineering (DE) and application engineering (AE). DE
is the process of SPLE in which the commonality and the variability of the product
line are defined and realized. It results in a Core Assets Base (CAB) which is the
basis for the production of products in the product line. AE is the process in
which the applications of the product line are built by reusing domain artifacts
from the CAB and exploiting the product line variability [117]. In [12], Böckle et
al. introduce a cost function for product line based on this distinction.

Corg +Ccab +
i=1∑
n

Cunique(pi) +
i=1∑
n

Creuse(pi) (6.1)

whereCorg is the cost supported by an organization adopting SPLE.Ccab is the cost
to develop the core assets base suited to support the product line to-be. Cunique(pi)
is the cost to develop the unique software part of the product pi that is not in the
core base asset while Creuse(pi) is the cost to reuse the core assets for the product
pi .

Since the core asset base and the products are described in terms of features,
assessing the above cited costs in our framework will require that we evaluate the
cost of the features. We assume that Corg does not depend on the scope of the
considered product line and we therefore do not use it in our optimization. Ccab
is the cost for developing the set of features which can be reused as part of the
product line. Developing a feature as part of the core assets base introduces extra
costs such as making it more generic or putting it in a register. Creuse is the cost
of reusing a feature integrated in the CAB. Eventually, Cunique will be the cost of
developping a feature independently of all reuse considerations.

Limited Resources and Discount Rate

The development of a product line is a long term process. Due to limited re-
sources, this development would likely take several years. Taking into account
the cost of time and the limited resource is of primary importance for the deter-

6.4. OPTIMIZATION MODEL FOR THE SPL SCOPE 79

mination of the product line scope but more specifically to determine priorities
in the development and a release planning.

To take into account the cost of time, we suggest to discount revenues and
costs with the Weighted Average Cost of Capital (WACC). This rate calculates an
organization’s cost of capital in which each category of capital is proportionately
weighted. It is often used to discount cash flows and determine the Net Present
Value (NPV) of a project.

Regarding the limited resources, we assume that main resources of a SPL
provider is its development team. We then consider that the previously described
cost function will consume this resource and features will have to be estimated in
terms of development effort and not in monetary estimations.

6.4 Optimization Model for the SPL Scope

In this section we describe the mathematical model for finding the optimal scope
of a product line. We showed in section 6.3 that the requirement engineering
problem of software product line formulated with CORE consisted of three steps.
First, determining who are the relevant customers (from possible different do-
mains) and what their needs are. This requires the identification and evaluation
of Ki ,Ti |∼ Gi ,Si ,Qi for different customers. Secondly, defining what the products
were constituted of. Answering this question implies that we need to identify
and evaluate a set of features F which can be used to derive product members, i.e.
p ∈ P (F). Thirdly, we need to identify domain assumptions for the product to real-
ize the tasks, i.e. K ′′ . The description of our model follows this distinction. After
presenting the objective function, we discuss the constituting features. Then, we
deal with goal models to describe customer needs. Finally, we state constraints
modeling conditions of tasks realization. The MIP is described in MIP 6.1 and
MIP 6.2.

80 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

MIP 6.1. First part of the MIP description for SPL Scope.

Constants

∆ Majoration factor for developing a feature as a generic feature
δ Reduction factor for reusing a CAB feature in a product
r Discount rate
cw Weekly rate of pay

Sets

P = {1, . . . ,p} Periods
N = G∪ T ∪ S ∪Q∪K ∪ I Concept nodes and inference nodes (I)
F = {1, . . . , f } Features
FX ⊆ P (F) Sets of features mutually exclusive
FM ⊆ P (F) Sets of features mutually required
FR ⊆ F ×P (F) Sets of required relations between features
J = {1, . . . , j} Products

Decision Variables

σN,P = {σi ∈B : i ∈N ∪ I,p ∈ P }
Binary variables representing satisfaction of nodes n during period p.

ϕF,J,P = {ϕf ,j,p ∈B : f ∈ F,j ∈ J,p ∈ P }
Binary variables representing the feature f is used in the product j during the period p

ϕcab
F,P = {ϕcab

f ,p ∈B : f ∈ F,p ∈ P }
Binary variables representing the feature f has been integrated to the CAB
during the period p

ϕr
F,J,P = {ϕr

f ,j,p ∈B : f ∈ F,j ∈ J,p ∈ P }
Binary variables representing the feature f was reused from the CAB
for the product j during the period p

ϕu
F,J,P = {ϕu

f ,j,p ∈B : f ∈ F,j ∈ J,p ∈ P }
Binary variables representing the feature f was uniquely developed
for the product j during the period p

wP = {wp ∈R : p ∈ P }
Represents the number of development weeks allocated for period p

Additional Functions to basic MIP 3.1

prod : J → {n : n ∈N } Return the set of nodes of a particular product
c : F→R Time required for developing features

6.4. OPTIMIZATION MODEL FOR THE SPL SCOPE 81

MIP 6.2. Second part of the MIP description for SPL Scope.

Objective function

max
∑
p∈P

(∑
n∈N

u(n,p)
rp σn,p −

cw
rpwp

)
Constraints

Premises constraints σi,p ≤
∑

x∈in(i)

σx,p
|in(i)|∀p ∈ P , i ∈ I :

Conclusion constraints σn,p ≤
∑

i∈inI (n)
σi,p

∀p ∈ P ,n ∈ {x ∈N : |inI (x)| > 0} :

Conflict constraints
∑

x∈in(c)
σx,p ≤ 1

∀p ∈ P ,c ∈ C :

Mandatory constraints σn,p ≤
∑

i∈prod(j)∩M

σi,p
|prod(j)∩M |∀p ∈ P , j ∈ J,n ∈ prod(j) :

Feature choice ϕf ,j,p ≤
∑

s∈{1,...,p}
(ϕu
f ,j,p +ϕr

f ,j,p)
∀p ∈ P , j ∈ J, f ∈ F :

Reuse from CAB ϕr
f ,j,p ≤

∑
s∈{1,...,p}

ϕcab
f ,p

∀p ∈ P , j ∈ J, f ∈ F :

Budget constraints ∑
f ∈F

c(f)
(
∆ϕcab

f ,p +
∑
j∈J

(ϕu
f ,j,p + δϕr

f ,j,p)
)

= wp
∀p ∈ P :

Required features
ϕπ1(Fr),j,p −

∑
x∈π2(f r)

ϕx,j,p

|π2(f r)| ≤ 0∀p ∈ P , j ∈ J,Fr ∈ FR :

Mutually required feat.
ϕz,j,p −

∑
x∈Fm\z

ϕx,j,p

|Fm\z| = 0∀p ∈ P , j ∈ J,Fm ∈ FM :

Mutually exclusive feat. ∑
f ∈Fx

ϕf ,j,p ≤ 1
∀p ∈ P , j ∈ J,Fx ∈ FX :

82 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

The Product Line

The equation (6.2) is the objective function maximizing the profit which is the dif-
ference between the revenue resulting from satisfied goals and the development
costs which are evaluated by salary charge. Additionally to MIP 3.1, other con-
straints are inserted into the model. The first one (equation (6.3)) states that the
development is allocated to either domain engineering or application engineer-
ing following the cost function previously discussed. Morevoer, it is possible that
feature used in a product at a particular period segment would have been reused
from the CAB or developed exclusively for this product (development being made
at this precise period or in a previous one). This is stated in equation (6.4). How-
ever before reusing a feature, it has to be integrated in the CAB (6.5).

max
∑
p∈P

∑
n∈N

u(n,p)
rp

σn,p −
cw
rp
wp

 (6.2)

subject to:

∀p ∈ P :
∑
f ∈F

c(f)
(
∆ϕcab

f ,p +
∑
j∈J

(ϕu
f ,j,p + δϕr

f ,j,p)
)

= wp (6.3)

∀j ∈ J, f ∈ F,p ∈ P : ϕf ,j,p ≤
∑

s∈{1,...,p}
(ϕu
f ,j,p +ϕr

f ,j,p) (6.4)

∀j ∈ J,∀f ∈ F,∀p ∈ P : ϕr
f ,j,p ≤

∑
s∈{1,...,p}

ϕcab
f ,p (6.5)

Additional considerations about features need to be stated. Feature dependen-
cies and interactions are important constraints when developing a product line.
We can identify some patterns when considering feature dependencies. On the
one hand, we can identify common features which are features belonging to all
product members of the SPL. On the other hand, as highlighted in [96] variable
features fall into three categories: alternative, OR and optional features. More-
over, there are some dependencies among features. These can take several forms
such as “mutually requires”,“requires” or “mutually excludes”. Due to some op-
erational dependencies [96], some of those dependencies and interactions have to
be identified since they will have significant implications in the development of
the system. Here we present the instantiation of those feature interactions into
linear constraints.

The “mutually excludes” constraint expresses that some features can not be
active at the same time. E.g., consider a security system. Because of some inter-
ferences between waves, radar motion detectors can not work at the same time as

6.4. OPTIMIZATION MODEL FOR THE SPL SCOPE 83

wireless networks. In terms of linear constraints, (6.6) expresses that for all sets
of features that are mutually exclusive FX ⊆ P (F):

∀p ∈ P ,∀j ∈ J,∀Fx ∈ FX :
∑
f ∈Fx

ϕf ,j,p ≤ 1 (6.6)

We can also model the “mutually requires” constraint between sets of features,
i.e. the feature can not be used independently. Let’s consider all sets of mutually
required features FM ⊆ P (F), the linear constraint is:

∀p ∈ P ,∀j ∈ J,∀Fm ∈ FM : ϕz,j,p −

∑
x∈Fm\z

ϕx,j,p

|Fm \ z|
= 0 (6.7)

with z ∈ Fm.
For example, consider that Fm = {F1,F2,F3} which states that those three fea-

tures cannot be used independently, then the constraint will be:

ϕF1,j,p −
ϕF2,j,p +ϕF3,j,p

2
= 0

Finally, we can also model the “requires” constraint. It is necessary if a feature
Fi requires a set of other features to be part of the product while the latter can be
integrated in the product without Fi . We can model this constraint as following:
Let’s consider the set of tuple FR ⊆ F ×P (F) where the first member of the tuple is
the feature requiring the second member of the tuple. For example, (F1, {F4,F5})
means that a product consisting of F1 should also integrate F4 and F5.

∀p ∈ P ,∀j ∈ J,∀Fr ∈ FR : ϕπ1(Fr),j,p −

∑
x∈π2(Fr)

ϕx,j,p

|π2(Fr)|
≤ 0 (6.8)

with πi(X) being the ith projection map of tuple X.

Goal Models

Since we are scoping our product portfolio, mandatory constraints need to be han-
dled with care. Indeed, in a scoping context, a mandatory constraint does no more
mean that the goal must be satisfied in the final software product line. Instead,
it means that if we decide to provide a product for this requirement problem (i.e.
customer), then the product will be legal only if it satisfies those mandatory goals.
This is formulated as following: let’s consider the function prod which returns all
concept nodes of the goal model related to a specific product. Then, the manda-
tory constraints becomes:

∀p ∈ P , j ∈ J,n ∈ prod(j) : σn,p ≤
∑

i∈prod(j)∩M

σi,p
|prod(j)∩M |

(6.9)

84 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

This equation means that a node cannot be satisfied if all mandatory nodes
have not been satisfied. We take here the assumption that the first release of
the product needs all its mandatory nodes (in that we are compliant with the
definition of the must-be in the Kano model [90]).

Tasks realization

Modeling task realizations follows the same pattern as goal refinement. For ex-
ample to model the following task realization (F1 ∧ F2) ∨ (F1 ∧ F3) → T1 which
states that the task T1 will be realized either with the features F1 and F2 or with
F1 and F3 will use the following equations:

T1 ≤ I1 + I2 (6.10)

I1 ≤ (F1 + F2)/2 (6.11)

I2 ≤ (F1 + F3)/2 (6.12)

where I1 and I2 are inference nodes. These additional task realization con-
straints have been added in the premises and conclusion constraints.

6.5 Further Commonality and Variability Analysis

The output of the MIP consists among others of different sets of features satisfy-
ing each market segment. The model determines if those features are developed
during domain or application engineering.

Actually, the software products satisfying the different market segments are
not the members of the product line for two reasons. First, they can include fea-
tures developed exclusively for these market segment. Consequently, the product
has more features than possible product line members. Secondly, it is not manda-
tory to base the feature constraints definition of the product line on the strict
interpretation of the model output. For example, assume that the model deter-
mines the four following products: p1 = {F1,F2,F3,F6}, p2 = {F1,F2,F4,F6}, p3 =
{F1,F2,F5} and p4 = {F1,F2,F4,F7}. Moreover, it considers that {F1,F2,F4,F6} ⊆
CAB. A strict definition of the software product line described in a feature dia-
grams could be one such as in Fig. 6.1(a). However, SPL engineers could decide to
eventually design a software product line such as in Fig. 6.1(b) which also allows
the definition of px = {F1,F4,F6}

The different decisions taken about the feature constraints in this commonality
and variability analysis (as well as possible feature aggregation) will result in the
definition of the Product Line variability which describes the variation between

6.6. CONTEXT-AWARE CONSIDERATIONS 85

Figure 6.1: Example of various feature diagram definitions

the systems that belong to a SPL in terms of properties and qualities. This analysis
is required to disambiguate the two types of variability [105].

This discussion underlines that although we assume some structural and oper-
ational constraints identified during pre-optimization steps, a further commonal-
ity and variability analysis of the core assets base is required after processing the
optimization. Acher et al. suggested a method able to extract feature diagrams
from products description [4].

6.6 Context-Aware Considerations

In this section, we describe how to adapt the MIP to various SPLE situations. First,
we make a distinction between different market strategies. Then, we show how to
take into account clear separation between domain and application engineering
teams. Finally, we deal with SPL development from legacy systems.

Mass-Customization or Mass-Markets

As highlighted by K. Schmid in [129], we can identify two product strategies: the
mass-customization and the mass-markets. Depending on the strategy, constraints
of the mathematical model will be different.

In a mass-market situation, the product is mainly defined by the producing
organization in order to sell the product in a market segment to a large number
of customers during a certain span of time. Consequently, if the goal value were
an annual expected revenue, revenues from the model can be added each year.
Moreover, this product can be improved (with new features) and a new release
can be sold to this segment. This is typical in mobile applications or in Software
as a Service (SaaS) solutions. This product strategy is the default situation in our

86 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

mathematical model. Each goal model represents the aggregated needs of a par-
ticular market segment and goal value are predictions of yearly sells.

In a mass-customization situation, each product is designed for the specific
needs of a customer. Consequently, a product is sold only once and estimated
revenue can be obtained only once. It means that each goal model captures the
needs of a particular customer, which implies that it can be satisfied only once.
However, we can distinguish two situations. In the first, once a product is derived
and deployed, customer needs are considered as satisfied and no more change will
be accepted. This situation is common in the waterfall methodology and is known
as a big bang release [125]. We will then add these sets of constraints:

∀n ∈N :
∑
p∈P

σn,p ≤ 1 (6.13)

∀j ∈ J,n ∈ prod(j) :
∑
p∈P

σn,p ≤ γj,p (6.14)

∀j ∈ J :
∑
p∈P

γj,p ≤ 1 (6.15)

where γj,p is equal to 1 if the product j is delivered at period p and (6.13) states
that a goal can be satisfied only once through the whole set of considered periods
and (6.14) and (6.15) state that there is only one release of the product dedicated
to the customer j.

In the second situation, a product can be updated and a new release can be
deployed. In this case, we can consider that unsatisfied goals can still be satisfied
at a later point in time (i.e. in a future release). In this case we have to add only
the set of equations (6.13). This situation occurs in iterative methodologies.

Separation of Domain and Application Engineering Teams

Organizations can for various reasons [101] decide to separate or merge domain
and application engineering teams. Those distinct situations can be integrated in
our mathematical model. Merged teams is the default situation where wt in (6.3)
represents the available development resources for one period dedicated to both
domain and application engineering.

In order to make a distinction between domain engineering and application
engineering, we have to replace the decision variables wt by wDt and wAt which
represent respectively development weeks for domain engineering and applica-

6.7. CHANGE AND ITERATIVE DEVELOPMENT 87

tion engineering. Then, (6.3) has to be replaced by:

∀p ∈ P : ∆
∑
f ∈F

c(f)ϕcab
f ,p ≤ w

D
p (6.16)

∀p ∈ P :
∑
f ∈F

(
c(f)

∑
j∈J

(ϕu
f ,j,p + δϕr

f ,j,p)
)
≤ wAp (6.17)

Further situations can also be modeled, e.g. two basis team dedicated to do-
main and application engineering helped with a flexible team which could be
work on both domain and application engineering. It is interesting to notice that
this paragraph deals with an additional RI, namely RI6 “How to distribute the re-
sponsibility for the satisfaction of requirements to the system-to-be, systems it might
interact with, and people in its environment?”. However, this problem of distribu-
tion of responsibilities will be deeper investigated (in another context) in Chapter
8.

Encapsulation of Legacy Systems

Developing a software product line on the basis of legacy systems by wrapping
some components is a common situation in SPLE. For instance, as described in
[101], a legacy component can be first wrapped and integrated to a product line
before it would later be replaced by a new component.

This situation is modeled by adjusting the cost of feature integration to the
CAB. For example, consider a financial calculation module which was present in
a legacy system. We can then consider two features realizing the same tasks where
f1 is the legacy module and f2 is an similar module developed from scratch. Then
we have that the cost to integrate f1 to the CAB will be lower than the cost to
integrate f2. We also have to fix the variable f u

1,m,t = 0 since the legacy module
cannot be developed uniquely for a single product.

6.7 Change and Iterative Development

We advocate to apply this model in an iterative and incremental development
process and not in a predictive way. Since all products will not be developed at
once and that the CAB will incrementally grow as new products are developed, it
would be useful to frequently reevaluate the scope.

It results from two facts. First, developing a software product line is a long
term process and the product line life cycle is often largely longer than for a sim-
ple software product. So, all products can not be developed at the same time.
Secondly, it is impossible to exactly predict and evaluate customer needs several

88 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

years in advance. Environment changes are frequent and they can affect previ-
ously stated customer needs. Additionally the probability that changes occur is a
function of the considered time span. Considering a too long time will obviously
result in unexpected change.

Our suggested method can not be considered as an exact predictive method to
be applied in the early phase of a product line life cycle without any later changes.
It has to be used in an iterative development process and results have to be con-
sidered as a sketch for further investigation. Those consideration justify our use
of goal models since they allow to model high-level requirements (which are less
likely to change). Instantiated with an incremental and iterative development
method, our model can help to control the development and release planning
since we can integrate environment changes in goal models and we can model the
development progress of the CAB. E.g. a feature already developed and integrated
to the CAB can get a zero development cost and a positive reuse cost.

6.8 Application on MystShop Case

In this section, we apply our method to the MystShop case. In the first part of this
section, we provide a software product line context to the case and we model it
with goal model. In a second part, we present the result of the software product
line scope optimization (performed by AnalyticGraph).

Problem Statement

The platform developed for MystShop could be used for many other domains.
For instance, a research who performs a survey could use similar features in order
to design the survey and ask many people to answer it. If not all features can be
reused, we can point among other the questionnaire designer feature (able to design
the checklists) as well as a csv export feature. As an illustration, we will consider
three additional markets for the MystShop platform: a research survey platform,
a poll widgets designer and a meeting scheduler platform.

The poll widget designer consists of a platform which will be used to configure
a poll consisting of one question and a set of possible answers. This poll will be
displayed as a widget in websites in order to survey the users. Such widgets are
frequent on news websites.

The meeting scheduler platform would be aimed at getting availabilities from
a list of participants in order to set an event date. An example of such platform is
www.doodle.com.

Simple goal models for each potential product are depicted in Fig. 6.2. The
MystShop goal model is in the top-left corner. The poll widget designer and the

www.doodle.com

6.8. APPLICATION ON MYSTSHOP CASE 89

research survey designer are respectively in the top-right and bottom-right corner
of the figure. The meeting scheduler plateform goal model is in the bottom left
corner.

On the basis of these goal models, we identified a set of 13 coarse-grained
features able to realize tasks identified in each goal models. They are described
in Fig.6.3. The CAB integration cost and the reuse cost are evaluated by apply-
ing respectively a design-for-reuse factor and a design-with-reuse factor on the
traditional development cost. We assumed for this example those factors to be re-
spectively ∆ = 1.5 and δ = 0.2. Some feature dependencies were identified before
the optimization of the product portfolio.

In this problem, we consider two periods of concern and a limited budget of
300 units per period.

Results presentation

The entire model was modeled and resolved with AnalyticGraph.com. Results are
depicted in Tab.6.1, Fig.6.5 and Fig.6.4. The optimal value is 293. It corresponds
to the cumulative revenue acquired from the satisfaction of goals minus the cost
of implementing the underlying features.

The first period should be dedicated to create a CAB consisting of F182, F186
and F244. Each of these features are required at least in three distinct products.
The rest of the available work is allocated in configuring and developing features
for the mystery shopping product. Some are directly reused from the CAB (F182,
F186 and F244) and others are developed specifically for this product (F187 and
F194). This product is selected because no additional features should be inte-
grated into the CAB in order to create it.

During the second period, the CAB is extended with two additional features
(F190 and F193). The survey product as well as the poll product require the
development of specific features while the meeting scheduler is only based on
features from the CAB. It does not mean that no effort are required for this latter
product. Some work have to be considered to customize those CAB features. It
is also interesting to notice that an additional feature is integrated in the mystery
shopping product. It is F188, the “File uploader” feature. It allows to provide
customers with the additional service of pictures of mystery visits.

We see in Fig.6.4 that break even is reached after the second period. The ex-
pected operating profit over the two periods is 293.

Fig.6.5 shows a possible feature diagram for describing the product line vari-
ability after an analysis of the variability and commonality between products.

