
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Development of a quasi-birth-and-death sensitivity analysis tool

Cordy, Maxime

Award date:
2011

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/577aafcf-796d-4ec8-882e-3abcab5748f2

Facultés Universitaires Notre-Dame de la Paix, Namur

Faculté d’informatique

Année académique 2010-2011

Development of a Quasi-Birth-and-Death
Sensitivity Analysis Tool

Maxime Cordy

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques

ii

Abstract

In the past, the performance analysis of random systems has been of great
interest. Such an analysis often consists in the computation of so-called
performance measures. Sometimes, it is desired to evaluate the sensitivity of
the performance with respect to variation applied to the parameters of the
considered system. Such an evaluation is usually referred to as sensitivity
analysis.

Markov processes are intensively used to model the evolution of ran-
dom systems over time. We are especially interested in a particular case
of Markov processes, called the Quasi-Birth-and-Death process (QBD). The
QBDs combine a nice modelling expressiveness with the possibility of using
efficient evaluation methods.

We aim the development of a tool that can perform sensitivity analyses
on QBDs. More precisely, the tool is required to provide methods to specify a
QBD process, procedures to carry out the analyses, and interfaces to display
the produced results. To achieve this, we present the theoretical foundations
of methods to compute the performance measures, as well as the tool and a
case study made with it.

Keywords: performance evaluation, sensitivity analysis, Markov process,
Quasi-Birth-and-Death, analysis tool

Résumé

Par le passé, l’analyse de performance de systèmes aléatoires a été d’un grand
intérêt. Mener une telle analyse consiste souvent à calculer des mesures de
performance. Parfois, on peut vouloir évaluer la sensibilité de la performance
par rapport à des variations des paramètres du système considéré. Une telle
évaluation est généralement nommée “analyse de sensibilité”.

Les processus de Markov sont souvent utilisés pour modéliser l’évolution
de systèmes aléatoires. Nous nous intéressons à un cas particulier de ces
processus, à savoir le processus de Quasi-Birth-and-Death (QBD). Les QBD
combine une bonne expressivité de modélisation avec la possibilité d’utiliser
des méthodes d’évaluation efficaces.

Notre objectif est le développement d’un outil qui peut analyser la sen-
sibilité des QBD. Plus précisément, l’outil doit fournir des méthodes pour
spécifier un tel processus, des procédures pour mener les analyses et des
interfaces pour afficher les résultats produits. A cette fin, nous présentons
les fondements théoriques de méthodes pour calculer des mesures de perfor-
mance, ainsi que l’outil et une étude de cas réalisée avec celui-ci.

Mots-clés: évaluation de performance, analyse de sensibilité, processus de
Markov, Quasi-Birth-and-Death, outil d’analyse

Acknowledgments

First of all, I would like to acknowledge the people who have supported me
in a way or another through the writing of this master’s thesis.

In particular, I sincerely thank Prof. Marie-Ange Remiche, my super-
visor, for her precious advice and the interesting discussions we had. Her
comments about the writing significantly contributed to the improvement of
the textual quality of the master’s thesis. I also thank her for giving me the
opportunity to present my work at two conferences. These experiences are
invaluable to me.

I absolutely want to acknowledge Dr. Julian Dronckier for the time he
spent reading the whole text, correcting it and improving my english writing
skills. Thanks to his help, I was able to increase the quality of the master’s
thesis.

Also, I would like to thank Teh Amouh and Maher Chemseddine for their
warm welcome and all the nice discussions we had during my four month re-
search work at the University of Namur.

Finally, I thank my close relatives and friends for all their support during
the writing of this master’s thesis.

iii

iv

Contents

Introduction xv

I Fundamental Definitions 1

1 Quasi-Birth-and-Death 3
1.1 Random variable . 4

1.1.1 Discrete random variable 4
1.1.2 Continuous random variable 6

1.2 Markov process . 10
1.2.1 Discrete time Markov process 11
1.2.2 Continuous time Markov process 13

1.3 Quasi-Birth-and-Death process 16
1.3.1 Definition & Generator 17
1.3.2 The M/PH/1 queue 19
1.3.3 Uniformization of Markov processes 22
1.3.4 Kendall’s notation . 25

1.4 Conclusion . 26

II Computation Methods 27

2 Matrix Analytic Methods 29
2.1 Stationary Distribution . 29

2.1.1 Stability conditions . 30
2.1.2 Gaussian Elimination algorithm 33
2.1.3 Logarithmic Reduction algorithm 34
2.1.4 Linear Level Reduction algorithm 42

2.2 First passage times . 46
2.2.1 Computing first passage times upward 48
2.2.2 Computing first passage times downward 50

2.3 Conclusion . 51

v

vi CONTENTS

3 Discrete-Event Simulation 53
3.1 Next-event simulation . 54
3.2 Simulating a Quasi-Birth-Death process 56
3.3 Random number generator . 59

3.3.1 Linear congruential generator 59
3.3.2 Generating discrete random variables 63
3.3.3 Generating continuous random variables 64

3.4 Output analysis and data estimation 66
3.4.1 Estimation of the performance measures 66
3.4.2 Steady-state simulation 67
3.4.3 Confidence intervals 69

3.5 Conclusion . 72

III Tool implementation 73

4 QBDSense Tool 75
4.1 General architecture and functionalities 76
4.2 Description of the input interfaces 77

4.2.1 Method 1: Explicit definition of the inner blocks . . . 79
4.2.2 Method 2: Definition of a queueing system 79
4.2.3 Method 3: Specification of the transitions 80
4.2.4 Parameterisation of a sensitivity analysis 89

4.3 The performance analysis frameworks 91
4.3.1 QBDSolver . 91
4.3.2 QBDSimulator . 92

4.4 Outputs display . 94
4.5 Architecture of the tool . 96
4.6 Limits and perspectives . 98

5 Case Study 101
5.1 System description . 101
5.2 Mathematical model . 103
5.3 An approach to model a composite system 104

5.3.1 Kronecker product and sum 105
5.3.2 Definition of a simple repairable system 105
5.3.3 Modelling the simple repairable system 106

5.4 Specification of the infinitesimal generator 108
5.4.1 Transitions from level 0 to level 1 108
5.4.2 Transitions from level 0 to level 0 112

5.5 Numerical evaluation . 114

CONTENTS vii

IV Conclusion 119

6 Review and perspectives 121
6.1 Work Summary . 121
6.2 Contributions of the thesis . 122
6.3 Limitations of our approaches 123
6.4 Perspectives and challenges 123

V Appendix 125

A ORBEL 25 Paper 127

B ValueTools 2011 Paper 131

C Case study: original article 141

viii CONTENTS

List of Definitions

1.1.1 Discrete probability function 4

1.1.2 Probability of an event 4

1.1.3 Discrete random variable 5

1.1.4 Probability mass function 6

1.1.5 Continuous random variable 7

1.1.6 Cumulative distribution function 7

1.1.7 Exponential distribution 8

1.1.8 Normal distribution 8

1.1.9 Student’s t-distribution 9

1.2.1 Stochastic process 10

1.2.2 Conditional probability 11

1.2.3 Discrete time Markov process 11

1.2.4 Continuous time Markov process 13

1.2.5 Phase-type distribution 15

1.3.1 Kendall’s notation 26

2.1.1 Period . 30

2.1.2 Recurrent state . 31

2.1.3 Positive & Null recurrent state 31

2.1.4 Accessible state . 31

2.1.5 Communicating state 32

2.1.6 Equivalence class . 32

2.1.7 Spectral radius . 37

2.2.1 Expected first passage time 47

3.1.1 Discrete-event simulation model 54

3.3.1 Lehmer’s algorithm 60

3.3.2 Fundamental period 61

ix

x CONTENTS

3.3.3 Full-period generator 62

3.3.4 Inverse distribution function (discrete) 63

3.3.5 Inverse distribution function (continuous) 65

4.2.1 Similar Macrostates Group 84

4.2.2 Fusion of two Similar Macrostates Groups 86

5.3.1 Kronecker product 105

5.3.2 Kronecker sum . 105

List of Theorems

2.1.1 Homogeneity in an equivalence class 32

2.1.2 Stability conditions (discrete time) 33

2.1.3 Stability conditions (continuous time) 33

2.1.4 Rate matrix existence 36

2.1.5 Convergence of the series
∑

k≥0M
k 38

2.1.6 Relations between the matrices R, G, and U 40

2.1.7 Computation of matrix G 41

2.1.8 Determination of π (finite and homogeneous) 43

2.1.9 Determination of π (inhomogeneous) 45

2.2.1 Computation of upward first passage times 49

3.3.1 Full-period conditions (b 6= 0) 62

3.3.2 Full-period conditions (b = 0) 63

3.3.3 Probability integral transformation (discrete) 64

3.3.4 Probability integral transformation (continuous) 65

3.4.1 Central-limit theorem 68

3.4.2 Student’s test . 71

xi

xii CONTENTS

List of Figures

1.1 The cumulative distribution function of two exponential dis-
tributions, one with rate 2 (blue curve) and one rate 1 (green
curve). 9

1.2 The possible transitions of the stochastic process presented in
Example 1.2.1. 13

1.3 A continuous time Markov process with an absorbing state. . 15
1.4 The available transitions in a Quasi-Birth-and-Death process. 18
1.5 The possible transitions of a QBD modelling an M/PH/1

queueing system. 21

2.1 An Octave function that solves the system π = πP, π1 = 1,
based on Gaussian elimination. 35

2.2 An Octave function that implements the Logarithmic Reduc-
tion algorithm. 42

2.3 An Octave function that computes the stationary vector of
a homogeneous and finite QBD. 44

2.4 An Octave function that computes the stationary vector of
an inhomogeneous and finite QBD. 46

2.5 An Octave function that computes the first passage time
from level S to level M of an inhomogeneous QBD. 50

3.1 An Octave function that simulates a Markov process. 57
3.2 An Octave function to simulate a Quasi-Birth-and-Death

process. 59
3.3 An Octave function that builds a confidence interval. 71

4.1 The possible transitions in the M/PH/1 queueing system of
Example 4.2.1. 78

4.2 An Octave function that computes the inner block composing
the generator of a QBD modeling an M/Ph/1 queue. 80

4.3 A graphical user interface used to specify a QBD as a queueing
system. 81

4.4 Specification of a QBD with a textual language. 84

xiii

xiv LIST OF FIGURES

4.5 An Octave function that computes the inner blocks compos-
ing the generator of a QBD modelling a perturbed M/Ph/1
queue. 90

4.6 A graphical user interface used to define a perturbation on a
queueing system. 90

4.7 The stationary probabilities of the the first six levels of the
QBD defined in Example 4.2.1 95

4.8 The stationary probabilities of the first six levels of Example
4.2.1 estimated by independent replications of a simulation. . 95

4.9 The architecture of the tool illustrated with a UML compo-
nent diagram. 97

5.1 A repairable system under degradation, inspection, and two
types of repair. 102

5.2 Evolution of the ROCOF of the repairable system (chart). . . 118

Introduction

Performance analysis can be defined as a quantitative study evaluating how
a given system succeeds in reaching the achievements for which it was built.
For example, the performance of a web server can be defined as the number
of requests it can fulfill per second; the performance of an internet service
provider can be determined as its mean availability percentage; and the per-
formance of a production line can refer to the mean creation time of a single
product. Sometimes, it is also aimed to assess the sensitivity of the perfor-
mance with respect to variations applied to the parameters of the considered
system. Such an evaluation is usually referred to as sensitivity analysis.

During the last decades, performance and sensitivity analyses have been
of great interest. It has a huge importance not only for university researchers
but also for industrials. For example, IBM involved a performance analy-
sis in the development of the Time Sharing Option (TSO) for their oper-
ating system IBM 360 [26]. Nowadays, performance is still at the heart
of concerns, in particular in finance, in network systems, and in intelligent
systems. Particularly in computer science, the performance of systems has
been theoretically studied since the early 1960 up until now. A large variety
of systems has been intensively studied, notably time-shared systems [15],
packet-switching networks [16], and more recently, Internet-based Television
[13] and peer-to-peer systems [11].

These types of systems have common features. First, time has a signif-
icant impact on them. Second, their state is influenced by the outcome of
so-called random events and their respective probability law. Subsequently,
the analysis of the performance of such systems is hardened. Leemis and
Park [19] propose the following steps toward the determination of the per-
formance of random systems:

1. To determine the goals and the objectives of the analysis, notably,
which answers the analysis is supposed to provide.

2. To build a conceptual model of the system that is based on the defined
goals. The conceptual model is an abstraction of the real system. In

xv

xvi INTRODUCTION

particular, this step consists in the determination of what is relevant
to observe and what is negligible enough to be ignored.

3. To turn the conceptual model into a specification model. Basically,
either the random events impacting on the system are represented by
statistical data measured on the real system, or these events are mod-
elled using a so-called stochastic model.

4. To develop a computational model with respect to the specification
model. The computational model essentially consists in a computer
program that returns the expected performance values.

5. To verify the computational model. The computer program should be
consistent with regard to the specification model.

6. To validate the computational model. Although it is verified, a com-
putational model can still be inconsistent with the real system that is
studied. This step must thus confirm that we built the right model.

Although each of these procedures is essential for a relevant performance
analysis, this master’s thesis only deals with steps 3, 4 and 5.

More precisely, we focus on the building of specification models based on
stochastic models. For this purpose, we present the fundamental concepts
and definitions of stochastic modelling. In particular, the Markov process
is a well-known type of stochastic model that is intensively used to model
the evolution of random systems over time. A specific feature of the Markov
process is the so-called Markov property. When this property holds, the next
state of the process can be determined knowing only its current state but
not its complete history. Furthermore, when the process has a given set of
properties, we can compute theoretical measures often referred to as steady
state measures. We focus on this type of measures because we can derive
from them performance measures relevant for the studied system.

In the thesis, we are especially interested in a particular case of Markov
process, called the Quasi-Birth-and-Death process (QBD). QBDs are Mar-
kov processes whose state is defined by two variables. They are such that
restrictions are applied to their possible transitions. In spite of these restric-
tions, they have a good modelling expressiveness. Indeed, they have been
extensively used in the past to evaluate the performance of a wide variety
of systems, in particular reliability systems [24] and peer-to-peer systems [11].

The final objective of the thesis is the development of a tool that permits
to analyse the performance of a system modelled as a Quasi-Birth-and-Death
process. More precisely, the tool must include the following features:

xvii

• formal methods to specify a Quasi-Birth-and-Death process,

• the possibility to analyse the performance of the process and to study
its sensitivity with regard to small variations applied to its parameters,

• two methods to compute the measures, i.e. explicit computations and
estimations via simulations.

The development of the specification methods is essential. These methods
must allow to concisely and easily define complex QBDs. In particular, one
of the method we present is based on the principles of the language theory.
More precisely, we define a textual language to specify the transitions of a
QBD and we build a parser that defines the process to analyse from the
transitions specification.

It is noteworthy that we deal not only with the evaluation of a system,
but also with the analysis of its sensitivity. More precisely, instead of merely
computing performance measures related to a given stochastic model of the
system, the tool allows to observe how the value of these measures evolves
when some parameters of the model are slightly modified.

Another important part of the thesis is the study of algorithms to com-
pute the value of steady state measures related to the specification model.
While the computation of these measures is generally time and space consum-
ing, it is considerably eased when the considered Markov process is a QBD.
Thanks to the particular structure of such a process, efficient algorithms
have been developed to explicitly compute the steady state measures. They
are based on the so-called matrix analytic methods [18]. Because there are
different types of QBDs, there exist several algorithms to compute a given
measure. Furthermore, optimized versions of these algorithms that can be
applied only when the QBD has specific properties can be found in the sci-
entific literature. We therefore limit our presentation to the most general
algorithms. We also give the theoretical foundations of these algorithms and
we provide references to the proof of their correctness.

Discrete-event simulation constitutes an alternative to the matrix ana-
lytic methods. Instead of explicitly computing the measures, the behaviour
of the system is simulated and the steady state values are estimated from
the simulation results. In particular, we present the principles of a discrete-
event simulation approach called next-event and according to this approach,
we implement an algorithm that simulates a Quasi-Birth-and-Death process.
Unlike an explicit computation, a simulation does not require any costly ma-
trix manipulations. However, estimation techniques must be used to obtain
accurate data.

xviii INTRODUCTION

Both the matrix analytic methods and the simulation approaches lead
us to the development of computational models, namely computer programs
that provide an evaluation of the performance of a specification model such
as they were previously defined. Furthermore, because the algorithms im-
plemented in these computer programs are strongly coupled with proven
mathematical theories, the verification step we mentioned earlier is consid-
erably eased.

In summary, the purposes of the thesis are (i) a synthesis of both the
matrix analytic methods and the discrete-event simulation approach, specif-
ically applied to the Quasi-Birth-and-Death process, (ii) the definition of
formal methods to specify a QBD, and (iii) the development of our tool,
which makes use of the specification interfaces, as well as the two computa-
tion methods in order to perform sensitivity analyses on QBDs.

We structure the master’s thesis as follows:

Part I gives the essential concepts and definitions related to stochastic mod-
elling. Eventually, we define the type of specification model we aim to
build, namely the Quasi-Birth-and-Death process. We also present def-
initions and techniques that are required for a thorough understanding
of the thesis. This part includes only Chapter 1.

Part II is dedicated to the presentation of the computation algorithms.
More precisely, Chapter 2 defines the statistical measures we are in-
terested in and it presents the theoretical foundations of the matrix
analytic methods applied to QBDs, which eventually lead to the devel-
opment of algorithms to compute all the defined measures for each type
of QBD. Next, Chapter 3 presents the principles of the discrete-event
simulation approach, as well as the development of a QBD simulat-
ing algorithm we developed thanks to these principles and the formal
definitions given in Chapter 1.

Part III finally presents our tool. In Chapter 4, we give the architecture
of the tool. We especially put the emphasis on the input interfaces,
i.e. the methods we develop to specify a QBD process. In particular,
we present the syntax and the semantic of our language. We also
describe how the algorithms presented in Chapter 2 and in Chapter
3 are integrated within our tool. Finally, we carry out a case study
in Chapter 5. We start from a computational model found in the
scientific literature, we build a specification model (i.e. a QBD process)
accordingly, and we use our tool to perform a sensitivity analysis on a
performance measure.

Part IV reviews our work. In particular, we put emphasis on our personal

xix

contributions and we give insight into future developments that would
be of interest.

Part V is the appendix. It contains two articles related to the thesis, which
were published in some conference proceedings. It also includes the
original article on which our case study is based.

xx INTRODUCTION

Part I

Fundamental Definitions

1

Chapter 1

Quasi-Birth-and-Death

In order to evaluate a system, it must be first modelled with an adequate
mathematical model. This model represents both the system to analyse and
the random events that influence it. Therefore, the model must fit the “oc-
currence tendency” of these events and respect the actual features of the
system. For example, queue models are commonly used to model systems
that randomly receive requests, or jobs, and complete them in a nondeter-
ministic time. Nowadays, queue models are intensively used, especially in
computer science. The state of a queueing system is often defined as the
number of jobs in the queue or in service. The evolution of this number
over time can be modelled as a type of random process, that is the Markov
process. In this thesis, we mainly focus on a particular case of Markov pro-
cess, called the Quasi-Birth-and-Death (QBD). As we will see, QBDs have
a particular structure. Their features considerably help the evaluation of
their performance, as they permit the use of specific algorithms we present
in Chapters 2 and 3.

This chapter aims to define Quasi-Birth-and-Death processes and to give
examples of systems whose state evolution can be modelled as a QBD. The
chapter is presented as follows. We briefly introduce in Section 1.1 the basic
definitions and the general ideas of the probability theory. We stress that
our objective is not to present the probability theory thoroughly, but only to
give an insight into concepts that are required for an understandable reading
of the thesis. A well-known type of random process, the Markov process, is
presented in Section 1.2. In Section 1.3, we put emphasis on the Quasi-Birth-
and-Death process. Then, we specifically describe its particular structure.
Finally, we illustrate its use by modelling a specific queueing system.

3

4 CHAPTER 1. QUASI-BIRTH-AND-DEATH

1.1 Random variable

We begin this section by a brief introduction to the probability theory. This
branch of the mathematics is focused on the study of random phenomena
that can have several outcomes. When such a phenomenon occurs, only one
of its possible results is realized. The set of all the outcomes is called the
sample space, usually noted Ω. Any subset of the sample space is called
an event. An intrinsic value is commonly given to every result of a phe-
nomenon to express its likelihood. The higher the value, the more chances
this result has to occur. This value is called probability. The assignation
of a probability to the outcomes of a sample space is named probability
distribution, often abbreviated as “distribution”. Depending on whether or
not the considered sample space is a countable set, a probability distribution
is defined differently. First, we give a formal definition of probability distri-
bution for a countable sample space. Then, we see why this first definition
cannot hold for an uncountable sample space and subsequently, we give a
new definition that is more convenient.

1.1.1 Discrete random variable

A discrete probability distribution gives a probability to every outcome of
a countable sample space. In other words, a value is associated with each
of the outcomes, describing its occurrence chances. We define this kind of
probability distribution more formally and we illustrate it with an example.

Definition 1.1.1 (Discrete probability function)
A discrete probability function defined on a countable sample space
Ω is a function f : Ω −→ R such that:

• ∀x ∈ Ω : f(x) ∈ [0, 1]

•
∑

x∈Ω

f(x) = 1

Definition 1.1.2 (Probability of an event)
Let Ω be a countable sample space, P(Ω) its powerset, and f , a probability
function defined on it. The probability of an event E, i.e. a subset of
Ω, is a function P : P(Ω) −→ R such that:

• P (E) =
∑

ω∈E
f(ω)

1.1. RANDOM VARIABLE 5

Example 1.1.1 RoyalJelly is a candy store that sells only bags of handmade
candies. All the candies have an identical shape. However, during the fabri-
cation process, each candy randomly receives a colour, which determines its
flavour. The possible colours are: red, orange, yellow or green. Every colour
has equal probability of appearing. Therefore, for the random phenomenon
“colour of the candy”, we have that

Ω = {red, orange, yellow, green},
P (red) = P (orange) = P (yellow) = P (green) = 0.25.

This example is quite basic. However, it will be used again to introduce new
concepts in this chapter. Independently of their probability, the outcomes of
a random phenomenon are often associated with another value. This value
allows to define an order relation on the set of the outcomes. It can be used
to express, for example, that an outcome is preferred over another one. It can
also describe the state of a system affected by random phenomena, as we will
see later. The function that defines such a value for each possible outcome
is called random variable. There exist two types of random variables: the
discrete ones and the continuous ones. For now, we focus only on discrete
random variables. The continuous ones are discussed later in this chapter.
More formally, we define a discrete random variable as follows.

Definition 1.1.3 (Discrete random variable)
Let Ω be a sample space. A discrete random variable is a function
X : Ω −→ S ⊂ R, where S is a countable set. The set of the possible
values returned by X, that is S, is called the state space of X.

Our definition of random variable is not the most general one. Indeed,
there exist random variables that are defined on a state space other than a
subset of R. However, as those ones are out of the scope of this thesis, we
do not consider them. It is also noteworthy that there can be no correlation
between the probability of an outcome and the corresponding value of a ran-
dom variable defined on its sample space.

If a random variable is defined on a countable sample space, its state
space is necessarily countable. Hence, this random variable is discrete. When
studying discrete random variables, we are often interested in the probability
that they have a given value, hence in their probability distribution. When
the random variable is discrete, its distribution can be defined by a proba-
bility mass function.

6 CHAPTER 1. QUASI-BIRTH-AND-DEATH

Definition 1.1.4 (Probability mass function)
Let S = {vi} be the state space of a discrete random variable X defined
on a sample space Ω. Then, we call the probability mass function of
X the function PX : S −→ [0, 1] such that:

• PX(vi) = P (X = vi)
def
= P ({ω ∈ Ω : X(ω) = vi})

•
∑

vi∈S
PX(vi) = 1

We illustrate these definitions with an extension of Example 1.1.1.

Example 1.1.2 RoyalJelly’s shopkeeper grouped the candies by colour in the
store. When a customer enters the shop, he gets an empty bag and chooses
the colour of the candies to be put in the bag. Furthermore, the shopkeeper
knows which flavours are generally preferred by the customers and decides to
assign the price of every coloured candy according to its popularity:

Price(red) = 3,

P rice(green) = 2,

P rice(orange) = 2,

P rice(yellow) = 1.

Obviously, Price is a discrete random variable with state space {1, 2, 3}, as
it assigns the value 1, 2 or 3 to every outcome of the random phenomenon
“colour of the candy”. As previously stated (see Example 1.1.1), every color
has an equal probability to appear. Hence, the probability mass function as-
sociated with the random variable is defined as

PPrice(3) = 0.25,

PPrice(2) = 0.5,

PPrice(1) = 0.25.

Thus, a candy costs 3 money units if it is red, 2 units if it is green or orange,
and 1 unit if it is yellow.

1.1.2 Continuous random variable

We now give a definition of continuous random variables. Again, this defini-
tion concerns only a subset of all the random variables. However, we do not
care about the other ones.

1.1. RANDOM VARIABLE 7

Definition 1.1.5 (Continuous random variable)
Let Ω be an uncountable sample space. A continuous random variable
is a function X : Ω −→ S ⊆ R where S, called the state space of X, is
a uncountable set.

As stated before, the definition of discrete probability distribution cannot
hold when it comes to an uncountable sample space. In this case, any single
outcome of the random phenomenon has an infinitesimal probability, which
statistically results in a zero probability. The same property holds when
we consider the uncountable state space of continuous random variables.
Therefore, there is an infinitesimal probability that these variables have a
given value. From a statistical point of view, this probability is equal to
zero. In particular, such random variables are often used to model measures
like height, weight, and time. Because the state space is uncountable, the
distribution of continuous random variables cannot be defined by a proba-
bility mass function. Instead, we define it with a cumulative distribution
function.

Definition 1.1.6 (Cumulative distribution function)
Let S be the state space of a continuous random variable X defined on
a sample space Ω. The cumulative distribution function (CDF) of
X is the strictly ascending function FX : S −→ [0, 1] such that:

• FX(a) = P (X ≤ a)
def
= P ({ω ∈ Ω|X(ω) ≤ a})

• lim
a→−∞

FX(a) = 0

• lim
a→+∞

FX(a) = 1

Cumulative distribution functions allow to characterize the probability
distribution of continuous random variables. Basically, they can be used to
compute the probability that the value of the variable is in a given interval.
A continuous probability distribution can also be defined by the derivative
of the cumulative distribution function, called the probability density
function. We give examples of continuous distribution by presenting some
of the most well-known. We will make use of these ones in the next chapters.

8 CHAPTER 1. QUASI-BIRTH-AND-DEATH

Definition 1.1.7 (Exponential distribution)
The exponential distribution is a continuous probability distribution
that is characterized by the following cumulative distribution function:

F (x) =

{
1− e−λx, x ≥ 0,
0, x < 0.

(1.1)

where λ ∈ R+
0 is called the rate of the exponential distribution.

Exponential distributions have been extensively used to model events
that occur at random time. In order to illustrate the impact of the rate
value on the distribution, we give the following example.

Example 1.1.3 Figure 1.1 shows the CDF of two exponential distributions.
The one drawn in blue has a rate of 2. The probability that the value of the
random variable, e.g the time of occurrence, is between 0 and 0.5 is about
0.63. The occurrence time is in [0,1] with a probability of about 0.86, and
it is in [0, 1.5] with a probability of about 0.95. The green curve represents
another exponential distribution, this time with rate 1. It is noteworthy that
the higher the rate, the smaller the expected occurrence time. Indeed, for
any x, we see that the probability of the occurrence time being in [0, x] is
higher on the blue curve than on the green one. Also, because a CDF is a
strictly ascending function, the probability that an event occurs increases with
the length of the considered interval [0, x]. However, this increase becomes
slower and slower.

There are two other continuous probability distributions that we require
further in the thesis, in particular in Chapter 3. We give them a formal
definition according to Leemis and Park [19, Chapter 7].

Definition 1.1.8 (Normal distribution)
A Normal (µ, σ) distribution, with µ ∈ R, σ ∈ R+

0 is a continuous
probability distribution defined by the following cumulative distribution
function

F (x) = Φ(
x− µ
σ

) (1.2)

with
Φ(z) =

1√
2π

∫ z

−∞
e−t

2/2dt. (1.3)

Furthermore, µ is the mean of the distribution and σ is its standard
deviation.

1.1. RANDOM VARIABLE 9

Figure 1.1: The cumulative distribution function of two exponential distri-
butions, one with rate 2 (blue curve) and one rate 1 (green curve).

It is noteworthy that if a continuous random variable X is Normal(µ, σ)
distributed, then the random variable (X−µ)/σ is Normal(0, 1) distributed.

Finally, we define the last continuous probability distribution of this sec-
tion.

Definition 1.1.9 (Student’s t-distribution)
A Student’s t-distribution, with parameter n ∈ N0, is a continuous
probability distribution defined by the following cumulative distribution
function

F (x) = 1+I(1/2,n/2,n/(n+x2))
2 , x ≥ 0, (1.4a)

F (x) = 1− F (−x), x < 0, (1.4b)

with
I(a, b, c) =

1

B(a, b)

∫ c

0
ta−1(1− t)b−1dt, (1.5)

where

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt. (1.6)

The parameter n is called the degree of freedom of the Student’s t-
distribution.

10 CHAPTER 1. QUASI-BIRTH-AND-DEATH

1.2 Markov process

Discrete and continuous random variables can model the effect of the out-
comes of a random phenomenon on a given system. However, the value of
a random variable is in general not sufficient to measure the impact of suc-
cessive occurrences over time. In particular, we would like to observe the
evolution of a system state that is subject to random variations. For this
purpose, we define a stochastic process.

Definition 1.2.1 (Stochastic process)
Let Ω be a sample space. A stochastic process {X(t), t ∈ T } is a col-
lection of random variables defined on Ω and indexed with a parameter
t. The set of all the possible values of the random variables is called
the state space of the stochastic process, denoted by S. It can be ei-
ther discrete (countable) or continuous (uncountable). When the set of
the parameter t values, that is T , is countable, the process is called a
discrete time stochastic process. Otherwise, it is called a continuous
time stochastic process.

The parameter t is often associated with a notion of time. Therefore, a
stochastic process seems convenient for modelling the total effect of the suc-
cessive occurrences of a random phenomenon. We can distinct four different
types of stochastic process, depending on whether or not the state space
S and the set T are countable. The following extension of Example 1.1.2
illustrates a discrete time stochastic process with a discrete state space.

Example 1.2.1 The price of a candy bag from RoyalJelly is determined only
by the candies contained in the bag. It is equal to the sum of the price of the
individual candies. When a customer comes in the shop, he gets an empty
bag, puts a candy in it, then another one, and so on. For some sanitary
reasons, a candy can never be removed from the bag. Thus, if we denote by
TotalPrice(i) the price of the bag after adding a ith candy into it and cj the
colour of the jth added candy, we have that:

TotalPrice(n) =

n∑

i=1

Price(ci), (1.7a)

TotalPrice(n) = TotalPrice(n− 1) + Price(cn). (1.7b)

The set {TotalPrice(n), n ∈ N} is a discrete time stochastic process defined
on a countable state space, namely N. It permits to observe the effect of
successive outcomes of the “colour attribution” phenomenon on the total price
of the candy bag.

1.2. MARKOV PROCESS 11

It is noteworthy that the stochastic process described in Example 1.2.1
is quite particular, because it has an additional property. Indeed, the new
value of the bag after adding a candy is determined only by the price of this
specific candy and the price of the bag before adding it. In other words, there
is no need to know all the past prices to find out the new price. This property
is called the Markov property. If it holds for a given stochastic process,
this process is called a Markov process. Once again, we must make a clear
distinction between Markov processes defined on a countable state space and
the ones defined on a uncountable state space. Unless otherwise stated, we
consider in this thesis only Markov processes with a countable state space,
which are sometimes calledMarkov chains. To make their definition easier,
we suggest to give first the following formal definition.

Definition 1.2.2 (Conditional probability)
The conditional probability of the event A, given that the event B
occurs, noted P (A|B) is defined as follows:

P (A|B) =
P (A ∩B)

P (B)
. (1.8)

Because a Markov process is a particular case of stochastic process, pa-
rameter t takes its value either in a countable set or in an uncountable one.
We separately formalize the definition of Markov process for both cases.

1.2.1 Discrete time Markov process

A Markov process is said to be in discrete time when the parameter t index-
ing the random variables of the process takes its values in a countable set.
According to Resnick and Sidney [27, Section 2.1], we formally define it as
follows.

Definition 1.2.3 (Discrete time Markov process)
A discrete time Markov process is a discrete stochastic process
{X(t), t ∈ T }, where T is countable, such that the Markov property
holds. That is, ∀x1, x2, ..., xn ∈ S,∀n ∈ T , we have that

P (X(n) = xn|X(1) = x1, X(2) = x2, ..., X(n− 1) = xn−1)

= P (X(n) = xn|X(n− 1) = xn−1). (1.9)

12 CHAPTER 1. QUASI-BIRTH-AND-DEATH

The Markov property allows to determine the next state of the Markov
process by knowing only its current state, and ignoring the previous ones. A
Markov process is defined by the probability distribution of the transitions
between its states. In the discrete time case, a probability is associated with
every transition. This means that, when in state s, the process can move to
some other states with a given probability. Because the new state is mod-
elled by the value of a random variable and according to Definition 1.1.4,
the sum of the probability of all the transitions from s must be equal to 1.
For a discrete time Markov process, the set T can be seen as a set of epochs
at which a transition occurs. Hence, for t ∈ T , X(t) denotes the state of the
process after t “steps”or “time units”.

Usually, the probability of all the transitions of a Markov process are
recorded in a stochastic matrix P called the transition matrix. Basically,
the element Pij of the matrix gives the probability of transiting from state
i to state j in one step. Subsequently, if we denote by S the state space of
the Markov process, we have:

∀i, j ∈ S :Pij ≥ 0, (1.10a)

∀i ∈ S :
∑

j∈S
Pij = 1. (1.10b)

Example 1.2.2 In Example 1.2.1, we defined the discrete time Markov pro-
cess {TotalPrice(n) ∈ N, n ∈ N} to model the price evolution of a candy bag.
In this case, the process can only move from state s to state s+ 1, s+ 2 or
s+ 3. Indeed, the price of a bag can only increase with respect to the succes-
sively added candies. Figure 1.2 shows the possible transitions in this Markov
process. Every circle is a state and an arrow models a transition between two
states. Each transition is labelled with its corresponding probability. The
transition matrix of the process is given by

P =

0 0.25 0.5 0.25 0 0 · · ·
0 0 0.25 0.5 0.25 0 · · ·
0 0 0 0.25 0.5 0.25

. . .

0 0 0 0 0.25 0.5
. . .

0 0 0 0 0 0.25
. . .

...
...

...
...

.

. (1.11)

Indeed, the price is increased by one unit if the newly added candy is yellow,
by two units if it is green or orange, or three units if it is red. Furthermore,
every kind of candy has a probability of 0.25 to be chosen.

1.2. MARKOV PROCESS 13

0 1

0.25

2

0.5

0.25

3

0.25

0.5

0.25

...

0.25

0.5

0.25

Figure 1.2: The possible transitions of the stochastic process presented in
Example 1.2.1.

It is noteworthy that a transition matrix can be infinitely sized, similarly
with the one presented in Equation (1.11).

1.2.2 Continuous time Markov process

We now define a continuous time Markov process, according to Resnick and
Sidney [27, Section 5.1].

Definition 1.2.4 (Continuous time Markov process)
A continuous time Markov process is a stochastic process {X(t), t ∈
T }, where T is uncountable, such that the Markov property holds: that
is, for any t, s ∈ T and any state j, we have

P (X(t+ s) = j|X(u),∀u ∈ [0, t]) = P (X(t+ s) = j|X(t)). (1.12)

Furthermore, the Markov process is time-homogeneous if, for all t, s ∈
T , j ∈ S, it satisfies

P (X(t+ s) = j|X(t)) = P (X(s) = j|X(0)). (1.13)

From now on, we always assume that a continuous time Markov process
is time-homogeneous.

Instead of considering T as a set of transition steps, we can see it as an
interval of time during which the state of the Markov process is observed.
That is, for all t ∈ T , X(t) gives the process state observed at time t. A tran-
sition between two states occurs at random times. Therefore, we associate

14 CHAPTER 1. QUASI-BIRTH-AND-DEATH

a rate of occurrence with every transition to express its tendency to occur.
It is noteworthy that we have identically named both this tendency and the
parameter of the exponential distribution. In fact, when a transition has a
rate of occurrence equal to λ, it means that this transition can be triggered
after a random time following an exponential distribution with parameter λ,
hence the naming similarity.

Like the transition probabilities of a discrete time Markov process, the
transition rates of a continuous time Markov process are usually recorded in
a matrix. This matrix, denoted by Q, is called the infinitesimal generator
of the process. If we denote by S the state space of the process, Q is such
that

∀i ∈ S : Qii = −
∑

j 6=i
Qij ≤ 0, (1.14a)

∀i, j ∈ S : i 6= j ⇒ Qij ≥ 0, (1.14b)

∀i ∈ S :
∑

j∈S
Qij = 0. (1.14c)

Basically, for i 6= j, the element Qij encodes the transition rate from state i
to state j. Qii is a negative rate. It expresses that, when the process reaches
state i, it stays in this state for a random time exponentially distributed with
rate −Qii. When this random time runs out, the process moves to state j,
where j 6= i, with probability −Qij

Qii
. Hence, a transition with a higher rate

is more likely to occur. We now give an example of continuous time Markov
process.

