Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

DOCTOR OF SCIENCES

Behavioural model-based testing of software product lines

Devroey, Xavier

Award date:
2017

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/e5686bd3-640e-4292-b6db-3339452a5a75

Behavioural model-based testing
of software product lines

Xavier Devroey

Jury
Dr. Benoit Baudry

Inria, Rennes, France

Prof. Myra B. Cohen
University of Nebraska-Lincoln, USA
Prof. Vincent Englebert
University of Namur, Belgium
Prof. Patrick Heymans
University of Namur, Belgium
Dr. Axel Legay

University of Namur, Belgium
Dr. Gilles Perrouin
University of Namur, Belgium
Prof. Pierre-Yves Schobbens
University of Namur, Belgium

A thesis submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy in the subject of Computer Science

Supervised by Prof. Pierre-Yves Schobbens and Prof. Patrick Heymans

University of Namur Ea

UNIVERSITE
PReCISE Research Center DE NAMUR

FACULTE
D'INFORMATIQUE

© Presses universitaires de Namur & Xavier Devroey
Rempart de la Vierge, 13
B - 5000 Namur (Belgique)

Toute reproduction d’'un extrait quelconque de ce livre, hors des limites restrictives
prévues par la loi, par quelque procédé que ce soit, et notamment par photocopie
ou scanner, est strictement interdite pour tous pays.

Imprimé en Belgique
ISBN : 978-2-87037-997-4
Dépot légal: D/2017/1881/35

“It’'s a dangerous business, Frodo, going out your door. You step onto the road, and if
you don't keep your feet, there’s no knowing where you might be swept off to.”

— J.R.R. Tolkien, The Fellowship of the Ring

ABSTRACT

Software Product Line (SPL) engineering is a sub-discipline of software engineering
based on the idea that products of the same family can be built by systematically
reusing assets, some of them being common to all members whereas others are only
shared by a subset of the family. Since the inception of SPL engineering, concerns
about testing SPLs emerged. The large number of possible products that may be
derived from a SPL induces an even larger set of test cases, which makes SPL testing
avery challenging activity. Past research focused on how to reuse testing assets from
one product to another. In order to find as much bugs as possible without testing
all the products, sampling techniques (like Combinatorial Interaction Testing (CIT)
for SPLs) produce a representative subset of products to test in priority. They work
in a family-based fashion by reasoning on a variability model of the product line.
However they do not take other aspects, like behaviour of the products, into account.

In this thesis, we present a testing framework to perform family-based SPL be-
havioural model-based testing. We rely on Featured Transition Systems (FTSs), a
compact formalism to represent the behaviour of a SPL, to perform various testing
activities. Test case selection and prioritization are driven by the behavioural as-
pect of the SPL and may be done using three kinds of selection criteria: structural
coverage criteria are based on the structure of the FTS; dissimilarity criteria seek to
increase diversity amongst the selected test cases; and statistical criteria consider
the usage of the system to drive the selection. Mutation analysis is performed using
our Featured Mutants Model (FMM) and includes equivalent mutants detection at
the model level. The result is a set of relevant test cases selected at the family level
that may be used to define products to test in priority.

These approaches have been implemented in an open-source Variability In-
tensive Behavioural teSting (VIBeS) framework and evaluated on various models
of different sizes, representing embedded systems and web-applications. Results
demonstrate the applicability of FTSs to select and prioritize test cases and to per-
form mutation analysis, and confirm the relevance of combining variability models
and behavioural models to enhance SPL model-based and mutation testing.

Keywords: model-based testing, software product line engineering, software
testing

RESUME

Le génie des Lignes de Produits Logiciels (LPL) est une sous-discipline du génie logi-
ciel basée sur I'idée que les produits d'une méme famille peuvent étre construits de
maniere systématique en réutilisant des briques de base. Certaines sont communes
a tous les produits de la famille et certaines sont spécifiques a un sous-ensemble
de ces produits. Depuis la création de la discipline, le génie des LPLs s’intéresse
a la question du test d'une LPL. Le grand nombre de produits possibles pouvant
étre dérivés d'une LPL amene un nombre encore plus important de cas de test. Les
recherches précédentes se sont focalisées sur la réutilisation (d'une partie de) ces cas
de test d'un produit a 'autre. Afin de ne pas devoir tester tous les produits possibles,
des techniques d’échantillonnage produisent un sous-ensemble représentatif de
produits a tester en priorité. Ces techniques raisonnent au niveau de la famille
de produits en se basant sur le modele de variabilité de la LPL. Cependant, elles
ne prennent pas en compte d’autres aspects. Par exemple, le comportement des
produits.

Dans cette these, nous présentons une infrastructure pour effectuer du test
de LPL dirigé par les modeles, en raisonnant au niveau de la famille de produits.
Nous utilisons des Featured Transition Systems (FTSs), un formalisme compact pour
représenter le comportement d'une LPL dans son ensemble, afin d’effectuer les
différentes activités de test. La sélection et la priorisation de cas de test se font
sur base du comportement de la LPL et sont dirigées par trois types de critéres
de couverture : les critéres basés sur la structure du FTS, les critéres basés sur la
dissimilarité des cas de test et les criteres statistiques basés sur I'utilisation effective
des produits. Nous effectuons également une analyse des cas en test en utilisant
la mutation et notre Featured Mutants Model (FMM). Cette analyse comprend une
détection des mutants équivalents. Le résultat d'un processus de sélection est un
ensemble de cas de test, définis pour la famille de produits et pouvant servir a définir
les produits a tester en priorité.

Lapproche a été implémentée dans un Variability Intensive Behavioural teSting
(VIBeS) framework open-source et évaluée sur différents cas d’étude de différentes
tailles, représentant des systemes embarqués et des applications Web. Les résultats
démontrent I'applicabilité de 'approche pour sélectionner des cas de test et ef-
fectuer une analyse basée sur la mutation. Ils confirment la pertinence de combiner
modeles de comportement et de variabilité pour améliorer le test de LPL dirigé par
les modeles et la mutation.

Mots clés : test dirigé par les modeéles, lignes de produits logiciels, test logiciel

vii

ACKNOWLEDGEMENTS

The contributions presented in this thesis would not have been possible without the
assistance and support of many people. First, I would like to thank my supervisors,
Prof. Pierre-Yves Schobbens and Prof. Patrick Heymans for their advice and help
during the past six years. They have very different backgrounds and work in different
research fields, which was very enriching for a young Ph.D. student. Being part of
their research group was an incredible opportunity that gave me the chance to do lot
of interesting things (sic) and meet a lot of different people. I would like to offer my
special thanks to Dr. Gilles Perrouin for his invaluable help all the way long. He is
an incredible researcher and an endless source of ideas and advice on research and
academic life as a Ph.D. student. Thank you Gilles for the guidance and numerous
scientific (and non scientific) discussions!

I'would also like to thank collaborators whose meeting contributed to develop
this thesis: Dr. Mike Papadakis who introduced us to mutation testing and to whom,
after this last months spent writing, I will be able to answer yes to the question
everything good?; Dr. Axel Legay for his help on the formal aspects of FTSs, statistical
testing, and automata language equivalence; Dr. Maxime Cordy for his expertise
on FTSs and model checking; and Dr. Benoit Baudry for accepting being part of the
thesis support committee and for the valuable comments after the mid-term test. All
my thanks to the members of the jury for the time spent reading this manuscript and
for the feedbacks: Dr. Benoit Baudry, Prof. Myra B. Cohen, Prof. Vincent Englebert,
Dr. Axel Legay, and Dr. Gilles Perrouin.

Special thanks to my colleagues Benoit V. for the (numerous) chats and debates
contributing to make every coffee break unique'!, Aude N. for the everlasting good
mood and being a geek amongst geeks, Catherine for the pep talks and the enthusi-
asm each time we come up with a new idea, Julian a.k.a. best sysadmin ever, Anthony
S. for the (long-overdue) bunker sheltering, Moussa who accepted to step into the
compiler project renewal, Hajer and Nesrine, Cédric and Pierre-Antoine, Saria, Ab-
del, Fabian and Nicolas, Maxime and Loup, Julie, Tony, Adrien, James, Benoit E,
Eleonora, and all the other players of the Friday lunch break, for the all good times
spent together and contribution to make the Computer Science Faculty a great place
to work.

Thank you Mathieu, Jeremy, Thomas, Axel, and Alexandre for accepting to col-
laborate with us and the good work that contributed to the research presented in

1. and for the logo!

ix

this thesis. Thank you Maxime, Geoffroy, Guillaume, and all the students I have
had the pleasure to work with, for the fun and not complaining too much about the
(sometimes crazy) teaching assistant I may have been during the past 6 years.

To my longtime friends: thank you Steven, Aude, Marie, Francois, Laurent, Sté-
fanie, Aurore, Ariane, and Vincent for your friendship and support during all those
years, and the many years to come.

Finally, I would like to express my utmost gratitude and love to my parents who
always encouraged me to follow my dreams and supported me.

CONTENTS

Contents xi
List of Figures Xxv
List of Tables xvii
Preface xix
Context and problem statement XX
Contributions e xxi
Structureofthethesis xxiii
Publications e xxiii
I Background 1
1 Software product lines 3
1.1 Software product line engineering 4
1.2 Featuremodels. 5
1.3 Behavioural modellisations of software productlines 6
1.4 Wrapup o oo e e e e e 11
2 Software and software product lines testing 13
2.1 Softwaretesting 14
2.2 Model-basedtesting. 15
2.3 Software productlinetesting 16
2.4 Model-based software product line testing 18
25 Wrapup o o o e e e e 21
II Testing Framework 23
3 Framework overview 25
3.1 OVerview 25
3.2 UncoveredaspectS. v v v v i i e e e e e 27
33 Wrapup oo e e 28

CONTENTS

4

6

Case studies

4.1 Sodavendingmachine,
4.2 Cardpaymentterminal
43 MInepumpttt e e
4.4 Sferion™landing symbology function
4.5 WordPress, anopen-source CMS
4.6 Claroline, a course managementsystem
4.7 Models characteristics
4.8 AdditionalrandomITSmodels
4.9 Threatstovalidity
410 WIapup - - - o o o e

Behavioural test case selection

5.1 AbstracttestcaseoveranFTS
5.2 Structural selectioncriteria
5.3 Dissimilarity selectioncriteria
5.4 Usageselectioncriteria
55 Wrapup e

Mutation analysis

6.1 Model-based mutationanalysis
6.2 Featured mutantsmodel
6.3 Equivalent mutantsproblem
6.4 Relatedwork
6.5 Wrapup e

Empirical assessment

7.1 All-states selection criteria
7.2 Dissimilarity selectioncriteria
7.3 Behavioural coverage of products sampling techniques
7.4 Usage selection and prioritization criteria
7.5 Mutantsexecution. L Lo e
7.6 Mutant equivalenceanalysis L o L L
77 WIADUD . . . v v o et e e e e e e e e

III Implementation

8

9

Xii

Variability Intensive Behavioural teSting framework

8.1 Architecture
8.2 APIusage e
83 Wrapup e

Test case concretization using AbsCon
9.1 TestautomationusingQTaste
9.2 Testcasesconcretization

29
29
29
32
32
33
38
40
41
42
42

43
43
47
54
61
68

69
70
72
80
85
87

89
89
92
97
101
107
111
119

121

123
123
126
132

Contents

9.3 Implementation

9.4 Discussion

9.5 Relatedwork

9.6 Wrap up and perspectives
IV Postface

10 Conclusion and future research directions

10.1 Summary of contributions
10.2 Perspectives and futurework
10.3 Finalremarks

A Mutation operators

Al Statemissing(SMI)
A2 Wronginitial state (WIS)
A3 Actionexchange (AEX)
A4 Actionmissing(AMI)
A5 Transition missing (TMI)
A.6 Transitionadd (TAD)

A7 Transition destination exchange (TDE)

B Mutants execution time results

B.1 SVMach.
B2 Minepump
B3 Claroline
B4 AGE-RR
B5 Elsa-RR
B.6 Elsa-RRN
B7 Random

C Mutants equivalence analysis results

C1l SVMach.
C2 CPTerm.
C3 Minepumpt
C4 Claroline,
C5 Elsa-RR
C6 Elsa-RRN
C7 AGE-RR
C8 AGE-RRN
C9 Randommodels

Bibliography

Glossary

163

.......... 163

167

.......... 167

xiii

1.1
1.2
1.3
1.4
1.5

2.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3

7.4

7.5
7.6

LIST OF FIGURES

The Software Product Line (SPL) development processes [252] 4
Card payment terminal simplified featuremodel 5
SPL behavioural composition-based modelling example [259] 7
Card payment terminal simplified featured transition system 8
Card payment terminal product Labelled Transition System (LTS) 9
Model-based testing process o e 16
Behavioural SPL testing framework overview 26
Sodavendingmachine o o L. 30
Card paymentterminal 31
Minepump featuremodel Lo L. 32
Sferion™landing symbology function feature model 33
Simplified WordPress featuremodel 34
Claroline featuremodel 39
Soda vending machine usagemodel 61
Sodavending machine FTS’ 66
Card payment terminal product original LTS 71
Card payment terminal productmutants 72
Card payment terminal productFMM 73
An example of mutation, the AEX operator 75
The order 2 FMM of the card payment terminal example 79

Structural coverages of the allstates, random1, and random2 test suites 90

Faults coverage of the all-actions, random, and dissimilar test suites .. 94
Behavioural coverage of products selected using SPLCAT and PLEDGE

00ls . . . 99
Execution time required by test cases to executed with live and killed

mutants and the FMM mutants 109
Execution time of the equivalent mutant detection approaches 114
Non-equivalent mutant classificationrecall 115

LIST OF FIGURES

7.7 Worst execution time of the equivalent mutant detection using the model
itselfasmutant L e 117
8.1 Variability Intensive Behavioural teSting (VIBeS) modules dependency
graph L 124
8.2 VIBeS type hierarchy classdiagram 125
8.3 VIBeS transition systems classdiagram 126
9.1 MappingsinAbsCon 136
9.2 Web-applications SUT’s interface class diagram (web) 139
9.3 AbsConplugin printscreens oL 142
9.4 AbsConpackagesdiagram 143
10.1 Example of syntactic mutation of a feature model [19] 152
10.2 Card payment terminal productline FFTS 153

4.1
4.2
4.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

LIST OF TABLES

Characteristics of the FTSs of the different case studies 40
Characteristics of the Feature Models (FMs) of the different case studies 41
Characteristics of therandom LTSs 42
Number of test cases and selection time of the all-actions test suites . . 93
Number of faulty states, transitions, and actions seeded in the models . 93
Hypervolumes values for the Claroline case-study 95
SPLCAT and PLEDGE parameters 98
Claroline family-based test selectionresults 103
Sferion™landing symbology function family-based test selection results 104
Test suites characteristics 108
Mutants count per operatoro e e 108
All-order mutation sCores v it e 110
P-values of the Wilcoxon rank sum test between the WM RS/BS execution

times and the WM ALE executiontimes. 118

Xvii

PREFACE

Since the first computer program written by Ada Lovelace in the middle of the 19th
century, variability allows one to reuse pieces of code in different contexts. For
instance, variations in the input of a program triggers different behaviours and
produces different outputs. In the same way, procedural abstraction allows to reuse
procedures and functions in different contexts. This goes even further with the
development of object oriented and other programming paradigms. In 1968, during
the first NATO software engineering conference [222], Malcolm Douglas Mcllroy,
one of the pioneer of component-based software engineering, gave a talk entitled
“Mass Produced Software Components” [209] where he advocates the development
of component families: “Software components (routines), to be widely applicable to
different machines and users, should be available in families arranged according to
precision, robustness, generality and timespace performance.” Almost fifty years later,
lot of systems are variability intensive. They are configurable or use a plugin-based
architecture to be customizable in order to adapt to specific needs without requiring
further development.

Those ideas are not new. In the early 20th century, Henry Ford achieved mass
production of the Model T car by standardizing its components (to make then
interchangeable) and reorganising the manufacturing process around an assembly
line with dedicated tools and equipments, to allow unskilled workers to contribute
to the building process. For years, the manufacturing industry achieved economies
of scope based on this idea that a product of a certain family (e.g., cars) may be
built by systematically reusing assets, with some of them common to all family
members (e.g., wheels or bodywork) and others only shared by a subset of the family
(e.g., automatic transmission, manual transmission, or leather seats). The Software
Product Line (SPL) paradigm [252] applies this idea to software products. In SPL
engineering, we usually associate assets with so-called features and we regard a
product as a combination of features. Features can be designed and specified using
various modelling languages, while the set of legal combinations of features (that is,
the set of valid products) is captured by a Feature Model (FM) [159].

As in single-system development, the engineer has to improve confidence in the
different products of an SPL by using appropriate quality assurance techniques. Two
popular approaches are model checking and testing. Model checking [59] performs
systematic analyses on behavioural models in order to assess the satisfaction of the
intended temporal and qualitative requirements and properties. As a complement
to model-checking, testing [206] determines whether or not actual executions of the

PREFACE

system behave as expected.

Context and problem statement

In this SPL context, the large number of possible combinations of features makes
product-based analysis (i.e., testing or model checking every possible software prod-
uct) intractable. For instance, the Linux kernel for x86 architectures (v.2.6.28.6) has
5,426 features (of which 4,744 may be selected by the end users) [16,284], which gives
billions of possible products. As a point of comparison, an SPL with 33 independent
and optional features is enough to build a unique product for every human on earth.
An SPL with 320 independent and optional features has more products than the
estimated number of atoms in the universe. Even small product lines requires a lot
of effort to achieve a complete product-based analysis: in their recent work, Halin
etal. [126,127] report their effort to perform a complete product-based testing of
JHipster, an open-source generator for Web applications with 48 features. It took
8 person/month to set up the testing infrastructure, 5.2 Terrabytes diskspace, and
4,376 hours (around 182 days) computation time to test all 26,256 products. Consid-
ering development practices, like continuous integration and delivery, fast release,
etc., this brute force approach cannot be applied in many cases.

To cope with the large number of products in a SPL, the model checking commu-
nity devised, over the years, several efficient family-based analysis [301]: i.e., anal-
ysis performed on the reusable assets of the SPL (called domain artefacts) instead
of products, and using the feature model to consider valid combinations of those
assets during the analysis. For instance, model checking of SPL specifications, ex-
pressed using a transition system with variability information [63, 105], allows to
ensure that a given property holds for every product of the product line. Many other
formal approaches, meant to detect undesired feature interactions (i.e., undesired
behaviour emerging when two or more features are involved in the same product),
have been developed [52,225] and successfully used to validate abstract models of
SPLs [142,282,320]. Scalable application of formal methods to source code remains
an open problem [16].

During the last decade, the research community has showed a growing interest
in SPL testing [138]. SPL testing aims at validating an SPL by executing a good
enough finite set of test cases (on a set of products). As testing all the products of a
productline is infeasible, the main challenge is to select a representative subset of all
the products and execute test cases over this subset. First work on behavioural SPL
testing are mainly focused on how to reuse test cases from one product to another (by
deriving them automatically from domain artefacts for instance) [138,234]. Despite
those advances, the development of practical SPL testing techniques is still in an
immature stage [92,98]. In particular, one question remains:

How to select a representative subset of products and with which test
cases?

Recent work tackles this problem by using sampling over the feature model.
Combinatorial Interaction Testing (CIT) techniques have been adapted to the SPL

Contributions

context [69,140,156,198,249,250] to ensure that combinations of features are present
in at least one product to test: e.g., pairwise sampling ensures that all valid pairs of
features are present in at least one product. Other approaches use a dissimilarity
heuristic to sample, based on a time and testing budget, a set of products as dissimi-
lar as possible in terms of features [8, 135]. Or use other information from the feature
model (e.g., features cost) [99,137,272,274]. The large majority of CIT approaches
are model-based and use the feature model as main artefact to perform a product
sampling, answering only to the former part of the question.

Contributions

In this thesis, we consider the behaviour of the SPL in addition of the feature model
as the main driver of the test selection process. We present a model-based testing
framework to select test cases and products, based on a behavioural model of the
SPL. We rely on the advances made by the model checking community to describe
SPL behaviour in a Featured Transition System (FTS) [63], a compact formalism
used to represent the behaviour as a transition system where transitions are tagged
with feature expressions specifying which products may fire the transition. As for
other SPL approaches [163,224,294], FTSs are executed in a family-based fashion:
i.e., executions of parts common to several products are factorized, thanks to a
variability aware execution engine. We define the notion of abstract test case as
a sequence of actions to perform on the system and show how to, based on a set
of abstract test cases, we sample relevant products. We devise several abstract test
case selection strategies (with the corresponding algorithms) and define a compact
formalism to improve mutation analysis. The different selection strategies and
mutation analysis are implemented in our Variability Intensive Behavioural teSting
(VIBeS) framework, and evaluated on several case studies, some of them part of the
research literature and some of them specific to this thesis. Finally, we show how the
abstract test cases are concretized using an Abstract test case Concretizer (AbsCon),
a plugin for the QSpin Tailored Automated System Test Environment (QTaste).

Abstract test case over an FTS: Contrary to existing sampling based approaches,
we do not seek to cover combinations of features but rather the behaviour of the
product line. In this thesis, we adopt a model-based approach to select test cases
from a FTS, representing this behaviour. Our first contribution is the definition of
abstract test case and how it can be used to sample relevant products to test.

Abstract test case selection based on the FTS structure: Our first abstract test
case selection strategy is based on the structure of the FTS. We redefine the states,
actions, transitions, transition-pairs, and paths coverage for FTSs and provide a
first all-states selection algorithm. We also define the notions of abstract test case
and test suite minimality. Finally, we provide a prioritization strategy to order
products to test according to the test cases they can execute.

PREFACE

Abstract test case selection based on a dissimilarity heuristicc The second ab-
stract test case selection strategy uses a dissimilarity heuristic, which aims to max-
imise the fault detection rate by increasing diversity among abstract test cases
[56, 131]. In this thesis, we present a configurable dissimilar abstract test case
selection algorithm that uses random abstract test case selection and a distance
function to guide the selection. The distance is defined on the actions of the abstract
test cases that may optionally be combined, using a binary operator, with a distance
(the Jaccard index product dissimilarity) defined over the set of products able to
execute those abstract test cases. To characterise the actions used in an abstract
test case, we consider set-based distances (Hamming, Jaccard, dice, and anti-dice
distances) and a sequence-based distance (Levenshtein or edit distance).

Abstract test case selection based on usages: The last abstract test case selection
strategy described in this thesis is based on the usage of the product line. This work
is inspired from statistical testing [316], which selects abstract test cases from a
usage model represented by a Discrete-Time Markov Chain (DTMC). The idea is to
select abstract test cases from the usage model (and the FTS, since the usage model
is agnostic of the variability constraints of the SPL), based on their probability to
happen. The set of selected abstract test cases is also used to prioritize products to
test, based on their behavioural usages.

Compact mutants model: Mutation analysis is a popular technique to assess the
adequacy of a test suite. The idea is to inject artificial faults (using mutation op-
erators) in the system under test and to execute the test suite against each one of
the faulty systems (i.e., mutants). This analysis may take time for a large number of
mutants. In this thesis, we propose a product line approach of model-based muta-
tion testing. Since mutants are small variations of the system, mutants are seen as
members (i.e., products) of a mutants family (i.e., a product line of mutants). We de-
fine a compact mutants model using variability mechanisms: the Featured Mutants
Model (FMM). We provide algorithms and mutation operators to build a FMM and
describe its mechanism allowing to execute a test case on all mutants in one single
execution. Finally, we show how FMM is used as a compact representation for first
and higher orders mutants.

Equivalent mutant detection using automata language equivalence: Equivalent
mutants are mutants whose behaviour is identical to the original system. As they
cannot be distinguished by any test case, they do not bring new value to the analysis.
This thesis enhance the model-based mutation testing research field by addressing
one of its main challenge: the Equivalent Mutants Problem (EMP). We express EMP
as a classical problem in automata theory, Automata Language Equivalence (ALE),
and see how language equivalence may be used to detect equivalent mutants in
strong and weak mutation scenarios. As baseline, we also provide two randomized
simulation techniques to detect equivalent mutants: Random Simulation (RS) and
Biased Simulation (BS).

xxii

Structure of the thesis

VIBeS implementation: VIBeS is implemented in Java as an open-source multi-
module Maven project. It allows one to define FTSs and perform the various testing
activities described in this thesis using a front end Application Programming Inter-
face (API). The source code is publicly available on GitHub (https://github.com/
xdevroey/vibes) and the Maven artefacts have been deployed in the Maven central
repository, making them available to other Maven users.

SPL case studies: We manually defined one new case study: the card payment
terminal SPL, based on standard documentation [97]. We also semi-automatically
reverse engineer five models of two Web applications, based on several months of
log entries: one model for Claroline, a course management system, and four models
for WordPress, an open-source Content Management System (CMS). The feature
models, FTSs, and usage models are publicly available online (https://projects.info.
unamur.be/vibes/) and may be used or adapted by the research community.

Structure of the thesis

The remainder of this manuscript is divided as follows: Part I gives the background
used in the following parts. Chapter 1 introduces software product lines, feature
models, and featured transition systems. Chapter2 presents the state of the art in
product line testing. Part II contains the main contributions of this thesis. It presents
our model-driven behavioural testing framework in Chapter 3 and the case stud-
ies used to illustrate and assess the different approaches in Chapter 4. Chapter 5
describes the different abstract test case selection techniques: structural coverage
driven, dissimilarity driven, and usage-base driven. Chapter 6 presents mutation
analysis using FMMs and how to detect equivalent mutants using automata lan-
guage equivalence and random simulation. Finally, chapter 7 presents the empirical
assessments of the elements from Chapters 5 and 6. Implementations are described
in Part III. Chapter 8 presents VIBeS and Chapter 9 shows how abstract test cases
may be concretized using AbsCon. Finally, Part IV and Chapter 10 conclude this
thesis and present research perspectives.

Publications

The content of this thesis is based upon, reuses, and extends the following peer-
reviewed publications of the author:

Journal

[84] Xavier Devroey, Gilles Perrouin, Maxime Cordy, Hamza Samih, Axel Legay,
Pierre-Yves Schobbens, and Patrick Heymans. Statistical prioritization for
software product line testing: an experience report. Software & Systems Mod-
eling, 16(1):153-171, feb 2017

xXxiii

https://github.com/xdevroey/vibes
https://github.com/xdevroey/vibes
https://projects.info.unamur.be/vibes/
https://projects.info.unamur.be/vibes/

PREFACE

Conferences

[80]

[83]

(86]

(89]

[182]

[90]

Xavier Devroey, Maxime Cordy, Gilles Perrouin, Eun-Young Kang, Pierre-Yves
Schobbens, Patrick Heymans, Axel Legay, and Benoit Baudry. A Vision for Be-
havioural Model-Driven Validation of Software Product Lines. In Margaria T.,
Steffen B., and Merten M., editors, Leveraging Applications of Formal Meth-
ods, Verification and Validation. Technologies for Mastering Change: 5th
International Symposium, ISoLA 2012, Proceedings, Part I, volume 7609 of
LNCS, pages 208-222, Heraklion, Crete, Greece, 2012. Springer

Xavier Devroey, Gilles Perrouin, Maxime Cordy, Mike Papadakis, Axel Legay;,
and Pierre-Yves Schobbens. A variability perspective of mutation analysis. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering - FSE 2014, pages 841-844, Hong Kong, 2014.
ACM Press

Xavier Devroey, Gilles Perrouin, Axel Legay, Maxime Cordy, Pierre-yves Schob-
bens, and Patrick Heymans. Coverage Criteria for Behavioural Testing of Soft-
ware Product Lines. In Tiziana Margaria and Bernhard Steffen, editors, Lever-
aging Applications of Formal Methods, Verification and Validation. Tech-
nologies for Mastering Change: 6th International Symposium, ISoLA 2014,
Proceedings, Part I, volume 8802 of LNCS, pages 336-350, Corfu, Greece, 2014.
Springer

Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves Schob-
bens, and Patrick Heymans. Featured model-based mutation analysis. In Pro-
ceedings of the 38th International Conference on Software Engineering -
ICSE 16, pages 655-666, Austin, Texas, USA, may 2016. ACM Press

Axel Legay, Gilles Perrouin, Xavier Devroey, Maxime Cordy, Pierre-Yves Schob-
bens, and Patrick Heymans. On Featured Transition Systems. In Bernhard
Steffen, Christel Baier, Mark van den Brand, Johann Eder, Mike Hinchey,
and Tiziana Margaria, editors, SOFSEM 2017: Theory and Practice of Com-
puter Science, volume 10139 of LNCS, pages 453-463, Limerick, Ireland, 2017.
Springer (invited paper)

Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves Schob-
bens, and Patrick Heymans. Automata Language Equivalence vs. Simulations
for Model-Based Mutant Equivalence: An Empirical Evaluation. In 2017 IEEE
International Conference on Software Testing, Verification and Validation
(ICST), pages 424-429, Tokyo, Japan, 2017. IEEE

Workshops

(83]

Xxiv

Xavier Devroey, Gilles Perrouin, Maxime Cordy, Pierre-Yves Schobbens, Axel
Legay, and Patrick Heymans. Towards statistical prioritization for software
product lines testing. In Andrzej Wasowski and Thorsten Weyer, editors, Pro-
ceedings of the Eighth International Workshop on Variability Modelling of
Software-Intensive Systems - VaMoS ’14, pages 1-7, Nice, France, 2013. ACM
Press

Workshops

[91]

(87]

(81]

(88]

[127]

Xavier Devroey, Gilles Perrouin, and Pierre-Yves Schobbens. Abstract test case
generation for behavioural testing of software product lines. In Proceedings
of the 18th International Software Product Line Conference on Compan-
ion Volume for Workshops, Demonstrations and Tools - SPLC’14, volume 2,
pages 86-93, Florence, Italy, 2014. ACM Press

Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. Covering SPL Behaviour with Sampled Configurations. In Pro-
ceedings of the Ninth International Workshop on Variability Modelling of
Software-intensive Systems - VaMoS ’15, pages 59-66, Hildesheim, Germany,
2015. ACM Press

Xavier Devroey, Maxime Cordy, Pierre-Yves Schobbens, Axel Legay, and Patrick
Heymans. State machine flattening, a mapping study and tools assessment. In
2015 IEEE Eighth International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW), pages 1-8, Graz, Austria, apr 2015.
IEEE

Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. Search-based Similarity-driven Behavioural SPL Testing. In Pro-
ceedings of the Tenth International Workshop on Variability Modelling of
Software-intensive Systems - VaMoS ’16, pages 89-96, Salvador, Brazil, jan
2016. ACM Press

Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Patrick Heymans. Yo variability! JHipster: A Playground for Web-Apps
Analyses. In Proceedings of the Eleventh International Workshop on Vari-
ability Modelling of Software-intensive Systems - VAMOS ’17, pages 44-51,
Eindhoven, Netherlands, feb 2017. ACM Press

Partl

Background

CHAPTER

SOFTWARE PRODUCT LINES

Product line engineering is a very common practice in the manufacturing indus-
try. It allows the large-scale production of goods and services tailored to individual
customers’ needs, called mass customisation [252]. Success stories come from the
automotive industry where product line have been invented in the first half of the
20th century. Under the market pressure, the development of product line engineer-
ing allows nowadays a customer to configure his car and have it delivered within
three months. Product line and mass customisation are also used in other domains
to personalise services for instance: with the latest developments of medical research
(e.g., imaging, DNA analysis, etc.) treatments plans are now customised to target the
exact disease, reduce side effects, and accelerate recovery. To be tractable, a product
line relies on platforms, i.e., any base of technologies on which other technologies or
processes are built [252].

Software Product Line (SPL) engineering is the application of those ideas to
software development: it is the paradigm to develop software applications using
platforms and mass customisation [252]. One software, i.e., a product, is built by
combining commonalities, common to all the products of the product line, and
variabilities, specific to only some products.

This chapter presents the main ideas and concepts of SPL engineering used in
this thesis. Section 1.1 presents the development of SPLs and section 1.2 presents
how variability is captured and managed in this process. Section 1.3 discusses
different modelisation approaches to describe SPL behaviour, including featured
transition systems, the formalism we use in the remainder of this thesis.

CHAPTER 1. SOFTWARE PRODUCT LINES

Product
Management
- J .
.E | R qualn o Domain Domain Domain
2 I-Zef;iz:em;:g [Design | Realisation Testing
£)
=
= 1 4} 1
g
g Domain Artefacts incl. Variability Model
=
=]
5583133 - %E‘gw S SRR © W ‘
Componenis
‘ N/ A4 A4 A4
£ L
'5 R‘:pp}fcﬁ:):ts Application Application Application
_a Er?;ineering '~ Design | Realisaion =~ Testing
r 4 4 3 1
=
g
H;- Application 1 — Artefacts incl. Variability Model
e S Ry &GS o oFE
eqmremmts Architecture Components

Figure 1.1: The SPL development processes [252]

1.1 Software product line engineering

SPL engineering consists in two development processes presented in Figure 1.1 [252]:
domain engineering, where commonalities and variabilities of the product line are
defined and realised, and application engineering, where applications of the product
line are built by reusing domain artefacts and exploiting the product line variability.
Each one of those two processes consists of several activities (including testing)
and produces different artefacts. Domain artefacts are reused during application
engineering in order to built one particular product.

This thesis focuses on behavioural testing at the domain level. We seek to select
relevant behaviours, as well as relevant products able to execute those behaviours
in order to ensure that the SPL fulfils its specification. To do so, we use a model-
based approach, with a model abstracting the behaviour of all the SPL (including
product-specific and SPL-common behaviours).

Commonalities and variabilities are captured trough the notion of feature. A
feature is a characteristic or end-user-visible behaviour of a software system [16]. It is
a first-class abstraction that helps to reason about the SPL [64]. In practice, features
are mapped to domain artefacts (or parts of domain artefacts) that are combined
to form products. The derivation of one product consists in selecting a valid set of
features, called configuration, with the intended characteristics of the product, and
combining the domain artefacts linked to those features. All the valid combinations
of features are described in a feature model.

1.2. Feature models

CPTerminal Legend:
./ Mandatory
O/ Optional
PaymentSchem: Connectivity Identificatior A Or

SN /N

DirectDebit CreditCard Online Offline PIN Signature
DirectDebit = PIN

Figure 1.2: Card payment terminal simplified feature model

1.2 Feature models

Feature Models (FMs) describe all the valid combinations of features for SPLs. They
have been introduced by Kang et al. in the Feature Oriented Domain Analysis (FODA)
method [159] using a graphical representation. Lot of other graphical [14,40,185,305]
and textual [62,211] representations have been proposed and formalised [32, 276]
since. In this thesis, we focus on graphical boolean FMs and their equivalence in
Text-based Variability Language (TVL) [62].

A feature model is organised in a tree-like structure (formally a directed acyclic
graph). The root feature, always present in all products, is decomposed in sub-
features using and (all sub-features are selected if the parent feature is selected),
or (at-least one sub-feature is selected if the parent feature is selected), and xor
(exactly one sub-feature is selected if the parent feature is selected) relations. For
instance, Figure 1.2 presents a (simplified) feature model for a card payment terminal
product line. Root feature (CPTerminal) is decomposed into two mandatory features
(PaymentSchema and Connectivity) and one optional feature (Identification). Pay-
mentSchema (specifying if the terminal supports credit or debit cards) and Connecti-
vity (specifying if the terminal is connected or not) features are decomposed into
sub-features using a or relation. Additionally, feature models may have cross-tree
constraints expressed as boolean expressions over the features, e.g., DirectDebit =
PIN, specifying that debit card payment requires PIN authentication.

Listing 1.1 presents the TVL version of Figure 1.2. In this case, features are de-
composed in sub-features using al10f (and), someOf (or), or oneOf (xor) relations.
Additional cross-tree constraints (on line 14) may be specified and optional features
are indicated using opt keyword.

The semantics of a feature model d, denoted [[d]], corresponds to all the valid
products allowed by the feature model. In the remainder of this thesis, we consider
only boolean feature models, i.e., feature models where features have boolean
values: true if the feature is selected and false otherwise. Since a boolean feature
model may be transformed into a Conjunctive Normal Form (CNF) formula [32],
denoted CNF(d), its semantics corresponds to all the feature assignments that
satisfies this formula. This may be computed using Boolean Satisfiability Problem
(SAT) or Binary Decision Diagram (BDD) solvers [193,212].

CHAPTER 1. SOFTWARE PRODUCT LINES

Listing 1.1: Card payment terminal simplified feature model in TVL format

1 root CPTerminal {

2 group allOf {

3 PaymentSchema,

4 Connectivity,

5 opt Identification
6 }
7}
8

9 PaymentSchema {
10 group someOf {

11 DirectDebit,

12 CreditCard

13 }

14 DirectDebit —> PIN;
15 1}

16

17 Connectivity group someOf {
18 Online,

19 Offline

20 }

21

22 Identification group allof {
23 opt PIN,

24 Signature

25 1}

1.3 Behavioural modellisations of software product lines

Modern software systems are complex to build and maintain, counting thousands
of lines of codes to achieve various purposes under different kinds of constraints
(e.g., time response, security, availability, etc.). To manage this complexity, software
engineers use modeling [147]. This allows to abstract the system by focusing on some
of its aspects. For instance, feature models focus on the features of a product line
and their constraints. In SPL engineering, complexity worsen due to the variability
inherent to product line. Models have to take features into account to represent this
variability.

This section presents different modelling approaches to represent the behaviour
of a software product line. Those approaches may be decomposed into two cat-
egories [16]: annotation-based approaches and composition-based approaches.
Annotation-based approaches annotate a common model to indicate which parts of
the model belongs to which feature(s). During product derivation (i.e., selection of
the features of a product), parts of the model marked with unselected features are
removed to give a model of the product. Composition-based approaches models
features as a set of composable model parts. During product derivation, those parts
are combined to form the model of the product.

1.3.1. Composition-based modelling approaches

’ e [-®

@ —{ Open Cooking

A

Emergency
stop

Closed
(a) Base model (b) Feature (c) Product model
aspect

Figure 1.3: SPL behavioural composition-based modelling example [259]

1.3.1 Composition-based modelling approaches

Most composition-based modelling approaches are based on aspect oriented mod-
elling [121,259]. A base model representing the behaviour common to al the prod-
ucts of the product line is modified by weaving aspects specific to one or more
features. For instance, Figure 1.3(a) presents the state machine base model of a
oven in a smart home [259]. When a product with the feature emergency stop is
derived, the aspect from Figure 1.3(b) is weaved in the base model to give the state
machine of the product in Figure 1.3(c). To decide where to be applied, the aspect
must specify one or more pointcuts using a pointcut expression: "*’ in Figure 1.3(b).

Various formalisms based on transition systems [23,73,106,170,187-189] and
Input-Output automata [179, 180] exist. Other composition-based modelling ap-
proaches are extensions of existing modelling languages where feature aspects may
be weaved at some specific points of the system [10, 17, 33,53, 116, 216, 223, 254,
275,290]. Finally, UML models like state machines [281, 283] and sequence dia-
grams [119] have been extended to support composition-based modelling.

1.3.2 Annotation-based modelling approaches

There exists several annotation-based modelling approaches to represent the be-
haviour of a software product line. Most of them consider a based model annotated
with variability information indicating which products of the product line it be-
longs to. State-based models include for instance Petri nets [141,221, 256], modal
I/0 automata [178], Modal Transition Systems (MTSs) [22,24,25,103, 105,297, 299],
FTSs [61,63,65,66], and finite state machines [264, 264]. Other formalisms include
PL-CSS (a process algebra) [122] and higher-level formalisms like UML activity
diagrams [141].

Researches on annotation-based models for software product line verification
have been conducted for years and are still developed by the model-checking com-
munity. Amongst all the existing notations, in this thesis, we focus on those derived
from Labelled Transition System (LTS), a simple and yet expressive formalism to
model the behaviour of a system:

Definition 1 (Labelled Transition System (LTS) [27]) A LTS is a tuple (S, Act, trans,
i), where:

CHAPTER 1. SOFTWARE PRODUCT LINES

select_app
/dd v er

insert_card

check_

abort signature)
remove_card /on A pin

/-dd A sig
CH_verified

go_online /on go_offline / off

check_PIN
_offline
/ off A pin

check_PIN_online

update card_info

remove_card

Completed <—update_card_info

Figure 1.4: Card payment terminal simplified featured transition system

e S is a set of states;

e Act is a set of actions;

e frans < S x Act x S is a transition relation (with (s, a, $») € trans, denoted
S1 - $2);

® and i € S is the initial state.

This choice is motivated by the existence of powerful modelling languages [25,
103, 297], algorithms [63, 66], and tools [22, 72] developed by the model-checking
community. Also, lot of other higher-level formalisms may be translated to LTS [81]
allowing to make our results easily applicable to other modelling languages.

1.3.3 Featured transition system

Classen et al. [63] define Featured Transition System (FTS) to represent the behaviour
of a product line. An FTS is an LTS where transitions have been annotated with
feature expressions defining which products of the feature model is able to execute
the transition. For instance, the FTS in Figure 1.4 presents the behaviour of all
the products of the card payment terminal product line. The feature expressions
on the transitions references the features of the feature model in Figure 1.2. First,
the terminal is initialised (Inif) and ready to proceed card payments. When a card
is inserted, the terminal selects an appropriate payment method and launches
the corresponding application (App_init). This can only be done if the terminal
processes debit or credit cards, denoted by the feature expression dd v cr. Next step
is to identify the card holder, either by using a Personal Identification Number (PIN)
code, which can be done online (on A pin) of offline (off A pin), or a signature if
the terminal does not process debit cards (—dd A sig). If the identification succeeds
(CH_Verified), the terminal process the transaction online (Go_online) or offline
(Go_offline), updates the information on the card, and completes the transaction
(Completed). Formally, FTSs are defined as follows:

1.3.3. Featured transition system

\[Init) insert_card Card in select_app m

abort check_PIN_online

remove_card

CH_verified

Q
[¢)
o
=
s
@

update_card_info

remove_card Completed

Figure 1.5: Card payment terminal product LTS

Definition 2 (Featured Transition System (FTS) [63]) A FTSisa tuple (S, Act, trans,
i,d,y), where:
e S, Act, trans, i are defined according to definition 1;
® d is a feature model;
e y: trans— [[d]] — B is a labelling function specifying for each transition which
valid products may execute it; this function is represented as a boolean expres-
sion over the features of d, called feature expression.

FTS projection: To derive the LTS of one particular card payment terminal product,
the FTS is projected [63,66] on this product by pruning the transitions whose feature
expressions are not satisfied and by removing the feature expressions. For instance,
Figure 1.5 is the projection of the FTS in Figure 1.4 on the card payment terminal
product supporting direct debit (dd) cards, with a PIN identification (pin) and an
online connection (online). Formally, the projection operator is defined as follows:

Definition 3 (Projection operator [63]) Let fts = (S, Act, trans, i, d, y) be an FTS,
and p € [[d]] be a product of the feature model d. The projection of fts onto p, denoted
Jts, is the LTS (S, Act, trans', i) where

trans' = {tr € trans| SAT (p Ay(tn)}

Where SAT checks the satisfiability of the feature expression labelling the transition
giving the product p.

Deterministic FTS: As for LTSs, an FTS is deterministic if, for all sequence of
actions, there is at most one possible path (sequence of transitions) for those actions.
Since FTS models the behaviour of all the products of a product line, it moreover
requires to have satisfiable feature expressions on this path.

CHAPTER 1. SOFTWARE PRODUCT LINES

Property 1 (Deterministic FIS) An FTS (S, Act, trans, i, d,) is deterministic if:

Y(ay,...,a,) € (ActU {€})™,3 at most one seq = i 4,5 Sk

such that SAT

treseq

CNFd) A N\ y(tr))

Checking if an FTS is deterministic is computationally heavy. In the worst case, it
requires a complete exploration of the model with multiple SAT calls.

Connected FTS: A connected FTS is an FTS that has no isolated state. All states
may be reached from the initial state and reach back the initial state, i.e., for each
state, there exists a path starting from the initial state and going back to the initial
state.

Property 2 (Connected FTS) An F1S (S, Act, trans, i, d, y) is connected if:

Vse S, Aseq=i—5... = s 2% 2% i such that SAT

CNFd) A N\ y(tr))

treseq

One may use (for instance) an accessibility matrix (see Algorithm 2 from Section
5.2.1) to check that there is no isolated state. In the remainder of this thesis, most of
our algorithms assume connected FTSs.

1.3.4 Related work

We choose FTS as formalism to model the behaviour of SPLs over MTS [105] and PL-
CSS [122]. MTS is an extension of LTS where the set of transitions is partitioned into
may and must transitions. Must transitions are transitions fired by all the products
of the product line, while may transitions are fired by only some (undetermined)
products of the product line. To relate a transition to the exact set of products able
to execute it, Asirelli et al. [22,23,25] associates MTS to a branching-time temporal
logic named Modal Hennessy-Milner Logic (MHML) representing the constraints
between the features and the actions. The MHML formula may be derived from a
feature model (representing those constraints) and the associated MTS but makes
the relation between products and transitions unclear.

Product Line CCS (PL-CCS) [122] is a process calculus extending Milners’s Cal-
culus of Communicating Systems (CCS) [217] by adding a binary variant operator
to represent alternatives features in a SPL. As for MTSs, PL-CSS does not include
constraints between features and relies on an external mu-calculus [286] to express
them.

In their work, Beohar et al. [39] analyse the expressiveness of FTS, MTS, and PL-
CCS by comparing the set of products they can specify. Products specifications are
represented using LTSs. They demonstrate that FTS is the most expressive formalism,
followed by PL-CCS and MTS. Meaning that MTS models may be expressed using
PL-CCS, and PL-CCS models may be expressed using FTS but not (always) the other
way around.

10

1.4. Wrap up

1.4 Wrap up

In this chapter, we presented the standard software product line engineering process
and focuses on domain level to perform behavioural model-based testing, i.e., se-
lecting relevant products and behaviour to test in the product line. SPL variability
is encoded using a boolean feature model and behaviour is described using an
annotation-based formalism: a connected FTS. We choose FTSs for their expressive-
ness and the simplicity of their encoding allowing powerful algorithms [63, 72] while
preserving a readable relation between transitions and products able to execute
them.

11

CHAPTER

SOFTWARE AND SOFTWARE PRODUCT LINES
TESTING

Software testing is a process present in a majority of software developments. Ac-
cording to Mathur’s definitions [206], it aims at evaluating if a software behaves as
expected. When running a software system, one may face a failure, i.e., an unex-
pected behaviour of the system. This failure is the propagation to the output of the
system of one or more bugs (also called faults), coming from errors made during
the writing of the source code of the software system or resulting from earlier issues
in specifications. The goal of a software testing process is to find as many bugs as
possible in a given software system, called System Under Test (SUT), in order to
prevent failures to happen during the operation of the software system.

When it comes to product lines, testing becomes more complex. As the system
under test is the set of products of this product line, using a standard testing process
would require to derive all those products and, for each one of them, design and
execute a test suite. This approach, called product-based [301], is intractable for
the large majority of product lines. SPL testing requires to adapt standard testing
process to minimize the effort by reusing testing assets from one product to another
and prioritizing the products to test. To achieve this, most techniques adopt a
model-based approach: e.g., sampling a set of products to test from a feature model.

This chapter presents the state-of-the-art of SPL testing. Sections 2.1 and 2.2
presents software testing and model-based testing, Section 2.3 gives a view of SPL
testing, and Section 2.4 focuses on existing model-based approach to SPL testing.

13

CHAPTER 2. SOFTWARE AND SOFTWARE PRODUCT LINES TESTING

2.1 Software testing

The Software Engineering Body of Knowledge from the IEEE Computer Society [147]
defines software testing as follows:

Software testing consists of the dynamic verification that a program pro-
vides expected behaviours on a finite set of test cases, suitably selected
from the usually infinite execution domain.

This definition, although not specific on how to perform software testing, includes
different important aspects. First, the SUT has to be executed on a set of input
values! in order to observe its behaviour. Second, to decide if the SUT behaves as
expected, it must be possible, based on the outcomes of the SUT for a given input,
to decide if the outcomes are acceptable or not. This is also referred to as the oracle
problem [147]. Finally, the number of observed behaviours exercised by the test
cases is finite: a software testing process is the result of a trade-off between limited
resources, schedules, and unlimited test requirements. Therefore, the test suite
(i.e., the set of test cases) has to be properly selected in order to satisfy this trade-off
using a criterion.

The software testing process itself may be implemented in various ways. Tret-
mans [302, 307] defines a typology of software testing processes based on three
dimensions: the characteristic being tested, the scale of the SUT, and the informa-
tion used to select test cases.

Characteristic being tested: The main characteristic being tested is the function-
ality (functional testing), which aims at checking that a SUT produces a correct
output for a given input. Other characteristics includes (but are not limited to)
robustness (robustness testing), which aims at checking that the SUT can resist to
invalid conditions in its environment (e.g., wrong inputs, hardware failures, network
failures, other systems failures, etc.); performance (performance testing), which
aims at checking that the SUT can resist heavy loads; usability (usability testing),
which focuses on user interfaces problems; security (security testing), which aims
at checking that the system is not vulnerable to malicious users; efc. In this thesis,
we focus on functional testing.

Scale of the SUT: It indicates which parts of the system are considered during the
execution of each test case: unit testing focuses on single units at a time (e.g., a
single method, a single function, a single class, etc.); component testing tests each
part of the system separately, while integration testing checks that the different
components work together correctly; finally, system testing considers the whole
system to perform testing.

11n this case, input values may refer to input data or, more generally, to a specific input state of the
SUT.

14

2.2. Model-based testing

Information used to select test cases: Information may be either white box or
black box. White box testing processes use the source code as input. They allow
one to define selection criteria on the source code of the application: e.g., statement
coverage requires that each statement is executed at least once by one test case
of the test suite. Black box testing processes will use the requirements of the SUT
as input. In this case, the source code is not accessible and selection criteria are
specified over the requirements: e.g., input domain coverage requires to split the
input domain in equivalence classes and to design test cases that will use at least
one element of each class.

Most of the time, the selection of a test suite is done manually. For instance, it
is very common for developers to write functional unit tests for their code before
submitting it to a version control system. In most cases and with the right tool
support, this may be enough. However, manual testing becomes expensive for larger
systems, especially during integration and system testing [307].

2.2 Model-based testing

Automating test suite selection is not easy though. It requires an input generator
that, for each test case, generates a sequence of input operations for the system
(e.g., a sequence of method calls); an oracle which decides, based on the input
sequence and the outputs of the system if the test case is pass or fail; and a selection
criterion (with a mechanism to measure it) in order to decide when to stop the
selection. For instance, EvoSuite [107] is a white box Java test cases generator that
uses an evolutionary algorithm to generate JUnits by analysing methods paths. Since
the tool only uses the source code as input, the oracle is very limited and can only tell
if a test case execution should throw an exception or not. To improve this oracle, it
requires to analyse the specification of the methods to foretell the expected output.

An alternative is to use a semi-automated approach: model-based testing [307].
It requires to define a model of the expected behaviour of the SUT (i.e., a specifi-
cation) that serves as input to an automated test suite selection tool. The model
should be small enough to be cheaper than the analysis of the actual system, but
accurate enough to describe the characteristics to test. The tool uses this model to
generate a sequence of input and as oracle for each sequence. Model-based testing
is the automation of black box test suite selection [307].

