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Regularization for unconstrained problems

The problem (again)

We consider the unconstrained nonlinear programming problem:
minimize f(x)
for x € R" and f : R” — R smooth.

Important special case: the nonlinear least-squares problem
minimize f(x) = 1||F(x)|?

for x ¢ R" and F : R" — R™ smooth.
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Regularization for unconstrained problems

A useful observation

Note the following: if

@ f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f(x +s) f(x) + (s, g(x)) + (s, H(x)s)
+ 11— a)(s, [H(x + as) — H(x)]s) da
< f(x) + (s,8(x)) + 3(s, H(x)s) + iL]||s]3

m(s)

= reducing m from s = 0 improves f since m(0) = f(x). ‘
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Regularization for unconstrained problems
Approximate model minimization

Lipschitz constant L unknown =- replace by adaptive parameter o in the

model :

def
m(s) S f(x) +sTg(x) + isTH(x)s + Lokls|3 = Tralx,s) + 1ol

Computation of the step:

© minimize m(s) until an approximate first-order minimizer is obtained:

IVsm(s)|| < FoplsI?

(s-rule)

Note: no global optimization involved.
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Regularization for unconstrained problems

Adaptive Regularization with Cubics (ARC2 or AR2)

Algorithm 1.1: The ARC2 Algorithm
Step 0: Initialization: xg and og > 0 given. Set k =0
Step 1: Termination: If ||gk|| < ¢, terminate.

Step 2: Step computation:
Compute s such that m(sk) < my(0) and ||[Vsm(sk)|| < Kaop | Sk ||
Step 3: Step acceptance:
f(Xk) — f(Xk + Sk)
f(xk) — Tr2(xk, Sk)

Compute py =

Xk + Sk if pg >

and set x = .
ktl { Xk otherwise

Step 4: Update the regularization parameter:

[T mins 0k] if pie > very successful
Ok+1 € [0k, Y10k] if < pk < successful
[viok, Y20] otherwise unsuccessful
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Regularization for unconstrained problems

Cubic regularization highlights

‘ f(x+s) < m(s) = f(x)+ sTg(x) + %STH(X)S + %LHSH% ‘

@ Nesterov and Polyak minimize m globally and

@ N.B. m may be non-convex!
o efficient scheme to do so if H has sparse factors

@ global (ultimately rapid) convergence to a 2nd-order critical point of f

@ better worst-case function-evaluation complexity than previously
known

Obvious questions: |

@ can we avoid the global Lipschitz requirement? YES!

@ can we approximately minimize m and retain good worst-case
function-evaluation complexity? YES !

@ does this work well in practice? yes
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Regularization for unconstrained problems

Evaluation complexity: an important result

How many function evaluations (iterations) are needed to ensure that

gl < €?

If H is globally Lipschitz and the s-rule is applied, the ARC2
algorithm requires at most

L’;%—‘ evaluations

for some kg independent of e.

Note: an O(e~3) bound holds for convergence to second-order critical
points.
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Regularization for unconstrained problems

Evaluation complexity: proof (1)

L
F(oi + sk) < Tra(xk sk) + ;f||sk||3

lg(xk + sk) — Vs Tr2(xk, se)ll < Lellskl?

Lipschitz continuity of H(x) = V2f(x)

Vk >0 f(xk) — Tr2(xk, k) > %‘TminHSk”3

f(xk) = mi(0) = my(sk) = Tr2(xi, sc) + Lowllsel®
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Regularization for unconstrained problems

Evaluation complexity: proof (2)

Le(p+1) Then

p(l—m2)
|f(Xk + Sk) — Tf’2(Xk,$k)| < Lf(p -+ ].)
| Tro(xk,0) — Tro(xks k)| = pok —

Assume that o, >

lpk — 1] <

and thus px > m2 and oy11 < ok.
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Regularization for unconstrained problems

Evaluation complexity: proof (3)

lg(xisn)!l )5

Vk successful  |[|sk|| > (
Lf + K;stop + Umax

gk + skl < llgbxk + sk) — Vs Tr2(xk, )l

[ Ve el 50 + onlsllse]| + ol

IN

Lellsell? + 1Vsm(s)ll + owllsill?

