
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Calculus of Communicating Systems: A web based tool in Scala

Gillet, Jean-François; Willame, Danwel

Award date:
2017

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/add27a61-19bc-4377-be03-27316bfc4fc6

Université de Namur
Faculty of Computer Science
Academic Year 2016–2017

Calculus of Communicating Systems:

A web based tool in Scala

Danwel Willame Jean-François Gillet

Supervisor: (Signed for Release Approval - Study Rules art. 40)
Jean-Marie Jacquet

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science at the Université de Namur

Calculus of Communicating Systems:

A web based tool in Scala

Abstract

This master-degree thesis presents the design of a web-based tool for modeling and
verifying concurrent processes. These are expressed in the process algebra of Robin
Milner: Calculus of Communicating Systems (CCS). The tool allows comparison
of processes by means of both simulation and strong bisimulation. The tool also
allows to display CCS equations in the form of graphs.

Other similar tools were previously developed, but to the candidates’ knowledge
none were developed in Scala, a programming language that fuses functional and
object-oriented paradigms. This thesis describes the functions of the tool, as well
as its implementation, while emphasizing the expressiveness provided by Scala.

Ce mémoire traite du développement d’un outil web permettant de modéliser et
de vérifier des processus concurrents. Ceux-ci sont exprimés dans l’algèbre des
processus de Robin Milner, le Calculus of Communicating Systems (CCS). L’outil
permet de comparer des processus grâce à la simulation et à la bisimulation forte.
Il permet également de visualiser les équations CCS sous forme de graphes.

Des outils similaires ont été développés précédemment, mais à la connaissance des
auteurs, aucun d’entre eux n’a été implémenté en Scala, un langage de program-
mation qui fusionne les paradigmes fonctionnel et orienté objet. Ce travail décrit
les fonctionnalités de cet outil ainsi que leurs implémentations, tout en mettant
l’accent sur l’expressivité apportée par Scala.

i

ii

Contents

1 Introduction 1
1.1 Transformational vs Reactive Systems 1
1.2 Process theory . 3
1.3 Development of a CCS workbench in Scala 3

2 Calculus of Communicating Systems 5
2.1 CCS by example . 6
2.2 Labeled Transition Systems – LTS 10
2.3 CCS, formally . 12
2.4 Passing by values . 15
2.5 Conclusion . 19

3 Scala 21
3.1 A Java like language . 21
3.2 A Unified Object Model . 22

3.2.1 Classes . 22
3.2.2 Operations . 22
3.2.3 Variables and Properties . 23

3.3 Operations are Objects . 23
3.3.1 Methods are Functional Values 23
3.3.2 Functions are Objects . 24
3.3.3 Refining Functions . 24
3.3.4 Sequences and For Comprehensions 25

3.4 Abstraction . 26
3.4.1 Functional Abstraction . 26

iii

iv

3.4.2 Abstract Members . 26
3.4.3 Modeling generics with abstract types 27

3.5 Composition . 27
3.6 Decomposition . 28
3.7 XML Processing . 29
3.8 Component Adaptation . 29

3.8.1 Implicit Parameters . 29
3.8.2 Views . 30

3.9 Conclusion . 30

4 Implementation 33
4.1 Workbench requirements . 33
4.2 Implementation overview . 34
4.3 Parsing . 35

4.3.1 Combinator Parsing . 35
4.3.2 Abstract Syntax Tree - AST 36
4.3.3 Parsing Implementation . 42

4.4 Transitions . 46
4.5 Graph generation . 54

4.5.1 vis.js . 54
4.5.2 GraphTransition . 55

4.6 Web Framework . 58
4.6.1 Play Framework . 58
4.6.2 Converting GraphTranstion to JSON 59

4.7 Limitations and Related work . 60
4.7.1 Limitations . 60
4.7.2 Related work . 63

5 Behavioral Equivalences 65
5.1 Criteria for a good behavioral equivalence 65
5.2 Trace equivalence . 66
5.3 Simulation & Bisimulation . 68

5.3.1 Theoretical notions . 68
5.3.2 Algorithms . 76
5.3.3 Implementations . 79

5.4 Weak bisimulation . 85
5.4.1 Theoretical notions . 85
5.4.2 A weak bisimulation algorithm draft 86

5.5 Conclusion . 86

6 Tutorial 89

v

6.1 CCS Editor . 89
6.2 Graph . 90

6.2.1 Static View . 90
6.2.2 Discovery View . 90

6.3 Equivalence Checking . 92

7 Conclusion 95
7.1 General Conclusion . 95
7.2 Limitations and future work . 97

vi

List of Figures

1.1 A transformational system . 2
1.2 A reactive system . 2

2.1 Ticket machine . 6
2.2 H=TM|P . 8
2.3 H= TM | P | P’ . 9
2.4 PH = (TM | P)\push \ticket . 9
2.5 PH = (TM | P)\ push \ ticket . 11
2.6 SOS transitions for R = P | Q . 16

4.1 Implementation diagram . 34
4.2 AST Diagram . 38
4.3 Graph: A = a.b.c.∅ . 55
4.4 Implementation diagram revised . 61

5.1 VM ′ �S VM . 69
5.2 CVM 'S EVM . 72
5.3 CM 'B CM ′ . 74

6.1 CCS Editor . 90
6.2 Static View . 91
6.3 Discovery View . 91
6.4 Verification - equation selection . 93
6.5 Verification performed . 93
6.6 Verification detailed mode . 93

vii

viii LIST OF FIGURES

Acknowledgements

First, we express sincere gratitude to our supervisor, Prof. Jean-Marie Jacquet,
for his continuous support during our work in developing this master’s thesis, as
well as his patience, motivation, and immense knowledge shared with us. We could
not imagine a better advisor for this effort.

We also gratefully acknowledge Dr. Bruce G. Weniger, Adrien Houdart and Lu-
dovic Bukens for their very valuable comments and insights on this work and this
resulting thesis.

Finally, we take this opportunity to express gratitude to our families and significant
others for their unceasing encouragements, support, and attention.

We live on an island surrounded by a sea of ignorance. As our
island of knowledge grows, so does the shore of our ignorance.

- John Archibald Wheeler

ix

x LIST OF FIGURES

1
Introduction

Recent trends in computing have affected how computer scientists build software.
The growing adoption of cloud computing, web services, and distributed systems,
on the one hand, and the explosion of embedded systems on the other hand, have
made concurrency as a prime player in software development [8, 20, 21]. However,
the writing of such concurrent software can be laborious, even for relatively minor
applications.

In his article on embedded software market trends, Gavhane Sagar[20] explains
that the automotive industry provides a growing demand for such systems, and
plays a key role in market growth for embedded software. Many embedded sys-
tems are safety-critical, such as: anti-lock brake system (ABS), electronic brake
distribution (EBD), and electronic stability program (ESP). One can recall famous
examples of bugs in embedded systems, as in the explosion of the unmanned Ariane
5 rocket in 1996 or the loss of the Mars Climate Orbiters in 1999 [13]. Similarly,
a faulty component in large distributed systems can be also very damaging.

1.1 Transformational vs Reactive Systems

With such concerns in mind, formal verification is of great interest. Although
software testing can help to find bugs, it cannot prove their absence. The stan-
dard view of computing considers systems as transformational black-boxes that
transform input into output.

1

2 CHAPTER 1. INTRODUCTION

Input System Output

Figure 1.1: A transformational system

Therefore, algorithmic problems are specified by preconditions and postconditions
i.e, what are their legal inputs and expected output [1, p. 3] [13, p. 7]. In non con-
current settings, Hoare logic is used to reason about the correctness of algorithms
[9]. This logic describes how a system transforms an input step by step. At the
end of the process, if the expected final state is reached the system is considered
proved correct. The central feature of this logic is the Hoare triple:

{P} C {Q}

where P is the precondition, Q is the postcondition and C is the command. In
other words, if P is satisfied, then the execution of the command C leads to Q.
Partial functions can lead to non-terminating programs. A partial function is a
function whose behavior is not defined for some inputs. The function will therefore
never produce an output. In this view of computing, the non-termination is highly
undesirable.

On the contrary, in systems such as web services, control programs or embedded
systems, the termination reflects a deadlock state and is generally a bad system
state: such systems must always be ready for interactions. Therefore, their behav-
iors cannot be described as a terminating function with an input and an output.

Reactive systems can be seen as systems running in parallel with their environ-
ment, reacting to their environment and exchanging interactions with it. The
interaction becomes the basic unit of computation and systems can be specified
as a triple (Event, Condition,Action) where the sequence of interactions provides
the computation [13, p. 7].

Environment

System

Figure 1.2: A reactive system

1.2. PROCESS THEORY 3

1.2 Process theory

Having defined that distributed and embedded systems are reactive systems and
that their verification is of great importance, we now propose an adequate abstract
model to define and verify them. Process theory provides a set of models and
techniques to describe the behavior of parallel processes together with facilities to
identify events such deadlock, livelock, starvation... The key elements of process
theory, as stated by Luca Aceto et al. [1, p. 5], are:

• Logic;

• Process algebra;

• Labeled transition systems;

• Structural operational semantics.

The process algebra presented in this work is the Calculus of Communicating Sys-
tem (CCS) introduced by Robin Milner in 1980 [15]. Furthermore, we will intro-
duce notions of behavioral equivalence to compare processes. These equivalences
will allow us to verify if a process correctly implements its specification.

1.3 Development of a CCS workbench in Scala

To fulfill formal verification on reactive systems, we propose the development of
a web-based tool for modeling and verifying concurrent processes expressed in
Milner’s Calculus of Communicating Systems. This tool will offer us a graphical
view for displaying CCS formulae and for reasoning about them. It will also offer
a range of equivalence notions to compare CCS processes.

Other tools were previously developed for CCS [4] but to our knowledge none were
developed in Scala.

Scala is a programming language designed and developed in the programming
methods laboratory at EPFL since 2001 [18]. “Scala fuses object-oriented and
functional programming in a statically typed programming language.” [17, p. 1]

Our work will try to emphasize the expressiveness offered in Scala by the union of
functional and oriented object paradigms, and evidence that it provides a major
means for the development of such a platform.

4 CHAPTER 1. INTRODUCTION

2
Calculus of Communicating Systems

The calculus of communicating systems (CCS) was introduced by Robin Milner
in 1982 [15]. This language describes concurrent systems and provides us with an
abstraction for them.

The benefits of such a formal algebra are manifold. With it, one can write a set
of equations that depicts the specification for a system, and extract another set
of equations which describes its actual implementation. Then, it is possible to
verify whether the implementation satisfies its specification through equivalence
checks1. Other correction properties can be checked as well on equations such as
the absence of deadlock, starvation or livelock [1, p. 6-8].

Milner’s primary observation was that concurrent systems have an algebraic struc-
ture. Indeed, one can build two processes A and B and then combine them with
an operator to create a new process C. The behavior of C depends on both A and
B, as well as the operation used to combine them.The underlying structure of such
a collection of operations to build new processes from existing ones, is algebraic in
the first sense [1, p. 7-8].

The following introduces and explains the grammar and syntax of CCS, using
informal examples for a general idea of the language, and then its formal specifi-
cations.

1To be detailed in the chapter Behavioral Equivalences

5

6 CHAPTER 2. CALCULUS OF COMMUNICATING SYSTEMS

2.1 CCS by example

Let’s suppose you need to visit with a doctor. First, you may have to contact
a staff worker in an administrative department. Then, as hospitals are usually
crowded places and waiting queues can be long, a machine may provide you with
a ticket, so that your arrival time corresponds fairly with the interval you must
wait. The ticket reflects your position in the waiting queue.

push ticketTM

Figure 2.1: Ticket machine

Figure 2.1 schematizes a ticket machine. It can be seen as a black box with two
communication channels, one for the input push and the other for the output
ticket. From this model one can only extract static information. To describe its
structure and behavior, one needs a CCS program. What follows is how to write
one.

The most basic one is:
∅ or Nil (2.1)

This process accomplishes nothing. It does not make any further computation and
thus depicts a deadlock state. To elaborate more complex ones, one has to use a
constructor. The action prefixing is the most straightforward one, as illustrated
here:

IE
def
= DownloadChrome.0 (2.2)

Intuitively, Internet Explorer (IE) is a process that dies once one has downloaded
chrome. The above example illustrates how, CCS offers the possibility to name new
processes composed from other processes. This allows reusability and composition.
Such definitions can of course be recursive.

Now, we have enough understanding to define our ticket machine as

TM
def
= push.ticket.TM (2.3)

The behavior of our device is thus : first an input action push is done, then an
output action ticket is performed, and finally the process returns to its initial state
of TM .

2.1. CCS BY EXAMPLE 7

This system is rather simple. What about the need for two distinct waiting queues
: one for consultations and another for hospitalizations ? The patient must choose
between consultations and hospitalization to get a ticket for the correct queue.
This is made possible by a choice operator +, as in

TM1
def
= (hospitalization.hT icket.TM1 + consultation.cT icket.TM1) (2.4)

To improve the system one might add a sleep mode by appending a sleep action
just after handing out a ticket. If so, then the system also requires a wake-up
action in order to return to active mode. Such action is added at the beginning of
the equation :

TM2
def
= wakeup.(hospitalization.hT icket.sleep.TM2

+ consultation.cT icket.sleep.TM2)
(2.5)

One can observe that the wakeup action, common to both choices, has been put
out of the parenthesis. But can we distribute wakeup and have the same machine?
Which system would you prefer if you have an appointment with a doctor for a
consultation?

TM3
def
= wakeup.hospitalization.hT icket.sleep.TM3

+

wakeup.consultation.cT icket.sleep.TM3

(2.6)

In the second program you can push on wakeup and be in the first branch of the
choice, which ends up with a hospitalization ticket. In the prior equation once you
have pushed on wakeup both choices still remain available.

One can notice that the behavior of the equation TM3 can be simulated by the
equation TM2 but the opposite is not true. This behavior will be detailed in
Chapter 5 Behavioral Equivalences.

For the next step we need a patient to interact with our ticket device. Let us
model him or her as follows:

P
def
= push.ticket.money.P

Now, we can write a system with these two processes running in parallel. To do
so, we use the parallel composition operator |.

H = TM |P

8 CHAPTER 2. CALCULUS OF COMMUNICATING SYSTEMS

TM and P may communicate via their complementary ports although such com-
munication is optional. Figure 2.2 illustrates the potential communication between
them. The money port can be used by other processes in the environment of P,
for example, the hospital accounting department process.

push

ticket

TM

push

ticket

moneyP

Figure 2.2: H=TM|P

Note that TM and P can use their ports to communicate with other reactive
systems in their neighborhood. The ticket machine is able to communicate with
other patients, as illustrated in Figure 2.3.

CCS offers an operator called restriction \. This operator makes the restricted
channels inaccessible from the outside world. Doing so, our patient P can take an
advantage over the others by making the ticket device only accessible by him as
showed in the Figure 2.4.

PH
def
= (TM |P)\push \ticket

The last CCS operator is for the renaming. The following examples introduce this
operation:

SM
def
= coin.soda.SM

ChM
def
= coin.chocolat.ChM

CM
def
= coin.coffee.CM

These CCS programs describe three distributor machines available in the waiting
room. The first gives you soda, the second chocolate and the third coffee. An astute
reader can notice that the underlying behavior can be generalized as follows:

VM
def
= coin.item.VM

2.1. CCS BY EXAMPLE 9

push

ticket

TM

push

money

ticket

P

push

money

ticket

P’

Figure 2.3: H= TM | P | P’

push

ticket

TM

push

money

ticket

P

push money

ticket

P’

Figure 2.4: PH = (TM | P)\push \ticket

10 CHAPTER 2. CALCULUS OF COMMUNICATING SYSTEMS

Upon helpful renaming of SM, this becomes:

SM
def
= VM [soda/item]

2.2 Labeled Transition Systems – LTS

CCS programs can also be seen as finite automata [1, p. 18]. The key idea behind
this view is that the CCS processes jump from states to states by performing
actions.

The formal link between CCS and LTS will be given futher below. To highlight
this idea, let’s take process P and apply successive actions.

P
def
= push.ticket.money.P

After performing push the system becomes as follows:

P1
def
= ticket.money.P

The system can now receive a ticket and jump to the next state.

P2
def
= money.P

Finally, once the patient has paid money, the systems goes back to the state P . The
processes change their states through transitions. Those transitions are labeled by
the action name that triggered them.