Figure 2.1 presents a generic model-based testing process. First the test engi-
neer defines a model of the SUT. This model is provided to the test suite selection
tool that, based on the selection criterion specified by the test engineer, selects
an abstract test suite. This abstract test suite contains test cases expressed at the
same abstraction level than the input model. They cannot be executed on the SUT
as-is and require to be concretized to test scripts using mapping information to
link abstract actions and inputs in the test cases to concrete SUT operations. The
test scripts may then be executed by a dedicated test execution environment that
operates the SUT (optionally using an adaptor layer to abstract complex SUT’s oper-
ations) and produces a report with the test results. We present our implementation
of this generic process in Chapter 3.

15

CHAPTER 2. SOFTWARE AND SOFTWARE PRODUCT LINES TESTING

(¢]

(e]

Test
engineer

defines

Mapping
info.

Test
results

~ provides

selection

criterion \

input —»|

defines —® Model

input

Test suite
selection
tool

|
produces

input

Concretizer

l
produces

Test
scripts

input

[<——produces—]

Test execution
environment

adaptor

Figure 2.1: Model-based testing process

2.3 Software product

As presented in Figure 1.1, SPL testing is performed on two different levels: domain
testing and application testing [252]. During domain testing, reusable test arte-
facts are defined and validated for the SPL. Those artefacts are combined during
application testing in order to test one particular product.

line testing

2.3.1 Software product line testing strategies

Domain testing processes include the definition of a test plan corresponding to
the strategy used to test the SPL. Pohl ef al. [252] define four kinds of strategies to

validate a SPL:

16

System
under
test

2.3.1. Software product line testing strategies

Brute force: Brute force strategy consists in performing all the testing activities
for all the possible products during domain engineering. Considering an FTS and a
feature model, this would consist in deriving all the valid products from the feature
model, and for each product, project the FTS on the product to derive test cases
from the resulting LTS using a classical model-based testing approach [307]. As
empirically shown by Halin ez al. [126,127], this strategy is expensive, not applicable
in most cases, and is no more discussed here.

Pure application: Pure application strategy consists in performing testing only
during application engineering. Each derived product is tested individually using
a standard (non-SPL) testing procedure and no domain test artefacts are reused.
Contrary to brute force, pure application strategy does not build all products, it only
tests one when it is derived for a customer. As for the previous one, an FTS may
be projected on the considered products and the resulting LTS used as input for a
model-based testing approach. This strategy is no more discussed here. Interested
reader can refer to single-system software testing literature [206,307].

Sample application: Sample application strategy consists in selecting one or a few
sample products (i.e., to do a product prioritization) to test domain artefacts, but
still requires to test other derived products during application engineering. Again,
the FTS may be projected on the sampled products and the resulting L'TS used as
input for a model-based testing approach. The product sampling itself may be done
using various methods: in this thesis, we use the FTS to drive it.

Commonality and reuse: Commonality and reuse strategy consists in testing parts
common to all the products and preparing test artefacts for variable parts during
domain engineering, and reusing test artefacts specific to a product during appli-
cation engineering. Applied to an FTS and a feature model, this strategy is close to
what we propose in this thesis. The mapping information used during abstract test
case conretization (in Figure 2.1) have to be defined for all the actions of the FTS
during domain engineering, in order to be reused across different products. To test
the parts common to all the products, one has to project the FTS on the product
containing only the features common to all the products of the SPL (if it exists) and
use the resulting LTS to derive test cases using model-based testing.

On the one hand, sample application strategy does not produce variable test
artefacts (and thus does not reuse domain test artefacts during application engi-
neering). This may cause an overhead if the sampled products do not correspond
to the products derived afterwards. On the other hand, commonality and reuse
strategy allows to reuse domain test artefacts during application engineering, but
validates only parts common to all products during domain testing, lacking at de-
tecting problems in variable parts in an early development stage. A fifth strategy
consists in combining sample application and commonality and reuse strategies:
domain test artefacts contains variability information and may be reused and a
sample of products is used to test common and variable parts of the product line.
This allows to have a faster feedback on variable parts validation while still allowing

17

CHAPTER 2. SOFTWARE AND SOFTWARE PRODUCT LINES TESTING

to reuse domain test artefacts during application testing. This last strategy is the one
recommended for the framework developed in this thesis.

2.3.2 Software product line analysis classification

To support domain testing, a lot of existing approaches use analysis techniques to
select test cases and prioritize products. Depending on the considered artefacts and
the modality, Thiim et al. [301] classify SPL analysis in three categories:

Product-based analysis: In product-based analysis, products are built and anal-
ysed individually. This allows to use existing methods designed for single systems
that will work on application artefacts only, but becomes expensive if the set of
products to analyse is large. To overcome this, one may first prioritize products
to perform the analysis only on a subset of all the products of the product line. In
this case, the product-based analysis is combined with a family-based sampling
technique.

Family-based analysis: Family-based analysis uses domain artefacts in combina-
tion with a feature model to perform a variability aware analysis of all the products
of the product line at once. For instance, FTS model checking [63] is a family-based
analysis. The ProVeLines [72] model checker uses the feature model and the feature
expressions on the transitions to check that all the products satisfies the given prop-
erty in one exploration of the FTS. If this is not the case, it prints the products that
violates the property.

Feature-based analysis: In feature-based analysis, domain artefacts implement-
ing a given feature are analysed in isolation without considering other features. Con-
trary to family-based analysis, feature-based does not consider the feature model
during the analysis and are not able to detect undesired features interactions [320]
(i.e., undesired behaviours appearing only if a certain combination of features is
present in the product).

As for SPL testing strategies, analyses may be combined. For instance, perform-
ing a feature-based analysis before a product-based or a family-based analysis may
reduce the effort needed by the latter as feature-based analysis allows to factorise the
analyse of elements that do not depend on other features. In our model-based test-
ing framework, test cases and products are selected from domain artefacts (i.e., a FTS
and a feature model) and concretized into executable test scripts in a family-based
approach, while the execution of the test scripts on each product is product-based.

2.4 Model-based software product line testing

There exists several testing approaches to software product lines and lot of them are
model-based [92,98,234]. This may be explained by the complexity induced by the
product lines variability. This variability is usually captured in a feature model reused
during testing in combination with other domain artefacts (that may be models or

18

2.4.1. Feature interaction

not). A large part of those approaches are focused on sampling a representative
set of products to test in order to find as many undesired feature interactions as
possible [92].

2.4.1 Feature interaction

Apel et al. [16] define a feature interaction between at least two features as an emer-
gent behaviour that cannot be easily deduced from the behaviours associated with the
individual features involved. A lot of those interactions are intended: for instance,
a security feature may interact with other features by encrypting all connections.
Problem occurs when an unintended feature interaction happens, usually resulting
from a bug, and causes failures at runtime in the products containing the features
involved. Test cases have to check that desired feature interactions are achieved,
by checking that connections are encrypted for instance, but also that undesired
interactions do not happen.

One of the specificities of software product line testing is thus to seek and find
undesired feature interactions, usually occurring when a small number of features
are involved [171]. For instance, amongst the 6 faults discovered in JHipster, Halin et
al. [126] found that 5 are caused by interactions of size two and one by an interaction
of size four. To find those undesired feature interactions, sampling techniques have
been developed to select a representative set of products involving as many different
feature combinations as possible. The most common sampling techniques are
based on Combinatorial Interaction Testing (CIT) and known as z-wise product
sampling.

2.4.2 T-wise sampling

T-wise sampling techniques sample a set of products in which all the ¢-uples of
features allowed by the feature model are represented at least once. The parameter
tis called the strength of the sampling. Since lot unintended feature interactions
appear between two features [171], pairwise (2-wise) product sampling is the most
studied approach [92,199].

Many CIT approaches have been adapted to take constraints from the feature
model into account in order to perform z-wise sampling [69, 199]. They are im-
plemented in different tools like CASA [112,113], SPLCAT [155], NIST-ACTS [183],
MoSo-PoLiTe [233], PACOGEN [140], etc. Depending on the approach, a large va-
riety of underlying techniques may be used [55, 199]. The main ones [69, 175]
are algebraic methods [54, 129, 285], greedy algorithms [46-48, 67, 77,112,113,
154-156, 175, 184, 200, 285], heuristic search [68, 111], and constraint program-
ming [140, 204, 233, 244, 245, 250].

Despite advances being made, introducing constraints during ¢-wise sampling
yields scalability issues for large feature models [21, 120, 135, 226] and higher in-
teraction strengths [135, 172,251, 260]. To overcome those limitations, Henard et
al. [135] developed a dissimilarity-driven sampling to mimic the #-wise criteria. This
sampling tries to maximise the dissimilarity between the selected products.

19

CHAPTER 2. SOFTWARE AND SOFTWARE PRODUCT LINES TESTING

2.4.3 Dissimilarity-driven sampling

Dissimilarity-driven product sampling is based on the following heuristic: dissimilar
products are more likely to detect bugs than similar ones. This is empirically demon-
strated for single systems (model-based) testing by Hemmati et al. [130]. The idea is
to sample a set of products as dissimilar as possible, based on a distance measure.
In their work, Henard et al. [135] consider the distance between products in terms
of selected features: two products are dissimilar if the features that compose them
are different.

The sampling is performed using an evolutionary algorithm that takes a fixed
size for the sample and a duration as parameters. The Jaccard distance [149] between
two products is used to compute the fitness value of the sample at each iteration.
During the execution, products are ranked inside the sample according to their
dissimilarity. Eventually, the algorithm produces a ranked list of products where
most dissimilar ones are in the first positions. Contrary to CIT algorithm, the size of
the sample is fixed from the beginning. This may require some prior decision from
the test engineer, but is also very convenient when the testing budget is limited to a
given number of products [126].

The algorithm is implemented in PLEDGE? and Henard et al. [135] empirically
demonstrate the relevance of dissimilarity-driven sampling for software product
lines for large feature models and higher strengths. Those results have been in-
dependently confirmed for smaller SPLs by Al-Hajjaji et al. [8]. Parejo et al. [242]
extended this idea, using a genetic algorithm, by considering both functional and
non-functional properties during the selection process. In this thesis, we extend
this idea in Chapter 5 by considering both features and behavioural dissimilarity
during the sampling. More details on distance measure, fitness value, and selection
algorithm are provided in this chapter.

2.4.4 Related work

Other strategies to perform SPL mode-based testing at the domain level have been
proposed. Lochau et al. [195,197] define a model-based approach that shifts from
one product to another by applying deltas to state-machine models. The approach
allows to reuse test cases from previous products and derive of (re)test obligations for
each new considered product. These deltas, are built incrementally when switching
from one product to another and are part of the reusable domain test artefacts. In
this thesis, we want to select relevant test cases and products before performing
the effective tests. Cichos et al. [58] use the notions of 150% test model, i.e., a
test model of the behaviour of a product line, and of test goal to select test cases
for a product line but do not define criteria at the SPL level. Beohar et al. [37]
adapt ioco [303] to FTSs. The Input-Output Conformance (ioco) testing is a model-
based testing approach that aims at building a conformance relation between a
specification and a model of the running system, based on the inputs and outputs of
this system [303,304]. Contrary to this approach, we do not seek exhaustive testing

2See http:/ /research.henard.net/SPL/PLEDGE/.

20

http://research.henard.net/SPL/PLEDGE/

2.5. Wrap up

of an implementation but rather to select relevant abstract test cases based on the
criteria provided by the test engineer.

2.5 Wrapup

This chapter presents the necessary background on software testing, a generic model-
based testing procedure, and the most studied model-based software product line
testing approaches. A lot of those approaches are family-based: they use domain
artefacts and reason at the product line level. They seek to sample a subset of
products to test in priority, based on the feature model and a sampling criterion. In
this chapter, we present t-wise and dissimilarity-driven sampling. T-wise ensures
that every t combination of features is present in at least one sampled valid product
and dissimilarity-driven try to maximise the dissimilarity (in terms of features)
between the sampled products.

Complementary to those approaches, the selection criteria developed in Chapter
5 take not only variability, but also behaviour into account. We define in Chapter
3 a family-based model-based testing framework that may be used in combined
sample application and commonality and reuse testing strategies.

21

Part 11

Testing Framework

23

CHAPTER

FRAMEWORK OVERVIEW

This chapter gives the general view of our behavioural model-based testing frame-
work for software product lines [80] by instantiating the generic process described
in Section 2.2. The main part of the framework concerns the abstract test suite se-
lection at the product line (domain) level. Based on this selection, the test engineer
may prioritize products to test and/or assess the test suite using mutation analysis.
We focus on behavioural aspect: the selection is done from a FTS, defined by the
test engineer.

3.1 Overview

Figure 3.1 gives a general view of our framework. The test engineer, based on
requirements, defines a FTS (and a feature model). This FTS serves as input to our
tool: the Variability Intensive Behavioural teSting (VIBeS) framework. The tool is
operated by the engineer to select a test suite, based on a selection criterion coming
from the requirements. For instance, one may want to select a test suite that covers
the states of the FTS or that contains test cases as dissimilar as possible. Based on
this test suite, the engineer may prioritize the products to test, e.g., by selecting the
product that allows to execute as much test cases as possible, and assess the quality
of the test suite using mutation analysis.

Eventually, VIBeS produces an abstract test suite, with test cases representing
sequences of actions from the FTS. This test suite is defined for the product line,
which means that the abstract test cases, once concretized, may be executed by
one or more products. The concretization is handled by the Abstract test case
Concretizer (AbsCon) plugin, based on a mapping provided by the test engineer.
AbsCon produces executable test scripts for the QSpin Tailored Automated System
Test Environment (QTaste), a test case management and execution system that uses

25

CHAPTER 3. FRAMEWORK OVERVIEW

[©]

o
. FTS Feature
defines > model + model
N T
operates input
Test
engineer
Abstract Products Mutation
test suite prioritization analysis
selection
defines
/
produces produces
Product
config.
input .
Y :
)
Mappin . '
ror® (— et —>| AbsCon .
'
T derivation
produces .
)
'
]
Test '
scripts '
)
'
)
insut 0

.......... .

.

' ' »

' 1, === “

' !)] aste % adaptor 4 Product
' . .-

[' N

'
A\

Figure 3.1: Behavioural SPL testing framework overview

an adaptor to handle communication with the product under test. The selection
of the test cases to execute on the given product amongst all the test cases of the
test suite is done in QTaste, based on the list of abstract test cases executable by the
selected product.

The different elements of Figure 3.1 are detailed, discussed, and evaluated in the
next chapters: abstract test suite selection and product prioritization are presented
in Chapter 5; Chapter 6 discuss mutation analysis; Chapter 8 presents the imple-
mentation and usage of VIBeS; and Chapter 9 details how concretization may be
performed with AbsCon to get test scripts executable by QTaste. Elements in dashed

26

3.2. Uncovered aspects

lines in Figure 3.1 are out of the scope of this thesis and discussed in the next section.

3.2 Uncovered aspects

In this thesis, our main goal is to provide a framework to support the testing process.
Software product line model-based testing is a complex task that involves many
aspects, we identify the followings as out of the scope of this work.

3.2.1 Process management

VIBeS is a toolbox that allows to perform various testing activities based on the
requirements of the test engineer. In a software engineering context, those activities
are organised in process [147] that has to be managed and monitored. The definition
of such product line model-based testing process falls out of the scope of this work.

3.2.2 Requirements definition

We assume that requirements are used both to define the FTS and the feature model,
and the test suite selection criterion. The formalism used to define those require-
ments may take several forms: structured or semi-structured sentences [201], goal
modelling [310], LTL formulas that the product line must satisfy [63], etc. How those
requirements are elicited and formalised [26,213,227] is out of the scope of this work.
We assume that the test engineer knows the requirements when operating VIBeS.

3.2.3 FTS model definition

In its implementation, VIBeS allows to define FTSs using a Java DSL or with an XML
file. The process used to define this FTS model is out of the scope of this work.
Model the detailed behaviour of the SPL using an FTS is intractable. Instead,
the test engineer abstracts the behaviour to be able to run analysis on the model.
This abstraction is done by defining abstract actions (i.e., actions that represent
one or more effective functions or methods calls) or by focusing on the subset
of behaviour under test. As FTSs may be used to express the semantic of other
variability-aware behavioural languages [74], one may also use an abstract modelling
language: e.g., FORML [281, 283]. In such a case, we assume that a bidirectional
mapping can be defined between the abstract modelling language and FTS.

3.2.4 Feature model definition

We assume that the feature model used with the FTS is a boolean feature model
that may be translated to a CNF formula [32,276]. As for FTSs, the definition and
the formalism used to define this feature model are out of the scope of this work.
Considering non-boolean feature models requires to use constraint solvers other
than SAT or BDD solvers, and to adapt FTSs’ feature expressions to take non-boolean
types into account.

27

CHAPTER 3. FRAMEWORK OVERVIEW

3.2.5 Product derivation

VIBeS produces a set of product configurations to test. This set is represented as
a set of boolean assignments of the feature model. The derivation process of the
actual product (in dashed lines in Figure 3.1) is out of the scope of this work. This
derivation may take several forms and may be automated or not [252].

3.2.6 Test scripts execution

Test scripts management, covering executions of the scripts and reporting, is handled
by QTaste. QTaste is an industrial test environment that provides functionalities to
execute test scripts using an adaptor to manipulate the product under test. More
details about QTaste are provided in Chapter 9.

3.3 Wrapup

This chapter presents an overview as well as the limitations of our behavioural model-
based product line testing framework. We assume connected FTSs and boolean
feature models as inputs. The different elements of the framework are detailed in
the next chapters.

28

CHAPTER

CASE STUDIES

We present in this chapter the different case studies used along the thesis. We
consider models from different sources with varying size. Our models are: the soda
vending machine model (S. V. Mach.) in Section 4.1; the mine pump (Minepump) in
Section 4.3; the WordPress models (AGE-RR, AGE-RRN, Elsa-RR, and Elsa-RRN) in
Section 4.5; the Claroline website (Claroline) in Section 4.6; and the random models
(Random 1-4) in Section 4.8. We compare the models characteristics in Section 4.7
and define the threats to validity linked to the selection of our case studies in Section
4.9.

4.1 Sodavending machine

The soda vending machine SPL is a classical beverage vending machine described
by Classen et al. [63]. The feature model is presented in Figure 4.1(a): it sells soda (s)
or tea () in euro or dollar, may offer free drinks (f), and optionally allows to cancel
a purchase (c). The FTS describing the behaviour of the SPL is presented in Figure
4.1(b) (for readability, the feature names have been shortened): the user either pays
or chooses a free drink (if feature f has been selected); he may cancel its purchase (if
feature c has been selected); he chooses a beverage, allowed by the selected features;
and gets his beverage directly (if feature f has been selected) of after opening the
machine (otherwise).

4.2 Card payment terminal

Figure 4.2(a) presents the feature model of a card payment terminal manually de-
fined using Eurocard-Mastercard-Visa (EMV) specification document [97]. This
machine accepts card payment with a given payment schema (direct debit and/or

29

CHAPTER 4. CASE STUDIES

CancelPurchase Legend:
Sodz ./ Mandatory
Beverages < of Optional
T A O
VendingMachin ea r
A Alternative
FreeDrinks
Eura
Currency <
Dollar
(a) Feature model
return/c
soda/s @ serveSoda / s
\ open/—f take/~f

pay/-f

O—

tea/t @/seveTea/t

free / f
take / f

close/-f

(b) Featured transition system

Figure 4.1: Soda vending machine

credit card). It works online, using one or more connectivity option, or offline with
the card payment service. Cards are read using a chip, the magnetic strip, or near
field contact (NFC); and card owner may be authenticated using signature and
optionally PIN code.

The FTS in Figure 4.2(b) presents the behaviour (we want to test) of the card
payment terminal (minus one technical intermediate state) to processes a payment.
First, the Card Holder (CH), i.e., the user, inserts his card in the terminal. If the card
is a direct debit (dd) or a credit card (cr), the terminal will proceed the initialisation
of the transaction. In this version of the product line, the card holder must always
identify himself using either: his signature if the card is not a direct debit card and
if the terminal supports the signature identification (sig); or his secret PIN if the
terminal supports PIN identification (pin), which may be checked online (on) or
offline (o f f) with the transaction processor company. If the identification succeeds,
the terminal will proceed online or offline to the payment, otherwise, the transaction
is aborted. Whether the transaction succeeds or not, the card holder removes his
card from the terminal at the end of the process.

30

4.2. Card payment terminal

DebitCard Legend:

./ Mandatory

O/ Optional
PrepaidCard A Or

| DirectDebit EPurse |

PaymentScheme

CPTerminal

CardReader

S

(a) Feature model

Q) Identificatior

insert_card rCard in\ init_schema /dd v cr
abort
Init) (Aborted) abort
remove
~card check ook PIN check PIN
abort _signature " .o _offline
/=dd A sig T

fon apin /off Apin

issuer_rejects go_online /on go_offline / off

ask_issuer

Issuer_responded

issuer_accepts

i
-

remove_card Completed accepts
(b) Featured transition system

Figure 4.2: Card payment terminal

31

CHAPTER 4. CASE STUDIES

Starl Legend:
Command < .,
Stof Mandatory

O/ Optional
Low A Or
MinePumpSys
£ WaterRegulatior Normal
High

MethaneDetec

Figure 4.3: Minepump feature model

4.3 Minepump

The Minepump model [60] represent a product line of pumps designed to keep a
mine shaft clear of water and (optionally) avoid the danger of a methane explosion.
Figure 4.3 presents the feature model of the SPL. A pump has a water regulator that
can detect the level of water in the shaft. It may be equipped with a methane detector
and a command interface allowing to manually start and stop the pump. The FTS
describing the behaviour of the pumps has 25 states and 41 transitions.

4.4 Sferion™l]landing symbology function

Sferion™ is an industrial situational awareness suite for helicopters flying in de-
graded visual environments [6, 84,267]. The landing symbology function supports
the pilot during the landing approach by marking the intended landing position
on ground using a head-tracked Helmet Mounted Sight and Display (HMS/D) and
Hands On Collective And Stick (HOCAS). Depending on the selected feature, the
landing may be marked by the handling pilot only or by bots pilots. The spatial
awareness is enhanced during the final landing approach by displaying 3D con-
formal visual cues on the helmet with optionally real reference of the object. The
ground (and optionally obstacles) in the landing zone are detected and classified
using a real-time Obstacle Warning System (OWS). Depending on the customer
and the helicopter platform, the landing symbologly function may have different
features (Figure 4.4) selected: ELOP or HELLAS sensors for the OWS; SI_sensor_based
or SI from_DB as slope indication provider for landing position; the Thales or El-
bit HMS/D; the HOCAS from Honeywell or from Aviation Systems inc.; a database
provided by the helicopter platform or a Cassidian database.

The models have been designed by engineers using MaTeLo [9] tool, OVM and
Matelo Product Line Management (MPLM) [268]. They have originally been pre-
sented by Samih et al. [267]. MaTeLo supports the description of statistical usage
models by using hierarchical Markov chains. MaTeLo’s usage model is a DTMC,
where the nodes represent the major states of the system and the transitions are
labelled with the actions or operations of the SUT with their probability to be fired.

32

4.5. WordPress, an open-source CMS

Display._visual_3D_cues
Display_reference_objects_in_landing_zor
Display_real_reference_object

Check_for_no_groun:

Mark_LP_by_handling_pilot_onl
Mark_landing_positiol Mark_LP <
Mark_LP_by_both_pilot:

Check_for_obstaclet
DB_provided_by_custome
DB_provided_by_Cassidial
HOCAS_GE_Aviation_System:
HOCAS_Honeywel
HMS_D_Thales
HMS_D_Elbit
ELOF
ows '<
HELLAS Legend:

./ Mandatory

Sl_sensor_baser O/ oot
Provide_slope_indication_for_L < ptional
SI_from_DB A Alternative

Figure 4.4: Sferion™landing symbology function feature model

AeroUct

In a DTMC, the transitions are tagged with a probability representing the likelihood,
when we are in the starting state, to execute the transition, and the action per-
formed when the transition is executed. Each action is associated with zero, one or
more requirements. The variability is described using OVM (Orthogonal Variability
Model), each variation point is associated to zero, one or more requirement(s). The
mapping, encoded in MPLM, between the variation points and the usage model
transitions is made through the requirements. MPLM and MaTeLo tools support the
product-based test derivation approach.

We encoded the Sferion™ landing symbology function models using our for-
malisms: the usage model has been flattened to remove hierarchy (by hand in 1/2
day); the OVM model has been translated to a feature model (by hand in 1/2 day);
and the mapping between features and behaviour has been encoded using an FTS,
generated from the MaTeLo usage model, the OVM model and the MPLM mapping
model (in 1 day).

4.5 WordPress, an open-source CMS

WordPress [319] is a popular open-source Content Management System (CMS)
used by more than 60 million websites [71]. It includes a plugin architecture and a
template system, allowing one to modify its behaviour by adding new functionalities
(i.e., plugins), or the rendering of the website (i.e., themes), respectively. In February

33

CHAPTER 4. CASE STUDIES

Wp_mailinglist_plugir Legend:
Gallery_plugin_plugit O/ Optional
A o
Plugins Tell_a_friend_plugir
Rich_widget_plugir
Smart_slide_show_plugir

WordPress Clockstone_theme

Themes Deep_blue_them:

OptimizePress_theme

Admin_user

Figure 4.5: Simplified WordPress feature model

2017, the WordPress database (https://wordpress.org/) counted 48,898 plugins and
4,462 (latest) themes.

We reverse-engineered the feature models and the FTSs of two WordPress in-
stances, AGE and Elsa portals, based on their Apache webserver log file. The Assem-
blée Générale des Etudiants (AGE) website (http://www.age-namur.be) is the portal
of the general student assembly of the University of Namur. It uses a dedicated
WordPress instance and provided us a log file with 1,285,592 entries from May 2013
to March 2014. The European Law Students’ Association (Elsa) of Louvain-la-Neuve
(http://elsa-1In.be) also uses a dedicated WordPress instance and provided us a log
with 48,823 entries from February 2014 to the end of April 2014.

4.5.1 Feature model

Our WordPress feature model has 3 optional core features: Plugins, Themes, and
Admin_user. One configuration (i.e., product) of the feature models represents the
minimal instance needed to play a test suite. The Admin_user feature will be selected
only if a test case requires to access the administration pages.

To identify the plugins and themes used in the instances, we analysed the Apache
webserver log entries. Each time an HTTP request is addressed to the server, one
entry is created in the log file with the following format [15]: the IP address of the
visitor sending the request; a login if the visitor is identified on the system; the date
and time of the request; the HTTP request itself, beginning with GET, POST, etc.,
followed by a URL and the protocol version; the status code sent back to the client;
the size of the object returned to the client; the website the client reports having
been referred from; and finally the information on the client’s browser. For instance,
arequest to the index. php page of the WordPress instance from a Mozilla Firefox
navigator will add the following entry in the log file:

T

34

https://wordpress.org/
http://www.age-namur.be
http://elsa-lln.be

4.5.2. Featured transition system

1 66.155.40.250 - - [08/Nov/2013:11:38:11 +0100] "GET /index.php?p=potins&
action=aimepas&id=135 HTTP/1.1" 200 708388 "-" "Mozilla/5.0 (Windows
NT 6.1; WOW64; rv:25.0) Gecko/20100101 Firefox/25.0"

Plugins and themes resources are placed in specific folders on the webserver. This
allows us to filter the URL of the log entries using the following regular expressions:
e .*/wp-content/plugins/([*/]+)/.* to detect access to a plugin resource;
e . */wp-content/themes/([*/]+)/.* to detect access to themes resources;
e . */wp-admin/.* to detect that an administration page has been used.
The names of the plugins and themes appears right after the plugins/ and themes/
part of the URL (matched by the ([*/]+) part of the regular expression). Since the
logs have been anonymized, we do not have the identification of the users and rely
on the last regular expression to detect administrator accesses to the WordPress
instance.

We ended up with two feature models: one with 45 features for the AGE Word-
Press instance, and one with 70 features for the Elsa WordPress instance. Figure 4.5
presents a simplified version of the Elsa WordPress instance (AGE instance follows
the same pattern). The root feature WordPress is decomposed in three optional sub-
features: Admin_user, Themes, and Plugins. Each plugin or theme (resp.) appearing
in alog entry will be a sub-feature of the Plugins or Themes (resp.) feature.

Another approach to build the feature model would have been to mine the
plugins and themes repository of WordPress. This would give a much larger feature
model: more than 50,000 features. Since we are in behavioural model-based context,
we seek to find incorrect behaviour in the product line. This incorrect behaviour
may be caused by feature interaction or may have another root cause (e.g., an error
in the source code introducing faults in all the products). In order to select our test
cases, we need a behavioural model of the SPL, which is derived from the Apache
Web server log. In this context, considering all the WordPress plugins and themes
in the feature model has little meaning since only the behaviour of the plugins and
themes activated in the running WordPress instances (appearing in the log) will
appear in the behavioural model. This is why we consider only those plugins and
themes as relevant for testing and add them in the feature models.

Similarly, Sdnchez et al. [270,271] used a white box testing approach to test the
Drupal CMS. They rely on documentation, source code, issue tracking system, and
Git versioning repository to reverse engineer the system’s feature model. Stress is
put on product selection, whereas we focus on behaviour selection (at the product
line level) in a black box approach.

4.5.2 Featured transition system

We reverse engineered the FTSs of the AGE and Elsa WordPress instances using
a 2-gram (bigram) inference method [291, 292]. This method uses a set of user
sessions (i.e., sequences of HTTP requests) to generate a navigational model of
a website. In the generated FTS, the states represents the last user request and
the transitions represents the sequence between two requests. Transitions leading
to a request identified as part of a plugin or a theme, or as accessible only by an

35

CHAPTER 4. CASE STUDIES

administrator (using the regular expressions from the previous section) are labelled
with the corresponding feature expression.

The n-gram inference method has been proposed by Sprenkle et al. [291, 292]
and used to test website in a black box fashion. They experiment the inference with
different configurations and values of n greater than 2 and found out that a small n
allows better diversity in the behaviours (ending up in more diverse test cases), and
requires less sessions to reach growth stability of the model. Small » also simplifies
the generation and results in a more compact model. This motivates our choice to
select 2-gram for the inference.

User sessions: One user session corresponds to a sequence of HTTP requests,
representing the sequence of pages consulted by the user. User sessions can be
extracted from the Apache webserver log by grouping entries with the same IP
address (assuming that one IP corresponds to one user) and logged within a same
time frame. This means that two entries in a user session may not be distant by more
than a maximal timeout (we arbitrarily choose to set a timeout of 3 minutes). If the
timeout is reached, the next entry will be the first of a new user session.

To build the user sessions, we only consider some relevant elements of the HTTP
request [292]. This allows to group behaviour of various users to identify common
usage scenarios. Amongst the possible group of elements, we considered:

e Request type and Resource (RR), which uses the type of HTTP request (e.g., PO-
ST or GET) and the resource name (e.g., /index.php) for a user session ele-
ment;

e Request type, Resource, and parameters Names (RRN), which also uses the
HTTP request type and the name of the resource, but also the name of the
parameters in the resource (e.g., ?p=&action=&id=).

Bigram inference: Using a bigram inference, the next state only depends on the
current state of the system. As a consequence, user session entries are considered
two by two: the last user request, which is the current state, and the next request of
the user, which is the next state of the system.

Algorithm 1 presents the bigram inference of the FTS for a WordPress instance,
based on a set of user sessions. The elements of the FTS are initialised at line 2.
For each session (line 3), the sequence of requests enriches the model: sessions
starts from a virtual state sy and the first sequence adds a transition from this state
to a new state corresponding to the first element of the sequence (lines 4 to 6);
transitions are labelled with actions representing the request of another page (lines
5and 11); and each new transition is labelled with a feature expression (lines 8 and
14). This feature expression corresponds to the conjunction of the previous feature
expression if there is one or true otherwise, and the name of a plugin, a theme, or
the administrator user if the requested resource matches one of the corresponding
regular expression from section 4.5.1. Function fLabels enriches y definition, based
on its previous definition and the given transition. This process iterates for each
request in the sequence (line 9), the starting state corresponding to the target state
of the previous iteration. Finally, each sequence terminates by a special action

36

4.5.2. Featured transition system

Input: sessions: the set of non empty user sessions
Output: fts: an FTS representing a navigational model

1 begin
2 S={so}; Act=@; trans=@; i = sp; Y =— (— 1) ;
3 for sess € sessions do
4 S.add(sess[0]);
5 Act.add(req(sess[0])) ;

req(sess[0])
6 tr = s — sess(0];
7 trans.add(tr);
8 Y = fLabels(y, tr);
9 for i € [1;sess.size[do
10 S.add(sess[i]);
11 Act.add(req(sess[i]));
12 tr = sess[i-1] M sess[i];
13 trans.add(tr);
14 Y = fLabels(y, tr, sess[i]) ;
15 end
16 Act.add(req(so));

. req(so)

17 trans.add(sess[sess.size— 1] —— sp);
18 end
19 fts= (S, Act, trans, i, fm(sessions), y);
20 return fts;
21 end

Algorithm 1: WordPress bigram FTS building

req(so), resetting the system, and ends in the virtual state s (line 17). The algorithm
returns an FTS with the inferred navigational model and a feature diagram build
using the method described in section 4.5.1 (line 19). We implemented Algorithm
1 in an open source tool: Yet Another Model Inference tool (YAMI), available at
https://github.com/xdevroey/yami.

We built four FTSs: two using Request type and Resource (RR) parts of the URLs
as sequence elements in the user sessions (AGE-RR with 772 states and 6,639 tran-
sitions, and Elsa-RR with 384 states and 1,214 transitions), and two using Request
type, Resource, and parameter Names (RRN) parts of the URLs (AGE-RRN with 1,101
states and 10,960 transitions, and Elsa-RRN with 615 states and 1,771 transitions).
The process took 3 seconds to process the 3,964 sessions of the Elsa models (average
session size=9.57, 0=46.73) and 54 second to build the 147,173 sessions of the AGE
models (average session size=5.10, 0=61.04) on a Ubuntu Linux machine (Linux
version 3.13.0-65-generic, Ubuntu 4.8.2-19ubuntul) with an Intel Core i3 (3.10GHz)
processor and 4GB of memory.

37

https://github.com/xdevroey/yami

CHAPTER 4. CASE STUDIES

4.6 Claroline, a course management system

The instance of Claroline at University of Namur! is the main communication chan-
nel between students and lecturers and is used by approximately 7000 users. Stu-
dents may register to courses and download documents, receive announcements,
submit their assignments, perform online exercises, efc. Claroline is a configurable
system [69]. Contrary to classical SPL, the selection of the features does not occur
during the development of the software (at design time in a SPL lifecycle) [252], but
during its execution (at runtime). Thus, a product can dynamically evolve while
the system is running: this requires the system architecture to be able to accommo-
date evolutions, by following plugin-based or component-based architectural styles.
Thanks to the versatility of the feature concept [64], it is possible to represent design
time and runtime product using the same formalism (FM), as product semantics is
ultimately given through the mapping with the FTS. In the Claroline case, features
represent installation parameters. A product represents a running Claroline instance
with a minimal set of data.

4.6.1 Feature model

We manually built the FM from the Claroline documentation and from inspection of
alocally installed Claroline instance (Claroline 1.11.7) in approximately 3 days (by
one person). The FM in Fig. 4.6 (additional constraints have been omitted) describes
Claroline with three main features: User, Course and Subscription. Subscription may
be open to everyone (opt OpenSubscription) and may have a password recovery
mechanism (opt LostPassword).

User corresponds to the different possible user types provided by default with a
basic Claroline installation: unregistered users (UnregisteredUser) who may access
courses open to everyone and registered users (RegisteredUser) who may access
different functionalities of the courses according to their privilege level (Student,
Teacher or Admin). The last main feature, Course, corresponds to the page dedicated
to a course where students and teacher may interact.

A course has a status (Available, AvailableFromTo if the course is available only
during a specific period, or Unavailable), may be publicly visible (PublicVisibility) or
not (MembersVisibility), may authorize registration to identified users (AllowedReg-
istration) or not (RegistrationDenied) and may be accessed by everyone (FreeAccess),
identified users (IdentifiedAccess) or members of the course only (MembersAccess).
Moreover, a course may have a list of tools (Tools) used for different teaching pur-
poses, e.g., an agenda (opt CourseAgenda), an announcement panel (opt CourseAn-
noucements), a document download section where lecturers may post documents
and students may download them (opt CourseDocument), an online exercise section
(opt CourseExercise).

Since we are in a testing context, one product of the FM does not represent a
complete Claroline instance, but the minimal instance needed to play a test suite.
Basically, it maps to a Claroline instance with one particular user and one particular

http://webcampus.unamur.be

38

http://webcampus.unamur.be

4.6.1. Feature model

<] m @ Mandatory

d Optional
RegisteredUse <] Taad'le|| A Alternative

() WithValidationRegistratic
) WithKeyRegistratio

| Claroline —¢COUI'SE |

Figure 4.6: Claroline feature model

39

CHAPTER 4. CASE STUDIES

Table 4.1: Characteristics of the FTSs of the different case studies

Model States Trans. Act. Avg. deg. BFS Back vl

height tr.
S. V. Mach. 9 13 14 1.44 5 3
C. P Term. 11 17 16 1.54 7 4
Minepump 25 41 23 4.64 15 9
Sferion™ 25 46 12 1.84 16 14
AGE-RR 772 6,639 772 8.60 328 408
AGE-RRN 1,101 10,960 1,101 9.96 426 662
Elsa-RR 384 1,214 384 3.16 194 174
Elsa-RRN 615 1,771 615 2.88 369 289
Claroline 106 2,055 106 19.37 1 105

course. This is similar to the technique presented by Segura et al. [278] used to
represent the testing entry domain of a e-commerce web site. In order to represent a
complete Claroline instance (with all its users and courses), we need to introduce
cardinalities [214] on the User and Course features in order to have multiple users
and multiple courses. Eventually we obtained a FM with 44 features.

4.6.2 Featured transition system

Regarding the FTS, we also used a bigram inference method (see section 4.5.2)
on a 5.26 Go Apache webserver log with 45,210,987 entries from January 2013 to
September 2013. Contrary to the AGE and Elsa models, we only consider the resource
names in the user sessions. This simplification is coherent with our testing context
where the FM is used to map a Claroline instance with one particular user and one
particular course.

Finally, lines 8 and 14 have been omitted in algorithm 1 for the Claroline FTS and
transitions have been subsequently tagged manually (in the produced model) with
feature expressions based on the knowledge of the system (via the documentation
and the local Claroline instance). As for the WordPress models, we added an initial
state sy, but made all states in the FTS accessible from sy. This allows to simulate a
web browser access both to the root page or directly to a sub-page of the website
(e.g., from a direct link sent in an email), which is a very common way to access
Webcampus. The final FTS consists of 106 states and 2053 transitions and has been
built in approximately 4 days (by the author).

4.7 Models characteristics

Table 4.1 details the employed FTS models. For each model, we measure: the number
of states (States); the number of transitions (Trans.); the number of actions (Act.);
the average degree of the different states that correspond to the average number of
incoming/outgoing transitions per state (Avg. deg.), computed as the number of
transitions divided by the number of states; the maximal number of states between
the initial state and another state when traversing the FTS in breadth-first search

40

4.8. Additional random LTS models

Table 4.2: Characteristics of the FMs of the different case studies

Model Feat. Common Mand. Opt. Prod.
feat. feat. feat.
S. V. Mach. 9 3 2 2 24,000
C. P Term. 21 4 4 2 4,774
Minepump 9 3 2 4 32,000
Sferion™ 25 13 10 2 64,000
AGE-RR 45 1 0 3 4.3980e+12
AGE-RRN 45 1 0 3 4.3980e+12
Elsa-RR 70 1 0 3 1.4757e+20
Elsa-RRN 70 1 0 3 1.4757e+20
Claroline 44 10 9 16 5.4067e+06

(BFS height); the number of transitions starting from a state and ending in another
state with a lower level when traversing the FTS in breadth-first search (Back Ivl tr.).

Table 4.2 presents the main characteristics of the FMs of the different cases stud-
ies. Those characteristics have been computed using SPLAR [210], the library used
by the Software Product Lines Online Tools (SPLOT) [211] to perform its analyses. For
each FV,, it gives the number of features (Feat.), the number of features common to
all products (Common feat.), the number of mandatory (Mand. feat.) and optional
(Opt. feat.) features in the model, and the number of possible products (Prod.) for
this FM.

4.8 Additional random LTS models

Additionally to the previously presented case studies, we generated four random
LTS models (Random 1-4). Those models are used during the assessment of our
mutation analysis approaches in Sections 7.5 and 7.6.

In his work, Peldnek [246-248] measured different properties (like the ones from
Table 4.2) of real world software system LTSs. The idea behind the procedure we
used to generate those LTSs is to mimic those properties:

(i) we generate a set of random graphs (basically directed arcs and nodes) and
compute the different measures (as the ones defined in Table 4.1) on them;

(ii) we select those graphs that are likely to represent a real system, i.e., those
having a small average degree, a large BFS height and a small number of back
level edges (in this order);

(iii) we apply a random labelling multiple times and computed the occurrence
probability, i.e., the probability of the labels to obtain a set of randomly gener-
ated LTSs;

(iv) we select the LTS that had the following properties: the probability of the most
occurring label in the LTS was less than or equal to 6%, and the cumulated
probability of the 5 most frequently occurring labels was less than or equal to
20%;

(v) we arbitrarily set the initial state to the first state in the graph.

41

CHAPTER 4. CASE STUDIES

Table 4.3: Characteristics of the random LTSs

Model States Trans. Act. Avg. deg. BFS Back vl

height tr.
Random1 10,000 13,652 120 1.37 7,924 3,303
Random2 15,000 20,488 300 1.37 11,865 4,899
Random3 15,000 20,488 210 1.37 11,865 4,899
Random4 15,000 20,488 150 1.37 11,865 4,899

The characteristics of the four generated random models are presented in Table 4.3.

4.9 Threats to validity

The case studies presented in this chapter are used (in Chapter 7) to assess test case
selection and mutation analysis. We cannot guarantee that those case studies are
representative of all the existing systems. In order to mitigate the validity threats,
we choose different kinds of systems, coming from different sources: embedded
systems designed by an engineer and Web-based applications where the model has
been reverse-engineered from a running instance. The random models were built
from a set of generated LTSs in order to match the real system state-space measures.

4.10 Wrap up

In the remainder of this thesis, we consider different case studies, representing differ-
ent kinds of systems, and coming form different sources. Our largest FTSs represent
the usage of Web applications: WordPress (AGE-RR, AGE-RRN, Elsa-RR, Elsa-RRN)
and Claroline. The other models represent embedded systems with a more con-
strained behaviour. Four additional randomly generated LTS models, that mimic
properties of real world system, are used during mutation analysis assessments.

42

CHAPTER

BEHAVIOURAL TEST CASE SELECTION

In Model-Based Testing (MBT), test cases are selected automatically from a par-
tial representation of expected behaviour of the System Under Test (SUT) (i.e., the
model). For most systems, it is intractable to select all the possible test cases from
the model. The test engineer relies on selection algorithms that maximize a given
criterion, a metric one the adequacy of a test suite [206]. In this chapter, we define
the notion of abstract test case (in Section 5.1), a test case selected from a Featured
Transition System (FTS), a mathematical structure to compactly represent the be-
haviour of a SPL (see Definition 2). Based on this definition, we describe three
families of criteria:

(i) structural selection criteria (in Section 5.2), adapted from the classical la-

belled transition systems to FTSs [86];

(i) dissimilarity selection criteria (in Section 5.3), which aims at selecting ab-
stract test cases as dissimilar as possible, both in terms of behaviour and in
terms of products covered by the test cases [88];

(iii) and usage selection criteria (in Section 5.4), which selects abstract test cases
based on the previous usage of the SPL [84, 85].
For each criterion, we give its definition, an abstract test case selection algorithm,
and prioritisation methods to prioritize the products of the SPL required to execute
the selected abstract test cases.

5.1 Abstract test case over an FTS

In a Model-Based Testing (MBT) approach, test cases are automatically selected
from a model of the system under test. This derivation is done in several steps: first,
abstract test cases are selected from the model, an FTS in our case, using a given
criterion; those abstract test cases are then refined, using additional information

43

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

in order to be executable by the System Under Test (SUT). This section, and the
remainder of this chapter cover the first step: abstract test case selection. Chapter 9
covers the second step: abstract test case concretization.

First, let us define the notion of abstract test case for FTSs. We define an abstract
test case over an FTS as a sequence of actions from this FTS, such that there exists a
sequence of transitions in this FTS with the given actions.

Definition 4 (Abstract test case) Let fts = (S, Act, trans, i, d, y) be an FTS. An ab-
stract test case t is a finite sequence (a1, ...,&,), Where ay,...,a, € Act and there
exists a sequence of transitions in trans such that

. ay a2 an
I— S8 —...—/ 8]

For instance, an abstract test case for the soda vending machine SPL described
in Section 4.1 may be (pay, change, soda, serveSoda). This abstract test case is a
sequence of actions in the FTS (see Figure 4.1(b)) representing a behaviour of this
SPL.

5.1.1 Positive and negative abstract test cases

We distinguish two kinds of test cases: positive test cases trigger a desired/expected
behaviour of the system under test; and negative test cases trigger an undesired
behaviour of the system under test [153,307]. In our case, a positive abstract test case
is defined as a sequence of actions executable by the fts, while a negative abstract test
case is a sequence of actions not executable by the fis. Once concretized, negative
abstract test cases typically represent sequences of actions that every product of the
product line should forbid.

In a LTS (Its), an abstract test case ¢ = (a1,..., @;) is executable, denoted [ts é, if
there exists a sequence of transitions starting from the initial state and labelled with
ai,...,an [303,304]. For an FTS (fts), to be executable, the sequence of transition
must moreover have compatible feature expressions. In other words, a sequence of
actions is executable by fts if there exists at least one product (p) which, when fts is
projected onto p (denoted fts;,), is able to execute it:

(ftsm%“") o (Elp e l[d): fis,,

al,mvan)

Example: For instance, the abstract test case (pay, change, soda, serveSoda, take)
is not executable on the soda vending machine FTS since it mixes both vending
machines that offers free drinks and vending machines that do not. Practically,

this can be detected in the FTS (and the FM) by detecting incompatible feature

. . . payl~f changel~f
expressions on the transitions: _|f on transitions $; —_— S

takel f

Sy and s, 3,

and f on transition s; S1.

In testing, unlike model checking [27], we only consider finite sequences of
actions. Since FTSs (as LTSs) do not have final/accepting state per se, in order to
decide if a sequence of actions represents a desired behaviour of the system, we

44

5.1.2. Test suite product selection

chose to consider the initial state of an FTS as a final state. Positive abstract test
cases have to end their execution in the initial state (e.g., state s; in the soda vending
machine FTS).

Definition 5 (Positive abstract test case) Let fts = (S, Act, trans, i, d, y) be an
FTS. A positive abstract test case t = (ay,...,Qy), Where ay,...,a, € Act, is a finite
sequence of actions such as there is at least one product from d able to execute t, and
this execution ends in the initial state:

Ipelldl: fis,=i

Definition 6 (Negative abstract test case) Let fts = (S, Act, trans, i, d, y) be an
FTS. A negative abstract test case t = (ay,...,a,), Where ay,...,a, € Act, is a finite
sequence of actions such as for every product from d, the product is not able to execute
t or this execution does not end in the initial state:

Vpelldl: fts, i

When derived from the soda vending machine FTS, a positive abstract test case
has to start from s; and end in s; and only fire transitions with compatible feature
expressions. For instance, abstract test case (free, soda, serveSoda, take) is a positive
abstract test case, while (free, soda, serveSoda, open, take, close) and (free, soda, serve-
Soda) are negative abstract test cases (the first one fires transitions with incompatible
feature expressions and the second one does not end in the initial state when it is
executed on the FTS).

In the remainder, we mainly focus on positive abstract test cases and simply
write test case. A test suite, defined for a SUT, is a set of test cases.

5.1.2 Test suite product selection

When abstract test cases are concretized, the result (i.e., concrete test cases, repre-
sented as a sequence of operations on the system) has to be executed on one or more
products of the SPL. The set of products able to execute a test case may be calculated
from the FTS (and the FM). It corresponds to all the products (i.e., set of features) of
the FM that satisfy all the feature expressions associated to the transitions fired by
the abstract test case when it is executed on the FTS:

Definition 7 (Test case product selection) Given an FIS fts = (S, Act, trans, i, d,
Y) and a positive abstract test case t = (ay, ..., a,) with (a1 ,...,a,) € Act, the set of
products able to execute t is defined as:

prod(fts,) = {p € [d]] | fts,, = i}

It corresponds to all the products able to execute the sequence of actions in ¢. From
a practical point of view, the set of products contains all the products satisfying
the conjunction of the feature expressions y(sx i, Sk+1) on the path(s) of f and
the FM d. When d is boolean, it may be transformed to a boolean formula in CNF

45

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

where features become variables [76]. The existence of a product for a test case is
equivalent to the satisfiability of the following formula, that can be checked by a SAT
solver:

py .
V A (y(sk i, s,)) A CNE(d)
ptepaths \i=1

For instance, the set of products for the test case (free, soda, serveSoda, take), derived

from the vending machine FTS, contains all the products of the SPL that offer free
soda. Similarly, for a test suite, we have:

Definition 8 (Test suite product selection) Given an FTS fts= (S, Act, trans, i, d, y)
and a test suite s = {ty,..., ty}, Where t1,..., t, are positive abstract test cases, the set of
products able to execute the test suite:

prod(fts, s) = | prod(fts, t;)

LiES

If we have a test suite (s) with two test cases (free, soda, serveSoda, take) and (free, tea,
serveTea, take), the set of products contains all the products of the SPL that offers
free soda or free tea.

We will consider that for a given test suite (s), a set of products (M) is adequate,
if M contains enough products to execute the test cases in s:

Definition 9 (s-adequate set of products) Let fts be an FTIS and s = {11,...,t,} bean
abstract test suite where ty,..., t, are positive abstract test cases. The set of products
M is s-adequate, denoted M =, if each test case in s may be executed by at least one
product in M:

VtEs:E!peM,ftslp:[»i

Since one of the main concern in SPL testing is to reduce the number of products
needed to execute the test, we also define the selection of the minimal s-adequate
set of products required to execute a test suite:

Definition 10 (P-Minimal test suite product selection) Let fts be an F1S and s =
{t1,...,ty} be an abstract test suite where t1,...,t,, are positive abstract test cases. A
minimal s-adequate set of products needed to execute the test suite, denoted mprod(fts,
s) = M, is a subset of prod(fts, s) such that M is s-adequate and there is no subset of
M that is s-adequate:

(M=) A (VM’ <M, (M’ ;é))

Example (continued): There are two products able to execute all the test cases
in the test suite s: one that allows to cancel purchase and one that doesn’t. The
p-Minimal set of products for s is a set with only one of those two products. The
decision of the products to include (or not) should be taken by the test engineer,
depending for instance on the cost linked to the derivation of each product.

46

5.2. Structural selection criteria

5.2 Structural selection criteria

In order to efficiently select test cases, the test engineer has to provide selection
criteria [206, 307]. We redefine hereafter classical structural coverage selection
criteria for connected FTSs as a function, returning for a given FTS and a test suite,
avalue between 0 and 1 specifying the coverage degree of the executable abstract
test suite over the FTS: 0 meaning no coverage and 1 the maximal coverage.

Definition 11 (Coverage criterion) A coverage criterion is a function cov that asso-
ciates an FTS and a test suite over this FTS to a real value in [0,1].

