Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Edsger Wybe Dijkstra
first years in the computing science (1951-1968)

van den Hove, Gauthier

Award date:
2009

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 24. Aug. 2025

https://researchportal.unamur.be/en/studentTheses/06c48a5c-979c-4893-8d15-e8e8f33f73b6

BEDSGER WYBE DIJKSTRA

FIRST YEARS IN THE COMPUTING SCIENCE
(1951-1968)

Gauthier van den Hove

BEDsceErR WYBE DIJKSTRA

FIRST YEARS IN THE COMPUTING SCIENCE
(1951-1968)

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Computing Science
by Gauthier van den Hove

Promoter: Prof. Wim Vanhoof
Co-Promoter: Prof. Baudouin Le Charlier

University of Namur
Faculty of Computing Science
Academic Year 2008—2009

See http://www.fibonacci.org/ewd/ for current information about this work.
Copyright (©) 2009 by Gauthier van den Hove <gauthier@fibonacci.org>

All rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior written consent of the author.

First printing, 26 August 2009

The word which I will speak is not mine.
Plato

Do only what only you can do.
Dijkstra

Abstract

History is often considered as a useless occupation, which conveys nothing other than
a knowledge of the past. This is especially true for the history of sciences: a scientific
curriculum does usually not comprise a single course on the history of the science
concerned. We will try, in this work, to see if an in depth study of the achievements and
writings of an important author in a discipline can help us to gain a better understanding
of the discipline itself. The chosen discipline is the computing science, and the author is

Dijkstra. We restrict our study to the first two decades of his life as a programmer.

Résumeé

L’histoire est souvent considérée comme une occupation inutile, qui transmet une
simple connaissance du passé. C’est particuliérement vrai pour l'histoire des sciences: les
programmes des études scientifiques ne comportent d’habitude pas un seul cours d’histoire
de la science en question. Nous essayerons dans ce travail de voir si ’étude approfondie
des écrits et des réalisations d’'un auteur important dans une discipline peut nous aider a
mieux comprendre cette discipline elle-méme. La discipline choisie est I'informatique, et
l'auteur est Dijkstra. Nous restreignons notre étude aux deux premiéres décennies de sa

vie de programmeur.

Acknowledgments

Before opening this work, I would like to thank my parents and my brother and sisters
for their love and support. I would also like to thank Dean M. Boyancé, to which I owe so
much I can’t even write, Prof. B. Mathonat and Prof. E. Brochier, Prof. J.-L. Chrétien,
for his inspiring lectures, Father M. Rougé, Father R. Gallagher, c.ss.r., for correcting my
English, and my friends, Robin, Tanguy and Louise, the Balaj’s family, Geneviéve, Paul
and Jeanne, Claire, Héléne, Sébastien and Aude-Marie, Nicolas, Frangois, Laurent, my
choirmaster, and finally the Monastic Fraternities of Jerusalem, especially Sister Anne
and Brother Michel-Marie. Last but not least, I would like to thank Prof. W. Vanhoof,
who accepted the direction of this thesis, Prof. P.-A. de Marneffe and Prof. P. Goujon,
who accepted to be part of the examination board, and finally Prof. B. Le Charlier, for his
continuous support, encouragement and assistance over the last seven years: if he wasn’t

there, this work would certainly not exist.

VII

TABLE OF CONTENTS

Introduction e 1
Biographical Elements 5
Chapter I — Computer Design (1951-1959) 7
1. Introduction to Programmingc. i 7
2. The X1’s Interrupt Handler i i i, 10
3. Thoughts on Programming i 13
Chapter II — A Programming Language (1959-1962) 23
1. The Definition of ALGOL 60ottt e e e 23
2. The “MC” ALGOL 60 Compilerot 29
3. Thoughts on Programming 43
Chapter II1 — An Operating System (1962-1968) 55
1. Loosely Synchronizing Concurrent Processes 55
2. The “THE” Multiprogramming System 69
3. Thoughts on Programmingt 83
Conclusion 95
Bibliograp iy 99

IX

INTRODUCTION

Before embarking on an ambitious project,
try to kill it.
Dijkstra

Dijkstra is often considered as one of the founding fathers of the computing science, along
with Turing, von Neumann and Knuth for instance. A characteristic of a founding father
is that he gives a new discipline some of its core concepts and methods, and this could
well be true for Dijkstra. However, another characteristic of a founding father is that
his writings are carefully studied by at least some of the later thinkers in the field, and
by this criterion one may argue that Dijkstra really isn't one of them. Of course, most
know that he invented an algorithm to compute the shortest path in a graph, that he
once wrote a paper entitled “Go To Statement Considered Harmful”, that he was a ardent
proponent of the so-called “structured programming”, and of the use of formal methods.
Those who have a more extensive culture in the history of computing science may also
cite the inventions of the stack, the semaphores, and the guarded commands. But except
for those commonplaces, his writings, which extend over about eight thousand pages, and
do probably include more than those few ideas, are for the most part simply ignored: no
systematic study of them has ever been undertaken, and no critical edition is planned.
This is the gap we will try to begin to fill.

The specific aim of this work is twofold: on the one hand, to give an insight into
some of the core concepts of computing science, and on the other hand, to illustrate a
way of thinking. In the hope of giving an insight into those core concepts, we will try to
precisely identify the origin of the difficulties which lead to their creation. Indeed, one
cannot correctly understand the nature of a concept if one does not see how it was born,
that is, for what problem it was a solution, what was the difficulty that it allowed to
overcome. Those concepts are not really as simple as it might seem to today’s computing
scientists: if they now look evident, it is because thinkers in the past struggled hard to
create them. We will therefore not present raw sequences of facts, or a patchwork of more
or less random inspiring quotations, but we will instead try to identify the connections
between them: we will show how the problems lead to solutions, how the solutions in turn
lead to new problems, and how experience leads to new ideas and new methods. By doing

2 INTRODUCTION

this we expect to illustrate a way of thinking, a way of approaching new problems. The
two goals we pursue may both be inspiring for today’s programmers: on the one hand,
the problems that the first programmers had to solve are indeed often typical, and we
constantly use the concepts they brought to the fore; on the other hand, the problems
we are faced with are always new in some of their aspects.

Our aim is thus neither to extol Dijkstra’s merits or to write his biography, nor to
attribute to him the paternity of this or that concept. The former would be of limited
interest, and further it does not belong to the type of work we have to achieve. The latter
would imply to compare his writings with those of all other thinkers of the field which
were published before or at the same time. This is clearly an impossible task, both because
the terminology is extremely fluctuating during the first decades of a new discipline, and
because similar ideas are often put forward by many different people. Further, many ideas
which seem novel when they appear in a given field of human knowledge did already exist
before, in a similar form, in one or more of the other fields of human knowledge. Finally,
we believe that the question of the paternity of ideas is relatively unimportant. It is indeed
far more enlightening to understand for what reasons someone became aware of this or
that idea. We venture the hypothesis that the sequence of problems that any programmer
is faced with during his life is, more or less, the same: if this is true, then we may take
some benefit from Dijkstra’s experience and walk faster on that path, avoiding some blind

alleys we would otherwise have been tempted to take.

The inherent limits of this kind of work are numerous. The first and most blatant
one is that it does not contribute to the progress of the discipline, as it does not propose
or evaluate any new ideas. But this is true for any synthesis effort, and yet they are not
devoid of interest. Further, we observe that the claim of novelty attached to many ideas
often proves later to be false: at a closer look, they reveal to be old ideas, which have been
forgotten because their limited interest had already been experienced. The study of the
old ideas may then have an interest to identify truly new ideas. A second inherent limit is
that this type of work is partial and subjective, as it is centered around a single author.
But it is anyway not possible to attain neutrality and objectivity whenever one wants to
go beyond the raw report of facts. In this context, it is then better to study the opinions
of a single author in depth than to present a colorless average of conflicting opinions of
multiple authors. A third limit is that it will inevitably give an impression of generality,
because it does not make use of mathematical formulz, and because it does not cover
all the technical details. But the absence of technical details and mathematical formulae
does not necessarily imply an absence of precision, and we note that, on the contrary, the
presence of formulas may often give a false impression of rigor. Finally, a fourth limit,
related to the previous one, is that this work, although its subject is clearly delimited, is
not exhaustive: many traits will be passed over in silence. But again this is true for any
synthesis effort, whose aim is to bring the essentials to light. This can be done only by
leaving the secondary points out.

Covering the whole subject in the imposed limits for this work revealed itself to

INTRODUCTION 3

be impossible; therefore we had to restrict our research to the first two decades of
Dijkstra’s achievements and writings. The choice of 1968 as the ending limit of our present
study is however not entirely arbitrary: it marks the beginning of the “software crisis”,
identified during the 1968 NATO Software Engineering Conference, which corresponds
to a strong shift in Dijkstra’s interests. Those seventeen years can be divided in three
periods, corresponding to Dijkstra’s three successive centers of interest: the first eight
years, during which he was involved in the design of four successive computers, and
designed an interrupt handler for the last one (Chapter I), the next three years, during
which his efforts were mostly centered around ALGOL 60 (Chapter II), and finally the
last six years, during which he had the responsibility of building an operating system
(Chapter III). To set the scene, we will first present some biographical elements, and
then, for each of those periods, we will devote a section to the analysis of his main
achievement (§ 2), a section to the analysis of the work preparing it (§ 1), and finally a
section to the analysis of his writings (§ 3). We hope, by these means, to achieve our aims
as well as possible.

Paris, 26 August 2009

BIOGRAPHICAL ELEMENTS

Dijkstra is born on 11 May 1930 in Rotterdam, The Netherlands. He is the third of four
children. His father, D. W. Dijkstra, is a chemist; he is teacher, and then principal, in a

secondary school in Rotterdam. His mother, B. C. Kluyver, is a mathematician.

He enters primary school in 1936, and secondary school in 1942, which he finishes in
1948, with the highest possible marks in all scientific disciplines. He wants to study law to
represent his country at the United Nations, but his parents and his teachers persuade him
to engage in scientific studies. He enters the University of Leyden to study mathematics
and theoretical physics. Three and a half years later, in March 1952, while pursuing his
studies in Leyden, he is hired by the Computation Department of the Mathematical
Center of Amsterdam. He completes his studies in Leyden in 1956. He presents his PhD
thesis on 28 October 1959 at the University of Amsterdam.

On 23 April 1957, he marries M. C. Debets. They have three children: Marcus, Femke,
and Rutger.

In September 1962, he is appointed Professor of Mathematics at the Technological
University of Eindhoven. In August 1973, he joins Burroughs as a Research Fellow,
and becomes Professor Extraordinarius at Eindhoven. In 1984, the Computer Science
Department of the University of Texas in Austin offer him the Schlumberger Centennial
Chair; he leaves Burroughs and the Technological University of Eindhoven, and settles in
the United States. He becomes Emeritus in 1999.

In November 2000 he is diagnosed with cancer. He goes back to the Netherlands in
April 2002, and dies in Nuenen on 6 August 2002. His cremation takes place four days

later.

CHAPTER I

COMPUTER DESIGN (1951-1959)

As a reward for having passed his third year of theoretical physics studies in Leyden,
Dijkstra’s father offer him to participate in a introduction to programming course on the
EDSAC in Cambridge, in September 1951. In connection with a letter of recommendation,
he meets A. van Wijngaarden, head of the Computation Department of the Mathematical
Centre, who offers to hire him as a programmer on his return. In March 1952, he accepts
his proposition; he works part-time in Amsterdam, while pursuing his studies in Leyden.
He gives his first courses in 1955, with van Wijngaarden. He soon decides to become a
programmer, rather than a theoretical physicist, and completes his studies in theoretical
physics as fast as possible, in 1956. Up to 1959, he will be involved in the design of the
ARRA, the FERTA, and the ARMAC (§ 1) — and finally of the X1, for which he designs

and writes an interrupt handler (§ 2).
§ 1. Introduction to Programming

One of the main objectives of the department van Wijngaarden leads being to design
and construct a computer, he had hired, four years earlier, two students in experimental
physics: C. S. Scholten and B. J. Loopstra. However, because of their lack of experience,
upon Dijkstra’s arrival, the machine under construction, the ARRA, still does not work
reliably. In November 1952, G. A. Blaauw, a Dutch engineer who just got his PhD at
the Computation Laboratory of the Harvard University, is hired; he’ll work with them
for two and a half years. He convinces the team to replace the electromechanical relays
with electronic components, and thirteen months later, in December 1953, a totally new
machine, also called ARRA (or sometimes ARRA II, to distinguish it from the original
ARRA), runs its first programs.

The small team organizes as follows: after having discussed and decided together
on the characteristics of the machine to build, Dijkstra is in charge of writing the
programmer’s manual, containing a complete functional description of the computer, as
well as the notation conventions for the code, which can be considered as a kind of minimal
assembly language. Afterward, while the rest of the team builds a machine meeting that

description, he writes the basic communication programs, permitting reading and writing

7

8 COMPUTER DESIGN (1951-1959) 1.1

of punched tapes, and the use of the keyboard and the typewriter: this way, the machine
and the programs needed to use it are ready at the same time. He’s also in charge of writing
the numerical subroutines (square and cubic roots, trigonometric functions, calculations
on fractional numbers, ...) permitting a more advanced use of the machine.

Technically speaking, the ARRA (1953) and the two machines who follow it, the
FERTA (1955) and the ARMAC (1956), are very similar; the FERTA is moreover an
improved copy of the ARRA. They are binary machines (that is, not binary-coded decimal
machines) working with two accumulators, with a memory of 1024 or 4096 words having a
length of 30 or 34 bits. Their thirty or so instructions are for the most strictly arithmetic,
and executed at an average speed of forty to thousand instructions per second. The speed
increase is mostly due to various improvements (for instance, the presence of two cache
memories in the ARMAC, one for the instructions and one for the data); they make the
FERTA two times faster than the ARRA, and the ARMAC, ten times faster than the
FERTA. Also, the presence of parity bits in the ARMAC make it safer to use than the

preceding ones.

They are strictly sequential machines, which means that they only execute a single
program, and that its execution is strictly sequential: the individual instructions of that
program are performed one after the other. This means particularly that the communi-
cation (input and output) operations cannot be completed while other instructions of
the program are executed. A certain concurrent execution is however allowed thanks to
the following optimization: the execution of a communication instruction only blocks the
execution of that same instruction for a certain time, the time usually needed for the
corresponding communication operation to complete. The machine can thus execute a
few other instructions while the communication operation proceeds, and the program
will temporarily be blocked if it asks for the execution of such an instruction during that
period of time, until it has elapsed. This optimization is, however, not without defects:
after an input operation, one has to take care of the number of instructions to execute,
and of their execution time, before one can use the result; after an output operation, one
has to take care of the particular cases of characters who, like the end of line character
for instance, take longer to print out. Those limitations justify the writing of higher level

communication routines taking care of all these details for the programmer.

A typical example of his programming work during those years is the ARMAC’s
division subroutine. The ARMAC does not have floating point numbers, but it is possible
to circumvent that limitation by observing that a word of n bits b;...b,, with the most
significant bit numbered 1, which is usually interpreted as representing the number b; X
2" 14 ... +b,x2° can have another interpretation: it can be interpreted as representing
the number b; x 271 4+ ... + b, x 2~ ™. The multiplication, subtraction and addition
operations do not need to be adapted to this fractional or fixed point interpretation,
but it is then possible to implement a subroutine to perform the division of two such

numbers:

1.1

INTRODUCTION TO PROGRAMMING

If the machine does not have built-in division, it needs to be programmed. We suppose
that the quotient of the division a/b of two fractional numbers is smaller than 1 in
absolute value. The iterative processes to calculate the reciprocal ! are:

en X (2—bXcp)=cny1 c=limec, =b " (quadratic convergence)
cn X (83=3x (bxcn)+ (bXcn)’) =car1 c=limc, =b"" (cubic convergence)
Initial approximation: fo < 1.92820323 — 2 x b. Instead of c,, the machine manipulates
fn=1cn—1.

Iteration scheme:
Gn—bX fnt+b—1

tn — Gn— gn
frri et X fanttn+ fn
f=lm f,=b"'—1
Completion: y < a X f + a, whereby the operation y < a/b is carried out.

}

b>07?
b+ —b
a+<—— —a
b< 1/2°?
b+ 2xb
a+ 2 X a
|
1+ 1
f+ 1.92820323 — 2 x b
I —
g« bxf+b
teq’+q
fetxf+t+f
14— —1
1> 07?
1 —
y+—a X f+a

}

The flowchart is executed in such a way that there are always two iterations. The error
is then smaller than 0.5 x 107!°, which is enough for the precision of the ARMAC.!

1. Cf. DUKSTRA, E. W., et al., Programmering voor Automatische Rekenmachines, pp. 56-58

9

10 COMPUTER DESIGN (1951-1959) 1.2

As one sees, the main problems are numerical analysis ones: one the one hand, to find
ways to perform elaborate operations with a very restricted instruction set, and on the
other hand, to arrange the concrete calculations in order to make sure that the numbers
never get out of the bounds | —1, 1[. The computer indeed manipulates f,, = ¢, — 1 instead
of ¢, since for 0.5 < b < 1, one would have 1 < b1 < 2.

Other typical examples of his programming work are the shortest path and the
minimum spanning tree algorithms which were both invented, during the year 1956,
with a strictly practical aim: the former to demonstrate the power of the ARMAC during
its official inauguration, the latter to minimize the use of copper in the wiring of the next

computer designed by the team.

§ 2. The X1’s Interrupt Handler

No sooner is the ARMAC finished that the team starts the construction of a new machine:
the X1. This time however, the conditions are somewhat different: because the mission
of the Mathematical Centre is not to manufacture computers, Loopstra and Scholten,
together with an insurance company, set up a firm to produce and sell it: Electrologica.
But, because the transition cannot happen immediately, the X1 will still be conceived at
the Mathematical Centre; it will be completed in 1958.

The X1 is a binary machine with, besides the two accumulator registers, an index
register, and a few one-bit condition registers; it has a memory of at most 32768 words
(with parity checks) having a length of 27 bits, and it works with about fifty instructions.
It is ten times faster than the ARMAC. But it is, technically speaking, revolutionary in
two of its aspects: it is the world’s first fully transistorized machine, and it is one of the
world’s first machines having an interrupt system.?

The addition of the interrupt mechanism has two goals: efficiency and adaptability.
As for efficiency, it aims at circumventing the inherent limitation of the communica-
tion apparatus, whose speed cannot be improved as fast as the calculation speed of the
computer itself: waiting for the completion of a communication instruction is not tolerable
any more on a computer like the X1, calculating more than hundred times faster than
the ARRA. Further, one of the design requirements of the X1 being its adaptability,
communication apparatus should be easy to add depending on the needs of the user.
Because the speed of the different operations of those a priori unidentified devices cannot
be known in advance, it is not possible to hard-wire their control entirely in the X1:
a part of the control, the determination of the end of their various operations, has to
be transferred to the devices themselves. This is where the interrupt system takes place:
when a program executes a communication instruction, the control returns to the program
without waiting for the actual completion of the communication operation; when this
operation finishes, the communication equipment signals its completion to the X1 by
means of an interrupt signal. The X1 reacts to that signal by transferring the control to a

2. Cf. LoopsTRA, B. J., The X1 Computer, and DIJKSTRA, E. W., Communication with an Automatic Computer, pp.
2-37

1.2 THE X1'S INTERRUPT HANDLER 11

“communication program,” or interrupt handler, which handles the situation, eventually
transferring the control back to the program. If the program does not make use directly
of the communiction instructions, but instead performs its communication operations
by calling higher level subroutines of the communication program, its communication
operations are then spread over the calculation time.

Once again, Dijkstra is in charge of deciding on the notation conventions for the
programs, and of writing the basic communication programs. It is the result of this work

that constitutes his PhD thesis, written under the direction of van Wijngaarden.

This time, his work is significantly more complicated. Indeed, because of the presence
of the interrupt mechanism, the X1, contrary to its predecessors, is not a strictly sequential
machine any more. It still executes only one program, but an interrupt, signaling the
completion of a communication operation, can take place at any moment, and this makes
it a non-deterministic machine. But, as he notes:

It is clear that this may not imply to make the task heavier for those who the machine
primarily use as a tool to obtain results. The conception of the interrupt mechanism gives
thus the duty to build up [a communication program] which on the one hand plucks an
important part of the possible fruits of the parallel programming, and on the other hand
does not burden the user unnecessarily.

The terms “parallel programming” refer to the intertwined execution of the main program
and the communication program. It is intertwined because the communication program
does more than simply calling the primitive communication instructions to read or write
a single word or character: it implements higher level routines to read or write a given
number of words in a given format, possibly with a conversion. For instance, if a program
asks for the writing of a word as an integer, the communication program determines
which is the first character to type out, executes a write instruction for that character,
and returns to the main program; when the typewriter has finished typing that character,
the X1 is interrupted, and the communication program proceeds with the next character,
etc.

Naturally, after every intermediate interruption the control returns to the main

program with complete restoration of the status quo.4

This means that the communication program should save and restore, besides its own
internal state, the state of the running program, that is, the state of the computer when
the program was interrupted: the contents of the various registers, and the instruction
counter.

To prevent mangling those records when a program asks for a communication opera-
tion while the communication program is still processing a previous request of the
same kind, which of course cannot be forbidden, the communication program should
be “synchronized” with the communication apparatus, that is, it should automatically

3. DuKSTRA, E. W., Communication with an Automatic Computer, p. 132

4. DUKSTRA, E. W., Communication with an Automatic Computer, p. 78

12 COMPUTER DESIGN (1951-1959) 1.2

wait for the previous communication operation to complete before proceeding with the
next one. This further prevents that the results of those operations be corrupted.

Finally, as many different communication apparatus can be connected to the X1, and
operate at the same time, it may be desirable to give them different priorities with respect
to each other, to ensure that a more urgent task will be processed before a less urgent
one. The X1 has therefore seven interrupt “classes”, defining seven priority levels. The
class with the lowest priority, which is even lower than the running program, is reserved
for the console keyboard; the six other classes, which have a higher priority than the
running program, are for the communication devices. At any given moment, interrupts
of those classes may be allowed to take place or not, depending on the “interrupt permit”
bit of their class; it is the responsibility of the communication program (and of other
programs) to use them according to their needs. For the communication program, this
means for instance disallowing interrupts of the same class to take place while it is running.
Furthermore, an additional global interrupt permit bit makes it possible to prevent all

interrupts without altering the individual permit bits of the seven classes.

It is now clear that the requirement of adaptability has been met by this organization,

as communication apparatus are easy to add and to manage:
It is possible to make a communication program for the X1 without paying any

attention to the relative timing of the external apparatus on the one hand and the X1

on the other hand.®
Indeed, the transfer of a part of the control to the external devices (namely, the deter-
mination of the end of their various operations, and consequently the control of the
start of the communication program), to solve the problem of the unknown timing of
their operations, in turn poses other problems; but these can been solved by the careful

writing of a suitable communication program.

The communication program written by Dijkstra for the X1 consists of about a thou-
sand instructions, about fifty reserved words holding variable values, and about twenty
constant words.® It can deal with four communication apparatus: the console keyboard
of the X1, a typewriter, a tape reader and a tape punch. The part of the communication
program handling the tape reader includes an assembler, which translates the sequence
of five-bit words read on the tape into instructions, numbers or full words, depending on
the directives punched on the tapes. The communication program is hard-wired in the
X1, but it is designed to be extensible to other apparatus: the control can be transferred
at will from its central part to instructions in live (not hard-wired) memory.

To illustrate that extensibility, after having presented the communication program,
Dijkstra solves two additional problems: namely, how to optimize the usage of the
computing time by further spreading the communication operations over the calculation
time, and how to couple an input and an output device in such a way that they can work
together independently of a running program. The first problem is described as follows:

5. DUKSTRA, E. W., Communication with an Automatic Computer, p. 27

6. Cf. DUKSTRA, E. W., Communication with an Automatic Computer, pp. 138-166

1.3 THOUGHTS ON PROGRAMMING 13

The use of [synchronized output operations] can imply a loss of potential computing
time if two such calls succeed each other too quickly: when the second call is encountered
the control waits [...] until the previous [communication operation] has been completed
before actually starting on the new [communication operation]. Only when the latter has
been started does the control return to the main program. [...] If the time required by the
[output operation] is so much in excess of the total time necessary for the computation
that the typewriter nevertheless operates at full speed, this loss in computation time
is fictitious. Real loss in total time only occurs when the X1 is unproductive during a
“concentrated” number of [output operations], while the [output devices are] not active
at a later stage, because the X1 is still busy forming the next result.”

It can be solved by the use of a buffer. The solution given has the form of a flowchart,
taking the example of a one-line output buffer, but it is directly applicable to larger
buffers and it gives the general scheme of the solution. As to the second problem, it is
introduced as follows:

Our next problem is to construct a program that reads a tape and types and/or
punches out data depending on what has been read. One of the simplest examples is
merely reproducing a tape. Another example is typing out the binary words from a tape
in decimal form. In the latter case a number of symbols to be typed out are derived
from a group of consecutive [five-bit words] each time. We now demand that it must be
possible to execute this program simultaneously with any other program.®

The problem is thus to synchronize input and output mutually. The principle of the
solution is given as a flowchart using two buffers (whose size is not specified, but depends
on the calculations that have to be performed on the input data before sending the result

to the output device) and two one-bit variables:®

|

read < true
punch + false
read ? punch ?
read (z) punch (y)
punch ? read ?
punch < true i o fal read < true b o false
vz read < false Yz punc
I I I I

7. DUKSTRA, E. W., Communication with an Automatic Computer, pp. 95-96
8. DUKSTRA, E. W., Communication with an Automatic Computer, pp. 113-114

9. Cf. DIUKSTRA, E. W., Communication with an Automatic Computer, p. 114

14 COMPUTER DESIGN (1951-1959) 1.3
§ 3. Thoughts on Programming

Dijkstra’s thoughts about programming are not yet much developed, but some remarks
are worth mentioning. For example, the introduction of the Functional Description of
the ARRA (1953) begins with:

The ARRA is an automatic digital machine. In what follows is that machine described,
inasmuch as it is relevant for someone who uses the machine: it will be described what
the machine does, not how the machine works. 10

It is noteworthy that, right from the first sentences of the first report he writes, the distinc-
tion between functional description (or specification) and implementation (or operational
description) seems so important to him that he begins with it; whereas it is not evident,
and it will generally be recognized only more than twenty years later that this distinction
is a fundamental one. In the remainder of the report, one finds, after a minimal description
of the different parts of the machine (the memory, the control unit, the calculating unit
and its registers), a very clear and precise description of the twenty-five instructions, and
of each of the communication (input and output) units, without any reference to the way

they are built.

As for the nature of programming itself, he begins with a kind of general description

of his activity, indicating how programming fits within it:

The specific task of the programmer is a part of the preparation that is needed before
the machine can begin to calculate. To be complete, here are the most important stages:

15, mathematical formulation of the problem,

274 mathematical solving of the problem,

3. choice or construction of the numerical processes, which [...] to the desired result
lead,

4th, programming: detailed building of those [...] processes, with the elementary

operations, by which the machine directly in state is to solve the problem,

5th coding: writing of the program in the code of the machine, in such a way that

afterward a tape can be directly punched.!!

One should not interpret those remarks as indicating that he already had a clear under-
standing of a role of mathematics in programming. They are the consequence of the fact
that computers were considered and used above all as calculating machines, as reflected,
for that matter, by their instruction set: the problems they have to solve being mostly
numerical, their programming requires a mathematical formulation and solving of the
problem in question (see p. 8). That formulation and solving, as well as the choice of
the numerical processes to realize that solving, aren’t part, strictly speaking, of the
programming activity. Programming and coding are clearly set apart, the former being
a matter of construction and organization, the latter, a nearly mechanical translation of
the elementary operations of the program into instructions executable by the machine.
In concrete terms, programming consists in writing down a flowchart for the processes,

10. DIIKSTRA, E. W., Functionele beschrijving van de ARRA, p. 1
11. DUUKSTRA, E. W., Functionele beschrijuing van de ARRA, p. 33

1.3 THOUGHTS ON PROGRAMMING 15

coding in translating the components of that flowchart into instructions.

It is clear that the mathematical formulation and resolution of the problem are entirely
independent of the machine on which the problem will be coded. On the contrary, the last
stage of the process, translating the program into machine code, is of course completely
dependent of it. Thus, as one goes along the stages, the dependence of the machine
is more and more significant, and the intermediary stage of programming, while not
as independent of the machine as the mathematical stages, still permits some general
considerations:

Programming is however, still such a general problem, that things can be said about
it, that are not only applicable to the ARRA.??

So, how should one proceed to write a program?

A program breaks down into a few distinct pieces in a natural fashion, for instance,
the instructions, a series of constant numbers, a series of separated changing parameters
of general numerical data, and a series of so-called working spaces (addresses where
intermediary results are stored in the meantime). But the instructions can also be divided
in groups: “this piece does this” and “this piece does that” etc.

