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The process of pattern formation for a multi-species model anchored on a time varying network
is studied. A non homogeneous perturbation superposed to an homogeneous stable fixed point can
amplify, following the Turing mechanism of instability, solely instigated by the network dynamics.
By properly tuning the frequency of the imposed network evolution, one can make the examined
system behave as its averaged counterpart, over a finite time window. This is the key observation to
derive a closed analytical prediction for the onset of the instability in the time dependent framework.
Continuously and piecewise constant periodic time varying networks will be analysed, to set the
ground for the proposed approach. The extension to non periodic settings will also be discussed.

Spatially extended systems can spontaneously yield a
multitude of patterns, resulting from an inherent drive
to self-organization [1–3]. In many cases of interest,
the interplay between nonlinearities and di↵usion seeds
a symmetry breaking instability (discovered by Turing
in his pioneering work on morphogenesis). This insta-
bility paves the way to the emergence of a rich gallery
of patchy motifs [4–6]. Distinct populations of homolo-
gous constituents often interact via an intricate architec-
ture of nested couplings, which can be adequately rep-
resented as complex heterogeneous networks. Elaborat-
ing on the mechanisms that instigate pattern formation
for reaction-di↵usion systems hosted on small lattices or
large complex networks is hence central to diverse phe-
nomena of broad applied and fundamental impact [7–12].

Topology is known to play, in this respect, a role of
paramount importance. Illustrative are oscillatory pat-
terns [13, 14] that can rise only if the support is directed.
Further, self-organisation may proceed across multiple,
interlinked networks, by exploiting assorted resources
and organisational skills. Multiplex networks have been
therefore introduced as a necessary leap forward in the
modeling e↵ort: these are particularly relevant to trans-
portation systems, the learning organisation in the brain
and to understanding the emergent dynamics in social
communities. Interestingly, the interaction between ad-
jacent layers can yield self-organised patterns which are
instead impeded in the limit of decoupled layers [16, 17].
Patterns on individual layers can also fade away due to
cross-talking between contiguous slabs. All these exam-
ples, point to the pivotal role exerted by the topology of
the underlying network in shaping macroscopic behavior
of the system [15].

In several realms of application, the networks that
specify the routing of the spatial or physical interactions
are not static, but, instead, do evolve in time [18–21].
This is an important additional ingredient key to im-

prove on our current understanding of the mechanisms
responsible for the appearance of structured patterns
across heterogenous networks. In the framework of tem-
poral networks, di↵usion processes [22] as well as random
walks [23, 24] have been studied in recent years, mostly
under the assumption of piecewise constant time varying
networks [25–27]: the topology of the assigned connec-
tions is fixed over a finite window in time, whose dura-
tion can either depend on the dynamics of the system
or be exogenously controlled. The couplings are then in-
stantaneously created, destroyed or rewired, at the end
of each time window, and the ensuing network frozen for
the subsequent time interval . Prototypical examples are
contact networks [28, 29]. Synchronisation phenomena
have also been considered for nonlinear oscillators [30]
hosted on time varying networks, as well as for systems
displaying generic reactions terms [25, 31, 32].

In this Letter we consider for the first time the pro-
cess of pattern formation for reaction-di↵usion systems
anchored on networks that evolve over time. To this
end, we initially inspect the case of a network that is
periodically rearranged in time. In particular we prove
that a symmetry breaking instability which anticipates
the pattern derive can be incited, by properly tuning
the frequency of the imposed network dynamics. The
proposed framework includes the case of a continuously
time varying network (links weights change as a smooth
function of time) and the one where sudden switches be-
tween distinct discrete networks configurations are to be
accounted for. Surprisingly enough, patterns can emerge
for a reaction-di↵usion system hosted on a piecewise con-
stant time varying network, also when they are formally
impeded on each network snapshot. The extension to
non periodic settings will be also analysed, allowing us
to draw a general interpretative scenario. Local dynam-
ics is slower than the typical time scales implicated in the
network rearrangements, for the sought e↵ects to man-
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ifest. This setting is e.g. relevant for modeling virus
spreading as mediated by pairwise contacts.

Imagine two di↵erent species living on a network that
evolves over time and denote by u

i

and v

i

their respective
concentrations, as seen on node i. Links can change their
(positive) weights, they can fade away (the corresponding
weight goes to 0), or be created (a null weight is turned
positive) or even rewired (a combination of both preced-
ing moves). For the sake of simplicity, and without losing
generality, we assume constant the number of nodes N .
The network structure is stored in a time varying N ⇥N

weighted adjacency matrix, A

ij

(t). The strength s

i

(t) of
node i is computed as s

i

(t) =
P

j

A

ij

(t). Species can
relocate in space, as follows a standard di↵usive mecha-
nism, ruled by the (time dependent) Laplacian operator
L

ij

(t) = A

ij

(t) � s

i

(t)�
ij

. Remark that, for all t and all
i,

P
j

L

ij

(t) = 0, namely L(t) is a row stochastic matrix.
When species happen to share the same node, they mu-
tually interact via nonlinear terms that reflect the speci-
ficity of the problem at hand. We will deal at first with
networks that are periodically reset in time, and show
how adjusting the period of the modulation can trigger
the onset of patterns.

The model can be mathematically cast in the form:

u̇

i

(t) = f(u
i

, v

i

) + D

u

NX

j=1

L

ij

(t/✏)u
j

(t)

v̇

i

(t) = g(u
i

, v

i

) + D

v

NX

j=1

L

ij

(t/✏)v
j

(t)

(1)

where f and g stand for the generic nonlinear reactions
terms and D

u

and D

v

label the di↵usion coe�cients of
species u and v, respectively. The parameter ✏ controls
the period of the Laplacian oscillations in time. We will
in particular denote with T the period obtained for ✏ = 1.
When the oscillations materialise as successive swaps be-
tween two (or more) network configurations, it is the fre-
quency of the blinking that sets the patterns derive, also
when Turing motifs cannot manifest for the model con-
strained on any of the considered (static) network snap-
shots. As a further preliminary condition we assume that
system (1) admits an homogeneous stable fixed point.
In other words, there exists (u

i

, v

i

) = (ū, v̄) such that
u̇

i

= v̇

i

= 0, for all i = 1, . . . , N .

Define the averaged Laplacian hLi = 1
T

R
T

0 L(t)dt and
introduce the averaged reaction-di↵usion system:

u̇

i

(t) = f(u
i

, v

i

) + D

u

NX

j=1

hL
ij

iu
j

v̇

i

(t) = g(u
i

, v

i

) + D

v

NX

j=1

hL
ij

iv
j

,

(2)

Our main result goes as follows : assume system (2)
satisfies the conditions for the emergence of Turing pat-

terns, namely an external non homogeneous perturbation

triggers the instability of the homogeneous fixed point

(ū, v̄). Then, ✏

⇤
> 0 exists such that system (1) also

undergoes Turing instabilities for 0 < ✏ < ✏

⇤.
Here, 1/✏

⇤ acts as an e↵ective high frequency drive
for self-organised spatial motifs to develop. The idea of
the proof is sketched in the following, further details are
relegated in the Supplementary Information (SI), where
the result is presented in the form of a theorem.

