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Abstract

English

Software evolution and security remain to be challenges faced by developers
of software systems. Due to the predictability of certain evolution and secu-
rity issues, the inclusion of techniques to address such anticipated factors is
recommended at the early stages of software development. This thesis exam-
ines the possibility to extend UMLsec in order to address the representation
of future evolution and an approach to execute the modelled evolution. Since
UMLseCh is an extension of the original UMLsec, the resulting model can
be verified using the method defined by the UMLsec approach.

An extension of the UMLsec profile was achieved by adding new stereo-
types and tagged values in order to include the evolution concepts. Formal se-
mantics was proposed to specify the appilcation of an evolution. An abstract
syntax was then formally defined to allow represention of the UMLseCh con-
structs and diagrams. These concepts could form a preliminary foundation
for future research in software evolution and security.

Français

L’évolution des systèmes ainsi que leur sécurité demeurent aujourd’hui en-
core un défi auquel les développeurs doivent faire face. Vu la prédictabilité
de certaines évolutions et la présence de plus en plus importante des exi-
gences de sécurité, la prise en compte des ces facteurs à un stade précoce du
cycle de développement est plus que souhaitable. Le travail présenté dans
ce mémoire examine la possibilité d’étendre UMLsec dans le but d’inclure la
représentation des possibles futures évolutions. Une approche pour exécuter
ces évolutions est également présentée.

Une extension du profile UMLsec a été réalisée en ajoutant des stereo-
types et tagged values d’UML afin d’inclure les concepts de l’évolution des
modèles dans le language. Une sémantique formelle a été définie afin de
représenter l’application d’un changement et une syntaxe abstraite a permis
de formellement représenter les constructions et diagrammes d’UMLseCh.
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Ces concepts ont rendu possible l’élaboration d’un travail préliminaire ou-
vrant la voie à une recherche future dans le domaine de l’évolution des mod-
éles et de la préservation de la sécurité.
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Chapter 1

Introduction

Software evolution has been stated as a major concern since the seventies
[Leh74] when it appeared that software could not be implemented in a defi-
nite and conclusive manner. Instead, they constantly evolved and underwent
modifications to adapt to users and environment [LP76]. Such modifications
could be caused by a variety of reasons. For example, a change in the com-
pany’s strategy would result in the need of change in requirements. New
needs could also arise within the users and therefore functionalities would
have to be added or obsolete ones removed. In other instances, the system
could simply have an error that needed correction. Eventually, it was ac-
knowledged that a need for evolution had to be considered at the early stages
of software development so that the systems would be designed in a way that
facilitates changes [Par79]. The idea for the need of software maintainability
was hence included into the software development process.

Although the idea of software evolution was taken into consideration after
[Leh74], it continues to be a challenge for researchers of software evolution
[MWD+05]. Throughout the years, research has been conducted to provide
techniques and methods to support certain aspects of evolution. However,
it remains an active field of research today.

While certain changes are unpredictable, others are expected to happen.
Expected evolutions that may happen can be caused by an implementa-
tion of functionalities that is postponed. Reasons for postponement include
budget restrictions, awaiting the availability of an upcoming technology, or
anticipation of the users needs or future requirements. Several application
domains could have a short design time and a long life span, causing a need
for the system to be constantly redesigned. Therefore, it appears advisable to
model those predicted evolution at the early stages of development. This is
achieved by providing techniques to apply modifications automatically when
the decision to apply expected changes finally materializes.

1



CHAPTER 1. INTRODUCTION 2

In addition to software evolution, it appeared that security was a grow-
ing requirement for software systems. While software systems in the past
were isolated in a company, many were later connected to the world through
the Internet. This allowed the offer of access to services, but it also pro-
vided a means for potential adversary to damage the system. Such attacks
include identity fraud, and unauthorised retrieval of private information. It
appeared that security should be taken into account at the early stages of
software development, as opposed to the final stages before release. UMLsec
[Jür10] is an extension of UML that provides a notation and a methodology
to design secured software at such an early stage.

The systems that require security still need to evolve. Therefore, a chal-
lenge for such systems is to ensure that they will remain secured after an
evolution. It thus appears important to bring together the two concepts de-
scribed above, i.e. the modelling of evolution and the modelling of security
requirements, both at the early stage of development. In doing so, it would
then be possible to model systems together with their possible future evolu-
tion and their security requirements.

In this thesis, we present an approach that aims to address the mod-
elling of evolution of security critical software. More precisely, we take the
UMLsec extension as a base for security modelling and extend it to include
the concept of possible future evolutions. We define a notation with a UML
profile that can be applied on UMLsec diagrams to express model evolutions.
We then describe formally the semantics of the notation in order to specify
how a change is applied to the model. We finally conclude and introduce the
future work.

Chapter 2 introduces background and related work for each of the re-
lated domain, namely software evolution, model transformation and security
modelling. It also presents the UML Profile mechanism used to define our
notation. Chapter 3 then briefly describes UMLsec.

In Chapter 4 we introduce the extension of UMLsec, called UMLseCh.
We present the profile, describe the notation and illustrate how it can be used
by means of examples. In Chapter 5, we define the formal foundation of the
language in order to provide techniques to apply the changes modelled by
the notation. Finally, we conclude in Chapter 6 and present recommended
future work.



Chapter 2

Background and Related Work

The work described in this thesis concerns several domains among the mod-
elling principles, including concepts such as security modelling, model check-
ing, model tranformation and software evolution. This chapter briefly de-
scribes the related concepts and presents a state of the art of these different
fields. Because the material presented in Chapters 3 and 4 is directly based
on UML, and more precisely defines extensions of UML, a review of the UML
extension mechanism based on profiles is also given.

2.1 Software Evolution

This section briefly presents the question of software evolution and some
related work. Given that the amount of work being rather considerable,
it does not aim to precisely describe every technique, approach or solution
that exists for software evolution. Instead, we present a short introduction
on how the importance of software evolution was raised, and why changes
and evolvability of systems is still a challenge. We also mention a few so-
lutions that support the evolution of softwares and show the difference that
exist between those techniques and the approach developped in this thesis.

The importance of evolution in the process of developing large softwares
was first discussed in the early seventies [Leh74], after a study of the soft-
ware process in 1968 [Leh69]. Due to the recurring need of improvements,
it was quickly stated that major programs that are commonly used are al-
ways incomplete such that they constantly undergo changes and evolution
[LP76]. These modificactions can be caused, for instance, by new require-
ments, changes in the requirements, corrections of errors or suppression of
outdated elements. In a period of twenty years, eight laws of software evolu-
tion were defined, starting by the first three in [Leh74] to the last two laws,
first published in [Leh96]. The first six laws were also revisited in [Leh96].

3
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In addition, it was stipulated in [LRW+97] that softwares keep growing and
changing while [Par94] argued that softwares age and their quality thus de-
grades with time.

Although a considerable amount of work and research followed these facts
in the past decades, the question of evolution in the software process remains
a challenge today [MWD+05]. In particular, it is still considered that the
evolution should be placed at the center of the development process and the
concept of change should be integrated in the software life-cycle [MWD+05].
Other challenges exist around the concept of change and evolution manage-
ment, refer to [MWD+05] for the complete description. Nonetheless, we can
present several achievements in the context of software evolution. One of
the first and best known good practise that was defined to facilitate soft-
ware changes and evolution is probably to anticipate change and design the
systems in a way that allows evolvability. A key concept of such practise
was the modularity of the system, such that a change to one component of
the software should not affect (or affect as slightly as possible) the others
[Par79]. However, [RLL98] specified that there is not a single definition of
evolvability and instead, defines evolvability as "a composite quality which
allows a system’s architecture to accommodate change in a cost effective
manner while maintaining the integrity of the architecture". This definition
is supported by a taxonomy of change which includes four properties: gen-
erality; adaptability; scalability and extensibility.

Studying the evolution of software has often been accomplished by an
empirical observation of the software throughout its history [MWD+05].
However, to be able to interpret the collected data, [MWD+05] mentions
the necessity of defining a theory of evolution, which follows the idea pre-
sented in [LRK00] and [LR01]. On a smaller scale, a classification of 12
different types of software evolution and software maintenance was given in
[CHFRT01]. This taxonomy, focused on the purpose of a change, is refined
in [BMZ+05] where other points of view, such as the how, the when or the
where, are considered. In [BLO03], a list of possible changes that could oc-
cure on UML diagrams is given, together with an approach to define impact
analysis. Another idea is also presented in [GD06], where understanding
the evolution is seen as properly representing the software history. This ap-
proach provides a metamodel for software evolution analysis, called Hismo,
centered around history as a first-class entity. Although the work presented
above allows to analyse and support evolution, none of the techniques pro-
vide a means to explicitly represent and apply changes to the systems.

Techniques to support and apply evolution on software have also been
defined at the level of source code. For instance, [Läm04] presents the evo-
lution of rule-based programs and provides an operator suite for the trans-
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:- add(+storee,valuate).
:- add(-storee,valuate).

Figure 2.1: Transformation of a rule-based program [Läm04]

formation of such programs. This is however limited to rule-based program,
such as definite clause programs or SOS specifications. The rules are them-
selves expressed in code, with for example the Prolog directives that invoke
a meta-programming operator add/2. Figure 2.1 illustrates an example of
such a transformation. This approach is thus only focused on the code. The
self-adaptive softwares [ST09] also provides techniques to allow systems to
automatically adapt to change in their environment. This approach uses the
concept of a feedback loop which allows the system to adjust itself during
its execution. However, as opposed to the work presented in this thesis, this
solution treat changes when they occur but do not anticipate them. Both
the solution presented in [Läm04] and [ST09] focus on the level of source
code and hence differs from the technique defined in this thesis, which aim
to represent evolution on models expressed by UML diagrams. Represent-
ing evolution by model transformations will be discussedd in the next section.

An approach to model transformation and evolution at a high-level of
abstraction is given in [Sto]. The software process is seen as a sequence
of evolutions, starting from an empty model in which the developer subse-
quently adds new elements. Although the approach is developped around
UML, the models are generally considered as typed trees where the nodes
are model elements and the directed edges are "owner" relationships. Three
types of actions, namely add, update and delete, take a model element as ar-
gument and apply the corresponding change. UML component diagrams are
then used to graphically represent such evolutions. Concretely, the compo-
nents represent the actions and the interfaces represent the model elements.
A concrete transformation of a UML model is illustrated in Figure 2.2. This
transformation consists in placing the method FinishSale of the class Cashdesk
in the class Sale and replacing the body of the method FinishSale in Cashdesk
by a call to the method moved to Sale. The transformation is also repre-
sented on the class diagram, as shown in Figure 2.3. This approach is very
similar to the one presented in this thesis. It covers however some addi-
tional concepts, since the level of abstraction of UMLseCh does not include
the body of methods. On the other hand, the language that we will define
in Chapter 4 represents the evolutions more explicitly. Indeed, Figure 2.2
does not clearly indicate how the elements are updated and this informa-
tion cannot be found on the class diagram of Figure 2.3 either. In addition,
UMLseCh does not include graphical representations as the ones of Figure
2.2 and remains compliant to the UML specifications [OMG09]. The solution
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Figure 2.2: Representation of a concrete evolution illustrated in [Sto]

Cashdesk

exmode:boolean

EnableExpress()

DisableExpress()

StartSale()

FinishSale()

cardPay(c:Card)

cashPay(a:double, out c:double)

enterItem(code:Barcode,qty:int)

Sale

complete:boolean

total:double

Sale(c:boolean,d:Date)

1

1 sale

(from saleTotal)

UpdateTotal

«Manualrefine»

(from saleTotal)

«Manualrefine»

UpdateSaleFinishSale

(from saleTotal)

saleTotal

«ExecutionList»

(from saleTotal)

«CreateOperationParameter»

AddSaleFinishSale

Figure 2.3: Representation of a concrete evolution on the class diagram, as
shown in [Sto]

of [Sto] and the one described in this thesis thus target a challenge specifying
that "modelling languages should provide more direct and explicit support
for software evolution. The idea would be to treat the notion of change as a
first-class entity in the language" [MWD+05].

2.2 Model Transformation

Applying evolution and changes on models evidently requires to execute
model transformations. Generally, transforming a model consists in taking
a source model Ma conforming to a metamodel Mma and to produce a tar-
get model Mb conforming to a metamodel Mmb. There exists two types of
model transformations: horizontal and vertical. If the level of abstraction
of the target model is different from the one of the source model, the trans-
formation is called vertical, otherwise, the transformation is called horizontal.
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Figure 2.4: Context of ATL Transformation as shown in [JK06]

As mentiomed in [Sun09], the evolution of a model is often supported
by model transformation rules written in specific languages. The OMG
[Gro] defined a standard for expressing model transformations, called QVT
(Query/View/Transformation) [OMG05]. As mentioned in [JK06], the grow-
ing importance of model transformations led the OMG to publish a QVT
request for proposal (RFP) [OMG02]. Several propositions answered that
RFP, which then evolved toward a single proposal [OMG02]. Others however
continued to develop independently, as for example the ATLAS Transforma-
tion Language (ATL) [Lana]. ATL is a model transformation language that
provides a powerful abstract syntax as well as a concrete syntax. It offers the
possibility to express model transformations rules for horizontal and vertical
transformations from any source metamodel to any target metamodel. Since
it was initially developed to answer the QVT RFC issued by the OMG, it
shares common requirements with QVT [JK06]. The concept of model trans-
formation with ATL is shown in Figure 2.4. The idea of sofware evolution can
thus be formulated with ATL. For example, to add an operation to a UML
Class, we can define a rule such as the one of Figure 2.5, where ’newOp()’
is simply an abstract representation of the added operation to facilitate the
example.

Tefkat [LS] is another example model of a transformation language, which
in this case is based on F-Logic [KLW95]. An example of a Tefkat rule, taken
from [LS] where the complete transformation can be found, is shown in Fig-
ure 2.6.

For Tefkat as for ATL, they both represent the evolutions with rules using
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module example;
create OUT : UML from IN : UML;

rule addOp {
from a:UML!Class
to b:UML!Class (

name <- a.name,
ownedAttribute <- a.ownedAttribute,
ownedOperation <- a.ownedOperation

->union(a.ownedAttribute->’newOp()’)
)

}

Figure 2.5: Simple example of a rule adding an operation in a UML class

CLASS ClsToTbl {
Class class;
Table table;

};

RULE ClassAndTable(C,T)
FORALL Class C {

is_persistent: true;
name: N;

}
MAKE Table T {

name: N;
}

LINKING ClsToTbl WITH class = C,table = T;

Figure 2.6: Example of a transformation using Tefkat
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text-based notation. Therefore, they are not adapted to easily represent the
model transformations on the diagrams of the high-level models. A graph-
ical representation of the model transformation however would increase the
readability. This issue is addressed by UMLX and Mola.

UMLX [Wil03b] is a graphical model transformation language that was
also developed to answer the QVP RFP [OMG02] issued by the OMG. It
is based on the class diagram of UML. More precisely, it extends the class
diagram to include notations that support inter-schema transformation. The
syntax of the language is shown in Figure 2.7. It is thus possible to graphi-
cally represent the evolution of models using this language. Other constructs,
such as constraints or multiplicity, can also be used in order to refine the
transformation. UMLX hence provides a means to define a similar approach
as the one presented in this document. However, several differences exist.
UMLX provides an extended notation by adding new constructs and there-
fore extends the UML metamodel. A discussion about the consequences of
extending the UML metamodel is given in Section 2.4. No transformation
operator exist in UMLX for an addition and thus, adding an element is not
explicitly modelled. Instead, transformation shows the result with the new
element added on the model. Finally, a main difference with the work de-
scribed in this thesis is that UMLX offers a graphical notation for model
transformations based on the UML class diagram. This means that the rep-
resentation will remain separated from the evolving models. For example,
if the diagram being transformed is a state diagram or a deployment dia-
gram, the transformation will be represented by an extended UMLX class
diagram, but the notation will not be applied directly on the statemachine
or deployment diagram. However, as opposed to the notation defined in this
document, UMLX is a graphical representation of QVT transformation and
thus allows a larger set of possibility, such as vertical transformations or
transformations where the target model conforms to a different metamodel
than the source model. An example of such transformations can be found
in [Wil03a], where UMLX is used to model transformations from UML class
diagrams to relational data bases (RDBMS).

MOLA (MOdeling transformation LAnguage) [KBC04] is another graph-
ical language for model transformations. It expresses the transformations
with special constructs that are similar to structured flowcharts using the
concept of pattern matching. A transformation is then represented as a
MOLA program, which is a sequence of graphical statements linked by
dashed arrows. It also introduces the concept of foreach loop, the most
used kind of statement, which is graphically represented by a rectangle with
a bold frame. Figure 2.8 shows an example of a MOLA program, described
in [KBC04], which builds a new W for each B that is linked to A, links
this new W to the corresponding A with the association roleW and assign
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Figure 2.7: UMLX Transformation Syntax [Wil03b]

Figure 2.8: Example of a transformation using a MOLA program [KBC04]

the concatenation of the parameters of the corresponding A and B to the
parameter of W . Note that this transformation occurs at the level of the
instances of the model elements and thus, there might be more than one A
or B, which explains the presence of the foreach loop. The classic example
of the transformation of UML class diagrams to data base schemas can be
found in [KBC]. The same comparison as the one between the approach
defined in this thesis and UMLX can be made for Mola.

2.3 Security Modelling

The security context required in the approach defined in this thesis is mod-
elled with UMLsec [Jür10]. It is an extension of UML that formulates secu-
rity requirements as non-functional requirements. Because UMLsec will fully
belong to the notation defined further in this document, it will be described
in more details in Chapter 3. Other works and research have been achieved
to use UML for security systems development. However, they differ from
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Figure 2.9: SecureUML used for EJB [LBD02]

UMLsec in the sense that "they cover a less comprehensive set of security
requirements, mostly focussing on role-based access control requirements"
[Jür10]. In the following, we introduce two approaches for including secu-
rity concepts with UML. The first is SecureUML [LBD02], focused on the
role-based access control, and the second is SecurityAssessmentUML [HH03],
which provides a representation for model-based security estimation.

SecureUML [LBD02] is an extension of UML that provides and approach
based on role-based access control with additional support for specifying au-
thorization constraints. A metamodel defines the abstract syntax and the
notation used with class models in UML is defined as a UML Profile. The
vocabulary defined for SecureUML provides a means to express different
aspects of access control, such roles, role permissions and user-role assign-
ments. An example illustrating the use of SecureUML in the context of
Enterprise Java Beans (EJB), taken from [LBD02], is shown in Figure 2.9.
As mentioned above, this approach differs notably from the one defined with
UMLsec since SecureUML concerns only role-based access control.

SecurityAssessmentUML [HH03] is another extension of UML which pro-
vides support for UML sequence and activity diagrams for risk identification
and UML activity diagrams for risk analysis. It is also defined with a profile
that provides a specific notation, including associated icons. This notation
allows one to formulate the documentation of output from risk identification
and risk analysis in a security assessment on the UML models. An example
illustrating the SecurityAssessmentUML notation on a UML sequence dia-
gram is given in Figure 2.10. The diagram of this example represents the
result from a risk analysis showing that the system could possibly be infected
by a virus since the email gateway does not have any antivirus. As for Se-
cureUML, SecurityAssessmentUML differs from UMLsec in the sense that it
targets a different type of security concept. In this case, it only focuses on
security estimation by modelling results from risk analysis.
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Figure 2.10: SecurityAssessmentUML on a sequence diagram [HH03]

2.4 UML Profile Mechanism

UML [Lanb], the standard defined and maintained by the Object Manage-
ment Group (OMG) [Gro], has been widely adopted by both the industry
and academic world and is now generally accepted as the de-facto modelling
language for software engineering. In recent years, following this success,
the need to use UML in specific contexts has fundamentally increased, as it is
shown in several publications, such as [Küh] or [MFV06]. It is the case, for
example, with Web Engineering [MFV06], Aspect-Oriented Programming
(AOP) [KKKS], Architecture Description, security or Quality of Services
(QoS) [CP04]. However, as it was initially designed for general purposes,
UML "out of the box" might not be suitable for these specific domains.
Thus, a mechanism to mold UML appears crucial in order to define a Do-
main Specific Language (DSL). The OMG offers two extension mechanisms
for UML, described in [OMG09]; a light-weight mechanism based on profiles
and a heavy-weight mechanism based on the Meta-Object Facility (MOF).