When sketching a program out, one think initially solely in such terms: one first builds
the program in broad strokes. (Like: “This table must stay in the memory, different quan-
tities — who must be processed together in different ways — must be interpolated from
this table. Interpolation in the table is thus separated into a ‘small group of instructions’.
We have to calculate a sinus multiple times. This and that number are always calculated
by iteration: the piece of program in charge of this, may as well be isolated as a group

of instructions that could be considered as an entity, etc.”)

Then the programmer makes those separated pieces.13

The division criterion that should be used to break a program in parts is the sheet,
corresponding to a page in the memory:

A track contains 32 successive addresses: those are also called a sheet: with this last
name the accent is differently placed: the track is a concrete unit, that one can indicate
on the drum, the sheet is a (paper) unit, by which the instructions are divided in groups
by the programmer.14

Instructions are thus assembled in groups of thirty-two words; that group forms a sheet,
the unit into which programs are divided and written. It is clear then that subroutines
are not the concept that gives structure to programming: the programmer does not use
them in his programs, but thinks in terms of sheets.

If computers have instructions to call and return from a subroutine, their usage is
often limited to the call of the functions of the standard library. The subroutine call
and return instructions are simply regarded as specialized jump instructions, which differ
from the normal jump instruction in that they store or retrieve an address somewhere

in the computer’s memory. Subroutines are thus hardly ever used to write programs,

12. DUUKSTRA, E. W., Functionele beschrijuing van de ARRA, p. 33
13. DUKSTRA, E. W., Handboek voor de programmeur — FERTA, p. 37
14. DUKSTRA, E. W., Handboek voor de programmeur — FERTA, p. 37

16 COMPUTER DESIGN (1951-1959) 1.3

the only subroutines are the functions that are part of the library, stored more or less
permanently in memory, and written so as to be usable by different programs. Typical
subroutines offer the usual numerical and trigonometrical functions (square and cubic
roots, logarithms, sine, cosine, . ..), calculations on fractional numbers, input and output

operations, conversion of numbers between binary and decimal bases, ...

A subroutine is a series of instructions, which perform together a standard operation.

It is indeed the task of the programmer to build up a specific calculation with the
instructions. [...] It would be needless much work for him, if he had to build up each
program with those little stones, because each calculation can be split into bigger parts,
whose function is so general, that the same series of instructions certainly will also appear
in another program. |...]

Suppose that we want to type out the content of a memory address [...] as a whole
number; and that a series of instructions in a subroutine [...] type out the number
contained in the register S as a whole number. One could punch those instructions [...]
on a tape and, each time that a whole number must be typed out, arrange the program
so that the number to be typed out in S is, then copy the series of instructions on the
band, and then continue with the program. [...] However, this would imply, if later on
in the program another whole number must be typed out, entering those instructions a
second time: an identical series of instructions must then be read in two times, and is in
duplicate in the memory, which is a real waste of memory space.

One would readily let the control go through the same series of instructions both
times. This means however that, after the type operation, the control should encounter
a variable control redirection, according to whether the first or the second number was
typed out. This variable control redirection is called a coupling instruction.

In concrete terms, the execution goes now as follows: Somewhere in the memory are
a series of instructions, which perform the required operation (in this case the typing out
of the content of a register interpreted as a whole number). Each time a whole number
must be typed out the control is sent to that series of instructions, with two information:
[-..] the number that should be typed out, [and the coupling instruction] which sends the
control back to the right place in the program after c:omple‘cion.15

The main benefit of standard subroutines is that they offer a gain in memory space. They
are simply understood at the start (1953) as an alternative to copying a series of identical
instructions multiple times in memory, at different places in a program, or in different
programs. But that’s not all, and their use also has drawbacks.

The advantages to the use of subroutines are the following ones:

15t It limits the possibilities of errors in the program. [-]

274 Tt reduces the time needed to build up the program.

34, It reduces the punch time. [...]

4% Tt gives the program more clarity. [...]

5th Tt may, and will most often, give an important saving of time. |...]
6th. It may, and will most often, give an important saving of space. |...]

The disadvantages to the use of subroutines are the following ones:

158, It increases the number of conventions. |...]

274 A source of errors may arise because a programmer makes use of a subroutine
without precisely and clearly knowing what in that subroutine happens instruc-

tion by instruction.

15. DIUKSTRA, E. W., Functionele beschrijuing van de ARRA, p. 36

1.3 THOUGHTS ON PROGRAMMING 17

. It may, but will not frequently, give a loss of time. [...]
. It may give a loss of space. [...]
. The machine executes irrevocably additional operations when taking care of

the coupling instruction, and the adaptation to the special conventions of the
16

subroutine.

Anyway, their main benefit is the savings they permit: in calculation time, in memory
space, in programming time, and in the time needed to punch and read tapes. The
fact that it could be necessary for the programmer who wants to use the subroutine
to understand “precisely and clearly” what in that subroutine happens, shows that the
distinction between functional and operational description is not evident right away in
the practice of programming. But a short while thereafter (1955), his understanding of
the nature of subroutines is a little more refined:

By subroutine, we mean a series of instructions, which together perform a clearly
delimited operation. [...] If a subroutine [...] is somewhere in the memory, the calling of
the subroutine in the main program acts as an extension to the instruction set.!”

The series of instructions grouped within a subroutine is henceforth seen as a unity, to

the extent that it is considered as a kind of additional instruction.

Besides those reflections on the nature of the programming activity, one finds a few
thoughts about the programs themselves. It is desirable indeed for every program that
it respects certain general properties, that is, properties which do not depend on some
given machine on which it is executed. But they exist only because programs exist, and

as such, they are part of the concern of programming.

The ideals that one pursue in the building of a program are the following:
15%, maximal speed [...],

274, minimal memory usage |[...],

3rd
4th
5th
gth

. maximal safety,
. maximal accuracy,
. maximal flexibility,
. maximal clarity.
15t and 274, The first two ideals are, up to a certain point, conflicting. [...]
3'd. The pursuit of safety is expressed by the precautions so that the machine gives
no wrong answer.. [...]

4*h, The ideal of accuracy means that one should be vigilant that precision is not
unnecessarily lost by the use of clumsily chosen methods. [...]

5P The pursuit of flexibility is very clearly expressed in the building of subroutines
[...] whereby a series of instructions once in the memory is stored, which carry out
a complicated operation, that in the course of the program multiple times occur. [...]
Flexibility also requires that the programmer the program organizes in such a way that,
if an error is found (which is almost always the case), he has not to rewrite the whole
program.

6th t.18

. Clarity is an obvious precep
16. DIJKSTRA, E. W., Functionele beschrijuing van de ARRA, pp. 38-39
17. DUIKSTRA, E. W., Handboek voor de programmeur — FERTA, pp. 4042
18. DIJKSTRA, E. W., Functionele beschrijuing van de ARRA, pp. 33-35

18 COMPUTER DESIGN (1951-1959) 1.3

The usual opposition between the speed and the memory usage of a program is under-
scored: on the ARRA for instance, a program calculating the sum of hundred successive
numbers will be executed in 2.5 seconds if it is composed of one instruction for each
of the terms of the sum, of course occupying about a hundred words in memory, and
in 14 seconds if it is written as a loop adding the successive numbers, occupying only
about twenty words in memory. The very presence of other requirements than speed and
memory usage is uncommon, and it is therefore worth trying to understand them better.

Safety stems from the unreliability of the machines: writing or reading a word in
memory sometimes happen incorrectly, without it being detected, because of the lack
of error detection mechanisms, which are not systematically used: the ARRA and the
FERTA do not have such mechanisms. Safety consists thus in trying to detect the errors
of the machine, for instance by doing the calculations on data for which the result is
already known, or by performing the same calculations two times in a row and comparing
the results. The same kind of errors may arise in the input-output operations, and similar
safety checks can be devised.

Accuracy does not consist in insuring that the program gives correct results (a require-
ment that is probably so evident that it does not need to be explicitly stated), but that
those results are as precise as possible: it is well-known, for instance, that in numerical
calculations an inappropriate evaluation order can end up in a loss of precision in the
final result because of successive rounding offs.

Flexibility consists in a certain adaptability of the programs and of their components.
It is desirable, for instance, that subroutines, stored more or less permanently in memory,
are written in such a way as to be callable at different places in a program, or even from
different programs; it’s the very reason of their existence. Further, because program-
ming errors (and not only coding errors) are considered inevitable, programs should be
organized so that the correction of an error does not lead to a complete rewrite of the
program.

Clarity being considered as “obvious”, we cannot develop it more for the time being.
This self-evidence perhaps signifies that, contrary to the notions of safety, accuracy and
flexibility which receive a specific meaning, it should be understood in its usual sense,
namely, the property of being easy to understand. In any case, one can already note that
it is a requirement that goes beyond simple usefulness.

This is, of course, not his last word. A few years later, with five years of programming
experience, he brings another desirable property to the fore: their restartability. As a sign
of its importance, its detailed exposition occupies five pages in the manual Programming
for the ARMAC (1957), which is about a hundred pages long. What is it about?

A program is called restartable, if the information entered by the input stays unaltered
in the memory during the calculations. [...] With such a program, it is possible to start the
calculation again, without reading the tapes anew, only by pressing the start button, for
every needed information is still intact in the machine. Restartability is a requirement,

1.3 THOUGHTS ON PROGRAMMING 19

that each program must meet.??

It is because programs can modify themselves during the execution that this property
is not verified right away. The modification of a program by itself is seen as essential to
the power of the computers, and, from a practical point of view, the absence of index
registers render its usage necessary for writing loops. It is clear that, in general, after
those modifications, the program cannot be run as it is, which means that, if the program
has to be restarted, one has to load it again in memory by reading the punch tape again.
Because it is a lengthy and tedious operation, it would be wise to avoid it, if possible.
He does not merely formulate this requirement; he translates it as a concrete, simple and
clear, rule:

The formal consequence of restartability is that each used address should be filled in
either during the loading of the program, or by the program, but not by both.?°

What are the grounds for this requirement? One may, of course, want to restart a
program to run it on other data. But in that case reloading it from the tape would be
tolerable, as the time needed to read a tape is usually quite low compared to the running
time of a program; the reason lies elsewhere. Execution errors (due to memory errors,

physical errors in a communication apparatus, ...) are a better justification.

Stronger again is the argument of the testing of a program. Suppose that one starts
a program carelessly, and that, seeing the output — or its absence! — one comes to
the conclusion that something is wrong with it. (Inexperienced programmers often tend
to draw the nearly always wrong conclusion that the ARMAC a defect has!). In such a
case one will load the program again in the ARMAC, to stop the machine after some
known intermediary result; if it is already wrong, one starts the machine again, but this
time stopping it somewhat earlier, etc. trying to localize the error in this way. Having to
reload the program each time again would slow testing excessively; again different is the
situation, when the first error has been found and corrected “manually” in the machine:
the tapes are then no longer correct, before a correction tape has been made! However
one always waits, to punch a correction tape, that a significant number of errors, if not
each of them, were found and fixed.?!

It is thus clear he still thinks that (numerous) programming and coding errors are
unavoidable, because those errors are the deepest justification for the requirement of
restartability. Errors due to the machine being from now on automatically detected,
thanks to the presence of parity checks in the ARMAC, safety is not any more a property
that the programmer should worry about, so much so that he can now write:

In contrast to the past a stage has now been reached, where the weakest link in the
process is not the machine any more, but — the programmer!22

The new features of the X1 result in new thoughts about programming. For example,

19. DUIKSTRA, E. W., Programmering voor de ARMAC, p. 16
20. DuKsTRA, E. W., Programmering voor de ARMAC, p. 17
21. DUKSTRA, E. W., Programmering voor de ARMAC, pp. 16-17

22. DUKSTRA, BE. W., et al., Programmering voor Automatische Rekenmachines, p. 79

20 COMPUTER DESIGN (1951-1959) 1.3

in comparison to the ARMAC, the subroutine call and return instructions of the X1 have
been extended with an index argument m, indicating the place, in an array of successive
words in memory, where the return address should be stored and retrieved: this makes it

possible to have nested subroutine calls.

It is convention to choose m = 0 for those subroutines that do not call in another
subroutine; for subroutines that call in a sub-subroutine with at most m = 0, the m
is chosen = 1, etc. All this applies to subroutines that call in other known subroutines.
However, as soon as a subroutine calls in an “arbitrary” subroutine [...] this is no longer
possible. In such cases it is always safe to call in the outer subroutine with m = 0;
the latter starts off by transferring [the return address| to a location in its own working
space. The restriction that the index m can “only” take [sixteen] different values can be
circumvented by the same technique. (If need be a single value of m, e. g. m = 0, would
suffice; transferring [the return address] would then be [the] rule and no exception. [...])%

This, and the fact that subroutine calls are fast and take little space, has the consequence
that it is now possible to use subroutines in ordinary programs. It is then clear that the
use of subroutines is not any more restricted to the sole use of the standard library:

The fact that calling in a subroutine needs only one [instruction] in the main program
[...] is also attractive as far as program space is concerned; as a result it is worth
considering programming even rather simple operations as subroutines. [...] The fact that
[instructions to save the return address] are not necessary on entering the subroutine,
facilitates the making of compact, fast and flexible subroutines even further.?*

It should be noted that this possibility of nested subroutine calls is not used in the
standard communication program: it would prevent ordinary programs to use it, as the
array of return addresses is not stored and restored by the interrupt mechanism.

This new facility is however not enough to make the subroutines the criterion to
compose programs. Regarding that question, there is nonetheless room for improvement.
Based on the previous programming experiences, a novelty is included in the tape reading

functions of the communication program: the notion of “paragraph”.

The division of the memory into paragraphs has been introduced in order to meet
the needs of the programmer. In practice only very simple programs are conceived as
a whole and written down order by order from beginning to end. Very soon it is found
more convenient to split up the computation into sections, each having a separate function
which can be isolated to a greater or lesser extent from that of the other sections. It is
very important to choose these sections with care: the more clearly isolated the function
of these sections the clearer the arrangement of the program.

Normally one allocates a separate paragraph to each section and supplies each para-
graph with its own [identifiers]. These different [identifiers] make the program easier to
read, furthermore they make it possible for one to start programming one paragraph
while one or more of the others is incomplete.25

A “paragraph” is a logical group of sheets (a sheet being, as before, 32 successive words),
whose physical place in memory will be determined at the time the program is loaded, by
23. DUKSTRA, BE. W., Communication with an Automatic Computer, pp. 49-50

24. DUKSTRA, E. W., Communication with an Automatic Computer, pp. 50-51

25. DUKSTRA, BE. W., Communication with an Automatic Computer, p. 65

1.3 THOUGHTS ON PROGRAMMING 21

means of directives punched on the tape. The paragraph abstracts the memory locations
in such a way that it is possible to write a program, broken into distinct “sections”,
without worrying about their physical location in the memory: therefore the main division
criterion for programs, while still based on the memory space, is not the sheet any more,
and is thus not as much dependent of the physical reality of the programs.

As one sees, flexibility and clarity, which are the ground of the notion of paragraph, are
still regarded as desirable qualities of programs. Memory usage and speed are sometimes
mentioned, but they don’t have the first place any more. No other properties are put
forward. Also, while the communication program of the X1 had to be written without
any testing, since it is wired into the machine and is necessary to use it, and nevertheless
be error-free, the presence of bugs is still seen as inevitable in other programs.

Even more interesting is the fact that a reflection is initiated on the structure of the
programs, more or less independently of concrete programs. Flowcharts are still used to
present the programs, but they are sometimes used to represent not a particular program,
but a general structure common to many programs. For instance, when Dijkstra presents
the “counting jump” instruction of the X1 (which sends the control to a given address,
depending on the value of a given memory location, and decreases that value by one),
he shows the three usual ways for its use: a loop that has to be executed n > 1 times,
a loop that has to be executed n > 0 times, and a loop that has to be executed n +%
times (that is, a loop for which one part must be executed n times, and another part
n + 1 times). Likewise, to explain how the communication program works, he presents a
flowchart of the common structure of the individual parts of the program, each dedicated
to the management of a distinct communication device, before going into the details of

the differences between those individual parts.

Finally, the reflection on the structure of programs is now coupled with the begin-
ning of a reflection on programming languages, in which the programs are written. The
programming languages Dijkstra knows of are the instruction sets of the four computers
designed in the Mathematical Centre. From his experience with them, he isolates a
desirable property for instruction sets: their elegance. Elegance refers to an equilibrium
between excessive flexibility and excessive rigidity. An instruction set is excessively flexible
if it is redundant, that is, if too many different instructions have an equivalent effect. This
causes confusion, as too much different solutions present themselves to the programmer
faced with a given problem. Each programmer then uses only a subset of the instruction
set, and becomes accustomed to his own methods, which renders the reading of programs
harder than necessary. On the contrary, an instruction set is excessively rigid if there is
only a single instruction at one’s disposal for each possible operation. The most usual
excess is obviously in the direction of flexibility.

There is, though, a small gap between the instruction set and the programmer, since
he doesn’t use the instructions in their binary form when he programs. This small gaps lies

in its notation: as the instructions written down on paper are first punched onto a tape,

22 COMPUTER DESIGN (1951-1959) 1.3

and then assembled by the communication program, it is possible to have some distance
between the way instructions are written down, and their actual representation as a
sequence of bits. Indeed, the notation of the instructions for the X1 was carefully designed
so that the order in which the name of the instruction and its different parameters appear
can logically be read from left to right. For instance, if an instruction should be executed
only if one of the condition registers is set, that condition appears on the left of its name;
if an instruction should set one of the condition registers, this is written down after all

the other parameters.

What preliminary conclusions can be drawn from those first observations? It is mani-
fest that Dijkstra approaches the new discipline with absolutely no preconceived ideas:
the principles and the methods he brings to the fore are all derived from his practical
experience on programs with a size of a few tens to a few hundreds of instructions, solving
well-defined problems. His theoretical education in mathematics and physics seems to
have had little influence on the way he works, except perhaps by giving him a sense of
precision and clarity. In particular, he views programming as, in most cases, a trial-and-
error process. The unusual notion of clarity, which seems to have a certain importance,

needs further analysis.

The two aspects of his work during those first eight years find their continuation in his
work during the next nine years, on problems with a higher level of complexity: the design
of the notation conventions for the instruction sets and the writing of assemblers, in the
design and the implementation of a programming language, ALGOL 60 (chapter II); the
design and writing of the communication programs, in the design and implementation of

an operating system, “THE” (chapter III).

CHAPTER II

A PROGRAMMING LANGUAGE (1959-1962)

Van Wijngaarden is seriously injured in a car accident in 1958. During his convalescence,
Dijkstra acts as the manager of the Computation Department. He also takes his place in
the international meetings, and participates in the preliminary discussions for the defini-
tion of ALGOL. After his recovery, van Wijngaarden’s interests shift from the building
of computers to the developing of programming languages. Therefore, while Loopstra
and Scholten set off on the Electrologica venture, he takes an active part, with the help
of Dijkstra, in the definition of ALGOL 60 (§ 1) — and then the latter writes, with
J. A. Zonneveld, a compiler for that new language (§ 2), named “MC” for “Mathematisch
Centrum?”.

§ 1. The Definition of ALGOL 60

ALGOL 60 is the result of a three year international effort to produce a universal program-
ming language. The objectives in designing ALGOL were threefold: the language “should
be as close as possible to standard mathematical notation”, it “should be possible to use it
for the description of computing processes”, and it “should be mechanically translatable
into machine programs.” While those two last objectives are compatible, and even go hand
in hand with each other, they are to a certain extent conflicting with the first one: on
the one hand, standard mathematical notation was not designed to describe computing
processes, that is, sequences of operations ordered in time, but rather to denote timeless
relations between quantities; on the other hand, it is often ambiguous, which is not a
problem for a human reader but renders it improper to a mechanical translation into
machine programs. Hence the discussions to try to fill this gap.

From a working document established during the mid-1958 conference in Ziirich
attended by four Europeans and four Americans (the preliminary report defining the
International Algebraic Language which will later be known as ALGOL 58), the language
is slowly build up by discussions in committees during meetings and conferences, and
by suggestions submitted to examination and approval by the interested parties, in the
Communaications of the ACM for the Americans and in the ALGOL-Bulletin for the
Europeans.

23

24 A PROGRAMMING LANGUAGE (1959-1962) 2.1

Among van Wijngaarden and Dijkstra’s propositions, one finds for instance the sugges-

b

tion to denote the definition of a function with a ‘=’ sign rather than with a “:=’ sign
(neither of those two notations will finally be adopted), or to include other primitive types
in the language (besides integers, reals and Booleans) together with their usual operations:
complex numbers, vectors, matrices, lists, ... More interesting are their contributions to

the creation of the block concept — and to the inclusion of recursion in the language.

The block concept arguably represents the most important and the most innovative
contribution of the language: it is the aspect of the language that took the longest discus-
sions to agree on, it will be taken over by virtually any programming language following it,
and it will in turn give rise to many subsequent developments in programming languages

(closures and objects are the most obvious examples).

Till then, whichever be the programming language, each element (subroutine or vari-
able) of a program is at the same level as any other element: each one is accessible from
any point of the program and they all have, during the execution of the program, the
same life span as the whole program. This means particularly that there is a single level
of subroutines, and that subroutines do not have, except by means of conventions, their
own particular variables. In other words, the code of the programs is flat: even if nested
subroutine calls are used, the code of the subroutines and the variables are located in the
same words in memory from the beginning of the execution of the program to its end.

On the contrary, in ALGOL 58, inspired more by mathematics than by machine
languages, a program is a series of declarations of totally independent and self-sufficient
processes. There is a strict separation between their inside and their outside, which means
that a process can only use, access or modify the elements that it explicitly receives as
argument. Like mathematical functions and unlike subroutines, processes in ALGOL 58
therefore do not have any side effects. They form a kind of calculable equivalent of
mathematical functions. To emphasize the difference with the concept of subroutine,

they are called “procedures”.

That mathematical influence can also be felt in the fact that procedure declarations
cannot contain other procedure declarations (although the preliminary report is not
explicit on this point).

In June 1959, during a conference in Paris, a committee of which Dijkstra is a member
(but not van Wijngaarden) observes that it would be convenient to be allowed to refer,
from the inside of procedures, to certain entities (functions, which do not modify any
variable, but simply return a value calculated with the help of the value of their arguments,
and are therefore strictly speaking not processes), without having to supply them as argu-
ments. The committee proposes a notation to declare in the heading of a procedure that
certain functions are accessible in its body although they are not received as arguments.
The proposition is soon extended to the two other kinds of entities in ALGOL: procedures
and variables. Because of this feature, known as “hidden parameters”, the final language

2.1 THE DEFINITION OF ALGOL 60 25

will thus have side effects.

Three months later, in September 1959, G. Ehrling observes that a program could be
allowed to become a procedure in another program, since it suffices to enclose a program
within a procedure heading to turn it into a procedure; consequently, he proposes that

procedures could be declared within other procedures.

Besides hidden parameters and nested declarations, a third improvement over stan-
dard mathematical notation, regarding the meaning of identifiers, is desirable. Indeed,
symbols are often loosely used in mathematical formulee, where their meaning is supposed
to be explicit enough for a human reader. As those formule are in particular not written to
be executed, there is no risk of conflict between possibly identical symbols used in different
formule. This problem does not appear in machine languages either, where identifiers
are merely used as abbreviations for memory locations. Four independent propositions to
solve it were submitted in October 1959, by van Wijngaarden and Dijkstra, K. Samelson,
H. Bottenbruch and J. Green et al. The first deals with three aspects of the problem
with three distinct suggestions, covering respectively the uniqueness of identifiers, re-
declarations, and hierarchical declarations; the three others cover only one aspect of the
problem.

In the language defined by the preliminary report, nothing prohibits an identifier to
be used in a program with multiple meanings, as long it is not used to designate two
entities of the same class. The same identifier therefore may have up to five different
meanings at a given point of a program text, since it may be used to designate a label,
a simple variable, an array variable, a function, and a procedure. As this possibility is
probably due to a forgetting, and as it does not contribute towards the clarity of programs,

van Wijngaarden and Dijkstra propose and argue that:

[Identifiers] should not be used for different purposes, e. g. for a variable and a label.

It has been shown that unexpected ambiguities may arise under special circumstances,

and there does not seem to be any serious need for multiple use of the same name.’

A second aspect of the problem lies in the fact that it is common to use the same
identifiers in successive formule with different meanings. This is not forbidden by the
preliminary report, but is neither explicitly allowed, and it does not have a precise
signification. They suggest to raise the possible ambiguities by including the following
sentences in the final report:

[Declarations] pertain to that part of the text which follows the declaration and which
may be ended by a contradictory declaration. Their effect is not alterable by the running
history of the program.?

A given identifier would thus be allowed to have successively different meanings, but at
any point of the program text it would have only one. It is therefore an offset to the
previous suggestion. Samelson’s and Bottenbruch’s propositions also concern this aspect

1. vaAN WIINGAARDEN, A., DuIKSTRA, E. W., ALGOL-Bulletin 7.32
2. VAN WIINGAARDEN, A., DUUKSTRA, E. W., ALGOL-Bulletin 7.31

26 A PROGRAMMING LANGUAGE (1959-1962) 2.1

of the problem.

Samelson suggests that declarations should always be written in front of statements,
and have a meaning only in the statement following them:

A declaration is a prefix to a statement [...]. It is valid for, and part of, the statement
following it: if A is a declaration, and ¥ a statement, A.X is a statement and A is

valid through ¥ and ¥ alone. Conflicting declarations on different levels of statement are

€ITOIS. 3

The novelty is that declarations are given a precise place in program texts, and a precise
validity span which does not depend on a contradictory declaration, but the problem
of conflicting declarations is not dealt with in detail. Successive conflicting declarations
seem to be allowed, but on the same level of statements.

Bottenbruch’s proposition, while being less precise, is nevertheless of some importance.
He simply suggests to “give the declarations a dynamic meaning.” It can be understood
from the little example he gives to explain what this means that, to solve the problem of
contradictory declarations, he suggests that identifiers could have their meaning changed
while the program is running, namely when the control encounters a declaration that is
contradictory with another previously encountered one.

Finally, van Wijngaarden and Dijkstra’s third proposition explicitly introduces the

idea of a hierarchical nomenclature. It goes as follows:

The level [of nomenclature] declaration

new (I, I, ...)
has the effect that the named entities [with the identifiers I] have no relationship to
identically named entities before in the following text, until the level declaration

old ([, I,...)
which attributes to the entities named herein the meaning that they had before. These
level declarations may be nested and form the only way to introduce a new meaning to
a name. In particular, in a procedure to be compiled along with the main program, all
variables that should have no relationship [to identical variables outside the procedure]
should be declared new before they have appeared and declared old before the end.

These declarations do not only solve the problem of having “old” and “new” variables
alongside in a procedure, but are also extremely useful in an ordinary program. It should
be noted that after ‘new (z)’ the new z is fully independent of the old z and, therefore,
type declarations, if necessary, have to be given anew. On the other hand after ‘old (z)’
the type declarations of the old z are still valid.*

It is understood as a generalization of the hidden parameter feature, by reversing the
approach: instead of writing down in the program text which identifiers should be
imported from the surrounding environment, identifiers are imported by default, and
one should declare which identifiers become local, and when their global meaning is to
be restored. Further, the use of this feature to declare local variables in a procedure is

now only a particular case: it may be used in any other context.

3. SAMELSON, K., ALGOL-Bulletin 7.22
4. VAN WIINGAARDEN, A., DUKSTRA, E. W., ALGOL-Bulletin 7.33

THE DEFINITION OF ALGOL 60

27

The problem is not only discussed in Europe; a similar recommendation is made by

the Americans Green et al.:

It is desirable to enable procedures to operate on variables which are defined and used
outside of the procedure. These variables can be designated in the procedure heading by
the following declaration:

global (I, I, ...)

A global declaration specifies certain identifiers contained within the procedure to
be defined as being identical to the same identifier when used outside of the procedure.
The global declaration may appear only in the procedure heading. All identifiers in a
procedure declaration not specified as global are considered as having no relation to
identical identifiers outside the procedure.

In addition to the global declaration it may be convenient to have a local declaration,
which is the inverse of global. A local declaration specifies the identifiers within a
procedure that have no relationship to identical identifiers outside the procedure:

local ([, I, ...)
If a local declaration is used, all identifiers in the procedure not specified in the local
declaration are considered to be global.’

As one sees, their proposition also goes further than the hidden parameter feature, by

extending it to any identifiers and by suggesting a complementary declaration, but it does

not go as far as the ‘new’/‘old’ proposition: it is still limited to the sole procedures, and

does not include the idea of a hierarchy.

