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Abstract 

Visual notations are commonly used in Information Systems (IS) to represent information by using a struc-
tured set of rules and symbols. Nowadays, visual notations are used in almost every field of IS. Over the 
years, and since the first modelling language of Von Neumann, visual notations drew the attention of most 
research in IS. However, the research efforts are focusing more on semantic issues than on visual represen-
tation issues. Indeed, most of nowadays’ modelling languages do not provide any design rationale about 
their visual syntax, i.e., the symbols used in the visual notation. In general, modellers rely only on common 
sense to design the visual syntax of notations. To analyse and design notations, Moody’s Physics of Nota-
tions (PoN) relies on scientific foundations from various fields such as Psychophysics, Cognitive Psychol-
ogy, and Graphic Design. However, an operationalization of the PoN theory remains crucial. Indeed, with-
out any operationalization, a theory would appear to be limited to be applied on concrete visual languages. 
Moreover, it appeared that the PoN was used differently from one researcher to another. This is due to the 
ambiguity caused by the need to refer to self-interpretation (i.e., intuition) on specific points of the PoN. An 
operationalization would reduce such an ambiguity. These reasons lead us to propose an operationalization 
of the PoN. To this end, this thesis will define a set of metrics to support two of the PoN principles. This 
thesis draws upon Störrle and Fish’s attempt to operationalize the PoN and on various work of Genon et al. 
who applied the PoN to analyse the cognitive effectiveness of modelling languages (i.e., optimisation of 
how visual notations are processed by the human mind). This operationalization of the PoN leads us to 
examine the degree of scientificity of the PoN by using a meta-theory (i.e., a theory to analyse and classify 
other theories). This theoretical analysis reveals the PoN principles that need to be more developed in fu-
ture research. Finally, we propose to apply our operationalization on a modelling language developed by 
Mussbacher: the Aspect-oriented User Requirements Notation (AoURN). AoURN extends ITU-T’s User 
Requirements Notation (URN) to support encapsulation of crosscutting concerns in requirements models. 
Furthermore, AoURN is the only standards-based and graphical approach to bring aspect-oriented model-
ling (AOM) to a requirements language. Moreover, the application of the PoN to AoURN is alone a valua-
ble contribution. 
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Résumé 

Les notations visuelles sont généralement utilisées dans les Systèmes d’Information (SI) afin de représenter 
l’information en utilisant un ensemble structuré de règles et de symboles. De nos jours, les notations 
visuelles sont utilisées dans presque toutes les branches des systèmes d’information. Au fur et à mesure des 
années, et ce depuis le premier langage de modélisation de Von Neumann, les notations visuelles ont cana-
lisé la plupart des recherches dans le domaine des SI. Cependant, ces recherches sont le plus souvent focali-
sées sur le traitement des problèmes sémantiques et non les aspects visuels des langages de modélisation. Il 
est à noter que la plupart des langages de modélisation n’expliquent pas la logique de conception de leur 
syntaxe visuelle (les symboles utilisés dans la notation visuelle). En général, les modélisateurs s’appuient 
sur le sens commun pour définir la syntaxe visuelle des notations. Pour analyser et concevoir des notations 
visuelles, la Physics of Notations (PoN) de Moody repose sur des bases scientifiques de plusieurs disci-
plines telles que la psychophysique, la psychologie cognitive et l’étude de la conception de graphiques. 
Cependant, l’opérationnalisation de la PoN reste primordiale. En effet, sans elle, une théorie paraîtrait lim-
itée lorsque l’on l’applique à un langage visuel donné. De plus, il faut bien constater que la PoN a été utili-
sée de manière différente d’un chercheur à un autre. Ceci est lié au besoin de faire appel à l’intuition pour 
faire face à l’ambiguïté de certains points de la PoN. Une opérationnalisation réduirait l’ambiguïté de ces 
points. Ces raisons nous poussent à proposer une opérationnalisation de la PoN. Ce mémoire définira un 
ensemble de métriques pour renforcer deux principes de la PoN. Nous nous appuyons sur une tentative 
d’opérationnaliser la PoN de Störrle et Fish et sur le travail de Genon et al. Ces derniers ont appliqué la 
PoN pour analyser l’efficacité cognitive de langages de modélisation qui est l’optimisation de notations 
visuelles pour le cerveau humain. Cette opérationnalisation nous a mené à reconsidérer le degré de scienti-
ficité de la PoN en utilisant une meta-theorie (une théorie analysant d’autres théories). Cette analyse a fait 
apparaitre que la PoN devra faire l’objet de recherche dans le futur. Pour terminer, dans le but d’évaluer 
nos métriques, nous les appliquerons à un langage de modélisation développé par Mussbacher, l’Aspect-
oriented User Requirements Notation (AoURN). AoURN est une extension du langage User Requirements 
Notation (URN) soutenu par l’ITU-T. AoURN est le seul langage de modélisation à supporter de manière 
graphique la séparation de préoccupations transversales en ingénierie des exigences. En plus, nous appli-
querons les autres principes de la PoN à AoURN pour obtenir une analyse complète d’AoURN.  
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Chapter 1. Introduction 

Visual notations are commonly used in Information Systems (IS) to represent information 

by using a structured set of rules and symbols. Nowadays, visual notations are used in 

almost every field of IS. Over the years, and since the first modelling language intro-

duced by Von Neumann, visual notations drew the attention of most research in IS.  

However, the research efforts are focusing more on semantic issues than on visual 

representation issues (e.g., [28][35]). Indeed, most of nowadays’ modelling languages do 

not provide any design rationale about their visual syntax, i.e., the symbols used in the 

visual notation. In general, modellers rely only on common sense to design the visual 

syntax of visual notations [40].  

To analyse and design notations, Moody’s Physics of Notations (PoN) [25] relies 

on scientific foundations from theory and empirical evidence from a various fields such 

as Psychophysics, Cognitive Psychology, and Graphic Design. The PoN consists of nine 

principles that address both evaluation and design issues of visual notations. The PoN 

relies on the idea of falsifiability of its principles, which states that they can be empirical-

ly testable [31].   

However, an operationalization of the PoN theory remains crucial. Indeed, with-

out any operationalization, a theory would appear to be limited to be applied on concrete 

visual languages. Moreover, it appeared that the PoN was used differently from one re-

searcher to another. This is due to the ambiguity caused by the need to refer to self-

interpretation (i.e., intuition) on specific points of the PoN. An operationalization would 

reduce such an ambiguity.  

To this end, we propose to operationalize the PoN principles. Our analysis and 

proposals are drawn upon Störrle and Fish’s attempt to operationalize the PoN [39] and 

on various work of Genon et al. who applied the PoN to analyse the cognitive effective-

ness of modelling languages (i.e., optimisation of how visual notations are processed by 

the human mind) [10][11].  
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This operationalization of the PoN leads us to examine the degree of scientificity 

of the PoN by using a meta-theory (i.e., a theory to analyze and classify other theories) 

[17]. We chose using Gregor’s taxonomy, which draws upon various resources such as 

philosophic literature in the fields of natural sciences and the social sciences. Gregor dis-

cusses the purposes of a theory (such as prediction and explanation) in order to propose a 

taxonomy that synthesizes different perspectives into a coherent meta-theory. The taxon-

omy defines five types of theory. In this thesis, we employ a two-step approach to apply 

the taxonomy: gathering of information to fill the taxonomy components and a discussion 

based on these components to classify each of the PoN principles.  

Moody has already applied the taxonomy on the PoN; however, we think that it 

was done at a very coarse-grained level. Therefore, we propose a “per-principle” evalua-

tion. This theoretical analysis reveals that some PoN principles need to be more devel-

oped in future research. In our operationalization, we voluntarily focus our research on 

two principles of the PoN: Semiotic Clarity and Perceptual Discriminability. Our analysis 

encompasses definitions of mathematic formulae, methods and advices in order to sup-

port systematic analysis approach for future applications of the PoN.  

In order to validate our operationalization, we apply our metrics on the Aspect-

oriented User Requirements Notation (AoURN) [27]. AoURN extends ITU-T’s User 

Requirements Notation (URN) to support encapsulation of crosscutting concerns in re-

quirements models. Moreover, AoURN is the only standards-based and graphical ap-

proach to bring aspect-oriented modelling (AOM) to a requirements language. As a valu-

able contribution, we discuss the cognitive effectiveness of AoURN by applying the PoN 

as Genon et al. We discuss several weaknesses of AoURN in terms of the PoN. Moreo-

ver, we suggest improvements at the notational level by providing a set of cognitively 

more efficient symbols for AoURN. Since AoURN has not yet been standardized, our 

suggestions may be included in the future version of AoURN. A broader goal of our 

analysis according to cognitive effectiveness is to encourage discussion among practi-

tioners from the language design and standardization communities. 
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This thesis is divided in two parts: Part I introduces the background in Chapters 2 and 3. 

Chapter 2 introduces the AoURN notation and Chapter 3 introduces two theories to eval-

uate and design visual notations: Green’s Cognitive Dimensions and the PoN. Part II 

gathers Chapter 4 to 6. Chapter 4 introduces Gregor’s taxonomy to classify a theory and a 

detailed analysis of the PoN against the taxonomy. Chapter 5 operationalizes and criti-

cizes the PoN.  Chapter 6 evaluates the AoURN against the set of metrics of the PoN de-

veloped on Chapter 5. Finally, future work is discussed in Chapter 7. It includes the sug-

gestion of a new line of research that uses CASE tool features to improve the cognitive 

effectiveness of notations. 
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Part I: Background 

In Chapter 2, we present the ITU-T’s User Requirements Notation (URN) and its context 

in the requirements engineering field. AoURN, which extends URN will then be present-

ed. Moreover, we illustrate both URN and AoURN with an example for comprehension 

purpose.  

In Chapter 3, we present two of the most popular theories to evaluate visual notations: the 

Green’s Cognitive Dimensions and the Moody’s Physics of Notations.  

In Chapter 4, we present Gregor’s Taxonomy, we did not include that introduction in this 

Part I to simplify the reading of the rest of Chapter 4. 
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Chapter 2. Requirements Engineering and RE 
Modelling Languages 

2.1. Requirements Engineering 

Requirements engineering is a crucial step in the software life cycle. It aims to extract, 

analyse, specify, validate, and manage the evolving requirements of a system’s stake-

holders. Often, the needs from a specific domain can be extracted and specified by mod-

elling and organizing them with a set of diagrams. The main challenge is to extract the 

most relevant information of the domain, which means being precise enough to represent 

the domain and not gather irrelevant details.  

Another challenge could be how to represent diagrams in a more cognitively effi-

cient way. For example, a long list of requirements written in plain text is less cognitively 

efficient than a graphical representation of these requirements. Indeed, diagrams use a 

two-dimensional geometric symbolic representation of information, which is processed 

more efficiently by human cognition. 

Over several years, research has been conducted to formalize the different activi-

ties that compose the requirements engineering process. This research led to modelling 

languages that have been designed to convey more effectively the extracted information. 

Some of them are introduced in this section. 

2.2. UML 

The Unified Modelling Language (UML) is a family of modelling languages, designed as 

general-purpose modelling languages, that can address every step of the software devel-

opment and requirements engineering processes. Typically, the requirements are mod-

elled from high-level diagrams (overview of the domain) to lower-level diagrams (close 

to the implementation).  
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One of the main strengths of UML is that it is standardized by the Object Man-

agement Group (OMG) and also by the International Organization for Standardization 

(ISO). In my opinion, standardization helps providing more confidence that a modelling 

language can be adopted in practice by the industry. 

UML is the most used software modelling language. However, UML lacks ab-

straction for requirements gathering because even in high-level diagrams, it requires one 

to handle details (e.g., synchronous / asynchronous messages or type of parameters in 

sequence diagrams) that are not relevant at this level. 

Furthermore, UML lacks traceability capabilities for connecting high-level and 

low-level modelling diagrams. Even worse, there is no graphical symbol in UML to link 

diagrams of the different languages that compose UML (e.g., how to link a sequence dia-

gram to a state machine diagram). Therefore, a means of connecting diagrams from dif-

ferent perspectives should be offered. Finally, there is no goal-oriented view in UML. 

Due to its general-purpose characteristic, it seems to us that UML is not special-

ized for requirements engineering. Indeed, dealing with requirements engineering re-

quires from a modelling language to provide the right degree of formality, i.e., to enable 

high abstractions for the high-level diagrams and more precise capabilities for the low-

level diagrams. 

2.3. User Requirements Notation 

The User Requirements Notation (URN) [1][2][3][19] is used to model and analyse re-

quirements with goals and scenarios. URN is composed of two sub-languages, the Goal-

oriented Requirement Language (GRL), which models actors and their intentions; and the 

Use Case Maps (UCM) language, which lets us model scenarios in accordance with their 

components. One advantage of URN compared to UML is that it enables modellers to 

capture the rationale behind some choices that have been taken (GRL). Furthermore, 

UCM diagrams (i.e., UCM path) do not introduce extra details like UML sequence dia-

grams, and they support more workflow patterns than UML activity diagrams [26]. URN 

explicitly offers a means to pass from the goal-oriented modelling part to the scenario-

based modelling part. 
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Finally, URN has been standardized by the International Telecommunication Un-

ion (ITU), an agency of the United Nations specialized in information and communica-

tion technologies. The specification of the language is described in the ITU-T Z.151 

standard document; the abstract syntax and the concrete grammar syntax are precisely 

defined.  

2.3.1 Goal modelling with URN 

The Goal-oriented Requirement Language (GRL), subset of the URN language, is a visu-

al modelling language used in the early phase of the requirement engineering process. It 

aims to help understand the domain without any concerns about implementation. A GRL 

diagram models both the stakeholders’ goals and the functional and non-functional re-

quirements. Moreover, alternatives considered and the rationale of decisions can be cap-

tured in GRL. 

GRL is based on the i* framework, one of the leading goal-oriented languages, 

and on the Non-Functional Requirement framework, which makes it very close to these 

frameworks both for the abstract and the concrete grammar syntaxes. The GRL core is 

composed of four main categories of concepts: actors, intentional elements, indicators, 

and links.  

A GRL graph (i.e., a GRL diagram) is composed of Actors ( ) that represent 

stakeholders of an application domain. Those actors may contain intentional elements. 

An intentional element may be a Goal ( ), Softgoal ( ), Task ( ), Resource (!) or 

Belief ( ).  

The softgoal and goal concepts can be confusing: the latter does not have to be 

understood as “hardgoal” but as a goal that is fully quantifiable. A softgoal depicts a goal 

related to non-functional requirements that cannot be fully achieved in a quantifiable way 

(e.g., the maintainability of a system). A task is an operationalization of a goal or a soft-

goal. A resource is a physical or informational entity, which has to be available to com-

plete or achieve a goal or a softgoal. Finally, a belief provides a rationale for some of the 

design decisions. All these elements can be measured by a level of satisfaction either 

qualitatively (e.g., ) or quantitatively (i.e., with a number). 

!
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GRL has four kinds of links that let us express interactions between two elements. 

A Decomposition link ( ) provides the ability for an intentional element to be decom-

posed (AND, OR, XOR) into smaller pieces. A Contribution link (→) shows the desired 

influence of one element to another. The Correlation link ( ) denotes the concept of an 

indirect influence between two elements (i.e., side effect impact). Contributions and Cor-

relations links may have a label, which can be an icon (e.g., ), text or a number. The last 

type of link is the Dependency link ( ), which aims to model a dependency relation-

ship between actors. 

Figure 1 summarizes all the graphical symbols used in the GRL notation [19]. 