The MOF is an OMG’s standard that provides a framework for defining
and manipulating metadata and metamodels and providing interoperabil-
ity between them. UML is a MOF-compliant modelling language; in other
words, the UML metamodel is a MOF model. UML can therefore be di-
rectly extended using the MOF standard by adding new "meta-elements"
(meta-classes, meta-attributes, meta-associations, etc). This approach has
the benefit of offering the possibility to completely tailor the language. From
an additive point of view (note that adapting the language could be done, for
example, by deleting concepts or redefining properties, which is also possible
through the MOF approach), it allows one to define new concepts indepen-
dently from the others, as opposed to the lightweight mechanism which only
adds element additively so that it satisfies the standard semantics of the
UML metamodel. It therefore offers a higher level of expressiveness and
gives more aleternatives to integrate the new concepts in the language. For
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this reason, several authors, as for example in [HKC05] or [PM03], have ar-
gued that certain concepts should be first-class elements in UML. However,
extending UML by modifying its meta-model presents a major disadvan-
tage: the existing tools only support the standard UML metamodel, as it
is defined in [OMG09], and will thus need to be refactored in order to sup-
port the extended language. The "heavyweight" extension mechanism will
not be considered further in this work and the extensions presented in chap-
ters 3 and 4 will be achieved using the "lightweight" UML profile mechanism.

The UML Profile mechanism, as it is described in [OMG09], provides
a lightweight extension mechanism that allows one to customise UML. It
uses three extensibility mechanisms, namely stereotypes, tagged values and
constraints. Stereotypes allow one to define new modelling elements from
existing ones by refining the semantics of these existing elements. Their
notation consists of the name of the stereotype written between guillemets;
i.e. a stereotype named stereotype will be written « stereotype». If a model
element is extended by more than one stereotype, the stereotypes can be
represented in a comma-separated list written between guillemets, as de-
scribed in [OMG09]; i.e. n stereotypes named stereotype1, ..., stereotypen
will be written « stereotype1, ..., stereotypen ». However, if stereotype prop-
erties are defined, the selected notational form for these properties, as it is
explained in the next paragraph, will not allow to easily connect, graphically,
the properties to the right stereotype. This "list notation" will thus not be
adopted afterwards. An icon can also be defined to graphically represent
an extended model element, but this notation will not be used either. Once
defined, the stereotypes are then attached to the model element to extend.
As mentioned above, this method is strictly additive. It cannot create new
first-class elements but only provides refinement of the existing UML mod-
elling elements. Stereotypes hence do not exist by themselves and are always
attached to at least one base element. An example of a refined semantics
of a UML model element using a stereotype is shown in Figure 2.11. The
stereotype « LAN » is attached to a link of a deployment diagram in order to
create a new type of link. This new model element inherits the characteris-
tics of the extended model element, i.e. the link of a deployment diagram,
and in addition, refines its semantics to define a specific type of link. In this
case, it creates a model element that represents a local area network (LAN)
link. The stereotype « LAN » is part of the UMLsec extension [Jür10] that
will be presented in chapter 3. In [OMG09], as opposed to [OMG00], there is
no restriction on the number of stereotypes that can be assigned to a model
element.

Tag definitions allow one to define properties by adding attributes to a
model element. The name given to such an attribute is called tag. Until
[OMG00], tag definitions could be directly associated to any model element.
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Clientcomp

C:Client

Clientnode

Servercomp

S:Server

Servernode

«LAN»

Figure 2.11: Example of the use of a stereotype « LAN »

In [OMG01], it was deprecated but still supported. Since [OMG09], such
attributes can only be defined on a stereotype and thus can only extend
model elements that are extended themselves by at least one stereotype.
Tags can be either a DataTag, which represents data values, or a Refer-
enceTag, which represents a reference to another model element. When a
stereotype is applied to a model element, its associated attributes receive
values called tagged values. A tagged value consists of a name-value pair and
three alternative notations are described in [OMG09]. The first consists of
attaching a comment symbol to the extended model element in which the
tagged values are shown, each of them being listed under the name of the
associated stereotype. The second notation is represented by a box (similar
to the notational form of a class) in which the tagged values are listed under
the name of the concerned stereotype. Finally, the third notation consists
of writing the tagged value between curly brackets next to the associated
stereotype; i.e. for a name tag and a value value, the tagged value will ap-
pear as { tag = value }. For a boolean attribute, the value is not written on
the diagram and instead, the name of the attribute appears if the value is
true and does not appear if the value is false. The third notational form has
been prefered and will thus be used in the rest of this work. If the property
is multi-valued, the values are placed in a comma-separated list; i.e for a tag
tag and values value1, value2 and value3, and the tagged value will appear
as {tag = value1, value2, value3}.

Finally, constraints can be added to a stereotype in order to define well-
formedness rules that the stereotyped model element will have to fulfill.

To create an extension of UML, one has to define a UML profile. A
profile, described in [OMG09] as a package stereotyped « profile », collects
definitions of stereotypes, tagged values, constraints and notational repre-
sentations. It can extend the UML metamodel or any other profile and gives
a specific semantics to the extended model elements. Divers UML profile
has been defined, for example the UML Profile for Software Development
Processes [Küh], the UML Profile for Modelling Knowledge-Based Systems
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[AEBK04], the UML Profile for Role-Based Access Control [CB09] or the
UML Profile for AspectJ [Eve07]. As mentioned above and discussed as an
example in [MFV06], the UML Profile extension mechanism presents the
main advantage of being compliant with the UML metamodel and therefore
can be supported by the existing tools. In Chapter 3, the UMLsec profile,
that allows one to model security requirements, will be presented in more
details. The UMLseCh profile, which is an extension of the UMLsec profile
for evolutive systems, will be described in Chapter 4.

2.5 Discussion

The previous sections introduced several approaches from different domains
related to the work presented in this thesis. While each of the existing solu-
tions described above addresses one of the domains independently from the
others, the approach defined in this document aims to bring these different
fields together.

This chapter referenced [MWD+05], which argues that software evolu-
tion is still considered as a challenge and that languages should include such
concepts. One approach addressing this challenge [Sto] was presented in
Section 2.1. Different model transformation languages were then described,
some being graphical, like UMLX [Wil03b] or MOLA [KBC04], while others
are text-based, such as ATL [Lana] or Tefkat [LS]. The graphical notation
would be defined by creating specific notational constructs that are not com-
pliant to the UML metamodel. It was mentioned that some simplified parts
of these languages could be used to represent the evolution of a model as
we do in this thesis. This could be achieved by restricting the techniques
to transformations where the target model is compliant to the same meta-
model as the source model. More complexe evolutions can of course also
be represented with such languages. After a relatively important effort of
research, no approach for modelling possible future evolution with a UML
profile could be found.

The techniques presented in this thesis also aim to place the evolution
in a secure context. In particular, because the security of the evolved model
should be preserved, several concepts modelling security requirements were
also introduced in this chapter. However, these techniques addresses different
types of requirements and security concepts from the ones used in this thesis.
Again, to the extent of the author’s knowledge, no approach considering the
evolution in the context of a model-based development approach for security-
critical software was found.
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Chapter 3

Modelling Security with
UMLsec

In this chapter, we present the UMLsec approach for modelling secure soft-
wares. We first briefly describe the concept used to formally verify the secu-
rity of the system. We then introduce the notation and the abstract syntax
that will be extended in Chapter 4 in order to define UMLseCh to include
evolution concepts.

3.1 UMLsec Overview

UMLsec is an extension of UML aimed to model security requirements and
verify the fulfillment of these requirements. It defines a notation as well as
formal representations of the security concepts providing techniques to verify
whether the security requirements are respected. The analysis of the secu-
rity of a system consists in representing the execution of this system together
with an attacker. A system is divided in components given by subsystems
and communicating together. A subsystem may also have C1, . . . , Cn sub-
components, which may also communicate through the links of the deploy-
ment diagram modelled in that subsystem. A behovioral semantics is given
in the form of UML Machines which specifies the execution of subsystems
and their communications. UML Machines, defined in [Jür10], are a special
type of Abstract State Machines (ASM) [Gur95]. They are statemachines
communicating with their environment by exchanging messages, using input
queues and output queues to store these messages. The behavioral inter-
pretation JSK of a subsystem S is thus given by a UML Machine defined
in [Jür10]. A scheduler is also assumed to take a message from an output
queue of a UML Machine and place it in the input queue of the intended
UML Machine.

UML Machines are also defined to represent the behaviour of adversaries.

17
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Different kind of threats arising from the presence of an adversary exist on
links and components. These threats are the possibility for the attacker
to read, insert or delete information on the links as well as the possibility
to access a node connected to a link. Adversaries can also be of different
types, such as the insider or the default adversary. UMLsec represents the
security concepts on the model by using stereotypes and tagged values. Cer-
tain stereotypes, such as « Internet» or « encrypted», thus have associated
threats while others, such as « secure links» or « secrecy», have associated
constraints. The function ThreatsA(s) is defined as a function that takes an
adversary of type A and a stereotype s associated to a link or a component
and return a a subset of {delete, read, insert, access}. ThreatsA(s) represent
the set of abstract threats that exist on a link or node stereotyped s given
the presence of an adversary of type A. From this set of abstract threats,
the set threatsSA(x) of concrete threats on a link or node x in a subsystem
S in the presence of an adversary of type A is derived and defined as "the
smallest set satisfying the following conditions. If each node n containing
x carries a stereotype sn with access ∈ ThreatsA(sn) then for every stereo-
type s attached to x, we have ThreatsA(s) ⊆ threatsSA(x) and if x is a link
connected to a node that carries a stereotype t with access ∈ ThreatsA(t)
then {delete, read, insert} ⊆ threatsSA(x)"[Jür10]. To illustrate how these
concepts are used in UMLsec, we can consider the following simple ex-
ample which takes the case of the preservation of the secrecy over a link
stereotyped « Internet» with the presence of the default adversary. The
stereotype « secure links » attached to the subsystem requires that the secu-
rity requirements defined on dependencies of the deployment diagram are
respected. Assume a dependency stereotyped « secrecy» between two ob-
jects, each of them being located in a nodeand the nodes being connected
by a link l, defines the following constraint: read /∈ threatsSA(l). However,
UMLsec defines Threatsdefault(« Internet») = {delete, read, insert} and thus
read ∈ Threatsdefault(« Internet»). The secrecy is therefore not ensured on
a link stereotyped « Internet» and the constraint « secure links» is violated.
Other important security properties, such as integrity, authenticity or fresh-
ness are defined in a similar way. Formal definitions of these properties are
also given in a form adapted to the context of the UML Machines and thus to
the execution of the system and to the behaviour of the adversary. UMLsec
defines the knowledge of an adversary A defined as KA. This knowledge
is the initial knowledge K0

A at the startup of the system and can be iter-
atively extended during the execution of the system. The execution of a
subsystem S in the presence of an adversary A is defined as JSKA. We do
not describe the execution of UMLsec subsystems and the verification of the
security in any more detail because such a level of detail is beyond the scope
of this work. The reader should refer to [Jür10] for a complete definition of
the behvioural semantics and the formal verification of the security concepts.
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UMLsec also defines a notation to represent the security concepts and
requirements on the UML diagrams. It uses the UML Profile mechanism,
presented in Chapter 2. The stereotypes and tagged values of the UMLsec
profile define a notation that gives a means to generally represent different
type of security principles and concepts among different types of diagrams.
More precisely, although the profile concerns all of UML, the notation is
based and used on a subset of UML which includes simplified versions of class
and object diagrams, deployment diagrams, activity diagrams, statechart
diagrams, sequence diagrams and subsystems. The base classes of UMLsec
stereotypes are shown in the next section in Figure 3.1. The UMLsec profile,
as well as the notation, the abstract syntax, the behavioural semantics and
the tool support are defined in [Jür10]. In the next sections, we present some
part of [Jür10] that will be the background of our further work. In particular,
we present the UMLsec notation, that consists in stereotypes and tagged
values, we give examples, and we describe the UMLsec abstract syntax that
will be extended in Chapter 5 in order to include the UMLseCh stereotypes
and thus include a means to model possible evolutions of models.

3.2 UMLsec Notation

In this section, we briefly introduce the UMLsec notation. We show the set
of stereotypes used to represent the security concepts and requirements of
a model and their associated tag definitions. We also show how to use this
notation by means of examples. However, we only illustrate how to model
the representation of security oriented system with UMLsec but we do not
formally verify the security requirements with the techniques mentioned in
the previous section.

The complete list of UMLsec stereotypes together with their base class,
their associated tags, their constraints and a descriptions is given in the table
of the Figure 3.1. These stereotypes can be used on the model elements of
the simplified diagrams of UMLsec in order to model the security concepts
needed in a critical system. Figure 3.2 shows the list of UMLsec tags together
with their associated stereotype, their type, their multiplicity and a descrip-
tion. The complete description of the stereotypes and their associated rules,
the well-formedness rules and the security threats and constraints associated
to those stereotypes can be found in [Jür10]. Such a detailed description is
beyond the scope of this work. In the following, we simply show an example
of a critical system modelled with UMLsec.

As an example of use of the UMLsec notation, we can illustrate the two
following situations, taken from [Jür10]. The first example, shown in Figure
3.3, models a secure channel at a high level of abstraction. We assume a
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Tag Stereotype Type Multip. Description
start fair ex-

change
state * start states

stop fair ex-
change

state * stop states

adversary fair ex-
change

adversary
model

1 adversary type

action provable state * provable action
cert provable expression * certificate
adversary provable adversary

model
* adversary type

protected rbac state * protected resources
role rbac (actor, role) * assign role to actor
right rbac (role, right) * assign right to role
secrecy critical data * secrecy of data
integrity critical (variable,

expression)
* integrity of data

authenticity critical (data, origin) * authenticity of data
high critical message * high-level message
fresh critical data * fresh data
adversary secure links adversary

model
1 adversary type

adversary data secu-
rity

adversary
model

1 adversary type

integrity data secu-
rity

(variable,
expression)

* integrity of data

authenticity data secu-
rity

(data, origin) * authenticity of data

guard guarded object name 1 guard object

Figure 3.2: The UMLsec tags
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subsystem C composed of a class diagram, a deployment diagram, an activ-
ity diagram, a statemachine for each of the activities in the activity diagram
and a set of offered operations and signals. The object Sender sends the data
d to the object Receiver. Since this data should remain secret, a stereotype
« critical» is added to the object Sender with the associated tagged value
{ secrecy=d }. To ensure the secrecy on the physical layer, the link between
the node containing the object Sender and the node containing the object
Receiver is stereotyped « encrypted». In general, since the data should travel
in a secure way, the stereotype « data security » is attached to the subsys-
tem. This example is very similar, but slightly different from the case of the
stereotype « secure links » described in Section 3.1 since here, the constraint
is defined by the stereotype « data security ». Note again that this example
aims to illustrate how the notation can be used to model security on UML
diagrams, but do not show how the security is formally verified.

The example of Figure 3.3 shows the secure channel at a high level of ab-
straction, since the security is modelled by a link stereotyped « encrypted».
UMLsec allows however to model the encryption more concretely. This is
shown in Figure 3.4. In this case, the link is stereotyped « Internet», but the
data is explicitly encrypted on the UML diagrams. Verifying the security
of this subsystem goes slightly further the simple case presented in Section
3.1. In particular, the preservation of the secrecy is formally defined with
the previous knowlegde of the adversary A (of type default) Kp

A and the
encryption elements. The proof that the security requirements (in this case
the secrecy of the data) are fulfilled is given in [Jür10].

The previous examples illustrated how to use the UMLsec notation to
represent security requirements on a subsystem. All the possibilities offered
by UMLsec have not be shown in this example, but such a completeness is
beyond the scope of this thesis. We do not aim to illustrate the use of all
of the stereotypes defined in Figure 3.1. More example of how to use the
UMLsec notation can be found in [Jür10].

3.3 UMLsec Abstract Syntax

The semantics of UML, defined in [OMG09], is only described in natural
language, which can be ambiguous and thus insufficient when the elements
of UML needs to be used formally. It is especially the case when trying to
define the execution of the behavioural units or when providing tool sup-
port for the UML models. To overcome this limitation and verify security
of UML models, UMLsec provides a behavioural semantics given by UML
Machine rules as well as formal definitions of security principles that have
to be verified, as we mentioned it in Section 3.1. In order to apply such
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s r

R:ReceiverS:Sender

Wait Send
/transmit(d)

send(d)s:

r:
Wait Received

transmit(d’)

receive()

/return(d’)

sending
«Interface»

send(d:Data)

«send»
R:Receiver

receive():Data
transmit(d’:Data)

{secrecy = {d}}

«critical»

send(d:Data)

S:Sender

receiving
«Interface»

receive():Data

Channel
{adversary=default}

receive():Data

«data security»

send(d:Data)

Sendercomp

S:Sender

«LAN»
Sendernode

Sendercomp

S:Sender

«LAN»
Sendernode

«send»

«encrypted»

Figure 3.3: Example of a channel
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Figure 3.4: Example of a secure channel
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a formal behaviour on the UML diagrams, it is also necessary to define an
abstract syntax, which gives a means to represent the diagrams formally. In
the following, we present the abstract syntax of UMLsec as it is defined in
[Jür10]. Again, we do not consider here the complete formal foundation and
semantics of UMLsec. In particular, we ignore the formal definitions for the
preservation of the security as well as the behavioural semantics given by
UML Machines rules to only focus on the UMLsec abstract syntax. This
means that certain concepts used in the abstract syntax of UMLsec for the
communication of the UML Machines, such as the sets of events or signals,
will be ignored. This simplification will not affect our objective to extend
UMLsec. The reader should however refer to [Jür10] for a complete descrip-
tion of the UMLsec formal semantics. The abstract syntax described further
will be extended in Section 5.4 in order to take the UMLseCh principles and
elements into account. It will also provide a means to define the behaviour
of the application of changes and the rules that ensure the preservation of
consistency. This will also be presented in Section 5.4.

3.3.1 General Concepts

In the abstract syntax defined below, certain elements will be defined as el-
ements belonging to one of the following sets: the classic set of sequences
of characters String, the set of stereotype definition StereoNm, the set of
stereotype instances Steretypes, and the set of boolean expressionBoolExp.
These sets are simply mentioned here, but they will described in more details
in Section 5.1.

The special event ComplEv is also assumed to be the completion event, as
defined in [Jür10] and [BCR00]. This concerns the transition of statechart
diagrams. More precisely, a transition t has a triggering event, represented
by trigger(t). A transition t with trigger(t) = ComplEv is called a completion
transition. The completion event "indicates the completion of the source
state" [BCR00], such that no additional event is necessary to trigger the
completion transition.

3.3.2 Object Diagrams

UMLsec defines the operations of an object as a 3-tuples
O = (oname, args, otype), given by:

• an operation name oname ∈ String;

• a set args of arguments of the form A = (argname, argtype) where
argname is the argument name and argtype its type; and

• the type otype of the return value.
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If the operation has no return value, the type otype is the empty type ∅.

An Object is represented by a 6-tuple O = (oname, cname, stereo, aspec,
ospec, int) where:

• oname ∈ String is an object name;

• cname ∈ String is a class name;

• stereo ⊆ StereoNm is a set of stereotypes;

• aspec is a set of attribute specifications of the form A = (aname, gtype)
where aname ∈ String is the attribute name and gtype the attribute
type;

• ospec is a set of operations; and

• int is a set of interfaces of the form I = (iname, ospec) where iname ∈
String is the interface name and ospec a set of operation specifications.

With the constraint that operations with the same name in different in-
terfaces have the same type.

A dependency is defined as a 5-tuple d = (dname, dep, indep, int, stereo)
given by:

• a dependency name dname;

• the names dep of the dependent and indep of the independent class,
signifying that dep depends on indep;

• an interface name int (the interface of the class indep through which
instances of dep accesses instances of indep; this field contains the
name of the independent class if the access is direct); and

• a stereotype stereo ∈ {« call», « send»}.

An object diagram is a pair O = (Objects(D),Dep(D)) given by a set
Objects(D) of objects and a set Dep(D) of dependencies. Object specifica-
tions of a same class has the same class name. In addition, we require that
the names of different objects are mutually distinct.

3.3.3 Class Diagrams

Class diagrams are very similar to Object diagrams, with one difference in the
definition of a class. Concretely, a class is simply defined as an object, as de-
scribed above, C = (oname, cname, stereo, aspec, ospec, int) where oname
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is the empty string.

A class diagram is then defined as a pair D = (Classes(D),Dep(D)) given
by a set Classes(D) of classes and a set Dep(D) of dependencies. Again, we
require that the names of the classes are mutually distinct.

3.3.4 Statechart Diagrams

A state S is given by s = (name(S), entry(S), state(S), internal(S), exit(S)),
where:

• name(S) ∈ String is the name of the state;

• entry(S) is the entry action;

• state(S), is the set of substates of S;

• internal(S) is the internal activity of the state;

• exit(S) is the exit action; and

• stereo ⊆ Stereotypes is a set of stereotypes.