P
push−→ P1

The operational semantic of our patient is given by the following transitions:

P
push−→ P1

ticket−→ P2
money−→ P

P P2

P1

money

ticketpush

2.2. LABELED TRANSITION SYSTEMS – LTS 11

The set of states for our ticket machine is given by:

TM
def
= push.ticket.TM

TM1
def
= ticket.TM

One can notice that patient P wishes to receive a ticket when he or she is in the
state P1 and our ticket machine TM is able to deliver it when in the state TM1.
A similar observation can be made about push.

In CCS, inter-process communications are performed via a handshake to avoid a
third process to join the two synchronized processes [1, p. 15,16].

To do this, one uses the restriction operator to privatize the actions push and
ticket. The state transition is therefore unobservable from the outside world. The
process is going to change its state through an unobservable transition called τ .
Figure 2.5 exhibits the τ transition for the process PH.

(TM |P) \ push \ ticket

(TM1|P1) \ push \ ticket

(TM |P2) \ push \ ticket

τ

τ

money

Figure 2.5: PH = (TM | P)\ push \ ticket

12 CHAPTER 2. CALCULUS OF COMMUNICATING SYSTEMS

The following process exhibits the same behavior as PH, but with a different level
of abstraction.

Spec
def
= money.Spec (2.7)

If one considers PH as black-box, an external observer cannot see all the τ transi-
tions triggered inside PH. For such an observer, PH and Spec are indistinguish-
able. Therefore, one can say that Spec is the specification of PH in the sense that
all transitions performed by PH are authorized by Spec.

2.3 CCS, formally

Let us now turn to formal definitions for CCS, whose syntax complies with the
following definitions:

• Let A be an infinite countable set of channel’s names;

• A={a | a ∈ A}, is the complementary set of names;

• L = A
⋃
A, is the set of labels;

• Act = L
⋃
{τ}, the set of actions;

• K, is an infinite countable set of process names.

The set P of valid expressions of CCS is given by the following grammar:

P ::= k | α.P |P + P |
∑

i∈I
Pi | (P |P) |P [f] |P\L

in which,

• P and the Pi ’s are valid expressions;

• k is a process in K;

• α is an action in Act;

• I is an index set;

• f : Act→ Act is a relabeling function satisfying the following constraints:

f(τ) = τ

f(a) = f(a) for all a∈L,

• L is the set of labels;

2.3. CCS, FORMALLY 13

As one may guess,
∑

i∈I Pi is the generalization of the choice P + P between two
expressions: ∑

i∈I
Pi = P1 + P2 + ...+ Pn

By convention, if I = ∅ then
∑

i∈I Pi is interpreted as 0 (zero).

As we have seen before, the operational semantics of CCS can be expressed by a
finite automaton. This automaton is called a Labeled Transition System [LTS] in
the concurrency theory.

An LTS is a triple of the form (Proc, Act, {
α

→ |α∈ Act})

• Proc is a set of states ranged over by s;

• Act is a set of actions ranged over by α;

• a→⊆ Proc×Proc is a transition relation, for each α ∈ Act. A more intuitive
notation exists: s→ s′ in place of (s, s′) ∈→

Given this definition the LTS formal specification of PH is:

Proc = {(TM |P)\push\ticket, (TM1|P1)\push\ticket, (TM2|P)\push\ticket}

Act = {money, τ}

money−→ = {(TM2|P) \push\ticket, (TM |P)\push\ticket)}

τ−→= {(TM |P) \push\ticket, (TM1|P1)\push\ticket), (TM2|P) \push\ticket}

An LTS transition is valid iff it complies with the Structural Operational Semantics
rules (SOS). Each valid step that a CCS program can perform is given by the
following rules :

Action. The first rule describes how actions are performed :

Act :
α.P

α−→ P
(2.8)

Act has no premises. This axiom means that each process of the form α.P is able
to perform a transition α and then be in state P .

14 CHAPTER 2. CALCULUS OF COMMUNICATING SYSTEMS

Procedure. The second rule defines how procedures are formed :

Cst :
P

α−→ P ′

K
α−→ P ′

where K
def
= P (2.9)

For Cst to establish that the constant K can afford the transition α leading to
P ′, one has to prove first that P itself affords the same transition, and finally that
K equals P .

Choice. The third rule describes the choice transitions:

Sumj :
Pj

α−→ P ′j∑
i∈I Pi

α−→ P ′j
where j ∈ I (2.10)

Sum describes the behavior of the choice operator +. If one of the processes
contained in the choice affords a transition α that leads to the state P ′j , then the
entire choice conducts to the state P’.

Parallelism. The following three rules depict parallelism :

Com1 :
P

α−→ P ′

P | Q α−→ P ′ | Q
(2.11)

Com2 :
Q

α−→ Q′

P | Q α−→ P | Q′
(2.12)

Com3 :
P

a−→ P ′ Q
a−→ Q′

P | Q τ−→ P ′ | Q′
(2.13)

Com1, Com2 and Com3 characterize the legal transitions for processes running
concurrently. Com1 allows us to take the transition from the left side of the
equation and Com2 from the right side. The rule Com3 can only be performed
with complementary actions and will result in a τ transition.

Let’s explain those rules with an example. Let’s imagine we have the process
R = P | Q where P = a.b.0 and Q = a.b.0. This will result in the following set of
states:

2.4. PASSING BY VALUES 15



1 = a.b.0 | a.b.0
2 = b.0 | a.b.0
3 = 0 | a.b.0
4 = a.b.0 | b.0
5 = a.b.0 | 0
6 = b.0 | 0
7 = 0 | b.0
8 = b.0 | b.0
9 = 0 | 0

Figure 2.6 shows all the possible transitions for R = P | Q

Renaming. The next rule defines the renaming :

Rel :
P

α−→ P ′

P [f]
f(α)−→ P ′[f]

(2.14)

If process P leads to P ′ by a transition α, and if f renames α to f(α), then the
renamed process P [f] reaches P ′[f] by rule Rel.

Restriction. The last rule defines the restriction :

Res :
P

α−→ P ′

P \ L
α−→ P ′ \ L

where α, α /∈ L (2.15)

If a transition α goes from P to P ′, and if alpha and α do not belong to the set of
restricted actions, then the transition α for the process P is legal.

2.4 Passing by values

Even if not necessary from a theoretical point of view [16, p.53-56] an extension
of the CCS language can be convenient to exchange data between processes. For
the sake of simplicity, in the following rules the only data type to be used will be
a set of natural numbers.

To do so, the prefixing rules for inputs become :

a(x).P
a(n)→ P [n/x]

for n ≥ 0,

16 CHAPTER 2. CALCULUS OF COMMUNICATING SYSTEMS

1

2

3

4

5

67

8

9

COM1: a

COM1: b

COM2: a

COM2: b
COM1: b

COM1: a

COM2: b

COM1: b
COM2: b

COM3: τ

COM2: a

COM1: a
COM2: a

Figure 2.6: SOS transitions for R = P | Q

2.4. PASSING BY VALUES 17

If there is parametrized input action a, then P [n/x] replaces each free occurrence
of the variable x by n. Therefore the input leads to the process P [n].

For outputs:

a(e).P
a(n)→ P where n is the outcome of evaluating e.

The processes can be parametrized as well. The operational semantic is given by:

P [v1/x1, ..., xn/vn]
α−→ P ′

A(e1, ..., en)
α−→ P ′

where A(x1, ..., xn)
def
= P

• x1, ..., xn are distinct values;

• n ≥ 0;

• A is the process name;

• each ei has for value vi;

If there is a transition from P (x)
α−→ P ′ and the constants A(1, 2, ..., n) are defined

as P , then A(ei) leads to P ′.

Since CCS now manipulates values, it can be useful to have a conditional operator.
Let’s first give an example of a conditional operator semantic that will be used in
the next example:

P
α→ P ′

if bexp then P else Q
α→ P ′

if the boolean expression bexp is true

This rule maintains that if the evaluation of the boolean expression is true, then
P does not perform a transition α and remains in the same state.

Q
α→ Q′

if bexp then P else Q
α→ Q′

if the boolean expression bexp is false

This rule maintains that if the evaluation of the boolean expression is false then
Q performs a transition α and jumps to the state Q′.

Let’s illustrate these new rules by two examples inspired by the Peano arithmetic2.
Consider the following definitions:

Succ
def
= in(x)Succ

′
(x)

2https://en.wikipedia.org/wiki/Peano_axioms - 2017-03-20

18 CHAPTER 2. CALCULUS OF COMMUNICATING SYSTEMS

Succ
′
(x)

def
= out(x+ 1).Succ

Succ is a buffer that holds one number and computes its successor. Let n be a
natural number received in input. When Succ receives the number n, it binds its
value to the parameter x. The process will then apply the second equation and
behaves like Succ’(n). The program output will be the evaluation of the expression
out(n+ 1). Finally the program will go back into its initial state.

Let us now consider to the following definitions :

Pred
def
= in(x)Pred

′
(x)

Pred
′
(x)

def
= if x = 0 then out(0).P red else out(x− 1).P red

Here, Pred is a buffer that holds one number and computes its predecessor. Since
we want to compute only natural numbers, a conditional clause has been added in
order to avoid negative numbers.

As mentioned earlier, such language extension is unnecessary. We shall now
demonstrate how our examples can be reduced to the basic calculus3.

For the sake of simplicity, we consider all inputs to belong to a finite set V . If we
take the parametrized constant Succ’(x), we are able to transform it into a set of
constants Succ′v, one constant for each value of v ∈ V .

The same applies for the output prefix out(x+ 1), which now becomes a set of
outv+1. Thus, our equation for Succ’ becomes a family of equations:

Succ
′

v

def
= out(v+1).Succ (v ∈ V)

As for the prefix in(x), in order to reflect that it can take any input from V and
binds it to x. We can translate it to a sum

∑
v∈V inv. The equation is now:

Succ
def
=

∑
v∈V

inv.Succ
′

v (v ∈ V)

As for the second example, Pred, the first equation has the following translation:

Pred
def
=

∑
v∈V

inv.P red
′

v (v ∈ V)

3The interested reader can find the exhaustive conversion rules in [16, p. 55,56]

2.5. CONCLUSION 19

The second equation translates to a family of equations for each v but the right
member of the equation depends on the nature of v:

Pred
′

v

def

=

{
out(v−1).Succ if v 6= 0 (v ∈ V)

out(0).Succ if v = 0

The internal boolean expression has thus become an external condition describing
a family of equations.

2.5 Conclusion

In this chapter we presented an overview of CCS, a subject for which many books
exist. We have selected one of them, Reactive Systems [1], that was helpfully
didactic in guiding us in our journey to the exploration of the language. We
have chosen to follow the same path in the present chapter and in Chapter 5 on
Behavioral Equivalences.

20 CHAPTER 2. CALCULUS OF COMMUNICATING SYSTEMS

3
Scala

The aim of this chapter is to introduce the reader to Scala. Our goal is not to be
as exhaustive as a language specification could be, but rather to give the essential
parts needed to understand the present work.

Most of the content of this chapter, is a condensed view derived from a technical
report written by the authors of the language in 2006 [17].

Scala is a programming language designed and developed in the programming
methods laboratory of the EPFL since 2001 [18]. Its creators noticed that in the
software industry only a few components are actually reused. So Scala was built
to address this limitation by basing it on two main principles: first that the same
concept should be able to describe both small and large parts of a system and
thus to grow as its applications demand (hence, the origin of its name). Second,
that this scalability should be provided by a combination of functional and object-
oriented paradigms.

3.1 A Java like language

Scala was built to easily interact with mainstream platforms such as C# or Java.
Scala can natively use classes, libraries and frameworks from those platforms.
Programs can reuse existing code previously developed in Java and conversely,
Java seamlessly can use frameworks written in Scala.

For example, the Play framework was developed in Scala and can be used either
in Java or in Scala [3]. Moreover, Scala shares most of its syntax with Java and
C# which accelerates the learning curve to use it.

21

22 CHAPTER 3. SCALA

3.2 A Unified Object Model

“Scala uses a pure object-oriented model” [17, p. 3]. “Every value is an object and
every operation is a message sent” [17, p. 3].

3.2.1 Classes

All classes belong to one of two groups: references or values. The reference classes
are subtypes of AnyRef and the value classes are subtypes of AnyVal. AnyVal
and AnyRef are subtypes of the super class Any. Note, that usually the reference
classes are stored in the heap whereas the value classes are stored in the stack.
Because all values are subtypes of AnyVal, there is no primitives in Scala.

3.2.2 Operations

As stated earlier, each Scala operation is a message sent via a method call. The
operators are labeled as ordinary identifiers. If an operator is between two expres-
sions, the compiler will consider it as a method call, allowing it to be considered
as an infix operator. For instance, a + b is equivalent to a.+(b). This syntactic
sugar can however be used only with one parameter.

Scala authorizes method calls without evaluating the parameters. This technique is
called lazy loading. For achieving this, the compiler uses a call-by-name. Usually,
Scala uses call-by-value but if the type of function parameter starts with =>, it
uses a call-by-name. Let us consider the following snippet.

def f(value: Int, name: =>Int)= value

f(1, NonTerminatingComputation) //(a)

f(NonTerminatingComputation, 1) //(b)

In the definition of the function f, the left parameter is a call-by-value and will be
evaluated when passed to the function. In contrast, the right parameter is call-
by-name and the evaluation will be deferred until the point at which it is needed.
In our case, the first call to f will return 1 while the second call to f will never
terminate. This leads us to the following conclusion: “If call-by-value evaluation
of an expression e terminates, then call-by-name evaluation of e terminates also.
The other direction is not true.” [19]

3.3. OPERATIONS ARE OBJECTS 23

3.2.3 Variables and Properties

Variable dereferencing and assignment are method calls as well. They are per-
formed through auto-generated getters and setters.

def x: T
def x_= (newval: T): unit

Actually, every reference to x is interpreted as a call to defx ,and every assignment
such as x = 5 is interpreted as x._ = (5). The programmer has the possibility to
redefine setters and getters to add properties on them.

class Natural{
private x: Int
def n: Int = x
def n_=(y :Int):Unit = if(y<=0) x=0 else x=y

}

In the class Natural, every assignment verifies whether the value is positive. If
not, the value is replaced by zero. Every reference simply returns the value of x.

3.3 Operations are Objects

3.3.1 Methods are Functional Values

Since methods are functional values, they can be assigned to a variable and passed
as a function parameter. Functions are also able to return a function as a value.
Those functions are called Higher-order functions. Scala offers the possibility to
define a function without giving it a name. Those anonymous functions are called
lambdas. To illustrate those concepts, let’s have a look to the following code:

def find(as: List[A],p: A => Boolean):Option[A]= { //high-order function
if (as.isEmpty) None
else if (p(as.head)) Some(as.head)
else find (as.tail,p)

}

val as = List(1,2,3,4)
//This high-order function will look up if 3 is present in the list and

then return it.

24 CHAPTER 3. SCALA

find(as, x => x == 3) //lambda

find takes a list and predicate as parameters. In code here above, the predicate
is illustrated as a lambda. The function find recursively iterates on the list. This
function returns an optional value. None if nothing is found, and Some otherwise.
The value found is returned wrapped by the class Some.

Higher-order functions offer us the possibility to use the same function for every
possible predicate without rewriting code.

3.3.2 Functions are Objects

“If methods are values, and values are objects, it follows that methods themselves
are objects”[17, p. 6] Function are actually a syntactic sugar for a specific type of
class. For instance the function S ⇒ T is actually the class:

package scala
abstract class Function[-S, +T]{

def apply(x :S): T
}

val square : Int => Int = (a :Int) => a * a
square(2) //res1: Int = 4

val square2 : Int => Int = new Function[Int, Int]{
def apply(a :Int) = a * a

}
square2.apply(2) //res2: Int = 4
square2(2) //res3: Int = 4

The function square is defined with a functional style without any reference to
an object creation. But under the hood the compiler automatically transforms
square into an instance of Function[−S,+T] as illustrated by square2. More-
over, the name of the function followed by its arguments inside parenthesis is a
syntactic sugar for a call to the function apply, e.g., square2 is interpreted as
square2.apply(2).

3.3.3 Refining Functions

Since functions are objects, they are able to use the inheritance mechanism.