In November 1959, a conference is held in Paris to discuss the remaining unsolved

questions in the language. A committee of which Dijkstra is a member (but again not

van Wijngaarden) discusses the problems concerning declarations. No agreement can be

reached, but they synthetize the different possibilities for the forthcoming conference.

Concerning the problem of the range of declarations, they note:

The principal problem is considered to be [the] range within which a declaration
should be valid. The extreme possibilities are the strict limiting by write-up or alterna-
tively by time succession. A further possibility is that of permitting dynamic declarations
only when those two extremes are coincident. Because of this, the [committee] is unable
to agree unanimously.®

The extreme possibilities mentioned are Samelson’s and van Wijngaarden and Dijkstra’s

propositions to give declarations of a lexical scope, that is, a static meaning in the

program text, and Bottenbruch’s proposition to give them a dynamic scope, that is,

a dynamic meaning while the program is running. Concerning the idea of a hierarchical

nomenclature, they remark:

The [committee] agrees that the notions new and old [...] are very important, and will
deserve a close study. However, since they are intimately connected with the questions
of the character of declarations in general, on which no definite decisions can be reached
at present, no further step can be taken with regard to them.”

5. GREEN, J., et al.,, Recommendations of the SHARE ALGOL Committee, p. 25
6. ELLis, G. V., et al., ALGOL-Bulletin 8.1.2.1
7. Buuis, G. V., et al., ALGOL-Bulletin 8.1.2.2

28 A PROGRAMMING LANGUAGE (1959-1962) 2.1

The “questions of the character of declarations” refer to the problems of the uniqueness
of identifiers, of their range of validity, and of the dynamic or static meaning of the

declarations.

In December 1959, the seven European representatives to the final conference meet
in Mainz; van Wijngaarden is one of them, but not Dijkstra. The discussions are almost
exclusively concerned with two aspects of the language: declarations and procedures. The
block concept emerged as a general, elegant and simple solution to the different aspects
of the problems posed by declarations: identifiers have a unique meaning at a given level
in a block, re-declarations are permitted in inner blocks, and the blocks are organized
hierarchically, inner blocks importing those identifiers declared in outer blocks that they

do not re-declare. Lexical scope of identifiers is chosen against dynamic scope.

The final ALGOL 60 conference takes place in Paris in January 1960, and adopts the
block concept. The final ALGOL 60 report stands:

Declarations serve to define certain properties of the identifiers or the program. A
declaration for an identifier is valid for one block. Outside this block the particular
identifier may be used for other purposes. [...] All identifiers of a program must be
declared. No identifier may be declared more than once in any one block head. [...] The

same identifier cannot be used to denote two different quantities except when these

quantities have disjoint scopes as defined by the declarations of the program.8

A block is defined as a sequence of declarations followed by a sequence of statements,
between a ‘begin’ and a ‘end’. This definition is recursive, and it is therefore not needed
to mention explicitly that blocks are organized hierarchically, and that inner blocks import
identifiers that they do not re-declare. However, as an addition to the original description

of the block concept given in Mainz, its precise dynamic meaning is presented:

Dynamically this implies the following: at the time of an entry into a block (trough
[a] begin [...]) all identifiers declared for the block assume the significance implied by the
nature of the declarations given. If these identifiers had already been defined by other
declarations outside they are for the time being given a new significance. Identifiers which
are not declared for the block, on the other hand, retain their old meaning. At the time
of an exit from a block (trough end, or by a go to statement) all identifiers which are
declared for the block lose their significance again.’

Besides the block concept, another important contribution of ALGOL 60 is that of
recursion. ALGOL 58 did not forbid its use, but only through lack of mentioning it.
J. McCarthy, who introduced it in LISP a year ago, suggests in August 1959 to introduce
it explicitly in the new language, but his proposition does not draw much attention. The
problems discussed are indeed very different and seem much more important; recursion,
hardly ever used, looks like a minor detail. Eventually, in January 1960, during the
discussions to finalize the language, a proposition to include a ‘recursive’ declarator
is rejected. ALGOL 60 risks to be just as silent on that point.

8. NAUR, P. (ed.), Report on the Algorithmic Language ALGOL 60, sections 2.4.3 and 5
9. NAUR, P. (ed.), Report on the Algorithmic Language ALGOL 60, section 5

2.2 THE “MC” ALGOL 60 COMPILER 29

In February 1960, P. Naur, who has the responsibility of the final edition of the report
before its publication, receives a phone call from van Wijngaarden and Dijkstra. They
point this deficiency out by showing that, if a procedure identifier is allowed to appear in
its own body on the left part of an assignment (thus changing the procedure, by giving
it a return value, into a function), it can be given no meaning, in the language as it is

defined, if it occurs in another place.

They further observe that it would be complicated to set up a rule to prevent the
use of recursion. It would for instance not be enough to prohibit that the identifier
of a procedure appears in its own body (in another place than in the left part of an
assignment statement): this rule could be easily circumvented by the use of mutually
recursive procedures. So they propose to add a short sentence to the report, to make it
clear that recursion is explicitly allowed:

Any other [other than in the left part of an assignment statement, where it sets the

value of the type procedure used as function designator] occurrence of the procedure

identifier within the procedure body denotes activation of the procedure.10

Charmed by the simplicity and the clarity of their proposition, Naur takes the risk to
follow it, without submission to the other members of the committee which established
the final version of the language.!!

In May 1960, the Report on the Algorithmic Language ALGOL 60 is published
in the Communications of the ACM, in Numerische Mathematik and in the Acta
Polytechnica Scandinavica. ALGOL 60 brings the new block concept to the fore, and
with it recursion enters into imperative programming languages. It also introduces a
new type of variables, the logical or Boolean type (whose domain is the two truth
values, denoted by ‘true’ and ‘false’), together with their usual operators: negation (),
conjunction (A), disjunction (V), implication (D), and equivalence (=). It is the first
language whose syntax is defined formally, with the help of what will later be known as
the Backus Naur Form. It is, finally, the first language that was not described in terms of
its implementation, but instead specified by the precise semantics of each of the elements
that constitute it.

§ 2. The “MC” ALGOL 60 Compiler

ALGOL 60 is far ahead of its time; at least far enough that its very authors do not know
how to implement it, and are not even sure that it is possible. Not surprisingly, the two
most innovative aspects of the language, namely blocks and recursion, are also the main
source of their difficulties. The great majority of the first compilers is, for that matter,
limited to a subset of the language, excluding particularly recursion. Dijkstra soon finds
a general solution to this problem — then he designs, with Zonneveld, an innovative

10. NAUR, P. (ed.), Report on the Algorithmic Language ALGOL 60, section 5.4.4
11. Cf. NAUR, P., The European Side of the Last Phase of the Development of ALGOL 60, p. 30

30 A PROGRAMMING LANGUAGE (1959-1962) 2.2

compiler — and finally they write it.

During the summer of 1959, Dijkstra tries to find a way to implement recursion (blocks
aren’t invented, and do not yet pose a difficulty). What exactly is the problem he is faced
with? Till then, subroutines share the computer’s memory by means of conventions: each
one uses a fixed and predefined part of the space, and others do not access it. But:

If every subroutine has its own private fixed working spaces, this has two conse-
quences. In the first place the storage allocations for all the subroutines together will, in
general, occupy much more memory space than they ever need simultaneously, and the
available memory space is therefore used rather uneconomically. Furthermore — and this
is a more serious objection — it is then impossible to call in a subroutine while one or

more previous activations of the same subroutine have not yet come to an end, without

losing the possibility of finishing them off properly later on.!?

The usual way to code subroutines seems thus fundamentally limited, precisely because
it does not support calling a subroutine recursively: a recursive call would use the subrou-
tine’s working space previously used by an earlier call, and overwrite its contents, thereby
preventing earlier calls to continue their work normally on its return.

It is however possible to avoid this problem by generalizing an already well
known method used to evaluate arithmetic and algebraic expressions.’® For instance,
the evaluation of the formula ‘43 + (7 —5) x (8/4+21)’ can be carried out by first
transforming it into its postfix notation (also known as reverse Polish notation)
‘4375 — 84 /21 + x +’, and by reading this formula from left to right, remembering
the successively encountered values, performing an arithmetic operation on the last two
remembered values when an arithmetic operator is encountered, forget those last two
remembered values, and remember the result. This method can be mechanized by using
a stack:

One uses a stack for storing a sequence of information units that increases and
decreases at one end only, i. e. when a unit of information that is no longer of interest
is removed from the stack, then this is always the most recently added unit still present
in the stack. For example, one can construct a stack as follows: a number of successive
storage locations are set aside for the stack and also an administrative quantity, the ‘stack
pointer’, that always points to the first free place in the stack.!

The evaluation of the previous formula can thus be performed in the same way, except
that “remember” now means “store onto the stack and increase the stack pointer”,
and “forget” now means “remove from the stack and decrease the stack pointer.” If
we denote the successive stack locations by sq, si, So, ..., the possible values for the
stack pointer being the indices 0, 1, 2, ..., and “store” by <, then this evaluation is
performed by the following operations: sg < 43, s1 < 7, S5 < 5, §1 < S; — Sa, Sp < 8,
S3 ¢ 4, Sg < S3/S3, S3 < 21, Sz ¢ S2+ S3, S1 < S1 X Sa, Sg < So + s1. The result of the
12. DUUKSTRA, E. W., Recursive Programming, p. 312

13. Cf. for instance SAMELSON, K., BAUER, F. L., Sequential Formula Translation

14. DUKSTRA, E. W., Recursive Programming, p. 312

2.2 THE “MC” ALGOL 60 COMPILER 31

evaluation is then in so. The same principle can be used to evaluate an algebraic expres-
sion, like ‘a+ (b —5) x (¢/4+ d)’ transformed into ‘ab5 —c4 /d+ x +’, except of
course that, when a symbol is encountered, one should perform the additional operation
of looking for its value somewhere in the computer’s memory.

The above is [...] so elegant that we could not refrain from trying to extend this
technique by consistent application of its principles. Let us consider for a moment the
operation “sy «— ¢”. This operation can be executed without further claim for memory
space, as we assume that the numerical value of ¢ can already be found in the memory.
If, instead of ¢, a compound term had occurred in the expression, e. g. (p/(g—7+ s x t)),
then we would have used sz up to ss for the calculation of this sub-expression, but the
net result of this piece of program would still be s «+ p/(g—7+sxt) [...]. In other words,
it is immaterial to the “surroundings” in which the value of ¢ is used, whether the value
c can be found ready-made in the memory, or whether it is necessary to make temporary
use of a number of the next stack locations for its evaluation. When a function occurs
instead of ¢ and this function is to be evaluated by means of a subroutine, the above
provides a strong argument for arranging the subroutine in such a way that it operates
in the first free places of the stack, in just the same way as a compound term written
out in full.’®

The general principle to code recursive subroutines is now set up: instead of dividing the
memory by means of conventions, they all use the same space, organized as a stack: each
call of a recursive subroutine uses a certain amount of memory on this stack as its working
space, and it is freed when the call completes. Since at any moment only the working
space needed by the currently activated subroutines is occupied, this organization has
moreover the advantage that memory is used economically; it can therefore be used as a

general way to share the memory space between subroutines, recursive or not.

This general principle can almost be used as it is for subroutines written in a machine
language: when entering a subroutine, the next free places on the stack are used as its
working space, and when leaving it, if it has a return value, it is stored in the first
previously free place. However, a subroutine is generally not limited to the evaluation
of arithmetic or algebraic expressions, and it may make use of certain local variables.
Further, some information may also be presented to it when it is called in, that is, it may
receive arguments. Finally, some information have to be saved on entering and restored on
leaving a subroutine, for instance, the contents of certain registers; likewise, the return
address is stored on entering a subroutine and used to leave it (these information are
known as the “link”). Thus a certain amount of memory has to be immediately reserved
(and partly filled) on entering the subroutine. This can simply be done by increasing the
stack pointer by that given amount.

As those information will need to be accessed from within the subroutine, there is a
need for a second stack pointer, pointing not to the first free place on the stack, but to
the beginning of the portion of the stack that is used by the currently active subroutine,
somewhere deeper in the stack. Such a portion of the stack is called a frame, and the
second stack pointer is called a frame pointer: all the local quantities are accessed, from

15. DIUKSTRA, E. W., Recursive Programming, p. 313

32 A PROGRAMMING LANGUAGE (1959-1962) 2.2

within the procedure, relatively to it. As its value is derived from the value of the stack
pointer at the moment of a call, it will vary from call to call; therefore it needs to be saved
and restored along with the contents of the registers and the return address. When the
subroutine is completed, the stack pointer takes the value of the frame pointer, thereby
freeing the memory space reserved on entering the subroutine, and the frame pointer

takes the value of the frame pointer value saved on entering the subroutine.

For programs written in a programming language like ALGOL 60, two additional
difficulties arise, caused by the block structure. The first one is that declaring local
variables is not limited to procedures, but can generally be done in any block. This
problem can be easily settled by extending the previous principle:

A block that is not a procedure can also be treated as a subroutine, be it that this

subroutine is only called in at one point.16

A block is thus a procedure that can’t be called in from an arbitrary point in the program
(in particular, it may not be called in recursively), and that does not receive arguments.
Conversely, a procedure can be treated as a block with some additional properties. The
two constructions are closely related and may ultimately be considered equivalent: both
entering a block and entering a procedure results in allocating a new frame on the stack,

both leaving a block and leaving a procedure results in freeing a frame on the stack.

The second difficulty related to ALGOL 60’s block structure is that a block or a
procedure may refer to non-local variables, that is, variables that are declared outside that
block or that procedure declaration, in a lexicographically enclosing block or procedure.
With the stack organization, this means that a block or procedure may refer to variables
stored in a previously allocated frame corresponding to that enclosing block or procedure.
Hence the need for a third stack pointer, or a second frame pointer, pointing again deeper
in the stack, to the most recent activation of the first block that lexicographically encloses
the current block or procedure:

When a subroutine is called in, the link contains two [frame] pointer values for this
purpose. Firstly, the youngest [frame] pointer value corresponding to the block in which
the call occurs [...], secondly, the value of the [frame] pointer corresponding to the most
recent, not yet completed, activation of the first block that lexicographically encloses the
block of the subroutine called in. [...] The first [frame] pointer value plays a vital role
in the return at the end of the subroutine, the second is indispensable in localizing the
global variables in the stack. As the second [frame] pointer, by definition, points to a
link in the stack, which in its turn contains a second [frame] pointer value corresponding
to the next enclosing block, the [calculating] unit can trace this “chain” and, in doing
so, will find all [frame] pointer values that may be necessary for localizing any global
variable in which it may be interested.”

As one sees, this second frame pointer also needs to be saved on entering and restored
on leaving a block or procedure. Consequently, a link must contain two frame pointers.
One points to the beginning of the previous frame on the stack, that is, to the frame of

16. DIIKSTRA, E. W., Recursive Programming, p. 317

17. DUKSTRA, E. W., Recursive Programming, pp. 317-318

2.2 THE “MC” ALGOL 60 COMPILER 33

the dynamic predecessor of the current subroutine; the other one points to the beginning
of the frame of the most recent activation of the lexicographically enclosing block, that
is, to the frame of the static (or lexical) predecessor of the current subroutine. (If the
dynamic scope of identifiers had been chosen against lexical scope for ALGOL 60, a
different organization would obviously be needed.) One must naturally know when to
stop while traversing the chain of the static predecessors of the current subroutine to find
the address of a non-local variable, hence the need for a last information in the link:

One can assign a so-called block number to each block, indicating the number of blocks
which enclose it lexicographically: the main program therefore has a block number = 0.
If the program refers to a global variable it is obviously necessary to specify the block in
which the global variable was declared; the block number serves this purpose, and, under
control on this block number, the [calculating] unit can find the [frame] pointer value it
now needs.!8

A link may finally contain the following information: the contents of certain registers that
need to be restored when leaving the subroutine, a return address, two frame pointers,
and a block number.

Traversing the chain of the static predecessors can be rather time-consuming, and a
slight optimization is possible:

The introduction of the block numbers makes it possible that the [calculating] unit

has immediate access to all the [frame] pointer values it may need: they can be stored in

order of increasing block number in a so-called “display".19

In other words, to facilitate the access to non-local variables, the frame pointers of the
static predecessors can be stored together in an array of successive memory words. It is
then straightforward, with the block number of the non-local variable, to find the frame
pointer of the frame in which it is stored. This does not however frees one from saving
and restoring the frame pointer in the link: they are still needed there, to update the

display when leaving a block or procedure.

It is quite clear that the general principle thus specified is an elegant and simple
solution to the different difficulties that arise because of the presence of blocks and

recursion. However:

The fact that the proposed methods tend to be rather time consuming on an average
present day computer, may give a hint in which future design might go.20

This is indeed what will happen: the X1, for which Dijkstra and Zonneveld have to write a
compiler, does not include any facilities to work with stacks; twenty years later, virtually
any computer will include registers dedicated to the stack pointer, the frame pointer and

the return address, which are modified by the subroutine call and return instructions.

18. DIJKSTRA, E. W., Recursive Programming, p. 318
19. DUIKSTRA, E. W., Recursive Programming, p. 318

20. DuksTRA, E. W., Recursiwe Programming, p. 312

34 A PROGRAMMING LANGUAGE (1959-1962) 2.2

The X1, already briefly described (p. 10), has two accumulator registers, an index
register and a few one-bit condition registers. Its fifty or so instructions are for the most
part strictly arithmetic and logic. It does not even have a division instruction, and its
subroutine call and return instructions are quite rudimentary (see p. 19): they merely
store and retrieve the return address in an array of successive words in memory before
transferring the control. Further, the X1 can have a memory of at most 32768 27-bit
words, but the one installed in the Mathematical Centre only has a memory of 4096
words. Translating ALGOL 60 programs on such a small and rudimentary computer,
without limiting the language to one of its subsets, seems at first a near impossible task.
As van Wijngaarden and Dijkstra were involved in the creation of ALGOL 60, limiting
it to one of its subsets is nevertheless not considered as an acceptable option: the full
challenge has to be taken as it stands.

While trying to find a way to get around those limitations, the idea soon comes out

that the X1’s instruction set is perhaps not very suitable to express ALGOL 60 programs:

Before one can start making a translator which is fed with an ALGOL program and
has to produce the so-called “object program”, one has to decide what the structure of the
object program will be, because only then the task of the translator becomes well defined.
What I call the “object program”, has also been described as “an equivalent program in
machine language”, but I prefer not to use the last description, not being convinced that
machine language will be the most appropriate [target] language.?!

It would not be impossible to use it as a target language, but the gap between the
complexity of ALGOL 60’s constructions and the X1's very primitive instruction set
is so huge that even a simple ALGOL 60 program will be translated into a much
longer program in machine language, so that the very scarce memory space will not be
used efficiently. Moreover, the translation to be done seems so complicated that writing
a complete translator in less than four thousand machine instructions does not look
reasonably feasible. This suggests to break down the translation process, and to use some
intermediate language as a first target:

The object program [is] an equivalent description of the process, more adapted to the
requirement of the machine which has to do the actual computation, than the source
description in ALGOL 60.22

The obvious benefit of this idea is that it should break the complexity of the translation
in two. However, as it adds the burden of defining that intermediate language, the real
gain in simplification is probably somewhat lower. Moreover, it does not by itself address
the problem of the insufficient memory space: on the one hand, if the two parts of the
translator have to work one after the other, both need to be loaded into memory simulta-
neously, and on the other hand, the final object program will still be much longer than the
original ALGOL 60 program. To sort the memory space problem out, the intermediary
object program could be punched on a tape by the first part of the translator, and be

21. DUKSTRA, E. W., Making a Translator for ALGOL 60, p. 1
22. DUKSTRA, BE. W., Making a Translator for ALGOL 60, p. 1

2.2 THE “MC” ALGOL 60 COMPILER 35

loaded and translated into actual machine code by its second part. The actual machine
code could again be punched on a tape by the second part of the translator, and would
then finally be loaded to be executed. The total available memory space would then be
virtually three times larger (or even more, considering that the source and object codes
punched on and read from the tapes need not to be stored into memory), but the whole
translation process would be terribly slowed down. Further, this still does not give an
answer to the fact that the final object code, written in the actual machine language, is
much longer than the original ALGOL 60 program.

There is however no other way to artificially augment the memory space than to punch
the intermediary object program on a tape, and to load it afterward. On the contrary, it
is not necessary that the object program produced by the first part of the translator be
translated into actual machine code by the second part of the translator: it could instead
be directly executed. Then only the first part is really a translator, the second part being

an interpreter.

But if the object program is not necessarily written in machine language and if,
furthermore, certain [...] tasks [...] may be postponed until execution time, one might
well raise the question, whether [this does] not reduce the task of the translator to next
to nothing.23

Indeed, the whole translation process could be done during the actual execution, or
interpretation, of the program. Interpreting ALGOL 60 programs directly could solve
the problem of the distance between the complexity of ALGOL 60’s constructions and
the X1’s instruction set in a simple way, but the memory space problem remains entire:
writing an ALGOL 60 interpreter in less than a thousand machine instructions is no less

complicated than writing a complete compiler in less than four thousand instructions.

The problem is thus to define an appropriate intermediary language that will make
some benefit out of this intermediate step. To define that language, one should first
determine where the translation task should finish, and at the same time where the
interpretation task should begin. The whole translation process could naturally be broken
down at some arbitrary point: for example, the translator could present the interpreter
with a simplified ALGOL 60 program, where the different symbols have been arranged
to be read in faster. But this does not offer a significant gain in memory space, and
the intermediate language could probably be somewhat more elaborate. The criteria to
determine what has to be delegated respectively to the translation stage and to the

interpretation stage is simple:

We have, for instance, the so-called “priority rules.” In the statement
z:=a+ b X ¢
the execution of the multiplication must precede that of the addition. Another way of
specifying this order of execution is
z:= (a+ (b x ¢));
and we may regard the priority rules as a convenient mechanism for reducing the number

23. DUKSTRA, BE. W., Making a Translator for ALGOL 60, p. 2

36 A PROGRAMMING LANGUAGE (1959-1962) 2.2

of brackets needed. The translator must be evidently aware of the priority rules and follow
all their consequences. But for every ALGOL program this analysis needs only to be done
once and is therefore regarded as one of the tasks of the translator.?*

Anything that needs only be done only once in the translation process of a given ALGOL
program, that is, any part of the translation process that will give the same results
regardless of the actual computation taking place, can be done during the translation
stage. Anything else will be done during the interpretation, or execution, stage. For
example, the evaluation order of expressions, defined by the priority rules or by explicit
brackets, can be determined regardless of the actual values of the variables. Determining
to which ‘if’ a given ‘then’ or ‘else’ corresponds can also be done once and for all.

Likewise, assigning a precise meaning to identifiers can be done by the translator:

If an identifier occurs somewhere in a statement, this identifier has a meaning, but only
thanks to the fact that the same identifier has been declared to have this meaning. If one
wants to find the relevant declaration, one has to scan the declarations at the beginning of
the block in which the statement occurs. Either we find a declaration concerned with the
identifier in question, or not. In the first case we have found the declaration we wanted,
in the second case we scan the declarations at the beginning of the next lexicographically
enclosing block, etc. [...]

It is clear from the above that finding the corresponding declaration may be a rather
time consuming process, involving a lot of scanning. However this correspondence is
unique: the translator could do a useful job by establishing this correspondence in a
more direct way.25

On the contrary, the actual evaluation of the expressions, the actual choice of which part
of an alternative ‘if’ statement should be executed, and the determination of the actual
location in memory of a given variable, can only be done during the execution stage.

The general organization principle is thus settled: only one real translation takes place,
producing an equivalent description of the process described by the ALGOL 60 program,
which is then interpreted. The intermediary object program is punched on a tape, and
loaded by the interpreter: this has the advantage of doubling the available memory space
artificially, and to use it efficiently, as that intermediary object program will have a length
of the same order as that of the original ALGOL 60 program. The fact that the translation
process is slowed down by this organization is compensated by the benefit that, once a
given ALGOL 60 program is translated, the resulting intermediary object program can
be loaded multiple times with different input data by the interpreter, which can execute

it very efficiently, as it contains as few ambiguities as possible.

The next task is then to concretely define that intermediary language to be used by
the object program:

The object program is build up from a (limited) number of well chosen operations,
each explicitly supplied with the appropriate number of parameters (may be equal to
26
Z€ro).

24. DUKSTRA, BE. W., Making a Translator for ALGOL 60, p. 2
25. DUKSTRA, E. W., Making a Translator for ALGOL 60, p. 5
26. DUKSTRA, BE. W., Making a Translator for ALGOL 60, p. 1

2.2 THE “MC” ALGOL 60 COMPILER 37

The “well chosen operations” are the elementary operations that are carried out by
ALGOL 60 programs (for instance, the assignation of a value to a variable, or the call and
return of a procedure): the intermediary language thus embodies ALGOL 60’s primitive
operations. One may note that isolating and defining those operations is like writing the
functional description of a computer:

[When choosing] a structure for the object program, [one] chooses a machine and its

order code. This we can always do, because if our specific machine does not have the

required features built in, we can use it to simulate our chosen machine.?’

The “order code” of the object program defines an abstract machine tailored for
ALGOL 60, and the interpreter, written in the X1’s machine language, simulates that
abstract machine: this is what will later be known as a “bytcode” and a “virtual machine”.
The possibility to freely choose and adapt the target order code depending on the source
language obviously greatly eases the translation task:

The making of an ALGOL translator is a relatively simple job if the translator may

formulate the object program in operations cut out for the problem.?®

Indeed, if the order code is actually well chosen, and correctly abstracts the elementary
operations of the source language, the correspondence between a construction in a source
program and its order in the object program becomes straightforward; on the contrary,
if it is not well chosen, that correspondence would be as intricate as with a real machine

language.

The abstract machine is of course based on the previously found principle, namely

the stack. The translation of arithmetic expressions, for example, is then easy:

We presume that our object machine performs its arithmetic in what is called a stack.
[...] It allows us to write down the computation of

a+(b—c)xd+e

in the following form:

TAKE a Sg ¢ a
TAKE b s1+ b
TAKE c Sy ¢
SUBTRACT 814 81— 82
TAKE d S2 d
MULTIPLY s1 ¢ 81 X S2
ADD So < S0+ S$1
TAKE e Sy e
ADD S0 So+ S1

In this description we use two kinds of orders: the order TAKE (with the address of
a variable) that fills a new [element ssp on the stack with the value of that variable],
and the arithmetic operations [SUBTRACT, MULTIPLY and ADD] (without address),
that always operate on the two youngest [elements on the stack, ssp and ssp—1], leave the
result in the oldest of the two and leave the youngest one free. All these operations work
under control of [a so-called “stack pointer” sp], which points to the next free [element s

27. DUKSTRA, E. W., Making a Translator for ALGOL 60, p. 5
28. DUKSTRA, BE. W., An ALGOL 60 Translator for the X1, p. 18

38 A PROGRAMMING LANGUAGE (1959-1962) 2.2

on the stack]. The operation TAKE implies an increase of the stack pointer, the other
operations imply a corresponding decrease of the poin‘cer.29

If the evaluation of an expression is followed by an assignation of the resulting value to a
variable, as in ‘z:= a + (b — ¢) x d + €', then the above orders are simply enclosed
between a ‘TAKE ADDRESS z’ and a ‘STORE’ order, respectively loading the address
of the variable z in the first free element of the stack, and storing the value present in the
last element of the stack at the address present in the second last element of the stack.
Similar orders are defined for more complicated operations, as those involving arrays for
instance. The orders presented in the example above are fairly simple, but the instruction
set of the interpreter has of course instructions for more complex operations: it defines
about a hundred of such elementary operations. They can roughly be separated in three
classes: loading and storing values and addresses, performing arithmetical and logical
operations on integer, floating point or Boolean values, and calling and returning from
a procedure or function (or, in general, entering and leaving a block). They all work in
the same way, making use of the last element, or elements, in the stack. The instructions
to enter and leave a block in particular perform very elaborate operations: they handle
the arguments if the block is a procedure or a function, they update the pointers and the

display, and they allocate the space for the local variables.

As each of those orders performs a precisely defined operation, they can be imple-
mented as subroutines written in the X1’s machine language. Each order is then repre-
sented by a subroutine call in the intermediary object program. The interpreter is thus
simply a set of subroutines, a “complex of subroutines”, designed to work together and
sharing a common working area organized as a stack. They further share some administra-
tive variables, the X1 having no dedicated registers to store the stack and frame pointers

for example.

To represent those orders on the tapes containing the intermediary object programs,
one could directly punch the subroutine call instructions, but this has the disadvantage
that the addresses of those subroutines should be invariable; otherwise, if the interpreter
is modified, any object program previously produced has to be translated anew. It is

therefore better to denote the orders by a code number, which the interpreter understands:

[All the orders] are numbered, and [for each order] the translator only punches the
number. The punched tape with the object program has to be read in by a special simple
read-program, which is provided beforehand with the data which it has to substitute in
place of the numbers.°

This has the advantage of a greater flexibility in the coding of the interpreter, and offers
the possibility to write different interpreters which could work with the same object
programs. For example, it could make sense to write different interpreters working to
various degrees of precision on reals, or interpreters offering the possibility to trace the
execution of the running program.

