
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Innovative Techniques and Tools for Database Reverse Engineering in Large Data
Intensive Systems

Gobert, Maxime; Maes, Jerome

Award date:
2013

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/cdf07317-0edb-47b4-a539-1c7621cd3a99

Facultés Universitaires Notre-Dame de la Paix, Namur
Faculté d’Informatique

Année académique 2012–2013

'

&

$

%

Innovative Techniques and Tools for Database

Reverse Engineering in Large Data Intensive

Systems

Maxime Gobert Jérôme Maes

Mâıtre de stage : Jens Weber

Promoteur : (Signature pour approbation du dépôt - REE art. 40)

Anthony Cleve

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques.

Acknowledgements
This work is the result of a three-month internship at University of Victoria in

Canada, British Columbia where we were integrated in a research project aiming to
build a Primary Care Research Network (PCRN) integrating several Electronic Medi-
cal Record (EMR) software systems. The PCRN will integrate information kept in the
EMR systems in order to make them accessible to medical research and data mining.
We worked on one of those EMR called OSCAR for Open Source Clinical Application
Resource on which we contributed to a database reverse engineering process.
Parts of the three months of work resulted in the publication of a paper for the 29th
IEEE International Conference of Software Maintenance 1. The paper was accepted as a
short paper and was entitled : Understanding Schema Evolution as a Basis for Database
Reengineering [15]. An extended version of this work has also been accepted for pub-
lication in Science of Computer Programming and will be published in 2014 under the
title Understanding Database Schema Evolution: A Case Study [6].

We would like to thank our supervisors Anthony Cleve and Jens Weber for their
support, their advices, their enthusiasm and their sympathy, which made this internship
and thesis an inspiring and interesting moment. With their conversation full of ideas
they succeeded to pass on their passion about databases. We also thank Jeremy Ho for
his technical help and contribution in reflection moments.

1http://icsm2013.tue.nl/

2

Abstract
Software evolution is a standalone and complex part of Software engineering. This topic
of research has been explored since the eighties with a starting roadmap by Lehman. The
importance of this activity has increased in the recent years due to ever-changing user
needs and target environments. Before starting to maintain or evolve a software system
it is crucial to understand it. Program comprehension, due to the raising complexity
of software, constitutes one of the most time-consuming and costly processes. Several
methods and techniques exist to support this process. As most actual systems use data,
we also have to evolve and understand the database. The database reverse engineering
process aims to help recover the database semantics and documentation. But applied to
large data systems the current methods may be limited.
This thesis aims to make database reverse engineering easier in presence of large data
intensive systems. We make use of techniques such as program analysis, execution trace
analysis, schema analysis, data analysis and software repository mining. We then report
on the application of the presented techniques and tools to a large case study.

3

4

Contents

1 Introduction & Motivation 9

1.1 System evolution . 9

1.2 Program comprehension & Reverse engineering 10

1.3 Database reverse engineering . 10

1.4 Research Questions . 11

1.5 Thesis Limit . 11

1.6 Thesis Structure . 11

2 State of the art 13

2.1 Database engineering . 13

2.2 Database reverse engineering . 15

2.3 Schema evolution . 18

2.4 Clustering & Filtering . 19

2.5 Program and Database Slicing . 20

3 Methodology 23

3.1 A revisited database reverse methodology 23

3.2 A modified schema refinement . 25

3.3 Understanding the schema . 27

4 Design 31

4.1 Inferring Foreign Key . 31

4.1.1 Where to find the foreign keys? . 31

4.1.2 Name analysis . 32

4.1.3 Mapping files . 34

4.2 Clustering & Summarization . 34

4.2.1 Cluster analysing . 34

4.2.2 Schema summarization . 37

4.3 Smart schema filtering . 40

4.4 Historical schema analysis . 43

4.4.1 Motivations & Concepts . 43

4.4.2 Methodology . 43

4.4.3 Specification . 44

5

6 CONTENTS

4.4.4 Algorithm . 45
4.5 Database slicing . 47

4.5.1 Downward slicing . 47
4.5.2 Upward slicing . 49

5 Implementation 51
5.1 DBMain & JIDBM . 51
5.2 Foreign key generator . 51

5.2.1 The Mapping File Parser . 51
5.2.2 Output files . 52

5.3 Historical Schema . 53
5.4 Filtering Tool . 54
5.5 Database Slicing . 55

5.5.1 Downward . 55
5.5.2 Upward . 57

5.6 Utility Tools . 57
5.6.1 Git Extractor . 57
5.6.2 SQL Transformation . 58
5.6.3 Encryption tool . 58

6 Case study : OSCAR 61
6.1 Context: The OSCAR System . 61

6.1.1 OSCAR’s Architecture . 62
6.2 Results . 62

6.2.1 Foreign Key Extraction . 62
6.2.2 Historical Schema . 65
6.2.3 Clustering . 71
6.2.4 Filtering . 72
6.2.5 Database Slicing . 74

7 Additional Discussion 79

8 Conclusion 81

9 Future works & Applications 85
9.1 Advanced Exploitation of Historical Schema 85
9.2 Enriched Database Slicing . 86
9.3 Extended clustering and Filtering . 86

A MediaWiki Historical Schema and statistics 95

List of Figures

2.1 Building process of a relational database 13

2.2 Detailed methodology of database reverse engineering (taken from [16]) . 16

2.3 Detail of the Schema Refinement process (taken from [16]). 18

3.1 A revisited methodology of database reverse engineering (inspired from
[16]) . 24

3.2 The modified Schema Refinement process (inspired from [16]) 26

3.3 Schema Refinement : inferring foreign key process 27

3.4 Schema Understanding : composition . 28

4.1 Dendogram of an example of hierarchical clustering 35

4.2 Example of summarization . 38

4.3 Global process . 44

4.4 Schema evolution example . 44

4.5 Global historical schema obtained from schema evolution of Figure 4.4 . . 45

4.6 DBSlicing - Downward : General scenario 48

5.1 Thread Implementation . 53

5.2 Example of records in a table . 59

5.3 Encrypted records of figure A.1 . 60

6.1 The OSCAR schema, as it can be viewed in DB-MAIN just after the SQL
extraction . 63

6.2 The property box of a foreign key . 63

6.3 The OSCAR global historical schema, as it can be viewed in DB-MAIN. . 66

6.4 The OSCAR global historical schema, when zooming on a particular table. 67

6.5 Evolution of the number of tables in the OSCAR database. 68

6.6 Evolution of the number of columns in the OSCAR database. 68

6.7 Evolution of the number of creation and deletion of tables per version in
the OSCAR database. 69

6.8 Evolution of the number of columns in the OSCAR database. 69

6.9 Classification of the OSCAR tables in terms of age VS size. 70

6.10 Classification of the OSCAR tables in terms of age VS number of changes. 70

6.11 Sample of the summarized schema . 71

7

8 LIST OF FIGURES

6.12 Filtering of caisi editor and system message 73
6.13 Log result of the upward slicing . 74
6.14 Screenshot of the form to add an appointment 75
6.15 Screenshot of the subschema impacted by ”adding an appointment” . . . 76

A.1 Historical schema of MediaWiki . 96
A.2 Column modification of MediaWiki per version 97
A.3 Table modification of MediaWiki per version 97
A.4 Table age vs table size (MediaWiki) . 98
A.5 Table stability (MediaWiki) . 98

Chapter 1

Introduction & Motivation

1.1 System evolution

Nowadays, information systems are becoming more and more complex and they are of
growing importance. Indeed the world is in permanent evolution and software systems
have to follow this evolution. We cannot tolerate to build a software system and keep it
as it is for a long period. Reasons for this are various: new technologies appear, those
include middleware, web services, ORM . . . , the user requirements evolve or the target
environment of the software and so on. In order to meet those evolutions a specific
process in Software engineering, the disciplined approach to build software, exists.
Software engineering is built on three main phases [21] :

• System definition : Systematic and structured analysis of the system and users in
order to define the needs and produce a requirement and a technical specification.

• Implementation : Concrete realisation of the specification. This process includes
the conception, the validation and the testing of each function.

• Maintenance : Modification to correct faults, to improve performance or to adapt
the software to an environment change or a requirement change.

Maintenance is the process that handles the evolution of the system. The software
evolution domain has been explored quite a long time ago by Lehman [19] [20], he
revealed that software evolution follows certain laws, such as declining quality, increasing
complexity or continuing growth.

Banker [1] shows the relation between the complexity of a software, its size, mod-
ularity and cohesion with the increasing costs of the maintenance step in a program’s
life-cycle.
Maintenance is then an important, complex and costly process. We will see in the next
section that it has also a strong link with the reverse engineering process.

9

10 CHAPTER 1. INTRODUCTION & MOTIVATION

1.2 Program comprehension & Reverse engineering

As seen in the previous section, systems evolve and the maintenance process is crucial in
the program life-cycle. To be effective in this process, programmers or modellers depend
on the comprehension of their working environment, tools, software or databases. For
instance legacy systems are old and complex, the team who created the program in the
first place are often no longer there, the importance of documentation is then crucial in
order to understand the system before considering to evolve it.

Unfortunately it is very rare that such documentation is available. Either the doc-
umentation has never been written or it has become obsolete. Since no change can be
made to an information system before one can get a precise and detailed knowledge on
its functional and technical aspects, there is a strong need for rebuilding the lost docu-
mentation of the system to be maintained.

Therefore an important part of the maintenance process (60% according to relatively
old references [10], [2]) is devoted to Program Comprehension and Reverse Engineering,
the goal of which is to recover proper documentation, a higher level of abstraction, from
available artefacts such as source code, data or program architecture.
Program comprehension is also a complex process because it is directed by several meth-
ods, depends on the knowledge of the developer and on the available artefacts. Different
techniques can be used to guide the comprehension process. We can mention for exam-
ple, textual analysis, syntactical analysis, control flow or the data flow analysis . . .
In [26] all methods and techniques are listed, and the complexity of the task is discussed.
Our work was motivated by a re-engineering process. This process, in addition to reach-
ing a higher level of abstraction needed in program comprehension, aims to rewrite the
code in a new form. Such a task may arise when user requirements or environment
changes occur. In our case it was the need for a database migration that conducted
our research. To fulfil this goal, we do not only need to understand the programs, but
we also need to understand the database. Database comprehension is reached through
a specific process called Database revere engineering. The next sections of this work
mainly focus on this process.

1.3 Database reverse engineering

In addition to database restructuring, migration or evolution, the database reverse engi-
neering process can be needed prior to any modification of data-intensive software. The
database is indeed very present and important in each of the three Software engineering
processes.

In the design phase, the database must represent adequately the application domain.
In the implementation phase we have to build it following transformation rules to fit the
specified DBMS model and manage it using the right technology in the source code and
following good practices. Finally the maintenance phase will impact the database as
well, since all evolution of user requirements or modification of the system may involve

1.4. RESEARCH QUESTIONS 11

the modification of the database schema or at least the way the database is used by the
programs.

This is why database reverse engineering has become an increasingly important pro-
cess. It is indeed crucial to recover the database documentation. Comprehension of
the database can help getting rid of dead structure, improve bad design, or reduce the
complexity of the source code. Therefore improving the performance and stability of a
system, regaining the control of the heart of the system.
Methods and techniques already exist to support the database reverse engineering pro-
cess, see Section 2.2 but those can be improved with additional steps and techniques,
with the aim to take into account the growing size of actual database structures and the
emergence of new data manipulation technologies used in the source code.

1.4 Research Questions

This thesis aims to propose a revisited database reverse engineering method and to
present a set of new techniques and tools supporting this method. These techniques
and tools aim to support the recovery and understanding of a undocumented database
structure. The main novelty of this work consists in mining the past and the evolu-
tion of the database schema, in order to reach an enriched and finer-grained database
comprehension. These main questions will be the conduct line of this thesis :

• Which new techniques can support the database reverse engineering process?

• How can we support the visualization and comprehension of large database schemas?

• To what extent can the history of a database schema help the understanding of its
current version?

1.5 Thesis Limit

This thesis focuses on the recovery of the logical schema of a database. As we will see,
the database reverse engineering process is made of several steps which ends with the
conceptualization phase. Conceptualization requires a good understanding of the appli-
cation domain. Our techniques and tools do not support the recovery of a conceptual
database schema, but they aim to recover, read and understand a database schema at
the logical level.

1.6 Thesis Structure

Chapter 2 presents the state of the art related to database engineering and reverse engi-
neering, schema evolution, clustering techniques and program slicing. This chapter aims
to give an overview of the different existing approaches in the research community of
these domains. The ”Methodology” chapter details a modified methodology in database

12 CHAPTER 1. INTRODUCTION & MOTIVATION

reverse engineering, and explains the changes brought in this thesis. Chapter 4 presents
the design of some steps described in chapter 3. It contains the specifications of the
techniques applied in a database reverse engineering process. Chapter 5 exposes a few
implementation details of the developed tools. Chapter 6 constitutes in a case study to
validate the developed techniques. The chosen application is OSCAR, a Electronic Med-
ical Record (EMR) designed to help improve health care from individual to population
health levels while reducing costs. Chapter 8 concludes this thesis and chapter 9 open
discussion about the future works to improve and extend the techniques.

Chapter 2

State of the art

2.1 Database engineering

Since this work mainly focusses on databases and database reverse engineering, it is a
prerequisite to have some basic notions of the database engineering process. We will
describe this process in this section.

User
Requirements Conceptual schema

Logical schema

Physical schema

SQL-DDL Code

Requirements
analysis

Logical Design

Physical Design

Coding

Figure 2.1: Building process of a relational database

The database engineering process aims to build a database by following a disciplined
approach [18]. Several steps are needed, each step guided by specific goals and using
its own artefacts as input and producing its specific outputs. Those steps incrementally
decrease the level of abstraction starting from the user requirements and ending with

13

14 CHAPTER 2. STATE OF THE ART

the SQL DDL Code.
The global process is depicted in 2.1. First, the requirements analysis phase takes

as input the user requirements, the developers get them through interviews and docu-
mentation about the application domain. It formalises the requirements in a conceptual
schema. This schema is expressed in the Entity-relationship model. It is the highest level
of abstraction of all the database schemas produced during the engineering process. The
database is described through three main schema constructs:

• Entity types : represent concepts of the application domain. Such as Order, Client
or Product. An instance of an entity type is an entity. Entity types can also be
part of a hierarchy of entity types, through is-a relations.

• Relationship Types : Relationships between entity types can exist and express
other concepts of the application domain. For example a client buys a product.
This relationship belongs to a class in the conceptual schema which is the relation-
ship type.

• Attributes : Relationship or entities can have characteristics of their own, those
are attributes. For instance a client has a name and an address.

The second step consists in transforming the conceptual schema into the logical
schema. This step is called logical design. The logical schema is usually based on
the relational model (for relational database management systems1, there exist other
types of databases that follow other models but they are not explored in this thesis),
thus it must be comply with the available data structures. Two main structures define
the relational model :

• Tables : Represent an entity type, it is a set of attributes. A database is a set of
tables. An entity will be represented by a row.

• Columns : Represent the attributes of an entity type. Values of specific types can
be assigned to them.

Specific constraints can be assigned to ensure the semantic preservation of the orig-
inal conceptual schema. Identifiers are a uniqueness constraint on a particular column
or set of columns. If such a constraint exists, the table cannot have two distinct rows
having the same values as identifiers. Foreign keys represent a referential constraint
between two tables. The columns that are declared as foreign keys in the source table
must have values that exist in the corresponding columns of the target table.
To transform a schema to another schema following another model, there exist specific
transformation rules described in detail in [17].

The third phase of the engineering process is the physical design, it is a simple task
that consists of adding indexes, assigning physical spaces to tables, or defining views to

1called DBMS from this point

2.2. DATABASE REVERSE ENGINEERING 15

increase the robustness and the efficiency of the database. The output is the Physical
schema.
Finally the coding phase takes the physical schema and translates it into an executable
code for a particular DBMS, for relational ones the language will be SQL-DDL. This
phase is generally fully-automated.

2.2 Database reverse engineering

Understanding a database schema is important to know the conceptual representation, to
understand the application domain. Without available documentation, reverse engineer-
ing is necessary. It is generally intended to redocument, convert, restructure, maintain
or extend legacy applications. But as the main goal is to recover the documentation, this
documentation being then used to serve further goals. From [16], those main objectives
are :

1. System maintenance. To maintain the system (fixing bugs, modifying the imple-
mentation, . . .), the understanding of the system is needed.

2. System reengineering. Changing the internal architecture without modifying the
external specification to obtain a cleaner implementation. The technical aspect
must be the focus.

3. System extension. To add some features to a system, the existing functions must
be known.

4. System integration. Merging two systems together is not a simple operation. The
specifications of both systems are required, even for the database.

5. Quality assessment. Analysing the code and the data structures of a system in
some detail can bring useful clues about the quality of this system, and about the
way it was developed.

6. Data extraction/conversion. In some situations, the only component to salvage
when abandoning a legacy system is its database. To use this data in another
system, they usually have to be converted in another format. The semantics of
these data must be known.

7. Data Administration. DBRE is also required when developing a data administra-
tion function that has to know and record the description of all the information
resources of the organization.

8. Component reuse. Adding new components into a legacy system can bring some
already existing functions. Reverse engineering can give to the developer the cur-
rent functions of the system to avoid double component, and support the reuse of
the existing ones.

16 CHAPTER 2. STATE OF THE ART

4-8 4 • A general database reverse engineering

! J-L Hainaut 2002 12/5/2002

4.4 The Data Structure Conceptualization phase

This second major phase addresses the conceptual interpretation of the DMS schema. It con-
sists for instance in detecting and transforming or discarding non-conceptual structures, re-
dundancies, technical optimization and DMS-dependent constructs. Besides the Preparation
phase, which will not be further developed in this presentation, the Conceptualization phase
comprises two main processes, namely Basic conceptualization and Conceptual normaliza-
tion (Figure 4-4).

Figure 4-4: General architecture of the Data Structure Conceptualization phase.