The set of states of a diagram D is calledStateD. It is disjointly par-
titioned into the sets InitialD of initial states in D, FinalD of final states,
SimpleD of simple states, ConcD of concurrent states, and SequD of sequen-
tial states. Therefore, we have, for a state S, that state(S) ⊂ StateD. A
transition is defined as t = (source(t), trigger(t), guard(t), effect(t), target(t)),
given by:

• a state source(t) ∈ StatesD, the source state of t;

• an event trigger(t), the triggering event of t;

• a Boolean expression guard(t) ∈ BoolExp, the guard of t;

• an action effect(t), which is performed when firing t; and

• a state target(t) ∈ StatesD, the target state of t.

The set of transitions of a diagramD is called TransitionD. It has a subset
of internal transitions, called InternalD, such that InternalD ⊆ TransitionD.
For every state S ∈ StateD, we have the following conditions:

• We have TopD ∈ ConcD ∪ SequD ;

• For every S ∈ SequD there exists exactly one T ∈ state(S) ∩ InitialD
(which we write as init(S));
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• S ∈ SimpleD ∪ FinalD ∪ InitialD implies state(S) = ∅ and S ∈ ConcD
implies that state(S) has at least cardinality 2;

• T ∈ ConcD and S ∈ state(T ) implies S ∈ ConcD ∪ SequD;

• For all S, T ∈ StatesD, state(S) ∩ state(T ) = ∅ implies S = T ;

• For S ∈ InitialD ∪FinalD ∪TopD, we have entry(S) = nil, internal(S) =
Nil, and exit(S) = nil ;

• Let the relation ≺ on states S ∈ StatesD be defined by S ≺ T if there
exist states S1, · · · , Sn with n ≥ 1 such that S1 = S, Sn = T , and
Si ∈ state(Si+1) for i < n. Then ≺ is acyclic (in particular irreflexive),
and fulfills the condition that for all S, T, U ∈ StatesD with S ≺ T and
S ≺ U we have T ≺ U or U ≺ T . TopD is the largest element in
StatesD with respect to ≺;

and for every t ∈ TransitionD, we have:

• source(t) /∈ FinalD ∪ TopD (final states and the top state have no out-
going transitions);

• target(t) /∈ InitialD ∪ TopD (initial states and the top state have no
incoming transitions);

• source(s) = source(t) ∈ InitialD implies s = t for any s, t ∈ TransitionsD
;

• source(t) ∈ InitialD implies trigger(t) = ComplEv and guard(t) ≡ true
(where ≡ denotes syntactic equality);

• For any S ∈ StatesD, source(t) ∈ state(S) implies S ∈ SequD and
target(t) ∈ state(S);

• trigger(t) must be of the form op(exp1, . . . , expn) where exp1, . . . , expn,
called parameters, must be mutually distinct;

• If t ∈ InternalD then source(t) = target(t); and

• Multiple completion transitions leaving the same state must have mu-
tually exclusive guard conditions. For s, t ∈ TransitionsD such that
source(s) = source(t) and trigger(s) = trigger(t) = ComplEv, the condi-
tion guard(s) ∧ guard(t) evaluates to false for any variable valuations.

A statechart diagram is defined byD = (ObjectD,StatesD,TopD , TransitionsD),
given by an object name ObjectD providing the context of the statemachine
by associating it to another element of the model, a set of states StateD,
a top state TopD, containing all the states of D as substates, possibly in a
nested way, and a set TransitionsD of transitions.
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3.3.5 Sequence Diagrams

A lifeline is defined as a pair (O,C), given by an object O of class C. The
set of lifelines of a sequence diagram D is called Obj(D). Lifelines can
communicate together with connections. A connection is defined as 4-tuple
l = (source(l), guard(l),msg(l), target(l)), given by:

• the source object source(l) ∈ Obj(D) of the connection;

• the guard guard(l) ∈ BoolExp of the connection;

• the message msg(l) of the connection; and

• the target object target(l) ∈ Obj(D) of the connection.

The set of connections of a sequence diagram D is called Cncts(D).
For each l ∈ Cncts(D), we have that source(l) ∈ Obj(D) or target(l) ∈
Obj(D), or both. A sequence diagram is then simply defined as a pair
D = (Obj(D),Cncts(D)).

3.3.6 Activity Diagrams

In UMLsec, activity diagrams are presented as a special type of statechart
diagrams. In particular, any construct of the simplified version of activity
diagrams can be expressed using the concepts of statechart diagrams. Thus
an activity diagram is a 3-tuple D = (StatesD,TopD,TransitionsD) given
by a finite set of states StatesD, the top state TopD ∈ StatesD, and a set
TransitionsD. Again, the set StatesD is disjointly partitioned into the sets
InitialD, FinalD, SimpleD, ConcD, SequD. A state S ∈ StateD is given by:

• name(S) ∈ String the name of the state;

• the entry action entry(S);

• the set state(S) ⊆ StatesD of substates of S;

• the internal activity internal(S), also called do-activity of the state;

• the exit action exit(S); and

• the name swim(S) of the swimlane containing S.

The set of transitions an activity diagram D is also called TransitionsD,
with InternalD ⊆ TransitionsD. A transition t ∈ TransitionsD is given by:

• the source state source(t) ∈ StatesD of t;

• the guard guard(t) ∈ BoolExp of t; and

• the target state target(t) ∈ StatesD of t.

The conditions for statechart diagrams, presented in Subsection 3.3.4,
also apply for the states and the transitions of activity diagrams.
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3.3.7 Deployment Diagrams

A component is defined as a 3-tuple C = (name, int, cont) where name is
the component name, int is a set of interfaces that can possibly be empty
and cont is the set of subsystem instance and object names contained in the
component. A node N = (loc, comp) is then given by:

• the name loc of its location, and

• a set of contained components comp.

Nodes are connected by links. A link l is of the form l = (nds(l), ster(l))
where nds(l) ⊆ Nodes(D) is a set of arity two containing the nodes being
linked and ster(l) ⊆ Stereotypes is a set of stereotypes. Components can
also be "connected" by dependencies. A dependency is formally a 4-tuple
d = (clt, spl, int, stereo) where:

• clt is the name of the component being the client of the dependency;

• spl is the name of the component being the supplier of the dependency;

• int is the interface of spl accessed by the dependency, if the access is
direct, int = spl); and

• stereo ⊆ Stereotypes is a set of stereotypes.

For every dependency D = (C, S, I, sd) there is exactly one link LD =
(N, sl) such that N = {C, S}. A deployment diagram is given by D =
(Nodes(D), Links(D),Dep(D)) where Nodes(D) is a set of nodes, Links(D),
is a set of links and Dep(D) is a set of dependencies.

3.3.8 Subsystems

In UMLsec, "subsystem" means "subsystem instance". A subsystem is de-
fined as a 8-tuple S = (name(S),Msgs(S), Ints(S), Ssd(S),Dd(S),Ad(S) ,
Sc(S), Sd(S)), given by:

• the name name(S) of the subsystem;

• a set Msgs(S) of names of offered operations and accepted signals, this
set can be empty;

• a set Ints(S) of subsystem interfaces, this set can be empty;

• a static structure diagram Ssd(S);

• a deployment diagram Dd(S);

• an activity diagram Ad(S); and
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• for each of the activities in Ad(S), a corresponding specification of the
behavior of objects appearing in Ssd(S) given by a set Sc(S) of state-
chart diagrams, a set of sequence diagrams Sd(S), and the subsystems
in Ssd(S). Each diagram D ∈ Sc(S) ∪ Sd(S) has an associated name
context(D). In the concrete syntax, it is written next to it.

Note that UMLsec also offer the possibility to have UML Machine rules
to specify the behavior of objects appearing in Ssd(S). We do not present
this possibility here since we do not take the UML Machines into account. A
static structure diagram D = (SuSys(D),Dep(D)) is given by a set SuSys(D)
consisting of objects or subsystem instances, and a set Dep(D) of depen-
dencies (dep, indep, int, stereo) where the difference from the dependencies
defined for object diagrams is that dep and indep can also be subsystems.
The names of the subsystems or objects also have to be mutually distinct.

The following constraints also have to be fulfilled to ensure consistency
of subsystems. For each activity a of an activity diagram, such that a is
in the swimlane O, there exists either a subsystem S ∈ SuSys(Ssd(S)) such
that name(S) = a, or a statemachine D ∈ Sc(D) such that O = ObjectD and
context(D) = a, or a sequence diagram D ∈ Sd(S) with O ∈ Obj(D) and
contex(D) = a and such that a = D.O.
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Chapter 4

Modelling Evolution with
UMLseCh

4.1 Preliminary remarks

4.1.1 Applicable Subset of UML

UML is a language that covers a large amount of domains and concepts,
modelling both static and dynamic contexts. Such a coverage requires a
lot of constructs and diagrams. Among them, we can mention the activity
diagrams, the class diagrams, the communication diagrams, the component
diagrams, the composite Structure diagrams, the interaction overview di-
agrams, the package diagrams, the profile diagrams, the statemachine dia-
grams, the sequence diagrams, the timing diagrams or the use case diagrams.
UMLseCh will follow the same principle as UMLsec: the profile concerns all
of UML but the behavioural semantics will be limited to a subset of UML.
This means that theoretically, the language defined here can be used with
any diagram of UML. However, for the formal foundations that will describe
the behaviour adopted when applying a change, we will use a restricted part
of UML (i.e. the same subset as the one used for the UMLsec behavioural
semantics). This subset includes simplified versions of Class and Object
diagrams, Statechart diagrams, Sequence diagrams, Activity diagrams, de-
ployment diagrams and Subsystems.

Theoretically, it could be possible to define a formal semantics specifying
the behaviour of a change for any diagram of UML. However, the full UML
specifications having an important quantity of constructs and diagrams, such
a completeness is beyond the scope of this work. In addition, UMLseCh has
not been developed uniquely as a language for model transformation, but
also as a language that verifies the preservation of the security over the
evolution. For this, UMLseCh includes the stereotypes, tag definitions and

33
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constraints of UMLsec. As mentioned in Chapter 3, UMLsec uses a subset of
UML for its formal semantics and tool support. Defining a formal semantics
and behaviour for diagrams outside of this subset would thus only allow one
to run the application of a change modelled by the UMLseCh notation, but
not to verify, using the UMLsec tool, whether the security of the system
modelled on that diagram is preserved when the change occurs. Hence the
UMLseCh formal semantics and abstract syntax will focus on this reduced
part of UML. Note again that this is especially important for the tool sup-
port. The notation can be used outside of the subset to model changes in
general but no formal behaviour will be given for applying these changes.
It leaves room for users to apply UMLseCh on any diagram and to define
their own semantics for the parts of UML not covered in the following. One
could also extend the tool so that it covers a broader user-defined semantics.
Alternatively, UMLseCh could also be used intuitively for the parts not cov-
ered by the formal foundations. Again, this would be limited to a modelling
scope since no tool support could be provided for this part. The choice to
either use the notation intuitively or to extend the formal semantics is left
to the reader. In the following, the descriptions and examples will remain
within the simplified part of UML defined in this section.

4.1.2 UML Namespaces

As mentioned above, UMLseCh is based on the lightweight extension mech-
anism of UML, which uses string-based notation. However, such sequences
of characters are insufficient to graphically represent model transformation
in a complete way. Indeed, most of the UML elements commonly used in
diagrams, such as Classes, Lifelines or Components, are represented with a
graphical notation, which cannot be shown in a tagged value. Alternatively,
they could be represented by defining a syntax only based on strings, but this
solution would conisderably reduce the readibility of the notation. Hence to
define a language that allows complete graphical transformation using only
stereotypes, tagged values and UML-compliant notation, we will use names-
paces.

A namespace is "an element in a model that contains a set of named
elements that can be identified by name" [OMG09]. It is represented in
[OMG09] by the construct Namespace and is itself a named element, which
provides the possibility to define hierarchies. The notation of a namespace
is the name itself and the notation for hierarchies is defined by a double
colon. For example, a named element n contained in a namespace m2, it-
self contained in a namespace m1, will be written m1 :: m2 :: n. Using
namespaces to store UML elements evidently requires to follow the UML
specifications for namespaces. One of the consequences is that only certain
model elements can be contained in a namespace, while some others are not
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Changens

A

Figure 4.1: Example of namespace

allowed. More specifically, only named elements, defined in [OMG09] by the
construct NamedElement, can be owned by a namespace. It actually repre-
sents a very large part of the UML elements and includes all of the elements
of our simplified version, described in the previous section. The restriction
for namespaces to own only named elements thus will not affect our notation.

UML does not provide a specific notation for namespaces, since concrete
subclasses of the abstract metaclass Namespace will define their own specific
notation. Theses subclasses can be commonly used model elements, such
as Classes, Nodes, Statemachines or Packages, which indeed have their own
graphical notation. To fulfill our need of a UML elements container, we will
define an abstract graphical representation for namespaces. A namespace is
represented by a rectangle with a hexagon at the top left, which contains the
name of the namespace preceded by the word "ns". Hierarchical representa-
tion can be used in the name of a namespace. Note that this representation
is abstract, since namespaces can have their own notation at the concrete
level. This means that a classical UML tool case does not provide such a
notation "out of the box" and the concrete representation has to be used.
Depending on the context, the concrete representation could be a package,
a statemachine or a interaction for example. Figure 4.1 shows an example
of a namespace called "Change" and containing a state called "A". Again,
this state will be contained in a statemachine at the concrete level and in a
tool1. Following the UML specifications, the text notation that can be used
to represent the state A is: change :: A. This namespace can be used in
a change stereotype to reference the container of a complex substitutive or
additive model element. This will be detailed in Sections 4.2.3 and 4.2.4.

Elements that are not named elements will not be covered by the UMLseCh
notation. The reader should consult the UML specifications to find out
whether a model element is a named element and thus can be stored in a

1Note that a state machine should contain at least one initial state to be executable.
The UML specifications and the model of statemachines given in those specifications,
however, allow statemachines to have no initial state [OMG09].
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namespace. If it is not the case, the element will not be usable with the
UMLseCh notation. Again, the possibility to extend the formal semantics
and the tool support to cover other diagrams and complex model elements,
and thus to define a behaviour for model elements that are not NamedEle-
ment, is left to the reader.

4.2 The UMLseCh Extension

4.2.1 The Profile

As it is specified in the Catalog of UML Profile Specifications [Pro], a UML
profile does one or more of the following:

• Identifies a subset of the UML metamodel.

• Specifies "well-formedness rules" beyond those specified by the identi-
fied subset of the UML metamodel.

• Specifies "standard elements" beyond those specified by the identified
subset of the UML metamodel.

• Specifies semantics, expressed in natural language, beyond those spec-
ified by the identified subset of the UML metamodel.

• Specifies common model elements, expressed in terms of the profile.

This Section, together with the Sections 4.2.2, 4.2.5 and 5.4, define the
UMLseCh profile, following the structure described above.

The UMLseCh profile concerns all of UML. Figure 4.2 shows the list of
stereotypes, together with their tags and constraints. These stereotypes do
not have parents. Figure 4.3 shows the corresponding tags. The tag ref
is a DataTag and the tags substitute, add and delete are all ReferenceTags.
It is actually difficult to determine if theses three tags are DataTags or

ReferenceTags. Indeed, as it will be described in the following sections, the
UMLseCh tagged values associated to these three tags are model elements,
but those model elements do not exist on the model yet. UMLseCh models
possible future changes, thus theoretically, the substitutive or additive
model elements do not exist on the model yet, but only as an attribute value
inside a change stereotype2. However, at the concrete level, i.e. in a tool, this
value is either the model element itself if it can be represented with sequence
of characters, or a namespace containing the model element. This could
be considered as a DataTag, provided that model elements and namespaces

2The type change represents a type of stereotype that included « change »,« substitute»,
« add » or « delete».
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Stereotype Base Class Tags Constraints Description
change all ref, change FOL formula execute sub-changes

in parallel
substitute all ref, substitute, FOL formula substitute a model

element
add all ref, add, FOL formula add a model

element
delete all ref, delete FOL formula delete a model

element
substitute-all all ref, substitute, FOL formula substitute a

group of elements
add-all all ref, add, FOL formula add a group

of elements
delete-all all ref, delete FOL formula delete a group

of elements

Figure 4.2: UMLseCh stereotypes

containing model elements are considered as a data. However, the name of a
namespace is a reference to the namespace itself. In addition, assuming that
a string-based model element notation used in the tagged values of UMLseCh
represent a reference to the model element that it describes, it can then be
considered as a ReferenceTag. For example, the stereotype « Internet» used
as the value of a tag substitute represents a reference to the actual stereo-
type, and not the stereotype itself. UMLseCh tags are thus all considered as
ReferenceTags. Figure 4.2 and Figure 4.3 both follow the notation used in
[Jür10] for the UMLsec profile definition3. As for UMLsec, the concepts of
UMLseCh can be used at both the type and the instance level. However, for
simplicity reasons, the examples and description in the following will only
apply to the instance level. A complete description of the UMLseCh stereo-
types and their associated tags is given in the following sections. The formal
meaning of the stereotypes as well as the formal behaviour of the changes
that they model are given in Chapter 5. Although UMLseCh could be used
alone as an evolution modelling language, it is initially intended to model the
evolution in a security oriented context. It is thus an extension of UMLsec
and requires the UMLsec profile as prerequisite profile. The diagram repre-
senting the UMLseCh profile is shown in Figure 4.4.

3Although the UMLsec profile was written following a previous version of UML, the
UMLseCh profile follows the same notation since it still respects the current specification
of UML, defined in [OMG09].
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Tag Stereotype Type Multip. Description
ref change, substitute, add, list of strings 1 List of labels

delete, substitute-all, identifying a
add-all, delete-all change

substitute substitute, list of pairs of 1 List of
substitute-all model elements substitutions

add add, add-all list of pairs of 1 List of
model elements additions

delete delete, delete-all list of pairs of 1 List of
model elements deletions

Figure 4.3: UMLseCh tags

first order logic that represent
whether a change referenced by
the associated ref value is
allowed to happen.

list of constraint expressed in
All the stereotypes have a

tagged values have the same size.
For each stereotype, the lists of its

«stereotype»

add:Evolution

Add
«stereotype»

ref:[String]

Delete

delete:Evolution

«stereotype»
Substitute−all

«stereotype»
Add−all

«stereotype»
Delete−all

ref:[String]

«profile» UMLseCh

1..* 1..*

«stereotype»
Substitute

ref:[String]

1..*

1 1 1

substitute:Evolution

«stereotype»

change:[[String]]

Change

ref:[String]

e’:NamedElement
e:NamedElement

Evolution

Figure 4.4: UMLseCh Profile
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4.2.2 Description of the Notation

« substitute»

The stereotype « substitute» attached to a model element denotes the pos-
sibility for that model element to evolve over time and defines what are the
possible changes. It has two associated tags, namely ref and substitute. These
tags are of the form { ref=CHANGE-REFERENCE} and
{ substitute= (ELEMENT1, NEW1), . . . , (ELEMENTn, NEWn) }, with n ∈ N.
The tag ref takes a list of sequences of characters as value, each element
of this list being simply used as a reference of one of the changes modelled
by the stereotype « substitute». In other words, the values contained in this
tag can be seen as labels identifying the changes. The values of this tag
can also be considered as predicates which takes a truth value that can be
used to evaluate conditions on other changes. This usage of the values of
tags ref will be explained further in this section. The tag substitute has a
list of pairs of model element as value, which represent the substitutions
that will happen if the related change occurs. The pairs are of the form
(e, e′), where e is the element to substitute and e′ is the substitutive model
element. More than one occurence of the same e in the list is allowed4. How-
ever, two occurences of the same pair (e, e′) cannot exist in the list, since
it would modelled the same change twice. For the notation of this list, two
possibilities exist. An element of the pair is written as the model element
itself if it can fit in the tag notation, i.e. if it is based on characters. It is
for example the case for a stereotype, which would result to the notation
{ substitute= (« stereotype »,e′ }. On the other hand, if the model element
cannot fit in the tag notation (it is the case for example with a class, a state
or a component), it is placed in a namespace and the name of this names-
pace is the element of the pair contained in the list used as tagged value.
The namespace notation allows UMLseCh stereotypes to graphically model
more complex changes, but requires a particular behaviour that will be de-
scribed in Section 4.2.3. Examples will also illustrate such situations further
in this chapter. The element e of a pair (e, e′) representing a substitution
is optional; if the model element that has to be substituted is clearly identi-
fied by the syntactic notation, i.e. if there is no possible ambiguity to state
which model element is concerned by the change modelled by the stereotype
« substitute», the element e can be omitted. On the contrary, if that model
element is not clearly identifiable, it must be used. More precisely, when the
model element to substitute is the one to which the stereotype « substitute»
is attached, the element e of the pair (e, e′) is not necessary. When the model
element concerned by the substitution is a sub-element of the one to which

4UMLseCh aims to model the possible changes that could occur, not one actual
change that will happen sooner or later.
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the stereotype is attached, the element e is necessary5. In the case where
the element e is omitted, the value of the list appears as the element e′ in
the tagged value, instead of the pair. Note that this is just a syntactic sugar.
More precisely, in formal representations required for applying changes, the
substitutions of the list of the tag substitute will always be pairs (e, e′). In
order to identify the model element precisely, we can use, if necessary, either
the UML namespaces notation or, if this notation is insufficient, the abstract
syntax of UMLseCh, defined in Section 5.4. In the case when the abstract
syntax of UMLseCh is used, the expression is placed in a comment with the
value of the list of the tag ref associated to the change. This comment is
then attached to the concerned stereotype. If the change happens, it is also
important that it leaves the resulting model in a consistent state. Therefore,
to avoid any unwanted results, the values of both the elements of the pair
representing the substitution must be of the same type. If the element e of
the pair (e, e′) is omitted, e′ must be of the same type as the model element
to which « substitute» is attached. This offers a limited protection as it only
ensures that the UML models will remain correct from a syntactic point of
view, but does not guarantee a consistent semantics. For example, it ensures
that a method of a class will not be substituted by an attribute, leaving the
diagram in a inconsistent syntactic state. However, it does not stop one from
modelling the substitution of a stereotype « critical» attached to a class by a
stereotype « Internet», although this is not permitted by the UMLsec Profile
definition. More rules to ensure diagrams consistency will be given further
in Chapter 5. To show how to use the UMLseCh notation, the following
example can be considered. Assume that we want to specify the change of a
link stereotyped « Internet» so that it is now stereotyped « encrypted». For
this, the following:

« substitute»

{ ref= encrypt-link }

{ substitute= (« encrypted», « Internet ») }

is attached to the link concerned by the change. Such an example is shown
in Figure 4.5.