Label ⌧ = t/✏ and introduce the com-
pact notation ~x = (u1, . . . , uN

, v1, . . . , vN

).
Then define the function F by F (~x) =
(f(u1, v1), . . . , f(u

N

, v

N

), g(u1, v1), . . . , g(u
N

, v

N

)),

the block matrix L(t) :=
⇣

DuL(t) 0
0 DvL(t)

⌘
, and the

corresponding time average hLi. Then, by virtue of the
theorem of averaging one can show that there exists
✏

⇤
> 0 such that for all 0 < ✏ < ✏

⇤ and ⌧ = O(1/✏), one
has ~x(⌧) � ~y(⌧) = O(✏), where ~x(⌧) is the solution of

~x

0(⌧) = ✏ [F (~x) + L(⌧)~x] , ~x(0) = ~x0 2 R2N

, (3)

where the prime denotes the derivative with respect to
the rescaled time ⌧ and ~y(⌧) is the solution of the associ-
ated average system ~y

0(⌧) = ✏ [F (~y) + hLi~y], subject to
the same initial conditions, ~y(0) = ~x0. Since the reaction
term is time independent, the average solely a↵ects the
di↵usive part.

Back to the original variables, the solutions of, respec-
tively, the time dependent system (with ✏ 2 (0, ✏

⇤]) and
the averaged one, stay close for times O(1). Hence, if
an injected perturbation destabilises the homogenous so-
lution of (2), the same holds when the perturbation is
applied to system (1). Remark however that the two sys-
tems behave similarly, only for a finite time span. In fact
there is no e↵ective or exponential stability à la Nekhoro-
shev. Stated di↵erently, we cannot guarantee that the
smaller ✏ the longer the two systems agree. This in turn
implies that the asymptotic patterns, which follows the
initial instability and as obtained for respectively the av-
eraged and the time dependent models, may, in principle,
di↵er. We will return later on characterising the critical
threshold ✏

⇤.
We will hereafter discuss a pedagogical application

(termed the twin networks case) aimed at clarifying the
conclusion reached above. Other examples, to which
we will allude in the following, are instead presented in
the SI. Begin by considering the Brusselator model, a
widely studied model of chemical oscillators. This choice
amounts to setting f(u, v) = 1 � (b + 1)u + cu

2
v and

g(u, v) = bu � cu

2
v where b, c stand as free parame-

ters. When the model is made spatially extended, the
coaction of di↵usion and reaction terms can disrupt the
homogeneous fixed point, paving the way to the patterns
outbreak. This occurs when the parameters are set so as
to make the dispersion relation (max <�, the real part of
the complex exponential growth rate �) positive over a
finite window of wave-numbers. When the di↵usion takes
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place on a heterogeneous network, the dispersion relation
is defined on a discrete support that coincides with the
eigenvalues of the Laplacian operator. If the spectrum of
the discrete Laplacian operator falls in a region where the
continuous dispersion relation is negative, no instability
can take place on the network, even if it can develop on a
continuum support. This observation will be central for
what follows.

Let us thus consider two simple networks, made of N

nodes arranged on a periodic ring, and label with A1 and
A2 their respective adjacency matrices. The (even) N

nodes are connected in couples, the twins , via symmetric
links. In the first case (the network that is encoded in
A1) nodes 2k � 1 and 2k, for k = 1, . . . , N/2 are tight
together. In the other, the couples are formed by nodes
(2k, 2k + 1) for k = 1, . . . , N/2 � 1, with the addition of
pair (N, 1) (see Fig. 1 panel a). Both networks yield an
identical Laplacian spectrum: two degenerate eigenvalues
are found, ⇤1 = 0, with multiplicity N/2 (i.e. the number
of connected components the network is made of) and
⇤N = �2, with multiplicity N/2. The parameters are
set so that patterns cannot emerge for the Bussellator
model defined on each of the networks introduced above.
This is shown in Fig. 1 panel c.

We now introduce a periodically time varying network,
specified by the following adjacency matrix A(t):

A(t) =

(
A1 if {t/T} 2 [0, �)

A2 if {t/T} 2 [�, 1) ,

(4)

where {r} denotes the fractional part of the real number
r and � 2 (0, 1) is the fraction of occurrence of the first
network (and thus 1 � � for the second one) during the
period T > 0. The Laplacian matrix L(t) can be com-
puted accordingly. We get the averaged Laplacian matrix
hLi = �L1 + (1 � �)L2 where L

i

is the Laplacian matrix
of the i–th network, i = 1, 2. As an example, assume
� = 0.3, T = 1 and compute the dispersion relation asso-
ciated to the averaged network hAi = �A1 + (1 � �)A2.
From inspection of Fig. 1 panel c), it is immediately clear
that ⇤↵, the eigenvalues of the Laplacian hLi, fall in a
region where <�

↵

> 0. Hence, the Brusselator placed on
the average network exhibits Turing patterns (see Fig. 1
panel d). Based on the above, we can find a positive ✏

⇤

such that for all 0 < ✏ < ✏

⇤ the time dependent system (1)
displays patterns. This is because this latter system is
close enough to the averaged counterpart to be able to
follow its orbits. On the other hand, no patterns can
develop if ✏ is too large. These conclusions are clearly
demonstrated in Fig. 2 panel a).

We now complement the analysis by elaborating on a
recipe to estimate the critical threshold ✏

⇤. Assume ✏ = 1
and linearise system (1) close to the stable homogeneous
equilibrium (u

i

, v

i

) = (ū, v̄), for all i = 1, . . . , N :

d�~x

dt

= M(t)�~x , (5)

where �~x = (u1 � ū, . . . , u

N

� ū, v1 � v̄, . . . , v

N

� v̄)T and
M(t) = @

x

F (ū, v̄)+L(t), where @

x

F (ū, v̄) is the Jacobian
of the reaction part evaluated at the homogeneous equi-
librium. M(t) is T -periodic and piecewise constant, more
precisely M(t) = @

x

F (ū, v̄) + L1 := M1 if {t/T} 2 [0, �)
and M(t) = @

x

F (ū, v̄) + L2 := M2 if {t/T} 2 [�, 1).
We can thus solve exactly Eq. (5) over one period yield-
ing �~x(T ) = e

M2(1��)T
e

M1�T

�~x(0) =: Q�~x(0) where the
rightmost equality defines the monodromy matrix, Q.
Hence, for any m � 1, �~x(mT ) = Qm

�~x(0) . The stabil-
ity of the system is therefore determined by the spectral
radius of the monodromy matrix, ⇢(Q). If the spectrum
is entirely contained in the unit disk, �~x converges to
zero and no patterns are allowed. Conversely, the ap-
plied perturbation can develop and eventually result in
asymptotic stationary patterns. The same reasoning ap-
plies when ✏ is allowed to change freely. The monodromy
matrix now reads Q

✏

= e

✏M2(1��)T
e

✏M1�T and one can
conclude on the stability of the scrutinised system by
computing its associated spectral radius ⇢(Q

✏

). Assume,
in line with the above, that ⇢(Q) = ⇢(Q

✏

)|
✏=1 < 1. Then,

the critical threshold ✏

⇤ can be quantified as:

✏

⇤ = min{✏ > 0 : 8s � ✏ : ⇢(Q
s

)  1} . (6)

In Fig. 2 (b) the predictions of the theory are chal-
lenged versus numerical simulations, performed for the
twin network setting, as introduced above, for di↵erent
values of the system size N . Excellent agreement is found
which testifies on the correctness of the proposed inter-
pretative scenario. Interestingly, ✏

⇤ returns a di↵erent
profile in N , depending on whether N/2 is even or odd.
The explanation resides in the corresponding magnitude
of the dispersion relations, as depicted in the inset of
Fig. 2 (b). The instability is less pronounced when N/2
is odd, for small enough N . In this case, it is therefore
necessary to push the modulation to the high frequen-
cies even further to accompany the patterns crystallisa-
tion [41].