• Preparation.
The logical schema obtained so far may includes constructs that must be identified and
discarded because they convey no semantics. There are two main kinds of such con-
structs. The dead data structures are obsolete, but have been carefully left in the data-
base by the successive programmers. Several hints can help identify them: they are not
referred to by any program, they are used by dead sections of programs only, they have
no instances, their instances have not be updated for a long time. The technical data
structures have been introduced as internal constructs for the programs, and are not

(O ptim ized)
L ogical schem a

(N orm alized)
C on ceptual schem a

R aw concep tua l sch .

Norm alization

Preparation

De-optim ization

Untranslation

B
as
ic

C
on
ce
pt
ua
liz
at
io
n

4.3 The Data Structure Extraction phase 4-7

12/5/2002 ! J-L Hainaut 2002

among others, procedural sections in the application programs, JCL scripts, GUI proce-
dures, screens, forms and reports, triggers and stored procedures. In addition, the non
encoded part of the system, i.e. E("), must be analyzed as well because it can provide
evidences for lost constructs. This part includes file contents, existing documentation,
experimentation, personnel interviews as well as the system environment behavior.

• Schema cleaning.
The specific technical construct such as indexes, clusters and files have been used in
refinement heuristics. They are no longer needed, and can be discarded in order to get
the complete logical schema.

Figure 4-3: General architecture of the Data Structure Extraction phase.

It is interesting to note that this schema is the document the programmer must consult to fully
understand all the properties of the physical data structures (s)he intends to work on. In some
cases, merely recovering this schema is the main objective of the programmer, who can be
uninterested by the conceptual schema itself. Hence the importance of identifying this inter-
mediate product, and of defining the independent phases Extraction and Conceptualization.

raw users viewsraw users views

D D L co d e E x tra ctio n

P h y sica l In tegra tio n S ch em a R efin em en t

S ch em a C lean in g

raw p h y s ic a l s ch em as

v iew co d e dd lsch e m a co d e d d l

ex p lic it p h y sica l sch .

co m p le te p h y sica l sch .

c o d e ex t E (")

(O p tim ized)
L o g ic a l sch em a

D
at

a
St

ru
ct

ur
e

Ex
tr

ac
tio

n
D

at
a

St
ru

ct
ur

e
C

on
ce

pt
ua

liz
at

io
n

Figure 2.2: Detailed methodology of database reverse engineering (taken from [16])

As mentioned in [16], the general database reverse engineering methodology is con-
sidered as the reverse of the forward engineering process. Figure 2.2 shows the different
phases with their corresponding inverse.

The main process of the reverse methodology is divided in 2 main phases with sub-
processes :

2.2. DATABASE REVERSE ENGINEERING 17

1. Data structure extraction : This step aims to rebuilt the physical and the logi-
cal schema including all the implicit and explicit structures and constraints. For
this we have to use as input the available code, the ddl2 code as well as the trig-
gers, procedures, application code. . . The main challenge is to recover the implicit
constructs.

2. Data structure conceptualization : This process tries to specify the semantic struc-
tures of this logical schema as a conceptual schema. The logical schema must be
untranslated. Through this process, the analyst identifies the traces of such trans-
lations, and replaces them with their original conceptual constructs. Then, the
result is de-optimized : the logical schema is searched for traces of constructs de-
signed for optimization purposes. And finally, the process restructures the basic
conceptual schema.

In our work we focus on the Data Structure Extraction process. The first part
of the figure (figure 2.2, page 16) explain the different phases of the process :

DDL code Extraction : This phase consists in extracting the code of every part of
the schema (all the different partial views, subschemas, source code files, . . .).

Physical integration : When more than one DDL source has been processed, the
analyst is provided with several, generally different extracted (and possibly refined)
schemas. The final logical schema must include the specifications of all these partial
views, through a schema integration process.

Schema refinement : The input explicit schema is only based on the explicit con-
structs found in the system. But this is not enough; all the useful information are
not always expressed in the DDL code.

An explicit construct is a component or a property of a data structure
that is declared through a specific DDL statement. An implicit construct
is a component or a property that holds in the data structure, but that
has not been declared explicitly. In general, the DMS is not aware of
implicit constructs, though it can contribute to its management (through
triggers for instance). The analysis of the DDL statements alone leaves
the implicit constructs undetected.[16]

Indeed, the application itself can help to find other information, such as the GUI,
screens, forms, There is a large set of potentially implicit schema constructs,
as shown in Figure 2.3. They are crucial in recovering the logical schema as
the set of explicit construct can be very small compared to the set of implicit
ones. According to [16] up to 50% of the schema structures and constructs can be
implicit. One simple example for those implicit constructs are the foreign keys. In
old legacy systems relying on old database management systems such as MyIsam,

2Data Definition Language

18 CHAPTER 2. STATE OF THE ART

5-6 5 • The data structure extraction process

! J-L Hainaut 2002 20/5/2002

no standard way to code a specific integrity constraint.
2. Application programs.

The way data are used, transformed and managed in the programs brings essential infor-
mation on the structural properties of these data. For instance, through the analysis of
data validation procedures, the analyst can learn what the valid data values are, and
therefore what integrity constraints are enforced. This kind of search is called Usage pat-
tern analysis.
Being large and complex information sources, programs require specific analysis tech-
niques and tools. Dataflow analysis, dependency analysis, programming cliché analysis
and program slicing are some examples of program processing techniques that resort to
the domain of program understanding. They will be described below.

Figure 5-3: Detail of the Schema Refinement process.

3. HCI procedural fragments.
The user-program dialogs generally are monitored by procedures that are triggered by
interface events or by database update events. Quite often, these procedures are intended
to protect the data against invalid operations, and therefore implement integrity con-

E (")

cod eext

exp lic it p hy sical sch .

com plete ph ysica l sch .

Schem a
R efin em en t

Schem a
A nalysis

P rogram
A nalysis

F orm s/S creen
A n alysis

E xtern . S pecific .
A na lysis

Interv iew
A n alysis

D ata A na lysis

E xtern . docu m ents
A nalysis

E xp erim entation

D M S generic co de

P ro g ram s

H M I proc . frag m ents

C h eck
T rigg ers

S t. P ro ced ures

S creens R ep orts F o rm s

D o cu m enta tio n
E x te rn . D a ta D iction .

C A S E rep osito rie s

U sers in te rv iew s
D eve lop . in te rv iew s

E xp erts in te rv iew s

D ata

W o rkshee ts
F orm atted tex ts

P rog . execu tio n

Figure 2.3: Detail of the Schema Refinement process (taken from [16]).

the foreign keys could not be handled, and therefore it was not possible to declare
them in the DDL code. Other techniques had to be used. Since it is difficult to
imagine a database schema without referential constraints, the recovery of such
implicit constructs is mandatory. Due to the emergence of new technologies and
the increasing complexity of software systems, we have added new artefacts to
be considered in the Schema refinement process, such as the property files of an
ORM or the history of the DDL code. Cleve et al.[8] have also contributed to the
enrichment of the schema refinement process. They proposed different techniques
to explore SQL statement execution traces. The modified methodology of DBRE
is detailed in 3.

2.3 Schema evolution

There exists a series of previous works regarding schema evolution [25]. Those include
database schema evolution as well as application/software evolution or even ontology evo-
lution. Works regarding database evolution are mostly about object oriented databases.

2.4. CLUSTERING & FILTERING 19

An example of work is Lerner [22]. They provide support for schema changes in
object-oriented database. The developer uses a declarative notation to map the old ver-
sion objects with the new ones. They provide a tool that applies those mappings to
update the database schema as well as the data, while enforcing data correctness and
completion.

In [28] the authors try to quantify the changes applied to a schema during a certain
period of time and show their consequences.
The work of Curino et al. [11] is a first step in analysing and supporting the schema
evolution of a relational database. The authors provide a support for the database
administrator regarding the impact of a particular evolution of schema. The goal is
to guarantee information preservation, redundancy control and invertibility. Given a
set of SQL requests, a database schema and SMOs (Schema modification operators),
the tool generates equivalent SQL requests and a migrated schema. This approach is
operation-driven and the history of versions is used to confirm information preservation.

As a byproduct of its use this tool creates a complete, unambiguous documentation of
the schema evolution history, which is invaluable to support data provenance, database
flash backs, historical queries, and user education about standard practices, methods
and tools.

Those works have analysed rather small schemas for a quite short period of time.
Sjoberg [28] works on a schema growing from 23 to 55 tables in a one year. Curino et
al. [11] has worked on the Wikipedia database schema, considering a period of 4 years
(171 versions) during which the database has grown from 17 to 34 tables.

In our work we will present a new approach schema evolution analysis. We use
the source code repository as input artefact and create a global, integrated view of the
database schema history (see section 4.4). This innovative approach aims to support
the understanding the current database schema and of the programs and it consistutes
a basis for supporting future evolutions. Moreover our case study is much larger than
the previous studies in this field, it considers a period of ten years and a current schema
version including more than 400 tables.

2.4 Clustering & Filtering

Antonio Villegas and Antoni Olivé [30] focused on the problem of filtering a fragment
of the knowledge contained in a large conceptual schema. There are many information
system development activities in which people need to get a piece of the knowledge
contained in the conceptual schema. The larger the schema is, the more difficult it is for
a user to get the interesting knowledge he needs.

The goal of the authors is not simply to divide a large schema, but to fragment it
into subset of entities relevant for the user. They propose a new technique to identify
important entities: they do not believe all entity are equally important for a user.

Their method computes the interest as a combination of the closeness and importance

20 CHAPTER 2. STATE OF THE ART

to obtain a ranking of the most interesting (according to the knowledge request) entity
types to the user. The closeness between 2 elements is the distance between them, in
term of distance name (for example). They define the importance of an element as the
number of connection it has with the rest of the schema. The more connections exist,
the more important is that element. A filtered conceptual schema is a subset of the
original one, and thanks of its reduced size it is more comprehensible to the user.

The authors assume that finding relevant information for a user from a conceptual
schema (CS) includes three components :

1. Focus Set (FS) : what the user is interested in about the schema.

2. Rejection Set (RS) : the entities that the user do not want to be part in the result
(the filtered schema).

3. Filter Size (K) : the number of entities in the filtered schema, e.i. how much
knowledge the user wants to obtain.

The importance of a table belonging to the CS is a real number. The chosen methods
by Antonio Villegas and Antoni Olivé are those based on link analysis : the more
important the entity types connected to an entity type are, the more important such
entity types will be. In [29], the authors explain the way they compute the importance
(Ψ).

The closeness (Ω) between a candidate entity type e and the focus set FS should be
directly related to the inverse of the distance of e to FS. The interest takes into account
both the measure of the importance and the closeness, with a balancing parameter (α).
This is used to set the preference between closeness and importance.

Φ(e,FS) = α×Ψ(e) + (1− α)× Ω(e,FS) (2.1)

The result set will contain the K− | FS | top candidates entities.
The authors provide a set of transformation for the constraints : the integrity con-

straints, IsA relationships and relationship types are maintained in the filtered schema,
even if some entities are not in the filtered schema.

2.5 Program and Database Slicing

Program slicing has been a prolific research area since Mark Weiser invented it in 1981
[31]. The original idea is to decompose a program, obtaining the statements related
to a specific value or a specific statement called a slicing criterion. There exists two
kinds of slicing, the static one that only analyses the statements regarding a statement
and a set of variable only and giving as results the statements that affects this set for
any execution. And the other way is the dynamic way that takes into account different
instances of variables, and thus provides the statements regarding a specific execution
of the program. This technique is very useful for debugging.

2.5. PROGRAM AND DATABASE SLICING 21

Following this original idea lots of different algorithm and techniques were developed,
Backward slicing, finds the statements that could influence the slicing criterion, Forward
Slicing, finds all statements that could be influenced, Chopping, Relevant Slicing, and
so on, [27] lists and compares the most common techniques.

An interesting aspect of the program slicing is the Program Dependence Graph (PDG)
in [13]. This graph represents the dependencies between the successive operations of the
program. A node represents an operation. If another node is linked to it with a solid
arrow, this means that the execution of this node depends on the execution of the other.
Similarly a dotted arrow means there is a data dependency, one initializes some variables
used by another.
But now the system not only lays on the software itself, more and more systems are
data-intensive, they use data and need them to be operational. Program comprehension,
evolution and maintenance now also depend on the database. But so far very few authors
have integrated them into the program slicing process, only taking into account the data
dependencies of the program state, the database state is missing. Some have tried to
revisit the PDG and integrate new connections in order to improve the accuracy of the
computed slice and integrate the DB state. It is the case of Willmor, Embury and Shao
[33], they proposed to add two new connections to the PDG. The first one will represent
the interaction between program and the database state. The second one is between
statements that modify common parts of the database state. They then create new
relations between the nodes of the PDG that can be added to it and thus creating a
more complete graph. As conclusion of their work they proposed new forms of slicing to
investigate:

For example, rather than giving a set of variables of interest as part of the
slicing criterion, one could envisage supplying a list of tables or attributes
from the database schema. The slice produced would be limited to only those
statements that were directly or indirectly related to the manipulation of those
schema elements.

In our work we tried to contribute to this objective, our method is presented in 4.5.2.

Cleve et al. [5] extended the work of Willmor et al., they enlightened the complexity
and the different forms the Database Manipulation Language (DML) and tried to develop
a DML-independent way of constructing the PDG. This work focusses on recovering the
dependencies between program and database variables instead of program and database
statements.

Most of the techniques listed above do not (sufficiently) integrate the database in the
process of program slicing, however databases are more and more important in recent
software systems. Few techniques integrate it, but still some aspects can be further
explored by the developer who needs to understand the programs or the database. Most
approaches make us of static program analysis techniques. We have seen that dynamic

22 CHAPTER 2. STATE OF THE ART

analysis techniques also exists. In our work we tried to develop a new technique, inspired
by existing program slicing techniques, that integrates the database in the process and
uses dynamic program analysis approach. This technique is detailed in 4.5.1

Chapter 3

Methodology

Considering the classical approach to database reverse engineering, we will explain in
this section the methodology we followed, the problems encountered and the techniques
we developed to face those problems.

3.1 A revisited database reverse methodology

During our internship, we had to reverse engineer the database schema of the OSCAR
system. This software is a large data-intensive system that is completely described in
Chapter 6. Naturally, we used the methodology [16] explained in the state of art section
(Section 2.2) and illustrated in Figure 2.2. We encountered some limitations of the
methodology. Considering the size of the schema we found that an adapted methodology
and some new supporting techniques could be useful to facilitate the global process.

We started with the extraction of the DDL code from the different files constituting
the entire schema. The DDL code extraction, and the Physical Integration are
rather simple and consist in executing a command line to dump the database source
code.
The Schema Refinement process is the most important step since implicit constructs
have to be discovered. Our explicit physical schema is very large, and there are only
a dozen foreign keys explicitly declared. The Schema Refinement defined in Figure
2.3 could be extended with new artefacts due to the use of new technologies and the
emergence of new techniques. As said before new technologies appear and have to be
integrated in the reverse engineering process. We therefore decided to integrate those new
items in an extended Schema Refinement process. The modified process is illustrated
in Figure 3.2.

23

24 CHAPTER 3. METHODOLOGY

4-8 4 • A general database reverse engineering

! J-L Hainaut 2002 12/5/2002

4.4 The Data Structure Conceptualization phase

This second major phase addresses the conceptual interpretation of the DMS schema. It con-
sists for instance in detecting and transforming or discarding non-conceptual structures, re-
dundancies, technical optimization and DMS-dependent constructs. Besides the Preparation
phase, which will not be further developed in this presentation, the Conceptualization phase
comprises two main processes, namely Basic conceptualization and Conceptual normaliza-
tion (Figure 4-4).

Figure 4-4: General architecture of the Data Structure Conceptualization phase.

• Preparation.
The logical schema obtained so far may includes constructs that must be identified and
discarded because they convey no semantics. There are two main kinds of such con-
structs. The dead data structures are obsolete, but have been carefully left in the data-
base by the successive programmers. Several hints can help identify them: they are not
referred to by any program, they are used by dead sections of programs only, they have
no instances, their instances have not be updated for a long time. The technical data
structures have been introduced as internal constructs for the programs, and are not

(O ptim ized)
L ogical schem a

(N orm alized)
C on ceptual schem a

R aw concep tua l sch .

Norm alization

Preparation

De-optim ization

Untranslation

B
as
ic

C
on
ce
pt
ua
liz
at
io
n

4.3 The Data Structure Extraction phase 4-7

12/5/2002 ! J-L Hainaut 2002

among others, procedural sections in the application programs, JCL scripts, GUI proce-
dures, screens, forms and reports, triggers and stored procedures. In addition, the non
encoded part of the system, i.e. E("), must be analyzed as well because it can provide
evidences for lost constructs. This part includes file contents, existing documentation,
experimentation, personnel interviews as well as the system environment behavior.

• Schema cleaning.
The specific technical construct such as indexes, clusters and files have been used in
refinement heuristics. They are no longer needed, and can be discarded in order to get
the complete logical schema.

Figure 4-3: General architecture of the Data Structure Extraction phase.

It is interesting to note that this schema is the document the programmer must consult to fully
understand all the properties of the physical data structures (s)he intends to work on. In some
cases, merely recovering this schema is the main objective of the programmer, who can be
uninterested by the conceptual schema itself. Hence the importance of identifying this inter-
mediate product, and of defining the independent phases Extraction and Conceptualization.

raw users viewsraw users views

D D L co d e E x tra ctio n

P h y sica l In tegra tio n S ch em a R efin em en t

S ch em a C lean in g

raw p h y s ic a l s ch em as

v iew co d e dd lsch e m a co d e d d l

ex p lic it p h y sica l sch .

co m p le te p h y sica l sch .

c o d e ex t E (")

(O p tim ized)
L o g ic a l sch em a

D
at

a
St

ru
ct

ur
e

Ex
tr

ac
tio

n
D

at
a

St
ru

ct
ur

e
C

on
ce

pt
ua

liz
at

io
n

4-8 4 • A general database reverse engineering

! J-L Hainaut 2002 12/5/2002

4.4 The Data Structure Conceptualization phase

This second major phase addresses the conceptual interpretation of the DMS schema. It con-
sists for instance in detecting and transforming or discarding non-conceptual structures, re-
dundancies, technical optimization and DMS-dependent constructs. Besides the Preparation
phase, which will not be further developed in this presentation, the Conceptualization phase
comprises two main processes, namely Basic conceptualization and Conceptual normaliza-
tion (Figure 4-4).