29. DUKSTRA, E. W., Making a Translator for ALGOL 60, pp. 5-6
30. DuKsTRA, BE. W., An ALGOL 60 Translator for the X1, p. 18

2.2 THE “MC” ALGOL 60 COMPILER 39

It is again quite clear that this organization is an elegant solution to the different
difficulties that arise because of the scarce memory space, the complexity of ALGOL 60
constructions, and the comparatively very primitive X1’s instruction set. But it is a
general solution as well:

Our solution is not only valid for the X1: it can be carried through with any good
computer.31

Any computer, as long as it can perform simple arithmetic and logic operations, call and
return from subroutines, and is equipped with a random access memory, is suitable to
implement such an abstract machine.

Implementing the interpreter is clearly a relatively easy task. On the contrary, and
although the correspondence between ALGOL 60’s constructions and the orders of the
abstract machine is straightforward, at least for simple programs, when one has to trans-
late them by hand, the task of mechanizing that translation for the complete language
is not straightforward at all: ALGOL 60 is very flexible and allows one to write quite
intricate programs.

Once again the main constraint in writing the translator is the scarce available memory
space: four thousand words are not enough to store, side by side, the translator program,
its working space, the source ALGOL 60 program and the corresponding object program.
To have the maximum space available for the translator, and to allow the translation of
the largest possible ALGOL 60 programs, one would best not store the source program
and the object program at all:

We aim at what I should like to call “immediate translation”, i. e. a translation process
that reads the ALGOL program from [beginning] to end, simultaneously producing —
say, punching out — the corresponding object program. In other words, we do not assume
the presence of a memory large enough to store the complete ALGOL 60 program nor the
complete object program. In the first case we should be able to do all kinds of scanning of
the ALGOL text, in the second case we should have the possibility of making corrections
in a piece of object program produced a certain time ago. The [immediate] translation

process [...] is much less demanding as regards working space: in fact it only stores

information as long as it may be needed during translation.3?

Because the meaning of the different constituents of an ALGOL 60 program often depend
on the context in which they appear, storing nothing about the source program while
translating it is probably not feasible. But the amount of information stored should, if
possible, be kept to a bare minimum.

Not surprisingly, the stack principle, which was identified as a way to run possibly
recursive subroutines, can also be used to translate a recursively defined language. For
instance, the information about the local variables or the locally declared procedure in a
given block may be forgotten when the translation process reaches the end of that block.

31. DUKSTRA, E. W., An ALGOL 60 Translator for the X1, p. 1
32. DUKSTRA, BE. W., Making a Translator for ALGOL 60, pp. 6-7

40 A PROGRAMMING LANGUAGE (1959-1962) 2.2

Likewise, when translating an arithmetic expression, the operators need only be stored
until an operator of lower priority is encountered. Using a stack to store those information
will give the desired result: the necessary information will be stored only while they are
needed. To take, as a simple example, the translation of an arithmetic expression:

The symbols of the ALGOL text come in order, from left to right, [and] the successive
orders of the object program are produced. The rule is that incoming identifiers are sent
to the output in the form of a TAKE order (TAKE ADDRESS if the identifier occurs to
the left of the “:=' symbol, otherwise TAKE VALUE). Incoming operators receive their
priority numbers and are then sent to the translator stack, but before the latter happens,
operators in the translator stack are transported from it to the output as long as their
priority number is greater than or equal to the priority number of the new operator. For

instance, [supposing that the symbol ‘;’ has priority 0, ‘=’ has priority 1, ‘+’ and ‘—’
have priority 2, ‘x’ and ‘/’ have priority 3, and ‘1’ has priority 4], at a certain stage of
translation

z:=a+bxcld—e

gives the following picture:

TAKE ADDRESS =
TAKE VALUE a
TAKE VALUE b
TAKE VALUE c
TAKE VALUE d

[The orders already produced are on the left, the symbols remaining to read are on the
right, the contents of the stack are under the bar.] Identifiers are transported to the
object program and operators, with their priority number attached to them, are dumped
in the stack. We now consider the [next symbol to be read, the] minus sign with priority
number = 2. Before this is entered in the stack, T, x and + are removed from the stack,
in this order, giving rise to the orders O THE POWER, MULTIPLY and ADD. Then
follows the order TAKE VALUE e and when the ‘;' with priority number 0 has been
read, the two final orders SUBTRACT and STORE appear [in the object program)].
The semicolon, being only a separator, need not be stored in the translator stack.®®

This is what will later be known as the “shunting yard” algorithm. One might ask if such
a simple algorithm is not too simple to be generalized to the whole ALGOL 60 language,
which allows very complex programs to be written. But, besides being recursively defined,
ALGOL 60 has separators (the symbols ‘', ¢, *?, “=, ...) as well as brackets (the symbols
‘begin’ and ‘end’, ‘(' and ‘), ...), which have a low priority over other symbols. Because
of this, however complicated the constructions of a given source program are, it is always
possible to determine precisely where a given construction ends: it may be ended either
by a separator, or by a closing bracket corresponding to a previous opening bracket. If
one uses a stack to store the symbols that have not yet give rise to orders, and if the

33. Cf. DUKSTRA, E. W., Making a Translator for ALGOL 60, pp. 7-8

2.2 THE “MC” ALGOL 60 COMPILER 41

source program is syntactically correct, a separator or a closing bracket will soon or later
remove some symbols previously saved on the stack. When leaving a block, the stack
will have exactly the same contents as when that block was entered; only have a few
orders been produced in the meantime. And the closing ‘end’ symbol of an ALGOL 60
source program will finally remove the last element remaining on the stack: the opening
‘begin’ symbol. When translating a “real” ALGOL 60 program, the stack will naturally
not only contain operators and other primitive symbols: the declared identifiers have to
be remembered until they fall out of scope, since the statements of the program may, and
usually do, refer to them. They can also be stored in the stack:

The name list is organized as a stack. At the beginning of a block its local names
are added to the name list, and as soon as the translation of the block is complete these
names are again struck off the name list (by suitable lowering of a pointer). Thanks to
the complete bracket of the ALGOL language it is moreover not necessary to introduce
more than one stack. Algebraic expressions, bracketed conditional expressions and/or
statements, bracketed for-statements and procedure declarations can all be translated
with the above universal stack.3*

The “name list” always contains the currently defined identifiers, together with a refe-
rence to their current meaning. As one sees, instead of viewing the translator stack as
a generalization of the stack used in the translation of algebraic expressions, which only
contains primitive symbols and to which identifiers are added, one can also understand
it as a generalization of the name stack, which only contains identifiers and to which
primitive symbols are added.

However, some aspects of the ALGOL 60 language do not fit perfectly in this model.
For instance, ALGOL 60 allows some identifiers, namely labels (which may be referred
by ‘go to’ statements) and procedure identifiers, to be used before they are declared.
When encountering such an identifier, the translator would then be faced with something
it does not yet know of. In this case it would be handy to have the whole ALGOL 60
source program in memory to look further ahead for the corresponding declaration. Paying
such a high price, in terms of memory space, for those few cases, is however not strictly
necessary:

It turned out that [the translation] pass had to be preceded by a rapid so-called
“pre-scan” in which the identifiers of procedures and labels are collected.®®

The pre-scan simply builds a list of those identifiers, which is usually quite short, and
takes up very little space in comparison with the complete source program. A similar
problem occurs in the translation of conditional ‘if’ statements. If a statement ‘if ¢ then

s1 else sy;’ is being translated, when the translation of the conditional expression c is
completed, one has to insert a conditional jump order to the first order that will later

translate the s, statement.
Here we meet the problem of the so-called “future reference.” The only thing we can

34. DUKSTRA, E. W., An ALGOL 60 Translator for the X1, p. 19
35. DUKSTRA, BE. W., Operating Ezperience with ALGOL 60, p. 125

42 A PROGRAMMING LANGUAGE (1959-1962) 2.2

do is to leave the address part of this conditional jump order undefined for the time
being. But the translator makes a note of the address, where this undefined jump order
in the object program has been produced. This note will be used, when translation has
reached [the corresponding ‘else’ symbol]. Then a control combination, containing the
address of the undefined jump order, can be inserted on the output tape, and for the
program that reads in the object program it is an easy matter to fill in the address [bits]
of the conditional jump order.

But this note, specifying the address of the incomplete conditional jump order, origi-
nates when the symbol ‘then’ is encountered and must be kept until the translator has
reached the corresponding ‘else’. In this range, however, another conditional statement
may occur [...] and this is the reason why such a note is stored in the translator stack.%

The stack model is thus general enough to be adaptable to the few irregularities of
ALGOL 60 which prevent one from building a true single-pass translator.

The only thing left is to concretely organize the translation process. Each ALGOL 60
primitive symbol has only a limited and well-defined number of uses, and in each context
it has only one. For example, the symbol ‘(" can be used as an arithmetic opening
bracket, or as an opening bracket announcing procedure or function parameters, but
it is a parameter bracket only if it follows immediately an identifier, and otherwise it is
an arithmetic bracket. It is therefore possible, if the current context is precisely recorded
in a series of state variables, to give a unique meaning to each ALGOL 60 primitive
symbol encountered when reading the source program from left to right; further, each of
the ALGOL 60 primitive symbols can be given a precise priority. The identifiers can also
be given a precise meaning in each context, since they were either previously declared, or
will be declared later but were recorded during the pre-scan pass. Finally, each identifier is
enclosed between two ALGOL 60 primitive symbols. Consequently, the translation process
can be organized as a loop, which calls a lexical subroutine to read the next symbol, and
then calls a syntactic subroutine according to which symbol has been read. The lexical
subroutine builds up the symbols by reading the characters one at a time from the source
program, stores it in a global variable, and records its meaning in a series of global Boolean
variables. A distinct syntactic subroutine is defined for each possible symbol, which has
the responsibility to process it or to store it onto the stack, depending on its relative
priority. This organization is what will later be known as an operator precedence parser.
Technically speaking it is not composed of mutually recursive subroutines, because the X1
is not well-suited for working efficiently with recursive subroutines, but logically speaking
it is: the set of syntactic subroutines share a common working area organized as a stack.

The X1’s ALGOL 60 translator and interpreter runs its first ALGOL 60 programs
in June 1960, and is completed in August 1960, only three months after the publication
of the Report. Both the translator and the interpreter are about 2500 instructions long,
and both are written in the X1’s machine language.?” The system translates and runs the
36. DUKSTRA, E. W., Making a Translator for ALGOL 60, pp. 10-11

37. The text of a later version of the compiler has been published in KRUSEMAN ARETZ, F. E. J., The Diykstra-Zonneveld
ALGOL 60 compiler for the Electrologica X1, pp. 148-308

2.3 THOUGHTS ON PROGRAMMING 43

full ALGOL 60 language, with only very few restrictions (the main restriction is that the
‘own’ declarator cannot be used in a recursive procedure or for dynamic arrays). The
second functional ALGOL 60 compiler, written by a group of four people lead by Naur,
is finished a year later. Among its limitations, it does not support recursion at all.

It should be noted that this fast accomplishment has been made possible not because of
an extensive knowledge in language translation, or because of a fast and flexible computer,
but, on the contrary, because of the strong limitations in those fields:

We did not have the slightest experience in language translation. We thought that
this was a great drawback; it turned out to be one of our greatest advantages. [...] There
were no obsolete traditions to get rid of .38

Indeed, most of the other groups who tried to write an ALGOL 60 compiler have had a
previous experience with some lower-level languages, like Autocodes or FORTRAN. But
those languages were conceived as generalizations of machine languages; on the contrary,
ALGOL 60 was conceived as a particularization of the mathematical language. The
problem had therefore to be tackled differently: instead of trying desperately to translate
ALGOL 60 programs into machine languages, the best approach was to concentrate on

how to actually execute ALGOL 60 programs.

As soon as the compiler is functional, the Mathematical Centre decides to organize a
course, entitled Programming in ALGOL 60. 1t is given in four consecutive days and
comprises lectures, demonstrations and exercises. Dijkstra writes the syllabus; it consists
in twenty-seven short chapters, progressively introducing all the ALGOL 60 construc-
tions: assignment statements, expressions, conditional statements, for statements, arrays,
procedures and blocks. That syllabus will be translated and published in 1962, together
with the Report, under the title A Primer of ALGOL 60 Programmang; it will often
be considered, because of its clarity, as the reference introduction to ALGOL 60.

§ 3. Thoughts on Programming

The design and construction of an ALGOL 60 compiler is obviously a task which is an
order of magnitude more difficult than the previous problems Dijkstra had to tackle.
Therefore it has an influence on the way he views the programming activity. His thoughts
focus on two related subjects: the nature of the programming activity itself — and the
nature of programming languages.

Very soon after the completion of the compiler, the lack of a functionality is felt,
namely, that of a syntactical checking of the source program:
Omission of syntactical checking in translation has proved to have been a grave
error. Every user finds that his first program contains a number of silly, clerical errors.

This number of errors per program decreases very fast as the programmer gets more
experience, and it is therefore my impression that it is hardly worth the trouble to let

38. DUKSTRA, E. W., Operating Ezperience with ALGOL 60, p. 125

44 A PROGRAMMING LANGUAGE (1959-1962) 2.3

the translator look for the next error after the first one has been found. The omission of
syntactical checking is the more regretful as it could have been incorporated at so little
expense.

Furthermore, we find that the program for a particular problem is often processed in
a couple of successive versions. Roughly: the first version is just plainly wrong, because
it contains some logical errors, neglect of some exceptional cases, etc. The second version
works, but the programmer is not satisfied with its performance. In the third version
the programmer, who in the meantime understands his problem better, improves his
strategy, and in the fourth version he improves on the prog;ramming.e'9

Not surprisingly, even with a high level language like ALGOL 60, the programming errors
are thus not limited to syntactical errors: logical errors are also very common, and they
lead to write programs by trial and error. One may think that the writing of programs by
progressive approximation is more a characteristic of the final users of the compiler, that
is, of the scientists who use it to perform their calculations, and who are only occasional
programmers, than a characteristic of the professional programmers. However this would
not be true, since that way of proceeding was also used while building the compiler itself:

[The X1’s ALGOL compiler] is naturally not the result of our first attempt. While
the problem was yet new to use we began a few times by treating relatively simple tasks,
but every solution we then found turned out later to be inadequate in more complicated
cases. When the few times were past us we attacked the whole problem from the other
side and subsequently subjected our new approach to, and tested it against, the most
difficult situations imaginable. The basic form of this approach has not changed since.?

In contrast with the well-defined problems that Dijkstra had to solve before, where
both the results and the way to reach them were manifest, the writing of a compiler
is undeniably a task that can lead to many different solutions. Its result, namely
executing, according to the semantics of ALGOL 60’s constructions, any input program
that conforms to ALGOL 60’s definition rules, is well-defined, but the way to achieve
this is at first unapparent. Trying to start with simple cases and adding gradually more
complex cases reveals, by experience, to be the wrong way to go. But starting with
simple or complicated cases does not change the approach radically: in both situations,
programming is indeed driven by tests cases. In this aspect, the task of the programmer
closely resembles to the task of the engineers who build computers:

Concern about the [computers] reliability is as old as the computers themselves.
The acceptance test is a well-known phenomenon. But what is the value of such an
acceptance test? It is certainly no guarantee that the machine is correct, that the machine
acts according to its specifications. It only says that in these specific test programs the
machine has worked correctly. [...] The best thing a successful acceptance test can do is
to strengthen our belief in the machine’s correctness, to increase the plausibility that it

will perform any program in accordance with the speciﬁcations.41

From the successful outcome of an acceptance test one cannot conclude with certainty
that a computer respects its specification. The same remark applies to programs: from

39. DuUKSTRA, E. W., Operating Ezperience with ALGOL 60, p. 127
40. DIIKSTRA, E. W., An ALGOL 60 Translator for the X1, p. 1

41. DUKSTRA, E. W., Some Meditations on Advanced Programming, p. 7

2.3 THOUGHTS ON PROGRAMMING 45

their correct behavior on a set of test data, even it is very carefully chosen, one cannot
conclude that they will, in general, behave correctly. This remark is especially true for
programs like a compiler, which have to execute programs written in some high level
language exactly like a computer has to execute programs written in its own language.
Programs who only solve a small and well-defined problem, for instance, calculating and
printing a table of coefficients, are not as general; ensuring that they conform to their
specification is of course easier, but by no means straightforward:

Creating confidence in the correctness of a program is already difficult in the case of
a specific program that must produce a finite set of results. [...] The duty of verification
becomes much more difficult once the programmer sets himself the task of constructing
algorithms with the pretence of general applicability.42

Reliability or correctness seems thus a new desirable property of programs to which
programmers should pay attention; the means to attain it are however not quite evident.
As already noted, one may increase the confidence in the correctness of a program by
suitable test cases, but this is never enough if the program is general, that is, if the
possible data on which it may operate is infinite. But the comparison with the engineer’s
task is not the only one; one could also compare the programmer’s task to that of a

mathematician:

It is impossible to prove a mathematical theorem completely, because when one thinks
that one has done so, one still has the duty to prove that the first proof was flawless, and
so on, ad infinitum. [...] One can never guarantee that a proof is correct, the best one can
say is “I have not discovered any mistakes.” [...] The programmer is exactly in the same
position, since it is not possible for him to prove the correctness of his programs. And
yet the correctness of the programs is of vital importance: everybody working with an
automatic computer knows from sad experience that it is very easy to produce an awful
lot of [results], but he also knows that they are worthless if their correctness is subject
to doubt.*®

Seeking at proving the correctness of programs clearly looks like a wrong idea, simply
because it is ultimately not possible to do so. It is in no way better than test cases: like
a set of test cases, proving the correctness of a program could increase the confidence in
its correctness, but, since the proof itself may be wrong, it is not an adequate means to
ensure that it is actually correct. But if neither testing nor proving are sufficient to be
certain that programs conform to their specification, one may think that the correctness
ideal is not reachable, and therefore not worth considering. However this is not the last

word on that question:

The correctness of a [program] can never be founded on successful tests alone, but
is ultimately derived from the clean and systematic structure of the [program)] and from
nothing else. [...] The most difficult aspect of [a programmer’s] task is to convince himself
— and those others who are really interested — that the program he has written down
defines indeed the process he wanted to define.**

42. DUKSTRA, E. W., On the Design of Machine Independent Programming Languages, p. 4
43. DIIKSTRA, E. W., On the Design of Machine Independent Programming Languages, pp.3—4
44. DUKSTRA, E. W., Some Meditations on Advanced Programming, pp. 8-9

46 A PROGRAMMING LANGUAGE (1959-1962) 2.3

The correctness of a program is thus ultimately a conviction of the programmer, who
on the grounds of the “clean and systematic structure” of the program he has written,
has the certitude that it does what he wanted it to do. He may of course explain that
structure to someone else, thereby allowing him to be convinced in turn that the program
is indeed correct.

This last notion seems to be closely related to the precept of clarity yet to be defined
(see p. 18 and p. 22). Indeed, while discussing the qualities that a programmer should
have, Dijkstra notes:

Apart from the programs that have been produced the programmers contribution to
human knowledge has been fairly useless. They have concocted thousands and thousands
of ingenuous tricks but they have given this chaotic contribution without a mechanism to
appreciate, to evaluate these tricks, to sort them out. [...] The programmer was judged by
his ability to invent and his willingness to apply tricks. And this opinion is still a wide-
spread phenomenon: in advertisements asking for programmers and in psychological tests
for this job it is often required that the man should be “puzzle-minded”, this in strong
contrast to the opinion of the slowly growing group of people who think it more valuable
that the man should have a clear and systematic mind.*

A programmer with a “clear and systematic mind” will write programs with a “clean and
systematic structure.” Clarity is thus understood as the opposite of chaotic or confused,
tricky or mysterious, puzzled or enigmatic. To say it positively, clarity is now explicitly
conceived as “easy to understand.” If a program has indeed a clean and systematic struc-
ture, that is, if it is clear, if it is easy to understand, then one sees how a programmer
can be certain that it does what he wanted it to do, without testing or proving its
correctness, and how he may communicate that conviction to someone else. This explains

what is meant when he writes that:
The greatest virtues a program can show [are] elegance and beauty.46

Elegance and beauty are again other notions to explicit that concept of clarity, which
is now the main quality one should seek when writing programs, and from which other

qualities, for instance correctness or reliability, and flexibility, derive.

The other qualities which were previously brought to the fore, namely speed, memory
usage, safety, accuracy (see p. 17) and restartability (see p. 18) are not considered.
Safety is a property that the programmer shouldn’t worry about, because computers
now have build-in error detection mechanisms. Accuracy is a secondary point: it only
concerns programs which deal with numerical data, and many programs do not deal
exclusively with numbers any more: it is thus not a property that should be generally
sought. Restartability was a concern for programs which modified their own instructions
during their execution, but this is regarded as an obsolete technique, and further it is
obviously not relevant for ALGOL 60 programs. Memory usage and speed are cited, but
only for the record, and with an apparent skepticism:

45. DIIKSTRA, E. W., Some Meditations on Advanced Programming, p. 3

46. DIJKSTRA, E. W., Some Meditations on Advanced Programming, p. 10

2.3 THOUGHTS ON PROGRAMMING 47

For a large group of people good use of a machine is synonymous with efficient use
of a machine. An the only two criteria by which they judge the quality of a program
[...] are requirements of “time and space.” I have a suspicion, however, that in forming
their judgement they restrict themselves to these two criteria, not because they are so
much more important than other possible criteria, but because they are so much easier
to apply on account on their quantitative nature. [...] The sacrosanctity of these two
criteria is a widespread phenomenon. [...] All in all, there is sufficient reason to call for
some attention to the more imponderable aspects of the quality of a program.47

The most important of those imponderable, or qualitative, aspects of the quality of a

program is of course its clarity.

Another aspect regarding the question of the programming activity is the structuring
concept to be used when composing programs. Under the influence of ALGOL 60, the
notion of “paragraph”, consisting in a logical group of memory pages (see p. 20), is aban-
doned in favor of the notion of subroutine as the main structuring concept. The structure
of the compiler, in both its translator and interpreter parts, shows clearly, in comparison
with the structure of the X1’s communication program, that the notion of subroutine is
now indeed the main organizing principle: it is composed of about eighty clearly separated
subroutines. However, the corresponding notion of procedure in ALGOL 60 seems to be

understood at first in a rather limited sense:

Now we shall consider an example in which we multiply a matrix A, consisting of 20
columns of 6 elements each, by a column vector B. [...]
for 7 := 1 step 1 until 6 do
begin
s := 0;
for j:= 1 step 1 until 20 do s := A[1,7] x B[j] + s;
print (s)
end
[-..] This little program controls, among others, the execution of 120 multiplications, and
it is, therefore, a striking illustration of the compactness of descriptions in ALGOL. For
statements are not the only means of shortening program texts: at least as important is
the extremely flexible form of abbreviation which is available to us in the form of what

is called a ‘procedure’.48

As it was the case for subroutines (see p. 16), procedures seem to be understood primarily
as a way to abbreviate the program text. This is already quite good, as the compactness
of a program text may contribute to its clarity. But it is not his last word: the fact that
procedures may use local variables, that they may receive parameters by value or by
name, and that they may be called recursively, make them a far richer concept and a far
more flexible tool:

Calling a formal parameter by name is a perfectly natural linguistic element, as is
shown in the following ALGOL 60 transcription of the normal summation sign. [...]
Instead of the double summation

47. DIKSTRA, E. W., On the Design of Machine Independent Programming Languages, pp. 2-3
48. DUIKSTRA, E. W., A Primer of ALGOL 60 Programming, pp. 39-42

48 A PROGRAMMING LANGUAGE (1959-1962) 2.3

10

> > Blk,h]

k=1h=1
one may write

SIGMA (k, 1, 10, SIGMA (h, 1, 20, B[k, h]))
where the procedure SIGMA could be given in the declaration:

real procedure SIGMA (i, L, U, ti);
value L, U; integer 1, L, U; real t;
begin
real s;
s:= 0;
for 7+ := L step 1 until Udo s := s + {3
SIGMA = s;
end;
In the procedure SIGMA, the last parameter is as a rule an expression depending on the
first. This use [...] illustrates the full power of the possibility of calling by name. With this
simple example [...] I hope to have shown that calling by name is not so unnatural at all,
on the contrary, [and] that [...] it closely corresponds to a well-established mathematical
notation, which is known and used all over the world.*®

This “simple example” shows undeniably that the “full power” of the concept of procedure
in ALGOL 60 is not ignored, that it is moreover actually used, and that it contributes,
when properly used, to the clarity of programs: it renders programs easier to understand,
since it may for instance be used to express well-known, precise and unambiguous mathe-
matical constructions. The “full power” of the concept of procedure is especially related
to the possibility to call procedures recursively: in that case the procedure can not be
considered as a simple abbreviation any more, since it is then not possible to substitute
the body of the procedure in place of the statement calling it.

Dijkstra’s participation to the definition of ALGOL 60, his experience in writing a
compiler for it, and in teaching it, are at the root of a more developed reflection on the
nature and qualities of programming languages, all the more because ALGOL 60’s defects
rapidly became apparent:

Through its merits ALGOL 60 has inspired a great number of people to make trans-

lators for it, through its defects it has induced a great number of people to think about
the aims of a programming language.50

Among its defects, ALGOL 60 does not explicitly prescribe an evaluation order for
expressions, and ambiguous expressions could be written down, because they may contain
function calls which may, as a side effect, modify the value of the variables present in the
expression. Also, the writing of really portable programs is not really possible, because it
does not define any standard input-output functions. Finally, it only has three variable
types, namely integers, reals and Booleans, which limits its applicability to the definition
of mostly numerical processes.

49. DIIKSTRA, E. W., Defense of ALGOL 60, pp. 502-503

50. DUKSTRA, BE. W., Some Meditations on Advanced Programming, p. 6

2.3 THOUGHTS ON PROGRAMMING 49

Dijkstra had previously identified a desirable quality for a programming language,
namely its elegance (see p. 21), as an equilibrium between excessive flexibility and exces-
sive rigidity of a computer’s instruction set. The grounds for this requirement were that
a lack of elegance could render the writing and the reading of programs harder than
necessary; to say it more precisely, it could lead to a lack of clarity. Elegance is still put

forward, but appears to receive another definition:

We should aim at a programming language consisting of a small number of concepts,
the more general the better, the more systematic the better, in short: the more elegant
the better.>!

This appeal for a language to be general and systematic is founded on the observation that
existing programming languages often include unnecessary redundancies and restrictions.
In ALGOL 60 for example, procedures are an exception amongst declarations: they are
declared statically, which means that their definition is bound to an identifier once and
for all when they are declared, contrary to variables whose actual value may change
during the execution of the program. This is an unnecessary restriction, as this feature
could be convenient for procedures under certain circumstances, and it limits the power
of expression of the language without real reasons, which thus lacks generality. Likewise,
ALGOL 60 requires one to declare the variables one uses. However these information
are already present in another form, inside of the statements, where the variables are
used, and it may be derived by the compiler from the program text: the language is
thus redundant. Unnecessary restrictions may lead to needless complex programs, and
unnecessary redundancies may lead to contradictory programs. Those two characteristics
correspond to the excessive rigidity and the excessive flexibility, and it is then manifest

that the ideal of elegance is in fact unaltered, although it is more precisely defined.

As already noted, this ideal is strongly connected with the ideal of clarity of the
programs. If one has to seek for clarity when writing programs, then this clarity will
obviously be found, at least partly, in the program texts. The programming language is
a tool at the programmer’s disposal, and a tool is not without influence on the one who
uses it, hence the need to consider it with care. If it is adequately designed, it may help

him to attain his goals, and if not, it may hinder him to do so:

I would require of a programming language that it should facilitate the work of the
programmer as much as possible, especially in the most difficult aspects of his task, such
as creating confidence in the correctness of his program.52

To assist the programmer, the language should naturally be elegant. But this could be
considered as a requirement meant more or less to the intellectual satisfaction of language

designers, whereas it has a very concrete and practical advantage, which could serve as

another justification for its pursuit:

We must make it as easy as possible for the user to master the language.53

51. DUKSTRA, E. W., On the Design of Machine Independent Programming Languages, p. 4
52. DUKSTRA, E. W., On the Destgn of Machine Independent Programming Languages, p. 4
53. DUKSTRA, E. W., On the Design of Machine Independent Programming Languages, p. 6

50 A PROGRAMMING LANGUAGE (1959-1962) 2.3

Indeed, if a language is general and systematic, if it does not suffer from a number of
irregularities, of peculiarities or redundancies, it is easier to master, both for writing
programs and for reading them. One should however not take this practical advantage
for the goal itself, as it is often the case:

There is a tendency to design programming languages so that they are easily readable
for a semi-professional, semi-interested reader. [...] It looks so attractive: “Everybody can
understand it immediately.” But giving a plausible semantic interpretation to a text
which one assumes to be correct and meaningful, is one thing; writing down such a text
in accordance with all the syntactical rules and expressing exactly what one wishes to
say, may be quite a different matter! |...]

