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Regularization for unconstrained problems

The problem (again)

We consider the unconstrained nonlinear programming problem:

minimize f (x)

for x ∈ IRn and f : IRn → IR smooth.

Important special case: the nonlinear least-squares problem

minimize f (x) = 1
2
‖F (x)‖2

for x ∈ IRn and F : IRn → IRm smooth.
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Regularization for unconstrained problems

A useful observation

Note the following: if

f has gradient g and globally Lipschitz continuous Hessian H with
constant 2L

Taylor, Cauchy-Schwarz and Lipschitz imply

f (x + s) = f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉

+
∫ 1
0 (1− α)〈s, [H(x + αs)− H(x)]s〉 dα

≤ f (x) + 〈s, g(x)〉+ 1
2
〈s,H(x)s〉+ 1

3
L‖s‖32

︸ ︷︷ ︸

m(s)

=⇒ reducing m from s = 0 improves f since m(0) = f (x).

Philippe Toint (naXys) University of Florence 2017 4 / 43



Regularization for unconstrained problems

Approximate model minimization

Lipschitz constant L unknown ⇒ replace by adaptive parameter σk in the
model :

m(s)
def
= f (x) + sTg(x) + 1

2
sTH(x)s + 1

3
σk‖s‖

3
2 = Tf ,2(x , s) + 1

3
σk‖s‖

3
2

Computation of the step:

1 minimize m(s) until an approximate first-order minimizer is obtained:

‖∇sm(s)‖ ≤ κstop‖s‖
2

(s-rule)
Note: no global optimization involved.
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Regularization for unconstrained problems

Adaptive Regularization with Cubics (ARC2 or AR2)

Algorithm 1.1: The ARC2 Algorithm

Step 0: Initialization: x0 and σ0 > 0 given. Set k = 0

Step 1: Termination: If ‖gk‖ ≤ ǫ, terminate.

Step 2: Step computation:
Compute sk such that mk(sk) ≤ mk(0) and ‖∇sm(sk)‖ ≤ κstop‖sk‖

2.

Step 3: Step acceptance:

Compute ρk =
f (xk)− f (xk + sk)
f (xk)− Tf ,2(xk , sk)

and set xk+1 =

{
xk + sk if ρk > 0.1

xk otherwise

Step 4: Update the regularization parameter:

σk+1 ∈







[σmin, σk ] = 1
2
σk if ρk > 0.9 very successful

[σk , γ1σk ] = σk if 0.1 ≤ ρk ≤ 0.9 successful

[γ1σk , γ2σk ] = 2σk otherwise unsuccessful
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Regularization for unconstrained problems

Cubic regularization highlights

f (x + s) ≤ m(s) ≡ f (x) + sT g(x) + 1
2
sTH(x)s + 1

3
L‖s‖32

Nesterov and Polyak minimize m globally and exactly

N.B. m may be non-convex!
efficient scheme to do so if H has sparse factors

global (ultimately rapid) convergence to a 2nd-order critical point of f

better worst-case function-evaluation complexity than previously
known

Obvious questions:

can we avoid the global Lipschitz requirement? YES!

can we approximately minimize m and retain good worst-case
function-evaluation complexity? YES !

does this work well in practice? yes
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Regularization for unconstrained problems

Evaluation complexity: an important result

How many function evaluations (iterations) are needed to ensure that

‖gk‖ ≤ ǫ?

If H is globally Lipschitz and the s-rule is applied, the ARC2
algorithm requires at most

⌈
κS

ǫ3/2

⌉

evaluations

for some κS independent of ǫ.

c.f. Nesterov & Polyak
Note: an O(ǫ−3) bound holds for convergence to second-order critical
points.
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Regularization for unconstrained problems

Evaluation complexity: proof (1)

f (xk + sk) ≤ Tf ,2(xk , sk) +
Lf

p
‖sk‖

3

‖g(xk + sk)−∇sTf ,2(xk , sk)‖ ≤ Lf ‖sk‖
2

Lipschitz continuity of H(x) = ∇2
x f (x)