Figure 4-4: General architecture of the Data Structure Conceptualization phase.

• Preparation.
The logical schema obtained so far may includes constructs that must be identified and
discarded because they convey no semantics. There are two main kinds of such con-
structs. The dead data structures are obsolete, but have been carefully left in the data-
base by the successive programmers. Several hints can help identify them: they are not
referred to by any program, they are used by dead sections of programs only, they have
no instances, their instances have not be updated for a long time. The technical data
structures have been introduced as internal constructs for the programs, and are not

(O ptim ized)
L ogical schem a

(N orm alized)
C on ceptual schem a

R aw concep tua l sch .

Norm alization

Preparation

De-optim ization

Untranslation

B
as
ic

C
on
ce
pt
ua
liz
at
io
n

4.3 The Data Structure Extraction phase 4-7

12/5/2002 ! J-L Hainaut 2002

among others, procedural sections in the application programs, JCL scripts, GUI proce-
dures, screens, forms and reports, triggers and stored procedures. In addition, the non
encoded part of the system, i.e. E("), must be analyzed as well because it can provide
evidences for lost constructs. This part includes file contents, existing documentation,
experimentation, personnel interviews as well as the system environment behavior.

• Schema cleaning.
The specific technical construct such as indexes, clusters and files have been used in
refinement heuristics. They are no longer needed, and can be discarded in order to get
the complete logical schema.

Figure 4-3: General architecture of the Data Structure Extraction phase.

It is interesting to note that this schema is the document the programmer must consult to fully
understand all the properties of the physical data structures (s)he intends to work on. In some
cases, merely recovering this schema is the main objective of the programmer, who can be
uninterested by the conceptual schema itself. Hence the importance of identifying this inter-
mediate product, and of defining the independent phases Extraction and Conceptualization.

raw users viewsraw users views

D D L co d e E x tra ctio n

P h y sica l In tegra tio n S ch em a R efin em en t

S ch em a C lean in g

raw p h y s ic a l s ch em as

v iew co d e dd lsch e m a co d e d d l

ex p lic it p h y sica l sch .

co m p le te p h y sica l sch .

c o d e ex t E (")

(O p tim ized)
L o g ic a l sch em a

D
at

a
St

ru
ct

ur
e

Ex
tr

ac
tio

n
D

at
a

St
ru

ct
ur

e
C

on
ce

pt
ua

liz
at

io
n

4-8 4 • A general database reverse engineering

! J-L Hainaut 2002 12/5/2002

4.4 The Data Structure Conceptualization phase

This second major phase addresses the conceptual interpretation of the DMS schema. It con-
sists for instance in detecting and transforming or discarding non-conceptual structures, re-
dundancies, technical optimization and DMS-dependent constructs. Besides the Preparation
phase, which will not be further developed in this presentation, the Conceptualization phase
comprises two main processes, namely Basic conceptualization and Conceptual normaliza-
tion (Figure 4-4).

Figure 4-4: General architecture of the Data Structure Conceptualization phase.

• Preparation.
The logical schema obtained so far may includes constructs that must be identified and
discarded because they convey no semantics. There are two main kinds of such con-
structs. The dead data structures are obsolete, but have been carefully left in the data-
base by the successive programmers. Several hints can help identify them: they are not
referred to by any program, they are used by dead sections of programs only, they have
no instances, their instances have not be updated for a long time. The technical data
structures have been introduced as internal constructs for the programs, and are not

(O ptim ized)
L ogical schem a

(N orm alized)
C on ceptual schem a

R aw concep tua l sch .

Norm alization

Preparation

De-optim ization

Untranslation

B
a
si
c

C
o
n
c
e
p
tu
a
li
z
a
ti
o
n

4.3 The Data Structure Extraction phase 4-7

12/5/2002 ! J-L Hainaut 2002

among others, procedural sections in the application programs, JCL scripts, GUI proce-
dures, screens, forms and reports, triggers and stored procedures. In addition, the non
encoded part of the system, i.e. E("), must be analyzed as well because it can provide
evidences for lost constructs. This part includes file contents, existing documentation,
experimentation, personnel interviews as well as the system environment behavior.

• Schema cleaning.
The specific technical construct such as indexes, clusters and files have been used in
refinement heuristics. They are no longer needed, and can be discarded in order to get
the complete logical schema.

Figure 4-3: General architecture of the Data Structure Extraction phase.

It is interesting to note that this schema is the document the programmer must consult to fully
understand all the properties of the physical data structures (s)he intends to work on. In some
cases, merely recovering this schema is the main objective of the programmer, who can be
uninterested by the conceptual schema itself. Hence the importance of identifying this inter-
mediate product, and of defining the independent phases Extraction and Conceptualization.

raw users viewsraw users views

D D L co d e E x tra ctio n

P h y sica l In tegra tio n S ch em a R efin em en t

S ch em a C lean in g

raw p h y s ic a l s ch em as

v iew co d e dd lsch e m a co d e d d l

ex p lic it p h y sica l sch .

co m p le te p h y sica l sch .

c o d e ex t E (")

(O p tim ized)
L o g ic a l sch em a

D
a
ta

 S
tr

u
c
tu

r
e
 E

x
tr

a
c
ti

o
n

D
a
ta

 S
tr

u
c
tu

r
e
 C

o
n

c
e
p

tu
a
li

z
a
ti

o
n

Schema
Understanding

4-8 4 • A general database reverse engineering

! J-L Hainaut 2002 12/5/2002

4.4 The Data Structure Conceptualization phase

This second major phase addresses the conceptual interpretation of the DMS schema. It con-
sists for instance in detecting and transforming or discarding non-conceptual structures, re-
dundancies, technical optimization and DMS-dependent constructs. Besides the Preparation
phase, which will not be further developed in this presentation, the Conceptualization phase
comprises two main processes, namely Basic conceptualization and Conceptual normaliza-
tion (Figure 4-4).

Figure 4-4: General architecture of the Data Structure Conceptualization phase.

• Preparation.
The logical schema obtained so far may includes constructs that must be identified and
discarded because they convey no semantics. There are two main kinds of such con-
structs. The dead data structures are obsolete, but have been carefully left in the data-
base by the successive programmers. Several hints can help identify them: they are not
referred to by any program, they are used by dead sections of programs only, they have
no instances, their instances have not be updated for a long time. The technical data
structures have been introduced as internal constructs for the programs, and are not

(O ptim ized)
L ogical schem a

(N orm alized)
C on ceptual schem a

R aw concep tua l sch .

Norm alization

Preparation

De-optim ization

Untranslation

Ba
sic

Co
nc
ep
tua

liz
ati
on

4.3 The Data Structure Extraction phase 4-7

12/5/2002 ! J-L Hainaut 2002

among others, procedural sections in the application programs, JCL scripts, GUI proce-
dures, screens, forms and reports, triggers and stored procedures. In addition, the non
encoded part of the system, i.e. E("), must be analyzed as well because it can provide
evidences for lost constructs. This part includes file contents, existing documentation,
experimentation, personnel interviews as well as the system environment behavior.

• Schema cleaning.
The specific technical construct such as indexes, clusters and files have been used in
refinement heuristics. They are no longer needed, and can be discarded in order to get
the complete logical schema.

Figure 4-3: General architecture of the Data Structure Extraction phase.

It is interesting to note that this schema is the document the programmer must consult to fully
understand all the properties of the physical data structures (s)he intends to work on. In some
cases, merely recovering this schema is the main objective of the programmer, who can be
uninterested by the conceptual schema itself. Hence the importance of identifying this inter-
mediate product, and of defining the independent phases Extraction and Conceptualization.

raw users viewsraw users views

D D L co d e E x tra ctio n

P h y sica l In tegra tio n S ch em a R efin em en t

S ch em a C lean in g

raw p h y s ic a l s ch em as

v iew co d e dd lsch e m a co d e d d l

ex p lic it p h y sica l sch .

co m p le te p h y sica l sch .

c o d e ex t E (")

(O p tim ized)
L o g ic a l sch em a

Da
ta

Str
uc

tur
e E

xtr
ac

tio
n

Da
ta

Str
uc

tur
e C

on
cep

tua
liz

ati
on

Figure 3.1: A revisited methodology of database reverse engineering (inspired from [16])

3.2. A MODIFIED SCHEMA REFINEMENT 25

After the Schema Cleaning step, the schema was still huge, and complex. Reading
the schema to understand it is a difficult task, specially with a very large schema. Be-
fore starting the Conceptualization phase, it is required to understand the schema.
The available tools were not good enough in the presence of such a large schema. The
Preparation step requires some information about the logical schema, so we needed to
better understand the schema. We propose here several techniques that we applied in a
new process called ”Understanding the schema”. This new step comes just before
the Preparation step, as shown in Figure 3.1.

The Preparation step consists in preparing the schema to the conceptualization phase,
that is to say, removing obsolete structures (that are no longer used) and the technical
structures which do not model the application domain. The step also performs some
”cosmetic” changes such as improving convention names. [16].

The new step ”Understanding” is there to facilitate the job of the Preparation step.
To identify the obsolete structures, the technical ones, ... that must be removed because
they are not relevant for the conceptualization.

This new step will not transform the schema, but will bring information about
database objects to help the analyst to extract semantic concepts underlying the logical
schema. It could be very helpful during the Basic conceptualization. Understanding
the schema and the application domain is necessary when performing the Conceptual-
ization phase.

3.2 A modified schema refinement

As said above, system evolution is becoming more important and complex due to ap-
pearance of new technologies. Therefore new artefacts can emerge and those have to
be integrated into the reverse engineering methodology. Nowadays, it is not uncom-
mon for the systems to have an additional layer between the business-specific code and
the data. For instance, Object Relational Mapping1 frameworks such as Hibernate are
more and more used. The mapping files of those tools can contain valuable informa-
tion about the database schema, since these files map the relational database schema to
the object-oriented structures of the application programs. So, we decided to add this
aspect in the Schema Refinement step, as shown in Figure 3.2. This process takes
the mapping files as input, but it can also take all other potential sources from the ORM.

Here, we focus on the implicit constraints of the schema. There exist different techniques
to recover those constraints, as mentioned in [9]. Let us assume the main purpose of the
Schema Refinement is to recover the foreign keys. Foreign keys form a major struc-
turing construct in relational databases [4]. They bring important information about the
domain because they represent the relationships between entity types. Some artefacts of

1ORM, a layer that transforms data and database structure in object-oriented, creating thus a virtual
object database.

26 CHAPTER 3. METHODOLOGY

5-6 5 • The data structure extraction process

! J-L Hainaut 2002 20/5/2002

no standard way to code a specific integrity constraint.
2. Application programs.

The way data are used, transformed and managed in the programs brings essential infor-
mation on the structural properties of these data. For instance, through the analysis of
data validation procedures, the analyst can learn what the valid data values are, and
therefore what integrity constraints are enforced. This kind of search is called Usage pat-
tern analysis.
Being large and complex information sources, programs require specific analysis tech-
niques and tools. Dataflow analysis, dependency analysis, programming cliché analysis
and program slicing are some examples of program processing techniques that resort to
the domain of program understanding. They will be described below.

Figure 5-3: Detail of the Schema Refinement process.

3. HCI procedural fragments.
The user-program dialogs generally are monitored by procedures that are triggered by
interface events or by database update events. Quite often, these procedures are intended
to protect the data against invalid operations, and therefore implement integrity con-

E (")

cod eext

exp lic it p hy sical sch .

com plete ph ysica l sch .

Schem a
R efin em en t

Schem a
A nalysis

P rogram
A nalysis

F orm s/S creen
A n alysis

E xtern . S pecific .
A na lysis

Interv iew
A n alysis

D ata A na lysis

E xtern . docu m ents
A nalysis

E xp erim entation

D M S generic co de

P ro g ram s

H M I proc . frag m ents

C h eck
T rigg ers

S t. P ro ced ures

S creens R ep orts F o rm s

D o cu m enta tio n
E x te rn . D a ta D iction .

C A S E rep osito rie s

U sers in te rv iew s
D eve lop . in te rv iew s

E xp erts in te rv iew s

D ata

W o rkshee ts
F orm atted tex ts

P rog . execu tio n

5-6 5 • The data structure extraction process

! J-L Hainaut 2002 20/5/2002

no standard way to code a specific integrity constraint.
2. Application programs.

The way data are used, transformed and managed in the programs brings essential infor-
mation on the structural properties of these data. For instance, through the analysis of
data validation procedures, the analyst can learn what the valid data values are, and
therefore what integrity constraints are enforced. This kind of search is called Usage pat-
tern analysis.
Being large and complex information sources, programs require specific analysis tech-
niques and tools. Dataflow analysis, dependency analysis, programming cliché analysis
and program slicing are some examples of program processing techniques that resort to
the domain of program understanding. They will be described below.

Figure 5-3: Detail of the Schema Refinement process.

3. HCI procedural fragments.
The user-program dialogs generally are monitored by procedures that are triggered by
interface events or by database update events. Quite often, these procedures are intended
to protect the data against invalid operations, and therefore implement integrity con-

E (")

cod eext

exp lic it p hy sical sch .

com plete ph ysica l sch .

Schem a
R efin em en t

Schem a
A nalysis

P rogram
A nalysis

F orm s/S creen
A n alysis

E xtern . S pecific .
A na lysis

Interv iew
A n alysis

D ata A na lysis

E xtern . docu m ents
A nalysis

E xp erim entation

D M S generic co de

P ro g ram s

H M I proc . frag m ents

C h eck
T rigg ers

S t. P ro ced ures

S creens R ep orts F o rm s

D o cu m enta tio n
E x te rn . D a ta D iction .

C A S E rep osito rie s

U sers in te rv iew s
D eve lop . in te rv iew s

E xp erts in te rv iew s

D ata

W o rkshee ts
F orm atted tex ts

P rog . execu tio n

ORM
Analysis Mapping files

SQL Code

Figure 3.2: The modified Schema Refinement process (inspired from [16])

Figure 3.2 are not always available : No documentation, no other study results, no data,
impossible to interview experts. . . . Adaptive techniques have to be found regarding the
working environment.

Whatever the artefacts and the techniques used to discover implicit constructs, the
method follows the same principles. It is described in Figure 3.3. The first step is
finding them. Different techniques are available : heuristics based on column names,
SQL statement analysis, program slicing, DDL code analysis, etc and our new ORM
Analysis. When then extract a set of candidate implicit constructs. We therefore have
to proceed with a validation step which will ensure that those hypotheses are true. We
have to either validate or invalidate candidate foreign keys, by analysing the data, the
data usage or the technical constructs.

In addition we bring some new sources of information to increase the techniques to
find and/or validate the implicit constraints of a schema, during the Schema Refinement
step. This innovative way to disprove the potential foreign keys is by using the historical
schema (see section 4.4). Each column having a meta-attribute with its creation date,

3.3. UNDERSTANDING THE SCHEMA 27

explicit physical
schema

Foreign Key
Finder

explicit physical
schema with
potential FK

Foreign Key
Validation

explicit physical
schema with FK

validated

Figure 3.3: Schema Refinement : inferring foreign key process

we can confront them to disprove an hypothesis. Indeed if

∃FK : Order.idclient→ Client.Id : Order.idclient.creationdate ≥ Client.id.creationdate

We can exclude that this constraint is actually a foreign key. A target column cannot
have been created after the source column. Further use of the historical schema will be
explained in the next sections.

3.3 Understanding the schema

We added a preliminary Understanding step in the process of reverse engineering
(Figure 3.2). This was important before starting the conceptualization. Since the con-
ceptualization requires to analyse the complex logical structures (see [4] [16]) to convert
them into conceptual constructs such as is-a relationships, it is important to deeply
understand the semantics of tables and relationships. As we work with a large database
schema this step can be supported with several techniques as shown in Figure 3.4.

To understand a database schema (small or large), the first step is to read it. If that
phase can be very simple in the case of a small schema, the complexity and difficulty can
become very soon huge, and make the task impossible for a human being. A instinctive
way to make a read easier of something large and complex, is to order it, to rearrange
it or abstract it.

When you have the logical schema you may want to conceptualize it or refactoring
it. For that you need to read the schema and understand it, knowing the domain related
to the database is essential but in large data intensive system this task can be much
more complicated due to the size of the schema. To help with this step we applied the
concept of cluster to the database schema objects.

The clustering is a well-known method to group data : Cluster analysis or clustering
is the task of grouping a set of objects in such a way that objects in the same group
(called cluster) are more similar (in some sense or another) to each other than to those
in other groups. It is a main task of exploratory data mining, and a common technique
for statistical data analysis used in many fields.

In a reverse engineering context, the goal of such a method is to group the tables
having a link together, to infer some new information. The criterion must be chosen in
relation with what the developer is looking for. A cluster is a group of tables sharing
a common characteristic. For instance, tables can be grouped by their name thanks to

28 CHAPTER 3. METHODOLOGY

Slicing

(Optimized)
Logical schema

Understanding
schema

(Optimized)
Logical schema
+ informations

Schema
Clustering

Schema
Summarization

Clustered
Schema

Schema Filtering

Historical
Analysis

Summarized
Schema

Filtered
Schema

Criterion

Different
Schema versionDifferent

Schema versionDifferent Schema
versions

Historical
Schema

(Optimized)
Logical schema

(Optimized)
Logical schema

(Optimized)
Logical Schema

Downward

Execution

Impacted
Subschema

Code Upward

Name of a
Table

Related
Code

Figure 3.4: Schema Understanding : composition

techniques as alphabetic order (a cluster by letter) or distance name (with jaro-winkler
distance). As said above, the developer can be interested in grouping the tables in a
way where each cluster contain the table of a specific component. The clustering is also
a source of statistic information (the number of column, the number of row in a table (if
the data are available), . . . can be used too). Each property of a table can be a criterion
for the clustering. The clustering can make a schema more readable by grouping tables
according to what is relevant for the modeler, developer, tester, etc. The input for this
approach is simply the complete schema. We will explain in detail this technique in
section 4.2.

Even when the schema is ordered, the tables regrouped, it could still be difficult to
have a global view because of the schema largeness. A natural reflex, similar as when we
have to retain a long text, we simply outline it. The principle here is to create a sum-
marized schema from the clustered schema. A summarized schema is an abstraction
of the original schema. In this schema the tables symbolize the clusters, and a column
represent a particular table of the original cluster. This technique reduces the size of
the schema and allows a general view. The summarization method is detailed in Section
4.2.