3.3. OPERATIONS ARE OBJECTS 25

class Array[T] extends Function1[int, T] with Seq[T] {
def apply(index: int): T = ..
...
}
val a: Array[Char] = List(’a’,’b’,’c’,’d’).toArray

a(3) //res1 = d idem as a.apply(3)

An example of function inheritance in the standard library are arrays. They inherit
from Function1[int, T]. In the example above T is binded to Char in the array
declaration. As displayed in the last line of code, the array access is interpreted
as a function application through the function apply. Because arrays inherit from
Function1 they can use this syntactic sugar.

3.3.4 Sequences and For Comprehensions

There are several types of sequences in the main Scala library such as iterators, ar-
rays, and streams. On those sequences, one can apply existing high-order functions
such as filter or map. Scala offers the possibility to use for-loop in comprehension.

def processNegativeNumber(xs: List[Double]): List[Double] {
xs filter (x => x < 0) map (x => -x)

}
def processNegativeNumber2(xs: List[Double]): List[Double]{

for (val x <- xs; 0 < x) yield -x
}

Both functions have exactly the same behavior. The first one uses high-order
functions applied to a list. It filters the elements and then maps them to a new
positive value.

The second one uses a for loop in comprehension. The first part contains the
generator, the second part contains the filter. The keyword yield is used to generate
a new value for each matching element. This new value is buffered until the end
of the loop. Finally, the buffer is returned as a sequence.

26 CHAPTER 3. SCALA

3.4 Abstraction

Scala offers two types of abstraction, by parametrization (Functional) and by ab-
stract member (Object Oriented).

3.4.1 Functional Abstraction

Classes can abstract over the type.

class ImmutableWrapper[T](init: T) {
private val value: T = init
def get: T = value

}

ImmutableWrapper[Int](5)
ImmutableWrapper("infered type")

For each usage, the class parameter T will be replaced by the actual type of the
value given in the constructor. The ImmutableWrapper can be used with any
type. This class is generic. Note that, the compiler has the ability to directly infer
the type. Functions have the ability to be generic as well.

def clone[T](x: ImmutableWrapper[T]) : ImmutableWrapper[T] =
ImmutableWrapper[T](x.get)

val x: ImmutableWrapper[Int] = ImmutableWrapper[Int](5)
val y = clone[ImmutableWrapper[Int]](x)

Generic type parameters can be bounded to a specific subtype. As the language
supports the F-bounded polymorphism, the question of sub-typing variance is
raised. Are they contra-variant, covariant, or non-variant ? The language permits
all of those possibilities.

3.4.2 Abstract Members

As an alternative to abstraction by parametrization, object oriented abstraction
can be used. This can be achieved via abstract type members. Of course an
abstract type may have only one definition.

abstract class ImmutableWrapper[T](init: T) {

3.5. COMPOSITION 27

type T
val init: T
private val value: T = init
def get: T = value

}
val x = new ImmutableWrapper {type T = Int; val init = 5 }

3.4.3 Modeling generics with abstract types

The functional abstraction (generics) can be replaced by the oriented object ab-
straction (abstract members). It is therefore possible to achieve the same function-
alities with only one paradigm, but the language will loose conciseness. Further-
more, “generics are typically used when one needs just type instantiation, whereas
abstract types are typically used when one needs to refer to the abstract type from
client code.” [17, p. 11].

3.5 Composition

The mechanism used in Scala to compose classes aremixins. Mixins are a solution
to multiple inheritance. Therefore, with this solution a class can inherit from
several traits. A trait is an interface that may implement methods. Only traits
can be used in a mixin. Let us illustrate this with a foretaste of the next chapter.

trait CCS

trait Composition {
this: Process =>

def |(other: Process) = CompositionProcess(this, other)
}

trait Summation {
this:Process =>

def +(other: Process) = SummationProcess(this, other)
}

class Process extends CCS with Summation with Composition

28 CHAPTER 3. SCALA

val x :Process = new Process
val y :Process = new Process

val summationP = x + y
val compositionP = x | y

As a result of the mixin composition, Process has two operations available + and
|.

If two traits have methods with the same signatures, the compiler takes the delta
between the methods of the super class and the ones from the traits based on the
order of apparition after the keyword with.

Inherited methods can be overloaded if they have the same signature. As in Java,
the lowest definition is always picked. If no implementation exists for a method,
the class or trait is abstract otherwise it is said as concrete.

3.6 Decomposition

In object oriented programming, structured data can only be decomposed through
a set of methods directly implemented in the data structure. To avoid class mod-
ification and separate the algorithm from the structure, one can use the visitor
pattern 1. But Scala proposes a functional way of achieving decomposition with
pattern matching.

def sum(l: List[Int]): Int = l match {
case Nil => 0
case x :: xs => x + sum(xs)

}

The function sum recursively iterates over the list l and returns the sum of the
elements. The block with the case statements tries to find a match for the list l
received in parameter. It uses the policy of first case matching. Once a matching
is found the statement of the case is applied. The first case is the base case. It
matches an empty list and returns zero. The second case is the inductive case
which sums every element of the list.

1The interested reader can found more details about the visitor pattern: https://en.
wikipedia.org/wiki/Visitor_pattern

https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Visitor_pattern

3.7. XML PROCESSING 29

3.7 XML Processing

Scala has been designed to ease maintenance and construction of programs that
use XML data format. The XML syntax can be natively used in the language. The
decomposition of the XML structure is done through pattern matching. Searches
can be easily done with for-loop in comprehension with a style close to XQuery.

3.8 Component Adaptation

Integration of existing components can be difficult. Let us suppose one wants to
integrate an existing library in one’s code base. The interface offered by this library
may not meet one’s requirements. An object oriented approach to this problem is
either to use inheritance or a design pattern such as the visitor. Those solutions
can be complex to implement and to maintain [24]. “This unsatisfactory situation
is commonly called the external extensibility problem” [17, p. 15].

Scala has introduced views to solve the external extensibility problem. Views are
a special case of implicit parameters.

3.8.1 Implicit Parameters

To illustrate the concept of implicit, let us start with a concrete example. Imagine
a class with a set of methods doing asynchronous calls to a web-service. In order
to do so, one has to pass around an ExecutionContext in each of these methods.
Of course, this can be achieved manually but in a large code base with a lot of
parameters, this can result in a lot of boilerplate code.

To avoid passing the same parameter over and over in each method calls, Scala
proposes to use implicit parameters. When a method has a parameter declared as
implicit, the compiler tries to infer the missing implicit parameter from the scope.
If there are several choices, the compiler chooses the correct one with the same
rules as the overloading.

implicit val ec: ExecutionContext =
scala.concurrent.ExecutionContext.Implicits.global

def getSoldier(id: Int)(implicit e: ExecutionContext): Future[Soldier] =
???

def getRank(s :Soldier)(implicit e: ExecutionContext): Future[Rank] = ???

30 CHAPTER 3. SCALA

val rankedSoldier: Future[SoldierWithRank] =
getSoldier(100).flatMap { s =>
getRank(s).map { r =>
SoldierWithRank(s.id, s.name,r)

}
}

}

Let us imagine the functions getSoldier and getRank have to fetch their data
via a web-service. For performance reasons, they performs asynchronous calls.
Because ExecutionContext is declared as an implicit, it is automatically provided
to getSoldier and getRank. This is illustrated in the last statement: the two
functions are called to retrieve the soldier with the id 100, along with his rank,
without ExecutionContext.

3.8.2 Views

“Views are implicit conversions between types” [17, p. 17]. Views can be used to
add extra functionalities on existing classes without altering them.

implicit class ImprovedInt(i :Int){
def incr = i + 1

}

val counter = 5
val next = counter.incr

ImprovedInt adds extra behavior on Int. This class is defined as an implicit. First,
the compiler treats the variable counter as a regular Int. But when the method
incr is called on counter, the compiler converts to the implicit type ImprovedInt
because the method incr is not available on Int.

3.9 Conclusion

Scala has a rich syntax, a convenient inference type system and combines object-
oriented and functional paradigms. However, Scala can be perceived as simple, as
it is based on just a few principles. Its language constructs allow us to abstract

3.9. CONCLUSION 31

and create new components. Scala promises to provide the necessary tools for
building reusable pieces of code.

32 CHAPTER 3. SCALA

4
Implementation

4.1 Workbench requirements

In the introduction we provided a general description of our tool. It is now the
time to define it.

The first goal of our tool is to model CCS equations as graphs. Those graphs
allow us to visualize intercommunication and potential deadlocks. We also want
to interact with graphs and explore step by step equations.

It follows that the workbench has to provide a way to input CCS formulae and
display them as graph in two modes:

- a discovery view, where the user clicks on the graph nodes to expand the
equation step by step;

- a static view, where the equation is already expanded.

A desirable property is that the graph should be an unmodified transcription of
the equation. It means that one should be able to deduce the original equation
from the graph.

The second goal of our tool is to compare CCS equations through a range of
behavioral equivalence and preorder properties.

To do so, the tool has to provide a way to select two CCS equations and apply
the desired property check on them. Ideally, the tool will provide us meaningful
details on the check.

So far, we have introduced CCS and Scala. That gives us enough material to start

33

34 CHAPTER 4. IMPLEMENTATION

implementing the first goal of the tool.

As for the second goal, the checks will be directly applied on the graph previously
generated by the first step. But before explaining their algorithms and imple-
mentations, theoretical notions on equivalences should be introduced. For that
reason, we have chosen to detail all those aspects in a separate chapter (Chapter
5 Behavioral Equivalences).

4.2 Implementation overview

Let us give an overview of the steps needed to implement the first part of our tool.

• The first step is the parsing. The goal of this step is to provide a convenient
data structure on which we can perform computations. The produced data
structure is an abstract syntactic tree - AST;

• The second step is to generate a set of transitions for an equation;

• Then from those transitions we will generate a graph and display it in the
view.

The scheme illustrated in Figure 4.1 will guide our development and will be detailed
in the next sections.

CCS equations

AST Transition

Graph

Parsing

Figure 4.1: Implementation diagram

4.3. PARSING 35

4.3 Parsing

In this section, we will process the formula received in input and analyze it. This
analysis will allow us to create an abstract syntactic tree. To transform the flat
text received into an AST, few solutions exist. One of them is the combinator
parsing.

4.3.1 Combinator Parsing

To build this type of parser, we use primitive parsers and combinators. The role
of the primitive parser is to recognize the subsequences of our text. The role of
the combinators is to combine the parsers between them to build a more complex
one. The result of this combination is a new parser that itself can be combined
with others.

The combinators are just functions that can apply [12, p. 13]:

• Repetitions: apply multiple times the parser to the input (zero or more, on
or more, zero or one);

• Sequence: each parser has to successively succeed according its position in
the sequence;

• Alternation: at least one of the parsers must validate the sub-sequence.

In this approach, the lexical and syntactical analysis are unified in the very same
grammar. But why would one choose this approach instead of the traditional
method where the analysis is performed in two distinct phases ? There are two
reasons described in the following subsections.

Scannerless

In the classical approach, the lexical analyzer, lexer, uses regular expression to
create tokens. Those tokens are then given to the syntactic analyzer. This analyzer
applies a context free grammar (CFG) to each token to build the data structure.
However, the lexer may need a context to decide which component to create. For
instance, in Java the character < could be either a comparison operation as in
a < b, or can be used to write a generic type such as in List < T >.

The lexer may also need to recognize nested structures. To decide which rule
to apply depending on the context, some priority rules have to be defined. This
mechanism can be complicated. On the other hand, in the scannerless approach,

36 CHAPTER 4. IMPLEMENTATION

one has access to the context at any moment. Therefore, the priority rules are no
longer relevant. This is the standard provided method by Scala combinator Parser
[12, p. 13, 19, 20].

Parsing Expression Grammar

Another difference between the two approaches is the grammar. The implementa-
tion of our parser uses a parsing expression grammar - PEG instead of a context
free grammar - CFG.

The context free grammars were developed to recognize the natural languages.
However, those grammars may not be relevant for parsing formal languages. They
are generative, which means that they define rules on how to produce a word of
the language but not how to identify it.

A second drawback of CFG is that they are prone to ambiguity. The same input
can have several possible derivations, which makes sense in a natural language but
not for a formal language. To resolve that, some rules have to be added to the
grammar which complicates it.

On the other hand, a PEG is based on recognition instead of generation. This
resolves ambiguities via deterministic priority rules. This grammar combines the
EBNF annotation and regular expression, to allow a more natural transposition
of the source language grammar. The PEG grammar is used by the standard
combinator parser provided by Scala [12, p. 13, 19, 20].

4.3.2 Abstract Syntax Tree - AST

The data structure created by the parser is an abstract syntactic tree. Each node
of the tree denotes a construct occurring in CCS. The internal nodes depict the
different operators available in CCS. The leaves are either an action or the process
Nil.

An implementation of π − Calculus 1 as a domain specific language2 has been
proposed by Matiello Pedro[14]. We have used that structure as a guideline and
adapted it to our domain.

1Pi-Calculus is the continuation of CCS: https://en.wikipedia.org/wiki/%CE%
A0-calculus

2A language applied to a specific domain. The interested reader can find more information
at http://www.scala-lang.org/old/node/1403

https://en.wikipedia.org/wiki/%CE%A0-calculus
https://en.wikipedia.org/wiki/%CE%A0-calculus
http ://www.scala-lang.org/old/node/1403

4.3. PARSING 37

Figure 4.2 shows the class hierarchy used to build the tree. It is followed by a detail
of the implementation of each classes. For the sake of clarity, only the relevant
methods are displayed. Finally, few examples to illustrate the interlacing of nodes
and leaves.

trait CCS

This trait is at the summit of the hierarchy. It allows us to type all the objects
belonging to CCS.

trait Process extends CCS with Summation with Composition with
Restriction

Process is a CCS expression on which one can apply choices(+), composition(|),
or restriction (\) operators. As the astute reader can remember from the chapter
on Scala, the mixin technique is used to provide extra functionalities.

Operations

trait Summation {
this:Process =>

def +(other: Process) = SummationProcess(this, other)
}

trait Restriction {
this:Process =>

def \(other: => List[InputAction]) = RestrictionProcess(this, other)
}

trait Composition {
this: Process =>

def |(other: Process) = CompositionProcess(this, other)
}

• Summation provides us a method + to sum two processes. As a result, it
creates a node of type SummationProcess composed from the two expres-
sions.

38 CHAPTER 4. IMPLEMENTATION

Figure 4.2: AST Diagram

4.3. PARSING 39

• Restriction provides us a method \ to restrict a process. As a result, it
creates a node of type RestrictionProcess composed with a process and a
list of restricted actions.

• Composition provides us a method | to compose two processes. As a re-
sult, it creates a node of type CompositionProcess composed from the two
expressions.

Those newly created objects permit us to write code that is close to the syntax of
CCS:

val C = A | B // A and B are defined as process
val D = A + B
val E = C \ xs // xs is defined as a list of actions

A last point to highlight is the usage of the self-type reference i.e: this : Process =>
With this technique, each object that instantiate Summation has to be mixed with
the trait Process.

Hence, Summation has access to Process, which allows the method + to create
a SummationProcess with a reference to the process given as a parameter and
itself (this).

This style handles the dependency between two traits without resorting to inheri-
tance. This is an elegant way of doing component injection without a framework
such as spring.

Let us turn to the classes implementing those traits.

Processes

case class DefinitionProcess(id:String, definition:Process) extends
Process

case class ConcatenationProcess(val left: Prefix, val right: Process)
extends Process

case class SummationProcess(left: Process, right: Process) extends
Process

case class CompositionProcess(left: Process, right: Process) extends
Process

40 CHAPTER 4. IMPLEMENTATION

case class NilProcess() extends Process

case class RestrictionProcess(process: Process, other:
List[InputAction]) extends Process

case class ReferencedProcess(id: String) extends Process

case class RenamingProcess(process: Process, other: List[(InputAction,
InputAction)]) extends Process

Those classes are defining all the different processes available in CCS. There is a
slight difference between DefinitionProcess and ReferencedProcess.

DefinitionProcess symbolizes a CCS equation. The id and definition parameters
are respectively the left and the right side of the CCS equation. ReferencedProcess
is a pointer to an equation that may not be defined yet.

This allows us to deal with forward process definition such as :

A = a.B

B = b.d.0

Action prefixing

trait Prefix extends CCS with Concatenation

trait Concatenation {
this: Prefix =>

def *(other: => Process) = ConcatenationProcess(this, other)
}

case class ConcatenationPrefix(actions: List[Prefix]) extends Prefix

• Prefix allows us to identify all expressions on which we are authorized to
apply action prefixing.