90 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

I2
68

T
26

1
A

ns
w

er
 q

ue
st

io
ns

V
al

:0

C
27

7

T
27

2
D

is
pl

ay
 r

es
ul

ts
in

 d
as

hb
oa

rd
s

V
al

:0

G
26

9
A

na
ly

tic
s

ar
e

pr
ov

id
ed

 to

cu
st

om
er

s
V

al
:2

00

I1
11

I1
12

I1
13

T
11

5
E

xp
or

t p
ol

l
da

ta
 in

 a

sp
re

ad
sh

ee
t

V
al

:0
T

11
9

S
pe

ci
fy

 q
ue

st
io

n
an

d
po

ss
ib

le
 a

ns
w

er
s

V
al

:0

T
12

0
C

re
at

e
a

Ja
va

-S
cr

ip
t

w
id

ge
t t

o
be

 in
te

gr
at

ed
in

 w
eb

 p
ag

es
V

al
:0

I8
9

I9
0

T
95

V
is

ua
liz

e
da

ta
 in

w
eb

 d
as

hb
oa

rd
V

al
:0

G
97

P
ol

l i
s

co
nd

uc
te

d
V

al
:5

00

I9
8

G
10

0
T

he
 q

ue
st

io
n

is
 s

pe
ci

fie
d

V
al

:0

G
10

1
T

he
 w

id
ge

t p
ol

l
is

 s
pe

ci
fie

d
V

al
:0

G
10

9
P

ol
l d

at
a

ar
e

av
ai

la
bl

e
V

al
:0

I6
3

T
64

S
en

d
lin

k
to

m
ee

tin
g

da
te

s
pe

r
m

ai
l

V
al

:0

I5
9

T
62

S
pe

ci
fy

 th
e

m
ee

tin
g

da
te

s
V

al
:0

I5
3

T
58

C
us

to
m

iz
e

vi
si

t s
ur

ve
y

V
al

:0

I4
9

G
52

C
us

to
m

er
 h

av
e

ac
ce

ss
to

 p
ic

tu
re

 o
f t

he
 v

is
it

V
al

:2
00

T
85

E
xp

or
t s

ur
ve

y
re

su
lts

 in
to

cs

v
fil

e
V

al
:0

G
88

R
es

ea
rc

he
r

ca
n

ac
ce

ss

su
rv

ey
 d

at
a

V
al

:0

I7
8

T
79

S
ha

re
 a

n
un

iq
ue

U
R

L
fo

r
ac

ce
ss

in
g

th
e

su
rv

ey
V

al
:0

I7
4

T
75

S
pe

ci
fy

 a
qu

es
tio

n
se

qu
en

ce
V

al
:0

T
65

G
iv

e
av

ai
la

bi
lit

y
in

 a
 w

eb
fo

rm
V

al
:0

I6
6

T
29

M
ys

te
ry

 v
is

its
re

su
lts

 a
re

 r
ec

or
de

d
in

 a
 w

eb
fo

rm
V

al
:0

G
24

A
n

cu
st

om
iz

ed
ac

ce
ss

 is
 p

ro
vi

de
d

to
 th

e
cu

st
om

er
V

al
:0

G
21

S
pe

ci
fic

 s
eq

ue
nc

e
be

tw
ee

n
qu

es
tio

ns
is

 s
pe

ci
fie

d
V

al
:0

G
18

Q
ue

st
io

ns
 a

nd
po

ss
ib

le
 a

ns
w

er
s

ar
e

sp
ec

ifi
ed

V
al

:0

I1
7

G
16

A
n

ev
en

t i
s

or
ga

ni
se

d
V

al
:1

00
0

T
15

S
pe

ci
fy

 s
ur

ve
y

qu
es

tio
ns

V
al

:0

I1
4

G
45

A
 s

pr
ea

ds
he

et
 w

ith
vi

si
t r

es
ul

t i
s

po
st

ed
V

al
:0

T
44

P
os

t f
ile

 o
n

th
e

w
eb

 p
la

tfo
rm

V
al

:0

G
41

A
ll

pa
rt

ic
ip

an
ts

 h
av

e
re

sp
on

de
d

V
al

:0

G
38

D
iff

er
en

t
ca

nd
id

at
e

da
te

s
ar

e
su

gg
es

te
d

V
al

:0
I3

7

T
34

G
iv

e
cu

st
om

ac
ce

ss
 to

di
ffe

re
nt

 c
us

to
m

er
V

al
:0

I3
1

G
30

M
ys

te
ry

 v
is

it
w

eb
fo

rm
 is

cu
st

om
iz

ed
V

al
:0

G
0

C
us

to
m

er
 c

an
 a

cc
es

s
its

m
ys

te
ry

 v
is

it
re

su
lts

V
al

:1
00

0

G
7

R
es

ea
rc

h
ca

n
de

si
gn

 a
 s

ur
ve

y
V

al
:0

G
8

R
es

ea
rc

he
r

ca
n

gi
ve

 a
cc

es
s

to
 s

ur
ve

y
su

bj
ec

t
V

al
:0

I9

I1
3

I1
I2

G
3

G
ra

ph
ic

al
 p

re
se

nt
at

io
n

of
 m

ys
te

ry
 v

is
its

 is

di
sp

la
ye

d
V

al
:2

00

G
6

R
es

ea
rc

he
r

ca
n

co
nd

uc
t s

ur
ve

ys
V

al
:2

50
0

Figure 6.2: Goal Model of MystShop Requirement Problem. Accessible at http:
//analyticgraph.com/dev/?g=TloQ2ClZPC

http://analyticgraph.com/dev/?g=TloQ2ClZPC
http://analyticgraph.com/dev/?g=TloQ2ClZPC

6.8. APPLICATION ON MYSTSHOP CASE 91

F182
Question
designer
Val:100

T119
Specify question
and possible answers
Val:0

T115
Export poll
data in a
spreadsheet
Val:0

T120
Create a Java-Script
widget to be integrated
in web pages
Val:0

F190
URL sharing
module
Val:20

F189
Widget HTML
displayer
Val:35

F193
CSV
exporter
Val:20

F191
Sequence
Designer
Val:50

F186
Webform
displayer
Val:10

I183

F188
File
uploader
Val:15

F187
Multi-role
manager
Val:50

T95
Visualize data in
web dashboard
Val:0

T75
Specify a
question
sequence
Val:0

T79
Share an unique
URL for accessing
the survey
Val:0

T85
Export survey
results into
csv file
Val:0

T44
Post file on
the web platform
Val:0

T65
Give availability
in a webform
Val:0

T64
Send link to
meeting dates
per mail
Val:0

T62
Specify the
meeting
dates
Val:0

T58
Customize
visit survey
Val:0

T15
Specify survey
questions
Val:0

T34
Give custom
access to
different customer
Val:0

T29
Mystery visits
results are recorded
in a webform
Val:0

I234

I231

F240
xls
exporter
Val:25

I237

I219

I216

I228

I222

I207

I204

I213

I210

I195

F194
Dashboard
viewer
Val:20

I201

I198

I241

F244
Answer type
designer
Val:30

F248
3-level
answer
Val:5

F250
Yes-No
answer
Val:5

E254

Figure 6.3: List of identified features and task realization links.

92 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

Table
6.1:T

he
p

rodu
ct

p
ortfolio

p
lanning

-
Increm

ents
betw

een
p

eriod
s

are
bold

ed
,r

=
reu

se,u
=

u
niqu

ely
d

evelop
ed

P.
Segm

ent
Satisfi

ed
goals

P
rodu

ct
com

p
osition

C
A

B

F187

F186

F248

F182

F244

F250

F188

F240

F193

F191

F189

F190

F194

1

M
ystShop

{G
0
,G

3
,G

2
4
,G

3
0
,G

2
6

9}
u

r
r

r
u

{F1
8

2
,F1

8
6
,F2

4
4}

Su
rveys

∅
Pollw

id
get

∅
M

eet.sched
.
∅

2

M
ystShop

{G
5

2}
u

r
r

r
u

u

{F1
8

2
,F1

8
6
,F2

4
4
,F1

9
0
,F1

9
3}

Su
rveys

{G
6
,G

7
,G

8
,G

1
8
,G

2
1
,G

8
8}

r
r

r
r

u
r

Pollw
id

get
{G

9
7
,G

1
0

0
,G

1
0

1
,G

1
0

9
,G

1
5

3}
r

r
u

r
M

eet.sched
.
{G

1
6
,G

3
8
,G

4
1
,G

1
0

9
,G

1
5

3}
r

r
r

r

6.9. RELATED WORK 93

Figure 6.4: Expected discounted cumulated cash flows

CAB

F182
Question Designer

F186 Checklist displayer
F244 Answer type designer

F190
URL Sharing

F193
CSV Exporter

Figure 6.5: A possible feature diagram for the MystShop Product Line

6.9 Related Work

Although several product line scoping methods have been designed, few address
the optimization goal of the product portfolio scoping on the basis of the prof-
itability concern.

Recently, J. Müller suggested a mathematical program able to optimize the
product portfolio on the basis of a profit maximization objective [106]. His model

94 CHAPTER 6. OPTIMIZATION OF A SOFTWARE PRODUCT LINE PORTFOLIO

is based on previous work in product lines (i.e. not software) and on conjoint
analysis. Although the idea to use a mathematical program to optimize the SPL
scope is similar to ours, the underlying assumptions of the two models are differ-
ent. First, he assumes that the features constitution of each product have already
been established before optimizing the scope. His model only optimizes the se-
lection of the product-segment pair given the already constituted product family
and a set of relevant segments. Moreover, it does not introduce any time consid-
erations what prevents any possibility of setting development priorities or release
planning which is however a primary concern in SPLE.

Several surveys of Software Product Line Scoping have been performed. In
their survey [79], I. John and M. Eisenbarth identify 16 scoping approaches but
they highlight that scoping optimization has only been partially addressed. More-
over none of them integrate the optimization of the three types of scoping. They
also highlighted that among the five methods they identified as addressing the
product portfolio analysis [27, 74, 117, 140, 142] only one [27] also addresses as-
set scoping (as we do with our model).

The Quality Function Deployment Product Portfolio Planning suggested by
Helferich [74] elicits required features of products of a SPL and asks engineers
about technical feasibility. It also allows to identify customer segments. However
it does not consider revenue and cost aspects and therefore cannot be used for
profit maximization. However, this method can usefully be viewed as comple-
mentary to ours since it identifies features and can be used to match them with
goal models.

In [117], Niehaus et al. present a Kano model which allows to design customer-
oriented SPL. It is focused on the product portfolio planning and consequently do
not consider any asset scoping.

The issue of a release planning is addressed in [140, 142] but they do not ad-
dress neither composition of product portfolio or asset scoping.

Moreover as highlighted by J. Müller none of those five methods integrate mar-
ket and cost perspectives which prevents any profitability consideration.

6.10 Conclusion and Further Work

In this chapter, we suggested that instances of RI14 could relevantly be modeled
as ROP in CORE. More precisely, we focused on the problem of portfolio scoping
of a Software Product Line. This contributes to RQ1. Indeed, our scoping model
is based on the description of customer needs in terms of goals to satisfy and tasks
to realize. This use is justified because first, we showed that goals are better than
features to capture the customer willingness-to-pay and secondly, they are able to
capture the alternative solutions of a requirement problem what is useful to find

6.10. CONCLUSION AND FURTHER WORK 95

large commonalities between market segments. Features are then identified and
linked to tasks they support during the refinement process.

Current methods to deal with SPL suggest to describe it in terms of features.
In order to link both feature diagrams and goal models, we introduced task re-
alization links which indicates that some features are required to execute some
tasks. We extend our basic model with feature nodes, product labels and re-
quires/excludes relationships. This contribution answers RQ2.

Finally, we proposed that when scoping, identification and evaluation of the
three types of scope (i.e. product portfolio, domain and assets scoping) can be
performed separately but the optimization of those scopes has to be performed in
an integrated model. Consequently, we proposed a mathematical program able
to optimize the software product line scope and sketch both a development and
a release planning. Our method is based on the assumption that all software
product line objectives are eventually driven by the same general purpose: profit
maximization. Revenues are function of the customer satisfied needs and costs
are function of the feature development effort. This is the contribution to RQ3.

We showed that our mathematical model can be instantiated in several con-
texts such as a market customization strategy or a mass-customization strategy. It
can deal with Software Product Line development from scratch as well as from
the basis of legacy software. The output of our model are a good basis for fur-
ther commonality and variability analysis. We also illustrated its applicability
with the MystShop case by extenting AnalyticGraph.com to support all previous
contributions.

In further work, we should consider the following extensions. We limited our
definition of features to Batory’s definition which allows to simplify the relation
between feature and cost. However, a more complete feature definition would
require to take into account the non-monotonicity between features and SPL cost
function. We need to integrate risk management in our model with for example
stochastic models.

7Optimization with Cost Estimation Method

7.1 Forewords

This chapter suggests a third optimization problem which focuses on RI7 “How
to estimate costs, risks, and deadlines for making systems that satisfy requirements”. It
is aimed at introducing an existing cost estimation method into the optimization
model. Indeed, though we already discussed cost in previous chapters (indirectly
in Chapter 5 through Story Points as well as in Chapter 6 where we introduced the
Böckle’s cost function for SPL), we did not used a formal cost estimation method.
The purpose of this Chapter is then to show that it is possible to use our frame-
work in combination with existing formal estimation methods such as COCOMO
(and COCOMO II) [19], COSYSMO [143], Function Point Analysis [6] or any other
model-based estimation method.

This Chapter is an extension of the previous ROP dealing with Software Prod-
uct Line. It is aimed at being published in a journal.

7.2 Introduction

Context: Using Formal Cost Estimations as Inputs for a Cost
Minimization

As discussed in the previous chapter, one of the main advantages of deploying
Software Product Lines is to reduce the total cost. The most widely accepted SPL
cost function was suggested by Böckle et al. [12] and is equal to:

Corg +Ccab +
i=1∑
n

Cunique(pi) +
i=1∑
n

Creuse(pi) (7.1)

As it is, this cost function cannot be practically used to estimate SPL cost. Indeed,
no guidelines or methodology are provided on how to estimate Corg , Ccab, Cunique
or Creuse. In this research, we use this function as a starting point and apply a
more practical cost estimation method. The idea is to map our approach with an

98 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

existing cost estimation method and being able to apply the guidelines suggested
by the methodology to, we hope, more accurately estimate the software cost.

Here, the research purpose is not to choose the most effective method but
rather to show that an existing estimation method can be used in collaboration
with our model. Then, it does not focus on the selection of the method but rather
tries to show how one of them can be used and how it can be integrated it in our
framework.

The literature on cost estimation methods identifies 2 main famillies of effort
estimation methodologies, namely, model-based or expert-judgment-based esti-
mations [82]. What distinguish them is mainly the quantification step, i.e. the
final step that transform the input into the effort estimate.

In expert-judgment, effort estimations are asked to experts (project managers,
advisors, senior developers. . .). There exists different mechanisms to confront
diverging judgements such as the Delphi method [102, 17] or the Poker Planning
[104]. By suggesting to use of Poker Planning in Chapter 5, we already showed
how results of such mechanisms could be integrated in our framework (that is, by
labeling each node with the result of the estimation process). In this Chapter, we
are more interested to show how a formal method could be used.

Although one could say that model-based are rarely used in practice [81] and
research is currently switching its attention from formal-based to judgment-based
estimations [83], researchers still admit that if carefully used model-based esti-
mations have still interests [82, 93]. One of them is that with formal estimation
methods parts of the counting process can be automatized. For instance, if a Use
Case analysis or an Entity-Relationship (ER) analysis have been performed dur-
ing the requirement phase, the results of those analysis can be used as inputs of a
model-based cost estimation method in order to semi-automatically estimates the
cost.

Scope: Function Points Analysis as Cost Estimations

Beyond those two families, there is no widely accepted categorisation of estima-
tion methods although they are numerous. Through surveys, some authors have
suggested different categorisations. In a survey, Boehm et al. distinguished six
main types of estimation techniques, respectively: Model-based, Expertise-Based,
Learning-Oriented, Dynamics-Based, Regression-Based and Composite [15]. In
their systematic literature review [83], Jorgensen and Shepperd classified the cost
estimations as follows: Regression, Analogy, Expert Judgment, Work breakdown,
Function Point, CART, Simulation, Neural Network, Theory, Bayesian, Combina-
tion of estimates and Others. In both cases, these categories still hide countless
methodologies.

7.2. INTRODUCTION 99

In this Chapter we selected Function Point Analysis as the estimation method.
Other formal estimation methods could have been selected such as line of code
counting (such as COCOMO) or Use Case Points (UCP). The former was sim-
ply discarded because of the difficulty to estimate line-of-code. The latter could
have been selected but we decided to apply Function Point Analysis (FPA) because
UCP required actors to be identified what was not done in this particular chap-
ter. Nonetheless, UCP could be a more interesting candidate for ROP integrating
actor concepts (such as Chapter 8). Eventually, using Function Points to estimate
effort of Software Product Line has already been suggested although not really
investigated [118].

Among the FPA, we can distinguish several techniques. Five of them, whose
evolution is depicted in Figure 7.1, have received ISO standardisations:

• IFPUG (ISO/IEC 20926:2009),

• Mark-II (ISO/IEC 20968:2002),

• NESMA (ISO/IEC 24570:2005),

• COSMIC (ISO/IEC 19761:2011),

• FISMA (ISO/IEC 29881:2010).

Aside from these standards, there also exist numerous other methods. In this
Chapter, we selected the implementation provided by the International Function
Point Users Group (IFPUG) [2]. Two arguments justified this choice. First, the
IFPUG method is among the most popular implementations of FPA [122, 109].
Then, it is the method that was selected by the OMG1 as basis for their Auto-
mated Function Points specification which provides a standard for automating the
Function Point counting [31]. In order to ease the distinction between the general
of Function Point Analysis and the specific implementation by IFPUG, we will
hereafter call the latter Function Point Counting (FPC).

The IFPUG’s FPC is described as a “method of quantifying the size and complex-
ity of a software system in terms of the functions that the system delivers to the user”
[2]. Like any other FPA techniques, FPC presents the characteristics to be unre-
lated to the languages and/or tools used to develop the software project. FPC is
designed to measure business-type applications; it is not appropriate for other
types of applications such as technical or scientific applications. Moreover, it has
few capabilities to estimate real-time applications (see the COSMIC methodol-
ogy for more information about this point). However, FPC function points can

1Object Management Group - www.omg.org

www.omg.org

100 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

Figure 7.1: Evolution of Function Point Analysis. From Cuadrado-Gallego et
al.[39]

be estimated from requirements specifications or design specifications, thus mak-
ing it possible to estimate development effort in the early phases of development
[103]. A comprehensive methodology on how to apply the FPC methodology is
described in the IFPUG manual [2].

Although choosing FPC was quite arbitrary, it is interesting to notice that there
is a rich literature providing conversion methods from FPC to different estimation
method: to COSMIC Points [39, 55, 51], line of codes [80], Use Case Points [38],
etc.

Finally, before going further in the description of the problem, we would like
to inform the reader that despite SPLE massively uses the concept of feature, Fea-
ture Points should not be considered in this context. As discussed in [5], it is not
widely accepted and moreover it has a specific focus on algorithm intensive ap-
plication (which is not the case of systems under consideration in this chapter).
Features from SPLE and Feature Points actually do not cover the same meaning.

Problem: Determining Product Portfolio Minimizing the Cost

Applying FPC as a cost estimation method in the context of minimizing the cost of
a SPL Portfolio rises multiple difficulties. First, concepts used in both frameworks
are different. SPL are described in terms of features which belongs to specific
products or to the CAB, while the FPC is based on the counting of Data Functions
and Transactionnal Functions. Moreover, FPC is focused on the cost estimation of
a single one application while SPL deals with a portfolio of applications.

7.2. INTRODUCTION 101

Nonetheless, using FPC for SPLE (which will be decribed in details later in
this chapter) is still valid since it has been showed that features could be mapped
to variation points [105] and variation points can be used to reference functional
description of systems [117]. The latter being the input of FPC.

Those difficulties have to be added to the main problem which is determining
the portfolio which minimizes the cost estimated with FPA.

Contribution: A MIP to Minimize Cost Estimation

In this chapter, we first suggest an approach to model a SPL portfolio and its can-
didate features the cost of which is estimated with FPA. This first contribution
shows how to map goals, features and FPA primitives. Then, we provide an opti-
mization model able to determine the portfolio composition which minimizes the
cost.

The SPL portfolio modeling is based on a combined use of (1) goal model to
describe the problem space, (2) feature diagrams to describe the solution space
and (3) entity-relationship diagrams to decompose features into FPA primitives.

The optimization model is a MIP which minimizes the SPL total cost by decid-
ing which features should integrate the CAB based on their cost estimations.

Limitations: Increasing the Need of Information

The approach described in this chapter particularly differs from other optimiza-
tion models discussed in this thesis. The main difference results from the amount
of inputs required to operationalize the model. Indeed, while models presented
in Chapters 3, 5 and 8 can be used in a lightweight style, the currently suggested
model requires more information to be provided and then requires more in depth
RE.

Consequently, if the former could be considered in short iteration develop-
ment, the latter will require longer analysis. It means that the time spent at the
early phase will be higher and deliverable will be delayed.

This is explained because, first, software product lines requires in essence
more prediction and systematic planning [113]. Secondly, using formal cost esti-
mation method also requires more inputs [82].

In consequence, the suggested model can be valuable only if it has been autom-
atized as much as possible. So, the reader needs to keep in mind that, aside from
the apparent complexity of the current model, many computation steps described
hereafter would be automatically performed.

102 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

7.3 Software Product Line Cost

Similarly to the previous chapter, we consider that a product member from a SPL
is defined by the set of features F it is made of. This description requires a clear
definition of what a feature is. Among the different feature definitions [32], our
model still uses Batory’s definition which states that a feature is an increment of
product functionalities [9]. Those features will be used to model the software vari-
ability which refers to the ability of a software system or artifact to be efficiently
extended, changed, customized or configured for use in a particular context [139].

We influence the scope by deciding which features we include. They are con-
sidered as a means to realize tasks, and thereby influence the cost of a SPL needed
to satisfy a particular set of tasks. Developers can more easily give an estimation
of the development cost of a feature (e.g. with function points) than of the cost to
satisfy a goal since the latter can have alternative solutions.

In FPA, measurements are based on the counting of Data Functions (DFs) and
Transactional Functions (TFs) :

Data Functions: Data functions represent the functionality provided to the user
to meet internal and external data requirements.

Transactional Functions: Transactional functions represent the functionality pro-
vided to the user to process data.

When using both SPL principles with FPA, it is important to underline that
SPLE consists of two main processes, namely domain engineering and application
engineering. The former is the process of SPLE in which the commonality and
the variability of the SPL are defined and realized while the latter is the process
in which the applications of the SPL are built by reusing domain artifacts and
exploiting the SPL variability [117]. Böckle et al. introduce a cost function for
SPLs based on this distinction [12].

Corg +Ccab +
i=1∑
n

Cunique(pi) +
i=1∑
n

Creuse(pi) (7.2)

where Corg is the cost to an organization for adopting SPLE. Ccab is the cost to
develop a core asset base (CAB) suited to support the planned SPL. Cunique(pi) is
the cost to develop the unique software part of the product pi that is not in the
core asset base while Creuse(pi) is the cost to reuse the core assets for the product
pi .

Since the Core Asset Base and the SPL products are described in terms of fea-
tures while FPA uses Data Functions (DF) and Transactional Functions (TF), it is

7.3. SOFTWARE PRODUCT LINE COST 103

important to relate both frameworks. We suggest that a feature (i.e. a product
increment) should be described as a set of both DF and TF. We assume that Data
Functions can be shared by different features while Transactional Functions are
partitioned into features (i.e. a TF cannot be shared by several features). As we
discussed in the previous chapter, it is possible to describe Böckle’s cost functions
in terms of features which will be later decomposed into DF and TF. It is then
important to describe how to apply the counting procedure of FPA in the context
of features.

According to the Function Point Counting Manual [2], FPC is accomplished us-
ing the information in a language that is common to both user(s) and developers. It
implies that both point of view have to be taken into consideration when count-
ing function points. The user view has to be established during the Initial User
Requirement phase. We describe a user view as a description of the user’s business
needs in the user’s language. Since, the FPC manual does not prescribe a particu-
lar user language, we use goal models for this. Then developers will translate the
user information into technical-related information in order to provide a solution
(the technical-related information we suggest to use is the ER language which
relates to relational DBMS [28]). This phase is referred as the Initial Technical Re-
quirements. Those both views form the Final Functional Requirements which can
be used as input for the FPC which consists in mapping those two perspectives.

The first phase of our scoping method is the definition of goal models. Those
goal models are user views of business goals. It corresponds to Initial User Re-
quirements in the FP framework. On this basis, developers analyze several pos-
sible solutions which result in the determination of features composed of enti-
ties, relationships and transactional functions on those entities. Features are then
mapped to goal models to ensure goal satisfaction. Since they result from the de-
veloper’s analysis of goal models, features are a common view between users and
developers which makes them ideal candidates to be the basis for the FPC in the
early stage of SPL scoping. So, for each identified feature, engineers will have to
identify data functions and transactional functions.

For instance, starting from the MystShop example depicted in Fig. 6.2, let’s
consider the feature F186, entitled Webform displayer which allows the user to fill
the checklist online. This feature has been identified by developers to potentially
take part in the satisfaction of different goals. There are several Data and Transac-
tional Functions related to this feature. For example, we can identify logical files
related to questions and answers. A possible Transactional Function would be Save
answers which would consist in saving the value of the different questions in the
database. Nonetheless, using Function Point Counting on the basis of features to
estimate cost during SPL scoping presents two main difficulties. The first one will
be referred as the FPC for scoping problem while the second one will be referred as

104 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

the FPC for SPLE problem.
Function points analysis assumes that we have defined the application bound-

ary before starting counting. However, scoping is by definition the process which
determines this boundary. Before the resolution of the scoping model, software
products have not well defined boundaries (i.e. we do not know at this moment
which features are in or out from the product definition). Consequently, this
model will have to take into account the different estimations resulting from in-
tegrating some logical file as internal or external of the product. This is the FPC
for scoping problem.

Moreover, as we deal with Software Product Line and not traditional software
development, we will also have to take into account that some features of the SPL
are developed from the same CAB. Consequently, we have to consider that if there
are n products in the SPL, the estimated total cost of the whole SPL will not be
the sum of the function points of the n products. On the contrary, we hope that
it will be lesser since some logical files and transactional functions will be related
to the CAB and products will only interface with functions already developed in
the CAB. This is the FPC for SPLE problem.