Classical structural coverage criteria are defined as follow, we illustrate each
coverage criteria with test suites satisfying the criteria for the soda vending machine
FTS defined in figure 4.1(b):

Definition 12 (State/All-states coverage) The state coverage criterion is related to
the ratio between the states visited by the test cases pertaining to the test suite and all
the states of the FTS. When the value of the function equals to 1, the test suite satisfies
the all-states coverage.

Example (continued): The all-states selection criterion is the weakest structural
selection criterion [307], it specifies that when executing the test suite, each state
has to be visited at least once. On the soda vending machine, an all-states covering
test suite may be:

{ (pay, change, soda, serveSoda, open, take, close);
(free, tea, serveTea, take);
(free, cancel, return) }

Definition 13 (Action/All-actions coverage) The action coverage criterion is related
to the ratio between the actions triggered by the test cases pertaining to the test suite
and all the actions of the FTS defined. When the value of the function equals 1, the
test suite satisfies all-actions coverage.

In this case, a satisfying test suite for a coverage of 1 on the soda vending machine
may be the same as the one defined for the all-states coverage.

Definition 14 (Transition/All-transitions coverage) Transition coverage is related
to the ratio between transitions covered when running test cases on the FTS and the
total number of transitions of the FTS. When this ratio equals to 1, then the test suite
satisfies all-transitions coverage.

The all-transitions coverage specifies that, ideally, each transition is fired at least
once when executing the abstract test suite on the FTS. Again, the test suite defined

using the the all-states coverage criteria satisfies the all-transitions coverage.

47

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

Definition 15 (Transition-pair/All-transition-pairs coverage) The transition-pairs
coverage considers adjacent transitions successively entering and leaving a given state.
When the coverage function reaches the value of 1, then the test suite covers all-
transition-pairs.

Example (continued): The all-transition-pairs coverage specifies that for each
state, each couple of entering/leaving transitions has to be fired at least once. On
the soda vending machine, a test suite that covers all-transitions-pairs may be:

{ (pay, change, soda, serveSoda, open, take, close);
(pay, change, cancel, return);

(pay, change, tea, serveTea, open, take, close);
(free, soda, serveSoda, take);

(free, tea, serveTea, take);

(free, cancel, return) }

Definition 16 (Path/All-paths coverage) Path coverage takes into account simple
executable paths (i.e., paths that does not fire the same transition twice), that is
sequences of transitions starting from and ending in the initial state. If the coverage
function value computing the ratio between the number of simple executable paths
covered by the test cases and total number of simple executable paths in the FTS is 1,
all-paths coverage has been reached.

The all-path coverage specifies that each simple executable path in the FTS should be
followed at least once when executing the test suite. On the soda vending machine,
it gives a test suite equal to the one defined for all-transitions-pair coverage.

5.2.1 All-states selection algorithm

We present hereafter a (simple) algorithm to select a test suite satisfying the all-
states coverage criteria. This algorithm builds abstract test cases iteratively, using
a heuristic based on an accessibility matrix for the FTS. The idea is to start from
the initial state with an empty abstract test case and a tr ue feature expression. At
each iteration, the algorithm branches out the current partial abstract test case into
multiple partial abstract test cases, one per outgoing transition. For each transition,
if the feature expression of the transition is compatible, the corresponding action is
added to one of the partial abstract test cases. The algorithm then selects the partial
abstract test case with the highest score: i.e., the one where the target state of the
selected transition may lead to the highest number of states that has not yet been
visited by a previously computed abstract test case. The target state becomes then
the new current state for the next iteration, and the feature expression associated to
the transition is conjoined with the current feature expression.

We present hereafter three algorithms involved in the computation of a all-states
covering test suite: the computation of the accessibility matrix for a FTS using a
variant of the Warshall algorithm [263], the heuristic which computes for a given
state its score, and finally the selection algorithm which computes the test suite
satisfying the all-states coverage criterion.

48

5.2.1. All-states selection algorithm

Accessibility matrix computation: The accessibility matrix A gives for two states
(s1,$2) the products able to execute a non-empty paths from s; to s,. This matrix
corresponds to the transitive closure of the FTS and is computed using the Warshall
algorithm [263]. Contrary to an accessibility matrix computed for a classical LTS, the
entry for s; and s, (noted A[1,2]) is not true or false (i.e., there exists a path from
s1 to s or not), but rather the products for which there exists a path from s; to s,.
In our implementation of the algorithm, as for in ProVeLines [72], the products
able to execute a transition ¢r (noted y ¢r) are represented using feature expressions
(i.e., boolean expressions over features). An entry of the accessibility matrix A is a
feature expression. E.g., for the soda vending machine in Figure 4.1(b), the simplified
entry A[1,4] is (7 f V f) A ¢, states that there exists a path in the FTS from s, to s4 for
all the products of the SPL having the cancel feature and having or not free drinks.

Input: fis= (S, Act, trans, i,d,y): a connected FTS
Output: A: an accessibility matrix

1 begin

2 Vsi,sj € 81 AlLL j1=Vi=(s,,a,s)etrans VL

3 for k€ [1,#S] do

14 for i e [1,#S] do

5 for j € [1,#S] do

6 | Ali, jl=Ali, j1V (Ali, k] A AL, j1);
7 end

8 end

9 end

10 return A;

11 end
Algorithm 2: Warshall algorithm computing the accessibility matrix of an FTS

Algorithm 2 presents the adaptation of the Warshall algorithm for FTSs. The
output of the algorithm is the accessibility matrix A for the given FTS. First A is
initialised with the feature expressions conditioning the transition from one state
to another (line 2). In the next steps, the matrix is updated by computing all the
possible intermediate paths for each pair of states (line 6).

Score computation: Once we have the accessibility matrix, we use a branch and
bound algorithm which explores the FTS according to our heuristic. We choose a
simple heuristic: it computes a score equal for a given state to the number of states
not yet covered by current test suite and accessible from this state.

Algorithm 3 presents the score computation for a given accessibility matrix A and
a state si. This score is computed dynamically during the selection of an abstract
test case by iterating over the k-th line of the accessibility matrix A (line 3). The score
is incremented by 1 for every cell corresponding to a not yet reached state (line 5).
Before the increment, we verify (at line 4) that the feature expression is compatible
with the feature model and the actual partial abstract test case feature expression

49

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

Input: A: an accessibility matrix;

k: the index (in A) of the current state;
e: afeature expression;

d: the feature model;

toVisit: the states not yet covered;
Output: score: the score associated to sj

1 begin

2 score=0;

3 for j € [1;#S] do

4 if s; € roVisit A SAT(Alk, j1 A CNF(d) A e) then
5 ‘ score = score+ 1;

6 end

7 end

s end

9 return score;

Algorithm 3: Partial abstract test case score computation

e (i.e., there exist one product able to execute the partial abstract test case) using a
SAT call and the CNF representation of the feature model d.

All-states covering abstract test suite selection: The all-states test suite selection
algorithm is described in Algorithm 4. This algorithm produces an abstract test suite
that satisfies the all-states coverage criterion. First the states to visit set (foVisit) is
initialised to S (line 2), all the states of the FTS. The candidates to consider (can-
didates) are the paths with one transition going out from the initial state i (line 4).
Each candidate is a couple with a path (path) and a score computed using Algorithm
3. At this stage, the test suite (testsuite) is empty (line 7).

The main loop of the algorithm (line 8) computes the abstract test cases and
continues as long as states to visit in the FTS remain. In this loop, the best candidate
¢ (with the highest score) is picked (line 9) and removed from the list of candidates
to consider.

If the last state of this candidate is the initial sate i, we found an abstract test
case (i.e., the sequence of actions on the path) which is added to the test suite if the
path contains states not yet visited (line 13). The states of the path are removed from
the states to visit (line 14) and the algorithm picks the next candidate at the next
iteration.

If the last state reached by the abstract test case is not the initial state, the
exploration continues and new candidates are computed. Each outgoing transitions
of the last state of the path is added to a new candidate if there exists a product able
to execute the new partial abstract test case (checked using a SAT call at line 19) and
for each one, a new score is computed (lines 20 and 21).

Simplification for large models: To scale to our largest models, a simplification
has been implemented in the algorithm: we ignore the feature expressions and check
the validity of a path (i.e., the satisfiability of the feature expression) only before

50

5.2.1. All-states selection algorithm

Input: fts= (S, Act, trans, i,d,y): a connected FTS;
A: the accessibility matrix of fis;
Output: ¢s: the selected test suite

1 begin
2 toVisit=S;
3 candidates = @;
4 foreach tr = (i,a, s;) € trans do
5 candidates = candidates U{((tr), score(A, k,ytr, toVisit))};
6 end
7 testsuite = @;
8 while toVisit # » do
9 ¢ = (path, score) € candidates such as score is maximal in candidates;
10 candidates = candidates \{c};
11 if last state of c.pathis i then
12 if c.path contains states from roVisit then
13 add sequence of actions on c.path to testsuite;
14 remove states on c.path from toVisit;
15 end
16 else
17 foreach transition ¢r starting from last state of c.path do
18 fexpr = A¢ricc.pam(ytri) A(ytr) A CNF(d);
19 if SAT(fexpr) then
20 c' = (c.path+ +tr,score(A, k, fexpr, toVisit));
21 candidates:candidatesu{c’};
22 end
23 end
24 end
25 end
26 return testset;
27

Algorithm 4: All-states test suite selection

adding an abstract test case to the test suite (line 13). Before adding the abstract

test case to the test suite and removing the visited states from the roVisit set, we
perform a satisfiability call (SAT) on the conjunction of the feature model (CNF(d))
and the feature expression of the abstract test case (fexpr). This simplification,
implemented after our first run of the algorithm, reduces the number of SAT calls
which are very costly, but might increase the number of invalid partial abstract test

cases, depending on the feature models and the feature expressions in the FTS.

To avoid a explosion of the candidates set, the paths and their scores may be rep-
resented using a tree structure, where states are nodes and transitions are branches

between two nodes. A walk in the tree represents a path in the FTS.

51

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

5.2.2 Test case and test suite minimality

Usually, when performing test case selection, one wants to have a test suite as small
as possible while ensuring the best coverage. Contrary to single systems where only
the size of the test suite is taken into account, when performing SPL testing, we also
have to consider the number of products needed to execute the test suite. We define
the size of a test suite as the number of transitions triggered by its test cases.

Definition 17 (Test suite size) The size of a test suite s corresponds to the number of
transitions triggered in a FTS fts when executing the test cases of s on fts, denoted

fts =

This allows to differentiate a test suite s; with test cases only triggering a minimal
set of transitions to satisfy a coverage criterion from a test suite s, also satisfying
this coverage criterion, but with longer test cases triggering transitions that do not
contribute to the coverage. For a given FTS fts, we denote s; < sy if

(fts %) < (fts Szz)

As opposed to current practice, the size of the test suite does not take the number
of test cases into account. Two test suites with the same size may have different
number of test case. This metric is more representative of the behaviour of the SPL
covered by a test suite. As for test suites, we define the size of a test case as the
number of transitions triggered by this test case.

Definition 18 (Test case size) The size of a test case t corresponds to the number of
transitions triggered in a FTS fts when executing t on fts, denoted

t
fis=

Depending on the product line under test, the test engineer decides if the test suite
has to contain lots of small test cases, to ease the debugging process when a test
case fails for instance, or few longer test cases, if the setup required to execute each
test is expensive for instance.

For such a distribution of test cases sizes in a test suite, the selection process
compromises between the size of the test suite and the number of products needed
to execute this test suite. We define the former as the minimal test suite property,
and the latter as the P-minimal test suite property.

Property 3 (Minimal test suite) A test suite s over a given FTS fts = (S, Act, trans, i,
d, y) is minimal w.r.t. a selection criteria cov iff {|s' such that s' < s and cov(fts, s') =
cov(fts, s).

Property 4 (P-minimal test suite) A fest suite s over a given FTS fts = (S, Act, trans,
i, d,y) is product-minimal (p-minimal) regarding a selection criteria cov iff § s’ such

that (cov(fts, s") = cov(fts, $)) A # mprod(fts, s') < # mprod(fts, s)).

52

5.2.3. Product prioritisation

In other words, a test suite is minimal if there exists no smaller test suite with a
better coverage, and a p-minimal test suite represents the minimal set of test cases
(with the best coverage) such that the number of products needed to execute all of
them is minimal.

Example (continued): For instance, the abstract test suite {(pay, change, soda,
serveSoda, open, take, close); (free, tea, servelea, take);(free, cancel, return) } is min-
imal for the all-states-coverage criterion but not p-minimal since it needs at least
two different products (i.e., free and not free machines) to be executed on the soda
vending machine. A p-minimal abstract test suite satisfying the all-states coverage
could be: {(pay, change, soda, serveSoda, open, take, close); (pay, change, tea, serveTea,
open, take, close); (pay, change, cancel, return) }, which only needs one product to
execute the abstract test suite.

5.2.3 Product prioritisation

When designing a test suite using a selection criterion, one of the most interesting
products to configure in order to execute the tests is the one that allows to satisfy
this criterion as much as possible (for the given test suite). For the structural criteria,
the satisfaction level is defined as the structural coverage of the test suite on the FTS.
For a given product, we define the p-coverage as the coverage reached by the
execution of a test suite on this product and the p-coverage upper bound as the
product which is able to execute the subset of a test suite with the best coverage.

Definition 19 (P-coverage) Let s be an abstract test suite over fts, a given FTS, and a
covering criterion cov. Given a product p € prod(fts, s) and s, < s the set of all abstract
test cases of s executable by p, the p-coverage is the coverage reached when executing

Sp
peov(fts, sp) = cov(fis, sp)

The most interesting product to configure first is the one providing the best coverage
for the test cases that it can execute:

Property 5 (P-coverage upper bound) Given a test suite s over a given FTS fts = (S,
Act, trans, i, d, y) and a covering criterion cov. Given a product p € prod(fts, s)
and s, < s the abstract test suite executable by p, the product p is the p-coverage
upper bound iff sp, < s executable by p' € prod(fts, s) : p' # p such that cov(fts, sp,) >
cov(fts, sp).

Test suite based product prioritisation uses the p-coverage upper bound to order
the products: for a given test suite, the product that can be used to reach the best
coverage (i.e., that can execute as many test cases as possible and/or those with the
best coverage) are ranked first.

53

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

Example (continued): For the soda vending machine SPL, the two p-coverage
upper bound products for the all-states p-minimal test suite {(pay, change, soda,
serveSoda, open, take, close); (pay, change, tea, serveTea, open, take, close); (pay,
change, cancel, return) } are the one with all the optional features selected and selling
beverage in Euro or Dollar (which are mutually exclusive features).

5.2.4 Related work

Coverage testing for SPL targets both variability and on behavioural models. Many
approaches targeting variability models (mostly feature models) exploit ideas of
CIT to sample products, yielding product sets even for very large feature models. A
more complete description of those approaches may be found in Section 2.4). To
compare with our approach, we assess the the benefits of such techniques in terms
of behavioural coverage in Section 7.3.

At the behavioural level, several techniques have also been proposed. One of
those considers incremental testing in the SPL context [167, 197, 233, 309]. For
example, Lochau et al. [195,197] proposed a model-based approach that shifts from
one product to another by applying deltas to statemachine models. These deltas
enable automatic reuse and adaptation of the test model and derivation of retest
obligations. Oster et al. [233] extend combinatorial interaction testing with the
possibility to specify a predefined subset of products in the set of products to test.
There are also approaches focused on the SPL code by building variability-aware
interpreters for various languages [161]. Based on symbolic execution techniques
such interpreters are able to run a very large set of products with respect to one given
test case [224]. Cichos et al. [58] use the notion of 150% test model (i.e., a test model
of the behaviour of a product line) and test goal to derive test cases for a product
line but do not redefine coverage criteria at the SPL level. At the code level, Li et
al. [192] focuses on test specification and values reuse from one product to another
by using a genetic algorithm that integrates software fault localization techniques
and structural coverage of the program.

Finally, Beohar et al. [37-39] propose to adapt the ioco framework proposed by
Tretmans [303] to FTSs. Contrary to this approach, we do not seek exhaustive testing
of an implementation but rather to select relevant abstract test cases based on the
criteria provided by the test engineer.

5.3 Dissimilarity selection criteria

Dissimilarity testing is a technique used to select a test suite amongst all possible
test cases, which aims to maximise the fault detection rate by increasing diversity
among test cases [56,131]. This diversity is characterised by a dissimilarity heuristic
defined over the different test cases. For instance, in behavioural model-based
testing, one may define a distance between two test cases in a LTS (or an FTS) as the
number of actions that differ from one test case to the other. Hemmati et al. [131]
empirically demonstrate that in single system model-based testing, dissimilar test
suites find more faults than similar ones. Mondal et al. [218] explored how code

54

5.3.1. Product dissimilarity

coverage and test case diversity interact in fault-finding abilities of test suites. Results
are better for diversity-based test suites, though results are overlapping. The authors
conclude that coverage and diversity may complement each other nicely in a multi-
objective search-based scenario.

Henard et al. [135] applied dissimilarity testing to SPL in order to sample and
prioritize products to test. The idea was to mimic the combinatorial interaction
testing (CIT) sampling for SPLs [196, 250], in which valid combinations of features
are covered at least once. CIT-based sampling for large SPLs raises a computational
challenge because of the number of features and constraints involved, forming a
large and complex search space. This approach shown good results for large feature
models (up to 7000 features) and its relevance has been independently confirmed
by Al-Hajjaji et al. [8].

Considering this body of knowledge, we combine dissimilarity for SPLs at the
product level, that maximises product coverage, with test case dissimilarity, that
maximises behaviour coverage, to proceed to a bi-objective test case selection.

5.3.1 Product dissimilarity

Considering a product as a set of feature, dissimilarity between products may be
computed using set-based distances. To compute the product dissimilarity distance,
we choose to use the Jaccard index [149] which shows good results in Henard et al.
work [135].

Jaccard index product dissimilarity: Giving two sets of products s; and sy, the
Jaccard index dissimilarity (jaccard,,) is the ratio between the number of products
common to s; and s, and the total number of products in s; and sy:

. [s1 N syl
]accardp(sl, $H)=1-—
[s1U $2|

5.3.2 Actions dissimilarity

The dissimilarity distance between two sequences of actions may be computed
using sequence-based distances or set-based distances (like the Jaccard index) if
we assimilate sequences of actions to sets of actions [130, 131]. To select dissimilar
test cases, we consider both set-based distances (Hamming, Jaccard, dice, and anti-
dice distances) and a sequence-based distance (Levenshtein or edit distance) [125].
We give hereafter the definitions and the algorithms used to compute the different
dissimilarity measures, based on the considered distances.

Hamming actions dissimilarity: Hamming distance [273] is used as a basic se-
quence-based edit-distance between two sequences with the same length. It is
defined as the minimum number of edit operations needed to transform the first
sequence into the second. In most cases, the sizes of the considered sequences
differ [130, 131]. In such case, the Hamming distance may be used as a set-based
distance by building two binary vectors (one per sequence) indicating for each

55

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

sequence which elements amongst all the possible elements are in the sequences
and which are not.

For instance, for two sequences of actions seq; = (a1, a2, @4) and seq; = (a1, a2, as)
and a set of possible actions Act = {a;, ..., a5}, the binary vectors is v; = [11010] for
seqy and v, = [11100] for seq», and the Hamming distance equals to 2/5. To trans-
form the similarity measure to a dissimilarity measure, we subtract the Hamming
distance from 1 and define Hamming dissimilarity as:

|seqi Nseqa| +1Act\ seqr \ seqa|

hamming (seqy, seqr, Act) =1—
ga(seqi, seqz, Act) Act]

Jaccard actions dissimilarity: As for product dissimilarity, the Jaccard actions
dissimilarity between two sequences of actions seq; and seq; is the ratio between
the number of different actions common to the two sequences and the total number
of different actions in the two sequences:

_ Iseqinseqo]

jaccard : =1
Jjaccard,(seq1, seq) [seqi U seqa|

Dice and anti-dice actions dissimilarity: Dice (Gower-Legendre) and anti-dice
(Sokal-Sneath) are set-based distances [130, 131], using a generalisation of the Jac-
card index formula. For two sequences seq; and seqy, considered here again as sets
of actions, the general formula is:

~ |seqy N seqp|
[seqy Useqal + w * (|seq) U seqaz| — |seq1 N seqal)

jaccard,(seq,seqo, w) =1

The dice dissimilarity is obtains by fixing the w parameter to 0.5 and the anti-dice
dissimilarity is obtained by fixing w to 2.0:

dicey(seq, seqr) = jaccard,(seqi, seq2,0.5)

antidice,(seq1, seqr2) = jaccard,(seq, seq,2.0)

Levenshtein actions dissimilarity: The Levenshtein distance [186], also called
edit distance, between two sequences of actions indicates the number of insertion,
deletion and replacement operations to perform on the first sequence to obtain
the second one. This number, divided by the maximal length between the two
sequences, gives us the Levenshtein actions dissimilarity measure (levenshteing).

Algorithm 5 presents the Levenshtein dissimilarity computation using a classical
dynamic programming approach (we consider that the insertion, deletion, and re-
placement costs equal 1). If the two sequences are the same (line 2), the dissimilarity
is equal to 0. If only one of the two sequences is empty (line 5), the dissimilarity is 1.
In the general case, the algorithm uses two tables (line 8) to compute the current
edit distance and memoize the previous iteration of the algorithm (initialised at
line 9). At each iteration i for i € [0; seq;.size] (line 12), table current is updated
based on previous such as Vj € [0;seq.size[, value in current[j + 1] represents

56

5.3.3. Random test case selection

Input: seq;, seqz: two sequences
Output: Levenshtein dissimilarity measure

1 begin

2 if seq) == seq» then

3 | return0;

4 end

5 if seq; or seq, are empty then

6 ‘ returnl;

7 end

8 int[seq,.size+ 1] previous; int[seqq.size+ 1] current;
9 for i € [0;seqo.size+ 1] do

10 | previouslil = i;

11 end

12 for i € [0;seq;.size[do

13 current[0] = (i +1);

14 for j € [0;seq,.size[do

15 int cost = seqq il == seqx[j1?1:0;

16 current|j+ 1] = min(current[jl, previous|j+ 1], previousl j] * cost);
17 end

18 current = previous.copy() ;

19 end
20 return current[seq».sizell max(seq.size, seqr.size);
21 end

Algorithm 5: Levenshtein dissimilarity computation

the edit distance between the subsequences seq;[0..i] and seq;[0.. j]. Value in
current is updated (line 16) by taking the minimal cost between deleting, inserting,
or substituting (if needed) a letter at position j in seq» to align it on seq;.

5.3.3 Random test case selection

In our previous work [91] we presented a first implementation of a random test
case selection algorithm. This algorithm was not optimal as it performs validation a
posteriort: it first generates a sequence of actions using the FTS without considering
feature expressions and verifies afterwards that this sequence may be executed by a
valid product of the product line using a SAT solver. We improved this algorithm to
directly consider sequences of actions executable by a valid product.

Algorithm 6, takes as input a FTS (without deadlock) and produces a random
test case executable by at least one product of the SPL. The algorithm loops while
we are not back to the initial state (line 5). At each iteration, a transition is selected
such as if its associated action is added to the partial test case, at least one product
of the product line may execute it (line 8), the action of this transition is then added
to the partial test case (line 9) and the algorithm moves to the next state (line 10).

57

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

Input: fts = (S, Act, trans, i,d,y): a connected FTS
Output: A random positive abstract test case
Data: t, candidate: test case; tr: transition; next: state

1 begin

2 t=0;

3 tr =null;

4 next=1i;

5 while (11 = null) v (tr.sj # i) do

6 candidate = t.copy();

7 tr = random({next Ls j € fis.trans |
8 prod(fts,candidate.add(a)) # @});
9 t=t.add(tr.a);

10 next = tr.sj;

11 end

12 return f;

13 end

Algorithm 6: Random positive abstract test case selection

5.3.4 Bi-objective test suite selection

Our bi-objective test case selection [88] tries to maximise both the product and the
behaviour coverage of a test suite. To do so, it computes a dissimilarity distance
between test cases based on the products able to execute each test case (using the
FTS) and the actions appearing in those test cases. Two test cases are dissimilar
(distance equals 1) if they do not share the same actions and they may be executed
on dissimilar products. Formally, we define the dissimilarity between two test cases
as follows:

Definition 20 (Test cases dissimilarity) Given an FIS fts and two test cases t; =
(a1,...,apn) and ty = (By1,..., Bn) derived from fts, the dissimilarity between t, and t,
is defined as:

diss(fts, 11, 12) = dissy (prod(fts, t1), prod(fts, 1))
® dissa((alru -)an)) (ﬁl)"'!ﬁn))

Where dissy, : [[d]] x [[d]] — [0,1.0] computes a dissimilarity distance between the
products, diss, : Actt x Actt — [0,1.0] computes a dissimilarity distance between the
actions of the test cases, and ® : [0,1.0] x [0,1.0] — [0, 1.0] is an operator combining
the products and actions distances to return a global dissimilarity distance between
the two test cases.

In our evaluation in Section 7.2, we use the multiplication (x) and average (avg)
operators for ®. The multiplication operator considers that two test cases are highly
dissimilar only if both their actions and products are dissimilar. The average operator
soften this constraint: two test cases with a high dissimilarity value only for their
products or only for their actions are also considered as dissimilar (although less
dissimilar than two test cases with highly dissimilar actions and products).

58

5.3.4. Bi-objective test suite selection

Input: fts: a connected FTS;

k: the number of test cases;

d: the duration

Output: A test suite s maximizing the fitness value return by fiz()

1 begin

2 s=<>;

3 for i € [0; k[do

4 | s.append(random(fts));

5 end

6 start = time();

7 while time() < start+d do

8 sort(s);

9 candidate = s.copy() ;

10 candidate.removeLast() ;

11 candidate.append(random(fts));
12 if fit(fts,candidate) > fit(fts,s) then
13 ‘ s=candidate;

14 end

15 end

16 return s;

17 end
Algorithm 7: Search-based dissimilarity selection

Bi-objective test suite selection may be formulated as a search-based problem:
given an FTS, amongst all the possible test cases, select a test suite such that the
dissimilarity between the test cases in this test suite is maximal. To efficiently explore
the search space, we use a meta-heuristic: a (1+1) evolutionary algorithm without
mutation nor crossover [95, 135]. This algorithm selects, for a given FTS, a time
budget (d), and a number of test cases (k), a test suite with k test cases with the
objective to maximise the dissimilarity. Test suites are characterized using a fitness
function which associates a score to a test suite, denoting the dissimilarity degree
between the test cases. This fitness function is defined based on a dissimilarity
distance:

Definition 21 (Fitness function) Given a dissimilarity diss and a test suite (1, ..., ty)
selected from a FTS fts, the fitness function fit: FTS x Act* x ... x Actt — R is defined
as the sum of the distances between the different test cases:

k
fit: (fts, ty,..., tg) — Z diss(fts, t;, t})

j>i

Selection algorithm: Algorithm 7 presents the bi-objective (1+1) without mutation
nor crossover evolutionary algorithm we use to select a dissimilar test suite. First,
the algorithm initialises a random sequence of test cases (line 3) with k elements;
this set is then improved in order to maximise the fitness value during a given time
d (line 7).

59

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

At each iteration of the main loop, the current set is sorted using the dissimilarity
distance between test cases (line 8). Sorting is performed by considering either
local distances or global distances. For local distances, it computes the distances
between every pair of test cases: Vi, j € [0; k[, dist[i, j1 = diss(fts, s[i], s[j]). It then
selects the pair of test cases such that dist[i, j] is maximal and put them at the
beginning of the list. This process loops until all elements of the set have been pro-
cessed to give a list of test cases (g, Ip, L¢, ta, te, f,...) Where distla, b] = dist[c,d] =
distle fl=...

The global distance works in the same way: first a pair of test cases as dis-
similar as possible is selected; then test cases are added in such a way that the
dissimilarity with the previously selected test cases is maximal. This gives us a
list of test cases (tg4, tp, t¢,...) Where, Vx # b, distla,b] = dist[a,x]; and Vx # b, c,
(distla,cl+dist[b,cl) = (distla,x] + dist[b, x]); etc.!

At the end of the sorting algorithm, the most dissimilar (global or local) elements
are at the beginning of the list s. The next step is to replace the last element of
this list by a new random test case (line 10). If the fitness value of this new set
(candidate) is better than the previous one, this candidate becomes the new set of
test cases (line 13). Hemmati et al. evaluated 320 similarity scenarios, including
those where a new test case is not randomly selected and found this (1+1) strategy
to be cost-effective [131].

5.3.5 Product prioritisation

As for Henard et al. [135], our search-based dissimilarity selection algorithm (locally
or globally) ranks the test cases, depending on the configuration of the algorithm.
For a test suite selected using this algorithm, we have s = (f;, #, ..., ;) with #; more
dissimilar than #, (for selections made with the local distance) or more dissimilar
that (#,..., t,) (for selections made with the global distance). Like structural based
product selection (see Section 5.2.3), the most interesting product to configure to
execute the product able to execute the longest sequence of (3, ..., tx), with k < n,
such that the dissimilarity criterion is satisfied as much as possible.

5.3.6 Related work

To the best of our knowledge, our bi-objective approach is the first to consider
dissimilarity for behaviour and product in SPL testing, since previous research on
the topic has solely focused on sampling dissimilar products of the feature model:
Henard et al. [135] defined a product sampling approach based on selected features
dissimilarity to mimic the ¢-wise coverage for large systems and high values of ¢. This
approach has been shown effective also on smaller systems (with fewer products) by
Al-Hajjaji et al. [8]. Parejo et al. [242] extended this idea, using a genetic algorithm,
by considering bot functional and non-functional properties during the selection
process. All these approaches are based on the pioneering works on dissimilarity
testing at the code level (e.g., [130,218]).

LFor more information about local and global sorting, the interested reader may refer to [135].

60

5.4. Usage selection criteria

1/return

N

0.1/pay

0.9/tea 1/skrveTea

0.9/free

0.9/take

Figure 5.1: Soda vending machine usage model

5.4 Usage selection criteria

Contrary to structural and dissimilarity based methods that use the structure of the
FTS model in order to select a test suite satisfying respectively a coverage or dissimi-
larity criterion, we propose to use the actual behaviour of the running products of
the SPL to select (and subsequently prioritize) test cases [84, 85]. Our work is based
on statistical testing [316], which eventually selects test cases from a usage model
represented by a Discrete-Time Markov Chain (DTMCQC).

Definition 22 (Usage Model (UM) [316]) A usage model is equivalent to a DTMC
where transitions are additionally decorated with actions, i.e., a tuple (S, Act, trans, P, i)
where :
® (S, Act, trans) are respectively a set of states, a set of actions, and a set of transi-
tions (trans< S x Act x S);
e P : trans — [0,1] is the probability function that associates each transition
(si, @, sj) the probability for the system in state s; to execute action « and reach
state sj;
e | € S is the initial state;
e VsieS: ZaEACI,SjES'Sii’Sj
of the transitions leaving a state must be equal to 1.

P(si > sj) =1, that is, the total of the probabilities

Note that in their original definition [316], DTMCs have no actions. We need them
here to relate transitions in a DTMC with their counterpart in an FTS. Also, we
consider that there is a single initial state i.

For instance, Figure 5.1 presents a usage model of the soda vending machine
SPL described in section 4.1: each transition has been tagged with a probability
which represents, amongst all the possible products of the SPL, the probability of the
transition to be fired. As we base our usage model on the actual usage of the product
line, some states and transitions may be missing in the usage model if the behaviour
linked to those states and transitions has not been observed in any product of the
SPL. This corresponds to transitions with a probability equal to 0 and states with
only input transitions with a probability equal to 0. In our example, we have no

61

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

vending machine serving soda. Transitions with actions soda and serveSoda and
state 5 have been removed from the usage model presented in Figure 5.1.

The usage model is agnostic to the variability inherent to the SPL. It only repre-
sents the usage scenarios of the SPL under test as well as their respective probability
and serves as basis to select test cases. There are two ways to associate usage scenar-
ios to SPL products:

e the family-based approach [84, 85] consists in exploiting logs as a source of
user information and infer the usage model using machine learning tech-
niques. We can then extract behaviour according to a probability range and
relate them to the FTS and feature models of the SPL. As they are extracted
from the usage model, behaviours can be run on the FTS to determine which
products/features are involved. Some behaviours may also correspond to no
product and thus no be executable. Those behaviours are errors coming from
the usage model inference or indicators of errors in the FTS. Either case, they
can be reported to the test engineer to correct the models.

the product-based approach developed by Samih et al. [266,268] consists in
creating usage models from the onset, taking into account requirements and
feature models as well as translating expert knowledge to probabilities in the
usage model. Concretely, requirements are related to features via a product
matrix, while the usage model directly relates its transitions to probabilities
and requirements of the SPL. Then, testers have to manually specify the prod-
ucts they are interested in and, with the help of the MaTeLo tool [9,267], derive
a pruned usage model corresponding to the behaviour of these products and
perform automated test case selection.

5.4.1 Product-based test selection

Product-based test selection is straightforward: the test engineer selects one product
to test by selecting features in the feature model, the tool then automatically use
the projection operator on FTS to extract a LTS corresponding to the product, and
prunes the usage model accordingly. The probabilities of the removed transitions
are proportionally distributed on adjacent transitions, so that the probability axiom
Vs; €S: Zsjes,akEActP(si: @, sj) = 1 holds and balance between the probabilities of
the transitions from a same source state are kept [268]. Finally, the tool selects test
cases using statistical testing algorithms on the usage model [104,316].

This scenario is proposed by Samih et al. [266, 268] in the MaTeLo Product
Line Manager (MPLM) tool [267]. Product selection is made on an orthogonal
variability model (OVM) and mapping between the OVM and the usage model (build
by a system expert using MaTeLo [9]) is provided via explicit traceability links to
functional requirements. This process requires to perform the selection of the
product of interest on the variability model and does not exploit the usage model
during this selection.

62

5.4.2. Family-based test selection

5.4.2 Family-based test selection

Contrary to product-based test selection, family-based test selection supports partial
coverage of the SPL by the usage model (like the soda vending machine usage model
presented in Figure 5.1). The key idea is to select abstract test cases (i.e., sequences of
actions, not necessarily executable by one product of the SPL) from the usage model
according to their probability to happen using an interval given by the engineer. Only
abstract test cases from the model with a probability in this interval are considered.
E.g., one may be interested in analysing highly probable behaviours (interval [0.5, 1]).
Only one abstract test case has a probability in this range in the soda vending
machine usage model: Pr(free, tea,serveTea, take) = 0.729, which corresponds
to the behaviour “serving tea for free”. The selected abstract test cases are filtered
using the FTS in order to keep only positive abstract test cases (executable by at least
one product of the SPL) and a pruned FTS (FTS’). The FTS’ represents the minimal
behaviour of the FTS needed to execute the positive abstract test cases, it is used
latter to prioritize the products to test (see section 5.4.3).

Abstract test case selection from the usage model: The first step is to extract
abstract test cases from the usage model according to the desired parameters. To
perform abstract test case selection in a usage model d tmc, we apply an all-paths
algorithm parametrized with a maximum length [, for finite abstract test cases
and an interval [Pr i, Prmax] specifying the minimal and maximal values for the
probabilities of selected abstract test cases. Formally:

allpaths(lnax, PTmin, Prmax, dtmce) ={(i,ay,...ay,1) |
n<lmaxnPk:0<k<n,i=sp)

APrmin < Pr(i,an,..., ap, i) < Pripay)}

where
n—-1

Pr(i,ag,...,$n) = [| Paeme(sjr @), Sjs1).
j=0

We initially consider only (finite) abstract test cases starting from and ending in
the initial state i (assimilated to an accepting state) without passing by i in between.
These abstract test cases correspond to a coherent execution scenario in the usage
model. The [, bound allows the algorithm to scale to large usage models [85].

The interval [Pr,in, Prmax] is provided by the engineer based on his knowledge
of the SPL and the selection purpose: an interval with high values (e.g., [0.5,1]) gives
highly probable behaviours of the SPL. This is often desired for a non-regression
testing scenario where the engineer wants to ensure that the main functionalities of
a SPL are still reliable after an update [206]. The engineer may also be interested in
testing behaviours with a low probability as they may find rare bugs not discovered
by the users of the products. Such strategies can be used, e.g., for intrusion detection
[110].

The interval, its relevance, and selected test cases depend on the usage model
source (e.g., built from running products, manually built by an engineer, etc.) and

63

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

the usage model shape (i.e., number of states, transitions, average states degree,
etc.). To have an idea of the interval to choose and the number of abstract test cases
that are selected, the engineer may use random walks in the usage model to select
random abstract test cases with their probability and see how they are distributed.

Practically, this algorithm builds an exploration tree where each node represents
the exploration of a state. The exploration of a branch of the tree is stopped when
the depth is higher than [,;,,,. This parameter is provided to the algorithm by the
test engineer and is used to avoid infinite loops during the exploration of the usage
model.

For instance, the execution of the algorithm on the soda vending machine exam-
ple (umg,,) presented in Figure 5.1, with a [, value of 7 (the size of the maximal
simple path) and an interval [0,0.1] to capture the least probable abstract test cases,
gives 5 finite abstract test cases:

allpaths(7;0;0.1; umsym) = {
(pay,change,cancel,return);(free,cancel, return);
(pay,change, tea,serveTea,open,take,close);
(pay,change,tea,serveTea,take);

(free, tea,serveTea,open, take,close)}

During the execution of the algorithm, the abstract test case (free, tea, serveTea, take)
has been rejected since its probability (0.729) is not between 0 and 0.1.

The downside is that the algorithm may possibly enumerate all the paths in the
usage model depending on the [, value. This can be problematic and we plan
in our future work to use symbolic executions techniques inspired by work in the
probabilistic model checking area, especially automata-based representations [65]
in order to avoid exploring all paths.

FTS-based abstract test case filtering and FTS pruning: We do not make any as-
sumptions about the source of the usage model. Therefore, this step serves as a
sanity check to ensure that selected traces correspond to behaviour that may be
executed by at least one valid product of the SPL. If this is not the case, there is
an error in the usage model or in the FTS. Depending on how the model has been
built, the error may come from the engineer (e.g., missing transition/state, extra
transition/state, wrong feature expression on a transition of the FTS, efc. during the
modelling) or from the model inference method used to generate the model from a
set of execution traces. Such errors have to be detected and reported to the engineer
who has to decide what to do: either correct the usage model or the FTS in order to
avoid illegal behaviours; or ignore the error if it is not significant.

The idea to filter abstract test cases and keep only positive abstract test cases is to
use the FTS to detect negative abstract test cases by running them on it. Practically,
we build a second FTS which represents only the behaviour of the SPL appearing in
the positive abstract test cases selected from the usage model. This FTS’ represents
a prioritized subset of the original FTS [86].

64

5.4.2. Family-based test selection

Input: fts= (S, Act, trans, i,d,y): a connected FTS;

s: the set of abstract test cases to filter

Output: fis', an FTS representing fis restricted to the behaviour in s, and s, the
set of positive abstract test cases from s

1 begin

2 S ={i}; Act = @; trans' = @; i’ =i;d' = d; y' = @;
3 s'=s;

4 for ¢ € traces do

5 ifds;. € S, fts:t> si then

6 Act' =Act' U t;

7 S' =S ustates(fts, t);

8 trans' = trans' U transitions(fts, t);
9 Y' = fLabels(fts, t)y';

10 else

11 ‘ s’ ="\ {t};

12 end

13 end

14 fis' = (S, Act, trans i’ d',v");
15 return (fis', s);
16 end
Algorithm 8: FTS’ building and positive abstract test cases filtering

Algorithm 8 presents how to build the FTS’ (fis) from a set of abstract test cases
(s), with positive abstract test cases filtered during the algorithm (into s), and a
given FTS (fts). The initial state of fts’ corresponds to the initial state of the fts
(line 2) and d in fts’ is the same as for fs (line 2). For each abstract test case, if it is
executable on fts (line 5), then the states (states(f'ts, t)), actions (#) and transitions
(transitions(f ts, t)) visited in fis when executing the trace t are added to fs' (line 6
to 8). On line 9, the fLabels(fts, t) function is used to enrich the y’ function with the
feature expressions of the transitions visited when executing ¢ on the fts. It has the
following signature:

fLabels: (FTS, Act™) — (trans— [[d]] — B) — (trans — [[d]] — B)

Online 9, fLabels(fts, 1)y ;¢ returns a new function y}[» which, for a given transition
tr = (s; Zk, sj), returns yp,(tr) if ay € ¢ or Y fis (£7) otherwise.

In our example, the set of finite traces with a probability between 0 and 0.1
selected in step 1 contains two negative abstract test cases: (pay, change, tea, serve-
Tea, take) and (free, tea, serveTea, open, take, close), which both lead to an execution
condition containing the freeA - free feature expression. Those 2 negative abstract
test cases (mixing free and not free vending machines) cannot be executed on the
soda vending machine FTS (of Figure 4.1(b)) and are rejected by Algorithm 8. The
generated FTS’ is presented in Figure 5.2.

65

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

cancel /¢

C change/-f

free /f

return/c

open/-f take/-f

@/se:rveTea It

Figure 5.2: Soda vending machine FTS’

pay/-f

tea/t

close/-f

5.4.3 Product prioritisation

Product-based test selection assumes that relevant products from which test cases
are selected have already been prioritized. Relevant products are used to prune the
usage model (in order to keep only the behaviour of the selected product) and test
cases are derived using a statistical testing algorithm.

When performing a family-based test selection from a usage model, relevant
abstract test cases are directly selected from the usage model representing the
behaviour of the SPL. Those abstract test cases are then filtered to keep only positive
abstract test cases. At the end of algorithm 8, we have an FTS’ and a set of (positive
abstract) test cases. This set of test cases covers all states and transitions of the FTS’.
Since they come from the usage model, it is possible to order them according to their
probability to happen. This probability corresponds to the the cumulated individual
probabilities of the transitions fired when executing the finite trace in the usage
model. A test case t = (i,ay,..., &y, 1) corresponding to a path (i A, . i) inthe
usage model has a probability Pr(i,ay,..., a,, i) to be executed.

At this step, each test case ¢ is associated to the set of products prod(t, fts') that
can actually execute ¢. Product prioritisation may be done by sorting the test cases
according to their probability to be executed, giving a set of products for each test
case f.

For instance, for the positive abstract test case t = (pay, change, tea, servelea,
open, take, close), selected for our example, the products have to satisfy:

- f At A CNF(d)

Where d is the feature model of the soda vending machine (presented in Figure
4.1(a)), transformed into a boolean formula using the CNF function. This gives us a
set of 8 products (amongst 32 possible):

{(v, b, cur, t,eur); (v, b, cur, t,usd); (v,b,cur, t,c,eur);
(v,b,cur, t,c,usd); (v,b,cur, t,s,eur);(v,b,cur,t,s, usd);

(v, b,cur, t,s,c,eur);(v,b,cur,t,s,c,usd)}

Each of them executing ¢, which is the behaviour of the soda vending machine
product line with the lowest probability (Pr(¢) = 0.009 in the usage model).

66

5.4.4. Related work

5.4.4 Related work

To the best of our knowledge, there is no approach prioritizing behaviours statis-
tically for testing SPLs in a family-based manner. There have been SPL test efforts
to sample products for testing such as t-wise approaches [69, 70, 155, 250]. More re-
cently sampling was combined with prioritisation thanks to the addition of weights
on feature models and the definition of multiple objectives [135, 156]. However,
these approaches do not consider SPL behaviour in their analyses.

Efforts to combine sampling techniques with modelling ones (e.g., [196]) exist.
These approaches are product-based, meaning that they may miss opportunities
to reuse tests amongst sampled products [315]. We believe that benefiting from
the recent advances in behavioural modelling provided by the model checking
community [24, 25,63, 65, 105, 180, 262,298], sound MBT approaches for SPL can be
derived and interesting scenarios combining verification and testing can be devised.

To consider behaviour in an abstract way, a full-fledged MBT approach [307]
is required. Although behavioural MBT is well established for single-system test-
ing [303], a survey [234] shows insufficient support for SPL-based MBT. Metzger
and Pohl further emphasizes the need for inter-model consistency and minimizing
test redundancy across the lifecycle (domain and application engineering) [213].
We believe that the FTS formalism, natively equipped with features as a first-class
concept, is pivotal to inter-model verification support and supports combination of
quality assurance techniques both at the domain and application engineering levels
as our integration between family-based and product-based statistical test selection
illustrates.

Our will is to apply ideas stemming from statistical testing [292] and adapt them
in an SPL context. For example, combining structural criteria with statistical testing
has been discussed by Gouraud et al. [117] and Thévenod-Fosse and Waeselynck
[300]. We do not make any assumption on the way the usage model is obtained:
via an operational profile [220], by analysing the source code or the specification
[300], or from the running application logs [114, 292]. In the absence of a source
of information for the usage model, one could think of a uniform distribution of
probabilities over the usage model. As noted by Whittaker [316], in such case, only
the structure of abstract test cases would be considered and therefore basing their
selection on their probabilities would just be a means to limit their number in a
mainly random testing approach. In such cases, it is better to use structural test
selection [104].

We use MaTeLo [9] to select test cases from a product model. Other tools like
JUMBL [255] would have qualified. Both are model-based statistical testing tools,
supporting the development of statistical usage models using Markov chains, the
analysis of models, and the selection of test cases [308]. However, none of them
are able to natively handle SPL models. We use the MaTeLo Product Line Manager
(MPLM) tool [266,268] to generate models for a product of the SPL, which are then
used to select test cases.

67

CHAPTER 5. BEHAVIOURAL TEST CASE SELECTION

5.5 Wrap up

In this chapter, we described three abstract test case selection and prioritisation
approaches: structural, dissimilarity, and usage based test cases selection criteria.

Structural selection criteria: Structural selection and prioritisation criteria are
based on the structure of the FTS representing the product line to test. Those
criteria consider the number of states, actions, transitions, transitions-pairs, or
paths covered in the FTS to guide the abstract test case selection. Once selected,
the prioritisation of the products to test is done according to the abstract test cases
executable by those products: products that can reach the best coverage by executing
as many test cases as possible and/or those with the best coverage are ranked first.

Dissimilarity selection criteria: Dissimilarity selection criteria aim at selecting
abstract test cases as diverse as possible. The dissimilarity is defined by the test
engineer by combining basic distance functions taking the actions and products
covered by the test cases as input. We used a (1+1) without mutation nor crossover
evolutionary algorithm to select the test cases, based on a given time budget and a
given size of the test suite.

Usage selection criteria: Usage-based selection criteria may be used in two ways:
family-based and product-based test selection and prioritisation. Family-based
selection and prioritisation extracts products of interest according to the probability
of their execution traces gathered in a usage model. We thus select a subset of
the full SPL behaviour given as a FTS. This allows us to construct a new FTS, FTS,
representing only the executions of relevant products. This FTS’ can be analysed
all at once to enable test reuse amongst products to scale during testing activities.
Product-based selection and prioritisation requires the testers to select a product
of interest before the usage model is pruned, leaving only its executions associated
to it [266-268]. Though these approaches may seem antagonistic, family-based
prioritisation can gracefully complement the product-based one by suggesting
products of interest.

68

CHAPTER

MUTATION ANALYSIS

Mutation analysis is an established technique to either evaluate test suite effective-
ness [13,115,230] or support test case selection [108,230, 239]. It works by injecting
artificial defects, called mutations, into the code or the model under test, yielding
mutants, and measures test effectiveness based on the number of detected mutants.

Researchers have provided evidence that detecting mutants results in finding
real faults [13, 158] and that test cases designed to detect mutants reveal more faults
than other test case selection criteria [29,230]. This has been shown to be the case
for model-based mutation too [35]: Aichernig et al. [2] report that model mutants
lead to test cases that are able to reveal implementation faults that were neither
found by manually defined test cases, nor by the actual operation, of an industrial
system. In addition, model-based mutation’s premise is to identify defects related to
missing functionality and misinterpreted specifications [49]. This is desirable since
code-based testing fails to identify these kinds of defects [146,314].

Despite its advantages and the advances made by the research community,
mutation analysis still faces important issues [152]:

(i) due to the large number of mutants that needs to be generated and executed
by the test cases, mutation analysis may be expensive. While this problem has
been investigated for code-based mutation [157,240], it remains open in the
model-based context. Since typical real-word models involve thousands of
mutants and test suites involve thousands of test cases, millions of executions
are needed. Addressing this problem is therefore vital for the scalability of
mutation analysis [152, 230];

(ii) in order to generate mutants that denote subtle faults, Jia and Harman [151]
propose to use higher order mutants. A higher order mutant is the results
of a mutated mutant, i.e., a 2nd-order mutant is generated by applying a
mutation to a 1st-order mutant, a 3th-order mutant is generated from a 2nd-

69

CHAPTER 6. MUTATION ANALYSIS

order mutant, etc. Empirical evidences show that higher order mutants may
be used to subsume first order mutants, reducing the number of mutants to
execute [253], and are harder to kill, which may be useful to select better test
cases [177]. As for mutants execution, higher order mutation remains an open
challenge in model-based context;

(iii) the equivalent mutants problem concerns the mutants whose behaviour is
identical to the original artefact (code or model). As they cannot be distin-
guished by any test case, those mutants skew the analysis and cannot be used
to select new test cases.

We address those issues for model-based mutation using the software product
line framework. Artificial defects are injected using mutation operators on the
model under test, producing a mutant. A mutant is thus a small variation of the
model under test and the set of generated mutants may be grouped to form a
mutants family. Based on this idea, we use variability aware mechanisms (FTSs and
feature models) to represent a mutant family [83, 89].

Mutation analysis, as performed in this chapter, is done following a product-
based approach. It assumes that a product has been selected, that the FTS has been
projected on this product to get the corresponding LTS, and that only the subset
of test cases executable on this product have been kept in the test suite. An FTS
and a feature model represent here the mutant family for one product (i.e., LTS).
Discussion on extensions of this work to perform mutation analysis in a family-based
approach (i.e., on the FTS and feature model of an SPL) is presented in Section 10.2.2,
along with other perspectives of this thesis.

In the remainder of this chapter, we present model-based mutation analysis and
give an example in Section 6.1. Section 6.2 presents the Featured Mutants Model
(FMM) and address the first ans second issues [89]. Section 6.3 applied automata
language equivalence to detect equivalent mutants and compares it with two ran-
dom simulations approaches [90]. Finally, we wrap up and present perspectives for
our work.

6.1 Model-based mutation analysis

To address the problems of mutation analysis at the model level, we take our inspira-
tion from our research on software product lines. The idea is to consider mutants as
members of a mutants family'. Considering mutants as part of a family rather than
in isolation yields considerable advantages: shared execution at the model level [63]
and compact representation of a set of mutants. This contrasts with existing product
line approaches of mutation analysis [162, 163, 224] which require code and hence
do not apply to model mutants.

In the following sections, we use as example the specification of one product
from the card payment terminal product line described in Section 4.2. This product
allows both direct debit and credit payments, may perform it online or offline, and

1 Member is a synonym for product or variant, and family is a synonym for product line. For the sake
of clarity, we will refer to mutants as members of a mutants family.