I do not regard the supposed readability for a general reader as a valid criterion. [...]
In human communication the “unpredictability” of those we address plays a fundamental
role. If we now apply the norms of human communication to an artificial language,

in which we wish to address a computer, then we ignore one of the most essential

characteristics of the automatic computer, namely the “predictability” of its behavior.?*

Programming languages designed with the aim of being easy to learn, to read and to
write, for example by making use of words taken from the natural language, like the
newly born COBOL which uses English words to express all its operations, take a wrong
path. One may however ask why the use of a natural language is a problem, since this
seems to only ease the learning of the language, without ignoring the computer’s strict
predictability. It does indeed not prevent one to write absolutely unambiguous programs,
“in accordance with all the syntactical rules and expressing exactly what one wishes to
say”: any COBOL program, for instance, has only one valid interpretation. The reason
lies elsewhere:

We should be aware of the fact that for the first time in the history of mankind,
we have a servant at our disposal who really does what he has been told to do. In
man-computer communication there is not only a need to be unusually precise and
unambiguous, there is — at last — also a point in being so, at least if we wish to
obtain the full benefits of the powerful obedient mechanical servant. Efforts aimed to
conceal this new need for preciseness — for the supposed benefit of the user — will
in fact be harmful; at the same time they will conceal the equally new possibilities in
automatic computing, of having intricate processes under complete control. [...] I am all
in favor of clear and convenient algorithmic languages but, please, let them honestly be
so — to disguise them in clothes which have been tailored to other purposes can only
increase the confusion.®®

The problem with such a language is thus not that it is imprecise or ambiguous, but that
it conceals the need to be precise and unambiguous. Indeed, we all use natural languages,
and when we use them, we are given to use their words in a often vague and ambiguous
sense. In a programming language which makes an extensive use of those words, they
receive a precise and unambiguous sense, but the necessity of precision is less apparent,
precisely because they could be interpreted loosely. Instead of helping the programmer
to write clear programs, such languages will increase their confusion. Again, this is not

54. DUKSTRA, E. W., On the Design of Machine Independent Programming Languages, pp. 5-7
55. DUKSTRA, E. W., Some Comments on the Aims of MIRFAC

2.3 THOUGHTS ON PROGRAMMING 51

only a matter of intellectual purity: it has the practical consequence that it will make the
writing of “intricate processes” harder than needed. Very simple programs will perhaps
gain in clarity, at least in the sense that they will be easier to read for a non-programmer,
but as soon as the problems become more complicated, the corresponding programs will
become needlessly confused. These considerations further reveal that clarity should not
be considered as an absolute requirement, but as a relative one. The ideal of clarity should
not be understood as a quest for a universal intelligibility, but is to be conceived more
accurately as the search to be as easy to understand as possible, for an knowledgeable
reader.

It is not enough, however, for a programming language to be elegant to actually make
it as easy as possible for programmers to master:

We can fully master the way in which a computer reacts and this is precisely the
reason why addressing an automatic computer presents us with undreamt-of linguistic
possibilities. Mastery of the reaction of the computer must not only be a theoretical
possibility but a real, practical one, if one is to be able to make full use of those linguistic
possibilities. It is therefore mandatory that [the language] be not prohibitively compli-
cated. From this point of view the way in which ALGOL 60 is defined is rather alarming.
ALGOL 60 is defined by the official Report on the Algorithmic Language ALGOL 60,
edited by Peter Naur, but reasonably speaking one cannot expect a user of the language
to know this Report by heart.5

The language has thus also to be defined as clearly as possible. The very fact that the
Report, which is only twelve pages long, moreover illustrated by many examples, and
whose only formalism is the Backus Naur Form, is considered not readable enough, not
easy enough to be understandable, that is, not clear enough, reveals that clarity is not
to be achieved by taking mathematics as an example, and by making use of a formalism
resembling to the one used in mathematics. Indeed, the main differences between the
Report and the Primer of ALGOL 60 Programmaing is that the latter does not make
any use of the Backus Naur Form to present the language, and that ALGOL 60’s construc-
tions are introduced by order of difficulty rather than by a logical order. However, since
the Primer of ALGOL 60 Programmang does not pretend to completely replace the
Report, but only to serve as a readable introduction to the language, it remains to be
understood how the definition of a language could be given in a clear way.

In addition to the reflection on the aims and the qualities of programming languages,
Dijkstra investigates their relation to computers, from another point of view than that of
their translation or execution:

A machine defines (by its very structure) a language, namely its input language;

conversely, the semantic definition of a language specifies a machine that understands it.

In other words: machine and language are two faces of one and the same coin.?”

This is obviously true for hardware computers, whose construction define an order code
to which they obey, and conversely for order codes, whose specification define the various

56. DIUKSTRA, E. W., On the Design of Machine Independent Programming Languages, p. 8
57. DUKSTRA, BE. W., An Attempt to Unify the Constituent Concepts of Serial Program Ezecution, p. 1

52 A PROGRAMMING LANGUAGE (1959-1962) 2.3

computers which can be build to execute them. Since a hardware computer can also be
implemented with a computer program, this is also true for a program whose operational
behavior follows the specification of that hardware computer, and for the order code of
the hardware computer it implements. But the machine can be an abstract one, and
this is also true for a computer program implementing such a machine, like the X1’s
interpreter, and for its order code. It is then also true in general for any programming
language, and for the programs which perform the execution of the programs written
in that language. In other words: if a computer is a defined as tool which mechanically
interprets a given program text describing a computational process, then a hardware
computer is a computer, and any program which interprets such a program text on a
hardware computer is also a computer. A compiler is thus an abstract machine, and the
programming language it implements is its “order code.”

In an attempt to identify and to understand the primitive operations of programming
languages which cater for recursiveness, Dijkstra then tries to generalize the design of the
X1’s ALGOL 60 compiler as much as possible. To that end, he designs a language and
an abstract machine which models the primitive operations of those languages in a clear,
simple and elegant way. The language is a very simple one: programs are entirely written
in a postfix notation. It has a few separators, that is, words which will be interpreted in a
special way by the abstract machine: one to ask for evaluation, two to assign a value to a
variable, either a simple value or a string (sequence of words) value, one that signals the
end of a string, and two which on evaluation will be replaced respectively by the separator
asking for evaluation and the separator signaling the end of a string. The corresponding
abstract machine reads in the programs word by word, and pushes those words on a
stack, called the anonymous stack. If it encounters a separator asking for evaluation, it
performs the operation defined by the element on the top of that stack, possibly with the
help of a few other elements on the stack: for example, if the first element on the stack
is a binary operator, the corresponding operation is performed, and the stack shrinks by
two words; if it is a variable, it is replaced by its current value if it is a simple one, or its
current value is read in word by word if it is a string. Because the evaluation of a variable
may recursively lead to the evaluation of other variables, namely if its value is a string
of words, and because the value of new variables must be stored somewhere, a second
stack is needed, called the stack of activations. This model lets him conclude for instance
that in such languages data and instructions are actually similar objects, since both can
be bound to a variable, whose evaluation implies either its replacement by its value, or
its recursive evaluation. This language and its abstract machine can be considered as
an ancestor of FORTH, developed a few years later by Charles H. Moore: the FORTH
language uses a postfix notation, and the FORTH abstract machine uses two stacks, a
data stack and a return stack, which correspond respectively to the anonymous stack and
the stack of activations.

This rather theoretical reflection has again a practical consequence. We have already

noted that a language should be defined as clearly as possible. In other words:

2.3 THOUGHTS ON PROGRAMMING 53

The semantic definition [of a programming language] should be as rigorous as possible.
In short: we need a complete and unambiguous pragmatic definition of the language,
stating explicitly how to react to any text.%®

Languages needs thus to have a precise and unambiguous definition, the semantics of each
of their constructions must be specified rigorously. One may think that this characteristic
generally goes hand in hand with the requirement of elegance, if it is met, and that this
further precision is pointless: it is indeed difficult to imagine a language that is general
and systematic without being carefully defined. However, the two requirements of clarity
and rigor could be seen as conflicting, and the way in which clarity and rigor should
be achieved is subject to interpretation: since the Report on the Algorithmic Language
ALGOL 60 does not seem to meet those qualities, it could be interpreted for instance as
an appeal to use a formal language to give the language its semantics, or on the contrary
to define the language with as much technical details as possible. Those methods would
be both misleading; on the contrary:

The language [and the abstract machine thus] described [...] may prove to be a suitable
means for the formalization of the semantic definition of an algebraic language. The lack
of such a rigorous definition is one of the recognized shortcomings of the official Report
on the Algorithmic Language ALGOL 60.%°

Indeed, such an abstract machine and its corresponding language embody both the quali-
ties of clarity and rigor: it is as simple as possible, and it gives to each of the constructions
of the language strictly sequential semantics. The abstract machine can thus be considered
as a defining machine for the language it implements, or, in other words: as an adequate
means to define that language.

What conclusions can be drawn from those observations? The concept of clarity,
which appeared sporadically in Dijkstra’s works during the first eight years, is now seen
as central, because on the one hand the correctness of programs depends on their clarity,
and on the other hand the elegance of programming languages aims at the clarity of
the programs. Its meaning is also refined: it is conceived as the search to be as easy
to understand as possible for someone who has the necessary knowledge. The ideal of
elegance is more precisely defined too, and the notion of structure makes its appearance
without being explicitly examined. Besides, one may note that the need for correctness,
which was not explicit till now, is brought to the fore. Another novel aspect of his work
is the constant effort towards the abstraction of the problems he is faced with, and the
generalization and simplification of the solutions he devises.

As will be seen in chapter III, his work on a compiler for ALGOL 60 is, in many of
its aspects, a stepping stone to the design of the “THE” operating system, which is also

the continuation of the design and writing of the X1’s communication program.

58. DIUKSTRA, E. W., Some Meditations on Advanced Programming, p. 10

59. DUKSTRA, BE. W., An Attempt to Unify the Constituent Concepts of Serial Program Ezecution, p. 17

CHAPTER III

AN OPERATING SYSTEM (1962-1968)

In September 1962, Dijkstra is appointed Professor of Mathematics at the Technological
University of Eindhoven. Besides a teaching responsibility, he is in charge of develo-
ping the existing calculation group of the mathematics department. Upon his arrival, an
IBM 1620 computer is under operation, but has become a bit limited to meet the needs:
the acquisition of an X8, Electrologica’s successor to the X1, is decided. To process the
flow of user programs as efficiently as possible, it has to be equipped with an operating
system. Dijkstra soon finds a solution to the fundamental problem one is faced with when
conceiving an operating system (§ 1) — and then, as the head of a small team, designs
and writes an operating system for the X8 based on that principle, named “THE” for
“Technische Hogeschool Eindhoven” (§ 2).

§ 1. Loosely Synchronizing Concurrent Processes

The purpose of an operating system is to share a number of resources amongst a number
of processes that are executed concurrently: the processor, the memory, and the commu-
nication devices or peripherals. As long as those processes simply perform calculations,
no problems appear: one simply has to slice the time, and to allocate a portion of it in
turn to each of the running processes. However, as soon as those processes either need
to make use of the communication devices, or have to communicate with each other,
complications arise: then one has to ensure that they don’t use the same communication
apparatus at the same time, and that they access the portion of memory they use to
communicate without interfering with each other. Those difficulties show some similarity
with the problem which had to be solved for the X1, namely, to let the communication
devices work concurrently with the execution of a single program. The communication
apparatus can indeed be abstracted, and considered as a number of additional processes
running concurrently with the program executed on the computer:
It is not unusual to regard a classical computer as a sequential computer coupled to
a number of communication mechanisms for input and output. Such a communication

mechanism, however, performs in itself a sequential process. [...] For this reason we can
regard a classical machine, its communication mechanism included, as a group of loosely

55

56 AN OPERATING SYSTEM (1962-1968) 3.1

connected sequential machines, with interlocks, where necessary, to prevent them to get
too much out of phase with one another. The next step is to use the central computer not

for only one sequential process but to equip it with the possibility to divide its attention

between an arbitrary number of such loosely connected sequential processes.1

The only resources to be shared amongst all those processes are then the processor and
the memory. If processes have to communicate with each other via a portion of memory,
one should ensure that no two processes modify its contents at the same time, and that
one of those processes does not read its contents while another one is modifying it: those
two operations are mutually exclusive. This implies that a process may have to wait for
another process to finish part of its operations, or, in other words, that processes which
have to communicate with each other should be synchronized to a certain extent, or
“loosely connected.” Ensuring that program processes don’t use the same communication
device at the same time is then a particular case of communication between processes: it
amounts to ensuring that program processes don’t communicate with the same commu-
nication process at the same time. Even the user of the computer can be considered as
such a process, with which only one program can communicate at any given moment for
instance. Again these are problems of mutual exclusion, which suppose a certain degree
of synchronization. The fundamental problem, when a number of processes are executed
concurrently, is thus that of mutual exclusion: most of their operations can take place
simultaneously, but some cannot, and it is the responsibility of the operating system to
ensure that those mutually exclusive operations do indeed take place one after the other.

To devise a mechanism to make sure that mutually exclusive operations do not take
place simultaneously, one should first precisely identify what may be supposed, and what
may not be supposed, in building up a solution. One could for instance try to measure or
to calculate the speed of each of the concurrent processes. It would then be possible to
adapt those processes to achieve that synchronization, for example by inserting waiting
loops at well-chosen places. But this ad-hoc solution obviously lacks generality: if one
of the processes has a speed which depends on its input data, as it is usually the case,
those waiting loops will be extremely intricate to write. Likewise, if one of the processes
is modified, for instance, if one of the communication apparatus is replaced by a faster
one, its speed having changed, all the other processes have to be adapted.

We have stipulated that the processes should be connected loosely; by this we
mean that apart from the (rare) moments of explicit intercommunication, the individual
processes are to be regarded as completely independent of each other. In particular we
disallow any assumption about the relative speeds of the different processes.2

If assumptions about the speeds of the processes were allowed, this would mean that they
are not “completely independent” of each other; in other words, this would mean that they
are all implicitly synchronized with another process, for example with an external clock, or

1. DUKSTRA, E. W., Some Meditations on Advanced Programming, p. 5

2. DUKSTRA, E. W., Cooperating Sequential Processes, p. 10

3.1 LOOSELY SYNCHRONIZING CONCURRENT PROCESSES 57

that they implicitly communicate with each other. To explicitly forbid such assumptions,
the following is added as an additional requirement that the solution sought for has to

satisfy, besides of course that of mutual exclusion:

Nothing may be assumed about the relative speed of the [processes]; we may not even
assume their speeds to be constant in time.?

If no assumptions about their speeds are allowed, then synchronization can evidently
only be achieved if the processes can communicate with each other, independently of the
communication mechanisms they may use to exchange data, to notify each other when
they may proceed and when they should wait. This means that they should all have
access to a common memory, which is obviously already the case: all processes and all
communication devices have reading and writing access to the computer’s memory, the
latter at least to get the parameters and to write the results of their operations. This
memory can be assumed to have some properties which are relevant for the problem at

stake:

In order to effectuate this mutual exclusion the [...] processes have access to a number
of common variables. We postulate, that inspecting the present value of such a common
variable and assigning a new value to such a common variable are to be regarded as
indivisible, non-interfering actions. That is, when the [...] processes assign a new value
to the same common variable “simultaneously”, then the assignments are to be regarded
as done the one after the other, the final value of the variable will be one of the two
values assigned, but never a “mixture” of the two. Similarly, when one process inspects
the value of a common variable “simultaneously” with the assignment to it by [another]
one, then the first process will find either the old or the new value, but never a mixture.*

Writing a value in a given memory location, and reading a value from a given memory
location, are indivisible or “atomic” operations: only one of the concurrent processes can
write in a single memory word at a time, and while one process writes in a given memory
word, another process cannot read it, and vice versa. This means that reading and writing
single memory words are mutually exclusive operations. This mutual exclusion is realized
at the hardware level. If a number of program processes share a single processor, then at
any moment only one process will be in the course of its execution, and, since an interrupt
can only take place between the execution of two instructions, the processor will never
switch to the execution of another process in the middle of the execution of one of its
instructions. If a program process and a peripheral process try to access the same memory
word simultaneously, then one of them is momentarily blocked until the other one has
finished its operation, thanks to a so-called “switch” with which every memory word is
equipped; this mechanism was already present in the X1 to avoid possible inconsistencies
if the main program and a communication apparatus, or two communication apparatus,
ever tried to access the same memory word simultaneously. Finally, if the computer had
multiple processors, two program processes executed on two distinct processors would
have a mutually exclusive access to the individual memory words, thanks again to the

3. DuKSTRA, E. W., Solution of a Problem in Concurrent Programming Control

4. DUKSTRA, E. W., Cooperating Sequential Processes, p. 11

58 AN OPERATING SYSTEM (1962-1968) 3.1

switch mechanism.

No other assumptions can be made, and it is thus on this low-level mutual exclusion,
ensured by the hardware, that the mutual exclusion of some parts of concurrent processes,
their so-called “critical sections”, has to be build.

Without loss of generality, this problem can be expressed in its most simple form as
follows: execute a number of concurrent processes, each one with a single critical section,
while ensuring that at any moment at most one of them is in its critical section. A similar
problem has already been solved in the writing of an extension to the communication
program for the X1, namely in writing a program in which the input and output operations
were synchronized mutually (see p. 13). The solution then given, which would be incorrect
in a true concurrency context, can be generalized as follows:

begin integer turn; turn := 1;

parbegin

process 1: begin L1: if turn = 2 then go to L1;
critical section 1;
turn == 2;
remainder of cycle 1;
go to L1

end;

process 2: begin L2: if turn = 1 then go to L2;

critical section 2;

turn == 1;
remainder of cycle 2;
go to L2
end
parend
end®

This solution appears to be correct: with the help of a variable turn, taking alterna-
tively the values 1 and 2, it guarantees that the two critical sections are never executed
simultaneously: at most one of the two processes can be in its critical section at any
given moment. Moreover, it does not rely on any assumption about the speeds of the two
processes. It is, however, unnecessarily restrictive, precisely because the variable turn
takes alternatively the values 1 and 2. In other words, process 1 cannot enter its critical
section again before process 2 has entered and completed its own critical section. This
solution is only correct for problems like the one solved on the X1, where one of the
processes depends on the other one to continue its operations, which implies that when
one of the processes is stopped, the other one should not be allowed to continue. It is
thus not general enough: the two processes are strictly synchronized instead of being
loosely synchronized, they are not independent enough from each other. To clarify this

distinction, a second additional requirement to be met is set forth:

If any of the [processes] is stopped well outside its critical section, this is not allowed
to lead to potential blocking of the others.®

5. DUUKSTRA, E. W., Cooperating Sequential Processes, p. 12

6. DUKSTRA, E. W., Solution of a Problem in Concurrent Programming Control

3.1 LOOSELY SYNCHRONIZING CONCURRENT PROCESSES 59

How this generalization should take place is however anything but evident. A first idea
would be to attach to each process a Boolean variable indicating whether it is in its critical
section, and to set that variable before entering and after exiting the critical section:

begin Boolean p1, p2; pl = p2 = false;

parbegin
process 1: begin L1: if p!1 then go to L1;
pl = true;
critical section 1;
pl = false;
remainder of cycle 1;
go to L1
end;
process 2: begin L2: if p2 then go to L2;
p2 = true;
critical section 2;
p2 = false;
remainder of cycle 2;
go to L2
end
parend
end’

This solution is simple, but alas wrong: since both processes are executed concurrently,
it could happen that they both execute the statements labeled L: simultaneously. They
will then both find that their respective p: variable is set to false, they will both perform
the statement p: := true, and they will both enter their critical section. This solution
does thus not guarantee the basic requirement of mutual exclusion. To circumvent this
difficulty, one could try to invert, at the beginning of the parallel processes, the inspection
and the setting of the p: variables, and to let each process inspect not his own pz but the
one of the other process:
begin Boolean p1, p2; pl1 := p2 := false;
parbegin
process 1: begin A1: pl := true;
L1: if p2 then go to L1;
critical section 1;
pl1 = false;
remainder of cycle 1;
go to A1
end;
process 2: begin A2: p2 := true;
L2: if p1 then go to L2;
critical section 2;

p2 = false;
remainder of cycle 2;
go to A2
end
parend
end®

7. Cf. DUKSTRA, E. W., Cooperating Sequential Processes, p. 14
8. Cf. DIUKSTRA, E. W., Cooperating Sequential Processes, p. 15

60 AN OPERATING SYSTEM (1962-1968) 3.1

Mutual exclusion is then indeed guaranteed: if one process enters its critical section, it is
because he found the variable pz of the other process to be false, and at that moment
his own variable p: is already set to true, which prevents the other process to enter its
critical section until he sets it again to false. But this solution again is too restrictive:
if both processes execute the statement labeled Az simultaneously, then both p: will be
set to true, and they will both loop indefinitely in their statement Lz. In other words,
this solution does not protect the processes against an indefinite mutual blocking, known
as a “deadlock.” This could perhaps be remedied by replacing the statements labeled Lz
with the following ones:

L1: if p2 then begin p! := false; go to Al end;
L2: if p1 then begin p2 := false; go to A2 end;
Even if both processes execute their statements Az and L: simultaneously, this will not
necessarily lead to a deadlock, because both processes will reset their own p: to false
before trying again to enter their critical section, thereby giving the other process the
opportunity to go a little bit faster through its statements Az and Lz, and to enter its
critical section. This will however only work with some luck: it could indeed happen
that the speeds of the two processes are equal, in which case they will both be locked in
an indefinite loop. To make clear that deadlocks should be prohibited, whatever be the
speeds of the different processes, a third and last additional requirement to be verified is
stated:
If more than one [process] is about to enter its critical section, it must be impossible
to devise for them such finite speeds, that the decision to determine which one of them
will enter its critical section first is postponed until eternity.9
The final solution, due to T. J. Dekker, to this apparently simple problem, turns out
to be fairly complicated, and uses ideas from all the previous tentatives: two Boolean pz
variables, a loop which resets p: to false if one finds that the other pz has been set to
true simultaneously, and a turn variable to make sure that in this last case only one
of the two processes will be allowed to set its p: to true again. The complete program
reads:
begin Boolean p1, p2; integer turn; p! := p2 := false; turn := 1;
parbegin
process 1: begin Al: pl := true;
L1: if p2 then
begin if turn = 1 then go to L1;
pl1 = false;
B1: if turn = 2 then go to BI;
go to A1
end;
critical section 1;
turn := 2; p1 = false;
remainder of cycle 1;

goto A1
end;

9. DUKSTRA, E. W., Solution of a Problem in Concurrent Programming Control

3.1 LOOSELY SYNCHRONIZING CONCURRENT PROCESSES 61

process 2: begin A2: p2 := true;
L2: if p1 then
begin if turn = 2 then go to L2;
p2 := false;
B2: if turn = 1 then go to B2;
go to A2

end;

critical section 2;

turn = 1; p2 := false;

remainder of cycle 2;

go to A2

end
parend
end!’

Each one of the requirements which were set forth — mutual exclusion, absence of speed
assumptions, process independence, and absence of deadlocks — is met. As in the previous
tentative (see p. 59), mutual exclusion is guaranteed: a process can only enter its critical
section if the other one is outside its critical section, that is, if the pz of the other process
is false, since to enter its critical section it has to execute the conditional statement Lz,
which will either loop or go back to Az if pz is found to be true. But, contrary to that
previous tentative, no deadlock is possible: if both processes execute their statements
labeled At simultaneously, and enter the statements labeled Lz simultaneously, then,
depending of the value of turn, one of them will loop on L2, and the other one will
proceed and reset its pt to false, thereby allowing the former to enter its critical section,
before looping on Bi. The latter will be freed when the former leaves its critical section
and resets turn. Finally, if one of the processes is stopped outside of its critical section,
there is no risk of preventing the other one to enter its critical section, since in that case
both pi’s are false.

This is already a nice result, but it is again not general enough, in this case not
because it has a defect, but because it is limited to the mutual exclusion of the critical
sections of two processes. It is not straightforward at all how it could be generalized to
the case of N processes: adding more pz’s and more values to turn has the consequence
that the statements Lz and Bz cannot be written down as conditionals simply testing for
equality. The general solution is discovered by Dijkstra, and reads as follows:

begin Boolean array p, t[0:N]; integer turn;

for turn := 0 step 1 until N do p[turn] := t[turn] := false;
parbegin

process 1: begin integer k;
Ai: pli] := true;
La: if turn # 1
then begin t[:] := false;
if —p[turn] then turn = 1;
go to Lz
end

10. Cf. DIUKSTRA, E. W., Cooperating Sequential Processes, p. 17

62 AN OPERATING SYSTEM (1962-1968) 3.1

else begin t[i] := true;
for k := 1 step 1 until N do
if £ # i A t|k] then go to L
end;
critical section 1,
p[z] := t[1] = false;
remainder of cycle 1;
go to Az
end;

parend
end!!

All the necessary requirements are again satisfied. Mutual exclusion is verified and no
deadlock is possible. Indeed, on the one hand, it is guaranteed that the value of turn will
necessarily be fixed after a finite time: if a number of processes execute the statements Az
and Li concurrently, as soon as one of them has set turn, p[turn] becomes true, and no
other process can decide to change the value of turn from then on. And, on the other hand,
a process 4 can only enter its critical section after having set t[7] := true and checked
that all other t[¢]’s are false. If multiple processes perform this check simultaneously, it
will succeed for at most one of them. If it succeeds for none of them, then only process
turn will be allowed to set t[i] := true again, and all the other ones will have to set
t[1] := false, which will necessarily happen in a finite time. Finally, no other process j can
enter its critical section once a process ¢ has completed this check: since they will all find
either turn # j and p[turn] = true, or turn = j but £[7] = true, they can only loop on
L7, until process 7 exits from its critical section and performs p[i] := t[i] := false. The
requirement of independence is obviously also verified: if a process 7 is stopped outside
its critical section, it will not stop other processes from entering their critical section: for
that process p[j] = false and t[j] = false permanently.

This solution, though correct, is indeed extremely complicated. This has the unfor-
tunate consequence that it is hardly adaptable even to only slightly different situations:
if, for instance, in four processes A, B, C and D, each one having a critical section, only
those of A and B, B and C, C and D, and D and A exclude each other, that is, if the
simultaneous execution of the critical sections of A and C or B and D is allowed, the
previous algorithm would of course still be correct, but it would be too restrictive, and
adapting it to this additional freedom is again not simple at all. It is thus worth the effort
to try to find a simpler, and therefore more flexible, solution.

The origin of the complications, which lead to such intricate solutions [...] is the fact
that the indivisible access to common variables are always “one-way information traffic”:
an individual process can either assign a new value or inspect a new value. Such an
inspection, however, leaves no trace for the other processes and the consequence is that,
when a process wants to react to the current value of a common variable, its value may be
changed by the other processes between the moment of its inspection and the following
[execution] of the reaction to it. In other words: the previous set of communication

11. Cf. DUKSTRA, E. W., Solution of a Problem in Concurrent Programming Control

3.1 LOOSELY SYNCHRONIZING CONCURRENT PROCESSES 63

facilities must be regarded as inadequate for the problem at hand and we should look for
better adapted alternatives.!?

Indeed, if it was possible to have somewhat more elaborate atomic operations than those
that are provided by the hardware, which allow for either inspection or modification of
an individual memory word, the solution would have been easy. If it was for instance
possible to declare atomic procedures, then a single common Boolean variable would
have been sufficient to solve the problem for N processes:
begin Boolean t; t := false;
atomic Boolean procedure enter (b); Boolean b;
begin enter := b; if =b then b := true end;
procedure ezit (b); Boolean b;
b := false;
parbegin

process i: begin Li: if enter (t) then go to Li;
critical section 1,

ezit (t);
remainder of cycle 1;
go to L1
end;
parend
end!®

The variable ¢ simply indicates whether one of the concurrent processes is in its critical
section. It can only be modified by one process at a time, and it is set to true by the
process which will enter its critical section. This solution satisfies all the requirements:
since the operation enter is atomic, it is obvious that mutual exclusion is guaranteed and
that no deadlock is possible. It is also obvious that no assumptions are made about the

speeds of the processes, and that they are independent.

But even this hypothetical solution has a serious limitation, which it shares with
all other previous tentatives: all the processes which are for the moment stopped from
entering their critical section wait for this restriction to be removed by repeatedly
performing a test and a jump; in other words, they wait in a rather busy way.