As we said, reading a large schema can be a difficult task. Even if the schema is ordered,

3.3. UNDERSTANDING THE SCHEMA 29

the complexity is still there. A natural way is so to read the pieces of the schema that
are relevant for the followed purpose. In addition to the clustering process, we propose
a filtering technique. The purpose of this technique is to extract only a subset of
the schema. The clustering only adjusts the entire schema while the filtering focuses
on reducing it by providing a subset of interest to the user. The filtering approach is
inspired by the method of Villegas and Olivé [30] (described in Section 2.4), but applied
to a database schema. The tool we provide creates a new subschema containing the in-
teresting tables for a user regarding specific input criterion. This technique is described
in Section 4.3.

The fourth box of the process consists of an historical analysis. The technique per-
forms a comparison of all the versions of the database schema. Hence, the created and
deleted objects are outlined. The goal is to expose the evolution history of the database
schema, the life of all the database objects. Understanding it can indeed significantly
aid and inform current and future development activities. Questions such as : What are
the most stable tables?, Which tables are the most recent? or Which tables were created
or deleted at a certain period? can then be answered and are a crucial support in find-
ing the most important tables. These informations are necessary to start a migration
process or a refactoring. As said in the previous section, the technique can be used for
the foreign key validation but can also help detecting bad design pattern evolution, dead
code fragments, . . . This innovative technique is in its early stages of development and
multiple applications are still to be exploited. Section 9 anticipates some of them. The
historical schema can, for instance, constitute the input of the clustering and filtering
processes : the clustering can arrange the schema according to temporal criterion, and
the filtering can query the historical schema.
The specifications of the historical analysis will be described in Section 4.4.

The preparation step aims to detect dead structures in order to remove them for the
conceptualization. The dead data structures are obsolete, but have been carefully left in
the database by the successive programmers. Several hints can help identify them: they
are not used anymore by any program, or they are used by dead sections of programs
only, they have no instances, their instances have not been updated for a long time, etc.
Finally the Database Slicing technique aims to fill the gap. This approach is inspired
by the program slicing domain. The program slicing is the computation of the set of
program statements (slice) that may affect values at some point of interest. This tech-
nique can be used in the specific context of debugging, to locate sources of error, and
more generally, in the context of software maintenance, optimization, data flow control,
etc. A developer may want to know which database objects are impacted by a particular
action performed by the application, in order to redesign the correct tables or to verify
the implementation. Moreover he could be interested in identifying all the classes in a
program code that uses a particular table. This is useful to verify if this table is still
used or no longer used by the application programs.

We therefore used the two kinds of program slicing : the static slicing, which analyses

30 CHAPTER 3. METHODOLOGY

only the source code, and the dynamic slicing, which works on a specific execution trace
of the program.

Our slicing tool provides the two aspects. The static one is given by the upward slic-
ing (detailed in Section 4.5.2). The upward slicing finds all references to a given table in
program files. The tool searches the Data Access Object (DAO) corresponding to that
table, since it represents a gateway to access the table, then the search is done based on
that DAO. The dynamic one is given by the downward slicing (detailed in Section 4.5.1).
The aspect focuses on an execution slice of the database. As in the program slicing, the
execution of the program generates successive statements. By catching these statements,
we can find the tables impacted by the execution scenario. This is very useful to see the
scope of an action on the system.

We can say that our enriched methodology brings new techniques to make the un-
derstanding of large schemas easier and faster, at different levels :

• The clustering technique organizes the schema objects

• The summarization technique outlines a clustered schema

• The filtering technique returns a relevant fragment of the database schema

• The historical analysis shows the evolution of the schema (and the way it has been
modelled)

• The slicing technique can bring information about the use of a table, and identify
obsolete structures

Understanding the schema is important in order to extract the concept of the domain,
and their semantics. In the context of schema conceptualization, this is the purpose of
the Understanding process. But, this process can also be the preliminary step of
a schema refactoring or evolution. Database migration is another typical task in the
maintenance phase of a software system. In all those cases, the transformation plan
of the schema must be well thought, because data and performance are at stake. An
in-depth understanding of the database, in particular of its schema and of its usage is
very useful in such contexts. Other applications of the different techniques we provide
can be imagined, and some of them are already mentioned in Section 9

Chapter 4

Design

In this section, we specifiy the different techniques exposed in the previous section. We
describe here the data structures, algorithms, patterns, etc.

4.1 Inferring Foreign Key

As said before, up to 50% of the structures and constraints in a database schema can be
implicit. The explicit schema constructs are declared in the DDL code, those includes
the identifier constraints or access keys. Those which are implicit may include referential
constraints, inclusion constraints . . . there are several reasons why they are implicit. In
[16] the reasons are listed, we can for instance mention the Non declarative structure,
this means that it is not possible to express a typical constraint in a specific DMS. For
example in old systems, the engine for a relational database was MyISAM which does
not support foreign key declaration. Since we can not easily imagine a database without
referential constraints, those had to be declared or encoded somewhere else.

4.1.1 Where to find the foreign keys?

To recover the implicit constructs such as foreign keys there are several artefacts to
analyse, as mentioned in [16]. There exist a static and a dynamic way to recover those
constraints. The dynamic way has been explored by [7] and [3] using the embedded SQL
statements. Following is a list of the different artefacts that can exploited :

• Generic database management system code : Code of the DMS such as procedures,
checks or triggers.

• Schema analysis with heuristics using the names : browsing the schema to find
correspondences between names and then inferring the referential constraints.

• User Interface : Foreign keys found can be validated with the GUI, and others can
be discovered (forms, etc.).

31

32 CHAPTER 4. DESIGN

• Data : Data analysis can be used to discover patterns but also to help validating
the candidate forigne keys found through other means.

• Domain knowledge : Knowing the application domain is required to proceed to a
reverse engineering process. Talking to expert may help comprehend the domain
and thus discovering properties of the schema.

• Program code: The program code is often in charge of implementing the data
integrity constraints. The (sequence of) data manipulation statements can be
analysed using dataflow analysis or dependency analysis.

Adding to those artefacts, due to the emergence of new technologies we added a new
artefact that can be easily analysed and can give important information :

• Configuration files : Many current applications use Hibernate to generate its DAO,
so we look into the XML mapping files. Each file concerns one table of the schema.
Inside a file each attribute is bound to a java variable in a particular java object
that represents this table. (cf 4.1.3).

To discover our implicit constructs we then use two techniques, the analysis of the
property files and the analysis of the schema based on names. For each identifier column,
we look for a matching based on several rules that increase the precision and decrease
the recall. See Algorithm 1 and section 4.1.2 for details.

4.1.2 Name analysis

Naming pattern : Finding foreign keys with the name of database objects starts with
the definition of some rules to minimize the number of false positive and false
negative foreign keys. These rules are explained below. The following examples
are taken from the Oscar case study described in Section 6.

• To make sure that the attributes given are really a possible foreign key (at-
tributes found via SQL formula or O/R mapping tags), the method always
checks if one of them is an identifier.

• The name of the origin attribute (the one that will reference the id being
read) contains the name of the target table. This way we can avoid to cre-
ating keys that should normally not exist (For instance, in the OSCAR case
described in the section 6, allergies (demographic no) → demographicacces-
sory (demographic no) is not a foreign key even if the column have the same
name). As it is more likely that it references the table “ demographic”, but
as it is still possible that this key is a real key, these keys have to be manually
analysed. This rule is of course context dependent, not all developers use
naming conventions. But it is still interesting to integrate it.

• The name of the origin table contains the target table name (case insensitive).
Ex: app lookuptable fields → app lookuptable, because in these tables the at-
tributes don’t contain the table name. This rule allows us to prevent the
creation of keys that are more likely to be non-existent (ex: name → name).

4.1. INFERRING FOREIGN KEY 33

• The origin attribute name is like the target table name concat with ” id” or “
id”(case insensitive). Because some tablse have “id” as identifier and other

tables have attributes like “tablenameid”.

• At the end another algorithm analyses all the attribute names looking for
attributes with a name matching a pattern (ending with id, id, no or no).
If these attributes are not already part of a foreign key, they are written to a
file to be analysed.

Algorithm 1 General approach of the foreign key generator based on names

Notations.

• Let SENT be the set of entity types in the schema.

• Let attID be the set of attributes composing the identifier.

• Let attName be the set of attributes names we are looking for.

• Let SATT be the set of attributes of the source entity type.

1: for all t ∈ SENT do
2: attID ← identifier(t)
3: if ∃a ∈ attID : a.name ≡′′ id′′ then
4: attName ∪ name(t) +′′ id′′ ∪ name(t) +′′ id′′

5: attName ∪ names(attID)\name(a)
6: else
7: attName = names(attID)
8: end if
9: for all s ∈ SENT \t do

10: SATT = attributes(s)
11: if ∀n ∈ attName : n ∈ names(SATT) then
12: if attS ∈ identifier(s) then
13: We have encountered a possible total foreign key. We list it in an external

file
14: end if
15: if matchingNames(s, attS , t, attT) then
16: We found a possible foreign key, we can add it to the schema
17: else
18: This could still be a foreign key but it is less certain. We add it to a text

file also
19: end if
20: end if
21: end for
22: end for

Algorithm : Algorithm 1 details our approach to name analysis. We iterate on every

34 CHAPTER 4. DESIGN

entity type and we get its identifier. In line (3-7) we add a specific rule that adds
to the set of possible attribute names the name of the entity type concatenated
with ” id” and ’ ’ id” in case the identifier has ” id” as name. Once we have the
set of names of the identifying attributes we iterate over each other entity types
to check if they contain this set of names. If the set of attributes of this other
entity type contains the attName set, it means there is a possible foreign key. But
we have to do some additional checks. If the source attribute is also an identifier,
we may have encounter a total foreign key and those needs a deeper analysis (see
[4]). Line 15 we call a specific function that adds aspecific rule, detailed above. If
this function returns false, it does not mean that the foreign key does not hold. It
means that it is preferred to analyse it manually.

4.1.3 Mapping files

As said above, the mapping files of the ORM represent the schema to provide the pro-
grams with the illusion of an object-oriented database from a relational database. Hence,
the file must contain constraints and their parsing can be relevant. To extract foreign
keys representated in tags, determining the tag pattern is the first step to build a parser.
Once the concerned tags are found in the file, a parsing is required to extract origin and
target tables and attributes.
Adding to the specific tags representing referential constraints. There may be formula
tags, they contain a SQL request acting like a check for a specific attribute. Analysing
them can also bring information about implicit constraints. We therefore analyse them
given a pattern, if the request does not fit the pattern we record this request to a text
file to be further analysed.

4.2 Clustering & Summarization

4.2.1 Cluster analysing

Nowadays the systems are bigger and bigger. The systems include more and more plugins
and components. Each of these element brings a set of tables in the database which makes
the schema grow. The complexity of the database schema increases, and make it more
difficult to read and understand. Analysing a schema or trying to understand it without
documentation is a very hard task. It can be useful to know which table is associated
with any other, or if they are part of the same component.

Different algorithms already exists. Clustering analysis aim to group a set of objects
in such a way that objects in the same group (called cluster, that is to say, a set of ele-
ment) are more similar (in some sense or another) to each other than to those in other
groups. Usually, this technique is used to group data (row of a database, observations,
etc), but here we used that to group columns and tables of a database schema. There
are 2 different methods of clustering : hierarchical and partitioning data.

4.2. CLUSTERING & SUMMARIZATION 35

The first method seeks to built a hierarchy of clusters. The hierarchical clustering
can be performed according to 2 approaches :

• Agglomerative: This is a ”bottom up” approach: each observation starts in its
own cluster, and pairs of clusters are merged as one moves up the hierarchy.

• Divisive: This is a ”top down” approach: all observations start in one cluster, and
splits are performed recursively as one moves down the hierarchy.

A measure of dissimilarity between sets of element is required. In the case of agglom-
erative approach, each element is a cluster at the beginning. Every iteration merge the
closest cluster, as shown in the figure 4.1. The results of hierarchical clustering are
usually presented in a dendrogram.

a b c e

def

bcdef

abcdef

f

bc de

d

Figure 4.1: Dendogram of an example of hierarchical clustering

The second one divides the data into groups. The goal is to group data that are
more similar to each other. It aims to divide a heterogeneous group of data into groups
so that the data considered most similar are combined in a homogeneous group and
that, on the contrary, the data considered different are found in various distinct groups.
Cluster analysis itself is not one specific algorithm : the appropriate clustering algorithm
and parameter settings (including values such as the distance function to use, a density
threshold or the number of expected clusters) depend on the individual data set and
intended use of the results.

In this research context, the data are not statistical observations. The evaluation is
different. A naive approach is to create a cluster with the first table, and for every other
table check if it can be in an existing cluster. If not, a new cluster is created with that
table. For instance the developer’s name ; a table has only one developer, so a cluster is
an aggregate of table from the same developer. A table can only be in one cluster.

In the case of comparing the other characteristic of a table, this could be different.

36 CHAPTER 4. DESIGN

Indeed, the function determining if a table must be in a cluster has to return a value
between 0 and 1. The chosen cluster for a given table will be the one with the highest
value. This value is the ”distance” between the table, and all the tables already in the
cluster according to the chosen criterion. For instance, to compare the table names, the
Jaro-Winkler1 distance can be used.

A threshold can be defined to specify the content of a cluster. The threshold refines
the content : it makes it variable. If the threshold is 100% (strict), to accept a table
in a cluster, the closeness between the two of them must be 0, meaning they must be
identical. However, if the threshold is not strict, the table can be admitted in several
clusters. For example, if the cluster have to contain all the tables having the same age,
the threshold will be strict. But, it can contain the tables of the same age around 3
years. Thus, the threshold will not be strict. A table t can be part of different clusters,
but it will be added in the closest one.

Algorithm 2 General approach of clustering

1: // initialization
2: table← schema.getTable(0)
3: createCluster(table)
4: // process
5: for i = 1→ schema.size() do
6: table← schema.getTable(i)
7: j ← 0
8: level← 0
9: clusterid← 0

10: while j < clusters.size() do
11: c← clusters.get(j)
12: if level < match(c, table) then
13: clusterid← j
14: level← match(c, table)
15: end if
16: j ← j + 1
17: end while
18: if level == 0 then
19: createCluster(table)
20: else
21: c← clusters.get(clusterid)
22: c.add(table)
23: end if
24: end for

The general approach of partitioning data is described in the algorithm 2. The details

1http://en.wikipedia.org/wiki/Jaro–Winkler distance

4.2. CLUSTERING & SUMMARIZATION 37

about this algorithm (about the functions, . . .) are here ;

• schema represents the set of table in the database schema

• schema.size() returns the number of tables in the given schema

• createCluster(table) is a method creating a new cluster containing only the given
table. This cluster is added in the list of clusters, named clusters.

• schema.getTable(i) returns the ith table in the schema

• match(cluster, table) : this the critical point of the algorithm. This is the function
returning the value between 0 and 1. (0 represent ”no accepted in the cluster”,
and 1 means that the table is 100% similar to the content of the cluster). If the
table can only be part of one cluster, the return values will be 0 or 1 (e.g. if the
criterion is the age of the table), otherwise the return value will be in the interval
0..1.

In algorithm 2, the initialization consists in creating a cluster with the first table. Then,
all the other tables are compared to the existing cluster. To be added in a cluster x, the
table must be close to all the tables already in it. Only the highest matching value, and
the number of the cluster is retained (lines 10-17). The threshold is used in the match
function : lines 12-15 make sure that if the table can be admitted in several clusters,
it will be in the closest one. In the match function, if the threshold is not reached, it
has to return zero. At the end of this loop (the while loop), level contain the highest
matching value, and clusterid the number of the cluster corresponding to this value. If
level equals zero, it means that for all the existing clusters, the matching has returned
zero, so the table can not be accepted in an existing cluster. A new cluster is created
with this table (lines 18-19). Otherwise, the table is added in the cluster numbered
clusterid (lines 21-22).

4.2.2 Schema summarization

The problem discussed here concerns the size of a schema. Even if the clustering analysis
can make a huge schema more readable, and support an easier understanding for the
developer, it could still be difficult to have a global view of it. The clustering help to
understand subgroup of tables, and their intra-group relationships.
The idea is to summarize a schema, to make it more readable by increasing the level of
abstraction. The input of the summarization is a clustered schema. The output will be
the summarized schema, i.e. a schema where a table represent a cluster, and the columns
symbolize the table of this cluster. So, this method bring us to a further abstraction
level. A short example is shown with the figure 4.2.

3
8

C
H
A
P
T
E
R

4.
D
E
S
IG

N

Figure 4.2: Example of summarization

4.2. CLUSTERING & SUMMARIZATION 39

The foreign keys are maintained : the initial relationships between columns are
transformed into foreign keys from a column (representing a table) to another column
of another table (representing a another cluster). Normally, a foreign key can be a
constraint from several columns to the exact same number of target columns. In the
summarized schema, the foreign keys are only one-to-one column. Preserving these
constraints highlights the relationships and dependencies between clusters.

Algorithm 3 Summarization algorithm

Require: clusters: list of clusters from a clustered schema. S is the complete clustered
schema.

1: // initialization
2: Ss ← createNewSchema()
3:

4: // process
5: for i = 0→ clusters.size() do
6: currentCluster ← clusters.get(i)
7: t← createNewTable(currentCluster.getName())
8: j ← 0
9: while j < currentCluster.size() do

10: tabletmp← currentCluster.getTable(j)
11: t.addColumn(tabletmp.getName())
12: j ← j + 1
13: end while
14: Ss.addTable(t)
15: end for
16:

17: // add the referential constraints
18: for all t ∈ Ss do
19: for all col ∈ t do
20: t′ ← S.getTable(col.getName())
21: for all fk ∈ t′ do
22: target table← fk.getTargetTable()
23: target cluster ← target table.getCluster()
24: createFK(t, col, Ss.getTable(target cluster), Ss.getTable(target cluster)[target table])
25: end for
26: end for
27: end for

The algorithm 3 contains several functions :

• createNewSchema() : creates a new empty schema

• clusters.size() : returns the number of clusters in the input schema (here, the size
of the cluster’s list)

40 CHAPTER 4. DESIGN

• cluster.getName() : the table representing the cluster must have a name. The
function return the name of the cluster. It may be possible that the cluster does
not have a name, the getName() function must be customized according the needs
of the analyst.