    

 

Figure 1 GRL Symbols (from ITU-T in [19], pp. 178) 

2.3.2 Scenario modelling with URN 

The Use Case Maps (UCM) notation, a subset of the URN language, is also a visual 

modelling language. UCM combines a view of behaviour and structural components that 

enables architectural reasoning as a first step. Afterwards, these models can be refined to 

more detailed scenario maps enabling refinements into the same kind of interactions than 

those allowed by UML sequence diagrams. However, unlike UML sequence diagrams 

and the activity diagrams, UCM maps offer the right abstraction level at the right moment 
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of the modelling process, it allows modellers to not be bothered with details such as data 

types in the high-level diagrams. 

A UCM map is composed of paths and components; a path starts with a start 

point (!) and ends with an end point (▌). Along a path, responsibilities (") can be as-

signed which represent scenario steps or actions. UCM provides the concepts of choice 

and parallelism; OR-fork ( ) / OR-join ( ) and AND-fork ( ) /AND-join ( ), respec-

tively. Due to the parallelism of the AND-fork/AND-join, the AND-join requires synchro-

nization (unlike the OR-join). Essentially, a fork node does not need to be followed by a 

join (i.e., diagrams do not need to be well nested), which might be confusing at first. 

The concept of loop has no explicit concrete grammar syntax, although it can be 

modelled with a combination of OR-fork and OR-join. If the modeller needs the scenario 

to stop when a certain condition is triggered, the UCM notation offers two constructs: the 

waiting place (!) and the timer ( ). A timer is a specialization of the waiting place. The 

timer handles conditions that do not occur in a certain time with a timeout path.  

UCM static stubs (# ) offer a means of decomposing a complex monolithic 

UCM path into a vertical decomposition. To put it another way, a static stub contains one 

UCM sub-map, called plug-in. For situations where a stub contains more than one plug-

ins (e.g., for enabling adaptive behaviour or architectural variation points), the UCM 

specification introduces the dynamic stub ( ). The adjective dynamic was chosen be-

cause at the execution of the scenario, only the plug-ins for which the precondition is true 

need to be followed. A complex path can be decomposed into multiple sub-paths by con-

necting the end point or empty path segment of one path to the start point or waiting 

place / timer of another path.  

More advanced stubs (blocking ( )and synchronizing( ), with/without 

thresholds on output paths) also exist. Together with failure start points and aborts (for 

exception handling), advanced stubs enable complex workflow patterns to be captured 

concisely [26]. 

 

 

S"B"
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Figure 2 summarizes all the graphical symbols used in the UCM Notation [19]. 

 

Figure 2 UCM Symbols (from ITU-T in [19], pp. 178) 

2.3.3 Aspect-oriented modelling for URN 

Aspect-oriented modelling (AOM) is a paradigm applied to modelling languages to en-

capsulate concerns that are spread across the diagrams (i.e., crosscutting concerns). The 

benefit is to help focus someone’s attention upon specific aspects individually. Dijsktra 

was the first to introduce the idea of separation of concerns [8].  

The AOM paradigm is composed of three main notions; the join point, the 

pointcut expressions and the composition rules. A join point specifies at a precise loca-

tion where a diagram could be modified by an aspect. A pointcut expression defines a 

“pattern of artefacts”, matching the correspondent artefacts on a diagram. This match 

creates a mapping between the pointcut expression and the diagram. Composition rules 
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are the rules that attach an aspect (modified behaviour) to a diagram through the pointcut 

expression. 

Mussbacher, in his Ph.D. thesis [27], extended GRL and UCM with aspect-

oriented modelling concepts, leading to Aspect-oriented GRL (AoGRL) and Aspect-

oriented UCM (AoUCM), respectively, and Aspect-oriented URN (AoURN) globally. 

Unlike UCM with its stubs, the GRL is a flat model, which means that it does not provide 

a vertical decomposition. Consequently, Mussbacher had to overload the concrete syntax 

grammar of GRL with the aims of designing AoGRL. For UCM, he exclusively reused 

the UCM notations.  

Figure 3 depicts symbols of AoUCM and AoGRL, which illustrate the kind of di-

agrams that we may encounter in AoURN. In the following sections, we present an ex-

ample to understand how to model a GRL diagram. Furthermore, we add an aspect to that 

diagram to show AoGRL capabilities. Finally, we connect a UCM diagram, to which, we 

attach an aspect to illustrate how AoUCM works.  

 

Figure 3  Summary of AoURN Elements (from Mussbacher in [27], pp. 138) 



 

 12 

2.3.4 Example of GRL / AoGRL model 

In this section, we present a simple illustrative GRL model. Figure 4 is a GRL diagram 

about a payment system. In order to handle the payment services of a bank institution, 

two choices can be taken: either relying on open source technologies or on commercial 

technologies. In addition, the development of one of these solutions can be supported 

either by intern developers or extern consultants. The GRL diagram can help support 

making and documenting a decision between these choices according to their cost and the 

available cash of the bank institution. 

 

 

Figure 4 Payment System in GRL supporting decision reasoning  

Security is crucial in the field of banking; thus, we should explicitly model it and repre-

sent it in our model. However, instead of adding it directly to the GRL model, we could 

use AoGRL capabilities. Assume that we want to add a security concern to all tasks de-

composing the “Handling Payment Services” goal. 

Bank%%
Ins(tu(on% !Handling%Payment%

Services%

!Rely%on%Open%Source%
%%%%%%%%%Technologies% !Rely%on%Commercial%

%%%%%%%%Technologies%

xor%

Money%

Xor%

Intern%%
Developer%

!Support%Intern%
Development%

Intern%Developers%Cost%Less%
%than%Extern%Consultants%

Xor% !Support%Consultancy%
%%%%%%%%%%%%Services%

Extern%
Consultant% Offer%High%Quality%Services%
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Firstly, we need to define elements of Figure 4 that we are interested in. To do 

that, AoGRL uses a pointcut graph (see Figure 5, (a)), which matches its elements tagged 

with pointcut markers ( ) to elements of the GRL diagram of Figure 4. 

Secondly, we need to define an aspect graph, illustrated by Figure 5 (b). In this 

case, the aspect is attached (by a dependency link) to the tasks of the base model.  

 

Figure 5 (a) Pointcut Graph to match elements of Figure 4 (using the symbol ) 
(b)  Aspect Marker “Handling Security” attached to the match tasks of Figure 4 

Once an aspect has been attached to an element of the GRL graph (Figure 4), that ele-

ment will be tagged with an aspect marker ( ). We represent these directly on the base 

model (Figure 4). Each aspect marker is associated to an AoView as illustrated by Figure 

6. To keep things simple, we represented only a part of the diagram. 
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Figure 6 AoViews for tasks “Rely on Open Sources Technologies” and “Rely on 
Commercial Technologies” 

2.3.5 Connecting GRL to UCM and Aspect to UCM 

In order to show the ability of URN to connect goal and scenario models, let us assume 

that the goal Handling Payment Services is part of a more complex scenario including the 

actors Client, Online Store, Delivery Service and Bank Institution. Also, the UCM actor 

Bank Institution is traced to the GRL actor Bank Institution through a URN link ( ).  

By using an editor such as jUCMNav (see Section 2.4), we can then associate ei-

ther the plug-in maps presented in Figure 8 (a and b) to the dynamic stub payment pro-

cess. The difference between the two paths (i.e., (a) and (b)) lies in the actor who pro-

cesses the do payment responsibility. That UCM path will then influences the GRL Mod-

el (Figure 4).  
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Figure 7 UCM diagram connected to GRL diagram 

Figure 8 The payment process stub contains two UCM plug-ins (a) and (b) 
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Now, assume that we want to log all the responsibilities of the UCM model (see Figure 9) 

using AoUCM features. To log all the responsibilities, it is necessary to match them and 

then add a new responsibility “log” after each. The match part is represented by the 

pointcut map in Figure 9 (b). The special star (*) name of the responsibility means that it 

matches every responsibility on the base model, whatever its name. Then, the log respon-

sibility is applied after every responsibility of the UCM diagram because it is located 

after the pointcut stub ( ). 

 

Figure 9 Logging Aspect, the path (a) is the aspect (i.e., Aspect Map) and 
 the path (b) is the matching pattern (i.e., Pointcut Map) 

Aspects are attached to a UCM path with aspect markers ( ), introduced at composition 

time. Each of them has an AoView that shows which aspect of an aspect map (see Figure 

9, (a)) is connected to it. Figure 10 illustrates how an aspect is applied to an aspect mark-

er by the AoView mechanism. 

 

Figure 10 AoView mechanism for the first aspect marker ( ) 
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2.4. Tool Support 

Nowadays, most of the modelling diagrams are made with Computer-Aided Software 

Engineering tools (CASE tools). Modelling tools enable several advantages over model-

ling on paper or generic diagrams tools, i.e., tools that do not check the syntax of dia-

grams against the metamodel of a modelling language. First, tools make modifications 

easier by supporting the changes or evolutions of the requirements throughout the model-

ling analysis process. Second, CASE tools increase coordination and handling of large 

projects. Third, they increase accuracy by providing ongoing checking systems that avoid 

language mistakes by using the metamodel of the language. 

 URN tool 
Since 2005, jUCMNav has been developed at the University of Ottawa to support URN 

modelling (both GRL and UCM) [20]. The graphical editor (CASE) tool was developed 

before the standardization of URN. Therefore, jUCMNav’s metamodel differs a bit from 

the standard but the newer versions tend to get closer to the URN standard.  

The editor was developed as an Eclipse plugin. The Eclipse environment was 

chosen because of its popularity in the software development field and features offered 

such as generic support of metamodels or code generation facility. One of the most im-

pressive features of jUCMNav is its ability of using Key Performance Indicators (KPI) to 

help the modellers make decisions using real world data.  

Mussbacher has implemented the features to enable AoUCM modelling inside 

jUCMNav. Currently, there is no plan to support AoGRL on jUCMNav.  
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Chapter 3. Theories for Designing and 
Evaluating Visual Notations 

In this Chapter, we introduce two of the most known theories to evaluate visual lan-

guages, the Green’s Cognitive Dimensions of Notations and the Moody’s Physics of No-

tations. 

3.1. The Cognitive Dimensions of Notations 

The Cognitive Dimensions of Notations (CDs) framework [16] developed by Thomas 

R.G. Green is a “broad-brush evaluation” technique that can be used for notational de-

sign, user interfaces, and programming languages.  

Green brought, to some extent, a framework that specifies a common language to 

speak in a more formal way about design artefacts. CDs could be viewed as an analogy to 

the fundamental dimensions in physics (i.e., mass, length and time), with which every 

physical phenomenon can be described according by only these three dimensions. CDs 

are then related to human cognition processes.  

Thirteen dimensions have originally been defined; most of them are related to 

psychology, human-computer interaction, modelling design, and software engineering.  

3.1.1 Limitations of the CDs Framework 

Several issues have been raised on the operationalization of the CDs framework for eval-

uating and designing visual notations. Here are some of the limitations. Firstly, the scope 

of the Green’s framework covers a broad spectrum of fields, which could reduce its ap-

plicability for specific fields such as visual language assessment. Secondly, the founda-

tion of the dimensions lies on fundamental dimensions in physics and, like them, they 

only aim to represent a situation and not give any clue on how bad or good a visual arte-

fact is. Thirdly, due to the framework high-level analysis, it seems unlikely that following 
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it guarantees any predictive results like a global improvement of a modelling language 

visual notation.  

Moody applied the Gregor’s taxonomy to evaluate theories and he stated that the 

CDs are unscientific. Indeed, according to Moody, the CDs is a Type I theory, i.e., a the-

ory for analysing and describing. These kinds of theories were defined by Gregor as un-

scientific as they lack testable propositions and cannot be falsified1. 

3.2. The Physics of Notations 

In the following section, we present Moody’s Physics of Notations theory (PoN), 

which is a theory to evaluate and design visual languages. Moody evaluated the PoN 

against the Gregor’s taxonomy as a Type V theory: a theory for design and action. 

 

The PoN theory consists of nine principles that address both the evaluating and designing 

issues of a visual notation. The principles were synthesized from theory and empirical 

evidence from various scientific disciplines such as cognitive and perceptual psychology, 

cartography, human computer interface and communication [10][25]. The Physics of No-

tations theory relies on the idea of falsifiability of its principles, which states that they can 

be empirically testable [31]. In contrast, the CDs are not testable because there are vague-

ly defined as noted in [10], [25] and [15]. 

More fundamentally, each principle is conceived to maximise the cognitive effec-

tiveness of visual notations, i.e., optimising how visual notations are processed by the 

human mind. Moody defined it as the speed, ease and accuracy with which a representa-

tion can be processed by the human mind. 

 

 

                                                
1 Falsifiability is a criterion, developed by Popper, which states that a theory is scientific only if it is possi-
ble to establish that is false. 
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3.2.1 Background for Understanding the PoN 

 Vocabulary correspondence 
Before going further, it is necessary to clarify the vocabulary used by Moody.  

Correspondence 

Abstract grammar syntax Metamodel of the modelling lan-

guage / semantic level / ontological theory 

Concrete grammar syntax Visual syntax 

Artefacts of the abstract grammar 

syntax  

Semantic constructs 

Artefacts of the concrete grammar 

syntax 

Graphical symbols / symbols 

 

 Visual variables 
The PoN theory uses the Bertin’s visual variables [5] (see Figure 11), defined as “a set of 

atomic building blocks that can be used to construct any visual representation” (i.e., 

graphical symbol). 

          

Figure 11 Bertin’s Visual Variables (from Genon et al. in [10]) 

3.2.2 Principle of Semiotic Clarity 

Principle formulation: “There should be a 1:1 correspondence between semantic con-

structs and graphical”. 

In order to evaluate the anomalies of this principle, four criteria have been pro-

posed: symbol redundancy, symbol overload, symbol excess, and symbol deficit. These 

anomalies are represented in Figure 12. 
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Symbol redundancy: multiple graphical symbols are used for one semantic con-

struct. 

Symbol overload: multiple semantic constructs use the same graphical symbol 

Symbol excess: graphical symbol that has no corresponding semantic construct. 

Symbol deficit: semantic construct without any representation.  

         

Figure 12 Mapping between the semantics constructs (left)  
and the graphical symbols (right) (from Moody in [25]) 

3.2.3 Principle of Perceptual Discriminability 

Principle formulation: “Different symbols should be clearly distinguishable from each 

other”. 

Moody identified four criteria that increase the Perceptual Discriminability be-

tween graphical symbols: visual distance, primacy of shape, redundant coding, and per-

ceptual popout.  

Visual Distance: Moody stated that symbols are determined by their visual dis-

tances, i.e., the number of Bertin’s visual variables on which they differ. 

Primacy of Shape: The emphasis was made on the particular role that shapes 

play on the discriminability of two graphical symbols. Therefore, we should give more 

importance to Bertin’s visual variable shape. 

Redundant Coding: This criteria emphasis on using multiple visual variables to 

increase the visual distance between graphical symbols. 
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Perceptual Popout: A graphical symbol should have at least a unique value (the 

popout effect) on one of the Bertin’s visual variables compared with the values of the 

other symbols, thus enabling the graphical symbol to be more easily distinguishable. 

3.2.4 Principle of Semantic Transparency 

Principle formulation: “Use visual representations whose appearance suggests their 

meaning”. 

The graphical symbols should suggest what is their semantics (i.e., meaning). 

This principle significantly reduces the cognitive load since there is no need to memorize 

(i.e., to learn) the graphical symbol meaning.  