Summing up, patterns can be enforced in a reaction-
di↵usion system by switching periodically between dis-
tinct network configurations. In the remaining part of
this Letter we generalise the results along a few possible
avenues of investigation, delegating technical details and
representative applications to the SI.

We can straightforwardly adapt the above reasoning to
the case of a periodic, continuously time varying network
and provide a reliable estimate for the critical threshold
✏

⇤. In this case M(t/✏) = @

x

F (ū, v̄) + L(t/✏) is a matrix
whose elements are continuous functions of time.

By using the Floquet-Magnus expansion [33–35] one
can write �~x

✏

(t) = e

�✏(t)
e

tH✏
�~x

✏

(0), where �
✏

(t) is an ✏T -
periodic matrix, and where H

✏

=
P

n�1 H✏,n

is constant.
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FIG. 1: Twin network. Panel a): T -periodic network built from two static networks, of adjacency matrices A1 and A2. Each
network in this illustrative example is made of N = 6 nodes. In the network stored in matrix A1, symmetric edges are drawn
between the pairs (1, 2), (3, 4) and (5, 6). The second network, embodied in matrix A2, links nodes (6, 1), (2, 3) and (4, 5). For
t 2 [0, �T ) the T -periodic network coincides with A1, A(t) = A1, while in [�T, T ) we set A(t) = A2. The time varying network
is then obtained by iterating the process in time. Panel b): the ensuing time average network hAi = �A1 + (1� �)A2. Panel
c): dispersion relation (max<�↵ vs. �⇤↵) or the average network (red circles), for each static twin network (black stars) and
for the continuous support case (blue curve). Here, the networks are generated as discussed above but now N = 50. Panel d):
patterns in the average network. Nodes are blue if they present an excess of concentration with respect to the homogeneous
equilibrium solution ((ui(1)� ū) � 0.1) and red otherwise ((ui(1)� ū)  �0.1). The outer drawing represents the entries of
~v, the eigenvector of the Jacobian matrix J associated to the eigenvalues that yields the largest value of the dispersion relation.
The black ring stands for the zeroth level; red-yellow colours are associated to positive entries of ~v, while blue-light blue refer to
negative values. The reaction model is the Brusselator with b = 8, c = 10, Du = 3 and Dv = 10. The homogeneous equilibrium
is ū = 1 and v̄ = 0.8. The remaining parameters are set to � = 0.3, T = 1, Du = 3 and Dv = 10.
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FIG. 2: The critical threshold ✏⇤. Panel a): pattern amplitude, S(✏), as a function of ✏ normalised to the amplitude of the
pattern for the averaged network hAi = �A1 + (1 � �)A2, for a T -periodic twin–network made of N = 50 nodes. Insets:
asymptotic patterns (u variable) for ✏ = 0.1 < ✏⇤; blue (resp. red) nodes represent an high (resp. low) concentration of u,
with respect to the homogeneous equilibrium. For ✏ = 0.3 > ✏⇤, the system converges toward the homogeneous equilibrium;
nodes are plotted in yellow when the concentration of species u is close to the homogeneous value. The employed reaction
model is again the Brusselator and parameters are set as in Fig. 1. Panel b): ✏⇤ vs. N . The black dotted lines are drawn
after equation (6), while the red symbols (circles for N/2 even and square for N/2 odd) are numerically computed. Inset: the
maximum of the dispersion relation as a function of the network size (blue circles for N/2 even and black down-triangles for
N/2 odd).

In the SI, we show that each term of the series can be
readily computed based on the corresponding term of the
Magnus series with ✏ = 1. By evaluating the solution over

one period ✏T we obtain

�~x

✏

(✏T ) = e

�✏(✏T )
e

✏TH✏
�~x

✏

(0) . (7)
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Moreover, it is known that �
✏

(✏T ) = 0. The stability
of the homogeneous solution is therefore determined by
the eigenvalues of H

✏

, the so-called characteristic expo-
nents of the system. If the network varies smoothly, the
threshold value (6) can thus be written as ✏

⇤ = min{✏ >

0 : 8� > ✏ : max
�2�� <�  0}, where �

�

is the spectrum
of H

�

.
Note that for su�ciently small ✏, H

✏

= H1,1 + O(✏)

where H1,1 = 1
T

R
T

0 M(t) dt = @

X

F (ū, v̄) + hLi is the
modified Jacobian matrix that applies to the averaged
system. The eigenvalues of H

✏

are hence close to those
of H1,1 and the periodic, continuously time varying sys-
tem behaves as the average one. We have hence recovered
our main result. Finally, we emphasise that the analy-
sis readily extends to the case of non-periodically time
varying networks. The only requirement is the existence

of the generalised average hLi = lim
T!1

1
T

R
T

0 L(t)dt.
Relevant examples are addressed in the SI and include
(i) quasi-periodic time dependent networks, (ii) networks
constructed using aperiodic infinite words from a binary
alphabet, and (iii) randomly switching networks. The
latter example is directly inspired by epidemics systems
evolving on social contact networks.

In conclusion, we have here shown that, by properly
tuning the network topology over time, one can drive the
emergence of self-organised patterns, following a Turing
instability. The reaction-di↵usion system endowed with
a time varying support behaves as its average analogue,
provided the network dynamics is made su�ciently fast.
Hence, patterns are obtained for a model attached to a
network that changes over time, if they are predicted to
occur on the associated average system. This is a novel
route to pattern formation that we conjecture relevant
for all those applications where di↵erent species interact
via a network that can adjust in time, as follows either
an endogenous or exogenous drive [42].
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I. PROOF OF THE MAIN RESULT

The aim of this section is to provide a formal statement and a detailed derivation of our main result that we will
cast in the form of a theorem. Let us first recall the definition of the model and then proceed to prove the theorem.

We assume, for the sake of simplicity, two di↵erent species that live and interact on a periodically time varying
network. The number of nodes N is kept fixed, while pairwise weighted links adjust in time. The network structure
is embedded in a periodic time varying weighted adjacency matrix A

ij

(t), that results in time varying link strength,
s

i

(t) =
P

j

A

ij

(t). Further, we introduce the time varying Laplacian matrix defined L

ij

(t) = A

ij

(t)�s

i

(t)�
ij

. Observe
that for all t one has

P

j

L

ij

(t) = 0, namely L(t) is a row stochastic matrix.
Species di↵use across the network and interact on the same node as dictated by specific nonlinear reaction terms.

The model (equations (1) in the main body of the paper) reads:

u̇

i

= f(u
i

, v

i

) + D

u

N

X

j=1

L

ij

(t/✏)u
j

v̇

i

= g(u
i

, v

i

) + D

v

N

X

j=1

L

ij

(t/✏)v
j

(1)

where f and g are nonlinear functions and D

u

and D

v

denote the di↵usion coe�cients associated, respectively, to
species u and v. The parameter ✏ sets the rate of the network evolution. For a subsequent use let us rewrite the above
system in a more compact form by defining the 2N–dimensional vector ~x = (u1, . . . , uN

, v1, . . . , vN ):

~̇x(t) = F (~x) + L(t/✏)~x , (2)

where F (~x) = (f(u1, v1), . . . , f(u
N

, v

N

), g(u1, v1), . . . , g(u
N

, v

N

))T and

L(t)~x :=
⇣

DuL(t) 0
0 DvL(t)

⌘

~x . (3)

To study the emergence of patterns for model (1), as follows a symmetry breaking instability of the Turing type, one
cannot invoke the standard machineries, as eigenvectors and eigenvalues depend on time. To compute the dispersion
relation following the canonical approach additional assumptions are to be enforced, as e.g. discussed in [31]. To avoid
this, we proceed with an alternative route which involves dealing with the so called theorem of averaging hereafter
recalled for consistency (the interested reader can consult e.g. [36] for further details on this topic):

Theorem 1 (Averaging in the periodic case) Let us consider the system

ẋ = ✏f(t, x) , x(0) = x0 2 D ⇢ Rn

, (4)

where f and @

x

f are defined, continuous and bounded in [0, 1) ⇥ Rn

and assume f(t, ·) to be T -periodic.