Example 1.2.3 We consider a Markov process M = {X(t), t ∈ R} with
state space {0, 1, 2}, whose transitions are shown in Figure 1.3. Every tran-
sition is labelled with its rate of occurrence. We assume that the process
always starts in state 1. From state 1, two transitions are available: one to
state 2 (with rate 4) and another one to state 0 (with rate 1). When in state
2, the process eventually reaches state 0 after a random time following an
exponential distribution with rate 2. Once in state 0, the process never leaves
it. Then, the infinitesimal generator of the process is a matrix

Q =

0 0 0
1 −5 4
2 0 −2

 . (1.15)

When a Markov process has no way to leave a given state (e.g. state 0 in
Example 1.2.3), this state is called absorbing.

1.2. MARKOV PROCESS 15

1

2

4

0

1

2

Figure 1.3: A continuous time Markov process with an absorbing state.

In Section 1.1.2, we gave a definition of continuous probability distribu-
tion (see Definition 1.1.6). We also introduced the exponential distribution
(see Definition 1.1.7). Thanks to processes like the one specified in Ex-
ample 1.2.4, we can define another continuous distribution, which is called
the phase-type distribution. The definition we give below is based on
Latouche and Ramaswami [18, Chapter 2].

Definition 1.2.5 (Phase-type distribution)
Let us consider a continuous time Markov process defined on state space
S = {0, 1, . . . ,m},m <∞ with initial probability vector (α0,α) and with
infinitesimal generator

Q =

(
0 0
t T

)
, (1.16)

where α is a row vector of size m, T is a matrix of size m ×m, t is a
column vector of size m and 0 is a row vector of size m filled with zeros.
We also assume that there is only one absorbing state. According to the
properties of the infinitesimal generator of a continuous time Markov
process (see Equation (1.14)), we have, ∀i, j : 1 ≤ i 6= j ≤ m, that

Tii < 0, (1.17a)
Tij ≥ 0, (1.17b)

−
m∑

k=1

Tik = ti ≥ 0; (1.17c)

we also have that

α0 +

m∑

k=1

αk = 1. (1.18)

A continuous time phase-type distribution with parameters α and T ,
denoted by PH(α, T), is the distribution of time needed by the process
to get absorbed into the absorbing state.

16 CHAPTER 1. QUASI-BIRTH-AND-DEATH

Unless otherwise stated, we henceforth consider that α0 = 0. This implies
that the process cannot enter the absorbing state immediately. We now give
an example of a phase-type distribution based on the process described in
Example 1.2.3.

Example 1.2.4 We consider the continuous time Markov process defined in
Example 1.2.3. Then, if we assume that the process always starts in state 1,
we can define a phase-type distribution PH(α, T) where

α = (1, 0), (1.19a)

T =

(
−5 4
0 −2

)
. (1.19b)

Phase-type distributions are often used to model real processes that are com-
posed of several operations. In this thesis, we make intensive use of them,
especially in the case study carried out in Chapter 5.

Through Definition 1.2.1, Definition 1.2.3, and Definition 1.2.4, we intro-
duced the Markov processes defined on a countable state space. The most
common countable state spaces are subsets of N. In this case, the state of
a process is defined by an integer. However, it can be more convenient to
model a system with a process whose states are defined by n-uplets, that is
with a state space S ⊆ Nn. In this case, the Markov process is said to be
defined over a n-dimensional state space. We stress once again that we could
use other n-dimensional state spaces. However, unless otherwise specified,
we only consider subsets of Nn. In particular, we are interested in a spe-
cial case of two-dimensional Markov process, the Quasi-Birth-and-Death
process.

1.3 Quasi-Birth-and-Death process

In this section, we present a particular case of Markov process, the Quasi-
Birth-and-Death. Its particular features considerably simplify the struc-
ture of the matrix encoding its transitions. This introduction is based on
Latouche and Ramaswami [18, Chapters 6,10,12]. The definition we give
below concerns the continuous time QBDs, because the tool we ultimately
want to build will work mainly with these ones. However, the definition of
discrete time QBDs is very similar. Our main intent is to emphasize the
particular features of such processes, which appear in both cases. Further-
more, there exist techniques that somehow convert a continuous time QBD
into a discrete time one. We present these techniques further in this chapter.

1.3. QUASI-BIRTH-AND-DEATH PROCESS 17

1.3.1 Definition & Generator

We consider a Markov process {X(t), t ∈ R+} defined over a two-dimensional
state space

{(k, i) : k ∈ N, i ∈ N, i ≤ nk ∈ N}.
We partition the state space into subsets

l(k) = {(k, 1), ..., (k, nk)} (1.20)

called levels. In other words, level k includes all states whose first coordinate
is k. The second coordinate is often called the phase of the system. The
number of states in level k, that is nk, can be either finite or infinite. How-
ever, we consider from now on that this number is finite, unless otherwise
stated.

Then, we apply a restriction on the transitions of the process, as illus-
trated in Figure 1.4. A transition from a state (i, j) can only lead to another
state of level i, or to a state of a directly adjacent level, that is i + 1 (for
any i) or i − 1 (for i > 0). However, it cannot move in one step to a state
of further or downer levels. Next, for any i > 0, we encode the transitions
from the states of level i to states of level i− 1 in matrix A(i)

−1, the transition
between the states of level i in matrix A

(i)
0 and the transitions from level

i states to level i + 1 states in matrix A(i)
1 . We also record the transitions

between states of level 0 in matrix B0 and transitions from the states of level
0 to the states of level 1 in B1. Subsequently, the infinitesimal generator of
the process has the form

Q =

B0 B1 0 0 . . .

A
(1)
−1 A

(1)
0 A

(1)
1 0 . . .

0 A
(2)
−1 A

(2)
0 A

(2)
1

. . .

0 0 A
(3)
−1 A

(3)
0

. . .
...

...
.

(1.21)

where A(g)
k is a nk × nk+g sized matrix, g ∈ {−1, 0, 1}, and Bg is a n0 × ng

sized matrix, with g ∈ {0, 1}.

It is noteworthy that the generator of a QBD presents a particular struc-
ture: it is a block tridiagonal matrix (see Equation (1.21)). This particularity
is essential because the computation of performance measures is based on
the generator, as we will see later. It is also worth mentioning that accord-
ing to our definition, the available transitions may depend on the current
level. Such a QBD is called level dependent or inhomogeneous. If the
available transitions and their respective rate are independent of the level,

18 CHAPTER 1. QUASI-BIRTH-AND-DEATH

...

...

(i,j+k)

(i,j-l)

(i+1,p)

(i-1,q)

(i+2,r)

(i-2,s)

(i,j)

Figure 1.4: The available transitions in a Quasi-Birth-and-Death process.

level 0 excepted, the QBD is called level independent or homogeneous.
In this case, we have

∀i, j > 1, A
(i)
−1 = A

(j)
−1, (1.22)

∀i, j > 0, A
(i)
0 = A

(j)
0 ∧A

(i)
1 = A

(j)
1 . (1.23)

Hence, the generator of a homogeneous QBD has the form

Q =

B0 B1 0 0 . . .
B−1 A0 A1 0 . . .

0 A−1 A0 A1
. . .

0 0 A−1 A0
. . .

...
...

.

(1.24)

where Aj is a m ×m matrix, j ∈ {−1, 0, 1}, with m < ∞ and m ∈ N, and
B0 is a k× k matrix, with k <∞ and k ∈ N, B1 is a k×m matrix and B−1

is a m× k matrix.

It is worth mentioning that a QBD does not necessarily include an infinite
number of levels. This number can indeed be finite. In this case, when in
maximum level M , the process cannot move to level M + 1. Hence, the
generator of an inhomogeneous and finite QBD has the form

Q =

B0 B1 0 . . . 0

A
(1)
−1 A

(1)
0 A

(1)
1

. . .
...

...
.

...
0 . . . A

(M−1)
−1 A

(M−1)
0 A

(M−1)
1

0 C−1 C0

(1.25)

1.3. QUASI-BIRTH-AND-DEATH PROCESS 19

where Bj , j ∈ {0, 1} and A(i)
k , k{0, 1} are defined as in Equation (1.21), and

Cl, for l ∈ {−1, 0}, is a nM × nM+l matrix.

If the QBD is homogeneous and finite, its generator has the form

Q =

B0 B1 0 0 . . . 0

B−1 A0 A1 0 . . .
...

0 A−1 A0
.

...
...

.
...

0 . . . 0 A−1 A0 C1

0 0 C−1 C0

(1.26)

where matrices Bj and Aj , for j ∈ {−1, 0, 1}, are defined as in Equation
(1.24), and C1 is a m × l matrix, C0 is a l × l matrix and C−1 is a l ×m
matrix, with l <∞ and l ∈ N.

Although the generator of a finite QBD is very similar to the generator of
an infinite QBD, this feature is significant. Indeed, as we will see in Chapter
2, some algorithms must be modified or cannot be applied at all on a finite
QBD.

We show next that a Quasi-Birth-and-Death is convenient to model some
queueing systems. For recall, such a system receives jobs at random times,
and completes them in a nondeterministic time.

1.3.2 The M/PH/1 queue

Thanks to the above definitions and concepts, we can already show that
a Quasi-Birth-and-Death process can be used to model a specific queueing
system. We consider an M/PH/1 queue, which is defined as follows. The
interarrival times of jobs in the system follow an exponential distribution
with rate λ. The system has one server that can complete one request at
a time. The completion time is PH(α, T) distributed, where T is a m ×m
sized matrix, m ∈ N, with m <∞. When a job enters the system, it waits in
an infinitely sized queue if the server is already serving. The queue policy is
First In First Out (FIFO), that is a job cannot be served until all the other
jobs that entered the system before it are completed. The server never idle,
except when there is no more job in the system.

We consider the Markov process

M = {X(t), t ∈ R+} (1.27)

defined with the state space

S = l(0) ∪ l(1) ∪ l(2) ∪ . . . , (1.28)

20 CHAPTER 1. QUASI-BIRTH-AND-DEATH

with

l(0) = {0}, (1.29)
∀i : 1 ≤ i ∈ N : l(i) = {(i, 1), (i, 2), ..., (i,m)}. (1.30)

When the M/PH/1 system is empty, the process is in state 0. Otherwise,
the process is in state (i, φ) where i is the total number of jobs in the sys-
tem, and φ is the current state of the phase-type distribution related to the
service currently performed, which we simply refer to as the service phase.
Clearly, this Markov process is a QBD: from state (i, φ), it can only move
to a state (i′, φ′) with i′ ∈ {i − 1, i, i + 1}. Indeed, the state of the process
is modified only when a new job enters the system (i′ = i + 1) or when a
service ends (i′ = i − 1) or when only the service phase changes (i′ = i).
Furthermore, the process has an additional property: apart from level 0, the
possible transitions and their respective rate in a given level is independent of
the level itself. Therefore, the same state variations can occur whatever the
level. Indeed, independently of the number of jobs in the queueing system, a
new request can arrive with a identical rate and the service time distribution
never changes. Transitions from level 0 are a bit different because when in
level 0, that is when the system is empty, there is no service currently being
executed. Similarly, when the process transits from level 1 to level 0, that
is when the only job in the system is completed, no new service must be
started. Hence, the QBD is homogeneous. Furthermore, because the queue
capacity is infinite, the QBD is also infinite. Its generator has therefore the
form given in Equation (1.24). We now give an example of M/PH/1 queue-
ing system and we define a QBD modelling it.

Example 1.3.1 Figure 1.5 presents the possible transitions of a QBD mod-
elling an M/PH/1 queueing system that has an infinite capacity and the
following parameters:

λ = 0.5

α =
[
1 0

]

T =

[
−10 4

0 −3

]

where λ is the rate of the exponential distribution followed by the interarrival
times, and PH(α, T) is the phase-type distribution followed by the service
times.

We now describe the content of each inner block of the generator defined
in Equation (1.24) for the M/PH/1 queueing system illustrated in Figure
1.5. We observe that a repetitive structure appears, hence the homogeneous

1.3. QUASI-BIRTH-AND-DEATH PROCESS 21

0 1,10.5

6

1,2

4
3

2,10.5

6

2,2

4

0.5

3

3,10.5

6

3,2

4

0.5

3

...0.5

6

...0.5

3

Figure 1.5: The possible transitions of a QBD modelling an M/PH/1 queue-
ing system.

features of the QBD. When the system is empty, that is when the QBD is
in level 0, the arrival of a job is the only event that modifies the state of the
system. When it happens, the job is served and enters either service phase 1
with probability α1, or service phase 2 with probability α2. Therefore, when
leaving state 0, the process can only reach state (1, 1) with rate λα1 or state
(1, 2) with rate λα2. Hence, because of the generator properties described in
Equation (1.14), we have that

B0 = −(λα1 + λα2) = −λ (1.31)
B1 = (λα1, λα2) = λα (1.32)

When only one job is in the system, the process is in level 1. Provided that
no other request has been received meanwhile, it moves to level 0 upon the
job completion, that is when the phase-type distribution defining the service
time enters its absorbing state (see Definition 1.2.5). Hence, the transition
rates from level 1 to level 0 are given by

B−1 = −T1 = t (1.33)

where 1 is a column vector of appropriate size, filled with ones.

When the process is in level i, with i > 1, it also moves to level i − 1
upon the end of a service. However, because there are still jobs to complete,
a new service starts. Subsequently, the newly started phase-type distribution
must be taken into account. The beginning phase is determined with respect
to the probability vector α. Then, we have

A−1 = tα. (1.34)

Only matrices A0 and A1 have still to be specified. When the process is in
level i > 0, there exist transitions that lead to another state of this same
level. These transitions correspond to the transitions between two phases of
the service process. Indeed, moving from one service phase to another does

22 CHAPTER 1. QUASI-BIRTH-AND-DEATH

not impact on the total number of jobs in the system. The rates of these
transitions are recorded in matrix T . Independently of the service phase, an
arrival can occur. This event increases the number of jobs in the system but
has no influence on the service phase. Hence, because of the properties of a
generator defined in Equation (1.14), we have that

A1 = λI, (1.35)
A0 = T −A1, (1.36)

where I is an identity matrix with the same size as T.

We have thus defined the complete generator of a QBD modelling an
M/PH/1 queueing system. Basically, most of the queueing systems with one
arrival at a time can be modelled with a QBD. The Quasi-Birth-and-Death
process seems to be a sufficiently expressive type of model. Their analysis is
therefore of interest. In Chapters 2 and 3, we present different methods to
compute performance measures. The algorithms computing these measures
make intensive use of the particular structure of the QBD generator, as we
will show. However, some of them require a transition matrix instead of a
generator, hence the need of a method to transform a continuous time QBD
into a discrete time one.

1.3.3 Uniformization of Markov processes

We previously mentioned that a continuous time Quasi-Birth-and-Death can
be somehow transformed into in discrete time one. In this subsection, we
present a well-known technique that transforms the generator of a continuous
time Markov process into a transition matrix. It is called the uniformiza-
tion technique. In Chapter 2, we motivate the need for this technique,
because we will mainly reason about discrete time processes. Furthermore,
the uniformization plays an essential role in the simulation algorithms we
develop in Chapter 3. This introduction is given according to Latouche and
Ramaswami [18, Section 2.8], and to Resnick and Sidney [27, Section 5.10].

We consider a continuous time Markov process M = {X(t), t ∈ R+}
with countable state space S and generator Q. Let c be a real number such
that

∀i ∈ S : |Qii| ≤ c <∞. (1.37)

Then, we define the matrix K as

K =
1

c
Q+ I (1.38)

1.3. QUASI-BIRTH-AND-DEATH PROCESS 23

where I is the identity matrix of the same size as Q. From Equations (1.14)
we have that

∀i ∈ S : 0 ≤ Kii =
1

c
Qii + 1 ≤ 1, (1.39a)

∀i, j ∈ S : 0 ≤ Kij =
1

c
Qij ≤ 1, (1.39b)

∀i ∈ S :
∑

j∈S
Kij = 1 +

1

c

∑

j∈S
Qij = 1. (1.39c)

K is therefore a stochastic matrix (see Equation (1.10)).

LetM′ = {Y (n), n ∈ N} be a discrete time Markov process with transi-
tion matrix K. We also consider an infinite sequence of independent events
such that the time between two events follows an exponential distribution
with rate c. We denote by pn, with n ∈ N the occurrence time of the nth

event and we define the stochastic process

M′′ = {Z(t), t ∈ R+ : Z(t) = Y (n), n ∈ N, t ∈ [pn, pn + 1]} (1.40)

which is markovian. Its infinitesimal generator is equal to Q, as proven
by Latouche and Ramaswami [18, Section 2.8]. Intuitively, the uniformiza-
tion means that the process M can move to another state only at times
pn, n ∈ N. Provided that the process is currently in state i, it moves to state
j with probability Kij .

Finally, it is noteworthy that the specific value of c has no importance,
as long as it is finite and greater than the absolute value of any diagonal
element of Q. Usually, it is defined as

c = max
i∈S

(|Qii|). (1.41)

The choice of this value can have significant consequences, in particular on
the efficiency of the simulation algorithms we present in Chapter 3.

We discuss next how the uniformization technique can be specifically
applied to Quasi-Birth-and-Death processes. The diagonal elements of an
inhomogeneous QBD generator are contained in matrices B0 and A

(i)
0 (see

Equation (1.21)). If the QBD is homogeneous, we have that

∀i, j ∈ N0, A
(i)
0 = A

(j)
0 = A0 (1.42)

(see Equation (1.24)). If it is also infinite, we define the uniformization rate
as

c ≥ max(max
i∈[1..k]

(|(B0)ii|), max
i∈[1..m]

(|(A0)ii|)) (1.43)

24 CHAPTER 1. QUASI-BIRTH-AND-DEATH

where k and m are respectively the size of B0 and the size of A0. On the
other hand, if the QBD is finite, we must also take into account matrix
C0, which records the inner transitions of the maximum level (see Equation
(1.26)). In this case, the uniformization rate becomes

c′ ≥ max(c, max
i∈[1..l]

(|(C0)ii|)) (1.44)

where c is defined as in Equation (1.43) and l is the size of C0.

When the QBD is inhomogeneous, the computation is hardened. If the
QBD is finite with maximum level M (see Equation (1.25)), the number
of required comparisons dramatically increases. Indeed, the uniformization
rate c is given by

c ≥ max(c0, cM , ck) (1.45)

with

c0 = max
i∈[1..n0]

(|(B0)ii|), (1.46a)

cM = max
i∈[1..nM]

(|(C0)ii|), (1.46b)

ck = max
i∈[1..M−1],j∈[1..ni]

(|(A(i)
0)jj |), (1.46c)

where n0 is the size of B0, ni, with 0 < i < M , is the size of A(i)
0 , and nM is

the size of C0. Finally, if the QBD is inhomogeneous and infinite, c is given
by

c ≥ max(c0, ck) (1.47)

with

c0 = max
i∈[1..n0]

(|(B0)ii|), (1.48a)

ck = max
i∈N0,j∈[1..ni]

(|(A(i)
0)jj |). (1.48b)

It is noteworthy that in Equation (1.48b), ck is defined as the maximum
element of an infinite set. In an implemented program, we cannot determine
the maximum value of an infinite set whose contained values are a priori
unknown, because it would require an infinite computation time. Some as-
sumptions about the process can help to overcome this issue. We do not
discuss this point, though.

We illustrate the use of the uniformization technique on the infinite and
homogeneous QBD presented in Example 1.2.4.

1.3. QUASI-BIRTH-AND-DEATH PROCESS 25

Example 1.3.2 Let us consider the Quasi-Birth-Death process defined in
Example 1.3.1. In order to uniformize it, we have to determine a real value
c greater or equal to the absolute value of any diagonal element. Because
the QBD is homogeneous and infinite, according to Equation (1.43), we can
define c as:

c = max(| − λ|, max
i∈[1..2]

(|Tii − λ|))

= max(0.5,max(10.5, 3.5))

= 10.5

(1.49)

Then, if we denote by Q the infinitesimal generator of the QBD, we define
the transition matrix of the discrete time version of the process as

K = I +
1

c
Q =

B′0 B′1 0 0 . . .
B′−1 A′0 A′1 0 . . .

0 A′−1 A′0 A′1
. . .

0 0 A′−1 A′0
. . .

...
...

.

(1.50)

where

B′0 = 1 + −lambda
c =

(
20
21

)
, (1.51a)

B′1 = lambda
c α =

(
1
21 0

)
, (1.51b)

B′−1 = 1
c t =

(
12
21
6
21

)
, (1.51c)

A′0 = 1
c (I + (T − λI)) =

(
0 8

21

0 14
21

)
, (1.51d)

A′1 = 1
cλI =

(
1
21 0

0 1
21

)
, (1.51e)

A′−1 = 1
c tα =

(
12
21 0
6
21 0

)
. (1.51f)

1.3.4 Kendall’s notation

We end this chapter by presenting a notation we use to describe the features
of a queueing system. The notation was introduced by D. G. Kendall in 1953
[32], and it bears its creator’s name.

26 CHAPTER 1. QUASI-BIRTH-AND-DEATH

Definition 1.3.1 (Kendall’s notation)
Kendall’s notation is a concise description of a queueing system. The
template of the notation is A/B/C/D/E/F where

• A is a code specifying the probability distribution of the interarrival
times,

• B is a code defining the distribution of a service time,

• C is an integer giving the number of servers,

• D is an integer specifying the queue capacity,

• E is the total number of jobs that can enter in the system, and

• F gives the queue discipline.

There exists a more concise form of the Kendall’s notation. Its template
is A/B/C. When that form is used, it is assumed that K is ∞, N is ∞
and D is FIFO (First In First Out).

In particular, we are interested in two codes commonly used to describe
a time distribution: M and PH. The M code stands for “Markovian”. It
defines a random time that follows an exponential distribution. The PH code
denotes a phase-type distribution. We already used both codes to describe
an M/PH/1 queueing system.

1.4 Conclusion

In this section, we have given a formal definition of the Quasi-Birth-and-
Death process. We also have put emphasis on its particular features, espe-
cially the form of its infinitesimal generator. We have presented a technique
called uniformization that converts a continuous time QBD into a discrete
time QBD. Finally, we have introduced the Kendall’s notation to specify a
queueing system.

In the next chapter, we present theoretical measures that are relevant for
the performance analysis of a system. We also give algorithms to compute
these measures when the system is modelled by a Quasi-Birth-and-Death
process and we discuss the time complexity of the presented algorithms.

Part II

Computation Methods

27

Chapter 2

Matrix Analytic Methods

In Chapter 1, we described the Quasi-Birth-and-Death process as a conve-
nient mathematical model for systems whose state depends on the outcome
of random phenomena. Our next objective is to present methods to evaluate
the performance of such a system. When the system is modelled by a Markov
process, the performance evaluation often consists in the determination of
so-called measures of performance.

In this chapter, we especially put emphasis on two specific measures: the
stationary distribution and the first passage times. In Section 2.1, we first
define the stationary distribution as well as the conditions for it to exist.
Next, we present methods to compute it, which are based on mathematical
relations specific to QBDs. These methods, called matrix analytic methods,
make intensively use of the particular structure of the QBD. They allow the
development of several algorithms to determine the stationary distribution.
In particular, Subsection 2.1.3 is dedicated to the computation of the sta-
tionary vector when the QBD is homogeneous and infinite. Subsection 2.1.4
deals with the other types of QBDs. Next, in Section 2.2, we focus on the
second measure, that is the first passage times. Again, we present methods
which serve as a basis for the development of algorithms to compute them.

2.1 Stationary Distribution

The first performance measure we focus on is called stationary distribu-
tion. This measure characterizes the so-called steady state of a Markov
process. In simple terms, the steady state can be described as the long-run
behaviour of the considered process. On the contrary, the short-run be-
haviour of the process is referred to as transient state.

The stationary distribution is described by probability values recorded in
a vector called either stationary probability vector or steady state prob-

29

30 CHAPTER 2. MATRIX ANALYTIC METHODS

ability vector. Intuitively, this vector records the probability of the process
being in a given state after a long run time.

First, we give the conditions for the stationary distribution to exist in
Subsection 2.1.1. Then, we give an algorithm that computes the stationary
vector of any Markov process in Subsection 2.1.2. Next, we make use of the
particular structure of the Quasi-Birth-Death process to develop algorithms
that compute the stationary vector of such a process. More precisely, we
present in Subsection 2.1.3 the Logarithmic Reduction algorithm, which can
be applied to homogeneous and infinite QBDs. In order to deal with the
other types of QBD, we present the Linear Level Reduction algorithm in
Subsection 2.1.4.

2.1.1 Stability conditions

Many performance measures are computed thanks to the stationary distri-
bution of the Markov process that models the considered system. However,
this distribution does not always exist. Before studying algorithms to com-
pute it, we discuss the conditions in which the stationary distribution exists
and is independent of the initial state. To give these conditions, different
definitions are needed. More precisely, we define several properties related
to Markov processes and we establish the link between these properties and
the stationary distribution. The definitions of these properties we give are
based on Resnick and Sidney [27, Chapter 2]. For the sake of readability, we
always denote the state space of a Markov process by S and we refer to the
set of values of the time parameter as T . We also assume that S is always
countable. Furthermore, T is countable for a discrete time process and it is
uncountable for a continuous time process.

The first property we focus on concerns only discrete time Markov pro-
cesses. It is called period. Intuitively, a state is said to have period p if he
can only be reached after a number of time units that is a multiple of p. We
formally define periodicity and we illustrate it with an example.

Definition 2.1.1 (Period)
For i ∈ S, state i is said to have period p if, starting from it, the number
of steps needed to come back to it must necessarily be a multiple of p.
More formally,

∀t ∈ T : P (X(t) = i|X(0) = i) > 0 =⇒ t = cp, c ∈ N. (2.1)

If a state has period 1, then it is called aperiodic. Otherwise, it is called
periodic.

2.1. STATIONARY DISTRIBUTION 31

Example 2.1.1 Let M = {X(t), t ∈ N} be a discrete time Markov process
with state space S = {1, 2} characterized by the following transition matrix

P =

(
0 1
1 0

)
(2.2)

Obviously, if the process always starts in state 1, that is

P (X(0) = 1) = 1,

the process can only be in state 1 at odd time units, while it can only be in
state 2 even time units. Therefore, the period of both state is 2.

The next property we present concerns both discrete time and continuous
time Markov processes. The recurrence of a state raises the possibility to
reach a state infinitely often. We formally define it as follows.

Definition 2.1.2 (Recurrent state)
If, from state i, the process eventually reaches state i again in the future
with probability fii, then state i is said to be recurrent if and only if
fii = 1.

There exist two kinds of recurrence, which are defined as follows.

Definition 2.1.3 (Positive & Null recurrent state)
Let µi be the mean recurrence time of a recurrent state i, that is the
expected time for the process, starting from state i, to be in i again in
the future. Then, state i is said to be recurrent positive if µi < ∞.
Otherwise, it is called null recurrent.

The periodicity and the recurrence properties individually characterize
the states of a process. We want to extend such properties to the whole state
space. In order to achieve this, we first study some communication relations
between the states.

Definition 2.1.4 (Accessible state)
State j is accessible from state i, noted i→ j, if and only if there is a
path from i to j, that is

∃t ∈ T , t <∞ : P (X(t) = j|X(0) = i) > 0. (2.3)

32 CHAPTER 2. MATRIX ANALYTIC METHODS

Definition 2.1.5 (Communicating state)
State i and state j communicate, noted i↔ j, if and only if i→ j and
i← j.

Thanks to the above definitions, we can separate the states in groups
such that a state of a given group communicates with every state of the
same group. Such a group is called equivalence class.

Definition 2.1.6 (Equivalence class)
An equivalence class C ⊆ S is a set of states such that

∀i, j ∈ C,∀k ∈ S \ C : i↔ j ∧ (k = i) (2.4)

The state space of a Markov process can be partitioned into equivalence
classes. Indeed, a state that communicates with no other state forms an
equivalence class, and according to our definition, two states that commu-
nicate are necessarily part of the same equivalence class. The concept of
equivalence class allows to infer the periodicity and the recurrence property
of the whole equivalence class from the property of a single state of this class,
as established by the following theorem.

Theorem 2.1.1 (Homogeneity in an equivalence class)
All the states of a given equivalence class are either all non recurrent, all
positive recurrent, or all null recurrent. Furthermore, they all have the
same period.

We can therefore characterize a class as non recurrent, positive recurrent
or null recurrent. In particular, if the state space of a process is composed of
only one equivalence class, the same recurrence property holds for all of the
states. Such a process is called irreductible. Depending on the recurrence
property of its states, the process is also called either non recurrent, positive
recurrent, or null recurrent. Furthermore, if the states of an irreductible
process are aperiodic, the process is also called aperiodic.

The properties we have introduced above allow us to specify the condi-
tions for the stationary distribution of a process to exist. These conditions
are given in the following two theorems.

2.1. STATIONARY DISTRIBUTION 33

Theorem 2.1.2 (Stability conditions (discrete time))
If a discrete time Markov process is aperiodic, irreductible, and posi-
tive recurrent, its stationary distribution exists and is independent of the
initial probability distribution. Furthermore, the stationary probability
vector is the unique solution of the system of equations

πP = π (2.5a)
π1 = 1 (2.5b)

where P is the transition matrix associated with the process and 1 is a
vector of appropriate size filled with ones.

Theorem 2.1.3 (Stability conditions (continuous time))
If a continuous time Markov process is irreductible and positive recur-
rent, its stationary distribution exists and is independent of the initial
probability distribution. Furthermore, the stationary probability vector is
the unique solution of the system of equations

πQ = 0 (2.6a)
π1 = 1 (2.6b)

where Q is the infinitesimal generator of the process and 1 is a vector of
appropriate size filled with ones.

We henceforth consider Markov processes which meets the conditions for
having a stationary distribution. We also assume, for the rest of the chapter,
that the processes we work with are discrete. We discuss the continuous case
at the end of the chapter.

2.1.2 Gaussian Elimination algorithm

Thanks to Equations (2.5), we can already develop a method for computing
the stationary probability vector of a Markov process. The method consists
in determining the solution of Equations (2.5). Obviously, it cannot be ap-
plied when the state space of the considered process is infinite1, that is when
both π and P are infinitely sized. It would result in an infinite number of

1Be aware that a given set can be countable but infinite.

34 CHAPTER 2. MATRIX ANALYTIC METHODS

computations. Hence, the run time of a program performing such computa-
tions would be infinite.

Latouche and Ramaswami [18, Section 5.4] present an algorithm to solve
this system of equations which is based on Gaussian elimination and LU de-
composition. We refer to Press et al. [25, Section 2.3] for a clear introduction
to Gaussian elimination and LU decomposition. We give an implementation
of this algorithm in an Octave function whose code is shown in Figure 2.1.
It is noteworthy that we choose to give a real implementation instead of
pseudocode. Actually, the tool we build uses Octave functions to compute
the performance measures. Hence, we present every algorithm in the form
of such a function.

The function has only one parameter, which is the transition matrix P ,
and it returns vector π. We first compute matrix L of the LU decomposition
(lines 2-14). Next, we compute vector π by back-substitution (lines 15-23)
and we normalize it (lines 24-27).

Proposition 2.1.1
The Gaussian elimination has a worst-case time complexity of O(n3)
in the number of scalar operations, where n is the number of rows and
columns of the matrix given as parameter.

Indeed, the first part of the algorithm (lines 5-14) executes three embed-
ded loops. The inner loop (lines 10-12) performs a scalar addition at most n
times. It is repeated at most n times in the middle loop (lines 8-13). Finally,
the algorithm iterates in the outer loop n− 1 times.

2.1.3 Logarithmic Reduction algorithm

Instead of using the Gaussian elimination algorithm to compute the station-
ary vector of a QBD, we present more efficient, QBD-specific algorithms that
profit from the particular structure of this kind of Markov process. These
ones are based on matrix analytic methods. We aim to provide intuitive rea-
soning over these methods in order to understand the underlying theoretical
foundations essential for the understanding of the presented algorithms. We
also evaluate the efficiency of these algorithms by determining their worst-
case time complexity.

2.1. STATIONARY DISTRIBUTION 35

1 function pi = GLU(P)
2 # Computes matrix L o f the decomposi t ion P − I = LU
3 A = P;
4 n = s ize (P , 1) ;
5 for i = 1 : (n−1)
6 s = sum(A(i , (i +1):n)) ;
7 A(i , i) = s ;
8 for k = (i +1):n
9 t = A(k , i)/ s ;

10 for j = (i +1):n
11 A(k , j) = A(k , j) + t ∗ A(i , j) ;
12 end
13 end
14 end
15 # Computes p i by back−s u b s t i t u t i o n
16 pi (n) = 1 ;
17 for j = (n−1):(−1):1
18 s = 0 ;
19 for i = (j +1):n
20 s = s + pi (i) ∗ A(i , j) ;
21 end
22 pi (j) = s / A(j , j) ;
23 end
24 s = 0 ;
25 # Normalizes p i
26 s = sum(pi) ;
27 pi = pi / s ;
28 endfunction

Figure 2.1: An Octave function that solves the system π = πP, π1 = 1,
based on Gaussian elimination.

The development of an algorithm to compute the stationary vector of a
QBD highly depends on the structure of the QBD itself. In Section 1.3.1,
we stated that a QBD can be either homogeneous or inhomogeneous. We
also distinguished whether or not the number of levels is infinite. Depending
on these features, different algorithms can be applied. We choose to adopt
a structure similar to Latouche and Ramaswami [18], because it is more ap-
propriate when the focus is on the probabilistic interpretation. First, we
establish in this Subsection relations that hold when the QBD is homoge-
neous and infinite, and we develop a new algorithm based on these relations.

Determination of π0 and π1

We consider a discrete time, homogeneous and finite QBD {X(t), t ∈ N}
defined on state space

S = {(k, i) : 1 ≤ i ≤ n} ⊂ N2. (2.7)

36 CHAPTER 2. MATRIX ANALYTIC METHODS

We want to achieve the computation of its stationary vector π, that is the
unique solution of Equations (2.5). We divide π into subvectors πk, k ∈ N,
such that

πk = πk1, ..., πkn (2.8)

records the stationary probability of states (k, 1), ..., (k, n) respectively.
Then, Equations (2.5) can be rewritten as follows:

π0B0 + π1B−1 = π0 (2.9a)
π0B1 + π1A0 + π2A−1 = π1 (2.9b)

πk−1A1 + πkA0 + πk+1A−1 = πk (2.9c)
∑

j≥0

πj1 = 1 (2.9d)

with k > 1.

Thanks to this system of equations combined with the following theorem,
we can explicitly compute any subvector πk. We refer to Latouche and
Ramaswami [18, Section 6.2] for a formal proof of the theorem.

Theorem 2.1.4 (Rate matrix existence)
If an infinite and homogeneous QBD is positive recurrent, then there
exists a non negative matrix R of order n, called the rate matrix, such
that

∀k > 0 : πk+1 = πkR (2.10)

which can also be written as

∀k > 0 : πk+1 = π1R
k (2.11)

Matrix R is such that, for 0 < i, j < n and k > 0, Rij is the expected
number of visits to state (k + 1, j) before a return to any state of levels 0
to k, given that the process starts in (k, i). In other words, Rij denotes
the expected time spent in (k + 1, j) per time unit spent in (k, i). We can
therefore give an interpretation of Equation (2.10). Because πki denotes the
expected time spent in state (k, i) per time unit of the global process, πkiRij
is obviously the expected time spent in (k+ 1, j) per global time unit, which
is equal to π(k+1)j .

According to the above theorem and Equations (2.9), we can compute
the whole vector π thanks to the rate matrix and the inner blocks of the
transition matrix. First, we give an expression to compute π0 and π1. For

2.1. STATIONARY DISTRIBUTION 37

this purpose, we consider Equations (2.9a) and (2.9b). In (2.9b), we replace
π2 by π1R, according to Equation (2.10). Then, we have that

π0B0 + π1B−1 = π0, (2.12a)
π0B1 + π1A0 + π1RA−1 = π1. (2.12b)

According to this system of equations and Equation (2.9d), we conclude that
(π0, π1) is the unique solution of

(π0, π1) =
(
π0B0 + π1B−1, π0B1 + π1A0 + π1RA−1

)

= (π0, π1)

(
B0 B1

B−1 A0 +R ∗A−1

) (2.13)

and we normalize π0 and π1 with

π01 + π1

∑

k≥0

Rk1 = 1. (2.14)

Equation (2.13) is directly obtained from Equations (2.9a) and (2.9b). Equa-
tion (2.14) normalizes vector (π0, π1) and is obtained from Equations (2.9d)
and (2.11).

To avoid successively computing the powers of R, we must determine
how the series ∑

k>0

Rk (2.15)

converges. Before giving a theorem that establishes this convergence, we need
the following definition, according to Gradshteyn and Ryzhik [10, Section
15.51].

Definition 2.1.7 (Spectral radius)
Let M be a m × m sized matrix with real elements. Let λ1, ..., λm be
the eigenvalues of M. Then, the spectral radius of M, noted sp(M), is
defined as

sp(M) = max
1≤i≤m

|λi| (2.16)

The link between the convergence of the series (2.15) and the spectral
radius of R is established by the following theorem [18, Section 5.1].

38 CHAPTER 2. MATRIX ANALYTIC METHODS

Theorem 2.1.5 (Convergence of the series
∑

k≥0M
k)

Let M be a matrix of finite order. The series
∑

k≥0

Mk

converges to
(I −M)−1

is and only if sp(M) < 1.