• table.addColumn(c) : adds the column c to the table table. The column c is the
last one.

• schema.addTable(t) : adds the table t to the schema schema

• foreignkey.getTargetTable() : returns the target table of the current foreign key.

• table.getCluster() : returns the cluster containing the current table. Only applied
on the table from the clustered schema.

• createFK(table origin, column origin, table target, column target) : creates a for-
eign key from the column origin of table origin to the column target of table target.

The algorithm 3 shows how the summarized schema is built. The input must be a
clustered schema, whatever the criterion chosen. The initialization (line 2) consists in
creating a new schema (the summarized one, named Ss). Then, we add the new tables
symbolizing the clusters. At the line 5-15, for all clusters, a new table is created, and
filled with columns (one for each table in the cluster). When the new table is filed, it is
added to the summarized schema Ss (line 14).
The last phase is adding the foreign keys. For all columns of each table in the new
summarized schema, we find the table from the initial clustered schema S (having the
same name of the column). Every foreign key of the real table (t′, line 21) is transposed
in the summarized schema, by finding the table and the cluster of the original schema
(line 22-24). A foreign key is created from the current table and column (in Ss) to the
column having the same name of the target table in S, contained in the table symbolizing
the cluster target cluster.

4.3 Smart schema filtering

The approach is directly inspired bythe filtering method of Villegas and Olivé [30]. We
transposed their method to the logical schema. The purpose remains the same :

We focus on the problem of filtering a fragment of the knowledge contained
in a large conceptual schema. The problem appears in many information
systems development activities in which people need to operate with a piece
of the knowledge contained in that schema.[30]

The method we provide also starts with a Focus Set FS, a Rejection Set RS, and a
Filter Size K. The first is a set of tables belonging to the logical schema LS. The FS
can’t be empty : it contains the tables corresponding to what the user is interested in.
The RS contains the tables that can’t be in the result (the ones the user is not interested

4.3. SMART SCHEMA FILTERING 41

in) and the last, K, is the size of the result set R. As the method applied to conceptual
schema, the result set R has a size of K, and so includes the tables in the FS, implying
| FS |≤ K. Another constraint is RS ∩ FS = ∅.

Our technique is also based on the interest computed with closeness and importance
of the element of the schema (here, a table, and no more an entity). The computation
methods are different because, in our case, we are working on a logical schema LS and
not on a conceptual schema. Some changes were required :

− Importance (Ψ) : The chosen method is the one based on link analysis. We define
the importance of a given table in the entire schema as the sum of the foreign keys
from this table, and the foreign keys having this table as target. The importance
must be normalized : the importance remains a real number in the range [0, 1].
The sum of the foreign keys is divided by the maximum of the sum of foreign keys
in the schema. So, we can write

Ψ(t) =
#FKin(t) + #FKout(t)

max{(#FKin(t′) + #FKout(t′)) : ∀t′ ∈ LS ∧ t′ /∈ RS}
(4.1)

where #FKin(t) represents the number of foreign keys having t as target and
#FKout(t) the number of foreign keys having t as origin.

− Closeness (Ω) : The closeness is computed according to a defined criterion (name,
date, color, . . .). Due to the large kind of closeness, there is no unique equation to
compute the closeness between the Focus Set and the given table. The closeness
between two elements can be strict or not. In a strict case, the closeness is 1 or 0
only. We can define it as in the equation 4.2. As we can see, if the table shares an
identical value for the chosen criterion the result is 1, 0 otherwise.

Ω(t,FS) =

{
1 if criterion(t) = criterion(t′),∃t′ ∈ FS
0 otherwise

(4.2)

A non strict closeness is the distance between the given t and an element of the FS
or all the FS. An offset can be defined to keep down the scope of the closeness.
The offset build a ray from all the point of the FS, and every element outside this
circle has a null closeness. The inside element have a non strict closeness : the
most they are near the center, the most high their closeness is.

The closeness can also be found by computing the average of the distance from the
given element to all the element of FS. In the equation 4.3, the d(t, t′) means the
distance between the 2 tables. It can be based on the names, the color, etc. For
example, it can be the Jaro-Winkler distance between the names of the 2 tables.

Ω(t,FS) =

∑
t′∈FS d(t, t′)

| FS |
(4.3)

42 CHAPTER 4. DESIGN

− Interest (Φ) : The formula here is the same as the equation 2.1 from [30]. For
this reason, the interest can still written as

Φ(t,FS) = α×Ψ(t) + (1− α)× Ω(t,FS) (4.4)

The algorithm 4 shows the general way to apply the filtering method to a logical
schema, using the functions and formula defined above.

Algorithm 4 Filtering algorithm

Require: FS,K and RS must be initialized and can not be empty (except for RS)
such as | FS |≤ K and RS ∩ FS = ∅.
α must be in the range [0, 1].

Ensure: R contain the top K table interesting for the user.
1: for i = 0→ schema.size() do
2: t← schema.get(i)
3: if t /∈ RS ∧ t /∈ FS then
4: t.interest← α×Ψ(t) + (1− α)× Ω(t,FS)
5: end if
6: end for
7: orderByInterest(schema)
8: R ← FS ∪ take(K− | FS |, schema)

The input of this algorithm (algorithm 4) must respect the constraints announced
above. For all the tables in the schema, which are not in the rejection set, we compute the
interest according to the equation 4.4 (line 4). Then, when every interest is computed,
a ranking is made to order the tables from the most interesting ones to the less ones.
Finally, we build the result set R combining the top K− | FS | tables and the FS.
We assume orderByInterest(schema) makes a descending rank about the interest of all
the tables in the schema. The function take(i,schema) returns the i first tables in the
schema.

The condition in line 3 refuses the table from the FS because we can’t guarantee
they will be in the result set. Indeed, if the α parameter is 1, the interest will be equal
to the importance and the tables in the FS are not necessarily the most important. So,
we explicitly add them in the result set, at line 8. The rest of the relevant tables are
taken among the tables having their interest computed in the schema.

4.4. HISTORICAL SCHEMA ANALYSIS 43

4.4 Historical schema analysis

In order to help the schema comprehension we brought a novative technique exploiting
an often forgotten artefact : the source repository and the history of code. This sec-
tion presents the concepts, the specification and the methodology of a new source of
information : The Global Historical Schema.

4.4.1 Motivations & Concepts

Software repositories can provide valuable information, facilitating software reengineer-
ing efforts with analyses of the evolution histories of legacy software systems. In recent
years, many researchers have started to follow a holistic approach, considering multiple
diverse software artifacts and the links existing between them (including source code,
bug reports, documentation, mailing lists, etc.). However, when analyzing data-intensive
systems, comparatively little attention has been devoted to the analysis of an impor-
tant system artifact: the database. Even fewer approaches attempt to uncover facts
about the evolution history of database schemas in order to inform software reengineer-
ing and maintenance. We have developed a tool-supported methodology for analyzing
and visualizing database schema history

Our general approach consists of extracting and comparing the successive versions of
the database schema from the versioning system, in order to produce the so-called global
historical schema. The latter is a visual and browsable representation of the database
schema evolution over time. It contains all database schema objects (i.e., tables, columns
and constraints) that have existed in the history of the system. Those schema objects
are annotated with meta-information about their lifetime, which in turn serve as a basis
for the visualization of the schema and its further analysis. This historical schema can
be queried in order to derive valuable information about the evolution of the database,
potentially raising other interesting system-specific questions to investigate.

4.4.2 Methodology

In this section we describe the global process that we follow to build the historical
database schema of a system. This process, depicted at Figure 4.3, consists of several
steps:

1. SQL code Extraction & Cleaning : We first extract all the SQL files corresponding
to each system version, by exploiting the versioning system (using the extractor
depicted in section 5.6.1). Those files may then need to be slightly edited, in case
the SQL syntax used does not match with the SQL parser considered2.

2. Schema Extraction: We extract the logical schema corresponding to each SQL file
obtained so far, by means of a dedicated SQL parser.

2We use the schema extractor of DB-MAIN (http://www.db-main.eu)

http://www.db-main.eu

44 CHAPTER 4. DESIGN

3. Schema comparison: We compare the successive logical schemas while incremen-
tally building the resulting historical schema.

4. Visualization & Exploitation: The historical schema can then be visualized and
further analyzed, depending of the project-specific needs.

Figure 4.3: Global process

4.4.3 Specification

In this section we further specify the Schema comparison process. Figure 4.4 gives an
example evolution of a database schema, involving three successive schema versions.
Schema S1 is the oldest one and schema S3 is the most recent one. We can see that
between version 1 and version 2 column A2 has been deleted, column B2 has been created
as well as table D and its columns. Moreover the entire table C has been dropped. In
version 3, Table B has disappeared, table D has been left unchanged, and table C has
re-appeared. Indeed, it used to exist in version 1, it had been removed in version 2 and
it is now back in version 3. We will refer to that phenomenon by saying that a schema
object may have several lives.

Figure 4.4: Schema evolution example

The historical schema derived from the above schema evolution example is depicted
at Figure 4.5. The historical schema is a global representation of all previous versions of
a database schema. As we can see, it contains all objects that have ever existed in the
entire schema history.

4.4. HISTORICAL SCHEMA ANALYSIS 45

Figure 4.5: Global historical schema obtained from schema evolution of Figure 4.4

Each historical schema object (table, column) is annotated with several meta-attributes:

• NbVersions: the total number of versions of the schema where the object can be
found.

• isDead : true if the object is not present in the latest (current) version of the
schema, false otherwise.

• creationSchema: references the first (oldest) schema version where the object ap-
pears.

• creationDate: the date the oldest schema version where the object appears (the
date of creationSchema).

• lastAppearanceSchema: the last (most recent) schema where the object appears.

• lastAppearanceDate: The date of the lastAppearanceSchema.

• severalLives: true when the object has existed, has been removed, before being
restored.

4.4.4 Algorithm

Algorithm 5 formalizes our procedure for deriving a historical database schema SH from n
successive schema versions. This derivation algorithm is based on a pairwise comparison
of all those schema versions in reverse chronological order.

The initialization step of the algorithm (lines 1-7) consists of considering the most
recent schema Sn (augmented with its meta-attributes) as the initial historical schema
SH . We then iterate on all the previous schemas in reverse chronological order (lines
8-32), while comparing the current schema Si with the current historical schema SH .
The comparison is made by iterating on each schema object (table or column) of both
schemas.

46 CHAPTER 4. DESIGN

Algorithm 5 Deriving the global historical schema from n successive schema versions.

Notations.

• Let Si be a database schema version, defined as a set of schema objects (including
a set of tables and their respective columns).

• Let date(Si) be the release date of schema version Si.

Require: S1, S2, . . . Sn: n successive schema versions.
Ensure: SH : the corresponding global historical schema.

// initializing SH
1: SH ← Sn
2: for all o ∈ SH do
3: lastAppearanceSchema(o)← Sn
4: lastAppearanceDate(o)← date(Sn)
5: nbV ersions(o)← 1
6: isOpen(o)← true
7: end for

// iterating from the last version to the initial version
8: for all i ∈ {n− 1 . . . 1} do
9: // objects o appearing in more than one version

10: for all o ∈ Si ∩ SH do
11: nbV ersions(o)← nbV ersions(o) + 1
12: if isOpen(o) == false then
13: severalLives(o)← true
14: isOpen(o)← true
15: end if
16: end for
17: // objects o deleted before the last version
18: for all o ∈ Si \ SH do
19: SH ← SH ∪ o
20: lastAppearanceSchema(o)← Si
21: lastAppearanceDate(o)← date(Si)
22: nbV ersions(o)← 1
23: end for
24: // objects o created after the initial version
25: for all o ∈ SH \ Si do
26: if isOpen(o) == true then
27: creationSchema(o)← Si+1

28: creationDate(o)← date(Si+1)
29: isOpen(o)← false
30: end if
31: end for
32: end for
33: // Final step
34: for all o ∈ SH do
35: if isOpen(o) == true then
36: creationSchema(o)← S1
37: creationDate(o)← date(S1)
38: end if
39: end for

4.5. DATABASE SLICING 47

Several situations may occur for a given schema object o:

1. o belongs to Si and belongs to SH (i.e., o ∈ Si ∩ SH). In this case, o has appeared
in more than one schema version. For such an object, we increment the nbVersion
meta attribute. If its meta-attribute isOpen is false, this means that o has several
lives: it had been removed after version i before reappearing later on, and version i
corresponds to the end of (one of) its previous life. Therefore, we set its severalLives
meta-attribute to true.

2. o belongs to Si but does not belong to SH (i.e., o ∈ Si \ SH). In this case, o has
been deleted after version i, and it is the first time we encounter it. We then add
o to the global historical schema together with its initial meta-attribute values.

3. o belongs to SH but does not belongs to Si (i.e., o ∈ SH \Si). In this case, we can
derive that o has been created in version i + 1. We set its isOpen meta-attribute
to false, in order to be able to identify its previous lives, if any.

The Final step is performed once all schema versions have been compared to the cur-
rent historical schema. This step considers all schema objects of the historical schema
for which the isOpen meta-attribute is still true. All those objects have actually been
created in the initial schema version S1. One therefore needs to initialize their creation-
Schema and creationDate meta-attributes accordingly.

4.5 Database slicing

Following the idea of Program slicing and Program Comprehension we designed the
Database slicing.
For the developer it is legitimate for him to wonder when working on application code
Which tables are impacted?, Which files do I have to take into account when modifying
this table? or Which User Interface (mainly forms) corresponds to this table? It’s such
questions that conducted us to develop what we call the Database Slicing. The idea is to
find all database objects that are involved in a particular action performed by the user
on the application (Downward Slicing) or to find all files in the program source code
that refers to a specific table (Upward Slicing).

4.5.1 Downward slicing

The problematic here is to know which table are affected by some actions on the system
: what are the real impacts on the database ? The figure 4.6 shows the general flow of
the Downward approach.

First, the user start making operations with the system. Then, the user come close
to the particular action he wants to analyze. So, the user can start the recording. The
recording will save all the actions applied on the database. The user then executes the
concerned action, and informs the downward tool when to stop the recording (action

48 CHAPTER 4. DESIGN

Figure 4.6: DBSlicing - Downward : General scenario

3, on the diagram 4.6). The tool analyses the observations and produces a schema
containing the tables impacted by the recording sequence of actions.

The schema provides also some additional information. Indeed, it could be interesting
to know how the database objects were impacted : by a reading, a writing or both ?
Moreover, some tables or columns may be more solicited than others. This information
can be useful to the analyst to detect critical database objects. So each object of the
result schema has a counter of the number of times the object was read and/or written
during the user’s actions.

To be very effective and avoid to record other actions not desired, the tool suppose
that the user is alone using the system. If other people are using the system at the same
time, their actions will be recorded too since the log is for the whole server, and distort
the result expected by the analyst.

By catching all the queries applied on the system, a parse is required to analyze them :
the goal of this parsing is to find the tables and the columns contained in the queries. It
may seem like a simple task, but SQL has a complex grammar. A syntactical analysis
of a query can’t identify all the columns. A column is identified by its table and the
name of the column. The knowledge of the whole schema is necessary. For example, in
a join, a column in the select has not necessary the name of the table ahead (since only
one of the table contain the name of this column), but only the query is not enough to

4.5. DATABASE SLICING 49

identify which table. Moreover, the SQL language add the alias shortcut3. A table is
represented by an alias in the request. The language SQL allows nested queries : so, a
select can be in a select clause, in the from clause (only to form a new table, like the
result of a join), or in the where clause.

The following request contain a select clause (a join) in the from clause, and contain
aliases.

SELECT alias1.col2, B1 FROM table1 as alias1, (SELECT col5 as B1, col2 as
B2 FROM table2, table3 WHERE table2.id = table3.col3) as alias2 WHERE
alias1.col4 = ”0”;

The column in the main select are read once : col2 and B1. The role of the parser is to
identify the table and the column. The first one is easy : col2 refers to the table called
”alias1”, ie ”table1”. Assuming all the column are named ”colX” (where x is a number),
the B1 column belong to the table ”alias2” . This table is a join. The remaining question
here is : which table (table2 or table3) contain the column ”col5” called ”B1” ? With
the SQL request only, this is impossible to answer that question. The knowledge of the
all schema is required. The DBMS work as well with the entire schema to clarify this
ambiguity.

4.5.2 Upward slicing

The upward slicing technique has as goal to find all elements in the code that refers to
a particular table. Indeed in an application the ways of accessing a particular table in a
database are numerous. We can either directly use static or dynamic SQL, or even use
an ORM layer.
To try and find those elements we wrote a tool that runs like a well known command
line, the grep command or the eclipse environment search tool, but we added some rules
to be more precise than those two other alternatives. Those additional rules consist of
searching for the class being the data access object (DAO) representing this table via
name transformation.

So the different steps of the upward slicing are the following :

1. Enter one or several input table names.

2. Finding the files in the project mentioning this table.

3. Based on name heuristic we try to find a DAO class.

4. We rerun the search with the name of the DAO class.

5. The results are all files referencing a particular table and its DAO.

3You can rename a table or a column temporarily by giving another name known as alias. The use
of table aliases means to rename a table in a particular SQL statement. The renaming is a temporary
change and the actual table name does not change in the database.

50 CHAPTER 4. DESIGN

Numerous improvements can be done to this technique. We explore them in Section
9.

Chapter 5

Implementation

We present here the different tools used to implement the techniques presented in the
previous section.

5.1 DBMain & JIDBM

Our tools have been developed as extension of the CASE1 tool DBMain [12], a generic
modelling tool dedicated to database application engineering, and in particular to sup-
port database design, reverse engineering, re-engineering, integration, maintenance and
evolution. We used the Java API JIDBM provided in the DBMain installation to ma-
nipulate the .lun files. Each of our tools can be launched without the need of an installed
version of DBMain, only the .lun files are needed.