Let hfi(y) be the time average of f(t, y), that is

hfi(y) =
1

T

Z

T

0
f(t, y) dt , (5)

and let y(t) be the solution of

ẏ = ✏hfi(y) , y(0) = x0 2 D ⇢ Rn

.

Then x(t) � y(t) = O(✏) for t = O(1/✏).
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Based on the above theorem, and as discussed in the main body of the paper, we can relate the behaviour of
system (1) to the behaviour of its averaged homologue, defined by replacing L(t) with the time averaged operator hLi
defined as:

hLi =
1

T

Z

T

0
L(t) dt , (6)

where T > 0 is the period. As a side remark, we anticipate that our result holds true also if the time evolution of the
network is not periodic, provided a generalised average exists, namely:

hLi = lim
T!1

1

T

Z

T

0
L(t) dt .

More precisely we can state and proof the following theorem

Theorem 2 (Main result) Let us define the averaged system [1]:

~̇x(t) = F (~x) + hLi~x , ~x(0) = ~x0 2 R2N
, (7)

where ~x = (u1, . . . , uN

, v1, . . . , vN ), hLi =
⇣

DuhLi 0
0 DvhLi

⌘

and hLi is defined using Eq. (6). Assume moreover that the

above system exhibits Turing patterns, namely that a stable homogeneous equilibrium x̄ = (ū, . . . , ū, v̄, . . . , v̄) of system
(7) can turn unstable, for an appropriate choice of the parameters involved, upon application of a non homogeneous

perturbation.

Then there exists ✏

⇤
> 0 such that the fast varying version (see Eq. (2)) displays Turing patterns for all 0 < ✏ < ✏

⇤
.

Proof Let us first introduce the rescaled time ⌧ = t/✏ and the adapted variables ~w(⌧) = ~x(t)|
t=✏⌧

, to rewrite
Eq. (2) as (with the notation 0 = d/d⌧):

~w

0(⌧) = ✏ [F (~w) + L(⌧)~w] . (8)

We can then apply Theorem 1 and obtain

~w(⌧) � ~y(⌧) = O(✏) ,

for all 0 < ✏ < ✏

⇤, where ~y(⌧) is the solution of the averaged system

~y

0(⌧) = ✏ [F (~y) + hLi~y] , ~y(0) = ~w(0) 2 R2N
. (9)

Back to the original variables, ~x and time t, the last statement can be rephrased as follows. Let ~x be the solution
of Eq. (2) and ~z(t) = ~y(t/✏) the solution of Eq. (7) with the same initial conditions, then

~x(t) � ~z(t) = O(✏) for all 0 < ✏ < ✏

⇤ and t = O(1).

Namely the two above orbits stay close over a macroscopic time window. Hence, if a symmetry breaking instability
occurs for system (7), paving the way to the subsequent pattern derive, the same holds for the original system (2).

II. ON THE CRITICAL THRESHOLD ✏

⇤.

The aim of this section is to provide a detailed derivation of the formulae employed in the main text to estimate
✏

⇤. To this end we consider again the reference system written in a compact vector form (see Eq. (2))
Assume there exists ū, v̄ such that x̄ = (ū, . . . , ū, v̄, . . . , v̄)T is an homogeneous equilibrium of (2), and write

�~x = ~x � x̄ to denote a tiny perturbation. Linearising system (2) close to the homogeneous solution yields:

˙
�~x = M

✏

(t)�~x with M

✏

(t) = @

x

F (x̄) + L(t/✏) , (10)

where @
x

F (x̄) is the Jacobian matrix of F evaluated at x̄.
In the rest of the section we assume that no Turing instability is allowed for ✏ = 1. In other words, the imposed

perturbation fades away when ✏ is set equal to 1, and system (2) converges to its homogeneous equilibrium. At
variance, the time averaged system, which corresponds to the limiting case ✏ ⇡ 0, can exhibit patterns of the Turing
class. In the following, we write for short M

✏=1 = M. Our goal is to compute, in this setting, the critical threshold for
the control parameter ✏ below which the fast varying version of the inspected system can also display Turing patterns.
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A. Temporal network of contact sequences

Let us consider a finite collection of networks indexed by k 2 K and label
�

L

[k] : k 2 K their associated Laplacian

matrices. For fixed reaction terms, we then define, for every k 2 K, the matrix M

[k] = @

x

F (x̄) + L[k], where

L[k] =
⇣

DuL
[k] 0

0 DvL
[k]

⌘

. We further assume that for every linearised system involving a given M

[k], i.e. when the

index k is kept fixed, the zero solution is stable with respect to a small non homogeneous perturbation �~x.
Let us now introduce a switching signal, �(t), that is, a piecewise constant function � : [0, 1) ! K. This provides

a direct map between time and indexes, thus enabling us to associate to each time its corresponding network

L(t) = L[�(t)]
. (11)

Working along these lines, we generalise the construction of twin network as discussed in the main body of the paper.
For the twin network, in fact, K = {1, 2} and �(t) = 1 if mod(t, T )/T 2 [0, �) and �(t) = 2 otherwise. We are thus
interested in the stability of the 1-parameter family of linearised systems

˙
�~x = M

[�(t)]
✏

�~x with M

[�(t)]
✏

= @

x

F (x̄) + L[�(t/✏)]
. (12)

If the interval between any two consecutive discontinuities of �(t) is (on average) above a given threshold ⌧

D

, called
the dwell time of the system, then the zero solution of Eq. (12) is stable (see for instance [37]).

Let 0 = t0 < t1 < t2 < . . . be the times of discontinuities of �(t), and define ⌧
k

by t

k

+ ⌧

k+1 = t

k+1 for k 2 N. The
switching signal �(t) is constant over every interval [t

k

, t

k+1) and therefore the solution of Eq. (12) can be explicitly
computed as

�~x(✏t
k+1) = exp(✏⌧

k+1M
[�(✏tk)]
✏

)�~x(✏t
k

), k 2 N . (13)

We then get a discrete time system that is stable under injection of a small non homogeneous perturbation, if the
joint spectral radius satisfies:

⇢

n

exp(✏⌧
k

M

[�(✏tk)]
✏

), k 2 N)
o

< 1 . (14)

Observe that even for a set composed by only two matrices, the joint spectral radius is cumbersome to compute [26].
To allow a more straightforward computation of the critical threshold ✏

⇤, we proceed by making the simplifying
assumption that the switching signal �(t) has a finite number of discontinuities (n) and it is T�periodic, with
T =

P

n

i=1 ⌧i.
As a result, we have that the solution of (13) at every integer multiple of periods ✏mT is given by

�~x(m✏T ) = (Q
✏

(✏T ))m �~x(0) . (15)

The time-evolution operator over one period,

Q

✏

(✏T ) =
n

Y

k=1

exp(✏⌧
k

M

[�(✏tk�1)]
✏

) =
n

Y

k=1

exp(✏⌧
k

M

[�(tk�1)]) ,

where we have used that M

[�(t)]
✏

= M

[�(t/✏)] and thus M

[�(✏t)]
✏

= M

[�(t)] (see Eq. (12)).
The critical value of the acceleration parameter ✏ is thus given by

✏

⇤ = min {✏ > 0 : 8s � ✏, ⇢(Q
s

(sT ))  1} , (16)

where ⇢ denotes the spectral radius.