Thanks to this theorem, we infer that Equation (2.14) is equivalent to

π01 + π1(I −R)−11 = 1. (2.17)

We can therefore compute vector (π0, π1) by using an equation solving
algorithm that is similar to the Gaussian elimination we described in Section
2.1.2 and by normalizing with Equation (2.17). Thanks to the rate matrix
and π1, any subvector πk, k > 1, can then be computed by solving Equation
(2.10). The key point for determining the whole stationary vector is there-
fore the computation of R.

Properties of the rate matrix

The method to compute the rate matrix we present relies on the relations
that holds between R and two other matrices we denote by G and U . In
particular, we show that whenever one of the three matrices is known, the
other two can be determined. Hence, computing R comes to developing
an algorithm that determines either G or U . In this section, we present
the relationship between these three matrices and we give a probabilistic
interpretation of these relations. We refer to Latouche and Ramaswami [18,
Chapter 6] for a formal proof of the properties we give.

First, we define U as the matrix recording, for any k > 1, the probability
of return to level k before a visit in level k− 1, given that the process starts
in level k. In other words, Uij encodes the probability of reaching a state of
level k, which is precisely (k, j), before reaching level k − 1, given that the
process starts in (k, i). Obviously, in order to reach (k, j) from (k, i) without
visiting any state of level k − 1 and any other state of level k meanwhile,
either

1. the process stays in the same level and moves immediately from phase
i to phase j, or

2.1. STATIONARY DISTRIBUTION 39

2. it moves to level k + 1 before eventually going down from a state
(k + 1, h) to (k, j).

In the former case, we know that the probability of transiting in one step
from (k, i) to (k, j) is (A0)ij . In the latter case, from the definition of R,
we know that (k+1,h) is expected to be visited Rih times. Furthermore, the
probability to move from (k + 1, h) to (k, j) is (A−1)hj and state (k, j) can
be reached from any state of level k + 1. Hence, we have that

Uij = (A0)ij +
∑

1≤h≤n
Rih(A−1)hj (2.18)

which can also be written as

U = A0 +RA−1. (2.19)

It is worth mentioning that (Un)ij is the probability, starting in (k, i), of
visiting level k for the nth time, precisely in state (k, j), before reaching the
lower level. Next, we define matrix N as

N =
∑

i≥0

U i = (I − U)−1. (2.20)

Thus, Nij is the expected number of visits to (k, j) before reaching any state
of level k − 1, given that the process starts in (k, i). We subsequently have
that

Rhj =
∑

1≤i≤n
(A1)hiNij (2.21)

which can be written in matrix form as

R = A1N = A1(I − U)−1. (2.22)

We have then established a link between R and U . We can proceed
similarly to associate U with the the last of the three matrices we mentioned
earlier, that is G. We define Gij as, for k > 0, the probability of return in
(k, j) in a finite time, given that the process starts in (k + 1, i). According
to a reasoning similar to the previous ones, we can establish that

Uij = (A0)ij +
∑

1≤h≤n
(A1)ihGhj (2.23)

which can be written as
U = A0 +A1G. (2.24)

Because the probabilistic interpretation of this relation is very similar to the
one we gave earlier about the relation between U and R, we do not give it.

From the above relations, we can derive the following theorem, which
establishes the thorough relationship between R, U and G [18, Section 6.2].

40 CHAPTER 2. MATRIX ANALYTIC METHODS

Theorem 2.1.6 (Relations between the matrices R, G, and U)
If either R, Uor G is determined, then the other two can be computed by
applying the following equations:

U = A0 +A1G, (2.25a)
U = A0 +RA−1, (2.25b)
R = A1(I − U)−1, (2.25c)
R = A1(I −A0 −A1G)−1, (2.25d)
G = (I − U)−1A−1, (2.25e)
G = (I −A0 −RA−1)−1A−1. (2.25f)

We have not properly introduced the last three equations. However, they
can easily be derived from the other three. This theorem is essential, because
it implies that in order to compute the stationary vector of an inhomogeneous
and infinite QBD, all we have to do is to determine one of the three above
matrices. Subsequently, we give next an implementation of the so-called
Logarithmic Reduction algorithm to compute matrix G.

Development of the algorithm

As we have observed, determining the stationary vector of an aperiodic, ir-
reductible, positive recurrent, discrete time QBD that is homogeneous and
infinite comes to computing the rate matrix R. We have also showed that a
strong relation holds between R and two other matrices, denoted by U and
G. In particular, once one of the three matrix is determined, the other two
can easily be computed. In this section, we present an algorithm that com-
putes an approximation of G. Like Latouche and Ramaswami [18, Chapter
8], we choose to focus on matrix G because it has the property of being a
stochastic matrix when the QBD is positive recurrent, which permits to ease
the definition of an approximation error.

Latouche and Ramaswami [18, Section 8.4] present three algorithms to
compute matrix G. We are interested only in the most efficient one, called
the Logarithmic Reduction algorithm. It relies on the following theorem.

2.1. STATIONARY DISTRIBUTION 41

Theorem 2.1.7 (Computation of matrix G)
Matrix G can be computed as

G = lim
k→∞

G[k] (2.26)

where, for k ≥ 0

G[k] =
∑

k≥0(
∏

0≤i≤k−1H
[i])L[k],

L[0] = (I −A0)−1A−1,

H [0] = (I −A0)−1A1,

L[k+1] = (I − U [k])−1(L[k])2,

H [k+1] = (I − U [k])−1(H [k])2,

U [k] = H [k]L[k] + L[k]H [k].

This theorem establishes that G can be obtained by computing the sum
given in Equation (2.26). However, because this sum is infinite, determining
it exactly would require an infinite number of computations. Therefore, we
develop an algorithm that gives only an approximation of matrix G. Because
G is a stochastic matrix, the sum of any of its lines must be equal to 1. Thus,
we can define the approximation error ε as

ε = 1T |1−G1| (2.27)

where MT denotes the transpose of matrix M .

An Octave function that computes an approximation of G is shown in
Figure 2.2. Its parameters are the matrices A−1, A0, A1, and ε, respectively.
Initially, L is equal to L[0], H is equal to H [0], T is the identity matrix and G
is equal to L. Then, the loop 8-14 successively computes matrices G[k]. More
precisely, after the mth iteration, L is equal to L[m], H is equal to H [m], T is
equal to

∏
0≤i≤m−1H

[i] and G is equal to G[k].

Latouche and Ramaswami [18, Section 8.4] give an upper bound of the
number of iterations performed by the algorithm for a given error ε, denoted
by KLR,

KLR ≤ log2

| log ε|
| log η| (2.28)

where η denotes the spectral radius of matrix R. During an iteration, a
performed operation is either a matrix addition, matrix multiplication2 and

2We assume that matrix multiplication is performed with the naive algorithm. That is,

42 CHAPTER 2. MATRIX ANALYTIC METHODS

1 function G = QBD_LR(A_1, A0 , A1 , e)
2 n = s ize (G, 1)
3 I = eye (s ize (A0)) ; # i d e n t i t y matrix
4 L = (I − A0)^(−1) ∗ A_1;
5 H = (I − A0)^(−1) ∗ A1 ;
6 G = L ;
7 T = I ;
8 while (1 − sum(G)/n <= e) # computes G(k)
9 T = T ∗ H;

10 U = H ∗ L + L ∗ H;
11 L = (I − U)^(−1) ∗ L^2;
12 H = (I − U)^(−1) ∗ H^2;
13 G = G + TL;
14 end
15 endfunction

Figure 2.2: An Octave function that implements the Logarithmic Reduction
algorithm.

matrix inversion3. Because all the matrices are n × n sized, where n is
the number of phases in any level other than level 0, the worst-case time
complexity of these operations are, respectively, O(n2), O(n3) and O(n3) in
the number of scalar operations.

Proposition 2.1.2
The worst-case time complexity of the Logarithmic Reduction algorithm
is O(n3KLR) in the number of scalar operations.

2.1.4 Linear Level Reduction algorithm

In this subsection, we aim to develop an approach to compute the stationary
vector of the other types of QBDs. First, we present the approach applied
to finite and homogeneous QBDs. Then, we extend it to handle the inho-
mogeneous case further in the subsection.

Latouche and Ramaswami [18, Section 10.1] establish expressions used
to compute π, which we describe in the following theorem.

each (AB)ij is obtained by computing
∑

k A(i, k)B(k, j). This algorithm has a worst-case
time complexity of O(n3).

3We suppose that matrix inversion is performed by Gauss-Jorgan elimination, which
has a worst-case time complexity of O(n3).

2.1. STATIONARY DISTRIBUTION 43

Theorem 2.1.8 (Determination of π (finite and homogeneous))
For a homogeneous, finite, irreductible and positive recurrent QBD with
maximum level M, the stationary vector π is given by

π0 = π0U
(0), (2.29)

πk = πk−1R
(k), 1 ≤ k ≤M, (2.30)

where

R(1) = B1(I − U (1))−1, (2.31a)
R(k) = A1(I − U (k))−1, 2 ≤ k ≤M − 1, (2.31b)
R(M) = C1(I − U (M))−1, (2.31c)
U (M) = C0, (2.31d)

U (M−1) = A0 +RMC−1, (2.31e)
U (k) = A0 +R(k+1)A−1, 1 ≤ k ≤M − 2, (2.31f)
U (0) = B0 +R(1)B−1. (2.31g)

The similarity between Equations (2.31) and Equations (2.25a) is note-
worthy. We can give a similar probabilistic interpretation to both systems
of equations. Indeed, for 1 ≤ k ≤M , matrix U (k) records the probability of
return to level k before a visit to level k − 1, given that the process starts
in level k. Furthermore, R(k) plays the same role as the rate matrix we de-
fined previously. However, unlike the rate matrix, R(k) depends on the level
because the QBD is finite. Therefore, the approach we presented previously
cannot be applied.

From Equations (2.31), we develop an algorithm to compute π, which is
implemented in the Octave function shown in Figure 2.3. The parameters
of the function are the nine inner blocks that compose the transition matrix,
in the following order: B−1, B0, B1, A−1, A0, A1, C−1, C0, C1 (see Equation
(1.26)). Matrices U (k), 0 ≤ k ≤ M , and matrices R(k), 1 ≤ k ≤ M, are first
computed (lines 2-13). Next, π0 is computed by the GLU function (line 16),
whose implementation is given in Figure 2.1. Vectors πk, 1 ≤ k ≤ M , are
then computed (lines 19-22). Finally, the whole vector π is normalized (lines
25-27).

44 CHAPTER 2. MATRIX ANALYTIC METHODS

1 function pi = QBD_LLR(B_1, B0 , B1 , A_1, A0 , A1 , C_1, C0 , C1 , M)
2 # Computes matr ices R(i) and U(i)
3 I = eye (s ize (C0)) ;
4 U{M+1} = C0 ;
5 R{M} = C1 ∗ (I− U{M+1})^(−1);
6 I = eye (s ize (A0)) ;
7 U{M} = A0 + R{M} C_1;
8 for i = M−2:−1:1
9 R{ i+1} = A1 ∗ (I− U{ i +2})^(−1);

10 U{ i+1} = A0 + R{ i+1} ∗ A_1;
11 end
12 R{1} = B1 ∗ (I− U{1})^(−1);
13 U{0+1} = B0 + R{1} ∗ B_1;
14
15 # Computes the s o l u t i o n o f p i (0) = pi (0) U(0)
16 pi{0+1} = GLU(U{0+1});
17 # Computes p i (i)
18 sump = sum(pi {0+1});
19 for i = 1 :M
20 pi{ i+1} = pi{ i } ∗ R{ i } ;
21 sump = sump + sum(pi{ i +1});
22 end
23
24 # Normalizes
25 for i = 1 :M+1
26 pi{ i } = pi{ i } / sump ;
27 end
28 endfunction

Figure 2.3: An Octave function that computes the stationary vector of a
homogeneous and finite QBD.

Proposition 2.1.3
The worst-case time complexity of the Linear Level Reduction algorithm
is O(Mn3) in the number of scalar operations, where n is the number of
rows and columns of matrix A0.

More efficient algorithms are presented in Latouche and Ramaswami [18,
Chapter 10]. However, as we will see in Section 2.1.4, the one shown in
Figure 2.3 can easily be generalized in order to be applied to inhomogeneous
QBDs. This is the very reason why we chose to present it.

Linear Level Reduction algorithm for inhomogeneous QBDs

In this section, we finally discuss how to compute the stationary vector of an
inhomogeneous QBD. The algorithm we present is merely a generalization

2.1. STATIONARY DISTRIBUTION 45

of the one presented in Figure 2.3. Because the QBD is inhomogeneous, the
computation of π requires to determine several rate matrices, that is one per
level. The key to compute these matrices is a system of equations similar
to Equations (2.31). However, this system of equations is only intended for
finite QBDs. We suppose for now that the QBD is finite and we show how
to handle the infinite case a little bit further in this section. The following
theorem, established by Latouche and Ramaswami [18, Section 6.2], is a
direct generalization of Theorem 2.1.8.

Theorem 2.1.9 (Determination of π (inhomogeneous))
The stationary vector of an inhomogeneous, finite, aperiodic, irreductible,
and positive recurrent QBD is given by

π0 = π0U
(0) (2.32)

πk = πk−1R
(k), k ≥ 1 (2.33)

for 1 ≤ k ≤M − 1, where

R(k) = A
(k)
1 (I − U (k))−1 (2.34a)

U (M) = A
(M)
0 (2.34b)

U (k) = A
(k)
0 +R(k+1)A

(k+1)
−1 (2.34c)

When the inhomogeneous QBD is infinite, Latouche and Ramaswami [18,
12.2] advise to choose an arbitrary but large level M and to truncate the
process at levelM . We expectM to be such that the truncation does not al-
ter vector π too much, that isM must be sufficiently large for the stationary
probability of levels higher than M to be negligible. The selection of a good
value of M is generally specific to the considered QBD. Another essential
question is how to gather the three inner blocks A(M)

−1 , A
(M)
0 , and A(M)

1 into
two blocks A

′(M)
−1 and A

′(M)
0 of the truncated process in order to be able to

compute matrix U (M), as it is defined in Equations (2.34). However, we do
not deal with these two issues in this thesis.

Finally, we present in Figure 2.4 an Octave function implementing the
algorithm for computing π when the QBD is inhomogeneous. As stated
above, this algorithm clearly appears as a generalization of the one illustrated
in Figure 2.3. Only the first part of the new algorithm (lines 3-11) is different
from the previous one. A noticeable difference is the dynamic computation of
the inner blocks composing the transition matrix. Indeed, they are computed
by the function getInnerBlocks, which requires only one parameter, namely

46 CHAPTER 2. MATRIX ANALYTIC METHODS

1 function pi = QBD_LLR_INHOM(M)
2 # Computes matr ices R(i) and U(i)
3 [A_1 A0 A1] = get InnerBlocks (M)
4 U{M+1} = A0 ;
5 for i = M−1:−1:0
6 I = eye (s ize (A0)) ;
7 Upper−A_1 = A_1;
8 [A_1 A_0 A1] = get InnerBlocks (i)
9 R{ i+1} = A1 ∗ (I− U{ i +2})^(−1);

10 U{ i+1} = A0 + R{ i+1} ∗ A_1;
11 end
12
13 # Computes the s o l u t i o n o f p i (0) = pi (0) U(0)
14 pi{0+1} = GLU(U{0+1});
15 # Computes p i (i)
16 sump = sum(pi {0+1});
17 for i = 1 :M
18 pi{ i+1} = pi{ i } ∗ R{ i } ;
19 sump += sum(pi{ i +1});
20 end
21
22 # Normalizes
23 for i = 1 :M+1
24 pi{ i } = pi{ i } / sump ;
25 end
26 endfunction

Figure 2.4: An Octave function that computes the stationary vector of an
inhomogeneous and finite QBD.

the level to compute the blocks of. More precisely, at the end of the kth

iteration of the first loop (lines 4 - 10), A_1 is A(M−1−k)
−1 ,4 A0 is A(M−1−k)

0 ,
A1 is A(M−1−k)

1 , and Upper-A_1 is A(M−k)
−1 . The time complexity of the

algorithm is O(n3) in the number of scalar operations, where n is defined
as the number of rows of the largest inner block A(i)

0 . However, we must be
aware that in practice, the run time of the function is very sensitive to how
the function getInnerBlocks is implemented.

2.2 First passage times

The previous section is dedicated to the definition of the stationary distribu-
tion as a relevant performance measure, and to the development of algorithms
that compute it. In this section, we present another measure essential for
the performance: the expected first passage times. We immediately con-

4Note that if k = M-1, matrix A
(M−1−k)
−1 does not exist. By convention, we replace it

with an empty matrix

2.2. FIRST PASSAGE TIMES 47

sider the inhomogeneous QBD and we arbitrarily assume that the QBD is
infinite. Because considering the homogeneous and/or finite QBDs would re-
quire only small adaptations, we do not explicitly give the related algorithms.

Intuitively, the first passage times describe the time needed by the process
to reach a given state (or a given set of states), starting from another given
state (or another given set of states). More formally, we define them as
follows.

Definition 2.2.1 (Expected first passage time)
Let τ(k) be the first passage time to level k, that is

τ(k) = inf{t > 0 : X(t) ∈ l(k)} (2.35)

Then, we denote by t(i,j)→k the expected first passage time from state
(i, j) to level k, which we define as

t(i,j)→k = E[τ(k)|X(0) = (i, j)] (2.36)

Finally, we define the expected first passage time from level i to level k,
written ti→k as

ti→k = E[τ(k)|X(0) ∈ l(i))]

=
∑

j

E[τ(k)|X(0) = (i, j)]
πi(j)∑

l

πi(l)
(2.37)

In the following example, we illustrate the usefulness of the expected first
passage times in performance analysis.

Example 2.2.1 Let us consider an M/PH/1 queueing system similar to the
one defined in Example 1.3.1, except that we limit the queue capacity to 10
requests. We model it with a QBD similar to the one in Example 1.3.1, except
that the number of levels is 11. We want to know the expected time needed
by the empty system to be at full capacity, that is for the QBD to reach level
10, starting in level 0. This time is expected first passage time from level 0
to level 10.

Next, we denote by Γi→k the first passage probabilities from level i to
level k, namely

(Γi→k)jl = P [X(τ(k)) = l|X(0) = (i, j)] (2.38)

48 CHAPTER 2. MATRIX ANALYTIC METHODS

that is, (Γi→k)jl gives the probability that the state visited by the process
the very first time the process reaches level k is (k, l), given that it starts
from (i, j). It is noteworthy that we have, for i ≥ 0,

ti→i = 0T (2.39)
Γi→i = I (2.40)

where 0 is a row vector of appropriate size and filled with zeros.

Latouche and Ramaswami [18, Section 11.2] present a method to com-
pute the expected first passage times from level 0 to any upper level of a
homogeneous QBD. We extend their approach to the computation of the
expected first passage times from any level to any other level and we apply
this extension to the inhomogeneous case. In order to ease the reading, we
first show how to determine ti→k when i < k, then we give the instructions
to adapt our algorithm to the case where i > k.

2.2.1 Computing first passage times upward

Our approach makes intensively use of the restrictions imposed on the transi-
tions of a QBD. Because the process can move only within a one-level range,
reaching level k from level i, with i < k, requires the process to go through
levels i+ 1, i+ 2, . . . , k. The first passage time from state (i, j) to level k is
therefore equal to the time to reach level i+ 1 plus the time to reach level k,
starting from a state of level i + 1 balanced with regard to its first passage
probabilities from (i, j). More formally, for 0 ≤ i < k, we have

ti→k = ti→i+1 + Γi→i+1ti+1→k. (2.41)

Similarly, Γi→k, can be recursively computed, because going from level i to
level k requires to go through levels i+ 1, i+ 2, ..., k. Then, we have that

Γi→k = Γi→i+1Γi+1→k. (2.42)

If we successively apply Equation (2.41) to compute ti+1→k, ti+2→k, ..., tk−1→k,
we obtain

ti→k =
∑

i≤j<k
Γi→jtj→j+1 (2.43)

where, as a result of Equation (2.42),

Γi→k =
∏

i≤j<k
Γj→j+1. (2.44)

To compute ti→k and Γi→k, we must therefore determine some expressions
to compute, for i ≥ 0, ti→i+1 and Γi→i+1. These expressions are given in the
following theorem. We refer to Latouche and Ramaswami [18, Section 11.2]
for a formal proof.

2.2. FIRST PASSAGE TIMES 49

Theorem 2.2.1 (Computation of upward first passage times)
For i ≥ 0, we have that

Γi→i+1 = (I −Di)
−1A

(i)
1 (2.45a)

t0→1 = (I −D0)−11 (2.45b)

ti→i+1 = (I −Di)
−11 + (I −Di)

−1A−1ti−1→i (2.45c)

where the matrices Di are defined as

D0 = B0 (2.46a)

Di = A
(i)
0 +A

(i)
−1(I −Di−1)−1A

(i−1)
1

= A
(i)
0 +A

(i)
−1Γi−1→i

(2.46b)

Matrix Di records the probability of return to level i before a visit to
level i+ 1, given that the process starts in level i. To determine it, we need
to consider that the process can either

1. move directly from a state of level i to another state of this same level,

2. or it can go down a level before it eventually reaches back level i,

hence Equation (2.46). Equation (2.45c) expresses that in order to deter-
mine ti→i+1, we need to consider not only the expected time spent in level
i before reaching level i + 1, but also the possibility to move down to level
i − 1 and therefore, the expected time that would be needed to go back up
in level i.

Thanks to the above equations, we develop an algorithm to compute the
first passage times from a given level to any upper level of an inhomogeneous
QBD. We implement this algorithm in the Octave function shown in Figure
2.5. Its parameters are, respectively, the starting level, denoted by S, and
the target level, denoted by M . First, C0, T0→1, and t0→1 are computed
(lines 2-7). Then the first loop is executed (lines 10-16). At the end of the
ith iteration, for 1 ≤ i ≤ M − 1, we compute Ci, Ti→i+1, and ti→i+1. Fi-
nally, the second loop (lines 19-21) is executed. The jth iteration determines
tM−2−j→M , for 1 ≤ j ≤M − 2− S.

50 CHAPTER 2. MATRIX ANALYTIC METHODS

1 function time = QBD_fpt_up(S , M)
2 # Computes the fpp and the f p t from l e v e l 0 to l e v e l 1
3 [A_1 A0 A1] = get InnerBlocks (0) ;
4 D{0+1} = A0 ;
5 Inv = (eye (s ize (D{0+1})) − D{0+1})^−1;
6 T{1} = Inv ∗ A1 ;
7 t {1} = sum(Inv ’) ’ ;
8 # Computes the fpp and the f p t from l e v e l i to l e v e l i +1,
9 # 1 <= i <= M

10 for i = 1 :M−1
11 [A_1 A0 A1] = get InnerBlocks (i) ;
12 D{ i+1} = A0 + A_1 ∗ T{ i } ;
13 Inv = (eye (s ize (D{ i +1})) − D{ i +1})^−1;
14 T{ i+1} = Inv ∗ A1 ;
15 t { i+1} = Inv ∗ (ones (s ize (Inv , 2) , 1) + A_1 ∗ t { i }) ;
16 end
17 # Computes the f p t from l e v e l i to l e v e l M, S <= i <= M−1
18 fp t {M} = t {M} ;
19 for i = M−2:−1:S
20 fp t { i+1} = t { i+1} + T{ i+1} ∗ f p t { i +2};
21 end
22
23 time = fp t {S+1};
24 endfunction

Figure 2.5: An Octave function that computes the first passage time from
level S to level M of an inhomogeneous QBD.

Proposition 2.2.1
The worst-case time complexity of the algorithm that computes the first
passage times upward is O(n3M) in the number of scalar operations,
where n is the number of rows and columns of the largest square inner
block A0(i), i ≥ 0, and M is the target level.

Indeed, the most complex part of the algorithm executesM−1 iterations
of a loop that performs a few n3 operations.

2.2.2 Computing first passage times downward

In this subsection, we adapt the above approach to compute the expected
first passage times from a given level to a lower one. First, in case of infinite
QBD, we must truncate the process to an arbitrary but large level, denoted
by M. In the finite case, M is equal to the maximum level of the process.
We adapt the previously defined relations in order to determine the expected
first passage times and probabilities from level i to level k, i > k. We have,

2.3. CONCLUSION 51

for 0 ≤ k < i ≤M , that

Γi→i−1 = (I −Di)
−1A

(i)
−1 (2.47a)

Γi→k = Γi→i−1Γi−1→k (2.47b)

tM→M−1 = (I −DM)−11 (2.47c)

ti−1→i−2 = (I −Di−1)−11 + (I −Di−1)−1Ai−1
1 ti→i−1 (2.47d)

ti→k = ti→i−1 + Γi→i−1ti−1→k (2.47e)

where matrix Dk, 1 ≤ k ≤ M , records the probability of return to level k
before reaching level k − 1, given that the process starts in level k. When
the QBD has a finite number of levels, we have, for 0 < k < M , that

DM = C0, (2.48a)

Dk = A
(k)
0 +A

(k)
1 (I −Dk+1)−1A

(k)
−1

= A
(k)
0 +A

(k)
1 Γk+1→k.

(2.48b)

If the QBD is infinite, DM must be approximated. As we previously men-
tioned, we do not discuss how to get a suitable approximation. Thanks to
Equations (2.47), we can develop an algorithm that computes the expected
first passage times from any level to any lower level. We do not explicitly
give it, because it is similar to the one presented in Figure 2.5.

2.3 Conclusion

In this chapter, we introduced the matrix analytic methods. Thanks to these
ones, we developed algorithms that either determine explicitly the stationary
vector and the first passage times of a discrete time QBD, or compute a good
approximation of them.

By using the uniformization technique, we can also extend our methods
to the continuous time QBD. However, when the content of the inner blocks
composing the QBD is complex, the run time of the algorithms can be sig-
nificant. In order to overcome this relative lack of efficiency, we present in
the next chapter some simulation approaches that can be used to determine
an estimate of the performance measures more rapidly.

52 CHAPTER 2. MATRIX ANALYTIC METHODS

Chapter 3

Discrete-Event Simulation

In the previous chapter, we introduced the matrix analytic methods and pre-
sented the concept of steady state. We also defined two measures that are
relevant for the performance of the studied system, namely the stationary
probability vector and the expected first passage times. Finally, we devel-
oped algorithms that compute these measures. These algorithms are based
on the matrix analytic methods. We also showed that they all have a polyno-
mial time complexity. However, the run time of a program executing these
algorithms can be significant, especially when the inner blocks composing
the transition matrix or the infinitesimal generator of the considered QBD
are huge matrices with a complex structure. To overcome this drawback,
we discuss the simulation approaches in this chapter and we build a simu-
lation algorithm for QBDs according to the principles of these approaches.
Basically, instead of computing the desired measures, our algorithm is used
to simulate the behaviour of the studied process. Thanks to the simulation
results, we can estimate the value of these measures. The simulation algo-
rithm is part of our tool, that we describe in Chapter 4.

First, we present a taxonomy of the simulation models in Section 3.1.
Then, we focus on a particular type of simulation model, called the discrete-
event simulation model. We especially put emphasis on an approach to
discrete-event simulation, namely the next-event simulation. In Section 3.2,
we apply the principles of the next-event simulation to the development
of an algorithm that simulates a Quasi-Birth-Death process. Simulating a
stochastic process requires the generation of random numbers. Subsequently,
Section 3.3 briefly presents methods to produce random numbers sampled
from either a discrete probability distribution or a continuous distribution.
Another critical step of a simulation-based analysis is the data estimation.
Hence, in Section 3.4, we discuss how to estimate the performance measures
from the simulation results.

53

54 CHAPTER 3. DISCRETE-EVENT SIMULATION

3.1 Next-event simulation

In order to simulate a Quasi-Birth-and-Death process, we use a specific sim-
ulation approach called Next-event. Leemis and Park [19, Chapter 5] present
the next-event simulation applied to a specific type of model, i.e. a discrete-
event simulation model. In this section, we discuss first the taxonomy of
simulation models given by Leemis and Park [19, Section 1.1]. The taxon-
omy distinguishes whether a simulation model is:

Deterministic or stochastic – The outcome of a deterministic model is
not subject to random variations. In other words, two identically pa-
rameterized simulations of a deterministic model give the same results.
On the other hand, a stochastic model has at least one random com-
ponent.

Static or dynamic – A simulation model is called dynamic if time has a
significant influence on the system behaviour. Otherwise, it is called
static.

Continuous or discrete – A continuous simulation model has state vari-
ables that evolve continuously over time. If the state variables evolve
only at discrete times, the simulation model is called discrete.

According to this taxonomy, Leemis and Park [19, Section 1.1] define a
discrete-event simulation model as follows.

Definition 3.1.1 (Discrete-event simulation model)
A discrete-event simulation model is a simulation model with the
following features:

• stochastic: at least one of the system variables is random;

• dynamic: time has a significant influence on the evolution of the
system variables;

• discrete-event: the key changes in the system state are due to events
that occur at discrete times.

It is worth mentioning that in this definition, the word event refers to
an occurrence that can change the state of the considered system, unlike the
definition we gave at the beginning of Chapter 1. Obviously, a QBD can be
simulated by a discrete-event simulation model. Indeed, it is a stochastic
process, which is commonly used to model the evolution of random systems
over time. Furthermore, the state modifications in such a process occur at

3.1. NEXT-EVENT SIMULATION 55

discrete times. This last property obviously holds for discrete time QBDs.
It also holds for continuous time QBDs as well. Indeed, we know that the
state of a continuous time QBD can only change at epochs determined by
an exponential distribution.

For now, we consider only discrete time processes. We specifically de-
velop simulation algorithms for this type of QBD. At the end of the chapter,
we discuss the modifications needed for the algorithms to be applied to con-
tinuous time QBDs.

Next, we explain the principles of a discrete-event simulation approach
called next-event. A discrete-event simulation model build via the next-event
approach includes several components [19, Section 5.1].

1. State variables: At any time, the state of the simulated system is given
by the value of some variables called the state variables.

2. Events: The occurrences that can modify the value of the state vari-
ables are called events.

3. Event types: Each event is associated with an event type, which deter-
mines how the considered event can influence the system state.

4. Simulation clock : Because a discrete-event simulation model is dy-
namic, we must keep track of the simulation time. Hence, we call
“simulation clock” the data structure that records the time elapsed
since the beginning of the simulation.

5. Scheduler : Because several instances of distinct event types can occur,
it is necessary to use a data structure that ensure the correct scheduling
of these instances. This data structure is called scheduler.

After defining these components, Leemis and Park [19, Section 5.1] give the
four main steps of a next-event simulation.

1. Initialise: The simulation clock time is set to zero. The first occur-
rences are placed in the scheduler.

2. Process the next event : The next event to occur is obtained from the
scheduler. The simulation clock time is set to the occurrence time
of the event and the state variables are updated with respect to the
features of the event.

3. Schedule new events: The occurrence of an event can generate new
events to occur. These ones are placed in the scheduler.

56 CHAPTER 3. DISCRETE-EVENT SIMULATION

4. Terminate: Once some terminal conditions are met, the simulation
ends and the output analysis begins. For example, the simulation can
end when a special event occurs, when a given number of events have
occurred, when the simulation clock reaches a given time, or when the
estimate of a given measure reaches a defined precision.

In the following subsection, we adapt the next-event approach in order to
simulate a QBD process.

3.2 Simulating a Quasi-Birth-Death process

While our goal remains the simulation of a QBD in order to estimate its
stationary distribution and the expected first passage times, we present first
the simulation of a general Markov process based on the principles of the
next-event approach. This first algorithm serves as a basis for the devel-
opment of the actual QBD-simulating algorithm. For now, we consider a
discrete time Markov process. For recall, such a process is defined by a set
of random variables indexed with a parameter:

M = {X(t), t ∈ T } (3.1)

where T is a countable set. In our simulation model, we define T as N and
consider that each t models a time unit. In other words, X(t) is the state of
the process at the tth time unit. Our simulation algorithm makes essentially
use of the Markov property. For recall, if this property holds, then the prob-
ability of reaching a given state at the (t+ 1)th time unit can be determined
knowing only the state of the process at the tth time unit and the transition
probabilities associated with this state.

According to the principles of next-event simulation detailed in Subsec-
tion 3.1, we define the simulation model as follows.

1. We only need one variable to model the state of the process, which
merely records the current state of the process itself.

2. The only events that can occur during the simulation are the possible
transitions of the process.

3. The only event types is the firing of a transition.

4. Because we consider the discrete time Markov process, we define a time
unit as the time between two transitions. In other words, we model
the simulation clock with an integer, which is incremented each time
a transition is fired.

3.2. SIMULATING A QUASI-BIRTH-DEATH PROCESS 57

1 function r e s u l t = sim_Markov (T, i n i t i a l S t a t e , endTime)
2 s t a t e = i n i t i a l S t a t e ;
3 clock = 0 ;
4 while (clock < endTime)
5 output = setOutput (s ta te , clock , output) ;
6 transProbs = T(state , 1 : end) ;
7 s t a t e = getNextState (transProbs) ;
8 clock++;
9 end

10 r e s u l t = est imate (output) ;
11 endfunction

Figure 3.1: An Octave function that simulates a Markov process.

5. The scheduler is not explicitly required because one and only one tran-
sition is fired at each time unit. At any time, the scheduler would
therefore contain only the next transition to occur.

Finally, we choose to stop the simulation once a given number of transitions
have been fired. However, as we discuss later in this chapter, it requires
cautiousness with regard to the produced estimates of the performance mea-
sures. In particular, we are aware that at the end of a simulation, the steady
state of the simulated process may have not been reached.

Accordingly, we give in Figure 3.1 an Octave function that simulates
a discrete time Markov process. The function has three parameters: T is
the transition matrix associated with the process; initialState is the state
in which the process starts; and endTime is the simulation time at which
the simulation ends. It is noteworthy that although the initial state of the
process can be chosen, it is usually set as zero. First, the simulation clock
is initialised and the current state is set to initialState. Next, we enter
the simulation loop. We register the current state and clock time in a data
structure denoted output by calling the function setOutput. This data
structure is needed for further output analysis. The variable transProbs is
a vector recording the transition probabilities from the current state i, that
is

∀j ∈ S : transProbs(j) = T(i, j)

The next state of the process is determined according to the transition prob-
abilities recorded in transProbs and the simulation time is incremented.
The loop is repeated while the clock time has not reached the end of the
simulation. Finally, the function estimate estimates the performance mea-
sure thanks to the content of the data structure output.

For now, we avoid explaining how to deal with the randomness and the
output production. These issues are discussed in Section 3.3 and Section 3.4,

58 CHAPTER 3. DISCRETE-EVENT SIMULATION

respectively. Instead, we adapt the algorithm in order to take into account
the specific structure of a QBD. More precisely, we assume that the QBD is
inhomogeneous and we discuss the homogeneous case further in this section.

An Octave function that implements the new algorithm is presented in
Figure 3.2. First, because a QBD has a two-dimensional state space, two
state variables are required: level records the current level of the process
and phase records its current phase. Subsequently, our algorithm requires
two parameters to define the initial state: initialLevel and initialPhase,
which are respectively the initial level and the initial phase. The signature
of the function setOutput is also modified accordingly.

In the function shown in Figure 3.1, transProbs recorded all the transi-
tion probabilities from the current state. When the process is a QBD, most
of its elements are zeros. Therefore, if we denote the current state of the
QBD by (k, j), we can consider only the jth row of matrices A(k)

−1, A
(k)
0 , and

A
(k)
1 . For this purpose, we define the function getInnerBlocks, which re-

turns the three inner blocks of a level given as parameter. It is noteworthy
that we already needed such a function in Chapter 2. As already stated in
the previous chapter, calling this function can be time consuming. To avoid
unnecessary calls to this function we apply the following optimization: when
a level is reached for the first time, we record the related inner blocks for
further use in a data structure called container. For the sake of readability,
we assume that this feature is implemented in getInnerBlocks. Therefore,
this function requires a second parameter, i.e. container. The function pos-
sibly modifies container and returns it in addition to the three inner blocks.

In order to determine the next state, we need to know the current level,
the current phase, and the three inner blocks related to the current level.
The signature of the function getNextState is modified accordingly and it
now requires these five parameters.

We still have to give the implementation of the intermediary functions
setOutput, getInnerBlocks, getNextState, and estimate. We have al-
ready given the outlines of getInnerBlocks and its implementation depends
on the studied QBD. We deal with functions setOutput and estimate in
Section 3.4, where we present some estimation methods. The random num-
ber generation needed by getNextState is presented in Section 3.3.

It is noteworthy that the function presented in Figure 3.2 can also be used
when the QBD is homogeneous. In this case, the function getInnerBlocks
returns always the same matrices, except when the process is in a boundary

3.3. RANDOM NUMBER GENERATOR 59

1 function r e s u l t = sim_QBD(i n i t i a l L e v e l , i n i t i a lPha s e , endTime)
2 l e v e l = i n i t i a l L e v e l ;
3 phase = i n i t i a l Ph a s e ;
4 clock = 0 ;
5 conta ine r = [] ;
6 while (clock < endTime)
7 output = setOutput (l e v e l , phase , clock , output) ;
8 [A_1 A0 A1 conta ine r] =
9 get InnerB locks (l e v e l , c on ta ine r) ;

10 [l e v e l phase] =
11 getNextState (l e v e l , phase , A_1, A0 , A1) ;
12 clock++;
13 end
14 r e s u l t = est imate (output) ;
15 endfunction

Figure 3.2: An Octave function to simulate a Quasi-Birth-and-Death pro-
cess.

level1. Therefore, we can avoid a function call by modifying the signature
of the algorithm. After the modification, the algorithm would require the
different matrices composing the transition matrix as parameters.