A

[Lf + Kstop T Uk] HskH2
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Regularization for unconstrained problems

Evaluation complexity: proof (4)

successful iterations

llg(xk+1)]] < € after at most f(XO)T_fIOW e3/2

Let Sx = {j < k > 0| iteration j is successful}.

V

F30) ~ fiow > o) ~ Flxkin) > Sies, [F0) — Fxi+ )]

Omin .
Z % Z [f(x,-) - Tf,2(Xi75i)} > | Skl 6o Min 5|3
i€Sk
Omin .
= 3z min g (xit1)|I/?
60<Lf + Rstop + Umax)
> Skl Zmin €3/2

60 (Lf ¥ Koy + amax) 32
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Regularization for unconstrained problems

Evaluation complexity: proof (5)

I 1
k < Hu|8k|7 where k, déf (1 + | ogfyﬂ) i log (Umax> :
log 72 log 72 %0

0k € [Omin, Tmax] + mechanism of the o update.

f(XO) — fow 6_3/2
K

llg(xk+1)]| < € after at most successful iterations

One evaluation per iteration (successful or unsuccessuful).
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Regularization for unconstrained problems
Evaluation complexity: sharpness
Is the bound in O(e3/2) sharp?
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The objective function
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Regularization for unconstrained problems

An example of slow ARC2 (2)

-0.05 ‘ ‘ ‘

The first derivative
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Regularization for unconstrained problems

An example of slow ARC2 (3)

L
0 2 4 6 8 10 12

The second derivative
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Regularization for unconstrained problems

An example of slow ARC2 (4)
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The third derivative
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Unregularized methods
Slow steepest descent (1)

The steepest descent method with requires at most

{ig-‘ evaluations
€

for obtaining ||gk|| < e.

Sharp??? YES

Newton's method (when convergent) requires at most

O(e~?) evaluations

for obtaining ||gk| < e !!!!

Philippe Toint (naXys) University of Florence 2017 18 / 43



Unregularized methods

Slow Newton

04 L L L L L L L
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The objective function for slow Newton
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Unregularized methods

Slow Steepest-Descent

0.4 L L L L L L
0 2 4 6 8 10 12

The objective function for slow Steepest descent
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Regularized methods (2)

More general second-order methods

Assume that, for 5 € (0, 1], the step is computed by
(Hk + Ml)sk = —gk and 0 < )\ < /<;s||sk||ﬂ

(ex: Newton, ARC2, Levenberg-Morrison-Marquardt, (trust-region),
Curtis-Robinson-Samadi, Royer-Wright,. . .)

The corresponding method terminates in at most

___ ko luati
’76(:8+2)/(ﬁ+1)—‘ evaluations

to obtain |/gk|| < € on functions with bounded and (segment-
wise) B-Holder continuous Hessians.

Note: ranges form ¢ 2 to ¢ 3/2

| ARC2 is optimal within this class
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Regularized methods (2)

High-order models (1)

What happens if one considers the model

1
mi(s) = Tr,p(xk, 5) + IISII"+

where

Trp(x,s) = f(x +Z [VAF(OlsP

terminating the step computation when

IVsm(si)ll < FsopllSkc]|”

77

‘ now the ARp method! ‘
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Regularized methods (2)

High-order models (2)

e-approx lrst-order critical point after at most

f(XO) - flow —p—;l
7/@ €

successful iterations ‘also for convexly constrained problems!

Moreover (using the correct subproblem termination rule)

e-approx “2nd order critical point” after at most

f(XO) — U 67%
K

successful iterations ‘for unconstrained problems only! ‘

Much better than the standard O(e~3) result!!!
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Regularized methods (2)

Derivative tensors for partially separable problems

f is partially separable if

f(x) = D (Uix) = Y~ fi(x;) where rank(U;) < n
i=1 i=1
Then m
VEF(X)Is)” = Y VEA()[Ux]”
i=1
Note:

size( V& fi(x) ) < size( VRF(x) )
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Regularized methods (2)

A (not so) obvious question

If one uses a model of degree p (T (x,s)), why be satisfied
with first- or second-order critical points???