70

6.1. Model-based mutation analysis

Init insert_card select_app

remove card abort negociate_with_card

‘{ Aborted 'é abort App_init
check_ check_PIN

abort check_PIN_online

signature _offline
NO_GO ne-go i{ CH_verified }&
go_online go_offline

ask_issuer
issuer_rejects Issuer_responded
issuer_accepts

Accepted

update_card_info accepts

remove_card Completed <—,

Figure 6.1: Card payment terminal product original LTS

i

b

allows to identify the card holder using both signature or PIN code. The features
from the feature model in Figure 4.2(a) selected to form this product are:

{ CPTerminal, PaymentSchema, DirectDebit, DebitCard, CreditCard,
Connectivity, Online, VPN, Offline, CardReader, Chip, MagStrip, Identifi-
cator, PIN, Signature}

The LTS describing the behaviour, obtained using the projection operator on the
FTS defined in Figure 4.2(b), is presented in Figure 6.1.

In model-based mutation analysis, mutants are introduced based on model
transformation rules, called mutation operators, that alter the system specification.
Model based mutation is thus a black box testing technique, unlike code-based
mutation that requires access to the code and so is white box. An example of mutant
obtained from the state missing operator applied on the Go_offline state of the card
payment terminal system, is presented in Figure 6.2(a). There are two kinds of
mutants, first-order mutants when the original and the mutant models differ by a
single model transformation, and higher order mutants, derived from the original
model after multiple transformations.

When a mutant is detected by a test case, it is called killed. In the opposite
situation, it is called live. In our case, a mutant is killed if a positive abstract test
case cannot be executed. For instance, the test case t; = (insert_card, select_app,
negociate_with_card, check_PIN_online, go_offline, update _card_info, remove_ca-
rd) will kill the mutant of Figure 6.2(a) since it fails to execute completely. A test case
that can be completely executed on a mutant will not detect (kill) it, e.g., the test case
t, = (insert_card, select_app, negociate_with_card, check_PIN_online, no_go, abort,
remove_card) will leave the mutant of Figure 6.2(a) live because it can be executed
completely.

71

CHAPTER 6. MUTATION ANALYSIS

v

remove_card abort negociate_with_card
™ A abort

“check_PIN
_offline

check_
signature

: o \&-CH,verilied 1z
go_online——

ask_issuer

Issuer_responded

issuer_accepts

update_card_info

check_PIN_online

issuer_rejects

Completed

(a) State Go_offline missing

remove_card

\ Init insert_card — select_app
NN

r;move;card ?m negocito with_card
>{Aborted |20t app init |
€heck — cneck PIN_online SNeck-PIN
signature v _offline
CH_verified |©~
go_online——go_offline
Go_online Go_offline

T
ask_issuer

issuer_rejects (|sqyer_responded

issuer_accepts

v
-Accepled
update_card_info

¥

remove card (g <

{ Completed j<
(b) State NO_GO missing

update_card_info

Init< insert_card Card_in select_app App_uninit

" insert_card)_select_app —
i m Smove._card abort negociate_with_card
abort negociate_with_card S
remove,card v Aported) abort App_init
sbor {_App_init) x heck 5 heck_PIN
checl i check_|
— check_PIN_online "
check oo BN online CHEck_PIN abort signature = " _offline
signature - _offline o do T
|_verifie
no_go CH verified |<~
go_online. go_offline
go_online. go_offline]
(Go-onine) o (Go.onie] (co_ottine
ask issuer ask_issuer
issuer_rejects Issuer_responded issuer_rejects Issuer_responded
abort issuer_accepts
update_card_info update_card_info update_card_info update_card_info
remove_card (Ce) ‘ remove_card
)

(Gompieted)
/)

(c) Action issuer_accepts exchanged (d) Wrong initial state

Figure 6.2: Card payment terminal product mutants

To measure the adequacy of testing, a standard metric called the mutation score
is used. It is defined as the ratio of mutants killed by the test suite under assessment
to the total number of considered mutants. To calculate the mutation score, one
has to execute the whole test suite against every selected mutant. In our case, we
consider deterministic LTSs and stop the execution of a test case as soon as the LTS
is unable to fire the next action. For the test case f; on the mutant in Figure 6.2(a),
the execution is stopped when it reaches the CH_Verified state as it may not execute
the next action (go_offline) in t; and the mutant LTS is considered killed by #;. In the
following, we call this approach (i.e., executing each test against each mutant model
separately), the enumerative approach.

6.2 Featured mutants model

To represent the variations introduced by the mutation operator (i.e., the result of
the application of the mutation operator) and the behaviour of the mutants, we use
a feature model and an FTS. Each feature in the feature model represents a mutation
of the LTS representing the behaviour of the system under test. When a member

72

6.2. Featured mutants model

xor

StateMissing smi IActionExchange aexl I WronglnitState wis |
Xxor

[[smi_Go_offine | [“smi_no_Go |[aexcissuer_accepts| | wis_card_in |

(a) Feature model

wis_Card_in wis_Card_in
&[Init] insert_card R ﬁ select_app -
romove card abort negociate_with_card
~ abort .
Aborted App_init
bort check_ * check PIN_online CNeCk-PIN
abo signature v _offline
NO_GO |<"0-90/=smi NO_GO ™3¢y yerified
go_online go_offline/~smi_Go_ffline

update_card_info update_card_info

remove_card {H_J]
bbb

(b) Featured transition system

ask_issuer
issuer_rejects Issuer_responded
issuer_accepts abort
/~aex_issuer_accepts laex_issuer_accepts

Figure 6.3: Card payment terminal product FMM

with one mutation (here represented as a feature) is selected and used with the
projection operator on FTS, we obtain the behaviour (represented as a LTS) of the
corresponding mutant. This allows us to embed all mutants in a single model, called
the Featured Mutants Model (FMM):

Definition 23 (Featured Mutants Model (FMM)) A FMM is a couple (fts,fm), where
fts is an FTS representing the behaviour of the original system and all the mutants
of the family, and fm is its associated feature model where each feature represents a
mutation of the original system.

For example, the FMM of Figure 6.3 has a feature model in Figure 6.3(a) with 3
instances of mutation operators: the state missing (SMI) operator, which produces
a mutant where one state is missing; the action exchange (AEX) operator, which
produces a mutant where one transition has its action changed (to another action);
and the wrong initial state (WIS) operator, which produces a mutant where the
initial state has been set to another state. In this instance of the feature model, the
SMI operator has been applied twice (smi_go_offline mutant presented in Figure

73

CHAPTER 6. MUTATION ANALYSIS

6.2(a) and smi_NO_GO mutant presented in Figure 6.2(b)), and the AEX and WIS
operators have been applied one time each (aex_issuer_accepts mutant presented
in Figure 6.2(c) and wis_Card_in mutant presented in Figure 6.2(d)). This feature
model represents four first-order mutants, where at most one leaf feature is selected.
The FTS in Figure 6.3(b) represents all the possible variations, corresponding to the
four mutation operators, of the original TS.

In order to derive one particular mutant from the FMM, one may use the FTS
projection operator. Practically, this operator will first need a valid member of the
mutant family, representing the desired mutant, e.g., p = {m, smi, smi_Go_offline};
then, each feature expression of the FTS is evaluated with features belonging to the
member replaced by true, and other features replaced by false; finally, transitions
with a feature expression evaluated to false (i.e., where yp = false) and states that
become unreachable are removed from the FTS. For instance, the projection of the
FMM of Figure 6.3 on p will produce the mutant LTS of Figure 6.2(a).

To represent the effect of the WIS operator, we modify the FTS definition (Defini-
tion 2) to replace the initial state i by a total function init that indicates if a state of
the FTS is the initial state of the system:

Definition 24 (FTS for FMM) A FTS is a tuple (S, Act, trans, init, d, y), where:
e S, Act, trans, d,y are defined according to definition 2;
e init: S — ([[d]l — B) is a total function indicating, for each state, for which
product this state is the initial state and defined such that for every product
there is exactly one initial state.

To be compliant with existing tools, this modification is implemented using an
artificial initial state s;, such that for every product, there is an outgoing transition
from s;, with no label and a feature expression indicating that this transition may
only be fired by this product, and going to the initial state of the product.

6.2.1 Building the featured mutants model

We rely on the state-of-the-art operators proposed by Fabbri et al. [102] to generate
mutants from a LTS:
SMI State Missing operator: removes a state (other than the initial state) and all its
incoming/outgoing transitions;
WIS Wrong Initial State operator: changes the initial state;
AEX Action Exchange operator: replaces the action linked to a given transition by
another action;
AMI Action Missing operator: removes an action from a transition, leaving an
e-transition without action;
TMI Transition Missing operator: removes a transition;
TAD Transition Add operator: adds a transition between two states;
TDE Transition Destination Exchange operator: modifies the destination of a tran-
sition.
Each operator can be used to generate mutants using the enumerative approach,
where each mutant is formed as a new variation of the original LTS (possibly in-

74

6.2.1. Building the featured mutants model

Input: [ts Output: [ts,,
H(> a ﬁ(> a
a b
b b
(a) Enumerative approach
Input: f15f,, Output: fts,
alnaex\y:
< > aly
aly:
b/ys b/ys

(b) FMM approach

Figure 6.4: An example of mutation, the AEX operator

troducing non determinism in the case of AEX and TAD operators), or using the
FMM approach, where each mutant is an addition to the feature model and the FTS.
We detail hereafter the mutant generation procedures (the list of operators and the
complete description of their effects is available in Appendix A).

Input: Its: the original LTS to mutate;
Ops: the set of mutation operators to use;
times: Op — N: a function specifying for each operator the number of

applications
Output: muts, the set of produced mutants
1 begin
2 muts=¢@;
3 foreach op € Opsdo
4 foreach i € [1; times(op)] do
5 ‘ muts = mutsU op(random(ts)) ;
6 end
7 end
8 return muts;
9 end

Algorithm 9: Mutant generation, enumerative approach

Enumerative approach: In the enumerative approach, each operator instance
(op) is defined as a model transformation with input a LTS (Its) representing the
behaviour of the product. It produces another (mutant) LTS (/ts,;;) representing the
result of this operator instance on Its. For instance, AEX(s1, Sp, b), shown on Figure
6.4(a), replaces the action a on transition s; L5 by b. Algorithm 9 details the

75

CHAPTER 6. MUTATION ANALYSIS

enumerative approach where the set of mutants (muts) is produced by applying
each operator (in Ops) with random parameters a number of times (defined for each
operator by the times function) on the original LTS (line 5).

FMM approach: In the FMM approach, an operator (Opj,,,,) is defined as a model
transformation of a FMM (representing existing mutants), that produces a FMM
representing (the previously existing mutants and) the result of the Oppy,, mutation
on the original TS (obtained in the FMM'’s FTS by replacing the features by false in
the feature expressions).

For instance, in Figure 6.4(b), the AEXf#,m operator instance replaces the action
a on transition s; 4 so of the base model by b as follows:

. . . . al .
(i) adding the feature expression —aex on transition s; S EN o, stating that s;
alaexny;

sp may be fired only if the aex mutation is inactive (and if y, is true);
bl aexny,

(ii) adding a transition s; o, stating that the transition is fired with a b
action only if the aex mutation is active (and if y; is true);

(iii) adding an aex feature to fd g, representing the mutation done by Op
(not shown in Figure 6.4(b)).

Input: Its: the original LTS to mutate;
Ops: the set of mutation operators to use;
times: Op — N: a function specifying for each operator the number of
applications
Output: finm = (ftsy, i), the FMM
1 begin
2 Y = (At — true);
3 JtSpnm = (S, Act, trans, i, fmg,,,,,v) ;
4 fmfmm = (m) H
5 foreach op € Opsdo
6 foreach i € [1; times(op)] do
7 ‘ fmm= opg,,,, (fmm) ;
8 end
9 end
10 return fmm;
11 end

Algorithm 10: Mutant generation, FMM approach

Algorithm 10 details the automated FMM building approach. We start with
the original LTS and a y function that labels each transition with a true feature
expression (line 2). The feature model of the FMM is initialised to a root element m
(line 4). We then apply mutation operators (Opsfy;,) a specified number of times
(times(op) line 6). Contrary to the enumerative approach, the mutation operators
are applied on the FMM under construction, which is reused in the next iteration
(line 7). This is mandatory as the FMM contains all the previous mutations that are
taken into account in the model transformations (e.g., the y; expressions in Figure

76

6.2.2. Featured mutants model execution

6.4(b)). As we choose to only perform mutations on the original LTS, this forbids
operator composition on (previously) mutated elements. Doing so ensures that
first-order mutation maps to only one edit of the original LTS and that higher order
mutants do not edit the same elements of the original LTS more than once. Further
details about the operators and specificities of the transformations can be found in
Appendix A.

6.2.2 Featured mutants model execution

A test case for a product (i.e., a LTS) is defined as a sequence of actions in this LTS
(Its), such that one execution form a path starting from and ending at the initial state
(): t=(aq,...,ay) such that (i L% Slyeeey Sn—1 An, i). Recall that in the enumerative
approach, if a test case cannot be executed by the mutant (denoted m) or does
not end in the initial state of the original LTS (considered as the accepting state), it is
considered killed. Otherwise, the mutant is considered live. The set of live mutants,
for ¢ in the set of mutants muts, is defined as:

. r o,
liveEnum(muts, t) = {m € muts| m = i}

In the FMM approach, a test case can be executed on an FMM fimm (denoted
TtSnm =t>), if there exists at least one mutant or the product is able to execute it.
The enumerative approach executes each test case on each mutant separately. In
contrast, one execution of a test case on the FMM explores all the reachable mutants
(identified by the collected feature expression y). The set of live mutants in the FMM
approach is defined as:

liveFMM (fmm, t) = {p € [[fMpy)] | 8 iym) = i)

Concretely, all possible paths in fts,,,,, starting from i and ending in i will be consid-
ered, which allows to deal with possible non-determinism introduced by a mutation.
The live mutants are those able to execute at least one of those paths, i.e., those for
which the product p satisfies all the feature expressions on the transitions of the
considered path.

For instance, the test case:

t =(insert_card, select_app, negociate_with_card, check_PIN_offline,

go_offline, update_card_info, remove_card)

77

CHAPTER 6. MUTATION ANALYSIS

Executing the FMM of Figure 6.3, it will fire the following transitions:

[~ wis_Card_in
L e

Init,

insert_card

Init ————— Card_in,

select_app

Card_in App_uninit,

negociate_with_card
s

App_uninit
check_PIN_offline

App_init,

App_init CH_verified,

go_offline/ 7 smi_go_offline

CH _verified

update_card_info

Go_offline,

Go_offline Completed,

remove_card
_

Completed Init)

These transitions may only be fired by mutants for which all the features expressions
are true. Here, mutants need to respect the following constraint:

—wis_Card_in A ~smi_go_offline

All mutants in the feature model of Figure 6.3(a) that satisfy this feature expression
remain live after the execution of ¢. The set of mutants killed by the test case is com-
puted using the conjunction of fmg,,,, and the negation of this feature expression:
Sy, A (wis_Card_inv smi_go_offline), which corresponds to the set of mutants:

{(m, wis, wis_Card_in), (m, smi, smi_go_offline)}

In practice, liveFMM(fmm, t) produces a feature expression representing all the
live mutants as detailed in Algorithm 11. Initially, the algorithm computes all the
paths in fts,,,, corresponding to the sequence of actions in ¢ (line 3). For one path,
the conjunction of the feature expressions gives the mutants able to execute this
path (line 5). Effort is saved this way by ignoring unreachable mutants and by
sharing the execution of the common transitions. This conjunction disjuncts with
the conjunctions of the others paths to get the feature expression representing all the
live mutants (line 5). This step results in savings due to merging of the considered
executions. For performance reasons, the paths variable uses a tree representation
to merge common prefixes of different paths.

We implemented the different mutant operators described in Appendix A in
order to perform classical mutation testing (enumerative approach) as well as FMM
generation and execution in VIBeS, our Variability Intensive Behavioural teSting Java
framework.

6.2.3 FMMs as higher order mutants model

Higher order mutants can be valuable since some of them tend to be hard to kill [128].
However, the number of mutants grows exponentially according to the order n and

78

6.2.3. FMMs as higher order mutants model

Input: fmm = (ftsfmm, fmfmm), the FMM;

t=(ay,..., an): atest case defined over the original LTS

Output: ive, the feature expression representing the mutants live after
executing f on fimm

1 begin

2 live= false;

s | paths=1{G "2 gy
4 foreach p € paths do

5 | live=liveV (\y,ep i)

6 end

7 return live;

s end

Algorithm 11: FMM mutant execution

explodes the involved cost. This is obvious in Algorithm 9, for the enumerative
approach, which generates all the n — 1 mutants to generate the nth-order ones.

Using the FMM approach, modelling higher order mutation comes at (nearly) no
cost. In a FMM (ftsfmm, fmfmm), the set of allowed mutants (i.e., variations in ftsfmm)
is represented by the feature model (fim,,,,). For instance, the constraints in the
Jmy,,, of Figure 6.3(a) allows to have exactly one mutant at a time. Meaning that
all valid mutants (members) of this FMM will have at most one variation from the
original LTS made by a mutation operator, e.g., Figure 6.2(a) has (only) smi_go_offline
feature active.

7 2.2

I smi_Go_offline " smi_NO_GO " aex_issuer_accepts " wis_Card_inI

Figure 6.5: The order 2 FMM of the card payment terminal example

The nth order mutants are represented by modifying the constraints on the
fmy, so that they have exactly n mutations at a time. It means that generating the
FMM using Algorithm 10 will also generate the FTS (which will be the same) for
order 1 to n FMMs. For instance, the card payment terminal product has the same
FTS, for all orders as shown in Figure 6.3(b), but differs on the feature model that is
described by Figure 6.5 by the group cardinality stating that exactly 2 subfeatures
have to be selected. The FMM will compactly represent all the Cg = 6 2nd-order
mutants.

All-order mutants: Using the same argument, we generalize to mutants of any
order by setting the group cardinalities of the feature model in Figure 6.5 to [1..4].
In this case, the FMM represents a single model with all possible orders of mutants
(with n between 1 and the number of leaf features in the FMM’s feature model). A
valid member (mutant) of the feature model will contain at least one application

79

CHAPTER 6. MUTATION ANALYSIS

of a mutation operator,e.g., a mutant m = {m, smi_go_offline}, but also m’' = {m,
smi_go_offline, smi_NO_GO}, or m" = {m, smi_go_offline, wis_Card_in}, etc. In this
case, the FMM compactly represent all the 24 — 1 = 15 n-order mutants.

The number of live mutants after the execution of a test case (f) on a FMM
(fmm) can be obtained by counting the number of SAT solutions (i.e., the number of
possible assignments for each feature) to fing,,,, A liveFMM(fmm, t), where fing,,,,, is
the FMM feature model encoded as a boolean formula, i.e., the disjunction of the
mutations (Ops): fmfmm = Voeops 0- For a test set (s), the number of live mutants is
computed by counting the number of SAT solutions to

(\Vi O)A(/\liveFMM(fmm, D).

0€Ops tes

6.3 Equivalent mutants problem

Despite its potential, mutation analysis faces a number of challenges that currently
prevent wider adoption [152,237]. One of them is the Equivalent Mutants Problem
(EMP). It concerns the mutants whose behaviour is identical to the original artefact
(code or model). Such mutants cannot be distinguished by any test case, a situation
that raises two issues: (i) they hamper the use of the criterion as a stopping rule by
skewing the mutation score measurement (the number of killed mutants divided by
the total number of mutants); and (ii) they do not bring any new value to the test
selection techniques as they attempt to kill mutants that have no chance to be killed.

Mutant equivalence can take two forms [237]: (i) equivalence between mutants
and the original system; (ii) equivalence between two mutants (not with the original
system). Mutants of case (i) are called equivalent while mutants of case (ii) are
called duplicate. We focus here on mutants that are behaviourally equivalent to the
original system, i.e., mutants of case (i).

6.3.1 EMP and automata theory

The model-based formulation of the EMP can be expressed as a classical problem in
automata theory: Automata Language Equivalence (ALE). The accepted language
of an automaton is formed by all the sequences of actions (words) that can be
accepted i.e., starting in the initial state and ending in a final state. Therefore, if a
mutant m accepts the same language as the original o (i.e., is language-equivalent to
the original), then there is no test sequence s that can distinguish the mutant from
the original:
Vs, s€ L(0) © se L(m)

There are various relations defined between two automata that we can compute
to determine whether they are language-equivalent. Among them, we can cite
bisimulations or trace equivalence [27]. In the last years, the verification community
came up with dedicated relations concepts such as bisimulations up to congruence
[42] or antichains [94] to address language equivalence. In model-based mutation

80

6.3.2. Strong and weak mutation

testing, Aichernig et al. investigated language inclusion (but not equivalence) using
refinement checking [5] in order to select mutant-killing test cases.

Although tackling the language equivalence and inclusion problems from differ-
ent angles and heuristics, all these techniques may face exponential blow-up since
both language inclusion and equivalence were demonstrated to be PSPACE com-
plete [173]. While worst-case complexity can seem discouraging, various heuristics
have been proposed to limit the effects of this complexity in practice. One of our
goals is to determine the applicability of an exact language equivalence algorithm
to address the EMP [42]. The algorithm selected due to its availability, reported
performance over the state of the art and ability to handle non-determinism that
mutations may incur. In the next section, we also present two baseline algorithms
that run generated traces to distinguish original and mutants’ behaviours.

6.3.2 Strong and weak mutation

Jobstl [153] discussed the conditions, identified by DeMillo and Offutt [79], that must
be fulfilled to kill a mutant:

(i) “the necessity condition says that the state of the mutated program after
some execution of the mutated statement must be incorrect with respect
to the original program. This implies that the mutated statement must be
reached. This is necessary, but not sufficient”;

(i) “the sufficiency condition says that the final state of the mutant must dif-
fer from the final state of the original program, i.e., the necessary incorrect
intermediate state must propagate to an incorrect final state.”

Satisfying the necessity condition alone is referred to as weak mutation, while
satisfying both is strong mutation [145,206].

At the model level, our simulations detect an incorrect state if an abstract test
case that is valid with respect to the original LTS, is invalid on the mutant LTS,
or vice-versa. Indeed, when executed, an abstract test case induces one or more
runs (alternating sequences of states and actions), depending on the presence of
non-determinism. If one run does not contain all the actions of the abstract test
case (i.e, the run is incomplete), it is because of the presence of an incorrect state
preventing the subsequent actions to be fired. If all runs are complete, the original
and the mutant are assumed equivalent for this test case. Necessity and sufficiency
conditions affect the final states of these runs. For Weak Mutation (WM), these states
can map to any state of the LTS (like for abstract test cases). For Strong Mutation
(SM), we need to account for the fact that LTSs have no final states: in this case, we
assimilate the initial state to a final state and consider only positive (or negative)
abstract test cases for strong mutation.

The ALE approach uses automata that have explicit initial and final states. For
weak mutation, we generate automata in which all states are final, and for strong
mutation the initial state is the only final state.

81

CHAPTER 6. MUTATION ANALYSIS

6.3.3 Mutant equivalence analysis

As explained in the previous sections, equivalent mutant detection may be done
using automata language equivalence. Since this is a PSPACE complete problem, we
also propose two randomized approaches: Random Simulation (RS) and Biased
Simulation (BS). Those approaches are straightforward: we generate random (either
fully random or biased random) traces from the original (resp. mutant) model and
run them on the mutant (resp. original) model. If a trace fails to execute on one of
the models, it serves as a counterexample and disproves equivalence. Otherwise,
the mutant is considered probably equivalent and testers have to decide whether
they want to perform more simulations or switch to an exact method.

Automata language equivalence: The ALE approach we selected for comparison
is developed by Bonchi and Pous [42]. It can be thought of as an extension to non-
deterministic LTSs of the Hopcroft-Karp algorithm. In particular, they introduce a
bisimulation relation called up to congruence that requires to explore less states
than the original algorithm. This approach also avoids to build the complete de-
terministic finite TS and performs determinisation on-the-fly. This makes such
an approach particularly relevant: non-determinism may be introduced locally by
mutations (our original models are deterministic), thereby limiting determinisation
scope?.

Randomized simulations: Algorithm 12 presents our generic randomized simu-
lation approach: N abstract test cases are selected (respectively) from the original
model (line 2) and the mutant model (line 8), and executed (respectively) on the
mutant model (line 4) and the original model (line 10). In case of non deterministic
behaviour, all the possible paths are considered for the execution of the abstract test
case. If one equivalence test fails, the algorithm stops and returns an abstract test
case, either valid for the original LTS (line 5), such as

t t
(o=i)A(m=1i)
or an abstract test case, invalid for the original LTS (line 11), such as
t . t
o= iDA(m=—=1)
This generic simulation algorithm is instantiated through two strategies for trace

generation (lines 2 and 8): Random Simulation (RS) and Biased Simulation (BS). The
parameter N is computed using the Chernoff-Hoeffding bound.

Random simulation: Random simulation assumes a uniform distribution of on
the transitions enabled in each state, that is, such abstract test cases are selected
randomly (select call on lines 2 and 8 in Algorithm 12) by accumulating the actions

2This is indeed the case in our evaluation: between 0% and 15.5% of the mutants are non-
deterministic (see Section 7.6).

82

6.3.3. Mutant equivalence analysis

Input: o, the original LTS;

m, the mutant to compare to o;

N, the total number of traces to generate;

k, the length of the abstract test cases;

Output: ¢, an abstract test case differentiating m from o or noneif m is
potentially equivalent to o.

1 begin
N

2 traceset = select(o, EX k);
3 foreach t € traceset do

. t
4 if 7(m =) then

// mutant fails to execute f, returns ¢
5 return valid(t) ;
6 end
7 end
N

8 traceset = select(m, Px k) ;
9 foreach ¢ € traceset do

. t
10 if 7 (0 =) then

// original LTS fails to execute t, returns ¢

11 return invalid(t) ;
12 end
13 end
14 return none;
15 end

Algorithm 12: Mutant equivalence analysis: generic randomized simulation

a; triggered by a random walk of a given length k in the LTS. For weak mutation (WM
RS), the only constraint is to start the random walk from the initial state i. Strong
mutation (SM RS) requires a random walk starting from and ending in 3.

Biased simulation: The Biased Simulation (BS) approach exploits the basic char-
acteristics of mutation testing: mutations are localised and they create (most of the
time) behavioural differences. It assumes that those differences are detected by an
abstract test case ¢ which, when executed on the original LTS o or on its mutant
m, goes through one of the states affected by the mutation. For instance, the tran-
sition missing operator produces a mutant by removing a transition a 2L, b from
the original LTS. The BS approach (that does not know which mutation has been

.) . r
performed) selects abstract test cases in 0 and m, such that their executions m —

t .
or o = reach a or b (where a syntactic difference between the models is detected).
Such states, called infected states, have been shown to help identifying equivalent

3 After few tries, this method (i.e., using a random walk until the initial state i is reached) showed very
poor results on our largest models (we set a timeout of one hour for one equivalence detection) and is
therefore not further discussed. See Section 7.6 for more details.

83

CHAPTER 6. MUTATION ANALYSIS

mutants at the code level [30,229] and to speed up mutation analysis at the model
level [168]. This motivates us to adopt this strategy in our biased simulation.

In practice, the set of infected states Sy is computed by checking syntactic
differences between the original and mutant LTSs. It will include:

(i) connected states (i.e., states accessible from the initial state) from one model
which are not present in the other, and
(ii) states with differences in their input/output transitions: in number of transi-
tions or in action names, considering any pair of states < s,, s, > where s, is a
state in the original TS, s, a state in the mutant TS, such that their names are
identical.
An alternative is to instrument the mutant generator to keep track of the list of
infected states while generating the mutants. Our goal is to be able to apply this
strategy without any information on how the mutants are generated (e.g., generated
by other frameworks than ours) and to fairly compare with an exact approach that
makes no assumption on the locality of differences. Once the set of infected states
Sinfect is Obtained (by any means), the second step is to generate traces that cover
such infected states.

For weak mutation (WM BS), an abstract test case ¢ is selected (select call on lines
2 and 8 in algorithm 12) by concatenating the actions of the shortest walk from the
initial state i to a randomly chosen state a € Sjpfr and a random walk starting from
a. To proceed, the first step during abstract test case selection is to compute the
shortest distance (i.e., the number of transitions) between each state of the original
LTS o (or its mutant m respectively) and the initial state i of o (or m respectively)
using a standard breadth-first search [75].

For strong mutation (SM BS), instead of a random walk starting from a, the
algorithm will consider the actions of a path starting from a and returning to i using
the computed shortest distance: the distance from a to i will (not strictly) decrease
each time a transition is taken in the path.

Estimating the number of required runs: An important parameter for simulation
is the number of abstract test cases selected from the original (resp. mutant) model
and run on the mutant (resp. original) model: N/2. Under the hypothesis that ab-
stract test cases are uniformly distributed we can bound the equivalence probability
and estimating the number of runs needed achieve these bounds. Herault e al. [139]
suggested to use the Chernoff-Hoeffding bound to estimate the number N/2 of
required runs to limit the equivalence probability depending on the approximation

parameter € > 0 and a confidence parameter 6 <1. If N/2 = zll()ge#é) then we have:
Prlequiv(m,o0)] = Pr i—p <e|=1-6
N/2

Where A is the number of successful runs that is either m == or 0 = for a given
abstract test case t. In practice, we compute 2A/N only when the algorithm has
exhausted all the runs and set N = 81%(22/6) for the number of runs as we have to
account for two-way simulation (i.e., two simulations): the number of runs is thus
doubled.

84

6.4. Related work

It has to be observed that regarding biased simulations, the distribution of ab-
stract test cases will not be uniform as the infected states force abstract test cases to
explore only given portions of the model, viz. where the mutations are. Although this
inequality may not hold in this case, we alleviate this threat by not trying to interpret
the 6 and ¢ values for biased simulations: they are for us a convenient means to
compute N. Furthermore, keeping the same number of runs for random and biased
simulations allows comparing their execution times and recalls (See Section 7.6).

6.4 Related work

Program mutation was proposed as a rigorous testing technique [50]. The idea
was then applied to test specification models [230] and recently to resolve software
engineering problems such as the improvement of non-functional properties [176],
locating [238] and fixing software defects [181]. Here we briefly discuss works related
to model-based mutation and code-based mutation.

6.4.1 Model-based mutation

The idea of model-based mutation has been elicited by Gopal and Budd [49] who
called it Specification Mutation. Specification mutation promises to identify defects
related to missing functionality and misinterpreted specifications [49]. This is de-
sirable since these kinds of defects cannot be identified by any code-based testing
technique [146,314], including code-based mutation.

Gopal and Budd [49] studied mutation for specifications expressed in logic.
Similarly, Woodward [318] mutated and experimented with algebraic specifications.
Mutating models like finite state machines and Statecharts has also been done by
Fabbri et al. [101]. Hierons and Merayo [144] used Probabilistic Finite State Machines.
All these studies suggested a set of operators and report some exploratory results.
Amman et al. [11] suggested comparing the original and the mutated specification
models using a model checker in order to generate counterexamples. These can
then be used as test cases for the system under test. Black et al. [41] defined a set of
operators based on empirical and theoretical analysis. They also defined a process
of using them based on the SMV model checker. Contrary to our approach, none of
these methods considers the mutation efficiency.

Recent research focuses on mutating behavioural models. Aichernig et al. [2,3,5]
defined UML state machines mutant operators and used them to insert faults in
the models of an industrial system. These were used to design tests. The approach
has a formal ground but neither considers optimising the test execution, nor higher
order mutation. Belli and Beyazit [34, 36] compare event-based and state-based
model mutation testing. Both approaches were found to have similar fault detection
capabilities. The authors also report that it seems more promising to perform higher
order mutation than first-order mutation but did not provide evidence in support of
this argument. Krenn et al. [169] made available their MoMuT tool, but it is dedicated
to test selection and not mutant execution or equivalent mutant detection as our
approach. In their most recent work [168], they use an idea similar to FMM by

85

CHAPTER 6. MUTATION ANALYSIS

triggering mutations during exploration of the model, avoiding execution of similar
prefixes in different mutants. Additionally, MoMuT does not support higher order
mutation. Recently, Granda et al. [118] defined mutation operators for UML class
diagrams.

Other applications of model-based mutation are to test model transformations
and test configurations. Mottu et al. [219] defined a fault model relevant to the
model transformation process based on which they propose a set of mutant op-
erators. Finally, Papadakis et al. [235] demonstrated that model-based mutation
of the combinatorial interaction testing models has a higher correlation with the
actual fault detection than the use of combinatorial interaction testing. Thereby,
they provide ground to the argument that model-based mutation might be more
effective than the other model-based testing methods.

6.4.2 Code-based mutation

In the context of code-based mutation, executable mutants are needed. This in-
troduces a compilation overhead which is proportional to the number of mutants.
To reduce this cost, Untch et al. [306] proposed mutant schemata, an approach
that replaces the program operators with schematic functions. These functions
introduce the mutants at runtime and thus, only one compilation is needed. Ma
et al. [202] suggested using bytecode translation, a technique that introduces the
mutants directly at the bytecode level and thus avoid multiple compilations.

To reduce the test execution overhead, several optimizations have been pro-
posed. Delamaro and Maldonado [78] suggested recording the execution trace of the
original program and consider only the mutants that are reachable by each of the em-
ployed tests. Along the same lines, Mateo and Polo [205] suggested stopping mutant
executions when they cause infinite loops. Jackson and Woodward [150] suggested
parallelizing the mutant execution process. Kapoor and Bowen [160] proposed or-
dering the mutants in such a way that the test execution is minimized. Papadakis
and Malevris [240] used mutant schemata to identify mutants that are reached and
infected by the considered tests. They then reduce test execution by considering
only the mutants that cause infection. This technique was later evaluated by Just et
al. [157] who found that it reduces test execution by 40%.

6.4.3 SPL and other variability models mutation

Henard et al. [133,136] and Arcaini et al. [19, 20] define mutant operators for feature
models and use them to assess the ability of a set of products (i.e., a test suite in their
case) to find faults. Along the same lines, Lackner and Schmidt [174] define mutant
operators for the mappings of features with other model artefacts, and Al-Hajjaji et
al. [7] define mutation operators for preprocessor-based variability. Arcaini et al. [18]
also mutated feature models in order to detect anomalies software artefacts [18].
Finally, Henard et al. [133], Reuling et al. [261], Matnei Filho and Vergilio [207] mutate
the feature model to select products to test.

86

6.4.4. Mutant equivalence analysis

6.4.4 Mutant equivalence analysis

Previous work demonstrated that equivalent mutants skew the mutation score
measurements and thus hinder the effectiveness of the method [203]. Unfortunately,
it has been proven that judging whether a code mutant is equivalent to the original
code is an undecidable problem [51]. This means that there is no solution to the
general case of this problem. Luckily, since mutations are small syntactic changes,
heuristics can identify several classes of them [237]. Two types of such heuristics exist
in the literature: those that operate in a static manner and those that are dynamic.

Static techniques include the use of compiler optimizations [228], constraint
solving [229], program slicing [143], data-flow patterns [164], and formal verification
[30]. All these techniques are effective at detecting certain types of equivalent
mutants, i.e., trivial equivalences [237], but unfortunately, they are not applicable to
model mutants.

Dynamic techniques measure the differences between the test executions of the
original and mutant programs and identify likely non-equivalent mutants. Schuler
and Zeller [277] and Papadakis et al. [236] measure the impact on coverage, while
Kintis et al. [165] measure the impact on other mutants (second-order mutants). Our
technique shares the same notion of equivalence because we check the model trace
in order to judge it. However, we do not consider executable code as we only deal
with model mutants. We also sample execution in order to increase the efficiency
of the process. It is to be noted that we have a different notion of equivalence since
we deal with behavioural models. Therefore, differences in traces imply different
behaviours, which is not the case for executable code.

Non-determinism complicates equivalence detection both at the code [243] and
model levels [4]. Patel and Hierons [243] associate predictions from pairs of inputs
and outputs of the mutant program and check whether these predictions can be
discarded by the original program, hence showing non-equivalence. This is not
applicable to our case since our models do not have outputs. Aichernig and Jébstl [4]
also encode the semantics of the action models in terms of constraints and use
refinement to check conformance in the context of non-determinism. In our case,
RS/BS manage non determinism in the TSs by considering all the possible runs.

Perhaps the closest work is that of Papadakis and Malevris [241] who sample
execution paths according to their length (select the k-shortest paths), symbolically
execute them and judge mutant equivalence based on the selected paths. The
main differences with our approach are that we additionally sample paths that
cover infected states and we operate on behavioural models instead of actual code
representation.

6.5 Wrap up

In this chapter we discuss our contributions to model-based mutation analysis to:
(i) generate, represent, and effectively execute mutants using a family-based ap-
proach to model-based mutation testing, named Featured Mutants Model (FMM);

and (ii) tackle the equivalent mutant problem at the model level using an exact lan-

87

CHAPTER 6. MUTATION ANALYSIS

guage equivalence (called Automata Language Equivalence (ALE)) and two random
simulations approaches (called Random Simulation (RS) and Biased Simulation
(BS)).

Compact mutant model: FMM takes advantage of the variability formalisms (i.e.,
FTS and feature model) to compactly represent all possible mutations on a single
model. To do so, we rely on modelling the behaviour of the product under test and
view mutant operators as model transformations that can be activated on demand
by selecting features in the feature model of the FTS. It allows to generate mutants of
any order and assess test effectiveness via an optimised execution scheme. Testing
behavioural models with FMM is a completely automated process that involves no
extra manual or computational effort over previous approaches.

In short, the use of FMM has the following benefits: first, it can easily reason
about and generate behavioural mutants; second, it can significantly speed up the
evaluation of test suites against mutants (up to 1,000 times, as showed in Section
7.5); and finally, it can efficiently perform higher order mutation.

Equivalent mutant problem: To tackle the Equivalent Mutants Problem (EMP)
at the model level, we offer two baseline algorithms based on random simulation,
and compare them to language equivalence under weak and strong mutation sce-
narios. Our experiments in Section 7.6 demonstrates the efficiency of the exact
approach for the weak mutation scenario. For strong mutation, our biased simula-
tions, that pre-process the models to detect states that are infected by mutations,
are efficient (up to 1,000 times faster) on models that contain more than 300 states,
limiting detection errors to 8%. This suggests using simulations first to quickly
discard many non-equivalent mutants, and then employing exact approaches only
on a small amount of probably equivalent mutants to speed up equivalence analysis.

There is room for improvement. First, we will extend our experiments to other
forms of equivalence and tools: for instance, the usage of a random based simulation
directly in the FMM to quickly filter out non equivalent mutants. We would also like
to switch from the pure equivalence analysis to test selection concerns by analysing
counter-examples. Our long-term goal is to draw attention on the applications
of language equivalence for mutation testing and develop further EMP-dedicated
solutions.

88

CHAPTER

EMPIRICAL ASSESSMENT

This chapter presents the empirical assessment performed to validate the test suite
selection criteria described in Chapter 5 and the mutation analysis described in
Chapter 6. Each assessment is explained in a separate section. Each section starts
with the research question(s) driving the assessment, describes the setup and results,
and discuss those results and their validity.

Section 7.1 presents the assessment of the all-states selection described in Sec-
tion 5.2.1; Section 7.2 presents the assessment of the dissimilarity-based selection
described in Section 5.3; Section 7.3 assesses how classical feature model coverage
criteria, like #-wise, cover the behaviour of a product line using two state-of-the-art
tools; and Section 7.4 presents the assessment of the usage selection and prioritiza-
tion criteria described in Section 5.4.

For mutation analysis, Section 7.5 presents the assessment of the mutants exe-
cution using FMMs described in Section 6.2 in a product-based mutation analysis
scenario. Finally, Section 7.6 presents the assessment of the mutant equivalence
detection for products using automata language equivalence and simulation (de-
scribed in Section 6.3).

7.1 All-states selection criteria

To assess the all-states selection algorithm described in Section 5.2.1, we use cover-
age measures to answer to the following research question [91]:

e Coverage ability How does the coverage the selected test suite compare to
the coverage of the randomly selected test suites?

89

CHAPTER 7. EMPIRICAL ASSESSMENT

Soda vending machine Minepump Claroline

§ I

0.50-

salelrs

0.25-

1.00- — 1 $ $ = + —

0.25-

suonoy

Coverage
o
@
o

1.00-

- B0 T e S

—+

9
a

suonisuelL

0.25-

aHst'ates rand'oml rand'omz aHst'ates randloml rand'omz allst'ates randloml rand'omz
Selection algorithm

Figure 7.1: Structural coverages of the allstates, randoml, and random?2 test suites

7.1.1 Setup

Our evaluation has been performed on three case studies: the Soda vending machine
(see section 4.1), the Minepump (see section 4.3), and Claroline (see section 4.6). For
each of them, we select random test suites and a test suite satisfying the all-states
coverage criterion using Algorithm 3.

We select random test suites with the same number of test cases (randoml) as
the ones selected by all-states algorithm (allstates) to enable direct comparison of
coverage. We also randomly select larger test suites (random?2) to figure out coverage
gains. In total, for each model, we select one allstates test suite and 100 random1
and random?2 test suites. For the soda vending machine, the allstates and random1
test suite contains 5 test cases, and the random? test suite contains 20 test cases.
The allstates and random1 test suite of the Minepump contains 12 test cases and
the random? test suite contains 20 test cases. And for Claroline, the allstates and
random] test suite contains 105 test case, and the random?2 test suite contains 200
test cases.

This assessment was performed on a Windows 7 machine with an Intel Core i3
(3.10GHz) processor and 4GB of memory.

90

7.1.2. Results

7.1.2 Results

Figure 7.1 presents the states, actions, and transitions coverage of the different test
suites. By construction, abstract test suites selected using our all-states algorithm
(allstatesin Figure 7.1) covers all the states for the three FTSs. On average, the random
algorithm does not perform well to cover all the states of the different models. On
the contrary, the random algorithm performs better at covering transition on the
largest model (Claroline): an average of 48.45% for the 200 randomly selected test
suites (random?2) against 10.17% for the all-states selection algorithm.

7.1.3 Discussion

We investigated the difference between the allstates and random(1,2) transitions
coverage for the Claroline model and found that the all-states test suite contains only
short test cases (2 actions). This is due to our heuristic. Since it prefers states that
have a path to uncovered states, the initial state has the highest score in the Claroline
model (because nearly all the states in the models have transitions coming from and
going to the initial state, due to the web nature of the application). Changing the
heuristic to avoid direct return to the initial state may improve the results for this
kind of models (where each state is strongly connected to the initial state) but may
increase the complexity of the algorithm and select inadequate abstract test cases
for other kinds of models.

These results are in line with the fact that all-states coverage criterion is poor
to cover transitions in single systems [307], we assume that this is also the case
for FTSs. Of courses an all-transitions algorithm would have given much better
results (and all-states coverage). However our preliminary evaluation of such an
algorithm resulted in huge scalability problems for the Claroline case study; after
more than 3 days of selection and a text file describing the test suite of more 250
GB, our systems ran out of memory (and also of hard drive space!). Exhaustive
computation of all-transitions for moderate size FTS is therefore not an option in
most cases.

Finally, we observe that the test suite selected to cover all-states in the Claroline
FTS also covers all the actions. This is due to the nature of the model, since each
state represents a page and each action represents a link followed from a page (i.e., a
state in the FTS) to another page (i.e., another state), there are as many actions as
there are states. Each action is thus covered. This is not always the case, e.g., the
soda vending machine in Figure 7.1.

7.1.4 Threats to validity

Internal validity: The all-states selection algorithm has been simplified to reduce
the number of SAT calls which are very costly. This simplification gives good results
on our largest model (Claroline) due to the few constraints on the FTS. On other
models with more constraints on the different transitions, this simplification may
give poor results since it can potentially select a lot of invalid test cases. We intend

91

CHAPTER 7. EMPIRICAL ASSESSMENT

to compare the actual implementation which uses a SAT solver with binary decision
diagrams (BDDs) which have performed better when processing FTSs [65].

The random selection of a test suite does not check whether there are duplicates
abstract test cases or not. Since the size of the test suites considered for random?2
test suites is larger than the size of the all-states covering test suite, this thread is
limited. To avoid this, one may implement a filter to check that newly selected test
suites are not duplicated.

Construct validity: The Claroline FTS and its FM contain few constraints ending
in a SPL with lots of products. We believe this is a typical characteristic of web
applications which are a particular class of system. This has influenced the im-
plementation of the random algorithm in order to minimize the number of SAT
calls (which are costly in CPU time). It has also influenced the heuristic during the
selection of the test suite covering all-states and gives very short test cases in regard
to the size of the system. We plan to apply our algorithms on large industrial systems
with more constrained FM and FTSs in order to validate our conclusions.

External validity: To avoid too many SAT calls, we verify that an abstract test
case is executable a posteriori by calling the SAT solver once with the conjunction
of the FM (represented as a boolean formula) and the feature expression of the
transitions of the test case. We repeat the building of an abstract test case while it
is not executable. Since the largest FTS model we considered does not have a lot
of behaviours exclusive to subsets of the product line, this implementation of the
random algorithm works fast. This may be not the case for other models with a lot
of constrained behaviour.

As discussed by Inozemtseva et al. [148], a test suite with a good coverage does
not guarantee the effectiveness of this test suite. However, in a first attempt to
compare our selection algorithms, coverage seems to be a reasonable metric.

7.2 Dissimilarity selection criteria

We report hereafter on our evaluation of dissimilarity driven test suite selection [88].
In order to compare the different dissimilarity selections, we define the following
research questions:

e Dissimilarity relevance (RQ.1) How does the similarity-driven search based
approach compare to all-actions and random test selection with respect to
fault finding and product coverage?

e Distance impact (RQ.2) How does the choice of a given distance influences
the results?

7.2.1 Setup

We consider 4 models from different sources with different sizes as input to different
test case selection processes. The four model are: the Soda vending machine (see
section 4.1), the Minepump (see section 4.3), the card payment terminal (see section

92

7.2.1. Setup

Table 7.1: Number of test cases and selection time of the all-actions test suites

Model Time (dgj1actions) Testcases (Kgjjactions)

time o count o
S. V. Mach. 1.03 sec. 0.093 3.86 0.35
Minepump 1.18 sec. 0.189 11.14 0.99
C. P. Term. 1.24 sec. 0.263 5.0 0.76
Claroline 3.42 sec. 1.814 52.86 2.95

Table 7.2: Number of faulty states, transitions, and actions seeded in the models

Model Faulty States Faulty Transitions Faulty Actions

faults o faults o faults o
S. V. Mach. 46 0.8 5.9 1.0 5.7 1.0
Minepump 124 14 19.3 1.7 9.6 1.5
C. P. Term. 53 09 7.9 1.1 6.8 1.1
Claroline 52.1 2.9 896.8 13.3 32.3 2.9

4.2), and Claroline (see section 4.6). In order to avoid bias using random selection, we
run the evaluation 6 times for each model and each configuration of the algorithm
(6 configurations overall) presented in this section.

Test suites selection: For each model, we select a test suite which satisfies the
all-actions coverage criteria (i.e., when executing all the test cases, all the actions
of the FTS are executed at least once). We measure the selection time (dg174¢tions)
and the number of test cases (kgjjacrions) and report in Table 7.1. The number
of test cases and the selection time are used as input for the dissimilar test suite
selections. To assess time impact (d in Algorithm 7) on the results, we consider the
following values: 1 x dajiactions) 2 X dallactions» 10 X daliactions, and 100 x dajjactions
to parametrize the time during which the evolutionary algorithm runs. We configure
the algorithm using different distances to compute the fitness function: the Jaccard
index for product dissimilarity; and the Hamming distance, Jaccard index, dice and
anti-dice, and Levenshtein distances for actions dissimilarity. We combine product
dissimilarity and actions dissimilarity using the multiplication and average operator
(®), and also consider action dissimilarity alone. For each configuration, we run the
algorithm using local and global distances for the sort. For each model, A random
suite of k,j74cti0ns test cases is also selected (see Algorithm 6). In total, we selected
122 test suites for each model.

Fault injection and test suites execution: Fault seeding is a popular technique to
assess and compare test suites coverage [12,13,206]. The idea is to inject faults in
SUT and measure the number of faults detected by the test suite. In this evaluation,
we choose to artificially inject faults into the FTS by tagging state, transitions and
actions as faulty. We randomly select states, transitions, and actions to assume them
as faulty (i.e., containing a fault), if a state/transition/action is selected more than
once, it is only counted as 1 during the fault detection. We then execute the test
suites on the FTS and consider that a fault is revealed as soon as the faulty states is

93

CHAPTER 7. EMPIRICAL ASSESSMENT

dissimilar allactions random
°] e o o =
e o
°
°
°
°

1.0-

0.8-

0.6-

‘UBN A'S

0.4-

asee o
00 ® © DN EIED ¢
L XL XN J

1.0-
[]
0.8- s % =
l ®
0.6-] e 60 ¢
o E]
[=)} ©
©04- °
[
3
©10- ° o, °
00 d s 0
= o H
Fos- $ o
°) o
06 - g @
3

0.4-

1.0-

o
©
°
]
d.-
®
]
auljore|

0.6-
0.4-

0.4 06 08 10 04 0.6 08 10 04 0.6 08 10
Products coverage

Figure 7.2: Faults coverage of the all-actions, random, and dissimilar test suites

reached, the faulty transitions are fired, and the faulty actions are executed. Using
information coming from previous versions of the system (i.e., from a bug tracker),
this would allow one to tag elements of the model that are more likely to contain
faults. In our case, we do not have access to such information and use a random
selection with an upper bound of 66% of faults of the states, actions, and transitions
of the FTS. This gives a measure is close to states, actions, and transitions coverage
but still allows to finely compare the different approaches. Table 7.2 presents the
average number of faults seeded in the different models during the evaluation.

7.2.2 Results

Figure 7.2 presents the coverage distribution of the different test suites selected
using dissimilarity, all-actions coverage, and random algorithm. The x-axis is the
percentage of products covered by the test suite: for a suite s and a feature model d,
it corresponds to %ﬁ]}d’s). The y-axis is the percentage of faults (states, transitions,
or actions) discovered when executing the test suite.