• Concatenation provides us the action prefixing through its method ∗.

• ConcatenationPrefix is a sequence of prefixed actions. Instead of list of
Prefix we could have used a nested structure of Prefix. But the list struc-

4.3. PARSING 41

ture allows us to know the previous and next action easily. This will simplify
the transition generation in the next steps.

Actions

trait Act extends Prefix
case class InputAction(id:String) extends Act
case class OutputAction(id:String) extends Act
case class Tau(id:String) extends Act

Those classes depict the three kind of actions and they are all subtype of Prefix.
Let’s turn now to the following examples,


1 = P

def
= push.ticket.money.P

2 = TM
def
= push.ticket.TM

3 = PH
def
= (TM |P)\{push, ticket}

4 = VM
def
= coin.(chocolate.∅+ candy.∅)

To provide those equations as a flat text to the parser, one has to input them in a
syntax supported by the workbench. To do so, they have to be rewritten according
to the syntax defined in Table 6.1. The four equations become :

1 = P = _push.ticket._money.P
2 = TM = push._ticket.TM
3 = PH = (TM |P)\{push, ticket}
4 = VM = coin.(_chocolate.0 +_candy.0)

Afterwards, the parser produces the following results :

//1
val P = ProcessDefinition("P",

ConcatenationProcess(
ConcatenationPrefix(

List(OutputAction("push"),InputAction("ticket"),OutputAction("money")),
ReferencedProcess("P"))

//2
val TM = ProcessDefinition("TM",ConcatenationProcess(
ConcatenationPrefix(List(InputAction("push"),OutputAction("ticket"))),

ReferencedProcess("TM"))
//3

42 CHAPTER 4. IMPLEMENTATION

val PH = ProcessDefinition(PH, RestrictedProcess(
CompositionProcess(P.definition,TM.definition),

List(InputAction("push"),InputAction("ticket"))
//4
val VM = ProcessDefinition("VM", ConcatenationProcess(
ConcatenationPrefix(List(InputAction("coin")),

SummationProcess(
ConcatenationProcess(ConcatenationPrefix(List(OutputAction("chocolate")),
NilProcess),
ConcatenationProcess(ConcatenationPrefix(List(OutputAction("candy")),
NilProcess))))

4.3.3 Parsing Implementation

trait CCSParser extends JavaTokenParsers

CCSParser contains all the required parsing functions. It inherits from JavaTokenParsers,
one of the combinator parser provided by the Scala standard library. Let us de-
scribe its main functions:

• ˜: defines a sequence of parsers;

• .? or opt : defines an optional parser;

• | is: tries to match the left expression. If not it tries to match the right
expression;

• rep(p :⇒ Parser[T]) : takes a parser as an argument and repetitively applies
it until it fails. The result is a parser containing a list.

• repsep[T](p :⇒ Parser[T], q :⇒ Parser[Any]) : takes two interleaving
parser, P and Q, and tries to match them repetitively. The result is a parser
containing a list of P elements.

• ˆˆ : applies a converting function to the result of the parser located on its
left;

• ˆˆˆ : directly replace the result of the parser located on its left by the element
located on the right.

Let us now implement the parser. To do so, two fashions are available: top-down
decomposition or bottom-up composition. Note that as printed out in [12, p. 28],

4.3. PARSING 43

“Writing out grammar rules in a top-down or a bottom-up order is merely a matter
of taste”.

We will write our grammar rules in a top-down fashion. This means that we
will start with the entire input on the top rule. Then from the top rule we will
apply successive definitions which are going to lead us to the terminal rules. The
succession of grammar rules will reflect the precedence of CCS operations. The
loosest precedence is on top, the tightest is at the bottom :

• The first rule starts with the whole input and breaks it into an identifier
followed by an Expression;

def parseProcess: Parser[Process] = processIdentifierRule ~ "=" ~
Expression ^^ {

case (x ~ "=" ~ y) => DefinitionProcess(x,y)
}

• An expression is a summationRule.

def expression: Parser[Process] = summationRule

• A summationRule is a compositionRule potentially followed by multiple
compositionRule separated by "+". summationRule binds more loosely
than other operators;

def summationRule: Parser[Process] = compositionRule ~ rep("+" ~
compositionRule) ^^ {

case (x ~ y) => y.foldLeft(x) {
case (x, "+" ~ y) => x + y

}
}

• A compositionRule is a composedProcessRule potentially followed by mul-
tiple composedProcessRule separated by "|". compositionRule binds more
tightly than "+" but more loosely than other operators;

def compositionRule: Parser[Process] = composedProcessRule ~
rep("|" ~ composedProcessRule) ^^ {

case (x ~ y) => y.foldLeft(x) {
case (x, "|" ~ y) => x | y

}
}

• A composedProcessRule: is a processRule potentially followed by a restrictionRule

44 CHAPTER 4. IMPLEMENTATION

or a renamingRule. It can as well match an expression between parenthesis
potentially followed by a restrictionRule;

def composedProcessRule: Parser[Process] = processRule ~
opt(restrictionRule | renamingRule) ^^ {
case x ~ y => restrictionOrRenamingProcessFactory(x, y)

} | "(" ~ Expression ~ ")" ~ opt(restrictionRule) ^^ {
case "(" ~ x ~ ")" ~ y => restrictionOrRenamingProcessFactory(x,

y)
}

• A processRule matches a set of actions separated by "." and followed by a
composedProcessRule. This definition can also match simpleProcessRule;

def processRule: Parser[Process] = repsep(actionRule, ".") ~ "."
~ composedProcessRule ^^ {

case x ~ "." ~ y => ConcatenationPrefix(x) * y
} | simpleProcessRule

• A renamingRule is a set of tuples. This tuple is composed by two input
actions separated by "/";

def renamingRule: Parser[List[(InputAction, InputAction)]] = "["
~ repsep(inputActionRule ~ "/" ~ inputActionRule, ",") ~ "]"
^^ {

case "[" ~ x ~ "]" => x.map({ case x ~ "/" ~ y => (x, y) })
}

• A restrictionProcessRule is the character "\" followed by a set of input
actions;

def restrictionRule: Parser[List[InputAction]] =
"""\{""" ~ repsep(inputActionRule, ",") ~ "}" ^^ {
case _ ~ x ~ _ => x;

}

• A actionRule is an input action or output action;

def actionRule: Parser[Prefix] = inputActionRule | outputActionRule

• A simpleProcessRule is an empty process or process identifier;

def simpleProcessRule: Parser[Process] = emptyProcessRule |
processIdentifierRule

4.3. PARSING 45

• A processIdentifierRule is terminal element defined as a set capital letters;

def processIdentifierRule: Parser[Process] = """[A-Z]+""".r ^^ {
x => ReferencedProcess(x)

}

• A emptyProcessRule is terminal element defined as the number "0";

def emptyProcessRule: Parser[Process] = """0""".r ^^^ NilProcess()

• An inputAction is terminal element defined as a set of lower-case letters;

def inputActionRule = """[a-z]+""".r ^^ { x => InputAction(x) }

• An outputAction is terminal element defined as a set of lower-case letters
that stars with the character "_".

def outputActionRule ="""_[a-z]+""".r ^^ { x =>
OutputAction(x.substring(1)) }

One can notice that summationRule will only produce a SummationProcess if
the right side of the "+" matches at least one time. Otherwise, the creation
of the AST node will be defered to composedProcessRule, the function one level
below. Each definition will proceed in the same fashion until they reach a terminal
definition.

The methods ˆˆˆ and ˆˆ are used to build the AST nodes. Detailing all the rules
used in the parser will be tedious, but nevertheless we think describing the whole
behavior of summationRule is of interest. Functional decomposition, compiler
inference, high-order function and infix notation provided by Scala are illustrated
in that snippet.

In summationRule, if the rule complies with the definition, pattern matching
is applied to break down the equation. x is the first element and y the list of
the remaining elements. We used the foldLeft function to handle formula with
multiple + as in: "A+B+...+N". In this case x is "A" and y is "B+...+N".
Thanks to the function return type, Scala compilers will infer the type of x and
treats it as a Process.
foldLeft takes an accumulator x and a function applied from left to right to each
list element. This function will sum up two by two the processes with the function
+. The function "+" is defined on the trait Summation from our AST. The result
will be:

SummationProcess(A, SummationProcess(B, SummationProcess(...P rocess(N)))

46 CHAPTER 4. IMPLEMENTATION

case (x ~ y) => y.foldLeft(x) {
case (x, "+" ~ y) => x + y

}

4.4 Transitions

Now that we have our AST, we can compute the transitions for each process. A
transition is defined by the following class :

case class Transition(source:Process, action: Prefix, target: Process)

An instance of a transition depicts the links between two states of an LTS. Let’s
remember the example from the section 2.2 LTS.

P
def
= push.ticket.money.P

which gives the following transitions between states,

P
push−→ P1

ticket−→ P2
money−→ P

Accordingly the following subsequent transitions will be generated from the AST:

Transition(P, OutputAction(push), P1)
Transition(P1, InputAction(ticket), P2)
Transition(P2, OutputAction(money), P)

Now that we have transitions and an AST, the next step will be to explain how
to traverse the tree and build the transitions for each node encountered.

But first let’s speak about case classes and pattern matching. We have already
met case classes previously in the definition of the syntactic tree. According to the
Scala documentation [5] case classes are:

- Immutable by default

- Compared by structural equality instead of by reference

- Succinct to instantiate and operate on

- Decomposable through pattern matching

4.4. TRANSITIONS 47

In order to achieve the last point the compiler automatically generates an extractor
method for the case classes. The purpose of the extractor is to pull out the
inputs that were given in the constructor. This will allow the pattern matching to
decompose the object.

Let’s have a look to the function that travels across the tree :

def dispatcher(currentProcess: Process,
restrictedActions:Option[List[InputAction]] = None):
List[Transition] = {

currentProcess match {
case DefinitionProcess(left, right) => dispatcher(right)
case c: ConcatenationProcess =>

generateConcatenationTransition(c,restrictedActions)
case s: SummationProcess => generateSummationTransition(s);
case c: CompositionProcess => generateCompositionTransition(c,

restrictedActions)
case RestrictionProcess(left, right) => dispatcher(left,

Some(right));
case _ => List()

}
}

This function goes through the AST and generates the adequate Transitions
for each internal step of the equation. The result is a list containing all of the
transitions.

As one can notice from Figure 4.2 which illustrates the AST, not all of the cases
of processes are covered. Actually for the sake of simplicity, RenamedProcess is
present in the parser but not supported further in our code. ReferencedProcess is
not there either. As we said earlier this function only builds the internal transitions
for each process. The reason of this limitation is to avoid infinite computations in
case of recursive process e.g.: {

A = a.b.B

B = d.e.A

The result for the ReferencedProcess, will be therefore matched by _ and an
empty list will be returned. This is also true forNilProcess andRenamedProcess.

The link between each process transition will be done in the graph generation. This
will be our next step. However before going further, let us explain the transition
generation for each managed process.

48 CHAPTER 4. IMPLEMENTATION

Concatenation Transition

def generateConcatenationTransition(currentProcess:
ConcatenationProcess, restrict: Option[List[InputAction]] = None):
List[Transition] = {

val (left, right) = (currentProcess.left, currentProcess.right)
// If only one action remains on the prefix, you have to link this

action to the next Process when
// creating the transition. example : a.B = Transition(a.B, a, B)
if (left.size == 1) {
right match {
case NilProcess() => List(Transition(currentProcess,

left.nextAction, right))
case r: ReferencedProcess => List(Transition(currentProcess,

left.nextAction, r))
case c: ConcatenationProcess => Transition(currentProcess,

left.nextAction, right) :: dispatcher(c, restrict)
case s: SummationProcess => Transition(ConcatenationProcess(left,

right), left.nextAction, right) :: dispatcher(s, restrict)
case c: CompositionProcess => Transition(ConcatenationProcess(left,

right), left.nextAction, right) :: dispatcher(c, restrict)
case r: RestrictionProcess => Transition(ConcatenationProcess(left,

r.process), left.nextAction, r.process) :: dispatcher(r)
case _ => List()

}
}
else {
Transition(currentProcess, left.nextAction,

ConcatenationProcess(left.nextStep, right)) ::
generateConcatenationTransition(ConcatenationProcess(left.nextStep,
right))

}
}

The else branch of this function creates a transition between two actions. The
new transition is added to a list. The tail of the list is generated by a recursive
call to generateConcatenationTransition. These recursive calls travel the list of
actions until only one remains.

When only one action remains the if branch creates a new transition from the
last action to the next process. Depending on the type of the target process this
transition varies.

4.4. TRANSITIONS 49

Finally, in all cases but NilProcess and ReferencedProcess, the dispatcher is
called to generate the ad-hoc transitions for the next process. The resulting list of
transitions is concatenated with the newly created transition.

Except the RenamedProcess, all the process type are covered. This function
implements rule 2.8 ACT from the CCS chapter.

Summation Transition

def generateSummationTransition(summationP:
SummationProcess):List[Transition] = {
//creates left side transitions
dispatcher(summationP.left).map(

y=> Transition(SummationProcess(y.source,summationP.right),y.action,
SummationProcess(y.target,summationP.right)))

++
//creates right side transitions
dispatcher(summationP.right).map(

y=>Transition(SummationProcess(summationP.left,y.source),
y.action,SummationProcess(summationP.left,y.target)))

}

This function implements the rule 2.10 SUM . First, the dispatcher is called on
the left side of the + and returns a list of transitions. Then, we consume the list
received by moving forward each transition and link them to the right side. Let
us illustrate this by the next process:

a.b.∅+ l.k.∅

The left side of the equation gives us the subsequent transition set :

dispatcher(a.b.∅)

{
(a.b.∅, a, b.∅)
(b.∅, b, ∅)

Then, the map function is applied:{
((a.b.∅+ l.k.∅), a, (b.∅+ l.k.∅))
((b.∅+ l.k.∅), b, (∅+ l.k.∅))

Those transitions include all the valid steps for the left side. The second part of
the algorithm builds the mirror steps for the right side. Finally, the two lists are
merged.

50 CHAPTER 4. IMPLEMENTATION

Composition Transition

def generateCompositionTransition(c: CompositionProcess)(implicit
restrict: Option[List[InputAction]]): List[Transition] = {

def _COM1(currentProcess: CompositionProcess): List[Transition] =
{...}

def _COM2(currentProcess: CompositionProcess): List[Transition] =
{...}

def _COM3(currentProcess: CompositionProcess): List[Transition] =
{...}

_COM1(c) ++ _COM2(c) ++ _COM3(c)
}

generateCompositionTransition implements the transition rules COM1, COM2,
COM3 defined in 2.11, 2.12, 2.13. It also handles the restriction RES defined
by the rule 2.15. Each call to _COM1, _COM2, _COM3 produces a list of
transitions, then the lists are concatenated.

We will go through each of them and illustrate them with the following example:

a.b.∅ | a.b.∅

The careful reader can remember that this example was illustrated in Figure 2.6.
As one may notice, generateCompositionTransition should produce a set of 13
transitions.

Let’s start with _COM1.

COM1

def _COM1(currentProcess: CompositionProcess): List[Transition] = {
val (left, right) = (currentProcess.left, currentProcess.right)
if (left.size() != 0 &

!(left.getNextAction().isInstanceOf[NilProcess])) {
left match {
case ConcatenationProcess(x, y) =>
if (isNotRestricted(x.nextAction, restrict)) {

4.4. TRANSITIONS 51

Transition(currentProcess, x.nextAction,
CompositionProcess(ConcatenationProcess(x.nextStep, y),
right)) ::

generateCompositionTransition(
CompositionProcess(ConcatenationProcess(x.nextStep, y),

right))
}
else List()

}
}
else List()

}

_COM1 tries to create a transition by doing a step to the left, if the action is not
restricted. For our example the first transition produced is :

a.b.∅ | a.b.∅ a−→ b.∅ | a.b.∅

If the transition is built, it recursively calls generateCompositionTransition with
a sub equation that does not contain the left action e.g.: b.∅ | a.d.∅. Finally,
generateCompositionTransition calls _COM1, _COM2, _COM3 on that sub-
equation.

