Importance of the order of the modules in TransMob[1]

M. Dumont 1 J. Barthelemy 2 N. Huynh 2 T. Carletti 1

¹naXys - UNamur

 $^2 {\sf SMART}$ - University of Wollongong

June 2017

3.5

1/25

Importance of the order of the modules in TransMob

・ロト ・ 日 ・ ・ 日 ・ ・

Reference paper

N. Huynh, P. Perez, M. Berryman and J. Barthélemy (2015), Simulating Transport and Land Use Interdependencies for Strategic Urban Planning -An Agent Based Modelling Approach, Systems

3/25

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

< ロト < 同ト < ヨト

3 Local government areas of New South Wales +/- 180,000 inhabitants in 2011 68 Km2

morgane.dumont@unamur.be

・ 同・ ・ ヨ・ ・ Importance of the order of the modules in TransMob

Э

Introduction Dynamical evolution Modelling challenges

Analysis of the order

28 suburbs (in grey) +/- 180,000 inhabitants in 2011 68 Km2

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

Э

Introduction

- 2 Dynamical evolution
 - 3 Modelling challenges
 - 4 Analysis of the order

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

ヘロト ヘ部ト ヘヨト ヘヨト

Dynamical evolution Modelling challenges Analysis of the order

h

7/25

Introduction

2 Dynamical evolution

3 Modelling challenges

Analysis of the order

5 Conclusion

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

ヘロト ヘ部ト ヘヨト ヘヨト

Dynamical evolution Modelling challenges Analysis of the order

Model each process

Analyse different methods and gather the needed data.

Wide range of methods :

- Probabilistic methods based on rates:
- Discrete choice modelling;
- Heuristics models (Genetic Algorithms, ...); •
- ...

< 67 ▶

Order of these processes

- Ageing
- 2 Deaths
- I Births
- Marriages
- Oivorces

 $? \rightleftharpoons ?$

- Deaths
- Ageing
- 8 Births
- Oivorces
- 6 Marriages

1 Introduction

- 2 Dynamical evolution
- 3 Modelling challenges
- Analysis of the order

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

<ロト < 団ト < 団ト < 団ト

Number of possible combinations

We have all possible permutations of the 5 processes

 \Rightarrow 120 possibilities

12/25

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

Number of possible combinations

We have all possible permutations of the 5 processes

 \Rightarrow 120 possibilities

Birth before ageing implies a peak in the number of 1 year old

12/25

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

< □ > < □ >

Number of possible combinations

We have all possible permutations of the 5 processes

 \Rightarrow 120 possibilities

Birth before ageing implies a peak in the number of 1 year old

 \Rightarrow Only orders with birth after ageing \Rightarrow 60 admissible orders

12/25

Number of possible combinations

We have all possible permutations of the 5 processes

 \Rightarrow 120 possibilities

Birth before ageing implies a peak in the number of 1 year old

 \Rightarrow Only orders with birth after ageing \Rightarrow 60 admissible orders

Stability and independence on the seed

Stability for 20 seeds and the 60 admissible orders

Minimum and maximum populations after 20 runs (with different seeds)

Population for each order

15/25

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

Importance of the order

Classification

Classify the generations to analyse the orders that are grouped in a class.

16/25

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

Importance of the order

Classification

Classify the generations to analyse the orders that are grouped in a class.

Input to the classification :

- Number of women after 10 years;
- Number of men after 10 years;

16/25

< ロト < 同ト < 三ト

Importance of the order

Classification

Classify the generations to analyse the orders that are grouped in a class.

Input to the classification :

- Number of women after 10 years;
- Number of men after 10 years;
- Number of less than 30 years old after 10 years;
- Number of 31-60 years old after 10 years;
- Number of more than 61 years old after 10 years.

Correlations

	women	men	less30	31_60	more61
P_age	0.507	0.544	-0.021	0.232	0.678
P_death	-0.555	-0.575	0.020	-0.245	-0.730
P_div	0.189	0.148	0.324	-0.014	0.003
P_mariage	-0.220	-0.192	-0.417	0.031	0.008
P_birth	0.322	0.331	0.124	0.090	0.338
seed	-0.033	-0.027	0.041	-0.189	-0.013

・ロト ・部ト ・モト ・モト

Classification method

K-means

Minimises the variance intra-classes and maximises the variance between classes.

Importance of the order of the modules in TransMob

Classification method

K-means

Minimises the variance intra-classes and maximises the variance between classes.

DF NAMUR

Classification results

19/25

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

Classification results

Classification results

21/25

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

1 Introduction

- 2 Dynamical evolution
- 3 Modelling challenges
- Analysis of the order

Importance of the order of the modules in TransMob

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

• Stability;

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

<ロト < 団ト < 団ト < 団ト

- Stability;
- Importance of the order:

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

<ロ> <同> <同> <同> < 同> < 同>

- Stability;
- Importance of the order:
 - Place of ageing and death;

23/25

- Stability;
- Importance of the order:
 - Place of ageing and death;
 - Age before death \Rightarrow smaller and younger population;

23/25

- Stability;
- Importance of the order:
 - Place of ageing and death;
 - Age before death \Rightarrow smaller and younger population;
 - Age after death \Rightarrow bigger and older population;

23/25

morgane.dumont@unamur.be

- Stability;
- Importance of the order:
 - Place of ageing and death;
 - Age before death \Rightarrow smaller and younger population;
 - Age after death \Rightarrow bigger and older population;
 - Other processes not determinant at this level.

<ロト <同ト < 国ト < 国ト

- Stability;
- Importance of the order:
 - Place of ageing and death;
 - Age before death \Rightarrow smaller and younger population;
 - Age after death \Rightarrow bigger and older population;
 - Other processes not determinant at this level.
- Importance of the order of the modules in agent-based models.

< ロト < 同ト < 三ト <

Future work

- Try to avoid to choose the place of death and age by:
 - Add a birthday to each individual and adapt each probability to the fact that a part of the year he had one year less than the other part (linear combination of the probabilities ponderated by the number of days in each age)
 - Add a death day to determine if, for example, the mother die before giving birth to her baby.

24/25

4 D b 4 B b 4 B b

Acknowledgement

- This research used resources of the "Plateforme Technologique de Calcul Intensif(PTCI)" (http://www.ptci.unamur.be) located at the University of Namur, Belgium, which is supported by the F.R.S.-FNRS under the convention No. 2.5020.11. The PTCI is member of the "Consortium des Équipements de Calcul Intensif (CÉCI)" (http://www.ceci-hpc.be).
- SMART at Wollongong university

• □ ▷ < □ ▷ < □ ▷ </p>

Thanks for your attention !

26/25

morgane.dumont@unamur.be

Importance of the order of the modules in TransMob

・ロト ・部ト ・モト ・モト