Data Functions

There are two types of data functions to identify: Internal Logical Files and Exter-
nal Interface Files:

Internal Logical File: An Internal Logical File (ILF) is a user identifiable group of
logically related data or control information maintained within the bound-
ary of the application. The primary intent of an ILF is to hold data main-
tained through one or more elementary processes of the application being
counted.

External Interface File: An External Interface File (EIF) is a user identifiable group
of logically related data or control information referenced by the applica-
tion, but maintained within the boundary of another application. The pri-
mary intent of an EIF is to hold data referenced through one or more elemen-
tary processes within the boundary of the application counted. This means
an EIF counted for an application must be in an ILF in another application.

Each logical file has a number of Data Element Typess (DETs) which are asso-
ciated to it. DETs are unique user recognizable, non -repeated field. Although,
we speak about files, it does not mean that these files are actual physical files. It
refers more to logically related groups of data.

The distinction between ILF and EIF is based on the application boundary.
However, due to the FP for scoping issue, this distinction become more complex

7.3. SOFTWARE PRODUCT LINE COST 105

Figure 7.2: Illustration of a product consisting of F182 and F186.

when scoping. Consider two features identified in our example: F186 Webform
Displayer and F182 Question Designer. For each of these two features, the first
step is to determine feature’s boundary. The feature boundary is defined by what
is maintained inside the feature. Once it has been established, ILF and EIF of
this feature can be identified. For example, two logical files have been identified
regarding these features: L2, the questionnaire file, and L1, the mystery visit file
(i.e. answers). It is interesting to note that these features treat the logical file dif-
ferently. F182 deals only with the questions files L2. Since this feature maintains
this logical file, L2 is considered as a ILF for F182. F186 deals with both pre-
viously cited files. L1 is considered as an ILF since F186 maintains logical data
about answers. However, L2 is regarded by F186 as an EIF because it references
(but not maintains) logical data about questions. This situation is described in
Fig.7.2 where some DETs are also identified.

Now, let us consider a product p, called Full Product which will consist of those
two features. This situation is depicted in Fig. 7.2. When counting the function
points of p, it would be incorrect to sum the function points of both features since
it will count L1 twice: once as ILF for 182 and once as EIF for F186.

In order to count correctly the function points of this product, let’s define
two functions ILF and EIF. Those functions respectively returns the set of ILF

106 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

Figure 7.3: Illustration of a product consisting of F182 and F186 but F182 comes
from the CAB.

and EIF of a feature. In our example ILF(F182) = {L2} and ILF(F186) = {L1} while
EIF(F182) = ∅ and EIF(F186) = {L2}. Consequently, for a given product p, we can
define the set of external interface files EIFp and the set of internal logical file
ILFp as:

ILFp =
⋃
f ∈p

ILF(f) (7.3)

EIFp =
⋃
f ∈p

EIF(f) \ ILFp (7.4)

As previously explained, counting function points when dealing with software
product lines rises another difficulty. Indeed, the distinction between an ILF and
an EIF lies in the fact that the logical file is or not maintained in the application.
However, this distinction is no more precise enough for SPL since it consists of
a set of products derived from a CAB, having as consequence that some logical
files are maintained in the CAB and not in the product (although being part in the
product).

Then, a product of the SPL can be seen as the union of two separate applica-
tions linked together. The first one consists of the set of features derived from
the CAB. Those features have been already implemented and do not need to be

7.3. SOFTWARE PRODUCT LINE COST 107

Figure 7.4: Example of features with logical file and DETs

developed again as they can just be reused. The second one is the set of features
specifically developed for this product. This is the case in situation depicted in
Fig. 7.4 where the product Partially developed product relies on the use of a feature
developed in the CAB.

Data Functions which are within the boundary of the CAB are referred as Core
Logical Filess (CLFs). They have to be considered as already developed outside the
boundary of the product. Consequently, as the product will interact with logical
file outside its boundary, we have to take them into account as additional EIF.
So, the definition of ILFp and EIFp have to be redefined to consider CLFs. If we
consider that LFCAB is the set of CLFs, then, our functions become:

ILFp =
⋃
f ∈p

ILF(f) \LFCAB (7.5)

EIFp =
⋃
f ∈p

EIF(f) \ ILFp (7.6)

This discussion highlights the difficulty to define a product boundary in a SPL
Scope context. We see that in contrast with traditional FPC, we need a distinc-

108 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

DET
≤ 19 20 to 50 ≥ 51

R
E

T 1 Low Low Average
2 to 5 Low Average High
≥ 6 Average High High

Table 7.1: Complexity levels for Data Functions

Function Points ILF EIF

Low 7 5
Average 10 7
High 15 10

Table 7.2: This table depicts how much function points will be counted for the
data functions depending on their complexity level and their DF type

tion between feature boundary, product boundary and the software product line
boundary and that the relationships between those boundaries are not direct and
can change given a certain scope.

Once ILF and EIF identifications have been processed, we need to estimate
the complexity of each of these logical files. It is performed with specific rules
which count the number of data element types (DETs) related to each logical file
as well as the number of Record Element Typess (RETs). A DET is a unique user
recognizable, non-repeated field and a RET is a user recognizable subgroup of
data elements within an ILF or EIF [2]. For instance, the logical file L1 contains
three RETs (namely Answers,MysteryVisit,Images). Once DETs and RETs have
been counted, we can determine the complexity level of the DF (cf. Tab. 7.1).
On the basis of this complexity level as well as depending on the Data Function
type, we can compute the function points of this logical file (cf. Tab. 7.2). A
comprehensive description of all rules to be applied in order to identify DETs and
RETs are available in the IFPUG Manual [2].

Transactional Functions

As described in the Function Point Counting Practices Manual provided by the
International Function Point Users Group (IFPUG) [2], transactional functions
represent the functionality provided to the user for the processing of data by an
application. There are three types of transactional functions which are defined in

7.3. SOFTWARE PRODUCT LINE COST 109

the manual [2]:

External Inputs: An External Inputs (EI) is an elementary process that processes
data or control information that comes from outside the application bound-
ary. The primary intent of an EI is to maintain one or more ILFs and/or to
alter the behavior of the system.

External Outputs: An External Outputs (EO) is an elementary process that sends
data or control information outside the application boundary. The primary
intent of an external output is to present information to a user through pro-
cessing logic other than, or in addition to, the retrieval of data or control
information . The processing logic must contain at least one mathematical
formula or calculation, create derived data, maintain one or more ILFs or
alter the behavior of the system.

External Inquiries: An External Inquiries (EQ) is an elementary process that sends
data or control information outside the application boundary. The primary
intent of an external inquiry is to present information to a user through the
retrieval of data or control information from an ILF of EIF. The processing
logic contains no mathematical formulas or calculations, and creates no de-
rived data. No ILF is maintained during the processing, nor is the behavior
of the system altered.

The function points contribution of each transactional function is dependent
on its complexity. This later is based on the number of File Types Referenced
(FTR) by the transactional function and DETs that cross the application boundary
during the execution of this transactional function.

In this model, we consider that Transactional Functions are included into unique
feature. This means that all FTRs of the Transactional Functions are considered
either as an ILF or an EIF of this feature. There is no Transactional Functions
that are defined on several features. Nonetheless, we need to determine if EI, EO,
and EQ require special treatments regarding previously identified issues: FP for
scoping and FP for SPLE issues. This implies that we have to see how the bound-
ary of the application impacts the Transactional Function contribution and how
to interact with the CAB.

The counting of FTR is independent of the file type, i.e. EIF and ILF are both
valued as one FTR. However, the counting of DETs depends on the fact those DET
cross the application boundary or not. For example, let’s consider that the feature
F186 contains three Transactional Functions T1 “Display the checklist”, T2 “Save
answers” and T3 “Compute the average score for one question dimension”. Since T1
will use the name attribute of QuestionDimension in order to display the checklist,
it uses a DET that cross the feature boundary, so this DET will be taken it into

110 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

account. As a counter example, when saving answers, the idVisit attibute does not
cross the feature boundary since it internally computed. Then, there no need to
count it. Thus, determining the TF contribution will require some considerations.

Let’s take an example. Consider the a product p consisting of feature F182
and F186. Let’s consider the transactional function T3 “Compute the average
score for one question dimension” which is of External Output type. It is a TF
provided by the feature F182. DETs that enter the feature boundary are:

• idVisit which is the id of the visit we want to compute the value,

• idDimension which is the id of the dimension which we want to cumpute the
value ,

• name which is the name of the dimension (provided by F182),

• idQuestion which (under the form of a set) collects all id of questions that
are related to this specific dimension (it comes from F182).

DETs that leave the feature boundary are:

• aggregated_value which is the computed value for the selected dimension
and visit,

• name which is the name of the dimension (provided to the user),

• idDimension which is the id of the dimension for which we want to know the
applicable question list.

The total number of crossing DETs is 7. However, this number has to be re-
duced to 5 since idDimension and name cross twice the feature boundary. However,
this number is based of the feature boundary and not the application boundary.
It is correct for the Partially developed product from Fig. 7.4 but if you consider
the product Full Product from Fig. 7.2 consisting of both F186 and F182, the total
of DET crossing the product boundary has to be reduced to 4. Indeed, idQuestion
does not cross the application boundary.

Once the number of DETs and FTRs has been counted, they are used to eval-
uate the complexity level of this Transactional Function. Relations between com-
plexity levels and number of DETs/FTRs are depicted in Table 7.3 for EI, EO and
EQ. The complexity level is then used to determine the number of function points
to be considered for each transactional function as depicted in Table 7.4. For in-
stance, T3 in the Full Product case has four crossing DETs and two FTRs, because
it is an EO, it has a complexity level of Low and amounts for four function points.

7.4. OPTIMIZING THE SPL SCOPE 111

EI
Boundary crossing DETs

≤ 4 5 to 15 ≥ 16

FT
R

≤ 1 Low Low Average
2 Low Average High
≥ 3 Average High High

EO/EQ
Boundary crossing DETs

≤ 5 6 to 19 ≥ 20

FT
R

≤ 1 Low Low Average
2 to 3 Low Average High
≥ 4 Average High High

Table 7.3: Complexity level determination for EI, EO and EQ

Function Points EI EO EQ

Low 3 4 3
Average 4 5 4
High 6 7 6

Table 7.4: This table depicts how much function points will be counted for the
transactional functions depending on their complexity level and their TF type

7.4 Optimizing the SPL Scope

In this section we describe the mathematical model for finding the optimal scope
of a SP (i.e. the scope which minimizes the cost). We showed in Section 6.3 that
the requirements engineering problem of SPLs formulated with CORE consists of
three steps. First, we have to determine who the relevant customers are (possibly
from different domains) and what their needs are. This requires the identification
and evaluation of Ki ,Ti |∼ Gi ,Si ,Qi for different customers i. The second step is
defining what the products are constituted of. Answering this question implies
that we need to identify a set of features F which can be used to derive product
members, i.e. p ∈ P (F) and then evaluate them in terms of data and transactional
functions. Thirdly, we need to identify conditions for the product to realize the
tasks, i.e. K ′ . In order to describe the model, we start from the MIP 3.1 and then
focus on the description of features and function points. The whole set of indexes,
parameters and decision variables are described in Tab. 7.5 and Tab. 7.6.

112 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

Table 7.5: Description of indices and parameters.

Indices

m goal models m = (1, . . . ,M)
p the software products p = (1, . . . , P)
k features k = (1, . . . ,K)
y the software product line members, i.e. the prod-

ucts and the CAB y = (1, . . . ,M,Ω)
j the logical files j = (1, . . . , J)
t the transactional functions t = (1, . . . ,T)

Parameters

πam revenue from goal am
αIj is the function point contribution of the logical file

j considered as an ILF
αEj is the function point contribution of the logical file

j considered as an EIF
δLt is the function point contribution of transactional

function t if it reaches at least the low complexity
level

δAt is the function point contribution of transactional
function t if it reaches at least the average complex-
ity level

δHt is the function point contribution of transactional
function t if it reaches the high complexity level

DETt,j is the number of DET entering and going out of the
logical file j in the transactional function t

DET t is the number of DETs which do not cross the
boundary of the feature to or from another feature
logical file

FTRt is the number of FTR to be counted for the transac-
tional function t

7.4. OPTIMIZING THE SPL SCOPE 113

Table 7.6: Description of decision variables.

Decision variables

Goal Model
gam,t is equal to 1 if the goal a from goal modelmwith am = 1, . . . ,Am is satisfied

during the period t, it is 0 otherwise
ibm,t is equal to 1 if the inference node b from goal modelmwith bm = 1, . . . ,Bm

is satisfied during the period t, it is 0 otherwise
tcm,t is equal to 1 if the task c from goal modelmwith cm = 1, . . . ,Cm is realized

during the period t, it is 0 otherwise
Software Product Line
Decision variables - Product Composition
sp is equal to 1 if the product p has been developed, it is 0 otherwise
fk,p is equal to 1 if the feature k has been integrated in the product p, it is 0

otherwise
Decision variables - Data Functions
iLFj,y is equal to 1 if the logical file j has to be maintained in the SPL as an ILF

or CFL, it is 0 otherwise
ILFj,y is equal to 1 if the logical file j has been counted in the member y of the

SPL as ILF, it is 0 otherwise
EIFj,y is equal to 1 if the logical file j has been counted in the member y of the

SPL as EIF, it is 0 otherwise
LFj,y is equal to 1 if the logical file j has been counted in the member y as ILF,

EIF or CFL, it is 0 otherwise
Decision variables - Transactional Functions
T Ft,y is equal to 1 if the transactional function t is used in member y
T FDETt,y is the number of DET in the transactional function t for family member y

T FCFt,y,1 is equal to 1 if the number of DETs of the transactional function t used in
member y contribute at least to 1 in the complexity factor, it is 0 otherwise

T FCFt,y,2 is equal to 1 if the number of DETs of the transactional function t used in
member y contribute to 2 in the complexity factor, it is 0 otherwise

T F
Cpl
t,y is the complexity level of the transactional function t for family member

y
T FLt,y is equal to 1 if the transactional function t is at least of low complexity, it

is 0 otherwise
T FAt,y is equal to 1 if the transactional function t is at least of average complexity,

it is 0 otherwise
T FHt,y is equal to 1 if the transactional function t is of high complexity, it is 0

otherwise
T FEIFt,j,y is equal to 1 if the logical file j has to be counted as an EIF for the trans-

actional function t in family member y

114 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

The Product Line

The following equation is the objective function minimizing the cost of the whole
SPL Portfolio.

minimize :

w
(∑

p
∑
j

(
αIj ILFj,p +αEj EIFj,p

))
(7.7)

+w
(∑

p
∑
t

(
δLt T F

L
t,p + δAt T F

A
t,p + δHt T F

H
t,p

))
(7.8)

+w
(∑

j

(
αIj ILFj,Ω +αEj EIFj,Ω

))
(7.9)

+w
(∑

t

(
δLt T F

L
t,Ω + δAt T F

A
t,Ω + δHt T F

H
t,Ω

))
(7.10)

The cost consists of the effort deployed to implement both data functions and
transactional functions as well for each product as for the CAB. Briefly speaking,
it consists of the sum of function points multiplied by a cost per function point
factor, w or w. The former (w) is a cost factor for normal development, the latter
(w) is a cost factor for reusable development. Terms (7.7) and (7.8) are dedicated
to products development while terms (7.9) and (7.10) are related to the CAB.

Terms (7.7) and (7.9) are focused on data functions. For each SPL member y
(i.e. the CAB is considered as a SPL member), this term sums the contribution of
each logical file j depending if it is considered in this product member as an ILF
or EIF (or not included at all). αIj and αEj are the function points of data types.
Possible values are depicted in Table 7.2. As discussed in section 7.3, the data
type complexity of each logical file is not depending on the scoping process. It is
considered as a parameter in our model and it has to be computed for each logical
file prior to the optimization.

Terms (7.8) and (7.10) are focused on transactional functions. For each SPL
member y, we sum the contribution in terms of function points of each transac-
tional function. Depending on product boundaries, each transactional function
can reach a low (δLt), average (δAt) or high level (δHt) of complexity. This complex-
ity level will determine the number of function points to be counted. Possible
values for δLt , δAt and δHt are described in Tab.7.4.

Data Functions

For each product, we need to ensure that logical files related to the feature compo-
sition of this product have been counted. These logical files can be ILFs (internal
to the product boundary) or EIFs (external to the product boundary) of the prod-
uct as well as coming from the CAB. If we consider a product p with a set of
features, all ILFs of this set of features (i.e. within the feature boundary) have to

7.4. OPTIMIZING THE SPL SCOPE 115

be internal to the product boundary (or they can also come from the CAB). For
that, we need to introduce a new type of logical file, let’s talk about internal prod-
uct logical file (iLF). The set of iLFs for a product is the union of all the ILFs of
the product features. From the point of view of the product-to-be, each internal
product logical file could be implemented as an ILF of that product or as an ILF of
the CAB. The latter implies that if the ILF is developed within the CAB, a related
interface, i.e. an EIF, would be developed in the considered product. We have for
each product that:

∀p,k : fk,p ≤
1

|ILF(k)|

∑
a∈ILF(k)

iLFa,p +
1

|EIF(k)|

∑
b∈EIF(k)

LFb,p (7.11)

This constraint states that if a feature is used in a product, then all ILF of this
feature has to be an iLF of the product (i.e. it can be an ILF of the product or an
ILF of the CAB) and all EIF of this feature has to be considered in the product
(potentially as ILF, EIF or ILF of the CAB since at this stage, we do not know if
combined use of features will transform some EIF into ILF). Indeed, consider a
product consisting of features f1 and f2. lf1, a logical file, is an EIF for f1 but an
ILF for f2. Due to f2 it will be integrated as an ILF of either the product or the
CAB even if it was only a EIF for f1.

If a logical file j for product p was considered previously as an iLF, it means
that this logical file will be either an ILF of this product or it has to be developed
as an ILF of the CAB (member Ω of the software family) with its related interface
for the product p, i.e. EIFj,p. It is stated in the following constraints:

∀p, j : iLFj,p ≤ ILFj,p +
(ILFj,Ω +EIFj,p)

2
(7.12)

Then, we have to constraint that for each member family y, the set of LF of
this member, identified in equation 7.11 (but, as we will see later, also in equation
7.24), can be either an EIF for the product or an ILF:

∀j,y : LFj,y ≤ ILFj,y +ELFj,y (7.13)

Transactional Functions

Then, we have to determine which transactional functions will be used in our
products. As we said previously, transactional functions are related to features.
For each feature k included in a product p, we have to ensure that the related
transactional functions of this feature have been included.

Assume that for each feature k, the set of required transactional functions for
this feature is given by Tk . Then, we have the following set of constraints:

116 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

∀p,k : fk,p ≤
1
Tk

∑
t∈Tk

(T Ft,p + T Ft,Ω) (7.14)

This set of equations states that the transactional functions related to feature
k can be either developed specifically for the product (i.e. T Ft,p) or derived from
the CAB (i.e. T Ft,Ω).

However, we have to state that if a transactional function has been developed
in the CAB, it is no more necessary to develop it in the product.

∀p,k : T Ft,p + T Ft,Ω ≤ 1 (7.15)

Once we know if a TF is used either from the CAB or not, we need to know
how many Function Points will be counted for each Transactional Function. As
previously discussed, it depends on the number of DETs crossing the product
boundary. Crossing the product boundary means that the transactional function
use DETs coming from or going out an external logical file of the product. In order
to take that into account, we have to know if a logical file is internal or external to
the product. If it is external, then we need to count DETs that will be used from
this file or manipulated from it. This is stated in the following set of equations.
Consider that FTRt is the set of logical files manipulated by the transactional
function t.

∀l ∈ FTRt : T FEIFt,l,y + 1 ≥ T Ft,y +EIFl,y (7.16)

This set of equations states that if a transactional function t is used in a product
member y (i.e. T Ft,y is equal to 1) and that simultaniously the logical file l is an
EIF for this member (i.e. EIFl,y is equal to 1), then the decision variable T FEIFt,l,y
has to be set to 1 in order to satisfy the inequality. This latter variable models that
DETs related to the logical file l for the transactional function t in member y will
have to be counted during the function point counting.

So, to determine the number of DETs of a transactional functions t in a product
member y, noted T FDETt,y , we count all the DETs of this TF which cross the mem-
ber boundary. In order to do that, we use the decision variable T FEIFt,l,y defined in
equations 7.16. This variable allows to know if DETs used in the transactional
function t and related to the logical file l has to be taken into account. This num-
ber of DETs is recorder in the parameter DETt,j . We also need to count DETs that
are not directly related to specifical logical files. For example, some outputs of the
transactional functions which will be given to the user. The aggregated_value from
Fig.7.3 is such an example. These DETs are recorded into the parameter DET t .
The whole computation of DETs are described in the following equations.

7.4. OPTIMIZING THE SPL SCOPE 117

1 to 5
DET

6 to 19
DET

20 or
more
DET

Points 0 1 2

FTR
0 to 1 0 0 1 2
2 to 3 1 1 2 3
4 or more 2 2 3 4

Table 7.7: Complexity Factors for EO and EQ.

∀t,y : T FDETt,y =
∑
j∈J
DETt,j ∗ T FEIFt,j,y +DET t ∗ T Ft,y (7.17)

Once the number of DETs have been counted, we need to know the complexity
level of this transactional function. As explained in section 7.3, it depends on the
complexity rating table which return a complexity level for particular numbers of
DETs and FTRs (see Tab.7.3). In order to calculate that, we use an intermediary
value called the complexity factor. This factor is used to map the numbers of
DETs and FTRs to the complexity level. The complexity factor of a TF is directly
computed on the number of its DETs and FTRs. This relation is depicted in table
7.7. For example, if a EO handles 6 to 19 DETs, it gets 1 point, 0 if it is less and
2 if it is more. Regarding the FTR dimension, if this EO handles 2 to 3 FTRs, it
gets 1 point, 0 if it is less and 2 if it is more. Then we consider that EO with 1
or less point are of low complexity. If it is evaluated at 2 points, it is of average
complexity. More than 2 points, means that the EO is highly complex.

Given the value of this complexity factor, we can determine if the transactional
function has a low, average or high complexity level. To determine the contribu-
tion of DETs to the complexity factor, we use the following set of equations:

∀t,y : T FCFt,y,1 ≥
T FDETt,y − a

9999
(7.18)

∀t,y : T FCFt,y,2 ≥
T FDETt,y − b

9999
(7.19)

Where a is equal to the number max of DETs to contribute to zero and b is
the number max of DETs to contribute to 1. a and b depends on the type of
transactional function considered as described in Table 7.3. T FCFt,y,1 will be equal
to 1 if the number of DETs is enough to contribute to 1 point in the complexity

118 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

factor. T FCFt,y,1 and T FCFt,y,2 will be both equal to 1 if the number of DETs contribute
to 2 in the complexity factor.

Equation 7.20 describes the calculation of the complexity factor T FCplt,y for
transactional function t from product member y. It sums the contribution of the
DETs and the FTRs of this transactional function. As the number of file type re-
ferred, T FFTRt , is independent of the product member boundary, it is considered
as a parameter of the model.

∀t,y : T FCplt,y ≥ T FCFt,y,1 + T FCFt,y,2 + T FFTRt ∗ T Ft,y (7.20)

Once, the complexity factor T FCplt,y has been calculated, we can determine if
the transactional function is at least low, average or high level. It is determine
with the following 3 sets of equations:

∀t,p : T FLt,p ∗ 9999 ≥ T F
Cpl
t,p (7.21)

∀t,p : T FAt,p ∗ 9999 ≥ T F
Cpl
t,p − 2 (7.22)

∀t,p : T FHt,p ∗ 9999 ≥ T F
Cpl
t,p − 3 (7.23)

It means that if the transactional function t is of high complexity level, the
three decision variables T FLt,p, T FAt,p and T FHt,p will be set to 1. The subtraction by
2 and 3 for the second and third sets of equation 7.23 represent the upper bound
of the average and high complexity level of the complexity factor (see Tab.7.7).