_COM1 produces the 6 following equations :

_COM1



a.b.0 | a.b.0 a−→ b.0 | a.b.0
b.0 | a.b.0 b−→ 0 | a.b.0
a.b.0 | b.0 a−→ b.0 | b.0
a.b.0 | 0 a−→ b.0 | 0
b.0 | 0 b−→ 0 | 0
b.0 | b.0 b−→ 0 | b.0

COM2

def _COM2(currentProcess: CompositionProcess): List[Transition] = {
val (left, right) = (currentProcess.left, currentProcess.right)
if (right.size() != 0 &

!(right.getNextAction().isInstanceOf[NilProcess])) {
right match {

52 CHAPTER 4. IMPLEMENTATION

case ConcatenationProcess(x, y) =>
if (isNotRestricted(x.nextAction, restrict)) {
Transition(currentProcess, x.nextAction,

CompositionProcess(left,
ConcatenationProcess(x.nextStep, y))) ::

generateCompositionTransition(CompositionProcess(left,
ConcatenationProcess(x.nextStep(), y)))

} else List()
}

}
else List()

}

_COM2 tries to create a transition by doing a step to the right, if the action is
not restricted. The first transition produced by _COM2 is :

a.b.∅ | a.b.∅ a−→ a.b.∅ | b.∅

If the transition is built, it will recursively call generateCompositionTransition
with a sub equation that does not contain the right action e.g.: a.b.∅ | d.∅. Finally,
generateCompositionTransition calls _COM1, _COM2, _COM3 on that sub-
equation.

_COM2 produces the 6 following equations :

_COM2



a.b.0 | a.b.0 a−→ a.b.0 | b.0
b.0 | a.b.0 a−→ b.0 | b.0
0 | a.b.0 a−→ 0 | b.0

a.b.0 | b.0 b−→ a.b.0 | 0

0 | b.0 b−→ 0 | 0

b.0 | b.0 b−→ b.0 | 0

COM3

def _COM3(currentProcess: CompositionProcess): List[Transition] = {
val (left, right) = (currentProcess.left, currentProcess.right)
if (left.size() != 0 &

!(left.getNextAction().isInstanceOf[NilProcess]) &&
right.size() != 0 &
!(right.getNextAction().isInstanceOf[NilProcess])) {

4.4. TRANSITIONS 53

(left, right) match {
case (ConcatenationProcess(ll, lr), ConcatenationProcess(rl,

rr)) =>
val (leftAction, rightAction) = (ll.nextAction, rl.nextAction)
if (leftAction.complementaire(rightAction)) {
Transition(currentProcess, Tau(),

CompositionProcess(ConcatenationProcess(ll.nextStep(),
lr), ConcatenationProcess(rl.nextStep(), rr))) ::

generateCompositionTransition(
CompositionProcess(ConcatenationProcess(ll.nextStep(),

lr), ConcatenationProcess(rl.nextStep(), rr)))
}
else List()

}
}
else List()

}

_COM3 tries to create a transition for complementary actions, if they are not
restricted. Actions are complementary iff they are input and output actions with
the same label. The first transition produced by _COM3 is :

b.0 | b.0 tau−→ 0 | 0

If the transition is built, it will recursively call generateCompositionTransition
with a sub equation that does not contain the right action e.g.: b.∅ | d.∅. Finally,
generateCompositionTransition calls _COM1, _COM2, _COM3 on that sub-
equation. The transition produced earlier is also the only one created by _COM3
:

_COM3
{
b.0 | b.0 tau−→ 0 | 0

Restriction

def dispatcher(currentProcess: Process,
restrictedActions:Option[List[InputAction]] = None): List[Transition]={
...
case RestrictionProcess(left, right) => dispatcher(left, Some(right))
}

This case initialized the optional restrictedActions with a list of actions.

54 CHAPTER 4. IMPLEMENTATION

4.5 Graph generation

As said in section 4.1, one of the main goal of our tool is to model CCS equations
as graphs. To do so, we will use the graph framework vis.js.

4.5.1 vis.js

vis.js is an open source JavaScript library: “A dynamic, browser based visualiza-
tion library. The library is designed to be easy to use, to handle large amounts of
dynamic data, and to enable manipulation of and interaction with the data”3.

We decided to use vis.js , because it’s well documented and it has an active online
community. Furthermore, what tipped the scale in its favor was our ability to
quickly build a prototype that fits our needs. We will review the advantages and
disadvantages of the vis.js framework in the conclusion.

Creating a graph with vis requires specifying nodes and edges. This can be
achieved with two DataSets. Furthermore, the DataSet structure provided by
vis.js allows dynamic data binding.

Once the DataSets are initialized, all one needs is a HTML div container to put
the graph in. Additionally one can use an options object to customize the graph
such as auto-resize, height, width... Let’s look at the code:

// create an array with nodes
var nodes = new vis.DataSet([
{id: 0, label: ’A’},
{id: 1, label: ’1’},
{id: 2, label: ’2’},
{id: 3, label: ’3’}

]);

// create an array with edges
//’arrows’ enable directed graph
var edges = new vis.DataSet([

{from: 0, to: 1, label: ’a’, arrows:’to’},
{from: 1, to: 2, label: ’b’, arrows:’to’},
{from: 2, to: 3, label: ’c’, arrows:’to’}

]);

// provide the data in the vis format

3http://visjs.org/

http://visjs.org/

4.5. GRAPH GENERATION 55

var data = {
nodes: nodes,
edges: edges

};

// initialize the graph !
// We assume that divContainer and options are already initialized
var network = new vis.Network(divContainer, data, options);

The previous code produces the graph displayed in Figure 4.3.

Figure 4.3: Graph: A = a.b.c.∅

4.5.2 GraphTransition

The transitions produced earlier are not adapted for the graph visualization frame-
work. A Transition is a shift between two internal states. Those internal states
are sub-equations as you may remember from 4.4. In contrast datasets expect
numerical id and all the transition between processes, not just the internal ones.
Moreover, one may have to add some options like colors, arrow directions, etc.

To fill the gap, we will create a new object. This new object will be a transforma-
tion from transitions already generated. It is defined as follows:

case class GraphTransition(source: Int, action: String, target: Int,
sourceLabel: Option[String]=None) extends
AbstractTransition[Int,String]

Let us illustrate the link between Transtion and GraphTransition with the fol-
lowing equation A = a.b.c.∅ :

// A is defined as A = a.b.c.0
// A1 is defined as b.c.0
Transition(A, OutputAction(a), A1)

56 CHAPTER 4. IMPLEMENTATION

GraphTransition(0,"a",1, Some("A"))

//A2 is defined as c.0
Transition(A1, OutputAction(a), A2)
GraphTransition(1,"b",2)

//A3 is defined as 0
Transition(A2, OutputAction(a), A3)
GraphTransition(2,"c",3)

Given that we have illustrated the link between Transition and GraphTransition,
we now move to describe the transformation between them.

To do so, we will process the set of transitions generated earlier. We will first
produce the initial edges with the related nodes. Then, we will transform all the
remaining transitions into GraphTransitons.

When a transition shifts from state to state, the reached state may be a reference
to a process. If there is such a reference, we try to fetch its graph.

If it has not been generated yet, we generate it by a recursive call to
generateGraphTransition. Then we link the first node of this sub-graph to an
existing node of the graph being generated.

Of course, those referenced process can be recursive. This explains why we always
generate the first transition along with the two nodes related as a first step.

Let’s suppose our algorithm encountered a recursive process. When we try to fetch
the first node of its sub-graph, which is actually the graph being processed, its first
state may not have been generated yet. This can lead us to an infinite generation
of graph. To avoid this issue, the first step in generating the graph is to create its
first node.

def generateGraphTransitions(secondaryProcessTransition:
List[Transition], primaryProcess: String, secondaryProcess:
String): List[GraphTransition] = {

def findEdgeSourceTarget(transit: Transition, nodeReferences:
collection.mutable.ListMap[String, Int]): (Int, Int) = {...}

def transformTransitionIntoTransitionGraph(transit: List[Transition],
edges: List[GraphTransition]):List[GraphTransition] = {...}

//Link between equation and its numerical id.

4.5. GRAPH GENERATION 57

val nodeReferences = collection.mutable.ListMap[String, Int]()

//The equation corresponding to the process reference
val processDefinition = ContextHolder.formula.find(x =>

x.getId().equals(secondaryProcess)).get

val (firstTransitions, otherTransitions) =
secondaryProcessTransition.partition(x =>
(x.source.equals(processDefinition.getRight)))

//Create the initial edges with the related nodes
// A = a.b.c.0 + l.k.0
//--> GraphTranstion(0,"a",1,"A") GraphTranstion(0,"l",2,"A")
val initialEdges = generateInitialEdges(firstTransitions,

nodeReferences, primaryProcess, secondaryProcess)

// Transform all the remaining Transitions into GraphTransitions
transformTransitIntoTransitGraph(otherTransitions, initialEdges)

}

The algorithm proceeds as follows:

a) nodeReferences is created. This map uses process equation as a key and
node id as a value;

b) processDefinition contains the current equation AST;

c) processDefinition allows us to extract the first transitions. They are then
stored into firstTransition. The remaining transitions are stored into otherTranstions;

d) Each transition contained in firstTransitions is transformed into aGraphTransition
and then stored into initialEdges. As explained earlier this helps us to avoid
an infinite recursive loop;

e) Finally, each transition remaining in otherTranstions are transformed into
GraphTransition by the function transformTransitIntoTransitGraph. As
explained previously, if during the generation a new process is found, then
it recursively calls generateGraphTransitions.

The next step will be to glue the back-end and the front-end.

58 CHAPTER 4. IMPLEMENTATION

4.6 Web Framework

Scala allows integration of web frameworks running on the Java Virtual Machine
(JVM). Our main criteria to select a web framework was a seamless interoperability
with Scala. One name constantly arose: Play Framework.

4.6.1 Play Framework

Play is an open source web application framework. Play is written in Scala and
can be used from Java or Scala. It was created in 2007 by Guillaume Bort [7].
Play follows the model–view–controller (MVC) architectural pattern4.

Let us provide an overview of the Play framework, summarizing the contrasting
views of Yevgeniy Brikman and Jonas Bonér [10, 23]. Yevgeniy Brikman is a for-
mer staff software developer at LinkedIn who led the project that moved LinkedIn’s
infrastructure to the Play Framework 5. Jonas Bonér is the CTO of Lightbend,
a commercial company founded by Martin Odersky, the creator of the Scala pro-
gramming language and Jonas Bonér, the creator of the Akka middle-ware, and
Paul Phillips 6.

Pros

• Interoperability with Scala and Java

• Functional programming: Play/Scala tries to stick to functional program-
ming principles: immutable data, pure functions, no side effects.

• Developer friendly: Convention over configuration - Hot code reloading - Hit
refresh work flow - Built in testing tools - IDE support

• Twirl give us Type-safe compiled templates where we can write directly Scala
code.

• Reactive: Play is built on Netty and Akka7, thus it supports non-blocking
I/O.

• Open source

4https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
5https://www.linkedin.com/in/jbrikman/
6https://www.lightbend.com/company/leadership
7Akka is a concurrency framework based on the actor’s model: http://akka.io/

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://www.linkedin.com/in/jbrikman/
https://www.lightbend.com/company/leadership
http://akka.io/

4.6. WEB FRAMEWORK 59

• Error handling. In dev mode: compile and runtime errors are showed with
a meaningful error message in the browser.

Cons

• Retro-compatibility : Major releases of Play are not retrocompatible. There-
fore it may require rewriting some parts of the code base.

• Functional programming. The functional style can have drawbacks. For
some problems a bit of mutable state is the best way to solve a problem.
Moreover, some existing libraries that cannot be changed depends on mutable
state, side effects, thread local. To work with those library with Play/Scala
can be tricky. Scala has a steep learning curve.

• SBT is Play’s build system. SBT is very powerful but to integrate SBT in a
large code base the learning curve can be steep.

As mentioned in the pros, Play works seamlessly with Scala and is developer
friendly. Because in our case, we are developing a prototype, all the integration
issues are not relevant to us. We will reviewed the advantages and disadvantages
of the play framework in the conclusion.

4.6.2 Converting GraphTranstion to JSON

Play provides us helper functions to convert Scala objects into JSON. The JSON
is natively handled by JavaScript and transformed into JavaScript objects.

To gives the nodes and edges expected by vis.js we proceed as follows:

First we extract all the different node identifiers located in the GraphTransitions as
source and target. This step is achieved by the function TransitionHelper.getNode.
Then we convert the received nodes to JSON. This step is performed by the func-
tion JsonHelper.getNodesJson. Afterwards we convert the GraphTransition into
JSON. This step is processed by getEdgesJson. GraphTransitions actually de-
picts the edge of our graph. Finally, we give the nodes and the edges in JSON
format to the view via the OK function.

//Converting Scala GraphTransition into JSON object
def getEdgesJson(transition: List[GraphTransition]):JsObject ={

implicit val transitionFormat = Json.format[GraphTransition]
Json.obj("transition" -> transition)
}

//We extract all different node IDs

60 CHAPTER 4. IMPLEMENTATION

val nodes = TransitionHelper.getNode(graphTransitions)

val nodesJson = JsonHelper.getNodesJson(nodes)
val edgesJson = JsonHelper.getEdgesJson(graphTransitions)

//JSON objects are sent to the view
Ok(edgesJson ++ nodesJson)

4.7 Limitations and Related work

4.7.1 Limitations

In section 4.4 Transitions, we detailed the behavior of the dispatcher 4.4. The
dispatcher traverses the AST to build the internal transitions of CCS equations.

For each process matched while the function travels across the AST a sub-
function is called to generate the related transitions. For instance the function
generateSummationTransition is called to build the transition for the + opera-
tor.

We also stated that the dispatcher does not handle ReferencedProcess to avoid
a recursive loop. But this last statement has a consequence on the different types
of CCS equation covered by our application.

Indeed, at each side of an operator, an unguarded ReferencedProcess previously
defined can be assigned. Let us demonstrate this by the subsequent CCS equations:

A = a.b.∅ (4.1)

B = c.d.∅ (4.2)

C = A+B (4.3)

D = A | B (4.4)

E = A (4.5)

Since, the generating sub-functions recursively call the dispatcher to generate the
transitions, as in:

def generateSummationTransition(summationP:
SummationProcess):List[Transition] = {
//The dispatcher creates left side + right sided transitions

4.7. LIMITATIONS AND RELATED WORK 61

dispatcher(summationP.left)... ++ dispatcher(summationP.right)...

}

Equations 4.3 to 4.5 are not managed by our tool.

To cover more cases in our software, a solution is to rewrite CCS equations and
replace the unguarded processes by their definitions. In doing so, an equation such
as C = A+B becomes C = a.b.∅+ c.d.∅ and is definitely processed by our tool.

The rewriting algorithm is called just before the parser. This choice permits us
to create an AST without unguarded processes. The work-flow change in the
following way:

CCS equations

CCS equations

AST Transition

GraphTransition

DataSet/Graph

Rewriting

Parsing

To JSON

Figure 4.4: Implementation diagram revised

Let’s have a look at the algorithm:

def toGuarded(allProcesses: Map[String, String]): Map[String, String] = {

62 CHAPTER 4. IMPLEMENTATION

val p = allProcesses.map(s => s._1 ->
unguardedProcessRegex

.replaceAllIn(s._2,b=>replaceProcess(allProcesses,b.toString)))
if (isGuarded(p))
toGuarded(p)

else
p

}

This function takes as an argument a Map containing all the CCS equations. The
key is the formula id and the value is its definition e.g.: A −→ a.b.∅. The first step
is to replace all the unguarded processes by their definitions. If there are several
level of indirections, the rewritten equations can be still unguarded. The function
will reprocess the new equations until there are no unguarded processes.

A = D D = E E = e.d.∅

Before processing First Iteration Last Iteration
A→ D A→ E A→ e.d.∅
D → E D → e.d.∅ D → e.d.∅
E → e.d.∅ E → e.d.∅ E → e.d.∅

Table 4.1: toGuarded example

The results of this approach were still unsatisfactory for advanced cases. However,
unguarded recursive equation such as A = a.b.(A + l.a) are not managed by our
tool.

Moreover, for the sake of simplicity the | only covers the basic case: A = C | D
where C and D are defined as terminal CCS equations.

Actually, the | generating transition function does not make recursive calls to the
dispatcher. It could be modified to handle as much cases as the + operator. But
this modification would imply to add extra complexity to the code. Furthermore,
it would be tedious to prove that all the possibilities of the CCS language are
managed.

Those pitfalls can be avoided with a different approach. One of them is described
in the next subsection.