3.3 Random number generator

In this section, we present algorithms to compute random numbers. Such
an algorithm is called random number generators (RNG). It is worth
mentioning that most of the programming languages have native implemen-
tations of random number generators. However, they do not always have all
the properties we require, hence the purpose of this section.

First, we present in Subsection 3.3.1 a RNG that computes uniformly dis-
tributed real numbers in (0, 1). Then, we describe methods to build RNGs
that generate numbers following a given discrete probability distribution
(Subsection 3.3.2) or a continuous one (Subsection 3.3.3). We stress that
this section is only an introduction to the random number generator theory.
We refer to Leemis and Park [19, Chapter 2] and Knuth [17, Chapter 3] for
a more thorough presentation.

3.3.1 Linear congruential generator

Our first goal is to produce real-valued random numbers between 0 and
1. However, there is an infinite number of values in (0, 1). Therefore, the

1The boundary levels are level 0 and, if the QBD is finite, the highest level.

60 CHAPTER 3. DISCRETE-EVENT SIMULATION

algorithms we present generate random numbers from only a finite subset
of this interval. The main issue is to develop a good generator. Indeed,
as mentioned by Knuth [17, Chapter 3], a good generator must have the
following properties:

Uniformity – Any value in the set has an equal chance to be generated.

Unpredictability – Knowing only the last generated value, it is impossible
to determine the value that will be generated next.

Reproducibility – Any stream of generated random numbers can be re-
produced at will.

Full periodicity – The sequence of numbers repeated by the generator
must be as long as possible.

Leemis and Park [19, Section 2.1] give an algorithm developed by Lehmer
that defines a uniform, unpredictable, and reproducible RNG. This algorithm
generates random integers. We define it and show how to produce random
numbers of a finite subset of (0, 1) instead of a set of integers.

Definition 3.3.1 (Lehmer’s algorithm)
Lehmer’s algorithm is a random number generation algorithm that is
defined by three parameters

• modulus m, a large integer

• multiplier a, an integer in Xm
• initial seed x0 ∈ Xm

and the generation function g : Xm −→ Xm such that

g(x) = ax mod m (3.2)

where
Xm = {1, 2, . . . ,m− 1}. (3.3)

Therefore, the sequence x0, x1, x2, . . . generated by the algorithm is given
by

xi+1 = g(xi), (3.4a)
xi ∈ Xm. (3.4b)

It is important to avoid generating the value zero. Indeed, if the gen-
erated number is zero, then every next number is also 0 because of the

3.3. RANDOM NUMBER GENERATOR 61

definition of the generation function. Indeed, we have that

g(0) = 0. (3.5)

Lehmer’s algorithm therefore generates random integers in (0,m). If we di-
vide the produced numbers by the modulusm, we obtain real-valued random
numbers in (0, 1). Of course, every number in (0, 1) cannot be generated by
a single Lehmer’s algorithm. More precisely, the higher m, the more distinct
values can be produced.

Lehmer’s algorithm is a particular case of a more general type of RNG
called linear congruential generator (LCG) [17, Section 3.2]. In addition
to the parameters required by Lehmer’s algorithm, we define a fourth pa-
rameter, called increment and denoted by b. Then, the generation function
g becomes

g(x) = (ax+ b) mod m (3.6)

We immediately see that Lehmer’s algorithm is a linear congruential gener-
ator with b = 0. It is noteworthy that if b 6= 0, then generating the value
zero becomes acceptable.

An important property of an LCG is its fundamental period. Because
of the definition of the generating function, we have, for every sequence
x0, x1, x2, . . . , that

∀i, j ∈ N : xi = xj ⇒ ∀k ∈ N : xi+k = xj+k. (3.7)

Hence, once a previously generated number is repeated, the whole sequence
following it is also repeated afterwards. The unpredictability property is
therefore lost. Indeed, every following value is known and cannot be consid-
ered as random anymore. Hence, we want to avoid a repetition for a time as
long as possible. More formally, we define the fundamental period as follows
[19, Section 2.1].

Definition 3.3.2 (Fundamental period)
Let x0 ∈ Xm and x0, x1, . . . the sequence produced by a linear congru-
ential generator with modulus m, multiplier a, and increment b. Then,
there exists p ∈ N0, with p ≤ m such that

∀i ∈ N : xi = xi+p. (3.8)

We call fundamental period of the RNG the smallest integer p satis-
fying Equation (3.8).

62 CHAPTER 3. DISCRETE-EVENT SIMULATION

Because the randomness is essential in simulation, we must avoid reaching
the epoch at which the random number sequence is repeated. Therefore, we
want the period to be as large as possible. In particular, we define the
following special class of LCGs.

Definition 3.3.3 (Full-period generator)
A linear congruential generator with modulus m, increment b, and fun-
damental period p has a full period if and only if

• b = 0 and p = m− 1, or

• b > 0 and p = m.

Knuth [17, Section 3.2] gives the conditions for a LCG to have a full pe-
riod. These conditions are different depending on the value of the increment.
First, the following theorem establishes them when b 6= 0.

Theorem 3.3.1 (Full-period conditions (b 6= 0))
A linear congruential generator with modulus m, multiplier a, and in-
crement b 6= 0 has a full period if and only if it meets the following
conditions:

• b is relatively prime to m, that is they have no common divisor
other than 1

• for every prime q dividing m, a− 1 is a multiple of q

• if m is a multiple of 4, a− 1 is a multiple of 4.

For a Lehmer’s generator, i.e. a LCG with b = 0, the conditions required
to have a full period are different. They are given by Knuth [17, Section 3.2]
in the following theorem.

3.3. RANDOM NUMBER GENERATOR 63

Theorem 3.3.2 (Full-period conditions (b = 0))
A linear congruential generator with modulus m, multiplier a, and incre-
ment 0 has a full period if and only if it meets the following conditions:

• m is prime

• initial seed x0 is relatively prime to m

• a is prime modulo m, that is m− 1 is the smallest integer h such
that ah mod m = 0

Thanks to these two theorems, a uniform, unpredictable, reproducible,
and full period generator that produces random real-valued numbers in (0, 1)
can be built. Next, we present methods to generate random values that
follow a given probability distribution. We focus first on discrete probability
distributions.

3.3.2 Generating discrete random variables

In this section, we discuss how to randomly generate discrete random vari-
ables that follow a given probability distribution. First, we define the fol-
lowing function [19, Section 6.1].

Definition 3.3.4 (Inverse distribution function (discrete))
Let X be a discrete random variable, let S be its state space, and let
F be its cumulative distribution function. Then, we define the inverse
distribution function (IDF) of X as the function F ? : (0, 1) −→ S
such that

∀u ∈ (0, 1) : F ?(u) = min
x∈S
{x : u < F (x)} (3.9)

Thanks to the definition of IDF, we can produce random numbers fol-
lowing a given probability distribution. Indeed, the following theorem estab-
lishes the link between a uniform probability distribution and any discrete
probability distribution [19, Section 6.2].

64 CHAPTER 3. DISCRETE-EVENT SIMULATION

Theorem 3.3.3 (Probability integral transformation (discrete))
Let X be a discrete random variable, let F ? be its IDF, and let U be a
continuous random variable following a uniform distribution on [0, 1]. If
we denote by Z the discrete random variable defined by

Z = F ?(U) (3.10)

then Z and X are identically distributed.

Using this result, we develop a discrete random variable generator from
the IDF of a given random variable and a LCG generating random numbers
in (0, 1). If we denote by

x0, x1, . . . , xn

the sequence produced by the LCG, and by F ? the IDF of a given discrete
distribution, then the sequence

F ?(x0), F ?(x1), . . . , F ?(xn)

follows the considered probability distribution.

Thanks to the above results, we can implement the function getNextState
we mentioned in Figure 3.2. For recall, its parameters are, respectively, the
current level of the process k, its current phase i, and the three inner blocks
related to the current level, namely A(k)

−1, A
(k)
0 , A

(k)
1 . We define the matrix

A =
(
A

(k)
−1 A

(k)
−1 A

(k)
−1

)
(3.11)

and we consider the row of A corresponding with the phase i. We obtain
a probability vector. Each element of this vector gives the probability of
transiting to a given state reachable from the current state (k, i). From this
vector, we build a CDF-like function. Then, we use a LCG and the IDF
related to the CDF we have defined to determine the next state of the QBD.

3.3.3 Generating continuous random variables

This section is dedicated to the generation of continuous random variables.
The method presented is similar to the one we used to generate discrete
random variables. As we did in the previous section, we define the inverse
distribution function of a continuous random variable [19, Section 7.2].

3.3. RANDOM NUMBER GENERATOR 65

Definition 3.3.5 (Inverse distribution function (continuous))
Let X be a continuous random variable, let S be its state space, and
let F be its cumulative distribution function. Then, we define the in-
verse distribution function (IDF) of X as the inverse function of
F , denoted F−1, if it exists.

By way of illustration, we give the IDF of the exponential distribution in
the following example.

Example 3.3.1 Let F be the cumulative distribution function of an expo-
nential distribution with rate λ. Then, the inverse distribution function of
the distribution is given by

F−1(u) = −λ ln(1− u) (3.12)

with 0 < u < 1.

Based on this definition, Leemis and Park [19,] give the continuous
version of Theorem 3.3.3.

Theorem 3.3.4 (Probability integral transformation (continuous))
Let X be a continuous random variable, let F−1 be its IDF, and let U be
a continuous random variable following a uniform distribution on [0, 1].
If we denote by Z the continuous random variable defined by

Z = F−1(U) (3.13)

then Z and X are identically distributed.

Therefore, if x0, x1, . . . is a sequence of uniformly distributed, real-valued
random variables whose value is in (0, 1), if F is the invertible cumulative
distribution function of a given continuous distribution, and if we define the
sequence x′0, x′1, . . . as

∀i ∈ N : x′i = F−1(xi) (3.14)

then x′0, x′1, . . . is a sequence of continuous random variables that follow the
distribution defined by F .

However, the CDF of a continuous distribution is not necessarily in-
vertible. There exists a second method for generating continuous random

66 CHAPTER 3. DISCRETE-EVENT SIMULATION

variables that does not require an invertible CDF. It is called acceptance-
rejection. We do not present this method because in this thesis, we need
only to generate continuous random variates with an invertible CDF. We
refer to Robert and Casella [29, Section 2.3] for a clear introduction to
acceptance-rejection.

3.4 Output analysis and data estimation

Simulation is commonly used to estimate performance measures, avoiding
the costly operations required by the explicit computation algorithms. As
in Chapter 2, we are interested in two measures specific to Markov pro-
cesses, namely the stationary probability vector and the expected first pas-
sage times. In this section, we show that these measures can be estimated
from the simulation results. However, we must be careful when relying on
simulation to compute stationary measures. The estimates can indeed be
inconsistent with regard to the expected values. In this context, we give
two methods that help to increase the consistency of the estimates, i.e. the
independent replications and the method of batch means. Finally, we present
the principles of the confidence intervals, which are used to give interval
estimates of the measures.

3.4.1 Estimation of the performance measures

In this section, we present methods to estimate the stationary probabilities
and the first passage times from the results of a simulation run. Thanks to
these methods, we can implement the functions setOutput and estimate,
which are used in the algorithm presented in Figure 3.2. The presented esti-
mation methods are based on the intuitive definition of the measures given
Chapter 2. We focus first on the stationary probability vector.

As stated in Chapter 2, the stationary probability of a given state is the
probability that the process is in this specific state after a long-run time. In
other words, it is the expected time spent in this state per time unit. It is
also equal to the expected time spent in this state during a long observation
of the process divided by the total duration of the observation. Therefore, if
we observe the process behaviour thanks to a simulation, we define, for all
(k, i) ∈ S, the estimate of the stationary probability of state (k, i) as

π̂ki =
tki∑

(h,j)∈S
thj

(3.15)

where thj denotes the time spent by the simulated process in state (h, j).

3.4. OUTPUT ANALYSIS AND DATA ESTIMATION 67

There is a significant difference between the effective value of vector π̂
and the stationary vector we defined in Chapter 2, though. The stationary
vector is a measure related to the steady state of the process. For recall,
the steady state of a process is its overall behaviour after a theoretically
infinite time. However, the simulation of a process behaviour also includes
the transient state of the process. This implies that the simulated process
requires a certain amount of time before reaching its steady state. This
amount of time is called the warm-up period. Therefore, any estimate
obtained from the simulation, in particular π̂, includes simulation results
related to the transient state. The influence of the warm-up period fades
away over time. In particular, if we theoretically run the simulation for an
infinite time, π̂ would be exactly equal to stationary vector π. The key point
in data estimation through simulation is therefore the epoch at which we
stop the simulation, that is the difference between the overall behaviour of
the simulated process and its steady state. This leads to the following three
questions:

1. How to avoid the influence of the transient state?

2. How to determine the quality of the estimates, that is how close the
estimates are to the real values of the considered measures?

3. How to infer the real value of a measure from the corresponding esti-
mates?

The first question is discussed in the next subsection. The last two are dealt
with in Subsection 3.4.3.

This issue is even more significant when we estimate expected first pas-
sage times. Indeed, the expected first passage time from level k to level i is
the average first passage time from level k to level i, obtained by taking into
account all the possible behaviours. However, a simulation is merely an in-
stance of a possible behaviour. During the simulation, we can only compute
the first passage time time from level k to level i in the specific context of
the simulated behaviour. Therefore, an expected first passage time cannot
be obtained from a single simulation run. The method we present in Section
3.4.3 allows to estimate the expected first passage times from the results of
multiple simulation runs.

3.4.2 Steady-state simulation

The main challenge in steady state simulation is the avoidance of the in-
fluence of the warm-up period in the estimates of the measures. When the
warm-up period is exactly known, the problem becomes trivial. In this case,
if we delay the computation of the estimates up to the end of the warm-up
period, then the estimates depend only on the steady state of the process.

68 CHAPTER 3. DISCRETE-EVENT SIMULATION

However, the length of the warm-up period is often a priori an unknown
parameter and it is problem specific.

When the warm-up period is unknown, the influence of the transient
state cannot be fully avoided. Instead, we base our estimation method on
the so-called central limit theorem [19, Section 8.1].

Theorem 3.4.1 (Central-limit theorem)
Let X1, X2, . . . , Xn be independent and identically distributed random
variables having finite common mean µ and finite common standard de-
viation σ. If we denote by X̄ the mean of this sequence, that is

X̄ =
1

n

n∑

i=1

Xi (3.16)

then the mean of X̄ is µ and its standard deviation is σ/
√
n. Further-

more, for a sufficiently large n, X̄ approaches a Normal distribution with
mean µ and standard deviation σ/

√
n (see Definition 1.1.8).

We apply this theorem to simulation-based estimation in the following
example.

Example 3.4.1 We simulate m times a discrete time QBD with the sim-
ulation algorithm given in Figure 3.2. We set the duration of each run to
n time units. Then, we define the set of random variables {Xij : 0 ≤ i ≤
n− 1, 1 ≤ j ≤ m} such that

• Xij = 1 if the process is in level 0 at the ith time unit of the jth simu-
lation

• Xij = 0 otherwise.

Then, we define X̄j, 1 ≤ j ≤ m, as the estimate of π0 given by the jth
simulation, that is

X̄j =
1

n

n−1∑

i=0

Xij . (3.17)

According to Theorem 3.4.1, we obtain a good estimate of π0 by computing

¯̄X =
1

m

m∑

j=1

X̄j (3.18)

3.4. OUTPUT ANALYSIS AND DATA ESTIMATION 69

Theorem 3.4.1 means that a good estimate of a performance measure is the
mean of the individual estimates produced by independent replications
of the simulation. Basically, we repeat the simulation a given number of
times, modifying only the initial seeds of the random number generators.
However, the use of this method leads to new issues. First, the initial state
of the process clearly influences its transient state. Therefore, it also has
an impact on the estimates. Another important matter is the choice of the
number of replications and the duration of each of the replications. Hence,
the following issues must be solved:

1. How many replications must be performed?

2. Which duration must be defined for every replication?

3. Which initial state must be chosen for all the replications?

In order to answer the first question and the second one, a compromise must
be made between the quality of the estimates and the run time of the whole
simulation process.

There exists an alternate method to produce such an aggregated esti-
mate that solves the initial-state bias issue. This method is called batch
means. Its principle is as follows. Instead of making m replications with a
n time units duration, we make one long run with a mn time units duration.
We also partition the run into m batches. Every batch therefore has a n
time units duration. For each of the batches, we compute an estimate of the
performance measure. Then, we apply Theorem 3.4.1 and we compute an
aggregated estimate from the estimates individually given by every batch.
The batches play therefore the same role as the independent replications.

The method of batch means has several advantages. First, it clearly
removes the initial-state bias, because the initial state of the process is given
only to the first batch. Second, the number of batches and their individual
duration do not impact on the aggregated estimate; only the total duration
matters. Still, the number of batches is significant when computing interval
estimates, as it is shown in the next section.

3.4.3 Confidence intervals

Thanks to the independent replications and the method of batch means, we
produce a sequence of values that estimate a given performance measure.
However, the transient state influences the value of these estimates. In order
to reduce their impact, we apply the central limit theorem and we compute
a somehow aggregated estimate that is an approximation of the real value of
the measure. Yet, we have not defined a relation between the estimate and
the corresponding real value of the performance measure. In particular, we

70 CHAPTER 3. DISCRETE-EVENT SIMULATION

present a statistical method that builds an interval that likely includes the
real value of the estimated measure.

We consider a sequence X1, X2, . . . , Xn of independent and identically
distributed random variables with common mean µ and common standard
deviation σ, with n being large. According to the central limit theorem, X̄,
as defined in Equation (3.16), approximatively follows a Normal(µ, σ/

√
n)

distribution. Furthermore, if we denote by FG the CDF of the Normal(0, 1)
distribution, we have, from Definition 1.1.6 and Definition 1.1.8, that

P (B ≤ X̄ − µ
σ√
n

≤ A) = FG(A)− FG(B) (3.19)

In particular, when B = −A, this equation is equivalent to

P (X̄ − σ√
n
A ≤ µ ≤ X̄ +

σ√
n
A) = 1− 2FG(−A). (3.20)

Next, we define α and θ as

α = 2FG(−A), (3.21)

θ =
σ√
n
F−1
G (1− α

2
). (3.22)

Then, the last equation can be rewritten as

P (µ ∈ [X̄ − θ, X̄ + θ]) = 1− α (3.23)

By giving a value to α, we obtain an interval that includes µ with probability
1− α. The interval

[X̄ − θ, X̄ + θ]

is called confidence interval. Probability 1−α is called confidence level.
A higher confidence level means a higher guarantee that µ is in the interval,
but it also increases the size of the confidence interval. In other words, a
compromise must be made between the accuracy of a confidence interval and
its likeliness.

It is noteworthy that σ is generally an unknown value, while the standard
deviation of the sequence X1, . . . , Xn, denoted by s, can be computed. It can
be demonstrated that X̄ also approximatively follows a Normal(µ, s/

√
n)

distribution [19, Section 8.1]. We can therefore replace σ by s in Equation
(3.20).

We implement an Octave function that computes a confidence interval
for the expected value of a given measure. It is shown in Figure 3.3. It has
two parameters, Values and confidence. Values is a vector containing the

3.4. OUTPUT ANALYSIS AND DATA ESTIMATION 71

1 function [i n f sup] = bui ldConf idence (Values , con f id ence)
2 m = avg (Values) ;
3 s = std (Values) ;
4 errorMargin = (1 − con f id ence) / 2 ;
5 theta = norminv (1 − errorMargin) ∗ s / sqrt (n) ;
6 i n f = m − theta ;
7 sup = m + theta ;
8 end
9 endfunction

Figure 3.3: An Octave function that builds a confidence interval.

estimation values returned by the independent replications or the method
of batch means; confidence is the desired level of confidence. The function
returns the inferior bound and the superior bound of the corresponding con-
fidence interval.

Using this function requires to perform a sufficiently large number of
replications or batches, usually over 30. When this number is lower, a con-
fidence interval can still be computed, though. We base its computation on
the following theorem [19, Section 8.1].

Theorem 3.4.2 (Student’s test)
Let X1, X2, . . . , Xn be independent and identically distributed random
variables having finite common mean µ and finite common standard de-
viation σ. We denote by X̄ the mean of the sequence, and s its standard
deviation. Then, if we define the random variable t as

t =
X̄ − µ

s/
√
n− 1

(3.24)

then t approximatively follows a Student(n-1) distribution.

When the number of replications or batches is lower than 30, an algorithm
similar to the one presented in Figure 3.3 can be used. However, in this case,
θ is given by

θ =
s√
n− 1

F−1
S(n−1)(

α

2
) (3.25)

where FS(x) denotes the Student CDF with x degrees of freedom.

It is noteworthy that if the number of replications or batches is low,
and if the influence of the transient state is too strong, then the confidence
interval is large and therefore inaccurate. When it happens, we recommend

72 CHAPTER 3. DISCRETE-EVENT SIMULATION

to start again the simulation after increasing the simulation time. This way,
the influence of the transient state is reduced.

3.5 Conclusion

Through this chapter, we introduced a simulation approach and we applied
it to discrete time QBDs. After we developed the simulation algorithm, we
focused on the random number generation and the analysis of the simulation
results. In particular, we presented an estimation method for computing a
confidence interval that includes the expected value of a given measure.

We end the chapter by giving the adaptations needed by the algorithm
shown in Figure 3.2 to simulate a continuous time QBD. The new algorithm
we develop is based on the uniformization technique and its interpretation.
Basically, the QBD is uniformized with a rate c satisfying Equation (1.37).
The resulting transition matrix, denoted by K, is used to determine at each
iteration the next state of the process. K therefore plays the same role as the
transition matrix T in the discrete case. However, the clock is not increased
by exactly one unit at each iteration. Instead, we generate a random variable
following an exponential distribution with rate c and we add its value to the
current clock time. Hence, this simulation algorithm agrees with the defini-
tion of the uniformization we gave in Section 1.3.3. It is worth mentioning
that the value of c has a significant influence on the run time of the algo-
rithm. Indeed, according to the definition of the exponential distribution,
if we use a uniformization rate as low as possible, the clock time increases
more rapidly. Therefore, the number of iterations needed to reach the end
of the simulation is reduced.

Part III

Tool implementation

73

Chapter 4

QBDSense Tool

In the previous chapters, we presented two approaches that provide methods
to evaluate the performance of a QBD process. In the present chapter, we
make intensive use of these methods to build up our own software, that we
call QBDSense.

There already exist tools that implement algorithms issued from the ma-
trix analytic methods. For example, MAGIC [30] and MGMTool [12] pro-
vide solutions to compute the steady state probabilities of a homogeneous
QBD process. Two other tools exist: MAMSolver [28] and SMCSolver
[2]. MAMSolver extends the analysis to M/G/1 and GI/M/1 cases. Its
implementation is based on the ETAQA methodology [5]. SMCSolver
provides some functions that compute the essential matrices G, R and U ,
as well as the steady state probability vector of a homogeneous QBD process.

However, all of these tools have several limitations we want to overcome.
First, they do not permit the analysis of inhomogeneous QBDs. Second,
they are not concerned with the difficulties inherent to the definition of the
matrices composing the transition matrix or the infinitesimal generator of
the process. Existing scientific literature confirms that some QBDs exhibit
a transition matrix or a generator with infinite size or with huge sized in-
ner blocks (see e.g. the case studies carried out by Hautphenne et al. [11],
and Montoro and Perez [23]). Furthermore, their analyses are limited to the
original process itself and they do not evaluate the sensitivity of the perfor-
mance measures with regard to a given perturbation. Finally, none of them
provides a simulation framework that allows to approximate the value of the
performance measures instead of exactly computing it using matrix analytic
methods.

In this chapter, we present a tool we developed that gets rid of those
restrictions. We call that tool QBDSense. It offers three different input

75

76 CHAPTER 4. QBDSENSE TOOL

interfaces to specify a Quasi-Birth-and-Death process, which can be either
homogeneous or inhomogeneous. We also allow the specification of the QBD
to be parameterised in order to perform sensitivity analyses on performance
measures. The results can be computed either by using implementations of
the matrix analytic methods, or by applying simulation algorithms based on
the discrete-event simulation approaches.

The chapter is presented as follows. Section 4.1 presents the general
structure and the functionalities of the tool. The guidelines to perform an
analysis are given in Section 4.2. This section is especially focused on how
to specify a Quasi-Birth-and-Death process. Section 4.3 describes how the
implementations of the performance analysis algorithms are provided by the
tool. Next, Section 4.5 presents more particularly the architecture of the
tool. Finally, Section 4.6 discusses the limitations of the tool as well as some
perspectives to overcome these ones.

This chapter is related to two of our own publications, namely Cordy
and Remiche [6, 7]. These publications are given in Appendices A and B,
respectively.

4.1 General architecture and functionalities

QBDSense can be seen as the collection of individual components that
communicate to perform a complete analysis. There are mainly three types
of components:

1. The user interfaces are composed of three input interfaces and
several output interfaces.

• The input interfaces consist in three different methods to spec-
ify a QBD. Each one has advantages and drawbacks. The user
can therefore choose the most appropriate method to specify the
process he wants to evaluate.

• The output interfaces display the result of the analyses either as
a text or as charts.

2. The analysis frameworks compute the performance measures. We
can distinguish two frameworks, namely the matrix analytic meth-
ods framework and the simulation framework.

• The matrix analytic methods framework is composed of imple-
mentations of the algorithms presented in Chapter 2.

• The simulation framework provides general procedures to simu-
late a QBD process. Accordingly, it estimates some performance

4.2. DESCRIPTION OF THE INPUT INTERFACES 77

measures and it offers statistical tests to evaluate the quality of
the estimations. It is based on the simulation approaches dis-
cussed in Chapter 3.

3. The linkers are intermediary components that link together the user
interfaces and the analysis frameworks.

Although they are part of QBDSense, some of the input interfaces and
the analysis frameworks are individually provided as a stand-alone resource.
Therefore, any of them can be used independently from the others. This
property facilitates the integration with third-party software components.

We describe QBDSense from the point of view of the final user; that
is we explain all the possibilities offered to specify a QBD process and to
evaluate its performance. To achieve this, the user must use the tool as
follows:

1. Once the tool is opened, one of the input interfaces must be selected.
Some of these interfaces require a specific file that the user must pro-
vide. We explain more precisely the content of such a file later.

2. Then, the type of analysis to perform must be chosen, that is either
an ordinary performance analysis or a sensitivity analysis.

3. A computation method must be selected, namely the matrix analytic
methods or the simulation approach.

4. Once the computation of the performance measure is complete, the
performance measures to display must be chosen.

In the next section, we propose to explain the input interfaces, that is
which parameters must be provided in order to perform an analysis. We also
present how the user can define a perturbation on the process to evaluate.
Next, Section 4.3 is devoted to the presentation of the analysis frameworks.
Section 4.4 describes how the analysis results are presented by the output in-
terfaces. Finally, Section 4.5 gives a technical description of the architecture,
in particular the intermediary components we call linkers.

4.2 Description of the input interfaces

Our tool provides three different methods to specify a QBD process: this
process can be specified (i) by giving its infinitesimal generator, (ii) as a
type of queue using Kendall’s notation in concise form, or (iii) by declaring
its possible transitions. In this section, we explain first each of these speci-
fication methods. As an example, we illustrate them to define a QBD that
models the following M/PH/1 queueing system.

78 CHAPTER 4. QBDSENSE TOOL

0,1 1,10.5

6

1,2

4
3

2,10.5

6

2,2

4

0.5

3

3,10.5

6

3,2

4

0.5

3

...0.5

6

...0.5

3

Figure 4.1: The possible transitions in the M/PH/1 queueing system of
Example 4.2.1.

Example 4.2.1 We consider a M/PH/1 queueing system with an infinite
capacity. The time between two consecutive arrivals follows an exponential
distribution with parameter λ, to which we give a value of 0.5. The service
time follows a PH(α, T) distribution where:

α =
[
1 0

]
,

T =

[
−10 4

0 −3

]
.

We model the queueing system with a QBD process with state space defined
as

S = {(0, 1)} ∪ {(k, i) : k ∈ N0, i ∈ {1, 2}}. (4.1)

The process is in level 01 when the system is empty. Otherwise, it is in level
k and in phase i when the current number of jobs in the system is k and when
the phase of the current service time is i. Therefore, the possible transitions
of the process are, for all k > 0 and 1 ≤ i ≤ 2:

• from (0, 1) to (1, 1) with a rate of 0.5,

• from (k, i) to (k + 1, i) with a rate of 0.5,

• from (k + 1, 1) to (k + 1, 2) with a rate of 4,

• from (k + 1, 1) to (l, 1) with a rate of 6, and

• from (k + 1, 2) to (l, 1) with a rate of 3.

A graph showing these transitions is given in Figure 4.1.

The three methods are now given. For each of these methods, we explain
how to specify a Quasi-Birth-and-Death process.

1Level 0 has only one phase, which is phase 1.

4.2. DESCRIPTION OF THE INPUT INTERFACES 79

4.2.1 Method 1: Explicit definition of the inner blocks

The first method consists in explicitly giving the inner blocks that compose
the infinitesimal generator of the process. For this purpose, the user must
provide an Octave function, which must be written in a .m file. This func-
tion must respect a particular syntax. Indeed, the function signature must
include one parameter, that is the level we want to compute the blocks of.
The return values of the function are the three inner blocks of the genera-
tor Q corresponding to the specified level. The computed inner blocks are
returned in the following order: A(i)

−1, A
(i)
0 and A(i)

1 , such as they are defined
in Equation (1.21). If one of these matrices is not defined for the considered
level, it must be replaced by an empty matrix. For example, the result of
the function for the level 0 would be: [], B0, B1.

Figure 4.2 shows an Octave function that specifies the system presented
in Example 4.2.1. First, we use variables to record the parameters of the sys-
tem. Next, we build the matrices to return depending on the level given as
parameter. Of course, the matrices returned by the function are exactly sim-
ilar to the inner blocks composing the infinitesimal generator of an infinite
M/PH/1 queueing system, as we have showed in Section 1.3.2.

Once the function is written in the .m file, the user must specify the
absolute path to that file in the graphical user interface. Thanks to this
specification method, we can define any QBD process. However, it requires
to program in Octave and to know the exact form of the infinitesimal gen-
erator, which can be particularly laborious. The other input methods intend
to overcome these drawbacks.

4.2.2 Method 2: Definition of a queueing system

The second method allows to define the QBD process as a queueing system,
using the concise form of Kendall’s notation (see Subsection 1.3.4). After
choosing the queue type, each parameter of the selected system, such as
an exponential rate or the parameters of a phase-type distribution, must
be entered. The current version of the tool only supports the M/M/1,
M/PH/1, PH/M/1 and PH/PH/1 queues with a first in first out policy
and no priority. The queue capacity can be selected as finite or infinite. In the
former case, the exact capacity must be given. Figure 4.3 shows the graphical
interface that permits the user to define the queueing system presented in
Example 4.2.1. The user must introduce the value of the parameters λ, α
and T . Also, the queue capacity must be specified as infinite. As we will
explain in Section 4.4, a number of levels must be chosen in order to limit the
display of the results. It is noteworthy that the syntax to specify a vector or

80 CHAPTER 4. QBDSENSE TOOL

1 [A_1 A0 A1] = get InnerBlocks (l e v e l)
2 lambda = 0 . 5 ;
3 alpha = [1 0] ;
4 T = [−10 4 ; 0 −3];
5 t = −sum(T’) ’ ;
6 i f (l e v e l == 0)
7 A_1 = [] ;
8 A0 = −lambda ;
9 A1 = lambda ∗ alpha ;

10 e l s e i f (l e v e l == 1) ;
11 A_1 = t ;
12 A0 = T − lambda ∗ eye (s ize (T)) ;
13 A1 = lambda ∗ eye (s ize (T)) ;
14 else
15 A_1 = t ∗ alpha ;
16 A0 = T − lambda ∗ eye (s ize (T)) ;
17 A1 = lambda ∗ eye (s ize (T)) ;
18 end
19 endfunction

Figure 4.2: An Octave function that computes the inner block composing
the generator of a QBD modeling an M/Ph/1 queue.

a matrix is similar to Octave. Once the user has specified all the required
parameters, the tool automatically computes an Octave function similar to
the one the user would have implemented if he used the first specification
method.

4.2.3 Method 3: Specification of the transitions

The third and last input method consists in specifying the possible transi-
tions of the QBD process in a syntax-consistent and textual language we
developed. The text defining the QBD must be written in a .qbd file. The
particular feature of our method is that all the possible transitions have not
to be given. Instead, the user can specify more concisely a repetitive struc-
ture appearing in the generator.

QBDParser is a Java library we developed in order to produce, thanks
to a text file describing the possible transitions of a QBD, an Octave func-
tion that computes the inner block of a given level of this QBD. Basically,
the library is composed of:

• a parser that is able to read and “understand” a .qbd file containing a
textual description of the transitions,

• some data structures used to record the transitions analysed by the
parser, and

4.2. DESCRIPTION OF THE INPUT INTERFACES 81

Figure 4.3: A graphical user interface used to specify a QBD as a queueing
system.

• a code producer that writes an Octave function thanks to the con-
tent of the data structures. This function can then be used to obtain
the inner blocks composing the generator of a QBD.

Once the .qbd file is written, the user must specify the absolute path to
that file. Then, QBDParser parses the file and automatically produces the
corresponding Octave function, which is used by the performance analysis
frameworks afterwards.

We built the parser thanks to JavaCC2, an open source tool originally
owned by Sun Microsystems. Basically, this tool helps to generate a lexical
analyser and a descending syntax analyser from a context-free grammar de-
fined in Backus-Naur Form. We do not cover the theory about lexical and
syntactical analysis and we refer to Aho et al. [1] for a clear introduction.

Next, we focus on the language we use to specify the transitions of the
QBD. First, we describe its syntax. Then, the associated semantic is given.

Syntax of the specification language

In this section, we present the syntax of the language. Every element of the
syntax in given in Backus-Naur Form. A formal definition of the semantic

2https://javacc.dev.java.net/

82 CHAPTER 4. QBDSENSE TOOL

is given afterwards.

1 qbd : := [d e c l a r a t i on]∗ d e f i n i t i o n+

The specification of a QBD process is composed of a series of constant dec-
larations and a series of transition definitions. No constant can be declared
but there must be at least one transition definition.

1 d e c l a r a t i on : := ’CONST’ id ’=’ va lue ’ ; ’
2 id : := [’ a ’− ’ z ’] ([’ a ’− ’ z ’ , ’A ’− ’Z ’ , ’ 0 ’− ’ 9 ’ , ’_ ’]) ∗
3 value : := (’ 0 ’ | ([’ 1 ’− ’ 9 ’] ([’ 0 ’− ’ 9 ’]) ∗)) ([’ . ’] ([’ 0 ’− ’ 9 ’])+)

The declaration of a constant begins with the keyword CONST. It is followed
by an id, i.e. a string beginning with a lower case letter, the sign = and a
real number. A declaration ends with a semi-colon (;). Informally, a con-
stant declaration associates a value with a string. Whenever this string is
used in a transition definition, it is considered as the value associated with it.

1 d e c l a r a t i on : := ’TO’ ’ (’ type ’ , ’ e xp r e s s i on ’) ’
2 ’FOR’ cond i t i on s ’RATE’ exp r e s s i on ’ ; ’
3 type : := ’UP ’ | ’SAME’ | ’DOWN’

A transition definition begins with the keyword TO. It is followed by the type
of transition and the destination phase. More precisely,

• the possible types of transition are UP, DOWN and SAME, which describe
if the process moves to the upper level, to the downer level or to the
same level, respectively, and

• the destination phase is given by an expression. The syntax of an
expression is given a bit further.

Then, the keyword FOR precedes conditions specifying the states from which
the transition is available. Finally, the keyword RATE is followed by an ex-
pression specifying at which rate the transition occurs.

1 cond i t i on s : := cond i t i on [’AND’ cond i t i on]∗
2 cond i t i on : := macrocondit ion | mic rocond i t i on
3 macrocondit ion : := ’L ’ (’< ’ | ’> ’ | ’= ’ | ’<=’ | ’>=’) value
4 microcond i t i on : := ’P ’ (’< ’ | ’> ’ | ’= ’ | ’<=’ | ’>=’) va lue

The conditions specifying the state from which a transition can be fired are
separated by the keyword AND. A condition is either a macrocondition or a
microcondition. A macrocondition is an arithmetic constraint defined on
the current level, represented by the keyword L. A microcondition is also
an arithmetic constraint, but it is defined on the current phase, represented

4.2. DESCRIPTION OF THE INPUT INTERFACES 83

by the keyword P.

1 exp r e s s i on : := expr e s s i on ’+’ exp r e s s i on
2 | exp r e s s i on ’− ’ e xp r e s s i on
3 | exp r e s s i on ’ ∗ ’ e xp r e s s i on
4 | exp r e s s i on ’ / ’ exp r e s s i on
5 | ’− ’ e xp r e s s i on
6 | ’min ’ ’ (’ e xp r e s s i on ’ , ’ e xp r e s s i on ’) ’
7 | ’max ’ ’ (’ e xp r e s s i on ’ , ’ e xp r e s s i on ’) ’
8 | ’ (’ e xp r e s s i on ’) ’
9 | ’L ’

10 | ’P ’
11 | id
12 | va lue

An expression can be either a composite expression or a simple expression.
A composite expression is made from the following arithmetic operators: ad-
dition (+), subtraction (-), multiplication (*), division (/). It can also be the
minimum (min) and maximum (max) functions. Brackets can also be used
to define an order on the expressions. A simple expression can be a value,
the current level L, the current phase P or an id, namely a reference to a
previously declared constant. It is worth mentioning that thanks to the use
of the variables L and P, we can concisely define some inhomogeneous QBDs.