The stereotype « substitute» also has a list of optional constraints formu-
lated in first order logic. This list of constraints is written between square
brackets and is of the form [(ref1, CONDITION1), . . . , (refn, CONDITIONn)],
∀n ∈ N, where, ∀i : 1 ≤ i ≤ n, refi is a value of the list of a tag ref and
CONDITIONn can be any type of first order logic expression, such as A∧B,

5The reason why the stereotype would not be attached to the sub-element itself, other
than because it improves the graphical visibility and readability, could be that the ab-
stract syntax of UMLseCh, define in Section ??, does not allow the sub-element to have
stereotypes.
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Figure 4.5: Example of stereotype « substitute»

A ∨ B, A ∧ (B ∨ ¬C), (A ∧ B) ⇒ C, ∀x ∈ N.P (x), etc. It basically repre-
sents whether or not the change is allowed to happen (i.e. if the condition
is evaluated to true, the change is allowed, otherwise the change is not al-
lowed). As mentioned earlier, an element of the list used as the value of the
tag ref of a stereotype « substitute» can be used as an atomic predicate for
the constraint of another stereotype « substitute». The truth value of that
predicate is true if the change represented by the stereotype « substitute» to
which the tag ref is associated occured, false otherwise. Formally, the pred-
icate should be "x occured" or P (x), assuming that P (x) is the predicate
"x occured" and where x is one of the values of the tag ref. However, this
value of the list of the tag ref, say x, is used as a syntactic sugar for the
atomic predicate P (x), where P (x) is the predicate "x occured"6. Again, if
the stereotype models only one change, the condition can be shown alone on
the diagram and the pair notation can be omitted. To illustrate the use of
the constraint, the previous example can be refined. Assume that to allow
the change with reference encrypt-link, another change, simply referenced as
change for the example, has to occur. The following can then be attached to
the link concerned by the change:

« substitute»

{ ref= encrypt-link }

{ substitute= (« encrypted», « Internet ») }

[change]

This example is shown in Figure 4.6. To express that two changes, referenced
respectively by change1 and change2, have to occur first in order to allow the

6A value of the tag ref could also be considered as an atomic proposition, also called
propositional variable. However, the option of an atomic predicate has been chosen be-
cause predicates can also represent sets, which can also be expressed by a function. From
a high level of abstraction, a function seems easier to represent the predicate than having
to keep as many propositional variables and their truth value as there are values of tags
ref. It will especially be useful later in the UMLseCh abstract syntax where the function
representing the predicate "ref occured" will be defined.
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Figure 4.6: Example of a constraint of a stereotype

change referenced encrypt-link to happen, the constraint:

[change1 ∧ change2]

is added to the stereotype « substitute» modelling the change. If only one
of both the changes is requested, but not necessarily both of them, the
constraint :

[change1 ∨ change2]

is added to the stereotype. Complete examples will be given in Section 4.3.

« add»

The stereotype « add» is similar to the stereotype « substitute» but, as its
name indicates, denotes the addition of new model elements. It has two
associated tags, namely ref and add. The tag ref has the same meaning as in
the case of the stereotype « substitute». The tag add is equivalent to the tag
substitute of a stereotype « substitute» but with the semantic of an addition.
Its value is thus a list pairs of model elements, each pair representing an
addition. The model elements of the pairs can either be represented as a se-
quence of characters and be represented directly in the tagged values or the
name of a namespace if the additive model element is a complex model ele-
ment. Again, complex additive elements will require a particular behaviour
that will be described in Section 4.2.4. The element e of a pair (e, e′) has
a slightly different meaning for a stereotype « add». While with the stereo-
type « substitute», this element represents the model element to substitute,
with the stereotype « add» it represents the model element concerned by the
addition. That can be explained easily. With a substitution, a model ele-
ment is substituted by another model element of the same type. The model
element to substitute hence is present on the model when the substitution
takes place and can either be expressed in the pair representing the change
or be the model element to which the stereotype is attached. With an ad-
dition, no element is being substituted and the stereotype « add» cannot be
associated to a model element that does not exist yet. Instead, the model
element to which the stereotype « add» is attached or the model element e
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of the pair (e, e′) is the "super-element" of the element being added. For
example, considering all types of UML diagrams, a class is super-element of
a method or an attribute of that class, a subsystem is a super-element of
a class and a stereotype can be a sub-element of a class, a link, a depen-
dency or any other model element that can have stereotypes. Again when
the super-element to which the element is added is the element to which the
stereotype is attached, the element e of the pair representing additions, as
for the stereotype « substitute», can be omitted.

The stereotype « add» is a syntactic sugar of the stereotype « substitute»,
as a stereotype « add» could always be represented with a stereotype
« substitute». Indeed, from an abstract point of view, adding a new model el-
ement consists of substituting the empty model element ∅ by the new model
element. More concretely, since the stereotype « add» could not be attached
to the empty model element (and the empty model element could not really
be used in a pair of a tag add either), adding a new model element consists of
replacing the set of model elements concerned by the addition by a new set
containing all the elements of the previous set plus the new model element.
Formally, if s is the set of model element and e the new model element, the
new set is s′ = s ∪ {e}. An addition as a substitution would then consists
of substituting s by s′. This particularity will be visible in the formal repre-
sentation of UMLseCh, described in Chapter 5.

As for the stereotype « substitute», the application of a change modelled
by a stereotype « add» must leave the resulting model in a consistent state.
It is thus also necessary to have values of the same type for both the elements
of a pair (e, e′) representing an addition or, if e is omitted, for e′ and the
elements of the set to which it is added. However, adding a new element
might bring more difficulties and consistency problems than with a substi-
tution, especially with dynamic structure diagrams such as activity or state
diagrams. This comes from the fact that adding new elements might change
the base structure of the diagram or the relations between the elements of
the diagram while a substitution just change one element by another of the
same type. The problems that can arise from adding a new model element
as well as the possible workarounds will be presented further in this chapter.
Rules defining diagrams consistency will also be given.

The stereotype « add» also has a list of constraints formulated in first
order logic, which represents the same information as for the stereotype
« substitute».
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« delete»

The stereotype « delete» is similar to the stereotypes « substitute» and « add»
but, obviously, denotes the deletion of a model element. It has two associ-
ated tags, namely ref and delete, which have a similar meaning as in the case
of the stereotypes « substitute» and « add», i.e. a list of reference names and
the list of model element to delete respectively. Note that here, the elements
of the list used as value of the tag delete are not shown as pairs, since it
just represents the model element to delete. If the list is empty, because the
element to delete is the element to which the stereotype « delete» is attached
and this stereotype models only one possible deletion, the tag delete can be
omitted. On the other hand, if the stereotype « delete» models more than
one deletion and the element to which the stereotype is attached is concerned
by the change, this element must be shown in the list of the tag add. This
difference from the stereotypes « substitute» and « add» ensure that the list
of the tag add will always have the same size as the list of the tag ref.

As for the stereotype « add», the stereotype « delete» is a syntactic sugar
of the stereotype « substitute». Indeed, it could always be represented with
a stereotype « substitute» since deleting a model element could be expressed
as the substitution of the model element by the empty model element ∅. It
could also be seen as the substitution of the set containing the model element
to delete by a new set that is a copy of the initial set without the element to
delete. As opposed to the stereotype « add», the stereotype « delete» could,
if used as « substitute», replace directly the concerned model element by ∅,
since it would be attached to the model element to delete or the latter would
be expressed in the pair representing the deletion. Deleting a model element
might also bring similar consistency problems as in the case of an addition.
As for the stereotype « add», these problems and the possible workarounds
will be developed further in this chapter and rules defining diagrams consis-
tency will be given in Chapter 5.

The stereotype « delete» also has a constraint formulated in first order
logic, which represents the same information as for the stereotypes « substitute»
and « add».

« substitute-all»

The stereotype « substitute-all» is an extention of the stereotype « substitute».
It denotes the possibility for a set of model elements of same type
and sharing common characteristics to evolve over time and what
are the possible changes. In this case, « substitute-all» will always be at-
tached to the super-element to which the sub-elements concerned by the
substitution belong. As the stereotype « substitute», it has the two associ-
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Figure 4.7: Example of stereotype « substitute-all»

ated tags ref and substitute, of the form { ref=CHANGE-REFERENCE} and
{ substitute= (ELEMENT1, NEW1), . . . , (ELEMENTn, NEWn) }. The tags
ref has the exact same meaning as in the case of the stereotype « substitute».
For the tag substitute the element e of a pair representing a substitution does
not represent one model element but a set of model elements to substi-
tute if a change occurs. This set can be, for example, a set of classes, a set
of methods of a class, a set of links, a set of states, etc. All the elements of
the set share common caracteristics. For instance, the elements to substi-
tute are the methods having the integer argument "count", the links being
stereotyped « Internet» or the classes having the stereotype « critical» with
the associated tag secrecy. Again, in order to identify the model element
precisely, we can use, if necessary, either the UML namespaces notation or,
if this notation is insufficient, the abstract syntax of UMLseCh. To replace,
for example, all the links stereotyped « Internet» of a subsystem so that
they are now stereotyped « encrypted», the following can be attached to the
subsystem:

« substitute-all»

{ ref= encrypt-all-links }

{ substitute= (« Internet », « encrypted») }

This example is shown in Figure 4.7.
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A pair (e, e′) of the list of values of a tag substitute here allow a parametri-
sation of the values e and e′ in order to keep information of the different
model elements of the subsystem concerned by the substitution. To allow
this, variables can be use in the value of both the elements of a pair. The
following example illustrates the use of the parametrisation in the stereotype
« substitute-all». To substitute all the tags secrecy of stereotypes « critical»
by tags integrity, but in a way that it keeps the values given to the tags
secrecy (e.g. { secrecy=d }), the following:

« substitute-all»

{ ref= secrecy-to-integrity }

{ substitute= ({ secrecy=X}, { integrity=X}) }

can be attached to the subsystem containing the class diagram.

The stereotype « substitute-all» also has a list of constraints formulated in
first order logic, which represents the same information as for the stereotype
« substitute».

« add-all»

The stereotype « add» also has its extension « add-all», which extends the
stereotype « add» in the same way as « substitute-all» extends the stereotype
« substitute».

« delete-all»

The stereotype « delete» also has its extension « delete-all».

« change»

The stereotype « change» is a particular stereotype that represents a compos-
ite change. It has two associated tags, namely ref and change. These tags
are of the form { ref=CHANGE-REFERENCES } and { change=CHANGE-
REFERENCES1, . . ., CHANGE-REFERENCESn }, with n ∈ N. The tag ref
has the exact same meaning as in the case of a stereotype « substitute». The
tag change, here, takes a list of lists of strings as value. Each element of a
list is a value of a tag ref from another stereotype of type change7. Each list
thus represents the list of sub-changes of a composite change modelled by
the stereotype « change». Applying a change modelled by « change» hence
consists in applying all of the concerned sub-changes in parallel.

7By type change, we mean the type that includes « substitute», « add », « delete» and
« change ». Not only « change ».
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Any change being a sub-change of a change modelled by « change» must
have the value of the tag ref of that change in its condition. Therefore, any
change modelled by a sub-change can only happen if the change modelled
by the super-stereotype takes place. However, if this change happens, the
sub-changes will be applied and the sub-changes will thus be removed from
the model. This ensure that sub-changes cannot be applied by themselves,
independently from their super-stereotype « change» modelling the compos-
ite change.

An example of the use of a stereotype « change» will be given in Section
4.2.4 where the use of complex additive elements will be described.

4.2.3 Complex Substitutive Elements

As mentioned above, using a complex model element as substitutive element
requires a syntactic notation as well as an adapted semantics. An element
is complex if it is not represented by a sequence of character (i.e. it is rep-
resented by a graphical icon, such as a class, an activity or a transition).
Such complex model elements cannot be represented in a tagged value since
tag definitions have a string-based notation. To allow such complex model
elements to be used as substitutive elements, they will be placed in a UML
namespace, described in Section 4.1.2. The name of this namespace being
a sequence of characters, it can thus be used in a pair of a tag substitute
where it will then represent a reference to the complex model element. Of
course, this is just a notational mechanism that allows the UMLseCh stereo-
types to graphically model more complex changes. From a semantic point of
view, when an element in a pair representing a substitution is the name of a
namespace, the model element concerned by the change will be substituted
by the content of the namespace, and not the namespace itself. This type of
change will request a special semantics, depending on the type of element,
that will be detailed by means of examples further in this section.

To define the behaviour of a complex substitution, we need to differenti-
ate two types of model elements. The first type includes the model elements
that connects together two other model elements. We call these elements
connectors. For example, messages, transitions, links or dependencies are
connectors. Concretely, a connector has the two connected model elements
and additional properties, such as a name, stereotypes or boolean conditions.
In our subset of UML, all connectors have at least a name, since the elements
are all named elements. More precisely, they all have an attribute "name",
but this attribute could be the empty string, which represents an unnamed
element. Other properties depend on the type of connector. For example, a
link as a set of stereotypes. A transition has an event and a guard. Chang-
ing the properties of a connector does not require any namespace since their
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notation is based on strings and thus they are not complex model elements.
On the other hand, to model a possible substitution of a connector by an-
other one connecting different model elements, namespaces are required and
it is necessary to represent the connected model elements on the graphical
representation of the substitutive element. The following notation is thus
defined for a substitutive connector : a connected modelled element is rep-
resented by a rectangle with the name of the element inside. Again, the
graphical representation that we provide is an abstract representation. At
the concrete level, the usage will depend on the possibilities that the chosen
tool can offer. Modelling such a change will not always be possible and will
depend on the context. For example, it will not be possible if at least one
of the connected model elements have no name or if it cannot be indenti-
fied on the diagram. However, this situation should be rather unlikely. It
will not always be possible either with state and activity diagrams, because
certain tools use an abstract top state, as the one used for the UMLsec and
UMLseCh abstract syntax. This state, usually used for technical reasons,
contains the elements of the statemachine and those elements cannot be
moved into another namespace. More details, as well as examples, will be
given further in this section. The second type of model elements includes all
the other elements that are not connectors. These elements do not request
any particular semantics to model a change. Examples will also be given in
the following.

We can illustrate the use of namespaces to store complex substitutive
elements with a simple case presented in the following example. Assume a
class diagram with two classes, A and B, and a dependency dep between
them. The class A has the attributes a, b and c and the methods m1 and
m2 and the class B has the attributes d, e and f and the methods n1 and
n2. The change modelled for this example consists in replacing the class B
by the class C, which has the attributes g and h and the methods k1 and k2.
The modelling of this change as well as its application are shown in Figure
4.8. Certain changes could however be simpler and thus not require complex
model elements. Therefore, one should ensure that using a complex model
element is imperative. Note that some parts of model elements might not
be accessible to the UMLseCh notation. This is for example the case for the
name of a named element. Indeed, the name of a named element is defined
as an attribute of type String in [OMG09]. However, the UMLseCh profile
defines the values of the tags as pair of named elements. This means that
only named elements can evolve and be used as new model elements.

The previous examples illustrated simple cases since the substitutive
model elements could be easily stored in a namespace and be integrated
in the model after the substitution. As mentioned above in this Section, this
will not be the case with the connectors. To illustrate the use of names-
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Figure 4.8: Model the possible substitution of a Class

paces with connectors, we can consider the following example. Assume a
class diagram with three classes, namely A, B and C and a dependency dep,
stereotyped « call», between A and B. A has the attribute a1, a2 and a3
and the methods m1 and m2. B has the attribute b1 and b2 and the meth-
ods n1 and n2. Finally, C has the attribute c1, c2 and c3 and the method
k1. For this example, the possible change that we model is a substitution
of the dependency dep by a new dependency dep′, also stereotyped « call»,
that now connects B and C. This is shown in Figure 4.9. Note that the
namespace contains only the dependency, not the classes B and C. Again,
the possibility to model such a change will depend on the tool that is used
and the functionalities that it offers8. Only a restricted amount of situation
will allow this way of modelling the change of a connector. For example, as
mentioned above, it will not be possible if at least one of the connected ele-
ments cannot be identified on the graphical notation, although this situation
is unlikely. It might also be impossible for statemachines or activity diagram.

8With ArgoUML, this example can be modelled in the following way: assuming that
the class diagram has been modelled, one creates a dependency between the classes B and
C and then, creates a package. The namespace of the dependency can then be change to
the package. Once it is done, the new dependency can be deleted from the diagram and
the name of the package (i.e. the namespace) containing that dependency can be used as
a reference in the value of the tag substitute. This solution however will not work with
statemachines or sequence diagrams
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Figure 4.9: Model the possible substitution of a dependency

However, using a state in another namespace as substitutive model element
will be possible since states are not connectors and they do not involve any
cross-reference9. An example of this is shown in Figure 4.12 of Section 4.2.4,
where states are placed in a package, although, for different reasons, this ex-
ample models a wrong addition. Because of the requirements defined above,
modelling possible changes with connectors as substitutive model elements
will thus be avoided, unless the situation together with the tool that is used
allows it in an easy way. Deleting the connector and adding a new one with
the intended properties will be preferred to model the possible change. This
can be model with a composite change, described in Section 4.2.2. Addition
and deletion will be discussed in the following sections. Alternatively, one
can also use an expression based on the abstract syntax of transitions, pre-
sented in Chapter 3 and extended in Chapter 5, as the value of the element
e′ in a pair (e, e′) of a tag substitute, since it uses sequences of characters
only. In this case, the readibility will be slightly reduced but no complex
element and thus namespace will be required. Considering the example of
Figure 4.9, the value of e′ could be replaced by the following expression:

d = (”dep′”, A,B,B, « call») d ∈ Dep(CD),

where CD is the class diagram, or this expression could be placed in a
comment note attached to the concerned stereotype.

9A cross-reference here means that the elements used as connected model elements
refer to elements that belong to another namespace. Replacing a connector by another
one having the same connected elements would thus not involve any cross-reference either,
but this will be covered by the string-based modification of the connector properties.
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4.2.4 Complex Additive Elements

Complex additive elements also require a specific semantics. As for the sub-
stitutions, we will differentiate two types of model elements, the connectors
and the rest of the model elements. In addition, our subset of diagrams is
partitioned into two groups: the static structure diagrams, which include the
Class diagram, the Object diagram and the Deployment diagram, and the
dynamic behaviour diagrams, which includes Statechart diagrams, Activity
diagrams and Sequence diagrams. For model elements that belong to static
structure diagrams and that are not connectors, no particular semantics is
necessary to model a possible addition. On the other hand, additions will be
slightly more complicated for connectors and dynamic behaviour diagrams.
As mentioned in Section 4.2.2, certain model elements also require to be
integrated to the model after being added. This means that they need to be
connected to the rest of the diagram, otherwise it would leave the model in
a inconsistent state. This category of model elements includes connectors of
all types of diagrams and any model element from dynamic behaviour dia-
grams, with one exception described below. In certain cases, we can ensure
the integration of the new added model elements with a special behaviour
that we call merge. This operation will be described further in this Section.
Other situations will require more complex additions, which will be detailed
in Section 4.2.5.