B. Continuously varying networks

We now consider the more general case of a continuously time varying network, with Laplacian matrix L(t) whose
entries are integrable functions of time. The solution of the linearised system with ✏ = 1,

˙
�~x = M(t)�~x with M(t) = @

x

F (x̄) + L(t) , (17)
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can be written as

�~x(t) = exp

✓

Z

t

0
M(t) dt

◆

�~x(0) , (18)

if and only if the matrices M(t1) and M(t2) commute for any pair t1, t2. Let us observe that, as M contains both a
term related to the reactions and another related to the di↵usion, the above assumption may not be satisfied, even if
the Laplacian matrices associated to the networks do commute: the commutation between the Laplacian matrix and
the reaction part is also needed. However one can write:

�~x(t) = exp (⌦(t)) �~x(0) , (19)

where ⌦(t) =
P1

n=1 ⌦

n

(t), is known as the Magnus expansion [33,34]. From

d⌦(t)

dt

=
1
X

n=0

B

n

n!
adn

⌦A , (20)

where the B

n

’s are the first Bernoulli numbers (B1 = �1/2), ad
X

A = [X,A] = XA � AX denote the matrix
commutator and ad0

X

A = A, adk

X

A = [X, adk�1
X

A], one can iteratively compute all the terms of the series. For
example,

⌦1(t) =

Z

t

0
M(t1)dt1 (21)

⌦2(t) =
1

2

Z

t

0

Z

t1

0
[M(t1),M(t2)] dt2dt1 (22)

⌦3(t) =
1

6

Z

t

0

Z

t1

0

Z

t2

0
([M(t1), [M(t2),M(t3)]] + [M(t3), [M(t2),M(t1)]]) dt3dt2dt1. (23)

One can also prove [38] the convergence of the above series provided
R

t

0 kM(⌧)k2 d⌧ < ⇡.
As previously done when dealing with the switching network case, we assume for simplicity that the network

evolution is periodic. Hence, the entries of L(t) are T�periodic continuous functions. The Floquet theorem ensures
thus that the solution of (17) can be written as

�~x(t) = P(t) exp (tF) �~x(0) , (24)

where P is T -periodic and bounded, and F does not depend on time. The asymptotic stability of the null solution
is determined by the eigenvalues of F, known as the characteristic exponents of the system. The Floquet-Magnus
expansion [35] allows one to write

�~x(t) = exp (⇤(t)) exp (tF) �~x(0) , (25)

where the involved matrices are obtained as the sums of series [2]

⇤(t) =
1
X

n=1

⇤

n

(t), F =
1
X

n=1

F

n

. (26)

The matrix ⇤(t) is T -periodic, with ⇤(0) = 0. Since �~x(T ) = exp[⌦(T )]�~x(0), we have the identity:

F

n

= ⌦

n

(T )/T, n � 1 . (27)

Let us now consider system (10) in the case ✏ < 1. We write ⌦

✏

(t) for the Magnus expansion corresponding to
M

✏

(t) = M(t/✏), and apply the same notation to ⇤(t) and F. This leads to

�~x(t) = exp

 1
X

n=1

⇤

✏,n

(t)

!

exp

 

t

1
X

n=1

F

✏,n

!

�~x(0) , (28)

where ⇤

✏

(t) is ✏T -periodic, and

F

✏,n

= ⌦

✏,n

(✏T )/(✏T ), n � 1. (29)
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The stability is determined by the eigenvalues of the characteristic exponent ✏TF

✏

, or equivalently, by looking at the
sign of the real part of the eigenvalues of ⌦

✏

(✏T )/(✏T ).
Let us observe that for every n � 1, we have ⌦

✏,n

(✏t) = ✏

n

⌦

n

(t). In conclusion we obtain

⌦

✏

(✏T ) =
1
X

n=1

✏

n

⌦

n

(T ) , (30)

and, as a consequence, the stability of the zero solution of the fast-varying system (✏ < 1) is determined by the sign
of the real part of the eigenvalues of

P1
n=1 ✏

n�1
⌦(T )/T .

As remarked when discussing the implication of the averaging theorem, in the limiting case ✏ ! 0, the averaged
network can be used to determine the stability of the system. Indeed, if ✏ > 0 is small enough, the eigenvalues of
P1

n=1 ✏
n�1

⌦

n

(T )/T = ⌦1/T + o(✏) lie on the same portion of the imaginary axis as the eigenvalues of

⌦1

T

=
1

T

Z

T

0
M(t) dt = @

x

F (x̄) + hL(t)i. (31)

The critical value of ✏ can be computed by imposing

✏

⇤ = min

⇢

✏ > 0 : � > ✏ =) max
�2��

<�  0

�

(32)

where �
�

is the spectrum of (30) for ✏ = �.
The computation of the first terms of the Magnus expansion, truncated as desired so as to reach the necessary

precision on ✏⇤, can be carried out by using the recursive formulas first obtained in [39]

⌦

n

=
n�1
X

j=0

B

j

j!

Z

t

0
S

(j)
n

(t1)dt1, n � 1 (33)

where the S

(j)
n

follow from the recursion

S

(j)
n

=
n�j

X

m=1

h

⌦

m

,S

(j�1)
n�m

i

, 1  j  n � 1 (34)

S

(0)
1 = M(t) (35)

S

(0)
n

= 0, n > 1. (36)

Working out these formulas explicitly,

⌦

n

(t) =
n�1
X

j=1

B

j

j!

X

k1+...+kj=n�1

k1�0,...,kj�0

Z

t

0
ad⌦k1 (⌧)ad⌦k2 (⌧) . . . ad⌦kj

(⌧)M(⌧)d⌧, n � 2. (37)

The above formulas are straightforward to implement, but prove numerically heavy to calculate since they involve
multiple integrals of nested commutators. To overcome this limitation one can use the Time-stepping method which
consists in performing a partition of the interval [0, T ] in m subintervals of length h and then compute the Taylor
series for M(t) using the midpoint t

[k] = (k � 1)h + h

2 = (k � 1
2 )h:

M(t) =
1
X

j=0

m

[k]
j

(t � t

[k])j , t

k�1  t < t

k

, with m

[k]
j

=
1

j!

dj

M(t)

dt

j

�

�

�

�

t=t

[k]

. (38)

Inserting this relation into the recursive formulas given above yields [40], up to order 5:

⌦

[k]
1 = hm

[k]
0 + h

3 1

12
m

[k]
2 + h

5 1

80
m

[k]
4 + o(h7) (39)

⌦

[k]
2 = h

3 �1

12

h

m

[k]
0 ,m

[k]
1

i

+ h

5

✓�1

80

h

m

[k]
0 ,m

[k]
3

i

+
1

240

h

m

[k]
1 ,m

[k]
2

i

◆

+ o(h7) (40)

⌦

[k]
3 = h

5

✓

1

360

h

m

[k]
0 ,m

[k]
0 ,m

[k]
2

i

� 1

240

h

m

[k]
1 ,m

[k]
0 ,m

[k]
1

i

◆

+ o(h7) (41)

⌦

[k]
4 = h

5 1

720

h

m

[k]
0 ,m

[k]
0 ,m

[k]
0 ,m

[k]
1

i

+ o(h7). (42)
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Here, we have used the simplified notation [x1, x2, . . . , xj

] = [x1, [x2, [. . . , [xj�1, xj

] . . .]]]. Over each time interval
[t
k�1, tk), we get as a viable approximation to the time evolution operator from �~x(t

k�1) to �~x(t
k

), relative to the
reference case ✏ = 1 :

exp (⌦(t
k

, t

k�1)) = exp

 

4
X

n=1

⌦

[k]
n

+ o(h7)

!