In Figure 4.4, we illustrate the use of this specification method applied to
Example 4.2.1. The parameters of the system are declared as constants (see
lines 1-6). Line 7 describes a transition to the phase 1 of the upper level. As
the following constraints express, this transition is available only when the
process is in the phase 1 of the level 0. The rate of the transition is lambda,
which has a value of 0.5 according to the constant declaration at line 1. This
transition corresponds to the only transition that is available from level 0
(see Figure 4.1). Line 8 defines the transition of rate 4 available from any
state (k + 1, 1), k ≥ 0, to state (k + 1, 2). Line 9 specifies the transition of
rate 6 available from any state (k+ 1, 1), k ≥ 0, to state (k, 1). Line 10 gives
the transition of rate 3 available from every state (k + 1, 2) to state (k, 1).
Finally, line 11 defines the transition of rate 0.5 that goes from any state
(k, i), k ≥ 0, i ∈ {1, 2} to state (k + 1, i).

Next, we define the semantic associated with the language.

Semantic of the language

The semantic of a constant declaration is merely a mapping between a string
and an arithmetic value. The semantic of a transition definition is a data
structure we define hereafter.

84 CHAPTER 4. QBDSENSE TOOL

1 CONST lambda = 0 . 5 ;
2 CONST mu1 = 10 ;
3 CONST p = 0 . 6 ;
4 CONST q = 0 . 4 ;
5 CONST mu2 = 3 ;
6
7 TRANSITION (UP, 1) FOR L = 0 AND P = 1 RATE lambda ;
8 TRANSITION(SAME, P+1) FOR L > 1 AND P = 1 RATE mu1∗q ;
9 TRANSITION(DOWN, 1) FOR L > 1 AND P = 1 RATE mu1∗p ;

10 TRANSITION(DOWN, 1) FOR L > 1 AND P = 2 RATE mu2 ;
11 TRANSITION(UP,P) FOR L>0 AND P>0 AND P<3 RATE lambda ;

Figure 4.4: Specification of a QBD with a textual language.

For recall, our objective is to create, from a text written in the syntax we
have defined, an Octave function that builds the inner blocks of any level
of the process. To achieve this, data structures we call Similar Macrostates
Group (SMG) must be built during the parsing. The SMGs are formally
defined as follows.

Definition 4.2.1 (Similar Macrostates Group)
A Similar Macrostates Group is a triplet (L, d, M) where:

• L is a no empty set of levels of the QBD,

• d ∈ {−1, 0, 1} gives a type of transition

• M is a no empty set of triplet (P, t, r) where:

– P is a no empty set of phases that are defined in every level
k ∈ L,

– t is an arithmetic expression that defines the targeted phase,
and

– r is an arithmetic expression that defines the rate of the tran-
sition.

A SMG defines a set of states {(k, i)} such that the process can move,
from every state in this set, to state t with rate r where t and r are determined
by computing the value of given arithmetic expressions. In order to take into
account the repetitive structure of a QBD, these expressions can contain the
symbolic values k and i. They can also include references to the declared
constants. More formally, if we denote by s τ−→ s′ that a transition of rate τ

4.2. DESCRIPTION OF THE INPUT INTERFACES 85

is available from state s to state s′, we have, for a given SMG (L, d,M) that:

∀k ∈ L,∀(P, t, r) ∈M : ∀i ∈ P : (k, i)
r−→ (k + d, t) (4.2)

The semantic of every transition defined with our grammar is a SMG. We
illustrate this statement in the following example.

Example 4.2.2 The semantic of the transitions defined at lines 9 and 10
in Figure 4.4 is respectively two SMGs (L, d,M) and (L′, d′,M ′) such that

L = {k : 1 < k < +∞} L′ = {k : 1 < k < +∞} (4.3a)
d = −1 d′ = −1 (4.3b)
M = {({1}, 1, 10 ∗ 0.4)} M ′ = {({2}, 1, 3)} (4.3c)

It is noteworthy that each type of transition (i.e. to the upper level, to
the downer level and to the same level) defines some elements of a different
type of inner block. Therefore, any SMG (L, d,m) corresponds with a given
set of inner blocks. More precisely,

• if d = −1, the corresponding set of blocks is {A(k)
−1 : k ∈ L};

• if d = 0, it is {A(k)
0 : k ∈ L}; and

• if d = 1, it is {A(k)
1 : k ∈ L}.

This implies that two SMGs (L, d,M) and (L′, d′,M ′), with d 6= d′, do not
define elements of the same inner blocks.

Accordingly, we define three lists of SMGs, each of them corresponding
to a type of transition. Initially, these lists are empty. At the end, we want
each list to contain SMGs such that the intersection of the set of levels of
two distinct SMGs is empty. In other words, we want the following property:

∀S = (L, d,M), S′ = (L′, d′,M ′) ∈ list : S 6= S′ : L ∩ L′ = ∅ (4.4)

Before we present how to construct the three lists, we have to define the
fusion of two SMGs. Informally, the fusion gathers the common levels
into a new SMG with all the transitions and removes those levels from the
original SMGs. If a resulting SMG has an empty set of levels, it is discarded.
More formally, we define it as follows.

86 CHAPTER 4. QBDSENSE TOOL

Definition 4.2.2 (Fusion of two Similar Macrostates Groups)
If we denote by SSMG the set of all possible SMGs, the fusion of two
SMGs is a function

fuse : SSMG× SSMG −→ P(SSMG)

where P denotes the powerset, such that:

∀S = (L, d,M), S′ = (L′, d′,M ′) ∈ SSMG :

• if d 6= d′ ∨ L ∩ L′ = ∅ : fuse(S, S′) = {S, S′}

• else if L = L′ : fuse(S, S′) = {(L, d,M ∪M ′)}

• else if L′ ⊂ L : fuse(S, S′) = {(L \ L′, d,M), (L′, d,M ∪M ′)}

• else if L ⊂ L′ : fuse(S, S′) = {(L, d,M ∪M), (L \ L′, d,M)}

• else : fuse(S, S’) = {(L\L′, d,M)(L∩L′, d,M∪M ′), (L′\L, d,M ′)}

We illustrate the use of the fusion function in the following example.

Example 4.2.3 If we apply this function at the two SMGs defined in Exam-
ple 4.2.2, the result would be a set that contains a single SMG (L′′, d′′,M ′′)
where

L′′ = {k : 1 < k < +∞}
d′′ = −1

M ′′ = {({1}, 1, 10 ∗ 0.4), ({2}, 1, 3)}

With this operator, we can build the three lists provided that the tran-
sitions defined in the text file are consistent. This means that, for two given
states s and s′, two transitions from s to s′ with a different rate cannot ex-
ist. Indeed, if the hypothesis holds, the fusion operator clearly preserves the
consistency of the transitions defined in the original SMGs.

The construction of the lists is as follows. Each time the parser parses the
definition of a transition, the corresponding SMG, S = (L, d,M), is built.
Then, we get the SMGs list corresponding to the transition type, which we
denote by l. If l is empty, S is immediately added to it. Otherwise, we
execute the following steps.

1. We define temp as an empty list.

2. We define S′ as the first SMG of l and we remove S′ from l.

4.2. DESCRIPTION OF THE INPUT INTERFACES 87

3. We apply the fusion operator to S′ and S.

4. The resulting SMG that corresponds with levels k ∈ L ∩ L′ and the
one that corresponds with levels k ∈ L′ \L, if they exist, are added to
temp.

5. • If L \ L′ = ∅, we add the elements of temp to l and we stop.

• Otherwise, S becomes the SMG resulting from the fusion that
corresponds with levels k ∈ L \ L′.

6. • If l is empty, S is added to temp, l becomes temp, and we stop.

• Otherwise, we define S′ as the current first element of l, we remove
S′ from l, and we go back to step 3.

At the end, each level of the process is referenced at most one time in
each list. From this point on, an Octave function that computes the inner
blocks can easily be produced. For recall, each list corresponds with one
of the three matrices that must be returned by the Octave function. We
illustrate the code generation in the following example.

Example 4.2.4 We consider the transition specification shown in Figure
4.4. We want to compute the inner blocks related to the transitions to the
lower level, namely the matrices A(k)

−1. Lines 9 and 10 specify such a tran-
sition. We denote by l the list of SMGs we want to build, which is initially
empty.

Line 9 is parsed first and the corresponding SMG is built, as we did in
Example 4.2.2. We denote this SMG by S = (L,−1,M). Because l is empty,
S is immediately added to it.

Next, Line 10 is parsed and an SMG S′ = (L′,−1,M ′) is built accord-
ingly. This time, l is not empty, and we remove its first element (namely
S). We define temp as an empty list. We apply the fuse operator to S and
S′. As in Example 4.2.3, it results a single SMG

S′′ = (L′′,−1,M ′′) (4.5)

where

L′′ = {k : 1 < k < +∞},
d′′ = −1,

M ′′ = {({1}, 1, 4), ({2}, 1, 3)}.

It is noteworthy that
L′′ = L ∪ L′. (4.6)

88 CHAPTER 4. QBDSENSE TOOL

S′′ is added to temp. Finally, according to step 5, l becomes temp because

L \ L′ = ∅. (4.7)

We have finished to built the list.

To produce the Octave function, we successively get the elements of l.
In our example, there is only one element, namely

S′′ = (L′′,−1,M ′′). (4.8)

For all k ∈ L”, the set
M ′′ = {(P ′′, t′′, r′′)} (4.9)

defines some strictly positive elements of matrix A(k)
−1. More precisely,

• each element of P refers to exactly one row of the matrix;

• the target expression t refers to exactly one column of the matrix;

• the rate expression r gives the value of the corresponding elements of
the matrix.

According to our example, M” defines the following elements of A(k)
−1:

(A
(k)
−1)1,1 = 4

(A
(k)
−1)2,1 = 3

The two other types of inner blocks can similarly be computed. Matrices
A

(k)
0 are particular though. Because such a matrix is the central inner block,

each ith diagonal element must be equal to

−(

nk−1∑

j=1

(A
(k)
−1)ij +

nk∑

j=1

(A
(k)
0)ij +

nk+1∑

j=1

(A
(k)
1)ij) (4.10)

where nk denotes the number of phases in level k.

Finally, it is worth mentioning that, if necessary, a block must be resized
by adding some lines and columns filled with zeros. For example, if we
consider an inhomogeneous and infinite QBD and if we denote by row(M)
and col(M), respectively, the number of rows and columns of matrix M , the
following properties must hold:

∀k, row(A
(k)
0) = row(A

(k)
1) (4.11)

∀k > 0, row(A
(k)
0) = row(A

(k)
−1) (4.12)

∀k, row(A
(k)
1) = col(A

(k+1)
−1) (4.13)

By way of illustration, we must add a second column filled with zeros to
matrix A(k)

−1 generated in Example 4.2.4.

4.2. DESCRIPTION OF THE INPUT INTERFACES 89

4.2.4 Parameterisation of a sensitivity analysis

After using one of the methods to specify a QBD, the user must select the
kind of analysis he wants to perform. More precisely, the possible types of
analysis are:

1. a performance analysis, which consists in the computation of the sta-
tionary vector and the expected first passage times, and

2. a sensitivity analysis, i.e. the measurement of the evolution of the
performance measures with regard to small variations applied to the
process parameters.

Performing a sensitivity analysis requires the definition of the perturbation
to apply to the QBD. More precisely, we define the perturbed generator to
analyse as

Q̃(ε) = Q+ P (ε) (4.14)

where we successively give different values to ε. Hence, for each value given
to ε, we compute the performance measures related to Q̃(ε) in order to ob-
serve their evolution according to the perturbation. We present how this
evolution is displayed in Section 4.4. We now describe how to define this
perturbation with each of the three input interfaces.

The first method, i.e. the explicit implementation of an Octave func-
tion, easily permits to define a perturbation encountered by the QBD. For
that purpose, the function declaration must include a second parameter, that
is ε. This parameter – we call it variable of perturbation – can influence the
value of any inner block.

Example 4.2.5 Figure 4.5 shows how to modify the function presented in
Figure 4.2 in order to define a perturbation on the arrival rate of the system
presented in Example 4.2.1. The only differences are the addition of a second
parameter in the declaration of the function and the modification of the value
assigned to lambda using this parameter.

The second method allows to apply a perturbation to the defined queue-
ing system. For each initial parameter p of the original queueing system, the
user must specify an additional parameter p′. Then, the value of p becomes
p+ εp′. As before, ε is the variable of perturbation.

Example 4.2.6 Figure 4.6 illustrates the definition of a perturbation on the
arrival rate of the system defined in Example 4.2.1.

Finally, a perturbation on the QBD can also be defined with the last
method by extending the grammar of the language. More precisely, we add

90 CHAPTER 4. QBDSENSE TOOL

1 [A_1 A0 A1] = get InnerBlocks (l e v e l , e)
2 lambda = 0 .5 + e ∗ 0 . 0 5 ;
3 alpha = [1 0] ;
4 T = [−10 4 ; 0 −3];
5 t = −sum(T’) ’ ;
6 . . .
7 endfunction

Figure 4.5: An Octave function that computes the inner blocks composing
the generator of a QBD modelling a perturbed M/Ph/1 queue.

Figure 4.6: A graphical user interface used to define a perturbation on a
queueing system.

the possibility for a simple expression to be the variable E, which represents
the variable of perturbation. We can then use this variable to modify a
transition rate with respect to the value that will be given to E.

Example 4.2.7 We want to apply a perturbation of ε ∗ 0.05 on the arrival
rate of the system presented in Example 4.2.1. Then, we must modify only
the first line of the text file whose we gave the content in Figure 4.4. After
the modification, this line would be:

1 CONST lambda = 0.5 + E ∗ 0 . 0 5 ;

4.3. THE PERFORMANCE ANALYSIS FRAMEWORKS 91

Function Output QBD types
QBD_FPT ti→j Hom. & Inf.

QBD_FPT_Finite ti→j Hom. & Fin.
QBD_FPT_Inh ti→j Inh.

QBD_LR G,R,U Hom. & Inf.
QBD_pi π Hom. & Inf.

QBD_pi_finite π Hom. & Fin.
QBD_pi_Inh π Inh.

Hom. : Homogeneous Inh. : Inhomogeneous
Fin. : Finite Inf. : Infinite

Table 4.1: The main Octave functions included in the framework QBD-
Solver.

4.3 The performance analysis frameworks

By using the input interfaces, the user can specify a QBD. Next, the per-
formance of the process is analysed thanks to one of two frameworks we
developed: QBDSolver and QBDSimulator. While the former makes
use of the matrix analytic methods, the latter simulates the QBD in order
to estimate the performance measures. We successively describe each of the
frameworks.

4.3.1 QBDSolver

QBDSolver is a framework that allows the analysis of a QBD process using
the matrix analytic methods. It is a collection of Octave functions. Some
of these functions are part of the SMCSolver developed by Bini et al. [2].
The others implement algorithms presented in Chapter 2. Thanks to this
collection, we can evaluate every type of QBD. All these functions can be
either called from the Octave command line or from our tool. We describe
the most important functions. Table 4.1, associates the functions with the
value they compute and with the types of QBD to which they are applied.

The first three functions compute the expected first passage times from
every state of a given level (denoted by i) to another level (denoted by j).
Each of the three functions can only be applied to a specific type of QBD.
More precisely,

• the first function can be applied to a homogeneous and finite QBD,

• the second one can be used when the QBD is homogeneous and finite,

• the third one is intended for an inhomogeneous QBD.

92 CHAPTER 4. QBDSENSE TOOL

They all require the same two parameters: i and j, respectively. The func-
tions dynamically gets the inner blocks of a given level by calling a function
called getInnerBlocks, which returns the three inner blocks related to a
level given as parameter. Basically, this function must be either provided
by the user of the framework or produced by one of the input interfaces we
described in Section 4.2.

The fourth function computes the rate matrix of a homogeneous and in-
finite QBD, as well as the two related matrices G and U (see Chapter 2.1.3).
It requires the following parameters: A−1, A0, A1, as defined in Equation
(1.24). This function comes from the SMCSolver of Bini et al. [2].

Finally, the last three functions computes π, the stationary vector of
a specific type of QBD. More precisely, QBD_pi computes a subvector of
π for a homogeneous and infinite QBD. Its parameters are respectively:
B−1, B0, B1, A−1, A0, R, and the maximum level of which the stationary
probability is computed. This function also comes from the SMCSolver.
QBD_pi_finite computes the whole stationary vector of a finite and homo-
geneous QBD. It requires the following parameters: B−1, B0, B1, A−1, A0,
A1, C−1, C0, C1 and the maximum level reachable by the process. Finally,
QBD_pi_Inh is intended for inhomogeneous QBDs. It requires only one pa-
rameter, namely the maximum level of which the stationary probability must
be computed. It dynamically computes the inner blocks it needs by calling
the function getInnerBlocks.

These functions are provided as a stand-alone resource, so that we can
call them directly with Octave, instead of observing their results via the
QBDSense tool. Furthermore, it allows any third-party developer to im-
plement more efficient algorithms or to extend the framework by providing
implementation of different algorithms.

4.3.2 QBDSimulator

When evaluating a QBD composed of huge inner blocks, the run time of
the matrix analytic methods algorithms can be significant. Indeed, they are
based on matrix multiplication and matrix inverse, which are costly opera-
tions. Therefore, we provide another framework that permits to estimate the
value of some interesting measures instead of computing it exactly. This es-
timation is done thanks to the discrete-event simulation algorithm presented
in Chapter 3. This algorithm has been implemented in Octave functions
that are part of the framework QBDSimulator. We present the simulation
functions in Table 4.2.

The function QBD_sim_confidence computes a confidence interval for a

4.3. THE PERFORMANCE ANALYSIS FRAMEWORKS 93

Function Output QBD types
QBD_sim_confidence Confidence interval N/A

QBD_sim_hom π̂, ti→j Hom. & Inf.
QBD_sim_hom_fin π̂, ti→j Hom. & Fin.

QBD_sim_inh π̂, ti→j Inh.

Hom. : Homogeneous Inh. : Inhomogeneous
Fin. : Finite Inf. : Infinite

Table 4.2: The main Octave functions included in the framework QBD-
Simulator.

given measure. Its parameters are respectively: Samples, a vector contain-
ing the estimates value, and level, the confidence level of the interval to
compute. The function returns the inferior bound and the superior bound
of the interval, respectively.

The other three functions simulate a QBD. They require the same pa-
rameters, which are:

• the level and the phase in which the process starts,

• the length of the warm-up period (can be set to zero if it is unknown),

• the simulation end time,

• the number of levels of the process,

• two numbers defining the seeds used by the two random number gen-
erators we use3, and

• the number of batches in which the simulation is divided (see Section
3.4.2).

When the number of batches is greater than one, then the method of batch
means is used to estimate the performance measure.

It is worth mentioning that the three functions dynamically compute
the inner blocks of the QBD by calling the function getInnerBlocks. This
call has a significant influence on the run time of the algorithm. There-
fore, an essential optimization is to compute only one time each needed
block. QBD_sim_hom computes only once the six blocks needed to define
an infinite and homogeneous QBD. In the finite and homogeneous case,
QBD_sim_hom_finite computes the three additional needed blocks, namely

3One generator is used to determine the successive states of the process and the other
is used to generate random times following an exponential distribution.

94 CHAPTER 4. QBDSENSE TOOL

C−1, C0, and C1 as they are defined in Equation (1.26). In order to simulate
an inhomogeneous QBD, we implement the function QBD_sim_inh. This one
computes the inner blocks of a given level only the first time this level is
reached. Then, the blocks are recorded in a data structure for further use.

Similarly with QBDSolver, the Octave functions included in QBD-
Simulator are individually offered in order to ease the work of third-party
developers that wish to customize the framework.

4.4 Outputs display

The measures we are interested in are the stationary probability of every
state and the expected first passage times. Their values are always displayed
in two forms. First, they are displayed in a text area. At any moment, the
user can choose to register the content of this area in a text file. Doing this
empties the text area. Several charts are also displayed. Small differences in
the display of the results appear depending on the chosen type of analysis
and the computation method. We now point out these differences.

When an ordinary performance analysis is carried out, the stationary
probability of every level is displayed. When the QBD is infinite, the display
is limited to the number of levels previously specified by the user. A chart
showing the evolution of the stationary probability according to the level is
shown as well (see Figure 4.7).

First passage times are also displayed. There is, however, a significant
difference depending on the computation method. More precisely,

• if the matrix analytic methods are chosen, the user can decide to dis-
play the expected first passage times starting from any level, but

• if the simulation approaches are used, then only the first passage times
from the starting level of the process are displayed.

Furthermore, as we have already discussed in Chapter 3, the results re-
turned by a simulation are merely estimates. Because of that, we recommend
to perform more than one replications of the simulation, or to set the number
of batches to more than one, enabling the method of batch means. In this
case, the tool also computes confidence intervals with a 0.95 confidence level
for a chosen measure and it displays this interval in a chart (see Figure 4.8).

When a sensitivity analysis is performed instead of an ordinary analysis,
the outputs are displayed differently. For recall, a sensitivity analysis con-
sists in the computation of the performance measures for every perturbed

4.4. OUTPUTS DISPLAY 95

Figure 4.7: The stationary probabilities of the the first six levels of the QBD
defined in Example 4.2.1

Figure 4.8: The stationary probabilities of the first six levels of Example
4.2.1 estimated by independent replications of a simulation.

generator Q̃(ε), as defined in Equation (4.14). More precisely, we give dif-
ferent values to ε and we analyse the performance of the resulting perturbed
generators. Instead of displaying the whole stationary probability vector,
the tool shows the evolution of the stationary probability of a given level in
function of ε. Similarly, it displays the evolution of the first passage times
from a given level to another level according to the value of ε. As we previ-
ously mentioned, when the simulation is used, the level from which the first
passage times are computed can only be the starting level of the process.
Furthermore, confidence intervals with a 0.95 confidence level can be com-

96 CHAPTER 4. QBDSENSE TOOL

puted, provided that multiple replications are performed or that the number
of batches set by the user is greater than one.

4.5 Architecture of the tool

As previously mentioned, the tool is composed of input and output interfaces
as well as the performance analysis frameworks. These individual compo-
nents are linked together thanks to Java components we call linkers. In
this section, we describe the architecture of the tool and we specifically put
emphasis on the linkers. In order to avoid weighing down the reading, the
presentation we give remains high level. More accurate information about
the architecture can be found in the developer guide provided along with the
tool.

Figure 4.9 illustrates the architecture of the tool with a UML component
diagram, where the different components and their dependencies are shown.
More precisely, a full circle represents a service offered by the component
attached to it, and a half circle models a service needed by the component
linked to it. In the previous sections, we already presented the two Octave
frameworks, as well as QBDParser and the user interfaces. Our tool also
includes several components developed in Java. We briefly describe the role
of each of the components. First, it is worth mentioning that we make use
of two external Java libraries: JFreeChart and JavaOctave.

JFreeChart4 is a free library that allows the developers to display charts
inside their Java applications. It is distributed under the GNU Lesser Gen-
eral Public License5. It supports a large variety of chart types and provides a
complete Application Programming Interface (API) for dynamically editing
a chart, as well as performing zooms on it.

JavaOctave is a Java library that works as a bridge from Java to Oc-
tave. It is developed by Kim Hansen6. It allows to call the Octave in-
terpreter from a Java program and to transform an Octave data structure
into a Java object. Basically, it runs Octave and provides functions to
communicate with it.

Next, we describe our own Java components. OctaveCaller is a Java
component we developed. It is the only component that communicates with
JavaOctave. Thanks to this property, modularity is improved: the other
Java components are completely independent from the library used to com-

4http://www.jfree.org/jfreechart/
5http://www.gnu.org/copyleft/lesser.html
6http://kenai.com/projects/javaoctave/

4.5. ARCHITECTURE OF THE TOOL 97

Figure 4.9: The architecture of the tool illustrated with a UML component
diagram.

municate with Octave. Since JavaOctave is a bridge between Java and
Octave, OctaveCaller can be seen as a gate on the Java side. It provides
routines to keep track of every Octave function that has been declared.
Any function can then be called and its return values will be contained in
Java objects managed by OctaveCaller.

The component Analyser is the masterpiece of the tool. It determines
which function must be called, depending on the chosen analysis method,
the characteristics of the defined QBD process and the desired output data.
It determines which function has to be registered by OctaveCaller, when
and how such a function must be modified. It also sets the right parameters
of a function and orders the OctaveCaller to call it. Then, it analyses the
data structures returned by the OctaveCaller to extract the desired results.

Finally, the component Graphic User Interface (GUI) has two main
roles. Firstly, it displays the different windows through which the user can
navigate. That includes both the input windows, in which the parameters of
the studied system and the path to essential files are entered, as well as the
output windows in which the evaluation results are displayed. Secondly, it
manages the user actions and requests the right service of the right compo-
nent when necessary. Basically, this component reads the data introduced
by the user, uses the right input interface in order to set every parameter
and call Analyser to perform the analysis.

98 CHAPTER 4. QBDSENSE TOOL

4.6 Limits and perspectives

QBDSense has two main purposes. First, it aims to facilitate the specifi-
cation of a QBD by providing different input interfaces. Second, it provides
algorithms issued from the matrix analytic methods, as well as some imple-
mentations of the discrete-event simulation approaches. However, it suffers
from several limitations that we point out in this section.

As previously stated, a Quasi-Birth-and-Death process can be defined us-
ing three different methods. Specifying it by coding an Octave function that
returns its inner block is the most expressive one. It can be really laborious
though, and that is the very reason of the two other methods. However, the
expressiveness of these ones is quite limited. Indeed, the Kendall’s notation
method is restricted to a few queueing systems. Furthermore, it does not
allow to customize the configuration of the system, for example by adding
some additional servers or by specifying a different queue policy. It is also
impossible to define different types of jobs that have their own arrival dis-
tribution and a distinct priority.

The last method, i.e. giving the possible transitions of the QBD in a
text file, is also restricted because of the grammar. Indeed, the language
allows to define the transitions of only a two-dimensional markovian state
space. Furthermore, the dimensions are explicitly the level and the phase
of the corresponding QBD. Therefore, a n-dimensional state space must be
transformed into a two-dimensional one in order to be specified. To improve
our specification method, it is thus required to extend the grammar. How-
ever, the use of the method can still be laborious when the process does not
clearly have a repetitive structure. In this case, we recommend the use of
the first specification method. For example, we encountered this drawback
when we carried out the case study presented in Chapter 5.

Other possible improvements of the tool concern the computation of the
results. The basic theory of the matrix analytic methods applied to QBDs
has been developed more than a decade ago. Researchers still extend these
methods. For example, Leeuwaarden et al. [21, 20] develop efficient algo-
rithms for some particular classes of QBDs. Cao et al. [3], Li et al. [22], and
Dendievel et al. [8] determine expressions that, for a given QBD and a given
perturbation, efficiently approximate the resulting performance measures.

Similarly, the implementations of the simulation framework follows only
the basic discrete-event simulation approaches. In particular, one key prob-

4.6. LIMITS AND PERSPECTIVES 99

lem of these methods is the bias due to the transient states. Some recent
works intend to avoid this bias. For example, Casella et al. [4], Dimakos
[9], and Thonnes [31] study an approach called perfect simulation. It aims
to draw samples from the exact stationary distribution, instead of from a
long-time approximation. The integration of perfect simulation algorithms
would be a nice addition to our tool.

100 CHAPTER 4. QBDSENSE TOOL

Chapter 5

Case Study

In Chapter 4, we presented QBDSense, a tool that aims to evaluate the
performance of a Quasi-Birth-and-Death process. The tool makes intensive
use of the algorithms presented in Chapter 2 and the simulation approaches
described in Chapter 3. In this chapter, we present a case study we made
with the tool. The case study has two purposes. First, it illustrates the use
of our tool, from the QBD specification to the presentation of the results.
Second, it shows that a QBD can be used to model complex systems. More
precisely, the case study is about a reliable system composed of several com-
ponents and procedures. Montoro and Perez [23] evaluate this system by
computing different performance measures. We consider the same system as
they presented and we carry out a sensitivity analysis specifically on one of
these performance measures.

The chapter is presented as follows. We describe in Section 5.1 the indi-
vidual components of the system, as well as the procedures and the random
events that have an impact on it. Next, we develop a mathematical model
of the system and we formally define the state space of the model in Section
5.2. In particular, we give the probability distributions that characterize the
random events. In Section 5.3, we present the method used afterwards to
define the QBD modelling the system. The definition of the generator of the
QBD is given in Section 5.4. Finally, we define the performance measure in
which we are interested and we perform the numerical evaluation in Section
5.5.

5.1 System description

In this section, we describe the system. We present its architecture in Figure
5.1. The system is composed of identical working units such that:

• among these units, at most one is online and the others are either in
warm standby or in repair;

101

102 CHAPTER 5. CASE STUDY

Online unit

Standby units

a

Preventive Repair

f

e

g

Corrective Repair

c
d1

b

d2

Inspection

Figure 5.1: A repairable system under degradation, inspection, and two types
of repair.

• all the units have a finite lifespan, which can be regarded as a set of
degrading phases; this means that both the online unit and the standby
units degrade over time until they eventually break;

• every phase of the online unit is labelled either “good” or “bad”

• if the online unit breaks, then a standby unit, if there is any, immedi-
ately replaces it and becomes the online one (transition labelled a in
Figure 5.1). The replacing unit is considered as good as new when it
becomes online.

The global system is considered online as long as there is an online unit.

Once a unit breaks, it enters the corrective repair procedure (transitions
labelled b and c). Only one unit can be repaired at the same time. The other
ones wait in a queue. Once the unit being repaired is newly working, the
first broken unit in the queue, if any, starts to be repaired. A newly repaired
unit is as good as new. If there is already an online unit, the repaired unit
returns in standby as soon as the repair is completed (transition labelled d1).
Otherwise, it becomes the online unit (transition labelled d2).

Occasionally, a inspection procedure is carried out. It consists in the
analysis of the current degrading phase of the online unit. If this phase is

5.2. MATHEMATICAL MODEL 103

labelled “good”, nothing happens. Otherwise, the online unit enters a pre-
ventive repair procedure (transition labelled e). Similarly with the corrective
repair procedure, only one unit can be preventively repaired at a time. The
other units that must be preventively repaired wait in a queue. When the
repair is completed, the unit goes back in standby and is as good as new
(transition labelled f). Finally, if no unit is available to work, that is they
are all either in preventive or corrective repair, then the unit currently being
preventively repaired, if any, urgently becomes the online unit (transition
labelled g).

5.2 Mathematical model

In this section, we give the mathematical model of the system such as it is
defined by Montoro and Perez [23]. First, we define the following parameters:

• n ≥ 1 is the total number of units,

• m > 1 is the number of degrading phases of the online unit before it
is broken, and

• g : 1 ≤ g ≤ m − 1 is the number of these degrading phases that are
labelled “good”.

In other words, among the m degrading phases of the online unit, the first
g states are labelled “good” and the other m− g states are labelled “bad”.

Next, we feature the random events that have an impact on the system
state. More precisely,

• the lifespan of the online unit follows a PH(α, T) distribution (see Def-
inition 1.2.5) with m phases, each phase corresponding to a degrading
phase

• the lifespan of a standby unit follows a PH(αs, Ts) distribution with
ms phases, with ms ≥ 1,

• the corrective repair time follows a PH(βc, Sc) distribution with nc
phases, with nc ≥ 1,

• the preventive repair time follows a PH(βp, Sp) distribution with np
phases, with np ≥ 1, and

• the time between two inspections follows a PH(γ, L) distribution with
v phases, with v ≥ 1.

104 CHAPTER 5. CASE STUDY

All of these random times are considered to be independent of each other.
Finally, if a unit being preventively repaired must urgently becomes the on-
line unit, its new degrading phase is determined with a m sized probability
vector, denoted by αp.

According to these definitions, Montoro and Perez [23] model the state
of the system with a vector

(c, p, d, z1, ..., zn−1−(i+j), rc, rp, f)

where

• c ∈ {0, . . . , n} is the number of units in corrective repair,

• p ∈ {0, . . . , n− 1} is the number of units in preventive repair,

• d ∈ {1, . . . ,m} is the degrading phase of the online unit,

• for h : 1 ≤ h ≤ n− 1− (c+ p), zh ∈ {1, . . . ,ms} is the lifespan phase
of the hth standby unit,

• rc ∈ {1, . . . , nc} is the phase of the currently performed corrective
repair,

• rp ∈ {1, . . . , np} is the phase of the currently performed preventive
repair, and

• f ∈ {1, . . . , v} is the inspection phase.

After defining the state space of the system, we model it with a Quasi-
Birth-and-Death process. In order to carry out a numerical evaluation, we
must use one of the input interfaces presented in Chapter 4 to specify the
QBD. Clearly, the input interface based on Kendall’s notation is not appro-
priate because the system is far more complex than a single-server queueing
system. Furthermore, as mentioned in Section 4.6, the grammar we devel-
oped to specify the transitions of a QBD is laboriously applicable when the
state space of the studied process has more than two dimensions. Hence,
we propose to build up the generator by explicitly giving the content of the
inner blocks.

5.3 An approach to model a composite system

As previously observed, the system can be regarded as the composition of in-
dividual subsystems. We call this kind of system “composite”. Subsequently,
the state of the system depends on many random events. Because of that,
the definition of the infinitesimal generator of the QBD modelling such a
system is rather complex. Therefore, we propose first to give the guidelines

5.3. AN APPROACH TO MODEL A COMPOSITE SYSTEM 105

of the approach we follow to model this composite system with a QBD.

First, we present mathematical operators that can be used to more con-
cisely specify the inner blocks of the QBD generator in Subsection 5.3.1.
Next, we define a simpler version of the repairable system in Subsection
5.3.2. Through all the section, we make use of this simpler system to il-
lustrate the principles of our approach. We model this simpler system with
a QBD and build a specific inner blocks composing the QBD generator in
Subsection 5.3.3.

5.3.1 Kronecker product and sum

Matrices such as the inner blocks we built afterwards can be more concisely
specify by using particular matrix operators. In this subsection, we give a
definition of these operators, according to Horn et al. [14].

Definition 5.3.1 (Kronecker product)
Let A be an m×n matrix and B be a p×q matrix. Then, the Kronecker
product of A and B, which we denoted by A⊗B, is the mp×nq matrix
defined as

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 (5.1)

The definition of Kronecker product allows us to define another matrix
operator that we will use intensively afterwards.

Definition 5.3.2 (Kronecker sum)
Let A be an m×m matrix and B be a p×p matrix. Then, the Kronecker
sum of A and B, which is denoted by A ⊕ B, is the mp × mp matrix
defined as

A⊕B = A⊗ Ip + Im ⊗B (5.2)

where Ik denotes the k × k identity matrix.

5.3.2 Definition of a simple repairable system

We consider the repairable system described in Section 5.1 with only two
units but without any inspection procedure or preventive repair. Subse-

106 CHAPTER 5. CASE STUDY

quently, among the transitions shown in Figure 5.1, only the ones labelled
a, b, c, d1, and d2 are available. We define that

1. the lifespan of the online unit is PH(α, T) distributed where α is a
1× 2 row vector and T is a 2× 2 matrix,

2. the lifespan of the standby unit is PH(αs, Ts) distributed where αs is
a 1× 2 row vector and Ts is a 2× 2 matrix, and

3. the corrective repair time is PH(βc, Sc) distributed, where βc is a 1×2
row vector and Sc is a 2× 2 matrix.

Subsequently, we can model the state of the system with a vector

(c, d, z)

where

• c ∈ {0, 1, 2} is the number of units in corrective repair,

• d ∈ {1, 2} is the degrading phase of the online unit,

• z ∈ {1, 2} is either the lifespan phase of the unit in standby (when
c = 0) or the phase of the currently performed corrective repair (when
c > 0).

according to the mathematical model we defined in Section 5.2.

5.3.3 Modelling the simple repairable system

In this subsection, we use a QBD to model this system. The level of the QBD
is c, that is the number of units in corrective repair. The phase is determined
according to d and z. When in level 0, there is no unit in corrective repair.
Accordingly, the phase of the QBD depends only on the degrading phase of
the online unit and the lifespan phase of the standby unit.

Because the corresponding phase-type distributions have only two phases,
there are only four states in level 0, namely

l(0) = {(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)}. (5.3)

When in level 1, there is no more a standby unit, but a corrective repair
is performed. In this level, the phase of the QBD is determined according
to the degrading phase of the online unit and the corrective repair phase.
Similarly with level 0, there are only four states in level 1, namely

l(1) = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2)}. (5.4)

5.3. AN APPROACH TO MODEL A COMPOSITE SYSTEM 107

It is noteworthy that we underlined the phase of the corrective repair to
distinguish it from the phase of the standby unit.

We are first interested in characterizing the transition rates from a state
of level 0 to a state of level 1. For example, let us consider the transition

(0, 1, 1) −→ (1, 1, 1)

which is the one corresponding to the breaking of the online unit given that

1. the online unit was in degrading phase 1,

2. the standby unit becomes online and enters phase 1,

3. the standby unit was in lifespan phase 1, and

4. the corrective repair of the broken unit starts in phase 1.

It is noteworthy that

1. the rate of probability that the online unit breaks given that it was in
phase 1 is t1,

2. the probability that the new online unit starts in phase 1 is α1,

3. the phase of the standby unit before the breaking has no impact on
the transition, and

4. the corrective repair starts in phase 1 with probability (βc)1.

Accordingly, the transition occurs with a rate of

t1α11(βc)1. (5.5)

It is worth mentioning that although we could have removed it, the scalar
1 in the product has a special meaning. Indeed, it means that the phase of
the standby unit has no consequence on the transition rate.