Moody defined a range to classify symbols according to how they suggest their 

meaning. Therefore, a symbol could be perceived as (see Figure 13, from left to right): 

• Semantically Perverse if its appearance infers the opposite of its mean-

ing. 

• Semantically Opaque (or conventional) if its appearance does not give 

any clue about its meaning neither in a positive or in a negative way. 

• Semantically Immediate if its appearance alone suggests its meaning  

 

        

Figure 13 Different possible states of a graphical symbol according to its positive, neu-
tral or negative impact on cognitive load. (from Moody in [25]) 

3.2.5 Principle of Complexity Management 

Principle formulation: “Include explicit mechanisms for dealing with complexity”. 

This principle assesses complexity of the diagrams. Moody distinguishes the 

complexity of the graphical symbols composing the notation (see Section 3.2.9) from the 

diagrammatic complexity. The diagrammatic complexity is related to the number of sym-
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bol instances that appear on the diagram. For the latter purpose, two mechanisms are il-

lustrated: modularization and hierarchy. Both should be viewed as guidelines to improve 

the level of complexity management. 

Modularization: The overall complexity could be reduced if the visual notation 

of the modelling language allows us to divide a complex system into smaller parts. By 

doing so, we would improve the speed and accuracy of understanding of the diagrams. 

Hierarchy (levels of abstraction): Complexity could be handled by decompos-

ing a complex diagram into a hierarchy of diagrams at different levels of abstraction. In-

deed, hierarchical decomposition is recognized as the most effective way to organise 

complexity for human comprehension. 

3.2.6 Principle of Cognitive Integration 

Principle formulation: “Include explicit mechanisms to support integration of information 

from different diagrams”.  

While the previous principle divided a monolithic system into multiple diagrams 

to reduce the complexity, this principle aims to give a solution to integrate these spread 

diagrams into one cognitive representation of the initial system. 

Conceptual integration: The visual notation should offer a means to summarize 

the diagrams in one integrated diagram. Also, the environment of the modelling language 

should offer the feature of representing the rest of the system according to our current 

focus of the subsystem (Figure 14). 

              

Figure 14 Contextualization Applied to System (in yellow)   (from Moody in [25])                     

Perceptual integration: The environment of the visual notation should support features 

that could help for navigating through diagrams. 

The environment should provide: 
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• Identification, a means of identifying the diagrams 

• Level numbering, if the system is decomposed into hierarchy abstraction 

• Navigation cues, helping the user to know where he currently is in a com-

plex system 

• Navigation map of the diagrams, allowing easier transitions between dia-

grams. 

3.2.7 Principle of Visual Expressiveness 

Principle formulation: “Use the full range and capacities of visual variables”. 

This principle suggests that a visual notation should use a maximum of the Ber-

tin’s visual variables to encode information. Conveying information through different 

ways is cognitively more efficient. Therefore, the more visual variables are used, the bet-

ter.  

Most of visual notations convey information only though one visual variable: the 

shape. Even though, the graphical form of a shape is one of the most recognizable (see 

Section 3.2.3), its expressiveness is one of the least powerful. Moody is referring to most 

modelling languages using shapes as boxes where the meaning is written textually (see 

Figure 15) without any meaning of the shape itself. Other visual variables such as colour 

should be used in these visual notations. 

           

Figure 15 Only the visual viable shape is used in DFDs (from Moody in [25]) 
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Moody has proposed a simple and efficient measurement for this principle by comparing 

the used and the not-used visual variables (called the free variables). The focus is put on 

new ways to convey information (i.e., the free variables). Figure 16 illustrates at what 

extent visual variables are used in a visual notation, from zero to eight. In the case of 

Figure 16, the visual notation uses three visual variable.  

                   

Figure 16 Odometer for used and not-used visual variables in for a visual variable  
(from Moody in [25]) 

Moreover, Figure 17 gives for each visual variable the kind of information that can be 

encoded (interval, ordinal and nominal) and its range of perceptive values. For instance, 

the visual variable “Texture” is nominal (it represents fixed states) with a range 2-5 (a 

maximum of 5 textures could be set in a visual notation).  

       

Figure 17 Visual variables in accordance with their perceptive range values.  
(from Moody in [25]) 

3.2.8 Principle of Dual Coding 

Principle formulation: “Use text to complement graphics”. 
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Information conveying is more effective by using visual variables instead of text but it 

has been demonstrated that using both at the same time increase even more the effective-

ness of information conveying.  

PoN suggests using two techniques to support Dual Coding: annotations and hy-

brid symbols. 

Annotations: The visual notation should include an annotation construct, which 

allows modellers to write textual explanations directly on diagrams instead.  

Hybrid (Graphics + Text) Symbols: Text could be used on symbols to reinforce 

and expand their meaning.  

3.2.9 Principle of Graphic Economy 

Principle formulation: “The number of different graphical symbols should be cognitively 

manageable”. 

Over time and due to modelling language evolutions, the visual notations tend to 

increase their graphical symbols because of the growth of the semantic constructs, which 

is normal according to the Semiotic Clarity principle (Section 3.2.2). Nevertheless, it is 

necessary for each evolution of a visual notation to gauge the impacts against human 

cognitive limitations. Perhaps certain graphical symbols are not important and can be 

removed from the visual notation. 

3.2.10 Principle of Cognitive Fit 

Principle formulation: “Use different visual dialects for different tasks and audiences”. 

The SE notations do not consider the different audiences that take place in the 

modelling process and the result is that the graphical symbols made for experts have to be 

understood by novice audiences. The cognitive fit addresses this issue. The theory en-

courages using at least two sets of graphical symbols: one for the experts and the other 

for the novices.  

In addition, the cognitive fit could be applied when different representation media 

are used, such as whiteboard modelling or computer-based modelling.  
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3.2.11 Interactions Among Principles 

The physics of notations principles are not mutually exclusive. Thus, trying to improve 

the visual notation against one principle can lead to negative impacts in another principle. 

On the positive side, some principles have a positive impact to one another. Figure 18 

illustrates such positive, neutral, negative, and undefined interactions.  

   

 

Figure 18 Interactions among the Physics of Notations principles  
(from Moody in [25]) 
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Part II: Problem Statement & Contributions  

A. Problem Statement 

The goal of the thesis is to operationalize the PoN. In Section 3.2, we saw that the PoN 

was analysed by Moody as a Type V theory according to Gregor’s Taxonomy. Based on 

her taxonomy, a Type V theory should provide to the PoN the power to be fully opera-

tionalizable (see Section 4.2.1). Yet, Störrle and Fish [39] argue that the PoN, in its cur-

rent form, is neither precise nor comprehensive enough to be objectively applied to visual 

notations.  

Nevertheless, Genon et al. applied the PoN to several visual notations (e.g., [10][11]). 

Therefore, we propose to evaluate the PoN according to Gregor’s Taxonomy. Although 

Moody has already assessed its theory, we think that it was done in a very coarse-grained 

level. In Chapter 4, we propose an fine-grained evaluation relying on the evaluation of 

every of the nine principles. This evaluation will validate whether the PoN is a Type V 

theory. 

 In Chapter 5, we assess how Störrle and Fish have operationalized the PoN by 

comparing their suggestions to those made by Genon et al. The main purposes are to (1) 

operationalize the PoN and (2) to give a constructive critic about how the PoN should be 

applied. Indeed, Störrle and Fish comprehended and applied the PoN differently from 

Genon et al. In addition, we propose our own versions of metrics to support the PoN. 

However, we restrict that analysis to two principles of the PoN: Semiotic Clarity and Per-

ceptual Discriminability. 

Finally, in Chapter 6, we evaluate our metrics by applying them to AoURN. 
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B. Contributions 

This section gives the contributions of this thesis tagged as either major or minor accord-

ing to how they help operationalize the PoN. 

Chapters Contributions 

Chapter 4. Critics of the 

Physics of Notations 

• Major 

o A detailed analysis of the PoN against Gregor’s 

taxonomy 

• Minor 

o A method to assess the PoN with Gregor’s tax-

onomy 

Chapter 5. Operationali-

zation and Critics of two 

PoN Principles 

• Major 

o A constructive critic of the operationalization of 

the PoN (Semiotic Clarity + Perceptual Dis-

criminability) as proposed by Störrle and Fish 

in [39] 

o A constructive critic of the Genon et al. opera-

tionalization of the PoN [10][11] 

o A discussion about how to improve the opera-

tionalization of PoN 

Chapter 6. Evaluation: 

Analysis of AoURN 

• Major 

o An evaluation of our suggestions to operational-

ize the PoN on the Semiotic Clarity and the 

Perceptual Discriminability principles (applied 

on AoURN) 
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• Minor 

o An evaluation of the cognitive effectiveness of 

AoURN. We applied both Störrle and Fish, and 

our metrics for the Semiotic Clarity and the 

Perceptual Discriminability. For the other PoN 

principles, we applied the Genon et al. metrics 

 

Chapter 7. Future Work • Minor 

o A discussion and a proposal to extend the Ber-

tin’s visual variable to animations 

o A set of examples that use the visual variable 

animation in CASE tools to support some PoN 

principles 

o A implementation (Java Software) of the Semi-

otic Clarity and the Perceptual Discriminability 

metrics to automatize the evaluation of a visual 

notation 
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Chapter 4. Critics of the Physics of Notations 

In this chapter, we apply Gregor’s taxonomy to the PoN. As stated by Moody, the PoN is 

(should be) a Type V theory, i.e., a theory for design and action. Although Moody has 

already applied the taxonomy on the PoN, we think that it was done at a very coarse-

grained level. Therefore, we propose an exhaustive evaluation relying on the evaluation 

of every of the nine principles. The goal pursued is to evaluate the scientific degree of the 

PoN and its operationalizability.  

4.1. Falsifiability of the Physics of Notations 

A meta-theory, a very high level of abstraction theory, is required to evaluate the level of 

the PoN. Evaluation of theories was done for centuries by philosophy and in particular by 

epistemology. However, our thesis is related to SE modelling languages and is thus in the 

Information Systems (IS) field. This consideration drives us to find a meta-theory related 

to IS which is easily applicable and enables scientific evaluation of a theory. Moreover, 

Moody has already used a meta-theory to evaluate the PoN. Therefore, if we select the 

meta-theory that was previously chosen and that we apply it in a more detailed way, it 

should give us the scientific degree of the PoN. Moreover, it will indicate how the meta-

theory behaves under detailed and high-level analysis. As a result of all these considera-

tions, Shirley Gregor’s “The Nature of Theory in Information Systems” is the most suita-

ble candidate meta-theory. 

4.2. The Nature of Theory in Information Systems 

The Nature of Theory in Information Systems (IS) [17] is a taxonomy that classifies in-

formation systems theories into one of the five interrelated types of theory: (1) theory for 
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analysing, (2) theory for explaining, (3) theory for predicting, (4) theory for explaining 

and predicting and (5) theory for design and action.  

The taxonomy draws upon various fields of science including epistemology. 

Some philosophers, such as Karl Popper ([30], [31]), significantly contributed to the phi-

losophy of science. More importantly, Gregor’s work is also significant because it syn-

thesizes different perspectives into one coherent meta-theory. 

The core of the taxonomy relies on theory issues of causality, explanation, predic-

tion and generalization. Indeed, a theory should have a certain degree of generalization 

and abstraction. Moreover, philosophers illustrated that it is important for an explanation 

to include a notion of causality. Finally, a theory can be tested when predictions are made 

possible in the theory statements.  

Considering these issues, Gregor spotlights four primary goals of a theory: (a) 

analysis and description, (b) explanation, (c) prediction and (d) prescription. From theses 

goals, five types of theory emerged; (Type I) Theory for Analyzing from goal (a), (Type 

II) Theory for Explaining from goal (b), (Type III) Theory for Predicting from goal (c), 

(Type IV) Theory for Explaining and Predicting from goals (c) and (d), and finally, 

(Type V) Theory for Design and Action from goal (d). Figure 19 illustrates how the theo-

ry types were modelled.  

 

Figure 19 From the Theory Goals to the Theory Types 

 

 

(a)$analysis$and$descrip/on$ (b)$Explana/on$ (c)$predic/on$ (c)$prescrip/on$

Type$I$
Theory$for$Analyzing$$

Type$II$
Theory$for$Explaining$

Type$III$
Theory$for$Predic/ng$

Type$IV$
Theory$for$Explaining$and$Predic/ng$

Type$V$
Theory$for$Design$and$Ac/on$
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Gregor insisted that a theory of a certain type is not more valuable than a theory of anoth-

er type. The misunderstanding is related to choosing ordered numbers to name the theory 

(Type I, Type II, etc.). Common sense suggests that Type V is a lot more valuable then 

Type I but as stated by Gregor: “each class of theory can provide important and valuable 

contributions”.  

4.2.1 Gregor’s Theory Types 

 

Type I: Theory for Analyzing 

Theories of Type I focuses on questions of type “what is”. These theories include classi-

fication schema, frameworks, and taxonomies. They provide neither causal effects to 

their core statements, nor any predictive statement. So, theories of Type I cannot be test-

ed empirically, which is a true weakness of this type of theory.  

But then, what is the benefit of this type? Gregor stated that theories of type I are valua-

ble when little is known about some phenomena. Type I can be viewed as a foundation to 

any scientific theory. 

 

Type II: Theory for Explaining 

Type II analyses the “how” and “why” a phenomenon occurs. A theory of Type II may 

contain testable statements, however, testability is not the main concern of this theory 

type. Gregor labelled this type as “theory for understanding”: the focus is put on explain-

ing phenomena. Theories that fall into this category include, amongst others, case studies, 

surveys, phenomenological and hermeneutic2 theories. Gregor states that Type II theories 

should be new and interesting, or imperfectly understood beforehand. 

 

Type III: Theory for Predicting  

Unlike the Type II theories, the Type III theories focusing on prediction making (i.e., 

what will be). They do not address the “why”. These theories make predictions without 

explaining in a detailed way every factor that participates in the prediction. For instance, 

we could predict that it will rain because the sky goes darker. The true reasons depend on 

                                                
2 Hermeneutics is a theory of understanding and interpretation of linguistic and non-linguistic expressions 
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more complicated factors than only the “colour” of the sky. However, what is important 

is the fact that it will rain. The complicated factors are not part of that concern.  

The main benefit of the Type III theories is that they are pragmatic theories that can pre-

dict effects without considering the detailed factors. The more precise the predications, 

the better.  

Various field extensively use this theory type including finance. Another example 

in the IS is Moore’s Law. However, the limitations of this type of theory should be 

known because even though two variables are perceived as correlated, it does not imply a 

causal relationship between them. In other words, the correlation between the two varia-

bles is coincidental. 

 

Type IV: Theory for Explaining and Predicting 

Type IV is the preconceived vision of a scientific theory. This type encompasses ques-

tions such as “what is”, “why”, “when”, and “what”. Theories intersecting the explaining 

and predicting theory types allow to predict and explain the underlying causes. Therefore, 

the statements of the theory are fully testable, which guarantee a certain level of assess-

ment, and hence, the falsifiability of the theory. The theory of information described by 

Shannon [34] falls into this category. 

 

Type V: Theory for Design and Action 

Type V focuses on “how” to do something. This kind of Type V theories are extensively 

used in IS and can be viewed as implementation of processes. It includes artefacts such as 

methods, functions, and proof of concept. This type contributes to knowledge by provid-

ing these artefacts. 

However, in the context of IS, every piece of software is composed of this kind of 

artefacts. In order to not consider each IS theory as a Type V theory, Gregor adds extra 

criteria to distinguish a theory from a “simple” piece of software. The criteria are, for 

instance, the novelty, simplicity, completeness, and consistency of the artefacts used by 

the theory.  