(43)

After appropriate truncation of the series, we have

�~x(T ) =
m

Y

k=1

exp

0

@

X

n�1

⌦

[k]
n

1

A

�~x(0) . (44)

Note that here no integration of M(t) is required, so the computation is much faster to handle numerically. The
analysis can be readily extended to the setting ✏ < 1. If one considers again m subintervals [3] in [0, ✏T ], we then have

�~x(✏T ) =
m

Y

k=1

exp

0

@

X

n�1

⌦

[k]
✏,n

(✏t
k

, ✏t

k�1)

1

A

�~x(0) =
m

Y

k=1

exp

0

@

X

n�1

✏

n

⌦

[k]
n

(t
k

, t

k�1)

1

A

�~x(0) . (45)

As before, we only need to compute the terms of the Magnus series for the original system, that we then multiply by
the appropriate integer power of ✏. In doing so, we can obtain an estimate for the critical value ✏⇤ by evaluating the
spectral radius of the matrix that appears in the right hand side of the latter equation.

C. A closed-form approximate expression for ✏

⇤

The aim of this section is to present an alternative method, directly inspired by the proof of the averaging theorem,
to compute the critical threshold ✏⇤. This procedure avoids dealing with the computation of the monodromy matrix
and returns a closed formula for ✏⇤, which proves adequate versus numerical simulations.

Digging into the proof of the averaging theorem reveals that it relies on an invertible change of coordinates matching
the two systems (Eq. (8) and Eq. (9)). Our idea is hence to quantify ✏⇤ by determining the range of ✏ for which the
sought invertibility can be achieved. The required change of variables is given by

~w = ~y + ✏~u(⌧, ~y) , (46)

where ~u is explicitly given by

~u(s, ~y) =

Z

⌧

0
[L(r)~y � hLi~y] dr , (47)

where the terms involving the reaction part, F in Eq. (2), cancel out because they do not explicitly depend on time.
To be able to invert relation (46) one has to require that its Jacobian

J(✏) =
@ ~w

@~y

= I + ✏@

y

~u ,

is non singular, namely that det J 6= 0. This is certainly true if ✏ = 0. We could hence determine an upper bound for
✏ as:

✏

⇤ = min{✏ > 0 : 8q 2 [0, ✏) , det J(q) 6= 0} . (48)

By using the form for ~u given by Eq. (47) one can obtain

J(✏) = I2N + ✏@

y

~u = I2N + ✏

Z

⌧

0
[L(r) � hLi] dr ,

and recalling the explicit form of L we get:

det(I2N + ✏@

y

~u) = 0 , det

✓

I
N

+ ✏D

u

Z

⌧

0
[L(r) � hLi] dr

◆

det

✓

I
N

+ ✏D

v

Z

⌧

0
[L(r) � hLi] dr

◆

= 0 . (49)

In the following we apply this strategy to compute ✏⇤ for the twin network setting introduced in the main body of
the paper.
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D. The critical threshold for the twin network

The analysis presented in the previous section IIC can be pushed further in the case of switching twin–network
(see main body of the paper for technical details on the model formulation). In this case we can exactly compute
hLi = �L1 + (1 � �)L2 and thus the right hand side of Eq. (49). In fact let

�(s) =

Z

s

0
[L(r) � hLi] dr ,

then we have

�(s) =

(

(1 � �)(L1 � L2)t if {t/T} 2 [0, �)

�(T � t)(L1 � L2) if {t/T} 2 [�, 1)
,

where {r} denotes the fractional part of the real number r.
Let ⇤↵

12, ↵ = 1, . . . , N , be the eigenvalues of L1 � L2, then the roots of Eq. (49) depend on t and are of the form
(we assume to order the eigenvalues such that ⇤1

12 = 0)

✏

↵

=
1

�⇤↵

12

1

D

u

 (t)
or ✏

↵

=
1

�⇤↵

12

1

D

v

 (t)
, 8↵ = 2, . . . , N and t > 0 ,

where

 (t) =

(

(1 � �)t if {t/T} 2 [0, �)

�(T � t) if {t/T} 2 [�, 1)
,

which has a minimum at t = �T . Hence Eq. (48) returns:

✏

⇤ ⇡ 1

⇤N

12�(1 � �)T
min



1

D

u

,

1

D

v

�

, (50)

where we set ⇤N

12 = max
↵

|⇤↵

12|, keeping in mind that the spectrum of L1 � L2 contains both positive and negative
eigenvalues.

III. ANOTHER APPLICATION: THE BLINKING NETWORK

Many interactions involving humans can be described by a binary contact lasting for a finite amount of time after
which the two individuals get apart (contact networks) [28,29]. During these events information can be mutually
shared. If contacts are not mediated by electronic devices, viruses can pass from an individual to the other, hence
triggering the epidemic spreading. As a first approximation, the dynamics of interaction within an large community
can be broken down into a collection of successive pairwise exchanges, that extend over a finite window of time.
Working in this setting, it is interesting to elaborate on the conditions (e.g. characteristic time of interactions)
that discriminate between an homogenous or pattern like (in terms of virus load or information content) asymptotic
equilibrium. Let us observe that typical time scales of social contacts are of the order of minutes or hours, hence
faster than the typical time of virus incubation.

To this end we here consider a collection of networks, each made of N isolated nodes with the exception of two
nodes that are connected via an undirected link. Any two networks in this collection di↵er because a di↵erent link is
activated. There are hence N(N � 1)/2 di↵erent networks in total. All networks have the same Laplacian spectrum
given by ⇤1 = 0 with multiplicity N � 1 (i.e. the number of connected components the network is made of) and
⇤
N

= �2 with multiplicity 1 (i.e. the minimal value the eigenvalues can assume in the case of complete bipartite
network).

Let us now define a periodically time varying network A(t) as follows. Fix a period T > 0 and divide the interval
[0, T ] into m = N(N � 1)/2 equal disjoint subintervals ⌧

i

, [
i

⌧

i

= [0, T ] and ⌧
i

\ ⌧
j

= ; if i 6= j. Hence, |⌧
i

| = ⌧ = T/m

(of course this assumption can be relaxed and subintervals with di↵erent length allowed for).
Assume to order the networks in the collection from 1 to N(N � 1)/2, then define A(t) by

A(t) = A

i

if t 2 ⌧

i

, (51)
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where A

i

is the adjacency matrix associated to one of the networks of the collection. Then we periodically repeat the
procedure, i.e. if t > T then consider (t mod T ) instead of t. Di↵erently stated, during each time interval, a novel
link is created between a newly selected pair of nodes and the connection active during the preceding time window
deleted. Hence, at each time there is one and only one active link (see top left panel of Fig. 1 for an illustrative
explanation). By making use of the aforementioned notation, we could also say A(t) = A

[�(t)], where �(t) = i if
t 2 ⌧

i

. Because of the assumption of equal length intervals ⌧
i

, the adjacency matrix of the averaged network is given
by

hAi
ij

=

(

2
N(N�1) if i 6= j

0 if i = j

, (52)

while the Laplacian matrix reads

hLi
ij

=

(

2
N(N�1) if i 6= j

� 2
N

if i = j

, (53)

whose spectrum is ⇤1 = 0 with multiplicity 1 and ⇤
N

= �2/(N �1) with multiplicity N �1. One can thus choose the
network size N to ensure that the relation dispersion admits a positive real part, once evaluated in ⇤

N

= �2/(N � 1)
(see bottom left panel of Fig. 1).