Let us take a period of time during which one of the processes is in its critical section.
We all know, that during that period, no other processes can enter their critical section
and that, if they want to do so, they have to wait until the current critical section
execution has been completed. For the remainder of that period hardly any activity is
required from them: they have to wait anyhow, and as far as we are concerned “they
could go to sleep.”

Our solution does not reflect this at all: we keep the processes busy setting and
inspecting common variables all the time, as if no price has to be paid for this activity.
But if our implementation [...] is such that “sleeping” is a less expensive activity than
this busy form of waiting, then we are fully justified [...] to call our solution misleading.14

12. DUIKSTRA, E. W., Cooperating Sequential Processes, p. 28

13. Cf. DUUKSTRA, E. W., Over de sequentialiteit van procesbeschrijvingen, p. 11

64 AN OPERATING SYSTEM (1962-1968) 3.1

If one has, in addition to the four requirements previously set forth, the requirement that
the blocked processes should “sleep” while they cannot enter their critical section, then
it reveals to have a great resemblance with the problem and the motivations which led
to the creation of the X1’s interrupt system (see p. 10). The motivation was to avoid
wasting computation time in waiting for the completion of communication operations.
The problem was thus to find a way to let the main program continue its execution
while the communication program is performing its operations. The solution then found
was to let an intermediary process, the communication program (or interrupt handler),
suspend its activity and transfer control to the main program until another process,
the communication apparatus, has finished its operation. The communication equipment
signals this completion by means of an interrupt signal to the computer, which reacts
to it by transferring the control back to the communication program, which handles the
situation, and eventually transfers control again to the main program. The solution found
by Dijkstra for the problem of the mutual exclusion of the critical sections of concurrent
processes, the “semaphores”, has the same motivation: avoid wasting computation time
in waiting operations, and works in the same way: if a process A cannot enter its critical
section, instead of waiting in a busy cycle, it suspends its activity until the process B
which is currently in its critical section has completed it, and A is then waken up by B.

A semaphore is simply an integer variable, located in a memory shared commonly by
the concurrent processes. Each semaphore is accessed by at least two processes, and they
can only access it with two primitive atomic operations, called P and V:

The semaphores are essentially non-negative integers. [...] The V-operation is an
operation with one argument, which must be the identification of a semaphore. [...]

Its function is to increase the value of its argument semaphore by 1; this increase is

to be regarded as an indivisible operation. [...] The P-operation is an operation with

one argument, which must be the identification of a semaphore. [...] Its function is to

decrease the value of its argument semaphore by 1 as soon as the resulting value would be

non-negative. The completion of the P-operation [...] is to be regarded as an indivisible

operation.15
A process performing a P operation on a semaphore tries to decrease the value of that
semaphore by one: if the current value of that semaphore is positive, then it is decreased,
and the process proceeds immediately with its next operation; if it is zero, then it goes to
sleep until another process performs a V operation on that same semaphore. A process
performing a 'V operation on a semaphore simply increases the value of that semaphore
by one: if it was positive, then this has no other effect; if it was zero, then this can have
as consequence that another process waiting to perform a P operation can complete that
operation and proceed with its next operation. With the help of those two primitives, the
solution to the problem of mutual exclusion for N concurrent processes is straightforward:

begin semaphore s; s := 1;

parbegin

14. DUKSTRA, E. W., Cooperating Sequential Processes, pp. 26-27
15. DUUKSTRA, E. W., Cooperating Sequential Processes, pp. 2829

3.1 LOOSELY SYNCHRONIZING CONCURRENT PROCESSES 65

process i: begin Li: P(s);
critical section 1;
V(s);
remainder of cycle ;
go to L1
end;

parend
end!®
It is again obvious that each of the requirements is met. Since the P operation is atomic,
no two processes can perform it simultaneously, and therefore both the mutual exclusion
and the absence of deadlocks is guaranteed. Since a process goes to sleep while it can’t
complete an P operation it has initiated, and is waken up when another process performs
a V operation, no computation time is wasted in waiting cycles. It is also evident that no
assumptions are made about the speeds of the processes, and that they are independent.

These primitives have the further advantage that they are extremely flexible: they can
then be used without any modification to solve other problems than the sole problem of a
number of processes having a single critical section, each of those excluding all the other
ones. When they are used to solve that problem, semaphores taking only the two values 0
and 1 are obviously sufficient. The generalization to semaphores taking any natural value
is due to Scholten; although logically not necessary to solve other problems than the one
of critical sections, this further generalization makes them however more convenient to
use in such situations. For example, the problem of two processes exchanging data via a
common buffer of limited capacity, one producing a portion of data at a time, and one
consuming a portion of data at a time, is also straightforward to solve with the help of
semaphores:

begin semaphore number of queuing portions, number of empty positions;
number of queuing portions := 0; number of empty positions := N}
parbegin
producer: begin Al: produce the next portion;
P(number of empty positions);
add portion to buffer;
V (number of queuing portions);
go to A1
end;
consumer: begin A2: P(number of queuing portions);
take portion from buffer;
V (number of empty positions);
process portion taken;
go to A2
end
parend
end!”

16. Cf. DuksSTRA, E. W., Cooperating Sequential Processes, p. 30
17. Cf. DUKSTRA, E. W., Cooperating Sequential Processes, p. 39

66 AN OPERATING SYSTEM (1962-1968) 3.1

This ensures that the consuming process will never try to use a portion not yet produced
by the producing process, and that it will never produce another portion of data if the
buffer is already full. In the particular case N = 1, the operations of the two processes
will take place in a strictly alternating sequence, and the algorithm is then equivalent to
the first tentative solution (p. 58), except of course that it does not wait in a busy way.

This flexibility has, however, a drawback: when semaphores are used to solve other
problems than the strict mutual exclusion of a number of critical sections, the problem
of deadlocks can arise again for subtler reasons. As a first example, semaphores could be
used to ensure the concurrent execution of a number of processes whose critical sections
exclude each other cyclically, that is, where the critical section of each process only
excludes the concurrent execution of the critical section of each of its “neighbors” (see
p. 62). This problem is a slight generalization of the previous one, in which every process
is a neighbor of every other process. It has been modeled by Dijkstra as the “five dining
philosophers” problem: five philosophers sit around a circular table, and they alternatively
eat and think; each philosopher has a plate in front of him, filled with a very difficult
kind of spaghetti that has to be eaten with two forks, and between each philosopher is
one fork. If the philosophers and the forks are numbered from 0 to 4, then one would
probably first think of the following solution:

begin integer j; semaphore array fork[0:4];

for j := 0 step 1 until 4 do fork[:] := 1;
parbegin

philosopher i: begin L: think;
P(fork[i]); P(fork[(s + 1) mod 5]);

eat;
V (fork[i]); V(fork[(s + 1) mod 5]);
go to L
end
parend
end!®

It is, however, inadequate: it guarantees that two neighboring philosophers will never eat
simultaneously, but if the five philosophers ever get hungry simultaneously, each one will
perform a P operation on its left hand fork, and the five are then in a deadlock. To solve
the problem, it is necessary to take this intermediate “hungry” state into account, and
thus to associate a state with each philosopher, which records if he is thinking, hungry or
eating: each philosopher will go cyclically through the states philosopher state[i] = 0,
= 1,and = 2. A philosopher ¢ will go eating only if he is hungry, and if his two neighbors,
(¢t + 1) mod 5 and (¢ — 1) mod 5, are not eating. It would be dangerous to let the
five philosophers check for this situation and to let them decide to go eating concurrently,
since one of them could decide to go eating just after one if his neighbors has seen that
he was not eating; in other words, one has to prevent simultaneous consultations and

18. Cf. DUUKSTRA, E. W., Hierarchical Ordening of Sequential Processes, p. 21

3.1 LOOSELY SYNCHRONIZING CONCURRENT PROCESSES 67

modifications of the common variables philosopher state: to make this sure, an access

semaphore is used. The complete program reads:

begin integer j; semaphore access semaphore;
integer array philosopher state[0:4];
semaphore array philosopher semaphore[0:4];
procedure go eating (k); integer k;
if philosopher state[(k — 1) mod 5] # 2 A philosopher state[k] = 1
A philosopher state[(k + 1) mod 5] # 2 then

begin philosopher statelk] := 2; V(philosopher semaphore[k]) end,;
access semaphore = 1;
for 5 := 0 step 1 until 4 do

philosopher state[j] := philosopher semaphore[j] = 0;
parbegin

philosopher i: begin L: think;
P(access semaphore);
philosopher stateli] = 1;
go eating (i);
V(access semaphore);
P(philosopher semaphoreli));
eat;
P(access semaphore);
philosopher stateli] := 0;
go eating ((¢ — 1) mod 5);
go eating ((¢ + 1) mod 5);
V(access semaphore);
go to L

end;

parend
end!’
As one sees, a philosopher semaphore is associated with each philosopher. If a philoso-
pher is hungry, and if the conditions in go eating are verified, that is, if his two neighbors
are not eating, then a V operation is performed on his semaphore, and on returning the
P operation on this very same semaphore will immediately succeed. On the contrary,
if a philosopher is hungry but if the conditions in go eating are not verified, then the
V operation will not be performed, and on returning the P operation will wait until
another philosopher, after having finished to eat, goes back to thinking again, and does
a V operation on his semaphore. It is evident that with a suitable adaptation of the
go eating procedure, any other type of mutual exclusion can be achieved between any

number of processes.

As a second example, semaphores could also be used to allocate limited resources, for
instance a limited number of tape punches, among a number of processes. If each process
is not allowed to make use of more than one punch at any given moment, then it is
sufficient to initialize the value of a semaphore punches to the number of available tape

19. Cf. DUKSTRA, E. W., Hierarchical Ordening of Sequential Processes, p. 22

68 AN OPERATING SYSTEM (1962-1968) 3.1

punches: when a process needs a tape punch, it performs a P(punches), and when it has
finished using it, it performs a V(punches). If, however, a process is allowed to make use
concurrently of more than one punch, then a deadlock could take place: if, for instance,
the number of available punches is 8, and if the two processes currently running need at
most 6 punches to complete their operations, and if 2 punches have already be allocated
to each of the two processes, then the two processes could finish, since 4 more punches
are still available and could be allocated to one of the processes. But if one more punch
is allocated to each of the two processes, that is, if both now make use of 3 punches,
then there are only 2 remaining punches, and if both processes happen to actually need
3 more punches, neither of them will be able to finish, unless of course one of them is
aborted. The most easy way to solve this problem is to execute the processes one after the
other, but is not optimal regarding the use of the available resources: it would mean that
each process virtually uses its maximum demand of punches during the complete time
of its execution. To solve this problem without being too restrictive, and nevertheless
without leaving the possibility of deadlocks, Dijkstra invents an algorithm, known as the
“banker’s algorithm.” This situation is indeed comparable with that of a banker, which
has a certain finite capital in a certain unit of money and a number N of customers to
which he temporarily borrows some money, which he knows they will pay back sooner
or later. Each customer has a given mazimum need of money, and a current loan. It is
obviously unsafe for the banker to accept a new customer if its maximum need exceeds
his capital, but he can accept any customer whose mazimum need is lower than his
capital. When one of his customers asks for one more unit of money, the banker should
check whether it is safe or not for him to lent it. If it is not, that is, if he would run
the risk of being later short of money when another customer wants to borrow money,
he may ask him to wait, but the customer is guaranteed to get his money later on. To
decide if it is safe for him to lend one more unit of money to a customer ¢, he can use
the following algorithm:
Boolean procedure safe (c); integer c;
begin
integer cash, i; integer array mazimum claim[1:N];
Boolean array finish doubtful[1:N];
current loan[c] := current loan[c] + 1;
cash = capzital;
for 1 := 1 step 1 until N do
cash = cash — current loan[i];
for 7 := 1 step 1 until N do
mazimum claim[i] := mazimum need[i] — current loan[i];
for 1 := 1 step 1 until N do finish doubtful[i] := true;
L: for 1 := 1 step 1 until N do
begin if finish doubtfulli] A mazimum claim[i] < cash then
begin finish doubtfulli] := false;
cash := cash + current loan[i];
go to L

end
end;

3.2 THE “THE” MULTIPROGRAMMING SYSTEM 69

if cash = capital then safe := true else safe := false;
current loan|c] := current loan[c] — 1
end?

In order to decide whether a requested unit of money can be borrowed by a customer c,
the banker inspects the situation that would arise if he had lend it. This situation is safe
if at least one of the customers has a mazimum claim not exceeding the banker’s current
cash, and if, supposing that this customer has completely returned its current loan, the
situation would still be safe for all the other customers; in other words, if the banker is
assured to finally get all his money back, the whole situation is safe. This algorithm can
then be used to solve the problem of the concurrent use of a limited number of punches
by a number of processes, which is a second example of a specialized type of mutual
exclusion, following more subtle rules than those of a strict mutual exclusion. Before
performing a P(punches), a process should check if it can do this in a safe way: this
can be achieved by using an organization similar to that of the five dining philosophers

solution.

Those last examples show that the semaphores are indeed undeniably an extremely
flexible tool. But they may look as a way to merely postpone the difficulty: the possibility
of their implementation has been taken for granted till now, but how the primitives P
and V could be concretely implemented as atomic operations, how the former could be
implemented without a busy waiting, and how the latter can wake up one of the processes
which is waiting on the increase of its semaphore, is anything but manifest. This will be
explained in the next section; it will be shown at the same time how they are, among
others, at the basis of the whole construction of the operating system designed and written
by Dijkstra and his team for the X8.

§ 2. The “THE” Multiprogramming System

When the acquisition of the X8 is decided, in December 1963, it is still in its conception
stage: it is due to be delivered only in the course of 1965. It is a binary machine, almost
backwards compatible with the X1; it is planned to be eight times faster, hence its name. It
has the same two accumulator registers, an index register and one-bit condition registers,
plus an additional two-word accumulator register dedicated to the built-in floating point
arithmetic operations. It has a memory of at most 2'® words having a length of 27 bits,
of which 2% = 32768 are directly accessible. It has the same instruction set as the X1,
extended with instruction variants using the index register for indirect addressing, and a
new subroutine call instruction storing its link in the memory address indicated by the
index register. Those additional instructions, allowing to use a stack in an efficient way
if the index register serves as a stack pointer, make the X8 evidently more suitable than
the X1 to execute ALGOL programs.

It can be extended with at most forty peripheral equipments: drum or disk secondary

20. Cf. DUKSTRA, E. W., Cooperating Sequential Processes, p. 77

70 AN OPERATING SYSTEM (1962-1968) 3.2

storage, command teleprinters, line printers, tape or card readers and punches, plotters,
and magnetic tape units. It can also be equipped with a time and interval clock. Those
peripherals are controlled by an independent processor, CHARON, which takes care
independently, but under control of the main processor, of the details of the data transfers
between the peripherals and the memory. The X8 installed at the University of Eindhoven
will have a memory of 32768 words, a drum of about 2!° words, a clock, three tape readers,
three tape punches, a command teleprinter, a plotter, and a line printer. Its memory will
be later extended by 16384 words, and three magnetic tape unit, as well as a second
command teleprinter, will be added.

The X8 is again revolutionary in one of its aspects, namely its interrupt system,
which improves the X1’s interrupt organization in two ways. On the one hand, on the
X1, the interrupt signals sent by the peripherals were grouped under seven interrupt
classes (see p. 12), which raised seven distinct interrupts, and it was possible, by means
of the setting of an interrupt permit bit for each class, to disable the interrupts of one
or more classes. This makes it possible to react with some flexibility to the interrupt
signals, but the grouping of the communication apparatus under seven classes is to a
certain degree arbitrary: it could be desirable for instance to disable the interrupt signals
of certain apparatus in a class, but not the others. Of course, each apparatus still has
its own interrupt signal, but the notion of interrupt class is abandoned on the X8, which
means that only a single interrupt can take place, and instead of having an interrupt
permit bit for each class, it has one for each apparatus. As it was the case on the X1, an
additional global interrupt permit bit makes it possible to prevent all interrupts without
altering the individual permit bits of the peripherals.

On the other hand, on the X1, the interrupt signals sent by the peripherals are
basically a single bit of information, signaling that the apparatus has completed the
operation it was asked to perform. This is of course enough if, as it was the case for the
X1’s peripherals, they can only be asked for a single operation at a time. For efficiency
reasons, it may be desirable to allow the computer to ask for more than one operation
at a time: if it has, for instance, to read a number of tracks which follow each other on a
drum, and if it asks for the reading of one track at a time, then even if it quickly reacts to
the interrupt following the completion of the previous reading operation by sending the
next reading command, the reading head of the drum may already be further than the
beginning of the next track, and the drum will have to wait during a complete rotation
before actually beginning the next reading operation. This is the main motivation behind
the addition of CHARON: instead of single commands, it accepts queues of commands,
which it transmits one at a time to the peripherals. Since its operations are extremely
simple, they are not coded as programs, but hard-wired: it can thus react instantaneously
to the completion of an operation by sending the next pending command, if there is one
in the queue. Further, since the operations of CHARON are entirely transparent for the
programmer, one may totally make abstraction of its existence.

With such an organization, signaling the completion of the communication operations

3.2 THE “THE” MULTIPROGRAMMING SYSTEM 71

with a single bit interrupt signal is obviously still possible: it is sufficient to let the
interrupt handler know that the execution of one or more commands sent to the apparatus
corresponding to the interrupt signal have been completed. But it is then entirely the
responsibility of the computer to determine how much and which ones of the commands
it has sent have been completed; when the number of apparatus and their peculiarities
augment, this will become more and more difficult. Observing that the commands are sent
one at a time by a program to a peripheral, and that the peripheral executes them one
at a time leads naturally to consider the relation between the computer and a peripheral
as a relation between a producer and a consumer: the computer produces communication
commands which are consumed one at a time by the peripheral. Since the easiest way to
control the relation between two such processes is to use two semaphores (see p. 65), one
that is raised by the producer and lowered by the consumer, and the other one the other
way around, the X8’s interrupt system will be entirely organized around semaphores: each
peripheral will be equipped with two so-called “hardware semaphores”, called action and
interruption, the former being increased by the computer and lowered by the peripheral,
the latter being increased by the peripheral and lowered by the computer. If we make
abstraction of the details, the cyclical program process running on the computer and the
cyclical process of a peripheral with which it communicates can be represented as follows:
begin semaphore action, interruption;
action := 0; interruption = 1;
parbegin
program: begin A: ...
prepare communication command;
P(interruption);
send communzication command;
V(action);
go to A
end;
peripheral: begin B: P(action)
execute communaication command;
V (interruption);
go to B
end

parend
end?!

Raising the semaphore action has the effect that the peripheral is waked up, and that it
executes the command just send by the program; raising the semaphore interruption has
the effect that the program is waked up and can continue by sending the next command.
This simplified example obviously does not make use of the queuing facility formerly
described: only a single command will be sent to the peripheral at a time. But it is of
course possible to have a program with a more complex organization, performing multiple

21. Cf. DUKSTRA, E. W., Multiprogrammering en de X8, p. 4 and DIUKSTRA, E. W., Documentatie over de communi’

catieapparatuur aan de X8, pp. 6-7

72 AN OPERATING SYSTEM (1962-1968) 3.2

V(action) operations before waiting on a P(interruption) operation: the semaphore
action will then indicate the length of the queue, and the semaphore interruption the
number of unacknowledged completions. All this would be possible without the use of
semaphores, but it is manifest that they greatly simplify the overall organization. As one
sees, the two semaphores are used in a perfectly symmetric way: P(action) suspends
the peripheral, V(action) wakes it up, P(interruption) suspends the program, and
V (interruption) wakes it up. Their names are given from the point of view of the
program, but could have been given the other way around, from the point of view of the
peripheral: its cycle is interrupted on the semaphore action and by raising the semaphore
interruption it provokes an action of the computer.

It is for that system, whose design will be finalized only in June 1966, that Dijkstra
and his team of five half-time people, C. Bron, A. N. Habermann, F. J. A. Hendriks,
C. Ligtmans, and P. A. Voorhoeve, will design and write the THE operating system.

An operating system can be, and often is, implemented as a set of subroutines sharing
a set of variables, organized for instance in tables or lists, whose function is to keep a record
of the state of the running processes, namely the running programs and the peripherals.
Those subroutines are entered either when a program needs to communicate with a
peripheral, or conversely when a peripheral needs to signal the completion of an operation
to one of the programs by means of an interrupt. Those subroutines usually ensure that
there is never more than one program communicating with each peripheral. Further,
they usually give the programmers easier ways to communicate with the peripherals, for
instance by hiding the details of the communication orders behind higher level primitives.
Roughly speaking, this is for example how the X1’s communication program, which is a

kind of minimal operating system, is organized (see pp. 11-12).

For reasons which will become apparent later on, this is not the arrangement chosen
for the THE. Its organization is instead based on the previously found principle, that is,

the semaphore:

We have arranged the whole system as a society of sequential processes, progressing
with undefined speed ratios. To each user program |[...] corresponds a sequential process,
to each input peripheral corresponds a sequential process (buffering input streams in
synchronism with the execution of the input commands), to each output peripheral
corresponds a sequential process (unbuffering output streams in synchronism with the
execution of the output commands); furthermore, we have the “segment controller”
associated with the drum and the “message interpreter” associated with the console
keyboard. This enabled us to design the whole system in terms of these abstract “sequen-
tial processes.” Their harmonious cooperation is regulated by means of explicit mutual
synchronization statements.??

The complete system is thus composed of twenty-five cyclical processes: ten “concrete”
processes, namely, the peripherals, and fifteen “abstract” processes, namely, the pro-

grammed processes. To each peripheral device corresponds one programmed process,

22. DUKSTRA, BE. W., The Structure of the “THE” Multiprogramming System, p. 343

3.2 THE “THE” MULTIPROGRAMMING SYSTEM 73

and five additional programmed processes act as slots into which user programs can
be inserted. All those processes cooperate to the global functioning of the system, they
are all synchronized with each other exclusively with semaphores, and a twenty-sixth
process, the operator, controls the whole system. The building of the concrete processes
is obviously Electrologica’s task, and the writing of the operating system thus amounts

to write the fifteen abstract processes.

In comparison with the more conventional undifferentiated arrangement, this divi-
sion into ten abstract processes representing and controlling the ten concrete peripheral
processes and five abstract processes for the user programs evidently contributes to a
simplification of the task. Breaking the tasks of the operating system into separate
processes, each one having a clearly defined task, is indeed somehow like breaking
the operations of a program into procedures: it will probably significantly lower the
complexity of the resulting system. But it is possible to go a step further, and consequently
to put more structure in the system, by observing that those fifteen processes are logically
not equivalent. The user program processes for example are independent of each other,
and will never have to communicate with each other. During the execution of a user
program, they will however communicate with the peripheral processes, but the converse
is not true: a peripheral process will never take the initiative to communicate with a user
program. Likewise, the processes representing the input and output peripherals will make
use of the process representing the drum for their buffering activities, but the latter has
no reason to make use of the formers. It is thus possible to arrange those fifteen processes

hierarchically:

The total system admits a strict hierarchical structure. At level 0 we find the responsi-
bility for processor allocation. [...] At level 1 we find the [‘segment controller” associated
with the drum]. [...] At level 2 we find the “message interpreter” taking care of the
allocation of the console keyboard via which conversations between the operator and any
of the higher level processes can be carried out. [...] At level 3 we find the sequential
processes associated with buffering of input streams and unbuffering of output streams.
[-..] At level 4 we find the independent user programs, and at level 5 the operator (not
implemented by us).23

Of those five levels, levels 0 et 1 are of particular interest, since they are the foundation
of the whole system. The nine processes in levels 2 and 3 control communication devices
having different characteristics, but function according to the same principles. Finally,
level 4 comprises five identical processes.

Level 0 is the so-called “coordinator”. It has the “responsibility for processor alloca-
tion,” which means that it allocates the processor in turn to one of the abstract processes.
A first idea would be to slice the time, and to allocate a portion of it in turn to each
of the processes. If a process performs a P operation that cannot be completed because
the current value of the semaphore equals zero, it stops and signals to the coordinator
that the rest of the slice can be allocated to the next process. When the processor is
allocated to a process which stopped on an uncompleted P operation, it can try anew

23. DUKSTRA, BE. W., The Structure of the “THE” Multiprogramming System, p. 343

74 AN OPERATING SYSTEM (1962-1968) 3.2

to complete it, and the rest of the slice is again allocated to the next process if it still
cannot be completed. This is, however, not very efficient: the computer could well spend
a significant part of its time in trying and failing again to finish previously uncompleted
P operations.

If a process is waiting on the completion of one of its P operations on a given
semaphore, it is obviously pointless to allocate the processor to it, until another process
has performed a V operation on this very same semaphore. It is therefore better to let the
coordinator keep a list of the processes, separated in two, the runnable and the blocked
ones, and to allocate the processor in turn only to the runnable ones. This list will possibly
be updated only when a process performs a P or a V operation: the best solution is then

to implement those operations in the coordinator, in the form of two subroutines.

The coordinator is thus entered whenever a process performs an operation on a
semaphore. When a process performs a P operation, this can have an effect on that
very process, but cannot have an effect on the other processes: either the current value of
the semaphore is positive, and the operation immediately succeeds, or it equals zero, and
the process is then moved from the list of the runnable processes to the list of blocked
processes. Conversely, when a process performs a V operation, this has no effect on itself,
but can have an effect on the other processes: either the current value of the semaphore
is positive, and the operation immediately succeeds, since no other processes are waiting
on this semaphore, or it equals zero, which implies that a number of processes may be
waiting on it; in the latter case, if there is at least one process waiting on it, one of
them is moved from the list of the blocked processes to the list of the runnable ones,
and the semaphore is not increased, since this move means that the selected process has
completed its P operation. Finally, at the end of the P and V subroutines, the coordinator
allocates the processor to one of the processes in the list of the runnable ones. How the P
operation can be implemented without a busy waiting is now manifest: it simply means
that the coordinator does not allocate the processor to the blocked processes. And how
a 'V operation can wake up one of the processes which is waiting on the increase of its
semaphore is now also evident: it simply means that the coordinator moves one of the
processes waiting on this semaphore from the list of the blocked ones to the list of the
runnable ones. But the P and V operations have a third fundamental property, namely,
their atomicity, and if they are implemented in the coordinator as subroutines, then
they are not atomic at all, for a subroutine is by definition a series of instructions. It is
however possible to achieve this requirement of atomicity simply by making use of the
global interrupt permit bit of the X8 (see p. 70), a feature that was already present in the
X1 (see p. 12): before calling the P or V subroutine, the program sets this bit, and at their
end it is reset. Since setting this bit and calling a subroutine are two operations which
will often follow each other, the X8 even has a specialized subroutine call instruction,
which also sets this bit: it will thus be used to call the P and V subroutines, instead of

the ordinary subroutine call instruction.

The general working principle of the coordinator is now sketched, but a few problems

3.2 THE “THE” MULTIPROGRAMMING SYSTEM 75

are still open. The first one is that of the time slicing. Indeed, with a coordinator
implementing only the P and V operations and keeping a list of the runnable and
blocked processes, it is guaranteed that no computation time will be lost in trying to run
blocked processes, but a process could monopolize the processor for a long time, since
switching from one process to another only happens at the end of one of the synchronizing
primitives. To prevent this situation, an interrupting clock, that is, a clock sending an
interruption signal to the computer at regular intervals, is all that is necessary; the X8
is equipped with such a clock. The computer reacts to its signal by setting the global
interrupt permit bit and by transferring control to a certain address. A second function
of the coordinator is thus to react to the clock interrupts: it simply saves the state of
the currently running process, selects another process in the list of the runnable ones,
restores it state, and gives it the processor.

A second problem is that a V operation on a semaphore may have as side-effect that a
process which was waiting on that semaphore is moved from the list of blocked processes
to the list of the runnable ones. This simply supposes that the coordinator keeps, in a
way or another, a list of the processes waiting on each semaphore. This is relatively easy
to achieve: when a process performs a P operation on a given semaphore, if it does not
succeed, besides being moved from the list of the runnable processes to the list of the
blocked ones, it is added to the list of the processes waiting on that semaphore. The V
operation can then easily select one of those waiting processes and move it back to the
list of the runnable processes. These lists will necessarily be very small: each process may
of course wait on at most 1 semaphore, and, in a system with n processes, a semaphore

may block at most n — 1 processes.

A third problem, which we did not mention till now, although it was one of the
limitations of Dijkstra’s general busy waiting solution to the problem of the strict mutual
exclusion of a number of critical sections (p. 61), is the requirement of fairness. It basically
signifies that each runnable process should be assured that the coordinator will give it
the processor in a short period of time. It is obvious that, the coordinator having the full
control on both the lists of the runnable and blocked processes, and the lists of processes
waiting on each semaphore, it can implement any desired scheduling policy. The most
simple policy is to allocate the processor to each process in turn in a given order, and to
remove the processes from the semaphore waiting lists in a first in, first out way. But it
is also possible, for instance, to order the processes by increasing order of running time,

or to give the processes of a lower level priority over the processes of a higher level.