To characterize the test suites (i.e., , the solution space of our bi-objective selec-
tion), we compute a reference front, by taking the Pareto front of all the points in
Figure 7.2. This reference front contains all the sets of test cases maximising the fault
and products coverages (i.e., , the best solutions). We give hereafter for each model a

podium with the 3 (or more if they have the same frequency) optimal configurations

94

7.2.2. Results

Table 7.3: Hypervolumes values for the Claroline case-study

Hamming Jaccard Dice
Avg. Mul. Sing. Avg. Mul. Sing. Avg. Mul. Sing.
1 0688 0.662 0.690 0.673 0.705 0.690 0.693 0.709 0.690
Loc. 2 0674 0699 0.705 0.679 0.673 0684 0.667 0.689 0.670
sort 10 0.702 0.681 0.661 0.721 0.685 0.700 0.720 0.669 0.679
100 0.667 0.693 0.672 0.672 0.720 0.713 0.691 0.703 0.678
1 0736 0.710 0.724 0.694 0.697 0.727 0.695 0.683 0.710
Glob. 2 0.711 0.708 0.755 0.722 0.718 0.715 0.723 0.670 0.729
sort 10 0.740 0.733 0.804 0.723 0.696 0.730 0.690 0.683 0.738
100 0.794 0.800 0.831 0.747 0.729 0.756 0.750 0.714 0.755
Antidice Levenshtein
Avg. Mul. Sing. Avg. Mul. Sing.
1 0711 0.692 0.668 0.691 0.722 0.691
Loc. 2 0688 0.690 0.659 0.666 0.662 0.677
sort 10 0.667 0.674 0.651 0.691 0.681 0.696
100 0.696 0.685 0.655 0.655 0.678 0.687
1 0666 0.672 0.699 0684 0.693 0.717
Glob. 2 0677 0.705 0.728 0.708 0.687 0.733
sort 10 0.701 0.692 0.746 0.701 0.714 0.771
100 0.747 0.740 0.758 0.747 0.730 0.781
All-action Random
0.771 0.706

of the dissimilarity-based selection providing solutions that are on the reference
front:

e Soda vending machine (47 optimal solutions)
- Hamming avg,, global, £ =10 (freq. = 0.056)
- Hamming avg,, global, t =1 (freq.=0.056)
- Hamming avg., global, t =2 (freq. = 0.056)
— Hamming avg., global, £ =100 (freq. = 0.056)
e Minepump (6 optimal solutions)
— Jaccard sing., global, t =2 (freq. =0.222)
- Jaccard avg., global, t =10 (freq.=0.222)
- Antidice sing., global, t =1 (freq. = 0.222)
e Card payment terminal (64 optimal solutions)
- Levenshtein sing., global, t =2 (freq.=0.029)
- Antidice sing., global, t =10 (freq.=0.029)
— Levenshtein sing., global, t =2 (freq.=0.029)
- Antidice mul., global, =2 (freq.=0.029)
- Antidice avg,, global, t =2 (freq. =0.029)
e Claroline (1 optimal solution)
- Hamming sing., global, £ =100 (freq.=1.0)
Finally, Table 7.3 presents hypervolume for the Claroline model for the different
test suites. The hypervolume corresponds, for a test suite s, to the volume of the
solution space dominated by s [45, 132]. A high value of hypervolume correspond to

95

CHAPTER 7. EMPIRICAL ASSESSMENT

a set of test cases with a better fault and product coverage. Rows and columns show
the parameters values used for dissimilarity-based selection: the top rows indicate
the actions dissimilarity distance (diss,) and the operator (®) used to combine it
with the product distance (dissy) or if the actions dissimilarity distance is used
alone, i.e., in a single-objective configuration of the algorithm (denoted by Sing.
in the table); the leftmost columns indicate which sorting method is used (global
or local) and the time considered for the algorithm (1 x dgjjactions» 2 X Qaliactions,
10 x dajactions Or 100 x dapiacrions)-

The raw results for the 6 executions of the different test case selection algorithms
and their fault finding evaluation may be downloaded at http://projects.info.unamur.
be/vibes

7.2.3 Discussion

Dissimilarity relevance: Regarding RQ.1, dissimilarity-based approaches are al-
ways able to obtain the optimal results in terms of fault finding ability and coverage.
On the three small models, these results are sometimes matched by the all-actions
and random approaches (Figure 7.2). However, the latter appear less frequently:
neither random nor all-actions are on the podium of optimal solutions in terms of
frequency. Additionally on the Claroline case study, the only optimal solution found
is a search-based one. We therefore confirm the good results of similarity-driven
testing for single product testing [218] and product selection at the feature model
level [135] for behavioural test case selection in an SPL context.

The most important finding is that being fully bi-objective is not necessarily
an advantage: on the 13 approaches present in the frequency podiums, only 6 are
bi-objective. Additionally, a single objective approach dominates alone the Claroline
case. This may be due to the nature of the case study, which is not heavily con-
strained: it is easy to obtain by chance dissimilar products. All-actions performance
may benefit of this situation as well. Time may be involved in the explanation: for a
given amount of time, a bi-objective configuration will necessarily iterate less than a
single-objective one.

When bi-objective is optimal, the average (Avg.) composition operator gives the
best results as only one Mul. approach appears on our podiums. Time given to the
search-based algorithm has an (expected) influence on the quality of the results.
This is apparent on the Claroline case where the best hypervolumes are obtained by
approaches that are given ¢ = 100.

Distance impact: If we consider all the podiums, Hamming and Jaccard-based
distances (Dice, Antidice, Jaccard) clearly win over Levenshtein. This may seem
surprising since Levenshtein is the only one that is sequence-based taking into ac-
count the order of the actions. Levenshtein is more computationally expensive than
Hamming and Jaccard-based distances, implying less iterations of the algorithm
for a given amount of time. When employed alone (single-objective) on actions, it
appears to be the second most performing distance on the Claroline case.

96

http://projects.info.unamur.be/vibes
http://projects.info.unamur.be/vibes

7.2.4. Threats to validity

7.2.4 Threats to validity

To keep the comparison fair between the different test suite selection algorithms,
we use the same number of test cases and duration time of the all-actions test
suite selection to parametrize random and dissimilar test suites selections. As the
dissimilar test suite selection is based on a (1+1) evolutionary algorithm [95], it is
very sensitive to the maximal execution time (d). The all-actions test suite selection
may be very fast (for the soda vending machine for instance). In order to assess the
time influence in the quality of selection for the evolutionary approach, we chose to
repeat the test case selection with different d values.

We chose to use a (1+1) evolutionary algorithm [95] to maximize the dissimilarity
of the selected test suite. This algorithm is simple and to parametrize, and it showed
good results to select products to test [135]. Many other algorithms, like adaptive
random testing [57], used to select dissimilar test cases exist [131]. A comparison
between those different algorithms is left for future work.

The complete process described in Section 7.2.1 has been repeated 6 times for
each model on a Ubuntu Linux machine (Linux version 3.13.0-65-generic, Ubuntu
4.8.2-19ubuntul) with an Intel Core i3 (3.10GHz) processor and 4GB of memory. The
complete experiment took approximately 4 days.

7.3 Behavioural coverage of products sampling techniques

Products selection approaches solely based on the feature model, such as t-wise
testing, have gained momentum as they are able to scale to large SPLs. However,
these methods are agnostic with respect to behaviour: the sampled products have no
reason to satisfy any given structural behavioural criterion. In this section, we report
on our investigation [87] on the behavioural coverage of two products selection
approaches: t-wise selection and dissimilarity-based selection. To do so, we describe
hereafter our initial assessment in order to answer the following research question:

® Behavioural coverage Which behavioural coverage do dissimilarity and -
wise sampling achieve?
To address this question, we use four SPLs: each is modelled by a FTS and its related
feature model. We then apply ¢-wise and dissimilarity techniques to sample a set
of products. By projecting the FTS for each sampled product, we get a labelled
transition system from which it is possible to compute the coverage of the FTS
representing the whole SPL.

Preliminary results indicate that full coverage of states, transitions and actions
can indeed be achieved with few products (no more than 3) and that 3-wise sampling
worked best in these cases. Dissimilarity works better than ¢-wise for ¢ = {1,2},
although a detailed comparison is beyond the scope of this assessment. All these
samplings obtain full coverage with more products than needed, indicating an
interesting potential for mixing products coverage and behavioural coverage rather
than systematically considering them in isolation.

97

CHAPTER 7. EMPIRICAL ASSESSMENT

Table 7.4: SPLCAT and PLEDGE parameters

Model SPLCAT PLEDGE Config.
t X d

Soda V. M. 1 3 30sec. 3
2 6 30 sec. 6
3 14 30 sec. 14

Minepump 1 2 30sec. 2
2 7 30 sec. 7
3 13 30sec. 13

Aero UC5 1 2 60 sec. 2
2 8 60 sec. 8
3 15 60 sec. 15

Claroline 1 6 60 sec. 6
2 21 60 sec. 21
3 71 60 sec. 71

7.3.1 Setup

This initial assessment is performed on the soda vending machine, the Minepump,
the Sferion™landing symbology function, and Claroline. Regarding t-wise sampling,
we elicit the SPLCAT tool [155] for its performance [133] and PLEDGE [135] for
similarity testing. Behaviour of the different models is represented using FTSs. To
measure the behavioural coverage we use state, transition and action coverage for
each product selected using the different structural criteria.

To perform our assessment, we carry out the following steps for each model and
each tool (SPLCAT and PLEDGE):

(i) selecta set of products from the feature model using each tool;

(ii) project the FTS on each product, to get the behavioural model (i.e., , the LTS)
corresponding to this product (we use the projection operator defined by
Classen et al. [63]): it creates a new labelled transition system by removing all
transitions that may not be executed by the product, unreachable states, and
unused actions (feature expressions are dropped during the process);

(iii) for each product, compute the coverage of its behavioural model: divide the
number of states, transitions, and actions in the projection by the number of
states, transitions, and actions in the FTS. The cumulated coverage is calcu-
lated by dividing the number of different states, transitions, and actions in the
projections by the number of different states, transitions, and actions in the
FTS. The states, transitions, and actions appearing more than once are thus
counted only once.

The feature model of each case study is used as input to the SPLCAT and PLEDGE
tools to select sets of products. The SPLCAT tool can sample, for a given model and a
given t between 1 and 3, a set of valid products satisfying the 1-wise, 2-wise, or 3-wise
coverage criteria over the feature model. The PLEDGE tool can sample, for a given
feature model, a given number of products x, and a certain time d, a set containing x
products, using an evolutionary algorithm maximising the dissimilarity (in terms of
features selected) amongst products in this set. We use as x the number of products

98

7.3.2. Results

Claroline Minepump S. V. Mach. SferionTM
1.0- — —
=7l
/) A
0.8-
>
2
0.6- %
0.4
1.0- — 7 method
r—-/-

/ SPLCAT1
<) d SPLCAT2
gOB »
© 151 — SPLCAT3
> o
8 ® — PLEDGE1

o
=)

PLEDGE2
PLEDGE3

suonisuel].

4 io i o i o i io
Number of configurations (log 10)

Figure 7.3: Behavioural coverage of products selected using SPLCAT and PLEDGE

tools

sampled by SPLCAT for each model. The d parameter has the default value 60
seconds, except for smaller models where it had, after few trials, to be reduced to 30
seconds to avoid memory errors during execution. Table 7.4 presents the different
parameters used for each model and the number of sampled products. We ran the
tools on a Ubuntu Linux machine with an Intel Core i3 (3.10GHz) processor and 4GB
of memory.

7.3.2 Results

Figure 7.3 presents the accumulate behavioural coverage in terms of actions, states,
and transitions of the products selected using SPLCAT and PLEDGE. Results for the
soda vending machine exhibit the same tendencies as those of the Minepump. The
Sferion™l]anding symbology function has a coverage of 100% for states, transitions,
and actions for every product sampled using SPLCAT and PLEDGE, because its
FTS has only 4 transitions specific to 2 different features, 2 transitions for each
feature, present in each product. Although the number of selected products is
higher (as shown in Table 7.4), in general, the cumulated coverage value did not
increase further after 7 products for states and actions coverage and 14 products for
transitions coverage.

99

CHAPTER 7. EMPIRICAL ASSESSMENT

7.3.3 Discussion

Regarding our research question, for the considered case studies and settings, we
rapidly obtain a complete coverage: relatively few products are needed to fully cover
states, transitions, and actions for the two tools reported here. This is to be expected
for our small case studies, but on a larger model (Claroline), this tendency tends to
be confirmed. Of course, this assessment need to be replicated on a larger sample of
behavioural models, but this seems encouraging for the usage of structural coverage
criteria at the feature model level beyond the scope of detecting behavioural feature
interactions [58].

On the small feature models, exact ¢-wise coverage (SPLCAT) yields better cover-
age on all our behavioural criteria for ¢ = 3. This further indicates that higher values
than the usual 2-wise are relevant [293] and therefore should be used when the num-
ber of products is reasonable. PLEDGE tends to outperform SPLCAT on 1-wise (each
feature is covered at least once) and 2-wise with a smaller number of products. Since
for a given execution time, a smaller number of products means more time to evolve
the population (set of products) and less time spent computing distances amongst
them, maybe the poor performance of PLEDGE for ¢ = 3, the largest number of
products, can be explained in such a way. We also use the local maximum distance
(called greedy in the tool), which is outperformed in terms of coverage by the global
maximum distance (called NearOptimal in the tool) [133]. It also seems that some of
the memory errors we run into (related to thread creation) can be accounted by this
default choice of the algorithm. Indeed, threads are associated to evolutions of the
population and local distance algorithm is fast: we therefore have a thread explosion
problem on these small feature models. Therefore, additional settings and trade-offs
need to be investigated to be able to compare the tools. Detailed tool comparison
in this context is beyond the scope of our research question and is therefore left for
future work.

Finally, for both approaches, this initial assessment shows that there is also a
need for prioritisation and optimal behavioural coverage. For example, amongst
the 71 products selected by SPLCAT (¢ = 3), only one is sufficient to cover all states
on both the Minepump and Claroline models. This product can be found directly
using the all-states coverage test case selection algorithm and the p-coverage upper
bound property. If dissimilarity and z-wise coverage are shown to consistently sam-
ple products that achieve good behavioural coverage, as this assessment suggests,
then they can be used as first filters on very large feature models (assuming an in-
tractable FTS for a test case selection algorithm) to prune the FTS and then perform
a behavioural coverage driven test case selection. Prioritisation may be initiated at
the FTS level and combined with behavioural/structural criteria. There is no such
one-criteria-fits-all approach in this endeavour: an all-states criterion may poorly
cover transitions (e.g., on the Claroline case). Exploring synergies between these
criteria, both at the structural and behavioural models, therefore seems the best
option.

100

7.3.4. Threats to validity

7.3.4 Threats to validity

The PLEDGE input parameters are arbitrarily chosen. To keep a fair comparison
between the results of the PLEDGE and SPLCAT tools, we keep the same number
of products x as sampled by SPLCAT. Estimating the time d, however is more tricky.
In their comparison, Henard et al. [133] use the same sampling time as SPLCAT.
Unfortunately in our case, some f-wise computations take less than 1 second in
SPLCAT and PLEDGE does not allow to enter such values. Thus we initially went for
the default values provided by the tool. As mentioned above, playing with a wider
range of parameter values and with different similarity algorithms will mitigate this
threat.

FTS models relate variability to behaviour using feature expressions on transi-
tions, other modelling languages may relate variability to behaviour in other ways
(e.g., associate variability to states instead of transitions), which will give different
results for the state, transitions and actions coverage. FTS is a basic formalism to
which we can easily transform other modelling languages and mappings. Thus,
we can investigate the influence of the mapping between features and behavioural
models.

7.4 Usage selection and prioritization criteria

In this section, we report on the feasibility of using family-based test selection
(84, 85] by applying it on two systems: the first one is Claroline (see section 4.6), and
the second one is the landing symbology function, part of Sferion™(see section 4.4).
Validation of the product-based test selection has been done by Samih et al. [266].
We assess the feasibility of our approach using the following research questions:
e FTS pruning (RQ.1) What are the reductions gains (model pruning) achieved
by applying statistical prioritization?
® Modelling (RQ.2) What is the modelling effort induced by our approach and
what are the consequences of modelling choices?
e Scalability (RQ.3) How does prioritization scale to increasing probability
ranges and what are the implications for testing?
It is difficult to provide precise thresholds for these criteria. Testing should fit
a given budget, which is a complex trade-off involving testing time, human and
infrastructure resources, level of system coverage desired, etc. Statistical approaches
covered in this thesis are flexible to meet such a tradeoff. We argue that fixing
meaningful thresholds values requires additional experience, especially in industrial
settings where they both can be set and assessed. We therefore leave this issue for
future work, giving both quantitative and qualitative information stemming from
our experience applying our techniques on Claroline and Sferion™.

7.4.1 Claroline, an online course management system

Setup: We derived the usage model, from the same anonymized Apache web-
server log as for Claroline FTS (see section 4.6.2), using a classical bigram inference

101

CHAPTER 7. EMPIRICAL ASSESSMENT

Input: sessions: the set of non empty user sessions
Output: um: a usage model representing a navigational model for the given
user sessions

1 begin
2 S ={so}; Act = @; trans = @; 1(sg) = 1;
3 for sess € sessions do
4 S.add(sess[0]);
5 Act.add(req(sess[0]));
6 tr=ysg TeqtsessiOh, sess(0];
7 trans.add(tr);
8 count(tr) =count(tr)+1;
9 for i € [1;sess.size[do
10 S.add(sess[i]);
11 Act.add(req(sessli]));
. req(sess[i]) .
12 tr = sess[i — 1] ———— sessli];
13 trans.add(tr);
14 count(tr) =count(tr)+1;
15 end
16 Act.add(req(sp));
. req(so)
17 tr = sess[sess.size— 1] —— sp;
18 trans.add(tr);
19 count(tr) =count(tr)+1;
20 end
21 for (s iR s;)) € trans do
a; count(sy &, s7)
22 P(sg — s1) = FTRE
a; count(sy — sp)
(Sx——sm)etrans
23 end
24 um= (S, Act, trans, B 1);
25 return um;
26 end

Algorithm 13: Bigram usage model building

technique [114,269,292]: algorithm 1 has been adapted to produce a usage model
giving algorithm 13. As previously, we consider resource names in the user sessions
as states (lines 4 and 10) and add transitions between those names if they appear
successively in the user sessions (lines 7 and 13). To compute the probability of each
transition, we count the number of occurrences of the transitions (lines 8, 14, and
19) and for each transition, we divide this count by the total number of occurrences
having the same source state (lines 21 and 22).

The allpaths algorithm has been applied four times to the Claroline usage
model with a maximal length (/,,,,,) of 98 (the maximal path length without any loop
in the usage model), a maximal probability (Pr,,) of 1, and four different minimal
probabilities (Pr,i,), 1le-4, 1e-5, 1e-6, and le-7, to observe patterns. Additionally,

102

7.4.1. Claroline, an online course management system

Table 7.5: Claroline family-based test selection results

runl run 2 run3 run4
Imax 98 98 98 98
Priyin le-4 le-5 le-6 le-7
Prmax 1 1 1 1
a.t.c. 211 1,389 9,287 62,112
p.a.t.c. 211 1,389 9,287 62,112
size 4.82 5.51 6.35 717
o 1.54 1.54 1.62 1.66
proba. 2.06e-3 3.36e-4 5.26e-5 8.10e-6
o 1.39e-2 5.46e-3 2.12e-3 8.18e-4
FTS’ st. 16 36 50 69
FTS' tr. 66 224 442 844

the algorithm has been parametrized to consider each transition only once (i.e., a
transition does not appear more than once in a selected trace). This modification
has been made since we discovered after a few runs that the algorithm produced a
lot of traces with repeated actions, which is of little interest for product prioritization.
Repetitions were due to the huge number of loops in the Claroline usage model.

Results: Results for the four different minimal probabilities are presented in Table
7.5. Execution times range from less than a minute for the first run with 211 abstract
test cases (a.t.c) to 8 hours for run 4 with 62,112 abstract test cases on a Ubuntu
Linux machine (Linux version 3.13.0-65-generic, Ubuntu 4.8.2-19ubuntul) with an
Intel Core i3 (3.10GHz) processor and 4GB of memory.

All abstract test cases selected in the usage model are positive (p.a.t.c.), this is
caused by the nature of the Claroline FM: most of the features are independent from
each other and few of them have exclusive constraints. The bigram solution used to
generate the usage model fits well in this case, as there is no abstract test case se-
lected in the usage model that has been rejected. Sprenkle et al. [292] experimentally
demonstrate that increasing the n in n-gram generation of the usage model does
increase the size of the generated model in a non linear way (as long as n is between
2 and 10). Increasing the n value in our case would just result in an unnecessary
increase of the model complexity.

As expected, the average size of the abstract test cases (ﬁ) increases as the
Pr,in decrease (a lower probability allows longer traces to be selected). The average
size of the user sessions used to generate the usage model is 9.88.

As explained in Algorithm 8, it is possible to prune the original FTS using the
positive abstract test cases in order to consider only the valid products capable of
executing those test cases. In this case, it eventually reduces the number of states
(FTS’ st.) and transitions (FTS’ tr.) from 106 and 2,055 (resp.) to 16 and 66 (resp.)
inrun 1 and to 69 and 844 (resp.) in run 4. As expected, by controlling the interval
size we can reduce the number of traces to be considered and yield easily analysable
FTS.

103

CHAPTER 7. EMPIRICAL ASSESSMENT

Table 7.6: Sferion™landing symbology function family-based test selection results

runl run2 run3 run 4 run5
Prmin le-1 le-2 le-3 le-4 le-5
Primax 1 1 1 1 1
a.t.c. 0 0 8 50 306
p.a.t.c. 0 0 8 50 306
size 0 0 15 16.68 18.58
g 0 0 0.76 1.17 1.39
proba. 0 0 2.19e-3 5.67e-4 1.19¢-4
g 0 0 1.51e-3 9.30e-4 4.23e-4
FTS’ st. 0 0 18 23 23
FTS tr. 0 0 12 12 12
FTS act. 0 0 27 40 42
run 6 run 7 run8 run9 runl0
Pryin le-6 le-7 le-8 le-9 le-10
Prmax 1 1 1 1 1
a.t.c. 1870 8622 36582 123534 err
p.a.t.c. 1870 8622 36582 123534 err
size 2085 22.99 2515 27.17 err
o 1.62 1.77 1.88 1.97 err
proba. 2.20e-5 5.02e-6 1.21e-6 3.59e-7 err
(o 1.76e-4 8.25e-5 4.0le-5 2.18e-5 err
FTS’ st. 23 23 23 23 err
FTS’ tr. 12 12 12 12 err
FTS’ act. 42 42 42 42 err

7.4.2 Sferion™landing symbology function

Setup: Engineers will probably have to run the algorithm several times using
different minimal and maximal probabilities intervals in order to refine the selection.
In our first attempt, we applied our trace selection algorithm 10 times with a maximal
probability value of 1 and a minimal probability value ranging from 107! to 1071°
and a maximal length of 50. As explained hereafter, some of those runs did not
return any relevant results.

Results: The results of the execution are showed in table 7.6. The run 10 did not
return any results due to the too wide range of considered probabilities, giving too
many possible paths in the usage model. This is not a problem for our approach as a
wide range of probabilities is not very useful for prioritization. According to those
results, the interval with the most probable abstract test case is between 1e-3 and
le-2. We re-run the algorithm with the minimal probabilities 5e-3 and 2.5e-3: the
execution with an interval between [0;5e-3] returned no test case; the execution with
an interval between [0;2.5e-3] returned 2 test cases (fest case I and (test case 2)) with
an average probability of 4.62e-3 and a length of 14. Those two abstract test cases
are the most probable behaviours of the landing symbology function and may be
executed by all the products of the product line.

104

7.4.3. Discussion

In order to get a more concrete product, we select longer abstract test cases from
the usage model by using the classical state-coverage criterion [206]. This criteria
specifies that, when executing a test suite on the system, all the states of the system
have to be visited at least once. Generating an abstract test case from the usage
model using this criteria gives us one abstract test case visiting all states (test case 3).
As for previously selected abstract test cases, we execute it on the FTS to ensure that
there exists at least one product able to exercise this behaviour: this gives us a set of
64 products.

7.4.3 Discussion

We organise our discussion on the final results regarding feasibility for statistical
prioritization SPL testing according to the criteria mentioned above: (i) FTS pruning;
(if) modelling; and (iii) scalability.

FTS pruning (RQ.1): In both cases, it was possible to substantially prune the FTS
models according to frequent behaviours: from 28% to 85% reduction w.r.t. the
number of states (for Sferion™and Claroline) and up to 99,994% reduction w.rt. to
transitions (for Claroline). These important reduction factors are interesting in the
sense that it is possible to use statistical selection to deal with additional compu-
tationally expensive coverage criteria that would not be directly applicable on the
original model (e.g., all-paths coverage on the Claroline FTS [91]).

Regarding the number of products associated with the selected test cases, the
situation is less favourable. In the Claroline case, the least probable test case in
run 1 is already associated to 260 products. The main reason is that test cases are
small in size yielding short associated feature expressions. Most Claroline users
therefore seems to visit few pages after the login one. Because the source Apache Log
is anonymised, it is impossible to investigate further in this direction. To note that
the set of 260 products is reduced to 20 products if we consider only courses available
to student with an id, which is the most classical scenario in the University of Namur
Claroline instance. The tester will have to use his knowledge of the application
domain in order to reduce the number of products to test.

The Symbology function exhibits more complex behaviours as witnessed by
test cases’ sizes. For Sferion™, there are test cases that can be executed by all
the products of the SPL. While from pure product selection perspective this is a
bad result, two additional observations need to be made. First, the usage model
was provided by experts to focus on the most relevant behaviours: it seems they
did perform correctly this task as most part of the described behaviour concern
all the products of the SPL. Second, there are opportunities to reuse abstract test
cases amongst products: these two abstract test cases can be used to derive a
small number of concrete test cases covering all products. This strategy can be
used to explore interaction problems [224]. Finally, feature models of our consid-
ered systems have very few constraints (e.g., Mark_landing_position = HOCAS,
Check_for_obstacles = OWS, etc.) amongst features, which clearly influence

105

CHAPTER 7. EMPIRICAL ASSESSMENT

product reduction ability. While such an open feature model is not surprising for a
web based system, this is more unusual for an embedded SPL.

Modelling (RQ.2): Using statistical prioritisation in both case studies involved
some modelling: the family-based scenario allowed us to extract automatically the
usage model using a machine learning technique, while the Sferion™product one
relied on SPL and testing experts to explicitly provide the required usage model.
However, what is common to both scenarios is the necessity to provide variability
models (in OVM or TVL) and mapping from features to behaviours either by means
of FTS or mapping matrices [266, 268].

Both approaches try to keep requirements from test models separated. Such a
separation of concerns does not guarantee that these models are correct (learning
behaviours from anonymous logs entails approximations and hand-made usage
model are not free from biases either) but helps finding discrepancies as they are
generally provided by stakeholders having different perspectives and skills. Keeping
these models separated was also useful to integrate our approach with tools like
MaTeLo that do not take into account natively features in their usage models but
provide additional facilities such as risk management or customer satisfaction during
test case selection.

Separation of the usage model from the FTS also allows to use different usage
models, depending on the objective of the test engineer. For instance, Claroline has
a fine grained access control system. In its basic setup, it comes with three user roles:
Administrator, Teacher and User. According to its role, a user may or may not perform
different actions and access different functionalities. Claroline also allows public
access to some pages and functionalities (e.g., a course description) to anonymous
users. We think that since those four user roles have very different usage profiles, a
better approach would be to create four different usage models, one for each user
role. Unfortunately, it was not possible in our case with the provided Apache access
log since the user roles have been erased in the anonymisation process.

Keeping the usage model and the FTS separated may be detrimental to the
analysis as some invalid abstract test cases may be first extracted from the usage
model and then removed. Even if this was not the case on the considered SPLs, this
may happen in more constrained SPLs. One strategy could be to start with separated
models and to merge them in a feature-aware usage model (e.g., using feature-aware
discrete-time Markov chain [262,298]) once enough confidence is gained on both
models. This is left for future work.

The effort spent in modelling activities depends on the case study: for the Claro-
line case study, the usage model has been automatically generated, the FTS has
been semi-automatically generated and the variability model has been hand crafted.
Given the size of Claroline (442.399 LOC), the total effort spent in modelling activities
is deemed reasonable (around 7 days). The Sferion™case study models a critical
system, the modelling and testing efforts are important but have to be supported by
the company in order to guaranty a safe and sound product. The additional effort
required to derive the FTS from the Sferion™models is small (around 2 days).

106

7.4.4. Threats to validity

Scalability (RQ.3): Final results show that the scalability of our implementation
mainly depends on the [Pr,in, Prmax] interval and the shape of the usage model.
We notice that if the model is large (Claroline) and/or the probability interval very
large computation time obviously increases and may even lead to no result at all
(e.g, run 10 in Table 7.6). In this case we encountered memory overflows. The
allpaths algorithm used in our implementation seems to perform well as long as
the [Prmin, Prmax] interval is not too wide, even on large usage model (like the
Claroline case). Thus, we rely upon the tester to choose a relatively small probability
interval in order to extract behaviours that results in the desired amount of test cases
and products. So far, we explored these intervals manually to find tradeoffs. This
exploration can be automated if additional criteria (such as the maximum number
of products desired) are specified. Other state space exploration techniques will
have to be investigated to improve the algorithm (e.g., limit the length of the selected
test cases is amongst the simplest, or use simulation techniques [27]). It should be
noted that, for more specialized explorations, such as finding the most probable
path, dedicated algorithms like the one proposed by Viterbi [313] may be used.

7.4.4 Threats to validity

To implement our approach, we choose to use a allpaths algorithm with some
restrictions (maximal length of the selected test cases) in order to avoid infinite
executions. This choice may be not optimal but the allpaths exploration ensure (in
worst case) a complete exploration of the usage model. The input models (DTMC
as a usage model, FTS and TVL) are not the only possibilities to represent usages,
behaviour, and variability of the SPL. In our second SPL, we showed how we translate
other input models in order to apply our approach.

7.5 Mutants execution

This section reports on our comparison [89] between the FMM approach, that uses
a compact representation to factorize the mutants execution against each test case,
and the enumerative approach, where each mutant is executed individually against
each test case, in terms of execution time. And evaluates the usage of FMMs to
perform higher-order mutation analysis. As in Section 6.2, we adopt a product-
based strategy: the systems under test, used as original systems to perform the
mutation analysis, are products derived from our case studies described in Chapter
4. In order to conduct this assessments, we formulate our research questions as
follows:

o Execution time (RQ.1) How does the FMM scheme compare with the enu-
merative approach in terms of execution time?

e Higher-order mutation (RQ.2) Is higher-order mutation under the FMM
scheme tractable?

107

CHAPTER 7. EMPIRICAL ASSESSMENT

Table 7.7: Test suites characteristics

Model Random test suite All-actions test suite
size o count size o
Soda V. Mach. 4,78 1.34 3 5.33 2.08
Minepump 5.65 1.23 9 6.11 1.45
Claroline 17.11 16.97 11 13.18 9.20
AGE-RR 21.13 24.58 274 27.11 33.62
Elsa-RR 10.57 13.12 109 21.10 33.45
Elsa-RRN 10.45 14.05 148 23.20 43.49
Random 1 469.62 279.34 2 468.50 118.09

Table 7.8: Mutants count per operator

Model WIS TMI AEX TDE TAD AMI SMI Total
Soda V. Mach. 1 1 1 1 1 1 1 7
Minepump 2 4 4 4 4 3 2 23
Claroline 9 188 205 204 205 189 9 1,009
AGE-RR 73 525 663 663 663 516 75 3,178
Elsa-RR 36 102 121 121 121 106 38 645
Elsa-RRN 57 153 177 177 177 155 57 953
Random 1 942 1,276 1,365 1,365 1,365 1,295 954 8,562

7.5.1 Setup

To perform the assessment, we project the FTSs of the case studies described in
Chapter 4 to get the original LTSs that will serve as basis for our mutation analysis.
We consider products from different sources with varying size. Our models are:

e a soda vending machine product (Soda V. Mach.) that includes all features;

e a Minepump product (Minepump) that includes all features;

e a Claroline product (Claroline) that includes all features and an Admin user;

e three WordPress products (AGE-RR, Elsa-RR, and Elsa-RRN) that include all

features of their respective feature models
e one random model (Random 1).

Test cases: For each model, we select one test suite using random walks on the
LTS and one test suite satisfying the all-actions criterion. The test suites are then
executed with the enumerative and the FMM processes. Table 7.7 records the average
size (and standard deviation) of the randomly selected test cases, the size of the
selected all-actions coverage-driven test suite and the average size (and standard
deviation) of its test cases. The size of the random test suite is arbitrarily fixed to 100
test cases.

Model mutants: We used the operators presented in Annex A. Operators modifying
states (WIS and SMI) or transitions (TMI, AEX, TDE, TAD, and AMI), respectively,
were applied arbitrarily for 1/10 of the number of states or transitions, respectively,
in the model (with 1 as bottom value). Since the operands are randomly chosen,
we forbid multiple applications of any operator on the same operands to avoid

108

7.5.2. Results

Soda V. Mach. Minepump Claroline AGE-RR

le+05- []

[
1le+03 -
. -

Elsa-RR Elsa-RRN Random

Time (in microsec.)

- TENEEE WA
| L 4

ve kiled FMM live kiled FMM lve killed FMM

Figure 7.4: Execution time required by test cases to executed with live and killed
mutants and the FMM mutants

duplicated mutants [237]. Table 7.8 presents the number of mutants generated per
operator for the studied models.

Mutants execution: To avoid execution time bias from the underlying machines,
we execute each test case 3 times with each considered mutant (for the enumerative
version) and on the FMM. Experimentation was performed on an Ubuntu 14.04
LTS Linux (kernel 3.13) machine with Intel Core i3 (3.10GHz) processor and 4GB of
memory. The complete experiment took approximately 2 weeks.

7.5.2 Results

Figure 7.4 presents the distribution of the test execution time (in logarithmic scale
on the y axis) for each studied model with a box plot. The first two columns represent
the total execution time taken by each test case when executed on the live mutants
and on the killed mutants according to the enumerative approach. The third box
presents the execution time of the FMM (FMM approach). Note that while the killed
mutants do not require a complete execution in the enumerative approach, it is
required for the FMM mutants. This might provide an advantage to the enumerative
approach. To assess this, we consider the killed and the live mutants separately. In
all cases, we measure only the execution of the models, avoiding time bias due to
I/0 operations. As the execution time of a test case partially depends on its size, the

109

CHAPTER 7. EMPIRICAL ASSESSMENT

Table 7.9: All-order mutation scores

Model # mutants All-actions Random

#Lv. MS Time #Luv. MS Time
Soda V. Mach. 127 1 0.99 1.10 1 0.99 17.67
Minepump 8,388,607 1 >0.99 1.84 1 >099 15.72
Claroline 5.49e+303 Timeout Timeout
AGE-RR 4.71e+956 Timeout Timeout
Elsa-RR 1.46e+194 2916 >0.99 3778 144 >0.99 10.19
Elsa-RRN 7.61e+286 36 >0.99 150.32 16 >0.99 83.04
Random 1 2.62e+2577 Memory overflow Memory overflow

high number of outliers in Figure 7.4 is explained by the variation of the test cases
sizes.

For the enumerative approach, executing a test case on mutants that will remain
live takes more time than executing the same test cases on mutants that are killed.
This was expected since killed mutants do not require a complete execution of the
test case. In both cases, the FMM execution runs faster, i.e., running a test case on
all the mutants at once is very fast, despite the more complex (needed) exploration
of the FMM'’s FTS. Detailed statistics over the execution time of the models and
mutation scores are presented in Annex B.

7.5.3 Discussion

Execution time: Regarding RQ1, the box plots of Figure 7.4 (and the values in
Annex B) confirm that the execution time required by the FMM approach is consid-
erably lower than the time required by the enumerative approach. The difference
escalates to several orders of magnitude when considering live mutants. The differ-
ence between family-based and enumerative approaches increases with the size of
the model, indicating the improved scalability of our approach.

To evaluate the statistical significance, we use a Wilcoxon rank-sum test for the
different models we considered: we obtain a p-value of 1.343¢ — 09 for the random
model and p-values smaller than 2.2e — 16 for the other models, confirming the
hypothesis that FMM significantly outperforms the enumerative approach, when
considering 0.001 significance level.

Higher-order mutation: Table 7.9 presents the number of all-order mutants for
our models, the number of mutants live after executing the random and all-actions
test sets (computed using SAT4]J 2.3.5), and their mutation score. For each test set and
model, the table records the number of possible mutants (# mutants), the number of
live mutants after the test set execution (#Lv.), the mutations score (MS) and the SAT
computation time (Time) in seconds. Memory Overflow denotes an overflow during
SAT solving, improving this step by, for instance, reducing the boolean formula to
process is part of our future work. Columns 5 and 8 give the SAT-solving computation
time (we set a timeout of 12 hours).

110

7.5.4. Threats to validity

Overall, our results suggest that higher-order mutation under the FMM scheme
is tractable, answering positively to RQ2. In particular, all-order mutation achieves
very good mutation scores (M S = 0.99) when compared to first-order mutation when
this score can be computed. In our future work, we intend to: improve the scalability
of mutation score computation; and assess the practical relevance of higher-order
in test sets comparison.

Only one mutant is live for the soda vending machine and the Minepump prod-
ucts. This mutant is a first order mutant resulting from the TAD operator. Indeed,
the TAD operator adds new transition which cannot be detected by test cases solely
selected from the original LTS, since this transition does not exist in this model.
All-order mutation enables to quickly kill mutants of any order an to focus on the
interesting ones from a selective mutation perspective. For example, the 2,916 re-
maining live mutants resulting from the execution of the all-action test suite are
relevant to study the mutation operators involved. Of course, they can also be used
to select test cases killing them in order to augment the test suite. Exploring all-order
mutation score in selective mutation or test case selection scenarios are part of our
future work.

7.5.4 Threats to validity

We chose to apply mutants for 1/10 of the states and/or transitions of the mutated
model. This might result in more (or less) mutants than needed for the larger models.
However, this is expected when using mutation. Additionally, since model-based
mutation is applied to the system’s abstraction, abstract actions represent many
concrete actions. It is therefore important to ensure a good coverage of most of the
model actions.

TS and FTS executions are different, and do not use the same algorithms. In
order to decrease the bias in measuring execution time, both executions of the
models have been done using VIBeS, our Variability Intensive Behavioural teSting
framework Java implementation. The two execution classes are different but use
a variant of the same algorithm described in Section 6.2. Moreover, we used the
Stopwatch Java class to measure the call to the execute method (i.e., model loading
and result writing time have been omitted). Finally, we ran each test case 3 times on
each mutant model (LTSs and FMMs) to avoid bias due to process concurrency.

7.6 Mutant equivalence analysis

This section presents our empirical assessment of the Automata Language Equiva-
lence (ALE), Random Simulation (RS), and Biased Simulation (BS) approaches to
detect equivalent mutants [90]. As in Section 6.3, we adopt a product-based strat-
egy: mutants are generated from products, derived from the case studies defined
in Chapter 4 (and from 4 additional randomly generated models). To conduct this
assessment, we define the following research questions:

® Random/biased simulations and ALE (RQ.1) What is the impact of weak and

strong mutation on BS/RS vs. ALE performance?

111

CHAPTER 7. EMPIRICAL ASSESSMENT

e Non-equivalent mutant detection (RQ.2) How many non-equivalent mu-
tants are effectively detected by the RS and BS approaches?

e Worst case scenario (RQ.3) What are the worst case execution times for the
ALE and BS/RS approaches?

7.6.1 Setup

To answer these RQs, we consider several models of different kinds of systems and
apply the following procedure to each of them:
(i) we generate a set of mutants from the model using the operators presented in
Annex A for orders 1, 2, 5, and 10;
(ii) for each order, we sample 100 non-equivalent mutants (using the ALE algo-
rithm to guarantee non-equivalence) to form the mutant set M;

(iii) for each mutant in M, we measure the execution time and result of: 3 ex-
ecutions of weak mutation random and biased search (WM RS/BS), and 3
executions of strong mutation-biased search (SM BS) algorithms' with 4 dif-
ferent values of 6 and ¢; and the executions of the ALE algorithm.

In the following we detail the different steps of the procedure. The assessment has
been performed on a Debian 3.16.7 x86_64 GNU/Linux running on a 16 cores, 2.2
GHz, 16Gb RAM virtual machine.

Models: We carry out the assessment on 12 different models coming from different
sources and with varying size. The models are:

e a soda vending machine product (S. V. Mach.) that includes all features;

e a card payment terminal product (C. P Term.) that includes all features;

e a Minepump product (Minepump) that includes all features;

e a Claroline product (Claroline) that includes all features and an Admin user;

e four WordPress products (AGE-RR, AGE-RRN, Elsa-RR, and Elsa-RRN) that

include all features of their respective feature models;
e four random models (Random 1-4).

Mutant generation and sampling: First-order mutants are generated using the
operators presented in Annex A. Each operator is applied (arbitrarily) 10 times on the
S.V.Mach., C.RTerm., and Minepump products. Due to the small size of the models,
applying the same mutation operator more than 10 times is not relevant. Operators
are also applied (arbitrarily) 500 times on the other models. In the same way, N-order
mutants (with N equal to 2, 5, or 10 in our case) are generated by applying the same
operators 10 or 500 times (depending on the model) on (N — 1)-order mutants. After
the generation, we perform a random sampling of 100 mutants (when available) for
orders 1, 2, 5, and 10, giving us a set M with 370 mutants for the S.V.Mach., C.RTerm.,
and Minepump models, and 400 mutants for the other models. To ease mutant
generation, we use the compact representation provided by FMMs.

1As explained in Section 6.3, SM RS is not considered for the assessment due to the poor results
during our initial attempts.

112

7.6.2. Results and discussion

Non-determinism: We checked all the 4710 mutants and found that only 3.54%
of them are non-deterministic (i.e., there exists a sequence of actions for which
there is at least two possible paths in the mutant). Nevertheless, there is a great
disparity amongst models as the non-determinism rate varies from 0% for Elsa-RRN
to 15.5% for Claroline. Higher-order mutation greatly influenced non-determinism
rates: the sole order 10 is responsible for 53% of all non-deterministic mutants. In
terms of mutation operators, TAD accounts for a large majority of non-deterministic
first-order mutants (78%) and AEX for the remaining 22%. At higher orders, these
two operators are largely involved. They are absent only in the Minepump model
where TDE and AMI appear for two non-deterministic mutants.

Algorithm execution: To run the language equivalence algorithms (for WM and
SM), we use the HKC library [43], an OCaml implementation of the ALE algorithm
[42] compiled using OCamlbuild. This tool handles non-deterministic TSs using
different strategies: the automata may be processed either forward of backwards,
and the exploration strategy may be breadth-first or depth-first. For each mutant,
we execute the HKC library using each of the 4 possible configurations. The input
models and their mutants have been transformed from our XML format to the
Timbuk input format supported by HKC.

The random and biased simulation algorithms are implemented in Java using
multi-threading to parallelize trace selection and execution as described in Algo-
rithm 12 (lines 2, 4, 8, and 10). In our experiments, we set up the algorithm with 4
threads and run 4 instances in parallel on our virtual machine with 16 cores. We run
the simulation algorithms with 4 different values of 6 and ¢ determining the number
of traces selected and executed (N in Algorithm 12):

e RS1/BS1: (6 =1e—10,¢=0.01, N =1,897,519);
e RS2/BS2: (6 =1e-10,e=0.1, N =18,975);

@ RS3/BS3: (0 =1e—5,¢=0.1, N =9,764);

e RS4/BS4: (6 =1e—1,¢=0.1, N =2,396).

For all the simulation configurations and all models, we fixed the trace length k
to 3,000, which was our compromise between performance and non-equivalence
detection: setting k to BFS height led to crashes in some cases. In order to answer
RQ3, we also run each algorithm (RS1/BS1 to RS4/BS4, plus the 4 possible ALE
configurations) with the model itself as the mutant. Those (unrealistic) equivalent
detection runs between the model and itself are only used to approximate the worst
computation time of the different algorithms.

7.6.2 Results and discussion

Random/biased simulations and ALE: Figure 7.5 presents the execution time per
mutant of the studied algorithms, which is detailed in the Appendix. Regarding
weak mutation scenarios, the ALE approach is the fastest in all cases in eleven of our
models. On the AGE-RN model, biased simulations are faster for the largest numbers
of runs. However, the results are at the limit of non-significance (see Table 7.10),
so that the only clearly significant result is for BS1 on this model. For AGE-RNN,

113

CHAPTER 7. EMPIRICAL ASSESSMENT

S.V.Mach. C.P.Term. Minepump

° . ° °

le+02-

1e+00

le-02

le+02- o

1e+00

Time in seconds (log scale)

1le+00

le-02

le+02-

1e+00

le-02

le-02-

le+02-

il B0 Wi o W A

LN HImEE g S
e ll“imﬁm. s b

AAIT) BRSSERTARRY HaRaed b e
s s e HAE s L

Figure 7.5: Execution time of the equivalent mutant detection approaches

execution times for biased simulations are non-significant. Random simulations
are also faster than ALE on AGE-RRN but only certain settings are significant. We
thus conclude that the ALE approach is more interesting in terms of execution time.
When we compare the two forms of simulations, for the smallest models, biased
simulations are either on par for the smallest models or slightly better. Additional
computations such as the breath-first search used for biased simulation do not
cause significant overhead. For the largest random models, random simulations are
faster. In these cases, the overhead of computing infected states and paths that cover

114

7.6.2. Results and discussion

1.00

T

0.85-

©
@

Recall

WM RS1~
WM RS2
WM RS3~
WM RS4
WM BS1~
WM BS2
WM BS3 ™
WM BS4 ™
SM BS1
SM BS2
SMBS3 ~
SM BS4

Figure 7.6: Non-equivalent mutant classification recall

these states is greater and random simulation is faster. However, lower standard
deviations for biased simulation execution times over random ones make the BS
approach easier to use.

Regarding strong mutation, several observations can be made. First, random
simulations provide very high execution times compared to biased simulations or
the ALE algorithm (the analysis of one model is stopped after one hour). This may be
due to the difficulty to reach the initial state again when performing random walks in
the TSs. Second, biased simulations are faster than ALE executions for models larger
than 300 states. On the largest models, biased simulations can be up to 1,000 times
faster. We thus conclude that these are the most interesting situations in which to
use BS, for mutation analysis. On smaller models, the ALE algorithm’s performance
is quite impressive and therefore should be privileged.

Non-equivalent mutant detection: To answer RQ2, we compute the non-equi-
valent mutant classification recall of the BS/RS algorithms (in Figure 7.6), i.e., the
percentage of non-equivalent mutants detected by the BS/RS amongst the selected
mutants. By construction, the ALE algorithm has a recall of 100%, it is therefore not
shown here. It is also noted that the precision is 100% since all the non-equivalent
mutants detected are indeed killable, by construction of our mutant set.

All our simulations obtain a recall higher than 85%, with a clear advantage for
biased simulations which never achieve worse than 95% for the weak mutation
scenario. As for time, deviation in the recall is smaller for biased simulations thus
making the approach more predictable in addition of being more reliable. We also
observe that the random simulations are more sensitive to the number of runs: we
need more of them to discover discrepancies by luck. This effect cannot be observed
for biased simulations. A possible explanation is that the number of runs required
to cover infected states with traces is lower than the number we provided.

115

CHAPTER 7. EMPIRICAL ASSESSMENT

For strong mutation, the BS approach’s recall decreases to around 92% (recall =
92%, 0 = 3%): amongst the 5113 non-equivalent mutant non-detections (over a
total of 64529 non-equivalent mutant evaluations), 1905 (37%) were TAD mutants,
1755 (34%) were WIS mutants, 545 (11%) were TDE mutants, and 459 (9%) were
2nd-order TAD mutants (i.e., TAD-TAD mutants); the rest of non-equivalent mutants
not detected is distributed amongst different operators with less than 2% for each.
This decrease may be due to the difficulty to find a path to the initial state: for strong
mutation, the BS trace selection algorithm will consider traces starting from, and
ending in, the initial state. This means that mutations creating (TAD) or modifying
(TDE) a back-level transition will not be detected using SM BS. Concerning WIS mu-
tants, we believe that, as the WIS operator only changes the initial state of the TS, the
set of infected states (S;, fec;) is empty, which is equivalent in our implementation
of SM BS to considering all the states infected.

Worst case scenario: Figure 7.7 presents a compact view of the worst execution
time of the different algorithms (RQ3). We grouped the different results by the kind
of model: embedded system, web-application, or randomly generated model. As
expected, the RS/BS execution time is directly correlated to the ¢ and € values: a
lower number of traces selected and executed (V) takes less time. Overall, the time
of the ALE executions grows with the size of the model, reaching 5660 seconds (more
than one and a half hour) for the worst WM ALE execution time on the Random 2
model.

7.6.3 Threats to validity

Construct validity: The RS/BS § and € values have been arbitrarily chosen. The
first values (RS1/BS1: 6 = 1e—10, € = 0.01) are the same as in Hérault et al. [139].
As the number of traces selected and executed N equals to w, we chose to
run the algorithm with 3 higher parameters values in order to reduce N. We cannot
guarantee that our parameter values are relevant for any model. They will rather
depend on the model size, the desired approximation (¢) and confidence (), and
the time budget allowed for the equivalence analysis.

To the best of our knowledge, the HKC library [43] was the only publicly available
tool able to perform ALE checking on non-deterministic TSs. We cannot guarantee
that there are no other other tools providing the same features with lower execution
time. To avoid bias in the random selections in the RS/BS algorithms, we execute
each configuration of the different algorithms 3 times.

Conclusion validity: To confirm our observations on the recall of the RS/BS al-
gorithms, we test the null hypothesis between the outputs of our algorithm (the
mutant is equivalent/non-equivalent) and a random equivalent/non-equivalent as-
sighment using a Wilcoxon rank sum test. The p-value lower than 2.2e-16? discredits

2Due to floating point precision, value 2.2e — 16 corresponds to the smallest possible p-value com-
putable with R.

116

7.6.3. Threats to validity

S.V.Mach.
le+04 -

1e+02-—

IR

le-02-

Claroline
le+04 -

le+02 -

1e+00 -

||$-—

—~
Q<
[+
&
mle—oz-
o
=
1%}
kel
g AGE-RR
O le+04 -
(]
7}
£ - -_
(0]
£ le+02-
F I o
—— o
1e+00 - = — -
L
1e-02 -
Random
le+04 - —t
le+02 -
1e+00 - .--.
1e-02-
o
AN AN WA Nm S W
[RY RN
PR aan<nnmnnz
SS=2=22=2=22=2====°:=>
22222200000

C.P.Term.

Elsa-RR

T T I-*—

AGE-RRN

* I
.l-

Random 3

CEEE

WM RS1”~
WM RS2~
WM RS3~
WM RS4 "~
WM BS1~
WM BS2 "~
WM BS3~
WM BS4 ™
WM ALE ~
SMBS1 ~
SMBS2 ~
SMBS3 ~
SMBS4 ~

"4e

Minepump

Elsa-RRN

== —
Random 1
-
-
lCEE
Random 4
-

CEE
T T
W SN MS A NS W m s W

NDOOHOON YO
E - R A
S 22222222 2====°3=
U 222222222 HLHHOG

Figure 7.7: Worst execution time of the equivalent mutant detection using the model

itself as mutant

the null hypothesis showing that the equivalent/non-equivalent detection recall is

significant.

To confirm the statistical difference between the execution times of the RS/BS
and ALE algorithms, we test the null hypothesis between RS/BS execution time and
ALE execution time for weak and strong mutation for each of our input models using
a Wilcoxon rank sum test. For weak mutation, the results of this statistical test are
shown in Table 7.10: for every model except AGE-RR/ AGE-RRN models, the p-value

117

CHAPTER 7. EMPIRICAL ASSESSMENT

Table 7.10: P-values of the Wilcoxon rank sum test between the WM RS/BS execution
times and the WM ALE execution times.

Model WM RS1 WM RS2 WM RS3 WM RS4
S.V.Mach. <22e-16 <22e-16 <2.2e-16 <2.2e-16
C.PTerm. <2.2e-16 <2.2e-16 <2.2e—-16 <2.2e—-16

Minepump <22e-16 <22e—-16 <22e-16 <22e-16
Claroline <22e-16 =22e-16 =22e-16 =<22e-16

Elsa-RR <22e-16 =22e-16 =<22e-16 <=22e-16
Elsa-RRN <22e-16 =22e-16 =22e-16 =2.2e-16
AGE-RR 2.866e—-03 9.676e—03 2.021e—-02 3.249e-01

AGE-RRN 8.143e—-02 8.379¢—04 6.981e—04 2.162¢—02
Random 1 <2.2e—16 <2.2e-16 <2.2e—-16 <2.2e—16
Random 2 <22e-16 <22e-16 <2.2e-16 <2.2e-16
Random 3 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
Random 4 <2.2e—-16 <2.2e-16 <2.2e—-16 <2.2e—16

Model WM BS1 WM BS2 WM BS3 WM BS4
S.V.Mach. <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
C.PTerm. <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

Minepump <2.2e-16 <22e-16 <2.2e-16 <2.2e-16
Claroline <22e-16 =<22e-16 <22e-16 <2.2e-16

Elsa-RR <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
Elsa-RRN <22e-16 <22e-16 <2.2e-16 <2.2e-16
AGE-RR 9.107e—-03 4.744e—-02 6.405e—-02 1.382e-01

AGE-RRN 5.991e-01 7.076e—01 5.674e—01 5.168e—01
Random 1 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
Random 2 <2.2e—-16 <2.2e—-16 <2.2e-16 <2.2e-16
Random 3 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16
Random 4 <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

is lower than 2.2e-16, discrediting the null hypothesis and showing a significant
difference in the execution times. The execution times of AGE-RR/ AGE-RRN model
are only significant for RS1 to RS3, BS1, and BS3 (for AGE-RR); and RS2 to RS4 (for
AGE-RRN). For strong mutation, all the p-values were lower than 2.2e-16, showing
a significant difference in execution time between the BS algorithm and the ALE
algorithm in a strong mutation scenario.