∀k ≥ 0 f (xk)− Tf ,2(xk , sk) ≥ 1
6
σmin‖sk‖

3

f (xk) = mk(0) ≥ mk(sk) = Tf ,2(xk , sk) + 1
6
σk‖sk‖

3
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Regularization for unconstrained problems

Evaluation complexity: proof (2)

∃σmax ∀k ≥ 0 σk ≤ σmax

Assume that σk ≥
Lf (p + 1)
p (1− η2)

. Then

|ρk − 1| ≤
|f (xk + sk)− Tf ,2(xk , sk)|

|Tf ,2(xk , 0)− Tf ,2(xk , sk)|
≤

Lf (p + 1)

p σk
≤ 1− η2

and thus ρk ≥ η2 and σk+1 ≤ σk .
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Regularization for unconstrained problems

Evaluation complexity: proof (3)

∀k successful ‖sk‖ ≥

(
‖g(xk+1)‖

Lf + κstop + σmax

) 1
2

‖g(xk + sk)‖ ≤ ‖g(xk + sk)−∇sTf ,2(xk , sk)‖

+
∥
∥
∥∇sTf ,2(xk , sk) + σk‖sk‖sk

∥
∥
∥+ σk‖sk‖

2

≤ Lf ‖sk‖
2 + ‖∇sm(sk)‖+ σk‖sk‖

2

≤ [Lf + κstop + σk ] ‖sk‖
2
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Regularization for unconstrained problems

Evaluation complexity: proof (4)

‖g(xk+1)‖ ≤ ǫ after at most
f (x0)− flow

κ ǫ−3/2 successful iterations

Let Sk = {j ≤ k ≥ 0 | iteration j is successful}.

f (x0)− flow ≥ f (x0)− f (xk+1) ≥
∑

i∈Sk

[

f (xi )− f (xi + si )
]

≥ 1
10

∑

i∈Sk

[

f (xi )− Tf ,2(xi , si )
]

≥ |Sk |
σmin

60
min
i

‖si‖
3

≥ |Sk |
σmin

60
(

Lf + κstop + σmax

)3/2 min
i

‖g(xi+1)‖
3/2

≥ |Sk |
σmin

60
(

Lf + κstop + σmax

)3/2 ǫ3/2
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Regularization for unconstrained problems

Evaluation complexity: proof (5)

k ≤ κu|Sk |, where κu
def
=

(

1 +
| log γ1|

log γ2

)

+
1

log γ2
log

(
σmax

σ0

)

,

σk ∈ [σmin, σmax] + mechanism of the σk update.

‖g(xk+1)‖ ≤ ǫ after at most
f (x0)− flow

κ ǫ−3/2 successful iterations

One evaluation per iteration (successful or unsuccessuful).
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Regularization for unconstrained problems

Evaluation complexity: sharpness

Is the bound in O(ǫ−3/2) sharp? YES!!!
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Regularization for unconstrained problems

An example of slow ARC2 (2)
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Regularization for unconstrained problems

An example of slow ARC2 (3)

0 2 4 6 8 10 12

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

The second derivative

Philippe Toint (naXys) University of Florence 2017 16 / 43



Regularization for unconstrained problems

An example of slow ARC2 (4)
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Unregularized methods

Slow steepest descent (1)

The steepest descent method with requires at most
⌈
κC
ǫ2

⌉

evaluations

for obtaining ‖gk‖ ≤ ǫ.

