Measurement of Direct Oral Anticoagulants Levels in Patients Admitted for Bleeding Events
Sennesael, Anne-Laure; Larock, Anne-Sophie; Douxfils, Jonathan; Dogne, Jean-Michel; Spinewine, Anne; Mullier, François
Published in:
Research and practice in thrombosis and haemostasis

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for published version (HARVARD):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
TABLE 1 Patient characteristics, management of bleeding and biological measurements for major bleeding events

<table>
<thead>
<tr>
<th>Gender, age (years)</th>
<th>CLcr (ml/min)</th>
<th>DOAC (dose, indication)</th>
<th>Time after last intake (hours)</th>
<th>Site of bleeding</th>
<th>DOAC plasma concentrations (ng/ml)</th>
<th>Management</th>
<th>Length of stay (days)</th>
<th>Outcome at 90 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>F, 70</td>
<td>Unknown</td>
<td>Rivaroxaban 15 mg OD, SPAF</td>
<td>22</td>
<td>Gl bleeding</td>
<td>Biophen DiXal: 237.5</td>
<td>RBC (3 units)*</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>F, 87</td>
<td>48</td>
<td>Rivaroxaban 20 mg OD, VTE</td>
<td>38</td>
<td>Gl bleeding</td>
<td>Biophen DiXal: 70.8</td>
<td>RBC (2 units)*</td>
<td>3</td>
<td>Alive</td>
</tr>
<tr>
<td>F, 67</td>
<td>53</td>
<td>Rivaroxaban 20 mg OD, SPAF</td>
<td>27</td>
<td>Gl bleeding</td>
<td>Biophen DiXal Low: 58.3</td>
<td>RBC (3 units)*</td>
<td>1</td>
<td>Alive</td>
</tr>
<tr>
<td>F, 74</td>
<td>73</td>
<td>Apixaban 5 mg BID, SPAF</td>
<td>5</td>
<td>IC bleeding</td>
<td>Biophen DiXal: 298.0</td>
<td>-</td>
<td>9</td>
<td>Alive</td>
</tr>
<tr>
<td>F, 77</td>
<td>61</td>
<td>Rivaroxaban 15 mg OD, SPAF</td>
<td>27</td>
<td>IC bleeding</td>
<td>Biophen DiXal: 139.4</td>
<td>PCC 2500 IU (40 IU/kg)</td>
<td>43</td>
<td>Alive</td>
</tr>
<tr>
<td>F, 76</td>
<td>33</td>
<td>Dabigatran etexilate 110 mg BID, SPAF</td>
<td>53</td>
<td>Gl bleeding</td>
<td>HTI Low: 19.0</td>
<td>RBC (1 unit)</td>
<td>34</td>
<td>Alive</td>
</tr>
<tr>
<td>F, 90</td>
<td>60</td>
<td>Rivaroxaban 15 mg OD, SPAF</td>
<td>27</td>
<td>IC bleeding</td>
<td>Biophen DiXal: 86.5</td>
<td>-</td>
<td>1</td>
<td>Alive</td>
</tr>
</tbody>
</table>

Results: Rivaroxaban and dabigatran, prolonged the CT but did not significantly alter the CFT, the α-angle and the MCF. At equivalent gravimetric concentrations dabigatran effect was more pronounced compared to rivaroxaban. When the two agents were combined no amplificatory effect on CT was observed. The α-angle and MCF were not significantly affected. Tinzaparin induced a significant prolongation of CT and CFT and reduced the α-angle and MCF values as compared to the control. Tinzaparin impact was significantly more potent than the DOAC combination used even at the higher studied concentrations.

Conclusions: When coagulation is triggered by physiologically relevant concentrations of TF, rivaroxaban and dabigatran prolong the CT, did not alter fibrin polymerization kinetics nor clot firmness. The combination of rivaroxaban and dabigatran did not alter clot formation process suggesting that the important effect of tinzaparin on clot formation quality is not linked to its anti-Xa or anti-IIa activity association but most probably is related to a direct interference with fibrin network and others antithrombin dependent inhibitory effects.

Background: Although direct oral anticoagulants (DOAC) do not require close laboratory monitoring, their measurement remains useful in specific clinical situations. A therapeutic range has not been defined yet, but DOAC plasma concentrations were shown to correlate with bleeding outcomes.

Aims: To describe DOAC plasma concentrations in patients with bleeding events, in relation to clinical and medication data.

Methods: As part of a prospective observational study conducted in the emergency departments of 2 hospitals, we collected 14 plasma samples from DOAC-treated patients admitted for bleeding events. Routine clotting assays were performed as well as specific assays using CE approved procedures (calibrated chromogenic anti-Xa assays for apixaban and rivaroxaban and diluted thrombin time and ecarin chromogenic assay for dabigatran). Clinical data were collected on admission, at discharge and at 90 days. Bleeding severity was assessed using ISTH definition. The study was approved by the Ethics Committees.

Results: Patients (median age 75 years) were mainly treated with rivaroxaban (10/14), for stroke prevention in atrial fibrillation (10/14). The most frequent site of bleeding was gastrointestinal (6/14). Seven bleedings were major (table 1).

Conclusions: A large range of DOAC plasma concentrations was observed, with above on-therapy levels estimated in around half of patients admitted for bleeding events. Among the factors contributing to bleeding, potential drug interactions are frequent in anticoagulated patients and should be screened.