Finally, we have to take into account that a transactional function could be
developed as part of the CAB. However, it is not sure that all logical files related
to this feature would be incorporated into the CAB. So, we need to ensure that
if a transactional function has been incorporated, all logical files referred by this
transactional function have been at least included as EIF in the CAB. This is stated
by the following set of equations:

∀l ∈ Lt : T Ft,Ω ≤
1
|Lt |

∑
l∈Lt

(LFl,Ω) (7.24)

Due to the set of equations 7.13, it is ensured that a LF decision variable stated
to 1 will result into an ILF or an EIF in the CAB.

7.5 Application on an Example

In this section, we apply our method to the case study of market maker Software
AG [35, 101]. In the first part of this section, we present the organization and we

7.5. APPLICATION ON AN EXAMPLE 119

state both problem and mathematical model. In the second part, we present the
result of the SPL scope optimization.

Problem Statement

market maker is an organization providing applications able to collect, display and
manage financial data. At the end of 2004, the SPL development team consisted
of around 25 people and the annual revenue was e 5 million per year. For this
organization, SPLE was regarded as a key strategic element in addressing new
market segments. In 1999, “when markets were boiling and the demand for innova-
tive products was immense”, they started the development of a SPL for web-based
applications, called i*ProductLine nearly from scratch. This SPL aimed at devel-
oping web-applications able to collect, validate, store, analyze, aggregate, repack-
age and distribute financial data. We show in the remainder of this section how
our mathematical model can be applied to the market marker case study and how
it can determine the SPL scope.

In 2004, i*ProductLine was instantiated for various markets: information sys-
tems for asset managers in banks, market data servers integrated in brokerage
systems for on-line ordering, specialized data display services for metal traders
and grains and oilseed traders and, content provisioning for financial web portals.
A small goal model is depicted for each market segment in Fig.7.5. For the rest
of this example, we assume some potential revenue for each satisfied goal. Those
revenues are presented in thousands of Euro near each related goal. Mandatory
goals have bold circles.

On the basis of the case study description, we identified a set of 11 grained
features able to realize tasks identified in each goal models. They are described in
Tab.7.8 and their relations with tasks are described in Tab.7.11. In this example,
we did not consider legacy systems. Some feature dependencies were identified
before the optimization of the product portfolio. The feature “Assets management”
requires the “User management” feature to work. Two other constraints stated
that both “Stock Analysis” and “Display Stock in Table” required the feature “Store
Stock Data”. In the same way, “Store Historical Commodities Data” was required for
product members using “Display Commodities Data in Table”. Those constraints
were added into the mathematical model.

Once, these features and their constraints were identified, we determined dif-
ferent data and transactional functions for each features: 8 logical files which are
briefly depicted in Tab.7.9 and 14 transactional functions which are presented in
Tab.7.10. For each logical files and transactional functions, we determined sets of
DETs and incorporated them into the mathematical model.

120 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

Figure 7.5: The 4 goal models used to design market maker customer segments

7.5. APPLICATION ON AN EXAMPLE 121

Feature ILF EIF

f1 Assets management lf2 lf1, lf3
f2 Collect real-time stocks data lf1
f3 Orders placement lf5 lf1
f4 User management lf3
f5 Stock Analysis lf1, lf6
f6 Orders execution lf5 lf3
f7 Collect real-time commodities data lf7
f8 Display stock data in table lf6
f9 Display commodities data in table lf8
f10 Store historical commodities data lf8
f11 Store stocks data lf6

Table 7.8: Description of identified features and the related logical files

LF File Name Examples of DETs

lf1 Stocks real-time data stock_id, stock_price. . .
lf2 Portfolio stock_id, customer_id. . .
lf3 Users customer_id, customer_name. . .
lf5 Orders order_type, quantity, bid_price, ask_price. . .
lf6 Stock historical data stock_id, price, date
lf7 Commodities real-time commodity_id, commodity_current_price. . .
lf8 Commodities historical data commodity_id, price, date

Table 7.9: Logical files identified on the basis of the features

Once goals and features were identified and evaluated, we had to express how
those features could realize the tasks from the goal models. Such assessment is
depicted in Tab.7.11.

Results Presentation

The entire model was written and resolved with the GNU Linear Programming
Kit2 (GLPK). The model is partially implemented in AnalyticGraph. The compo-
sition of each product in terms of features is depicted in Tab.7.12. An advanced
analysis of commonalities and variabilities in terms of features resulted in the fea-
ture diagrams illustrated in Fig.7.7. Since they were always used together in prod-
uct 2 and 4, features f1, f2 and f4 were aggregated in a compound feature called
“portfolio management”. We also defined two other compound features called

2http://www.gnu.org/software/glpk/

122 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

TF Trans. Funct. Name Feature FTR TF Type

tf1 buy_assets() f1 lf1,lf2, lf3 EI
tf2 show_assets() f1 lf2, lf3 EQ
tf3 sell_assets() f1 lf1, lf2, lf3 EI
tf4 collect_stocks_data() f2 lf1 EO
tf5 display_stock_data() f8 lf6 EO
tf6 add_order() f3 lf1,lf5 EI
tf7 delete_order() f3 lf5 EI
tf8 add_user() f4 lf3 EI
tf9 delete_user() f4 lf3 EI
tf10 beta() f5 lf6 EQ
tf11 growth f5 lf1,lf6 EQ
tf12 process_order() f6 lf5 EI
tf13 collect_commodities_data() f7 lf7 EO
tf14 display_commodities_data() f9 lf8 EO

Table 7.10: Description of the Transactional Functions with their related feature,
their File Types Referred and their type

Web Portals Commodity Traders Brokers Banks

(f8→ t1) (f7→ t1) (f2→ t1) (f3→ t1)
(f11→ t2) (f9→ t2) (f11→ t2) (f4→ t2)
(f2→ t3) (f10→ t3) (f5→ t3) ((f8 ∧ f11)→ t3)
(f8→ t4) (f9→ t4) (f11→ t4) ((f9 ∧ f10)→ t4)
((f4 ∧ f1)→ t5) (f7→ t5) ((f4 ∧ f1)→ t5) (f6→ t5)

Table 7.11: Task realization description

“Brokers module” and “Commodities module” which respectivelly consisted of
f6, f9, f10 and f7, f9, f10.

Fig.7.6 presents the composition of the CAB as well as each product in terms
of data and transactional functions. The Core Asset Base, i.e. the set of software
artifacts that are used in the production of more than one product in a SPL [35],
consisted of four internal logical files. It also included two external interfaces
related to logical files maintaining real-time information about stock and com-
modities data. A large set of transactional functions were integrated in the CAB.
Each data and transactional functions implemented specifically for each product
are also depicted in Fig.7.6

7.5. APPLICATION ON AN EXAMPLE 123

Markets Satisfied goals Feature composition

Commodity Traders g1, g2, g3, g4, g5, g6 f7, f9, f10
Web Portals g1, g2 f1, f2, f4, f8, f11
Brokers g1, g2, g3 f6, f8, f9, f10, f11
Banks g1, g2, g3, g4 f1, f2, f4, f5, f11

Table 7.12: Solution description in terms of satisfied goals and delivered features

Figure 7.6: Schematic description of the resolution of the example

124 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

7.6 Related Work

Although several SPL scoping methods have been designed, few address the op-
timization goal of the product portfolio scoping on the basis of the profitability
concern.

Recently, J. Müller suggested a mathematical program to optimize the prod-
uct portfolio on the basis of a profit maximization objective [106]. His model is
based on previous work in product lines (i.e. not software) and on conjoint anal-
ysis. Although the idea to use a mathematical program to optimize the SPL scope
is similar to ours, the underlying assumptions of the two models are different.
First, he assumes a SPL and all its valid configuration products and it optimizes
the selection of the product-segment pair given that a configuration products can
be implemented by a various set of asset components. His method allows to de-
termine the optimal price and take competitors into account. However, it does
not introduce any time considerations what prevents any possibility of setting de-
velopment priorities or release planning which is however a primary concern in
SPLE and assume an a priori complete SPL specification.

Several survey of Software Product Line Scoping have been performed. In
their survey [79], I. John and M. Eisenbarth identify 16 scoping approaches but
they highlight that scoping optimization has only been partially addressed. More-
over none of them integrate the optimization of the three types of scoping.

Regarding the five methods addressing the product portfolio analysis [27, 74,
117, 140, 142] only [27] also addresses asset scoping. Moreover as highlighted by
J. Müller none of those five methods integrate market and cost perspectives which
prevents any profitability consideration.

The Quality Function Deployment Product Portfolio Planning suggested by
Helferich [74] elicits required features of products of a SPL and asks engineers
about technical feasibility. It also allows to identify customer segments. However
it does not consider revenue and cost aspects and therefore cannot be used for
profit maximization. However, this method can usefully be regarded as comple-
mentary to ours since it identifies features and can be used to match them with
goal models.

Niehaus et al. present a Kano model which allows to design customer-oriented
SPL [117]. It is focused on the product portfolio planning but does not consider
any asset scoping.

The issue of a SPL release planning is addressed by several authors but they do
not address neither composition of product portfolio nor asset scoping [140, 142].
In single software engineering, Denne et al. already highlighted the importance of
“optimizing the time at which value is returned to the customer, instead of concentrat-
ing only on controlling risk and cost. [43]” They suggest a method to decompose the

7.7. CONCLUSION AND FURTHER WORK 125

system into Minimum Marketable Features (i.e. units of customer-valued func-
tionality) and determine the sequence of incremental release which optimizes the
NPV of the system. Their research results are complementary to our method.

7.7 Conclusion and Further Work

In this paper we suggested that when scoping, identification and evaluation of
the three scope types (i.e. product portfolio, domain and assets scoping) can be
performed separately but the optimization of those scopes has to be performed
in an integrated model. Consequently, we proposed a mathematical model able
to optimize the SPL scope. Our method is based on the assumption that all SPL
objectives are eventually driven by profit maximization. Revenue is a function
of the customer satisfied needs and cost is a function of the feature development
effort which is estimated with a function point analysis.

Our model is based on the description of customer needs in terms of goals.
This use is justified because first, we showed that goals are better than features to
capture the customer’s WTP and secondly, they are able to capture the alternative
solutions of a requirements problem what is useful to find large commonalities
between market segments. More precisely, we use Techne because it allows au-
tomated reasoning and it is compatible with other goal-oriented requirements
language.

We also provided a method to use function point analysis during SPL Scoping.
We identify two issues related with such approach, namely the FPC for scoping
issue and the FPC for SPLE issue. We showed how to address those issues in our
model.

The output of our model is a good basis for further commonalities and vari-
abilities analysis. We also demonstrated its applicability with an example based
on the market maker case study.

Regarding limitations of this approach, aside from the global limitations of
ROP (discussed in Chapter 4), we should highlight that it is difficult to estimate
the cost factor.

In further work we will consider the following extensions. First, we estimated
revenue on the WTP of satisfied goals. However, this assumption constraints the
applicability of our model to monopoly setting. Further work should integrate
customer decision in presence of competitors products. Secondly, we will study
implications and difficulties of using conjoint analysis with goals instead of fea-
tures. Thirdly, we limited our definition of features to Batory’s definition which
allows to simplify the relation between feature and data or transactional func-
tions. However, a more complete feature definition would require to take into
account the non-monotonicity between features and SPL cost function. Then, we

126 CHAPTER 7. OPTIMIZATION WITH COST ESTIMATION METHOD

need to integrate in our model both risk management (e.g. with stochastic models)
and maintenance cost which should impact the CAB size and legacy components
integration.

7.7. CONCLUSION AND FURTHER WORK 127

Figure 7.7: A possible feature diagram for i*ProductLine

8Optimization of Self-Configurable Systems

8.1 Introduction

Context: Evolution of Requirements

Software requirements can change over time, as can the organizational and tech-
nological environment in which the software runs. It was well illustrated in the
MystShop case where requirements never stop to change. Consequently, it is hard
to get the requirements right at the beginning of a project. In order to remain rel-
evant when these changes happen, we say that software evolves in response. Soft-
ware evolution, and more specifically its management, is an important challenge
which has been recognized for a long time in software engineering and require-
ments engineering research.

Living with software evolution involves also dealing with changes of require-
ments, or the so-called Requirements Evolution Problem, as they drive to some
extent software evolution in the first place [49]. The crux of the problem is how
to deal with the fact that we know at design time that requirements will change at
run time, yet we do not know exactly how they will change. There are essentially
three complementary ways to address the Requirements Evolution Problem: (i) to
try to anticipate as much as feasible the future changes of requirements and of the
environment, and design features into the system which will satisfy these future
requirements; (ii) to build sensors and feedback loops into the system, so as to
monitor requirements satisfaction and in case of failure for example, to activate
and deactivate some features – this is roughly speaking the adaptive systems ap-
proach; (iii) to identify versatile modular and configurable features, which users
can combine in ways which cannot be anticipated today, or in other words, to give
users a toolset, which they can learn to configure and work with on their own, in
ways which will satisfy their future requirements.

Scope: Self-Configurable Systems

In this chapter, we are interested in the latter approach to deal with requirements
changes. We observed it in the MystShop case when administrators wanted new

130 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

checklists to be used as proof-of-concept for prospects. At this time, Mystery
Shoppers ask some configurable features in order to adapt the system to their
needs. We call such systems Self-Configurable Systems (SCS). The basic idea is
that the system engineers will not produce a system that satisfies all the specific
requirements that the various stakeholders may have. For the MystShop case,
it would be impossible to anticipate all possible checklists. Instead, they will
engineer a system which can, if properly configured by the users, satisfy these
requirements, whichever they are at system design time, and whichever they may
end up being at run-time. If you think of requirements as being represented, as
usual in goal-oriented requirements engineering [40, 144], as a goal forest, where
goals close to roots are abstract and general requirements, and goals close to leaves
are more specific requirements, then Self-Configurable Systems are engineered to
satisfy some goals midway in the goal forest, between the leaves and the roots,
rather than satisfy the leaves. Indeed, Ernst et al. [49] suggested that the stability
of a requirement over time depends, among others, on the abstraction level of that
requirement. A requirement such as “A message should be sent to the relevant
person, when a new order arrives” is less likely to change relative to “An email
should be sent to the order manager, when a new order arrives”. As we will see
later, this view is simplistic, but it gives an initial idea that we build from in the
rest of the chapter.

Although it does seem desirable to want to engineer systems which satisfy
abstract requirements, we still have to make sure that the system can satisfy con-
crete requirements. But instead of designing monolithic system features to satisfy
abstract goals, we suggest that potentially many modular, reusable, and config-
urable features can be engineered in such a way that their different combinations
can satisfy both the abstract and the various concrete requirements. The interest-
ing consequence is that there can be many requirements which such sets of features
can be used to satisfy, even if we actually did not anticipate these requirements at de-
sign time. In other words, our approach is akin to seeing features as Lego bricks,
which can be combined to make various structures, many if not most of which
are actually not anticipated at design time. We called the underlying features
Self-Configurable Features (SCF).

Giving configurable features to users can alleviate some run time changes, by
transferring part of the design to users and at run time. It could also reduce the
time required to match the system to new requirements since it shortens time
from a new requirement to a configuration of SCFs which satisfies it.

That said, it is not possible to strictly partition systems into SCS or non-SCS.
A system is more or less a SCS depending on the proportion of its requirements
that are operationalized with Self-Configurable Features.

SCS are not a new class of systems. In Business Intelligence, users may initially

8.1. INTRODUCTION 131

need dashboards about sales, then they will ask for visualizations of inventory
data, later about purchasing, and so on. We cannot anticipate exactly what will be
the content of each dashboard, but it can be anticipated that they will reuse such
standard data visualizations as pie charts, bar charts, tables, and so on, and that
they will involve summing, averaging, or other common computations over data.
With Self-Service Systems for Business Intelligence, vendors attempt to provide
users with configurable features to design their own dashboards [78]. PowerBI or
QlickView are typical examples.

Websites are also systems which can frequently evolve. Some changes are by
nature always similar and can consequently be anticipated. For example, a new
page must be added, some images need to be inserted, switch in a menu must be
done. Since these changes can be frequent, Content Management Systems, such
as Joomla1 or Wordpress2, have been developed in order to let users make those
changes, with minimal intervention of engineers.

Problem: Finding the Optimal Mix of self-configurable features

Providing many configuration possibilities can lead to systems with numerous
features, and hence to relatively complex Self-Configurable Systems. By com-
plex, we mean that they provide many features to end-users. The problem with
the complexity of a SCS is that it can be negatively correlated with its usability:
end-users, who have relatively low (sometimes no) IT background, may not be ca-
pable of understanding and combining the features consistently to build custom
solutions. That problem of complexity is typical of Self-Configurable Systems:
regular systems avoid such complexity by directly satisfying the user specific re-
quirements.

So, providing Self-Configurable Features to users can fail to produce the ex-
pected benefits. First, it requires the user to do at run time a part of work which
would have normally been done at design time by others, to figure out how to
combine and configure features to satisfy her concrete requirements. Secondly,
building a system which is configurable, and organized around modular features,
is a challenge in itself.

One of the main difficulties when dealing with SCS is, then, to find the right
balance between requirements which should be satisfied with Self-Configurable
Features, as opposed to other requirements.

For clarity, consider the following situation: a company sells product p. This
product is manufactured from 2 sub-products: pA and pB. Producing one unit of
p requires one unit of pA and one unit of pB. Now, let’s assume that the company

1https://www.joomla.org/
2https://wordpress.org/

132 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

has 2 employees x and y. Both work 40 hours per week. x can produce in one
hour, one unit of pA or of pB. For y, both tasks are more complex, which gives
longer production times: 2 hours for pA and 4 hours for pB. The optimal solution
of this problem shows that the optimal allocation asks y to produce mainly pA
because it is in this task that he has a comparative advantage3.

Contribution

The aim in this chapter is to two-fold. In a first part, we look at the theoretical
issues that arise in relation to SCS, how it relates to research in Requirements
Engineering (RE), and what new issues, if any, it gives rise to. We first motivate
the use of SCS in Section 8.2 and 8.3. We then provide a more detailed definition
of what SCS are, with examples in Section 8.4. We discuss how requirements from
traditional systems differ from those from SCS in Section 8.5. Finally, we suggest
that designing a SCS raises new challenges for RE in Section 8.6. We conclude this
first part with a discussion about tradeoffs and possible future works respectively
in Section 8.7.

In the second part of the chapter, we explore one of the suggested directions.
We suggest to resolve the trade-off problem by formulating it as an optimization
problem. This gives three additional contributions to the theoretical part. First,
the problem is modeled as a goal-oriented requirement problem. We use Techne
as Requirement Modeling Language (RML) and suggest some extensions to the
language in order to model problem instances. Secondly, we suggest a mapping
between the goal model and an optimization problem which formulates the trade-
off problem. Resolving this optimization problem allows to determine the optimal
set of requirements that should be treated as satisfiable via Self-Configurable Fea-
tures, or other features. Thirdly, we present extension made to AnalyticGraph in
order to support the approach. All contributions are illustrated with the Myst-
Shop case study.

8.2 Illustration - Self-Configurable in Business Intelligence

Although we observed SCS for the MystShop case, it has been approached in
different domains. For example, we observed Self-Service Business Intelligence
(SSBI). In general, IS for BI gather business data in order to provide information
to business decision-makers, under the form of reports, dashboards, or any other
relevant output [63, 111]. Despite there being frameworks for doing RE of BI sys-
tems [119, 24], there is a practical difficulty that is hard to overcome in terms of

3Namely, x makes 10 pA and 30 pB while y manufactures 40 pA.

8.3. WHY MAKE SELF-CONFIGURABLE SYSTEMS? 133

methodology. It can be formulated as follows: the data types and sources, and
the information relevant for business decision-making may not be the same at all
times, which means that, for example, the content of reports, the analyses ap-
plied to data, and so on, need to be changed regularly. In practice, it may be too
costly (or take too much time) to have business analysts elicit new requirements
on reports and analyses, and propagate these new requirements through the spec-
ifications, system architects to architecture, and software engineers to code each
time a change occurs.

From the standpoint of those who make and sell BI systems, it may also be
more interesting to avoid changing the systems so much, because, for example, it
means maintaining systems that become different from each other over time, even
if they started from the same set of functionality. Self-Configurable Systems are a
response to this, in that they do not try to satisfy the most specific requirements,
but give features whose combinations could satisfy various specific requirements.
For example, a Self-Configurable BI (SSBI) system will have features that allow its
users (they can include business analysts as well, not only end-users) to change
analyses applied to data, create new reports or change existing ones, and so on.

In [45], SSBI is presented as an important promise of BI, despite the current
difficulties in making those softwares easy to use for business people. SSBI has been
the center of some attention from specialized institutions (e.g. TDWI [78], Gartner
[123] or Forrester [50]), which is another clue that business users are actually
interested in achieving shorter time-to-value and doing BI on their own.

8.3 Why Make Self-Configurable Systems?

SCS are ways to deal with the change of requirements. Instead of making a system
that satisfies exactly all of the most specific requirements identified at design-
time, we consider these merely as examples of requirements that may arise at run-
time, and we engineer features whose combinations can satisfy these anticipated,
and perhaps some of the unanticipated run-time requirements.

In fact, the problem with design-time requirements is not that they are chang-
ing. In practice, many RE approaches exist, that can be used to identify new
requirements [159] or track evolution of existing ones [161, 124]. The translation
of those requirements into specifications for the system-to-be is not a problem ei-
ther, as it has also been discussed at length in RE [145]. The problem is rather on
the time it takes to go from there being a new run-time requirement, to the time when
the system has been changed to satisfy it.

In the case of BI systems, the IT department is expected to be very respon-
sive, and to provide quickly adapted solutions to business requirements. This is a
generic requirement from BI systems, also known as time-to-value: once a BI sys-

134 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

tem is implemented, users must gain easy and rapid access to information, so that
the decision making process remains efficient [78]. Traditional RE approaches can
appear limited in that regard, because they assume elicitation, modeling, analysis,
verification, negotiation, validation, and so on, have to be done for new require-
ments. This can influence time-to-value negatively.

As a response to delays due to changing requirements, SCS attempt to trans-
fer some of the design responsibility to end-users, who are therefore in charge of
understanding what they need, and directly designing what is required to satisfy
these needs using a SCS. For example, in BI, Self-Configurable Business Intelli-
gence (SSBI) is used to enable end-users to select some data sources and decide
about a visualization tool to view it, all by themselves. Ultimately, they choose
what to include in the report that they need the system to make.

Unlike for classical BI systems, SSBI does not require the usual RE processes
to occur each time a user has a new requirement. There is therefore a tendency
to make systems with generic features, and expect users to combine / configure
the latter by themselves, in order to satisfy their new, specific requirements on-
demand. They do so with the support of the system, but without the intervention
of system engineers. This approach has the main advantage of reducing time-to-
value, and hence improving users experience of the BI platform [78].

8.4 Indirect Requirements Satisfaction

In this section, we suggest and discuss an essential property held by typical re-
quirements of SCS. We consider that any requirement which satisfies this prop-
erty can be characterized as a Self requirement. The more a system is specified by
such SCS requirements, the more the system can be considered as a Self.

It implies that the distinction between SCS and non SCS is not clear cut, and
that any system can be placed on a “Self dimension”. Besides, SCS can be dis-
tributed or centralized, adaptive or not, agent-based or otherwise, and so on - all
such system categorizations are orthogonal to the Self dimension.

To introduce the property in question, it is important to distinguish users from
other stakeholders of a Self. The reason lies in the difference between how a Self
can satisfy user requirements, and how it can satisfy those of other stakeholders.
Just as any system, a Self may satisfy the requirement of a stakeholder who is not a
user, e.g., a stakeholder may not be involved in using the system, but may require
that the license to use the Self costs below some amount per year. If the annual
license costs X, and is smaller than Y (the maximal amount that this stakeholder
set), then the system satisfies the requirement. We say that the requirement is
directly satisfied, since this stakeholder does not need to invest any more effort in using
the system, in order to satisfy that requirement.