For static structure diagrams, as mentioned above, adding a model ele-
ment that is not a connector is easy. Those model elements are, for example,
Nodes, Classes or Components. In this case, modelling the change thus sim-
ply consists in placing the model element into a namespace and use the name
of this namespace as a reference in the relevant pair of the tag add. Such
changes are trivial.

The previous examples illustrated a simple case since the additive model
elements belong to a static structure diagram and are not connectors. It
could thus be easily stored in a namespace and be integrated in the model
after the addition. Some situations will be different and will require the
merge behaviour. The merge, as its name indicates, adds the new model el-
ements and merge the parts of the additive model elements that are already
present on the model. This behaviour will be used automatically if elements
from the existing model are included into the additive part. To illustrate the
use of a merge, we can consider the following example. Assume a Statechart
diagram with three states, namely A, B and C, and two transitions, one from
A to B and one from B to C. The initial and final states are also present
on the diagram. Assume now that one wants to model the possible addition
of a transition from C to B. This can be modelled by placing two states, B
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Figure 4.10: Possible addition of a new transition using the merge

and C, and a transition from C to B in a namespace10. The name of this
namespace is then used as the element e′ of the pair (e, e′) representing the
relevant addition in the tag add11. This model as well as the result of apply-
ing the change is shown in Figure 4.10. Note that if final states are placed
in the namespace containing the additive elements, they will not be merge
with the existing final states, since a statemachine can have more than one
final state. This property also stands for activity diagrams.

There exists one exception to the general principles mentioned in the pre-
vious paragraphs. This exception concerns lifelines of Sequence diagrams.
Indeed, although Sequence diagrams are dynamic behaviour diagrams, life-
lines can be added alone since they do not need to be directly connected to
the rest of the diagram. They can thus be added in a similar way as the
non-connectors elements of static structure diagrams. To model a possible
addition of a lifeline to a Sequence diagram, we will thus place this lifeline
into an namespace and use the name of this namespace as a reference in
the pair of the tag add representing the change. Applying the change will
then simply consists in adding the lifeline contained in the namespace to the
model. An example of such a change is shown in Figure 4.11, where a life-
line, named C, could possibly be added, if the change occurs, to a Sequence
diagram containing two lifelines, A and B.

4.2.5 Problems with Stereotypes « add» and « delete»

As mentioned in Section 4.2.2, adding or deleting a model element might
generate problems or difficulties that do not exist with a substitution. This

10As explained, this namespace will be a state machine at the concrete level.
11This principle could also be used with subsitutions. However, even if it could be useful

in certain cases, it is not indispensable. For simplicity reasons, it will not be defined in
this version of UMLseCh.
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is mainly due to the fact that a substitution simply means to change a model
element by another one of the same type. On the other hand, an addition of
a model element means, in addition to adding the element, to adapt the new
model in order to integrate the new element. Deleting also requests to adapt
the model resulting from the deletion. This Section illustrate such situations
by means of examples. More generally, both the addition and the deletion
will have to respect constraints to ensure the diagrams consistency. These
rules will be detailed in the formal foundations of the notation, in Chapter
5.

The case of « add»

To illustrate a case of inconsistency created by an addition, we can consider
the following example. Assume a State Diagram with four states: the ini-
tial and final states, and the states A and B. In addition, the possibility of
adding a new state, called C, is considered. This new state would directly
follow the state B and precede the final state. This can be seen as adding
a state on the transition from B to the final state. A stereotype « add»,
together with the related information in the tagged values, could thus be
attached to the subsystem. However, applying the change modelled by this
stereotype would lead to the situation shown in Figure 4.12, which presents
an inconsistent diagram (the state C is pending on the diagram and is not
connected to any part of it) and represent a change obviously different from
the one initially intended. This problem actually comes from the fact that,
although intuitively the change can be seen as the addition of a state on the
last transition, the concrete addition will just add a state disconnected from
the rest of the diagram. This follows the correct semantics of the stereotype.
Indeed, the stereotype « add» only model the addition of the state C, and
nothing else. But the change that was intended was the addition of the state
C, the modification of the transition between the state B and the final state
so that it is now connecting the state B to the state C, and finally the ad-
dition of a transition between the state C and the final state. It is hence a



CHAPTER 4. MODELLING EVOLUTION WITH UMLSECH 54

«add»
{ref = add−state}
{add = SubState}

C

System

A

B
C

A

B

System

ns SubState

Figure 4.12: Inconsistent diagram resulting from an inappropriate addition

wrong modelling of the intended change more than a wrong semantics of the
stereotype « add». To model the change correctly, several possibilities exist.

A first solution would be to substitute the state B by a sequential com-
posite state containing and arranging the additional elements in the intended
way. To model such a change, a stereotype « substitute» with the related in-
formation can be attached to the state B of the statechart diagram. This
situation is shown in Figure 4.13. Following the semantics of the stereotype
« substitute» in the case of complex substitutive elements, presented in Sec-
tion 4.2.3, the application of this change would generate a result rather close
to the intended one. Concretely, the last part of the statechart diagram
would be contained in the composite state, which would hence represents
a sub-diagram. The result obtained after the substitution and the result
initially intended are equivalent, since when the composite state is entered,
the flow will visit the state B then he state C, then exit the composite state
and leave the diagram through the final state. However, although both the
diagrams are equivalent, the result remains slightly different from the one
expected12. Other possibilities exist.

Another solution would be to use the merge operation. However, as ex-
plained in Section 4.2.4, the final states will not be merged. In this case,
a final state is necessary in the additive namespace in order to model the
transition from the state C to the final state. Therefore, after the merge,
the remaining final state and final transition from the state B have to be
deleted. These changes should also happen together, since they represent
one global change, and thus should be modelled by a stereotype « change»

12Provided that the notation accepts the possibility for the two elements of a pair of
a tag substitute to be of different types, the namespace having the substitutive elements
could contain the state B, the state C and the transition between them. This solutin is
however not allowed by the actual version of UMLseCh.
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Figure 4.13: A solution to the problem of Figure 4.12
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SubStatens
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f

Figure 4.14: Another solution to the problem of Figure 4.12

representing composite changes.

Finally, another solution would be to model the change with three stereo-
types, each of them modelling one of the three changes necesseray to add the
state C. These three changes, as mentioned above, are the addition of the
state C, the modification of the transition between the state B and the final
state so that it is now connecting the state C to the final state and finally,
the addition of a transition between the state B and the state C. However,
this solution will work only if the three changes happen simultaneously].
This can be modelled by using a composite change, as shown in Figure 4.14.
For simplicity reasons, we name the final state f. Note that this solution is
not simpler than the solution using the merge.

As mentioned above, the changes modelled by stereotypes « add» will
have to respect additional constraints to ensure the consistency of the di-
agram, otherwise the model will not be allowed. This will be described in
Section 5.4.

The case of « delete»

Applying a change modelled by a stereotype « delete» could also leave the
model in an inconsistent state. For example, deleting a lifeline of a sequence
diagram connected to another lifeline by messages would result to the sit-
uation shown in Figure 4.15. No extra semantics have been defined for the
behaviour of the application of a change modelled by a stereotype « delete».
Applying a deletion modelled by a stereotype « delete» on a model element
will thus not be allowed if it does not fulfill the constraint defined in Section
5.4, which is the case of the stereotype « delete» of Figure 4.15.
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System

Figure 4.15: Incorrect diagram resulting from an unallowed « delete»

4.3 Examples of Use of the Notation

4.3.1 First Simple Example

As a first example, we give the following simple scenario. A sender sends data
to a receiver. The link between the sender and the receiver has the stereo-
type « Internet». Therefore, the current design does not provide security,
since the stereotype « Internet» is not sufficient to ensure any of the main
security requirements (i.e. secrecy, authenticity, integrity and freshness).
However, at the modelling stage of the development, the possibility to evolve
towards a secure environment is already considered13. The security require-
ment that could be added is the preservation of the sender’s data secrecy.
This can be modelled by having a « critical» stereotype with the tagged value
{ secrecy=d } on the class diagram, where d represents the sender’s data, and
by encrypting the link between the sender and the receiver. This possible
evolution can be modelled by adding a stereotype « add» with the tagged
values { ref=make-data-secret } and { add=« critical » { secrecy=d } } on the
current diagram. Note that although the value of the tag add might look like
two model elements, it actually represents only one element, i.e. the stereo-
type with its associated tagged values. The element in the tag add can be
shown alone and not in the form of a pair, since the stereotype « substitute»
is attached to the class to which the stereotype « critical» should be added.

To ensure data secrecy, as mentioned above, the stereotype « critical»
with the tagged value { secrecy=d } is not sufficient. The link has to be
encrypted. Therefore, one also has to change the stereotype « Internet» of
the Deployment diagram so that it is now stereotyped « encrypted». Again,

13The reason why the secured design is not applied directly could be, for example,
because of budget restrictions, or because the technology is awaited, but not ready yet.
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this change can be modelled by adding the stereotype « substitute» with
the tagged values { ref=make-link-secure } and { substitute= (« encrypted»,
« Internet ») } on the link stereotyped « Internet». Because the encryption
of the link is compulsory to ensure the data secrecy, the change make-link-
secure should happen first to allow the change make-data-secret to take place.
Indeed, applying the addition of the stereotype critical without having an
encrypted link would result to a model that is correct syntactically, but
incorrect according to the UMLsecsemantics. To model this constraint, the
following condition can be attached to the stereotype labelled make-data-
secret:

[make-link-secure].

With this condition, the change make-date-secret can be applied only if
the link is already encrypted, which ensures the data secrecy requirements.
Note that the change make-link-secure can happen although the addtition of
« critical» does not take place. Indeed, encrypting a link in an environment
where no security requirements are defined does not affect the security14.
The diagram of this example is shown in Figure 4.16. Note that we ensured
the preservation of the security manually in this example by forbidding the
change make-date-secret to occur before encrypting the links. UMLseCh
aimed to verify such requirements. Thus if the condition was not [make-
link-secure] was not added to the stereotype « add», a tool implementing
UMLseCh should warn that the security will not be preserved over that evo-
lution.

In this example, there are two stereotypes representing possible changes
that could occur on our model. Therefore, there are several possible tran-
sitions, each resulting from the application of one of the changes modelled
by the stereotypes. One could change the model by adding the stereotype
« critical» on the sender class, i.e. apply the stereotype « add» with refer-
ence { ref=make-data-secret }. However, this transition is not allowed since
it violates the constraint

[make-link-secure].

Another transition could be to substitute the stereotype « Internet» with
the stereotype « encrypted». This transition is correct. Indeed, one could
certainly decide to encrypt the link although the secrecy of the data is not
requested. Finally, one could apply both changes on the model. This tran-
sistion is, of course, also allowed. The model resulting from the application
of this particular evolution is shown on Figure 4.17.

14But might require unecessary ressources!
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Figure 4.16: First example of evolution
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Figure 4.17: One application of the modelled possible changes



CHAPTER 4. MODELLING EVOLUTION WITH UMLSECH 60

4.3.2 Booking a Flight!

For the second example, we use the following scenario. An airline decides to
offer the possibility for its customers to book a flight online. Online check-in
is also considered, but because of budget restrictions, this feature has to be
postponed to future evolution. To model such a system, we define a Subsys-
tem with an object diagram and an activity diagram. The object diagram
has two objects, one representing the ticketing system and one representing
the customer. To book a flight, the customer’s system will call some of the
operations offered by the ticketing system. There is thus a dependency with
the stereotypes « call» between the customer and the airline system. The
process of booking a ticket requires the customer’s personal information to
travel through the system. This personal information must remain secret,
therefore, a stereotype « critical» with an associated tag secrecy is attached
to the object representing the client. The other attributes and methods nec-
essary to model the environment will also be present on the objects of the
diagram. The activity diagram describes the workflow of a flight reserva-
tion. Since the future addition of an online check-in is already considered,
this possible evolution can be modelled with UMLseCh stereotypes on both
diagrams.

To allow check-in, the ticketing system would need an extra operation
that we call checkIn. To model this possible addition, we thus add the
stereotype « add» with the tagged values { ref= add-checkIn-operation } and
{ add= checkIn (p:PersonalData, b:BookingData):Boolean } on the object
T:Ticketing. Note that we use the syntactic notation defining operations
in the value of the tag add, so that it cannot be confused with other model
elements that could also be added or changed, such as attributes or stereo-
types. Note also that the stereotype « add» being attached to the object
T:Ticketing and the model element to add being an operation, the place
where the model element should be added is implicit and therefore the the
element in the tag add can be shown alone instead of in the form of a pair.
Since the object C:Client accesses the ticketing system through its interface,
we also add the operation in the interface. Of course, we ensure that the
operation is added to the class first.

This new check-in functionality also changes the workflow of booking a
flight. Therefore, it is necessary to update the activity diagram to model
the possibility of using the check-in functionality during the process of a
flight reservation. In this particular situation, we need to add an optional
online check-in on the workflow, which means new actions, decision nodes
and activity edges. These new model elements can be put together in order
to form a partial activity diagram that represents the check-in action. By
partial, we mean that it is not a full activity diagram, but just a restricted
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part that contains the relevant model elements. Concretely, this partial di-
agram contains the additive model elements requested to add the check-in
functionality. This represent a complex additive element, thus following the
behaviour described in Section 4.2.4, these model elements are stored in a
namespace, called CheckIn. To easily integrate the additive model elements
to the rest of the activity diagram, some elements of the initial model will be
included to the namespace CheckIn. If the addition happens, these elements
will hence be merged with the existing ones, as described in Section 4.2.4.
However, the final node, following the node Book on the workflow, as well as
the transition between the node Book and the final node, will remain after
the application of change, although they should disappear. A stereotype
« delete» is thus attached to both of them. Applying the deletion first is
not allowed, because it would leave the diagram in an inconsistent state and
applying the addition first will not ensure that the two stereotypes « delete»
will be applied after. The three changes thus have to take place simultane-
ously. This is modelled by a composite change. The following stereotypes
will thus be applied on the activity diagram. A stereotype « add» with the
tagged values { ref= add-checkIn } and { add=CheckIn } will be attached to
the subsystem, a stereotype « delete» with the tagged value { ref= delete-
final-transition } will be attached to the transition between the activity node
Book and the final activity node, and a stereotype « delete» with the tagged
value { ref= delete-final-node } will be attached to the final activity node.
Since the changes modelled by these stereotypes must happen in parallel,
a composite stereotype « change» with the tagged values { ref= add-online-
checkIn } and { change= add-checkIn, delete-final-transition, delete-final-node }
will be attached to the subsystem.

To have Check-in node on the activity diagram, which means a check-in
action in the workflow, it is necessary to have a check-in operation in the
class diagram. Therefore, the change add-online-checkIn can happen only if
the operation added by the change has happened. To model this constraint,
the condition [add-check-in-method] is added to the stereotype with reference
add-online-checkIn. The subsystem modelling the ticketing system is shown
in Figure 4.18. Note that in this example, the condition does not ensure a
security concern.

In this example, a few transitions are possible for the subsystem. We
consider the one applying all the changes. This transition consists in adding
the operation on the class diagram, then on adding the check-in action on
the activity diagram. Indeed, the other order is not allowed by the con-
straint [add-check-in-method]. Figure 4.19 shows the model resulting from
the application of the changes modelled by the UMLseCh stereotypes of the
subsystem.
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Figure 4.18: Subsystem for the online ticket reservation service
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Figure 4.19: Application of the change modelled on the online ticket system
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4.3.3 Generalisation - add-all, substitute-all

In this example, we show an application of the stereotypes « add-all» and
« substitute-all». The scenario is similar to the one of the first example,
described in Section 4.3.1: a sender sends data to a receiver. However, here,
the sender does not know the location of the receiver and therefore sends the
data to a server. The server then sends the data to the intended receiver.
The server may also provide extra services (e.g. translate the data, add
additional information, etc). In consequence, the data sent by the server
may be different from the data sent by the sender. Our system already
provides integrity for the data. Nevertheless, as for the first example, the
possibility to include additional security requirements is already considered
at the modelling stage of the development. In this case, the possible evolu-
tion is the following: in addition to preservation of the integrity, the system
should also ensure data secrecy. To model this possible addition, one thus
can add a tag { secrecy=X} on each class having a stereotype « critical»
with associated tagged value { integrity=X}, where X is the meta-variable
representing the data. However, instead of adding a stereotype « add» with
the related tagged values on each class having a stereotype « critical» and a
tagged value { integity=X}, we add a stereotype « add-all» on the subsystem
with the tagged values { ref=make-data-secret } and { add= ({ secrecy=X},
{ integrity=X}) }, which represents the model elements to add and model
elements are concerned respectively.

As explained in the example of Section 4.3.1, the stereotype « critical»
with the tag { secrecy=X} is not sufficient to ensure data secrecy. The link
has to be encrypted. Again, the possibility to encrypt all the links of the
model in the future can be modelled by using the stereotype « substitute-all»
with the tagged values { ref=make-link-secure }, and { substitute= (« Internet »,
« encrypted») }. For the same reason as the one in the first example, the
following constraint, is attached to the stereotype with reference { ref=make-
critical }:

[make-link-secure].

On the other hand, encrypting all the links although the change make-
critical has not happened is allowed, since it does not affect the security of
the system. The diagram of this example and the result of applying the
changes modelled by both stereotypes are shown respectively in Figure 4.20
and Figure 4.21.

4.3.4 Selection of links - substitute-all

This example aims to show that the selection of the model elements on
which the changes should apply can be define precisely. To show this, we
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Figure 4.20: Example of use of « add-all» and « substitute-all»
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give the following scenario. A client can exchange data with a server and
another client, called secured client can exchange secret data with a secured
server. Both servers can also communicate to exchange data. At the mod-
elling stage of the development, the links of the deployment diagram are
stereotyped « Internet» and therefore do not provide any secrecy of the data.
However, the possibility to add this security requirement is considered as a
future change, postponed to the moment when the budget will be available.
This evolution would consists in encrypting some of the links of the deploy-
ment diagram, i.e. in changing some of the links stereotyped « Internet»
so that they would be stereotyped « encrypted». More precisely, when the
change occurs, the links concerned by this substitution will be the link be-
tween the secured server and the secured client and the link between the
two servers. On the other hand, the link between the normal (i.e. not se-
cure) client and the normal server will not need to be encrypted. To model
this, a stereotype « substitute-all» with the tagged values { ref=make-links-
secure } and { substitute= (l1, l2, « encrypted») } is attached to the subsys-
tem. Here, since only certain specific links are concerned, the first value of
the pair representing the substitution needs to be defined. Since the links
of the diagram do not have any specified unique name, we cannot use the
classical UML composite namespace notation. Instead, we use the abstract
syntax of deployment diagrams defined in Section 5.4. In consequence, to
express precisely which links should be affected by the changes, the following
expression is placed in a comment note attached to the stereotype labelled
make-links-secure:

{ pattern= {l1 = (nds(l1), ster(l1)), l2 = (nds(l2), ster(l2))} }

where nds(l1) = (SClientnode, SServernode), nds(l2) = (Servernode, SServern-
ode) and ster(l1) = ster(l2) = {« Internet »}.

The diagram of this example is shown in Figure 4.22 and the transition
resulting from applying the changes is shown in Figure 4.23.

4.3.5 Unsecured evolution

Figure 4.24 shows an obvious example of an evolution that does not preserve
the security.
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Figure 4.22: Example of use of « substitute-all» and pattern
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Figure 4.24: Unsecure evolution
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Chapter 5

Formal Foundation of
UMLseCh

5.1 General Concepts

Before defining the formal representation of the UMLseCh diagrams and the
semantics of the application of a change, we need to define general principles.
The UMLsec and UMLseCh abstract syntax are both based on n-tuples and
sets and thus, all of the concepts will be described using set theory.

The most general concept that we define is the concept of UML named
element, which is an element that "may have a name" [OMG09]. We define
the set Elements as the set of the instances of the named model elements
defined on a model instance. In the abstract syntax, the model elements
will all be represented with their own representation using n-tuples. At this
point, we define the general representation of a UML named element.

Definition 5.1. A UML named element is a tuple e ∈ Elements such
that e = (e1, . . . , en), with n ∈ N, where the k first elements, with k ∈ N,
1 ≤ k ≤ n, are names and the n − k other elements are named elements or
sets of named elements. If k = 0, the named element has no name. If k ≥ 1,
the named element has k names and is defined by e = (e1, . . . , ek, . . . , en)
where e1, . . . , ek are names.