The IS includes a lot of Type V theory, such as the Codd’s theory of relational da-

tabase [9]. In that particular case, the theory is considered belonging to Type V because 
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its underlying principles are operationnalizable and, therefore, it explains how to put the 

theory of relational database into practice.  

4.2.2 Interrelationships among Theory Types 

The different types of theory exposed by Gregor have interrelationship dependencies. 

As presented in Figure 18, the Type I is the foundation to all the others types. Type II and 

Type III contribute to form Type IV or Type V theories. Finally, Type IV and V are 

strongly interrelated because, on the one hand, we need “scientific” theories (Type IV) to 

produce interesting artefacts, and, on the other hand, some Type IV theories can be vali-

dated by implementing them (type V).  

   
 

Figure 20 Interrelationships among Theory Types (from Gregor in [17]) 

 

 

 

4.3. Assessment of the Physics of Notations 

Moody referred twice to the Gregor terminology to analyse the PoN. He analysed the 

foundations of its theory (titled “how visual notations communicate”) and the PoN itself.  
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In the following sections, we will describe and criticize the foundations of the PoN. Then, 

we analyse the physics of notations in the same way that Moody did but we do that in a 

detailed way, i.e., principle by principle.  

4.3.1 Assessment of how visual notations communicate 

Moody designed the foundations of the PoN theory by applying (specifying) Shannon’s 

theory and Weaver’s theory of communication to the modelling languages. Moody used 

diagram as the main artefact of the communication theory. Furthermore, the encoding and 

decoding processes (of the communication theory) have been replaced by the notions of 

design space and solution space, respectively.  

 

Design Space (Encoding Side) 

Moody identified a means of encoding information by using Bertin’s visual variables (see 

Figure 11). With these visual variables, he conceived the notion of primary notation (i.e., 

the graphical symbols and their meaning defined by the visual notation) and secondary 

notation (i.e., the graphical symbols and their meaning, which are not explicitly defined 

by the visual notation). Also, the noise artefact of the communication theory has been 

specified as “unintentional use of random variation in visual variables that conflicts with 

or distorts the intended message”. 

 

Solution Space (Decoding Side) 

Moody divided the decoding side into two phases: perceptual processing and cognitive 

processing, which distinguish the seeing part from the understanding part. Figure 21 rep-

resents both perceptual and cognitive processing. 

       

Figure 21 Human information processing (from Moody in [25]) 
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 Critics on the Assessment 
First of all, we should distinguish the Information Theory developed by Shannon, which 

falls in Gregor’s Type IV theory from the Communication Theory, which was not been 

assessed by Gregor. The Information Theory explains information in terms of physical 

laws; it is a mathematical quantification of information. In “The Mathematical Theory of 

Communication”, Shannon and Weaver simplified the Information Theory to design the 

communication theory. Nowadays, what was a mathematical theory has become a theory 

more related to human science than physics.  

The communication theory as explained in PoN theory falls in the human science 

field and not in the mathematical or physics field. Therefore, it is difficult to draw any 

firm conclusion from it.  

If we consider that the information theory and the communication theory are 

strongly related to each other, we could then categorize the communication theory as a 

Type IV theory as well. 

The design space and the solution space are a specialization of the artefacts of the 

communication theory to the world of visual notations. Therefore, the design and solution 

spaces do not conflict with the scope of the communication theory. We could then con-

clude that the theory of “how visual notations communicate” is a Type IV theory. 

4.3.2 Moody’s claim about the Physics of Notations 

Moody assessed his theory as a Type V theory: a theory for design and action. Moreover, 

repeatedly, Moody insisted on the falsifiability of each of the nine PoN principles. No-

ticeably, he emphasized the scientific value and the operationalization of the PoN princi-

ples.   

4.4. Detailed Analysis of PoN according to Gregor’s Taxonomy 

In this section, we assess the level of the PoN against the Gregor’s taxonomy. In order to 

analyse at a fine-grained level, we consider each principle as an independent theory. We 

proceed with a two-step analysis: filling the structural components of theory and discuss-

ing the theory type. 
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Components Common 
to All Theory 

Components Contingent 
on Theory Purpose 

The first step allows us to identify the composition of the theory. While the se-

cond step is a discussion of the theory type based on the components of the structural 

components of theory. 

The components of the first step, defined by Gregor are as follows: 

• Means of representation: Physical representation of the theory (e.g., 

words, mathematical terms, diagrams) 

• Constructs: phenomena of interest in the theory 

• Statements of relationship: relationship among the constructs 

• Scope: the degree of generality of the statements of relationships 

" Causal explanations: statements of relationships among phenomena 

that show causal reasoning 

" Testable propositions: statements of relationships are stated in such a 

form that they can be tested empirically. 

" Prescriptive statements: statements, which specify how statements of 

relationship can accomplish something in practice.  

 

The “Components Common to All Theory” are mandatory while the “Components Con-

tingent on Theory Purpose” are not. The latter is the most important group of compo-

nents because we can derive the theory type from it.  

We will classify the different principles in accordance to —Table 1. 
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Table 1 Theory Type in Accordance with the three Components. 

 Type I Type II Type III Type IV Type V 

Causal relationships No Partly Partly Yes No 

Testable propositions No May  

Contain3 

Yes Yes No 

Prescriptive state-

ments 

No No No No Yes 

 

Gregor considered only the “Components Contingent on Theory Purpose” to classify a 

theory. Furthermore, the scope of a theory is not taken as a primary classification; how-

ever, Gregor suggested that the level of generality could be subjected to secondary classi-

fication to distinguish between the theory types.  

The assessment of the level of generality depends on our appreciation and our 

expertise acquired after analysing how Gregor assessed the scope of each theory. As this 

appreciation is not taken into consideration for the type level, there are few consequences 

on giving a subjective appreciation.  

4.4.1 Principle of Semiotic Clarity 

 

Structural Components of Theory 

Theory Component (Components 

Common to All Theory) 

Instantiation 

Means of representation Words, Figure  

Constructs  Semantic constructs, Graphical symbols 

Statements of relationship There should be a 1:1 correspondence between 

semantic constructs and graphical symbols (bidi-

rectional relationship) 

Scope High level of generality, potentially applicable to 

any language though better suited to formal lan-

                                                
3 A Type II theory may contain testable propositions, but it is not a primary concern 
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guages. (Subjective appreciation) 

Theory Component (Components 

Contingent on Theory Purpose) 

 

Causal explanations Yes. 

Goodman’s theory of symbols [14][25], 

which states “for a notation to satisfy the re-

quirements of a notational system there must be a 

one-to-one correspondence between symbols and 

their referent concepts”. 

Testable propositions (hypotheses) Yes. 

Empirical Study: we could test two visual 

notations once that respect perfectly the Semiotic 

Clarity principle (languageA) and another one 

(languageB) that does not. Then, we ask for two 

groups to model a scenario. The first group will 

use languageA and the second group the lan-

guageB. Finally, we ask for a third and fourth 

group to analyse what they actually understand 

of the diagram base on languageA (3rd group) 

and language (4th group). That way we could 

easily compare the benefits of the Semiotic Clari-

ty 

Prescriptive statements Partially Addressed. 

Provide four metrics to assess anomalies when 

the 1:1 correspondence is not respected. 

 

 Level Theory Analysis 
This theory contains all the characteristics of a Type IV theory. Its generality level is high 

because it can be used in almost any formal language. In our case, almost any formal lan-

guage needs to be consistent by avoiding synonyms and homonyms and the 1:1 corre-

spondence answers to these issues.  
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More importantly, this theory is testable with empirical studies (see example above). 

While the theory gives metrics to assess the 1:1 correspondence principle, it does not 

precisely define its constructs: semantic constructs and semantic constructs. This issue is 

related to how to concretely accomplish the theory. Questions as how to capture semantic 

constructs from meta-language diagrams are not covered.  

To wrap up, the theory responds to the how and why the phenomenon occurs. It is testa-

ble with empirical studies. The “what will be” is also clearly represented. But the “how” 

needs further research. Therefore, It seems to us that the Semiotic Clarity principle falls 

into the Type IV category. 

4.4.2 Principle of Perceptual Discriminability 

Structural Components of the Theory 

Theory Component (Components 

Common to All Theory) 

Instantiation 

Means of representation Words, Figure  

Constructs  Symbols 

Statements of relationship Different symbols should be clearly distinguish-

able from each other. 

Scope High level of generality.  

This principle is suited to any field, from SI no-

tations to everyday life such as road traffic signs 

Theory Component (Components 

Contingent on Theory Purpose) 

 

Causal explanations Yes. 

“In general, the greater the visual dis-

tance between symbols, the faster and more ac-

curately theory will be recognised.” 
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Testable propositions (hypotheses) Yes. 

We could assess how the human cogni-

tion can distinguish between symbols (setA) 

which are close (i.e., a small visual distance) and 

symbols that appear radically different (setB) 

(i.e., a greater visual distance). A simple and 

effective way, is to give two sets of symbols and 

see at what speed they are learnt. A first group 

has to learn the setA and another group has to 

learn the setB. Then, we can compare the speed 

(i.e., when errors are inferior to a certain thresh-

old) that the two sets are considered as learnt. 

Prescriptive statements Partially Addressed. 

Primacy of shape: what kind of shape are 

more suited to a particular situation? => Re-

quires human expertise. 

Redundant Coding: well-defined, and 

easily applicable in practice. 

Perceptual Pop-out: well-defined, and 

easily applicable in practice. 

Textual Differentiation: well-defined, and 

easily applicable in practice. 

 Level Theory Analysis 
This theory contains all the characteristics of a Type IV theory, “Theory for explaining 

and predicting”. This theory has causal explanations, which come from research in psy-

chophysics [36][38][5].  

 

The theory relies on solid basis causal explanations. Moreover, it is testable through em-

pirical studies. The prescriptive statements are partially addressed. However, high-level 

definitions are sufficient to provide guidelines but not for evaluating analysis. Therefore, 

we will give more mathematical metrics in the following chapter to answer to that issue. 
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The theory responds to the “what”, the “how” and the “why” issues. Thus, by following 

this theory, the “what will be” is clearly taken into account. Indeed, the purpose is to im-

prove discriminability by following the guidelines. The Perceptual Discriminability prin-

ciple falls into the Type IV category and not the Type V because of the issue about eval-

uating purpose. 

4.4.3 Principle of Semantic Transparency 

Structural Components of Theory 

Theory Component (Components 

Common to All Theory) 

Instantiation 

Means of representation Words, Figure (e.g., Semantic Transparency 

scale) 

Constructs  Graphical symbols 

Statements of relationship Use visual representations whose appearance 

suggests their meaning (provide cues to their 

meaning).  

Scope High level of generality, potentially applicable to 

any visual language. 

Theory Component (Components 

Contingent on Theory Purpose) 

 

Causal explanations Partially Addressed. 

Graphical symbols that provide cues to 

their meaning (form implies content) reduce 

cognitive load because their meaning can be ei-

ther perceived directly or easily learnt. 

Testable propositions (hypotheses) Not Main Concern. 

This statement can be tested through em-

pirical studies though testability does not seem to 

be the main concern of the theory.  



 

 44 

The main problem comes from the rela-

tive subjectivity to evaluate a graphical symbols 

in one of the three states given by Moody (i.e., 

semantically immediate, semantically opaque 

and semantically perverse) 

Prescriptive statements No. 

 

Only high level advices are given as “us-

ing physical analogies, visual metaphors and 

cultural associations to design objects” 

 

 Level Theory Analysis 
This Theory contains all the characteristics of a Type II. This theory deals with human 

perception. Therefore, all the artefacts must be empirically tested. In this theory, the em-

pirical studies are crucial because the improvements are quite different from an audience 

(e.g., experts) to another (e.g., novices). However, it appears to us that testability is not 

the main concern of this theory. 

The theory relies on social science experiments, which is totally normal consider-

ing that human perception is the main concern of this theory. This purpose of this theory 

is more related to the guidelines’ purpose than to the evaluating the purpose of a visual 

language. 

It seems to us that the theory fails to give clues on how to use it in practice. In-

deed, defining a scale of Semantic Transparency (semantically immediate, opaque and 

perverse) is needless when there is no clue on how to evaluate a graphical symbol. Once 

again, we understood that due to complexity of human perception, it is really hard to give 

a systematic way to evaluate or to propose a semantically more transparent graphical 

symbol. However, by giving no clue, the theory aims to explain the phenomena of Se-

mantic Transparency. Even if the “what will be” issue can be answered through empirical 

studies (testable proposition component), it seems inappropriate to put the theory on the 
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Type IV class, which is related to more scientific theory. Nevertheless, a lot of intuition is 

necessary to process this theory; it falls into the Type II category. 

 

 

 

4.4.4 Principle of Complexity Management 

Structural Components of Theory 

Theory Component (Components 

Common to All Theory) 

Instantiation 

Means of representation Words, illustrated with figures 

Constructs  Diagrams, Diagrammatic complexity (i.e., meas-

ured by the number of elements on a diagram) 

Statements of relationship Include explicit mechanisms for dealing with 

complexity (diagrammatic complexity) 

Scope 
The complexity is restricted to only dia-

grammatic complexity. Therefore, it seems to us 

that the scope is limited because the theory copes 

with a certain type of complexity, which concern 

symbol instances on diagrams. 

Theory Component (Components 

Contingent on Theory Purpose) 

 

Causal explanations Yes. 

Perceptual limits: The ability to discrimi-

nate between diagram elements increases with 

diagram size. 

Cognitive limits: The number of diagram 

elements that can be comprehended at a time is 

limited by working-memory capacity (i.e., in-
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creasing the number of diagram will overwhelm 

working-memory capacity) 

 

Testable propositions (hypotheses) Yes.4 

Introduction of a means of reducing dia-

grammatic complexity can easily be tested. 

Combined with empirical studies.  

Prescriptive statements Yes. 

Two techniques of reducing diagrammat-

ic complexity have been given: modularisation 

and hierarchy abstraction. 

CASE tools features could support such 

techniques (see Section 7.1.5). 

 Level Theory Analysis 
This theory contains all the characteristics of a Type V. It deals with a restricted form of 

complexity, the diagrammatic complexity, which is related to the number of elements that 

compose a diagram. The causal explanations rely on empirical studies, which showed that 

humans have limits to comprehend a certain amount of information at a time. These 

causal explanations have been validated for a long time. 

The main concern here is about the scope of the theory, which responds to only a 

small part of complexity, i.e., the diagrammatic one. However, the taxonomy does not 

take the level of generality as a primary characteristic. We will then not take it into con-

sideration. 

The prescriptive statements are precisely defined in the perspective of how to re-

duce Complexity Management. This is why, this theory falls into the Type V category. 

Indeed, it answer not only the “what is”, “how”, “why” and the “what will be” but also 

gives a way to concretely reduce the diagrammatic complexity. 

                                                
4 Only because we consider diagrammatic complexity 
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4.4.5 Principle of Cognitive Integration 

Structural Components of Theory 

Theory Component (Components 

Common to All Theory) 

Instantiation 

Means of representation Words, Illustrated with figures 

Constructs  Diagrams, Cognitive Integration (i.e., mental 

representation of a system that has been spread 

over different diagrams) 

Statements of relationship Include explicit mechanisms to support integra-

tion of information from different diagrams 

Scope Highly generalizable. The theory is applicable to 

any information spread into multiple diagrams / 

documents. 

Theory Component (Components 

Contingent on Theory Purpose) 

 

Causal explanations Yes. 