7.6.4 Lessonslearned

From our experiment we draw the following lessons: (i) regarding weak mutation
and independently of the size or nature of the models, the ALE approach provides
faster and exact answers. This indicates that state-of-the-art language equivalence
algorithms can be used successfully for such a task. (ii) Regarding strong mutation,
biased random simulations are of interest for the web and the random models,
and gains increase with the size (from one to three orders of magnitude). Recalls
of 90% and above allow to use such simulations as reasonably reliable fast filters
to discard non-equivalent mutants, leaving to ALE algorithms “difficult” cases so
as to accelerate the analysis of large mutants bases. (iii) Biased simulations are

118

7.7. Wrap up

more predictable in terms of execution time and recall. Additionally, drastically
increasing the number of runs does not affect their performance as opposed to
random simulations. (iv) The configuration of the ALE algorithm (forward/backward
processing, or breadth-first or depth-first exploration) has very little influence on the
total execution time (regarding equivalent mutant detection). This may be explained
by the fact that mutations occur randomly and therefore do not privilege any graph
traversal strategy.

7.7 Wrap up

This chapter presents the empirical assessment and their results validating the the
selection criteria and mutation analysis described in Chapters 5 and 6. Future work
include generalisation of the results by using all the case studies from Chapter 4 for
each assessment and comparison of the different test suite selection criteria using
mutation analysis.

119

Part II1

Implementation

121

CHAPTER

VARIABILITY INTENSIVE BEHAVIOURAL
TESTING FRAMEWORK

Variability Intensive Behavioural teSting (VIBeS) is the framework we developed
to support the testing activities described in this thesis. It is designed as a Maven
project, decomposed in several Maven modules, to allow flexibility and rapid pro-
totyping. In total, VIBeS has around 16,000 lines of code distributed amongst 307
Java classes. It is released (since its inception) under the MIT license and publicly
available on GitHub (https://github.com/xdevroey/vibes). Each assessment from
Chapter 7 has been performed using one particular version of VIBeS and each one of
those versions is available in the Maven Central Repository'. This allows one to re-
produce the assessments using the same version of the tool enforcing reproducibility
of our results.

This chapter presents the architecture (in Section 8.1) and the usages (in Section
8.2) of the last version (v.1.1.6) of VIBeS. Section 8.3 concludes this chapter and
presents future developments.

8.1 Architecture

VIBeS is built as a set of Maven modules. Maven is a industrial build management
tool build upon the convention over configuration philosophy [289]:

“Convention over configuration is a simple concept: systems, libraries,
and frameworks should assume reasonable defaults. Without requiring

”»

unnecessary configuration, systems should “just work”.

1See https://search.maven.org.

123

https://github.com/xdevroey/vibes
https://search.maven.org

CHAPTER 8. VIBES

1

vibes-
fexpression

A

—1 | 1
Legend:
vibes-core | = ——=—=——=== == — -+ vibes-mutation 9
- <«— — — uses
‘ ‘ =~ ~So e 7 ‘
o S~L [/ X I
\ = d
! \ vibes- !
: \ N transformation :
: — 4 > :
\
| vibes- \ |
| execution \ \ |
| — I~ \ |
~
| _ 4 S o \ |
— | y S~ [—
~
vibes-selection [= = = = = = = = = — — = — — vibes-dsl <& — —| vibes-toolbox

Figure 8.1: VIBeS modules dependency graph

This philosophy allows to have a flexible and extensible (using Maven plugins) build
process, while ensuring a minimal configuration effort for the developer. Maven
is able to build Java application and libraries (called artefacts in the Maven world),
including compilation, JUnit test execution, and Jar packaging. Each artefact is
described by a Project Object Model (POM), containing a unique identifier and
other information about the artefact, dependencies to other artefacts, etc. The
artefact unique identifier is a triplet: a group identifier; an artefact identifier; and
a version number. For instance, the version of VIBeS described is this chapter is
the artefact be.unamur.info:vibes:1.1.6, where the group identifier, artefact
identifier, and version number are separated by -

Maven allows to organise a project hierarchically. The root project is a Maven
project, while the sub-projects are Maven modules. VIBeS’s Maven project produces
the artefact be.unamur.info:vibes:1.1.6, which is only a POM without any as-
sociated Jar. VIBeS’s project has several modules (with the same group identifier and
version number as the parent project) regrouping different aspects of the framework.
For instance, the modules vibes-core contains the core classes used to model FTSs,
module vibes-selection contains Java classes to perform test case selection from
a FTS model, etc. Figure 8.1 presents the different modules from VIBeS and the
dependencies between them: module vibes-core uses the vibes-fexpression
modules that allows to represent and manipulate feature expressions; module
vibes-selection presents an API to select test cases from a transition system
(FTS, LTS, or usage model); module vibes-execution contains the API to execute
abstract test cases on the transition systems; vibes-transformation allows to
transform, serialize, or deserialize the transition systems using different formalisms

124

8.1. Architecture

UsageModelTransition

LabelledTransitionSystem
[l :{:\f/
| S: State ;
i T: Transition -
1 A Action i FeaturedTransitionSystem

UsageMadel

‘LabelledT. itionSystemEl| .u.y|

<]—| FeaturedTransitionSystemElementFactory |
TransitionSystemElementFactory q\

‘ UsageModelElementFactory ‘

Figure 8.2: VIBeS type hierarchy class diagram

(e.g., XML, DOT file, timbuk automata, efc.); module vibes-mutation contains
the API to perform mutation analysis; vibes-ds1 encapsulates the different API to
present a unified Java DSL to perform the different testing activities using VIBeS; and
vibes-toolbox contains all the sub-modules that uses the Java DSL to implement
toolboxes to perform particular tasks (e.g., generate mutants).

Classes from the vibes-core modules represent the transition systems used
by VIBeS. Figure 8.2 presents the class hierarchy of the different elements. Each
element of a transitions system (actions, states, transitions, and the transition
system itself) extends the TransitionSystemElement class. Transitions are ei-
ther simple transitions (Transition class) or transitions labelled by feature ex-
pression (FeaturedTransition class) or a probability (UsageModelTransition
class). Transition systems (LabelledTransitionSystem, FeaturedTransition-
System, and UsageModel) extends the AbstractTransitionSystem class, which
is parametrized with the type of states, transitions, and actions used for this transi-
tion system (featured transitions for the FTSs for instance). To manage the creation
of the different elements of a transition system, a dedicated factory, extending Tran-
sitionSystemElementFactory, is used.

Figure 8.3 presents how transition systems are represented. A transition system
(class TransitionSystem) is a collection of actions and states, with an initial state.
Each state has incoming and outgoing transitions, and each transition is labelled
with an action belonging to the same transition system. The default transition system
implementation (class AbstractTransitionSystem) uses a factory to build the
different states, actions, and transitions. This insures to respect the representation
invariant of the class.

125

CHAPTER 8. VIBES

O TransitionSystemElement

TransitionSystemElementFactory

ffactol
v Y -action .
« | Action | | Transition |—
1 N -incoming
1 -outgoing

PR . L 1

1 S: State g tinitialState

i T: Transition 1

1 A Action

| Ab5:rac:Transftio-r;é:v-s-:-e-r;i- :] ’

Figure 8.3: VIBeS transition systems class diagram

8.2 APl usage

The simplest way to use VIBeS is to create a new Maven project and add a depen-
dency to be.unamur.info:vibes-dsl:1.1.6:

<dependency>
<groupld>be.unamur. info</groupld>
<artifactld>vibes—dsl</artifactld>
<version>1.1.6</version>
</dependency>

This artefact contains an API that encapsulates most of VIBeS usages. The vibes-dsl
module has been built following the same philosophy as the Apache Camel Java
DSL? to chain method calls in order to facilitate the model definition, test case
selection, mutation analysis, efc.

8.2.1 Model definition

Definition of a new FTS is done by extending the FeaturedTransitionSystemDe-
finition class and implementing the abstract define method of that class. This
method calls other inherited methods to define the initial state, states, actions, and
transitions. For instance, the soda vending machine FTS from Section 4.1 is defined
as:

public class SodaVendingMachineModel extends
FeaturedTransitionSystemDefinition {

private static final String[] S = new String[]{"s1", "s2", "s3", "s4",
"5, "g6", "s7", "s8", "s9"}:

@Qverride
protected void define() {
initial (S[0]); // Define the initial state

2See http://camel.apache.org.

126

http://camel.apache.org

8.2.2. Test suite selection

from(S[0]) .action ("pay") . fexpr("!f").to(S[1]);
from(S[0]) .action ("free") .fexpr("f").to(S[2]);

from(S[1]) .action ("change") . fexpr("!f").to(S[2]);
from(S[2]) .action ("cancel").fexpr("c").to(S[31]);
from(S[3]) .action ("return") . fexpr("c").to(S[0]);
from (S[3]) .action ("soda").fexpr("s").to(S[4]);
from(S[3]) .action("tea").fexpr("t").to(S[5]);

from(S[4]) .action ("serveSoda") .fexpr("s").to(S[6]);
from (S[5]) .action ("serveTea") .fexpr("t").to(S[6]);

from(S[6]) .action ("take") .fexpr("f").to(S[0]);
from (S[6]) .action ("open") . fexpr("!f").to(S[7]);

from(S[7]) .action ("take") .fexpr("!f").to(S[8]);
from(S[8]) .action("close") .fexpr("!f").to(S[0]);

The model can be instantiated by calling the getTransitionSystem method:

FeaturedTransitionSystem svm = new SodaVendingMachineModel() .
getTransitionSystem () ;

Transitions may be tagged with an action or a feature expression. Feature expressions
must respect the following grammar:

fexpression: ’true’
| ’false’
| featureName
| (" fexpression ')’
| 17 fexpression
| fexpression ("&&’ | ’'||’) fexpression ;

featureName: LETTER (LETTER | DIGIT)* ;

LETTER: 'A’..°Z’ | ’a’..’z’ | ’_’;
DIGIT: '0’..’9";

Feature names must begin by a letter, and may contain letters or digits. Operators
have the following priority rules: negation ('!’) takes precedence over conjunction
('&&’) and disjunction (| |).

8.2.2 Test suite selection
Test suite selection may be done manually, or using one of the selection criterion

defined in Chapter 5.

Manual test suite selection: Manual selection is done by extending the Test-
SetDefinition class. As for the model definition, the define method has to be
implemented and call inherited methods to define the test cases:

127

CHAPTER 8. VIBES

public class ManualTestSuite extends TestSuiteDefinition {

@Qverride
protected void define() {
id ("testRefund") . action ("pay") .action ("change") .action ("cancel").
action ("return") .end () ;

id ("testFreeTea") .action("free", "tea", "serveTea", "take");
id ("testNoFreeSoda") .action ("pay", "change").action("soda", "
serveSoda") .action ("open", "take", "close");

Actions may be added one by one or by groups in the same action method call. The
test suite is instantiated using the getTestSet method:

TestSet testSuite = new ManualTestSuite () . getTestSet () ;

Random selection: Random test suite selection selects a defined number of test
cases by random walks in FTS. This requires the feature model of the FTS from which
test cases are selected to ensure that selected test cases are positive abstract test
cases. This feature model is encapsulated in a constraint solver (Sa‘[4j3 for instance),
accessed trough a facade that implements the SolverFacade interface. To load
the feature model, one may use a feature expression (a CNF boolean expression
representing the feature model) or load it from a DIMACS CNF file. In the following
example, we load the feature model from a DIMACS CNF file:

/! Feature model loading
DimacsModel featureModel = DimacsModel. createFromDimacsFile ("svm.dimacs") ;
SolverFacade solver = new Sat4JSolverFacade (featureModel) ;

/! Random test suite selection
TestSet randomSuite = randomSelection (svm, solver);

All-states selection: Selection of a test suite satisfying the all-state criterion is
done by importing the al1StatesSelection static method from the Al11States
class:

/! Feature model loading

DimacsModel featureModel = DimacsModel. createFromDimacsFile ("svm. splot.
dimacs") ;

SolverFacade solver = new Sat4JSolverFacade (featureModel);

/! All-states test suite selection
TestSet allStatesSuite = allStatesSelection (svm, solver);

3See http:/ /www.sat4j.org.

128

http://www.sat4j.org

8.2.3. Saving and loading models

Dissimilarity-driven selection: Test suite selection using a dissimilarity heuristic
is done using the Dissimilar class. The heuristic may be configured using the
following methods:

// Feature model loading

DimacsModel featureModel = DimacsModel. createFromDimacsFile ("svm. splot.
dimacs") ;

SolverFacade solver = new Sat4]JSolverFacade (featureModel) ;

// Dissimilar selection

from (svm, solver)
.during(30000) // specify duration
/1 specify local or global distance and how to compute dissimilarity
.withLocalMaxDistance (ftsDissimilarity (solver, levenshtein(), avg()))
/1 Specify the number of test cases
.generate (5) ;

Duration specifies how long the algorithm will run, using a local (withLocalMaxDis-
tance) or global (withGlobalMaxDistance) distance computation. The distance
itself is defined using one of the static methods that works on the actions alone
(hamming, jaccard, dice, antidice, or levenshtein), or in combination with
product distance (ftsDissimilarity), using a binary operator (avg, mul, or any
other BinaryOperator object).

Usage-based selection: Usage based selection is more complex. First, it requires
to select a set of test cases in the usage model using BoundedProbabilityGenera-
tor class. Those test cases are then executed on the FTS that is pruned to keep only
transitions activated by at least one test case. This is done using the Prunning.pru-
ne method. Complete usage-based test suite selection is not yet encapsulated in
vibes-dsl. This is part of our future work.

8.2.3 Saving and loading models

Models may be saved in XML format using the TransitionSystemXmlPrinter
class. To load a model from an XML file, one may use the TransitionSystemXml-
Loaders class:

/! Load model
FeaturedTransitionSystem svm = loadFeaturedTransitionSystem ("svm.xml") ;

// Save model
print (svm, "svm.xml");

The XML model of the soda vending machine is the following:

<?xml version="1.0" encoding="utf-8"?>
<fts xmlns="http://www.unamur.be/xml/fts/" xmlns:xsi="http://www.w3. org
/2001/XMLSchema-instance">
<start>statel</start>
<states>
<state id="statel">
<transition action="pay" fexpression="!FreeDrinks" target="state2"/>

129

CHAPTER 8. VIBES

<transition action="free" fexpression="FreeDrinks" target="state3"/>
</state>
<state id="state2">
<transition action="change" fexpression="!FreeDrinks" target="state3"
/>
</state>
</states>
</fts>

8.2.4 Performing mutation analysis

Mutation analysis consist of mutants generation (in an enumerative or FMM ap-
proach) and mutants execution. Those analysis are done at the product level (on
LTSs), mutation analysis for FTSs is part of our future works.

Mutation operators configuration: Operators may be configured using the Muta-
gen class. This is useful to define the selection strategy of the elements to mutate.
For instance, one can create a state missing (SMI) operator that will only remove
particular states (chosen randomly):

MutationOperator op = Mutagen. stateMissing (svm)
.stateSelectionStrategy (svm. getState ("s4"), svm. getState ("s8"), svm.
getState ("s9"))
.done() ;

One may also configure a set of operators using an XML configuration file:

<?xml version="1.0" encoding="utf-8"?>
<config>
<!— Default mutant size (may be redefined) —>
<mutantsSize>200</ mutantsSize>
<!— Default selection strategies (may be redefined) —>
<actionSelection>
be.unamur. transitionsystem. test . mutation. RandomSelectionStrategy
</actionSelection>
<stateSelection>
be.unamur. transitionsystem. test . mutation. RandomSelectionStrategy
</stateSelection>
<transitionSelection>
be.unamur. transitionsystem. test . mutation. RandomSelectionStrategy
</transitionSelection>

<!— Default uniqueness of each mutant (may be redefined) —>
<unique>true</unique>
<!—— Operators —>
<operators>
<operator>
<class>be.unamur. transitionsystem. test.mutation.ActionExchange</ class
>

</operator>

<operator>
<class>be.unamur. transitionsystem. test . mutation. WrongInitialState</
class>

130

8.2.5. VIBeS toolboxes

<mutantsSize>100</mutantsSize>
<actionSelection>be.dummy. MyActStrategy</actionSelection>
<stateSelection>be.dummy. MyStStrategy</stateSelection>
<transitionSelection>be.dummy. MyTrStrategy</transitionSelection>
<unique>false</unique>
</operator>
</operators>
</config>

Default configuration (selection strategy, number of mutants to generate, unique-
ness on mutant based on the selected operands of the operator) may be redefined
for each mutation operator.

Mutants generation (enumerative approach): Mutants may be generated enu-
meratively: each mutant is generated in a new XML file. For instance:

LabelledTransitionSystem Its = loadLabelledTransitionSystem ("product.xml");
configure ("operatorsConfig.xml")

.outputDir ("mutants/") // Generates mutants in the given folder

.mutate (1ts);

Mutants generation (FMM approach): One can also generate a FMM and save it
in an XML and a TVL files :

LabelledTransitionSystem lts = loadLabelledTransitionSystem ("product.xml");
FeaturedMutantsModel fmm = configure ("operatorsConfig.xml")

.ftsMutant ("fmm. fts") // Generates MM’s FTIS with given name

.tvIMutant ("fmm. tvl") // Generates MM’s FD in TVL format

.mutate (1ts);

Mutants execution: Finally, execution of a test suite on the FMM is done using the
getAliveMutants static method of the FeaturedMutantsModels class:

FExpression alive = getAliveMutants (testSuite.get(0), fmm);
solver.addConstraint(alive);
Iterator<Configuration> solutions = solver.getSolutions () ;
while (solutions.hasNext()) {

System.out. println (solutions.next());

}

8.2.5 VIBeS toolboxes

VIBeS architecture in Maven modules allows to do rapid prototyping. Module
vibes-dsl encapsulates the common operations performed during the testing
activities to reduce as much as possible custom developments. Beside vibes-dsl
module, VIBeS also comes with a set of toolboxes. Each of those toolbox is a exe-
cutable Jar file with a command line interface that may be used to perform standard
tasks. The existing toolboxes are:

e toolbox-model-statistics: to print statistics about a transition system;

131

CHAPTER 8. VIBES

e toolbox-testcase-generation: to select test suites using various criteria;

e toolbox-transformation: to transform an XML transition system to other
formats (e.g., Graphviz DOT);

e toolbox-products-analyze: to print the number of products for a given
feature model and a given feature expression;

e toolbox-mutant-generation: to generate mutants (enumeratively or using
a FMM);

e toolbox-fmm-execution: to execute test cases on a FMM;

e toolbox-mutation-equivalence: to detect equivalent mutants using sim-
ulation or automata language equivalence;

e toolbox-mutant-sampling: to sample a set of mutants (from different or-
ders) from a given FMM.

8.3 Wrapup

In this chapter, we present VIBeS, the implementation of our testing framework. We
use VIBeS to perform various testing activities, including model definition, test suite
selection, and mutation analysis.

VIBeS is built as a Maven project with several modules. Each module is dedicated
to one particular aspect of the testing activities. Test engineers may use VIBeS by
accessing the API of the different modules, or by using the Java DSL that encapsulates
API calls and simplifies usages.

This modular architecture allows to perform rapid prototyping while allowing
adhoc developments for specific needs. We choose to use Java as the interface
language for the test engineer rather than a dedicated DSL or modelling language.
This avoids to switch between syntaxes and, we assume, lowers the learning curve for
new users. This idea stems from industrial practices (like Apache Camel*) and seems
to be confirmed by other trending behavioural testing tools (like Cucumber [201]
where, except for the behavioural description of the system, all elements are defined
in Java).

4See http://camel.apache.org.

132

http://camel.apache.org

CHAPTER

TEST CASE CONCRETIZATION USING ABSCON

Test definition and execution is an essential but time-consuming task during system
development. To speed up the process, model-based testing and other related
approaches propose to select abstract test cases and to automatically concretize
them, based on mapping information provided by the test engineer. This mapping
may take one of the following forms [307]: (i) an adapter which interprets the
actions and assertions of the abstract test case and execute them on the SUT; (ii) a
transformation from the abstract test cases to code executable directly on the SUT; or
(iii) a mixture of the above two. In this last case, an abstract test case is transformed
into executable code which uses an intermediate adapter (like an intermediate
library for instance) to bridge the gap between the test case and the SUT.

In this chapter, we describe the Abstract test case Concretizer (AbsCon) devel-
oped by Jeremy Vanhecke [311] during his master thesis, we co-supervised with
Dr. Gilles Perrouin and Prof. Patrick Heymans. AbsCon is defined as a QTaste [257]
plugin, an open-source industrial data-driven test case definition and execution
environment, used to perform black-box testing on various kinds of systems. QTaste
abstracts the SUT’s interface by using an adapter called test API, test cases are writ-
ten in Python where the operations on and the readings from the SUT’s interface are
encapsulated into calls to the test API dedicated to the kind of the SUT.

For instance, to test a Web-application, QTaste encapsulates the access to the
elements of the Web page in a Web test API which is responsible to perform the effec-
tive Selenium (a popular Web browser automation tool [279]) calls. After considering
different options, we chose to define AbsCon as a QTaste plugin for the following
reasons: (i) QTaste is an open source industrial tool, used to test various kinds of
systems, from Web-applications to mobile applications and even cyber-physical
systems [93], thanks to its test API adaptation mechanism; (ii) plugin development
is already included in QTaste and this architecture was suggested by a QTaste de-

133

CHAPTER 9. ABSCON

veloper; (iii) the inital goal of AbsCon was to concretize abstract test cases selected
by VIBeS using additional mapping information. To this end, abstract test cases
are defined in AbsCon using an XML file, where each test case is a sequence of
actions and assertions on the SUT. But this definition is not specific to VIBeS, it also
allows QTaste test engineers to define test cases in a more abstract and systematic
fashion (rather than directly Python scripts), as long as they follow the same pattern
(i.e., sequences of assertions and actions).

The remainder of this chapter is as follows: Section 9.1 gives a general description
of the QTaste environment, Section 9.2 describes AbsCon’s concretization process
as well as the required mapping information, Section 9.3 presents AbsCon’s im-
plementation, advantages and limitations are discussed in Section 9.4, Section 9.5
discusses related work. Finally, Section 9.6 wraps up the chapter and presents some
perspectives.

9.1 Testautomation using QTaste

The QSpin Tailored Automated System Test Environment (QTaste) [257] is an open
source functional and non-functional black-box test environment developed in Java
and Python. It has been originally developed by Qspin Experts' in order to automate
testing process of medical cyber-physical systems developed by IBA? and used for
proton therapy. Since its inception, QTaste has been extended to support different
kinds of SUTs, like Web-applications, mobile applications, or more classical desktop
applications [93]. It is released as an open source project on GitHub under GNU GPL
3.0 license [257].

9.1.1 Overview of the QTaste environment

QTaste follows the data-driven testing philosophy [28]: data used by the tests are
externalized in order to allow test cases parametrization. Each test case is written in
Python and describes a sequence of steps, i.e., operations executed by the SUT or
verifications of the outputs produced by this SUT, using the given data as input. For
instance, when testing a form which values are recorded in a database, one test case
fills the form with the given data and check that the values are effectively recorded in
the database. This test case is repeated with different values (e.g., positive, null, and
negative values for numeric fields) specified in a separate CSV file and automatically
executed by QTaste on the SUT.

QTaste adapter mechanism: QTaste provides test APIs which communicate with
the SUT and manage the operations executions and/or SUT’s outputs reading. Each
test API consists in a Java interface, defining the operations and information acces-
sible by the test cases, and a Java implementation of this interface which manages
communication with the SUT. This mechanism allows QTaste to test a large variety

Thttp:/ /www.gspin.be
2https://iba-worldwide.com

134

http://www.qspin.be
https://iba-worldwide.com

9.1.1. QOverview of the QTaste environment

Listing 9.1: Google search test case

1 from qtaste import =

2

3 api = testAPI.getSelenium (INSTANCE_ID="Google ")
4

5 def init():

6 api.openBrowser (testData . getValue ("BROWSER"))
7 api.windowMaximize ()

8 api.open("https://www. google.be/")

9 api.waitForPageToLoad ("15000")
10 if api.getTitle() != "Google":
11 testAPI.stopTest(Status.FAIL)
12

13 def searchAndClick () :

14 api.type("id=1st-ib", testData.getValue ("SEARCHVALUE"))
15 api.clickAt ("name=btnK", "0.0")

16 api.waitForPageToLoad ("15000")

17 api.click("link=" + testData.getValue ("LINKTOCLICK"))
18 if api.getTitle() != testData.getValue ("LINKTITLE"):
19 testAPI.stopTest(Status.FAIL)

21 def exit():
22 api.stop ()

24 doStep(init)
25 doStep (searchAndClick)
26 doStep (exit)

of systems: Web-applications using a Selenium-based test API, hardware compo-
nents with dedicated API, or any other kind of system for which a test API may be
developed. The test API, together with the configuration of the SUT instance is
called a Testbed: this mechanism allows to write test cases independently from the
execution environment, using only test (and standard Python) API(s). Once all the
test cases have been executed, QTaste generates a summary report, with the number
of success and fails, the Testbed used, for each test case, the CSV lines used, etc.

Example: Listing 9.1 presents a (simplified) test case for the Google search engine
that is executed for each line of the external CSV file. It launches a Web browser
and connects to the Google search website, fills the search field with a string, and
click on a specified link. Line 3 creates a Selenium instance test API, which manages
the connection to the browser; lines 5, 13 and 21 declare the steps of this test case,
called at lines 24, 25, and 26; explanations about each step is given as a comment in
Python format (not shown here) and is used during the generation of the test reports.
At each step, the test API instance is used to manipulate the browser user interface
(lines 6 to 10, 14 to 18, and 22) according to the data provided in the external CSV file
(identified by column names at lines 6, 14, 17, and 18). Finally, each step may check
assertions on the outputs of the browser to validate the execution (lines 10 and 18).

135

CHAPTER 9. ABSCON

| Assertions and actions |

------------- L itttk |

| Interface model inst. | | QTaste data mapping !
1 (UiMapping.py) :] mechanism :
[t ; _______ [y ; _______
| Test API | | CSV (Testata. csv) |

12

SUT's interface

Figure 9.1: Mappings in AbsCon

9.1.2 Advantages and limitations

The main advantage of QTaste is the test API mechanism, allowing test cases to
manipulate a large variety of SUTs using a general purpose programming language:
Python. Expressing test cases using a general purpose and popular programming
language like Python benefits from the large number of available Python libraries.
This can be very handful when writing test cases in order to perform more complex
operations or access external resources. The environment provides extensibility
mechanisms to the test engineers in order to write dedicated adapters between
QTaste and SUTs, and describes the usage of those adapters in a test API. Coupled to
the externalisation of data and SUT’s configuration, it improves test cases reusability
and automation of the test process [307].

As it works as a black-box test environment, QTaste access the SUT through its
interface, manipulated by the test cases trough the test APIL. This means that when-
ever the interface and/or the test API evolve, all the test cases using this interface
and/or modified test API are impacted, increasing maintenance cost [307]. AbsCon
provides an additional abstraction layer separating the different concerns thus re-
ducing maintenance costs when combined with abstract test cases as presented in
the next section.

9.2 Test cases concretization

AbsCon was originally developed to support abstract test case concretization [311].
In AbsCon, an abstract test case is a sequence of abstract assertions and actions,
usually automatically derived by a model-based testing tool [307]: VIBeS in this
case [82]. To bridge the gap between VIBeS and AbsCon, abstract test cases produced
by VIBeS are enriched with the intermediate states (representing assertions on the
system’s state) visited when executing the abstract test case. This modification is
coherent with our assumption that the behavioural model used to select abstract
test cases is deterministic.

The concretization process translates the abstract test case into a (concrete) test
case executable by QTaste: (resp.) assertions and actions are mapped to (resp.)
verifications and sequences of operations manipulating the SUT through the test
API. The most common way to perform this task is to give, for each assertion and

136

9.2. Test cases concretization

each action, the corresponding Python code. It allows to improve the reusability and
automation, while decreasing the maintenance costs (each assertion or action is
defined only once in the mapping).

However, access to the SUT’s interface elements remains hardcoded in the dif-
ferent test cases (e.g., lines 10 or 15 in Listing 9.1). This may raise one or more
issues:

(i) element of the SUT’s interface are accessed using test API methods, requiring
to know and provide at each method call the access method (e.g., using the
element’s id or name or at lines 14 and 15 in Listing 9.1) and the access value
(e.g, 1st-ib atline 14 and btnK at line 15 in Listing 9.1);

(i) besides being cumbersome when writing test cases, requiring access method
and value in each method calls may also raise problems, as not all elements
of test API may be called on all elements of the SUT’s interface (e.g., for a
Web-application, it is only possible to type text in text fields or in text areas),
which will only be checked when running the test case;

(iii) as previously, when an interface or test API element is updated, all the actions
and/or assertions using this element are impacted, requiring to update the
mapping in different places and thus increasing the maintenance cost (with a
more limited magnitude).

To mitigate those issues, we divide the mapping in AbsCon in three elements, as
illustrated by the dashed boxes in Figure 9.1: a SUT’s interface elements mapping
trough a model instance of this interface; a data mapping; and an assertions and
actions mapping, giving for each (resp.) assertion/action the (resp.) verification-
s/operations to perform on the SUT. The verifications and operations on the SUT
are defined as Python functions that will use the interface model instance, using
the methods of the different elements, and the external data. The external data
are recorded in a CSV file and managed using QTaste’s dedicated mechanism. The
interface model, i.e., a set of Python classes, uses one or more test APIs in order to
execute the operations and retrieve information on/from the SUT.

The model of the interface and the assertion/actions mapping is detailed in the
following sections. To illustrate those different mappings, we will use Google instant
search as SUT and consider the following test cases:

(i) open Google search website, enter a keyword, see that search results are
printed, click on a link, and check that the website is loaded;

(ii) open Google search website, enter a keyword, see that search results are
printed, deactivate the instant search in the parameters and validate, go back
to the main page, and check that search results are not printed when a keyword
is entered;

(iii) open Google search website, enter a keyword, see that search results are
printed, deactivate the instant search in the parameters and cancel, go back
to the main page, and check that search results are printed when a keyword is
entered.

Test case (i) checks the common usage of Google instant search, test case (ii) checks
that, when the instant search is deactivated in the parameters options, the instant
search is not performed, and test case iii checks that when instant search is deacti-

137

CHAPTER 9. ABSCON

Listing 9.2: Google instant search test cases in AbsCon XML format

1 <?xml version="1.0" encoding="UTF-8"?>
2 <realisation id="Google testing">

3 <uimodel>web</uimodel>

4 <uimapping>UiMappings . py</uimapping>

5 <operations>Operations.py</operations>
6 <datas>TestData.csv</datas>

7 <tests>

8 <test>

9 <action>start</action>

10 <action>goHomePage</action>

11 <assert>onHomePage</ assert>

12 <action>inputSearchString</action>
13 <assert>searchResultsPrinted</assert>
14 <action>clickLink</action>

15 <assert>pagelLoaded</assert>

16 <action>exit</action>

17 </test>

18

19 </tests>

20 </realisation>

vated but the change is cancelled in the parameters options, instant search is still
active. Test cases are defined in XML format as a sequence of assertions and actions:
lines 8 to 17 in Listing 9.2 gives test case i definition (other test cases are omitted).
Additional information are the SUT’s interface model to use (line 3), the path to
the Python file defining the instance of this model for the Google instant search
interface (line 4), the path to the Python file defining the operations mapping (line
5), and the path to the external CSV data file (line 6).

9.2.1 SUT’s interface model

A SUT’s interface model describes for a particular family of SUTs the different
elements accessible when performing black-box testing. For instance, for Web-
applications, the web model at line 3 in Listing 9.2 is defined (here using a class
diagram notation to ease the reading) in Figure 9.2. It described the different ele-
ments we can found on a Web page: each class has to access the QTaste Selenium
test API (using inherited attribute api) and will extend WebElement; WebBrowser
objects will start and exit the Web browser specified for the current test case
execution using the data from the external CSV file (as on line 6 in Listing 9.1); a
WebPage is available at a given URL address, may be opened (and expected to load
before a given timeout), closed, and has a title; WebElements will appear on this
page, each one is accessible using an accessMethod (e.g., XPath) and an access value
(e.g., an XPath query to this element), may or may not exist on the page, has a value,
and may be clicked; the different elements we identified (relevant for the examples
of this paper) are WebButton, WebLink, WebRadioButton, WebText, WebPicture,
and WebEditBox which may be filled using textual values.

In AbsCon, each interface model is defined in Python. For one particular SUT’s

138

9.2.2. Assertions and actions mapping

WebElement
api 4
I I |
WebBrowser WebPageElement WebPage
+ start() accessMethod address
+ exit() accessValue timeout
+ exists(): boolean |, + open()
+ getValue(): String | + close()
+ click() + getTitle(): String

+ waitForPage()

]
WebRadio
Button

[WebButton | [WebLink |
[| [|

[
WebEditBox |
[WebText |[WebPicture |
I | |

+ enterValue(String)

Figure 9.2: Web-applications SUT’s interface class diagram (web)

Listing 9.3: Google instant search interface model instance (UiMapping. py)

from uimodel_web import =

#mapping definitions

googlePage = WebPage("https://www.google.be/", 5000)

searchBar = WebEditBox("id", "Ist—ib")

searchButton = WebButton("name", "btnK")

disableInstSearch = WebRadioButton("xpath", "//div[@id="instant-radio ']/ div
[3]/span")

8 enablelnstSearch = WebRadioButton("xpath", "//div[@id="instant-radio ']/ div

[2]/span")

N O g W N~

interface, this model is instantiated to represent the elements accessible to the test
cases. For instance, for Google instant search, the web model instance is defined
in UiMapping.py (Listing 9.3), as specified at line 4 in Listing 9.2. Each object is
built using the dedicated constructor, which will require in most cases an access
method and an access value: e.g., search bar is accessed using its id in the page,
which is 1st-ib (line 5), or using an XPath expression (lines 7 and 8). As for test
APIs, interface models may be reused across different SUTSs, as long as they share the
same kind of interface (Web pages in this case).

9.2.2 Assertions and actions mapping

AbsCon extracts assertions and actions from the abstract test cases (Listing 9.2).
Each assertion is mapped to a verification (i.e., a function returning true or false)
over the SUT’s interface; and each action is mapped to a sequence of operations
over elements of the SUT’s interface (i.e., again, a function).

139

CHAPTER 9. ABSCON

Listing 9.4: Verifications and operations mapping (Operations.py)

from qtaste import =
from UiMappings import =

#Actions definition
def goHomePage () :
googlePage .open ()

N U W

def inputSearchString():
9 searchBar. enterValue (testData . getValue ("SEARCHVALUE"))

11 #Asserts definition
12 def searchResultsPrinted () :
13 googlePage . waitForPage ()

14 if (not(navPicture.exists())):

15 time.sleep (3) # wait for loading and retry
16 return navPicture. exists ()

17

Verifications as well as operations are defined using the interface model instance
defined in UiMapping.py (and will manipulate the different elements using the
methods defined for those elements) and the QTaste data mapping mechanism in
order to retrieve data from the external TestData.csv file. The mapping between
the assertions and actions from the abstract test case is done by using the same
name for the verifications and operations functions.

For instance, Listing 9.4 presents the verifications and operations mapping
(Operations.py) for the Google instant search test cases from Listing 9.2. Function
inputSearchString (line 8) corresponds to the action with the same name in the
test cases and inputs a search string, coming from the SEARCHVALUE column of
the external CSV file, in the Google search bar defined in UiMappings. Function
searchResultsPrinted (line 12) corresponds to the assertion with the same name
in the test case, and returns true if the navigation picture from the result page is
loaded.

9.2.3 Test cases generation and execution

Once the mappings are defined, AbsCon generates concrete (i.e., executable) test
cases for QTaste: for each test case, it creates a Python script which imports the map-
pings and executes a sequence of doStep and doAssert calls using the verifications
and operations functions. Those Python files, with the TestData. csv file, are used
as input for QTaste to execute the test cases on the SUT and generate a summary
test report.

Listing 9.5 presents the result of the generation for test case i: each doStep call
(part of the standard QTaste API) corresponds to one action in the test case and will
execute the given function. The doAssert function, defined by AbsCon, calls the
given function (corresponding to an assertion in the test case) and prints the given
error message if the call returns false.

140

9.3. Implementation

Listing 9.5: Generation result for test case i

from qtaste import =
from Operations import =

#Assert
def doAssert(method, message):
res = method()
if res == 0:
raise QTasteTestFailException (message)

NN U s WD

10 #Steps

11 doStep(start)

12 doStep (goHomePage)

13 doAssert(onHomePage, "assertion onHomePage has failed")

14 doStep(inputSearchString)

15 doAssert(searchResultsPrinted, "assertion searchResultsPrinted has failed")

9.3 Implementation

QTaste’s plugin development functionality has been developed for specific requests
made to QSpin. To the best of our knowledge, there is no plugin developer documen-
tation available, but thanks to a QSpin developer guidance in the GitHub repository
(where some examples of basic QTaste plugins are available), the development of
AbsCon plugin was made possible. Basically, the plugin mechanism allows one
to build his own user interface in a specific area inside the QTaste’s user interface.
Plugins have to be developed in Java (like QTaste) and must use the standard QTaste
libraries.

9.3.1 Graphical user interface

AbsCon provides a graphical user interface integrated into QTaste (as shown in
Figure 9.3(a)) with different tabs, one for each mapping phase. When executing
the plugin, the first step is to load the abstract test cases from an external XML file,
AbsCon extracts the different actions and assertions for which a mapping has to be
provided and presents them under the Abstract tests tab. The second step is to
define or load a SUT’s interface model (under tab UT model) and to instantiate this
model under the UI mapping tab presented in Figure 9.3(b): for each element of
the interface, one has to instantiate a class of the interface model (selected using a
drop-down list) by providing the required parameters for the constructor, and add it
to the mapping using the Declare button (or load an existing mapping using the
Load button). Actions and assertions mappings are given using the two next tabs:
the user select the action/assertion using a drop-down list and provides the Python
code for this action/assertion as shown in Figure 9.3(c) (the assertion mapping tab
in this case). In the Data tab, the user provides the data in an editable table, and
finally generates the QTaste executable test cases in the QTaste tests tab.

141

CHAPTER 9. ABSCON

) QSpin Tailored Automated System Test Environment = | O -
Help AbsCon

Test suite: C:\0Taste_v2.3 0iTestSuitesiGoogle testing test | Testbed config: concretisation_setup -

QSPIN oo srecos o

Reporting Format: ~ HTML| GUI | XML | (Rejstart testbed Stop testbed

| v lgnore control script SUT version: undefined

Pugns load Abstracttests Uimodel Uimapping Actons Asseris Data Qlastefests
[kbsen
Name for this test serie: Google testing

Abstract testfile path: click on browser and select the XHL tests file Browse

Uimodel(s) touse: ¥ web. Add new

Actions

QTaste tast Ul mapping

Ul model

L

N

TestCases
Test Campaign
Interactive Plugins

Select an assertion to ma

Load Python code for the assertion
existing
mapping
Declared elements
(b) SUT interface mapping tab (c) Assertions mapping tab

Figure 9.3: AbsCon plugin printscreens

9.3.2 AbsCon plugin architecture

Figure 9.4 gives an overview of the AbsCon packages diagram. The plugin architec-
ture follows a classic model-view-controller pattern, divided in three Java packages:
type one in charge of the model, ui package with all the classes in charge of the
view, and manager one which contains the controller classes.

The plugin execution is orchestrated by the AbsCon class, which extends the
AddOn QTaste class: it overrides the 1oadAddon, unloadAddon and getConfigura-
tionPane methods. The two first contain all the operations to perform when QTaste
loads or unload the plugin and its functionalities. The third one is the method that
gives to QTaste environment the user interface of the AddOn (i.e., it returns a JPanel
that contains the plugin graphical user interface).

Model classes (package type) implement the different concepts presented in
section 9.2: abstract test cases (AbsractTest) are represented as a sequence of

142

9.3.3. Source code

com.qgspin.gtaste.addon |

AddOn
+loadAddon()
+unloadAddon() <]_
+getConfigurationPane()

be.modji.test.qtaste.addon.abscon |

AbsCon

type

AbstractTest Abstract
Operation Test

SN

Abstract || Abstract

Assert Action ui

TestData

manager

Python*

Figure 9.4: AbsCon packages diagram

assertions (AbstractAssert) and actions (AbstractAction). The SUT’s interface
model and the assertions and actions mapping are encoded using Python (classes
PythonClass, PythonConstructor, PythonMethod, and PythonParameter, ab-
breviated Python* in Figure 9.4).

Finally, the data feeding the CSV file used by QTaste during test cases execution
is represented by the TestData class. Manager classes (from the manager package)
play a role of controller during the plugin execution and dialogue with the classes
from the ui package, in charge of the AbsCon plugin graphical user interface.

9.3.3 Source code

AbsCon is released as an open source project on GitHub, under the GNU public li-
cense. It can be downloaded at the following address: https://github.com/modji-be/
AbsCon. The project is written in Java and has 34 classes, 248 methods, and 4864
lines of code.

9.4 Discussion

In this section, we discuss AbsCon’s abstraction and user interface modelling mech-
anisms, maintenance costs, and mappings, based on our experience with the tool. A
complete and rigorous evaluation of the tool, using a controlled experiment [317]
with test engineers, is left for future work.

Abstraction: AbsCon heavily relies on abstraction, of the SUT’s interface on the
one hand, and on the assertion and actions on the other hand. This abstraction

143

https://github.com/modji-be/AbsCon
https://github.com/modji-be/AbsCon

CHAPTER 9. ABSCON

layer allows to define each mapping independently from the higher or lower levels:
abstract test cases are defined using assertions and actions with meaningful names
for the user/test engineer; each assertion and each action is mapped to a Python
function representing a verification or an operation, and is defined as a manipulation
of the SUT’s interface meaningful from a user point of view (depending on the
nature of the SUT, the user may be a human or another system), thanks to the SUT’s
interface model; finally, the SUT’s interface model encapsulates the test API calls in
charge of the effective communication with the SUT.

User interface modelling: Another option to the modelling of the SUT’s interface
described in this chapter would be to use User Interface Description Languages
(UIDLs) [123] such as USIXML [194]. These languages provide generic constructs
(organized in one or more metamodels that represent both platform independent
and platform specific views, according to Model-Driven Architecture principles
[166]) allowing to model any kind of user-interface (including non-conventional
interfaces such as voice-enabled ones).

However, the use of such proposals in ours raises the following problem: the
number of concepts they are offering being quite large, modelling a simple user
interface can be cumbersome and complex, unless we tailor the language to specific
needs. In our context, we do not to try to model the whole user interface but the
subset concerned by the tests. We therefore adopted a lightweight approach that
has the complementary advantage of not requiring any new modelling language to
learn, by exploiting Python’s object-orientation facilities. Furthermore, as initially
mentioned, QTaste’s spectrum is larger than testing graphical user interfaces.

Maintenance costs: The goal of our abstraction layer is to reduce the overall com-
plexity of the test cases and to decrease the maintenance costs. Indeed, when the
SUT’s interface evolves, only the mapping to this interface has to be (potentially)
changed, AbsCon can then re-generate concrete test cases for QTaste that will serve
for non-regression. This process is much lighter than the update of QTaste test
cases as it will (potentially) require to update all the test cases containing code that
manipulate the SUT’s interface (using directly the test API in this case). In the same
way, when functionalities are added to the SUT, only the new interface elements, and
verifications and operations mappings have to be added. New abstract test cases
may then be written for those elements and AbsCon can re-generate a complete set
of test cases for the whole SUT.

Mappings: The definition of the different mappings may represent an additional
effort during test activities. However, different aspects have to be taken into ac-
count. First, the SUT’s interface model depends solely on the nature of the SUT,
e.g., Web-application for the web model from Figure 9.2. Once defined, this model
may be reused across different projects. As this model abstracts the test API by
defining methods from the interface point of view (e.g., click, open, getTitle, etc.
in Figure 9.2), we believe that it will also soften QTaste’s learning curve. Second,
the definition of the mappings enables integrating existing model-based testing

144

9.5. Related work

techniques (e.g., [82,307]) rather than defining a new complete test development
process.

In our opinion, the most time consuming task will be to identify and map the
different SUT’s interface elements. This cost may be reduced in some cases using
existing tools: for instance, Inspect [215] or SwingInspector [295] are tools used to
identify and access graphical user interface elements in classical desktop applica-
tions. In our UiMapping.py example in Listing 9.3, we used Firefox’s inspection tool
to identify the different elements on a Web page. Depending on the nature of the
SUT, this mapping may also be partially or totally automated (this will be part of
our future works), like for Web-applications for which each element on a Web page
describes itself using HTML tags.

9.5 Related work

Test case concretization techniques are classified by Utting et al. [307] in 3 cate-
gories: adaptation approaches abstracts the SUT by using a wrapper (also called
an adapter), test cases call this wrapper in order to execute operations on the SUT;
transformation approaches transform abstract test cases into test cases directly ex-
ecutable by the SUT, possibly using additional information; and mixed approaches
also transform abstract test cases in executable test cases, but using an adaptation
layer in order to abstract the SUT. Using this classification, QTaste uses adaptation
to abstract the SUT using its test APIs and requires to write test cases which will use
those test APIs.

There exists other adapters, like Selenium and Sahi [265] to test Web-applications,
or AutoHotKey [1] to test Windows applications. Tools like Sikuli [258] and Squish
[109] provide adaptation mechanisms to perform graphical user interface testing
using techniques like image recognition, or recording and playback. None of these
tools natively support abstract test case concretization.

Other transformation and mixed tools like TOTEM [44], SpecExplorer [312],
MaTeLo [96], Smartesting solutions [280], or STALE [191] implement full model-
based testing approaches, including abstract test case generation and concretization
from different modelling languages (e.g., UML Testing Profile [28], etc).

Rather than having a complete transformation chain (from models to executable
test cases), we developed AbsCon in order to plug it on an existing approach (VIBeS
in this case), concretize abstract test cases, no mater their origin as long as they are
described as sequences of actions and assertions, and get executable test cases on a
generic and industrial test environment like QTaste.

As for VIBeS, other model-based testing approaches produce abstract test cases
that are concretized using existing tools, this is the case for Skyfire [190] which uses a
transformation approach to produce Cucumber [201] abstract test cases from UML
diagrams. Cucumber is a popular behaviour-driven development tool that aims
at producing typical examples of the behaviour of a system under development,
described using a semi-structured language: Gherkin. Those examples are used as
acceptance tests and concretized using a Java annotations based mechanism, map-
ping semi-structured sentences to Java methods using a defined string pattern. The

145

CHAPTER 9. ABSCON

executable test cases are run in standard JUnit environment. Cucumber could have
been another test execution environment target, but, to the best of our knowledge, it
does not provide any SUT’s interface abstraction mechanism (like QTaste’s test APIs)
and would have required more effort to define a programmer friendly abstraction
mechanism of this interface.

9.6 Wrap up and perspectives

In this chapter, we presented AbsCon, a QTaste plugin developed to concretize ab-
stract test cases represented as sequences of actions and assertions. The adaptation
mechanism provided by QTaste’s test API is enhanced by a programmer friendly way
to encapsulate the calls to this API using a common model specific to the kind of the
SUT’s interface. This model, reusable for different SUTs as long as their interface
are of the same kind, defines the possible interactions with the SUTs. An instance
of this model, specific to a SUT, is used in operations and verifications correspond-
ing to actions and assertions defined in the abstract test cases. Using the different
mappings, AbsCon is able to generate test cases executable in QTaste.

Originally developed to bridge the gap between VIBeS and concrete test cases,
AbsCon offers multiple advantages, even in a non model-based testing context.
We chose to implement it over an existing industrial test case management and
execution tool, which will, we believe, eases its broader adoption. As a standalone
tool (i.e., not used in an model-based testing chain), AbsCon enhances QTaste’s
genericity by raising the abstraction level of different elements: the SUT’s interface
and test APIs, thanks to the SUT’s interface model mechanism; and the test cases
themselves by allowing to provide definitions using abstract actions and assertions
(which is to the user) instead of Python scripts.

So far, the plugin has only been used on small examples, a more complete
validation is part of our future works. We will also explore automated SUT’s interface
mapping possibilities using existing inspection tools. Finally, another potentially
interesting research direction is the definition of the test cases using a structured
natural language (like Gherkin [201]) as an input to AbsCon instead of XML files.
This could be used to automatically define, not only the actions and assertions, but
also the data to use during the test cases execution. Ideally, the definition of the
test cases in a structured language would be processed by AbsCon to populate both
the list of assertions and actions to map, the elements of the SUT’s interface to use
(based on the text describing the test cases steps), and the CSV file used by QTaste.

More details on AbsCon can be found in Jeremy Vanhecke’s master thesis [311].

146

Part IV

Postface

147

CHAPTER

CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

Software product line testing is a complex, yet essential, task to guarantee a good
enough quality level of the products. The test engineer has to compromise between
the large number of products to test and a limited testing budget. This requires a
strong and usable framework to support the whole testing process, from test case
selection at the domain level to test case concretization into a test script for one
particular product.

In this thesis, we present a model-based behavioural SPL testing framework.
Our approach relies on formal ground without sacrificing usability in a unified and
flexible enough model-driven framework. We believe that this combination will
foster the usage of efficient SPL testing techniques, thus improving the confidence
in the SPL paradigm.

10.1 Summary of contributions

By working on domain artefacts with a FTS and a feature model, we developed
a behavioural family model-based testing framework. The output of the whole
chain is a test suite for, potentially, one product, a subset of products or even the
whole product line according to the provided selection criteria. We consider three
types of criteria: criteria based on the structure of the FTS; criteria based on a
dissimilarity heuristic; and criteria based on usages of the SPL.

As a complement to selection criteria, mutation testing allows to improve a test
suite by assessing its quality using mutation analysis and select test cases for the
live mutants. To face the cost of such analysis for a large number of mutants, we
propose to take advantage of the variability formalisms to compactly represent all

149

CHAPTER 10. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

possible mutations in a single model: the Featured Mutants Model (FMM). In a
FMM, each feature represents a mutation: i.e., a model transformation representing
the application of a mutation operator on the model. It allows to generate mutants
of any order and assess test effectiveness via an optimised execution scheme.

To detect equivalent mutants that may impair the analysis, we offer two baseline
algorithms based on random simulation, and compare them to language equiva-
lence under weak and strong mutation scenarios. Our evaluations suggest to use
simulations first to quickly discard many non-equivalent mutants, and then employ
exact approaches only on a small amount of probably equivalent mutants to speed
up equivalence analysis.