A fourth and last problem is that of the hardware semaphores. Like normal
semaphores, hardware semaphores are simply single memory words, be it that they are
increased or decreased by both concrete processes and abstract processes. The scheme
presented fits perfectly for a number of concurrent abstract processes or programs with a
number of normal semaphores, but if they have to cooperate with a number of concurrent
concrete processes or peripherals by means of hardware semaphores (see p. 71), since
those peripherals cannot call the P and V synchronizing subroutines, the waiting lists

76 AN OPERATING SYSTEM (1962-1968) 3.2

kept by the coordinator will rapidly become wrong. One may however observe that it is
not necessary to put those concrete processes in the waiting lists of the semaphores, since
they always work, by construction, with the same two semaphores. One may then note
that, since the concrete processes do not need to be stored in the waiting lists, when a
concrete process performs a P operation on a hardware semaphore, the only effect will be
that the semaphores in question will be decreased; in other words, the waiting lists remain
untouched. On the contrary, if a concrete process performs a V operation on a hardware
semaphore whose current value is zero, then this possibly means that an abstract processes
waiting on that semaphore should be moved to the list of runnable processes. Since this is
only possible by entering the coordinator, the V operation performed by a peripheral on a
hardware semaphore, that is, the V(interruption) operation, is implemented with a side-
effect: if the resulting value of the semaphore is positive, the peripheral sets its interrupt
signal. The X8 is then interrupted, the global interrupt permit bit is set, and control
is transferred to the coordinator. By inspecting the interrupt signals, it can determine
which peripheral is the cause of the interruption, and eventually move a process waiting
on its interruption semaphore to the list of the runnable processes. This solution makes
use of both the interruption mechanism for the V operation, and the atomicity of the
access to individual memory words (see p. 58) for the P operation. The last function of
the coordinator is thus to handle the interruptions, which are raised when the resulting
value of a V operation on a hardware semaphore by a peripheral is positive.

It is now possible to give the semaphores a complete, precise and operational definition:

A process [...] that performs the operation “P(sem)” decreases the value of the
semaphore called “sem” by 1. If the resulting value of the semaphore concerned is
nonnegative, [that] process can continue with the execution of its next statement; if,
however, the resulting value is negative, [that] process is stopped and booked on a waiting
list associated with the semaphore concerned. Until [...] a V-operation [is performed] on
this very same semaphore, dynamic progress of [that] process is not logically permissible
and no processor will be allocated to it. [...]

A process [...] that performs the operation “V(sem)” increases the value of the
semaphore called “sem” by 1. If the resulting value of the semaphore concerned is positive,
the V-operation in question has no further effect; if, however, the resulting value of the
semaphore concerned is nonpositive, one of the processes booked on its waiting list is
removed from this waiting list, i. e. its dynamic progress is again logically permissible
and in due time a processor will be allocated to it.24

This definition is also more general than the previous one (p. 64), in that it allows
semaphores to have negative values: a semaphore with a negative value records the number
of processes booked on its waiting list. The previous paragraphs can easily be adapted to
that new definition.

The level 0, the coordinator, has thus three main functions to accomplish the processor
allocation: it implements the P and V operations, it handles the periodical clock inter-
rupts, and it handles the interrupts raised by the peripherals. By keeping a list of the

24. DUKSTRA, BE. W., The Structure of the “THE” Multiprogramming System, p. 345

3.2 THE “THE” MULTIPROGRAMMING SYSTEM 77

processes separated in two, the runnable and the blocked ones, it can allocate the processor
in turn to each of the runnable processes. Finally, since it is exclusively entered by
subroutine calls and interrupts, it is not a process: it is thus an interrupt handler. This
implies that above level 0, all the interrupts have disappeared: the fifteen processes in
levels 1 to 4 are synchronized with each other and with the ten peripherals exclusively

by means of the synchronizing P and V operations.

Level 1 is the so-called “segment controller”, which has the responsibility to manage
the available memory for the benefit of the other processes. When a computer executes a
single process, this process has the whole memory at its disposal, and it has a complete
freedom to arrange it according to its needs. A part of it is usually be reserved for the
program instructions, and the rest is used to store the data. The programmer has the
duty to organize this part of the memory, but this will rapidly become an extremely
laborious task, since the location if he has to do so exclusively with simple load and store
instructions, for the sizes and life times of the various data structures will usually vary
from one execution to another, depending for instance on the input data. It is therefore
desirable to place some higher-level primitives at his disposal to simplify this task. This
is evidently all the more true when multiple processes are executed on a computer, since
they have then to share the memory for both their instructions and data, in such a way
that they don’t interfere with each other. The most simple way to do this would be to
allocate a fixed portion of the memory to each of the running processes, and to let each
of them manage its own portion. This solution has, however, two serious drawbacks. On
the one hand, it is then necessary to allocate to each running process its maximum need
of memory at the beginning of its execution. Even if one supposes that it is possible
to determine that maximum need, it means that each process effectively occupies its
maximum need of memory during the complete time of its execution, which implies that
the memory will not be used efficiently most of the time. On the other hand, this will
not by itself address the problem of the mutual protection of the processes: it supposes
that each process behaves correctly, since nothing prohibits it to access and modify the
memory reserved for another process. Hence the need for a more general and flexible
solution.

The segment controller solves these problems by abstracting the memory space in
so-called “segments™ it is divided into pages of 512 words, and each of those pages is
occupied by zero or one segment. When a process needs more memory space, it asks for
one more segment to the segment controller. If there are remaining free pages, one of them
is chosen, its occupation and location is recorded, and the segment controller returns a so-
called “segment variable” identifying that segment to the process. When a process needs
to read or write a given word in a segment, it transmits that segment variable, together
with the word index, to the segment controller, which translates these information into
a physical memory address, and transmits it to the process. Finally, when a process does
not need a given segment any more, it may ask to the segment controller to release
that segment, and the segment controller simply records that the corresponding memory

78 AN OPERATING SYSTEM (1962-1968) 3.2

page is now free. The segment controller thus implements a software virtual memory, by
means of three simple primitives: one to request a new segment, one to release a segment,
and one to access the data stored in a segment. This arrangement has the advantage
of flexibility, since at every moment each running process will only occupy the memory
space it actually needs. It has also the advantage of protecting the memory spaces of
the processes from each other: if they do not try to directly access the memory directly,
that is, if they only access memory words with addresses resulting from the translation
done by the segment controller, then they will never access the memory space of another
process. Finally, it has the advantage that a process can share data with another process
simply by transmitting a segment variable. Likewise, if a process needs to send data to
another process, it simply has to transmit a segment variable, and remove it from its own
segment table.

But this organization has a further benefit: it allows one to easily implement a so-
called “two-level store”. The X8 installed at the University of Eindhoven has indeed a
drum, which, although its contents cannot be accessed directly by the instructions, can
be used as a secondary storage medium. It is much slower, but also much larger, than the

core memory, and its contents can also be divided into pages of 512 words:

We made a strict distinction between memory units (we called them “pages” and
had “core pages” and “drum pages”) and corresponding information units (for lack of a
better word we called them “segments”), a segment just fitting in a page. For segments
we created a completely independent identification mechanism in which the number of
possible segment identifiers is much larger than the total number of pages in primary and
secondary store. The segment identifier gives fast access to a so-called “segment variable”
in core whose value denotes whether the segment is still empty or not, and if not empty,
in which page (or pages) it can be found.

As a consequence of this approach, if a segment of information, residing in a core
page, has to be dumped onto the drum in order to make the core page available for
other use, there is no need to return the segment to the same drum page from which it
originally came. [...]

A next consequence is the total absence of a drum allocation problem: there is not
the slightest reason why, say, a program should occupy consecutive drum pages.25

A segment can thus be located in the core, or on the drum: besides a table of the core
pages, the segment controller then obviously needs to store a table of the drum pages. The
segment requests and segment releases function in the same way, but the segment access
primitive needs to be adapted to this new situation. When a program needs to access
a word in a given segment, it asks to the segment controller to translate the segment
variable and the index into a physical address. If the segment happens to be currently
located on the drum, the process is temporarily suspended, the segment controller moves
that segment from the drum to the core memory, wakes the process up, and transmits
it the physical address of the segment. Since the segments are always accessed through a
call to the segment controller, it can keep a record of the access frequency to each of the
segments located in core. When it needs a free core page to store a segment, it can then

25. DUKSTRA, BE. W., The Structure of the “THE” Multiprogramming System, p. 342

3.2 THE “THE” MULTIPROGRAMMING SYSTEM 79

choose the least recently used one to move it the other way around, that is, from the core
memory to the drum.

The level 1, the segment controller, is synchronized with a peripheral, namely the
drum, and therefore it cannot be implemented simply as a few subroutines like the
coordinator: it needs to be a process. To the processes of the higher levels, it presents
a large and uniform virtual memory, that is, the distinction between the fast and slow
memory is completely hidden behind the scenes: the transports between them take place
automatically when they are needed. This implies that above level 1, the actual core and
drum pages have disappeared: the fourteen processes in levels 2 to 4 access the memory

exclusively by means of segment variables.

Level 2 is the so-called “message interpreter” process, which controls the command
teleprinter, and level 3 are the eight processes controlling the eight communication peri-
pherals: the three tape readers, three tape punches, plotter, and line printer. Each one
of those processes is synchronized with one peripheral, and each of those peripherals has
particular properties, but nevertheless those nine processes all function according to a

few common principles.

The message interpreter has the responsibility to ensure that at any moment at most
one conversation takes place between the operator and all the other processes. Since the
operator has the possibility, to postpone an answer at any moment in a conversation
and to switch to another conversation, it also has the responsibility to keep a record of
the currently suspended conversations. The eight peripheral processes have the responsi-
bility of buffering the input streams and unbuffering the output streams. When multiple
processes are executed on a computer, it is indeed necessary to buffer the input and output
streams, but the reason for this necessity is the inverse of the one which led to it on a
computer executing a single process: in the latter case, the main motivation for buffering
it that the speed of the peripherals is much slower than the speed of the program, in the
former case, it is because the peripherals are scarce resources, which have to be liberated
as fast as possible. Without buffering facilities, a process may monopolize a peripheral,
the single plotter for instance, for a too long time, thereby hindering the other processes
who need to use that plotter to proceed. But the peripheral processes have to achieve
this without using too much of the available memory space.

Those refined constraints, namely “one conversation at a time,” or “without using too
much of the memory space,” can be implemented with the notion of “private semaphore”
and the notion of states which are the basis of the solution to the five dining philosophers
problem (see p. 67). The principle of the solution is to introduce at least three states for
each process regarding its use of a given resource: it does not use it, it needs to use it, it
uses it; if need be, one may of course distinguish multiple states instead of those three.
When a process requests a resource, for instance, the attention of the operator, or an
additional segment, instead of directly trying to get it, it first records in its process state

that it needs that resource, and then tries to get it. If a number of further conditions

8o AN OPERATING SYSTEM (1962-1968) 3.2

are satisfied, the resource is allocated to that process, and a V operation is performed
on its private semaphore. On returning from the try to get resource procedure, the P
operation on that very same private semaphore immediately succeeds. Conversely, when
a process releases a resource, instead of simply returning it, it first records in its process
state that it does not use it any more, and then gives a chance to the other processes to
get that resource by calling the try to get resource procedure for each of them. If one of
those processes now fulfills the further conditions, the resource will be allocated to it,
and a V operation will be performed on its private semaphore, which will allow it to
proceed. If we make abstraction of the details, the general scheme of the solution reads:

begin integer j; semaphore access semaphore;
integer array process state[0:N];
semaphore array private semaphore[0:N];
access semaphore := 1;
for 5 := O step 1 until N do
begin process state[7] := do mot use resource;
private semaphore[j] '= 0 end,
procedure try to get resource (k); integer k;
if process state|k] = meed resource N\ further conditions
then begin process state[k] := use resource;
get resource;
V (private semaphore[k])
end;
procedure request resource (k); integer k;
begin P(access semaphore);
process state[k] := need resource;
try to get resource (k);
V (access semaphore);
P(private semaphore|k])
end;
procedure release resource (k); integer k;
begin P(access semaphore);
process state[k] := do not use resource;
return resource;
for j:= 0 step 1 until N do try to get resource(j);
V(access semaphore)
end;
parbegin

process 1: begin ...
request resource (1);

release resource (1);
end;
parend
end®

As one sees, a global access semaphore ensures that the common process state variables

26. Cf. DUKSTRA, E. W., Cooperating Sequential Processes, pp. 65-66

3.2 THE “THE” MULTIPROGRAMMING SYSTEM 81

are not accessed and modified by more than one process at a time. A private semaphore
is thus a semaphore that on which other processes will only perform V operations.

By the introduction of suitable states, and appropriate programming of the further
condzitions, any resource allocation strategy can be implemented. The “without using
too much of the memory space” constraint for the buffers of the eight communication
processes for instance is implemented as a series of inequalities, which ensure that among
the total number of available segments, 256 are always reserved for those buffers, and
that at least 64 of them are reserved for the output buffers. When a process needs one
more segment, it records this in its state, and checks if those inequalities are satisfied. If
so, then it actually asks for a new segment; if not, it is suspended, and one of the other
processes will sooner or later free a segment, and check if other processes are currently
waiting for a new segment. Likewise, the “one conversation at a time” constraint for the
communication between the processes and the command teleprinter is implemented as a
series of states: at any moment each process is out of a conversation, or wants to enter
a conversation, or is at a certain stage in a conversation and waiting for an answer from

the operator.

The levels 2 and 3, namely the nine processes synchronized with the communication
peripherals, present to the processes of level 4 a set of virtual peripherals, which means
that above level 3, the actual peripherals have disappeared: they operate behind the
scenes. When a process at level 4 asks for the reading of the next character on a tape for
instance, the actual tape might already have been entirely read and stored in a buffer,
and the tape readers may be busy reading other tapes. Likewise, when a process at level
4 punch data on a tape, or make use of the plotter, usually this does not actually happen
while the program is running: the data for the tape or the instructions for the plotter
are accumulated in a buffer, and when the tape or the picture is completed, the actual

output can take place at full speed.

Level 4 is a set of the five identical processes, which act as slots into which user
programs can be inserted. The operator inserts a tape containing an ALGOL 60 program
in one of the tape readers, and signals this to one of the cyclical processes at level 4,
which reads the tape, and calls the integrated load-and-go ALGOL 60 compiler. When
the execution of the program is completed, the program process waits again for a program
tape. Each program has a complete virtual machine at its disposal, with a virtual processor
and a virtual memory, one virtual command teleprinter, two virtual tape readers, two
virtual tape punches, one virtual plotter and one virtual line printer.

At this level a last resource allocation strategy is implemented, again by means of
private semaphores. When a virtual communication device is used by a program, it will
at some moment and during a certain time correspond to an actual communication device;
this is automatically achieved by the underlying program process. Since the memory space
is limited, a program process may be forced to begin to use an actual communication
device before the output tape or the plotter picture has been completed by the program,

82 AN OPERATING SYSTEM (1962-1968) 3.2

in order to free some memory space. In other words, it may happen that there is not
enough free space to store a complete output document before actually starting its output
at full speed. If this happens with a document to be output on the line printer, it is not
really a problem, since in such a situation a number of pages may be typed out by a
program in between the pages of another program. But if this happens with a tape or a
picture, then a tape punch or a plotter has to be tied by a program process, and it will
be free again only when the program has finished its output. Contrary to a line printer, a
tape punch and a plotter thus have the property that, when they are used by a program,
they cannot be liberated quickly for the benefit of another program in an urgent situation.
This may lead to deadlocks (see p. 67), but it has already been shown that the banker’s
algorithm can be used to avoid them. The further conditions in the private semaphore
scheme (see p. 80) is simply that allocating the output peripheral to the program process
is safe according to the banker’s algorithm. The algorithm given (p. 68) only works with
a single type of resource, but has been extended by Habermann to multiple “currencies”

or resources in his PhD thesis.?”

To the user, the complete system presents a set of five identical ALGOL 60 virtual
machines, with which he can communicate with a command teleprinter. ALGOL 60
programs are feed in by means of punched tapes, which have to begin with the symbol
‘algol’, followed by the maximum number punches and plotters that the program may
use concurrently. A few other commands are implemented by the system, to help the

operator edit punched tapes for instance.

The design of the THE operating system started in 1963. It was made hand in hand
with the design of the X8, which will be finalized only in June 1966: a committee led by
van Wijngaarden, in which each one of the interested parties was represented, met about
twice a month during those three years. An X8 is delivered to the University of Eindhoven
in August 1966. The implementation of the THE begins immediately, and is completed in
June 1967. The system comprises, besides the five layers, an ALGOL 60 compiler written
by F. E. J. Kruseman Aretz at the Mathematical Center, producing an object code for an
abstract machine, a number of subroutines extending the X8’s instruction set to support
the execution of that object code, and a common library of reentrant procedures at the
disposal of the ALGOL 60 programs. The system and the compiler are entirely written
in assembly language; the system occupies about ten thousand words, and the compiler
about four thousand words.

The purpose of the THE operating system is thus not merely to share a number of
resources amongst a number of processes that are executed concurrently, but to abstract
the machine and its peripherals, in order to simplify the task of the programmer as much
as possible. Its design is, moreover, extremely flexible: adding a new peripheral to the

system simply amounts to adding an additional process to the system, synchronized with

27. Cf. HABERMANN, A. N., On the Harmonious Co-Operation of Abstract Machines, pp. 103-106

3.3 THOUGHTS ON PROGRAMMING 83

the peripheral by its semaphore. Likewise, adding a new processor, adding memory, or
adding a new drum simply requires an adaptation of, respectively, the layers 0 and 1.

§ 3. Thoughts on Programming

The design and writing of an operating system is obviously a task an order of magnitude
more difficult than the writing of an ALGOL 60 compiler. The design of a compiler is
indeed a task which is at least partly well-defined: its result, namely executing, according
to the semantics of ALGOL 60’s constructions, any input program that conforms to
ALGOL 60’s syntactic rules, is well-defined, it is only the way to achieve it that is not.
On the contrary, in designing an operating system, neither the result nor the way to
achieve it are manifest: it aims at processing a flow of user programs as efficiently as
possible, but this vague requirement leaves room for a large variety of interpretations,
and each of those possible interpretations can probably in turn give rise to a variety of
possible implementations. This new experience therefore has a strong influence on the
way Dijkstra views the programming activity. He more or less abandons his reflections
on the nature of programming languages, and his thoughts now focus on the nature of

programs — and the nature of the programming activity.

Regarding the nature of programs, a new structuring concept makes its appearance,
under the influence of multiprogramming: the notion of a sequential process. This does
not mean, of course, that the notion of procedure as a structuring concept to be used
when composing individual programs is abandoned in favor of a more general concept,
but it means that the notion of a complete program, which was hitherto implicit, has
now its own importance and needs a careful analysis. In a multiprogramming system, a
number of programs may indeed be designed to cooperate for the solving of a problem,
very much in the same way in which, in a program, a number of procedures cooperate
for the solving of a problem, but with the difference that the individual procedures are
executed by a program in sequence, whereas in a multiprogramming system the individual
programs are executed simultaneously. In order to make an effective use of the concurrent
execution of a number of programs, one first has to understand their nature as clearly
as possible. A sequential process is first defined by comparison with a non-sequential
process, for instance an electronic circuit which, fed with two series of bits representing
two numbers, calculates their sum:

Our problem field proper is the cooperation between two or more sequential processes.
Before we can enter this field, however, we have to know quite clearly what we call “a
sequential process”. [...]

[In a non-sequential process the operations are executed simultaneously. In a sequen-
tial process the operations have to be executed] in sequence, the one after the other. The
existence of such an order relation is the distinctive feature of a “sequential process”. [...]

[A sequential process can operate on any number of input data], whereas [a] non-
sequential [process can] only be build for a previously well-defined number of [input
data]. [The operations of a sequential process are mapped] in time instead of in space,

84 AN OPERATING SYSTEM (1962-1968) 3.3

and if we wish to compare the two methods, it is as if the sequential [process] “extends
itself” in terms of [a non-sequential process] as the need arises.?

An electronic circuit performing an addition is indeed typically composed of a number
of n smaller circuits which perform an addition on a single bit, which will all operate in
parallel, in a single step, but its input data is strictly limited, in the sense that it cannot
add numbers whose representation need more than n bits. On the contrary, a sequential
process would perform this addition in sequence, in n successive steps, and the sum of
its possible executions will cover all the possible paths taken by the bits in the electronic
circuit, but it can then also accept any number whose representation needs more than n
bits.

As one sees, a process is essentially defined by the fact that it executes its operations
in sequence. This implies that the notion of a sequential process is not the same as the
notion of a program: a program is fundamentally a static reality, while a process represents
the dynamic execution of such a program. Simply trying to get a better understanding of
the nature of programs would have been inadequate, since the problem at stake is, strictly
speaking, not to let a number of programs cooperate, but to let their dynamic execution
cooperate. It is thus less the nature of programs that has to be better understood, than
the nature of their execution.

With the help of this distinction between a program and a process, that is, between
a static program text and a dynamic program execution, another fundamental property
of processes, besides being sequences of operations, can be identified:

It is customary to regard a sequential process as a time succession of actions, each
of which has a well defined effect. The total effect of the process is then the cumulative
effect of the successive actions. [...] Disregarding input and output we can describe the
effect of each action as a “change in the current state of the process”, the current state
at the end of the action — and thereby the effect — being a unique function of the state
at the beginning of the action. [...] As long as we regard a sequential process as a line
of actions, leading from one state to the other, then the current state is only defined in
between those actions. During an action the current state is undefined, or better perhaps:
the whole concept of “current state” is inapplicable.?

The very reason of the existence of a process is indeed to perform a global operation, that
is, to perform a series of actions in order to reach, starting from a certain initial state, a
certain final state. Since a sequential process performs those actions “in sequence, the one
after the other,” they do not overlap in time, and between each one of them, it is thus in
a certain intermediate state somewhere in the middle of those two extreme states. Since
the notion of action or operation is not necessarily restricted to the primitive operations
of the computer, a certain operation can in turn be composed of a number of operations,
and the notion of an intermediate state is therefore a flexible one: if one only considers
the global operation of the process, then there are no intermediate states, and if one
analyzes that global operation into a number of sub-operations, then this gives rise to a

28. DUKSTRA, E. W., Cooperating Sequential Processes, pp. 1, 4, 8
29. DUKSTRA, E. W., An Effort Towards Structuring of Programmed Processes, pp. 1-2

3.3 THOUGHTS ON PROGRAMMING 85

finite number of intermediate states. This notion of an intermediate state between two
operations can be used both to compose programs, and to reason about them.

It can be used to compose programs when they are meant to be executed concurrently,
that is, when multiple programs are meant to be executed simultaneously on a computer
with a single processor, or with multiple processors, or on multiple computers. Indeed,
when a process runs independently of any other, the intermediate state does not change
between the end of an operation and the beginning of the next one. But this is not true
any more when a number of processes are executed concurrently and share a number of
common variables, that is, if they share a part of their current state: even if one considers
the elementary operations of a given process, its state may have changed between the
end of one of its operations and the beginning of the next one. It is thus, logically
speaking, not possible that a number of concurrent processes with unknown relative
speeds communicate with each other with those common variables if each of them is
continuously performing its actions immediately the one after the other: it is necessary
to devise a mechanism by which a process can decide to wait for another one if certain
conditions are not met, and conversely a mechanism by which a process can signal to
another one that it can now proceed when certain conditions are met; this mechanism
will necessarily make use of the shared parts of the states, since otherwise a process would
have no means to determine if certain conditions are met or not, and conversely a process
would have no means to determine which one of the other processes is waiting for those
conditions to proceed. In other words, it is necessary to devise a mechanism by which
the processes can synchronize with each other. For this mechanism to be effective, two
processes should not be allowed to decide to wait or not for another one at the same time,
and two processes should not be allowed to decide to signal at the same time to other
processes that they can proceed, for this could obviously lead to situations where multiple
processes proceed where only one of them should have. This implies that processes can
only take such decisions between two such decisions of all the other processes, that is,
that these decisions need to be elementary at the level of all of those concurrent processes.
The P and V operations are two such operations. A P operation performed by a process
delays the execution of its next elementary operation if a condition is not met, and the
process delegates to the other processes the responsibility to give it a signal by means of
a V operation when this condition is met. More precisely, a P operation performed by a
process either delays, after inspection of the shared parts of the states, the execution of
its next elementary operation, and if so, it records in the shared part of the states that
it is waiting for a signal of another process to proceed, or it records in the shared parts
of the states that it has not delayed its next operation. The V operation performed by
a process either signals, after inspection of the shared parts of the states, to one of the
other processes that it may proceed, or it records in the shared parts of the states that

the next process performing a P operation should not delay its next operation.

A similar use of these intermediate states to compose programs is that of the private
semaphore scheme (see p. 80), in which a process records in the shared parts of the states

86 AN OPERATING SYSTEM (1962-1968) 3.3

that it has delayed the execution of its next operation because it needs a certain resource,
which it cannot get because a number of conditions are not met. When those conditions
are met, the global state of the processes is in a certain sense unstable, since there is both
a process needing a resource under certain conditions and a resource available under those
conditions, and another process stabilizes the global state by allocating that resource to

that process.

The notion of an intermediate state between two operations can also be used to reason

about the programs:

I have the feeling that for the human mind it is just terribly hard to think in terms of
processing evolving in time and that our greatest aid in controlling them is by attaching
meanings to the values of identified quantities. For instance, in the program section

1:= 10;
L: z:= sqrt (z); 1:=1 — 1;
if = > 0 then go to L

we conclude that the operation “z := sqrt (z)” is repeated ten times, but I have the
impression that we can do so by attaching to “2” the meaning of “the number of times
that the operation “z := sqrt (z)” still has to be repeated.” [...] But we should be
aware of the fact that such a timeless meaning (a statement of fact or relation) is no
permanently correct: immediately after the execution of “z := sqrt (z)” but before that
of the subsequent “7 :== ¢ — 1” the value of “:” is “one more than the number of times
that the operation “z := sqrt (z)” still has to be repeated.” In other words: we have to
specify at what stages of the process such a meaning is applicable. [...]

In purely sequential programming |[...] the regions of applicability of such meanings
are usually closely connected with places in the program text. [...] In multiprogramming

[..] it is a worth-while effort to create such regions of applicability of meaning very

consciously.*°

It is well-known that it is “terribly hard for the human mind” to understand or to reason
about something which is in motion. The human mind is indeed discursive, which means
that it cannot grasp something instantaneously, but that it needs a certain time of reflec-
tion to understand it. Therefore something in continuous motion has already changed
as soon as it has been understood, and the only way to get out of this circle is then
to abstract static properties out of this motion. Fortunately, a computing process is not
a continuously moving reality, since its operations are separated by static states. The
difficulty thus lies elsewhere, in the fact that it is extremely difficult to think in terms of
sequences of actions, and easier to think in terms of sequences of states.

If a process is defined by a static text, and if to each of the operations of the text
corresponds one and only one operation of the process, then those intermediate states
are defined both during the dynamic execution of the process and in the static text. The
number of intermediate states between the operations of such a process is thus strictly
finite, and it is then relatively easy to determine their properties by inspection of its static
text. On the contrary, a program text is usually more general than the processes it defines,

that is, it represents a possibly infinite number of processes: to each of the operations

30. DuKsTRA, E. W., Cooperating Sequential Processes, pp. 82—83

3.3 THOUGHTS ON PROGRAMMING 87

defined in the program text corresponds an indeterminate number of operations in a
process that executes that program. In other words, because of the generality of the
program texts, there is not a one-to-one mapping between the operations of a program
text and the operations of the processes that it defines, and it is thus not easy at all
to determine the properties of the intermediate states between the operations of those

processes by inspection of the static text of the program:

It is my impression that one of the most deep-rooted difficulties in programming is to
bridge in one'’s imagination the gap between the (static) program text and its (dynamic)
behavior, between the algorithm and the process described by it.3

One of the possible ways to bridge this gap is to “attach timeless meanings” to certain
variables of the process at certain of its stages. In other words, one tries to determine,
by inspection of the static program text, certain properties of a number of intermediate
states of the dynamic process. In a single program, the “regions of applicability” of those
timeless meanings can be clearly delimited in the program text; when one tries to give
such timeless meanings to variables common to a number of concurrent processes, it is
necessary to do so with the help of critical sections: outside of a critical section protecting
its inspection and its modification by other processes, the value of a common variable,
and consequently its meaning, is in general never guaranteed to remain constant, even
between two elementary operations. It is thus necessary to modify them in critical sections

to ensure that they have coherent values.