Rely on Kim et al’s [18][21] cognitive 

integration of diagrams that state: “multi-

diagram representations to be cognitively effec-

tive must include mechanisms to support concep-

tual integration and perceptual integration”.  

Conceptual integration: mechanism to as-

semble information from separate diagrams 

Perceptual integration: perceptual cues to 

simplify navigation and transitions between dia-

grams. 

Testable propositions (hypotheses) Yes. 

We could ask questions that could be an-

swered only by integrating information spread 

over several diagrams. Two groups will take part 
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in an empirical study. The first group will have 

at its disposal the visual notation enhanced with 

the principle of Cognitive Integration while the 

second group has to do the same work only with 

the regular visual notation. 

Prescriptive statements Yes. 

Two techniques are available: conceptual 

integration and perceptual integration.  

CASE tools features could support such 

techniques (see Section 7.1.6). 

 Level Theory Analysis 
This theory has a high level of generality because it is almost applicable to any visual 

language that deals with diagrams.  

The causal explanations rely on the cognitive integration of diagrams theory [18][21], 

which gives solid basis. Furthermore, the prescriptive statements are defined in an opera-

tionalized way by giving hints. 

In this theory, many prescriptive statements are given but some of them are more 

suitable to be implemented as CASE tools features. Empirical studies could be used to 

test the theory statements.  

The theory answers the “what is”, “how”, “why” and the “what will be” ques-

tions, and it gives features that have to be implemented to manage the Cognitive Integra-

tion. Therefore, this theory is integrally part of the Type V theory type: theory for design 

and action. 

4.4.6 Principle of Visual Expressiveness 

Structural Components of Theory 

Theory Component (Components 

Common to All Theory) 

Instantiation 

Means of representation Words, Illustrated with a figure 

Constructs  Bertin’s visual variables, visual expressiveness 
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(i.e., number of visual variables used in a nota-

tion) 

Statements of relationship Use the full range and capacities of visual varia-

bles 

Scope Applicable to any visual notations. 

Theory Component (Components 

Contingent on Theory Purpose) 

 

Causal explanations Yes. 

 “Using a range of visual variables results 

in a perceptually enriched representation that 

exploits multiple visual communication channels 

and maximises computational offloading” 

Testable propositions (hypotheses) Yes. 

The statement is fully testable upon the 

visual variables are precisely defined.  

Prescriptive statements No. 

Ranges for each visual variable has been 

given but there are no clues on what should we 

preferably use to encode a certain type of infor-

mation.  

 

 Level Theory Analysis 
This theory has causal explanations and its propositions can be tested through empirical 

studies, and is applicable to any visual language. 

However, the theory only says that the more visual variables are used, the better. 

It fails to give weighted values to visual variables.  

From my point of view, the essential idea is not to use all the visual variables but to use 

the most relevant ones for a given situation. Further, that knowledge can then be applied 

when designing visual languages. We think that it is also useful to criticise the visual var-
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iables used in a visual notation than just focusing on those that are not used yet (i.e., free 

variables). 

That being said, this theory answers to all the Type IV theory type. 

4.4.7 Principle of Dual Coding 

Structural Components of Theory 

Theory Component (Components 

Common to All Theory) 

Instantiation 

Means of representation Words, Illustrated with a figure 

Constructs  Graphical symbols, Cognitive management 

Statements of relationship Use text to complement graphics.  

Scope Applicable to any visual notations. 

Theory Component (Components 

Contingent on Theory Purpose) 

 

Causal explanations Yes. 

 “According to dual coding theory [29], 

using text and graphics together to convey in-

formation is more effective than using either on 

their own” 

“The textual encoding is most effective 

when it is used in a supporting role: to supple-

ment rather than to substitute” 

Testable propositions (hypotheses) Yes. 

Example of an Empirical Study: we could 

assess how explanations included on diagrams 

(annotation) are more effective than explanations 

on separated documents. Two groups could take 

part to assess this criterion, one that will have the 

information directly on the diagrams and another 
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one that has to see them on another document. 

Prescriptive statements Yes. 

Adding comments to diagrams 

Using text as a supplement way (not 

alone) to encode information on graphical sym-

bols 

 

 Level Theory Analysis 
This theory can be applied to any visual language. Besides this general applicability, the 

propositions can be assessed with empirical studies. It also answers to concerns about 

how to concretely apply it. These are some reasons why we classify the Dual Coding in 

the Type V. 

 

4.4.8 Principle of Graphic Economy 

Structural Components of Theory 

Theory Component (Components 

Common to All Theory) 

Instantiation 

Means of representation Words, Illustrated with a figure 

Constructs  Graphical symbols, Cognitive management, 

Graphic complexity (i.e., number of graphical 

symbols in a notation, notational level and not 

instantiations) 

Statements of relationship The number of different graphical symbols 

should be cognitively manageable. 

Scope Reduced to formal notational language. 

Theory Component (Components 

Contingent on Theory Purpose) 
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Causal explanations Yes. 

 “The human ability to discriminate be-

tween perceptually distinct alternatives is around 

6 categories” 

“Empirical studies show that graphic 

complexity significantly reduces understanding 

of SE diagrams by novices” 

 

Testable propositions (hypotheses) Yes. 

It is obvious that reducing the visual vocabulary 

(i.e., number of graphical symbols in a notation) 

benefits for discriminability and maintaining 

meanings of symbols in working memory. 

Prescriptive statements Partially Addressed. 

Three strategies for the “how”: 

• Reduce (or partition) semantic 

complexity  

• Introduce symbol deficit (i.e., 

choosing not to show some con-

structs graphically)  

• Increase Visual Expressiveness 

(Instead of reducing the number 

of symbols, we increase the hu-

man discriminability ability)  

 

Level Theory Analysis 
This theory deals with the increase of the visual vocabulary of a visual language, and 

relies on empirical studies in social science. Furthermore, the theory was written to be 

testable. In this state, the purpose of Graphic Economy is applicable as a guideline theory 

and as an evaluating theory. However, the theory does not give any clue on the artefacts 

that, for example, should be removed.  
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It seems to us that the number of artefacts of a visual language is not critical. Most mod-

elling languages have many graphical symbols but very few of them are used.  

From my point of view, the theory should give a checklist that modellers can use 

to assess the usefulness of a graphical symbol. 

These considerations let us think that the Graphic Economy principle falls into the Type 

IV theory since it has causal explanations and testable propositions.  

4.4.9 Principle of Cognitive Fit 

Structural Components of Theory 

Theory Component (Components 

Common to All Theory) 

Instantiation 

Means of representation Words, Illustrated with a figure. 

Constructs  Cognitive Fit, Visual dialects (i.e., use multiple 

versions of a visual notation to fit different audi-

ences or different representational media) 

Statements of relationship Use different visual dialects for different tasks 

and audiences. 

Scope Highly generalizable.  

Theory Component (Components 

Contingent on Theory Purpose) 

 

Causal explanations Yes. 

 “Different representations of information 

are suitable for different tasks and different audi-

ences”, validated empirically 

SE notations use frequently one sets of 

graphical symbols regardless of tasks and/or au-

diences  

Two reason to create multiple visual dia-

lects; expert-novice differences and representa-

tional medium 
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Testable propositions (hypotheses) Yes. 

 We could assess at what extent a group 

composed of novices suffer from difficulty to 

discriminate and remember symbols, and also, 

how they are affected by complexity compared 

with a group of experts. The comparison should 

be made with the regular visual notation and the 

visual notation that fits more the group of novic-

es. 

Prescriptive statements No. 

Not present. 

 

Level Theory Analysis 
Causal explanations are present in this theory, which was designed in a way that it can be 

tested with empirical studies. However, no process has been given to transform a graph-

ical symbol depending on another audience or another representational medium. 

Type IV theory type is the most suitable type for this theory. Indeed, the theory 

focuses on explaining why SE notations are not well suited to different audiences or dif-

ferent representational mediums. The only solution that has been given is to use multiple 

visual dialects of a visual notation. It seems that further research is appropriate for this 

theory. 
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4.5. Overall assessment 

The previous section compared the PoN principles against Gregor’s taxonomy; Table 2 

provides a summary of the analysis described previously. None of the principles of the 

PoN has been categorized as a Type I or a Type III. Indeed, all the principles rely on solid 

causal explanations. Moreover, none of the principles has been designed to make precise 

predictions. Most of them rely on the idea of improvement between the “before and after” 

application of the principle. Such improvements have to be proved by empirical studies.   

Table 2 Assessment of the PoN principles Against Gregor’s Taxonomy 

Type I  

Type II • Semantic Transparency 

Type III  

Type IV • Semiotic Clarity 

• Perceptual Discriminability 

• Visual Expressiveness 

• Graphic Economy 

• Cognitive Fit 

Type V • Complexity Management 

• Cognitive Integration 

• Dual Coding 

 

Moody compared the PoN theory according to the cognitive effectiveness. However, due 

to the interactions among the principles, we cannot predict an overall improvement of the 

cognitive effectiveness, i.e., the speed, ease and accuracy with which a representation 

can be processed by the human mind. This is related to the well-known pattern in IS of 

the local versus global optimization.  

In Chapter 5, we will gather definitions and metrics that will make the PoN more 

operationalized. Nevertheless, these precisions should be viewed as one way  (and not the 

only) to operationalize the PoN.  
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Chapter 5. Operationalization and Critics of two 
PoN Principles 

In this chapter, we provide consistent definitions, metrics, and different ways to interpret 

the PoN for the modelling languages. However, we restrict that analysis to two principles 

of the PoN: Semiotic Clarity and Perceptual Discriminability. 

The following work is drawn upon an operationalization of these principles de-

scribed by Störrle and Fish in [39]. As well as literature published by Genon et al. in [10] 

[13]. We also focus on comparing how these two principles were operationalized by 

Störrle and Fish, and Genon et al. Furthermore, we propose our own versions of some 

metrics.  

5.1. Preliminary Definitions 

The PoN theory uses the concept of graphical and semantic constructs. Due to the scope 

of the PoN, Moody opted for very general (i.e., applicable to any visual notations) defini-

tions, which are good to cover a larger field of visual languages. However, when we ap-

ply the theory, we have to cope with issues about how to interpret such concepts. The 

challenge is to give a means to collect all the semantic constructs from the metamodel 

language. Also, we need to collect the graphical symbols from the concrete syntax of the 

modelling language.  

5.1.1 Semantic Constructs: one metaclass - one construct 

Moody stated that semantic constructs should be found in the metamodel. A naïve meth-

odology could be to associate a metaclass directly to a semantic construct. However, we 

would either lose some semantic constructs in the process (i.e., false negative error, not 

detected a characteristic) or declare metaclasses as semantic constructs that should be 

considered as semantic constructs (i.e., false positive error, not corresponding to reality). 
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Most modelling language metamodels use the UML Class diagrams to represent 

the language concepts. Figure 22 represents a particular metamodel of GRL. This meta-

model is interesting because three of its classes (highlighted in blue) encompass more 

than one semantic symbol. For instance, the class IntentionalElementType is 

composed of the semantic constructs: Softgoal, Goal, Task, Resource and Be-

lief.  

 

Figure 22 A metamodel diagram of GRL 

Therefore, we should take into account not only the class definition but also its attributes. 

Genon et al. have encountered such issues when analysing UCM according to the PoN 

[13]. They have proposed a way to classify the UCM metaclasses according to six cate-

gories. We believe that their classification is general enough to be applied in a variety of 

metalanguages. The first process of PoN is, therefore, to collect and to sort the meta-

classes into these six categories. According to the classification of Table 3, the three ex-

amples of Figure 22 (e.g., ContributionType, IntentionalElementType and 

DecompositionType) fall in the “Collection” category. Therefore, they should be 

taken into account to further extract their semantic constructs. 

We then consider only the metaclasses that fall into the “To consider” and “Col-

lection” categories. These metaclasses will be subject to an analysis to extract the seman-

tic constructs.  
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The classification of Table 3 was conceived for the analysis of UCM ([13]) but it 

does not appear in the paper itself but in the technical report [12]. Therefore, it fits to the 

URN metamodel specified in [19]. It appears to use that the scope of this classification is 

larger and can be applied to most of metamodels. However, the classification should not 

be regarded as the end point for classifying metaclasses but a starting point to develop 

classification groups that could be applied to any metamodel. Therefore, we suggest tak-

ing these groups as a basis that we could enhance and/or overload by other groups. 

Table 3 Classification of metaclasses of a metamodel (from Genon et al. in [12]) 

To consider 

 

 

“Metaclasses that denotes (a part of) a semantic construct and 

hence, should have a visual representation” (from [12]) 

Abstract “Abstract metaclasses, even if they refer to semantic con-

struct, are usually not represented on diagrams. These semantic con-

structs are refined in children metaclasses that are mapped to visual 

symbols.” (from [12]) 

 

Structural 

 

 

“Structural metaclasses are metaclasses that exist for meta-

modelling matter and that do not correspond to any semantic con-

struct. There is no rationale for associating symbols to them.” (from 

[12]) 

Collection “Collection is a generic term that denotes enumeration meta-

classes. We suggest to do not associate concrete syntax to this kind of 

metaclass. However, the values of the collection may be represented.” 

(from [12]) 

Graphical 

 

 

“Graphical metaclasses are metaclasses which purpose is to 

store concrete graphical information such as default line thickness, 

spatial location of symbols and default font. These metaclasses do not 

denote any semantic construct of the modelling language and they 

should not be represented as notational element.” (from [12]) 

Out of scope “This category gathers all metaclasses that are “by nature” or 
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 considered as out of scope for the notation analysis.” (from [12]) 

 

5.1.2 Graphical Symbols: collect the symbols with a non-combinatory way 

 

Although it is difficult to precisely define a graphical symbol, we would like to draw at-

tention to the problem of collecting the graphical symbols. If proper care is not taken, the 

number of symbols could dramatically increase. The problem occurs because most mod-

elling languages combine simple graphical artefacts to build more complex ones. Thus, 

the visual vocabulary is composed of a small set of graphical symbols.  

For instance, the URN standard explains that we can attach a ContributionType 

(Make, Help, SomePositive, Unknown, SomeNegative, Hurt, Break) to a Contribu-

tion. The ContributionType is represented by an icon. Likewise, we also can at-

tach a text to name the contribution and a number to give a value to the Contribution. The 

specification gives five ways to combine these elements:  

(a) Contribution + an icon,  

(b) Contribution + a text,  

(c) Contribution + a icon + a text,  

(d) Contribution + a number,  

(e) Contribution + an icon + number. 

Furthermore, the ContributionType are also associated to the correlation links. The 

number of graphical symbols by combining contribution link and correlation link with 

the ContributionType, the text and the number equals to: 

  2* 7 + 2 + 2*7 + 2 + 2*7 = 46. 

Instead, we could collect these graphical symbols: a Contribution link alone, a 

Correlation link alone, 7 graphical symbols (icons) for the ContributionType and a 

number and a text alone, which equals to 11 graphical symbols. This non-combinatory 

way of collecting graphical symbols is more scalable. The careful reader may have no-

ticed that the non-combinatory way of collecting symbols contradicts the way Moody 

suggested to collect symbols. However, this proposal is relevant, for instance, for the 

principle of Graphic Economy. That principle evaluates the graphical complexity as the 



 

 60 

number of symbols of the visual notation, but that number could be too high. Indeed, as 

we stated, a visual notation chunks of symbols to build more sophisticate symbols. There-

fore, a modeller has only to remember these simple chunks of symbols and the rules to 

combine them.  