4.7. LIMITATIONS AND RELATED WORK 63

4.7.2 Related work

Numerous CCS workbenches have been previously developed. A non exhaustive
list can be found in the companion web site of the book Reactive Systems (Aceto
et al., 2007) [4].

One of them caught our attention because it is a modern web based tool written
in TypeScript that enables graph display: CAAL (Concurrency Workbench, Aal-
borg Edition). It consists of “a web-based tool for modelling and verification of
concurrent processes. The tool is primarily designed for educational purposes and
it supports the classical process algebra CCS together with its timed extension
TCCS.

It allows one to compare processes with respect to a range of strong/weak and
timed/untimed equivalences and preorders (bisimulation, simulation and traces)
and supports model checking of CCS/TCCS processes against recursively defined
formulae of Hennessy-Milner logic.

The tool offers a graphical visualizer for displaying labelled transition systems, in-
cluding their minimization up to strong/weak bisimulation, and process behaviour
can be examined by playing (bi)simulation and model checking games or via the
generation of distinguishing formulae for non-equivalent processes.”[2].

The source code of CAAL is available at the following url: https://github.com/
CAAL/CAAL

To better grasp the tool, let us give more details of the approach tailored by CAAL.
During the parsing stage, for each encountered process, transitions are produced
on the fly. In order to do this, the process is sliced into sub-process/sub-states as
in: a.b.∅ −→ b.∅ −→ ∅.

The process preserves a reference to its sub-process(es). The union of the transi-
tions of each sub-process allows it to acquire the whole set of the process transi-
tions.

The set of transitions for each process/sub-process are maintained in a map with
the corresponding ID.

By having a map with all sub-process transitions and a link between processes and
sub-processes we could simplify our software. In this manner, the transitions of
reference to a process in a formula can be treated as a straightforward call to their
identifiers in the map. Cases such as A + B, A | B, and a.b.c(A + (A | B)) are
treated effortlessly.

We think that such an approach could permit to cover all the cases of the CCS

https://github.com/CAAL/CAAL
https://github.com/CAAL/CAAL

64 CHAPTER 4. IMPLEMENTATION

language without limitations or extra complexity. To achieve that, our work should
be refactored to implement that design.

Nevertheless, it is worth pointing out here that our work presents the originality
of building a tool from scratch in using a three tier architecture: a back-end layer
has the modeling language based on Scala, a front-end layer built on a web client
based on JavaScript and vis.js, and a third layer with play as a web framework to
link the front-end to the back-end Scala-based processing tool.

5
Behavioral Equivalences

In the introduction of the CCS language we said that CCS can be used to describe
both the specification and the implementation of a process. We also claimed that
the notion of behavioral equivalence can be used to check if an implementation
satisfies a specification 2.7. To an external observer, in the case in which an
implementation satisfies a specification, both of them will have the same behavior
and will be completely similar.

Obviously, the specification and the implementation are not at the same level of
abstraction and the two formulas are not exactly the same. Therefore, in this
notion of equivalence, some parameters have to be taken into account and others
not.

In the next pages, we try to find a suitable notion of equivalence. We will first
define the expected criteria of such a notion. Then we will explore different tracks
and implement them into our tool.

5.1 Criteria for a good behavioral equivalence

Since Chapter 2 on CCS, we are using the term of equivalence. It is now time
to give its mathematical definition. Quoting verbatim from Reactive Systems [1,
p. 32] we define equivalence as follows:

Let X be a set. A binary relation over X is a subset of X × X, the set of pairs
of elements of X. If R is a binary relation over X, we often write xRy instead of
(x, y) ∈ R.

65

66 CHAPTER 5. BEHAVIORAL EQUIVALENCES

An equivalence relation over X is a binary relation R that satisfies the following
constraints:

• R is reflexive i.e. xRx for each x ∈ X;

• R is symmetric i.e. xRy implies yRx, for all x, y ∈ X ;

• R is transitive i.e. xRy and yRz imply xRz, for all x, y, z ∈ X.

A reflexive and transitive relation is a preorder [1, p. 32].

Let us review each property of this definition:

• Reflexive: we expect each process to be the correct implementation of itself,
so the relation should be reflexive.

• Transitive: if we want to derive step by step the implementation from the
specification and preserve the behavior, the relation should be transitive. In
this case, we can start from the specification and convert it into an interme-
diate stage until we reach the implementation.

Spec = Spec0 R Spec1 R Spec2 R ... R Specn = Imp

Spec R Imp

• Symmetric: we expect that Imp behaves like Spec and vice-versa, so the
relation should be symmetric [1, p. 33].

We said earlier that the specification and the implementation are not at the same
level of abstraction. A desirable feature would be to use the implementation or
the specification interchangeably as a part of larger system without affecting the
general behavior. This feature is called the congruence.

The last feature that we expect is an observational equivalence of the behavior.
We want this equivalence to be based on what an observer can see rather than on
the number of transitions between states, the state’s name or the process structure.

5.2 Trace equivalence

As we said in the section 2.2, LTS models process states and transitions between
them. The shifts between states are triggered by actions.

In the light of the details offered by this view, a number of different notions of
equivalence have been proposed. One of them comes directly from the classic
theory of automata, the trace [1, p. 34].

5.2. TRACE EQUIVALENCE 67

The trace of a process P is a sequence of actions that results from a maximal path
of transitions.

P = P0
α1−→ P1

α2−→ ...
αn−1−→ Pn−1

αn−→ Pn

where αi ∈ Act and n ≥ 0.

Traces(P) is the collection of all the traces of P. Traces(P) depicts all the sequence
of actions available in our process.

Let us consider two processes A and B. If a sequence of actions is present in the
traces of A but it is not present in the traces of B, then we can conclude that they
are not equivalent.

This view is totally legitimate for deterministic automata. But what happens for
reactive systems such as the two vending machines described in here below ?

VM
def
= coin.(chocolate.V M + yogurt.V M) (5.1)

VM ′ def= coin.chocolate.V M ′ + coin.yogurt.V M ′ (5.2)

Both machines can provide chocolate and yogurt. They have the same traces as
well:

Traces(VM) ={coin, chocolate} ∪
{coin, yogurt}

(5.3)

Traces(VM ′) ={coin, chocolate} ∪
{coin, yogurt}

(5.4)

Let’s define a chocolate addict user to interact with our machines.

CU
def
= coin.chocolate.CU

Consider now the two next equations:

(VM | CU) \ {coin, chocolate, yogurt} (5.5)

(VM ′ | CU) \ {coin, chocolate, yogurt} (5.6)

68 CHAPTER 5. BEHAVIORAL EQUIVALENCES

The restriction permits us to force the communication between the chocolate addict
and the machine. By using the SOS rules, one can notice that VM performs
infinitely many τ transitions.

In contrast, VM ′ can reach a deadlock state:

(chocolate.CU | yogurt.V M ′)

The chocolate addict is expecting to receive some chocolates to continue to operate
properly, and the machine is only able to deliver yogurt.

Therefore we need another notion to tell apart two systems having the same traces
but displaying a different reactive behavior.

5.3 Simulation & Bisimulation

5.3.1 Theoretical notions

Simulation

Another relation available on LTS is the simulation relation. Intuitively, a system
A simulates a system B, if A can match all of the transitions of B.

Let’s give first its formal definition [11, p. 186]:

Let T = (S,A,−→) be a transition system. A binary relation R ⊆ S x S is a
simulation if whenever (s, t) ∈ R and α is action:

if s α−→ s′, then t α−→ t’ for some t such that s′ R t′.

We write a simulation relation between the process A and B, as B �S A. This
should be understood as A simulates B. Let’s notice that the relation �S is a
preorder.

Let’s now define the simulation equivalence as:

A 'S B ⇒ A �S B ∧B �S A

This means that B simulates A and A simulates B.

Let’s turn now to our two vending machines and see how they react to this new
notions.

5.3. SIMULATION & BISIMULATION 69

First, let’s see if VM can simulate VM ′, VM ′ �S VM :

To do so, we first write the intermediate states for each machine:

VM

{
VM

def
= coin.(chocolate.V M + yogurt.V M)

VM1
def
= chocolate.V M + yogurt.V M

VM ′


VM ′ def= coin.chocolate.V M ′ + coin.yogurt.V M ′

VM1′
def
= chocolate.V M ′

VM2′
def
= yogurt.V M ′

We define R, our simulation relation as :

R = {(VM ′, V M,), (VM1′, V M1), (VM2′, V M1)}

The relation R is portrayed in Figure 5.1.

VM ′

VM1′VM2′

coin

coin chocolate

yogurt

V M

VM1

coin chocolate yogurt

Figure 5.1: VM ′ �S VM

• Let’s consider the first pair (VM ′, V M)

70 CHAPTER 5. BEHAVIORAL EQUIVALENCES

– VM ′ coin−→ VM1′ is matched by VM coin−→ VM1.

– VM ′ coin−→ VM2′ is matched by VM coin−→ VM1.

• Then the pair (VM1′, V M1)

– VM1′
chocolate−→ VM ′ is matched by VM1

chocolate−→ VM .

• Finally the pair (VM2′, V M1)

– VM2′
yogurt−→ VM ′ is matched by VM1

yogurt−→ VM .

That concludes the proof that VM ′ �S VM .

Let’s see if the other way around is also true and VM �S VM ′ holds.

• Let’s consider the first pair (VM, VM ′)

– VM
coin−→ VM1 can be matched by VM ′ coin−→ VM1′.

– VM
coin−→ VM1 can also be matched by VM ′ coin−→ VM2′ but finding a

transition is sufficient.

• Then the pair (VM1, V M1′)

– VM1
chocolate−→ VM is matched by VM1′

chocolate−→ VM ’.

– VM1
yogurt−→ VM cannot be matched by any transitions belonging to

VM1′.

• Finding one non matching transition is enough but we examine the pair
(VM2′, V M1) to be exhaustive

– VM1
yogurt−→ VM is matched by VM2′

yogurt−→ VM ′.

– VM1
chocolate−→ VM cannot be matched by any transitions belonging to

VM2′.

Therefore, VM 'S VM ′ does not hold.

This example emphasizes the fact that we are forced to reject the rule:

α.(A+B) = α.A+ α.B

At first glance, the notion of simulation equivalence seems to fit our requirements
for equivalence behavior. But let’s now consider the following vending machines :

CVM
def
= coin.chocolate.∅ (5.7)

5.3. SIMULATION & BISIMULATION 71

EVM
def
= coin.chocolate.∅+ coin.∅ (5.8)

The CVM (Chocolate Vending Machine) delivers a bar of chocolate after receiving
a coin whereas EVM (Evil Vending Machine) has a more erratic behavior. EVM
can deliver a chocolate bar or just keep the coin.

Let us examine those two machines with our notion of simulation equivalence.
First let’s define the sub-states for each equation and then the simulation relation
for each simulation preorder as illustrated in the Figure 5.2.

CVM
def
= coin.CVM1

CVM1
def
= chocolate.CVM2

CVM2
def
= ∅

EVM
def
= coin.EVM1 + coin.EVM2

EVM1
def
= chocolate.EVM3

EVM2
def
= ∅

EVM3
def
= ∅

R1 = {(EVM,CVM), (EVM1, CVM1), (EVM2, CVM1), (EVM3, CVM2)}

R2 = {(CVM,EVM), (CVM1, EVM1), (CVM2, EVM3)}

R1 : EVM �S CVM

• The pair (EVM,CVM)

– EVM
coin−→ EVM1 is matched by CVM coin−→ CVM1.

– EVM
coin−→ EVM2 is matched by CVM coin−→ CVM1.

• The pair (EVM1, CVM1)

– EVM1
chocolate−→ EVM3 can be matched by CVM1

chocolate−→ CVM2.

• The pair (EVM2, CVM1)

72 CHAPTER 5. BEHAVIORAL EQUIVALENCES

CVM

CVM1

CVM2

coin

chocolate

EVM

EVM1EVM2

EVM3

coin

coin

chocolate

R1

R1

R1

R1

R2

R2

R2

Figure 5.2: CVM 'S EVM

5.3. SIMULATION & BISIMULATION 73

– EVM2 has no outgoing transition and thus can be trivially matched
by CVM1.

• The pair (EVM3, CVM2)

– EVM3 has no outgoing transition and thus can be trivially matched
by CVM2.

R2 : CVM �S EVM

• The pair (CVM,EVM)

– VM
coin−→ CVM1 can be matched by EVM coin−→ EVM1 or EVM coin−→

EVM2.

• The pair(CVM1, EVM1)

– CVM1
chocolate−→ CVM2 is matched by VM2′

chocolate−→ VM ′.

• Finally, the pair(CVM2, EVM3)

– CVM2 has no outgoing transition and thus can be trivially matched
by EVM3.

The evil automaton can simulate the good one and vice versa. Therefore this notion
of equivalence has been proven inadequate for our requirements. This pitfall can
be avoided by the bisimulation discussed in the next section.

Strong Bisimulation

In the above discussion in simulation 5.3.1, we noticed that a behavioral notion
of equivalence should allow us to separate two processes with different deadlock
potentials.

To be equivalent, they should not only be able to simulate the other process
globally, but each state should afford the same transition that its mirror state.
To ensure the previous requirements hold, a symmetric simulation, called strong
bisimulation, has been proposed by David Park [1, p. 37].

Let T = (S,A,−→) be a transition system. A binary relation R ⊆ S x S is a
strong bisimulation if whenever (s, t) ∈ R and α is action:

if s α−→ s′, then t α−→ t’ for some t such that s′ R t′;

if t α−→ t′, then s α−→ s’ for some s such that s′ R t′.

74 CHAPTER 5. BEHAVIORAL EQUIVALENCES

In order to understand this definition it is beneficial to consider the following
example:

CM

CM2CM1

coin

coin

chocolate

chocolate

CM ′

CM1′

coin

chocolate

Figure 5.3: CM 'B CM ′

Intuitively, once a coin is inserted both machines give an infinite amount of choco-
late. Let’s examine them formally and prove that there is indeed a strong bisim-
ulation between them.

We define R as follows :

R = {(CM,CM ′)(CM1, CM1′)(CM2, CM1′)}

• Let us consider the first pair (CM,CM ′)

– From CM :

∗ CM coin−→ CM1 is matched by CM ′ coin−→ CM1′ and (CM1, CM1′) ∈
R;

∗ CM coin−→ CM2 is matched by CM ′ coin−→ CM1′ and (CM1, CM1′) ∈
R.

– From CM ′:

5.3. SIMULATION & BISIMULATION 75

∗ CM ′ coin−→ CM1′ is matched by CM coin−→ CM1 and (CM1, CM1′) ∈
R (finding one matching transition is sufficient).

• Then the pair(CM1, CM1′)

– From CM1:

∗ CM1
chocolate−→ CM2 is matched by CM1′

chocolate−→ CM1′ and (CM2, CM1′) ∈
R.

– From CM1′:

∗ CM1′
chocolate−→ CM1′ is matched by CM1

chocolate−→ CM2 and (CM2, CM1′) ∈
R.

• Finally, the pair(CM2, CM1′)

– From CM2:

∗ CM2
chocolate−→ CM2 is matched by CM1′

chocolate−→ CM1′ and (CM2, CM1′) ∈
R.

– From CM1′:

∗ CM1′
chocolate−→ CM1′ is matched by CM2

chocolate−→ CM2 and (CM2, CM1′) ∈
R.

This ends the proof that R is bisimulation.

Let’s turn back to CVM and EVM and see how they react to bisimulation. We
define R as follows:

R = {(EVM,CVM), (EVM1, CVM1), (EVM2, CVM1), (EVM3, CVM2)}

• The pair (EVM,CVM)

– From EVM :

∗ EVM coin−→ EVM1 is matched by CVM coin−→ CVM1 and (EVM1, CVM1) ∈
R;

∗ EVM coin−→ EVM2 is matched by CVM coin−→ CVM1 and (EVM2, CVM1) ∈
R1

– From CVM :

∗ CVM coin−→ CVM1 is matched byEVM coin−→ EVM1 and (EVM1, CVM1) ∈
R (finding one matching transition is sufficient).

76 CHAPTER 5. BEHAVIORAL EQUIVALENCES

• The pair (EVM1, CVM1)

– From EVM1:

∗ EVM1
chocolate−→ EVM3 is matched by CVM1

chocolate−→ CVM2 and
(EVM3, CVM2) ∈ R.

– From CVM1:

∗ CVM1
chocolate−→ CVM2 is matched by EVM1

chocolate−→ EVM3 and
(EVM3, CVM2) ∈ R.