Our framework, called VIBeS, is implemented in Java as an open-source modular
Maven project. Each module is dedicated to one particular aspect of the testing
activities. Each one has a dedicated API and is also encapsulated in a Java DSL
to simplify usages. VIBeS is the reference implementation to assess the different
elements presented in this thesis. Our empirical assessments are performed on
several case studies, representing embedded systems, with manually defined models,
and Web applications, with semi-automatically reverse engineered models.

10.2 Perspectives and future work

This section presents our perspectives and future potential research directions to
improve test case selection and model-based product line mutation analysis.

10.2.1 Test case selection

Test case selection may be improved in different ways: we limit ourselves to two
possible directions, presented hereafter.

Multi-objectives selection: Although we consider structural, dissimilar, and usage
criteria separately, we may combine those different approaches in order to refine
the test case selection. Typically, test case selection using structural criteria, when
applied to an FTS, becomes a compromise between the coverage of the behavioural
model, the number of test cases selected, and the number of products required to
execute those test cases. Evolutionary algorithmes, like the one used for dissimilarity
selection, can handle this kind of optimisation problems.

Dissimilar test case selection can also be extended with different measures
(e.g., test cases structural coverage) as well as different ways to combine them to
perform dissimilarity selection. For instance, the operator used to combine the
different distances (®) can be refined to take more measures into account and
balance them, depending on their significance, to foster one or more particular
distances.

Aspects other than usage or functional elements (like structural coverage or
dissimilarity) of the product line may also play a role in the test case selection
process. E.g., the cost (in time and/or material) linked to the configuration of some
products can be taken into account: algorithms can be modified to prefer test

150

10.2.2. Towards model-based product line mutation analysis

cases requiring cheaper products for their execution. Recent developments in the
SPL verification and validation community tend to consider more and more non-
functional properties of SPLs, both at the feature model level [31,100, 124,232,242,
287,288] and in the behavioural model (like usage information) [231, 262,296, 298].
All this information can be used to tune the evolutionary algorithm to refine the test
case selection.

Mutation coverage driven selection: Since mutants are a valid substitute for real
faults [158], we envision to develop test case selection techniques based on mutation
coverage of a FMM. The idea is to select test cases designed to detect live mutants,
using for instance counter-examples generated by a FTS model checker tool [72].
This would allow to select, not only positive abstract test cases (test cases that
the products should be able to execute), but also negative abstract test cases (test
cases that the product should not be able to execute) [11], enhancing the test case
selections presented in Chapter 5.

10.2.2 Towards model-based product line mutation analysis

Model-based mutation analysis requires to use a set of mutation operators to pro-
duce mutants from the specification of the product line under test. Those operators
are usually designed based on empirical studies build upon large error repositories,
or on a fault model defined to list potential failure causes in a system [206]. McGre-
gor [208] defines a fault model for software product lines and describes for each step
of the product line development, the kind of fault that may appear.

In the remainder of this section, based on the contributions of Chapter 6, we
sketch a vision of a complete model-based product line mutation analysis. We
discuss how our contributions and existing research literature on mutation testing
contribute to this vision and point out future research directions. We consider the
following artefacts as possible candidates for mutation:

e the feature model, defining how features may be combined to form valid
products;
e domain artefacts, reusable across several products (i.e., the FTS);
e the mapping between the feature model and the domain artefacts (i.e., the
feature expression labels); and
e the derivation process used to bind variability in the domain artefacts to get
one product (i.e., the FTS projection operator).
The last artefacts are the products themselves (that can be mutate using standard
mutation techniques [152,206]).

Feature model mutation: Feature model mutation is already largely covered by
literature to assess product sampling (in this case, test cases are valid products of
the product line) and generate better samples [19, 133,174, 261], or to detect errors
and repair feature models [18, 20, 136]. This last line of research uses mutation on
the feature model in order to automatically improve or repair it when an error or
an inconsistency is found. We distinct two kinds of mutation operators: mutation

151

CHAPTER 10. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

(a) Original (b) Mutant

Figure 10.1: Example of syntactic mutation of a feature model [19]

operators working on the syntax of the feature model and operators working on the
semantic of the feature model. Operators working on the semantic are operators
working on the syntax of the formalism used to express the semantic of the feature
model (i.e., a boolean formula). We use syntax and semantic only to clearly distinct
the abstraction level at which the mutation is performed.

Syntactic mutation: Mutation operators working on the syntax of the feature
model transform the graphical (or textual) representation of the feature model
to produce a mutant. For instance, Arcaini et al. [19] define operators that will trans-
form an alternative into a Or or a And, make an optional feature mandatory, change
requires constraint to exclude constraint, etc. Figure 10.1 presents an example of
syntactic change in a small feature model: the optional constraint in Figure 10.1(a)
has been transformed to a mandatory feature in Figure 10.1(b).

Semantic mutation: Semantic mutation works on the semantic of the feature
model: aboolean expression over the features of the feature model [276]. Application
of those operators will first require a flattening of the feature model into a CNF
formula [134] and apply mutations on this formula. Henard et al. [133, 136] use this
strategy to select products to test in order to detect mutations of the feature model.
The feature model is first transformed into a CNF formula which is used an input for
two mutation operators modifying on clause of the CNF formula. For instance, the
feature model of Figure 10.1(a) is transformed into the following CNF clause:

fm=AANEBVAACCVAAGFAVC)
Which may then be mutated (using Henard et al.’s second operator [136]) to:
fm, =ANBAAAN(CCVAA(CAVC)

Since the CNF formula represents the feature model, it is possible to show an equiva-
lence between syntactic and semantic mutation operators. However, one application
of a syntactic mutation operator may require several applications of semantic muta-
tion operators (and vice versa). For instance, the syntactic operator transforming
an alternative to a And will require several transformations on the CNF formula
representing the feature model.

Featured transition system mutation: FTSs describe the behaviour of all the prod-
ucts of a product line. Mutate a FTS comes to modify the behaviour of a whole

152

10.2.2. Towards model-based product line mutation analysis

wis_Card_in

(Gard)4 g i)

omove card abort negociate_with_card

¢ check_ check_PIN

abort signature ~ check_PIN_online ¢jine

/—dd A /on A pin 1 off A pin
NO_GO |<n0-90/=smi NO_GO [oy yerified

go_online / on go_offline /

|i / =smi_Go_Offline

ask_issuer Go_offline
Issuer_responded

issuer_accepts
/~aex_issuer_accepts

-wis_Card_in

select_app
/dd v cr

insert_card

issuer_rejects

laex_issuer_accepts

X update_card_info
update_card_info

remove_card

Completed [«———————

Figure 10.2: Card payment terminal product line FFTS

product line (or at least the products able to execute the modified part of the FTS).
The mutation operators defined in Annex A may be used to produce mutants. In
such case, the FMM has a FTS with two feature models and two y labelling functions.
The first feature model d, and y, function are used to represent all the products
of the product line, and the second feature model d,, and y,, function are used to
represent all the mutants of the mutants family. For instance, the result of the card
payment terminal product line of Figures 4.2(b), mutated using the state missing,
action exchange, and wrong initial state operators, produces the FTS in Figure 10.2.
The FMM is composed of this FTS, the feature model of the product line (in Figure
4.2(a)), and the feature model of the mutants family (in Figure 6.3(a)). As for feature
model mutation, modifying the FTS using model transformations are syntactic mu-
tations and affects the product line as a whole. E.g., removing one transition using
transition missing operator removes it for all the products of the product line.

One may want to mutate only the behaviour of a certain subset of products. In
this case, the operators defined in Annex A have to be modified in order to consider
only a given subset of products, represented as a feature expression e. For instance,
if we mutate the following transition in an enumerative way, with e representing a
subset of the products defined by the feature expression fe:

@ axlfe @

By applying the AEX operator to change action ay to ay, but only for the subset of

153

CHAPTER 10. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

products designed by e, we have the mutant:

aylfene @
So

aylfen—e

Where the original transition is restricted to feA —e and the mutated transition is only
activated for products respecting fe A e feature expression. Using the FMM approach,
we need to duplicate transitions to take the feature expression representing the
mutant into account:

aylfenelaex

aylfel~aex @
So

aylfen—elaex

Modifying only a subset of the product line requires to take the semantic of the FTS
(i.e., the FTS as a compact representation of all the products of the product line) into
account.

Feature expression mutation: Feature expressions are boolean expressions over
features. They are used to represent the set of products able to execute a given transi-
tion in a FTS: it maps the variability defined in the feature model to the behavioural
description of the product line. Feature expression mutation may be done using
classical boolean mutation operators [206] in order to mutate this mapping.

Projection operator mutation: The projection operator is used to bind the vari-
ability in a given FTS by resolving the feature expressions for a given product: i.e., an
assignment of the feature variables, true denoting a feature included in the product
and false a feature not included in the product. Mutate the projection operator
introduces faults in the derivation process, which results in a faulty specification of
the product behaviour (i.e., a wrong LTS). The mutation operators may include, for
instance, switching feature assignment (f becoming = f), considering all features
to true or false, returning a constant value (all features expressions are evaluated to
true of false), etc.

Wrap up: In this section, we present possible solutions and research directions to
apply a model-based product line mutation analysis. Mutation may be done using
different artefacts as inputs of the mutation operators and works at different levels
of abstraction. We distinct mutation performed at syntactic level from mutation
at semantic level. Both syntactic and semantic mutations of the feature model

154

10.3. Final remarks

changes the set of valid products of the SPL. Existing approaches may be included
in VIBeS. Those kinds of mutations may be detected by a test case, if one of the
transitions fired by this test case on the original system may not be fired any more
on the mutant. Concretely, the feature expression of this transition has to violate
the constraints of the mutant feature model. FTS mutation for only a subset of the
product line requires to modify the existing set of mutation operators (defined in
Annex A). We believe that those mutations are more subtle as they allow to modify
only a limited subset of the products, corresponding intuitively to undesired feature
interactions (at the model level) preventing this subset of products to behave as
expected. Other kinds of mutation includes mutation of the feature expressions in
the FTS (using classical boolean mutation operators) and mutation of the projection
operator (using new operators).

Future work: In our future work, we will refine the vision sketched here and en-
hance VIBeS’s mutation analysis by following the aforementioned directions. We will
also further investigate scalability issues regarding mutation analysis for any order
mutants. This implies the optimisation of the boolean formulas or approximate
computation heuristics. To address the equivalent mutant problem in a family-
based fashion, we intent to investigate usage of automata language equivalence (or
other equivalence approaches) for FTSs. For now, FMMs are used only to represent
behavioural mutations. We intend to extend this set of mutation operators to mutate
variability information of the input FTS and feature model. Finally, scalability of
mutation analysis for large SPLs has to be evaluated in the long run.

10.3 Final remarks

This thesis is dedicated to SPL testing but we believe that the contributions may
be extended to other kinds of systems. SPLs are variability intensive systems that
have been developed in a structured process, divided into domain engineering and
application engineering [252]. But variability is not limited to product lines. As
suggested by the name of our implementation Variability Intensive Behavioural
teSting (VIBeS) and the Web application case studies used in this thesis, our work
may be used to test other sorts of systems: plugin-based system like WordPress for
instance.

Relevant test suites and products selection becomes even more important con-
sidering the way software is developed nowadays. For instance, Agile methods,
continuous integration and delivery, and fast releasing requires to execute test cases
using a limited testing budget (usually overnight), making test cases selection critical
to ensure a required quality level. This also raises further research directions: for
now, VIBeS’ inputs are a FTS and its feature model. Since FTS is an abstract formal-
ism, it allows to be expressed using other modelling languages like fPromela [63],
dedicated to FTS model checking. We believe that using lightweight modelling lan-
guages dedicated to testing (like Gherkin [201]) with variability information may
foster the adoption of SPL testing techniques and help the community to master the
variability more and more present in software systems.

155

CHAPTER 10. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

With the emergence of the so-called DevOps, development and system operation
teams inside an organisation are aligned and collaborate intensively to ensure rapid,
frequent, and reliable software building, testing, and delivery. This includes a sharing
of information between development environment and operating environment. In
such case, the input model may even be enhanced (automatically or not) with other
kinds of information automatically inferred from the running systems, the versioning
engine, or the continuous integration server. This allows to tailor and refine the test
case selection even further. It would allow to include variability intensive systems in
a continuous test cycle, where test cases are selected and executed based on inputs
from different sources contributing to a continuous quality improvement cycle.

156

APPENDIX

MUTATION OPERATORS

In the following sections, we define mutation operators and FMM mutation opera-
tors, inspired from Fabbri et al. [101].

A.1 State missing (SMI)

Removes a random state s; # i (except initial state).

A.1.1 Enumerative approach

Input: Its Output: Its;,
. < > a
¢ —_—
b

A.1.2 FMM approach

Input: fis;,,,, Output: fts,
cly2
: j alyy : ja/—lsmiﬂ/\yl
cly2
b/ys b/—smig Ays

157

APPENDIX A. MUTATION OPERATORS

A.2 Wrong initial state (WIS)

Modifies the start state of the transition system to another random state.

A.2.1 Enumerative approach

Input: Its Output: Ifs,,
a
(D) m
c c
b b

A.2.2 FMM approach

Input: ftsg,,,, Output: fts}mm
aly:
i : al/
. 71 wiss *,W
clya clyo
b/ys b/ys

A.3 Action exchange (AEX)

Modifies an action on a transition and replace it by another action.

A.3.1 Enumerative approach

Input: Its Output: Itsy,
c b
b b

A.3.2 FMM approach

Input: fsg,,,, Output: fts,
c/aexs1 NY2

: j aly;

clyo b/aexs1 Ay2
b/’)/3 Sy b/’)/3

158

A.4. Action missing (AMID)

A.4 Action missing (AMI)

Removes the actions from a transition.

A.4.1 Enumerative approach

Input: Its

o

C

A.4.2 FMM approach

Input: fts4,,,

(o >—>\/%)
clyz
b/ys

A.5 Transition missing (TMI)

Removes a transition from the system.

A.5.1 Enumerative approach

Input: Its

H@%

—>

Output: Ifs,,

e -

Output: fts,
c/mamig ANy2

(> aly

lami 1NY2
' b/ys

Output: Its,,

c OO

b
A.5.2 FMM approach
Input: fiss,,,,
: j alyy
cly2
b/ys

C

Output: fts,

: j alyy

cly2
b/—tmig AYs3

159

APPENDIX A. MUTATION OPERATORS

A.6 Transition add (TAD)

Adds a transition to the system by randomly picking up two states and an action.
Note: this corresponds to the event extra operator in [101]. Adding an action without
adding a transition with this action has no sense since it can not be detected without
being fired.

A.6.1 Enumerative approach

Input: Its Output: Its;,
b
Ao Q\}d)
c c
b b

A.6.2 FMM approach

Input: fsg,,, Output: fis,
b/tady
:j aly (F alyy N
clys clyz
b/ys b/ys

A.7 Transition destination exchange (TDE)

Changes the destination of a transition to the system by randomly picking up another
state in the system.

A.7.1 Enumerative approach

Input: Its Output: Its;,
—> a b
H(> a
c
b c

160

A.7.2. FMM approach

A.7.2 FMM approach

Input: fsp,,,, Output: fts,
b/tdeg AYs3
(> aly () alyy
clyz clyz
b/ys b/—tdes Ays3

161

APPENDIX

MUTANTS EXECUTION TIME RESULTS

This annex presents the complete results of the mutant (1st order) execution time (in
p-seconds) for the assessment described in Section 7.5. The tables contain minimal,
maximal, median, mean, standard deviation time for every test case on all live and
killed mutants of the enumerative method and of the FMM. Mutation score (MS) of
the all actions and random test sets are provided for each product.

B.1 S.V.Mach.

Soda V. Mach. product (all act. MS: 0.85 ; random MS: 0.85)

Livem. Killedm. FMM Speedup
Min. 57 21 20 1.1
Max. 442 154 83 5.3
Median 113 79 38 2.5
Mean 120 78 39 2.5
S.Dev. 43 35 7.1 6.1

B.2 Minepump

Minepump product (all act. MS: 0.60 ; random MS: 0.82)
Livem. Killed m. FMM Speedup

Min. 441
Max. 623
Median 533
Mean 530
S.Dev. 35

43
212
108
100

49

26
64
41
42
6.5

1.7
9.7

8
7.6
34

163

APPENDIX B. MUTANTS EXECUTION TIME RESULTS

B.3 Claroline

Claroline product (all act. MS: 0.07 ; random MS: 0.27)

Livem. Killedm. FMM Speedup

Min. 40,314 236 26 9.1

Max. 103,346 4,091 19,282 5.4

Median 53,951 652 58 380

Mean 57,000 870 280 100

S.Dev. 13,000 710 1,400 22
B.4 AGE-RR

AGE-RR product (all act.

MS: 0.66 ; random MS: 0.27)

Livem. Killedm. FMM Speedup

Min. 598,520 5,644 39 140

Max. 3,948,806 99,754 46,839 84

Median 910,000 9000 110 3,300

Mean 1.1e+06 14,000 200 2,900

S.Dew. 590,000 12,000 790 870
B.5 Elsa-RR

Elsa-RR product (all act.

MS: 0.75 ; random MS: 0.49)

Livem. Killedm. FMM Speedup
Min. 20,743 775 104 7.5
Max. 59,237 13,400 3,109 19
Median 22,676 918 191 89
Mean 27,000 1,300 230 62
S.Dew. 8,500 1,500 170 84

B.6 FElsa-RRN

Elsa-RRN product (all act. MS: 0.77 ; random MS: 0.30)

Livem. Killedm. FMM Speedup
Min. 34,999 1,286 93 14
Max. 166,433 34,498 36,158 4.6
Median 45,000 1,600 180 200
Mean 52,000 2,400 300 90
S.Dev. 17,000 3,200 1,600 17

164

B.7. Random

B.7 Random

Random model (all act. MS: 0.16 ; random MS: 0.63)
Livem. Killedm. FMM Speedup

Min. 327,418 24,675 875 28
Max. 2,552,363 140,917 60,354 42
Median 1.3e+06 55,000 1,500 160
Mean 1.3e+06 63,000 1,800 370
S.Dev. 560,000 29,000 3,500 210

165

APPENDIX

MUTANTS EQUIVALENCE ANALYSIS RESULTS

This appendix presents the results of the different weak (Weak Mutation (WM)) and
strong mutations (Strong Mutation (SM)) ALEs/BSs/RSs algorithms. For each algo-
rithm, a table gives the recall, the average execution time (time), and the standard
deviation (o).

C.1 S.V.Mach.

Weak Mutation Strong Mutation
0 € Recall | time o | Recall | time o
ALE 100% | <0.01 | <0.01 100% | <0.01 | <0.01

BS le-10 0.01 98% 0.02 0.03 91% 0.26 1.00
le-10 0.10 97% 0.02 0.02 91% 0.04 0.06
le-05 0.10 97% | <0.01 0.02 91% 0.03 0.05
0.10 0.10 98% 0.01 0.02 91% 0.02 0.04
RS le-10 0.01 97% 0.02 0.03 N/A N/A N/A
le-10 0.10 96% 0.01 0.02 N/A N/A N/A
le-05 0.10 97% | <0.01 0.01 N/A N/A N/A
0.10 0.10 97% 0.01 0.03 N/A N/A N/A

167

APPENDIX C. MUTANTS EQUIVALENCE ANALYSIS RESULTS

C.2 C.PTerm.

Weak Mutation Strong Mutation
1 € Recall | time o | Recall | time o
ALE 100% <0.01 <0.01 100% <0.01 <0.01
BS le-10 0.01 97% 0.49 9.05 91% 0.21 0.76
le-10 0.10 96% 0.02 0.10 91% 0.04 0.05
le-05 0.10 97% 0.01 0.05 91% 0.03 0.05
0.10 0.10 96% 0.01 0.03 91% 0.03 0.04
RS le-10 0.01 97% 0.49 9.04 N/A N/A N/A
le-10 0.10 96% 0.02 0.11 N/A N/A N/A
le-05 0.10 97% | <0.01 0.05 N/A N/A N/A
0.10 0.10 96% 0.01 0.04 N/A N/A N/A
C.3 Minepump
Weak Mutation Strong Mutation
1) € Recall | time o | Recall | time I
ALE 100% | <0.01 | <0.01 100% | <0.01 | <0.01
BS le-10 0.01 98% 0.40 8.54 92% 0.21 0.80
le-10 0.10 98% 0.02 0.15 92% 0.04 0.06
le-05 0.10 99% | <0.01 0.04 92% 0.03 0.05
0.10 0.10 98% 0.01 0.04 92% 0.03 0.04
RS le-10 0.01 98% 0.39 8.43 N/A N/A N/A
le-10 0.10 98% 0.02 0.15 N/A N/A N/A
le-05 0.10 98% | <0.01 0.06 N/A N/A N/A
0.10 0.10 98% 0.01 0.05 N/A N/A N/A
C.4 Claroline
Weak Mutation Strong Mutation
1) € Recall | time o | Recall | time o
ALE 100% 0.02 0.02 100% 0.10 | 0.12
BS le-10 0.01 99% 3.62 49.96 98% 0.59 | 2.00
le-10 0.10 99% 0.09 0.57 98% 0.17 | 0.42
le-05 0.10 99% 0.07 0.32 98% 0.17 | 0.28
0.10 0.10 99% 0.05 0.12 98% 0.18 | 0.71
RS le-10 0.01 96% | 29.99 | 139.34 N/A N/A | N/A
le-10 0.10 95% 0.39 1.52 N/A N/A | N/A
le-05 0.10 94% 0.23 0.80 N/A N/A | N/A
0.10 0.10 94% 0.10 0.25 N/A N/A | N/A

168

C.5. Elsa-RR

C.5 Elsa-RR
Weak Mutation Strong Mutation
1) € Recall | time o | Recall | time o
ALE 100% <0.01 <0.01 100% 1.05 | 0.67
BS le-10 0.01 99% 0.06 0.05 95% 0.96 | 3.86
le-10 0.10 100% 0.04 0.04 95% 0.15 | 0.27
le-05 0.10 99% 0.05 0.04 95% 0.13 | 0.19
0.10 0.10 100% 0.02 0.03 95% 0.09 | 0.16
RS le-10 0.01 88% 73.03 | 209.50 N/A N/A | N/A
le-10 0.10 86% 0.92 2.56 N/A N/A | N/A
le-05 0.10 86% 0.51 1.38 N/A N/A | N/A
0.10 0.10 87% 0.13 0.33 N/A N/A | N/A
C.6 Elsa-RRN
Weak Mutation Strong Mutation
o € Recall | time o | Recall | time o
ALE 100% 0.01 0.01 100% 3.64 2.29
BS le-10 0.01 100% 0.05 0.05 90% 2.93 | 10.34
le-10 0.10 100% 0.04 0.04 90% 0.18 0.25
le-05 0.10 99% 0.04 0.04 90% 0.16 0.21
0.10 0.10 100% 0.03 0.03 90% 0.10 0.11
RS le-10 0.01 97% 19.24 | 100.73 N/A N/A N/A
le-10 0.10 95% 0.37 1.42 N/A N/A N/A
le-05 0.10 95% 0.22 0.75 N/A N/A N/A
0.10 0.10 94% 0.08 0.21 N/A N/A N/A
C.7 AGE-RR
Weak Mutation Strong Mutation
1) € Recall | time o | Recall | time g
ALE 100% 0.64 0.94 100% | 21.18 | 13.70
BS le-10 0.01 100% 0.06 0.08 90% 9.38 | 42.87
le-10 0.10 100% 0.05 0.10 90% 0.24 0.45
le-05 0.10 100% 0.04 0.08 90% 0.18 0.47
0.10 0.10 100% 0.03 0.04 89% 0.09 0.25
RS le-10 0.01 96% | 38.68 | 188.18 N/A N/A N/A
le-10 0.10 94% 0.68 2.50 N/A N/A N/A
le-05 0.10 95% 0.35 1.27 N/A N/A N/A
0.10 0.10 94% 0.14 0.47 N/A N/A N/A

169

APPENDIX C. MUTANTS EQUIVALENCE ANALYSIS RESULTS

C.8 AGE-RRN
Weak Mutation Strong Mutation
6 € Recall time o | Recall | time o
ALE 100% 0.21 0.22 100% | 75.29 | 51.92
BS le-10 0.01 100% 0.04 0.07 95% 7.10 | 32.32
le-10 0.10 100% 0.05 0.05 95% 0.32 0.46
le-05 0.10 100% 0.04 0.04 95% 0.27 0.43
0.10 0.10 100% 0.04 0.04 95% 0.21 0.31
RS le-10 0.01 90% | 117.21 | 362.41 N/A N/A N/A
le-10 0.10 88% 1.98 4.78 N/A N/A N/A
le-05 0.10 87% 1.12 2.63 N/A N/A N/A
0.10 0.10 85% 0.41 0.87 N/A N/A N/A
C.9 Random models
C.9.1 Random 1
Weak Mutation Strong Mutation
o € Recall | time o | Recall time o
ALE 100% | <0.01 | <0.01 100% | 448.61 | 339.19
BS le-10 0.01 100% 0.08 0.07 92% 0.78 2.50
le-10 0.10 100% 0.07 0.07 92% 0.09 0.08
le-05 0.10 100% 0.07 0.07 92% 0.09 0.06
0.10 0.10 99% 0.07 0.07 92% 0.07 0.05
RS le-10 0.01 100% 0.03 0.07 N/A N/A N/A
le-10 0.10 100% 0.03 0.11 N/A N/A N/A
le-05 0.10 100% 0.03 0.09 N/A N/A N/A
0.10 0.10 99% 0.03 0.08 N/A N/A N/A
C.9.2 Random 2
Weak Mutation Strong Mutation
) € Recall | time o | Recall time o
ALE 100% | <0.01 | <0.01 100% | 412.37 | 168.90
BS le-10 0.01 100% 0.11 0.06 89% 1.22 3.35
le-10 0.10 100% 0.10 0.06 89% 0.14 0.09
le-05 0.10 100% 0.11 0.07 89% 0.14 0.08
0.10 0.10 100% 0.11 0.06 89% 0.12 0.07
RS le-10 0.01 100% 0.04 0.10 N/A N/A N/A
le-10 0.10 100% 0.03 0.07 N/A N/A N/A
le-05 0.10 100% 0.03 0.07 N/A N/A N/A
0.10 0.10 99% 0.03 0.09 N/A N/A N/A

170

C.9.3. Random 3

C.9.3 Random 3

Weak Mutation Strong Mutation
1) € Recall | time o | Recall time o
ALE 100% | <0.01 | <0.01 100% | 367.99 | 154.80

BS le-10 0.01 100% 0.11 0.06 91% 1.04 3.20
le-10 0.10 100% 0.09 0.04 91% 0.23 0.15
le-05 0.10 100% 0.09 0.04 91% 0.23 0.14
0.10 0.10 100% 0.09 0.05 91% 0.19 0.12
RS le-10 0.01 100% 0.03 0.10 N/A N/A N/A
le-10 0.10 100% 0.03 0.16 N/A N/A N/A
le-05 0.10 99% 0.03 0.12 N/A N/A N/A
0.10 0.10 99% 0.02 0.07 N/A N/A N/A

C.9.4 Random4

Weak Mutation Strong Mutation
9 € Recall | time o | Recall time o
ALE 100% | <0.01 | <0.01 100% | 306.37 | 127.02

BS le-10 0.01 100% 0.11 0.06 91% 1.09 3.23
le-10 0.10 100% 0.10 0.05 91% 0.22 0.14
le-05 0.10 100% 0.10 0.05 91% 0.23 0.12
0.10 0.10 100% 0.09 0.04 91% 0.19 0.11
RS le-10 0.01 100% 0.04 0.25 N/A N/A N/A
le-10 0.10 99% 0.03 0.25 N/A N/A N/A
le-05 0.10 100% 0.03 0.10 N/A N/A N/A
0.10 0.10 99% 0.02 0.09 N/A N/A N/A

171

(10]

BIBLIOGRAPHY

AHK. AutoHotKey. http://ahkscript.org, 2016.

Bernhard K Aichernig, Jakob Auer, Elisabeth Jobstl, Robert Korosec, Willibald
Krenn, Rupert Schlick, and Birgit Vera Schmidt. Model-Based Mutation Testing
of an Industrial Measurement Device. In Martina Seidl and Nikolai Tillmann,
editors, Tests and Proofs, volume 8570 of LNCS, pages 1-19. Springer, 2014.

Bernhard K Aichernig, Harald Brandl, Elisabeth J6bstl, Willibald Krenn, Rupert
Schlick, and Stefan Tiran. Killing strategies for model-based mutation testing.
Software Testing, Verification and Reliability, 25(8):716-748, dec 2015.

Bernhard K Aichernig and Elisabeth Jobstl. Towards Symbolic Model-Based
Mutation Testing: Pitfalls in Expressing Semantics as Constraints. In 2012
IEEE Fifth International Conference on Software Testing, Verification and
Validation, pages 752-757. IEEE, apr 2012.

Bernhard K. Aichernig, Elisabeth Jobstl, and Stefan Tiran. Model-based mu-
tation testing via symbolic refinement checking. Science of Computer Pro-
gramming, 97:383-404, jan 2015.

Airbus Defence & Space. Sferion TM. http://www.defenceandsecurity-
airbusds.com/fr/sferion, oct 2014.

Mustafa Al-Hajjaji, Fabian Benduhn, Thomas Thiim, Thomas Leich, and
Gunter Saake. Mutation Operators for Preprocessor-Based Variability. In
Proceedings of the Tenth International Workshop on Variability Modelling
of Software-intensive Systems - VaMoS ’16, VaMoS ’16, pages 81-88. ACM
Press, 2016.

Mustafa Al-Hajjaji, Thomas Thiim, Malte Lochau, Jens Meinicke, and Gunter
Saake. Effective product-line testing using similarity-based product prioritiza-
tion. Software and Systems Modeling, pages 1-23, 2016.

ALLATEC. MaTeLo. http://www.all4tec.net/MaTeLo/homematelo.html, 2014.

K Altisen, F Maraninchi, and D Stauch. Aspect-oriented programming for
reactive systems: Larissa, a proposal in the synchronous framework. Science
of Computer Programming, 63(3):297-320, 2006.

173

BIBLIOGRAPHY

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

174

P E Ammann, P E Black, and W Majurski. Using model checking to generate
tests from specifications. In Formal Engineering Methods, 1998. Proceed-
ings. Second International Conference on, pages 46-54, 1998.

J H Andrews, L C Briand, and Y Labiche. Is mutation an appropriate tool for
testing experiments? In Software Engineering, 2005. ICSE 2005. Proceed-
ings. 27th International Conference on, pages 402-411. IEEE, 2005.

J.H. Andrews, L.C. Briand, Y Labiche, and A.S. Namin. Using Mutation Analysis
for Assessing and Comparing Testing Coverage Criteria. IEEE Transactions
on Software Engineering, 32(8):608-624, aug 2006.

Michal Antkiewicz and Krzysztof Czarnecki. FeaturePlugin. In Proceedings of
the 2004 OOPSLA workshop on eclipse technology eXchange - eclipse '04,
pages 67-72. ACM, ACM Press, 2004.

Apache. HTTP Server Version 2.2 documentation.
https://httpd.apache.org/docs/2.2/en/logs.html, feb 2017.

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. Feature-
Oriented Software Product Lines. Springer, 2013.

Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kastner. Detect-
ing Dependences and Interactions in Feature-Oriented Design. In 2010 IEEE
21st International Symposium on Software Reliability Engineering, pages
161-170. IEEE, nov 2010.

Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Paolo Vavassori.
A novel use of equivalent mutants for static anomaly detection in software
artifacts. Information and Software Technology, 81:52-64, jan 2017.

Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. Generating Tests for
Detecting Faults in Feature Models. In 2015 IEEE 8th International Con-
ference on Software Testing, Verification and Validation (ICST), pages 1-10,
Graz, Austria, apr 2015. IEEE.

Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. Automatic Detection
and Removal of Conformance Faults in Feature Models. In 2016 IEEE Interna-
tional Conference on Software Testing, Verification and Validation (ICST),
pages 102-112. IEEE, apr 2016.

Andrea Arcuri and Lionel Briand. Formal Analysis of the Probability of Interac-
tion Fault Detection Using Random Testing. IEEE Transactions on Software
Engineering, 38(5):1088-1099, sep 2012.

Patrizia Asirelli, Maurice H ter Beek, Alessandro Fantechi, and Stefania Gnesi.
A Model-Checking Tool for Families of Services, pages 44-58. Springer, 2011.

Bibliography

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

Patrizia Asirelli, Maurice H ter Beek, Alessandro Fantechi, and Stefania Gnesi.
A Compositional Framework to Derive Product Line Behavioural Descriptions.
In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation. Technologies for Master-
ing Change: 5th International Symposium, ISoLA 2012, Heraklion, Crete,
Greece, October 15-18, 2012, Proceedings, Part I, pages 146-161. Springer,
2012.

Patrizia Asirelli, Maurice H ter Beek, Alessandro Fantechi, Stefania Gnesi, and
Franco Mazzanti. Design and validation of variability in product lines. In
Proceeding of the 2nd international workshop on Product line approaches
in software engineering - PLEASE ’11, PLEASE '11, page 25. ACM Press, 2011.

Patrizia Asirelli, Maurice H. ter Beek, Stefania Gnesi, and Alessandro Fan-
techi. Formal Description of Variability in Product Families. In 2011 15th
International Software Product Line Conference, pages 130-139. IEEE, aug
2011.

Ebrahim Bagheri, Faezeh Ensan, and Dragan Gasevic. Decision support for
the software product line domain engineering lifecycle. Automated Software
Engineering, 19(3):335-377, 2012.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

Paul Baker, Zhen Ru Dai, Jens Grabowski, @ystein Haugen, Ina Schieferdecker,
and Clay Williams. Model-Driven Testing: Using the UML Testing Profile.
Springer, 2007.

Richard Baker and Ibrahim Habli. An Empirical Evaluation of Mutation Testing
for Improving the Test Quality of Safety-Critical Software. IEEE Transactions
on Software Engineering, 39(6):787-805, jun 2013.

Sebastien Bardin, Mickael Delahaye, Robin David, Nikolai Kosmatov, Mike Pa-
padakis, Yves Le Traon, and Jean-Yves Marion. Sound and Quasi-Complete De-
tection of Infeasible Test Requirements. In 2015 IEEE 8th International Con-
ference on Software Testing, Verification and Validation (ICST), volume 7,
pages 1-10, Graz, Austria, apr 2015. IEEE.

J Bartholdt, M Medak, and R Oberhauser. Integrating Quality Modeling with
Feature Modeling in Software Product Lines. In 2009 Fourth International
Conference on Software Engineering Advances, pages 365-370, sep 2009.

Don Batory. Feature Models, Grammars, and Propositional Formulas. In
Software Product Lines, volume 3714, pages 7-20. Springer, 2005.

Don Batory and Egon Borger. Modularizing Theorems for Software Prod-
uct Lines: The Jbook Case Study. Journal of Universal Computer Science,
14(12):2059-2082, 2008.

175

BIBLIOGRAPHY

(34]

(35]

[36]

(37]

[38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

176

F Belli and M Beyazit. Event-Based Mutation Testing vs. State-Based Mutation
Testing - An Experimental Comparison. In Computer Software and Applica-
tions Conference (COMPSAC), 2011 IEEE 35th Annual, pages 650-655. IEEE,
jul 2011.

Fevzi Belli, Christof] Budnik, Axel Hollmann, Tugkan Tuglular, and W Eric
Wong. Model-based mutation testing - Approach and case studies. Science of
Computer Programming, 120:25-48, 2016.

Fevzi Belli, Christof] Budnik, and W Eric Wong. Basic Operations for Gen-
erating Behavioral Mutants. In Proceedings of the Second Workshop on
Mutation Analysis, MUTATION ’06, pages 9—-, Washington, DC, USA, nov
2006. IEEE.

Harsh Beohar and Mohammad Reza Mousavi. Input-output Conformance
Testing Based on Featured Transition Systems. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing, SAC '14, pages 1272-1278.
ACM Press, 2014.

Harsh Beohar and M."R. Mousavi. Spinal Test Suites for Software Product
Lines. ArXiv e-prints, 2014.

Harsh Beohar, Mahsa Varshosaz, and Mohammad Reza Mousavi. Basic behav-
ioral models for software product lines: Expressiveness and testing pre-orders.
Science of Computer Programming, jul 2015.

Danilo Beuche. Modeling and building product lines with pure::variants. In
Proceedings of the 17th International Software Product Line Conference
co-located workshops on - SPLC ’13 Workshops, SPLC 13 Workshops, page
147. ACM Press, 2013.

PE. Black, Vadim Okun, and Yaacov Yesha. Mutation operators for specifi-
cations. In Proceedings ASE 2000. Fifteenth IEEE International Conference
on Automated Software Engineering, pages 81-88. IEEE, 2000.

Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimula-
tions up to congruence. ACM SIGPLAN Notices, 48(1):457-468, jan 2013.

Filippo Bonchi and Damien Pous. HKC Library v."1.0. https://perso.ens-
lyon.fr/damien.pous/hknt/, 2013.

Lionel C Briand and Yvan Labiche. A UML-Based Approach to System Testing.
In Proceedings of the 4th International Conference on The Unified Model-
ing Language, Modeling Languages, Concepts, and Tools, pages 194-208,
London, UK, UK, 2001. Springer.

Dimo Brockhoff, Tobias Friedrich, and Frank Neumann. Analyzing Hypervol-
ume Indicator Based Algorithms. In Giinter Rudolph, Thomas Jansen, Nicola
Beume, Simon Lucas, and Carlo Poloni, editors, Parallel Problem Solving
from Nature — PPSN X, volume 5199 of LNCS, pages 651-660. Springer, 2008.

Bibliography

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

Renée C Bryce and Chatrles J Colbourn. Prioritized interaction testing for
pair-wise coverage with seeding and constraints. Information and Software
Technology, 48(10):960-970, 2006.

Renée C Bryce and Charles J Colbourn. The density algorithm for pairwise
interaction testing. Software Testing, Verification and Reliability, 17(3):159-
182, 2007.

Renée C. Bryce and Chatles J. Colbourn. A density-based greedy algorithm for
higher strength covering arrays. Software Testing, Verification and Reliabil-
ity, 19(1):37-53, mar 2009.

Timothy A. Budd and Ajei S. Gopal. Program testing by specification mutation.
Computer Languages, 10(1):63-73, jan 1985.

Timothy Alan Budd. Mutation Analysis of Program Test Data. PhD thesis,
Yale University, New Haven, CT, USA, 1980.

Timothy Alan Budd and Dana Angluin. Two notions of correctness and their
relation to testing. Acta Informatica, 18(1):31-45, 1982.

Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec.
Feature interaction: a critical review and considered forecast. Computer
Networks, 41(1):115-141, jan 2003.

Muffy Calder and Alice Miller. Feature interaction detection by pairwise
analysis of LTL properties—A case study. Formal Methods in System Design,
28(3):213-261, may 2006.

Andrea Calvagna and Angelo Gargantini. A Logic-Based Approach to Combi-
natorial Testing with Constraints, pages 66-83. Springer, 2008.

Andrea Calvagna, Angelo Gargantini, and Paolo Vavassori. Combinatorial In-
teraction Testing with CITLAB. In 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, pages 376-382. IEEE, mar
2013.

Emanuela G Cartaxo, Patricia D L Machado, and Francisco G Oliveira Neto. On
the use of a similarity function for test case selection in the context of model-
based testing. Software Testing, Verification and Reliability, 21(2):75-100,
2011.

Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T.H. Tse. Adaptive
Random Testing: The ART of test case diversity. Journal of Systems and
Software, 83(1):60-66, jan 2010.

Harald Cichos, Sebastian Oster, Malte Lochau, and Andy Schiirr. Model-based
Coverage-driven Test Suite Generation for Software Product Lines. In Pro-
ceedings of the 14th International Conference on Model Driven Engineer-
ing Languages and Systems, MODELS’11, pages 425-439. Springer, 2011.

177

BIBLIOGRAPHY

[59]

[60]

[61]

(62]

(63]

(64]

(65]

[66]

[67]

[68]

(69]

178

Edmund M Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 1999.

Andreas Classen. Modelling with FTS: a Collection of Illustrative Examples.
Technical Report P-CS-TR SPLMC-00000001, PReCISE Research Center, Uni-
versity of Namur, Namur, Belgium, 2010.

Andreas Classen. Modelling and Model Checking Variability-Intensive Sys-
tems. PhD thesis, PReCISE Research Center, Faculty of Computer Science,
University of Namur (FUNDP), 2011.

Andreas Classen, Quentin Boucher, and Patrick Heymans. A text-based ap-
proach to feature modelling: Syntax and semantics of TVL. Science of Com-
puter Programming, 76(12):1130-1143, dec 2011.

Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans,
Axel Legay, and Jean-Francois Jean-Francois Raskin. Featured Transition
Systems: Foundations for Verifying Variability-Intensive Systems and Their
Application to LTL Model Checking. IEEE Transactions on Software Engi-
neering, 39(8):1069-1089, aug 2013.

Andreas Classen, Patrick Heymans, and Pierre-Yves Schobbens. What’s in a
Feature: A Requirements Engineering Perspective. In José Luiz Fiadeiro and
Paola Inverardi, editors, Proceedings of the 11th International Conference
on Fundamental Approaches to Software Engineering (FASE’08), Held as
Part of the Joint European Conferences on Theory and Practice of Software
(ETAPS’08), volume 4961 of LNCS, pages 16-30. Springer, 2008.

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay.
Symbolic Model Checking of Software Product Lines. In 33rd International
Conference on Software Engineering, ICSE 2011, May 21-28, 2011, Waikiki,
Honolulu, Hawaii, Proceedings, pages 321-330. ACM Press, 2011.

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and
Jean-Francois Raskin. Model Checking Lots of Systems: Efficient Verification
of Temporal Properties in Software Product Lines. In 32nd International Con-
ference on Software Engineering, ICSE 2010, May 2-8, 2010, Cape Town,
South Africa, Proceedings, pages 335-344. ACM Press, 2010.

D M Cohen, SR Dalal, M L Fredman, and G C Patton. The AETG system: an
approach to testing based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437-444, 1997.

M B Cohen, C]J Colbourn, and A C H Ling. Augmenting simulated annealing to
build interaction test suites. In 14th International Symposium on Software
Reliability Engineering, 2003. ISSRE 2003., pages 394-405. IEEE, nov 2003.

M.B. Cohen, M.B. Dwyer, and Jiangfan Shi. Constructing Interaction Test
Suites for Highly-Configurable Systems in the Presence of Constraints: A

Bibliography

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

Greedy Approach. IEEE Transactions on Software Engineering, 34(5):633—
650, sep 2008.

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Coverage and adequacy
in software product line testing. Proceedings of the ISSTA 2006 workshop on
Role of software architecture for testing and analysis - ROSATEA ’06, pages
53-63, 2006.

J.J. Colao. With 60 Million Websites, WordPress Rules The Web. So Where’s
The Money? Forbes, September, 2012.

Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens,
and Axel Legay. ProVeLines: A Product Line of Verifiers for Software Product
Lines. In Proceedings of the 17th International Software Product Line Con-
ference Co-located Workshops, SPLC 13 Workshops, pages 141-146. ACM
Press, 2013.

Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay.
Towards an incremental automata-based approach for software product-line
model checking. In Proceedings of the 16th International Software Product
Line Conference on - SPLC ’12 -volume 1, SPLC ’'12, page 74. ACM Press,
2012.

Maxime Cordy, Marco Willemart, Bruno Dawagne, Patrick Heymans, and
Pierre-Yves Schobbens. An Extensible Platform for Product-Line Behavioural
Analysis. In Proceedings of the 18th International Software Product Lines
Conference - Companion Volume for Workshop, Tools and Demo papers,
SPLat@SPLC’14, pages 102-109, Florence, Italy, 2014. ACM Press.

Thomas H Cormen, Charles Eric Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms, volume 6. MIT press Cambridge, 2001.

Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and logics:
There and back again. Proceedings - 11th International Software Product
Line Conference, SPLC 2007, pages 23-32, sep 2007.

Jacek Czerwonka. Pairwise testing in the real world: Practical extensions
to test-case scenarios. In Proceedings of 24th Pacific Northwest Software
Quality Conference, volume 82, 2006.

Miércio Eduardo Delamaro and José Carlos Maldonado. Proteum/IM 2.0: An
Integrated Mutation Testing Environment. In W Eric Wong, editor, Mutation
Testing for the New Century, pages 91-101. Kluwer Academic Publishers,
Norwell, MA, USA, 2001.

Richard A DeMillo and A Jefferson Offutt. Experimental results from an auto-
matic test case generator. ACM Transactions on Software Engineering and
Methodology, 2(2):109-127, apr 1993.

179

BIBLIOGRAPHY

[80]

(81]

(82]

(83]

(84]

(85]

[86]

(87]

180

Xavier Devroey, Maxime Cordy, Gilles Perrouin, Eun-Young Kang, Pierre-Yves
Schobbens, Patrick Heymans, Axel Legay, and Benoit Baudry. A Vision for Be-
havioural Model-Driven Validation of Software Product Lines. In Margaria T.,
Steffen B., and Merten M., editors, Leveraging Applications of Formal Meth-
ods, Verification and Validation. Technologies for Mastering Change: 5th
International Symposium, ISoLA 2012, Proceedings, Part I, volume 7609 of
LNCS, pages 208-222, Heraklion, Crete, Greece, 2012. Springer.

Xavier Devroey, Maxime Cordy, Pierre-Yves Schobbens, Axel Legay, and Patrick
Heymans. State machine flattening, a mapping study and tools assessment. In
2015 IEEE Eighth International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW), pages 1-8, Graz, Austria, apr 2015.
IEEE.

Xavier Devroey and Gilles Perrouin. Variability Intensive system Behavioural
teSting framework (VIBeS), 2016.

Xavier Devroey, Gilles Perrouin, Maxime Cordy, Mike Papadakis, Axel Legay,
and Pierre-Yves Schobbens. A variability perspective of mutation analysis. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering - FSE 2014, pages 841-844, Hong Kong,
2014. ACM Press.

Xavier Devroey, Gilles Perrouin, Maxime Cordy, Hamza Samih, Axel Legay,
Pierre-Yves Schobbens, and Patrick Heymans. Statistical prioritization for
software product line testing: an experience report. Software & Systems
Modeling, 16(1):153-171, feb 2017.

Xavier Devroey, Gilles Perrouin, Maxime Cordy, Pierre-Yves Schobbens, Axel
Legay, and Patrick Heymans. Towards statistical prioritization for software
product lines testing. In Andrzej Wasowski and Thorsten Weyer, editors, Pro-
ceedings of the Eighth International Workshop on Variability Modelling of
Software-Intensive Systems - VaMoS ’14, pages 1-7, Nice, France, 2013. ACM
Press.

Xavier Devroey, Gilles Perrouin, Axel Legay, Maxime Cordy, Pierre-yves Schob-
bens, and Patrick Heymans. Coverage Criteria for Behavioural Testing of Soft-
ware Product Lines. In Tiziana Margaria and Bernhard Steffen, editors, Lever-
aging Applications of Formal Methods, Verification and Validation. Tech-
nologies for Mastering Change: 6th International Symposium, ISoLA 2014,
Proceedings, Part I, volume 8802 of LNCS, pages 336-350, Corfu, Greece,
2014. Springer.

Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. Covering SPL Behaviour with Sampled Configurations. In Pro-
ceedings of the Ninth International Workshop on Variability Modelling of
Software-intensive Systems - VaMoS ’15, pages 59-66, Hildesheim, Germany,
2015. ACM Press.

Bibliography

(88]

(89]

[90]

(91]

[92]

(93]

[94]

[95]

[96]

(97]

(98]

Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick
Heymans. Search-based Similarity-driven Behavioural SPL Testing. In Pro-
ceedings of the Tenth International Workshop on Variability Modelling of
Software-intensive Systems - VaMoS ’16, pages 89-96, Salvador, Brazil, jan
2016. ACM Press.

Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves
Schobbens, and Patrick Heymans. Featured model-based mutation analysis.
In Proceedings of the 38th International Conference on Software Engineer-
ing - ICSE ’16, pages 655-666, Austin, Texas, USA, may 2016. ACM Press.

Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves
Schobbens, and Patrick Heymans. Automata Language Equivalence vs. Sim-
ulations for Model-Based Mutant Equivalence: An Empirical Evaluation. In
2017 IEEE International Conference on Software Testing, Verification and
Validation (ICST), pages 424-429, Tokyo, Japan, 2017. IEEE.

Xavier Devroey, Gilles Perrouin, and Pierre-Yves Schobbens. Abstract test case
generation for behavioural testing of software product lines. In Proceedings of
the 18th International Software Product Line Conference on Companion
Volume for Workshops, Demonstrations and Tools - SPLC ’14, volume 2,
pages 86-93, Florence, Italy, 2014. ACM Press.

Ivan do Carmo Machado, John D. McGregor, Yguarata Cerqueira Cavalcanti,
and Eduardo Santana de Almeida. On strategies for testing software product
lines: A systematic literature review. Information and Software Technology,
56(10):1183-1199, oct 2014.

Brigitte Doucet. IBA: quand la qualité logicielle devient vitale. Au sens strict
du terme. Regional-IT, 2014.

Laurent Doyen and Jean-Francois Raskin. Antichain Algorithms for Finite
Automata. In Tools and Algorithms for the Construction and Analysis of
Systems, {TACAS}, pages 2-22, 2010.

Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276(1):51-81, apr
2002.

W. Dulz. MaTeLo - statistical usage testing by annotated sequence diagrams,
Markov chains and TTCN-3. Third International Conference on Quality
Software, 2003. Proceedings., pages 336-342, 2003.

EMVCo. EMV 4.3 Specifications. Technical report, EMVCo, 2011.

Emelie Engstrém and Per Runeson. Software product line testing — A system-
atic mapping study. Information and Software Technology, 53(1):2-13, jan
2011.

181

BIBLIOGRAPHY

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

182

Faezeh Ensan, Ebrahim Bagheri, and Dragan Gasevi¢. Evolutionary Search-
Based Test Generation for Software Product Line Feature Models, pages
613-628. Springer, 2012.

L Etxeberria and G Sagardui. Evaluation of Quality Attribute Variability in
Software Product Families. In 15th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ecbs 2008),
pages 255-264, 2008.

S.C.PE Fabbri, J C Maldonado, and M E Delamaro. Proteum/FSM: a tool
to support finite state machine validation based on mutation testing. In
Computer Science Society, 1999. Proceedings. SCCC ’99. XIX International
Conference of the Chilean, pages 96-104, 1999.

S.C.PE Fabbri,] C Maldonado, T Sugeta, and P C Masiero. Mutation testing
applied to validate specifications based on statecharts. In Software Reliability
Engineering, 1999. Proceedings. 10th International Symposium on, pages
210-219, 1999.

Alessandro Fantechi and Stefania Gnesi. Formal Modeling for Product Families
Engineering. In 2008 12th International Software Product Line Conference,
pages 193-202, Washington, DC, USA, sep 2008. IEEE.

Abderrahmane Feliachi and Hélene Le Guen. Generating Transition Proba-
bilities for Automatic Model-Based Test Generation. In Third International
Conference on Software Testing, Verification and Validation, pages 99-102,
2010.