Another reason to consider the non-combinatory way to collect symbols is that 

even if we want to gain in precision, sometimes, we could simply not take all the combi-

nations. For instance, in the previous example we considered a number as one instance 

but in reality, there are an infinity of values for a number.   

Further, over time, a modelling language tends to add more symbols to its con-

crete syntax. This could add other multiplicative factors.  

 

Background Definitions  

In [39], Störrle and Fish defined the PoN principles with mathematic functions. As the 

following two first sections rely partly on their ideas, we will introduce some of their 

concepts to help for the overall understanding. 

In their paper, they call the semantic constructs “Concepts C” and the graphical 

symbols “Graphems G”. C is the set of all the semantic concepts and G is the set of all 

the graphical symbols (see Figure 23). A function σ takes a concept in argument and 

gives its set of related graphems. The inverse function σ-1 takes a graphem in argument 

and gives its set of related concepts. 
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Figure 23 The σ and the σ-1 functions 

Additionally, they defined a set of concepts that are represented graphically, called visu-

alized(C). Also, the set of graphems that are related to concepts is called meaningful(G). 

                                 

5.2. Semantic Clarity 

Moody has given four metrics to assess the potential anomalies for the semantic clarity 

principle. In this section, we will expose and compare the metrics proposed by Genon et 

al. and Störrle and Fish.  

5.2.1 Symbol Redundancy 

A direct assessment of the symbol redundancy can be a ratio between (a) the semantic 

constructs represented by multiple graphical symbols and (b) the cardinality of the set 

“To consider” (i.e., the number of semantic constructs).  

Therefore, the ratio a/b represents the percentage of the symbol redundancy anomaly. In 

other words, the more it tends to 0, the better. 
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Störrle and Fish proposed the formulae shown in Figure 24. The !"(!) (N for 

visual Notation) function returns (applied to whole semantic notation) a value ! between 

0 (better) and 1 (worse), more precisely ! ∈ [0, 1[. !"#$%#&%'((!) tends to 1 when 

more graphical symbols are associated to a semantic construct. For instance if the seman-

tic construct ! has three related graphical symbols, redundancy(c) is 1− !
! = 0.666… 6…  

                     

Figure 24 Processing of Symbol Redundancy (from Störrle et al.) 

From my point of view, the metric proposed by Störrle and Fish is more precise because 

it takes into consideration the number of graphical symbols associated to each semantic 

construct. Genon’s formula does not differentiate whether two or more graphical symbols 

are associated to the same semantic construct (i.e., without any deteriorating factor). 

However, Störrle’s formula could be improved by applying an exponential function (see 

Figure 25) instead of the linear function associated to |!(!)|. In this way, the function 

will more closely respect the 1:1 correspondence principle (between semantic constructs 

and graphical symbols).  

 

               

Figure 25 An improved version of the function redundancy 

5.2.2 Symbol Overload 

Genon et al. assessed this criteria with a ratio between (a) the graphical symbols, which 

represent multiple semantic constructs and (b) the number of graphical symbols. 
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Störrle and Fish proposed the metric of Figure 26. The !" ! !function returns a 

value v between 0 (better) and 1 (worse), more precisely v �[0,1[. The overload(g) func-

tion tends to 1 when more semantic constructs are associated to a certain graphical sym-

bol. �

                   

Figure 26 Processing of Symbol Overload (Störrle et al.) 

In my opinion, Störrle and Fish’s function is more precise than the metric proposed by 

Genon et al. Indeed, there is no deterioration factor in the Genon’s formula.  

We would recommend to apply an exponential function to the |!!!(!)| term for the 

same reasons that we exposed in the previous section.  

        

Figure 27  An improved version of the function overload(g) 

5.2.3 Symbol Excess 

Genon et al. evaluate symbol excess with a ratio between (a) the graphical symbols are 

not related to any semantic construct and (b) the number of graphical symbols of the lan-

guage. Therefore, a/b is the percentage of symbol excess. 

Störrle and Fish also proposed a ratio (see Figure 29) between (i) the meaningful 

graphical symbols (i.e., the graphical symbols that have corresponding semantic con-

cepts, see Figure 28) and (ii) the number of graphical symbols of the whole language. 

The formula returns a value !!between 0 (better) and 1 (worse), more precisely ! ∈ [0,1].  
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Figure 28 The !"#$%$&'())(!!) set and the !"#$%$&'"(((!!),  set. 

 

                     

Figure 29 Processing of Symbol Excess (from Störrle and Fish) 

Although the Genon and Störrle formulae appear different, they are mathematically 

equivalent.  

Proof 
Let us define a new set: !"#$%$&'"(((!!), composed of the graphical symbols that 

have no corresponding semantic concepts (e.g., g4 et g5 of the  Figure 28). 

Let us assume that the set GN (i.e., the set of the graphical symbols of the notation N) is 

composed of the !"#$%$&'()!and !"#$%$&'"(( sets and !"#$%$&'() !! ∩
!"#$%$&'"(( !! = ∅." So" additionally," !"#$%$&'() !! + |!"#$%!"#$%% !! =
|!!|.  
Then the Genon’s metric of Symbol Excess can be rewritten like Figure 30.  

     

Figure 30 Rewritten of the Genon’s metric of Symbol Excess 
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The Figure 31 shows that Störrle’s formula of symbol excess (see Figure 29) mathemati-

cally equals to Genon’s formula of symbol excess (see Figure 30). 

       

Figure 31 Development of the Störrle and Fish formula  

5.2.4 Symbol Deficit 

Genon et al. assessed the anomalies related to symbol deficit with a ratio between (a) the 

semantic constructs that are not represented by any graphical symbol and (b) the cardinal-

ity of the set “To consider” (i.e., the number of semantic constructs). 

Störrle and Fish also proposed a ratio (see Figure 32) but between (i) the visual-

ized semantic concepts (i.e., the semantics concept which are represented graphically by 

graphical symbols) and (ii) the number of semantic concepts of the language. Like their 

previous formulae, they ensured that this formula returns a value ! between 0 (better) and 

1 (worse), more precisely ! ∈ [0, 1].  

                                      

Figure 32 Processing of Symbol Deficit (from Störrle and Fish) 
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Störrle and Fish’s formula is mathematically equivalent to the Genon et al.’s formula.  

Proof 
Let us define a new set:!!"!#-!"#$%&"'()(!!), composed of the semantic concepts that 

are not represented graphically (e.g., c5 of Figure 33).  

Let us assume that the set CN (i.e., the set of the semantic constructs of the notation N) is 

composed of the !"#$%&"'() and !"!#-!"#$%&"'() sets and !"#$%&"'() !! ∩ !"!#-

!"#$%&"'() !! = ∅. As well,"|!"#$%&"'() !! |+!|n!"#-!"#$%&"'() !! | = |!!|.  
 

Than, Genon et al.’s metric can be rewritten as Figure 33.  

                                 

Figure 33 Rewrite of the Genon’s metric of Symbol Deficit 

                  

Figure 34 The !"#$%&"'() !! !(in green) and the n!"#-!"#$%&"'() !!  (in brown) 

 

The Figure 35 shows that the Störrle and Fish formula of symbol deficit (see Figure 32) 

mathematically equals to the Genon et al.’s formula of symbol deficit (see Figure 33).  
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Figure 35 Development of the Störrle’s formula 

5.2.5 Critics of the Semantic Clarity Operationalization 

In previous sections, we compared each criterion of the Semantic Clarity according to its 

implementation by Genon et al. and by Störrle and Fish. We suggested improvements for 

the symbol redundancy and for the symbol overload criteria. Besides these improve-

ments, we proved that the symbol excess and symbol deficit criteria of Genon et al. are 

mathematically equal to the Störrle and Fish versions. 

However, these formulae are only one aspect of the assessment of the Semantic 

Clarity. Indeed, these formulae are useless if it does not imply concrete decisions for the 

modelling language. In other words, assessment by mathematic formulae is useful only if 

we point out the problems among the semantic concepts or the graphical symbols. And 

then, it pushes us to take decision such as reducing/increasing the number of graphical 

symbols. 

Both Genon et al. and Störrle and Fish rely on the four metrics to discuss the Se-

mantic Clarity. However, they clearly differentiate to one another about how they inter-

pret these results and whether they give suggestions to actually improve the concerned 

modelling language. 



 

 68 

Störrle and Fish in [39] keep focusing on discussing the flaws of PoN. For them, 

because PoN lacks on giving thresholds to compare their results, they could not interpret 

these results. I do agree that PoN or future research should be conducted to answer that 

issue. Although, it would be complicated to give general thresholds because each visual 

notation is unique (e.g., depends on properties such as the targeted audience). In any case, 

Störrle and Fish could give some hints about the semantic constructs or graphical sym-

bols that cause issues. Indeed, instead of assessing each criterion on the notational level, 

they could assess each criterion in a detailed way, i.e., applying the metrics to a symbol 

or a semantic construct at a time. This results in a lack of relevant suggestions on how to 

improve UCD in accordance with the Semantic Clarity, which is normally the aim of 

PoN. 

On the other hand, Genon et al. in [13][10] use the metrics to give an overview 

about how the modelling language behaves against each criterion. However, all the rest 

of the discussion is focused firstly on pointing out the “guilty” semantic construct or 

symbol (or group of semantic constructs or symbols) and, secondly, on ways to improve 

that issue. For instance, what symbols should be removed or what semantic construct is 

important to appear in the visual notation. 

The Genon et al. assessment of the Semantic Clarity appears to be more construc-

tive. Even if their metrics are less precise than those developed by Störrle and Fish, they 

rely on expertise to stand out. The output between the two assessments is clearly more 

useful on the Genon et al. side due to the several recommendations that they give on this 

principle. 
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5.3. Perceptual Discriminability 

5.3.1 Primacy of Shape 

Genon et al. adopted a methodology based on qualitative assessment to be able to give 

some advice for the visual language, while Störrle and Fish worked more on quantitative 

assessment. However, they both assessed the visual variable shape in the same way: con-

sidering a certain number of shape families. Each graphical symbol of the visual language 

has to belong to one of the shape families. These shape families have to be defined on a 

case-by-case basis according to the analysed visual language. Thus, no generalization of 

the shape families can be determined.  

In their operationalization of PoN, Störrle and Fish have defined three families of 

shape: Line, Icon, and Region (i.e., component). The latter is then decomposed as Simple 

and Complex. These shape families are presented as applicable to any visual language. 

However, it seems to us that this is an ad-hoc classification, which is defined to suit to 

their analysis of the UML Use Case Diagrams (UCD).  

In order to show that shape families are not generic enough, let us discuss about 

the GRL language. In GRL, unlike in UCD diagrams, lines (e.g., contribution links, cor-

relation links) are not simple because we can attach icons (e.g., contributionType as 

Make) to them. It would therefore be logical to distinguish the “simple” lines from the 

lines with attached icons because they could be perceived differently (i.e., the extra icon 

changes the perception of the line).  

Furthermore, the way Störrle and Fish computed the distance between the differ-

ent shape families is limited, perhaps even erroneous. They claimed that two graphical 

symbols belonging to two different shape families are more discriminable than two sym-

bols taken from the same family (Figure 36). That claim is not always true. For instance, 

let us assume that we want to compute the visual distance between two icons that both 

look very different. The icons will be put in the Icon shape family, and, according to the 

Figure 36, the visual distance equals 0.5, which is not the optimum. Although, according 

to the PoN, the two shapes perfectly satisfy the shape criterion of the Perceptual Dis-

criminability. 
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Figure 36 Visual Distance between the graphical symbols according to their shape 
families. 

Another limitation of such classification is the difficulty encountered to classify certain 

graphical symbols according to a set of shape families. For instance, how do we to classi-

fy the time path (i.e., the zigzag path of Figure 37) of a UCM timer. The timeout path 

could be classified either as a Line or as an Icon (i.e., the zigzag path was designed to 

remind the icon of the thunder). 

                                                

Figure 37 UCM timer with its timeout path (zigzag path) 

 Shape Comparison  
These different limitations prompt us to seek another way to assess the shape discrimina-

bility. The idea is to measure the difference between shapes as the Levenshtein distance5 

does with strings. Belongie et al. [4] described a means to compare shapes between them 

not in accordance to a family class but by considering the shape context of feature points, 

i.e., a description of points of a shape compared to the other points of the shape. Further-

more, their technique offers interesting properties, e.g., invariance to common defor-

mations, invariance to scale (i.e., two shapes can be compared no matter their sizes), and 

invariance to rotations. All of these properties are interesting for the Perceptual Discrimi-

nability. 

                                                
5 Mesures the difference between two strings. 
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The interested reader may refer to Appendix [XX], which popularizes the shape 

context by showing how concretely two shapes can be compared to one another. 

 Tool-based Shape Comparison 
The previous technique makes it possible to develop a tool-based shape comparison. That 

tool would give warning and suggestions when two graphical symbols have two shapes, 

which are visually close. The suggestions can be generated from best practices in model-

ling languages. Furthermore, the technique can be applied on complex graphical symbols 

such as components, which are composed of other components and of all kinds of icons. 

However, that kinds of tools would be limited since nothing can replace the human ex-

pertise. In my opinion, a tool can only suggest the use of a different shape when it esti-

mates that the used shapes are visually too close, but it cannot advice the use of a shape 

based on its meaning (Semantic Transparency).  

 Pattern-based Matching 
Simpler than the tool-based shape, we propose to rely on graphical patterns instead of 

shape families. The idea is to associate each graphical symbol to a more generic pattern. 

Ling and Jacobs mathematically developed that matching technique in [22].  

Figure 38 shows how the pattern ( ) is associated to four graphical sym-

bols of UCM: static stub, dynamic stub, synchronizing stub and blocking stub. The pat-

tern is obtained by filling the shape with a black colour. That way, the focus is put on the 

shape of the graphical symbol and not on none-relevant details (for the visual variable 

shape) such as the texture of the border of the graphical symbol. 
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Figure 38 Association of a pattern (right) to graphical symbols (left)       

 

Another example, the graphical symbol of UCM timer (see Figure 37) is associated to the 

pattern ( ). 

5.3.2 Visual Distance 

Störrle and Fish defined a vector composed of Bertin’s visual variables; each graphical 

symbol is associated to such a vector. The authors then proposed to differentiate symbols 

that have the same values for all visual variables by their textual annotations.  

The purpose of that textual differentiation is to assess the visual notation against 

the anomaly of using only text to distinguish between graphical symbols. PoN mentioned 

the anomaly but did not give a means to evaluate it. 

The textual differentiation is quite simple: it is a ratio between (a) the graphical 

symbols that can only be distinguished by considering their textual captions and (b) the 

number of graphical symbols (see Figure 39).  



 

 73 

    

Figure 39 The textual differentiation metric 

In my opinion, the metric is useful only to point out the graphical symbols that lack the 

ability to differentiate from each other otherwise than by text. However, that kind of 

comparison is impossible with the !" !  formula since it is applied to the whole visual 

language (N). 

We propose to assess the textual differentiation for individual graphical symbols 

against the set of graphical symbols (see Figure 39).  

 

      

Figure 40 Textual differentiation applicable to a specific graphical symbol 

5.3.3 Redundant Coding  

In PoN, Moody explained the need to use multiple visual variables to increase the visual 

distance between graphical symbols. Although Genon et al. did not use a formula to as-

sess this principle, they applied the principle in the same way that Störrle and Fish opera-

tionalized it in their metric. Yet, Störrle and Fish’s formula is more precise because it 

could show not only pair (i.e., 2-tuple) of value of visual variables but also the other 

combinations (i.e., n-tuple). 