To carry out one test we consider again the Brusselator model running on top of a such time varying network. The
reaction terms read therefore f(u, v) = 1 � (b + 1)u + cu

2
v and g(u, v) = bu � cu

2
v, where b, c are parameters of the

model fixed that we assign to be b = 8 and c = 10. The homogeneous equilibrium is thus ū = 1 and v̄ = 0.8. The
di↵usion coe�cients are set to D

u

= 3 and D

v

= 10.
We also assign the remaining model parameters in such a way that each network of the collection (A

i

) cannot
yield Turing patterns. This amounts to requiring �1 = <�(⇤1) < 0 (the homogeneous equilibrium is stable) and
�

N

= <�(⇤
N

) < 0 (see bottom left panel of Fig. 1).
Applying Theorem 2 one can find a positive ✏⇤ such that for all 0 < ✏ < ✏

⇤, the fast varying time dependent
system (2) exhibits Turing patterns. This is due to the fact that, under this operating condition, system (2) is close
enough to its averaged analogue to be able to follow its orbits. Conversely, system (2) does not exhibit Turing patterns
if ✏ is too large (see bottom right panel of Fig. 1).

IV. NON-PERIODIC NETWORKS

Our main result, Theorem 2, holds true also if the time varying network is not periodic: as mentioned earlier, we
solely require the existence of the generalised average

hLi = lim
T!1

1

T

Z

T

0
L(t) dt . (54)

The aim of this section is thus to shortly discuss some examples of a non-periodic time-varying networks for which
Eq. (54) is well defined.

The first example exploits the non commensurability of the periods of two periodic networks. More precisely,
let G1(t), respectively G2(t), be a T1, respectively T2, periodic network. Then, assuming T1/T2 62 Q, the network
G(t) = G1(t) + G2(t) is quasi-periodic and one easily obtains that

hLi = hL1i + hL2i ,

where hL
i

i is the average Laplacian matrix of the i–th network, computed over the period T

i

.
Building on this setting one could generate interesting applications. Imagine that for all finite t, the network

associated to G(t) cannot develop patterns. Then we could speculate on the possibility that patterns arise in the
averaged network in the limit t ! 1. For instance, given two adjacency matrices A1 and A2 and two parameters
�

j

2 (0, 1), j = 1, 2, we define

G

j

(t) =

(

A1 if {t/T

j

} 2 [0, �

j

)

A2 if {t/T

j

} 2 [�
j

, 1) ,

then G(t) = G1(t) + G2(t) is quasi-periodic. For all finite t no patterns are allowed on G(t) if they are not observed
on neither A1, A2 nor A1 + A2. However, the average limit network hGi = (�1 + �2)A1 + (2 � �1 + �2)A2 could
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2
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�
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1 2

5 4

6 3

1 2

5 4

6 3
. . .

A(t)
(a)

4⌧

(c)

FIG. 1: Blinking network. Panel a): T -periodic network built by using m networks, Ai i = 1, . . . ,m (m = N(N � 1)/2). In

this example, each network is made by N = 6 nodes among which only two are connected. Let ⌧ = T/M , then for t 2 [0, ⌧) the

T -periodic network coincides with A1, in the successive interval t 2 [⌧, 2⌧), A(t) = A2, and so on. The time varying network

is then obtained by periodically repeating this construction. Panel b): the time average network hAi = KN/M , where KN

denotes the complete network made by N = 6 nodes in this example. Panel c): dispersion relation for the average network (red

circles), for each static network Ai (black stars) (N = 11 nodes) and for the continuous support case (blue curve). Panel d):

the time evolution of the concentrations ui(t) for the blinking network composed by N = 11 nodes. The reaction dynamics is

given by the Brusselator model (f(u, v) = 1� (b+ 1)u+ cu

2
v and g(u, v) = bu� cu

2
v where b, c are parameters of the model

hereby fixed to b = 8 and c = 10); the homogeneous equilibrium is ū = 1 and v̄ = 0.8. The remaining parameters are T = 1,

Du = 3 and Dv = 10.

still yield patterns for a suitable choice of �
j

. We do not provide an explicit numerical evidence of this mechanism
here, but instead turn to consider a di↵erent model of non periodic networks. For this further example, a numerical
realization will be also given to support the conclusion of the analysis.

The final example that we are going to illustrate is based on aperiodic words (or binary strings) and follows the
construction of a map associating to the letters (or entries) of the word a network. Let us consider for the sake of
simplicity, two time periodic networks built on two di↵erent time windows of identical total duration:

P0(t) =

(

A1 if {t/T} 2 [0, �)

A2 if {t/T} 2 [�, 1)
and P1(t) =

(

A2 if {t/T} 2 [0, 1 � �)

A1 if {t/T} 2 [1 � �, 1)
(55)

where T > 0 is the period and � 2 (0, 1) a fixed parameter.
Given a string made of w = (i

n

)
n2N, i

n

2 {0, 1}, we can finally obtain a time varying network by selecting P0 or P1

according to the entries appearing in w. The Laplacian matrix L(t) associated to this latter network will be aperiodic
if the word w also is. On the other hand, because of the definition of P0 and P1 (they are based on windows of the
same length) one straightforwardly obtains: hLi = �L1 + (1 � �)L2.

Let us conclude by providing an explicit example (see also Fig. 3). Let us call the complexity of w the application
p

w

: N ! N which gives for every n the number of subwords of length n in w. Using the Morse-Hedlund theorem[4],
an aperiodic word w of minimal complexity is such that

8n 2 N, p

w

(n) = n + 1. (56)

The words with minimal complexity are called Sturmian words [5]. A well-known example is the Fibonacci word
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w = 00101 . . .

0 T 2T 3T 4T

P0 P0 P1 P0 P1

5T

A0 A0 A0 A0 A0A1 A1 A1 A1 A1

{ { { { {
. . .

FIG. 2: Aperiodic time varying network build using a Sturmian words. From the top, the word w = 00101 . . . , the map that

associates to each letter (entry) of the word (binary string) the network P0(t) or P1(t), the resulting aperiodic time varying

network.

w

Fibonacci = w0w1w2 . . . where the n–th letter, w

n

, is given by

w

Fibonacci(n) = 2 + bn'c � b(n + 1)'c where ' =
1 +

p
5

2
. (57)

Observe that such word can be obtained using the following recursion

s0 = 0, (58)

s1 = 01, (59)

s

n

= s

n�1 · s

n�2, 8n � 2, (60)

where s1 · s2 is the concatenation of s1 and s2, from which the name Fibonacci follows. A numerical realization of
the proposed scheme is reported in Figure 3: patterns appear in the time varying network also if they are formally
impeded on each subnetworks components. Note that by considering low complexity words, when defining the network
dynamics, the corresponding threshold value of ✏ is expected to be larger than with words with a higher complexity.
We thus have a less demanding condition on the ratio between the time scales of the network and of the reactions, in
order to generate patterns due to varying topology.

V. RANDOM TEMPORAL NETWORKS

The example based on the blinking network, as previously discussed, deals with the simplifying assumption that
each contact lasts the same amount of time. Moreover, encounters are assumed to repeat periodically in time. This
somehow unnatural hypothesis can be relaxed without a↵ecting our conclusion, as we will demonstrate in the following.
More specifically, we will hereby revisit the blinking network example, assuming now random temporal switches.