In addition to named elements, we can define namespaces. A names-
pace is defined in [OMG09] as an abstract container of named elements, the
namespace being itself a named element. We assume a set Namespaces
that contains all the namespaces of the instance of a model and give the
following definition.

Definition 5.2. A UML namespace is a pair (n, elts), with n ∈ String
the name of the namespace and elts ⊆ Elements a set of model elements
contained in the namespace.
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Since namespaces are themselves named elements, they can be contained
in namespaces. We thus define a top namespace as a namespace that is
not contained in any other namespace. In addition, any named element is
contained, possibly in a nested way, in a top namespace.

Definition 5.3. A top namespace is a namespace that is not contained in
any namespace. All of the UML named elements are contained directly or
indirectly in a top namespace.

The set StereoNm is the set of stereotype names. This set includes
the UMLseCh stereotypes, such as « change», « substitute» or « delete-all»,
as well as the UMLsec stereotypes, such as « critical», « fair exchange» or
« secure dependency». It also includes some of the UML stereotypes, such as
« call» and « send», and the user defined stereotypes. We differentiate the
stereotype definitions from the stereotype instances. A stereotype definition
is a stereotype name s ∈ StereoNm. We assume a function that maps a
stereotype definition to its associated tag definitions. A stereotype instance
is a stereotype applied on a model element in the instance of a system. It
has its owned associated tagged values for each tag definition. The set
Stereotypes represents the set of all instances of stereotypes. A stereotype
instance must be an instance of a stereotype definition, as defined in the
following.

Definition 5.4. An instance of a stereotype is defined as sτ ∈ Stereotypes,
where s ∈ StereoNm is the stereotype definition of sτ .

This simply ensure that any stereotype instance is an instance of a stereo-
type defined in the set StereoNm. Note that by stereotype in the following,
we always mean stereotype instance. We will explicitly precise when an el-
ement refers to a stereotype definition. We also define a function τ that
returns the stereotype definition of a stereotype instance.

Definition 5.5. Let s be a stereotype definition, such that s ∈ StereoNm
and sτ be a stereotype instance, such that sτ ∈ Stereotypes and such that
sτ is an instance of the stereotype definition s, as defined in the definitoin
5.4, τ is defined as:

τ : Stereotypes→ StereoNm
τ(sτ ) = s

The semantics of the stereotype definitions can be refined by defining
particular types. For example, the stereotypes of UMLsec could be consid-
ered as being of the type security, which represents stereotypes modelling
security requirements. In the following, we will define the type change for
the stereotype definitions of UMLseCh. More precisely, all of the stereotypes
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defined in Figure 4.2 are of the type change. Formally, the set ChangeNm
represents the set of stereotype definitions of type change. It is defined as
follow.

Definition 5.6. The set ChangeNm ⊂ StereoNm is the set of definitions
of stereotypes of type change, such that:

ChangeNm ≡ {« change»,« substitute», . . . ,« delete-all»}1

The stereotypes of type change thus also belong to a particular set. The
set Change is the set of instances of stereotypes of type change, such that
Change ⊂ Stereotypes. Formally, a change stereotype can hence be pre-
cisely specified by the following definition.

Definition 5.7. A stereotype of type change is a stereotype instance sτ ∈
Change such that s ∈ ChangeNm.

For tag definitions, we focus on the instance level because the elements
that will be used for the application of changes are tagged values. These
values, associated to tags on the instance of a model, are sufficient to apply
the concepts presented in this chapter. However, to completely define tags,
assume the set TagNm of tag definitions. It includes all the tag definitions
of the stereotype definitions. Formally, we have TagNm ≡ ∪stagnm(s),
∀s ∈ StereoNm, where we suppose a function tagnm that return the tag
definitions of a stereotype definition. On the other hand, the set Tag is the
set of the tags of stereotype instances. Any tag associated to an instance of a
stereotype applied on a model element belongs to this set. As for stereotypes,
the semantics of tags can be refined by giving them a type. In particular,
the tags associated to UMLseCh stereotypes will be considered as tag of
type change. The set TagChange is the set of the tags of such type. As
described in Chapter 4, the tags that can be attached to stereotype of type
change are the tags ref, change, substitute, add and delete. Therefore, the set
Tag can be disjointly partitioned into the sets TagRef of instances of tag
ref and TagTr of instances of tag change, substitute, add and delete. We also
define the set Values of values of the tags. This set contains all the values
that are given to tags on an instance of a model. Formally, the type of tags
change can be defined as follow.

Definition 5.8. Let tags(s) be a function that returns the tags of a stereotype
s. A tag t : t ∈ tags(s) is of type change if s ∈ Change.

The function tags will be defined in the following. We can also refine the
UMLseCh stereotypes since they only have associated tags of type change.

1The complete list of stereotypes can be found in Figure 4.2 where the UMLseCh profile
is defined
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Definition 5.9. Let tags(s) be a function that returns the tags of a stereotype
s. If s ∈ Change, we have tags(s) ⊆ TagChange.

The values associated to a tag ref of a change stereotype represents a list
of labels such that each any element of this list can be used as a reference
of the change modelled by the stereotype and its associated tagged value,
which is the value of the list in the tag of type change at the same position as
the label in the list of the tag ref. Such a label provides a means to identify
a change and thus must be unique among the values of all of the tags ref
associated to stereotypes of a model instance. This constraint is verified by
the following definition.

Definition 5.10 (Unicity of the ref values). Let TagRef be defined as
TagRef ≡ {t1, t2, . . . , tk, . . .} and υ(n) be a function that returns the value
of a tag n. Assume T ≡ (υ(t1)]υ(t2)]· · ·]υ(tk)]· · ·) the multiset contain-
ing the values of all the tags ref associated to stereotypes of a model instance
and represented as T ≡ {x1, x2, . . . , xk, . . .}. Then ∀i, j ∈ N such that i 6= j,
we have xi 6= xj.

The function υ that returns the value of a tag, as well as the function
σ that returns the name of a tag, will be defined in the following. In the
next section, we will also define the formal representation of stereotypes
and tagged values. These representations will extend the abstract syntax
of UMLsec. We also need the set of boolean values and the set of strings
for signatures of functions defined below. We thus define the set Boolean
of boolean values as Boolean ≡ {true, false}. We also assume the set
of boolean expressions BoolExp. The set String is the common set of
sequences of symbols and digits.

5.2 New Elements for the UMLseCh Abstract Syn-
tax

To provide formal semantics of the changes modelled by the UMLseCh stereo-
types, some additional concepts need to be added to the abstract syntax.
Stereotypes are mentioned in the abstract syntax of UMLsec, but no precise
representation is given. More precisely, only a set of stereotype names is de-
fined. For UMLseCh, the situation is different, because the semantics of the
changes need to directly use the stereotypes and their associated tagged val-
ues. We thus define the abstract representation of a stereotype as follow. A
stereotype s ∈ Stereotypes is a tuple given by s = (name, tag, constraint)
where:

• name ∈ StereoNm is the name of the stereotype;

• the set tag ⊆ Tag is the set of associated tags; and
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• constraint ∈ BoolExp is the constraint of the stereotype.

Since we define stereotypes as tuples, we can consider the inductive def-
inition of a tuple from the Kuratowski’s definition of ordered pairs and thus
define the kth element of the tuple n as πk(n), ∀k ∈ N. With such a repre-
sentation, it is easy to define the function tags(s) that return the set of tags
of a stereotype s, mentioned in the previous section.

Definition 5.11. Let s be a stereotype such that s ∈ Stereotypes, its set
of tags is given by the function:

tags : Stereotypes→ P(Tag)
n 7→ π2(n)

Note that P(X) represents the power set of X. Following the same
principle, the constraint associated to a stereotype can be obtained as easily
as for the set of tags. Concretely, we have the following function.

Definition 5.12. Let s be a stereotype such that s ∈ Stereotypes, its con-
straint is given by the function:

cons : Stereotypes→ BoolExp
n 7→ π3(n)

The representation of a stereotype defined above also allows us to refine
the definition of a stereotype of type change. More precisely, as defined in
Figure 4.2 in Chapter 4, a stereotype of type changemust have two associated
tags and an associated constraint. Formally, we have the following.

Definition 5.13. ∀s ∈ Change such that s = (name, tag, constraint), we
have:

tag ≡ {ref, change}
where ref ∈ TagRef and change ∈ TagTr.

This definition restricts the use of a stereotype of type change and ensure
that any of such a stereotype has exactly two tags, one of type ref and one
of type change. We also define two functions ref and change, that return
respectively the tag of type ref and the tag of type change of a stereotype s,
such that s ∈ Change.

Definition 5.14. ∀s ∈ Change, its tag of type ref is given by the function:

ref : Change→ TagRef
n 7→ e
where e ∈ tags(n) ∩TagRef .
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Definition 5.15. ∀s ∈ Change, its tag of type change is given by the func-
tion:

change : Change→ TagTr
n 7→ e
where e ∈ tags(n) ∩TagTr.

Note that we can ensure the results of the functions defined above, since
a stereotype of type change has exactly two tags, one in TagRef and one
TagTr, and TagRef ∩TagTr = ∅.

In [OMG09], stereotypes are described as elements that can extend the
semantics of any other model element. In the UMLsec abstract syntax,
however, only certain model elements contain stereotypes. This restriction,
justified in the context of UMLsec, has to be overcome in the abstract syntax
of UMLseCh, since the stereotypes semantics represent possible evolution,
which can be attached to any model element. Precisely, the abstract rep-
resentation of elements that cannot contain stereotypes in UMLsec, such as
states or transition, will be extended so that they can contain stereotypes.
Note, however, that this extension does not concern all of the model element.
In particular, certain model elements, such as attributes or operations of a
class, will not be extended and thus will not have any stereotype. The ab-
stract of UMLseCh will be presented further in this Chapter.

Tagged values also need to be given a formal abstract representation. In
UMLsec, a function mapping a stereotype to its associated tagged values
and constraint is assumed, but again, no precise representation is defined.
In UMLseCh, tags of stereotypes of type change represent an important in-
formation since they contain the information describing the change to apply.
We define a tag as an ordered pair t ∈ Tag given by t = (tag, value), where:

• tag ∈ TagNm, is the name of the tag; and

• value ⊆ Value, is the set of values associated to the tag.

Our representation of tags is then equivalent to the definition of tagged
values in the UML specification. We also define two functions, σ and υ,
mentioned above, that we can apply on a tag. Assume a tag n, such that
n ∈ Tag, the function σ(n) returns the name of the tag n and the function
υ(n), mentioned in the previous section, returns the value of the tag n. As for
stereotypes, since tagged values are represented as ordered pairs, it is easy to
define those functions following the Kuratowski’s definition of ordered pairs.

Definition 5.16. Let t be a tag such that t ∈ Tag, its name is given by the
function:
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σ : Tag→ TagNm
n 7→ π1(n)

Definition 5.17. Let t be a tag such that t ∈ Tag, its set of values is given
by the function:

υ : Tag→ P(Value)
n 7→ π2(n)

As defined in the UML specification [OMG09], a tagged value can only
be represented as an attribute defined on a stereotype. Therefore, we follow
the specifications by attaching a set of tags only to stereotypes in our ab-
stract syntax. If the stereotype does not have any associated tag, the set tag
is simply the empty set ∅. We also define the empty tag, mentioned in the
definition ?? and written ∅, such that ∅ ∈ Tag and all its subsets.

We can refine the value of the tags substitute, add and delete. These
tags have a list of pairs of the form (e, e′) as value, where e is the model
element concerned by the change and e′ is the new model element. Note
that although certain cases of the instance level, described in Section 4.2.2,
will allow the elements of the list to be single elements or the list itself to
be omitted, this is just syntactic sugar. For the formal semantics, we will
assume that the elements can all be identified from the list of values given
by the tags. The value of a tag t of type ref is an ordered set of strings such
that υ(t) ⊂ String. The value of a tag t of type change is an ordered set
of sets of strings, such that ∀l ∈ υ(t), we have l ⊆ T , where T is the set
defined in definition 5.10. Tagged values of stereotypes of type change have
another particularity. They are in the form of lists where the order of the
elements matter, since elements of same subscript in each list are related and
represent one change modelled by the stereotype. Before we can define this
precisely, we need to refine the definition of the empty tag ∅.

Definition 5.18. The set of values of the empty tag ∅ is such that ∀t ∈ Tag,
|υ(∅)| = |υ(t)|

We can now define the set of values of a tag of type change as an ordered
set and give an additional condition to stereotypes of type change so that the
tagged values can be associated together. This condition is that the ordered
sets have the same arity.

Definition 5.19. Let s be a stereotype such that s ∈ Change and tags(s) =
{t1, t2}. The value of the tags t1 and t2 are ordered sets such that |υ(t1)| =
|υ(t2)|. We also assume a function g that returns the kth element of the set
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of values of a tag of type change t, ∀k 1 ≤ k ≤ |υ(t)| and a function f that
return the position of an element in the set of values of a tag of type change.
These funtions will be define in the next section.

Finally, namespaces need to be included in the UMLseCh abstract syn-
tax. As mentioned in Section 4.1.2, a namespace does not exist by itself.
It is modelled by an abstract metaclass and only takes the form of a model
element, such as a class, a statemachine or a package, at the concrete level.
However, as for the graphical notation, we need to be able to represent
namespaces in the abstract syntax in a general form and at a high level of ab-
straction. Since all of the UMLseCh model elements are named elements that
belong to the set Elements and following the definition 5.2, a namespace
can simply be define as an ordered pair n = (sname, elts) ∈ Namespaces
given by:

• a namespace name sname ∈ String; and

• a set elts ⊂ Elements of named elements.

Again, a function that returns the set of named elements of a namespace
can easily be defined. Note that all of the named elements defined here have
a name based on string representation, even if they belong to a different set,
such as StereoNm. It is thus correct to consider the name sname of a
namespace as an element of String.

Definition 5.20. Let ns be a namespace such that ns ∈ Namespaces, its
set of named elements is given by the function:

elts : Namespaces→ P(Elements)
n 7→ π2(n)

Theoretically, any UML named element that can contain other UML
named elements is a namespace. This concerns a large part of the model ele-
ments of our simplified UML since many of them are namespaces. However,
although these model elements are namespaces, they will not be represented
in the form described above because this form is too abstract for some of the
concepts that will be required in the following. All of the elements will thus
be defined with their own representation, extending the UMLsec abstract
syntax in order to include the UMLseCh concepts. As mentioned above,
these model element representations are defined with n-tuples. The general
form for namespaces, defined above, will nevertheless be useful for certain
cases that will describe the application of a change at the highest level of
abstraction. It is therefore useful to have a function mapping a namespace
in its model element representation to the general representation of names-
paces. This is defined in the following.
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Definition 5.21. Let e be a namespace in its model element representation,
such that e = (e1, . . . , en), as defined in the definition 5.1, with n ∈ N,
e ∈ Elements and ek ∈ Elements ∪ P(Elements), ∀k : 1 ≤ k ≤ n. The
function ns, which gives the general representation of e, is given by:

ns(e) = (sname, elts)

where sname ∈ {e1, . . . , ek}, with k ≥ 1 the number of names in e, as defined
in the definition 5.1, or sname is the empty name ∅ if k = 0, is the name of
e and elts ≡ s1 ∪ · · · ∪ sn−k given, ∀i 1 ≤ i ≤ n− k, by:

• si = ei+k, if ei+k is a set;

• si = {ei+k}, if ei+k is a model element; and

• si = z1∪· · ·∪zl, if ei+k is a diagram of the form D = (d1, . . . , dl) ∀l ∈
N and where, ∀j 1 ≤ j ≤ l, zj = dj if dj is a set and zj = {dj} if dj is
not a set2.

5.3 General Application of a Change

At the highest level of abstraction, it is possible to simply represent a change
using the concepts defined in Section 5.1 and 5.2. Assume a function space
that returns the namespace n ∈ Namespace of a model element e, with
e ∈ Elements, or the model element e itself if e is not contained in any
namespace3. Each change, namely a substitution, an addition or a deletion,
can easily be defined as follow.

Definition 5.22 (Local substitution). Let e be a UML model element and e′

the substitutive model element of e, such that e, e′ ∈ Elements, and let N ∈
Namespaces, such that N = (n, S), with n a name of e and S ⊂ Elements,
be the namespace in which e is contained, such that N = space(e). A sub-
stitution of e by e′ in N is defined as (S \ {e}) ∪ {e′}.

Definition 5.23 (Local addition). Let e be a UML model element and e′

the set of additive model elements (which may contain only one element
if only one element is added) to add in e, such that e ∈ Elements and
e′ ⊂ Elements, and assume ns(e) the namespace general representation of
e, such that ns(e) = (n, S), with n a name of e and S ⊂ Elements. An
addition of e′ in e is defined as S ∪ e′.

This definition of an addition provides an automatic support of the merge
behaviour described in Section 4.2.4. Indeed, assume that e′ is a set of in-
stances of model elements, such that e′ = {e′1, e′2, . . . , e′k−1, e′k, e′k+1, . . . , e

′
n},

2This condition is necessary to apply ns on subsystems. See Section ?? for the abstract
syntax of subsystems

3In our subset of UML, this second possibility concerns subsystems.
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with e′i ∈ Elements, ∀i ∈ N, 1 ≤ i ≤ n, and such that e′k−1, e
′
k and e′k+1

are instances already present in the namespace e. The model elements e′k−1,
e′k and e′k+1 will automatically be merged in e, by definition of the union
operator ∪, which remove the duplicate elements of the set.

Definition 5.24 (Local deletion). Let e be a UML model element to delete
from the model, such that e ∈ Elements, and N be the model element in
which e is contained, such that N = (n, S) is the namespace general repre-
sentation of e, with n a name of e and S ⊂ Elements, and space(e) = N .
A deletion of e from N is defined as S \ {e}.

Note that at the concrete level, following the UML nested representation
of namespaces, it is easy to define the namespace of a model element, and
thus a result of the function space. Indeed, using the composite name n1 ::
n2 :: . . . :: nk :: e of a model element e, with k ∈ N, the namespace of e
is nk. The elements e and e′ can also easily be found at the concrete level
since they will be specified in a stereotype of the instance of a model. More
precisely, the element e′ will be found in the values of the tags substitute or
add, as the second element of a pair. The element e will either be the first
element of a pair in the values of the tags substitute, add or delete, or be
the element to which the stereotype is attached. Note however that with
certain complex changes, the element concerned by the change will not be
directly expressable in the pair representing the change or be the element to
which the stereotype is attached. In such a case, the abstract syntax will be
used as a language to precisely represent this element. Concretely, modifying
this element will require formal rules that interpret the expression given to
identify the element so that it can be passed to the function. Such a means
to interpret the rules is beyond the scope of this thesis and concerns tool
support. It is thus not considered here and in particular, we assume that
the model element concerned by the change is given as an argument of the
function. The definitions of the application of a substitution, an addition
or a deletion given above are specific to the concerned model elements, but
do not represent a complete change in an instance model. In particular,
a change should also integrate the results of the definitions 5.22, 5.23 and
5.24 to the model, remove the tagged values associated to that change and
update the function that evaluate the predicate "occured". To update the
tagged values of a change stereotype, such that the information relative to
the change are removed after the change occurs, the following functions will
be necessary.

Definition 5.25. Let t = (tag, values), with t ∈ TagChange, be a tag of
type change such that the ordered set values ≡ {v1, . . . , vk, . . . , vn}, ∀n ∈ N
and ∀k ∈ N, 1 ≤ k ≤ n. The function f is the function that returns the
position of an element of the set values, such that:

f((v1, . . . , vk, . . . , vn), vk) = k
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∀n ∈ N and ∀k ∈ N, 1 ≤ k ≤ n.

Definition 5.26. Let t = (tag, values), with t ∈ TagChange, be a tag of
type change such that the ordered set values ≡ {v1, . . . , vk, . . . , vn}, ∀n ∈ N
and ∀k ∈ N, 1 ≤ k ≤ n. The function g is the function that returns the
element of a given position in a set values, such that:

g((v1, . . . , vk, . . . , vn), k) = vk

∀n ∈ N and ∀k ∈ N, 1 ≤ k ≤ n.

We also assume a function that return the right condition of a change,
based on the value of the tag ref. To update the predicate "occured", we need
to define a function mapping a boolean value to a value of a tag ref. The
set TagRef is the set of the instances of tags of type ref. When a change
occurs, its label is removed from the list of the associated tag ref, this tag
being an instance that belong to the set TagRef . It is hence possible to
define a function ψ representing the predicate "occured", which is true if the
change labelled by the tag ref given as argument of the predicate occured.