Nesterov
Sharp??? YES

Newton’s method (when convergent) requires at most

O(ǫ−2) evaluations

for obtaining ‖gk‖ ≤ ǫ !!!!
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Unregularized methods

Slow Newton

0 50 100 150 200 250 300 350 400
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

The objective function for slow Newton

Philippe Toint (naXys) University of Florence 2017 19 / 43



Unregularized methods

Slow Steepest-Descent

0 2 4 6 8 10 12
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

The objective function for slow Steepest descent

Philippe Toint (naXys) University of Florence 2017 20 / 43



Regularized methods (2)

More general second-order methods

Assume that, for β ∈ (0, 1], the step is computed by

(Hk + λk I )sk = −gk and 0 ≤ λk ≤ κs‖sk‖
β

(ex: Newton, ARC2, Levenberg-Morrison-Marquardt, (trust-region),
Curtis-Robinson-Samadi, Royer-Wright,. . . )

The corresponding method terminates in at most
⌈

κC
ǫ(β+2)/(β+1)

⌉

evaluations

to obtain ‖gk‖ ≤ ǫ on functions with bounded and (segment-
wise) β-Hölder continuous Hessians.

Note: ranges form ǫ−2 to ǫ−3/2

ARC2 is optimal within this class
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Regularized methods (2)

High-order models (1)

What happens if one considers the model

mk(s) = Tf ,p(xk , s) +
σk
p!

‖s‖p+1
2

where

Tf ,p(x , s) = f (x) +

p
∑

j=1

1

j!
∇j

x f (x)[s]
j

terminating the step computation when

‖∇sm(sk)‖ ≤ κstop‖sk‖
p

???

now the ARp method!
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Regularized methods (2)

High-order models (2)

ǫ-approx 1rst-order critical point after at most

f (x0)− flow

κ
ǫ
− p+1

p

successful iterations also for convexly constrained problems!

Moreover (using the correct subproblem termination rule)

ǫ-approx “2nd order critical point” after at most

f (x0)− flow

κ
ǫ
− p+1

p−1

successful iterations for unconstrained problems only!

Much better than the standard O(ǫ−3) result!!!
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Regularized methods (2)

Derivative tensors for partially separable problems

f is partially separable if

f (x) =
m∑

i=1

fi (Uix) =
m∑

i=1

fi (xi ) where rank(Ui ) ≪ n

Then

∇p
x f (x)[s]

p =
m∑

i=1

∇p
xi
fi (x)[Uix ]

p

Note:

size( ∇p
xi fi (x) ) ≪ size( ∇p

x f (x) )!!!

Philippe Toint (naXys) University of Florence 2017 24 / 43



Regularized methods (2)

A (not so) obvious question

If one uses a model of degree p (Tf ,p(x , s)), why be satisfied
with first- or second-order critical points???

What do we mean by critical points of order larger than 2 ???

What are necessary optimality conditions for order larger
than 2 ???

Not an obvious question!
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Regularized methods (2)

A sobering example (1)

Consider the unconstrained minimization of

f (x1, x2) =

{

x2

(

x2 − e−1/x21

)

if x1 6= 0,

x22 if x1 = 0,

(cf. Peano (1884), Hancock (1917))
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Regularized methods (2)

A sobering example (2)

Conclusions:

looking at optimality along straight lines is not enough

depending on Taylor’s expansion for necessary conditions is not always
possible

Even worse:

f (x1, x2) =

{

x2

(

x2 − sin(1/x1)e
−1/x21

)

if x1 6= 0,

x22 if x1 = 0,

(no continuous descent path from 0, although not a local minimizer!!!)

Hopeless?
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Regularized methods (2)

Limiting one’s ambitions. . .

Note: the non-existence of continuous descent paths remains a necessary
condition! Focus on polynomial paths

x(α) = x∗ +

q
∑

i=1

αi si + o(αq)

Suppose that x∗ is a local minimizer. Then, for j ∈ {1, . . . , q},
j

∑

k=1

1

k!

( ∑

(ℓ1,...,ℓk )∈P(j ,k)

∇k
x f (x∗)[sℓ1 , . . . , sℓk ]

)

≥ 0

holds for all (s1, . . . , sj) such that, for i ∈ {1, . . . , j − 1},
i∑

k=1

1

k!

( ∑

(ℓ1,...,ℓk )∈P(i ,k)

∇k
x f (x∗)[sℓ1 , . . . , sℓk ]

)

= 0.
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Regularized methods (2)

And then?