For the sake of clarity let us consider the blinking network with five nodes. We select 8 among the 10 possible
networks containing a single link, to represent the static configurations (see Fig. 4). The only requirement is that each
node should participate at least once to the formation of a link to ensure the connectivity of the average network.
We then construct a reference framework by implementing a deterministic evolution based on a fixed sequence of
discrete switches, from 1 up to 8 using the natural ordering, that covers a finite interval of time T , called the period.
Then, the dynamics is periodically repeated in time. Let us define a uniform partition of this period, ⌧

i

= T/8 for
all i, and use the Brusselator for the reaction kinetics. The chosen value of T is not relevant and it has been here
set to 1. The system evolving on the average network, hAi =

P8
i=1 A

i

/8, fulfils the conditions for Turing instability.
Then, according to Theorem 2, Turing patterns also emerge over the temporal network if the switching is fast enough,
✏ < ✏

⇤
det

⇡ 0.37 (see Fig. 6, solid black line).
Let us now construct a randomly time varying blinking network, based on the 8 independent configurations as

introduced above. More precisely, with a small abuse of language, we define a period T as a sequence of length 8
made by a random permutation of the integers {1, . . . , 8}. To each sequence we associate the corresponding ordered
set of adjacency matrices. Then a new sequence, still of length 8, is drawn which applies to the next iteration and
the whole procedure is eventually iterated. Given a sequence w

(0) = i1 . . . i8, i

j

2 {1, . . . , 8} and given an integer
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FIG. 3: Twin network and Fibonacci word. Using the twin network A1 and A2 (made by N = 32 nodes) and the Fibonacci

word w

Fibonacci

= 00101001001 . . . , we apply the scheme presented in Fig. 2 to build a time varying aperiodic network A(t).

Panel a): the dispersion relation (max<�↵ vs. �⇤↵) for the average network (red circles), for each static twin network (black

stars) and for the continuous support case (blue curve). Panel b): the time evolution of the concentrations ui(t) for the aperiodic

network composed by N = 32 nodes. The reaction dynamics is given by the Brusselator model (f(u, v) = 1� (b+ 1)u+ cu

2
v

and g(u, v) = bu � cu

2
v where b, c are parameters of the model fixed to b = 8 and c = 10); the homogeneous equilibrium is

ū = 1 and v̄ = 0.8. The remaining parameters are T = 1, Du = 3, Dv = 10 and ✏ = 0.01.

after

after after after

after after after
afterA2A1 A3 A4

A5A6A7A8

⌧1 ⌧2 ⌧3

⌧4
⌧5⌧6⌧7

⌧8

FIG. 4: Blinking network with N = 5 nodes and M = 8 configurations. The temporal ordering corresponds to a reference

deterministic evolution; during one period T = ⌧1 + . . . + ⌧8, the adjacency matrix A(t) remains constant and equal to Ai(t)

for a duration ⌧i, i = 1, . . . ,M .

k 2 {0, . . . , 8} we define a new sequence w

(1) = R

k

(w(0)) obtained from w by replacing k of its entries with numbers
drawn with uniform probability from {1, . . . , 8} (repetitions are allowed). For instance if k = 1, then w

(1) and w

(0)

can di↵er at most by one symbol. We then repeat the process n times, starting always from the same initial sequence
to obtain the sequences, w

(j) = R

k

(w(0)), j = 1, . . . , n, that are eventually concatenated to build a long enough one,
w = w

(0) · w

(1) · . . . · w

(n). In this way we can ”continuously” pass from a deterministic, regular periodic setting (the
same sequence, initially drawn, of 8 integers is repeated over all time windows, hence k = 0) to a random one (each
period a new sequence of 8 integers is randomly drawn, k = 8).

Given a sequence built using the latter recipe, we can define a randomly time varying blinking network by gen-
eralising the construction done in the deterministic case, where now the sequence of adjacency matrices follows the
entries of the random sequence (see Fig. 5). The same construction applies to the Laplacian matrix L(t).
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. . .

w

(1) = R1(w
(0)) = 14345678w

(0) = 12345678
w

(2) = R1(w
(0)) = 12345178

w = 12345678 · 14345678 · 12345178 · . . .

A1 A2 A3 A4 A5 A6 A7 A8 A1 A4 A3 A4 A5 A6 A7 A8 A1 A2 A3 A4 A5 A1 A7 A8

4T0 2T 3T

FIG. 5: Randomly time varying blinking network. From the top, the initial sequence w

(0)
= 12345678 and two possible new

sequences obtained from the initial one with k = 1, w

(1)
= 14345678 and w

(2)
= 12345178 (we denoted in bold the changed

entries), the concatenated sequence w = w

(0) · w(1) · w(2) · . . . and the resulting sequence of adjacency matrices.

As already observed, if k = 1 two consecutive periods, i.e. two adjacent sequences of 8 integers, di↵er at most for
two symbols. Then the deviation from periodicity (k = 0) can be considered small. Hence, the value of ✏⇤

rnd

allowing
for Turing patterns on a randomly time varying network will be similar to the one obtained for the deterministic
reference case ✏⇤

det

(compare the red squares and the black circles lines in Fig. 6). On the other hand, when the
ordering within a sequence is uncorrelated from that characterizing the preceding segment of evolution (namely k is
large), one faces a purely random rearrangement of the allowed contacts (each assumed to be active with a probability
p

i

= 1/8). The more the deterministic sequence is perturbed, the higher the switching frequency needs to be for the
system to behave as its averaged counterpart (see the yellow stars and green down triangles curves in Fig. 6).

We can finally apply the averaging theorem to the latter model. If ✏ is small enough, ✏ < ✏

⇤
rnd

, then the system will
remain close to the average system for a macroscopic time duration. By the strong law of large numbers,

lim
T!1

1

T

Z

T

0
L(t)dt = E [L(t)] (almost surely),

where E[L(t)] is the mathematical expectation of the Laplacian matrix associated to the random network. Note that,
as previously stated, and for all cases discussed above, the mathematical expectation can be explicitly computed: it
is constant over all periods, independently on the specificity of the selected configuration and it is equal to E[L(t)] =
1
8

P8
i=1 L

i

. The interpretation is as follows. If the system running on top of the network defined by E[A(t)] allows for
Turing patterns, and if one waits long enough, then the system evolving on the random network will also undergo a
Turing instability , provided ✏ is su�ciently small. As a result, for high switching frequencies, the average network can
be used to predict the emergence of self-organised patterns, independently of the particular realisation that shapes
the evolution of the random network.

[1] F (~x) being time independent, the averaging a↵ects only the Laplacian matrix.

[2] The convergence for the series for F follows from the above quoted condition

R T

0
kM(⌧)k2 d⌧ < ⇡, whereas for the series

related to ⇤(t) we have the more restrictive su�cient condition

R T

0
kM(⌧)k2 d⌧ < 0.20925.

[3] Let us note that if m is large enough, the convergence of the Magnus series on each subinterval is guaranteed.

[4] A word w is eventually periodic i↵ there exists n 2 N such that pw(n)  n.

[5] Note that it is trivial to give examples of aperiodic words with higher complexity.
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FIG. 6: Pattern amplitude in the random blinking network example with N = 5 nodes and using the M = 8 configurations

shown in Fig. 4. As detailed in the main text, the di↵erent curves correspond to various degrees of ”randomness” for the

sequences used in each period (red square k = 1, magenta diamond k = 2, blue up-triangle k = 3, green down-triangle k = 4

and yellow star k = 8). Pattern amplitudes have been normalised with respect to the pattern amplitude computed for the

expected static network E[A(t)] =

P8
i=1 Ai/8. We also report the pattern amplitude for the deterministic case (black circles

k = 0). The reaction kinetics stem from the Brusselator with the same parameters as used throughout the work.