5.2 Foreign key generator

5.2.1 The Mapping File Parser

Our foreign key extractor tool focuses on two main artefacts to raise new referential con-
straints hypothesis, first the configuration file of the data access layer of the application
and second the name analysis of attributes in the schema.
The first technique is described in this section. We have a simple tool that requires as
input a file containing the paths of those mapping file (in our test case it reads Hibernate
files). Then it proceeds to read all those files and detects the tags declaring a referential
constraint. Below is a list of the those tags and how we handled them.

• Many-to-one tags :

1 <many−to−one name=” i s s u e ” c l a s s=” org . o s ca rehr . casemgmt . model . I s s u e ”
column=” i s s u e i d ” update=” f a l s e ” i n s e r t=” f a l s e ” lazy=” f a l s e ” />

Listing 5.1: Tag ”many-to-one” in mapping file

1Computer Aided Software Engineering

51

52 CHAPTER 5. IMPLEMENTATION

With this tag we get the source attribute of the referential constraint to create,
but we don’t have the exact name of the target table. Instead we have the name of
the java object that represents this table. So based on this name (here Issue) the
tool that adds the foreign keys will try to find the exact table name. It’s usually
the same but with more complex names, some pattern apply (add of “ ” between
words).

• Sets tags :

1 <s e t name=” notes ” t ab l e=” casemgmt i s sue notes ” lazy=” true ” i n v e r s e=”
true ”>

<key column=” id ” />
3 <many−to−many column=” n o t e i d ” c l a s s=” org . o s ca r ehr . casemgmt . model .

CaseManagementNote” />
</ s e t>

Listing 5.2: Tag ”many-to-many” in mapping file

The sets tags are used to represent the many-to-many or one-to-many keys.

• Formula attribute :

1 <property name=”programName” type=” s t r i n g ” formula=” (s e l e c t p . name
from program p where p . id = program no) ” />

Listing 5.3: Tag ”property” in mapping file

Some attributes have the formula attribute, they have a SQL request in them that
have to be valid for the attribute.
Those requests can be a sign of a foreign key. The parser here can’t define the
orientation of the foreign key, it only gives the name of the tables and attributes
to the adding tool. It will then check whether the attributes are identifiers or not
and create the possible foreign key.

5.2.2 Output files

During the analysis of the property files or during the schema name analysis, uncertain-
ties happened, so our tool produces some text files as output containing potential foreign
keys that need to be manually analysed.
We distinguish the following cases :

1. The request in formula tag does not match the specified pattern but could still
be a foreign key. In this case the request is written to a text file to be manually
analysed.

2. Foreign keys that reference another entity identifier are complex ones (namely total
or equality foreign keys cf [4]). A lot of potential of those were detected but still
have to be validated. We therefore added them to a file to be further analysed.

5.3. HISTORICAL SCHEMA 53

3. Complex situations where the validation of the constraint depends strongly on the
conceptual interpretation were found, those have to be manually analysed.

4. Finally when the analysis is over, there can be remaining attributes that have an
”id-like” name. Finishing with sequence such as ”id” or ”no”. We decided to put
those in a file too.

In section 6.2.1, we give examples of such scenarios.

5.3 Historical Schema

Our initial (naive) implementation of Algorithm 5 was not sufficiently scalable to analyse
long histories of large database schemas in satisfactory time. We therefore implemented
a multi-thread version of the algorithm. In this version, an independent thread is used
to analyse each distinct table of the schema, and is responsible for iterating through all
the schema versions in order to derive the historical information about that table. All
parallel threads share a common resource, namely the historical schema, that they can
all update when they discover information about their respective tables.

The main program thread iterates over all tables of all successive schema versions.
Each time the main thread encounters a table t that does not correspond to a running or
terminated thread, it starts a new thread for t. As we will see below, this multi-thread
implementation allowed us to significantly improve the efficiency of our historical schema
derivation tool.

Figure 5.1: Thread Implementation

We analysed the history of the OSCAR (see Section 6) database schema during a
period of almost ten years (22/07/2003-27/06/2013). During this period, a total of 517

54 CHAPTER 5. IMPLEMENTATION

different schema versions can be found in the project’s GitHub repository. The earliest
schema version analysed includes 88 tables, while the latest schema version considered
comprises 460 tables. When applied to this dataset, our single-thread schema comparison
implementation took more than 2 hours2 to derive the historical schema, while the
multi-thread version completed the process in 17 minutes. This constitutes a significant
performance improvement.

5.4 Filtering Tool

The filtering tool respect the specification of Section 4.3. the algorithm computing
the importance and the closeness is represented by different classes. The interest, the
importance and the closeness are represented by meta-attributes of the entity object in
DBMAIN.

The tool includes a GUI, where the user can introduce the tables of the focus set and
the rejection set. The algorithm can be chosen thanks to this windows.The available
algorithms to compute the closeness according to different criterion are :

• The names : the closeness is computed according to the names of the tables.
The Jaro-Winkler distance is used : it returns a number in the range [0, 1]. The
distance is computed between the table names of the focus set and the candidate.
The equation 4.3 is used.

• RemoveWhenRemove finds the tables removed at the same time as at least one
of the focus set. If there is no removal date in common between all the remove
date of the focus set, and the candidate table, the closeness is zero, otherwise, the
closeness is 1. This approach can include an offset : the closeness will be a number
in the range [0,1].

• CreateWhenCreate : this technique, as the previous one, returns a closeness strict
(if there is no offset), and not strict if an offset is defined. Here, only the creation
dates are taken into account.

• CreateWhenRemove finds the tables created when those from the focus set were
removed. Again, if no dates are common between the creation date of the candidate
and the removal dates of the focus set, the closeness is 0, and if an offset is defined,
the closeness will be in the range [0,1].

• RemoveWhenCreate is the opposite of the previous one. We are looking for the
tables removed at the same time as at least one table of the FS was created.

• RemovalVersion returns a closeness maximal (closeness = 1) if the candidate shares
its number of version with at least one table of the focus set, otherwise, the closeness
is null.

2A computer with with an Intel i5 CPU and 6 Gb of RAM has been used for our test.

5.5. DATABASE SLICING 55

• CreationVersion : this approach is the same as the previous one, but applied for
the number version creation.

These techniques were developed to query the historical schema. For some of them,
the specification was not exactly respected. When we talk about dates, it was difficult
to transpose the closeness in term of days or month. For the sake of performance, we
take one version at regular interval, so we decided to transpose the closeness in term of
difference of version. The tool produce a new subschema with the relevant tables in the
same dbmain project.

5.5 Database Slicing

The tool we developed about the DBSlicing include the two aspects detailed in Section
4.5.

5.5.1 Downward

This tool is based on the specification set in the section 4.5.1. This tool does not record
the request applied on the database at the time they are executed. Instead it analyses
the log of the MySQL server for the given period. So, it requires the general query log
of the MySQL server to be activated3 : The general query log is a general record of
what mysqld is doing. The server writes information to this log when clients connect or
disconnect, and it logs each SQL statement received from clients. Note that the activa-
tion of this log causes a great loss of performance. This log registers the connections,
disconnections, the queries, the changes of preferences, . . .

The code 5.4 shows a sample of the General Query Log. The first line shows a kind
of ”section” : the queries are grouped by time. The following queries are dated 17 de-
cember 2012, at 2:05 pm. Multiple queries can appear at particular timestamp also ID
(624, 626, 633 and 629 in the example) indicates MySQL connection thread id which
has executed a query. The next column is the type of the command that has been ex-
ecuted. It could be ”Query”, ”Connect” or ”Init DB”. The last column is the body of
the command. In case of a query, there will be the query itself (select e.g.). The typical
pattern of a log line is :

yymmdd hh:mm:ss thread id command type query body

1 121217 14 : 05 : 55 624 Query SET autocommit=0
626 Connect roo t@ loca lho s t on os ca r 12

3 626 I n i t DB osca r 12
626 Query s e l e c t round (’ i n f ’) , round (’− i n f ’) , round (’ nan ’)

5 633 Query SET autocommit=1

3http://dev.mysql.com/doc/refman/5.1/en/query-log.html

56 CHAPTER 5. IMPLEMENTATION

633 Query s e l e c t roleUserGroup , p r i v i l e g e , p r i o r i t y from
s e c O b j P r i v i l e g e where objectName = ’ appointment ’ order by
p r i o r i t y desc

7 633 Query s e l e c t roleUserGroup , p r i v i l e g e , p r i o r i t y from
s e c O b j P r i v i l e g e where objectName = ’ s i t e a c c e s s p r i v a c y ’ order
by p r i o r i t y desc

633 Query s e l e c t roleUserGroup , p r i v i l e g e , p r i o r i t y from
s e c O b j P r i v i l e g e where objectName = ’ t ea m acc e s s p r i va cy ’ order
by p r i o r i t y desc

9 633 Query s e l e c t roleUserGroup , p r i v i l e g e , p r i o r i t y from
s e c O b j P r i v i l e g e where objectName = ’ appointment ’ order by
p r i o r i t y desc

629 Query s e l e c t 1
11 629 Query SET autocommit=0

Listing 5.4: Example of MySQL General Query Log

Once the log is activated, the user can press ”start” on the tool during the execution
of the program. The tool will save the timestamp. The same happens at the end of the
recording. When the ”stop” button is pressed, the tool analyses the MySQL log : it
finds all the lines executed during the period.

A first parse is needed to keep only the queries of the period. We only keep the
select, delete, update and insert statements. So the set, connect, init db etc will be
dropped. Then, a second parse is needed to identify the tables and columns, according
to the description made in Section 4.5.1. As already mentioned, the entire schema is
required. Hence, our tool take the path to the DBMain project containing the entire
schema of the database. During the parsing, we count how many times the database
object was read and/or written :

• insert : the elements in the into clause are counted as written once.

• delete : the table in the from clause is written once.

• update : the table (in the update clause), and the columns in the set clause are
written once too.

• select : the elements in the select clause are read, such as the from clause.

For all the query types, every database object in a where clause is considered as read.
Each object of the resulting schema has two meta-attributes : ”Read”, and ”Write”.

To realize the parsing, we use the parser net.sf.jsqlparser4. Around this parser, we
built the TableFinder and the ColumnFinder classes, which identify the database objects
from the parsed queries, and in the entire schema.

The resulting subschema is coloured according the meta fields (read and write) :

• brown : it the object is only read

4http://jsqlparser.sourceforge.net/

5.6. UTILITY TOOLS 57

• orange : if the object is only written

• purple : if the object is read and written

• grey : if the element was not used during the recorded execution slice. For example,
a column of a used table can be unused.

The resulting schema keeps the foreign key between the objects of the subschema. The
dependencies are then clearly marked.

The tool we provide allows to take some screenshots. This could be interesting to
map a form (GUI) to the impacted objects. The screenshots can be taken by pushing a
simple button. They are then saved in a defined directory.

5.5.2 Upward

The user provides one or several table names and the path to the project directory. Like
we said in the design section. This tool was implemented based on the grep command.
The program then searches a first time for all the files where the table name appears.
We then transform the table name, following the name convention used in the domain
application and rerun the search. Finally we try to find the DAO class by applying a
simple name pattern and search for it also. The output is a navigation tree listing all the
files containing either the table name or the dao name. Unfortunately the rules applied
are very case specific, they apply to the name patterns used in our case study. We will
compare the results of this tool to the search tool of Eclipse in the results section 6.2.5.

5.6 Utility Tools

The section contains all the secondary tools we developed to address technical problems
encountered during the development of the techniques presented. We here explain why
we developed those tools, and how.

5.6.1 Git Extractor

In order to construct the historical schema, as mentioned in 4.3 the first step is to get
the SQL files from the source repository. In our case study (see section 6) the code was
hosted on a Git server. Git [14] is a distributed version control system that allows you to
have multiple local branches that can be entirely independent of each other. Git works
like a filesystem and does not have a version number on each file, each data object has
a hash corresponding to a specific commit.

To get a file we first have to get the hashes of the commits and then proceed to re-
cover the file based on the hashes. This has to be done with different command lines.

We then wrote a small program allowing the user to easily retrieve those files. The
user can choose to get the records one per week, one per month, one per year or all
versions.

58 CHAPTER 5. IMPLEMENTATION

• Input : The period, the path of the root git repository, the paths of the files in
the git repository, the output directory.

• Output : The files, the name of which are concatenated with a chronological
version number (when all versions are extracted) or with the corresponding date.

5.6.2 SQL Transformation

The resulting SQL code from the extraction does not always fit the extraction tool of
DBMain. We therefore need to refactor it. The grammar used by DBMain is a subset of
the actual MySQL grammar. Unfortunately the parser does not ignore the word when
it does not know it. It skips the entire line or even the entire table definition. We then
had to carefully analyse the log of the parser to write a script that allows to modify or
delete the problematic words. Here is a list of the detected problems and the solution
applied. We recommended the DBMain developers to adapt their parser to the actual
SQL grammar.

• COLLATE : This word is used to override the default collation. It has no influence
on the actual data. We simply removed it.

• UNIQUE KEY : The parser does not tolerate the ”KEY” keyword after unique.
We had to remove it.

• SET/ENUM : We removed them and listed them in an external file in order to
add them when building the conceptual schema.

• KEY : This word is used to declare an index but the DBMain parser only uses
INDEX keyword.

• UNSIGNED : Deleted.

• BOOLEAN : This keyword was replaced by tinyint(1).

• Length of names : Once an object with a name of 36 characters is parsed the
DBMain application crashes.

5.6.3 Encryption tool

The encryption tool has been written in the context of a case study 6. In order to
validate the hypothesis foreign keys discovered thanks to the foreign key generator. We
decided to try and validate them based on the data. The data Oscar handles are very
sensitive since the consist of medical information. As we were in an application domain
which uses sensitive data we had to ensure that the data extracted was encrypted and
thus unreadable.

5.6. UTILITY TOOLS 59

Specification

As an illustration of what the extraction tool does here is a short example: We have
taken 3 records of one table, (in order to be readable not all the attributes of that table
have been taken). Figure A.1 below represents the data as it is in the database.

Figure 5.2: Example of records in a table

Then you extract the data with the tool and re-inject it into a similar database.
Figure 5.3 shows the results you will have for the data given above. The null value and
the empty fields remain as they are.

Implementation

As input the program needs the database name, its address, the user login and password.
It can also take a text file containing a list of table names that will be excluded from
the extraction.

Once the connection is made with the database. The program search the informa-
tion schema to get all the table names of the database to extract. Afterwards it proceeds
to remove the tables included in the given list of tables to exclude. Then we iterate over
all tables and executes a series of Select statements. The results of those select are
row by row and column by column passed in a SHA1 algorithm. The encrypted data is
injected into an Insert statement and then written in the output file.

60 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Encrypted records of figure A.1

Chapter 6

Case study : OSCAR

In this section we present the results we produced with our tools in a concrete study
case. This study case was conducted during our internship at the University of Victoria in
Canada. The main objective is to migrate the relational database to a NoSQL model to
improve response time. In order to do a migration it is mandatory to have documentation
on the current database. Unfortunately this was not available. So our first step was to do
a complete database reverse engineering process. Inspired by the classical methodology of
DBRE we exploited unused artefacts and brought new techniques to this methodology.
The process of database reverse engineering has not been completed (ending with a
complete and normalized conceptual schema) but we contributed to recover the schema,
improve the readability, help the understanding and eventually improve the quality of
the logical schema.

6.1 Context: The OSCAR System

OSCAR (Open Source Clinical Application Resource) is full-featured Electronic Medical
Record (EMR) software system for primary care clinics. It has been developed since
2001 and is now widely used in hundreds of clinics across Canada. As an open source
project, OSCAR has a broad and active community of users and developers.
Development on OSCAR has recently branched out to different centres around the coun-
try. In British Columbia, the Universities of B.C. and Victoria have started a collabora-
tion on developing software in support of a primary care research network. The declared
purpose of this network is to securely integrate health data from hundreds of clinics
for the purpose of answering research questions and improving medical practice. The
experiences presented in this section arose in the context of this project and address
real world challenges encountered when attempting to comprehend and integrate the
OSCAR information system.

61

62 CHAPTER 6. CASE STUDY : OSCAR

6.1.1 OSCAR’s Architecture

OSCAR has a Web application architecture following the classical 3-tier paradigm. It
employs a Java-based technology stack, making use of Java Server Pages (JSP), Enter-
prise Java Beans (J2EE) and several frameworks such as Spring, Struts and Hibernate.
The source code comprises approximately two million lines of code with a rough distribu-
tion of 600 kLOC for the application logic, 1200 kLOC for the presentation layer and 100
kLOC for the persistence layer. OSCAR uses MySQL as the relational database engine
and a combination of different ways to access it, including Hibernate object-relational
middleware, Java Persistence Architecture (JPA) and dynamic SQL (via JDBC). The
reason for this combination of technologies is due to the constant and ongoing evolution
history of the product, which originated from JDBC, via Hibernate to JPA.

The OSCAR database schema has over 480 tables and many thousands of attributes.
At the time of conducting our study, the database schema of the OSCAR distribution
did not contain any information on relationships between tables (foreign keys) and no
documentation was available about the schema. We later learned that the missing rela-
tionships were due to the evolution history of OSCAR, which has been using the older
MyISAM database engine provided by MySQL, which does not support foreign keys.

Other questions about the database schema and its semantics raised during the de-
velopment of new functionalities, therefore before starting a reengineering process, it
was necessary to recover the schema and have a better understanding about it. This
will then help to redesign it and eventually improve the performances.

6.2 Results

6.2.1 Foreign Key Extraction

Starting from scratch we extracted the database schema directly from the database using
the MySQL dump command. Afterwards we transformed (using the tool presented in
section 5.6.2) the code to fit the extractor of DBMain. The resulting schema had 480
entity types, 15829 attributes, with one entity type having 1155 attributes. The output
of the SQL extractor is unfortunately unreadable for such a large schema. Figure 6.1
shows the result. And sorting this by hand would have been quite painful and time
consuming. The clustering and filtering tools are a major help in reading the schema
(see Section 6.2.3).