We use a similar approach to determine the rate of the other transitions
from level 0 to level 1. These ones are given in Table 5.1. According to these
transition rates, we observe that the inner block recording them, that is B1

(see Equation (1.21)), can be concisely written in a concise form as

B1 = tα⊗ e2 ⊗ βc (5.6)

where e2 is a column vector of size 2 filled with ones.

As already illustrated with the simple repairable system, the approach we
follow is perfectly convenient for specifying the infinitesimal generator of the
complete repairable system we described in Section 5.1. However, because
the complete system is composed of more subsystems, determining the form
of its generator is far more laborious. In the next section, we subsequently
propose to focus on two of the inner blocks.

108 CHAPTER 5. CASE STUDY

To (0, 1, 1) (0, 1, 2) (0, 2, 1) (0, 2, 2)
From

(0, 1, 1) t1α1(βc)1 t1α1(βc)2 t1α2(βc)1 t1α2(βc)2

(0, 1, 2) t1α1(βc)1 t1α1(βc)2 t1α2(βc)1 t1α2(βc)2

(0, 2, 1) t2α1(βc)1 t2α1(βc)2 t2α2(βc)1 t2α2(βc)2

(0, 2, 2) t2α1(βc)1 t2α1(βc)2 t2α2(βc)1 t2α2(βc)2

Table 5.1: The transition rates from level 0 to level 1 of the simple repairable
system.

5.4 Specification of the infinitesimal generator

In this section, we build the inner blocks composing the QBD generator and
define the level of the QBD as the number of units that are non-working,
namely the ones either in corrective repair or in preventive repair. More
formally, we define level k, with 0 ≤ k ≤ n, as

l(k) = {(c, p, d, z1, ..., zn−1−(i+j), rp, rc, f) : c+ p = k} (5.7)

As already mentioned, the building of the generator is laborious. We choose
to focus on some of the inner blocks. Our intent is to put emphasis on
the general principles of the approach followed to build the generator. We
specifically apply this approach to compute inner blocks B1 and B0.

5.4.1 Transitions from level 0 to level 1

First, we must put emphasis on the subsystems that run in each of the
considered levels. When in level 0, the only running subsystems are

• the online unit,

• the n− 1 standby units, and

• the inspection procedure.

Subsequently, a state of level 0 has the form

(0, 0, d(0), z
(0)
1 , . . . , z

(0)
n−1, f

(0)).

In level 1, however, the running subsystems are

• the online unit,

• n− 2 standby units,

• either a corrective repair or a preventive repair, and

• the inspection procedure.

5.4. SPECIFICATION OF THE INFINITESIMAL GENERATOR 109

We propose to divide the state space of level 1 into two sets as follows.

1. The first set includes the states corresponding to a unit in corrective
repair. Therefore, a state of this set has the form

(1, 0, d(1), z
(1)
1 , . . . , z

(1)
n−2, rc, f

(1)).

We record the transitions that lead to such a state in a matrix denoted
by B1(1).

2. The second set includes the states corresponding to a unit in preventive
repair. A state of this set has the form

(0, 1, d(1), z
(1)
1 , . . . , z

(1)
n−2, rp, f

(1)).

We record the transitions that reach such a state in a matrix denoted
by B1(2).

According to this division of the state space, inner block B1 is given by

B1 =
(
B1(1), B1(2)

)
(5.8)

We characterize the transition rates of each of the two matrices composing
B1. We focus first on the transition

(0, 0, d(0), z
(0)
1 , . . . , z

(0)
n−1, f

(0)) −→ (1, 0, d(1), z
(1)
1 , . . . , z

(1)
n−2, rc, f

(1)).

Only two types of event result in such a transition. These are

1. either the online unit breaks and goes to corrective repair in phase
rc, given that it was in degrading phase d(0), and accordingly the first
standby unit becomes online, starting in phase d(1);

2. or one of the standby units breaks and goes to corrective repair in
phase rc, given that it was in lifespan phase z(0)

i , i : 1 ≤ i ≤ n − 1
being the number of the broken standby unit.

No other transition may happen (for example, a modification of the phase of
the inspection procedure) and these events are independent. Therefore, the
resulting rate of the transition is the sum of the rate of occurrence of each
of these events.

Let us consider the first event. It is noteworthy that:

1. The rate corresponding to the breaking of the online unit given that it
was in phase d(0) is td(0) .

2. A standby unit immediately replaces the online unit and its initial
degrading phase is d(1) with probability α(d(1)).

110 CHAPTER 5. CASE STUDY

3. The lifespan phase of the replacing standby unit has no influence on
the occurrence rate of the event.

4. The lifespan phase of the other standby units is not modified.

5. The initial phase of the corrective repair is rc with (βc)rc .

6. The phase of the inspection procedure is not modified.

Subsequently, the rate of occurrence of the first event is given by

td(0) α(d(1)) 1[z
(0)
1] 1[z

(0)
2 = z

(1)
2] . . . 1[z

(0)
n−1 = z

(1)
n−1] (βc)rc 1[f (0) = f (1)]

which is equivalent to
td(0)α(d(1))(βc)rc .

Next, we determine the rate of the second event according to a similar
approach. We assume that the broken standby unit is the ith one. We observe
that:

1. The degrading phase of the online unit is not modified.

2. The breaking rate of the ith standby unit given that it was in phase
z

(0)
i is (ts)z(0)i

where
ts = −Ts1. (5.9)

3. The lifespan phase of the other standby units is not modified.

4. The initial phase of the corrective repair is rc with (βc)rc .

5. The phase of the inspection procedure is not modified.

Hence, the occurrence rate of the second event is given by

1[d(0) = d(1)] 1[z
(0)
1 = z

(1)
1] . . . 1[z

(0)
i−1 = z

(1)
i−1] (ts)z(0)i

1[z
(0)
i+1 = z

(1)
i+1] . . . 1[z

(0)
n−1 = z

(1)
n−1] (βc)rc 1[f (0) = f (1)]

which is equivalent to
(ts)z(0)i

(βc)rc .

To summarize, the total rate of the transition is

td(0)α(d(1))(βc)rc + (ts)z(0)i

(βc)rc .

As in Subsection 5.3.3, we concisely write matrix B1(1) in algebraic form

B1(1) = tα⊗ ems ⊗ I(ms)n−2 ⊗ βc ⊗ Iv
+ Im ⊗ (ts ⊕ · · · ⊕ ts)n−1 ⊗ βc ⊗ Iv

(5.10)

5.4. SPECIFICATION OF THE INFINITESIMAL GENERATOR 111

It is noteworthy that we used a vector filled with ones, namely ems , to ex-
press that the phase of the replacing unit has no impact on the transition
rate, and that this specific phase must not be recorded anymore after the
transition.

We still have to define the second matrix that composes inner block B1.
This matrix, B1(2), records the transitions related to the beginning of the
preventive repair of the online unit. For example, we consider the transition

(0, 0, d(0), z
(0)
1 , . . . , z

(0)
n−1, f

(0)) −→ (0, 1, d(1), z
(1)
1 , . . . , z

(1)
n−2, rp, f

(1)).

This transition is triggered when the online unit is in a state labelled “bad”,
and an inspection occurs. Then, the unit enters the preventive repair and
the inspection procedure starts again. More precisely,

1. Such a transition can only occur when the online unit is in one of the
last m− g degrading phases, that is

d(0) ∈ {g + 1, . . . ,m}. (5.11)

2. The first standby unit replaces the online unit and its initial phase is
d(1) with probability αd(1) .

3. The lifespan phase of the replacing unit has no influence on the tran-
sition rate.

4. The lifespan phase of the n − 2 other standby units has no influence
on the transition rate and it is not modified by the transition.

5. The initial phase of the preventive repair is rp with probability (βp)rp .

6. Given that the inspection procedure is in phase f (0), the rate of occur-
rence of the inspection is lf (0) where

l = −L1. (5.12)

7. The initial phase of the new inspection procedure is f (1) with proba-
bility γf (1) .

When the degrading phase if the online unit is labelled “bad”, the transition
occurs with a rate of

1[d(0)] α(d(1)) 1[z
(0)
1] 1[z

(0)
2 = z

(1)
2] . . . 1[z

(0)
n−1 = z

(1)
n−1] (βp)rp lf (0) γf (1)

Subsequently, the rate of the transition is given by

0, d(0) ∈ {1, . . . , g}
α(d(1)) (βp)rp lf (0) γf (1) , d(0) ∈ {1, . . . , g + 1,m}

112 CHAPTER 5. CASE STUDY

and B1(2) can be written in algebraic form as

B1(2) = U2emα⊗ ems ⊗ Im(n−2)
s

⊗ βp ⊗ lγ (5.13)

with

U2 =

(
0 0
0 Im−g

)
(5.14)

It worth mentioning that matrix U2 is used instead of an identity matrix
because the transition is available only when the online unit is in a bad
phase. Furthermore, we use a column vector because after the transition,
the degrading phase of the broken online unit does not needed to be recorded
anymore.

5.4.2 Transitions from level 0 to level 0

We build next inner block B0, that is the one recording the intra-level tran-
sitions of level 0. For recall, when in level 0, the only running subsystems
are

• the online unit,

• the n− 1 standby units, and

• the inspection procedure.

Therefore, a transition between two states of level 0 is the result of one of
the following events:

1. The degrading phase of the online unit is modified but the unit is still
operational (otherwise, the process would move to level 1).

2. The lifespan phase of a standby unit is modified but the considered
unit is still operational.

3. The inspection procedure reaches another phase but it does not enter
the absorbing phase, that is the inspection does not occur yet.

4. The inspection occurs, but the current phase of the online unit is la-
belled “good”.

It is noteworthy that at most one instance of these events can occur at a
time. A transition implied by the first event has the form

(0, 0, d(0), z1, . . . , zn−1, f) −→ (0, 0, d(1), z1, . . . , zn−1, f).

Indeed, the first event modifies the phase of the online unit but the phase
of the other subsystems is unchanged. Furthermore, the phase of the other

5.4. SPECIFICATION OF THE INFINITESIMAL GENERATOR 113

subsystems have no influence on the transition rate. More precisely, only
the current and the next phase of the online unit determine the rate. Subse-
quently, the transition rate is Td(0)d(1) , given that the online unit moves from
phase d(0) to phase d(1).

Similarly, if the phase of the ith standby unit is modified, the phase of
the other subsystems does not change. It therefore implies a transition of
the form

(0, 0, d, z1, . . . , zi−1, z
(0)
i , zi+1, . . . , zn−1, f)

−→ (0, 0, d, z1, . . . , zi−1, z
(1)
i , zi+1, . . . , zn−1, f)

with a rate of (Ts)z(0)i ,z
(1)
i

, given that the considered online unit moves from

phase z(0)
i from z

(1)
i .

The third event is also very similar. This time, it is the phase of the
inspection procedure that is modified. It implies a transition of the form

(0, 0, d, z1, . . . , zn−1, f
(0)) −→ (0, 0, d, z1, . . . , zn−1, f

(1))

whose rate is determined by Lf (0),f (1) , given that the inspection procedures
moves from phase f (0) to phase f (1).

The fourth event is a bit more particular. It implies a transition of the
form

(0, 0, d, z1, . . . , zn−1, f
(0)) −→ (0, 0, d, z1, . . . , zn−1, f

(1))

but unlike the third event, the inspection really occurs. It is noteworthy that

1. such a transition can only occur if the degrading phase of the online
unit is in {1, . . . , g} (otherwise, the unit would enter the preventive
repair)

2. given that it is in phase lf (0) the inspection enters its absorbing phase
with a rate of lf (0) ;

3. the inspection must be restart and its initial phase if f (1) with proba-
bility (βp)f (1) ;

4. the other subsystems are unchanged and their respective phase has no
impact on the transition rate.

Subsequently, this type of transition occurs with a rate of

lf (0)(βp)f (1) , d ∈ {1, . . . , g + 1},
0, d ∈ {g + 1, . . . ,m}. (5.15)

114 CHAPTER 5. CASE STUDY

We have then characterized all the intra-level transitions of level 0. We
still have to determine the diagonal elements of B0. Indeed, because of the
definition of infinitesimal generator (see Equations 1.14), the ith diagonal
element of B0 is determined as

(B0)ii = −(
∑

j 6=i
(B0)ij +

∑

k

(B1)ik). (5.16)

As we did for B1, we can show that the algebraic form of B0 can be
written as

B0 = (T ⊕ (Ts ⊕ · · · ⊕ Ts)n−1)⊕ L
+ U1 ⊗ I(ms)n−1 ⊗ lγ. (5.17)

where U1 is a m×m matrix of the form

U1 =

(
Ig 0
0 0

)
(5.18)

It is noteworthy that we use U1 instead of an identity matrix because the
fourth event can only occur when the online unit is in a “good”degrading
phase.

Although they are many more blocks to specify, we do not deal with
them and we refer to Montoro and Perez [23] for the complete specification
of the generator. Their article is given in Appendix C. The purpose of this
section and the previous one was to give the keys of our approach towards
the specification of such a complex composite system.

In the next section, we give values to the parameters of the system and
we perform a numerical evaluation of its performance.

5.5 Numerical evaluation

After defining the generator of the Quasi-Birth-and-Death process, we set all
the parameters of the system in order to carry out a numerical evaluation.
More precisely, the performance measure we are interested in is the rate of
occurrence of failure (ROCOF) of the system. In simple terms, the ROCOF
can be seen as the probability that the system fails in a small interval of
time. The goal of our case study is to perform a sensitivity analysis in order
to determine the influence of

1. the rate of occurrence of inspections, and

2. the labelling policy of the degrading phases of the online unit

5.5. NUMERICAL EVALUATION 115

on the ROCOF of the system.

For recall, the system fails when there are n−1 units in corrective repair
and the online unit breaks. Indeed, in this case, there is no unit in standby
or in preventive repair. Therefore, the broken online unit cannot be replaced.

According to Montoro and Perez [23], the ROCOF of the system is given
by

r = πn−1

(
t⊗ encv

0

)
. (5.19)

Indeed, according to our mathematical model, if there are n−1 units in cor-
rective repair, then the QBD is in level n−1. The stationary probabilities of
the level n−1 states are recorded in πn−1. The online unit breaking rates are
recorded in vector t. The current corrective repair as well as the inspection
procedure has no influence on the breaking (hence the column vector of size
ncv filled with ones). Finally, a vector filled with zeros is used because the
system cannot fail if there is at least one unit in preventive repair. Oth-
erwise, the unit being preventively repaired would immediately replace the
broken online unit.

We choose to keep the parameters values as they are defined by Montoro
and Perez [23] in their own case study. First, the lifespan of the online unit
is PH(α, T) distributed where

α =
(
1 0 0 0 0

)
(5.20)

T =

−0.0081 0.0081 0 0 0
0 −0.024 0.024 0 0
0 0 −0.009 0.009 0
0 0 0 −0.0072 0.0072
0 0 0 0 −0.84

(5.21)

Accordingly, the lifespan of the online unit can be regarded as an increasing
degradation that eventually lead to a breaking. This breaking can only occur
when the online unit is in its most critical phase, namely the last one. It is
also important to note that a new online unit always starts in the less critical
phase, that is the first one.

The lifespan of a standby unit is PH(αs, Ts) distributed where

αs =
(
1 0

)
, (5.22)

Ts =

(
−0.0052 0.0052
0.0013 −0.0052

)
. (5.23)

116 CHAPTER 5. CASE STUDY

Unlike an online unit, a standby unit can move to its most critical phase
(i.e. the last phase) back to its safest phase (namely, the first phase). Fur-
thermore, a standby unit always starts in the safest phase.

Next, we define the distribution followed by the repair times. The cor-
rective repair time is PH(βp, Ts) distributed where

βc =
(
1 0 0

)
(5.24)

Sc =

−0.02 0.02 0
0.01 −0.08 0.07
0.005 0 −0.10

 (5.25)

and the preventive repair time is PH(βc, Ts) distributed where

βp =
(
1 0

)
, (5.26)

Sc =

(
−0.0667 0.0667

0 −0.0667

)
. (5.27)

As stated above, the unit in preventive repair can be required to become the
online unit. It happens when the online unit breaks and when there are no
unit in standby. In this case, the initial degrading phase of the unit is given
by

αp =
(
0.1 0.3 0.2 0.3 0.1

)
(5.28)

Finally, the inter-inspection times are PH(γ, L) distributed where

γ =
(
1 0

)
, (5.29)

L =

(
−0.02 0.02

0 −0.02

)
. (5.30)

Then, we perform a sensitivity analysis of the ROCOF of the system. More
precisely, we define a perturbation on the inspection distribution:

L̃(ε) = L+ εA (5.31)

with

A =

(
−1 1
0 −1

)
(5.32)

and where ε will successively receive different values. It is noteworthy that
the greater the ε value, the shorter the time between two inspections. Re-
ducing the inter-inspections time is likely to increase the rate at which an
online unit enters the preventive repair.

According to these definitions and the form of the infinitesimal generator
of the QBD, we implemented an Octave function that returns the three

5.5. NUMERICAL EVALUATION 117

g/ ε 0.01 0.03 0.05 0.07 0.09
1 1.4921e-06 8.3196e-07 6.3283e-07 5.4581e-07 4.9886e-07
2 2.4186e-06 1.5270e-06 1.2121e-06 1.0623e-06 9.7770e-07
3 5.9177e-06 4.4985e-06 3.8340e-06 3.4591e-06 3.2224e-06
4 1.5043e-05 1.4081e-05 1.3302e-05 1.2666e-05 1.2141e-05

Table 5.2: Evolution of the ROCOF of the repairable system (table).

inner blocks related to a level given as parameters. We have also included
ε as a second parameter of the function, as it has been explained in Section
4.2.4.

We also want to assign different values to parameter g, i.e. the number
of degrading phases of the online unit that are labelled “good”. Because of
the definition of this parameter, the online unit is more likely to be preven-
tively repaired for a lower value of g. However, our tool does not allow to
perform a sensitivity analysis with two variation parameters. Furthermore,
if we use the tool via the graphical user interface we developed, the only
interesting results that would be obtained are the values contained in πn−1.
Therefore, we propose to profit from the modularity of our tool and to use
the framework QBDSolver separately (see Subsection 4.3.1). More precisely,
we implement an Octave function especially for the case study. For each
value of g and ε, this function calls the functions provided by the framework
to compute πn−1. Then, it computes the ROCOF of the system according
to Equation (5.19).

We give in Table 5.2 the results of our sensitivity analysis. A chart
showing these results is also given in Figure 5.2. It is clear from these results
that either reducing the number of good degrading phases or increasing the
inspection rate helps to decrease the ROCOF of the system. In other words,
sending the online unit in preventive repair more rapidly has a good benefit
on the system robustness. Thanks to these results, a compromise can be
made between the inspection rate and the considerations with regard to the
degrading phases of the online unit in order to decrease the ROCOF of the
system.

118 CHAPTER 5. CASE STUDY

Figure 5.2: Evolution of the ROCOF of the repairable system (chart).

Part IV

Conclusion

119

Chapter 6

Review and perspectives

6.1 Work Summary

Through this thesis, we introduced the Quasi-Birth-and-Death process as
a convenient model for analysing random systems and we presented formal
methods to carry out a performance analysis. As we stated in the introduc-
tion, we focused mainly on three steps of the performance analysis procedure,
such as it is described by Leemis and Park [19].

First, we dealt with the definition of a specification model based on a
QBD. This part of the analysis is spread across several chapters. In Chap-
ter 1, we gave a formal definition of the QBD process. In Chapter 4 , we
described our tool, which includes three input interfaces to specify a QBD.
The purpose of this specification is the building of the matrix recording the
possible transitions of the process. Finally, a large part of the case study
presented in Chapter 4 described an informal yet convenient approach to-
wards the definition of a QBD modelling a composite system.

Second, a computational model, namely a computer program that
computes performance measures, can then be built thanks to the algorithms
presented in Chapter 2 and in Chapter 3. Both chapters present a particular
type of methods to compute the measures. The former is related to explicit
computation algorithms, which make use of costly matrix operations. To
overcome this drawback, the latter chapter presents a general algorithm to
simulate a QBD and methods to estimate the performance measures. The
specification of a given QBD and the use of any type of computation algo-
rithm somehow form the so-called computational model.

Finally, the verification of the computational model is eased because of
the strong coupling between the specification model and the computational
model inherent in our analysis method. Indeed, provided that there are no

121

122 CHAPTER 6. REVIEW AND PERSPECTIVES

human errors, our input interfaces guarantee that the data structure recorded
in the tool is exactly the QBD used to model the system. Furthermore, the
computation algorithms are based on proven mathematical theorems. The
verification step thus consists in testing that the implementations are con-
sistent with the algorithms.

6.2 Contributions of the thesis

Although they do not always appear explicitly, the contributions of this work
are worth mentioning.

First, the thesis is supposed to be readable by any computer scientist
that does not have a deep knowledge in mathematics, especially in stochas-
tic modelling. Indeed, we recalled the basic definitions of the probability
theory and the stochastic processes in Chapter 1. Through all the chap-
ters, we aimed to combine rigour with intuitive reasoning. In particular, we
aimed to present the matrix analytic methods without making the reader
overwhelmed by mathematical equations, theorems, or formal proves.

Second, we gave a synthesis of the analytical studies related to the
QBDs. We also applied the discrete-event simulation approaches specifi-
cally to Quasi-Birth-and-Death processes in Chapter 3. One of these two
kinds of computation method can therefore be used during an analysis.

One of our main contributions is our particular concern for the specifi-
cation of a QBD. While there exist tools, such as MAMSolver [28], that
allow to give the parameters of some queueing systems with a text file con-
taining numbers, none of them provides a user-friendly method to concisely
specify a QBD. We applied the principles of the language theory to develop
our own QBD specification language. In spite of its limitations, which we
already mentioned in Chapter 4, our language constitutes an essential part
of our work.

Finally, we developed the QBDSense tool. This tool integrates three
input interfaces (included our language) and allows to perform two types of
analysis using two computation methods. We also tried to make it modular
enough so that third-party developers can either modify it or extract some
parts of it for their own tool. In particular, the computations methods are
provided as a set of Octave functions that can be used independently of the
tool. Furthermore, modifying one of the computation algorithms is trans-
parent with regard to the use of the corresponding framework. Similarly, the
parser associated with the language can easily be extracted from the tool

6.3. LIMITATIONS OF OUR APPROACHES 123

source code. Any third-party developer should therefore be able to use it
and modify it according to its requirements.

6.3 Limitations of our approaches

In Chapters 2 and in 3, we identified some limitations of the approaches we
follow to compute the performance measures. We briefly recall these draw-
backs in this section. Perspectives to overcome them are described in the
next section.

The first limitation concerns the computation of the stationary proba-
bility vector of an inhomogeneous QBD. For recall, when the QBD has an
infinite number of levels, the algorithm we presented requires to truncate the
QBD at an arbitrary but large level. Selecting an adequate level is difficult,
notably because it is case-specific and it can require a deep study of the con-
sidered system. Because of that, we have omitted to discuss the truncation
procedure.

The second drawback concerns the simulation algorithm we developed.
More precisely, we specified the terminating condition as a particular simu-
lation time given by the user. Subsequently, when the simulation ends, we
cannot be ensured that the steady state of the simulated process has been
reached. Therefore, the influence of the warm-up period on the estimates
may be too important. Two solutions are possible, namely

1. defining another terminating condition, or

2. using another simulation approach.

We briefly mention such an approach in the following section.

6.4 Perspectives and challenges

In this last section, we deal with the perspectives that follow our work and
the challenges related to them. In particular, we mention limitations that
we already discussed at the end of Chapter 4 and we give a lead about over-
coming these ones.

As we stated in Section 4.6, specifying a QBD by using our textual lan-
guage can be laborious. Indeed, it requires, for each type of transition to
specify, to know explicitly the level and the phase of the QBD from which
the transition starts, and the ones that are reached by the transition. The
case study clearly illustrated this issue. Indeed, the state space of the stud-
ied system is composed of more than two dimensions. It is therefore difficult

124 CHAPTER 6. REVIEW AND PERSPECTIVES

to determine the level and the phase of the QBD corresponding to a given
state of the system. A modification of the language is therefore needed. For
example, the user could be able to define rules to translate a state of an
n-dimensional state space, with n > 2, to state space with two dimensions,
namely the level and the phase.

We already mentioned that the matrix analytic methods are still in-
tensively studied. In particular, algorithms related to a particular class of
QBDs have been developed. For example, in the case of a sentivity analysis,
Dendievel et al. [8] developed an expression to approximate the rate matrix
associated with an homogeneous and infinite (see Section 2.1.3) with respect
to a given perturbation. Because we chose to provide the matrix analytic
methods as a framework, the integration of new algorithms should be eased
for the developer and transparent to the user of the framework.

Like the matrix analytic methods, the simulation approaches still con-
tinue to be worked on by the scientific community. We mentioned in Section
4.6 the perfect simulation approach (see, e.g., Thonnes [31]), which aims to
remove the bias due to the warm-up period of the simulation. Relying on a
perfect simulation in our simulation framework would allow us to overcome
the major limitation of the framework, that is the uncertainty of reaching
the steady state of the simulated process.

Part V

Appendix

125

Appendix A

ORBEL 25 Paper

As we mentioned in Chapter 4, we wrote two articles about our tool that were
published in the proceeding of two conferences. ORBEL 25 is the first of
these conferences. It is the 25th annual conference of the Belgian Operations
Research Society. It was held at the university of Ghent, on February 10-11,
2011. The paper we include below is only an extended abstract. We gave a
more thorough presentation at the conference, though.

127

QBD Sensitivity Analysis Tool Using Discrete-Event
Simulation and extension of SMCSolver

M. Cordy and M.-A. Remiche

University of Namur, Computer Science Faculty,

mcordy@student.fundp.ac.be, mre@info.fundp.ac.be

Abstract

We propose a tool that provides both analytical and simulation based perfor-
mance analysis of both homogeneous and inhomogeneous Quasi-Birth-and-Death
(QBD) processes. We extend SMCSolver in order to study inhomogeneous case
and to analyze first passage times. Simulations are performed on a discrete-event
based approach. We propose to analyze the sensitivity of a particular QBD.

Keywords: Markov process, Matrix Analytic Methods, SMCSolver

In the past, Quasi-Birth-and-Death (or QBD in short) processes have been extensively
used for the design and the performance analysis of a great variety of systems, such as
reliability systems, peer-to-peer systems, fluid Markov models or call center systems to
cite but a few. QBD processes are particular cases of Markov processes, defined on bi-
dimensional state space. The first dimension (often called the level) counts the number
of occurrence of a stochastic event, while the second (called the phase) gives the state in
which the whole system lies. Accordingly, the generator of this Markov process has the
following form

Q =

B0 B1 0 0 . . .

A
(1)
−1 A

(1)
0 A

(1)
1 0 . . .

0 A
(2)
−1 A

(2)
0 A

(2)
1 . . .

0 0 A
(3)
−1 A

(3)
0 . . .

...
...

...
...

. . .

,

where the inner blocks A
(k)
i are of size nk × nk+i, for k positive integer and i ∈ {−1, 0, 1},

and Bi is of size n0 × ni, i ∈ {0, 1}. Diagonal elements of B0 and of A
(k)
0 , for all natural

k are negative. Other elements are positive or null. Moreover, the generator is such that
the sum of its line gives 0.

When A
(k)
i = Ai for all k > 0 and for all i ∈ {−1, 0, 1} (expect for A

(1)
−1), the QBD

is said to be homogeneous . Otherwise, the QBD is said inhomogeneous . In case the

generator is of finite size; the QBD is said to be finite. Otherwise, the QBD is said
infinite.

We refer to Latouche and Ramaswami [3] for a clear introduction to the matrix analytic
methods that exist to perform QBDs analysis.

To perform sensitivity analysis of such systems is of great interest, in particular when
measuring the robustness of optimal designed policies. Our aim is to propose a tool that
would, as a first objective, rapidly give some insight about the sensitivity of QBD models
subject to small variations on their input parameters. Our effort will be put on developing
such a tool that will use either simulation or exact methods to solve the QBD, depending
on the nature of the performance problem itself.

Exact computations are performed on both the original and perturbated QBD, except
in the case of a M/PH/1 queue where we used results developed by Dendievel et al. in [2].
The tool also proposes to make use of a discrete-event based simulation procedure. This is
of particular help when the size of the QBD is large. The tool supports the analysis of both
homogenous and inhomogeneous QBDs. Input parameters can be specified following three
different formats : the user may specify (i) the type of queue using Kendall’s notation,
(ii) the complete generator, (iii) the possible transitions.

There exists different tools to solve QBD, see for example MAMSolver developed by
Riska and Smirni in [4], or SMCSolver proposed in [1]. We decide to incorporate the second
tool to solve exactly homogenous QBD and to extend it to the analysis of inhomogeneous
QBD.

References

[1] D. Bini, B. Meini, S. Steffe, and B. Van Houdt. Structured markov chains solver :
software tools. In Proceedings of SMCTOOLS ’06. ACM Press, 2006.

[2] S. Dendievel, G. Latouche, and M.-A. Remiche. Perturbation analysis of an M/PH/1
queue. In Performance 2010, posters, 2010.

[3] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochas-
tic Modeling. ASA-SIAM Series on Statistics and Applied Probability. SIAM, 1999.

[4] A. Riska and E. Smirni. Mamsolver: A matrix analytic methods tool. In TOOLS ’02:
Proceedings of the 12th International Conference on Computer Performance Evalua-
tion, Modelling Techniques and Tools, pages 205–211, London, UK, 2002. Springer-
Verlag.

130 APPENDIX A. ORBEL 25 PAPER

Appendix B

ValueTools 2011 Paper

ValueTools is the name of the International ICTS Conference on Performance
Evaluation Methodologies and Tools. Its 5th edition was held on May 16-
20, 2011, at the ENS Cachan (France). We published another article that
presents our tool in the conference proceeding and we also presented it during
the conference. We include the article below.

131

QBD Sensitivity Analysis Tool Using Discrete-Event
Simulation and extension of SMCSolver

M. Cordy
The University of Namur

Faculty of Computer Science
Rue Grandgagnage, 21
5000 Namur, Belgium

maxime.cordy@fundp.ac.be

M.-A. Remiche
The University of Namur

Faculty of Computer Science
Rue Grandgagnage, 21
5000 Namur, Belgium

mre@info.fundp.ac.be

ABSTRACT
We propose a tool that provides both analytical and simu-
lation based performance analysis of both homogeneous and
inhomogeneous Quasi-Birth-and-Death (QBD) processes.
We extend SMCSolvers in order to study inhomogeneous
case and to analyze first passage times. Simulations are per-
formed on a discrete-event based approach. We also provide
a rich input interface to give the most flexibility to the user
to define its QBD transitions. The analysis of sensitivity in
a complex level-dependent QBD model of a reliable system
is an illustration of the wide range of QBD the tool may
help to analyze.

1. INTRODUCTION
In the past, Quasi-Birth-and-Death (or QBD in short) pro-
cesses have been extensively used for the design and the
performance analysis of a great variety of systems, such as
reliability systems (see [13] for example), peer-to-peer sys-
tems (see [5]), fluid Markov models (see [3] among many oth-
ers) or call center systems (see [7]) to cite but a few. QBD
processes are particular cases of Markov processes, defined
on state space with the following structure

S = {(k, i); k ∈ N, 0 ≤ i ≤ nk}, (1)

with usually nk < ∞ for all k ∈ N. Accordingly, their
generator has the following form

Q =

B0 B1 0 0 . . .

A
(1)
−1 A

(1)
0 A

(1)
1 0 . . .

0 A
(2)
−1 A

(2)
0 A

(2)
1 . . .

0 0 A
(3)
−1 A

(3)
0 . . .

...
...

...
...

. . .

, (2)

where the inner blocks A
(k)
i are of size nk×nk+i, for k ∈ N0

and i ∈ {−1, 0, 1}, and Bi is of size n0×ni, i ∈ {0, 1}. Diag-

onal elements of B0 and of A
(k)
0 , for all k ∈ N are negative.

Other elements are positive or null. Moreover, we have

B0~1 +B1~1 = ~0 (3)

A
(k)
−1
~1 +A

(k)
0
~1 +A

(k)
1
~1 = ~0 (4)

for all k ∈ N, where ~1 and ~0 respectively are vectors full of
1 and 0 respectively and of appropriate size.

When A
(k)
i = Ai for all k ∈ N0 and for all i ∈ {−1, 0, 1}

(expect for A
(1)
−1), the QBD is said to be homogeneous. Oth-

erwise, the QBD is said inhomogeneous. In case there exists
K <∞, such that

Q =

B0 B1 0 . . .

A
(1)
−1 A

(1)
0 A

(1)
1 . . . 0 0

0 A
(2)
−1 A

(2)
0 . . . 0 0

...
...

...
...

. . .
...

0 0 0 . . . B−1 BK

, (5)

with B−1 of size nK × nK−1 and BK of size nK × nK ; the
QBD is said to be finite. In case it does not exists such a
K, the QBD is said infinite.

We refer to Latouche and Ramaswami [8] for a clear intro-
duction to the matrix analytic methods that exist to perform
QBDs analysis.

To perform sensitivity analysis of such systems is of great
interest, in particular when measuring the robustness of op-
timal designed policies. Our aim is to propose a tool that
would, as a first objective, rapidly give some insight about
the sensitivity of QBD models subject to small variations
on their input parameters. Our effort will be put on devel-
oping such a tool that will use either simulation or exact
methods to solve the QBD, depending on the nature of the
performance problem itself.

At this stage, exact computations are performed on both
the original and perturbated QBD, except in the case of a
M/PH/1 queue where we used results developed by Dendie-
vel et al. in [4]. The tool also proposes to make use of a
discrete-event based simulation procedure. This is of par-
ticular help when the size of the QBD is large. The tool
supports the analysis of both homogenous and inhomoge-
neous QBDs. Input parameters can be specified following
three different formats : the user may specify (i) the type of
queue using Kendall’s notation, (ii) the complete generator,

(iii) the possible transitions.

There exists different tools to solve QBD, see for example
MAMSolver developed by Riska and Smirni in [14], or SMC-
Solver proposed in [2]. We decide to incorporate the second
tool to solve exactly homogenous QBD and to extend it to
the analysis of inhomogeneous QBD. We also propose to add
a function to compute first passage times.

Such tools usually propose to specify the blocks that com-
pose the QBD generator (see Equation (2)). As mentioned
earlier, our tool allows the user to specify the input param-
eters by means of transition specification. This method is
indeed necessary to implement in order to offer the possibil-
ity to deal with general structured inhomogeneous QBDs.
In Katoen et al. [6], all possible transitions have to be given
by the user. In our tool, repetitive structure of the inner
blocks can be defined as such.

The paper is composed of three main sections. First, we
explain the tool design choices operated for both the input
and output interfaces and the architecture of the code itself.
In the following section, we perform as an illustration to our
work, a sensitivity analysis of a preventive repair policy in
a reliable system. This model was first discussed in [12].
Finally, we conclude our work by indicating work that need
to be done in the future.

2. TOOL ARCHITECTURE
In this section, we discuss the specificity of the tool regarding
the input and output interfaces, as well as the architecture
of the code itself.

2.1 Input interface
An interesting feature of the tool is the ability for the user to
specify the QBD generator by using one of the three different
input interfaces. We now describe each method.

The first possibility is to define the QBD as a queueing sys-
tem, using Kendall’s notation in concise form. After choos-
ing the queue type, each parameter of the selected system,
such as an exponential rate or a phase-type distribution,
must be entered. We refer to Latouche and Ramaswami [8],
Chapter 2 for a clear introduction to phase-type distribu-
tions. At the moment, the tool is restricted to the M/M/1,
M/PH/1, PH/M/1 and PH/PH/1 queues. However, it
can be extended to be able to work with more queue types.
The size of the buffer, possibly infinite, can also be chosen.
Figure 1 illustrates how our input interface looks like. In this
example, we want to specify an M/PH/1 queue. We must
define the size of the buffer, the arrival rate, the probabil-
ity row vector and the generator matrix of the phase-type
distribution. In this particular example, the generator is a
3 × 3 matrix, where each component of a row is separated
by a comma and each line of the matrix is separated by a
semicolon.

The second input interface allows to explicitly define the
blocks that compose the generator. For this purpose, the
user must provide a Matlab or Octave function. Octave is
a programming language specialized in numerical computa-
tions. Its syntax and its semantic are almost identical to the

Figure 1: Definition of a QBD generator as a queue-
ing system, using Kendall’s notation.

MATLAB ones. Octave is a free software under the terms
of the GNU General Public License.

This function would have one parameter: that is i, the level
for which the inner blocks would be computed. The out-
put parameters of the function are then the three inner
blocks corresponding to this level, given in the following or-

der: A
(i)
−1, A

(i)
0 and A

(i)
1 . If one of these three matrices is

not defined for the considered level, the function returns an
empty matrix. For example, the result of the function for
level 0 would be: [], B0, B1 as specified in Equation (2).

For the program to load the function, the user has to pro-
vide the path where to find it. Once the function loaded, the
tool has everything it needs to define the QBD process. The
main drawbacks of this method are that first programming
in Octave is required. Second, knowing the exact and com-
plete form of the generator is required, while it may be easier
to define only the transitions of the corresponding process.
The next and last method is an answer to these problems.

The third and last input method consists in specifying the
possible transitions of the process in a syntax consistent and
textual language we developed. The particular feature of
our method is that all the possible transitions have not to
be given. Instead, the user may specify more concisely a
repetitive structure appearing in the generator. Our tool is
now restricted to two-dimensional Markovian state spaces.
A small context-free grammar has thus been developed in
order to build our parser. It reads a text file respecting this
grammar and accordingly, produces an Octave function. As
for the second method, this function returns the inner blocks
of a given level. For readability reason, we present in the
appendix the most important symbols of the grammar in
Backus-Naur Form, as well as their semantic.