8.5. REQUIREMENTS FROM SCS AND NON-SCS 135

The story is different for most users of SCS, i.e., individuals who will interact
with the system at run-time, precisely in order to satisfy their own requirements.
If a system directly satisfies the requirements of its users, then it does not belong
to SCS. It does belong to SCS, if it satisfies these requirements indirectly. We say
that a system satisfies a requirement indirectly, if there exists a scenario for using
that system, such that if the system is so used, then the requirement will be satis-
fied, but that is not the only possible scenario for using that system, and that scenario
is not necessarily known by either the users or the system designers.

It looks like quite a lot of software only indirectly satisfies their users’ require-
ments. An operating system satisfies indirectly a user’s requirement to print out
a document, if the user needs to find, install, and configure by herself a printer
driver. A word processor indirectly satisfies the requirement to format a text ac-
cording to some formatting guidelines, because it is the user who has to figure
out how to use headers, footers, front pages, blank pages, and so on, in order to
ensure that the document does indeed follow the guidelines. A web browser, in
contrast, looks to be directly satisfying its main requirement, which is to display
content on the World Wide Web. But it indirectly satisfies the requirement to play
specific kind of video files, if the user has first to find, download and install the
relevant plugin.The usual calendar applications satisfy directly the requirements
to add events and reminders, invite people to join events, and such. But they only
indirectly satisfy the requirement to find the slots that suit everyone, when orga-
nizing a meeting. To satisfy that requirement, the user has to find some clever
way to use the various existing features in her calendar application.

It is an essential property of SCS that the intention in designing them is to satisfy
many user requirements indirectly. The consequence is that a user will have to
do the work of finding the appropriate scenario that mobilizes the features of
the system, in a way which will satisfy this user’s requirements. The scenario
should not already built into the system in such a way that a user can, without
much effort, activate it. If the intention in designing a system is primarily to
enable the indirect satisfaction of many requirements, which were anticipated or
unanticipated at design-time, we will say that the system is undetermined. We
will say that the system is determined, if the intention in designing it is to satisfy
exactly some specific set of requirements identified at design-time.

8.5 Requirements from SCS and non-SCS

In order to analyze the way RE happens in the particular case of SCS, we first
suggest to distinguish between two types of requirements. Then, using this dis-
tinction, we provide a more accurate, RE-oriented, definition of SCS.

136 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

Determined Undertermined
Business
Users

Google Calendar, Mi-
crosoft Outlook, Mi-
crosoft Word, Skype

Blogger, Joomla, Matlab,
QlikView, Excel Power-
Pivot/View

IT Experts Visual Paradigm,
FileZilla, AVG Anti-
Virus, Apache Web Server

MicroStrategy, Pentaho,
Symfony Framework,
.NET Framework, Java

Table 8.1: Examples of Software

We start by distinguishing two kinds of requirements, called Stakeholder Re-
quirements (RStk) and Derived Stakeholder Requirements (RDS). As their name
suggests, we obtain RStk from stakeholders and through requirements elicitation,
which may involve interviews, observation, documentation analysis, and so on.
RDS are the requirements that a requirements engineer defines herself, on the
basis of RStk . RDS are made, for example, by refining, decomposing, disambiguat-
ing, or otherwise manipulating RStk , in the aim of identifying such RDS which
are operational. A requirement is operational when there is a specification which
can be implemented (that is, its implementation is judged feasible), and there are
good reasons to believe that, if implemented according to that specification, the
resulting system will satisfy that RDS . Various frameworks exist to identify vari-
ability in goal models, and could be of particular interest in the identification of
RDS [65, 99]. We will say that RStk and RDS together are Ground Requirements
(RG), i.e, RG is the union of RStk and RDS .

We then distinguish RG from Self Requirements (RSelf), which are defined by
requirements engineers, in order to ensure that the system has generic features,
whose various combinations could satisfy potentially many RG. For example, the
user of a BI system can have the requirement r1 to “Display average sales margin
per product”. Such requirement has been elicited explicitly from that business
user (through, for example, an interview): r1 is therefore part of RStk , and hence
of RG. That requirement provides some direction to derive requirement variants.
For instance, r2, “Display sales revenue repartition per vendors”, can be derived
from r1 and is then part of RDS , hence also of RG.

SCS are, however, not made to satisfy specificallyRG. Instead, they are made to
satisfy a requirement r3, which is “Be able to [displaying] an [arithmetic function]
over one [business fact] for one [business dimension]”. The latter requirement is
such that, if it is satisfied, then both r1 and r2 will be, but also potentially many
others similar to r1 and r2. The requirement r3 is in RSelf . The difference between
r1 and r3, and between r2 and r3, is that r3 is obtained by looking at r1 and r2, and
finding what is common to them, in order to formulate a new requirement which,
if satisfied, would lead us to conclude that both r1 and r2 are satisfiable, provided

8.6. REQUIREMENT ENGINEERING FOR SCS 137

g2

get sales data

g5

display with
Bar Chartg3 g4

g1

get product data compute average margin

display average margin by product

Figure 8.1: Goal refinement of r1

g2

get sales data

g5

display with
Pie Chart

g3 g4

g1

get vendor data

display the repartition of sales revenue per vendor

compute ratio

Figure 8.2: Goal refinement of r2

that the users find out how by themselves.

8.6 Requirement Engineering for SCS

SCS vs Non-Self: An Illustration

Previous RE definition of SCS offers a support for distinguishing between the de-
sign concerns of SCS and non-SCS. Consider previous example r1, where a user
wants to “Display average sales margin by product”. To obtain such result, the
user can use a BI solution, and has two alternatives, called A and B below.

Alternative A: she could use a classical BI system. In that case, she would have
to ask the IT to design a report, which shows the average margin by product. This
results in the stakeholder requirement r1 which is part of RG. One could model
that requirement via a goal model such as in Figure 8.6. With RG, the IT could
decide about the design of a new report, with no room for Self-Configurable: user
might simply need to select a product to obtain the information she needs. Here,
there are no features to select: everything is decided for the user in advance, so
that the system can be said to be Determined.

As discussed in our Introduction section, the requirements from a BI solution
are likely to change rapidly. Previous users could for instance have the new re-
quirement r2, illustrated with a goal model in Figure 8.6. To be achieved, that goal
would require a new round of elicitation and operationalization, as r2 would be
added to RG. Based on that new RG, IT would have to design a new report. This
repetitive RE process can increase time-to-value.

Alternative B: The user has access to an SSBI solution, and she is responsi-
ble for satisfying her requirements. Suppose that this is a simple spreadsheet
software, such as Excel. Let there be a spreadsheet, which satisfies r3 mentioned
earlier. Starting with her first requirement r1 (Figure 8.6), the stakeholder could
for example select some rows from a data set she judged relevant, sum the cells
and divide the result by the count of rows. She could also select all the data, apply
a filter to it to keep only the last six months, and compute the average using the
function for computing the mean, and so on. This system is Undetermined, as it
is up to the stakeholder to find and design a solution to her problem. If a new
requirement arises, let’s say r2, there is no need to re-engineer the SSBI solution.

138 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

The user, or someone helping her, would simply adapt some part of her initial
solution to design a new solution that satisfies the new requirement.

A RE process adapted for SCS

From an RE perspective, Alternative A and B imply different design approaches.
This is illustrated in Figure 8.6. In Alternative A, engineers have to decide about
a specification that satisfies the Ground Requirements they elicit from business
users. Only RG is used to design the system-to-be. If RG changes (due for exam-
ple to a new variant of a requirement), then engineers must redesign the existing
software to satisfy that new set of requirements. In Alternative B, engineers must
identify user requirements, and then try to anticipate any other possible require-
ment. This results in a set of generic requirements RSelf . The design based on
RSelf must offer sufficient features for the user to satisfy by herself the require-
ments that may appear at run-time in RG.

Actually, the design of a Self cannot work on RG since operationalizing RG

would consist in delivering a determined system providing business users with
all required features in a single design. It is illustrated in the goal model GV in
Figure 8.6. Identifying SCS Requirements is more than only taking into account
all possible variability in users requirements. Although possible Self configura-
tion would be able to eventually operationalize each leaf node of GV, a system
which directly operationalize all leaf nodes of GV is not a Self. From there on,
non-Self systems build from the operationalization of requirements in RG, while
Self systems build from the operationalization of requirements in RSelf .

Nonetheless, setting up RSelf from RG is currently still a research challenge.

Software Engineering

Self Conf. Self Conf. Self Conf.

Software Engineering

Software Engineering

Software Engineering
TIME

TIME

TRADITIONAL SYSTEMS

SELF SYSTEMS Traditional System

Self System

Self Configuration

RSelfs

RG

LEGEND:

Figure 8.3: Comparison of RE process for traditional and Self systems

8.7. CHALLENGES OF SCS FOR REQUIREMENTS ENGINEERING 139

Ga

Gb1

arithmetic function
= average

Gb2
arithmetic
function
= repartition

Gc1
business fact =
sales revenue

business fact
= margin

Gc2

...

...

Gd1 Gd2

Display the average
sales revenue
per vendor

Display the average
sales revenue
per product

Gd3

Display the average
margin
per vendor

Display the average
margin
per product

Gd4

Display an [arithmetic function] over one [business fact] for one [business dimension]

Figure 8.4: The goal model GV

Current methodologies only focus on RG, i.e. how to gather and model RStk as
well as how to derive RSD . To the best of our knowledge, little attention has been
paid as to how RSelf can be abstracted from RG.

Notice that Self requirements open the way to some unanticipated uses of the
system. Consider the case of MS Word. Word proposes to its user a mailing func-
tionality, in which users are capable of selecting themselves fields, displaying the
latter on a form, defining the layout for these fields, etc. Word is therefore some-
where on the Self dimension between pure SCS and pure non-SCS, because it
satisfies at least one Self requirement, i.e., the user is able to define a mail on her
own. A side effect of being a Self system is that users may be creative in using the
software, e.g., defining a mailing is not the only way to use the Word functionality.
In practice, it could be used in some other, unanticipated, ways.

Imagine for example a professor who wants to create several exercises for her
students. Each exercise will be the same except some values and some words
which will be changed. For this purpose, she could use the mailing functionality
to design a template with print labels, and generate several exercises by giving
different values for each label. In this context, she used an Undetermined func-
tionality of Word in order to design her own solution. The use of a Self therefore
depends on the creativity of its users, and should not be limited to the use cases
for which it was initially designed.

8.7 Challenges of SCS for Requirements Engineering

Although critical to ensure a Self anticipates as much as feasible of future stake-
holders’ requirements, the identification of RSelf based on RG (using, for example,
an abstraction mechanism) presents some risks. Using the full set of RSelf to de-
cide about the specification of a Self can lead to systems with numerous features,
and hence to relatively complex SCS. By complex, we mean that they provide

140 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

many features to end-users. The problem with the complexity of a Self is that
it can be negatively correlated with its usability: end-users, who have relatively
low (sometimes no) IT background, may not be capable of understanding and
combining the features consistently to build custom solutions. That problem of
complexity is typical of SCS: regular systems avoid such complexity by directly
satisfying the specific RG.

Consider again the requirement of a user who wants to “Display average mar-
gin per product”. Imagine the user has to satisfy that requirement using a Self.
She is given a spreadsheet software such as Microsoft Excel. Excel contains Self
requirements because the user is in charge of designing its own solution to com-
pute her average margin from a range of data. In Microsoft Excel, she may have
the choice between five, maybe six, features (average, count, sum functions, etc.)
to be combined in order to compute an average margin. Imagine the same user
is exposed to a new, more complex system, with hundreds of features that could
be used to compute that same result. That system would be less usable for the
business user. There would be risks that the user gets lost, or uses inappropriately
some features of the software, with the ultimate risk that this business user does
not satisfy properly her requirements.

This threat is important, and is reflected in existing SSBI solutions, where users
are often discouraged because the Self is too complex for them. For example, We-
ber emphasized that “In an effort to give users what they want, IT sometimes
errs on the side of giving users everything” which he claims is a typical problem
of SSBI system [151]. SSBI experts also highlighted that “It turns out that most
users found the tools too difficult to use. Even when the tools migrated from Win-
dows to the Web, simplifying user interfaces and easing installation and mainte-
nance burdens, it was not enough to transform BI tools from specialty software
for power users to general-purpose analytical tools for everyone in the organiza-
tion.” [45]. In that regard, we consider there is a gap in current RE approach to
SCS: designers should not only be interested in creating systems that satisfy the
set of requirements RSelf (such as in SSBI). They should also account for the fact
that SCS must be usable for business users. Therefore, they should pay attention
to the number of feature they provide.

Note finally that research has been conducted to bring variability into soft-
ware development. One of the most important research regarding variability is
Software Product Line Engineering [117]. Although it aims to build a base system
which can be customized to particular needs, this customization still requires IT
intervention. Moreover, it does not aim to transfer the design responsibility of
the users. Consequently, RE is traditionally about RG and how to derive products
which implement sub-parts of RG. To the best of our knowledge, no research has
gone on the business-user intervention in the resolution of RG.

8.8. MYSTSHOP CASE STUDY 141

Now that we have discussed theoretical background of SCS, we will present
how to model the SCSRP in Techne and then present a mathematical problem able
to resolve the trade-off problem. The approach is illustrated with the MystShop
case.

8.8 MystShop Case Study

The interesting part of the MystShop Case for this chapter is related to the period
when potential new customers appear and the business wanted to create exam-
ples of checklists for those prospects. Up until this time, the report was filled in
a webform hard coded for a single customer. With those new customers, custom
checklists were required. We will illustrate the example with two new customers
called hereafter them H&N and ekoa. Since each customer has its own needs re-
garding mystery visits, that is, uses different sets of criteria, MystShop will have
to introduce new forms in the systems, one per customer. The question is the fol-
lowing: should MystShop IT have the responsibility of developing each new form
or should this responsibility be transferred to users which could configure them-
selves each new form? There are various benefits to the second approach, such as
faster adding of new forms in the system since users can do it themselves. Sec-
ondly, it allows IT to focus on developing features with higher value-added. How-
ever, this solution adds complexity in engineering and development, and makes
it harder for users who need to know how to add the new forms.

8.9 Modeling

In this section, we discuss how the Requirement Problem of Self-Configurable
Systems can be modeled. The MystShop case is used to illustrate our discussion.
The Requirement Modeling Language (RML) used is Techne [85]. We use Techne
because as it is based on a generic ontology of requirements and its reasoning
rules can be mapped to an optimization problem [57].

The MystShop case will be modeled as follows. First, we discuss the Require-
ments Problem (RP) when there is only one customer. Then, we show that when
considering possible evolution of the system for several customers, it becomes
preferable to introduce a syntactic extension in Techne. This extension is aimed
at modeling a specific requirements pattern. Finally, we suggest introducing a Re-
source concept to Techne in order be able to model consumption of resources when
executing tasks. Resources can be work hours of different actors, raw materials or
any other consumables. In the MystShop, we will distinguish consumption of de-
velopment hours and business people efforts. This is key information for deciding
what should be self-configurable in the system.

142 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

All modeling aspects discussed hereafter are supported by an online tool called
AnalyticGraph. The tool is freely accessible, and goal models presented in this
chapter are also accessible to any reader via the given URLs.

Basic Goal Model for MystShop

The main goal of MystShop is to ensure that “Results of visits at VM stores are filled
in custom forms”, which has the identifier G0. After refining this goal, we can find
that it would be satisfied if mystery shoppers do the task “Perform the visits at VM
stores”, T3, and if goal “Custom form for VM is designed”, G6, is already satisfied.
These two premises are linked to G0 via an inference node I2. This inference
means that iff premises are satisfied, then the conclusion node can be considered
as satisfied as well. This model is shown in Fig. 8.5.

I9

T11
Integrate
WM´s customized form
in the system

T3
Perform visits at WM stores

G6
Custom form for WM
is designed

G0
Results of visits at
WM stores are filled
in custom forms

I2

Figure 8.5: Goal Model of MystShop Requirement Problem (accessible at http://
www.analyticgraph.com/app/?g=0QBsZgJvsH). Goals are represented as circles,
tasks as squares and inferences as triangles.

As we said earlier, MystShop does not have only one customer. In its case, there
are three customers: WM, H&N and ekoa. Although customers are different, the
requirement problem and consequently its modeling remain similar. Instead of
filling the form for WM, mystery shoppers will have to fill a customized form for
respectively H&N and ekoa.

This is a situation where an SCS becomes a possible approach. Requirements
can evolve over time: new customers can arrive, current customer will frequently
change their criteria, they could ask new scale levels, demand attached pictures
and so on. In these requirements change, we can identify new requirements such
as to attach images to the visit report. There are other requirements which imply
less development such as modifying customers’ form. For those new require-
ments, it seems more interesting to delegate some design tasks to user (configure
new forms) while developers would be focused on entirely new features (such as
having the possibility to notify the customer with an email when a visit was done).

http://www.analyticgraph.com/app/?g=0QBsZgJvsH
http://www.analyticgraph.com/app/?g=0QBsZgJvsH

8.9. MODELING 143

T11
Integrate
WM´s customized
form in the system

I9

G6
Custom form
for WM
is designed

G0
Results of visits at
WM stores are filled
in custom forms

I2

T3
Perform visits
at WM stores

G68
Results of visits at
ekoa stores are filled
in custom forms

I69
G70

Custom form
for ekoa
is designed

I71

T72
Perform visists
at ekoa stores

T73
Integrate
ekoa´s customized
form in the system

I79 I80

T81
Implement a
form configuratorT82

Configure custom
form for WM T83

Configure custom
form for ekoa

Figure 8.6: MystShop Goal Model for two customers (accessible at http://www.
analyticgraph.com/app/?g=UeLvEOnU5l)

Modifications in the goal model are the following: We replicate for new cus-
tomers what was done for WM. Then, we consider the possibility to implement a
form configurator, which would allow users to configure new forms when needed.
This model, for WM and ekoa, is in Fig. 8.6. Notice that T81 “Implement a form
configurator” can contribute to design forms for both VW and ekoa. From a mod-
eling point of view, it could be interesting to have a generic notation to more easily
represent these requirements patterns.

Introduction of Variation Points

In order to introduce the three new customers without replicating the model three
times, we suggest a simple new notation. This new notation does not by itself ex-
tend Techne. It is just syntactic sugar used to refactor models which have specific
patterns.

For example, when goal model in Fig. 8.6 is analyzed, it is easy to see that its
left part is similar to its right part. The only difference is the name of the store
(either VM or ekoa).

We suggest that the pattern could be factorized, which gives the model in Fig.
8.7. All similar nodes are merged and a variation point (V391) which enumerates
a set of variants (here VM, H&M and ekoa) is linked to them. Nodes which de-
pend on the variation point have a dashed border. This notation becomes truly
interesting as the number of variants increases.

http://www.analyticgraph.com/app/?g=UeLvEOnU5l
http://www.analyticgraph.com/app/?g=UeLvEOnU5l

144 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

G0
Results of visits at
[X] stores are filled
in custom forms
300;200;200

I2

T3
Perform visits at [X] stores
-50;-150;-100

G6
Custom form for [X]
is designed I9

T11
Integrate
[X]´s customized
form in the system
-100;-40;-75

V39 Customers
WM;H&N;ekoa

I48 T49
Configure custom
form of [X]
-30;-10;-15

T50
Implement a form
configurator
-150

Figure 8.7: MystShop Requirement Problem with Variation Point.

But as previously discussed in the introduction of this chapter, one of the main
problems of SCS is finding the right balance between self-requirements and other
requirements. As the key difference between SCF and non-SCF is who (users or
engineers) is responsible for satisfying them, we need to be able to specify who is
responsible for each task.

Introduction of Resource Nodes

We decided to add a new Resource concept to Techne. The corresponding node
(depicted with a stick-man symbol) is used to represent instances of this concept.
A resource in our model can be a human or a role that will perform a task (the
reason why we chose the stick-man symbol). In that sense, it is to some extend
similar to Actor entities in i∗ as resource are task performers and they will de-
pends on each other to achieve goals [154].

However, it differs from i∗ actor as it is less focused on the intentions carried by
the concept4. While i∗ stresses the intentions that each actor has and the mutual
dependencies between actors, a resource in our framework is mainly considered
as a task performer. If a task is linked to a resource, it means that this task requires
work from this resource to be executed. For each resource, a budget label must
then be specified, which determines how many units of this resource are available
to perform all the linked tasks.

An example is provided in Fig. 8.8. It says that tasks T3 and T49 must be
realized by Mystery Shoppers while T50 and T60 must be realized by developers.

4It could be interesting to reconcile both concepts (i.e. i∗ actor and our resource concept) which
would open possibilities to introduce multiple utility functions. As discussed in Section 4.2, single
utility function is a limit of our framework but potential solutions based on the actor/resource concept
are sketched in the further work section (see Section 10.2).

8.9. MODELING 145

For convenience, the variation point node is hidden from the diagram but we can
still notice variable nodes thanks to the dashed-border they have.

G0
Results of visits at
[X] stores are filled
in custom forms
300;200;200

I2

T3
Perform visits at [X] stores
-50;-150;-100

G6
Custom form for [X]
is designed I9

T11
Integrate
[X]´s customized
form in the system
-100;-40;-75

R46

Mystery Shoppers
400

R47

IT Department
200

I48

T49
Configure custom
form of [X]
-30;-10;-15

T50
Implement a form
configurator
-150

T60
Configure custom
form of [X]
-20;-8;-20

I62

Figure 8.8: MystShop Requirement Problem with Resource Nodes. The Variation
Point is Hidden for Visibility Purposes. (This model is accessible at http://www.
analyticgraph.com/app/?g=XnTuTK9p8g).

AnalyticGraph.com as Supporting Tool

All previously presented models and modeling primitives are accessible on An-
alyticGraph. This is a web-based platform designed to support modeling and
reasoning on RE models. In AnalyticGraph.com , users model RE problems as
directed graph. Each graph consists of a set of nodes linked by directed relations.
The graph is stored in a graph-oriented database and meta-data (e.g. graph name,
author...) are stored in a relational database. Currently, AnalyticGraph.com comes
only with Techne as RML, but other RMLs can be specified and used.

The case presented in Fig. 8.8 can be accessed at http://www.analyticgraph.
com/app/?g=XnTuTK9p8g. New modeling primitives (Variation Point node and
Resource node) are accessible in the Self-configuration notation on the platform.
Tutorials are available5. Among them is a tutorial related to the SCS dedicated
module. This module is aimed at transforming the goal model in a Mixed-Integer
Program (MIP). The language used is the GNU MathProg language 6. The map-
ping between the goal model and the MIP is described in the next section.

5http://analyticgraph.com/category/tutorial/
6https://en.wikibooks.org/wiki/GLPK/GMPL_(MathProg)

http://www.analyticgraph.com/app/?g=XnTuTK9p8g
http://www.analyticgraph.com/app/?g=XnTuTK9p8g
http://www.analyticgraph.com/app/?g=XnTuTK9p8g
http://www.analyticgraph.com/app/?g=XnTuTK9p8g
http://analyticgraph.com/category/tutorial/
https://en.wikibooks.org/wiki/GLPK/GMPL_(MathProg)

146 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

8.10 Problem Formulation

In this section, we present the mapping between the goal model and a Mixed-
Integer Program in the specific RE issue of self-configurable systems. The MIP
formalizes the problem of finding the mix of Self-Configurable Features and other
features. We first show how resources nodes are introduced in the MIP and then
discuss the consequences of having variation points. The formal definition of the
mixed-integer mathematical model is in Table 8.1.

The objective function of this optimization problem is the maximization of the
value of satisfied goals (including softgoals and quality constraints) and selected
tasks. That is the product between the node satisfaction and its value.

max
∑
n∈N

u(n) ∗ σn

8.10. PROBLEM FORMULATION 147

MIP 8.1. Description of the basic MIP for a SCS Goal Model in Techne.

Sets

N = G∪ T ∪ S ∪Q∪D Concept nodes
M ⊆N Mandatory nodes
C = {c0, . . . , ci} Conflict nodes
I = {i0, . . . , ii} Inference nodes
R = {r1, . . . , ri} Resources

Decision Variables

σN = {σi ∈B : i ∈N ∪ I} Binary variables representing satisfaction
of nodes.