After having run our foreign key extraction tool, which analyses the names of at-
tributes and the data access property files, we found 440 foreign keys added directly.
23 were added by parsing the hibernate mapping files and 417 by the name analysis.
Reason for such low number of keys found in the mapping files is that the migration
of the data access layer was under going. To help the user we added a meta-property
to each referential constraint providing information about where does this foreign key
comes from. Figure 6.2 shows that this key comes from the hibernate file, from which

6.2. RESULTS 63

Figure 6.1: The OSCAR schema, as it can be viewed in DB-MAIN just after the SQL
extraction

specific file and even from what kind of tag.

Figure 6.2: The property box of a foreign key

We mentioned in Section 5.2.2 that some of the possible foreign keys were listed in
a file to be analysed instead of directly adding them to the schema. We analyse some of
those keys below. Below are some entries of the file registering the identifier to identifier
foreign keys. It is structured as :

SourceEntity:SourceAttribute:TargetEntity:TargetAttribute

A sample of such a file is shown in the code below.

1 demographic : demographic no : demographicaccessory : demographic no
demographiccust : demographic no : demographicaccessory : demographic no

3 oscarKeys : name : func : name
l s t o r g c d : code : l s t g e n d e r : code

64 CHAPTER 6. CASE STUDY : OSCAR

We can see with these examples that those keys have great chances of not being one
actually. The first one may be a foreign key but extra information are needed, asking
a domain expert may be required. The second one is more difficult, we see from the
names that it is between 2 peripherals entities of the entity demographic. But is there a
foreign key between those two? We still have to ask a domain expert. Third and fourth
ones indicate that those tables have name or code has identifier. But should they be
connected together? It is most unlikely.
Another file produced is the one containing the keys where the source entity, the source
attribute, the target entity and the target attribute did not satisfied the more precise
name rules (see Section 4.1).

formCESD : demographic no : demographicaccessory : demographic no
2 formchf : demographic no : demographicaccessory : demographic no

formConsult : demographic no : demographicaccessory : demographic no
4

waitingListName : name : oscarKeys : name
6 a c c e s s t y p e : name : p lug in : name

appointment : name : p lug in : name

The first three ones have demographic no as source attribute and demographicac-
cessory as target entity. Since it exists a demographic entity. It is more likely that
the source entity references this one instead of the peripheral entities. The rules imple-
mented also assure that foreign keys between attributes names such as name or code are
not established.

When the analysis is completed we finally list all the attributes that have an ”id like”
name. Those finishing by ”id” or ”no” that are neither identifier nor part of a referential
constraint. Here are some examples :

1 appointmentArchive : c r e a t o r S e c u r i t y I d
bed : team id

3 b i l l r e c i p i e n t s : b i l l i n g N o

And finally resulting from the parsing of the hibernate mapping files, we produce a
file containing the SQL requests that could not be parsed automatically.

1 s e l e c t count (∗) from admiss ion a where a . c l i e n t i d=demographic no and a .
admi s s i on s ta tu s=’ cur rent ’ and a . program id in (s e l e c t p
. id from program p where p . type=’Bed ’)

6.2. RESULTS 65

All those files contain a lot of possible foreign keys but we thought it was better to
analyse those ones manually before inserting them in the schema because of the higher
probability that they are not referential constraints after all.

After having discovered and added all the possible foreign keys to the schema. The
question about the validation appeared. We indeed were not 100% sure about those keys.
To validate the hypothesis implicit constructs we need to prove and disprove them. Sev-
eral techniques are mentioned by Hainaut in [16]. In our case as the code was several
millions of lines and several different patterns were used to access the data, we figured
that the simplest technique was to analyse the data.
To do that we would have used the tool Key Analysis developed by Rever, which based
on a set of foreign keys and a database runs SQL requests to check if those constraints
are verified on the data set or not. Unfortunately we were not able to obtain sufficient
data in time and therefore only a few keys have been discarded.

However we used the new technique that the historical schema brought us (detailed
in Section 3.2). For remind, it consists of checking the date of creation of the target and
the source attribute. If the target attribute has been created after the source one we can
conclude that this key is not verified.
Applied to the 440 keys we found that 26 could be rejected.

6.2.2 Historical Schema

We analysed the history of the OSCAR database schema during a period of almost ten
years (22/07/2003-27/06/2013). During this period, a total of 517 different schemas
versions can be found in the GitHub repository.

Once the historical schema was derived, we applied a dedicated procedure allowing to
colourize each historical schema object, depending on its age and its liveness. Figure 6.3
shows a colourized version of the historical schema of OSCAR, that has been automat-
ically derived by our tool, and that can be browsed and queried using DB-MAIN. All
schema objects depicted in green constitute the tables and columns that are still present
in the latest schema version of OSCAR. All red schema objects have been deleted. The
color shade corresponds to the age of the objects. A dark red schema object is a table
or a column that has been deleted a long time ago. A light red object is an object has
been recently removed from the schema. An object depicted in green corresponds to a
column or a table that is still present in the latest schema version. The darker the green,
the older the corresponding table or column is, and vice versa. A schema object colored
in orange is a deleted object that had several lives.

Figure 6.4 zooms on a particular table of the global historical schema of OSCAR,
namely the integratorconsent table. The table itself is green, which means that it belongs
to the latest schema version of OSCAR. It includes 21 columns that are in red, meaning
that they have been deleted. The table also contains one deleted column that had several
lives, as well as 9 columns that still belong to the latest schema version. Among those
9 active columns, 4 are present in the table since its creation, while the 5 other ones
have been added more recently. When selecting a given schema table or column of the

66 CHAPTER 6. CASE STUDY : OSCAR

Figure 6.3: The OSCAR global historical schema, as it can be viewed in DB-MAIN.

historical schema, the user may inspect its associated meta-attributes (creation date,
number of versions, etc.) via the property box of DB-MAIN.

We also provide the user with a historical schema querying tool, allowing the extrac-
tion of interesting statistics regarding the evolution of the schema of interest. Some of
those statistics for the OSCAR database are given below.

Figure 6.5 depicts the evolution of the number of tables in the OSCAR schema.
As expected, this number keeps increasing, due to the lack of table deletion. Indeed,
in our test case, people tend to preserve very old tables in order to achieve backward
compatibility and avoid the important impact of a schema refactoring on the data and the
application programs. From the same figure, we can also easily identify those schema
versions that could be considered as ”major releases”, i.e., those versions where an
important number of tables have been added and/or deleted.

Figure 6.6 represents the evolution of the total number of columns in the OSCAR
schema. Fortunately, this number follows a similar trend as the evolution of tables.
In the last versions we can see that the number of added columns was relatively high
compared to the number of tables. This translates the addition of huge tables in the
schema, some of which comprising more than a thousand columns. The evolution of the
average number of columns per table is quite stable over time (around 30).

Figure 6.7 provides some finer-grained information about the creation and deletion
of tables. One can easily notice that the OSCAR tables are not often removed. The
expansion of the schema is caused (most of the time) by adding tables, while not replacing
or splitting them up. It is indeed very rare when tables are deleted. The total number
of deleted tables is around 30, and we can again quickly identify the major release time

6.2. RESULTS 67

Figure 6.4: The OSCAR global historical schema, when zooming on a particular table.

periods.

The observation is the same for the ratio of created and deleted columns, as shown
in Figure 6.8. The number of column creations is, indeed, often greater than the number
of column deletions. During the last releases, however, the removal of columns becomes
more intensive: 964 columns were deleted between schema version 452 and schema ver-
sion 453. The explanation is the following: at release 452, huge tables (each including
hundreds of columns) have been added to the database, and the peak that we observe
originates from the deletion of some of those tables. During our test period, a total of
3 872 columns were removed, while 14 793 columns were created.

In Figure 6.9) we can see the repartition of the tables based on the average age of
their columns, expressed in number of versions (X axis) and the number of columns of
the table (Y axis). We can notice that the large tables with more than 500 columns are
created throughout the whole life of the system. This means that those tables are not
an early design problem but are rather is still in use now.

In context of database migration, another interesting property of the tables are their
stability. A table that has been created a long time ago, and that was not subject to
frequent modifications can be considered as stable. In Figure 6.10 we characterize each
table with respect to the number of times it has been modified since its creation, and
we relate this information to the age of the table. We can see that the database schema
is globally stable, most of the tables have less than 4 modifications. As expected, it is
mainly the oldest tables that have the higher number of changes. We can say that a
stable table is a good candidate for a migration.

68 CHAPTER 6. CASE STUDY : OSCAR

Figure 6.5: Evolution of the number of tables in the OSCAR database.

Figure 6.6: Evolution of the number of columns in the OSCAR database.

6.2. RESULTS 69

Figure 6.7: Evolution of the number of creation and deletion of tables per version in the
OSCAR database.

Figure 6.8: Evolution of the number of columns in the OSCAR database.

70 CHAPTER 6. CASE STUDY : OSCAR

Figure 6.9: Classification of the OSCAR tables in terms of age VS size.

Figure 6.10: Classification of the OSCAR tables in terms of age VS number of changes.

6.2. RESULTS 71

6.2.3 Clustering

Figure 6.11: Sample of the summarized schema

After extracting the whole schema, the DBMain disposition was not optimal : we
could not clearly read the tables (as already exposed in the figure 6.1). We decided to
order the schema using the clustering technique. The chosen criterion was the name of
the tables, considering that some tables have a prefix. The tool regroups the tables to
build clusters, but also place it in a readable way on the DBMain grid. For example, the
tables prefixed by ”hl7 ” belong to the HL7 plugin. A plugin which provides standards
for interoperability.

In the Jaro-Winkler distance, we put some weight on the tables having a prefix. The
tables beginning by ”hl7 ” belong to the same cluster. The conclusion was the same for
the prefixes ”HRM”, ”hsfo ”, ”ctl ”, ”cr ”,. . . In that case, the name of the cluster is

72 CHAPTER 6. CASE STUDY : OSCAR

the prefix itself. The cluster analysis of the OSCAR schema bring 65 clusters, including
one containing all the isolated tables (a table forming a cluster only with itself). This
particular cluster contain 73 names (of real tables), which must be manually analysed
to create other clusters, or to be added to some existing one.

For readability reasons, the complete clustered schema can not be shown in this paper.
Even to read the reorganized complete schema, the task was difficult. On the clustered
schema, we applied the summarization (section 4.2.2. A sample of the result is shown
in the figure 6.11. Remember a real table of the schema is represented by a column,
and the tables of this picture symbolize the clusters. The summarized schema confirm
that the ”provider” and ”demographic” cluster are the most important of the schema.
This conclusion make sense because the ”demographic” table represent the concept of a
patient, since the ”provider” table symbolizes the concept of a doctor.

6.2.4 Filtering

If you want to understand a particular table or a group of the them, you need to look
after their relation, their importance in the entire schema, their neighbors, etc. In that
case, we try to understand the table billing. This table constitutes our Focus Set. The
chosen algorithm for the closeness is the naming analysis, and the alpha factor (balance
the weight between importance and closeness) is 0.5. The result set size is settled to 10.
The filtering tool provide us a sub schema of 10 tables having the meta attributes as
illustrated in the table 6.1.

Table name Closeness Importance Interest

billing 1.0 0.098 inf
billingdetail 0.92 0.0 0.4644
billinginr 0.97 0.0 0.485
billingmaster 0.92 0.061 0.495
billingnote 0.95 0.0 0.477
billingservice 0.91 0.02 0.47
billingtypes 0.942 0.02 0.48
billingvisit 0.942 0.0 0.47
demographic 0.41 0.925 0.668
provider 0.42 1.0 0.711

Table 6.1: Filtering Results for the ”billing” table

The billing table has an infinite interest because it is the Focus Set. We can see
the tables containing ”billing” in their name have a stronger closeness, since the chosen
algorithm use the Jaro-Winkler distance. On the other side, their importance in the
schema is weak. This means those tables are not linked by many foreign keys. The 2
last tables have opposite results : indeed, their names are not very closed to the ”billing”
table, but their importance is huge in the schema. Demographic and provider are in fact

6.2. RESULTS 73

the real most important table in the schema since they represent key concept in the
application domain. This is proved by the high value of their importance : provider is
actually the most referenced table in the schema.

From the result, we can understand that the billing system has several table repre-
senting different concepts such as details, notes, visit, etc. The bills are also linked to the
main concept of the entire system : demographic and provider. Some relation between
these tables exists that have to be explained.

With the creation of the Historical Schema, the Filtering querying found another pur-
pose. Indeed, it can be useful to query the historical schema to discover which table
were created at the same time, etc. For this example, we want to know the tables that
were removed at the same time as caisi editor1, to try to understand why they have been
removed. So we performed the filter with an offset of 3, and a result set of 10 elements.
The alpha factor was zero to only take into account the closeness based on the date and
not the importance of the table in the schema. The offset of 3 means that we are looking
in a period including the 3 previous version and the 3 next version. In this case, the
historical schema was made with 1 version per month, so the offset represent 3 months.

Figure 6.12: Filtering of caisi editor and system message

This result subschema is compose by consent, consent interview, icd10, integra-
torconsentcomplexform, system message and caisi editor, so 6 tables removed between
21/06/2008 and 21/08/2008. Afterwards, we decided to look at the tables created at the
same time caisi editor and system message were removed, still with an offset of 3. The
result schema is composed of : caisi editor, system message, favoriteprivilege, Intak-
eRequiresFields, integratorconsent, integratorconsentcomplexexitintervie, integratorcon-

1CAISI means Client Access to Integrated Services and Information.

74 CHAPTER 6. CASE STUDY : OSCAR

sentcomplexform, teleplan response log and teleplan submission link.

The table integratorconsentcomplexform belong also to that schema : indeed, it was
created on the 21/06/2008 and removed on the 21/07/2008. We can assume it was
replaced by integratorconsentcomplexexitintervie created on the 21/07/2008, and sharing
some common columns with integratorconsentcomplexform.

6.2.5 Database Slicing

Upward Results : Here we will describe how the upward slicing works.

The different inputs of the program are :

• Table names : You enter one or more table names to search. For exemple :
demographicarchive.

• Root project path : The path to the project workspace containing all source
code.

• Directories to exclude : The names of the directories you want to exclude
from the search. For exemple if there is a ”test” directory that contains all
the classes regarding the unit tests.

When the search is done you end up with an exploring tree containing all the
results. You can click on a particular file to open and edit it.

Figure 6.13: Log result of the upward slicing

The log 6.13 shows us all the files found. Compared to the eclipse search tool,
we found the .jsp files. Those are useful because they represents where the in-
teraction with the user is made. We could imagine to recreate the user interface
based on the results obtained. Moreover we found some other files linked to the
DemographicArchiveDao class.

The disadvantages from the implementation chosen is that we may get false positive
results when the name of the table we are looking for is a common name (for

6.2. RESULTS 75

exemple ”Billing”). Indeed those can be just printed on the user interface with no
regards to the table.

Downward Results : The downward approach aims to discover the impacted tables
of an execution scenario. We expose an example here. When logged as a doctor
in the OSCAR system, the homepage is the daily agenda we therefore chose to
expose the scenario of adding an appointment.
As shown in the figure 6.14, a form need to be filled to create the appointment.
This screenshot was taken during the ”recording” phase.

Figure 6.14: Screenshot of the form to add an appointment

Submitting the form will launch some requests on the mysql server. In this case,
the subschema resulting of the parsing of those requests is exposed in the figure
6.15. In this subschema, we can find the following tables admission, appointment,
appointment status, billing, billingmaster, demographic, demographic merged, de-
mographiccust, demographicstudy, facility message, health safety, lst gender, mes-
sagelisttbl, msgDemoMap, mygroup, MyGroupAccessRestriction, oscarcommloca-
tions, other id, program, property, provider, providerLabRouting, providerPrefer-
ence, providersite, scheduledate, scheduletemplate, scheduletemplatecode, secOb-
jPrivilege, study, sytemMessage, tickler, and waitingListName. Most columns of
those 32 tables were read several times during this scenario. Only some columns
of the appointment table (e.g. start time, end time, name, demographic no, pro-
gram id, location, etc) were written, and these are the only ones. The column
appointment date, selected in the figure 6.15, was written once and read 16 times.

76 CHAPTER 6. CASE STUDY : OSCAR

Figure 6.15: Screenshot of the subschema impacted by ”adding an appointment”

The parsed queries for this scenario are saved in a log file : it contains 95 queries
including the insert query, as shown in the code 6.1.

1 s e l e c t subrecord0 . merged to as merged4 0 , subrecord0 . demographic no
as demograp2 0 from demographic merged subrecord0 where (

subrecord0 . de l e t ed = 0) and subrecord0 . merged to=1
i n s e r t i n to appointment (prov ider no , appointment date , s t a r t t ime ,

end time , name , notes , reason , l o ca t i on , r e source s , type , s t y l e , b i l l i n g
, s tatus , c reatedatet ime , c reator , remarks , demographic no ,
program id , urgency) va lue s (’ 999998 ’ , ’ 2013−08−09 ’ , ’ 1 2 : 00 : 0 0 ’ , ’
1 2 : 14 : 00 ’ , ’TEST,TEST ’ , ’ ’ , ’The pa t i en t has a headache ’ , ’ ’ , ’ ’ , ’ ’ ,
nu l l , nu l l , ’ t ’ , ’ 2013−8−9 8 : 3 2 : 1 4 ’ , ’ oscardoc , doctor ’ , ’ ’ , ’ 1 ’ , ’ 0 ’ , ’ ’
)

3 s e l e c t count (∗) as c o l 0 0 from waitingListName w a i t i n g l i s 0 where
w a i t i n g l i s 0 . i s h i s t o r y=’N ’ l i m i t 1

s e l e c t appointment no from appointment where prov ide r no=’ 999998 ’ and
appointment date=’ 2013−08−09 ’ and s t a r t t i m e=’ 12 : 00 : 00 ’ and
end time=’ 12 : 14 : 00 ’ and crea tedate t ime=’2013−8−9 8 : 3 2 : 1 4 ’ and
c r e a t o r=’ oscardoc , doctor ’ and demographic no=’ 1 ’ order by
appointment no desc l i m i t 1

Listing 6.1: Sample of the parsed queries (Downward Slicing)

6.2. RESULTS 77

The error log produced by the tool is shown in the code 6.2, and contain 2 requests
unparsed with our parser, because the sql keyword ”regexp” is not recognized by
the net.sf.jsqlparser (used in the tool).