Figure 2 illustrates this specification method for the defini-
tion of an M/PH/1 queue. The arrival rate is lambda. The
service time distribution is completely specified using four
parameters, these are mu1, mu2, p and q. As specified in
our code, these input parameters are constant in the speci-
fication of the transitions.

We are then able to specify the transitions. Each transition
definition begins with the keyword TRANSITION, followed by

Figure 2: Definition of an M/PH/1 queue using
text-based transition specification.

the type of transition and the destination phase. More pre-
cisely,

• possible type of transitions are UP, DOWN or SAME respec-
tively, which describes movement to the upper level,
the downer level or in the same level, respectively and

• the phase is explicit or is given through some con-
straint.

We then give these constraints for the level L and the phase
P. The instruction finishes when the rate is finally given us-
ing possible predefined constants.

In Figure 2, we observe that the first specified transition
means that when in level 0 and phase 1, the process may stay
is that state for an exponential amount of time whose rate is
lambda. We also observe that the fourth specified transition
concerns all the level strictly greater than 0, but only phase
1. It indicates that in that starting state, the process may
move to state (L,P+1) with a rate of probability mu1 × q.

Once the QBD is defined, the tool may analyze it using ma-
trix analytic methods, or may simulate it via discrete-event
simulation and accordingly, carry out a sensitivity analysis.
The user indicates his choice by clicking on the correspond-
ing button. When simulating it, some additional parameters
must be set, such as the starting level, the starting phase and
the simulation end time.

When doing sensitivity analysis, the tool will work with a
perturbed generator defined as follow:

Qpert = Q+ εQ̃ (6)

Firstly, the perturbation generator Q̃ must be specified via
the same input interface that was used to define the QBD
generator Q. After that, a set of values that ε will take must
be chosen. Then, for each selected value of ε, the tool will
perform an analysis or a simulation on the resulting Qpert,
whose inner blocks will be computed dynamically.

2.2 Output interface and performed analysis
The tool computes different data that may be useful when
evaluating the performance of a QBD process. In this first

version of the tool, we focus on the stationary probability
vector ~π and first passage times.

Following the matrix analytic methods, key matrices Ri
(with i being the level) must be computed in order to de-
termine the stationary probability vector. In the particular
case of an homogeneous QBD, we have used the SMCSolver
([2]) implementation of the Logarithmic Reduction algorithm
(see [8], Chapter 8), which is quadratically convergent. To
handle the level-dependent case, we have implemented in
Octave the algorithm presented in [8], Chapter 12.

In [8], Chapter 11, two algorithms to compute the expected
first passage time from the level 0 to any upper level of an
homogeneous QBD are detailed: these are the Linear Level
Reduction and the Reduction by Bisection algorithms. We
have chosen to implement the former, as it can be more eas-
ily generalized to compute the expected first passage time
from any level to any other one, in both the homogeneous
and inhomogeneous cases. Our tool implements that gener-
alization.

In case of a simulation, we use a discrete-event simulation
approach (see Leemis and Parkin [9]). The main lines of the
algorithm are as follows, assuming the process is in level i,
phase φ,

• the inner blocks A
(i)
−1, A

(i)
0 , A

(i)
1 corresponding to the

current level i are obtained.

• These blocks are discretized with a rate r equal to the

maximum absolute value of the diagonal of A
(i)
0 . We

follow here the principles of the uniformization method
(as described in Latouche and Ramaswami [8], Section
2.8).

• Next only the line corresponding to the current phase
(φ) is considered. It now gives the transition probabil-
ities that after a random exponential time t (with rate
r), the process moves to another state or remains in
state (i, φ). We simulate that transition.

• Accordingly, the process moves to this state and the
simulation time is increased by t.

We repeat this procedure until the simulation end time is
reached.

Note that the algorithm covers both the homogeneous and
inhomogeneous cases. However, for the homogeneous case,
an optimization can be made by computing only one time
the inner blocks as those are identical for each level, except
for the levels 0, 1 and the two last levels in case of a finite
QBD.

The stationary probability of a given state is then estimated
by dividing the time spent in this state during the simulation
by the total simulation time. We also provide the confidence
interval round our estimation (see Figure 3 for one particular
M/PH/1 case).

First passage times are obtained as arithmetic mean of time
at which the simulation reached the level of interest. Enough

Figure 3: Simulation results for the stationary prob-
ability of a M/PH/1 case.

simulations must be performed and confidence intervals are
always provided to measure it.

The outputs are given either in graphical format or as a text
file. The text file presents at each line the steady state prob-
abilities of the corresponding level. When a plot is provided,
Xaxis gives the level while Y axis gives the probability that
the process is in level i, whatever the phase (see Figure 3
for an example of the graphical output interface). Finally,
the expected first passage time starting in a given level i can
also be plotted in a graph whose abscissa is the target level j
and the ordinate is the expected first passage time from i to
j. The expected first passage times from i can also be given
via in a text file. In this case, for each destination level j,
we provide the expected first passage time to that level for
each possible phase of the starting level i.

As mentioned before, the tool allows to do some sensitivity
analysis either by using matrix analytic methods or simu-
lations on the perturbed process. The same data can then
be computed for each ε value of the perturbation. Then, a
graph showing the influence of the perturbation on a specific
performance measure (that is the stationary probability of a
particular level or the first passage time from a given level to
another one) can be displayed. The Xaxis gives the differ-
ent values ε takes. The Y axis is the value of the considered
performance measure.

2.3 Code architecture
The tool is composed of some Java and GNU Octave mod-
ules. One of our goals is to make it quite easily modifiable.
Therefore, we focus on modularity by dividing the program
into high-level components. Figure 4 shows those differ-
ent components and the dependencies between each other.
Each green box represents a component. The dependencies
are indicated by the arrows. The component at the origin
of an arrow depends on the component at the edge of this
arrow. Before describing each component, its roles and de-
pendencies, we first motivate the choice of the programming
language.

Each .m file contains all the Octave functions implement-
ing the matrix-analytic methods and simulation algorithms.
Some of them come from SMCSolver [2]. We choose to pro-
vide these functions as a stand-alone resource so that one
may be able to call them directly with Octave, instead of
only observing their results via the graphic user interface
developed in Java.

Figure 4: High-level architecture of the tool.

We choose to use Octave as the computation core of our
tool because of its higher performance in numerical (mainly
matrix) computation, compared to Java. Two features of
this language must be kept in mind:

• Octave uses an interpreter to execute instructions which
are written through its command-line interface or are
contained in a script.

• It allows to dynamically load some new functions or to
redefine an existing one.

JavaOctave is a Java library that works as a bridge from
Java to Octave. It was developed by Kim Hansen1. It allows
to call the Octave interpreter from a Java program and to
transform an Octave data structure into a Java object. Ba-
sically, it runs Octave and provides some functions to send
back the instructions written in the Octave language.

Let us now present some of the main components in Figure
4.

OctaveCaller is a Java component we developed. It is
the only component that communicates with JavaOctave.
Thanks to this property, modularity is improved: the other
Java components are completely independent from Octave
components. Since JavaOctave is a bridge between Java and
Octave, OctaveCaller can be seen as a gate on the Java side.
It provides routines to keep track of every Octave function
that has been declared. Any function can thus be called and
its return values will be contained in Java objects managed
by the OctaveCaller.

The Java component QBD Analyser is the masterpiece of
the tool. It determines which function must be called, de-
pending on the chosen analysis method, the characteristic
of the defined QBD process and the desired output data.
It determines which function has to be registered in the Oc-
taveCaller, when and how such a function must be modified.
It also sets the right parameters of a function and orders the
OctaveCaller to call it. Then, it analyzes the data structures
returned by the OctaveCaller to extract the desired results.

1http://kenai.com/projects/javaoctave/

The general performance of the tool highly depends on the
choices of the QBD Analyzer. For example, when a simula-
tion of an homogeneous QBD is required, it can either choose
to call the general function that can simulate any QBD or
the specific function for the level-independent case. The lat-
ter is far more efficient than the former, as the inner blocks
of the QBD are computed once at the start of the simulation
instead of being determined at each level movement.

JavaCC2 is an open source tool originally owned by Sun
Microsystems. Basically, it allows to generate a lexical ana-
lyzer and a descending syntax analyzer from a conflict-free
grammar defined in Backus-Naur Form (see [1] Chapters 1
to 4, for a clear introduction). A FAQ3 about JavaCC is
also maintained by Theo Norvell at Memorial University of
Newfoundland.

We used JavaCC to create the Transition Parser compo-
nent. Its role is to parse a text file (a .qbd file) respecting
the grammar we developed (see Section 2.1 and Appendix A)
and to produce an Octave function that dynamically com-
putes the inner blocks of the QBD corresponding to the de-
fined transitions. Accordingly, the input grammar and the
output language are completely independent.

JFreeChart4 is a free library that allows the developers
to display graphs inside their Java applications. It is dis-
tributed under the GNU Lesser General Public License. It
supports a large variety of graph types and provides a com-
plete API for dynamically editing the graph, as well as per-
forming zooms on it.

Finally, the Graphic User Interface (GUI) component
has two main roles. Firstly, it displays the different win-
dows through which the user can navigate. That includes
both the input windows, in which the parameters of the
studied system are entered and the path to essential files, as
well as the output windows in which the evaluation results
are displayed. Secondly, it manages the user actions and
requests the right service of the right component when nec-
essary. Basically, this component reads the data introduced
by the user, calls the right input interface in order to set
every parameter and ask the QBD Analyser to perform the
analysis.

3. SENSITIVITY ANALYSIS OF A RELIA-
BLE SYSTEM

As an illustration to our tool, we propose to analyze the
sensitivity of a particular reliable system, as first defined
and analyzed in [12]. We choose this model as it constitutes
one clear example of the use of inhomogeneous finite QBD
(see Equation (5)) to model a complex system. It thus allows
us to clearly highlight the use and the versatility of our tool.

In this section, we explain the system itself. We then clarify
the state-space’s definition as exposed in [12]. We propose

in this summary, to give the inner structure of the A
(i)
0 , 1 ≤

i ≤ n− 1 only. We choose the second method to specify the
structure of the generator to the tool. Finally, we propose

2https://javacc.dev.java.net/
3http://www.engr.mun.ca/∼theo/JavaCC-FAQ/
4http://www.jfree.org/jfreechart/

to measure the sensitivity of the system subject to longer or
shorter inspection.

System definition
The system is composed of n units. One unit is online,
the others are in warm standby. However units are subject
to degradation and eventually may go to corrective repair.
Only one unit may be repaired at a time, others are queueing
in FIFO order. To prevent full degradation when online,
inspections are randomly performed. In case the level of
degradation is too high, a preventive repair is performed,
except if the system contains no more standby unit. Would
the system be empty of standby units and the online unit
need a corrective repair, one unit in preventive repair would
be preempted (if available). In the other case, the system
would be said to have failed.

Standby and online lifetimes (prior to full degradation) re-
spectively are assumed to be phase-type distributed PH(αs,
Ts) of order ms and PH(α, T) of order m respectively. Pre-
ventive and corrective repairs take a random phase-type
distributed time, with parameter (βp, Sp) of order np and
(βc, Sc) of order n respectively. Inspection times are random
and two consecutive inspection procedures are separated by
a phase-type random time with parameters (γ, L) of order
ν. All random variables are independent of each other.

State-space definition and decomposition
As estabished in [12], the system can be modeled as a Markov
process whose state-space is

(i, j, k, z(i,j), lp, lc, f) (7)

where

• i is the number of units in preventive repair, with 0 ≤
i ≤ n− 1,

• j is the number of units in corrective repair, with 0 ≤
j ≤ n,

• k is the phase occupied by the online unit, with 1 ≤
k ≤ m,

• z(i,j) is the phase of the standby units,

• lp is the phase of the unit in preventive repair, with
1 ≤ lp ≤ np,
• lc is the phase of the unit in corrective repair, with

1 ≤ lc ≤ nc,
• f is the phase of the inspection procedure, with 1 ≤
f ≤ ν.

Let us be more precise about z(i,j). This vector is composed
of (z1, z2, . . . , zn−1−(i+j)), with 1 ≤ zr ≤ ms, where 1 ≤ r ≤
n− 1− (i+ j).

The level M is defined as the number of units in repair
(either preventive or corrective repair), that is 0 ≤ M ≤ n,
with

M = {(i, j); 0 ≤ i ≤ n− 1 and j = M − i}, (8)

M = {(0, n)}. (9)

We now explain the inner structure of one particular block,

that is A
(M)
0 , for 2 ≤M ≤ n−2. Other blocks that compose

generator (5) are clearly defined in Appendix A of [12]. Our
objective is here to illustrate the complexity of the inhomo-
geneous QBD that may be handled by our tool.

We have

A
(M)
0 =

A

(M)
0 (1, 1)

A
(M)
0 (2, 2)

A
(M)
0 (3, 3)

 , (10)

where level M has been partitioned in three subsets, that is
M = M1 ∪M2 ∪M3, defined as follows

M1 = {(0,M)} (11)

M2 = {(i, j); 1 ≤ i ≤M − 1, j = M − i} (12)

M3 = {(M, 0)}. (13)

This explains why only diagonal blocks are non-null. Indeed,
moving from a state in Mi to a state in Mj (j 6= i) implies
some repair to be finished and a new one to start.

We then have for matrix A
(M)
0 (1, 1)

A
(M)
0 (1, 1) = T ⊗ I(ms)n−M−1ncν

+ Im ⊗ (Ts ⊕ . . .⊕ Ts)⊗ Incν

+ Im(ms)n−M−1 ⊗ Sc ⊗ Iν
+ Im(ms)n−M−1nc

⊗ L
+ U1 ⊗ I(ms)n−M−1nc

⊗ L0γ, (14)

where In is the identity matrix of size n,

U1 =

(
Ig 0
0 0

)

m×m
(15)

is a matrix that permits to identify the states in which the
units do not need to go to corrective repair (the first g phases
are ok, others are not), and

L0 = −L~1. (16)

Equation (14) is readily explained as follow. No change of
level in this Markov process implies that we did observe a
change of phase only. This can be a change of phase for
the online unit (determined by T) or (”+”) for one of the
standby units (determined by Ts) or (”+”) for the corrective
repair unit (determined by Sc) or (”+”) for the inspection
unit (determined by L). In case a new inspection period
starts (determined by L0γ), the online unit was not in a too
degraded state (determined by U1).

In our tool, we choose the second input interface to specify
these matrices. This one example showed the complexity
of this inhomogeneous QBD. The best is to code all the
matrices according to an Octave program and to let our
program load it and call it when necessary.

Sensitivity analysis
We propose to identify the impact of a shorter or longer
inspection period on the rocof of the system, that is the
probability that the system fails completely (i.e. no more
unit is available to become the online unit).

Authors in [12] had proposed such a study based on the
phase g (see U1 definition in (15)) at which the unit needed
to go to preventive repair. They were able to measure the
prize of being more strict on the need to go preventive repair.
We wish here to see if performing more often inspection
could have the same effect on the rocof of the system. For
this we choose a perturbation of the inspection procedure as
follows

Lε = L+ εA (17)

where

A =

(
−1 1
0 −1

)
, (18)

and ε ranges from 0.01 to 0.09 by step of 0.02.

We choose exactly the same input parameters as they did in
[12] and obtain the results in Table 1.

We have chosen ε such that the greater ε, the smaller the
interval in between two consecutive inspections. Accord-
ingly, we observe in Table 1 that for a given g, the greater
ε, the smaller the rocof. Indeed, the system will repair more
rapidly the default units. As established in [12] the greater
g the greater the rocof. This makes sense since on the con-
trary in this case, the inspection will cause a preventive re-
pair more lately. With this sensitivity analysis, we may now
decide about a compromise in between the phase of decision
for preventive repair (that is g) and the rate of inspection,
that is

µ = γ(−(L+ εA))−1~1. (19)

4. PERSPECTIVE AND FUTURE WORK
There are two main directions we wish to follow in the future
to extend our tool. First, we wish to integrate recent and
further developments on sensitivity analysis of QBD process.
Second, the grammar need to allow the user to define more
complex QBD transition structure and state space.

Sensitivity analysis is the subject of many research papers
(see for example [10] or [11]) but few propose a systematic
and tractable approach to any kind of QBD. In our tool, at
this stage of the development, we have chosen to carry out
two type of analysis, one on the original QBD and one on
the perturbated QBD. This is clearly not efficient and our
tool will definitely need to integrate recent advances in this
matter.

Future work on the grammar should permit to extend our
approach to n-dimensional Markovian state-space. We should
also be able to cover the case where complex dependencies
in between state transition and rate of transition occur.

Let us conclude that recent developments on QBD simu-
lations techniques (such as perfect simulation for example)
might be of great interest to be included in our tool.

APPENDIX
A. DEFINITION OF THE GRAMMAR USED

FOR THE INPUT INTERFACE
We develop a small context-free grammar in order to build
a parser that reads a text file respecting this grammar and

Table 1: Performance analysis on the rocof of the system
g/ ε 0.01 0.03 0.05 0.07 0.09

1 1.4921e-06 8.3196e-07 6.3283e-07 5.4581e-07 4.9886e-07
2 2.4186e-06 1.5270e-06 1.2121e-06 1.0623e-06 9.7770e-07
3 5.9177e-06 4.4985e-06 3.8340e-06 3.4591e-06 3.2224e-06
4 1.5043e-05 1.4081e-05 1.3302e-05 1.2666e-05 1.2141e-05

constructs the generator of a QBD process. This appendix
presents all the symbols composing the grammar as well as
their informal semantic. It also aims to explain how to spec-
ify the transitions of a QBD thanks to them. Let us recall
that our approach is limited to two-dimensional Markovian
state spaces. All the grammar symbols are defined in figure
5.

Our QBD specification method consists in the declaration
of a number of constants followed by the declaration of a
number of transitions. We propose to consider Figure 2 as a
clear example of the use of the grammar. While it is allowed
not to declare any constant, we have imposed the restriction
that at least one transition must be defined.

The declaration of a constant begins with the keyword CONST,
which is followed by an id and then a value. Variable id sim-
ply represents the name of the constant. It is a string begin-
ning with a lower case letter. This letter can be followed by
a series of some of the following characters: letters, digits,
underscore. A value is a decimal number and represents the
value of the constant.

The definition of a transition begins with the keyword TRAN-

SITION, followed by the type of transition and the destina-
tion phase. More precisely, the possible types of transition
are UP, DOWN and SAME respectively, that describes if the pro-
cess moves to the upper level, the downer level or stays in
the same level, respectively. The destination phase has ei-
ther explicit value or depends on the starting phase P .

Then, a series of constraints on the starting level L and
starting phase P are specified. They are preceded by the
keyword FOR and separated from each other by the keyword
AND. The conjunction of these constraints explains for which
source states the transition is defined. Finally, the keyword
RATE is followed by an expression giving the rate at which the
transition occurs. This can be a simple expression such as a
decimal number, an id referencing a constant. It can also be
compound, i.e. simple expressions joined by an arithmetic
operator (+,−, ∗ and /) or by the binary function min and
max. Finally, expressions can be grouped using parentheses.

Accordingly, one could define the next transition using our
grammar by writing:

TRANSITION (UP,1) FOR L > 1 AND P = 3 RATE 5.2

It means that the process can move from every state (L,P)
such that L > 1 and P = 3 to the upper level and in phase
1, thus to the state (L+ 1, 1) with rate 5.2.

B. THE OCTAVE FUNCTIONS

qbd ::= (constant)* (transition)+
constant ::= CONST id value
transition ::= TRANSITION (move, expression)

FOR conditions RATE expression
move ::= UP | SAME | DOWN
conditions ::= condition (AND condition)*
condition ::= (L | P) (< | <= | = | >= | >) expression
expression ::= term term 0
term 0 ::= ((+ | -) expression) | ε
term ::= factor factor 0
factor 0 ::= ((* | /) term) | ε
factor ::= id | L | P | value

| (expression)
| - expression
| min(expression , expression)
| max(expression , expression)

id ::= [a-z]([a-z] | [A-Z] | [0-9] |])*
value ::= (0 | [1-9] [0-9]*) ([.][1-9][0-9]*)?

Figure 5: Definition of the symbols of the context-
free grammar. ε represents the empty symbol.

We use Octave as the computation core of our tool. There-
fore, we provide some Octave functions that implement the
simulation and the matrix-analytic algorithms. These func-
tions can be either called from the Octave command line or
from our Java code. In this appendix, each function is de-
scribed. We explain specifically what are their parameters
and their return values.

The functions can be separated into two groups. The first
group is a set of functions implementing the matrix-analytic
algorithms to compute the rate matrices, the stationary prob-
ability vector or the expected first passage times. The sec-
ond group includes the simulation functions, as well as other
functions used to provide some statistics from the simulation
results.

Matrix-analytic functions
One of our goal is to compute the stationary probability vec-
tor. In the infinite and homogeneous case, we use some func-
tions of the SMCSolver (see [2]): QBD LR.m and QBD
pi.m. The first one computes the rate matrix R by using

the Logarithmic Reduction algorithm. The second one com-
putes the steady state vector. In case of finite and inhomo-
geneous QBDs respectively, we define two other functions:
QBD pi finite.m and QBD pi Inh.m respectively. Both
implement a modified version of the Linear Level Reduction
algorithm ([8], Chapters 10 and 12). One key difference be-
tween these two functions is how they get the inner blocks.
In the former function, they are passed as parameters. Thus,

the arguments of QBD pi finite.m are: A
(1)
−1, B0, B1, A−1,

A0, A1, A
(K)
−1 , A

(K)
0 , A

(K−1)
1 and K (as defined in Equation

(5)). In the latter case, that is QBD pi Inh.m, the inner
blocks are dynamically computed by calling another func-
tion that returns those and that takes only one parameter:

the level to compute the block of. This function must be
implemented in the file computeLevelMatrices.m.

Once the steady state vector is computed, it can be passed
as a parameter of QBD stat.m. This function returns the
mean stationary visited level and its standard deviation.

To compute the expected first passage times from a given
level to an upper one, an algorithm was proposed in [8],
Chapter 11. The function QBD fpt LLR.m implements a
generalized version of this algorithm. It allows to compute
the expected first passage times from every phase of a given
level to any another level. It takes two parameters: s, the
origin level and d, the destination level. The inner blocks
are dynamically computed whenever they are needed thanks
to computeLevelMatrices.m.

Simulation functions
The discrete-event simulation algorithm is implemented via
three functions. Again, these functions only differ in the
way the inner blocks are obtained.

QBD sim hom.m simulates an infinite homogeneous QBD.

Six inner blocks are needed: A
(1)
−1, B0, B1, A−1, A0 and A1.

They are computed and stored before the simulation begins.

To simulate an homogeneous and finite QBD, three more

inner blocks are needed: B−1, BK , A
(K−1)
1 (if different from

A1). Along with the six previously defined blocks, they can
be passed as parameters of the function QBD sim hom
fin.m.

Finally, the inhomogeneous case is simulated by the function
QBD sim Inh.m. The inner blocks of a given level are
computed when this level is reached for the first time. Then,
these blocks are stored in order to be used whenever they
are needed. Thus, a block is computed at most one time.

Each simulation function computes the estimated station-
ary probability of every state of the process, the mean vis-
ited level, its standard deviation, the lowest and the highest
reached levels.

The first passage time from the starting level to any reached
level is also returned as a vector.

If the number of batches is greater than one, a confidence in-
terval for the expected probability of every state is also com-
puted. The lower (respectively higher) bounds are contained
in the returned value lowerBounds (respectively higher-
Bounds).

This interval is obtained by calling Estimate Mean.m.
This function has two parameters: Sample, a vector that
contains the sample values, and alpha, the level of confi-
dence of the estimation.

C. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,
1985.

[2] D. Bini, B. Meini, S. Steffe, and B. Van Houdt.

Structured markov chains solver : software tools. In
Proceedings of SMCTOOLS ’06. ACM Press, 2006.

[3] A. da Silva Soares and G. Latouche. Matrix-analytic
methods for fluid queues with finite buffers.
Performance Evaluation, 63:295–314, 2006.

[4] S. Dendievel, G. Latouche, and M.-A. Remiche.
Perturbation analysis of an M/PH/1 queue. In
Performance 2010, posters, 2010.

[5] S. Hautphenne, K. Leibnitz, and M.-A. Remiche.
Modeling of P2P file sharing with a level-dependent
QBD process. In W. Yue, Y. Takahashi, and
H. Takagi, editors, Advances in Queueing Theory and
Network Applications, pages 247–263. Springer, 2009.

[6] J.-P. Katoen, M. Khattri, and I. S. Zapreev. A
Markov reward model checker. In Quantitative
Evaluation of Systems (QEST), pages 243–244, Los
Alamos, CA, USA, 2005. IEEE Computer Society.

[7] K. Kawanishi. QBD approximations of a call center
queueing model with general impatience distribution.
Computers & Operations Research, 35:2463–2481,
2008.

[8] G. Latouche and V. Ramaswami. Introduction to
Matrix Analytic Methods in Stochastic Modeling.
ASA-SIAM Series on Statistics and Applied
Probability. SIAM, 1999.

[9] L. Leemis and S. Park. Discrete-event Simulation. A
First Course. Pearson, 2006.

[10] Q.-L. Li and L. Liu. An algorithmic approach for
sensitivity analysis of perturbed quasi-birth-and-death
processes. Queueing Systems, 48:365–397, 2004.

[11] C. D. Meyer. Sensitivity of the stationary distribution
of a Markov chain. SIAM J. Matrix Anal. Appl.,
15:715–728, 1994.

[12] D. Montoro Cazorla and R. Pérez-Ocón. An ldqbd
process under degradation, inspection, and two types
of repair. European Journal of Operational Research,
190(2):494–508, 2008.

[13] R. Pérez-Ocón and D. Montoro-Cazorla. A multiple
system governed by a quasi-birth-and-death process.
Reliability Engineering and System Safety, 84:187–196,
2004.

[14] A. Riska and E. Smirni. Mamsolver: A matrix analytic
methods tool. In TOOLS ’02: Proceedings of the 12th
International Conference on Computer Performance
Evaluation, Modelling Techniques and Tools, pages
205–211, London, UK, 2002. Springer-Verlag.

140 APPENDIX B. VALUETOOLS 2011 PAPER

Appendix C

Case study: original article

The case study we carry out in Chapter 5 is based on an already existing case
study, originally made by Montoro and Perez [23]. Because the building of
the infinitesimal generator of the Quasi-Birth-and-Death process modelling
the studied system is too laborious to be presented thoroughly, we only dis-
cussed the building of some of the inner blocks. In order to give the complete
generator, we include in this appendix the original article of Montoro and
Perez [23].

141

Stochastics and Statistics

An LDQBD process under degradation, inspection,
and two types of repair

Delia Montoro Cazorla a, Rafael Pérez-Ocón b,*

a Dep. de Estadı́stica e I.O., Universidad Jaén, España, Spain
b Dep. de Estadı́stica e I.O., Universidad de Granada, España, Spain

Received 27 March 2006; accepted 11 April 2007
Available online 14 August 2007

Abstract

A warm standby n-system with operational and repair times following phase-type distributions is considered. The
online unit goes through degradating levels, determined by inspections. Two types of repairs are performed, preventive
and corrective, depending on the degradation level. The standby units undergo corrective repair. This systems is gov-
erned by a level-dependent-quasi-birth-and-death proces (LDQBD process), whose generator is constructed. The avail-
ability, rate of occurrence of failures, and other quantities of interest are calculated. A numerical example including an
optimization problem and illustrating the calculations is presented. This system extend other previously studied in the
literature.
� 2007 Elsevier B.V. All rights reserved.

Keywords: LDQBD process; Phase-type distribution; Inspection; Preventive and corrective repair; Degradation

1. Introduction

We study the maintenance of a multicomponent system under inspections, degradation, and different repair
designs. Throughout the paper, the phase-type distributions play an important role. The versatility of these
distributions will be shown throughout the paper. The class of these distributions is weakly dense in the family
of distribution functions defined on the positive real line, so they allow to approach general lifetimes. When
these distributions are involved, the procedures for solving the models are matrix-analytic methods. A book
worth mentioning related to these methods is the one of Latouche and Ramaswami [1].

The literature about reliability systems is extensive. We reference papers studying systems related to matrix-
analytic methods, then, the processes that govern the systems are generalized Markov processes. The classical
text about this class of distributions is the one of Neuts [4]. Yeh [9] studied a system submitted to deterioration

0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.04.056

* Corresponding author. Tel.: +34 958243155; fax: +34 958243267.
E-mail address: rperezo@ugr.es (R. Pérez-Ocón).

Available online at www.sciencedirect.com

European Journal of Operational Research 190 (2008) 494–508

www.elsevier.com/locate/ejor

and inspections, calculating costs under optimal policies of these operations. A unit system under policy N is
studied in Neuts et al. [5] and Pérez-Ocón and Montoro-Cazorla [7]. In Pérez-Ocón and Montoro-Cazorla [6]
a cold standby n-system is considered, and performance measures and the distribution of the up and down
periods are calculated. The model that governs the system is a quasi-birth-and-death process (QBD process).
This paper is extended in Pérez-Ocón and Montoro-Cazorla [8], where a warm standby n-system is considered,
following the standby units exponential distributions. The model that governs this system is a level-dependent-
quasi-birth-and-death process (LDQBD process). A two-system under degradation and with two repair modes
is studied in Pérez-Ocón and Montoro-Cazorla [2].

We present a warm standby n-system, there is a online unit and the others are in standby or in repair. The
operational level of the online unit is determined by random inspections. When the online fails one standby
unit (if any) becomes the online one. There are good and bad operational levels, and preventive and corrective
repairs. All repairs are as good as new. The lifetimes of the units and the repair times follow different contin-
uous phase-type distributions, and the inspection times are governed by a discrete phase-type renewal process,
because they occur in certain epochs.

For this system, the generator of the generalized Markov process that governs it is constructed, and it is an
LDQBD process. The stationary probability vector, the availability, the rate of occurrence of failures for the
different units in the system, and the costs are calculated. The distribution of the up and down periods are
determined. A numerical application is performed, illustrating the calculations that have been considered
throughout the paper, and calculating the optimal deteriorate level g*, the threshold from which the preventive
repair must be performed for maximizing the availability and costs. We extend the articles [6,8], where no
structure of inspection is considered and degradation is not included.

The present paper suply a general model that extends other previously published in the literature. It is dif-
ferent to previous ones, as it includes all the following aspects: (1) The n-system includes degradation of the
online unit; (2) the units undergo two types of repairs, preventive and corrective, depending on the degrada-
tion level of the online unit; (3) the inspections determine the degradation level of the online unit; (4) the pre-
ventive repair channel is interrupted for enlarging the lifetime of the system; (5) the system cost in terms of the
costs of the involved operations is calculated.

The paper is organized as follows. In Section 2, we introduce the general Markov model. In Section 3, the
stationary probability vector is calculated. The performance measures and costs are studied in Sections 4 and
5, respectively. In Section 6, the distributions of the up and down periods are determined. A numerical appli-
cation and an optimizing problem are performed in Section 7. An Appendix is included where the construction
of the generator is performed.

Definition 1. A continuous distribution F(Æ) on [0,1) is a phase-type one with representation (a,T) if it is the
distribution of the time until the absorption in a finite state Markov process with one absorbent state.
Denoting by a the initial probability vector of the Markov process, the generator is given by

T T 0

0 0

 !
;

where T denotes the rate transition matrix among the transient states and T0 the column vector of absorption
rates. The explicit expression of F(Æ) is F(x) = 1 � aexp(Tx)e, x P 0, e being a column vector with all
components equal to one. It will be denoted by PH(a,T). The dimension of the matrix T is the order of the
distribution.

The discrete phase-type distributions are defined in a similar way, and they are denoted by PHd(a,T) where
T is the transition probability matrix among transient states and T0 the column vector of absorption proba-
bilities. For more details see Neuts [4].

Definition 2. If A and B are rectangular matrices of dimensions m1 · m2 and n1 · n2, respectively,
their Kronecker product A � B is the matrix of dimensions m1n1 · m2n2, written in compact form as (aijB).
The Kronecker sum of matrices A and B of orders m and n, respectively, is defined by A � B = A � In +
Im � B.

D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508 495

2. General model

We consider the following system with n units:

1. There is a online unit and the others are in standby or in repair.
2. The level of the online unit is determined by random inspections. There are good and bad operational

levels.
3. When the online fails one standby unit (if any) becomes the online one.
4. When the online unit occupies a bad level and an inspection occurs, it goes to preventive repair.
5. The corrective repair occurs when the online or one standby unit fails.
6. All repairs are as good as new.
7. If the only operational unit is the online one and if it fails, the unit being preventively repaired (if any)

becomes the online unit even its repair had not been completed.
8. The system is up when there is one online unit, and it is down when all units are non-operational.

The units can be operational (online or standby) or non-operational (in repair, preventive or corrective,
or waiting for repairing). It will be assumed that the online unit goes successively through the different
degradating levels {1, . . . ,g,g + 1, . . . ,m} before the failure. The levels in {1, . . . ,g} are good. If the unit
occupies a level in {g + 1, . . . ,m} it goes to preventive repair, except if it is the only operational unit. If
the unit fails, it goes to corrective repair. The operational and repair times have the following continuous
distributions:

• The lifetime of the online unit follows a distribution PH(a,T) of order m.
• The lifetime of the standby units are identical and follow a distribution PH(as,Ts) of order ms.
• The preventive repair follows a distribution PH(bp,Sp) of order np.
• The corrective repair follows a distribution PH(bc,Sc) of order n.
• The inspection times follows a discrete distribution PHd(c,L) of order v.
• If there are several units waiting for preventive repair and one of them is required to become instanta-

neously the online unit, it will be the one being repaired, and will start online with initial probability vector
ap. This is a way to increase the lifetime of the system. The standby units undergo only corrective repairs.

• All the random times are independent.

2.1. State set

The states are defined in terms of the number of units in the different situations and the phases of the dif-
ferent distributions involved in the system. The state of the system at time t can be identified by the following
elements:

• the number of units in preventive repair, denoted by i, i = 0,1, . . . ,n � 1,
• the number of units in corrective repair, denoted by j, j = 0,1, . . . ,n,
• the phase occupied by the online unit, denoted by k, k = 1,2, . . . ,m,
• the phases of the standby units, denoted by the vector z(i, j) = (z1, . . . ,zn�1�(i+j)),
• the phase of the preventive repair, denoted by lp, lp = 1,2, . . . ,np,
• the phase of the corrective repair, denoted by lc, lc = 1,2, . . . ,nc,
• the inspection phase, denoted by f, f = 1,2, . . . ,m.
• So, the following vector represents the exponential states of the system:

ði; j; k; zði;jÞ; lp; lc; f Þ:
It is usual to group the states in sets determined by the way in which the system operates. If there are i units in
preventive repair and j in corrective repair, in standby there are n � 1 � (i + j) units. We have denoted by z(i,j)

the vector whose entries are the phases occupied by the n � 1 � (i + j) standby units, z(i,j) = (z1, . . . ,zn�1�(i+j)),
being zr the phase of the rth standby unit, with 1 6 zr 6 ms, 1 6 r 6 n � 1 � (i + j).

496 D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508

Then, the possible values for the couple (i, j) are

fði; jÞ : i ¼ 0; 0 6 j 6 ng [fði; jÞ : 1 6 i 6 n� 1; 0 6 j 6 n� i� 1g:
We give details about the phases of the model for different values of the couple (i, j).

(1) No unit in repair: (0, 0) = {(k,z(0,0), f) : 1 6 k 6 m, 1 6 f 6 v}.
(2) No unit in preventive repair:

(a) with units in standby: (0, j) = {(k,z(0,j), lc, f) : 1 6 k 6 m, 1 6 lc 6 nc, 1 6 f 6 v}, j = 1, . . . ,n � 2,
(b) without units in standby: (0, n � 1) = {(k, lc, f) : 1 6 k 6 m, 1 6 lc 6 nc, 1 6 f 6 v},
(c) the system is down: (0, n) = {(lc, f) : 1 6 lc 6 nc, 1 6 f 6 v}.

(3) No unit in corrective repair:
(a) with units in standby: (i, 0) = {(k,z(i,0), lp, f) : 1 6 k 6 m, 1 6 lp 6 np, 1 6 f 6 v}, i = 1, . . . ,n � 2,
(b) without units in standby: (n � 1,0) = {(k, lp, f) : 1 6 k 6 m, 1 6 lp 6 np, 1 6 f 6 v},

(4) Units in preventive and corrective repairs:
(a) with units in standby: (i, j) = {(k,z(i,j), lp, lc, f) : 1 6 k 6 m, 1 6 lp 6 np, 1 6 lc 6 nc, 1 6 f 6 v},

i = 1, . . . ,n � 3, j = 1 . . . ,n � 2 � i,
(b) without units in standby: (i, j) = {(k, lp, lc, f) : 1 6 k 6 m, 1 6 lp 6 np, 1 6 lc 6 nc,1 6 f 6 v},

i = 1, . . . ,n � 2, j = n � 1 � i.

We remember that the system is down only when all the units are in corrective repair (repairing or waiting).
On the other hand, the system cannot have all their units in preventive repair, in the instant of such occur-
rence, the unit under repair becomes online instantaneously.