In short:

reduces to (in)equalities on ∇j
x f (x)[s]

j in the kernel of ∇j−1
x for j =

1,2,3

inherently more complicated for orders 4 and above
(conditions involving a mix of ∇j

x f (x)[s]
j of different orders)

Desperate?
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Regularized methods (2)

Using Taylor’s models, nevertheless

Define, for some small ∆ > 0,

φ∆
f ,j(x)

def
= f (x)− globmin

x+d∈F
‖d‖≤∆

Tf ,j(x , d),

[

lim
∆→0

φ∆
f ,j(x)

∆j
= 0

]

⇒ path-based necessary conditions at x .

∇q
x f Lipschitz continous near xǫ ∈ F . Suppose that

φ∆
f ,j(xǫ) ≤ ǫ∆j for j = 1, . . . , q

Then

f (xǫ + d) ≥ f (xǫ)− 2ǫ∆q ∀xǫ + d with ‖d‖ ≤

(
q! ǫ∆q

Lf ,q

) 1
q+1
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Regularized methods (2)

A (theoretical) trust-region algorithm

Algorithm 3.1: Trust-region with adaptive order models (TRq)

Step 0: Initialization: q, ǫ ∈ (0, 1], x0 and ∆1 ∈ [ǫ, 1], ∆max ∈ [∆1, 1].

Step 1: Step computation: For j = 1, . . . , q,
(i) evaluate ∇j f (xk) and φ∆k

f ,j (xk)

(ii) if φ∆k

f ,j (xk) > ǫ∆j
k , go to Step 2 with sk = d

Terminate with xǫ = xk and ∆ǫ = ∆k .

Step 2: Accept the new iterate: Compute f (xk + sk) and

ρk =
f (xk)− f (xk + sk)

Tf ,j(xk , 0)− Tf ,j(xk , sk)
.

If ρk ≥ η1, set xk+1 = xk + sk . Otherwise set xk+1 = xk .

Step 4: Update the trust-region radius. Set

∆k+1 ∈







[γ1∆k , γ2∆k ] if ρk < η1,
[γ2∆k ,∆k ] if ρk ∈ [η1, η2),
[∆k ,min(∆max, γ3∆k)] if ρk ≥ η2,

increment k by one and go to Step 1.
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Regularized methods (2)

An evaluation complexity bound

TRq computes an ǫ-approx “q-th order critical point” after at most

κS ǫ−(q+1)

(successful) iterations.

Same results for problems involving convex constraints!
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Regularized methods (2)

Complexity of convexly constrained problems

Where do we stand?

... − − − − ?

q − − − O(ǫ−(q+1)) ? ?
... − − ? ? ?

2 O(ǫ−3) · · · · · · [O(ǫ−(p+1)/(p−1))] · · ·

1 O(ǫ−2) O(ǫ−3/2) · · · · · · O(ǫ−(p+1)/p) · · ·

↑ q/p → 1 2 · · · · · · p · · ·

Complexity of optimality order q as a function of model degree p

Trust-region algo Regularization algo

[ ] for unconstrained problems only!
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Equality constrained problems

The equality-constrained case

Consider now the EC-NLO (general with slack variables formulation):

minimize x f (x)
such that c(x) = 0 and x ∈ F

Suppose x is a local minimum of the EC-NLO problem and y
the associated multiplier. Then, for every q > 0 and Λ(x , y) =
f (x) + yT c(x),

TΛ,q(x , s(α), y) ≥ 0

for all locally feasible s(α) such that

TΛ,j(x , s(α), y) = 0 j ∈ {1, . . . , q − 1}

and
Tc,j(x , s(α), y) = 0 j ∈ {1, . . . , q}

⇒ even more complicated to handle!
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Equality constrained problems

Necessary conditions for EC-NLO

Verification essentially (even more) hopeless because of

dependence of ck,j(x) on sℓ1 , . . . , sℓk
growing number of coefficients

involves more than ∇q
x f for q ≥ 3!

Ideas for a first-order algorithm:

1 get ‖c(x)‖ ≤ ǫ (if possible) by minimizing ‖c(x)‖2 such that x ∈ F
(getting ‖J(x)T c(x)‖ small unsuitable!)