What do we mean by critical points of order larger than 2 777

What are necessary optimality conditions for order larger
than 2 777

Not an obvious question!
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Regularized methods (2)

A sobering example (1)

Consider the unconstrained minimization of

X2 <X2 - e_l/X12) if x1 #0,
X3 if x1 =0,
(cf. Peano (1884). Hancock (1917))

f(X17 X2) =

1

08|
06 F >
04 k
0.2 |
0
02 F
04 |

06

08 |
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Regularized methods (2)

A sobering example (2)

Conclusions:
@ looking at optimality along straight lines is not enough
@ depending on Taylor's expansion for necessary conditions is not always
possible

Even worse:

) xo(x— sin(l/x;l)efl/xl2 if x31 #0,
f(X17X2)—{X22( > i — 0

(no continuous descent path from 0, although not a local minimizer!!!)

Hopeless?
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Regularized methods (2)

Limiting one's ambitions. . .

Note: the non-existence of continuous descent paths remains a necessary
condition! Focus on polynomial paths

q
x(a) = x, + Z a's; + o(a9)
i=1

Suppose that x, is a local minimizer. Then, for j € {1,...,q},

i%( > VA st s ]) 20

k=1 (01,8 )EP(j k)

holds for all (si,...,s;) such that, for i € {1,...,j —1},
i

Z%( > V’x(f(x*)[szl,-u,s@k]) =0.

k=1 " (L1,....4)EP(i,k)
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Regularized methods (2)

And then?

In short:

o reduces to (in)equalities on V4 f(x)[s} in the kernel of V% * for j =
1,23

@ inherently more complicated for orders 4 and above
(conditions involving a mix of V4 f(x)[s] of different orders)
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Regularized methods (2)

Using Taylor's models, nevertheless

Define, for some small A > 0,

¢fA7j(X) def f(x) — globmin T j(x, d),
x+deF
lldll<a
. ¢fA,j x) .\
lim — = 0| = path-based necessary conditions at x .
A—0 A

V3f Lipschitz continous near x. € F. Suppose that
gbfAJ(xe) <eN for j=1,...,q

Then
f(xe+d) > f(x) —2eA9 Vx.+d with ||d| < < T

f.q

q!eAq)qh
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Regularized methods (2)

A (theoretical) trust-region algorithm

Algorithm 3.1: Trust-region with adaptive order models (TRq)
Step 0: Initialization: g, € € (0,1], xo and A; € [¢,1], Amax € [A1,1].
Step 1: Step computation: For j=1,...,q,
(i) evaluate V/f(xx) and gbf k(xk)
(i) if gzbf (xk) > e\, go to Step 2 with s, = d
Termlnate with x. = x¢ and A, = Ay.
Step 2: Accept the new iterate: Compute f(xx + sx) and
f(Xk) — f(Xk + Sk)
Tf’j(Xk, 0) — Tf,j(Xk, Sk) '

Pk =

If Pk = M1, set Xp11 = Xk + Sk. Otherwise set Xk4+1 = Xk-
Step 4: Update the trust-region radius. Set

(1A%, 72 Ak] if pr <m,
Apy1 €4 [20k A4 if pi € [n1,m2),
[Ak, min(Amax, 30k)]  if px > 1m0,
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Regularized methods (2)

An evaluation complexity bound

TRqg computes an e-approx “g-th order critical point” after at most

(successful) iterations.

Same results for problems involving convex constraints!
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Regularized methods (2)

Complexity of convexly constrained problems

| Where do we stand?]

— — — — ?
q - - —  O(e(atD) ? ?
: — — ? ? ?
2 O3 ... e [O(e(PTD)/(p=1)))]
1 O(e72) 0(e73/%) ... . O(e(Pt1)/pP)
/]\ q/p —) 1 2 ... ... p
Complexity of optimality order g as a function of model degree p
Trust-region algo Regularization algo
[ ] for unconstrained problems only!
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Equality constrained problems
The equality-constrained case

Consider now the EC-NLO (general with slack variables formulation):

minimize ,  f(x)
such that ¢(x)=0 and x€F

Suppose x is a local minimum of the EC-NLO problem and y
the associated multiplier. Then, for every g > 0 and A(x,y) =
f(x)+yTe(x),

Thq(x,s(a),y) =0

for all locally feasible s(«) such that
T/\J(X,S(Oé),y) =0 je {1)"'7q_ 1}

and
TCJ(X7S(a)7y):O je{l,...,q}

aVlallal
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Equality constrained problems

Necessary conditions for EC-NLO

Verification essentially (even more) hopeless because of
@ dependence of ¢ j(x) on sy, ..., s,
@ growing number of coefficients

@ involves more than Vif for g > 3!

| Ideas | for a |first-order | algorithm:
Q get |c(x)|| < ¢ (if possible) by minimizing ||c(x)||? such that x € F
(getting ||J(x) "c(x)| small unsuitable!)