2.2. Generator

We group the states of the system in macro-states. Define the macro-state M as the number of non-oper-
ational units, M, M = 0, . . . ,n. The non-operational units can be in repair preventive or corrective, then, the
macro-state n indicates that the system is down, and with the previous notation M can be expressed as follows:

M ¼ fði; jÞ : 0 6 i 6 M ; j ¼ M � ig;M ¼ 0; . . . ; n� 1; and n ¼ fð0; nÞg:
The state space can be expressed as

S ¼ fM ;M ¼ 0; 1; . . . ; ng:
The generator is constructed in terms of the transitions among the macro-states. We calculate this generator
by blocks. It can be observed that from a macro-state M (50,n) a transition is possible only to M + 1 or
M � 1, since at every time t only the failure of a unit or the completation of a repair is possible. Taking into
account the possibilities in the boundary macro-states, the form of the generator is the following:

Q ¼

B0;0 B0;1

B1;0 Að1Þ1 Að1Þ0

Að2Þ2 Að2Þ1 Að2Þ0

. .
. . .

. . .
.

Aðn�1Þ
2 Bn�1;n�1 Bn�1;n

Bn�1;n Bn;n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; ð2:1Þ

that corresponds to an LDQBD process. This expression is valid for n P 4 . The case n = 4 is the one with the
minimum number of macro-states for which it is possible one unit in every defined situation: online, standby,
in preventive or in corrective repair.

D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508 497

The structure of the degradation of the online unit is introduced by means of the following matrices:

U 1ðg;mÞ � U 1 ¼
Ig 0

0 0

� �
m�m

; U 2ðg;mÞ � U 2 ¼
0 0

0 Im�g

� �
m�m

: ð2:2Þ

In order to prepare the expressions for the calculation of transition rates, every macro-state M = 2, . . . ,n � 1 is
partitioned in three sets corresponding to those with no preventive repair, with preventive and corrective re-
pair, and with no preventive repair, denoted by M1,M2,M3, respectively. We have

M ¼ M1 [M2 [M3

being

M1 ¼ fð0;MÞg;
M2 ¼ fði; jÞ : 1 6 i 6 M � 1; j ¼ M � ig;
M3 ¼ fðM ; 0Þg:

ð2:3Þ

The macro-state M = 0 indicates that all units are operational, and it is formed by the couple (0,0); the macro-
state M = 1 is formed by the couples {(0, 1), (1, 0)}, and the macro-state M = n, is formed by the couple (0, n)
and indicates that the system is down. The macro-state 0 is included in M1, the macro-state n is included in M1,
and the macro-state 1 takes part of the macro-states M1 and M3. It will be seen throughout the paper that the
macro-state 1 must be considered apart, as a border macro-state.

In advance, we denote by (A � � � � � A)n the Kronecker sum of the matrix A with itself n-times, and Ic by
the identity matrix of order c.

We express the blocks of the generator (2.1) in terms of the representations of the involved distributions in
the system. The expressions of the blocks that form the generator and an explanation of their construction are
given in Appendix.

3. Stationary probability vector

Once the generator is calculated, we determine the stationary probability vector, denoted by
p = (p0,p1, . . . ,pn�1,pn). This vector satisfies the vectorial equations pQ = 0, pe = 1. It can be expressed in
terms of the sets of macro-states (2.3) as follows:

p0 ¼ ð0; 0Þ of order mðmsÞn�1m;

p1 ¼ fð0; 1Þ; ð1; 0Þg of order mðmsÞn�2ncmþ mðmsÞn�1npm;

pn ¼ ð0; nÞ of order ncm

and

pM ¼ ðpMð1Þ; pMð2Þ; pMð3ÞÞ;M ¼ 2; . . . ; n� 1 of order ðmsÞn�1�M ncmþ ðmsÞn�1�M npncmþ ðmsÞn�1�M npm:

The calculations that follow have been established in Pérez-Ocón and Montoro-Cazorla [8, Section 3] step by
step and there it was seen that the solution of the system is

pj ¼ p0

Yj�1

i¼0

Ri; j ¼ 1; . . . ; n; ð3:1Þ

where p0 is determined from the matricial equation

p0ðB0;0 þ R0B1;0Þ ¼ 0;

subject to the normalization condition

p0

Xn

j¼0

Yj�1

i¼0

Ri

 !
e ¼ 1:

498 D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508

The matrices R0,R1,R2, . . . ,Rn�2 involved in the above expressions are given by

Rn�1 ¼ �Bn�1;nB�1
n;n;

Rn�2 ¼ �Aðn�2Þ
0 ðBn�1;n�1 þ Rn�1Bn;n�1Þ�1

;

Rj�1 ¼ �Aðj�1Þ
0 AðjÞ1 þ RjA

ðjþ1Þ
2

� ��1

; j ¼ n� 2; . . . ; 2;

R0 ¼ �B0;1ðAð1Þ1 þ R1Að2Þ2 Þ
�1

ð3:2Þ

being the matrices ðAðjÞ1 þ RjA
ðjþ1Þ
2 Þ non-singular for j = 2, . . . ,n � 2.

For getting these formulae we use previous results of Naoumov [3, Proposition 18].

4. Performance measures

In this section, we calculate the availability and the mean number of failures per unit time of the units and
system. Also, we calculate the mean number of the inspections and the times that the preventive repair channel
is interrupted per unit time.

4.1. Availability

The probability that the system will be operational at time t is the probability that the system does not
occupy the down state n, so we have

A ¼
Xn�1

i¼0

pie ¼ p0

Xn�1

i¼0

Yi�1

j¼0

Rj

 !
e ¼ 1� pne: ð4:1Þ

4.2. Rate of occurrence of failures

This measure is the mean number of failures per unit time, and it is known in the literature as the rocof. We
calculate the rocof of the corrective repairs for the units and the system. For calculating the different rocofs we
consider three cases, corresponding to M = 0, M = 1, and the others. We express the final expressions in terms
of the matrices in (3.2). For calculating the rocof, we must determine the macro-states from which the fail is
produced, and the probability of occupancy of these macro-states. This measure has been calculated when
phase-type distributions are involved in [5].

4.2.1. Online unit

If the online unit is in macro-state 0, the vector of failure rates is

C0 ¼ T 0 � eðmsÞn�1m:

If M = 1, the failure can occur from (0, 1) and (1, 0) and the rates are given in the vector

C1 ¼
T 0 � eðmsÞn�2ncv

T 0 � eðmsÞn�2npv

 !
:

The vector of failure rates in the other cases is a three-block vector, corresponding to the sets in (2.3), with
intermediate blocks identical given by

Ck ¼

T 0 � eðmsÞn�1�k ncv

ek�1 � T 0 � eðmsÞn�1�knpncv

T 0 � eðmsÞn�1�k npv

0
BB@

1
CCA; k ¼ 2; . . . ; n� 1:

D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508 499

Finally, the rate of occurrence of failures of the online unit is

v1 ¼ p0C0 þ
Xn�1

k¼1

pkCk ¼ p0C0 þ p0

Xn�1

k¼1

Yk�1

j¼0

Rj

 !
Ck: ð4:2Þ

4.2.2. Standby units

The procedure is similar to the calculation of the rocof for the online unit. For M = 0 the failure rates vec-
tor is

D0 ¼ ðIm � ðT 0
s � � � � � T 0

s Þn�1 � bc � IvÞemðmsÞn�2ncv:

For M = 1, the failure can occur from (0,1) and (1,0) and the rates are given in the vector

D1 ¼
ðIm � ðT 0

s � � � � � T 0
s Þn�2 � IncvÞemðmsÞn�3ncv

ðIm � ðT 0
s � � � � � T 0

s Þn�2 � Inp � bc � IvÞemðmsÞn�3npncv

 !
:

The vector of failure rates in the other cases is a three-block vector, corresponding to the sets (2.3), with inter-
mediate blocks identical given by

Dk ¼

ðIm � ðT 0
s � � � � � T 0

s Þn�1�k � IncvÞemðmsÞn�2�k ncv

ðek�1 � Im � ðT 0
s � � � � � T 0

s Þn�1�k � InpncvÞemðmsÞn�2�k npncv

ðIm � ðT 0
s � � � � � T 0

s Þn�1�k � Inp � bc � IvÞemðmsÞn�2�k npncv

0
BB@

1
CCA

for k = 2, . . . ,n � 2.
Then, the rate of occurrence of failures of the standby units is

v2 ¼
Xn�2

k¼0

pkDk ¼ p0

Xn�2

k¼0

Yk�1

j¼0

Rj

 !
Dk: ð4:3Þ

4.2.3. The system

The system fails when there are n � 1 units in corrective repair and the online unit fails. The only macro-
states from which the failure is possible are the ones (0,n � 1) in M1. Then, the matrix that represents the tran-
sition rates is

E ¼
T 0 � encv

0

0

0
B@

1
CA:

Thus, the rocof of the system is

m3 ¼ pn�1E ¼ p0

Yn�2

j¼0

Rj

 !
E: ð4:4Þ

4.3. Mean number of interrupted preventive repairs per unit time

This operation of interruption of the preventive repair occurs in the evolution of the system, and we mea-
sure its occurrence by means of this quantity. This operation is performed for the system will be operational
the most time possible. An interruption occurs when there is only one operational unit (online) and it under-
goes a failure. Then, the unit being preventively repaired becomes the online unit. The system must occupy the
macro-state n � 1 and at least one unit has to be in preventive repair. Then, the non-null rates are the ones of
the elements (1,n � 2), . . . , (n � 1,0), and the vector of rates is

500 D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508

F ¼
0

en�2 � T 0 � enpncv

T 0 � enpv

0
B@

1
CA:

The mean number of interrupted repair per unit time is

v4 ¼ pn�1F ¼ p0

Yn�2

j¼0

Rj

 !
F : ð4:5Þ

4.4. Rate of occurrence of inspections

Now we calculate the mean number of inspections per unit time. An inspection arrives governed by the vec-
tor L0. Any other change among the phases of the operations in the system cannot occur. If M = 0, the vector
of transition rates is given by G0 ¼ emðmsÞn�1 � L0. If M = 1 = {(0, 1), (1,0)}, the vector is

G1 ¼
emðmsÞn�2nc

� L0

emðmsÞn�2np
� L0

 !
:

For k = 2, . . . ,n � 1, the vector of transition rates is

Gk ¼

emðmsÞn�1�k nc
� L0

ek�1 � emðmsÞn�1�k npnc
� L0

emðmsÞn�1�k np
� L0

0
BB@

1
CCA; k ¼ 2; . . . ; n� 1:

For M = n, we have Gn ¼ enc � L0. Then, the final expression is

v5 ¼
Xn

k¼0

pkGk ¼ p0

Xn

k¼0

Yk�1

j¼0

Rj

 !
Gk: ð4:6Þ

5. Costs

We introduce the study of the generated costs of the system per unit time in terms of the costs of the different
situations involved in the system. This is a complex system, and every operation implies a cost. The positive cost
is generated when the system is operational, and the negative costs are due to the repairs (preventive and cor-
rective), the inspections, and the interrumpted preventive repair. We denoted these costs per unit time by
cu operational cost
crp cost due to preventive repair
crc cost due to corrective repair
cI cost due to inspection
crpi cost due to the interruption of preventive repair

The total cost of the system per unit time is denoted by c.
First, we calculate the generated costs by repairs. If the system occupies the macro-state 0, it gets benefits.

We represent these benefits by a column vector with the order of the vector p0. We have H0 = cue.
If the system occupies the set M1 = {(0, 1), (1, 0)}, the costs due to the preventive or corrective repair

included in these macro-states must be incorporated. Ordering these macro-states we define the column vector

H 1 ¼
ðcu þ crcÞe
ðcu þ crpÞe

� �
;

where the vectors e have the orders or (0, 1) and (1, 0), respectively.

D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508 501

If the system occupies the macro-state n, the only costs are produced by the corrective repair. We consider
the vector Hn = crce, with order the one of pn.

For the rest of macro-states we must consider the sets in (2.3). The resultant vector is

Hk ¼
ðcu þ crcÞe

ðcu þ crp þ crcÞe
ðcu þ crpÞe

0
B@

1
CA; k ¼ 2; . . . ; n� 1

being the costs in the rows due to the produced costs in the macro-states of M1, M2, and M3, respectively. The
order of the vectors e are the appropriate for the vector Hk will have the order of pk.

The costs due to interrupted preventive repairs and to inspections must be added. As the costs are per unit
time, for calculating these costs we need the mean number of these events per unit time, that have been cal-
culated in (4.5) and (4.6). Finally, we have the total cost of the system per unit time:

c ¼
Xn

k¼0

pkH k þ v4crpi þ v5cI :

6. Distribution functions for the up and down periods

These distribution functions have been calculated in the previous paper of Pérez-Ocón and Montoro-
Cazorla [2] for a simpler system. In the present one, we have added wear, inspections and repairs. The up
and down periods follow PH-distributions whose representations are determined below.

The up period is the timespan between the instant at which all the units are initially operational and the
instant at which all the units are not operational for the first time. We consider a modified Markov process
from the original, with the same operational macro-states and identifying the non-operational macro-states
in a new absorbent macro-state that will be denoted by n*. The up period is the time up to the absorption
by the macro-state n*, and thus the distribution will be a PH-distribution. The generator of this new Markov
process is

ð6:1Þ

being B�n�1;n ¼ Bn�1;ne.
The representation of the up period is (/u,Q*). The initial conditions need to be chosen so as to reflect the

physical conditions of the system at time t = 0. For example, if all units are new at t = 0, the initial vector can
be chosen as

/u ¼
p0

p0e
; 0

� �
: ð6:2Þ

The operational mean time is

MTTF ¼ �/uK
�1
u e: ð6:3Þ

The down period begins when the only operational unit fails (the rest are in repair or waiting for repair), and
finishes at the point when the first repair is completed. This period follows a PH(/d,Kd), where /d is deter-
mined taking into account that the macro-states have been grouped in the three sets in (2.3). Then, we write
pn�1 = (pn�1 (1),pn�1 (2),pn�1 (3)).

We denote by pði;j;kÞn�1 ð1Þ the probability that, at time t, in the system there are n � 1 units in corrective repair,
the online unit occupies the phase i, the unit being repaired is in phase j, and the inspection is in phase k, with
1 6 i 6 m, 1 6 j 6 ms, 1 6 k 6 v.

502 D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508

We denote by /d(j,k) the probability that the system fails when the unit under repair is in phase j and the
inspection in phase k, 1 6 j 6 ms, 1 6 k 6 v. This probability can be expressed as

/dðj; kÞ ¼
Pm

i¼1p
ði;j;kÞ
n�1 ð1ÞT 0

j

pn�1ð1ÞðT 0 � encvÞ
; 1 6 j 6 ms; 1 6 k 6 v;

T 0
j being the jth entries of the column vector T0.

The initial vector is

/d ¼ ð/dð1; 1Þ; . . . ;/dð1; vÞ; . . . ;/dðnc; 1Þ; . . . ;/dðnc; vÞÞ
and the matrix Kd is

Kd ¼ Sc � ðLþ L0cÞ:
The mean time that the system is no-operational is

MTTD ¼ �/dK
�1
d e: ð6:4Þ

7. Numerical application

We illustrate the general model by means of an example. We consider five units (n = 5) with the following
distributions and parameters.

Online unit: PH(a,T) with

a¼ð1;0;0;0;0Þ; ap¼ð0:1;0:3;0:2;0:3;0:1Þ; T ¼

�0:0081 0:0081 0 0 0

0 �0:0240 0:0240 0 0

0 0 �0:009 0:009 0

0 0 0 �0:0072 0:0072

0 0 0 0 �0:084

0
BBBBBB@

1
CCCCCCA

being ap the initial probability vector for the online unit when this is the one interrupted in the preventive re-
pair because there are no standby unit.

Standby units: PH(as,Ts) with

as ¼ ð1; 0Þ; T s ¼
�0:0052 0:0052

0:0013 �0:0052

� �
:

Preventive repair times: PH(bp,Sp) with

bp ¼ ð1; 0Þ; Sp ¼
�0:0667 0:0667

0 �0:0667

� �
:

Corrective repair times: PH(bc,Sc) with

bc ¼ ð1; 0Þ; Sc ¼
�0:02 0:02 0

0:01 �0:08 0:07

0:005 0 �0:10

0
B@

1
CA:

Inspection time: PH(c,L) with

c ¼ ð1; 0Þ; L ¼
�0:02 0:02

0 �0:02

� �
:

We remember that g is the number of good states in the online unit. We present in Table 1 the performance
measures and costs calculated in Sections 4 and 5 in terms of the values of g.

It is noted that when g increases the availability and the costs decreases. So the value g = 1 makes these
quantities maximum. The preventive repair will begin in the level 2 of the online unit.

D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508 503

8. Conclusion

We have considered a complex system under different operations of reliability. We show that using matrix-
analytic methods it is possible to present expressions that can be computationally implemented, and conse-
quently applicable. In spite of the complexity of the system, it can be seen throughout the paper, and partic-
ularly constructing the generator of the general model, that in the blocks forming this matrix there is a
repetitive structure. This is an interesting consequence of using the matrix-analytic methods. Our future
research on modelization of systems will be related to find phase-type distributions with properties of inter-
est from the point of view of reliability, such as bathtub and upbathtub shaped, and to approach the
models we construct to practical structures, supplying new procedures to the engineers and applied
probabilistician.

Acknowledgement

This paper is partially supported by the Ministerio de Educación y Ciencia, España, under the grant
MTM2004-03672.

Appendix A. Construction of the generator

We construct the blocks that form the infinitesimal generator. Some indications are given for constructing
certain blocks. The others can be constructed following the previous indications, since many situations are
repeated. The subindices indicate the order of the matrices and vectors.

A.1. Initial boundary blocks

A.1.1. Transition 0! 0
The block B00 represents the rate transition among phases when there is no change among macro-states.

The expression of this block B00 in terms of the involved distribution functions is

B0;0 ¼ T � I ðmsÞn�1v þ U 1 � I ðmsÞn�1 � L0cþ Im � ðT s � � � � � T sÞn�1 � Iv þ ImðmsÞn�1 � L:

The interpretation of this expression is the following. The first summand indicates that the unit online change
among operational phases, the standby units do not change of phases, and there is no inspection; the second
one that there is an inspection and it finds the online unit is in a good level, there is no change among the
standby units; the third one indicates that the online unit does not change of phase, some of the standby units
change of phase, and the inspection does not change; and the fourth one indicates that there is no change
among the phases of all units, and there is a change of phase in the inspection time.

A.1.2. Transition 0! 1

The block B01 represents the rate transition block when all units are operational, and there is a failure, that
can need preventive or corrective repair. The following transition table:

(0, 1) (1, 0)

(0,0) B0,1(1) B0,1(2)

Table 1
Performance measures and costs for different values of g

g A v1 v2 v3 v4 v5 c

1 0.9999 (4.0447)�004 0.0023 (1.9460)�006 (3.8147)�008 0.01 0.9016
2 0.9995 (5.3417)�004 0.0059 (8.0364)�006 (8.6752)�008 0.01 0.7987
3 0.9990 (9.5882)�004 0.0064 (1.5609)�005 (5.8788)�008 0.01 0.7911
4 0.9979 0.0021 0.0074 (3.2178)�005 (8.9212)�009 0.01 0.7709

504 D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508

shows that B0,1 = [B0,1(1),B0,1(2)], being B0,1(1) the block corresponding to a corrective failure in the online or
in one of the standby units, and B0,1(2), the one corresponding to a failure with preventive repair in the online
unit. In this last case, an inspection that has found the online unit in a bad level has occurred, then a standby
unit becomes online unit. We have

B0;1ð1Þ ¼ T 0a� ems � I ðmsÞn�2 � bc � Iv þ Im � ðT 0
s � � � � � T 0

s Þn�1 � bc � Iv;

B0;1ð2Þ ¼ U 2ema� ems � I ðmsÞn�2 � bp � L0c:

A.1.3. Transition 1! 0

The block B1,0 represents the transition when a repair, preventive or corrective, is completed. The following
transition table:

(0,0)

(0,1) B1,0(1)
(1,0) B1,0(2)

shows that

B1;0 ¼
B1;0ð1Þ
B1;0ð2Þ

" #
;

where B1,0(1) corresponds to the completion of a corrective repair and B1,0(2) to the one of a preventive repair.
We have

B1;0ð1Þ ¼ ImðmsÞn�2 � as � S0
c � Iv;

B1;0ð2Þ ¼ ImðmsÞn�2 � as � S0
p � Iv:

A.2. Diagonal blocks

A.2.1. Blocks AðMÞ1

These correspond to the transition M!M (M = 1, . . . ,n � 2). They are the blocks denoted by AðMÞ1 in (2.1).
They represent that there is no failure among the units, only change among the phases occurs. The blocks can
be written as

where

AðMÞ1 ð1; 1Þ ¼ T � I ðmsÞn�M�1ncv þ Im � ðT s � � � � � T sÞn�M�1 � Incv þ ImðmsÞn�M�1 � Sc � Iv

þ ImðmsÞn�M�1nc
� Lþ U 1 � I ðmsÞn�M�1nc

� L0c;

AðMÞ1 ð2; 2Þ ¼ IM�1 � T � I ðmsÞn�M�1npncv þ Im � ðT s � � � � � T sÞn�M�1 � Inpncv

n
þImðmsÞn�M�1 � Sp � Incv þ ImðmsÞn�M�1np

� Sc � Iv

þImðmsÞn�M�1npnc
� Lþ U 1 � I ðmsÞn�M�1npnc

� L0c
o
;

AðMÞ1 ð3; 3Þ ¼ T � I ðmsÞn�M�1npv þ Im � ðT s � � � � � T sÞn�M�1 � Inpv þ ImðmsÞn�M�1 � Sp � Iv

þ ImðmsÞn�M�1np
� Lþ U 1 � I ðmsÞn�M�1np

� L0c:

D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508 505

The block AðMÞ1 ð1; 1Þ has five summands, corresponding to the change of phase of the following: the online; one
of the standby units; the corrective repair; the inspection; and there is an inspection when the online is in a
good level. When there is a change of phase in one of these, the others do not change.

The case M = 1 must be considered apart, as we have seen in (2.3), and the sets M1 and M3 are included.
We have

Að1Þ1 ¼
Að1Þ1 ð1; 1Þ

Að1Þ1 ð3; 3Þ

" #
:

The blocks Að1Þ1 ð1; 1Þ and Að1Þ1 ð3; 3Þ have the above expressions for M = 1. So, we have justified AðMÞ1 for
M = 1, . . . ,n � 2. The matrix AðMÞ1 ð2; 2Þ represent the changes among the elements of M2, what means that
there is only change among the phases, and from the couple (i, j) in M2 only can pass to the couple (i, j), this
is represented by the unit matrix IM�1. The entries of the matrices represent change among the phases of the
five elements involved, and have similar expressions to the previous ones.

A.2.2. Blocks AðMÞ0

These correspond to the transition M!M + 1,M = 1,2, . . . ,n � 2. These blocks represent that there is a
failure in the system, preventive or corrective:

AðMÞ0 ¼
AðMÞ0 ð1; 1Þ AðMÞ0 ð1; 2Þ

AðMÞ0 ð2; 2Þ
AðMÞ0 ð3; 2Þ AðMÞ0 ð3; 3Þ

2
664

3
775; M ¼ 2; . . . ; n� 2

and

Að1Þ0 ¼
Að1Þ0 ð1; 1Þ Að1Þ0 ð1; 2Þ

Að1Þ0 ð3; 2Þ Að1Þ0 ð3; 3Þ

" #

being for M = 1, . . . ,n � 2:

AðMÞ0 ð1; 1Þ ¼ T 0a� ems � I ðmsÞn�M�2ncv þ Im � ðT 0
s � � � � � T 0

s Þn�M�1 � Incv;

AðMÞ0 ð1; 2Þ ¼ U 2ema� ems � I ðmsÞn�M�2 � bp � Inc � L0c; 0
h i

;

AðMÞ0 ð2; 2Þ ¼

AðMÞ;ð1;1Þ0 ð2; 2Þ AðMÞ;ð1;2Þ0 ð2; 2Þ

. .
. . .

.

AðMÞ;ðM�1;M�1Þ
0 ð2; 2Þ AðMÞ;ðM�1;MÞ

0 ð2; 2Þ

0
BBB@

1
CCCA;

AðMÞ;ði;iÞ0 ð2; 2Þ ¼ T 0a� ems � I ðmsÞn�M�2npncv þ Im � ðT 0
s � � � � � T 0

s Þn�M�1 � Inpncv; i ¼ 1; . . . ;M � 1;

AðMÞ;ði;iþ1Þ
0 ð2; 2Þ ¼ U 2ema� ems � I ðmsÞn�M�2npnc

� L0c; i ¼ 1; . . . ;M � 1;

AðMÞ0 ð3; 2Þ ¼ 0; T 0a� ems � I ðmsÞn�M�2np
� bc � Iv þ Im � ðT 0

s � � � � � T 0
s Þn�M�1 � Inp � bc � Iv

h i
;

AðMÞ0 ð3; 3Þ ¼ U 2ema� ems � I ðmsÞn�M�2 � Inp � L0c:

The only blocks that need to be explained are the AðMÞ0 ð1; 2Þ, AðMÞ0 ð3; 2Þ, and AðMÞ0 ð2; 2Þ, the others are similar
to previous ones. We reason on a particular case M = 2, then the block Að2Þ0 ð1; 2Þ represents the transition
between M1 = (0, 2) and M2 = {(1, 2), (2,1)}. It is clear that the transition (0, 2)! (1, 2) means that a failure
with preventive repair occurs, and the transition (0, 2)! (2,1) is not possible. This justify the above expres-
sion. With the block AðMÞ0 ð3; 2Þ the situation is similar. For constructing the block AðMÞ0 ð2; 2Þ we must consider
that the couples (i, j) in M2 only can pass to the couples (i + 1, j) or (i, j + 1) when a failure arrives, being the

506 D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508

other possibilities null. Ordering lexicographically the couples the final form of the matrix AðMÞ0 ð2; 2Þ is
determined.

A.2.3. Blocks AðMÞ2

These blocks correspond to the transition M!M � 1, M = 1, . . .,n � 1 and they represent the completa-
tion of a preventive or corrective repair. Considering the sets (2.3), the matrix corresponding to this transitions
can be written as

AðMÞ2 ¼
AðMÞ2 ð1; 1Þ

AðMÞ2 ð2; 1Þ AðMÞ2 ð2; 2Þ AðMÞ2 ð2; 3Þ

AðMÞ2 ð3; 3Þ

2
664

3
775; M ¼ 3; . . . ; n� 1;

Að2Þ2 ¼
Að2Þ2 ð1; 1Þ

Að2Þ2 ð2; 1Þ Að2Þ2 ð2; 3Þ

Að2Þ2 ð3; 3Þ

2
664

3
775

being

AðMÞ2 ð1; 1Þ ¼ ImðmsÞn�M�1 � as � S0
cbc � Iv;

AðMÞ2 ð2; 1Þ ¼
ImðmsÞn�M�1 � as � S0

p � Incv

0

" #

AðMÞ2 ð2; 2Þ ¼

1 2 � � � M � 2

1 AðMÞ;ð1;1Þ2 ð2; 2Þ

2 AðMÞ;ð2;1Þ2 ð2; 2Þ . .
.

..

. . .
.

M � 2 AðMÞ;ðM�2;M�2Þ
2 ð2; 2Þ

M � 1 AðMÞ;ðM�1;M�2Þ
2 ð2; 2Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

AðIÞ;ði;iÞ2 ð2; 2Þ ¼ ImðmsÞn�I�1 � as � Inp � S0
cbc � Iv; i ¼ 1; . . . I � 1;

AðIÞ;ði;i�1Þ
2 ð2; 2Þ ¼ ImðmsÞn�I�1 � as � S0

pbp � Incv; i ¼ 1; . . . I � 1;

AðIÞ2 ð2; 3Þ ¼
0

ImðmsÞn�I�1 � as � Inp � S0
c � Iv

" #
;

AðIÞ2 ð3; 3Þ ¼ ImðmsÞn�I�1 � as � S0
pbp � Iv:

These matrices are justified reasoning as in the blocks AðMÞ0 .

A.3. Final boundary blocks

These matrices can be constructed in a similar way to the previous ones.

Bn�1;n�1 ¼

Bn�1;n�1ð1; 1Þ

Bn�1;n�1ð2; 1Þ Bn�1;n�1ð2; 2Þ

Bn�1;n�1ð3; 2Þ Bn�1;n�1ð3; 3Þ

2
664

3
775

D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508 507

being

Bn�1;n�1ð1; 1Þ ¼ T � Incv þ Im � Sc � Iv þ Imnc � Lþ Imnc � L0c

¼ ðT � ScÞ � ðLþ L0cÞ;

Bn�1;n�1ð2; 1Þ ¼
T 0ap � enp � Incv

0

� �
;

and

Bði;iÞn�1;n�1ð2; 2Þ ¼ T � Inpncv þ Im � Sp � Incv þ Imnp � Sc � Iv

þ Imnpnc � ðLþ L0cÞ; i ¼ 1; . . . ;M � 1;

Bði;i�1Þ
n�1;n�1ð2; 2Þ ¼ T 0ap � enpbp � Incv; i ¼ 2; . . . ; I � 1;

Bn�1;n�1ð3; 2Þ ¼ 0; T 0ap � enpbp � bc � Iv

� 	
;

Bn�1;n�1ð3; 3Þ ¼ T � Inpv þ Im � Sp � Iv þ Imnp � ðLþ L0cÞ;

Bn�1;n ¼
T 0 � Incv

0

� �
;

Bn;n�1 ¼ ½a� S0
cbc � Iv; 0	;

Bn;n ¼ Sc � ðLþ L0cÞ:

These matrices can be analyzed as the previous ones. We explain only the matrix the blocks Bði;i�1Þ
n�1;n�1ð2; 2Þ and

Bn�1,n�1(3,2), because they are different to the others previously considered. The block Bn�1,n�1(3, 2) repre-
sents the transition rate between the elements (n � 1,0)! (n � 2,1) in M2, all the others transition rates
(n � 1,0)! (n � j � 1, j), j 5 0 being null, and the non-null transition rate means that the online unit under-
goes a failure needing corrective repair and the unit being served in preventive repair becomes the online unit.
The block Bði;i�1Þ

n�1;n�1ð2; 2Þ represents the changes among the elements of M2 when there is only change of phase.
But by the assumptions, a failure of the online unit needing corrective repair is possible, then, the correspond-
ing unit in preventive repair interrupts the repair and becomes the online unit.

References

[1] G. Latouche, V. Ramaswami, Introduction for Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM, 1999.
[2] D. Montoro-Cazorla, R. Pérez-Ocón, A deteriorating two-system with two repair modes and sojourn times phase-type distributed,

Reliability Engineering and System Safety 91 (2006) 1–9.
[3] V. Naoumov, Matrix-multiplicative approach to quasi-birth-and-death processes analysis, in: S.R. Chakravarty, A.S. Alfa (Eds.),

Matrix-Analytic Methods in Stochastic Models, Marcel Dekker, New York, 1997, pp. 87–106.
[4] M.F. Neuts, Matrix Geometric Solutions in Stochastic Models. An Algorithmic Approach, John Hopkins, University Press, Baltimore,

1981.
[5] F. Neuts, R. Pérez-Ocón, I. Torres-Castro, Repairable models with operating and repair times governed by phase type distributions,

Advances in Applied Probability 34 (2000) 468–479.
[6] R. Pérez-Ocón, D. Montoro-Cazorla, A multiple system governed by a quasi-birth-and-death process, Reliability Engineering and

System Safety 84 (2004) 187–196.
[7] R. Pérez-Ocón, D. Montoro-Cazorla, Transient analysis of a repairable system, using phase-type distributions and geometric

processes, IEEE Transactions on Reliability 53 (2) (2004) 185–192.
[8] R. Pérez-Ocón, D. Montoro-Cazorla, A multiple warm standby system with operational and repair times following phase-type

distributions, European Journal of Operational Research 169 (2006) 178–188.
[9] R.H. Yeh, Optimal inspection and replacement policies for multi-state deteriorating systems, European Journal of Operational

Research 96 (1996) 248–259.

508 D. Montoro Cazorla, R. Pérez-Ocón / European Journal of Operational Research 190 (2008) 494–508

Bibliography

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1985.

[2] D. A. Bini, B. Meini, S. Steffé, and B. Van Houdt. Structured Markov
chains solver: software tools. Proceedings of SMCtools’06, 2006.

[3] X.-R. Cao and H.-F. Chen. Perturbation Realization, Potentials, and
Sensitivity Analysis of Markov Processes. IEEE Transactions on Auto-
matic Control, 42, 1997.

[4] G. Casella, M. Lavine, and C. Robert. Explaining the Perfect Sampler.
The American Statistician, 55:299–305, 2000.

[5] G. Ciardo and E. Smirni. ETAQA: An Efficient Technique for the
Analysis of QBD-processes by Aggregation. Performance Evaluation,
36-37, pages 71–93, 1999.

[6] M. Cordy and M.-A. Remiche. QBD sensitivity analysis tool using
discrete-event simulation and extension of SMCSolver. In 25th Annual
Conference of the Belgian Operations Research Society, pages 44–45,
2011.

[7] M. Cordy and M.-A. Remiche. QBD sensitivity analysis tool using
discrete-event simulation and extension of SMCSolver. In 5th Interna-
tional ICST Conference on Performance Evaluation Methodologies and
Tools, 2011.

[8] S. Dendievel, G. Latouche, and M.-A. Remiche. Perturbation analysis
of an M/PH/1 queue. In Performance 2010, posters, 2010.

[9] X. K. Dimakos. A Guide to Exact Simulation. International Statistical
Review, 69:27–48, 2000.

[10] I. S. Gradshteyn and I.M. Ryzhik. Table of integrals, series and products,
7th edition. Academic Press, 2007.

157

158 BIBLIOGRAPHY

[11] S. Hautphenne, K. Leibnitz, and M.-A. Remiche. Advances in Queue-
ing Theory and Network Applications, chapter 14, Modeling of P2P
File Sharing with a Level-Dependent QBD Process. Springer Sci-
ence+Business Media, 2009.

[12] B.R. Haverkort, A. P. A. van Moorsel, and A. Dijkstra. MGMtool: A
performance analysis tool based on matrix geometric methods. Mod-
elling Techniques and Tools, pages 312–316, 1993.

[13] T. Ho ßfeld, K. Leibnitz, and M.-A. Remiche. Exact Sojourn Time
Distribution in an Online IPTV Recording System. In Proceedings of
the 15th international conference on Analytical and Stochastic Modeling
Techniques and Applications, pages 158–172. Springer-Verlag, 2008.

[14] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, 1994.

[15] Leonard Kleinrock. Time-shared systems: a theoretical treatment. J.
ACM, 14:242–261, April 1967.

[16] Leonard Kleinrock and Simon S. Lam. Packet-switching in a slotted
satellite channel. In Proceedings of the June 4-8, 1973, national com-
puter conference and exposition, AFIPS ’73, pages 703–710, New York,
NY, USA, 1973. ACM.

[17] D. E. Knuth. The art of computer programming, volume 2 (3rd ed.):
seminumerical algorithms. Addison-Wesley Longman Publishing Co.,
Inc., 1997.

[18] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Meth-
ods in Stochastic Modeling. Society for Industrial Mathematics, 1999.

[19] L. M. Leemis and S. K. Park. Discrete-Event Simulation: A First
Course. Prentice Hall, 2006.

[20] J. S. H. Van Leeuwaarden, M. S. Squillante, and E. M. M. Winands.
Quasi-Birth-and-Death processes, lattice path counting, and hypergeo-
metric functions. Applied Probability, 46:507–520, 2009.

[21] J. S. H. Van Leeuwaarden and E. M. M. Winands. Quasi-birth-death
processes with explicit rate matrix. Stochastic Models, 22:77–98, 2006.

[22] Q.-L. Li and L. Liu. An Algorithmic Approach for Sensitivity Analy-
sis of Perturbed Quasi-Birth-and-Death Processes. Queueing Systems,
48:365–397, 2004.

[23] D. Montoro Cazorla and R. Pérez-Ocón. An LDQBD process under
degradation, inspection, and two types of repair. European Journal of
Operational Research, 190:494–508, 2008.

BIBLIOGRAPHY 159

[24] R. Pérez-Ocón and D. Montoro-Cazorla. A multiple system governed
by a quasi-birth-and-death process. Reliability Engineering and System
Safety, 84:187–196, 2004.

[25] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical Recipes in Fortran 77: The Art of Scientific Computing. Cam-
bridge University Press, 2 edition, 1992.

[26] IBM Research. Performance modeling and analysis. http://www.
research.ibm.com/compsci/performance/history.html, May 2011.

[27] Resnick and Sidney I. Adventures in stochastic processes. Birkhauser
Verlag, Basel, Switzerland, Switzerland, 1992.

[28] A. Riska and E. Smirni. MAMsolver: A matrix-analytic methods tool.
In 12th International Conference on Modelling Tools and Techniques for
Computer and Communication System Performance Evaluation, pages
205–211, 2002.

[29] C. P. Robert and G. Casella. Monte Carlo Statistical Methods (Springer
Texts in Statistics). Springer-Verlag New York, Inc., 2005.

[30] M. S. Squillante. MAGIC: A computer performance modeling tool based
on matrix-geometric techniques. In Fifth International Conference on
Modelling Techniques and Tools for Computer Performance Evaluation,
1991.

[31] E. Thönnes. A Primer in Perfect Simulation. In Statistical Physics and
Spatial Statistics, pages 349–378. Springer, 2000.

[32] H.C. Tijms. A First Course in Stochastic Models, chapter 9, Algorithmic
Analysis of Queues. Wiley, Chichester, 2003.