2 track the “trajectory”

T (t)
def
= {x ∈ IRn | c(x) = 0 and f (x) = t}

for values of t decreasing from f (first feasible iterate) while preserving
x ∈ F
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Equality constrained problems

First-order complexity for EC-NLO

Sketch of a two-phases algorithm:

feasibility: apply a O(ǫ−π) method for convex constraints (with specific
termination test) to

min
x

ν(x)
def
= ‖c(x)‖2 such that x ∈ F

at most O(max[ǫ−1
P , ǫ1−π

P ǫ−π
D ]) evaluations

tracking: successively

apply a O(ǫ−π) method for convex constraints (with
specific termination test) to

min
x

µ(x , t)
def
= ‖c(x)‖2 + (f (x)− t)2 such that x ∈ F

decrease t (proportionally to the decrease in φ(x))

at most O(max[ǫ−1
P , ǫ1−π

P ǫ−π
D ]) evaluations
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Equality constrained problems

First-order complexity for EC-NLO

Under the “conditions stated above”, the above algorithm takes
at most

′′O ′′(ǫ1−π
P ǫ−π

D ) evaluations

to find an iterate xk with either

‖c(xk)‖ ≤ δǫP and φ∆
Λ,1 ≤ ‖(y , 1)‖ǫD∆

for some Lagrange multiplier y , or

‖c(xk)‖ > δǫ and φ∆
||c||,1 ≤ ǫ∆.
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Equality constrained problems

Higher order complexity for EC-NLO? (1)

The above approach for q = 1 hinges on

∇1
xΛ(x , y) =

1

f (x)− t
∇1

xµ(x , t)

Hopeful for q = 2 since

∇2
xΛ(x , y)[d ]

2 =
1

f (x)− t
∇2

xµ(x , t)[d ]
2

for all
d ∈ span

{
∇1

x f (x)
}⊥

∩ span
{
∇1

xc(x)
}⊥ def

= M(x)

More difficult but maybe not imposible for q = 3 as

∇3
xΛ(x , y)[d ]

3 =
1

f (x)− t
∇3

xµ(x , t)[d ]
3

for all

d ∈ M(x)∩ [a complicated set depending {∇1
x f }, {∇

2
x f }, {∇

1
xc},{∇

2
xci}]
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Equality constrained problems

Higher order complexity for EC-NLO? (2)

But impossible for q = 4 (and above) because

∇4
xΛ(x , y) = 1

f (x)− t
∇4

xµ(x , t)

−4
[
∇3

x f (x)⊗∇1
x f (x) +

∑m
i=1∇

3
xci (x)⊗∇1

xci (x)
]

−3
[
∇2

x f (x)⊗∇2
x f (x) +

∑m
i=1∇

2
xci (x)⊗∇2

xci (x)
]

A possibly important consequence:

Every approach based on quadratic (or more general strictly
increasing) penalization is probably doomed for q ≥ 4!

⇒ Need for a completely fresh point of view!
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Conclusions

Conclusions

Complexity analysis for general q-th order critical points

O(ǫ−(q+1)) (unconstrained, convex constraints)

Complexity analysis for first-order critical points

O(ǫ1−π
P ǫ−π

D ) (equality and general constraints)

Jarre’s example ⇒ global optimization much harder

Many questions remaining:

high-order optimality with high-degree model?
beyond first-order for EC-NLO?
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Conclusions

Conclusions

Evaluation complexity improves with the model’s degree

Critical points of order higher than 2 are (in general) evasive

Approximate critical points high order can be defined

An evaluation complexity bound for those is available
(more work for higher orders)

The above holds for unconstrained and convexly constrained problems

Philippe Toint (naXys) University of Florence 2017 41 / 43



Conclusions

Further questions

Can one improve the complexity bound for general p > q???

What about high-order criticality for equality constrained problems?

Can this be (more) practical?

Many thanks for your attention!
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Conclusions

Some references
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