Definition 5.27. The function ψ representing the predicate "occured" is de-
fined as:

ψ : String→ Boolean

n 7→
{
true if 6 ∃r : r ∈ TagRef , n ∈ υ(r)
false if ∃r : r ∈ TagRef , n ∈ υ(r)

To integrate the result of a substitution, an addition or a deletion to the
rest of the model, the definitions of the application of a change given above
can be refined so that the local change is reflected to the whole model. Intu-
itively, substituting a model element simply consists in replacing that model
element by another one on the model. This is described in the definition 5.22.
However, formally, when the model element is substituted by the other one,
the set containing the new element is a new set that needs itself to substitute
the set containing the former model element on the model. A substitution,
represented by the function substitute, can thus be defined recursively.

Definition 5.28 (Substitution). Let e be a UML model element and e′ the
substitutive model element of e, such that e, e′ ∈ Elements, and let N ∈
Namespaces, such that N = (n, S), with n a name of e and S ⊂ Elements,
be the namespace in which e is contained, or the element e itself in its names-
pace representation if e is a top namespace, such that N = space(e). A sub-
stitution of e by e′ is defined by a function substitute(e, e′) such that:

substitute : (Elements×Elements)→ Elements
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(e, e′) 7→
{
e′ if N = ns(e)
substitute(e′′, e′′′) if N 6= ns(e)

where e′′ and e′′′ are such that ns(e′′) = N and ns(e′′′) = (n, (S\{e})∪{e′})).

Note that we can ensure that this recursion is well-founded. Indeed, each
recursive call of the function substitute is made on the "super-namespace"
and the definition 5.3 ensure that we will reach the condition N = ns(e).
Following the same principle, adding or deleting a model element requires to
substitute the initial set to which the model element is added or from which
it is deleted. The functions add and delete can thus be defined using the
recursive function substitute. Note that this shows that « add» and « delete»
are syntactic sugar of « substitute», as mentioned in Section 4.2.2.

Definition 5.29 (Addition). Let e be a UML model element and e′ the set of
additive model elements (which may contain only one element if only one ele-
ment is added) to add in e, such that e ∈ Elements and e′ ⊂ Elements, and
assume ns(e) the namespace general representation of e, such that ns(e) =
(n, S), with n a name of e and S ⊂ Elements. An addition of e′ in e is
defined by a function add(e, e′) such that:

add : (Elements×Elements)→ Elements
(e, e′) 7→ substitute(e, e′′)

where e′′ is such that ns(e′′) = (n, S ∪ e′).

Again, as for the definition 5.23, the merge behavior is automatically
supported by this definition.

Definition 5.30 (Deletion). Let e be a UML model element to delete from
the model, such that e ∈ Elements, and let N ∈ Namespaces, such that
N = (n, S), with n a name of N and S ⊂ Elements, be the namespace in
which e is contained, or the element e itself in its namespace representation
if e is a top namespace, such that N = space(e). A deletion of e from N is
defined by a function delete(e) such that:

delete : Elements→ Elements

e 7→
{
∅ if N = ns(e)
substitute(e′, e′′) if N 6= ns(e)

where ∅ ∈ Elements is the empty model element and e′ and e′′ are such
that ns(e′) = N and ns(e′′) = (n, S \ {e}).
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Thus, to completely apply a change modelled on a model instance, we
execute the following. If the change is allowed, i.e. if the corresponding
condition is evaluated to true and the consistency rules, defined in the next
section, are fulfilled, we apply one of the definitions given above, which apply
the change and integrate it to the rest of the model. We then need to update
the tagged values to remove the information associated to the change that
occured. Let s bet the stereotype modelling the change and v be the tagged
value labelling the change, such that v ∈ V , with V ≡ υ(ref(s)). The change
identified by v is contained in the tagged values of type change of s, at the
same position as v. Let k be that position, such that k ∈ N, it can be calcu-
lated by k = f(V, v). Thus let C be the set of values of the tag of type change
given by change(s), such that C ≡ υ(change(s)), the change c to apply can
be retrieved by c = g(C, k). New tagged values can then be created for s,
such that { ref=V ′ } and { change=C ′ }, where V ′ ≡ V \ {v}, C ′ ≡ C \ {c}
and the tag change can be a tag change, substitute, add or delete. These two
tagged values can replace the former one using the function substitute de-
fined above. Finally, the function ψ is updated such that ψ(v) = true. This
is done automatically since v is removed from the instance values. Note that
an element p of one of the list of the tags ref used as predicate in a condition
of a stereotype of type change can be omitted on the diagram if ψ(p) = true.

Note that we do not describe the case of the composite changes and
the extensions « substitute-all», « add-all» and « delete-all», since those type
of evolutions will use the same concepts as the ones described above, but
applied as many times as necessary to execute all the changes. For the ex-
tensions « substitute-all», « add-all» and « delete-all», the pair representing
the change will be of the form (e, e′) where e is not a model element, but a
set of model element, such that e = {e1, . . . , en} with n ∈ N. Applying
substitute-all(e, e′) is thus equivalent to applying
substitute(e1, e

′), . . . , substitute(en, e
′). The extensions « add-all» and « delete-

all» will follow the same principle.

UMLseCh models possible evolutions and thus, a same model element
could be concerned by more than one change. If a change happens on a
model element that was concerned by more than one possible evolution,
the other possible changes concerning the same model element should be
adapted. One possibility could be to remove those changes, hence to remove
all the pair having as first element the element that was modified. Another
possibility would be to consider that this new element can still evolve. In
this case, the first element of all the pairs that were modelling a change
concerning the modified model element has to be replaced by the new model
element resulting from the change. This second solution allows the evolutions
to evolve themselves with time. Note also that given how we modelled the
changes, a roll-back function can be defined easily.
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5.4 UMLseCh Formal Semantics

In this section, we describe the UMLseCh abstract syntax, which is an ex-
tention of the UMLsec abstract syntax that includes the UMLseCh stereo-
types, as well as the results obtained from applying a change on the several
diagrams and the rules that should define whether a change preserves the
consistency of the diagrams. Note that the abstract syntax of UMLseCh
differs lightly from the UMLsec abstract syntax, but remains similar to it.
In particular, some of the concept defined for the behavioural semantics and
the execution of the UML diagrams are ignored here since they are not nec-
essary in the context of a change. However, the UMLseCh diagrams are still
executable provided that the representations described above are adapted to
the UMLsec behvioural semantics concepts and used in the context of the
UML Machines. For example, an operation of a Class is simply considered
as an operation in the following. However, it is easy to consider it as a
message, as it is the case in the UMLsec abstract syntax, since they use the
same representation, i.e a 3-tuple O = (oname, args, otype). Other elements
will also be extended, but none of these extensions will affect the execution
of the diagrams. UMLseCh models can thus be used with the behavioural
semantics and UML Machine rules, defined in [Jür10], and be executed.

The concept of stereotypes is also used differently in the UMLseCh ab-
stract syntax. More concretely, the stereotypes attached to model elements
in the UMLsec abstract syntax are elements of the set of stereotypes name,
defined as StereoNm in Section 5.1. For UMLseCh, the stereotypes will be
stereotypes instances that belong to the set Stereotypes4. Again, this will
not be a problem regarding the execution of the UMLseCh diagrams since
stereotype instances can easily be considered as stereotype names provided
that the tagged values associated to a stereotype at the concrete level of
the instance of a model are ignored. In particular, each instance of a UML
element has only one instance of a given stereotype name. Again, in the
following, by "stereotype", we will always mean "stereotype instance" and
the use of stereotype definitions will be mention explicitly.

Note that the abstract syntax described in the following define the repre-
sentation of the UML elements and diagrams using n-tuples and sets. There-
fore, all the changes will be executed by modifying those sets and n-tuples
directly. Generally, a set A will be modified by (A \ {e}) ∪ {e′}, A ∪ {e′} or
A \ {e′}, with e, e′ ∈ Elements, for a substitution, an addition or a deletion
respectively. Formally, once the set is modified, it can be integrated to the
rest of the model with the concepts described in the previous section. The

4Note that the set StereoNm is called Stereotypes in [Jür10], but is not to be
confounded with the set Stereotypes defined here!
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modification of the element of a tuple can be expressed easily as well. We
will thus not describe all of the changes explicitly and formally, these appli-
cations being trivial. Instead, we describe informally the elements concerned
by changes and the changes that could require extra changes. The formal
rules ensuring the consistency are also given.

5.4.1 General principles

Some concepts and consistency rules are applicable to each type of diagram
defined below and thus are presented here in a general context. At first,
note that UMLseCh inherits all of the representation and consistency rules
from UMLsec. Therefore, any change applied on a UMLseCh model should
preserve those rules and definitions so that the resulting model is a UMLsec
(and thus UMLseCh) compliant model. In other words, the principles and
consistency rules described in the next sections are not exclusive, but added
to the existing UMLsec rules and conditions. To allow the application of a
modelled evolution, all of the conditions must be fulfilled.

All of the elements used in UMLseCh diagrams are UML named ele-
ment, which are defined as elements with an optional attribute name of type
String. The name of an element hence cannot be modified, since it is not
a NamedElement and thus cannot be used as a tagged value of a stereotype
« substitute», « add», « delete» and their extensions. This limitation however
does not affect the efficiency of the UMLseCh notation since changing the
name of an element does not represent an important and likely modification
of a model.

The diagrams and model elements use sets in their represention. The
sets cannot contain duplicate elements and thus, it is not allowed to add
an element that already exists or to substitute an element by an element
that already exists. Substituting an element by another element that is al-
ready contained in the set would indeed be equivalent to a deletion of the
model element initially concerned by the substitution. Applying an addition
of a model element that is already in the set would simply leave the model
unchanged. Again, adding an element that already exists or substituting
an element by an existing one represent undesirable types of evolution and
thus this limitation does not affect the efficiency of the UMLseCh notation.
Similarly, if an element has another element in its representation that is a
simple element and not a set, it is not allowed to add such an element if the
concerned model element already has one. For example, it is not allowed to
add a guard on a transition if this transition already has a guard.

Finally, a model element can only have one occurrence of a stereotype
definition and this stereotype must have the model element to which it is



CHAPTER 5. FORMAL FOUNDATION OF UMLSECH 86

attached as base class. Thus, when substituting a stereotype s by a stereo-
type s′, or when adding a stereotype s′, on a model element E, such that
s, s′ ∈ Stereotypes, E ∈ Elements and stereo(E) is the set of stereotypes
of E, we verify:

6 ∃st : st ∈ Stereotypes, τ(st) = τ(s′),

where τ is the function defined in definition 5.5. The second condition cannot
be formally verified since base class are not defined in our abstract syntax.
One should thus always ensure that the modification respects the base class
definiton of the stereotype placed on the model by the application of the
modelled evolution.

5.4.2 Object Diagrams

Abstract Syntax of Object Diagrams

For an object, the difference from the UMLsec abstract syntax is that the
set stereo of stereotypes name is now a subset of stereotype instances,
simply called "stereotypes", as mentioned above. We can thus represent
an object as a 6-tuple O = (oname, cname, stereo, aspec, ospec, int) where
oname, cname, aspec, ospec and int represent the same elements as for
UMLsec and stereo ⊆ Stereotypes is a set of stereotypes (as opposed
to UMLsec where they were stereotype definitions). An interface can also
evolve and thus integrate UMLseCh stereotypes. It is hence of the form
I = (iname, ospec, stereo) where iname ∈ String is the interface name,
ospec a set of operation specifications and stereo ⊆ Stereotypes a set of
stereotypes.

Dependencies are also adapted to be able to evolve and thus have a
set of stereotype that could potentially contains stereotypes of type change.
However, a stereotype definition stereo ∈ {« call», « send»} is defined as
in the case of UMLsec. This allows to verify certain constraint concerning
call and send operations defined in the UMLsec formal semantics. Refer to
[Jür10] for more details about these constraints. A dependency can thus
be defined as a tuple d = (dname, dep, indep, int, stereo, stereoch) where
stereoch ⊆ Change is a set of stereotypes of type change. The other ele-
ments of d have the same meaning as for UMLsec.

An object diagram is thus a pair O = (Objects(D),Dep(D)) given by
a set Objects(D) of objects and a set Dep(D) of dependencies. The same
conditions as for UMLsec holds here.
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Application of a Change

For object diagrams, the following model elements are concerned by changes:
objects, stereotypes, attributes, operations, dependencies and interfaces. An
operation can be substituted by another, added on an object or deleted from
an object. However, elements from an operation, namely, the name, the
return type and the set of arguments, cannot be changed. This choice is
motivated by the fact that such changes concerns small part of the model el-
ements and stereotypes cannot be directly attached to operations. Therefore,
modifying those elements directly would require the stereotype attached to
the object and modelling the change to precisely target the element to mod-
ify. This would request more complex expressions since different operations
may have the same representation for those elements. For example, many
operations could have Integer as return type. The stereotype would thus
need to express precisely which return type Integer has to be modified. Such
elements hence cannot be changed directly and the change of the complete
operation will be used instead. This means of modelling does not require
extra efforts and avoid the obligation to use complex expression to represent
the element to modify.

An object can be substituted by another, added on the diagram or deleted
from the diagram. In addition, the elements of the object can be modified.
Concretely, stereotypes, operations, attributes and interfaces can be substi-
tuted, added or deleted. Note that, for the same reasons as the operations,
the type of an attribute cannot be modified. The set of operations of an in-
terface can be modified as well. A dependency can be substituted by another,
added on the diagram or delete from the diagram. Any of the elements of a
dependency can be modified as well. Note that dependencies are dependent
to objects and thus, if an object that is a target or a source of a dependency
is substituted by another, the dependency must be adapted. This adapta-
tion means to also replace the source or target object by the new one in the
dependency.

Preservation of the Consistency

When modifying a Object diagram, several concistency rules should be pre-
served after the modification. In the following, we present conditions that
must be fulfilled to allow a change so that it preserves the consistency of the
diagram.

Since the name of the objects must be mutually distinct, the following
constraint must be verified to allow a substitution of an object e by an object
e′ in a diagram D, with onamee′ the name of e′:

6 ∃o : o ∈ (Objects(D) \ {e}) : onameo = onamee′
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and to allow an addition of an object e′ in D:

6 ∃o : o ∈ Objects(D) : onameo = onamee′

where onameo is the name of o. For obvious reasons, it is not necessary
when deleting an object. However, an object o, with onameo the name of o,
cannot be deleted if it is the source or the target of a dependency. Precisely,
we verify:

6 ∃d : d ∈ Dep(D) : onameo = depd ∨ onameo = indepd

where d = (dnamed, depd, indepd, intd, stereod, stereochd). A substitution
of a dependency d by a dependency d′ or an addition of a dependency d′ is
possible only if d′ connects two existing objects o and o′, with onameo and
onameo′ the names of o and o′ respectively. Formally, before applying the
change, we verify:

∃o, o′ : o, o′ ∈ Object(D), (depd′ = onameo) ∧ (indepd′ = onameo′)

where d′ = (dnamed′ , depd′ , indepd′ , intd′ , stereod′ , stereochd′) is the substi-
tutive or additive dependency. Adding or modifying an operation of an
interface requires that this operation also exists in the object o of which the
interface belong. Formally, before each change on the set of operation of an
interface int, we check:

ospecint ⊆ ospeco
where ospecint and ospeco are the sets of operations of int and o respectively.
In addition, it is not allowed to modify or delete an operation op of an object
o if this operation is also defined in an interface i of the set int of interfaces
of o. Formally, we have:

∀i : i ∈ int :6 ∃op′ : op′ ∈ ospeci : op′ = op.

where i = (inamei, ospeci, stereoi), ∀i ∈ int.

5.4.3 Class Diagrams

Abstract Syntax of Class Diagrams

Again, Class diagrams are very similar to Object diagrams. A class is defined
as an object C = (oname, cname, stereo, aspec, ospec, int) where oname is
the empty string.

A class diagram is defined as a pair D = (Classes(D),Dep(D)) given by
a set Classes(D) of classes and a set Dep(D) of dependencies. Again, we
require that the names of the classes are mutually distinct.
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Application of a Change

The application of a change in a Class diagram will follow the exact same
principles as the ones defined above for Objects diagrams.

Preservation of the Consistency

The rules defined for the Objects diagrams also apply here. In addition, the
names of the different classes must be mutually distinct. Therefore, to allow
a substitution of a class c by a class c′ in a diagram D, with onamec′ the
name of c′, we verify if the following condition is fulfilled:

6 ∃cl : cl ∈ (Class(D) \ {c}) : onamecl = onamec′

and for an addition of a class c′ in D:

6 ∃cl : cl ∈ Class(D) : onamecl = onamec′

where onamecl is the name of the class cl.

5.4.4 Statechart Diagrams

Abstract Syntax of Statechart diagrams

For statechart diagrams, the only difference with UMLsec abstract syntax
is that several elements have a set of stereotypes that can include stereo-
types of type change. A state S includes this set of stereotypes and is
given by s = (name(S), entry(S), state(S), internal(S), exit(S), stereo), where
stereo ⊆ Stereotypes is a set of stereotypes. name(S), entry(S), state(S),
internal(S) and exit(S) have the same meaning as in UMLsec.

A transition is defined as t = (source(t), trigger(t), guard(t), effect(t) ,
target(t), stereo) where stereo ⊆ Stereotypes is a set of stereotypes and the
other elements of t are the same as in UMLsec.

Statemachines differ from other type of diagrams (such as class or de-
ployment diagrams) by being themselves namespaces or model element that
are contained in namespaces. They can also appear more than once in a sub-
system. In consequence, the statemachines can have their own set of stereo-
types. We thus define a statechart diagram as D = (ObjectD,StatesD,TopD
, TransitionsD, stereo), given by an object name ObjectD providing the con-
text of the statemachine by associating it to another element of the model,
a set of states StateD, a top state TopD, containing all the states of D as
substates, possibly in a nested way, a set TransitionsD of transitions, and a
set of stereotypes stereo.
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Application of a Change

For statechart diagrams, the elements that can be modified, added or deleted
are states, transitions and properties of states and transitions. All the types
of elements of statechart diagrams are thus concerned by evolutions.

Transitions between states are also dependent on the potential modifica-
tion of the source or the target state. In particular, if a state is substituted by
another state, the transitions having that state as a source or target should
be adapted.

Preservation of the Consistency

On statemachine, the specific elements concerned by changes that could
affect the consistency are states and transitions. When a transition t is
subsituted by t′ or when a transition t′ is added, for a statemachine D, the
following condition must be fulfilled to ensure that the new transition has
correct source and target states:

∃s1, s2 : s1, s2 ∈ StateD, (source(t′) = s1) ∧ (target(t′) = s2)

In addition, we must ensure that if a transition t is substituted by t′, such
that source(t) 6= source(t′) or target(t) 6= target(t′), the connected states will
still have at least one incoming transition and one outgoing transition after
the change occured. Thus to allow the substitution, we verify the following
condition:

∃t1, t2, t3, t4 : t1, t2, t3, t4 ∈ (TransitionD \ {t}) ∪ {t′},

((source(t1) = source(t)) ∧
(target(t2) = source(t)) ∧
(source(t3) = target(t)) ∧
(target(t4) = target(t)))

Note that the above condition has to be refined if source(t) is an initial
state or if target(t) is a final state, since an initial state has no ingoing
transition and a final state has no outgoing transition. This can easily
be done by removing the condition target(t2) = source(t) or the condition
source(t3) = target(t) from the above condition, or both if the transition
connects the initial state directly to the final state, which is pretty unlikely!

Deleting a transition from a statemachine D is allowed only if the source
and target states of that transition have other incoming and outgoing tran-
sitions, so that they are not isolated by themselves on the diagram. As-
sume the transition t to delete and source(t) = s1 and target(t) = s2, with
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s1, s2 ∈ StateD, the following condition thus has to be verified:

(∃t1, t2 : t1, t2 ∈ (TransitionD \ {t}) : (source(t1) = s1 ∧ target(t2) = s1))∧
(∃t3, t4 : t3, t4 ∈ (TransitionD \ {t}) : (source(t3) = s2 ∧ target(t4) = s2))

Initial and final states are not concerned by this situation.

To be consistent, a statemachine must have at most one initial state
per "level". By level, we mean a set of state without the substates or the
super-states. To verify this constraint, the following must be fulfilled:

∀S : S ∈ StateD, 6 ∃s1, s2 : s1, s2 ∈ states(S), (s1 6= s2) ∧ (s1, s2 ∈ InitialD)

Note that this condition also verifies the first level of the statemachine, since
this level is represented by state(Top)D and TopD ∈ StateD. In addition, an
initial state cannot have ingoing transitions and a final state cannot have
outgoing transitions, which is verified by the constraints source(t) /∈ FinalD∪
TopD and target(t) /∈ InitialD ∪TopD respectively. Note that a statemachine
can have more than one final state. Adding or deleting a state directly is
impossible without affecting the consistency of the statemachine. Such a
change will require workarounds as presented in Section 4.2.5.