Functions

u :N →R Utility function
B : R→R Resource budget
in(x) ⊆N ∪ I Incoming nodes function
inY (x) = in(x)∩Y Typed incoming nodes function

Objective function

max
∑
x∈N ∗

u(x) ∗ σx
Constraints

Premises constraints σi ≤
∑

x∈in(i)

σx
|in(i)|∀i ∈ I :

Conclusion constraints σn ≤
∑

i∈inI (n)
σi

∀n ∈ {x ∈N : |inI (x)| > 0} :

Conflict constraints ∑
x∈in(c)

σx ≤ 1
∀c ∈ C :

Mandatory constraints
σi = 1∀i ∈M :

Budget constraints B(r) ≥ −
∑

t∈inT (r)
u(t) ∗ σt

∀r ∈ R :

148 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

Budget Constraint

In order to know what is the best allocation of tasks, we need to introduce a bud-
get constraint. Indeed, without such constraint, the best allocation would be to
give all tasks to the most efficient resource. However, resources have budget con-
straints (in monetary value or in time). As illustrated in our introductory example
(Section 8.1), workers work 40 hours a week.

Then, we can add such consideration in the MIP by adding a new set R repre-
senting all resources considered in the goal model. Then, a new budget function
denoted B (defined on R) relates each resource to its budget limit. Finally, a new
set of constraints called Budget Constraints is added to the MIP. It states that the
utility value (i.e. cost) of all satisfied tasks a resource is linked to, should not
exceed its budget limit.

Variability Aspects

We defined four possible ways to use the variation point, as introduced in Section
8.9. These cases are depicted in Table 8.2. The mapping with the MIP is also
provided. The presented rules have to be applied from sink nodes to source nodes.

Moreover, since a variable node (i.e. a node linked to a variation point) actu-
ally represents different variant nodes (i.e. one for each variant of the variation
point), utility attached to this node is no more scalar. For example, consider our
previous MystComp example: “Perform visits at VM store” should cost 50 while
“Integrate VM’s customized form in the system” cost 100. If we consider another
MystComp’s customer, values can be totally different. Consequently, utility at-
tached to this node is a vector of the same size as the number of variants in the
variation point.

8.11 Resolution

The solution provided by the optimization model consists for each variant of the
set of tasks to undertake in order to maximize expected utility. Since tasks are
related to resource, we also know who should be responsible of each tasks. As an
example, consider Table 8.3 which depicts satisfaction values and utility values.

8.12 Limitations

There are several limitations to point out.
First, while we can expect that configuration costs would increase exponen-

tially as features are added, cumulative configuration costs supported by users

8.12. LIMITATIONS 149

Table 8.2: Illustration of the four possible mappings of variation points

Premises are all variable
Conclusion Constraints:

G26 ≤ I27

Premises Constraints:

I27 ≤

∑
x∈{A,B,C}

T28x + T42x

6

Some premises are variable
Conclusion Constraints:

G26 ≤ I27

Premises Constraints:

I27 ≤ T28A + T28B + T28C + T42
6

The inference and some premises are variable
Conclusion Constraints:

G26 ≤ I27A + I27B + I27C

Premises Constraints:

I27A ≤ T28A + T42
I27B ≤ T28B + T42
I27C ≤ T28C + T42

The conclusion, the inference and some premises are variable
Conclusion Constraints:

G26A ≤ I27A
G26B ≤ I27B
G26C ≤ I27C

Premises Constraints:

I27A ≤ T28A + T42
I27B ≤ T28B + T42
I27C ≤ T28C + T42

150 CHAPTER 8. OPTIMIZATION OF SELF-CONFIGURABLE SYSTEMS

Table 8.3: MystShop Case Solution

T3 T49 T60 T11 G0 G6 Utility
VM X X X X 100
H&N X X X X 40
ekoa X X X X 85

T50 X -120
Total 105

Table 8.4: B&B Running Time

Nodes Links Time
50 50 0.05s
100 100 0.1s
100 150 1.5s
150 200 7s
200 250 100s

are polynomial in our model. However, one can get around this limitation by
adding some additional nodes that would major cost of combined SCF.

Secondly, since we cannot know how many times users will have to configure
the system (this depends on the frequency of requirement changes), configuration
costs should be considered as stochastic variables.

Thirdly, this research discusses only the trade-off resolution of SCF and not
their design challenges. This is outside the scope of the present thesis. The main
way for our approach to reflect design challenges is via configuration cost.

Eventually, this model is a variation case of the Knapsack problem whose opti-
mization problem is NP-hard. A dummy models generator has been developed to
test large-scale graphs7. Some performance-related data are described in Tab. 8.4.
The optimization problem is resolved with a branch-and-bound (B&B) algorithm
but is has been proved that use of heuristics can improve performance in similar
problems [7].

8.13 Related Work

Although there is increasing research on the Requirement Evolution Problem, we
know only a few treatments of approaching requirements evolution with Self-
Configurable Systems.

7The dummy model generator is accessible at http://www.analyticgraph.com/dev/mod_opti/
dummyConfigurator.html

http://www.analyticgraph.com/dev/mod_opti/dummyConfigurator.html
http://www.analyticgraph.com/dev/mod_opti/dummyConfigurator.html

8.14. CONCLUSION AND FURTHER WORK 151

Tun et al. [141] used the Problem Frames Approach to create mappings be-
tween requirements and features, and between problem and solution structures,
to support the evolution of a feature-rich software system. This helps manage of
feature interactions as the software evolved.

Ernst et al. [48] posed the problem of finding desirable solutions as the re-
quirements change and proposed to minimize the effort required to implement
the new solution, which involves reusing parts of the old solution.

Silva Souza et al. [137] focused on Evolution Requirements (EvoReqs) whose
are requirements that prescribe desired evolutions for other requirements that
can be exploited at runtime by an adaptation framework.

8.14 Conclusion and Further Work

In this chapter, we provided in a first time an overall discussion about the use of
Self-Configurable systems in organizations. We first discussed the rationale for
such system, claiming that Selfs are valuable solutions to the problem of chang-
ing requirements and long time-to-value for business users. We defined Self-
Configurable systems as being systems which contains operationalization of Self
requirements. With such operationalization business users are in charge for con-
figuring themselves the system in order to design their proper solution to some
requirements. We then provided a deeper RE perspective on Selfs, by distinguish-
ing between Ground Requirements, obtained requirements elicitation, and Self
Requirements, which are requirements to be able to solve other, forthcoming,
Ground Requirements. We then introduced on a discussion about the trade-off
that may appears, during RE for Selfs, between the completeness of a Self plat-
form (in terms of features) and the usability of the latter.

In a second time, this chapter suggested an approach to model and resolve
instances of Requirements Evolution Problems which are addressed with Self-
Configurable Features. The idea of such modular features is to give users a toolset,
which they can configure in order to satisfy their future requirements. We ex-
plained that careful attention must be paid to find the right balance between self-
configurable requirements and features, and others.

We suggested an approach to model this problem as a goal-oriented model.
For supporting this modeling approach, we extended Techne with Resource Nodes
and Varation Points. We then formalize the previously discuss trade-off problem
as an optimization problem. Solution of this optimization model allocating tasks
between users and engineers thus, determining the best mix. This second part
is illustrated with the MystShop case whose artifacts are accessible on Analyt-
icGraph.com. Finally, we discussed limitations of the approach and carried out
early testing to show how the implementation behaves with larger models.

Part III

Supporting Tool

153

9Introducing AnalyticGraph.com

9.1 Introduction

The aim of this chapter is to present a tool that was developed in order to support
previously presented methods. Beyond simply supporting an implementation of
specific models presented, this tool allows users to develop themselves new mod-
els. For this, it allows to specify a new language (or extend an existing one) as
well as an optimization model. However, the tool’s main contribution goes further
than the contribution to the Requirements Optimization Problem since it revives
the old, but critical research topic of software tools for Graphical Requirements
Modeling (GRM). We use the term GRM, to refer to the widespread practice in the
RE field of representing requirements and their relationships in diagrams, and of
doing reasoning (computation) on these representations. Typically, nodes in such
diagrams hold information about the requirements, environment, or the system
to build or change, while edges are labeled by relationships holding over the con-
nected nodes; such relationships can say, for instance, that two requirements are
in conflict, that some set of more concrete requirements refines a less concrete
requirement, they may convey the relative desirability (preference) or importance
(priority) of requirements, and so on. Various RMLs. [67, 44, 68, 107, 40, 154, 85]
rely on GRM in the sense that models made with these languages are visualized
as diagrams.

To this aim, we present and argue for a series of features that next generation
GRM tools could have, and we present an early version of a new software tool,
freely available at AnalyticGraph.com, which implements these features. The
suggested features result from lacks we observed in other tools when trying to
implement our approaches.

Our aim is not to propose a definite list of features for GRM tools, but instead
to stimulate discussion and hopefully renew interest of colleagues in coming up
and validating the relevance of new features for software tools which have re-
ceived little attention and benefited from little innovation in the past years.

The chapter is structured as follows. Section 2 presents some existing GRM
software tools and their respective features. Then, in Section 3, we discuss strengths

http://www.AnalyticGraph.com/app

156 CHAPTER 9. INTRODUCING ANALYTICGRAPH.COM

and weaknesses of existing tools. We introduce AnalyticGraph’s architecture in
Section 4. In Section 5, we show with examples how this architecture allows Ana-
lytic Graph to mitigate weaknesses. We finally conclude and discuss future work
in Section 6.

9.2 Brief Tour of Existing GRM Software Tools

While vector drawing software can be used to do GRM, this is rarely, if ever advo-
cated. It is common to see GRM being done with generic diagramming tools,
which may or may not include graphical primitives corresponding to specific
RMLs. We consider such tools as DIA, Microsoft VISIO, draw.io, yEd or Omn-
iGraffle to be examples of generic GRM tools. Their limitation is that they offer
little support to users in terms of syntax-checking and computation over the mod-
els (diagrams) made.

More comprehensive tools have been developed in RE to deal with such limi-
tations. For instance, Tropos comes with the java-based GR-Tool, which proposes
forward and backward reasoning on goal models [60, 61, 132].

In line with the Tropos methodology, TAOM4E supports a model-driven, agent
oriented software development, and has been designed to respect the Model Driven
Architecture (MDA) recommendations [11].

RE-Tools [138] is another modeling tool that supports notations such as i*, the
NFR Framework, KAOS, Problem Frames, and UML. Among other things, RE-
Tools supports the combination of previous notations, enabling engineers to com-
bine functional and nonfunctional requirements, agents, goals, soft-goals, formal
goals, and objects into one single diagram.

DesCARTES [94] is a Computer-Aided Software Engineering (CASE) Tool, which
also supports i*, NFR models, UML models, and I-Tropos developments. It takes
the form on a Eclipse IDE (Integrated Development Environment) plug-in.

jUCMNav [1] is another example of Eclipse plug-in which permits the model-
ing of requirements based on the User Requirements Notation.

MetaDONE [47] is a tool supporting domain specific modeling languages (DSML);
it is aimed at helping engineers in the more effective implementation of software
systems, based on the production of generative methods [92].

9.3 Strengths and Weaknesses of Existing Tools

Although existing GRM tools clearly differ in the type of language they support
or the nature of reasoning they enable to perform on requirements models, they
all seem to support requirements engineers in at least one of the following com-
plementary ways:

9.3. STRENGTHS AND WEAKNESSES OF EXISTING TOOLS 157

• They offer symbols and visuals for a given notation, keep data and meta-
data related to these elements, and ensure these elements are combined in a
way that complies with the syntax of the modeling language,

• They offer reasoning capability about a model to identify solutions, discover
alternatives or resolve conflicts,

• They offer capability to design their own notation and behavior capabilities,
fitted for the actual domain.

These are the three main pillars of GRMs, on which we continue to build An-
alytic Graph.

Beside those strengths, we see a number of improvements which could be
made on existing GRMs, that would further help requirements engineers in the
modeling and analysis of the requirements. Those improvements, which we dis-
cuss with more details in the remainder of the chapter, could be summarized as
follows:

• Portability: models defined in one GRM, on one computer, are difficult to
transfer to other GRMs/computers,

• Collaboration: existing GRM are not designed to ease collaboration between
several engineers on same models,

• Navigability: models can get very large, and existing GRM offer no support
to navigate effectively in the many nodes and edges that constitute a require-
ments model.

• Reasoning: current GRM offer predefined computations on models, leaving
no room for custom reasoning,

• Extensibility: existing GRM are usually designed to support one or more
preset RMLs, without the possibility for users to add new RMLs,

• Flexibility: it is normally not possible to make models made by bridging
several models from different RMLs.

Our overall aim in making Analytic Graph is to consolidate the strengths and
address the limitations of existing GRM tools. Although Analytic Graph is not
fully developed, it is available for use and already illustrates many of its key fea-
tures.

158 CHAPTER 9. INTRODUCING ANALYTICGRAPH.COM

AnalyticGraph.com

Neo4j Server

Client 1

Client 2

Client n

Neo4j Database

MySQL Database

Cypher Queries

SQL Queries

MySQL Server

Figure 9.1: Architecture of AnalyticGraph.com

9.4 Analytic Graph Architecture

Existing GRMs are predominantly desktop tools, which hurts portability and col-
laboration. GRMs do not store and treat requirements models as graphs, which
does not help navigability and custom reasoning. In this section, we describe how
the architecture of Analytic Graph differs from classical GRM tools. Next section
discusses how that architecture helps in relation to GRM limitations.

The architecture of Analytic Graph is illustrated in Figure 9.1. Our system is
composed of one web-server on which AnalyticGraph.com is hosted. The web-
server runs queries against a Neo4j server, which manages the storage of graphs.
Neo4j is a graph-oriented and open-source database management system. It re-
ceives Cypher queries through a web-service from AnalyticGraph.com and re-
turns json files with the result of these queries. AnalyticGraph.com also runs SQL
queries against a MySQL server, to store or retrieve any meta-data on the graph
(graphID, owner...) as well as data that is not related to a model; for example,
requirements notations, logs, user account data, etc. Clients interact solely with
Analytic Graph using a web browser, as explained in next sections of the chapter.

AnalyticGraph Stores Models as Directed Graphs

A limitation we emphasized in our introduction is that existing tools do not en-
able users to define and execute their own queries/reasoning algorithm on their
models. To deal with this limitation, we designed Analytic Graph as a self-service
system; we intend to let users define themselves the queries they want to run
against a model, to define or import the requirements notations they want, with
as little constraints as feasible on how the model is stored. The only constraints
are those imposed by the RML which the user wishes to use.

This approach led to important constraints on the way RE models should be

http://www.AnalyticGraph.com/app
http://www.AnalyticGraph.com/app
http://www.AnalyticGraph.com/app
http://www.AnalyticGraph.com/app

9.5. CANDIDATE FEATURES FOR NEXT GENERATION TOOLS 159

stored in Analytic Graph. Namely, we need to store the model in a way that is
amenable to flexible querying and computation, while at the same time reflect the
structure of graphical requirements models. We therefore store models as graphs.
Each concept and link of a model (for example, a goal, a task or a contribution
link in i*) is stored as a node of a graph. Under this scheme, the directed links in
our graph are simply used to connect two nodes of the model, and carry no other
information than the direction. For example, a model in which a goal decomposes
into two sub-goals will be stored in Analytic Graph as a graph composed of four
nodes: one goal node, two sub-goal modes, and one decomposition node, with a
link from each of the sub-goals to the decomposition node, and a link from the
decomposition node to the goal.

The Techne model [85] already adopts such view on modeling. It represents
a relationship between two nodes (goals, tasks, etc.) as other nodes (inferences,
conflicts, preference), so that links (edges) themselves carry no information other
than their direction. As already presented in previous chapter, Techne is already
implemented in Analytic Graph and we use it in the rest of this chapter for illus-
tration.

Analytic Graph is a Web Application

Another limitation we emphasized in our introduction is the difficulty for users to
share and interact with models. We consequently built in collaborative features,
namely to let users share the models they created in Analytic Graph, or to access
and interact with others’ models in few steps. We wanted a tool that does not
require specialized software to be installed on users’ devices, and we therefore
opted for an on-line platform. Analytic Graph is a web application, in which users
can create, edit, save and load models and RMLs. By associating a unique URL to
each model and notation, it is also possible for users to share their own models,
link models in documents, research papers, presentations, and elsewhere, and to
access and/or import in their own library, the models or RMLs created by others.

9.5 Candidate Features for Next Generation Tools

In this section, we discuss features which we consider important for next genera-
tion GRM tools. We do this by presenting how Analytic Graph addresses common
limitations of GRM tools. For each limitation, we present a feature of Analytic
Graph, and we illustrate and explain how that feature works.

160 CHAPTER 9. INTRODUCING ANALYTICGRAPH.COM

Portability

If a GRM tool is desktop software, then it needs to be installed on the users’ de-
vices, and models will be stored by default on these devices. Our tool is a web
application; it means that it is available on-demand anywhere, and requires no instal-
lation of specialized software1.

The main requirements for accessing Analytic Graph is to have access to an In-
ternet connection, and have a web browser installed on the device2. Once logged-
in, users are able to save their models. The models are stored on the Analytic
Graph.com server, which means that the users can access the model on any device,
using their credentials. Models are by default private, so that a model created on
one user account will not be visible to other accounts, unless he gets the URL. We
also leave the possibility for users to design models without having an account,
in which case the model can be exported as an image or transferred to an existing
account, or lost (not saved) otherwise.

Collaboration

With desktop GRM tools, a model is stored as a file and shared by sending the file
among collaborators. If the model is shown in a research paper or other document,
a reader needs to find the model source online, download and setup the relevant
GRM tool, and only then work on the model, and use it in own research.

Analytic Graph was designed to simplify the process from seeing the model
in a publication to being able to edit and run it. In the caption of Figure 9.2, we
included a URL. Clicking on the URL should bring up the reader’s web browser,
and allow the reader to view, edit, and run on Analytic Graph the model shown
in that Figure. It is a Techne model, of simple requirements for music streaming
software.

Linking models for editing is made possible with two features of Analytic
Graph: (i) each model made with the tool gets its own permanent and unique URL,
so that models can be linked in research papers or other document types, and
(ii) any reader who has access to the URL of a model can click on the link, open a free
account (or access as a visitor), and edit and run a copy of the linked model.

Putting aside the graphical representation in Figure 9.2, any non-interactive
visualization of the model – just as the one in that Figure and on any printed
page and on any non-linked model – suffers from many drawbacks. For example,
readers cannot run themselves computations on the model. They cannot reuse

1The tool is accessible at analyticgraph.com/app. Tutorials are provided at analytic-
graph.com/category/tutorial/

2At this stage, Google Chrome is the recommended browser for accessing AnalyticGraph.com.

http://analyticgraph.com/app
http://analyticgraph.com/category/tutorial/
http://analyticgraph.com/category/tutorial/
http://www.AnalyticGraph.com/app

9.5. CANDIDATE FEATURES FOR NEXT GENERATION TOOLS 161

and enrich that model for their own purposes. They cannot navigate in the graph.
And so on. Analytic Graph aims to facilitate the interaction with requirements
models, by letting users access to and use the graph. As an example, we invite the
reader to click the URL shown in the caption of Figure 9.2.

Navigability

We use the term navigability to refer to how one can search for and find sub-
models of a given model. Sub-models may correspond to, for example, candidate
solutions (specifications) to requirements, alternative refinements of a given re-
quirement, all requirements which may be involved in a conflict, and so on.

Our approach to navigability in Analytic Graph is to store requirement models
in a graph database, use well known algorithms to search the graphs, and enable users
to define their own queries on models / graphs. A series of queries are predefined
in Analytic Graph. Users open a model, select and click on the query to execute
it against that model. Some queries are generic, in that they can be run on any
graph, in an RML. Others are specific to an RML.

Queries we have been exploring so far do not add or remove nodes or edges
in a model, but return a sub-graph. By combining several queries, users are then
able to identify patterns in the model, select only a part of the model, identify a
certain type of nodes, or identify the shortest path between two nodes. We see
in this feature a first step toward more sophisticated queries and an interface for
custom queries.

Consider our running example from Figure 9.2. The number of nodes is still
limited, yet it might already be difficult to detect one particular set of nodes. Say
for instance that you want to browse the graph in the refinement direction. You
then need to locate sink goals in order to start the reading of the model. Using
a simple search query, you could detect them instantly. The same search with-
out a query would likely take more time, even if the number of goals is limited.
Moreover there always is a risk you miss some of them. Similarly, one might run
a query to count the number of conflicts, to select all soft-goals, to determine the
entire sub-graph associated with one goal, etc.

Reasoning

Reasoning on a model allows engineers to answer questions, which the language
was designed for. This is common to all RMLs, ranging from early requirement
languages such as i* or Techne to later requirement languages such as BPMN,
features diagrams and so on. For example, in feature diagrams, one question is
to find some subset of interest, among all possible configurations of the modeled

162 CHAPTER 9. INTRODUCING ANALYTICGRAPH.COM

G
0

U
se

rs
 c

an
 li

st
en

on
lin

e-
m

us
ic

V
al

:0
S

at
:1

I1
S

at
:1

T
2

Im
pl

em
en

t o
nl

in
e

au
di

o-
pl

ay
er

V
al

:-
15

0
S

at
:1

G
5

U
se

rs
 li

st
en

on

lin
e-

m
us

ic
fo

r
fr

ee
V

al
:3

00
S

at
:1

I6
S

at
:1

T
11

D
is

pl
ay

 a
ds

 o
n

sc
re

en
V

al
:-

20
0

S
at

:1

I1
6

S
at

:0

G
17

U
se

r
m

us
t

su
bs

cr
ib

e
to

 th
e

se
rv

ic
e

V
al

:0
S

at
:0

G
20

O
nl

in
e

m
us

ic
is

 p
ro

vi
de

d
by

su

bs
cr

ip
tio

n
V

al
:5

00
S

at
:0

I2
2

S
at

:0

I2
3

S
at

:0

T
24

A
ct

iv
at

e
sm

ar
tp

ho
ne

pa
ym

en
t

V
al

:-
50

S
at

:0

T
25

C
on

ne
ct

 s
er

vi
ce

to
 c

re
di

t c
ar

d
se

rv
ic

e
pr

ov
id

er
V

al
:-

15
0

S
at

:0

K
26

U
se

rs
 h

av
e

a
cr

ed
it

ca
rd

V
al

:0
S

at
:0

K
27

U
se

rs
 h

av
e

a
sm

ar
tp

ho
ne

V
al

:0
S

at
:1

G
38

U
se

rs
 c

an
 p

ay
V

al
:0

S
at

:0

I4
1

S
at

:0

I4
4

S
at

:0

G
56

U
se

r
ca

n
pa

y
to

 h
id

e
ad

s
V

al
:-

12
0

S
at

:0

T
61

A
llo

w
s

us
er

 to
hi

de
 a

ds
V

al
:-

15
0

S
at

:1I6
3

S
at

:0

P
66

S
at

:0
S

69
P

ay
m

en
t

sh
ou

ld
be

 e
as

y
V

al
:0

S
at

:0

Q
71

T
im

e-
to

-p
ay

 is
le

ss
 th

an
 5

m
in

V
al

:1
00

S
at

:0

Q
72

T
im

e-
to

-p
ay

 is
le

ss
 th

an
 1

 m
in

V
al

:1
00

S
at

:0

I7
3

S
at

:0

I7
4

S
at

:0
I7

5
S

at
:0

I7
6

S
at

:0

I8
5

S
at

:0
T

86
D

is
pl

ay
 a

cc
ou

nt
nu

m
be

r
in

fo
rm

at
io

n
V

al
:-

50
S

at
:0

C
89

S
at

:0

P
92

S
at

:0

T
1

M
ai

nt
ai

n
au

di
o-

pl
ay

er
V

al
:-

50
S

at
:1

Figure 9.2: Example of a Techne Graph in Analytic Graph- analytic-
graph.com/app/?g=5u3lNJVddv

http://www.analyticgraph.com/app/?g=5u3lNJVddv
http://www.analyticgraph.com/app/?g=5u3lNJVddv

9.5. CANDIDATE FEATURES FOR NEXT GENERATION TOOLS 163

G0
Users can listen
online-music
Val:0
Sat:1

I1 Sat:1

T2
Implement online
audio-player
Val:-150
Sat:1

G5
Users listen
online-music
for free
Val:300
Sat:1

I6 Sat:1

T11
Display ads on
screen
Val:-200
Sat:1

I16 Sat:1

G17
User must
subscribe
to the service
Val:0
Sat:1

G20
Online music
is provided by
subscription
Val:500
Sat:1

I22 Sat:0

I23 Sat:1

T24
Activate
smartphone
payment
Val:-50
Sat:1

T25
Connect service
to credit card
service provider
Val:-150
Sat:0

K26
Users have a
credit card
Val:0
Sat:0

K27
Users have a
smartphone
Val:0
Sat:1

G38
Users can pay
Val:0
Sat:1

I41 Sat:1

I44 Sat:1

G56
User can pay
to hide ads
Val:-120
Sat:1

T61
Allows user to
hide ads
Val:-150
Sat:1

I63 Sat:1

P66
Sat:0

S69 Payment
should
be easy
Val:0
Sat:1

Q71 Time-to-pay is
less than 5min
Val:100
Sat:0

Q72 Time-to-pay is
less than 1 min
Val:100
Sat:1

I73 Sat:1

I74 Sat:0I75 Sat:1

I76 Sat:0

I85 Sat:0 T86
Display account
number information
Val:-50
Sat:0

C89 Sat:1

P92
Sat:1

T1
Maintain
audio-player
Val:-50
Sat:1

Figure 9.3: Example of Reasoning on Techne Graph in Analytic Graph- Illustra-
tion of the propagation of satisfying task T24

system. Without a proper tool capable of reasoning, the diagrams themselves are
of limited use. Most GRM tools provide such features, but tend to be limited to
one or more predefined reasoning ways on models.