Two kinds of evaluation are made possible with the Störrle and Fish formulae, ei-

ther evaluating a graphical symbol against the others like Genon et al. did (see Figure 

41), or evaluating the entire visual notation (see Figure 42). In my opinion, in the absence 

of empirical studies, the second evaluation has less value because of the difficulty of in-

terpreting the results. However, to some extent, it could be used to evaluate the evolution 

of a visual notation. 
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Figure 41 evaluates two graphical symbols, ! and ℎ on the proportion of distinct 

values of visual variables compared with the number of visual variables of the language 

(i.e., dimension d). The [!] denotes 1 if the predicate!! is true, and 0 otherwise.  

At least !"(!, ℎ) ≥ 2/!! (i.e., ! and ℎ differentiate from at least two visual variables) 

and it should be the case for all the other graphical symbols ∀!, ℎ ∈ !!|! ≠ ℎ ∶
!!!"(!, ℎ) ≥ 2/!.  

                 

Figure 41 Visual redundancy of two graphical symbols g and h (Störrle and Fish) 

For the redundant coding evaluation at the notational level, Störrle and Fish applied the 

visual redundancy formula for the entire set of the graphical symbols (see Figure 42). We 

would like to draw the attention on the denominator !! ! (see Figure 42) which is not 

correct.  

Given !!,!! and !!. The sum !"(!, ℎ)!,!∈!!  is composed of !!! elements of 

!" !, ℎ . Therefore in our case, we would have six different elements of visual redun-

dancy formula.  

 

!" !!,!! + !" !!,!! + !!" !!,!! + !" !!,!! + !" !!,!! + !" !!,!!  

 

If we assume that !!,!! and !! have unique values for each of their visual variables, we 

would have !" ! = !
!! ∗ !1+ 1+ 1+ 1+ 1+ 1 = !

! =
!
!.  The result is not correct; it 

should be equal to 1 since the graphical symbols satisfy perfectly the redundancy criteri-

on. The solution is to use the denominator !! ∗ ( !!  - 1) instead of !! ! denominator. 

That way, we would have !!∗! = 1. The Figure 43 takes that issue into account.  
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Figure 42 Redundant coding applied to the notational level 

 

Figure 43 A correct version of the redundant coding formula 

5.3.4 Perceptual Pop-out 

In this principle, the focus is on finding a unique value among the visual variables, which 

allows discriminating a graphical symbol against the others. Both Genon, and Störrle and 

Fish assessed this criterion in the same way.  

Let us expose and explain the perceptual pop-out formula of Störrle and Fish. 

Figure 44 translates in mathematics the following intuitive formulation: “A graph-

ical symbol g has the perceptual pop-out characteristic if compared with the others graph-

ical symbols, g has at least a unique value of one of its visual variables”.   

Then, that criterion is applied to the entire set of the graphical symbols (see Figure 44).    

     

Figure 44 Pop-out criterion for a graphical symbol g 

                         

Figure 45 Pop-out principle applied to the entire visual notation 
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5.3.5 Critics of the Perceptual Discriminability Operationalization 

Exactly as for the Semiotic Clarity (see Section 5.2.5), Störrle and Fish in [39] give only 

the raw results without relevant explanations of their assessment. A reader that is inter-

ested to concretely improve the discriminability of UCD elements cannot find any rec-

ommendation to comply with the principle of Perceptual Discriminability. The main 

problem is not how to assess the different criteria but how to explain them and even more 

importantly to give suggestions that can be applied on visual notations.  

On the other hand, Genon et al. discuss each visual variable on whether it is used, 

and how it should be used in a specific modelling language (e.g., UCM in [13] and 

BPMN in [10]). By following the recommendations given by Genon.,we could act on 

visual notations instead of try to comprehend a bunch of meaningless numbers.  

5.4. Developed Software 

Assessment of the previous formulae could be processed either manually or semi-

automatically. We have chosen the semi-automatic option because it represents a valua-

ble contribution, not only for this thesis but also for the PoN community.  

There are essentially two major ways to semi-automatically process the metrics of 

PoN: either by using a spreadsheet application (e.g., Microsoft Excel), or by using a pro-

gramming language. The former option is the most accessible since it requires neither 

programming skills, nor knowledge of any programming language. However, it seems to 

us that using a programming language is more maintainable and powerful than spread-

sheets.  

Instead of choosing a programming language vice a spreadsheet processor, we 

take into account both. The data of the analysis will be gathered in Excel spreadsheets 

while all the assessment will be processed by a Java program. 

We developed a piece of software that automatically applies the metrics mentioned in the 

previous sections. In Section 7.2.1, we present the different components of that software. 
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Chapter 6. Evaluation: Analysis of AoURN 

In this chapter, our first goal is to evaluate the metrics introduced in Chapter 5. We assess 

our proposed metrics for the principles Semiotic Clarity and Perceptual Discriminability 

by applying them on AoURN. A secondary goal is also to analyse the cognitive effec-

tiveness of AoURN by applying all of the PoN principles. Since AoURN extends URN, 

we need to take into account URN and hence, both GRL and UCM. Previous research 

have analysed UCM according the PoN [11] and the i* modelling language, which is 

closely related to GRL, in [23]. Considering these evaluations, we focus our analysis on 

the cognitive effectiveness of the elements introduced to support AOM in URN. There-

fore, in the following sections, when we refer to AoURN (or respectively AoUCM), we 

mean the newly introduced elements to support AOM in URN (and respectively UCM).  

Since the interpretation of the results of applying the PoN is strongly related to the 

kind of audience and the medium used to design the diagrams, we firstly consider the 

principle of Cognitive Fit. Semiotic Clarity and Perceptual Discriminability are discussed 

in Section 6.2.2 and 6.3.4, respectively. 

 

 

6.1. Cognitive Fit 

Principle formulation: “Use different visual dialects for different tasks and audiences”. 

 

URN is mainly used by experts such as requirements engineers or academics. In [10], 

Genon et al. considered that the focus should be put on defining a comprehensive set of 

symbols with clear semantics (Semiotic Clarity), to be able to represent any required ex-

tra detail through text (Dual Coding) and to structure large models through Complexity 

Management and Cognitive Integration.  
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In our assessment, we consider an audience of experts, who essentially interact 

with CASE tools to design diagrams. However, both GRL and UCM, and hence AoGRL 

and AoUCM diagrams, are often modelled by sketching on physical medium like white-

boards and sheets of paper. Therefore, we avoid hardly sketchable symbols by taking a 

degraded version of the symbols (e.g., swapping the background colour and the icon of a 

symbol). 

6.2. Semiotic Clarity 

Principle formulation: “There should be a 1:1 correspondence between semantic con-

structs and graphical”. 

 

In order to assess the Semiotic Clarity, we rely on the 2012 version of the ITU-T Z.151 

specification document [19]. The semantic constructs of GRL and UCM were sorted into 

the six groups defined in section 5.1.1. Previously, the semantic constructs of AoURN 

introduced to support AOM in URN were collected in [27]. Once again, we only consider 

the incremental addition to AoURN, i.e., symbols that are in AoURN and not in URN.  

In this section we present the synthesized data. The complete analysis can be 

found in appendix A.  

 

Table 4 Number of semantic constructs (SC) metaclasses by categories 

Category Description #SC 

To Consider Elements that should be mapped to symbols 66 

Abstract Abstract metaclasses that are not mapped to symbols. Alt-

hough, their specialization could be mapped to symbols 

11 

Structural Metaclasses aim to structure the metamodel. Therefore, no 

symbols are mapped to them. 

14 

Collection Enumeration metaclasses from which we should consider 

combination of values. These could be associated to ele-

ments of the “To consider” set. 

12 



 

 79 

Graphical Elements that refer to technical information such as the type 

of font or special location.  

16 

Out of Scope Metaclasses that intentionally do not have graphical repre-

sentation  

8 

 

We analysed in detail the combination of the “Collection” set and the “To Consider” set 

since the combination may introduce new semantic constructs. The final set of semantic 

constructs counts 103 elements. We collected 70 graphical symbols from [19] and [27]. 

We paid attention to the combinatory effect as explained  in Section 5.1.2. 

Figure 46 depicts the assessment of the Semiotic Clarity using the Störrle and 

Fish formulae. We tagged each semantic construct and each graphical symbol according 

to the following conventions: 

UCM tag: element that is part of the UCM notation; 

GRL tag: element that is part of GRL notation;  

URN tag: elements that is part of UCM or GRL notation; 

AoUCM tag: element introduced by Mussbacher to support AOM for UCM; 

AoGRL tag: element introduced by Mussbacher to support AOM GRL; 

AoURN tag: element introduced by Mussbacher to support AOM for both GRL 

and UCM, i.e., element that belongs to GRL or UCM set; 

SuperURN: element that is part of either URN or AoURN set.  
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Figure 46 Assessment of the Semiotic Clarity.  
Each criterion ranges between 0 (better) and 1 (worse) 

Figure 46 shows that most problems are related to the symbol deficit criterion. Indeed, 

symbol redundancy, symbol overload, and symbol excess remain negligible (less than 

0.07). 

The UCM notation lacks of graphical representations for its semantic constructs (scores 

0.34). As noted by Genon et al. in [13], the UCM notation has no graphical representa-

tion to support performance analysis. We agree with Genon et al. who stated that we 

should not represent graphically such concepts. Furthermore, the UCM notation does not 

graphically represent  UCM plug-ins (see section 8.3 in [19]). Also, The GRL notation 

suffers from symbol deficit (scores 0.21). For instance, the evaluation strategies are not 

graphically represented. Again, we could represent such strategies textually or by using 

CASE tools features. 

Table 5 shows that the concepts introduced by Mussbacher to support AOM (col-

umn AoURN) increases symbol deficit around 10% compared to the current notation 

(column URN). Moreover, we assessed that AoGRL degrades slightly more the results of 

symbol deficit than AoUCM. Indeed, AoUCM and AoGRL increase symbol deficit 

(compared to UCM / GRL) by 8% and 12%, respectively. 
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Table 5 Assessment of URN and AoURN (AoUCM + AoGRL) 

 URN AoURN AoUCM AoGRL 

Symbol Overload 0.02 0.00 0.00 0.00 

Symbol Deficit 0.29 0.38 0.42  

(0,34 in UCM) 
0.33 

(0,21 in GRL) 

Symbol Excess 0.03 0.00 0.00 0.00 
Symbol Redundancy 0.03 0.04 0.07 0.00 

 

Mussbacher chose to visually represent AoGRL concepts such as Aspect Graph or 

Pointcut Graph. Furthermore, in AoUCM, he did the same for the Pointcut Map and As-

pect Map. However, these four representations exist for comprehension purposes and are 

not intended to be in the AoURN notation. If we consider that each of them could be rep-

resented textually, we would reduce the Symbol Deficit for AoUCM and AoGRL. In the 

following section, especially in Complexity Management, we will see whether these con-

cepts should be represented graphically.  

6.2.1 Issues at the semantic level 

We discovered two issues when we completed the AoUCM and AoGRL semantic con-

struct analysis. The first one concerns the AoUCM aspect marker. The second one is re-

lated to how an aspect graph is associated to the pointcut graph. 

 The Aspect Marker Issue (AoUCM) 

Mussbacher stated in [27]: “Conditional aspect markers ( ) indicate that the [UCM] 

scenario may not continue past the aspect marker, whereas “regular” aspect markers 

( ) guarantee that the scenario continues past them”.  

However, we found an example that clearly shows that this assumption is not correct. 

Figure 47 illustrates that the aspect view (represented by using ) of a regular marker 

(M1) could be composed of a conditional marker (M2).  
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In the following, we give an example depicting that the aspect marker does not respect 

Mussbacher’s statement. Either we choose to not represent it graphically by introducing 

symbol deficit or we would need to change its meaning at semantic level, which is out-of-

scope of this thesis. 

 Example 
The scenario executes R1, then the aspect related to (M1) is executed, which contains 

(M2) and R3. The aspect related to (M2) is then executed. Then, R2 is executed and de-

pending on the condition [cond], the scenario terminates or executes R3 and finally exe-

cutes R4.  

This example proves that an aspect marker could not guarantee the none interrup-

tion of a scenario. Therefore, a CASE tool like jUCMNav should have a continuous 

check of what a regular aspect marker is composed of. It has to check whether one of the 

aspect marker path leads to the termination of the scenario.   

             

Figure 47 The aspect marker M1 ( ) does not guarantee  
the none-interruption of a scenario  

 Association of Aspect Graphs (AoGRL) 
In AoGRL, a pointcut marker is associated to only the intentional elements of the base 

model. However, it seems that if an advice in not linked (e.g., via a contribution link) to 

an intentional element in a pointcut graph, we could not represent that an advice is at-

tached to the base model with an aspect marker.  Figure 48 illustrates this issue with the 
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pointcut graph A and B. When the goal advice is linked through a contribution arrow to 

an intentional element (e.g., Goal1), the intentional element of the base model is tagged 

with a pointcut marker ( ).  

However, if the goal advice (in pointcut graph B) is not linked to any intentional 

element, the base model (base model B) does not indicate that an aspect is actually asso-

ciated the model, i.e., there is no pointcut marker ( ) on the model. 

A solution could be to associate a pointcut marker to GRL actors. In our case, a 

pointcut marker would be associated to the Actor of the base model B. 

              

Figure 48 Goal Advice of the Issue Case is not represented in the Base Model 

6.2.2 Validation of the metrics 

In Sections 5.2.3 and 5.2.4, we proved that the symbol excess and the symbol deficit met-

rics of Störrle and Fish are mathematically equal to Genon’s metrics. In Figure 49, we 

evaluated Symbol Excess and Symbol Deficit for UCM by using Störrle and Fish, Genon 

and our metrics. It appears that the Störrle and Fish metrics are really equal to Genon’s 

metrics at a precision of 10!!. This validates what we mathematically proved in Sections 

5.2.3 and 5.2.4. Furthermore, our results confirm the trend that Genon et al. observed for 

UCM in [11]: all the criteria are negligible except Symbol Deficit. However, the results 

are not strictly the same between the assessment of Genon et al. and our assessment as 
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we made different choices, e.g., an UCM empty point has only one (our assessment) 

graphical representation and not two (Genon et al.’s assessment). 

We associated some symbols differently from Genon et al.’s assessment. Indeed, 

we used the Patter-based Matching technique (see Section 5.3.1), which may vary the 

results from the technique used by Genon et al. For instance, unlike Genon et al., we did 

not associate the same graphical symbol for the UCM waiting place and the start point. 

Indeed, the waiting place is associated to the pattern ( ) while the UCM 

start point is associated to the pattern ( ).  

     

Figure 49 Assessment of UCM Semiotic Clarity  

In the remainder of this section, we consider the assessment of the metrics related to 

symbol redundancy and symbol overload. We have three sets of metrics: the Störrle and 

Fish metrics, Genon’s metrics and our metrics, which is an improvement of Störrle and 

Fish metrics. Table 6 shows an important result: Genon’s metrics of symbol redundancy 

and symbol overload give almost (accuracy of two percent) the same results as the Störrle 

and Fish metrics (see how the columns A and B of each language are close to another).  
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Table 6 Modelling languages assessment for  
symbol redundancy (S. R.) and symbol overload (S. O.)  

with Störrle and Fish (A), Genon et al. (B), and mine metrics (C) in percentage. 