5.4.5 Sequence Diagrams

Abstract Syntax of Sequence diagrams

A lifeline of a sequence diagram is extended from UMLsec abstract syn-
tax by adding a set of stereotypes. A lifeline is thus defined as a 3-tuple
(O,C, stereo), given by:

• an object O of class C; and

• a set stereo ⊆ Stereotypes of stereotypes

The set of lifelines of a sequence diagram D is called Obj(D). Connec-
tions are extended in the same way with a set of stereotypes. A connection
is thus defined as a 5-tuple l = (source(l), guard(l),msg(l), target(l), stereo)
where stereo ⊆ Stereotypes is a set of stereotypes and source(l), guard(l),
msg(l) and target(l) have the same meaning as in UMLsec.

As for statemachines, a subsystem can have more than one sequence
diagram. They are represented by the construct Interaction in UML [OMG09]
and therefore represent namespace as well. We thus add a set of stereotypes
to sequence diagrams so that they can be concerned by their own evolution.
A sequence diagram then simply defined as a pair D = (Obj(D),Cncts(D)).
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Application of a Change

The elements concerned by a change in a sequence diagram are lifelines,
connections and messages. By connection, we mean the arrow drawn between
lifelines on the diagram, which is the source and target of the connection
described in the abstract syntax of sequence diagrams presented here. By
message, we mean the message on the arrow, which is the message contained
in the connection. A message can be substituted, but cannot be added or
deleted directly. To add (resp. delete) a message, it is necessary to add (resp.
delete) a connection. When a lifeline is substituted by another lifeline, we
assume that all the connections are adapted. The adaptation means that if
any connection has the substituted lifeline as a source or target, this source
or target in the connection is replaced by the new lifeline.

Preservation of the Consistency

To substitute a connection c by a connection c′, or add a connection c′

on a sequence diagram D, at least on of the two objects, one representing
the source object and one target object, must be an oject of the sequence
diagram. Before applying the substitution or the addition, we thus verify
the following rule:

∃o, o′ : o, o′ ∈ Obj(D), (source(c′) = o) ∨ (target(c′) = o′)

To substitute a lifeline l by a lifeline l′, or add a lifeline l′ on a sequence
diagram D, such that l′ = (O,C, s) we must ensure that there is not another
lifeline with the same object and class and that the object exists. The first
constraint can be expressed easily by:

6 ∃ls : ls ∈ Obj(D), ls = (O′, C ′, s′), O = O′ ∧ C = C ′.

For the second rule, assume an object diagram OD, we verify the following
constraint:

∃ob : ob ∈ Objects(OD), ob = O.

Finally, deleting a lifeline is not allowed if connections have this lifeline
as source or target object. Formally, assume the lifeline l to delete from the
diagram D, the following constraint must be fulfilled to allow the change:

6 ∃c : c ∈ Cncts(D), (source(c) = l) ∨ (target(c) = l).

5.4.6 Activity Diagrams

Abstract Syntax of Activity diagrams

As for UMLsec, activity diagrams are presented as a special type of stat-
echart diagrams. In particular, any construct of our simplified version of
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activity diagrams can be expressed using the concepts of statechart dia-
grams. However, as opposed to statemachines, only one activity diagram
is defined per subsystem. Thus an activity diagram is a 3-tuple D =
(StatesD,TopD,TransitionsD) given by a finite set of states StatesD, the top
state TopD ∈ StatesD, and a set TransitionsD. Again, the set StatesD is
disjointly partitioned into the sets InitialD, FinalD, SimpleD, ConcD, SequD.
A state is extended in UMLseCh by adding a set of stereotypes to it. We
have S ∈ StateD where stereo ⊆ Stereotypes is a set of stereotypes and
name(S), entry(S), state(S), internal(S), exit(S) and swim(S) have the same
meaning as in UMLsec.

The transitions are also extended by adding a set of stereotypes to it. A
transition t ∈ TransitionsD is given by:

• the source state source(t) ∈ StatesD of t;

• the guard guard(t) of t;

• the target state target(t) ∈ StatesD of t; and

• a set stereo ⊆ Stereotypes of stereotypes.

Application of a Change

The constructs of activity diagrams are the same as the ones of statechart
diagrams, with an additional concept of swimlane. Changes of swimlanes
cannot be modelled by the UMLseCh stereotypes and therefore are not con-
cerned here. If a state is substituted by another state, we assume that the
substitutive state has the appropriate swimlane.

Preservation of the Consistency

The rules are the same as for statechart diagrams. For an addition of a state,
however, we ensure that the swimlane specified in the additive state refers to
an existing object. Formally, for an activity diagram AD, an object diagram
OD and an additive state S, such that swim(S) = o, we verify:

∃o′ : o′ ∈ Obj(OD), o = o′.

5.4.7 Deployment Diagrams

Abstract Syntax of Deployment diagrams

For deployment diagrams, we extend the nodes and the components so that
they include a set of stereotypes. Formally, a component is a 4-tuple C =
(name, int, cont, stereo) where name is the component name, int is a set of
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interfaces that can possibly be empty, cont is the set of subsystem instance
and object names contained in the component, and stereo ⊆ Stereotypes
is a set of stereotypes. A node is a 3-tuple N = (loc, comp, stereo) where
stereo ⊆ Stereotypes is a set of stereotypes and loc and comp have the
same meaning as in UMLsec.

We extend links so that they include a set of stereotypes. A link l is
of the form l = (nds(l), ster(l)) where nds(l) ⊆ Nodes(D) is a set of arity
two containing the nodes being linked and ster(l) ⊆ Stereotypes is a set of
stereotypes. A dependency is also extended in the same way. Formally it is
a 4-tuple d = (clt, spl, int, stereo) where stereo ⊆ Stereotypes is a set of
stereotypes and clt, spl and int have the same meaning as in UMLsec.

As for UMLsec, for every dependency D = (C, S, I, sd) there is exactly
one link LD = (N, sl) such that N = {C, S}. A deployment diagram is
given by D = (Nodes(D), Links(D),Dep(D)) where Nodes(D) is a set of
nodes, Links(D), is a set of links and Dep(D) is a set of dependencies.

Application of a Change

The elements that can evolve on a deployment diagram are the nodes, the
components, the links and the dependencies. When a node is substituted
by another one, we assume that the possible links connecting that node to
another node are adapted. The same application is assumed for dependencies
when substituting a component by another one.

Preservation of the Consistency

The substitution of a link e by a link e′, or the addition of a link e′, on a
deployment diagram D requires the source and target of e′ to exist on D.
This requirement can be verified by the following constraint:

∃n, n′ : n, n′ ∈ Nodes(D), (source(e′) = n) ∧ (target(e′) = n′),

Similarily, to substitute a dependency d by a dependency d′ or to add a
dependency d′ on a deployment diagram D, we verify:

∃n, n′ : n, n′ ∈ Nodes(D), ∃c : c ∈ compn, ∃c′ : c′ ∈ compn′ , (ctld′ = c)∧(spld′ = c′).

where n = (locn, compn, stereon), n′ = (locn′ , compn′ , stereon′) and d′ =
(cltd′ , spld′ , intd′ , stereod′).

Finally, a node cannot be deleted if a link connects it to another node.
In the same way, a component cannot be deleted if a dependency connects it
to another component. Formally, before deleting a node n or a component c
from a diagram D, we verify:
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6 ∃l : l ∈ Links(D), n ∈ nds(l),

6 ∃d ∈ Dep(D), d = (cltd, spld, intd, stereod), (cltd = c) ∨ (spld = c).

5.4.8 Subsystem

Abstract Syntax of Subsystem

As for UMLsec, by subsystem, we always mean subsystem instance. We
extend the representation of a subsystem by adding a set of stereotypes and a
set of namespaces to it. Recall that the namespaces are given in their general
representation and only provide a means of storing complex substitutive or
additive elements. The existing elements of the subsystem, although they
are themselves namespaces, are thus not concerned by that set. We define
a subsystem as a tuple S = (name(S),Op(S), Ints(S), Ssd(S),Dd(S),Ad(S)
, Sc(S), Sd(S),Nms(S), stereo) is given by:

• the name name(S) of the subsystem;

• a set Op(S) of names of offered operations and accepted signals, this
set can be empty;

• a set Ints(S) of subsystem interfaces, this set can be empty;

• a static structure diagram Ssd(S);

• a deployment diagram Dd(S);

• an activity diagram Ad(S);

• for each of the activities in Ad(S), a corresponding specification of the
behavior of objects appearing in Ssd(S) given by a set Sc(S) of state-
chart diagrams, a set of sequence diagrams Sd(S), and the subsystems
in Ssd(S). Each diagram D ∈ Sc(S) ∪ Sd(S) has an associated name
context(D). In the concrete syntax, it is written next to it;

• A set Nms(S) of namespaces containing substitutive or additive model
elements; and

• stereo of stereotypes.

The subsystems follow the same criteria and conditions as the ones pre-
sented in UMLsec. In addition, we define the following condition to ensure
that for each complex change modelled on the instance of a model, there
exists a namespace containing the substitutive or additive complex element.
Assume the set TagChangeS of instances of tag of type change on the
subsystem S, we have:

∀t ∈ TagChangeS ,∀e ∈ υ(t), ∃ns = (n, elst), ns ∈ Nms(S), n = e
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Application of a Change

In UML, diagrams provide a means to graphically represent systems by
grouping together graphical representations of elements of same type and
context. However, diagrams in UML are not model elements and therefore
do not have a name and associated stereotypes. This means that elements
of a diagram are directly contained in packages. In our case, the model ele-
ments of the diagrams defined above are directly contained in the subsystem
containing the diagrams. Thus if one wants to model general evolution on
a diagram, such as the addition of a class, the substitution of all the links
of a deployment diagram or the addition of a statemachine, the correspond-
ing stereotypes will be attached to the subsystem. The statechart diagrams
and sequence diagrams are nevertheless different since they are considered
as model elements, under the construct Statemachine and Interaction respec-
tively. To apply a modification to those diagrams, such as adding an element
to it, the corresponding UMLseCh stereotypes can be directly attached to
them.

All elements from a subsystem can theoratically be modified by a UMLseCh
stereotype attached to that subsystem, provided that the element is precisely
identified. However, certain of these modifications can also be modelled by
attaching a UMLseCh stereotype to a sub-element containing the evolutive
element. This latter solution should be used whenever it’s possible since it is
more direct and it increase the readability. The following evolution can, on
the other hand, be modelled only by a stereotype attached to a subsystem
itself: the addition of elements contained in the diagrams defined above; the
addition of a statemachine or a sequence diagram and the substitution; ad-
dition or deletion of a subsystem operation; signal or interface. Recall that
these modifications can only be modelled by attaching UMLseCh stereotypes
to the subsystem, but other modifications, such as modifying an operation
of a class, can also be modelled in such a way by giving an expression that
precisely identifies the sub-element to modify. These evolutions can thus
either be modelled by attaching the UMLseCh stereotypes to the subsystem
or to the sub-namespace containing the evolutive element. Again the first
solution should be used whenever possible.

Preservation of the Consistency

All the rules concerning modifications of elements that belong to diagrams
described above were defined in the preservation of the consistency of those
diagrams. We can however add some rules related to evolutions that could
possibly affect the consistency of subsystems. These rules involve statema-
chines and sequence diagrams, as well as the operations, signals and inter-
faces of the subsystems.
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Since each activity of an activity diagram has one, and only one, associ-
ated behaviour, being in the form of a statemachine or a sequence diagram,
the substitution of this behaviour should be substituted by another behaviour
associated to the same activity. Therefore, before substituting a statema-
chine or a sequence diagram s of a subsystem S, such that s ∈ Sc(S)∪Sd(S),
by a statemachine or a sequence diagram s′, we verify:

context(s′) = context(s)

Provided that the subsystem is in a consistent state before the modification,
and in particular that it has a behaviour defined for each activity, this condi-
tion is sufficient to ensure the consistency of the subsytem after the evolution.
If we consider that an activity can temporarily have no behviour and that
the evolution consists in adding that behaviour, the following constraint is
defined to ensure that an activity has only one associated behaviour. Before
adding a statemachine sm or a sequence diagram sd on a subsystem S, with
Sc(S) the set of statechart diagrams of S and Sd(S) the set of sequence
diagrams of S, we verify:

6 ∃e : e ∈ Sc(S), contex(e) = contex(sm′)

and
6 ∃s : s ∈ Sd(S), contex(s) = contex(sd′).

If an operation or a signal os of a subsystem S, such that os ∈ Op(S), is
substituted by an operation or signal os′, or if an operation or signal os′ is
added on a subsystem S, we ensure that this operation or signal is defined in
the static structure diagram of the subsystem. More precisely, if the static
structure diagram is an object diagram OD, such that Ssd(S) = OD, we
verify:

∃ob : ob ∈ Objects(OD),∃i : i ∈ intob, os′ ∈ ospeci.
where ob is of the form (onameob, cnameob, stereoob, aspecob, ospecob, intob)
and i is of the form (inamei, ospeci, stereoi). If the static structure diagram
is a subsystem S ′ such that Ssd(S) = S ′, we verify:

os′ ∈ Op(S ′).

Finally, we decribe informally some additional rules regarding the statema-
chines, the sequence diagrams and the deployment diagrams. A component
C of a deployment diagram has a set contC of objects and subsystem in-
stances. Therefore, we must ensure that those objects and subsystem in-
stances are defined within the subsystem S, more precisely in the static
structure diagram Ssd(S). Statechart diagrams and sequence diagrams use
operations for triggering event and in messages respectively. Again, those
operation must be defined within the subsystem S and in particular in the
static structure diagram Ssd(S).
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5.4.9 Consistency of a Composite Change

Verifying the consistency of a diagram in the case of a composite change is
slightly different. Indeed, a composite change can be compared to a trans-
action in a data base [Gra81]. In particular, a composite change must fulfill
the constraint of atomicity: the change is applied completely, or not at all.
Therefore, the consistency is verified when all the sub-changes are applied
on the model and not only one of them. The consistency rules defined above
thus cannot simply be reused independently with each sub-change, since
the consistency concerns the composite change as a whole. Note that the
constraint of isolation and durability are implicitely verified here. No other
change can take place while the composite change is applied and the modifi-
cations remain on the model. For the sub-changes occuring in parallel, we do
not ensure isolation. This means that a user should avoid to model several
sub-changes on the same model element if those sub-changes belong to the
same composite change.

Two approaches can be considered in the context of a composite change.
The first solution would be to apply the change and verify the consistency of
the diagrams afterwards. The modification is then concerved and the change
validated if the consistency is preserved, otherwise the model is rolled-back
to the initial version. This solution however requires to apply the changes
first and then roll-back if the consistency is not preserved. We will thus
consider another approach following the same principle as the conditions
defined above, i.e. to define conditions that will be verify before allowing
the change. This approach consists in the following: the condition of each
sub-change is verified assuming that the other changes were applied. Note
that the changes did not really occure, but the sets concerned by the modifi-
cations were adapted to verify the condition. Note also that certain changes
will be allowed in the case of a composite change although they were not
permitted with the conditions described above. This is for example the case
of a deletion of a state in a statemachine, which is forbiden in the case of a
normal change because transitions are connected to that state. With a com-
posite change, it can be allowed if other parallel changes consist in deleting
the connected transitions in a way that leaves the resulting diagram consis-
tent.

To illustrate the approach described above, we can consider the example
shown in Figure 5.1. Deleting the final state would be forbiden for a single
change, as defined in the consistency rules of Section 5.4.4. Deleting the
transition between the state A and the final state is also forbiden by a condi-
tion of Section 5.4.4. However, assuming that a state can be deleted provided
that no transitions are connected to it, as mentioned in the previous para-
graph, the deletion of the final state can be allowed if the parallel change



CHAPTER 5. FORMAL FOUNDATION OF UMLSECH 99

«delete»

{ref = delete−trans}
[delete−comp]

«delete»

{ref = delete−state}
[delete−comp]

{ref = delete−comp}
{change = {delete−trans,

«change»

delete−state}}

System

A

B

off()

op()

Figure 5.1: Example of an allowed composite change

that consists in deleting the connected transition is applied. This can be
formalised by assuming that the parallel change delete-trans happened and
thus by adapting the set, such that the condition is defined as follows:

6 ∃t : t ∈ (TransitionsD \ tf ), (source(t) = f) ∨ (target(t) = f)

where f is the deleted final state and tf the transition from the the state
A to f . We can see that adapting the set with TransitionsD \ tf consists
in assuming that the parallel change which removes tf was applied. The
condition for deleting the transition between A and the final state can be
adapted in a similar way. Any condition from the previous sections defining
the consistency rules can thus be adapted by simulating the other parallel
sub-changes on the concern sets.

Note that simulating the change concretely, in a tool, could require as
much ressources as applying the change completely. An idea could be to
specify a scope for a sub-change, which would define which parallel changes
could affect the condition and thus have to be considered. This question
however is left as future work. Verifying the consistency of an addition using
the merge behaviour defined in Section 4.2.4 will follow the same principle
as the composite changes.
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Chapter 6

Conclusion

Using UML to model softwares at the early stages of the development cycle
presents incontestable advantages. It allows important design decisons to be
taken into account at an early stage and is widely used, thus known by many
developers and supported by many tools. However, as it was initially design
for general purposes, it lacks means to express specific important concepts
such as security or evolution. Nevertheless, UML offers extensions mecha-
nisms that allow one to augment the language by adding new constructs.
Using the lightweight extension mechanism allows to keep the advantages
of the tool support for the graphical modelling and makes it easy for the
developers to learn and use.

It was argued in Chapter 2 that security and evolution were two key
concepts that should be envisaged at the early stages of the development
cycle. Therefore, defining those concepts as included in the language would
address this issue. The UMLsec extension is a formally-defined approach to
consider the security requirements at the stage of modelling the system. It
provides a notation applicable on the UML diagrams and methods to verify
the fulfillment of the security requirements.

We define UMLseCh to address the evolution issue. UMLseCh extends
UMLsec in order to add the evolution approach while keeping the security
concepts. It provides language constructs to express the substitution, the
addition or the suppression of simple or complex model elements. As for
UMLsec, it defines the notation with a UML profile that includes the UMLsec
profile and add stereotypes and tagged values to represent future evolutions.
Using the lightweight extension mechanism of UML based on profiles, the
notation can be used with any tool compliant to the UML metamodel.

We also define the abstract syntax of UMLseCh by extending the abstract
syntax of UMLsec to formally include the concepts of UMLseCh. By giving
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a formal semantics to the UML constructs and to the UMLseCh notation,
we show that the modelled evolutions can be executed in order to obtain
a new model on which the changes were applied, and where the UMLsec
notation has remained. The evolved model is thus a UMLsec model which
still expresses the security requirements and can be verified again, using the
method and tool offered by UMLsec. The formal semantics also allows to
define consistency rules ensuring that the result model of the transformation
is still compliant to the UMLseCh abstract syntax.

The UMLseCh approach, although still incomplete, seems very promis-
ing in modeling possible future evolution of model together with security
requirements. However, there is still a lot of work to be done. In particular,
this thesis only represents a (hopefully useful) beginning towards the elabo-
ration of a more complete solution to model future evolution and verify the
preservation of the security over the evolution. There are a few interesting
directions that we would like to recommend.

The implementation of a tool support that applies the changes modelled
by UMLseCh and transforms the model into the evolved model appears as a
main step forward for the support of the notation. Such a tool would provide
a means for the developers to benefit from the notation so that they do not
need to manually apply the evolution.

Another main achievement would be to define a more elaborated method
to verify the preservation of the security. So far, the preservation is verified
by simply applying a verification of the evolved model using the UMLsec
method. However, the composition of processes [Jür] seems to offer a formal
approach to verify the preservation of the security without having to recheck
the model completely.

Other improvements could be given to the notation. For example, the
semantics of the delete could be refined so that it offers more options. It
could define a more advanced behaviour when the element to delete is con-
nected to other model elements. The possible options could be similar to the
ones in SQL, in the sense that they would either disallow the suppression,
as it is defined now, or propagate it. The propagation would, for instance,
delete all the connected model elements. Further reasearch could also be
conducted so that the modification applied on the UML models are directly
and automatically applied to the corresponding code.

Finally, a real scale case study could be applied on an existing system in
order to place the approach in a real context.
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