Imposs ib l e Pars ing f o r : s e l e c t demographic no , f i r s t name ,
last name , r o s t e r s t a t u s , sex , chart no , y e a r o f b i r t h , month of b i r th ,
d a t e o f b i r t h , p rov ide r no from demographic where regexp ’ ˆ ’ and
p a t i e n t s t a t u s not in (’ IN ’ , ’DE ’ , ’ IC ’ , ’ ID ’ , ’MO’ , ’ FI ’) order by
last name , f i r s t n a m e

2 ###### Imposs ib l e Pars ing f o r : s e l e c t ∗ from demographic where lower (
last name) regexp ’ ˆ ’ order by last name , f i r s t n a m e

Listing 6.2: Sample of the parsed queries (Downward Slicing)

Some other mistakes appear in the eclipse console : 3 tables were not found in the
dbmain project. Indeed, providerpreferenceappointmentscreenform, providerpref-
erenceappointmentscreenquicklink and providerpreferenceappointmentscreeneform
had too long names for the dbmain parser, as already said in the section 5.6.2.
But the result (read and written time per database object) about these 3 tables
saved in the third log produced by the tool. A sample of this output log is exposed
below :

secobjprivilege

objectname 42 0

priority 32 0

privilege 32 0

roleusergroup 32 0

providerpreferenceappointmentscreenform

appointmentscreenform 1 0

providerno 2 0

The first column is the number times read, and the second is the number times
written.

78 CHAPTER 6. CASE STUDY : OSCAR

Chapter 7

Additional Discussion

When implementing the different techniques described, as we mentioned we worked with
DBMain and the API furnished JIDBM. Few experiences were made manipulating such
large schemas and thus large DBMain files (.lun file).
To derive the global historical schema each versions of the SQL files had to be added to
the DBMain file, we could end up with a file with a size over 900Mb. Opening such a file
would take more than 20 minutes. It is when we manipulated this file that we discovered
weird behaviour. Some functions of the API (findEntityType) didn’t work as expected.
They should only search in one particular schema and somehow we experienced that the
time of execution was related to the size of the file.

Prior to exploiting the different schema version we add to use the SQL Extractor of
DBMain, this parser doesn’t integrate the complete SQL grammar and doesn’t support
the too long table names. Names longer than 32 characters caused the DbMain appli-
cation to completely crash.

Those problems have been shared with the development team and the application is
now faster and more stable. As example with a .lun file of 200Mb the opening time was
2 min and 30 sec and the execution of the function was 30 sec. Thanks to the correction
of the problems discovered those respective time are now 15 sec and less than a second.

79

80 CHAPTER 7. ADDITIONAL DISCUSSION

Chapter 8

Conclusion

In the introduction, we presented the purpose of the thesis. We showed that software
maintenance is an important step in the software development life-cycle. This step
required a good understanding of the program and the database. Databases are more and
more crucial in the maintenance process. Unfortunately, documentation rarely exists,
we therefore had a strong need to recover it. Research questions of the thesis has been
exposed.

In chapter 2, we established the state of the art of the different domain used in this
thesis. We saw that the database engineering process has become well documented and
rigorous. The database reverse engineering process tend to follow this line, but due
to the increasing size of systems and raising of new technologies some limitations were
found. The schema evolution is a domain in expansion that currently focuses on the
impact of a change and on rather small schema. We proposed to analyse the past of all
changes through a tool supported method. To improve the readability we proposed to
apply a method of clustering and filtering. We then saw that the database was rarely
an objective of the program slicing and was a novative way to explore.

In chapter 3, we proposed a revisited methodology of the database reverse engineering
including new artefacts such as the history of code and the mapping files, and new
techniques to help the understanding. This method was made to help the process in a
case where large database schemas were encountered.

Chapter 4 described the high level specification of our proposed techniques. Chapter
5 is devoted to their implementation.

Finally we exposed the results obtained with the proposed techniques and tools on
a large and concrete case study. The OSCAR case allow us to test the developed tech-
niques on a real and complex application. It allowed us to validate, somehow, these
tools. We will establish in the next paragraphs if each technique is fully generic and can
be applied to any case study or if they are scalable and how. We will then answer the
questions asked in Section 1.4.

The technique presented for the extraction of possible implicit constructs, specially
foreign keys is not fully generic. It has indeed been built regarding the OSCAR appli-

81

82 CHAPTER 8. CONCLUSION

cation context where a specific ORM has been used (Hibernate), in case of other ORM
layer used in other application, the tool may not work as the property files may not be
the same. The algorithm in charge of the names heuristic has been built using the name
conventions used in OSCAR, however those seemed rather generic, and therefore can
be applied to other schemas. To perform the validation of hypothesis foreign keys, the
encryption tool and the validation developed by Rever are fully generic.

The clustering technique aims to order a database schema to make it more read-
able, or to dispose the element in a way to make the understanding easier for the analyst.
This technique is fully generic, since it handle generic database object such as columns
and tables. Every database schema can be clustered and summarized. The filtering
purpose is to extract piece of knowledge about some chosen tables. It generates a sub-
schema containing tables related to the given table according some defined criterion.
This technique is not specific to the OSCAR context for the same reasons as the clus-
tering one. These tools are scalable : some new criterion of clustering or filtering can be
implemented in an universal way for all database schemas.

The historical schema method is fully generic and can be applied easily to other
databases. As long as it is possible to extract the SQL code from the source repository.
In our case study we developed a stand alone tool 5.6.1 exploiting a Git repository.
Rewriting a tool to extract code from other systems such as SVN may be necessary, but
the same tool to construct the global historical schema can be used. To provide more
results of the historical schema in the written papers we extracted it for the MediaWiki
database. The result schema and statistical graphs are shown in Appendix .

The database slicing (downward approach) aims to apply the principle of the pro-
gram slicing. It results a subset of the complete schema containing the objects impacted
by an execution scenario. This approach is generic, but was implemented based on the
parsing of a MySQL server general log. Some adaptation may be possible to adapt it
to other DBMS. The upward approach is based on the grep linux command, so it is not
really generic.

This thesis attempts to answer the research questions defined in chapter 1 :

Which new techniques can support the database reverse engineering process?

As mentioned in Chapter 3 & 4. We have seen that besides the usual artefacts and
process used for database reverse engineering, we can moreover add new techniques
and artefacts. The new artefacts are coming from new technologies (ORM layer) or
exploitation of source repositories. The new techniques such as as the database slicing
or the clustering come from existing concepts that do not take the database much into
consideration. We have found out that adapting such techniques can bring significant in
the database reverse engineering process.

How can we support the visualization and comprehension of large database

83

schemas?

In order to help the visualization of particularly large schemas we introduced the clus-
tering and summarization techniques that elevate the level of abstraction of a schema or
regroup tables regarding particular criterion.

To what extent can the history of a database schema help the understanding
of its current version?

The historical schema and the filtering tool combined bring important information
about which objects were created or deleted at the around same time and therefore
allowed us to easily determine which schema structure superseded which other schema
structure. Another important insight created by our schema evolution analysis method
was a better understanding of the role of the many large-scale tables that contain hun-
dreds or even thousands of attributes. The information content of these tables overlaps
significantly with other parts of the transactional database. Therefore, our initial hy-
pothesis (before considering the evolution history) was that these tables were relicts of
early database designs. The evolution analysis, however, refuted this hypothesis and
indicated that these tables are indeed being generated throughout the system lifetime.
Numerous other applications can be added and are detailed in chapter 9.

The historical analysis brought to light the link between the evolution of the database
and the evolution of all the other software artefacts, and that this domain remains largely
unexplored. This work is the subject of a PhD thesis recently started by Loup Meurice.

84 CHAPTER 8. CONCLUSION

Chapter 9

Future works & Applications

During the conception of the presented new techniques, a lot of ideas came to our minds.
Some of them are in the continuity, further exploitation, others are new techniques that
could also contribute to the understanding of large database schema. We tried to imple-
ment a subset of these techniques in our case study but several problems appeared due
to the specific environment or missing artefacts. This section presents those ideas.

9.1 Advanced Exploitation of Historical Schema

Regarding the Historical Schema since it is a new technique. A lot of further work can
be done. We first can add numerous attributes to each data objects. Indeed we only
used the basic information provided by the version repository. Git or SVN provide other
useful information that could be integrated to the schema for example the developers
manipulating an object. Integrating the history of each person who have contributed to
a particular table could help us on one hand to identify who is responsible of a particular
change, and on the other hand help the reverse engineer to find the person who is expert
with this table. Improving the filtering tool could then help answering those questions.
If the application context integrates migration scripts between each version of the schemas,
those can also be integrated to the historical schema. Thanks to the version repository
the source code of the application itself can be linked to the evolution of the database
schema. And therefore we could imagine discovering recurring patterns and eventually
developing automated scripts migration based on a schema evolution. Answering ques-
tion like What changes in the application code if a table or a column is added? The
co-evolution of code application and database schema has been the subject of [23] where
they present the main challenges and possible solutions to explore.

Another major improvement will be to develop a proper visualisation tool of this his-
torical schema, likewise the work of [32], we could imagine that the tables would be
represented has buildings and the different clusters would be districts, and following the
importance of changes or of relations between them we would have bigger elements.

85

86 CHAPTER 9. FUTURE WORKS & APPLICATIONS

One could also imagine having a dynamic representation of the evolution of the schema,
we could via a cursor navigate throughout all the history of the whole schema.

One further and ambitious development in the evolution domain would be to create
a representation of the evolution of the data instead of the structures. Data evolu-
tion would help us discovering implicit constraint, intensity of use, dead structures and
therefore improve the performance of the database.

9.2 Enriched Database Slicing

The database slicing can be improved by integrating the two approaches and providing a
user friendly visualisation tool. The user does a particular action and when it is done we
will have a visualisation tool integrating the code corresponding to the action linked to
the user interface, to the SQL executed and finally to the tables affected by this action.
A way to do that would be to analyse the trace of client browser such as GUI events
using FireDetective1.

In case of long sequences of actions for the user to perform. The idea was to use
a crawler such as Crawljax 2. The work of [24] explores a technique to automatically
test ajax based web application by generating and analysing all the different states of
the DOM tree. We would have used the crawler to automatically do a specific series of
action. A further application of such a crawler is to execute the whole application in
addition of the downward slicing tool. This way would obtain a full database schema
of the used tables. Comparing this schema with the whole schema and we obtain the
possible Dead Structures.

Finding the Dead Structure is a major problem in database re-engineering. Some
can be discovered using a combination of our techniques, the historical schema with the
filtering tool and data. But another solution would be to use the upward database slicing
in combination with a tool such as CodePro 3, this tool can detect the dead code in an
application. Combining the dead code detection with the classes discovered thanks to
the slicing could also give us good clues about the dead structure in a schema.

9.3 Extended clustering and Filtering

As said above, the database objects can contain several other attribute, or more precisely
meta-attribute, such as the developer names, a particular color, etc. All these can be
new criterion for the clustering and the filtering. New algorithms may be made based
on the new characteristics, to extend the existing tool. However, a tool able to fill these
meta-attributes from the Git repository or other sources (documentations, rapports, etc)
is necessary.
The filtering can be improved. Indeed the existing algorithm about creation and removal

1http://swerl.tudelft.nl/bin/view/Main/FireDetective
2http://crawljax.com/
3https://developers.google.com/java-dev-tools/codepro/doc/

9.3. EXTENDED CLUSTERING AND FILTERING 87

dates compute the closeness takes into account the difference between versions, we could
adapt it to consider the times in term of days or weeks.

88 CHAPTER 9. FUTURE WORKS & APPLICATIONS

Bibliography

[1] Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig. Software
complexity and maintenance costs. Commun. ACM, 36(11):81–94, November 1993.

[2] B.W. Boehm. Software engineering economics. Software Engineering, IEEE Trans-
actions on, SE-10(1):4–21, 1984.

[3] A. Cleve and J-L Hainaut. Dynamic analysis of sql statements for data-intensive
applications reverse engineering. In Reverse Engineering, 2008. WCRE ’08. 15th
Working Conference on, pages 192–196, 2008.

[4] A. Cleve and J-L Hainaut. What do foreign keys actually mean? In Reverse
Engineering (WCRE), 2012 19th Working Conference on, pages 299–307, 2012.

[5] A. Cleve, J. Henrard, and J-L Hainaut. Data reverse engineering using system
dependency graphs. In Reverse Engineering, 2006. WCRE ’06. 13th Working Con-
ference on, pages 157–166, 2006.

[6] Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens Weber.
Understanding database schema evolution: A case study. Science of Computer
Programming, 2014. to appear.

[7] Anthony Cleve, Jean-Roch Meurisse, and Jean-Luc Hainaut. Journal on data se-
mantics xv. chapter Database semantics recovery through analysis of dynamic SQL
statements, pages 130–157. Springer-Verlag, Berlin, Heidelberg, 2011.

[8] Anthony Cleve, Nesrine Noughi, and Jean-Luc Hainaut. Dynamic program analysis
for database reverse engineering. In Ralf Lämmel, João Saraiva, and Joost Visser,
editors, Generative and Transformational Techniques in Software Engineering IV,
volume 7680 of Lecture Notes in Computer Science, pages 297–321. Springer Berlin
Heidelberg, 2013.

[9] Anthony Cleve, Nesrine Noughi, and Jean-Luc Hainaut. Dynamic program analysis
for database reverse engineering. In Ralf Lämmel, João Saraiva, and Joost Visser,
editors, Generative and Transformational Techniques in Software Engineering IV,
volume 7680 of Lecture Notes in Computer Science, pages 297–321. Springer Berlin
Heidelberg, 2013.

89

90 BIBLIOGRAPHY

[10] T. A. Corbi. Program understanding: Challenge for the 1990s. IBM Systems
Journal, 28(2):294–306, 1989.

[11] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Graceful database schema
evolution: the prism workbench. In Very Large Data Base (VLDB), 2008.

[12] DB-MAIN. The DB-MAIN official website. http://www.db-main.be, 2010.

[13] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,
July 1987.

[14] Github. The Git official website. http://git-scm.com/, 2010.

[15] Maxime Gobert, Jerome Maes, Anthony Cleve, and Jens Weber. Understanding
schema evolution as a basis for database reengineering. In IEEE Computer So-
ciety, editor, Proceedings of the 29th IEEE International Conference on Software
Maintenance (ICSM 2013), 2013. to appear.

[16] Jean-Luc Hainaut. ”Introduction to Database Reverse Engineering”. 2002.

[17] Jean-Luc Hainaut. The transformational approach to database engineering. In Ralf
Lämmel, João Saraiva, and Joost Visser, editors, Generative and Transformational
Techniques in Software Engineering, volume 4143 of Lecture Notes in Computer
Science, pages 95–143. Springer Berlin Heidelberg, 2006.

[18] J.L. Hainaut. Bases de données: Concepts, utilisation et développement. Sciences
sup. Dunod, 2009.

[19] M. M. Lehman. On understanding laws, evolution, and conservation in the large-
program life cycle. J. Syst. Softw., 1:213–221, September 1984.

[20] M M. Lehman, J F. Ramil, P D. Wernick, D E. Perry, and W M. Turski. Metrics and
laws of software evolution - the nineties view. In Proceedings of the 4th International
Symposium on Software Metrics, METRICS ’97, pages 20–, Washington, DC, USA,
1997. IEEE Computer Society.

[21] M.M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9):1060–1076, 1980.

[22] Barbara Staudt Lerner and A. Nico Habermann. Beyond schema evolution to
database reorganization. SIGPLAN Not., 25(10):67–76, September 1990.

[23] Dien-Yen Lin and Iulian Neamtiu. Collateral evolution of applications and
databases. In Proceedings of the joint international and annual ERCIM workshops
on Principles of software evolution (IWPSE) and software evolution (Evol) work-
shops, IWPSE-Evol ’09, pages 31–40, New York, NY, USA, 2009. ACM.

BIBLIOGRAPHY 91

[24] Ali Mesbah and Arie van Deursen. Invariant-based automatic testing of ajax user
interfaces. In Proceedings of the 31st International Conference on Software Engi-
neering, ICSE ’09, pages 210–220, Washington, DC, USA, 2009. IEEE Computer
Society.

[25] Erhard Rahm and Philip A. Bernstein. An online bibliography on schema evolution.
SIGMOD Rec., 35(4):30–31, December 2006.

[26] Spencer Rugaber. Program comprehension, 1995.

[27] Josep Silva. A vocabulary of program slicing-based techniques. ACM Comput.
Surv., 44(3):12:1–12:41, June 2012.

[28] Dag Sjøberg. Quantifying schema evolution, 1993.

[29] Antonio Villegas and Antoni Olivé. On computing the importance of entity types
in large conceptual schemas. In CarlosAlberto Heuser and Günther Pernul, editors,
Advances in Conceptual Modeling - Challenging Perspectives, volume 5833 of Lecture
Notes in Computer Science, pages 22–32. Springer Berlin Heidelberg, 2009.

[30] Antonio Villegas and Antoni Olivé. A method for filtering large conceptual schemas.
In Jeffrey Parsons, Motoshi Saeki, Peretz Shoval, Carson Woo, and Yair Wand,
editors, Conceptual Modeling – ER 2010, volume 6412 of Lecture Notes in Computer
Science, pages 247–260. Springer Berlin Heidelberg, 2010.

[31] Mark Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE
Press.

[32] Richard Wettel and Michele Lanza. Codecity: 3d visualization of large-scale soft-
ware. In Companion of the 30th international conference on Software engineering,
ICSE Companion ’08, pages 921–922, New York, NY, USA, 2008. ACM.

[33] D. Willmor, S.M. Embury, and Jianhua Shao. Program slicing in the presence of
database state. In Software Maintenance, 2004. Proceedings. 20th IEEE Interna-
tional Conference on, pages 448–452, 2004.

92 BIBLIOGRAPHY

Appendices

93

Appendix A

MediaWiki Historical Schema and
statistics

95

Figure A.1: Historical schema of MediaWiki

97

Figure A.2: Column modification of MediaWiki per version

Figure A.3: Table modification of MediaWiki per version

98 APPENDIX A. MEDIAWIKI HISTORICAL SCHEMA AND STATISTICS

Figure A.4: Table age vs table size (MediaWiki)

Figure A.5: Table stability (MediaWiki)

99