@ track the “trajectory”

T Y {(xeR | c(x)=0 and f(x)=t}

for values of t decreasing from f(first feasible iterate) while preserving
xeF
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Equality constrained problems

First-order complexity for EC-NLO

Sketch of a two-phases algorithm:

feasibility: apply a O(e~ ™) method for convex constraints (with specific
termination test) to

min v(x) e le(x)||?> such that x € F

at most O(max[e; ', et "e5"]) evaluations

tracking: successively
@ apply a O(e ™) method for convex constraints (with
specific termination test) to

min zu(x, t) 2 lc(x)|2 + (F(x) — t)? such that x € F

@ decrease t (proportionally to the decrease in ¢(x))

at most O(max[es 1, et "e;™]) evaluations
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Equality constrained problems

First-order complexity for EC-NLO

Under the “conditions stated above”, the above algorithm takes
at most

70" (ek"™ey™) evaluations
to find an iterate xx with either
leCad)ll < dep and ¢ty < [I(y, 1)llep
for some Lagrange multiplier y, or

le(xi)ll > de and ¢ ; < e€A.

Philippe Toint (naXys) University of Florence 2017 37 /43



Equality constrained problems

Higher order complexity for EC-NLO? (1)

The above approach for g = 1 hinges on

VIA(x,y) = Viu(x,t)

1
f(x)—t

Hopeful for g = 2 since

VEAx NI = s Vil Ol
for all
d € span {V;lf(x)}L N span {V)l(c(x)}L o M(x)
More difficult but for g =3 as
VA N = = Vil P
for all

d € M(x) N [a complicated set depending {V1if}, {V2f}, {Vic} {V3c}]
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Equality constrained problems

Higher order complexity for EC-NLO? (2)

But impossible for g = 4 (and above) because

VIN<Y) = g Vim0 )
—4[V3f(x) ® VLF(x) + 37 V3ci(x) ® Viei(x)]
—3[V2f(x) @ V2f(x) + 31y V26i(x) ® V2ci(x)]

A possibly important consequence:

Every approach based on quadratic (or more general strictly
increasing) penalization is probably doomed for g > 4!

‘:> Need for a completely fresh point of view!
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Conclusions
Conclusions

Complexity analysis for general g-th order critical points

O(e~(91)) (unconstrained, convex constraints)

@ Complexity analysis for first-order critical points

O(el"™e;™) (equality and general constraints)

©

Jarre's example = global optimization much harder

(4

Many questions remaining:

o high-order optimality with high-degree model?
@ beyond first-order for EC-NLO?
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Conclusions
Conclusions

‘ Evaluation complexity improves with the model’s degree ‘

‘ Critical points of order higher than 2 are (in general) evasive ‘

‘ Approximate critical points high order can be defined ‘

An evaluation complexity bound for those is available
(more work for higher orders)

The above holds for unconstrained and convexly constrained problems
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Conclusions
Further questions

‘ Can one improve the complexity bound for general p > 777 ‘

‘ What about high-order criticality for equality constrained problems? ‘

‘ Can this be (more) practical? ‘

Many thanks for your attention!
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Conclusions
Some references

C. Cartis, N. Gould and Ph. L. Toint,

“Second-order optimality and beyond: characterization and evaluation complexity in
convexly-constrained nonlinear optimization”,

FoCM, to appear.

C. Cartis, N. Gould and Ph. L. Toint,

“Worst-case evaluation complexity and optimality of second-order methods for
nonconvex smooth optimization”,

Proc ICM 2018, to appear.

C. Cartis, N. Gould and Ph. L. Toint,

“Improved second-order evaluation complexity for unconstrained nonlinear optimization
using high-order regularized models”,

arXiv:1708.04044, 2017.

Also see http://perso.fundp.ac.be/” phtoint/toint.html
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