During the design phase of the THE operating system, which lasted three years,
because the solution sought for is not well-defined, many alternative possibilities are
envisioned, for instance, the use of parallel P and V operations, different orderings
of the components of the system, or different ways to organize the available memory,
and decisions are taken. The experience of designing such a large system is not without

influence on the way Dijkstra views the programming activity.

The central notion thus far is that of clarity of programs: the correctness of programs
depends on their clarity, and the elegance of programming languages aims at the writing
of clear programs. It is understood as the search to be as easy to understand as possible.
Clarity is still a central requirement: for instance, the busy waiting solution to the problem
of the strict mutual exclusion of a number of critical sections in concurrent processes (see
p. 61) is mainly criticized because of its lack of clarity:

The solution given [...] gives rise to a rather cumbersome description of the individual
processes, in which it is all but transparent that the overall behavior is in accordance

with the conceptually so simple requirement of the mutual exclusion. In other words, in

some way or another this solution is a tremendous mystification.®?

It lacks clarity not because it extremely complicated, but because it is much more
complicated than the “conceptually simple requirement of the mutual exclusion,” and

31. DUKSTRA, E. W., An Effort Towards Structuring of Programmed Processes, p. 0

32. DuKsTRA, E. W., Cooperating Sequential Processes, p. 26

88 AN OPERATING SYSTEM (1962-1968) 3.3

this is a sign that it is probably not as simple as possible, that it is a “mystification.”
The consequence of this needless complication is that it is hardly adaptable even to only
slightly different situations, like the one of cyclical mutual exclusion for instance. Likewise,
clarity is also still linked with the correctness of programs:

The convincing power of the results [of a program] is greatly dependent on the clarity
of the program, on the degree in which it reflects the structure of the process to be
performed.33

A program is indeed “convincing” insofar as it is clear, since a programmer can only
convince himself that the program he has written does what he wanted it to do if
it is clearly written. As one sees, the notion of structure, which previously appeared
sporadically without being explicitly defined (see p. 45 and p. 51), is now directly linked
with the notion of clarity. It is again not much more analyzed, which probably means that
the notion of structure is understood in its usual sense, namely, the arrangement of the
individual parts of the whole program or process with respect to each other. The main
difference between the notions of clarity and structure is thus that clarity is a property
that concerns the whole program or some of its parts, whereas the notion of structure
puts the accent on the relations between the different parts of the program. It then gives
a clue as to how to proceed to write a program that is clear: a program composed out of
clear individual parts is not necessarily clear itself, for this would mean that in a certain
way every program is naturally clear, since they are all composed out of a number of
clear elementary operations. In other words, the clarity of a program does not principally
depends on the clarity of its individual components, but on the clarity of the relations
between them. It is only when those relations are clear that the program becomes as easy
to understand as possible. This obviously also holds for a number of programs cooperating
for the solving of a problem.

The notion of structure is thus more specific and precise than the notion of clarity,
and seems, accordingly, to become the central one: the correctness of programs depends
on their structure, since a programmer can only convince himself that the program he has
written does what he wanted it to do if it is well structured. The main difficulty of the
task of the programmer is then to control the structure of the programs he writes, or to
set as much structure as possible in the programs he writes, and finally in the computer
itself:

We know that the von Neumann type machine derives its power and flexibility from
the fact that it treats all words in store on the same footing. It is often insufficiently
realized that, thereby, it gives the user the duty to impose structure wherever recogniz-
able.®*

This is, in retrospect, already true for small and medium-sized programs, but it is all the
more at the center of the programmer concerns when the problem at stake grows in size:
I should like to venture the opinion that the larger the project, the more essential the

33. DUKSTRA, E. W., Programming Considered as a Human Activity, p. 11

34. DUKSTRA, BE. W., Cooperating Sequential Processes, pp. 83—-84

3.3 THOUGHTS ON PROGRAMMING 89

structuring! %

This gives a better understanding of the goal, but the way to reach it is unapparent,
since the programmer’s primary tool is a programming language, with which he can
choose what the program will do, and in what order, but does not by itself give him the
control on the relations between the components of the program. Structure is thus a goal
that cannot be reached while the program is actually written, but that should instead be

pursued during the conception stage of the program:

The technique of mastering complexity is known since ancient times: “divide et
impera.” [...] I assume the programmer’s genius matched the difficulty of his problem
and assume that he has arrived at a suitable subdivision of the task. He then proceeds
in the usual manner in the following stages:

I) he makes the complete specifications of the individual parts,

IT) he satisfies himself that the total problem is solved provided he had at his disposal

program parts meeting the various specifications,

III) he constructs the individual parts, satisfying the specifications, but independent

of one another and the further context in which they will be used.
Obviously, the construction of such an individual part may again be a task of such a
complexity, that inside this part job, a further subdivision is 1requilred.36

If the solution to a problem is divided into a number of individual parts which can be
constructed “independently of one another,” it is the sign that those individual parts
have clear, well-defined relations with one another, in other words, that the interac-
tions between the individual components are clearly delimited, since otherwise it would
obviously not be possible to construct them independently of one another. The “divide
et impera” technique seems to provide a good way to attain the goal of structure in
programs. It is then worth the effort to try to identify its principle:

I see the dissection technique as one of the rather basic patterns of human under-
standing and think is worth-while to try to create circumstances in which it can be most
fruitfully applied. The assumption that the programmer has made a suitable subdivision
finds its reflection in the possibility to perform the first two stages: the specification of
the parts and the verification that they together do the job. Here elegance, accuracy,
clarity and a thorough understanding of the problem at hand are prerequisite. But the
whole dissection technique relies on something less outspoken, [namely] on what I should
like to call “The principle of non-interference.” In stage II it is assumed that the correct
working of the whole can be established by taking, of the parts, into account their exterior
specifications only, and not the particulars of their interior construction. In stage III the
principle of non-interference pops up again: here it is assumed that the individual parts
can be conceived and constructed independently from one another.?’

The “principle of non-interference” identifies the precise meaning of the independence
of the individual parts of a program: it does not signify that those parts are really
independent of each other, since this of course would imply that they are not part of

a single program, but it means on the one hand that their specification and their imple-

35. DUKSTRA, E. W., The Structure of the “THE” Multiprogramming System, pp. 344-345
36. DUKSTRA, E. W., Programming Considered as a Human Activity, pp. 34

37. DUKSTRA, BE. W., Programming Considered as a Human Activity, pp. 4-5

90 AN OPERATING SYSTEM (1962-1968) 3.3

mentation are independent of one another, and on the other hand that their individual
implementations can be realized independently of one another. If those two conditions
are actually met, then the relations between the components of the program will be clear
or, in other words, the program will be effectively structured. And if they are met for
the main components of the program and for each one of their sub-components, then the

whole program will be structured and easy to understand.

This analysis seems, however, not entirely in accordance with the way in which
Dijkstra actually proceeds when he is faced with a problem. For instance, when he has to
identify the individual states needed to implement refined constraints for the allocation

of scarce resources to a number of processes (see p. 79), he proceeds by trial and error:

We are faced with [two] problems:

a) what structure should we give to the [...] processes?

b) what states should we introduce? [...]
The problem [...] is that the two points just mentioned are interdependent. [...] The
conditions under which the meaning of the state variable values should be applicable is
only known, when the programs are finished, but we can only make the programs if we
known what inspections of and operations on the state variables are to be performed.
In my experience one starts with a rough picture of both program and state variables,
one then starts to enumerate the different states and then tries to build the programs.
Then two different things may happen: either one finds that one has introduced too many
states or one finds that [...] one has not introduced enough of them. One modifies the
states and the program and with luck and care the design process converges. Usually
I found myself content with a working solution and I did not bother to minimize the
number of states introduced.®®

This is all the more surprising as the general scheme of the solution to that problem is
already known, which means that it only has to be adapted to the particular problem
at hand. The problem is that the internal arrangement of the individual processes and
the states, that is, their common variables, is interdependent and not independent, which
means that in a certain way the internal arrangements of the processes interfere. It seems
that it is thus not always possible to divide a task and to specify its individual parts

without knowing how those parts will be constructed.

Likewise, faced with a difficult problem which he does not know how to tackle, instead
of trying to divide it and trying to build an abstract specification of the components
resulting from this division, he does what he did to design the central algorithm of
the ALGOL compiler (see p. 40): he tries to find a concrete situation resembling to
the problem at stake, and by comparison with the concrete solution found for that
concrete problem, devises an algorithm or an organization to solve his own problem.
The semaphores for instance are directly inspired by the railway semaphores, which can
be either open or closed; other examples are the banker algorithm, the problem of the
five dining philosophers, or the comparison between the processes running on a computer
and the clients of a hotel. This is not, as one may think, only a matter of pedagogical

presentation: he actually reasons and investigates the possible alternatives in the terms

38. DUKSTRA, E. W., Cooperating Sequential Processes, pp. 51-52

3.3 THOUGHTS ON PROGRAMMING 91

of those concrete examples. It seems thus that, confronted with a problem, he does not
model it in the terms of an abstract specification, but gives it, on the contrary, a concrete

expression.

Those examples are, however, not in a complete opposition with the “divide et impera”
technique. Indeed, when he proceeds by trial and error, it does not mean that he actually
codes and tests the tentative programs on a computer, but that he investigates by inspec-
tion of the possible situations if the states and the programs function in every conceivable
situation. Likewise, giving a concrete expression to a problem is, in a way, dividing into
sub-problems, since when one do so, one supposes that the individual parts in the concrete
solution have a counterpart in individual parts of the programmed solution. Further, this
also takes place during the conception phase, and not during the implementation phase,
which means that those two phases are indeed clearly separated.

A last aspect of the programming activity is that of the proofs, whose usefulness was

hitherto questionable. It still is, but with a slight concession:

If we are interested in systems that really work, we should be able to convince
ourselves and anybody else who takes the trouble to doubt, of the correctness of our
constructions. In uniprogramming one is already faced with the task or program veri-
fication — a task, the difficulty of which is often underestimated — but there one can
hope to debug by testing of the actual program. In our case the system will often have
to work under unreproducible circumstances and from field tests we can hardly expect

any serious help. The duty of verification should concern us right from the start.®

Only in the case of concurrent programs, and only because it is not possible to reproduce
the situations arising during their execution, which implies that it is not possible to debug
them, are proofs necessary to convince the programmer that the program does verify
its specification. If a number of processes with unknown relative speeds are executed
concurrently, it is indeed both impossible to try each and every possible sequence of
events, and highly unlikely that it will be possible to force a given sequence of events to
happen again for debugging purposes. So, for example, the busy waiting solution to the
problem of the strict mutual exclusion (p. 61) is accompanied with the following proof:

We start by observing that the solution is safe in the sense that no two [processes| can
be in their critical section simultaneously. For the only way to enter its critical section is
the performance of the [two statements before the critical section] without jumping back
to Lz, i. e., finding all other ¢’s false after having set its own ¢ to true.

The second part of the proof must show that no [deadlock] can occur; i. e., when none
of the [processes] is in its critical section, of the [processes| looping (i. e., jumping back
to Li) at least one — and therefore exactly one — will be allowed to enter its critical
section in due time.

If the turnth [process| is not among the looping ones, p[turn] will be false and
the looping ones will find turn # 4. As a result one or more of them will find [..]
plturn] = false and therefore one or more will decide to assign turn := 4. After the first
assignment turn := i, p[turn] becomes true and no new [processes| can decide again to
assign a new value to turn. When all decided assignments to turn have been performed,

39. DuKsTRA, E. W., Cooperating Sequential Processes, p. 41

92 AN OPERATING SYSTEM (1962-1968) 3.3

turn will point to one of the looping [processes] and will not change its value for the time
being, i. e., until p[turn] becomes false, namely, until the turnth [process] has completed
its critical section. As soon as the value of turn does not change any more, the turnth
[process] will wait [...] until all other ¢’s are false, but this situation will certainly arise,

if not already present, because all the looping ones are force to set their ¢ false, as they

will find turn # 1. And this, the author believes, completes the proof.40

As one sees, this proof does not make use of any other formalism than the ALGOL
programming language in which the algorithm is written. It presents the general scheme
of the algorithm, and explains how the two requirements of mutual exclusion and absence
of deadlock are satisfied, but it is not even complete, since it does not consider the case
in which turn is not the number of the process which enters its critical section, but the
number of the next one, which then loops on Lz through the else part of the conditional

statement. This is in accordance with the way Dijkstra sees the proving activity:

I [use] the word “proving” in an informal way. I have not defined what formal condi-
tions must be satisfied by a “legal proof” and I do not intend to do so. When I can find
a way to discuss [a program]| by which I can convince myself — and hopefully anybody
else that takes the trouble to doubt! — of the correctness of the overall performance of
this aggregate of processes, I am content.*!

The main purpose of a proof is to convince oneself that the program, or the set of
concurrent programs, works correctly: the correctness of a program is thus still ultimately
a conviction of the programmer. For this an “informal” proof is often enough, since it
gives a feeling of the most important elements of what the corresponding formal proof
would be, without bothering oneself with the details or the exceptional cases. Since the
correctness proof of the THE operating is outlined even more briefly, a proof even seems
to be necessary only when the overall structure is not clear. Its proof only gives the reader
a vague feeling that the whole system is indeed correct:

The sequential processes in the system can all be regarded as cyclic processes in which
a certain point can be marked, the so-called “homing position”, in which all processes are
when the system is at rest.

When a cyclic process leaves its homing position “it accepts a task”; when the task
has been performed and not earlier, the process returns to its homing position. Each
cyclic process has a specific task processing power (e. g. the execution of a user program
or unbuffering a portion of printer output, etc.)

The harmonious cooperation is mainly proved in roughly three stages.

(1) It is proved that although a process performing a task may in so doing generate a
finite number tasks for other processes, a single initial task cannot give rise to an infinite
number of task generations. The proof is simple as processes can only generate tasks for
processes at lower level of the hierarchy so that circularity is excluded. |[...]

(2) It is proved that it is impossible that all processes have returned to their homing
position while somewhere in the system there is still pending a generated but unaccepted
task. (This is proved via instability of the situation just described.)

(3) It is proved that after the acceptance of an initial task all processes eventually will
be (again) in their homing position. Each process blocked in the course of task execution

40. DuIKSTRA, E. W., Solution of a Problem in Concurrent Programming Control

41. DUKSTRA, E. W., Cooperating Sequential Processes, p. 68

3.3 THOUGHTS ON PROGRAMMING 93

relies on the other processes for removal of the barrier. Essentially, the proof in question
is a demonstration of the absence of “circular waits”: process P waiting for process @
waiting for process R waiting for process P4

One may of course object that the proof is presented with all its extensions in
Habermann’s PhD thesis, and that the interested reader is implicitly referred to it.
However, this brief sketch of the proof isn’t even part of the original version of the article,
and is added only at the request of the ACM editor, which is a sign that it is not viewed
as the central argument of the correctness of the system, or in other words, that it only
augments the conviction in its correct functioning without being the main argument. On
the contrary, what seems to be the main argument, and is discussed in every aspect in
the article, is the thorough testing to which the system has been submitted:

[Our] main contribution to the art of system design [is that we] have found that it
is possible to design a refined multiprogramming system in such a way that its logical
soundness can be proved a priori and its implementation can admit exhaustive testing.
[--.] At the time this was written the testing has not yet been completed, but the resulting
system is guaranteed to be flawless. When the system is delivered we shall not live in
the perpetual fear that a system derailment may still occur in an unlikely situation, such
as might result from an unhappy “coincidence” of two or more critical occurrences, for
we shall have proved the correctness of the system with a rigor and explicitness that is
unusual for the great majority of mathematical proofs.*3

Those last words may suggest that the correctness of the system, the fact that it is
“guaranteed to be flawless,” is founded on the proofs developed in Habermann’s thesis.
However, since he suggests that the proof will be completed only when the system, and
its testing, will be completed, it is rather its “exhaustive testing” that should to be consi-
dered as the proof itself. This is somewhat surprising, since the possibility of testing the
correct behavior of concurrent programs is precisely what was initially denied, because
of their mutual behavior is not reproducible. This inherent limitation can however be

circumvented by a careful design of the whole system:

Starting at level O the system was tested, each time adding (a portion of) the next level
only after the previous level had been thoroughly tested. Each test shot itself contained,
on top of the (partial) system to be tested, a number of testing processes with a double
function. First, they had to force the system into all the different relevant states; second,
they had to verify that the system continued to react according to specification. I shall
not deny that the construction of these testing programs has been a major intellectual
effort: to convince oneself that one has not overlooked “a relevant state” and to convince
oneself that the testing program generate them all is no simple matter. The encouraging
thing is that (as far as we know!) it could be done. This fact was one of the happy
consequences of the hierarchical structure.**

If the system is designed with a hierarchical structure, then it is obviously possible to
write and to test it layer by layer. If each one of those layers is small enough and well
defined, then the number of “relevant states” of this layer can become extremely small,

42. DUKSTRA, E. W., The Structure of the “THE” Multiprogramming System, p. 346
43. DIIKSTRA, E. W., The Structure of the “THE” Multiprogramming System, p. 342
44. DUKSTRA, E. W., The Structure of the “THE” Multiprogramming System, p. 344

94 AN OPERATING SYSTEM (1962-1968) 3.3

and it is then possible to “force the system” into all of them, or in other words, to test
each one of those states and each transition from one state to another. The task of testing
is “no simple matter,” for even with a reduced number of relevant states, one has to
“convince oneself” that none of them has been left out, and that the testing program
“generates them all,” but it becomes possible. It is thus possible to submit a system that
is well designed, for instance with a hierarchical structure, to an “exhaustive testing,” and
to guarantee that it is flawless:

In testing a general purpose object (be it a piece of hardware, a program, a machine,
or a system), one cannot subject it to all possible cases: for a computer this would
imply that one feeds it with all possible programs! Therefore one must test it with a set
of relevant test cases. [...] It seems to be the designer’s responsibility to construct his
mechanism in such a way — i. e. so effectively structured — that at each stage of the
testing procedure the number of relevant test cases will be so small that he can try them
all and that what is being tested will be so perspicuous that he will not have overlooked
any situation.*®
The very possibility of this testing depends on the fact that the program is “effectively
structured,” namely, that its individual parts have such clear and simple relations with
one another that their writing and testing can be completed totally independently of one
another. If it is not possible to attain this total independence, then at least one of the
components should be implementable without the other ones, and another one with only
that first one, and so forth: this is precisely what a hierarchical system proposes. In other
words, testing a program is only impossible if one considers the whole problem at once.

The true benefit of a layered structure, be it in a whole hierarchical system, an abstract
machine, a library, or a single program, is thus that it simplifies the problem, in that
it reduces the number of states to consider, both when writing and when testing the
program. The task of the programmer, when he writes a program or a set of programs to
solve a given problem, is thus to define new primitives, depending both on the problem he
has to solve and on the underlying machine. These primitives will improve that machine,
and this can roughly happen in two different ways: in writing a library subroutine, the
machine is extended, hopefully with a useful primitive; in writing a virtual machine, the
machine is replaced, hopefully with a better one. In both cases, the number of states to

consider at the higher level will then be sufficiently low to be tested exhaustively.

The conclusion that can be drawn from those observations is that the concept of
structure, which appeared only sporadically in Dijkstra’s earlier works, becomes central
and seems to replace the notion of clarity, which is a more general one: structure is
indeed understood as the clarity of the relations between the individual components of
a program. Well-structured programs have the nice property that they admit exhaustive
testing, which is obviously the best way to be convinced that the program actually does
what it is supposed to do. Proving the correctness of programs is therefore still regarded

as a secondary concern.

45. DUUKSTRA, E. W., The Structure of the “THE” Multiprogramming System, p. 344

CONCLUSION

Don'’t strive for recognition (in whatever form):
recognition should not be your goal,

but a symptom that your work has been worthwhile.
Dijkstra

This concludes our present study. Before closing it, we would like to have a second look
at the four limits we had identified in our introduction, in order to examine if we didn’t
surpass them in one way or another, and to the twofold aim we have set ourself, in order
to determine to what degree it has been fulfilled.

The most flagrant limit of our work is that it does not seem to contribute to the
progress of the discipline. Indeed, each one of the ideas developed here is already present
in Dijkstra’s writings, which are publicly available. Moreover, even the method we have
used to analyze them is not new: it has been used for example by A. Koyré in his
From the Closed World to the Infinite Universe to study the evolution of scientific and
philosophical thought in the sixteenth and seventeenth centuries. However, on the one
hand, most of the ideas we have developed are exclusively present in Dijkstra’s writings,
and often in a very sketchy way: a hundred page synthesis of the essential ideas spread
over about two thousand pages of technical writings seems a valuable achievement. On
the other hand, to the best of our knowledge, the method we have used has never been
applied before to study the history of computing science, and, contrary to Koyré, we
tried to enter as much as possible in the technical details to provide a solid basis for our
later observations. Our main contribution to the progress of the discipline is thus that
we propose a novel way to study the history of science; we hope to have shown by this

example that it is a fruitful one.

A second limit of our work is that it is partial and subjective, in that it is centered
around a single author. One may now even object that it is so partial and so subjective
that it gives the perhaps misleading impression that Dijkstra invented everything ez
nthilo. To this we would like to reply with three remarks. Regarding the development of
the X1’s interrupt handler, it is reckoned that Dijkstra “independently developed [that
is, invented] an interrupt system that enabled buffering of input and output in 1957 and

95

96 CONCLUSION

1958."! Regarding the writing of the ALGOL 60 compiler, the very fact that the MC
compiler was by far the first one to be completed, one year before its closest concurrent,
seems to be a serious and objective indication that he indeed invented all the compiling
techniques it made use of. Finally, regarding the development of the THE operating
system and the invention of the first synchronizing primitives, it is also reckoned that
“without the foundations laid by Dijkstra we would still be unable to separate princi-

ples from their applications in operating systems,”?

and that “most multiprogramming
concepts evolved during the design of THE multiprogramming system; that is, critical

regions, semaphores, deadlock prevention, and hierarchical program design.”?

A next limit is that our work may give an impression of generality, because it does not
cover all the technical details, and because it does not make use of mathematical formulae.
However, on the one hand, without entering into all the technical details, we have made
an effort to fill pages with facts and arguments, rather than with vague observations. On
the other hand, the total absence of any formal notations in our work is not related to
the fact that our aims were to give an insight into some of the core concepts of computing
science and to illustrate a way of thinking, which could be interpreted as an way to
exclude beforehand any rigorous developments, but to the total absence of any formal
notations, other than flowcharts and ALGOL programs, in Dijkstra’s writings, at least
until 1968.

A last limit is that our work is not exhaustive. Some of Dijkstra’s achievements during
the two first decades of his professional life are entirely passed over in silence. We believe,
however, that nothing essential has been neglected. Further, it does not examine the
possible influences to which Dijkstra was exposed during those years, nor the posterity of
his discoveries. This could have been done, and it would certainly have been interesting,
but it would not have fit in the imposed limits for our work: we believe that we have
dealt with as much material as possible.

Our first aim was to gain an insight into some of the central concepts of computing
science. If we take stock, we encountered in the course of our work the notions of machine,
subroutine, interrupt, block, procedure, recursion, stack, programming language, concur-
rency, synchronization, semaphore, sequential process, ... as well as the notions of clarity,
elegance, abstraction, correctness, structure, testing, independence, proof, ... Each one
of these concepts has been studied with great care, and we have seen how and why they
can be used to write programs. We believe that we may conclude that our first aim has
been entirely fulfilled, far beyond our expectations. We even venture the opinion that our
method is not only and not primarily a way to study the history of a discipline, but a
way to study the discipline itself.

Our second aim was to illustrate a way of thinking, a way of approaching new prob-

1. KnuTH, D. E., The Art of Computer Programming, § 1.4.5
2. BRINCH HANSEN, P., in HoArE, C. A. R., PERROTT, R. H. (eds.), Operating System Techniques, p. 34
3. Cf. BRINCH HANSEN, P., Operating System Principles, p. 286

CONCLUSION 97

lems. We have discovered that rigor can be achieved simply with the use of the natural
language, together with the help of carefully chosen concrete images of the problem at
stake. In other words, precision can be achieved without the use of formal methods, that is,
without formal notations and without formal proofs. This is true both for small and well-
defined problems, and for large and loosely defined ones. This is one of the most surprising
conclusions of our thesis: contrary to the common belief, Dijkstra was actually opposed to
the use of formal methods, at least during the first two decades of his life as a programmer.
One may of course object that the use of formal methods was uncommon at that time. This
is, however, untrue, especially in Dijkstra’s immediate environment: it suffices for instance
to have a look at the Report on the Algorithmic Language ALGOL 68, established
under the direction of his first mentor, van Wijngaarden, or to recall that he was teaching
in a mathematical department, to convince oneself that he could not be unaware of
the usage of formal methods. It remains of course to be understood why he became a
proponent of formal methods, although he had achieved quite advanced projects which
were nearly flawless, with very few resources and without any formalism. But for the time
being we believe that the ideas, the problems and the solutions presented throughout this

work may be of some inspiration, and that our second aim has thus also been fulfilled.

While considering Dijkstra as one of the founding fathers of computing science seems
fully justified, we believe that this question, like the one of the paternity of ideas, is
relatively unimportant. What is important for science is that it progresses, and not to
determine who invented this or that, or to decide who deserves this or that title. Dijkstra
wasn’t alone when he invented all these solutions: he devised all of them in collaboration
with other people, and he never demanded to be considered as their inventor. What is
important for science is that we all cooperate with the truth.

BIBLIOGRAPHY

DuksTRA, E. W., Functionele beschrijuving van de ARRA, Mathematisch Centrum, MR12
(1953)

—, Handboek voor de programmeur — FERTA, Mathematisch Centrum, MR17 (1955)

—, Programmering voor de ARMAC, Mathematisch Centrum, MR25a (1957)

—, et al., Programmering voor Automatische Rekenmachines, Mathematisch Centrum, CR9
(1957)

—, Communication with an Automatic Computer, PhD Thesis, University of Amsterdam,
Excelsior, Rijswijk (1959)

—, Recursive Programming, Num. Math. 2, pp. 312-318 (1960)

—, Making a Translator for ALGOL 60, ALGOL-Bulletin Supplement 10 (1961)

—, An ALGOL 60 Translator for the X1, ALGOL-Bulletin Supplement 10 (1961)

—, On the Design of Machine Independent Programming Languages, Mathematisch Centrum,
MR34 (1961)

—, Defense of ALGOL 60, CACM 4(11), pp. 502-503 (1961)
—, Operating Ezperience with ALGOL 60, Comp. J. 5(2), pp. 125-127 (1962)
—, A Primer of ALGOL 60 Programming, Academic Press, London (1962)

—, An Attempt to Unify the Constituent Concepts of Serial Program Ezxecution, Mathema-
tisch Centrum, MR46 (1962)

—, Some Meditations on Advanced Programming, EWD 32 (1962)

—, Owver de sequentialiteit van procesbeschrijvingen, EWD 35 (1962)

—, Multiprogrammering en de X8, EWD 54 (1963)

—, Some Comments on the Aims of MIRFAC, CACM 7(3), p. 190 (1964)

—, Programming Considered as a Human Actiwity, EWD 117 (1965)

—, Cooperating Sequential Processes, EWD 123 (1965)

—, Solution of a Problem in Concurrent Programming Control, CACM 8(9), p. 569 (1965)

—, Documentatie over de communicatieapparatuur aan de X8, EWD 149 (1966)

—, An Effort Towards Structuring of Programmed Processes, EWD 198 (1967)

—, The Structure of the “THE” Multiprogramming System, CACM 11(5), pp. 341-346 (1968)

—, Hierarchical Ordening of Sequential Processes, EWD 310 (1970)

GREEN, J., et al., Recommendations of the SHARE ALGOL Committee, CACM 2(10), pp. 25—
26 (1960)

HABERMANN, A. N., On the Harmonious Co-Operation of Abstract Machines, PhD Thesis,
Technological University of Eindhoven (1967)

KRUSEMAN ARETZ, F. E. J., The Dykstra-Zonneveld ALGOL 60 compzler for the Electro-
logica X1, Centrum voor Wiskunde en Informatica, SEN2 (2003)

99

100 BIBLIOGRAPHY

LoOPSTRA, B. J., The X1 Computer, Comp. J. 2(1), pp. 39-43 (1959)
NAUR, P. (ed.), ALGOL-Bulletin 7 (1959)

—, ALGOL-Bulletin 8 (1959)

—, Report on the Algorithmic Language ALGOL 60 (1960)

NAURr, P., The European Side of the Last Phase of the Development of ALGOL 60, ACM
SIGPLAN Notices 13(8), pp. 15—44 (1978)

SAMELSON, K., BAUER, F. L., Sequential Formula Translation, CACM 3(2), pp. 76-83 (1960)