Since Analytic Graph is based on a graph database, it comes with a manipu-
lation language (called Cypher3) which has been used to design behavior on di-
agrams. Use of this language enables several ways of defining a behavior (trans-
action, node behavior), and leaves that decision to the user. For example, Techne
mechanism of inference has been implemented by defining for each node a partic-
ular behavior. Each inference is associated with a query that evaluates if premises
(i.e. incoming nodes) are satisfied, in which case it sets the conclusion node (i.e.
the outgoing node) as true. This behavior is propagated from source nodes to sink
nodes.

Consider our running example as illustrated in Figure 9.2. The number pre-
fixed with Sat below the name of a node is its satisfaction; 0 means that the node
is not satisfied, 1 means that the node is satisfied. Note the conditional formatting
of nodes, depending on their satisfaction (another customizable feature). In our
example in Figure 9.2, the goal G17 “User must subscribe to the service” is unsatis-
fied. During requirements analysis, engineers might want to test the effect on the
realization of some tasks on this goal. Since satisfying goal G38 “Users can pay”
should have an impact on G17, they just need to ensure the satisfaction of under-

3http://neo4j.com/developer/cypher-query-language/

164 CHAPTER 9. INTRODUCING ANALYTICGRAPH.COM

lying tasks of G38. So, they set value of T24 “Activate smartphone payment” to 1
(true), and run the model again (we invite the reader to open the model and run
node behavior in Analytic Graph app). The result is reported in Figure 9.3; the
figure shows that satisfying T24 enables to satisfy the goal G38 of the model, yet
introduces a conflict with G17 (symbolized by C89). It also satisfied among others
G56, G0 and G20. This is a simple example of how Analytic Graph implements
reasoning on goal models.

As discussed earlier, other reasoning or treatment of the graphs are possible.
Consider now the case where utility values can be associated to each node in the
model. It is represented by the numbers prefixed with Val next to each node.
Positive value means a revenue while negative value represents a cost. Having
this information, it is possible to map the model to a mixed-integer mathematical
program and execute an optimization on this [57] (we invite the reader to open
the model and run optimization in Analytic Graph app). Given these values, the
optimal solution allows to reach a value of 350 with following node satisfied: G0
G17 G20 G38 Q72 K27 T2 T24 T1 I1 I41 I16 I23 I75.

Extensibility

GRM are often designed for a specific RML. For example, GR-Tool implements
the Tropos notation, jUCMNav implements the User Requirements Notation, etc.
Analytic Graph has a language management module, which allows users to define
their own RMLs, both in terms of graphical primitives and their properties used
for queries and computation. Users are also free to build requirements models
using the notation they prefer. In case users need other notations, they can either
design that notation or import it.

Although Techne is the only built-in RML at the moment, our aim is to in-
crease the number of built-in RMLs available to users. The tool will soon allow
users to define relatively simple notations of their own. They will do it using
the Language Management (LM) tool4, which enables users to define virtually any
language, as long as its models can be represented as directed graphs. The meta-
model behind language definition is depicted in Figure 9.4. A Language has a
name and is composed of several NodeType. Each of them is described by a name,
a shape (graphical representation) and a behavior (currently a cypher query). The
user can define how and how many NodeType can be linked together. Moreover,
each NodeType comes with a set of PropertyType which are characterised by a name,
a type and a default value. Reasoning in a language is introduced by defining
functions over values of node properties.

4More information about how the Language Management will work can be found at
analyticgraph.com/create-your-own-language/

http://analyticgraph.com/create-your-own-language/

9.5. CANDIDATE FEATURES FOR NEXT GENERATION TOOLS 165

Figure 9.4: The Meta-Model of Analytic Graph Language Management Module

Flexibility

Different requirements notations have been defined to deal with different require-
ments engineering concerns. For example, Tropos [25] focuses on the agents from
early requirements to specifications and implementation, i* [154] on intentions
of stakeholders, BIM [77] on Business Intelligence aspects. It is usually not the
case for a GRM tool to allow the building of combined models, that is, of graphs
where sub-graphs are models in different languages, and where new types of re-
lationships are used to bridge models of different languages. However, several
approaches combining different notations have already been suggested. For ex-
ample, Metzger et al. suggested to distinguish two types of variability by relating
orthogonal variability models (OVMs) to feature diagrams [105]; two different
languages.

We have made early advances in Analytic Graph to allow users to combine
different languages in a same graph. Results coming from computing such sub-
graphs are then used in other sub-graphs. For example, Analytic Graph comes
with an Algebra notation capable of performing simple calculations such as addi-

166 CHAPTER 9. INTRODUCING ANALYTICGRAPH.COM

G0
Users can listen
online-music
Val:0

I1

T2
Implement online
audio-player
Val:-150

G5
Users listen
online-music
for free
Val:300

I6

T11
Display ads on
screen
Val:-200

I16

G17
User must
subscribe
to the service
Val:0

G20
Online music
is provided by
subscription
Val:500

I22

I23

T24
Activate
smartphone
payment
Val:-50

T25
Connect service
to credit card
service provider
Val:-150

K26
Users have a
credit card
Val:0

K27
Users have a
smartphone
Val:0

G38
Users can pay
Val:0

I41

I44

G56
User can pay
to hide ads
Val:-120

T61
Allows user to
hide ads
Val:-150

I63

P66
S69 Payment

should
be easy
Val:0

Q71 Time-to-pay is
less than 5min
Val:100

Q72 Time-to-pay is
less than 1 min
Val:100

I73

I74I75

I76

I85 T86
Display account
number information
Val:-50

C89

P92

T1
Maintain
audio-player
Val:-50

i71
Number
of users
250

i72
Revenue
from ads
per user
1.2

i73
Percentage of user
ready to pay for
hidding ads
0.4

i74
Loss
-1

p75
Loss from
hidding ads
-120

E90

from:value
to:value

i96
Subscription
price
5

p97
Revenue from
subscriptions
500

E102

from:value
to:value

p98
Revenue
from ads
300

E103

from:value
to:value

Figure 9.5: Example of Mixing 2 Notations in a Model - Application on G5, G20
and G56 from Example Presented in Fig. 2

tion, multiplication and so on. This notation has been used in the “Music stream-
ing software case” in order to compute value of some goals. This application is
depicted in Figure 9.5. Basic data such as the number of users, the price of sub-
scription and so on, are entered by the user in order to compute value of goals G5,
G20 and G56. These basic data are represented by nodes i71, i72, i73... The nodes
are then used as inputs of multiplication (represented by cross nodes p75, p97
and p98) for computing advanced values (labeled next to the nodes). Results of
the multiplications are next used as inputs of Transfer nodes. The latter are special
nodes used to extract the value of one property of the incoming node and transfer
it in a specified property of the outgoing node (the value of goals in this case).
After running behavior of this graph, one can run the optimization model. This
example shows how the Algebra notation can be used with Techne to perform a
“what-if” analysis. Engineers will be able to check if the optimal solution is still
the same if the expected number of users drops by 50%. In the future, users will
be able to import data from external sources (a database, a web-service...)

Notice that the present discussion raises some important questions about the
validity of using mixed RMLs; namely, does the combination of several different
models – designed based on different assumptions and intended for different pur-
poses – make sense? While this question is out of the scope of this research, it is
worth noticing that part of our ongoing work goes into this both theoretical and
empirical discussion.

9.6. CONCLUSION AND FURTHER WORK - TOWARD ANALYTIC GRAPH 2.0 167

9.6 Conclusion and Further Work - Toward Analytic Graph 2.0

Analytic Graph is still a prototype. This means that we are still working on the
consolidation of our tool, to ensure it is fully functional and can be used prop-
erly by requirements engineers, as intended. Next steps includes the involvement
of several users, as a way to collect feedback on Analytic Graph features, and im-
prove/revise them, if relevant. Our future work will also investigate the feasibility
and implementation of following improvements:

• Connecting Analytic Graph to external data sources such as databases, web-
services,

• Providing classic diagram tool features such as undo, redo, auto diagram
layout,

• Completing the user interface for defining custom languages, queries and
algorithms,

• Improving real-time collaboration with features allowing users to work on
the same model (and not only on a copy).

Despite all limitations of Analytic Graph today, we hope it illustrates interesting
directions for the development of next generation GRM tools.

Part IV

Conclusion

169

10Further Work

In this chapter, we discuss possible further research. Though, we think there are
many directions that could be undertaken, we selected to discuss three of them.
First, we suggest a next Requirements Issue to be studied as a ROP, namely the Re-
quirements for Self-Adaptive Systems. Then, we show that it could be interesting
to generalize the present framework to non-software related fields. Eventually,
we discuss possible extensions to reduce the limitations induced by an aggregated
utility function.

10.1 Requirements Optimization for Self-Adaptive Systems

One interesting additional Requirements Issue that could be tackled by the present
framework is the requirements for self-adaptive systems. Those systems have the
ability to adapt at run-time to changing user needs, system intrusions or faults,
changing operational environment, and resource variability [42].

Actually, early work on the subject has already been undertaken. It resulted
in the publication of :

J. Gillain, S. Faulkner, I. J. Jureta, and M. Snoeck. Using goals and
customizable services to improve adaptability of process-based ser-
vice compositions. In IEEE 7th International Conference on Research
Challenges in Information Science (RCIS), pages 1–9. IEEE, 2013

The idea of this approach was to identify, at design time, sets and combinations
of web-services able to satisfy a particular goal model. Some services being more
fitted under particular conditions/assumptions. At run-time, when conditions of
execution would have changed, a new configuration would have been suggested
taken into considerations the satisfied domain assumptions.

As an example, consider to following example illustrated in Figure 10.1. The
purpose of the system is to know the temperature of a certain geographical lo-
cation in Celsius degree. In this case, since we know the latitude and longitude
(K16 is blue), we have two solutions {F34} or {F36, F40}. We can then apply some

172 CHAPTER 10. FURTHER WORK

Figure 10.1: Goal model representing the initial situation of a self-adaptive system. Green
squares are web services that can be used to execute the tasks they are linked to. Filled
squares indicates available services while empty squares represents unavailable services.
Diamond nodes are domain assumptions. If they can be considered as true, they blue filled,
otherwise they are gray.

decision criteria to determine which one is the optimal (such as cost minimiza-
tion). Then, if the assumptions change, such as in Figure 10.2 where the address is
known instead of the coordinates and the availability of web-services has changed,
we can re-run the optimization model. Then, a new solution, adapted to the new
conditions would be either {F38, F36, F40} or {F31, F36}.

Nonetheless, a lot of research is still required on this topic because it simpli-
fies too much the RP for self-adaptive systems since what really changes between
requirements of such systems and the ZJ framework is that the former needs to
specify additional requirements on how to go from one solution to another solu-
tion while the ZJ framework says nothing about this aspect [120]. Regarding this
problem, it could be interesting to study if there exists several paths to go from
an initial solution to a new targeted solution. If yes, we should study how we can
represent those different paths and map them to MIP in order to determine the
optimal path.

10.2. ABSTRACTING FROM SOFTWARE ENGINEERING 173

Figure 10.2: Modified situation of the goal model of for the example of a self-
adaptive system.

10.2 Abstracting from Software Engineering

Another interesting extension of the current work could focus on its generaliza-
tion. That is, apply it on other fields than Software Engineering. As examples of
possible fields, let consider the building sector for the entire framework and the
project management for AnalyticGraph. Those examples were selected arbitrary
with the only purpose to demonstrate the potential generalization.

Building Sector: The entire present framework could be applied, for example,
on a project of house renovation. Let consider that a house owner has sev-
eral goals: diminish her energy consumption, reduce the humidity level and
increase the available space. Each goal can be refined into sub-goals until
some specific tasks. For instance, change windows, install an air cleaner
system, insulate the walls and so on. We can compute the utility of each
goal (e.g. estimation of the saved energy, the house owner willingness-to-
pay for additional space. . .) and the cost of each task. We can also introduce
a budget constraint. Then, we will have a model to optimize. Regarding this
example, it seems that our framework does not need any change since this
situation can be modeled with Techne.

Project Management: In another context, we could imagine using AnalyticGraph
to model all the tasks of a specific project into a PERT diagram. Several

174 CHAPTER 10. FURTHER WORK

tasks being driven-effort, i.e. their duration can be reduced if we increase
the number of resources working on it, there is some optimization of the re-
source pool to be done. The diagram would be enriched with the resources
and their potential contribution on the different tasks (as we did in Chap-
ter 5). Then, AnalyticGraph could compute the optimal allocation of the
resource pool (with the hypothesis that everyone can work on everything).
If the latter hypothesis does not hold, some additional constraints could be
added to show that some resources can work only on some types of task.
A tool such as MS Project1 does not provide similar features (it only re-
solves over-allocation of resources by moving tasks). Here, the contribution
would be on using graphical diagrams to specify optimization models in-
stead of using linear programs. It would provide business users with more
user-friendly tools for running optimization.

Goal modeling for multiple stakeholders

The objective functions of our optimization models do not distinguish stakehold-
ers’ utility functions. It means that they maximize an aggregated utility function
without considering from who the intention originated. As discussed in the limi-
tations (see Chapter 4), it can result in solutions where all goals of one particular
stakeholder are satisfied while others have no goal satisfied.

We can however extend our framework by linking each goals to their respec-
tive stakeholders. This could be done by using the Resource node we introduced
in Chapter 8. Then the mathematical model could require that a minimum level
of utility for each actor should be satisfied. In that case, the Resource concept
becomes similar to the concept of Actor used in i∗ [154].

How to precisely model those considered constraints could be the subject of
further research.

1https://products.office.com/en/project/project-and-portfolio-management-software

https://products.office.com/en/project/project-and-portfolio-management-software

11Summary

In this thesis, we suggested a new formulation of the Requirement Problem. We
deviated from the framework suggested by Zave & Jackson, in order to incor-
porate an optimization dimension. The idea being to introduce capabilities to
select a solution among several alternatives. Indeed, when focusing on require-
ments a system should satisfy, engineers face several potential solutions. Current
formulations of the Requirement Problem lack of guidelines and criteria able to
discriminate those solutions. However, it seems important to carefully select the
most promising direction the system should take before deeper investigating this
particular solution.

We decided to root this new formulation, that we called the Requirement Opti-
mization Problem (ROP), into both the Core Ontology for Requirements Engineer-
ing (CORE) and the Mixed-Integer Programming. We demonstrated that several
sub-problems of RE could relevantly be formulated with our framework.

More precisely, we focused and described in details four of them. All were
illustrated with a single case: the MystShop case. This case, more used for illus-
trative purposes than validation, also helped us to identify and formulate concrete
optimization problems (and their selection criteria).

Planning optimization

The first ROP we investigated was aimed at finding an optimal release planning.
We rooted this problem into Agile methodologies in order to be more practicable.
After briefly discussing the links between Agile concepts and goal modeling, we
showed how to model such problems with Techne and how to map them to a MIP.

Reusability optimization

The second ROP was focused on finding the right balance of reusability between
several systems to-be. This ROP was rooted in the Software Product Line Engi-
neering context. We discussed the relevancy of optimization by demonstrating
that there exists a trade-off between variability and commonality. We proposed a
modelisation of the problem with Techne and map it to a MIP.

176 CHAPTER 11. SUMMARY

Cost minimization

The third ROP was aimed at linking our framework with existing formal cost esti-
mation methods. Its objective was to minimize the cost of a system by comparing
its different operationalizations. We selected the IFPUG Function Point Counting
as the cost estimation method. We discussed the mapping between the counting
rules and a specific MIP. We also had a discussion about the limitation this ROP
suffers.

Self-configurability optimization

The final ROP was dedicated to find the right balance of configurability to be
provided to end-users. We discussed why there is a trade-off when deciding if
we should allow the user to configure himself a system. We introduced some
extensions in Techne in order to be able to model such situation and we showed
how to map the model to a MIP.

AnalyticGraph

Another major contribution of this thesis, was the development of a tool support-
ing the present framework: AnalyticGraph. It proved the feasibility of the dis-
cussed optimization models but it also suggested the capabilities next generation
of RE software should have: portability, collaboration, navigability, reasoning, ex-
tensibility and flexibility.

Concluding Remarks

Aside from all the limitations the present work can have, it pursued the objective
to acknowledge the importance on systematically consider and compare multiple
solutions in Requirements Engineering. For the usual and inherent reasons linked
to any thesis, we had to scope our work. We decided to focus on the association of
CORE and MIPs. However, we think that many other perspectives could be taken
to study Requirements Optimization Problems.

So, it is clear from our results that much research could be done on this subject.
In any event, we hope to have initiated a new research direction that, we think,
could lead to exciting further contributions to the field of RE.

Glossary

AnalyticGraph AnalyticGraph.com. i, 14, 16, 35, 63, 82, 115, 139, 149

ARP Agile Requirements Problem. 50

CAB Core Assets Base. 72

CLF Core Logical Files. 101

CORE Core Ontology for Requirements Engineering. 7

DET Data Element Types. 98

DF Data Function. 96

EI External Inputs. 103

EIF External Interface File. 98

EO External Outputs. 103

EQ External Inquiries. 103

ER Entity-Relationship. 92

FPA Function Point Analysis. 93

FPC Function Point Counting. 93, 97

FTR File Types Referenced. 103

GM Goal Modeling. 5

GRM Graphical Requirements Modeling. 149

IFPUG International Function Point Users Group. 93

178 GLOSSARY

ILF Internal Logical File. 98

IS Information System. 3, 12

MIP Mixed-Integer Program. 8, 28

NFR Non-functional Requirements. 5

NPV Net Present Value. 73

RE Requirements Engineering. 3

RET Record Element Types. 102

RI Requirements Issue. 24

RML Requirements Modeling Language. 7, 149

ROP Requirements Optimization Problem. 5

RP Requirements Problem. 4

SCF Self-Configurable Features. 124

SCS Self-Configurable Systems. 124

SPL Software Product Line. 67

SPLE Software Product Line Engineering. 67

SSBI Self-Service Business Intelligence. 126

TF Transactional Function. 96

UCP Use Case Points. 93

WACC Weighted Average Cost of Capital. 72

WTP Willingness-to-pay. 68, 119

ZJ Zave & Jackson framework. 4

Bibliography

[1] University of Ottawa: jUCMNav. http://softwareengineering.ca/ jucmnav/
(2011).

[2] Function Point Counting Practices Manual. International Function Point
Users Group (IFPUG), 2000.

[3] Quality Management Systems - Fundamentals and Vocabulary (ISO
9000:2005). International Organization for Standardization (ISO),
Geneva, Switzerland, 2005.

[4] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet,
and P. Lahire. On extracting feature models from product descriptions.
In Proceedings of the Sixth International Workshop on Variability Modeling of
Software-Intensive Systems, VaMoS ’12, pages 45–54, New York, NY, USA,
2012. ACM.

[5] M. A. Al-Hajri, A. A. A. Ghani, M. N. Sulaiman, and M. H. Selamat. Mod-
ification of standard function point complexity weights system. Journal of
Systems and Software, 74(2):195–206, 2005.

[6] A. J. Albrecht and J. E. Gaffney. Software function, source lines of code, and
development effort prediction: a software science validation. IEEE transac-
tions on software engineering, (6):639–648, 1983.

[7] A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. The next release
problem. Information and software technology, 43(14):883–890, 2001.

[8] Z. Bakalova, M. Daneva, A. Herrmann, and R. Wieringa. Agile require-
ments prioritization: What happens in practice and what is described in
literature. In International Working Conference on Requirements Engineering:
Foundation for Software Quality, pages 181–195. Springer, 2011.

[9] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated analysis of feature
models: challenges ahead. Commun. ACM, 49:45–47, December 2006.

180 BIBLIOGRAPHY

[10] P. Berander and A. Andrews. Requirements prioritization. In Engineering
and managing software requirements, pages 69–94. Springer, 2005.

[11] D. Bertolini, A. Novikau, A. Susi, and A. Perini. TAOM4E: an Eclipse ready
tool for Agent-Oriented Modeling. Issue on the development process. Tech-
nical report, 2006.

[12] G. Böckle, P. Clements, J. McGregor, D. Muthig, and K. Schmid. A cost
model for software product lines. In F. van der Linden, editor, Software
Product-Family Engineering, volume 3014 of Lecture Notes in Computer Sci-
ence, pages 310–316. Springer Berlin / Heidelberg, 2004.

[13] B. Boehm. Understanding and controlling software costs. Journal of Para-
metrics, 8(1):32–68, 1988.

[14] B. Boehm. A view of 20th and 21st century software engineering. In Pro-
ceedings of the 28th international conference on Software engineering, pages
12–29. ACM, 2006.

[15] B. Boehm, C. Abts, and S. Chulani. Software development cost estimation
approaches — a survey. Annals of software engineering, 10(1-4):177–205,
2000.

[16] B. Boehm, P. Bose, E. Horowitz, and M. J. Lee. Software requirements nego-
tiation and renegotiation aids: A theory-w based spiral approach. In Soft-
ware Engineering, 1995. ICSE 1995. 17th International Conference on, pages
243–243. IEEE, 1995.

[17] B. Boehm et al. Software engineering economics, volume 197. Prentice-hall
Englewood Cliffs (NJ), 1981.

[18] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of soft-
ware quality. In Proceedings of the 2nd international conference on Software
engineering, pages 592–605. IEEE Computer Society Press, 1976.

[19] B. W. Boehm, R. Madachy, B. Steece, et al. Software cost estimation with
Cocomo II with Cdrom. Prentice Hall PTR, 2000.

[20] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[21] J. Brooks, F.P. No silver bullet - essence and accidents of software engineer-
ing. Computer, 20(4):10–19, April 1987.

BIBLIOGRAPHY 181

[22] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw. Engineering self-adaptive systems
through feedback loops. In Software engineering for self-adaptive systems,
pages 48–70. Springer, 2009.

[23] C. Burnay, J. Gillain, I. J. Jureta, and S. Faulkner. On the definition of
self-service systems. In Advances in Conceptual Modeling, pages 107–116.
Springer, 2014.

[24] C. Burnay, I. J. Jureta, and S. Faulkner. A Framework for the Operational-
ization of Monitoring in Business Intelligence Requirements Engineering.
Software and System Modeling (SoSym), in press.

[25] J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-driven in-
formation systems engineering: the tropos project. Information systems,
27(6):365–389, 2002.

[26] S. Cavaleri and K. Obłój. Management Systems: A Global Perspective.
Wadsworth, 1993.

[27] G. Chastek, P. Donohoe, K. C. Kang, and S. Thiel. Product line analysis: A
practical introduction, 1998.

[28] P. P.-S. Chen. The entity-relationship model—toward a unified view of data.
ACM Transactions on Database Systems (TODS), 1(1):9–36, 1976.