Dario Fischbein, Sebastian Uchitel, and Victor Braberman. A foundation
for behavioural conformance in software product line architectures. In Pro-
ceedings of the ISSTA 2006 workshop on Role of software architecture for
testing and analysis - ROSATEA ’06, ROSATEA ’06, pages 39-48. ACM Press,
2006.

Kathi Fisler and Shriram Krishnamurthi. Modular verification of collaboration-
based software designs. In Proceedings of the 8th European software engi-
neering conference held jointly with 9th ACM SIGSOFT international sym-
posium on Foundations of software engineering - ESEC/FSE-9, ESEC/FSE-
9, page 152. ACM Press, 2001.

Gordon Fraser and Andrea Arcuri. EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software En-
gineering, ESEC/FSE 11, pages 416-419. ACM Press, 2011.

Gordon Fraser and Andrea Arcuri. Achieving scalable mutation-based gen-
eration of whole test suites. Empirical Software Engineering, 20(3):783-812,
jun 2015.

Bibliography

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Froglogic. Squish GUI Tester. https://www.froglogic.com/squish/, 2016.

P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macid-Fernandez, and E. Vazquez.
Anomaly-based network intrusion detection: Techniques, systems and chal-
lenges. Computers & Security, 28(1):18-28, 2009.

BJ Garvin, M B Cohen, and M B Dwyer. An Improved Meta-heuristic Search
for Constrained Interaction Testing. In 2009 1st International Symposium
on Search Based Software Engineering, pages 13-22. IEEE, 2009.

BradyJ. Garvin, Myra B. Cohen, and Matthew B. Dwyer. An Improved Meta-
heuristic Search for Constrained Interaction Testing. 2009 1st International
Symposium on Search Based Software Engineering, pages 13-22, may 2009.

Brady]J. Garvin, MyraB. Cohen, and MatthewB. Dwyer. Evaluating improve-
ments to a meta-heuristic search for constrained interaction testing. Empiri-
cal Software Engineering, 16(1):61-102, 2011.

Carlo Ghezzi, Mauro Pezze, Michele Sama, and Giordano Tamburrelli. Mining
Behavior Models from User-intensive Web Applications. In Proceedings of the
36th International Conference on Software Engineering, ICSE ’14, pages
277-287, Hyderabad, India, 2014. ACM Press.

Milos Gligoric, Alex Groce, Chaoqgiang Zhang, Rohan Sharma, Moham-
mad Amin Alipour, and Darko Marinov. Comparing non-adequate test suites
using coverage criteria. In Proceedings of the 2013 International Sympo-
sium on Software Testing and Analysis - ISSTA 2013, page 302. ACM Press,
2013.

Ali Gondal, Michael Poppleton, and Michael Butler. Composing Event-B
Specifications - Case-Study Experience, pages 100-115. Springer, 2011.

S.-D. Gouraud, A Denise, M.-C. Gaudel, and B Marre. A new way of automating
statistical testing methods. In Proceedings 16th Annual International Con-
ference on Automated Software Engineering (ASE 2001), pages 5-12. IEEE,
nov 2001.

Maria Fernanda Granda, Nelly Condori-Fernandez, Tanja E.J. Vos, and Oscar
Pastor. Mutation Operators for UML Class Diagrams. CAiSE 2016, 3:325-341,
2016.

J Greenyer, A M Sharifloo, M Cordy, and P Heymans. Efficient consistency
checking of scenario-based product-line specifications. In 2012 20th IEEE
International Requirements Engineering Conference (RE), pages 161-170,
sep 2012.

Mats Grindal, Jeff Offutt, and Sten F Andler. Combination testing strategies:
a survey. Software Testing, Verification and Reliability, 15(3):167-199, sep
2005.

183

BIBLIOGRAPHY

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

184

Iris Groher and Markus Voelter. Aspect-oriented model-driven software prod-
uct line engineering. In Shmuel Katz, Harold Ossher, Robert France, and
Jean-Marc Jézéquel, editors, Transactions on Aspect-Oriented Software De-
velopment VI, volume 5560 of LNCS, pages 111-152. Springer, 2009.

Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Modeling and
Model Checking Software Product Lines, pages 113-131. Springer, 2008.

J Guerrero-Garcia,] M Gonzalez-Calleros, J Vanderdonckt, and] Munoz-
Arteaga. A Theoretical Survey of User Interface Description Languages: Pre-
liminary Results. In 2009 Latin American Web Congress, pages 36-43. IEEE,
nov 2009.

Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. Variability-aware performance prediction: A statistical learning
approach. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 301-311. IEEE, nov 2013.

Dan Gusfield. Algorithms on strings, trees and sequences: computer sci-
ence and computational biology. Cambridge university press, 1997.

Axel Halin and Alexandre Nuttinck. Sampling & Testing all configurations:
The JHipster Case Study. master thesis, University of Namur, 2017.

Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Per-
rouin, and Patrick Heymans. Yo variability! JHipster: A Playground for Web-
Apps Analyses. In Proceedings of the Eleventh International Workshop on
Variability Modelling of Software-intensive Systems - VAMOS ’17, pages 44—
51, Eindhoven, Netherlands, feb 2017. ACM Press.

Mark Harman, Yue Jia, Pedro Reales Mateo, and Macario Polo. Angels and
monsters. In Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering - ASE ’14, pages 397-408, Vasteras, Swe-
den, 2014. ACM Press.

Alan Hartman. Software and Hardware Testing Using Combinatorial Cover-
ing Suites, pages 237-266. Springer US, Boston, MA, 2005.

H Hemmati and L Briand. An Industrial Investigation of Similarity Measures
for Model-Based Test Case Selection. In Software Reliability Engineering
(ISSRE), 2010 IEEE 21st International Symposium on, pages 141-150, nov
2010.

Hadi Hemmati, Andrea Arcuri, and Lionel Briand. Achieving scalable model-
based testing through test case diversity. ACM Transactions on Software
Engineering and Methodology, 22(1):1-42, feb 2013.

Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. Com-
bining Multi-Objective Search and Constraint Solving for Configuring Large

Bibliography

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

Software Product Lines. In 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, pages 517-528. IEEE, may 2015.

Christopher Henard, Mike Papadakis, and Yves Le Traon. Mutation-Based
Generation of Software Product Line Test Configurations. In Claire Le Goues
and Shin Yoo, editors, Search-Based Software Engineering, volume 8636 of
LNCS, pages 92-106. Springer, 2014.

Christopher Henard, Mike Papadakis, and Yves Le Traon. Flattening or not of
the combinatorial interaction testing models? In 2015 IEEE Eighth Interna-
tional Conference on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 1-4. IEEE, apr 2015.

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick
Heymans, and Yves Le Traon. Bypassing the Combinatorial Explosion: Using
Similarity to Generate and Prioritize T-Wise Test Configurations for Software
Product Lines. IEEE Transactions on Software Engineering, 40(7):650-670,
jul 2014.

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Y Le
Traon, and Yves Le Traon. Assessing Software Product Line Testing Via Model-
Based Mutation: An Application to Similarity Testing. Software Testing Verifi-
cation and Validation Workshop, IEEE International Conference on, 0:188-
197, 2013.

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and
Yves Le Traon. Multi-objective Test Generation for Software Product Lines. In
Proceedings of the 17th International Software Product Line Conference,
SPLC '13, pages 62-71. ACM Press, 2013.

Ruben Heradio, Hector Perez-Morago, David Fernandez-Amoros, Francisco
Javier Cabrerizo, and Enrique Herrera-Viedma. A bibliometric analysis of
20 years of research on software product lines. Information and Software
Technology, 72:1-15, apr 2016.

Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyron-
net. Approximate Probabilistic Model Checking. In Bernhard Steffen and
Giorgio Levi, editors, Verification, Model Checking, and Abstract Interpreta-
tion, volume 2937 of LNCS, pages 73-84. Springer, 2004.

Aymeric Hervieu, Benoit Baudry, and Arnaud Gotlieb. PACOGEN: Automatic
Generation of Pairwise Test Configurations from Feature Models. In 2011
IEEE 22nd International Symposium on Software Reliability Engineering,
number i, pages 120-129. IEEE, nov 2011.

André Heuer, Vanessa Stricker, Christof J. Budnik, Sascha Konrad, Kim Lauen-
roth, and Klaus Pohl. Defining variability in activity diagrams and Petri nets.
Science of Computer Programming, 78(12):2414-2432, dec 2013.

185

BIBLIOGRAPHY

[142]

[143]

[144

[145]

[146

[147]

[148]

[149

[150

[151

[152

[153

[154

186

Patrick Heymans. Formal Methods for the Masses. In Proceedings of the
16th International Software Product Line Conference - Volume 1, SPLC 12,
page 4, Salvador, Brazil, 2012. ACM Press.

Robert M Hierons, Mark Harman, and Sebastian Danicic. Using Program
Slicing to Assist in the Detection of Equivalent Mutants. Software Testing,
Verification and Reliability, 9(4):233-262, 1999.

Robert M. Hierons and Mercedes G. Merayo. Mutation testing from probabilis-
tic and stochastic finite state machines. Journal of Systems and Software,
82(11):1804-1818, nov 2009.

W.E. Howden. Weak Mutation Testing and Completeness of Test Sets. IEEE
Transactions on Software Engineering, SE-8(4):371-379, jul 1982.

William E Howden. Reliability of the Path Analysis Testing Strategy. IEEE
Transactions on Software Engineering, 2(3):208-215, 1976.

IEEE. Guide to the Software Engineering Body of Knowledge (SWEBOK(R)):
Version 3.0. jan 2014.

Laura Inozemtseva and Reid Holmes. Coverage is Not Strongly Correlated with
Test Suite Effectiveness. In Proceedings of the 36th International Confer-
ence on Software Engineering, ICSE 2014, pages 435-445. ACM Press, 2014.

Paul Jaccard. Etude comparative de la distribution florale dans une portion des
Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles,
37:547-579, 1901.

David Jackson and Martin R Woodward. Parallel Firm Mutation of Java Pro-
grams. In W Eric Wong, editor, Mutation Testing for the New Century, pages
55-61. Springer, Boston, MA, 2001.

Y Jia and M Harman. Constructing Subtle Faults Using Higher Order Mutation
Testing. In 2008 Eighth IEEE International Working Conference on Source
Code Analysis and Manipulation, pages 249-258. IEEE, sep 2008.

Yue Jia and M Harman. An Analysis and Survey of the Development of Mu-
tation Testing. Software Engineering, IEEE Transactions on, 37(5):649-678,
sep 2011.

Elisabeth Jobstl. Model-Based Mutation Testing with Constraint and SMT
Solvers. Ph.d. thesis, Graz University of Technology, 2014.

Martin Fagereng Johansen, Qystein Haugen, and Franck Fleurey. Properties
of Realistic Feature Models Make Combinatorial Testing of Product Lines
Feasible. In Jon Whittle, Tony Clark, and Thomas Kiihne, editors, Model
Driven Engineering Languages and Systems: 14th International Confer-
ence, MODELS 2011, Wellington, New Zealand, October 16-21, 2011. Pro-
ceedings, number Section 3, pages 638-652. Springer, 2011.

Bibliography

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

Martin Fagereng Johansen, Qystein Haugen, and Franck Fleurey. An algorithm
for generating t-wise covering arrays from large feature models. In Proceed-
ings of the 16th International Software Product Line Conference on - SPLC
’12 -volume 1, volume 1 of SPLC’12, page 46. ACM Press, 2012.

Martin Fagereng Johansen, Qystein Haugen, Franck Fleurey, Anne Grete El-
degard, and Torbjorn Syversen. Generating Better Partial Covering Arrays by
Modeling Weights on Sub-product Lines. In Proceedings of the 15th Interna-
tional Conference on Model Driven Engineering Languages and Systems,
MODELS’12, pages 269-284. Springer, 2012.

René Just, Michael D Ernst, and Gordon Fraser. Efficient mutation analysis by
propagating and partitioning infected execution states. In Proceedings of the
2014 International Symposium on Software Testing and Analysis - ISSTA
2014, pages 315-326. ACM Press, 2014.

René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes,
and Gordon Fraser. Are Mutants a Valid Substitute for Real Faults in Software
Testing? In Proceedings of the 22Nd ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, FSE 2014, pages 654-665.
ACM Press, 2014.

Kyo Kang, Sholom Cohen, James Hess, William Novak, and A S Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical report,
Carnegie-Mellon University, Software Engineering Institute, 1990.

Kalpesh Kapoor and Jonathan P Bowen. Ordering Mutants to Minimise Test
Effort in Mutation Testing. In {FATES} 2004, pages 195-209, 2005.

Christian Késtner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven
Apel, Tillmann Rendel, and Klaus Ostermann. Toward Variability-aware Test-
ing. In Proceedings of the 4th International Workshop on Feature-Oriented
Software Development, FOSD ’12, pages 1-8. ACM Press, 2012.

Chang Hwan Peter Kim, Sarfraz Khurshid, and Don Batory. Shared Execution
for Efficiently Testing Product Lines. In 2012 IEEE 23rd International Sympo-
sium on Software Reliability Engineering, pages 221-230, Dallas, Texas, nov
2012. IEEE.

Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina
Souto, Paulo Barros, and Marcelo D’Amorim. SPLat: lightweight dynamic anal-
ysis for reducing combinatorics in testing configurable systems. In Proceed-
ings of the 2013 9th Joint Meeting on Foundations of Software Engineering
- ESEC/FSE 2013, ESEC/FSE 2013, page 257. ACM Press, 2013.

Marinos Kintis and Nicos Malevris. {MEDIC:} {A} static analysis framework
for equivalent mutant identification. Information {&} Software Technology,
68:1-17, 2015.

187

BIBLIOGRAPHY

[165]

[166

[167]

[168

[169

[170

[171]

[172

[173

[174]

[175

[176

188

Marinos Kintis, Mike Papadakis, and Nicos Malevris. Employing second-
order mutation for isolating first-order equivalent mutants. Software Testing,
Verification and Reliability, 25(5-7):508-535, aug 2015.

Anneke G Kleppe, Jos B Warmer, and Wim Bast. MDA explained: the model
driven architecture: practice and promise. Addison-Wesley Professional,
2003.

Alexander Knapp, Markus Roggenbach, and Bernd-Holger Schlingloff. On the
Use of Test Cases in Model-based Software Product Line Development. In
Proceedings of the 18th International Software Product Line Conference -
Volume 1, SPLC '14, pages 247-251. ACM Press, 2014.

Willibald Krenn and Rupert Schlick. Mutation-driven Test Case Generation
Using Short-lived Concurrent Mutants — First Results. CoRR, abs/1601.0:19,
jan 2016.

Willibald Krenn, Rupert Schlick, Stefan Tiran, Bernhard Aichernig, Elisabeth
Jobstl, and Harald Brandl. MoMut::UML Model-Based Mutation Testing for
UML. In Software Testing, Verification and Validation (ICST), 2015 IEEE
8th International Conference on, pages 1-8, 2015.

Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg. Verifying aspect
advice modularly. In Proceedings of the 12th ACM SIGSOFT twelfth inter-
national symposium on Foundations of software engineering - SIGSOFT
’04/FSE-12, SIGSOFT "04/FSE-12, page 137. ACM Press, 2004.

D.R. Kuhn, D.R. Wallace, and A.M. Gallo. Software fault interactions and im-
plications for software testing. IEEE Transactions on Software Engineering,
30(6):418-421, jun 2004.

Rick Kuhn, Yu Lei, and Raghu Kacker. Practical Combinatorial Testing: Beyond
Pairwise. IT Professional, 10(3):19-23, may 2008.

Orna Kupferman and Moshe Y Vardi. Verification of fair transition systems. In
Computer Aided Verification, pages 372-382. Springer, 1996.

Hartmut Lackner and Martin Schmidt. Towards the Assessment of Software
Product Line Tests: A Mutation System for Variable Systems. In Proceedings
of the 18th International Software Product Line Conference: Companion
Volume for Workshops, Demonstrations and Tools - Volume 2, SPLC 14,
pages 62-69. ACM Press, 2014.

Beatriz Pérez Lamancha, Macario Polo, and Mario Piattini. PROW: A Pair-
wise algorithm with constRaints, Order and Weight. Journal of Systems and
Software, 99:1-19, 2015.

William B Langdon and Mark Harman. Optimizing Existing Software With
Genetic Programming. IEEE Transactions on Evolutionary Computation,
19(1):118-135, feb 2015.

Bibliography

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

William B Langdon, Mark Harman, and Yue Jia. Efficient multi-objective
higher order mutation testing with genetic programming. Journal of Systems
and Software, 83(12):2416-2430, 2010.

Kim G Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal I/0 Automata for
Interface and Product Line Theories, pages 64-79. Springer, 2007.

Kim Lauenroth, Andreas Metzger, and Klaus Pohl. Quality Assurance in the
Presence of Variability. In Selmin Nurcan, Camille Salinesi, Carine Souveyet,
and Jolita Ralyté, editors, Intentional Perspectives on Information Systems
Engineering, pages 319-333. Springer, 2010.

Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model Checking of Do-
main Artifacts in Product Line Engineering. In 2009 IEEE/ACM International
Conference on Automated Software Engineering, pages 269-280. IEEE, nov
2009.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transac-
tions on Software Engineering, 38(1):54-72, jan 2012.

Axel Legay, Gilles Perrouin, Xavier Devroey, Maxime Cordy, Pierre-Yves Schob-
bens, and Patrick Heymans. On Featured Transition Systems. In Bernhard
Steffen, Christel Baier, Mark van den Brand, Johann Eder, Mike Hinchey,
and Tiziana Margaria, editors, SOFSEM 2017: Theory and Practice of Com-
puter Science, volume 10139 of LNCS, pages 453-463, Limerick, Ireland, 2017.
Springer.

Yu Lei, Raghu Kacker, D Richard Kuhn, Vadim Okun, and James Lawrence.
IPOG: A General Strategy for T-Way Software Testing. In 14th Annual IEEE
International Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS’07), pages 549-556. IEEE, mar 2007.

Yu Lei, Raghu Kacker, D Richard Kuhn, Vadim Okun, and James Lawrence.
IPOG/IPOG-D: efficient test generation for multi-way combinatorial testing.
Software Testing, Verification and Reliability, 18(3):125-148, 2008.

Thomas Leich, Sven Apel, Laura Marnitz, and Gunter Saake. Tool Support
for Feature-oriented Software Development: FeatureIDE: an Eclipse-based
Approach. In Proceedings of the 2005 OOPSLA Workshop on Eclipse Tech-
nology eXchange, eclipse 05, pages 55-59. ACM Press, 2005.

Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707-710, 1966.

Harry Li, Shriram Krishnamurthi, and Kathi Fisler. Verifying Cross-cutting
Features As Open Systems. SIGSOFT Softw. Eng. Notes, 27(6):89-98, 2002.

189

BIBLIOGRAPHY

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

190

Harry C Li, Shriram Krishnamurthi, and Kathi Fisler. Modular Verification of
Open Features Using Three-Valued Model Checking. Automated Software
Engineering, 12(3):349-382, jul 2005.

H.C. Li, S Krishnamurthi, and K Fisler. Interfaces for modular feature verifi-
cation. In Proceedings 17th IEEE International Conference on Automated
Software Engineering,, pages 195-204. IEEE, 2002.

Nan Li, Anthony Escalona, and Tariq Kamal. Skyfire: Model-Based Testing
with Cucumber. In 2016 IEEE International Conference on Software Testing,
Verification and Validation (ICST), pages 393-400. IEEE, apr 2016.

Nan Li and Jeff Offutt. A test automation language framework for behavioral
models. In 2015 IEEE Eighth International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), number 1, pages 1-10.
IEEE, apr 2015.

Xuelin Li, W Eric Wong, Ruizhi Gao, Linghuan Hu, and Shigeru Hosono. Ge-
netic Algorithm-based Test Generation for Software Product Line with the
Integration of Fault Localization Techniques. Empirical Software Engineer-
ing, pages 1-51, 2017.

Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, and Venkatesh Raman. SAT-
based analysis of large real-world feature models is easy. In Proceedings
of the 19th International Conference on Software Product Line - SPLC’15,
pages 91-100. ACM Press, jul 2015.

Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouil-
lon, and Victor Lépez-Jaquero. USIXML: A Language Supporting Multi-path
Development of User Interfaces, pages 200-220. International Workshop
on Design, Specification, and Verification of Interactive Systems. Springer,
Hamburg, Germany, 2005.

Malte Lochau, Sascha Lity, Remo Lachmann, Ina Schaefer, and Ursula Goltz.
Delta-oriented model-based integration testing of large-scale systems. Jour-
nal of Systems and Software, 91:63-84, may 2014.

Malte Lochau, Sebastian Oster, Ursula Goltz, and Andy Schiirr. Model-based
pairwise testing for feature interaction coverage in software product line engi-
neering. Software Quality Journal, 20(3-4):567-604, sep 2012.

Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. Incremental
Model-Based Testing of Delta-Oriented Software Product Lines. In AchimD.
Brucker and Jacques Julliand, editors, Tests and Proofs, volume 7305 of LNCS,
pages 67-82. Springer, 2012.

Roberto E. Lopez-Herrejon, Francisco Chicano, Javier Ferrer, Alexander Egyed,
and Enrique Alba. Multi-objective Optimal Test Suite Computation for Soft-
ware Product Line Pairwise Testing. In 2013 IEEE International Conference
on Software Maintenance, pages 404-407. IEEE, sep 2013.

Bibliography

[199]

[200]

[201]
[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]
[211]

Roberto E Lopez-Herrejon, Stefan Fischer, Rudolf Ramler, and Alexander
Egyed. A first systematic mapping study on combinatorial interaction testing
for software product lines. In 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pages 1-
10. IEEE, apr 2015.

C Lott, AJain, and S Dalal. Modeling Requirements for Combinatorial Software
Testing. In Proceedings of the 1st International Workshop on Advances in
Model-based Testing, A-MOST '05, pages 1-7. ACM Press, 2005.

Cucumber Itd. Cucumber. https://cucumber.io, 2016.

Yu-Seung Ma, Jeff Offutt, and Yong Rae Kwon. MuJava: an automated class
mutation system. Software Testing, Verification and Reliability, 15(2):97-
133, jun 2005.

Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. Over-
coming the Equivalent Mutant Problem: A Systematic Literature Review and a
Comparative Experiment of Second Order Mutation. IEEE Transactions on
Software Engineering, 40(1):23-42, jan 2014.

Dusica Marijan, Arnaud Gotlieb, Sagar Sen, and Aymeric Hervieu. Practical
pairwise testing for software product lines. In Proceedings of the 17th Inter-
national Software Product Line Conference on - SPLC ’13, page 227. ACM
Press, aug 2013.

Pedro Reales Mateo and Macario Polo Usaola. Reducing mutation costs
through uncovered mutants. Software Testing, Verification and Reliability,
25(5-7):464-489, aug 2015.

Aditya P Mathur. Foundations of software testing. Pearson Education, India,
2008.

Rui A Matnei Filho and Silvia R Vergilio. A multi-objective test data genera-
tion approach for mutation testing of feature models. Journal of Software
Engineering Research and Development, 4(1):4, dec 2016.

John D McGregor. Toward a Fault Model for Software Product Lines. In
Steffen Thiel and Klaus Pohl, editors, Software Product Lines, 12th Interna-
tional Conference, {SPLC} 2008, Limerick, Ireland, September 8-12, 2008,
Proceedings. Second Volume (Workshops), pages 157-162. Lero Int. Science
Centre, University of Limerick, Ireland, 2008.

M D Mcilroy. Mass Produced Software Components. Technical report, 1969.
Marcilio Mendonca. SPLAR. https://code.google.com/archive/p/splar/, 2010.

Marcilio Mendonca, Moises Branco, and Donald Cowan. S.PL.O.T.: Software
Product Lines Online Tools. In Proceedings of the 24th ACM SIGPLAN Con-
ference Companion on Object Oriented Programming Systems Languages
and Applications, OOPSLA '09, pages 761-762. ACM Press, 2009.

191

BIBLIOGRAPHY

[212]

[213]

[214

[215

[216]

[217

[218

[219]

[220]

[221]

[222]

[223

192

Marcilio Mendonca, Andrzej Wasowski, Krzysztof Czarnecki, and Donald
Cowan. Efficient compilation techniques for large scale feature models. Pro-
ceedings of the 7th international conference on Generative programming
and component engineering - GPCE ’08, page 13, 2008.

Andreas Metzger and Klaus Pohl. Software Product Line Engineering and
Variability Management: Achievements and Challenges. In Proceedings of
the on Future of Software Engineering, FOSE 2014, pages 70-84. ACM Press,
2014.

Raphael Michel, Andreas Classen, Arnaud Hubaux, and Quentin Boucher. A
Formal Semantics for Feature Cardinalities in Feature Diagrams. In Proceed-
ings of the 5th Workshop on Variability Modeling of Software-Intensive Sys-
tems, VaMoS 11, pages 82-89. ACM Press, 2011.

Microsoft. Inspect. https://msdn.microsoft.com/en-
us/library/windows/desktop/dd318521 (v=vs.85).aspx, 2016.

Jean-Vivien Millo, S Ramesh, Shankara Narayanan Krishna, and
Ganesh Khandu Narwane. Compositional Verification of Evolving Software
Product Lines. CoRR, abs/1212.4, 2012.

R Milner. A Calculus of Communicating Systems. Springer, Secaucus, NJ,
USA, 1982.

Debajyoti Mondal, Hadi Hemmati, and Stephane Durocher. Exploring Test
Suite Diversification and Code Coverage in Multi-Objective Test Case Selec-
tion. In 2015 IEEE 8th International Conference on Software Testing, Veri-
fication and Validation (ICST), ICST ’15, pages 1-10. IEEE, apr 2015.

Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Mutation Analysis
Testing for Model Transformations. In ECMDA-FA, pages 376-390, 2006.

John D Musa, Gene Fuoco, Nancy Irving, Diane Kropfl, and Bruce Juhlin.
The operational profile. NATO ASI series F Comp. and Syst. Sc., 154:333-344,
1996.

Radu Muschevici, Dave Clarke, and Jose Proenca. Feature Petri Nets. In
Goetz Botterweck, Stan Jarzabek, Tomoji Kishi, Jaejoon Lee, and Steve Liven-
good, editors, Proceedings of the 14th International Software Product Line
Conference (SPLC 2010), volume 2. Lancaster University, 2010.

Peter Naur and Brian Randell, editors. Software Engineering: Report of
a Conference Sponsored by the NATO Science Committee, Garmisch, Ger-
many, 7-11 Oct. 1968, Brussels, Scientific Affairs Division, NATO. 1969.

Torsten Nelson, Donald Cowan, and Paulo Alencar. Supporting Formal Veri-
fication of Crosscutting Concerns, pages 153-169. Springer, 2001.

Bibliography

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

Hung Viet Nguyen, Christian Késtner, and Tien N. Nguyen. Exploring
variability-aware execution for testing plugin-based web applications. In Pro-
ceedings of the 36th International Conference on Software Engineering -
ICSE 2014, ICSE ’14, pages 907-918. ACM Press, 2014.

Armstrong Nhlabatsi, Robin Laney, and Bashar Nuseibeh. Feature interaction:
The security threat from within software systems. Progress in Informatics,
5:75-89, 2008.

Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM
Computing Surveys, 43(2):1-29, jan 2011.

N Niu and S Easterbrook. Extracting and Modeling Product Line Functional
Requirements. In 2008 16th IEEE International Requirements Engineering
Conference, pages 155-164. IEEE, sep 2008.

AJefferson Offutt and W M Craft. Using Compiler Optimization Techniques
to Detect Equivalent Mutants. Software Testing, Verification and Reliability,
4(3):131-154, 1994.

AJefferson Offutt and Jie Pan. Automatically detecting equivalent mutants and
infeasible paths. Software Testing, Verification and Reliability, 7(3):165-192,
sep 1997.

Jeff Offutt. A mutation carol: Past, present and future. Information and
Software Technology, 53(10):1098-1107, oct 2011.

Rafael Olaechea, Uli Fahrenberg, Joanne M Atlee, and Axel Legay. Long-
term Average Cost in Featured Transition Systems. In Proceedings of the
20th International Systems and Software Product Line Conference, SPLC
’16, pages 109-118, Nashville, Tennessee, USA, 2016. ACM Press.

Rafael Olaechea, Derek Rayside, Jianmei Guo, and Krzysztof Czarnecki. Com-
parison of exact and approximate multi-objective optimization for software
product lines. In Proceedings of the 18th International Software Product
Line Conference - Volume 1, SPLC 14, pages 92-101. ACM Press, 2014.

Sebastian Oster, Florian Markert, and Philipp Ritter. Automated Incremental
Pairwise Testing of Software Product Lines. In Jan Bosch and Jaejoon Lee,
editors, Proceedings of the 14th International Software Product Lines Con-
ference: Going Beyond, SPLC’10, pages 196-210, Jeju Island, South Korea,
2010. Springer.

Sebastian Oster, Andreas Wiibbeke, Gregor Engels, and Andy Schiirr. A survey
of model-based software product lines testing. In Justyna Zander, Ina Schiefer-
decker, and Pieter] Mosterman, editors, Model-Based Testing for Embedded
Systems, Computational Analysis, Synthesis, and Design of Dynamic Systems,
pages 338-381. CRC Press, 2011.

193

BIBLIOGRAPHY

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

194

M Papadakis, C Henard, and Y le Traon. Sampling Program Inputs with Mu-
tation Analysis: Going Beyond Combinatorial Interaction Testing. In Soft-
ware Testing, Verification and Validation (ICST), 2014 IEEE Seventh Inter-
national Conference on, pages 1-10, 2014.

Mike Papadakis, Mércio Eduardo Delamaro, and Yves Le Traon. Mitigating the
effects of equivalent mutants with mutant classification strategies. Science of
Computer Programming, 95:298-319, 2014.

Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. Trivial Compiler
Equivalence: A Large Scale Empirical Study of a Simple, Fast and Effective
Equivalent Mutant Detection Technique. In 2015 IEEE/ACM 37th IEEE In-
ternational Conference on Software Engineering, pages 936-946. IEEE, may
2015.

Mike Papadakis and Yves Le Traon. Metallaxis-FL: mutation-based fault local-
ization. Software Testing, Verification and Reliability, 25(5-7):605-628, aug
2015.

Mike Papadakis and Nicos Malevris. Automatic Mutation Test Case Gen-
eration via Dynamic Symbolic Execution. In 2010 IEEE 21st International
Symposium on Software Reliability Engineering, pages 121-130. IEEE, nov
2010.

Mike Papadakis and Nicos Malevris. Automatically performing weak mutation
with the aid of symbolic execution, concolic testing and search-based testing.
Software Quality Journal, 19(4):691-723, dec 2011.

Mike Papadakis and Nicos Malevris. Mutation based test case generation via
a path selection strategy. Information and Software Technology, 54(9):915-
932, sep 2012.

José A. Parejo, Ana B. Sanchez, Sergio Segura, Antonio Ruiz-Cortés, Roberto E.
Lopez-Herrejon, and Alexander Egyed. Multi-objective test case prioritiza-
tion in highly configurable systems: A case study. Journal of Systems and
Software, 122:287-310, 2016.

Krishna Patel and Robert M Hierons. Resolving the Equivalent Mutant Prob-
lem in the Presence of Non-determinism and Coincidental Correctness,
pages 123-138. Springer, Cham, 2016.

S Patel, P Gupta, and V Shah. Combinatorial Interaction Testing with Multi-
perspective Feature Models. In 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation Workshops, pages 321-330.
IEEE, 2013.

Sachin Patel, Priya Gupta, and Vipul Shah. Feature interaction testing of
variability intensive systems. 2013 4th International Workshop on Product
LinE Approaches in Software Engineering (PLEASE), pages 53-56, may 2013.

Bibliography

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

Radek Peldanek. Typical Structural Properties of State Spaces. In Susanne
Graf and Laurent Mounier, editors, Model Checking Software, volume 2989
of LNCS, pages 5-22. Springer, 2004.

Radek Peldnek. Model Classifications and Automated Verification. In Ste-
fan Leue and Pedro Merino, editors, Formal Methods for Industrial Critical
Systems, volume 4916 of LNCS, pages 149-163. Springer, 2008.

Radek Peldnek. Properties of state spaces and their applications. Interna-
tional Journal on Software Tools for Technology Transfer, 10(5):443-454,
2008.

Beatriz Pérez Lamancha and Macario Polo Usaola. Testing Product Generation
in Software Product Lines Using Pairwise for Features Coverage. In Alexandre
Petrenko, Adenilso Simao, and José Carlos Maldonado, editors, Testing Soft-
ware and Systems: 22nd IFIP WG 6.1 International Conference, ICTSS 2010,
Natal, Brazil, November 8-10, 2010. Proceedings, pages 111-125. Springer,
2010.

Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry, and
Yves le Traon. Pairwise testing for software product lines: Comparison of two
approaches. Software Quality Journal, 20(3-4):605-643, 2011.

Justyna Petke, Shin Yoo, Myra B Cohen, and Mark Harman. Efficiency and
early fault detection with lower and higher strength combinatorial interaction
testing. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2013, ESEC/FSE 2013, page 26. ACM Press,
2013.

K Pohl, G Béckle, and F Van Der Linden. Software product line engineering:
foundations, principles, and techniques. Springer, 2005.

Macario Polo, Mario Piattini, and Ignacio Garc\’\ia-Rodr\’\iguez. Decreasing
the Cost of Mutation Testing with Second-order Mutants. Software Testing
Verification and Reliability, 19(2):111-131, 2009.

Michael R Poppleton. Towards Feature-Oriented Specification and Devel-
opment with Event-B, pages 367-381. Springer, 2007.

S J Prowell. JUMBL: a tool for model-based statistical testing. In System
Sciences, 2003. Proceedings of the 36th Annual Hawaii International Con-
ference on, pages 9 pp.—, jan 2003.

Georg Piischel, Ronny Seiger, and Thomas Schlegel. Test Modeling for Context-
aware Ubiquitous Applications with Feature Petri Nets. Modiquitous Work-
shop, 2012.

QSpin. QTaste. https://github.com/qgspin/qtaste (version 2.3.0), 2016.

RaiMan. Sikuli Script. http://www.sikuli.org, 2016.

195

BIBLIOGRAPHY

[259]

[260

[261]

[262]

[263

[264

[265

[266]

[267]

[268]

[269

196

Awais Rashid, Jean-Claude Royer, and Andreas Rummler. Aspect-Oriented,
Model-Driven Software Product Lines: The AMPLE Way. Cambridge Univer-
sity Press, 2011.

Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S Foster, and Adam
Porter. Using symbolic evaluation to understand behavior in configurable
software systems. In Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering - ICSE 10, volume 1 of ICSE ’10, page 445.
ACM Press, 2010.

Dennis Reuling, Johannes Biirdek, Serge Rotdrmel, Malte Lochau, and Udo
Kelter. Fault-based product-line testing: effective sample generation based on
feature-diagram mutation. In Proceedings of the 19th International Confer-
ence on Software Product Line - SPLC’15, pages 131-140. ACM Press, 2015.

G N Rodrigues, V Alves, V Nunes, A Lanna, M Cordy, P Y Schobbens, A M
Sharifloo, and A Legay. Modeling and Verification for Probabilistic Properties
in Software Product Lines. In 2015 IEEE 16th International Symposium on
High Assurance Systems Engineering, pages 173-180, jan 2015.

Kenneth Rosen. Discrete Mathematics and Its Applications, 7th edition.
McGraw-Hill Science, 2011.

Hamideh Sabouri and Ramtin Khosravi. Efficient Verification of Evolving
Software Product Lines. In Fundamentals of Software Engineering SE - 24,
volume 7141, pages 351-358. 2012.

Sahipro. Sahi: The Tester’s Web Automation Tool. http://sahipro.com, 2016.

Hamza Samih, Mathieu Acher, Ralf Bogusch, Héléne Le Guen, and Benoit
Baudry. Deriving Usage Model Variants for Model-based Testing: An Indus-
trial Case Study. In IEEE, editor, 2014 19th International Conference on
Engineering of Complex Computer Systems (ICECCS 2014), Tianjin, Chine,
2014.

Hamza Samih and Ralf Bogusch. MPLM - MaTeLo Product Line Manager. In
Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools - Volume 2,
SPLC ’14, pages 138-142. ACM Press, 2014.

Hamza Samih, Héléne Le Guen, Ralf Bogusch, Mathieu Acher, and Benoit
Baudry. An Approach to Derive Usage Models Variants for Model-based Test-
ing. In The 26th IFIP International Conference on Testing Software and
Systems (2014), Madrid, Espagne, 2014. Springer.

Sreedevi Sampath, Renee C. Bryce, Gokulanand Viswanath, Vani Kandimalla,
and a. Gunes Koru. Prioritizing User-Session-Based Test Cases for Web Appli-
cations Testing. In Software Testing, Verification, and Validation, 2008 1st
International Conference on, pages 141-150. IEEE, apr 2008.

Bibliography

[270]

[271]

[272]

[273]

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

[282]

Ana B Sénchez, Sergio Segura, José A Parejo, and Antonio Ruiz-Cortés. Variabil-
ity testing in the wild: the Drupal case study. Software & Systems Modeling,
16(1):173-194, feb 2017.

Ana B Sénchez, Sergio Segura, and Antonio Ruiz-Cortés. The Drupal Frame-
work: A Case Study to Evaluate Variability Testing Techniques. In Proceedings
of the Eighth International Workshop on Variability Modelling of Software-
Intensive Systems, VaMoS ’14, pages 11:1—-11:8. ACM Press, 2013.

Ana B. Sanchez, Sergio Segura, and Antonio Ruiz-Cortes. A Comparison of Test
Case Prioritization Criteria for Software Product Lines. In 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation,
number July in ICST ’14, pages 41-50. IEEE, mar 2014.

David Sankoff and Joseph B Kruskal. Time warps, string edits, and macro-
molecules: the theory and practice of sequence comparison. Addison-Wesley
Readings, 1983.

Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. On the value of user
preferences in search-based software engineering: A case study in software
product lines. In 2013 35th International Conference on Software Engineer-
ing (ICSE), pages 492-501. IEEE, may 2013.

Ina Schaefer. Variability Modelling for Model-Driven Development of Software
Product Lines, 2010.

Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves
Bontemps. Generic semantics of feature diagrams. Computer Networks,
51(2):456-479, 2007.

David Schuler and Andreas Zeller. Covering and Uncovering Equivalent Mu-
tants. Software Testing, Verification and Reliability, 23(5):353-374, 2013.

Sergio Segura, Ana B Sanchez, and Antonio Ruiz-Cortés. Automated Vari-
ability Analysis and Testing of an E-commerce Site.: An Experience Report.
In Proceedings of the 29th ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE '14, pages 139-150. ACM Press, 2014.

Selenium. SeleniumHQ Web Browser Automation.
http://www.seleniumhgq.org, 2016.

Smartesting Solutions & Services. Smartesting. http://www.smartesting.com,
2016.

Pourya Shaker and Joanne M Atlee. A Featur-Oriented Requirements Mod-
elling Language (FORML). Technical report, Waterloo, Canada, 2012.

Pourya Shaker and Joanne M Atlee. Behaviour Interactions Among Product-
line Features. In Proceedings of the 18th International Software Product
Line Conference, SPLC '14, pages 242-246, Florence, Italy, 2014. ACM Press.

197

BIBLIOGRAPHY

[283]

[284]

[285]

[286]

[287]

[288]

[289]

[290

[291

[292]

[293

[294

198

Pourya Shaker, Joanne M Atlee, and Shige Wang. A Feature-Oriented Re-
quirements Modelling Language. In 20th IEEE International Requirements
Engineering Conference, pages 151-160, Chicago, Illinois, USA, 2012. IEEE.

Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. Reverse engineering feature models. In Proceeding of the 33rd in-
ternational conference on Software engineering - ICSE ’11, page 461. ACM
Press, 2011.

George Sherwood. Effective testing of factor combinations. In Proc.
Third International Conference on Software Testing, Analysis and Review
(STAR’94), 1994.

Sharon Shoham and Orna Grumberg. Multi-valued model checking games.
Journal of Computer and System Sciences, 78(2):414-429, 2012.

Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Késtner.
Performance-influence models for highly configurable systems. In Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing - ESEC/FSE 2015, pages 284-294. ACM Press, aug 2015.

Norbert Siegmund, Marko Rosenmiiller, Christian Kastner, Paolo G. Giarrusso,
Sven Apel, and Sergiy S. Kolesnikov. Scalable prediction of non-functional
properties in software product lines: Footprint and memory consumption.
Information and Software Technology, 55(3):491-507, mar 2013.

Sonatype. Maven by Example. page 151, 2011.

Jennifer Sorge, Michael Poppleton, and Michael Butler. A Basis for feature-
oriented modelling in Event-B. 2009.

Sara Sprenkle, Lori Pollock, and Lucy Simko. A Study of Usage-Based Navi-
gation Models and Generated Abstract Test Cases for Web Applications. In
Software Testing, Verification and Validation (ICST), 2011 IEEE Fourth In-
ternational Conference on, pages 230-239. IEEE, mar 2011.

Sara E Sprenkle, Lori L Pollock, and Lucy M Simko. Configuring effective
navigation models and abstract test cases for web applications by analysing
user behaviour. Software Testing, Verification and Reliability, 23(6):439-464,
2013.

Michaela Steffens, Sebastian Oster, Malte Lochau, and Thomas Fogdal. Indus-
trial Evaluation of Pairwise SPL Testing with MoSo-PoLiTe. In Proceedings
of the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems, VaMoS ’12, pages 55-62. ACM Press, 2012.

Daniel Striiber, Julia Rubin, Marsha Chechik, and Gabriele Taentzer. A
Variability-Based Approach to Reusable and Efficient Model Transformations.

Bibliography

In Proceedings of the 18th International Conference on Fundamental Ap-
proaches to Software Engineering (FASE ’15), volume 9033, pages 283-298,
New York, NY, USA, 2015. Springer.

[295] Swinglnspector. Swinglnspector. http://www.swinginspector.com/index_en.htm,
2016.

[296] M H ter Beek, A Legay, A Lluch Lafuente, and A Vandin. Statistical Analysis of
Probabilistic Models of Software Product Lines with Quantitative Constraints.
In Proceedings of the 19th International Conference on Software Product
Line, SPLC '15, pages 11-15, Nashville, Tennessee, USA, 2015. ACM Press.

[297] Maurice H ter Beek, Alberto Lluch Lafuente, and Marinella Petrocchi. Com-
bining declarative and procedural views in the specification and analysis of
product families. In Proceedings of the 17th International Software Product
Line Conference co-located workshops on - SPLC ’13 Workshops, SPLC '13
Workshops, page 10. ACM Press, 2013.

[298] Maurice H ter Beek, Axel Legay, Alberto Lluch Lafuente, and Andrea Vandin.
Statistical Model Checking for Product Lines, pages 114-133. Springer,
Corfu, Greece, 2016.

[299] Maurice H ter Beek, Henry Muccini, and Patrizio Pelliccione. Guaran-
teeing Correct Evolution of Software Product Lines: Setting Up the Prob-
lem. In Elena A Troubitsyna, editor, Software Engineering for Resilient
Systems: Third International Workshop, SERENE 2011, Geneva, Switzer-
land, September 29-30, 2011. Proceedings, number January, pages 100-105.
Springer, 2011.

[300] Pascale Thévenod-Fosse and Hélene Waeselynck. An Investigation of Statisti-
cal Software Testing. Softw. Test., Verif. Reliab., 1(2):5-25, 1991.

[301] Thomas Thiim, Sven Apel, Christian Késtner, Ina Schaefer, and Gunter Saake.
A Classification and Survey of Analysis Strategies for Software Product Lines.
ACM Computing Surveys, 47(1):1-45, jun 2014.

[302] Jan Tretmans. Model-based testing: Property checking for real. In Keynote ad-
dress at the International Workshop for Construction and Analysis of Safe
Secure, and Interoperable Smart Devices, 2004.

[303] Jan Tretmans. Model based testing with labelled transition systems. Formal
methods and testing, pages 1-38, 2008.

[304] Jan Tretmans. Model-Based Testing and Some Steps towards Test-Based Mod-
elling. In Marco Bernardo and Valérie Issarny, editors, Formal Methods for
Eternal Networked Software Systems, volume 6659 of LNCS, chapter 9, pages
297-326. Springer, 2011.

199

BIBLIOGRAPHY

[305]

[306

[307

[308

[309]

[310]

[311

[312]

[313]

[314

[315]

[316]

[317

200

Pablo Trinidad, David Benavides, Antonio Ruiz-Cortés, Sergio Segura, and
Alberto Jimenez. Fama framework. In 12th International Software Product
Line Conference, page 359. IEEE, 2008.

Roland H Untch, A Jefferson Offutt, and Mary Jean Harrold. Mutation analysis
using mutant schemata. In Proceedings of the 1993 international sympo-
sium on Software testing and analysis - ISSTA ’93, pages 139-148. ACM Press,
1993.

Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann, 2007.

Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-
based testing approaches. (April 2011):297-312, 2012.

Engin Uzuncaova, Sarfraz Khurshid, and Don Batory. Incremental Test Gener-
ation for Software Product Lines. Software Engineering, IEEE Transactions
on, 36(3):309-322, 2010.

Axel Van Lamsweerde. Systematic Requirements Engineering - From Sys-
tem Goals to UML Models to Software Specifications. Wiley, 2008.

Jeremy Vanhecke. Concrétisation de tests abstraits avec AbsCon, un AddOn
QTaste. Master thesis, University of Namur, 2016.

Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Niko-
lai Tillmann, and Lev Nachmanson. Model-based Testing of Object-oriented
Reactive Systems with Spec Explorer. In Robert M Hierons, Jonathan P Bowen,
and Mark Harman, editors, Formal methods and testing, chapter Model-
base, pages 39-76. Springer, 2008.

A Viterbi. Error bounds for convolutional codes and an asymptotically op-
timum decoding algorithm. IEEE Transactions on Information Theory,
13(2):260-269, 1967.

Jeffrey M Voas and Gary McGraw. Software Fault Injection: Inoculating Pro-
grams Against Errors. John Wiley & Sons, Inc., 1997.

Alexander von Rhein, Sven Apel, Christian Kdstner, Thomas Thiim, and Ina
Schaefer. The PLA Model: On the Combination of Product-line Analyses.
In Proceedings of the Seventh International Workshop on Variability Mod-
elling of Software-intensive Systems, VaMoS '13, pages 14:1—-14:8. ACM
Press, 2013.

J.A. James A Whittaker, G Thomason Michael, and Michael G M.G. Thomason.
A Markov chain model for statistical software testing. IEEE Transactions on
Software Engineering, 20(10):812-824, oct 1994.

Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell,
and Anders Wesslén. Experimentation in Software Engineering. Springer,
2012.

Bibliography

[318] M.R. Woodward. Errors in algebraic specifications and an experimental muta-
tion testing tool. Software Engineering Journal, 8(4):211, 1993.

[319] WordPress.org. WordPress. https://wordpress.org, apr 2010.

[320] P Zave. Feature interactions and formal specifications in telecommunications.
Computer, 26(8):20-28, 1993.

201

GLOSSARY

AbsCon Abstract test case Concretizer. xxi, xxiii, 25, 26, 133, 136, 146
abstract test case A finite sequence of actions in a FTS such that there exists a
sequence of transitions in this FTS, labelled with the corresponding actions.
xxi, 43, 44, 133, 136
AGE Assemblée Générale des Etudiants. 34
ALE Automata Language Equivalence. xxii, 80-82, 88, 111, 167
API Application Programming Interface. xxiii, 124-126

BDD Binary Decision Diagram. 5, 27
BS Biased Simulation. xxii, 82-84, 88, 111, 167
bug The result, during the execution of a system, of an error made
by the programmer. If it propagates to the output of the system, it causes a
failure. 13

CCS Calculus of Communicating Systems. 10
CIT Combinatorial Interaction Testing. v, xx, xxi, 19, 20, 54
CMS Content Management System. xxiii, 33
CNF Conjunctive Normal Form. 5, 27, 45, 50, 128, 152
concretization Process used to transform abstract test cases into executable
test scripts. 25, 134, 136, 145
coverage criterion Criterion defined over a model or a piece of source code and
used to drive a test case selection process. 47

DTMC Discrete-Time Markov Chain. xxii, 32, 61, 205, see: usage model

EMP Equivalent Mutants Problem. xxii, 80, 88
error Mistake made by a programmer during the writing of the source
code of a system. 13

failure Result (at runtime) of the propagation of a bug to the output of
a system. 13
fault Synonym for bug see. 13
feature expression A boolean expression over features. 9, 127, 154
feature model A model used to represent all the valid products of a product
line [159]. Usually, feature models are represented using a tree structure where
features are decomposed into sub-features. xvii, xix, xx, 5, 8, 11, 17, 18, 28, 29,
70, 73,128, 149, 151, 204

203

GLOSSARY

featured mutant model A compact formalism to represent mutants of a system as a
family (i.e., a product line). v, vii, xxii, 70, 73, 87, 150, 204

featured transition system

A compact formalism used to represent the behaviour of a soft-

ware product line [63]. An FTS is a LTS where transitions are tagged with
feature expressions specifying which products may fire the transition. v, vii,
XV, xxi, 8, 9, 43, 204

M
FMM

130-132, 150,

FODA
FTS

Feature Model. xvii, xix, 5, 38, 41, see: feature model

Featured Mutants Model. v, vii, xxii, xxiii, 70, 73, 74, 87-89, 107,
154, see: featured mutant model

Feature Oriented Domain Analysis. 5

Featured Transition System. v, vii, xvii, xxi, xxiii, 7-11, 17, 18,

20, 25, 27-29, 40, 42, 43, 49, 68, 70, 73, 74, 124-126, 128-130, 149, 152, see:
featured transition system

labelled transition system

Formalism used to represent the behaviour of a system as a set

of states and transitions labelled with actions. xv, 7, 43, 204

LTS

Labelled Transition System. xv, 7-10, 17, 70, 71, 124, 130, see:

labelled transition system

MBT
MHML
MTS

negative abstract test case

Model-Based Testing. 43
Modal Hennessy-Milner Logic. 10
Modal Transition System. 7, 10

Abstract test case that cannot be executed on the FTS of the

product line. 44, 45

PIN

PL-CCS

POM

positive abstract test case
line. 44, 45

QTaste
28,134

RS

SAT
SM
soda vending machine

Personal Identification Number. 8, 9, 30

Product Line CCS. 10

Project Object Model. 124

Abstract test case that can be executed on the FTS of the product

QSpin Tailored Automated System Test Environment. xxi, 25, 26,

Random Simulation. xxii, 82, 83, 88, 111, 167

Boolean Satisfiability Problem. 5, 9, 10, 27
Strong Mutation. 81, 83, 84, 167
A case study representing a beverage vending machine product

line that sells soda and/or tea (see Section 4.1 for the complete description).
29,44, 47,126

SPL

Software Product Line. v, xv, xix, xx, 37, 10, 11, 13, 16, 18, 20, 27,

43, 86, 149, 155

SUT

test suite
14, 149

204

System Under Test. 13, 43-45, 133, 134

A set of test cases, selected in order to satisfy a given criterion.

Glossary

TVL Text-based Variability Language. 5, 131

UIDL User Interface Description Language. 144
UM Usage Model. 61, see: usage model
usage model Model representing the usage of a system as a Discrete-Time
Markov Chain (DTMC). xxii, xxiii, 61, 101, 124, 129

VIBeS Variability Intensive Behavioural teSting. v, vii, xvi, xxi, xxiii,
25-28,123-126, 131, 132, 134, 150, 155

WM Weak Mutation. 81, 83, 84, 167

205