• The pair (EVM2, CVM1)

– From EVM2:

∗ EVM2 has no outgoing transition and thus can be trivially matched
by CVM1. and (EVM2, CVM1) ∈ R.

– From CVM1:

∗ CVM1
chocolate−→ CVM2 cannot be matched by any transition from

EVM2.

The last step is sufficient to conclude that CVM 'B EVM is false.

5.3.2 Algorithms

Given that, the theoretical bases of simulation and bisimulation have been intro-
duced, let us discover how they can be turned into a sequence of actions expressed
in an algorithm. The simulation and bisimulation algorithms will be implemented
afterwards in our tool.

The general idea of the (bi)simulation algorithm is to combine two CCS equations
into a set of tuples. Those tuples are formed with states that afford the same
actions. Afterwards, a control function is applied on the set to remove tuples that
are not a part of the (bi)simulation relation. This function is applied as long as
the set is changing. Once the function reached a fixed point, the elements within
the set depict the greatest (bi)simulation relation.

Simulation preorder

Let us consider the two following LTS, (S1, A1,−→) and (S2, A2,−→). We create
the initial set of states H0 with the tuple S1 and S2 if they afford the same action

5.3. SIMULATION & BISIMULATION 77

at the same level in the path of actions.

(S1, S2) ∈ H0 ⇐⇒ A1(S1) = A2(S2)

From the previous set we will create the following ones:

(S1, S2) ∈ Hi+1 ⇐⇒


(S1, S2) ∈ Hi ∧
∀ S ′1 ∈ S1. S1

α−→ S ′1 ∃ S ′2 ∈ S2. S2
α−→ S ′2 ∧

(S ′1, S
′
2) ∈ Hi

Until Hi+1 = Hi

Step two can be decomposed into four sub-steps.

(a) The pair (S1, S2) should be present in the previous set.

(b) For each transition afforded by S1 at least one matching transition should
start from S2.

(c) The new tuple of target states (S ′1, S
′
2) should belong to the previous set

(Hi).

(d) We repeat (a), (b) and (c) for each state presents in the previous set. Each
time the conditions are met the tuple is added into Hi+1. The algorithm
stops when the previous set equals the current set or the set of states is
empty.

Finally, the last set of states is evaluated. If the root elements are still there, the
algorithm returns true. Otherwise it returns false.

Let’s see how our two vending machines VM and VM ′ react to this algorithm.

VM �S VM ′


HO = {(VM ′, V M,), (VM1′, V M1), (VM2′, V M1)}
H1 = {(VM ′, V M,)}
H2 = {∅}
H3 = H2

As (VM ′, V M,) /∈ H3, False is returned

VM ′ �S VM


HO = {(VM ′, V M,), (VM1′, V M1), (VM2′, V M1)}
H1 = {(VM ′, V M,), (VM1′, V M1), (VM2′, V M1)}
H1 = H0

As (VM ′, V M,) ∈ H1, True is returned

78 CHAPTER 5. BEHAVIORAL EQUIVALENCES

Strong bisimulation

To meet the bisimulation definition, some extra constraints have to be added to
the simulation algorithm :

(S1, S2) ∈ H0 ⇐⇒ A1(S1) = A2(S2)

(S1, S2) ∈ Hi+1 ⇐⇒



(S1, S2) ∈ Hi ∧
∀ S ′1 ∈ S1. S1

α−→ S ′1 ∃ S ′2 ∈ S2. S2
α−→ S ′2 ∧

(S ′1, S
′
2) ∈ Hi

∀ S ′2 ∈ S2. S2
α−→ S ′2 ∃ S ′1 ∈ S1. S1

α−→ S ′1 ∧
(S ′2, S

′
1) ∈ Hi

Until Hi+1 = Hi

The computation of the initial set has not changed. But, once the iteration on
each tuple of states starts, the check becomes symmetric.

To do so, once the transitions from the first state of the tuple are checked by:
∀ S ′1 ∈ S1. S1

α−→ S ′1 ∃ S ′2 ∈ S2. S2
α−→ S ′2, then the transitions starting from

the second element of the tuple are verified by the added rule: ∀ S ′2 ∈ S2. S2
α−→

S ′2 ∃ S ′1 ∈ S1. S1
α−→ S ′1 .

Fixed points algorithms

Simulation and bisimulation algorithms are an application of Tarski’s fixed point
theorem. Tarski states that a monotonic function applied on complete lattice has
a least and a largest fixed point [1, p. 80][22]. In our case H0 is the top element of
our complete lattice Proc x Proc, and the last iteration of Hi is the largest fixed
point of the (bi)simulation function applied to that set[1, p. 85-86].

The time complexity of both algorithms is inO(mn) for a labeled transition system
with m transitions and n states. A more efficient algorithm, not discussed in this
work, has been proposed by Paige and Tarjan in O(m log n) time [6].

5.3. SIMULATION & BISIMULATION 79

5.3.3 Implementations

Simulation preorder

Let us turn to the implementation of the simulation preorder algorithm. The
function equivalenceV erification, is a higher-order function used for simulation
and bisimulation equivalence.

The behavior of this function depends on the functions given as arguments. The
given arguments are:

- graphA: contains the graph transitions for the first equation.

- graphB: contains the graph transitions for the second equation.

- idA: the first equation name.

- idB: the second equation name.

- checkTransitionAlgorithm: verifies if (S1, S2) ∈ Hi+1.

- preCheck: verifies if there is a sufficient number of states in H0.

def equivalenceVerification(graphA: List[GraphTransition], graphB:
List[GraphTransition], idA: String, idB: String,

checkTransitionAlgorithm:
(List[GraphTransition],
List[GraphTransition], Set[(Int, Int)]) =>
Boolean,

preCheck: (List[(GraphTransition,
GraphTransition)], List[GraphTransition],
List[GraphTransition]) => Boolean):
Boolean = {

val rootElementA = TransitionUtil.firstSource(graphA, Some(idA))
val rootElementB = TransitionUtil.firstSource(graphB, Some(idB))

val (initialStateSet, initialSet) = createInitialStateSet(graphA,
graphB, Set(rootElementA), Set(rootElementB))

if (!preCheck(initialSet, graphA, graphB))
false

else
containRootElements(fixedPoint(graphA, graphB, initialStateSet,

checkTransitionAlgorithm), rootElementA, rootElementB)
}

80 CHAPTER 5. BEHAVIORAL EQUIVALENCES

equivalenceV erification verifies the simulation preorder as follows:

1. The initial states for each equation are retrieved

2. Creation of H0 by createInitialStateSet

3. Check whether H0 contains all the states present in graphA

4. fixedPoint iterates over Hi until it reaches a fixed point

5. containRootElements verifies whether the root elements are still in the
fixedPoint result set.

Let’s describe the H0 production:

def createInitialStateSet(graphA: List[GraphTransition], graphB:
List[GraphTransition], sourceElementsA: Set[Int], sourceElementsB:
Set[Int]):(Set[(Int, Int)],List[(GraphTransition,
GraphTransition)]) = {

val initialSet = createInitialTransitionSet(graphA, graphB,
sourceElementsA, sourceElementsB)

val initialSetProcessSrc = initialSet.map(x => (x._1.source,
x._2.source)).toSet

val initialSetProcessTar = initialSet.map(x => (x._1.target,
x._2.target)).toSet

(initialSetProcessSrc ++ initialSetProcessTar, initialSet)
}

1. initialSet contains the tuples of matching transitions from each graph.

2. A map function is applied on the initalSet to transform the tuples of tran-
sitions into tuples of states. A first time for the source states and a second
time for the transition target states.

3. Finally, the tuples of states and transitions are returned.

The first step of this function calls createInitialTransitionSet to gather all the
matching transition for each graph. As intended by the code here below:

@tailrec
def createInitialSet(graphA: List[GraphTransition], graphB:

List[GraphTransition], sourceElementAs: Set[Int], sourceElementsB:
Set[Int], acc: Set[(GraphTransition, GraphTransition)]=Set()):
Set[(GraphTransition, GraphTransition)] = {

5.3. SIMULATION & BISIMULATION 81

if (sourceElementAs.size == 0 || sourceElementsB.size == 0)
acc

else {
val graphATransitions =

findGraphTransitionBySources(sourceElementAs, graphA)
val graphBTransitions =

findGraphTransitionBySources(sourceElementsB, graphB)
val tupleGraphs = createTuples(graphATransitions, graphBTransitions)
val nextLevels = getNextLevels(tupleGraphs)
if (acc.size == (tupleGraphs.toSet ++ acc).size)
return acc

createInitialSet(graphA, graphB, nextLevels._1, nextLevels._2,
tupleGraphs.toSet ++ acc)

}
}

This function is tail recursive, as specified by the @tailrec annotation. The base
case is reached once all the transitions for one of the graphs are consumed by the
function. The inductive case traverses both graphs, level by level and processes as
follows:

1. findGraphTransitionBySources is called twice to retrieve transitions on
the same level on both graphs from the states given in arguments.

2. createTuples filters the same level transitions by matching action’s name.

3. getNextLevels fetches the next states.

4. If the graph is recursive, the base case will never be reached. To avoid infinite
loop the previous set size is compared to the current set size.

5. Finally, createInitialSet is called recursively with the next states. The new
tuples of transitions are added to the accumulator.

Once the initial set is created, the algorithm inspects whether all states in graphA
are part of HO.

def preCheckSimulation(initialSet: List[(GraphTransition,
GraphTransition)], graphA: List[GraphTransition], graphB :
List[GraphTransition]): Boolean = {

checkIfAllStatesPresentInInit(initialSet, graphA)
}

def checkIfAllStatesPresentInInit(initialSet: List[(GraphTransition,
GraphTransition)], graphA: List[GraphTransition]):Boolean =

82 CHAPTER 5. BEHAVIORAL EQUIVALENCES

initialSet.map(_._1.action).toSet == (graphA.map(_.action)).toSet

The astute reader may notice that graphB is not used. The reason is to keep
equivalenceV erification as generic as possible in order to reuse it for bisimulation.

The next step is to iterate over the set of states until it reached a fixed point.
This function takes a verification function, checkAlgorithm, as an argument.
checkAlgorithm tells whether a tuple can be added to Hi.

@tailrec
def fixedPoint(graphA: List[GraphTransition], graphB:

List[GraphTransition], previousSet: Set[(Int, Int)],
checkAlgorithm: (List[GraphTransition],

List[GraphTransition], Set[(Int, Int)]) =>
Boolean):Set[(Int, Int)] = {

val currentSet = previousSet.flatMap(s => {
val nextTransitionsA = getNextTransitions(s._1, graphA)
val nextTransitionsB = getNextTransitions(s._2, graphB)

if (checkAlgorithm(nextTransitionsA,nextTransitionsB,previousSet))
Some(s)

else
None

})

if (previousSet.size == currentSet.size)
currentSet

else {
fixedPoint(graphA, graphB, currentSet, checkAlgorithms)

}
}

}

This function is tail recursive. The base case is reached once the set of states
stabilizes. In the inductive case the next transitions of each graph are collected.
Then the checkAlgorithm is applied and returns a boolean. Depending on the
result an optional tuple is returned.

Finally, let’s examine how the check algorithm is implemented for the simulation.

def simulationCheck(nextTransitionsA:List[GraphTransition],
nextTransitionsB:List[GraphTransition], previousSet: Set[(Int,

5.3. SIMULATION & BISIMULATION 83

Int)]):Boolean = {
nextTransitionsA.forall(transit=> {
val maybe_transition_b = nextTransitionsB.find(b =>

b.action.equals(transit.action))
maybe_transition_b match {
case Some(graph) => existInPreviousSet(transit, graph,

previousSet)
case None => false

}
})

}

This function verifies if ∀ S ′1 ∈ S1. S1
α−→ S ′1 ∃ S ′2 ∈ S2. S2

α−→ S ′2 ∧
(S ′1, S

′
2) ∈ Hi. Indeed, for all transitions of graphA, the function tries to find an

existing matching transition in graphB. If so, the function checks whether the
tuples already belong to the previous set.

Simulation equivalence

The simulation equivalence is merely a simulation applied twice, one time in each
direction. The implementation stems directly from this definition.

def simulationEquivalence(graphA: Set[GraphTransition], graphB:
Set[GraphTransition], idA: String, idB: String,

checkTransitionAlgorithm:
(Set[GraphTransition],
Set[GraphTransition], Set[(Int, Int)]) =>
Boolean,

preCheck: (Set[(GraphTransition,
GraphTransition)], Set[GraphTransition],
Set[GraphTransition]) => Boolean): Boolean
= {

Equivalence.equivalenceVerification(graphA, graphB, idA, idB,
Equivalence.simulationCheck, Equivalence.preCheckSimulation) &&

Equivalence.equivalenceVerification(graphB, graphA, idB, idA,
Equivalence.simulationCheck, Equivalence.preCheckSimulation)

}

equivalenceV erification is called twice with simulationCheck. The graphs passed
as arguments are inverted between the two calls. A logical and (∧) is applied be-
tween the results of each call.

84 CHAPTER 5. BEHAVIORAL EQUIVALENCES

Strong Bisimulation

As explained in Section 5.3.3, the body of the main function does not need to
be changed. Only the checkTransitionAlgorithm and the preCheck functions
passed have to be adapted. Here below the function equivalenceV erification is
displayed as a reminder.

def equivalenceVerification(graphA: List[GraphTransition], graphB:
List[GraphTransition], idA: String, idB: String,

checkTransitionAlgorithm:
(List[GraphTransition],
List[GraphTransition], Set[(Int, Int)]) =>
Boolean,

preCheck: (List[(GraphTransition,
GraphTransition)], List[GraphTransition],
List[GraphTransition]) => Boolean):
Boolean = {

val rootElementA = TransitionUtil.firstSource(graphA, Some(idA))
val rootElementB = TransitionUtil.firstSource(graphB, Some(idB))

val (initialStateSet, initialSet) = createInitialStateSet(graphA,
graphB, Set(rootElementA), Set(rootElementB))

if (!preCheck(initialSet, graphA, graphB))
false

else
containRootElements(fixedPoint(graphA, graphB, initialStateSet,

checkTransitionAlgorithm), rootElementA, rootElementB)
}

This function inspects whether all states in graphA and graphB are part ofHO. To
do so, checkIfAllStatesPresentInInit is called twice. One time for each graph.

def preCheckBisimulation(initialSet: Set[(GraphTransition,
GraphTransition)], graphA: Set[GraphTransition], graphB :
Set[GraphTransition]): Boolean = {

checkIfAllStatesPresentInInit(initialSet, graphA) &&
checkIfAllStatesPresentInInit(initialSet, graphB)

}

bisimulationCheck verifies if (S1, S2) ∈ Hi. Indeed, for all transitions of graphA,

5.4. WEAK BISIMULATION 85

the function tries to find an existing matching transition in graphB. If so, the
function checks whether the tuples already belong to the previous set.

Then an extra step is added to match bisimulation definition. For all transitions
of graphB, the function tries to find an existing matching transition in graphA.
If so, the function checks whether the tuples already belong to the previous set.

def bisimulationCheck(nextTransitionA:Set[GraphTransition],
nextTransitionsB:Set[GraphTransition], previousSet: Set[(Int,
Int)]):Boolean =

simulationCheck(nextTransitionA,nextTransitionsB,previousSet) &&
simulationCheck(nextTransitionsB, nextTransitionA,
previousSet.map(x=> (x._2,x._1)))

5.4 Weak bisimulation

5.4.1 Theoretical notions

Strong Bisimulation permits us to put apart processes with different deadlock
behaviors along with many other desired properties that we have detailed in Section
5.1.

One might recall that we explained earlier in Chapter 2 that a process could afford
τ transitions. Those transitions are internal to the process and unobservable from
the outside world. The astute reader can remember, as well, that in Section 5.1
the last property studied was observational equivalence.

This last property is desirable to compare processes which are at a different level of
abstraction. Indeed, if we want to verify if a specification is correctly implemented,
we need to compare the CCS specification equation with the CCS implementation
equation. As a consequence our notion of equivalence should abstract from internal
transitions in process behaviors.

Let us consider the following specification and implementation equations for a
chocolate vending machine :{

SCM = coin.chocolcate.SCM

ICM = coin.τ.chocolcate.ICM

We expect those two systems to be equivalent because τ transition is not observ-
able. However, the strong bisimulation expects each transition from one process to

86 CHAPTER 5. BEHAVIORAL EQUIVALENCES

be matched at least by another transition of the second process. This is impossible
for the τ transition present in ICM and not in SCM .