[29] B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A goal-based model-
ing approach to develop requirements of an adaptive system with environ-
mental uncertainty. In International Conference on Model Driven Engineering
Languages and Systems, pages 468–483. Springer, 2009.

[30] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-functional require-
ments in software engineering, volume 5. Springer Science & Business Media,
2012.

[31] CISQ Specifications. Automated function points. Technical report, jan
2014. http://www.omg.org/spec/AFP/1.0/.

[32] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a feature: a re-
quirements engineering perspective. In Proceedings of the Theory and prac-
tice of software, 11th international conference on Fundamental approaches to
software engineering, FASE’08/ETAPS’08, pages 16–30, Berlin, Heidelberg,
2008. Springer-Verlag.

182 BIBLIOGRAPHY

[33] J. Cleland-Huang, G. Zemont, and W. Lukasik. A heterogeneous solution
for improving the return on investment of requirements traceability. In
Requirements Engineering Conference, 2004. Proceedings. 12th IEEE Interna-
tional, pages 230–239. IEEE, 2004.

[34] P. Clements. On the importance of product line scope. In F. van der Linden,
editor, Software Product-Family Engineering, volume 2290 of Lecture Notes in
Computer Science, pages 102–113. Springer Berlin / Heidelberg, 2002.

[35] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

[36] A. Cockburn. Writing effective use cases. preparation for Addison-Wesley
Longman. www. infor. uva. es/˜ mlaguna/is2/materiales/BookDraft1. pdf, 1999.

[37] M. Cohn. User stories applied: For agile software development. Addison-
Wesley Professional, 2004.

[38] J. J. Cuadrado-Gallego, A. Abran, P. Rodriguez-Soria, and M. A. Lara. An ex-
perimental study on the conversion between ifpug and ucp functional size
measurement units. Journal of Zhejiang University SCIENCE C, 15(3):161–
173, 2014.

[39] J. J. Cuadrado-Gallego, L. Buglione, M. J. Domínguez-Alda, M. F. de Sevilla,
J. A. G. de Mesa, and O. Demirors. An experimental study on the conversion
between ifpug and cosmic functional size measurement units. Information
and Software Technology, 52(3):347–357, 2010.

[40] A. Dardenne, A. Van Lamsweerde, and S. Fickas. Goal-directed require-
ments acquisition. Science of computer programming, 20(1):3–50, 1993.

[41] A. Davis, O. Dieste, A. Hickey, N. Juristo, and A. M. Moreno. Effective-
ness of requirements elicitation techniques: Empirical results derived from
a systematic review. In 14th IEEE International Requirements Engineering
Conference (RE’06), pages 179–188. IEEE, 2006.

[42] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, et al. Software engineering
for self-adaptive systems: A second research roadmap. In Software Engi-
neering for Self-Adaptive Systems II, pages 1–32. Springer, 2013.

[43] M. Denne and J. Cleland-Huang. The incremental funding method: Data-
driven software development. IEEE Softw., 21(3):39–47, May 2004.

BIBLIOGRAPHY 183

[44] E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert, and A. Rifaut. A knowledge
representation language for requirements engineering. Proceedings of the
IEEE, 74(10):1431–1444, 1986.

[45] W. W. Eckerson. Performance Dashboards: Measuring, Monitoring, and Man-
aging Your Business. John Wiley & Sons, May 2008.

[46] J. Eekels and N. F. Roozenburg. A methodological comparison of the struc-
tures of scientific research and engineering design: their similarities and
differences. Design Studies, 12(4):197–203, 1991.

[47] V. Englebert and P. Heymans. Metadone, a flexible metacase to support
evolution.

[48] N. Ernst, A. Borgida, and I. Jureta. Finding incremental solutions for evolv-
ing requirements. In Requirements Engineering Conference (RE), 2011 19th
IEEE International, pages 15–24. IEEE, 2011.

[49] N. Ernst, A. Borgida, I. Jureta, and J. Mylopoulos. An overview of require-
ments evolution. In Evolving Software Systems, pages 3–32. Springer, 2014.

[50] B. Evelson. The Forrester Wave ™ : Self-Service Business Intelligence Plat-
forms , Q2 2012. Technical report, Forrester, 2012.

[51] F. Ferrucci, C. Gravino, and F. Sarro. Conversion from ifpug fpa to cos-
mic: within-vs without-company equations. In Software Engineering and Ad-
vanced Applications (SEAA), 2014 40th EUROMICRO Conference on, pages
293–300. IEEE, 2014.

[52] A. C. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Incon-
sistency handling in multiperspective specifications. IEEE Transactions on
Software Engineering, 20(8):569–578, 1994.

[53] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso.
Specifying and analyzing early requirements in tropos. Requirements Engi-
neering, 9(2):132–150, 2004.

[54] R. S. Garfinkel and G. L. Nemhauser. Integer programming, volume 4. Wiley
New York, 1972.

[55] C. Gencel and C. Bideau. Exploring the convertibility between ifpug and
cosmic function points: preliminary findings. In Software Measurement and
the 2012 Seventh International Conference on Software Process and Product
Measurement (IWSM-MENSURA), 2012 Joint Conference of the 22nd Interna-
tional Workshop on, pages 170–177. IEEE, 2012.

184 BIBLIOGRAPHY

[56] J. Gillain, C. Burnay, I. Jureta, and S. Faulkner. Analyticgraph.com: Toward
next generation requirements modeling and reasoning tools. In Proceedings
of the 24th IEEE International Requirements Engineering Conference (RE’16).
IEEE, 2016.

[57] J. Gillain, S. Faulkner, P. Heymans, I. Jureta, and M. Snoeck. Product port-
folio scope optimization based on features and goals. In Proceedings of the
16th International Software Product Line Conference-Volume 1, pages 161–
170. ACM, 2012.

[58] J. Gillain, S. Faulkner, I. J. Jureta, and M. Snoeck. Using goals and cus-
tomizable services to improve adaptability of process-based service com-
positions. In IEEE 7th International Conference on Research Challenges in
Information Science (RCIS), pages 1–9. IEEE, 2013.

[59] J. Gillain, I. Jureta, and F. Stéphane. Planning optimal agile releases via
requirements optimization. In Third International Workshop on Artificial In-
telligence for Requirements Engineering (AIRE’16). Springer, 2016.

[60] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Reasoning
with goal models. In Proc. 21st International Conference on Conceptual Mod-
eling (ER’02), pages 167–181, London, UK, 2002. Springer-Verlag.

[61] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Formal rea-
soning techniques for goal models. In Journal on Data Semantics I, pages
1–20. Springer, 2003.

[62] J. A. Goguen and C. Linde. Techniques for requirements elicitation. RE,
93:152–164, 1993.

[63] M. Golfarelli, S. Rizzi, and I. Cella. Beyond data warehousing: what’s next
in business intelligence? In Proc. 7th ACM International Workshop on Data
warehousing and OLAP, pages 1–, 2004.

[64] B. Gonzales-Baixauli, J. Prado Leite, and J. Mylopoulos. Visual variabil-
ity analysis for goal models. In Requirements Engineering Conference, 2004.
Proceedings. 12th IEEE International, pages 198–207. IEEE, 2004.

[65] B. González-baixauli, J. C. Sampaio do Prado Leite, and J. Mylopoulos. Vi-
sual Variability Analysis for Goal Models. In Proc.12th IEEE International
Requirements Engineering Conference, pages 198–207, 2004.

[66] O. C. Gotel and C. Finkelstein. An analysis of the requirements traceability
problem. In Requirements Engineering, 1994., Proceedings of the First Inter-
national Conference on, pages 94–101. IEEE, 1994.

BIBLIOGRAPHY 185

[67] S. Greenspan, J. Mylopoulos, and A. Borgida. Capturing more world knowl-
edge in the requirements specification. In Proc. 6th international conference
on Software Engineering, pages 225–234, 1982.

[68] J. Hagelstein. Declarative approach to information systems requirements.
Knowledge-Based Systems, 1(4):211–220, 1988.

[69] M. Harman. The current state and future of search based software engineer-
ing. In 2007 Future of Software Engineering, pages 342–357. IEEE Computer
Society, 2007.

[70] J. C. Harsanyi. Cardinal welfare, individualistic ethics, and interpersonal
comparisons of utility. In Essays on Ethics, Social Behavior, and Scientific
Explanation, pages 6–23. Springer, 1980.

[71] N. C. Haugen. An empirical study of using planning poker for user story
estimation. In AGILE 2006 (AGILE’06), pages 9–pp. IEEE, 2006.

[72] M. P. E. Heimdahl and N. G. Leveson. Completeness and consistency in
hierarchical state-based requirements. IEEE transactions on Software Engi-
neering, 22(6):363–377, 1996.

[73] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency
checking of requirements specifications. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 5(3):231–261, 1996.

[74] A. Helferich, G. Herzwurm, and S. Schockert. Qfd-ppp: Product line
portfolio planning using quality function deployment. In H. Obbink and
K. Pohl, editors, Software Product Lines, volume 3714 of Lecture Notes in
Computer Science, pages 162–173. Springer Berlin / Heidelberg, 2005.

[75] A. Herrmann and M. Daneva. Requirements prioritization based on benefit
and cost prediction: an agenda for future research. In 2008 16th IEEE Inter-
national Requirements Engineering Conference, pages 125–134. IEEE, 2008.

[76] A. M. Hickey and A. M. Davis. A unified model of requirements elicitation.
Journal of Management Information Systems, 20(4):65–84, 2004.

[77] J. Horkoff, D. Barone, L. Jiang, E. S. Yu, D. Amyot, A. Borgida, and J. My-
lopoulos. Strategic business modeling: representation and reasoning. Soft-
ware & Systems Modeling, Oct. 2012.

[78] C. Imhoff and C. White. Self-Service: Empowering Users to Generate In-
sights. 2011.

186 BIBLIOGRAPHY

[79] I. John and M. Eisenbarth. A decade of scoping: a survey. In Proceedings
of the 13th International Software Product Line Conference, SPLC ’09, pages
31–40, Pittsburgh, PA, USA, 2009. Carnegie Mellon University.

[80] C. Jones. Backfiring: Converting lines of code to function points. Computer,
28(11):87–88, 1995.

[81] M. Jørgensen. A review of studies on expert estimation of software devel-
opment effort. Journal of Systems and Software, 70(1):37–60, 2004.

[82] M. Jorgensen, B. Boehm, and S. Rifkin. Software development effort esti-
mation: Formal models or expert judgment? IEEE software, 26(2):14–19,
2009.

[83] M. Jorgensen and M. Shepperd. A systematic review of software devel-
opment cost estimation studies. IEEE Transactions on software engineering,
33(1):33–53, 2007.

[84] H.-W. Jung. Optimizing value and cost in requirements analysis. IEEE
Softw., 15(4):74–78, July 1998.

[85] I. Jureta, A. Borgida, N. a. Ernst, and J. Mylopoulos. Techne: towards a new
generation of requirements modeling languages with goals, preferences,
and inconsistency handling. In Proc. International Conference on Require-
ments Engineering, 2010.

[86] I. Jureta, J. Mylopoulos, and S. Faulkner. Analysis of multi-party agreement
in requirements validation. In 2009 17th IEEE International Requirements
Engineering Conference, pages 57–66. IEEE, 2009.

[87] I. J. Jureta and S. Faulkner. Clarifying goal models. In Tutorials, posters, pan-
els and industrial contributions at the 26th international conference on Concep-
tual modeling-Volume 83, pages 139–144. Australian Computer Society, Inc.,
2007.

[88] I. J. Jureta, S. Faulkner, and P.-Y. Schobbens. Clear justification of mod-
eling decisions for goal-oriented requirements engineering. Requirements
Engineering, 13(2):87–115, 2008.

[89] I. J. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core ontology
and problem in requirements engineering. IEEE International Requirements
Engineering Conference, pages 71–80, 2008.

[90] N. Kano, N. Seraku, F. Takahashi, and S. Tsuji. Attractive quality and must-
be quality. 1984.

BIBLIOGRAPHY 187

[91] J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for
prioritizing software requirements. Information and Software Technology,
39(14):939–947, 1998.

[92] S. Kelly and J.-P. Tolvanen. Visual domain-specific modeling: Benefits and
experiences of using metacase tools. In International Workshop on Model
Engineering, at ECOOP, volume 2000. Citeseer, 2000.

[93] B. Kitchenham. Counterpoint: The problem with function points. IEEE
software, 14(2):29, 1997.

[94] M. Kolp and Y. Wautelet. DesCARTES Architect: Design CASE Tool for
Agent-Oriented Repositories, Techniques, Environments and Systems. Lou-
vain School of Management, Université catholique de Louvain, Louvain-la-
Neuve, Belgium. http://www.i sys.ucl.ac.be/descartes, 2007.

[95] J. Krogstie, O. I. Lindland, and G. Sindre. Defining quality aspects for con-
ceptual models. In Information System Concepts, pages 216–231. Springer,
1995.

[96] K. Lee and K. Kang. Feature dependency analysis for product line compo-
nent design. In J. Bosch and C. Krueger, editors, Software Reuse: Methods,
Techniques, and Tools, volume 3107 of Lecture Notes in Computer Science,
pages 69–85. Springer Berlin / Heidelberg, 2004.

[97] J. C. S. d. P. Leite and P. A. Freeman. Requirements validation through view-
point resolution. IEEE transactions on Software Engineering, 17(12):1253–
1269, 1991.

[98] E. Letier and A. Van Lamsweerde. Reasoning about partial goal satisfac-
tion for requirements and design engineering. In ACM SIGSOFT Software
Engineering Notes, volume 29, pages 53–62. ACM, 2004.

[99] S. Liaskos, A. Lapouchnian, and Y. Yu. On goal-based variability acquisition
and analysis. In Proc. 14th IEEE International Conference on Requirements
Engineering, pages 79–88, 2006.

[100] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos. Integrating pref-
erences into goal models for requirements engineering. In 2010 18th IEEE
International Requirements Engineering Conference, pages 135–144. IEEE,
2010.

[101] F. J. v. d. Linden, K. Schmid, and E. Rommes. Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007.

188 BIBLIOGRAPHY

[102] H. A. Linstone, M. Turoff, et al. The Delphi method: Techniques and applica-
tions, volume 29. Addison-Wesley Reading, MA, 1975.

[103] G. Low and D. Jeffery. Function points in the estimation and evaluation of
the software process. Software Engineering, IEEE Transactions on, 16(1):64
–71, jan 1990.

[104] V. Mahnič and T. Hovelja. On using planning poker for estimating user
stories. Journal of Systems and Software, 85(9):2086–2095, 2012.

[105] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and G. Saval. Disam-
biguating the documentation of variability in software product lines: A
separation of concerns, formalization and automated analysis. Requirements
Engineering, IEEE International Conference on, 0:243–253, 2007.

[106] J. Müller. Value-based portfolio optimization for software product lines. In
Proceedings of the 15th International Software Product Line Conference, SPLC
’11, pages 15–24, Washington, DC, USA, 2011. IEEE Computer Society.

[107] J. Mylopoulos and A. Borgida. Telos: Representing knowledge about infor-
mation systems. ACM Transactions on Information Systems, 8(4):325–362,
1990.

[108] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunc-
tional requirements: A process-oriented approach. IEEE Transactions on
Software Engineering, 18(6):483–497, 1992.

[109] M. Nasir. A survey of software estimation techniques and project plan-
ning practices. In Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing, 2006. SNPD 2006. Seventh ACIS Inter-
national Conference on, pages 305–310. IEEE, 2006.

[110] D. L. Nazareth and M. A. Rothenberger. Assessing the cost-effectiveness of
software reuse: A model for planned reuse. Journal of Systems and Software,
73(2):245 – 255, 2004.

[111] S. Negash. Business Intelligence. Communications of the Association for In-
formation Systems, 13:177–195, 2004.

[112] R. Neville, A. Sutcliffe, and W. Chang. Optimizing system requirements
with genetic algorithms. In In IEEE World Congress on Computational Intel-
ligence, pages 495–499, 2003.

BIBLIOGRAPHY 189

[113] M. A. Noor, R. Rabiser, and P. Grünbacher. Agile product line planning: A
collaborative approach and a case study. Journal of Systems and Software,
81(6):868–882, 2008.

[114] F. Paetsch, A. Eberlein, and F. Maurer. Requirements engineering and agile
software development. In Proceedings of Twelfth IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enterprises,
2003. WET ICE 2003., page 308. IEEE, 2003.

[115] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design
science research methodology for information systems research. Journal of
management information systems, 24(3):45–77, 2007.

[116] K. Petersen and C. Wohlin. A comparison of issues and advantages in agile
and incremental development between state of the art and an industrial
case. Journal of systems and software, 82(9):1479–1490, 2009.

[117] K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[118] J. Poulin. The economics of product line development. International Journal
of Applied Software Technology, 3:15–28, 1997.

[119] A. Pourshahid, G. Richards, and D. Amyot. Toward a goal-oriented, busi-
ness intelligence decision-making framework. E-Technologies: Transforma-
tion in a Connected World, pages 100–115, 2011.

[120] N. A. Qureshi, I. J. Jureta, and A. Perini. Requirements engineering for
self-adaptive systems: Core ontology and problem statement. In Advanced
Information Systems Engineering, pages 33–47. Springer, 2011.

[121] B. Ramesh and M. Jarke. Toward reference models for requirements trace-
ability. IEEE transactions on software engineering, 27(1):58–93, 2001.

[122] A. Ren and C. Yun. Research of software size estimation method. In Cloud
and Service Computing (CSC), 2013 International Conference on, pages 154–
155. IEEE, 2013.

[123] J. Richardson, K. Schlegel, R. L. Sallam, and B. Hostmann. Magic quadrant
for business intelligence platforms. Core research note . . . , 2008.

[124] C. Rolland, C. Salinesi, and A. Etien. Eliciting gaps in requirements change.
Requirements Engineering, 9(1):1–15, 2004.

190 BIBLIOGRAPHY

[125] G. Ruhe and M. O. Saliu. The art and science of software release planning.
IEEE software, 22(6):47–53, 2005.

[126] T. L. Saaty. Decision making with the analytic hierarchy process. Interna-
tional journal of services sciences, 1(1):83–98, 2008.

[127] O. Saliu and G. Ruhe. Supporting software release planning decisions for
evolving systems. In 29th Annual IEEE/NASA Software Engineering Work-
shop, pages 14–26. IEEE, 2005.

[128] K. Schmid. A comprehensive product line scoping approach and its vali-
dation. In Proceedings of the 24th International Conference on Software Engi-
neering, ICSE ’02, pages 593–603, New York, NY, USA, 2002. ACM.

[129] K. Schmid. An initial model of product line economics. In F. van der Lin-
den, editor, Software Product-Family Engineering, volume 2290 of Lecture
Notes in Computer Science, pages 198–201. Springer Berlin / Heidelberg,
2002.

[130] K. Schwaber. Agile project management with Scrum. Microsoft press, 2004.

[131] K. Schwaber and J. Sutherland. The scrum guide. Scrum Alliance, 2011.

[132] R. Sebastiani, P. Giorgini, and J. Mylopoulos. Simple and minimum-cost
satisfiability for goal models. Advanced Information Systems Engineering,
3084/2004:675–693, 2004.

[133] H. A. Simon. A behavioral model of rational choice. The quarterly journal of
economics, 69(1):99–118, 1955.

[134] H. A. Simon. The sciences of the artificial. MIT press, 1996.

[135] G. Sindre and A. L. Opdahl. Eliciting security requirements with misuse
cases. Requirements engineering, 10(1):34–44, 2005.

[136] I. Sommerville and P. Sawyer. Requirements engineering: a good practice
guide. John Wiley & Sons, Inc., 1997.

[137] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos. (requirement) evolution
requirements for adaptive systems. In Proceedings of the 7th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pages 155–164. IEEE Press, 2012.

[138] S. Supakkul and L. Chung. The RE-Tools: A multi-notational requirements
modeling toolkit. In Proc 20th IEEE International Conference on Requirements
Engineering Conference (RE), pages 333–334, 2012.

BIBLIOGRAPHY 191

[139] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of variability re-
alization techniques: Research Articles. Software Practice & Experience,
35(8):705–754, 2005.

[140] L. J. M. Taborda. Generalized release planning for product line architec-
tures. In R. Nord, editor, Software Product Lines, volume 3154 of Lecture
Notes in Computer Science, pages 153–155. Springer Berlin / Heidelberg,
2004.

[141] T. T. Tun, T. Trew, M. Jackson, R. Laney, and B. Nuseibeh. Specifying
features of an evolving software system. Software: practice & experience,
39(11):973, 2009.

[142] M. I. Ullah, G. Ruhe, and V. Garousi. Decision support for moving from a
single product to a product portfolio in evolving software systems. J. Syst.
Softw., 83(12):2496–2512, Dec. 2010.

[143] R. Valerdi. The constructive systems engineering cost model (COSYSMO). PhD
thesis, University of Southern California, 2005.

[144] A. Van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Proc. 5th IEEE International Symposium on Requirements Engineer-
ing, pages 249–262, 2001.

[145] A. Van Lamsweerde. Requirements engineering: from system goals to uml
models to software specifications. 2009.

[146] A. Van Lamsweerde, R. Darimont, and E. Letier. Managing conflicts in goal-
driven requirements engineering. IEEE transactions on Software engineering,
24(11):908–926, 1998.

[147] R. H. Von Alan, S. T. March, J. Park, and S. Ram. Design science in informa-
tion systems research. MIS quarterly, 28(1):75–105, 2004.

[148] Y. Wautelet, S. Heng, M. Kolp, and I. Mirbel. Unifying and extending user
story models. In International Conference on Advanced Information Systems
Engineering, pages 211–225. Springer, 2014.

[149] Y. Wautelet, S. Heng, M. Kolp, I. Mirbel, and S. Poelmans. Building a ratio-
nale diagram for evaluating user story sets. In Research Challenges in Infor-
mation Science (RCIS), 2016 IEEE Tenth International Conference on, pages
1–12. IEEE, 2016.

192 BIBLIOGRAPHY

[150] Y. Wautelet, C. Schinckus, and M. Kolp. Towards knowledge evolution in
software engineering: An epistemological approach. In Systems Approach
Applications for Developments in Information Technology, pages 8–24. IGI
Global, 2012.

[151] M. Weber. Keys to Sustainable Self-Service Business Intelligence. Business
Intelligence Journal, 18:18–24, 2013.

[152] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M. Bruel. Relax:
Incorporating uncertainty into the specification of self-adaptive systems.
In 2009 17th IEEE International Requirements Engineering Conference, pages
79–88. IEEE, 2009.

[153] L. A. Wolsey. Mixed integer programming. Wiley Encyclopedia of Computer
Science and Engineering, 2008.

[154] E. S. Yu. Towards modelling and reasoning support for early-phase require-
ments engineering. In Requirements Engineering, 1997., Proceedings of the
Third IEEE International Symposium on, pages 226–235. IEEE, 1997.

[155] P. Zave. Classification of research efforts in requirements engineering. ACM
Computing Surveys (CSUR), 29(4):315–321, 1997.

[156] P. Zave and M. Jackson. Four dark corners of requirements engineer-
ing. ACM transactions on Software Engineering and Methodology (TOSEM),
6(1):1–30, 1997.

[157] Y. Zhang, A. Finkelstein, and M. Harman. Search based requirements opti-
misation: Existing work and challenges. In International Working Conference
on Requirements Engineering: Foundation for Software Quality, pages 88–94.
Springer, 2008.

[158] Y. Zhang, M. Harman, and S. A. Mansouri. The multi-objective next re-
lease problem. In Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 1129–1137. ACM, 2007.

[159] D. Zowghi and C. Coulin. Requirements elicitation: A survey of techniques,
approaches, and tools. In Engineering and managing software requirements,
pages 19–46. Springer, 2005.

[160] D. Zowghi and V. Gervasi. On the interplay between consistency, complete-
ness, and correctness in requirements evolution. Information and Software
technology, 45(14):993–1009, 2003.

BIBLIOGRAPHY 193

[161] D. Zowghi and R. Offen. A logical framework for modeling and reasoning
about the evolution of requirements. In Proc. 3rd IEEE International Sympo-
sium on Requirements Engineering, pages 247–257, 1997.