To overcome this issue, our notion of bisimilarity has been adapted to abstract
over τ actions. We define it as in [1, p. 57].

Let T = (S,A,−→) be a transition system. A binary relation R ⊆ S x S is a weak
bisimulation if whenever (s, t) ∈ R and α is action (including τ):

if s α−→ s′, then t α
=⇒ t’ for some t such that s′ R t′;

if t α−→ t′, then s α
=⇒ s’ for some s such that s′ R t′.

where we write P α
=⇒ Q iff{

either α 6= τ and there are processes P ′ and Q′ such that P (τ−→)∗ P ′
α−→ Q′(

τ−→)∗ Q

or α = τ and P (τ−→)∗ Q

Even though the notion of weak bisimilarity has proven itself to be useful to
compare processes with τ actions, we leave it for a future work.

Nevertheless, we will give an overview on the changes needed in the bisimulation
algorithm to process weak bisimilarity.

5.4.2 A weak bisimulation algorithm draft

The first step is the graph saturation. For each weak transition found in a graph,
the algorithm transforms the corresponding original transition in a weak transition
if this is not already the case.

As an example, our chocolate machine equations become:{
SCM = coin.τ.chocolcate.SCM

ICM = coin.τ.chocolcate.ICM

Then the strong bisimulation algorithm is applied on this new pair of saturated
processes.

5.5 Conclusion

In this chapter we introduced a range of criteria to find a suitable notion of be-
havioral equivalence. Afterwards, we explored several possibilities: from the trace

5.5. CONCLUSION 87

equivalence to the weak bisimulation. We also provided an algorithm directly based
on Tarski’s fixed point theorem. Even though this algorithm was not the most ef-
ficient for computing (bi)simulation, it was really satisfying to see that a practical
application could emerge from set theory. Despite being the most interesting no-
tion tackled to compare processes, the weak bisimulation was not implemented in
our tool, and was left for a future work.

During the writing of this chapter, the handouts on formal verification from Thierry
Massart [13] and the chapters 3 to 4 from Reactive Systems [1] have proven them-
selves to be of great help.

88 CHAPTER 5. BEHAVIORAL EQUIVALENCES

6
Tutorial

The aim of this chapter is to give an informal introduction to the CCS workbench.
All the features available will be briefly explained and illustrated. The software
is composed of four different units: an editor to input CCS equations, a static
view and a discovery view to display equations in graph form, and finally a unit
to perform equivalence and preorder verifications.

6.1 CCS Editor

The CCS editor is used to input CCS equations. The CCS editor is available when
one clicks on the link ’CCS Editor’ in the main menu.

Process constant are in uppercase letters. Actions are in lowercase. Output action
are prefixed with _. The syntax allowed in the editor is illustrated in Table 6.1:

CCS expression Syntax
Nil Process 0
Process Definition CLK =tick.CLK
Input Action / Prefixing tick.tack.CLK
Output Action / Prefixing coin._coffee.CM
Choice coin.(_coffee.CM +_tea.CM)
Parallel composition CM | CA
Restriction (CM | CA)\{coin, coffee}

Table 6.1: CCS Editor Syntax

89

90 CHAPTER 6. TUTORIAL

Figure 6.1: CCS Editor

An error message is displayed if the input is not correct. When the ’visualize’
button is hit, the graphs associated with the formulae are available in discovery
and static views.

6.2 Graph

6.2.1 Static View

The static view of the equation A = a.b.c.∅ + l.a.∅ is illustrated in Figure 6.2. In
case several equations are defined a selector allows the user to pick one.

6.2.2 Discovery View

The discovery view allows one to explore an equation step by step. In case several
equations are defined a selector allows the user to pick one. To explore the graph
the user has to choose one of the available nodes, and then click on it. As a result
the next available transitions and nodes will be displayed.

The steps of the discovery view of the equation A = a.b.c.∅ + l.a.∅ are illustrated
in Figure 6.3.

6.2. GRAPH 91

Figure 6.2: Static View

Figure 6.3: Discovery View

92 CHAPTER 6. TUTORIAL

6.3 Equivalence Checking

Once at least two equations are defined, the user can verify equivalent behaviors
by clicking on ’check’. Simulation, simulation equivalence, and strong bisimulation
are performed on the selected formulae. A table with the results is displayed as
portrayed in Figure 6.5. A green line means that the test was successful, whereas
a red line means that it was unsuccessful.

Extra information can be obtained by clicking on a test result icon. The careful
reader may notice that the three sets of tuples displayed in Figure 6.6 are actually
the successive steps followed by the algorithm defined in Section 5.3.2 Strong
Bisimulation. The same information is available for simulation equivalence and
preorder.

The process definition is replaced by 0 in tuples. The left element of the tuple
corresponds to a state from the first equation, whereas the right element corre-
sponds to a state from the second equation. The last set contains the greatest
(bi)simulation relation for the two equations.

6.3. EQUIVALENCE CHECKING 93

Figure 6.4: Verification - equation selection

Figure 6.5: Verification performed

Figure 6.6: Verification detailed mode

94 CHAPTER 6. TUTORIAL

7
Conclusion

7.1 General Conclusion

This work was an opportunity for the two degree candidates to explore, learn and
apply process theory. In doing so, we have developed and implemented a web
based tool that allows one to specify, model and verify reactive systems through a
range of features.

These features include graphic displays, simulation equivalence and preorder, and
strong bisimulation equivalence. Displaying process algebra equations in the form
of graphs facilitates the process of specifying, modeling and reasoning about sys-
tems. Comparing systems by simulation and strong bisimulation permits to proof
that an implementation is equivalent to its specification. The process algebra is
expressed in Milner’s Calculus of Communicating Systems (CCS).

The originality of this work rest on a three-tier architecture : a back-end layer
has the modeling language based on Scala, a front-end layer built on a web client
based on JavaScript and vis.js, and a third layer with play as a web framework to
link the front-end to the back-end Scala-based processing tool.

Back-end layer. Our implementation of the tool started by defining an abstract
syntactic tree. The nodes and leaves have been defined with traits and classes. To
extend their behavior, inheritance and mixin techniques have been applied. The
syntax of Scala and its methods definition allowed us to create natural looking
Domain Specific Language (DSL) for CCS.

To transform the flat text received into an abstract syntactic tree (AST), we used

95

96 CHAPTER 7. CONCLUSION

the combinator parsing. Its implementation was straightforward, with a natural
transposition of the CCS grammar. Such parsers are directly written in the host
language which allowed us to use the expressiveness of the host language. There-
fore, pattern matching, high-order functions, parametric polymorphism and the
previously defined CCS DSL were immediately available.

During subsequent steps, transitions generation and equivalence verifying functions
were implemented with much benefit from the complementary strengths of object
oriented and functional paradigms. A major obstacle was the steep learning curve
to become reasonably proficient with the diversity of concepts available in the
Scala language.

Front-end layer. vis.js enabled us to display (LTS) transitions as graphs. For-
tunately, the framework is well documented and its usage was straightforward.
However, we were limited in our usage of it, and thus we have not tested it with a
large amount of dynamic datasets. Another limitation was that the manipulation
and interactions of the graphs were limited by the basic nature of the workbench.

Play. The Play web framework allowed us to transfer back-end Scala transition
objects to the view by a direct JSON transformation. Type-safe compiled tem-
plates were used to build the HTML view with the Scala objects. The integration
of Play with Scala was seamless, with convenient developer friendly features such as
the hot-code reloading, hit-refresh work flow, and error handling. The integration
drawbacks of Play were not relevant to our case.

In final conclusion, the work to produce this thesis shows an effective stack of
technologies for building a web based workbench for CCS. Even if the prototype we
developed did not support all the features of CCS, the work still demonstrated the
complementary strengths of oriented-object and functional programming provided
by Scala.

In many fields of endeavor, one often hears the expression “see one, do one, teach
one”, indicating that the most profound understanding of a subject is achieved
only when one can impart it effectively to someone else. In our case, that “else”
was a computer that we taught to perform algorithms.

7.2. LIMITATIONS AND FUTURE WORK 97

7.2 Limitations and future work

This section points out the limitations of the workbench and outlines directions
for future work.

Limitations. As mentioned above and detailed in Section 4.7.1, our prototype
tool did not cover unguarded CCS equations. To try to overcome this shortfall, a
rewriting unit has been added to the tool. This unit replaces unguarded process
reference by their definitions, but it still does not handle complex cases.

Another limitation was that, for the sake of simplicity, the | operator only covers
the basic case with two operands, such as : A = C | D where C and D are defined
as terminal CCS equations.

Managing all cases in the current prototype would be tedious due to its chosen
design. A better solution will require future work.

Related and Future work. To better grasp the re-factoring needed, let us give
the details of the approach tailored by CAAL. CAAL is a modern web based tool
written in TypeScript enabling graph display and verification of reactive systems.

During the parsing stage for each encountered process, transitions are produced on
the fly. To do this, it requires the process to be sliced into sub-process/sub-states
as in: a.b.∅ −→ b.∅ −→ ∅.

The process preserves a reference to its sub-process(es). The union of the transi-
tions of each sub-process allows to acquire the whole set of the process transitions.
The set of transitions for each process/sub-process are maintained in a map with
the corresponding ID.

By having a map with all sub-process transitions and a link between processes and
sub-processes, we could simplified our software. In this manner, the transitions of
reference to a process in a formula can be treated as a straightforward call to their
identifiers in the map. Cases such as A+B, A | B, and a.b.c(A+ (A | B)) would
be treated effortlessly.

We think that such an approach could permit to cover all the cases of the CCS
language without limitations or extra complexity.

In addition, a tool of formal verification needs to be specified and proven correct.
In a future work we would seek to benefit from the referential transparency, given
by most of the functions written inside the tool, to prove its correctness.

98 CHAPTER 7. CONCLUSION

Bibliography

[1] Aceto, L., Ingólfsdóttir, A., Larsen, K. G., and Srba, J. Reactive
Systems: Modelling, Specification and Verification. Cambridge University
Press, New York, NY, USA, 2007.

[2] Andersen, J. R., Andersen, N., Enevoldsen, S., Hansen, M. M.,
Larsen, K. G., Olesen, S. R., Srba, J., and Wortmann, J. K. CAAL:
Concurrency Workbench, Aalborg Edition. Springer International Publishing,
Cham, 2015, pp. 573–582.

[3] Bort, G. The Play Framework. https://www.playframework.com/, 2017.
Accessed: 2017-04-01.

[4] Cambridge University Press. Reactive Systems: Modelling, Specifica-
tion and Verification: Tools. http://rsbook.cs.aau.dk/?page_id=34, n.d.
Accessed: 2017-05-02.

[5] Documentation, S. Case Classes. http://docs.scala-lang.org/
tutorials/tour/case-classes.html, n.d. Accessed: 2017-04-23.

[6] Fernandez, J.-C. An Implementation of an Efficient Algorithm for Bisim-
ulation Equivalence. Science of Computer Programming 13, 2 (1990), 219 –
236.

[7] Guillaume, B. Play Framework Presentation. https://fr.slideshare.
net/GenevaJUG/play-framework-presentation, 2010. Accessed: 2017-04-
17.

99

https://www.playframework.com/
http://rsbook.cs.aau.dk/?page_id=34
http://docs.scala-lang.org/tutorials/tour/case-classes.html
http://docs.scala-lang.org/tutorials/tour/case-classes.html
https://fr.slideshare.net/GenevaJUG/play-framework-presentation
https://fr.slideshare.net/GenevaJUG/play-framework-presentation

100 CHAPTER 7. CONCLUSION

[8] Haller, P., and Odersky, M. Scala Actors: Unifying Thread-based and
Event-based Programming. Theoretical Computer Science 410, 2-3 (2009),
202–220.

[9] Hoare, C. A. R. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (Oct. 1969), 576–580.

[10] Jonas, B. Why did Typesafe Select Play for
their Stack instead of Lift. https://www.quora.com/
Why-did-Typesafe-select-Play-for-their-stack-instead-of-Lift/
answer/Jonas-Bon%C3%A9r?srid=vjGq, 2013. Accessed: 2017-04-17.

[11] Kučera, A., and Mayr, R. Simulation Preorder over Simple Process Al-
gebras. Information and Computation 173, 2 (2002), 184 – 198.

[12] Labun, E. Combinator Parsing In Scala. Tech. rep., Technische Hochschule
Mittelhessen, 2012.

[13] Massart, T. Formal Verification of Computer Systems. http://www.ulb.
ac.be/di/verif/tmassart/Verif/syllabus_verification_2p.pdf, 2013.
Handout - 2013 - Accessed: 2017-04-10.

[14] Matiello, Pedroand de Melo, A. C. V. PiStache: Implementing π-
Calculus in Scala. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011,
pp. 76–91.

[15] Milner, R. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

[16] Milner, R. Communication and Concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[17] Odersky, M., and al. An Overview of the Scala Programming Language.
Tech. rep., EPFL Lausanne, Switzerland, 2006.

[18] Odersky, M., and al. Scala Language Specification. https://www.
scala-lang.org/files/archive/spec/2.11//, 2014. Accessed: 2017-05-
20.

[19] Odersky, M., and al. Scala: Evaluation Strategies and Ter-
mination. http://lamp.epfl.ch/files/content/sites/lamp/files/
teaching/progfun/slides/week1-3-no-annot.pdf, 2016. Accessed: 2017-
04-08.

https://www.quora.com/Why-did-Typesafe-select-Play-for-their-stack-instead-of-Lift/answer/Jonas-Bon%C3%A9r?srid=vjGq
https://www.quora.com/Why-did-Typesafe-select-Play-for-their-stack-instead-of-Lift/answer/Jonas-Bon%C3%A9r?srid=vjGq
https://www.quora.com/Why-did-Typesafe-select-Play-for-their-stack-instead-of-Lift/answer/Jonas-Bon%C3%A9r?srid=vjGq
http://www.ulb.ac.be/di/verif/tmassart/Verif/syllabus_verification_2p.pdf
http://www.ulb.ac.be/di/verif/tmassart/Verif/syllabus_verification_2p.pdf
https://www.scala-lang.org/files/archive/spec/2.11//
https://www.scala-lang.org/files/archive/spec/2.11//
http://lamp.epfl.ch/files/content/sites/lamp/files/teaching/progfun/slides/week1-3-no-annot.pdf
http://lamp.epfl.ch/files/content/sites/lamp/files/teaching/progfun/slides/week1-3-no-annot.pdf

7.2. LIMITATIONS AND FUTURE WORK 101

[20] Sagar, G. Embedded Software Market Trends & Fore-
cast from 2016 to 2023. https://www.linkedin.com/pulse/
embedded-software-market-trends-forecast-from-2016-2023-gavhane-sagar,
2016. Accessed: 2017-05-20.

[21] Seth, A., Singla, A. R., and Aggarwal, H. Service Oriented Ar-
chitecture Adoption Trends: A Critical Survey", bookTitle="Contemporary
Computing: 5th International Conference, IC3 2012, Noida, India, August
6-8, 2012. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 164–175.

[22] Tarski, A. A Lattice-Theoretical Fixpoint Theorem and its Applications.
Pacific J. Math. 5, 2 (1955), 285–309.

[23] Yevgeniy-Brikman. What are the Pros and Cons of Play
Framework 2 for a Scala Developer. https://www.quora.com/
What-are-the-pros-and-cons-of-Play-Framework-2-for-a-Scala-developer/
answer/Yevgeniy-Brikman, 2013. Accessed: 2017-04-17.

[24] Zenger, M., and Odersky, M. Independently Extensible Solutions to the
Expression Problem. Tech. rep., EPFL Lausanne, Switzerland, 2004.

https://www.linkedin.com/pulse/embedded-software-market-trends-forecast-from-2016-2023-gavhane-sagar
https://www.linkedin.com/pulse/embedded-software-market-trends-forecast-from-2016-2023-gavhane-sagar
https://www.quora.com/What-are-the-pros-and-cons-of-Play-Framework-2-for-a-Scala-developer/answer/Yevgeniy-Brikman
https://www.quora.com/What-are-the-pros-and-cons-of-Play-Framework-2-for-a-Scala-developer/answer/Yevgeniy-Brikman
https://www.quora.com/What-are-the-pros-and-cons-of-Play-Framework-2-for-a-Scala-developer/answer/Yevgeniy-Brikman