 AoGRL GRL AoUCM UCM AoURN URN SuperURN 

A B C A B C A B C A B C A B C A B C A B C 

S. R. 0 0 0 6 9 10 7 8 12 0 0 0 4 5 7 3 4 4 3 4 5 
S. O. 0 0 0 2 3 3 0 0 0 2 3 3 0 0 0 2 3 3 1 3 2 

 

We could argue that our metrics are not useful since, most of the time, they provide re-

sults closely related to the two others. However, most of the graphical symbols of 

“SuperURN” are not associated to more than one construct. In fact, only 2 symbols over 

76 are associated to two constructs. The same phenomenon occurs for the constructs: 

only 4 constructs are associated to two symbols over a set of 104 constructs. Therefore, 

these two phenomena reduce the difference between our metrics and the Störrle and Fish 

metrics. However, our metrics are more efficient since they degrade the value of AoUCM 

according to criterion of symbol redundancy. Indeed, since AoUCM has only 12 con-

structs (small set of constructs), even if there is only one problematic construct (i.e., a 

construct linked to more than one symbol), our metrics stand out more that problem. In 

comparison, the other modelling languages we assessed have more constructs or symbols. 

There are not enough problematic symbols or constructs in order to see a significant dif-

ference between our metrics and the two other.  
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6.3. Perceptual Discriminability 

Principle formulation: “Different symbols should be clearly distinguishable from each 

other”. 

 

In this section we focus on the discriminability of AoURN. In [13], Genon et al. present-

ed improvements to increase the perceptual discriminability of UCM. In [23], Moody and 

Heymans introduced improvements that could be applied to GRL.  

6.3.1 AoUCM 

It seems important to increase the Foreground Differentiation between the UCM path and 

the elements (e.g., responsibilities) on it. Indeed, unlike other modelling languages, UCM 

is not composed of elements connected to one another by links. Instead, the elements are 

dispatched on the UCM path. Therefore, we propose to change the colour of the UCM 

path to highlight the elements that are on the path, such as the responsibilities. Figure 50 

shows the difference when the UCM path is depicted in grey, which highlights the re-

sponsibilities R1 and R2. An empirical study could be conducted to assess to which ex-

tent this modification improves the discriminability. 

   

Figure 50 Foreground differentiation between UCM paths and the Responsibilities.  
The responsibilities are highlighted in (a) and the current version is depicted in (b).  

The visual variable Shape is one of the most important to differentiate graphical symbols. 

However, AoURN overuses the pattern ( ). The differentiation is made possible 

only by referring to textual differentiation (see Figure 51, (e) and (f)) or by modifying the 

visual variable Size (e.g., compare elements (a) and (e) in Figure 51). Furthermore, the 

UCM notation already extensively uses this pattern (e.g., stub, synchronization stub). We 

propose to change the Shape of the graphical symbols (a), (b), (c) and (d) to differentiate 

!!!

�!!

!!! !!!
R1! R2!

!!!

�!!

!!! !!!
R1! R2!

(a)!

(b)!
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symbols appearing on a base model from symbols appearing on a pointcut map (i.e., 

symbols (e) and (f)). Therefore, we introduce an icon for aspectual view ( ) and a new 

icon for the replacement pointcut stub ( ). We switch the background Colour for the 

pointcut stub and the replacement stub to increase discriminability. However, if these 

symbols have to be sketched (e.g., whiteboard), we could simply change back the back-

ground colour and the icon. 

Figure 51 Graphical symbols using the pattern ( ) 
The symbols in the green background are the improved versions 

 

The visual variable Texture is used only on the edges of dynamic stubs (dashed edge) and 

on protected components (double line of the edges). We agree with Bertin’s claim [5] that 

Texture should be used as a means to fill in the shapes (i.e., areas) of the graphical sym-

bols. 

According to [19], dynamic and statistic stubs share the same role of indicating 

the presence of hierarchically-structured UCM maps. The difference between them is that 

a dynamic stub may contain multiple maps instead of only one map for a static stub. 

Therefore, a dynamic stub can be used as a static stub but not in vice versa [19]. 

We suggest keeping the notion of dynamic stub and remove the notion of static 

stub. Moreover, since we do not need to distinguish between them anymore, instead of a 

dashed edge, we propose to use the plain edge for the dynamic stub. Figure 52 represents 

the old versions (a) and (b) of stubs and the new one (c). 

        

P"
Improved))
Versions)

(a)) (b)) (c)) (d)) (e)) (f))
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Figure 52 (a) The old static stub,  
(b) the old dynamic stub and (c) the new dynamic stub  

Depending on the graphical layout of a UCM path, the Or-Fork and Or-Join are especial-

ly hard to distinguish because they do not differ from the UCM path. The UCM standard 

[19] does not give a special representation of the paths of the Or-Fork and Or-Join. 

We propose to either force the output paths to respect a certain figure such as the one 

used in [19] to describe the Or-Fork (Figure 53, (a)) or use a shape to represent the Or-

Fork/Or-Join (Figure 53, (b)). Concerning the Or-Join, we do not change its representa-

tion. Using the symbol depicted in Figure 53 (b) would also reduce the confusion when 

the scenario presented in Figure 54 (b) occurs). The current solution is to use an arrow 

(see Figure 54 (a)). 

                    

Figure 53 Proposed versions of OR-Fork 

 

                 

Figure 54 Confusion between the Or-Fork and Or-Join 
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The visual variable Colour is used in AoUCM for understanding purposes only. It seems 

that there is no intention to officially use Colour on AoUCM. We suggest keeping Colour 

in the official visual notation of AoUCM.  

Finally, Brightness and Orientation are neither used on UCM nor on AoUCM. These 

visual variables do not seem to be relevant for UCM. 

6.3.2 AoGRL 

GRL graphs, are flat models and do not support hierarchies. In [27], Mussbacher added 

the vertical decomposition concern to the GRL notation to be able to encapsulate aspec-

tual concerns outside a GRL graph.  

In this section, we restrict the analysis to how to improve the distinction between the 

graphical symbols of AoGRL. Table 7 (a) shows the graphical symbols referring to as-

pect markers, i.e., a marker that indicates on a base model graph that an aspect is applied 

at that spot. Table 7 (b) shows the pointcut marker, i.e., marker that identifies an element 

of the base model in the pointcut graph. We propose to use the same symbol for the as-

pect marker than the one used for the UCM aspect marker ( ) in order to increase the 

discriminability between the GRL aspect marker and the GRL pointcut symbol. For the 

GRL pointcut maker, we suggest to use the same symbol like the UCM pointcut stub. 

Table 7 Aspect marker (a) and pointcut marker (b), current versions (above) and new-
er versions (below) 

(a) (b) 

                 

                  or  

 

Furthermore, we could use the visual variable Colour to improve the discriminability in 

the pointcut graph. We should choose colours that do not interfere with the colours (e.g., 

shades of green, red and yellow) used in GRL diagrams by jUCMNAv to evaluate a GRL 

graph [20]. Therefore, let us use blue to represent the aspectual elements and the compo-

sition rule.  

P" P"
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The other elements of the pointcut graph will then be represented in white (see 

Figure 55, (Solution A)) or grey (see Figure 55, (Solution B)). Depending on the back-

ground colour, we chose the version of the pointcut marker that increases more the con-

trast. We do not fill the actor boundary because it would decrease the contrast with its 

elements. 

      

Figure 55 Improved pointcut graph: the aspectual advice is represented in blue. 

Furthermore, we no longer need to differentiate links and arrows (e.g., dependency, con-

tribution) by applying pointcut markers ( ). Indeed, we would simply colour an arrow 

either in blue if it is part of the “aspect graph” or in black if it is part of the pointcut ele-

ments (i.e., for matching purpose).  

6.3.3 Colouring AoURN elements 

We could also apply the blue colour to highlight the aspect in AoUCM that is in an 

AoView. Figure 56 highlights in blue the aspect of the AoView related to the aspect 

marker M1. 

               

Figure 56 Highlighted Aspect of the AoView of Aspect Marker M1                
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6.3.4 Validation of the metrics 

In Section 5.3.1, we demonstrated that Störrle and Fish assessment of the primacy of 

Shape is not general as it was intended to evaluate only the UML Use Case Diagrams. 

We also illustrated the issues that we could encounter when we use the Genon et al. 

method to evaluate the visual variable Shape. Therefore, we decided to use our proposal 

to assess Shape: the Pattern-based Matching (see Section 5.3.1). Nevertheless, we should 

recognize that our technique could be simulated by the technique used by Genon et al. 

Indeed, Genon’s technique uses labelled text to characterise a Shape family. Therefore, 

we could simply use more detailed tags for each Shape family. For instance, instead a 

“Diamond” Shape family ( ), we could tag the Shape family as “Diamond at-

tached to in and out paths”. However, our Pattern-based Matching techniques seem to be 

more practical since it is visual. 

We applied the metrics of Störrle and Fish to assess the visual distance, the re-

dundant coding, the perceptual pop-out, and the textual differentiation criteria. For the 

visual distance, we evaluate whether two shapes share the same pattern instead of using 

the metric of Störrle and Fish, which is once again not correct. Figure 57 shows the re-

sults we obtained for each of the four criteria. However, as stated by Störrle and Fish in 

[39], empirical studies are necessary to interpret these results. Even though the Störrle 

and Fish metrics were designed with adjustable weights to accommodate future empirical 

findings, their current states cannot be used to assess the Perceptual Discriminability. 

Finally, we discussed issues related to how metrics should be used to assess the Perceptu-

al Discriminability in Section 5.3.5. 

Therefore, we state that the assessment of the Perceptual Discriminability is more 

valuable when we actually identify and resolve issues as Genon et al. did in [10].  
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Figure 57 Assessment of Perceptual Discriminability 
with Störrle and Fish metrics 

6.4. Semantic Transparency 

Principle formulation: “Different symbols should be clearly distinguishable from each 

other”. 

6.4.1 AoUCM 

Instead of using a particular composition language, Mussbacher relies on the expressive 

power of UCM itself to support AOM. Therefore, AoUCM inherits from the problems 

identified in [13]. Indeed, AoUCM uses conventional shapes such as the ( ) pat-

tern, which does not convey any particular meaning.  

In Section 6.3.1, we used an “eye” icon to increase discriminability. The rationale 

behind that icon is that it highlights the word “view” of the notion of aspect views. In 

Table 8, we use that icon for four symbols. In (a) we use it as a symbol for the regular 

aspect marker. In (b), we use it for the conditional aspect marker, combined with a red 

bar expressing that the scenario may not continue past that marker (exactly as an end 
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point). Finally, we use the “eye” icon for (c) entrance and (d) exit tunnel aspect markers. 

The symbol for tunnel is proposed by Genon et al. in [11]. 

Table 8 An “eye” icon used to refer to symbols of aspect views  

(a) (b) (c) (d) 

            
           

 

For the pointcut stub and the replacement pointcut stub, Mussbacher used the UCM dy-

namic stub as a primary shape on which he added either the letter P or a crossed P, re-

spectively. On the one hand, the pointcut stub ( ) suggests its meaning once we learn 

that “P” stands for pointcut. On the other hand, the replacement pointcut stub ( ) sug-

gests the opposite of its meaning (semantic perversity). Indeed, the cross often suggests 

the notion of deletion and not replacement. This is why we suggest using a different icon 

(such as ) that refers to the idea of change. 

AoUCM has an anything pointcut ( ) symbol that allows a pattern to be 

matched where a portion of the pattern is open to variations in the match [27]. Figure 58 

shows two UCM paths one that contains the anything pointcut and a regular UCM path. 

The pattern matches the responsibilities A – D – Z and not the responsibilities A – B – C 

– Z since the anything pointcut matches the shortest candidate for a match.  

      

Figure 58 Example of an anything pointcut 

This symbol is semantically immediate once it is put on a UCM path. Indeed, it matches 

any form of a UCM path since the dots do not exist in the UCM notation. Additionally, 

the dots are a kind of abstraction of a path.  
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When we discussed the Perceptual Discriminability principle, we saw that the 

visual variable Size is only used to distinguish between symbols. We could use it to give 

a meaning to a symbol such as the UCM stub. For instance, the size of the stub symbol 

could be related to the path contained in the stub.  

6.4.2 AoGRL 

Mussbacher reused two symbols of AoUCM for the aspect marker and pointcut marker. 

We propose to use the “eye” symbol for the aspect marker ( ) and the diamond symbol (

 or ) for the pointcut marker. The rationale supporting these symbols has already 

been explained in Section 6.3.2. 

AoGRL defined a pointcut deletion marker ( ), which can be used to remove 

matched elements of the composition rule. This symbol is also semantically immediate 

because the notion of  “delete” is often represented with a cross symbol.  

When applying the Perceptual Discriminability principle, we suggested to colour 

aspects in blue. That gives a visual clue about the elements that could be deleted (i.e., 

elements that are not part of the advice, in black) from the ones that could not be deleted 

(i.e., elements part of the advice, in blue).  

AoGRL uses a tag <<anytype>> on the intentional elements (e.g., a goal) of a 

pointcut graph to match any intentional element of a base model. The problem is that the 

shape influences the perception. In Figure 59, even if the goal (a) is tagged with <<any-

type>>, it is difficult to imagine that this element could represent any intentional element.  

We propose to introduce a new symbol (Figure 59, (b)) designed to look different from 

all GRL symbols. This symbol could match any type of intentional element. In fact its 

shape convey the idea of anything because it has not a conventional geometrical-base 

structure (e.g., circle, rectangle). 

 

 

P" P"
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Figure 59 AoGRL Anytype symbol 

6.5. Complexity Management 

Principle formulation: “Include explicit mechanisms for dealing with complexity”. 

 

AoUCM did not extended UCM capabilities in terms of decomposition since AoUCM 

reuses the UCM vertical decomposition. 

 Unlike UCM, GRL is a flat model with neither vertical nor horizontal decomposi-

tion. Therefore, AoGRL introduced a means to decompose GRL diagrams according to 

vertical decomposition. Once the issue related to GRL aspect marker (see Section 6.2.1) 

has been resolved, AoGRL capabilities are enough powerful to encapsulate any GRL 

element.  

UCM already supports horizontal decomposition (see the metaclass UCMMap in 

[19]) but it gives no symbol to show whether a UCM path is connected to another path. It 

could be interesting to visually represent that a start point is connected to an end point 

and an end point is connected to a start point. Figure 60 shows how we represent that E1 

is followed by another path starting by S2. Visually, it is obvious that E1 fits into S2.  

Every time an end point in connected to a start point, we suggest to use the end 

point and start point symbols used for E1 and S2 instead of the conventional one. 
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Figure 60 Visual cues to connect maps of UCMMAP   

Unlike UCM, GRL does not support any horizontal decomposition. Further research is 

needed to support such decomposition. 

6.6. Cognitive Integration 

Principle formulation: “Include explicit mechanisms to support integration of information 

from different diagrams”.  

 

The previous section reduced the diagrammatic complexity by decomposing diagrams. 

This section aims to provide means to mentally integrate the information spread among 

these (sub-)diagrams.  

Moody suggested to include mechanisms at the notational level to help the reader 

assemble information (conceptual integration) and to give cues to simplify navigation 

across diagrams (perceptual integration).  

6.6.1 AoUCM  

In order to mentally apply an aspect to a base model, we need to understand an aspect 

map, composed of advices and pointcut map. Then we need to understand how the advice 

is mapped to the base model. Mussbacher defined the notion of AoViews to simplify that 

composition. Instead of composing all advices to the base model in one step, an AoView 

highlights one advice of the aspect map that is applied to a precise location of a base 

model marked by an aspect marker. However, AoUCM lacks on specifying symbols (ex-

cept the start / end of pointcut expression, represented in grey) to differentiate the three 

types of maps: base model, aspect map and pointcut map. Therefore, we propose to iden-

tify these types of diagrams with an icon. Figure 61 depicts icons, whose shapes are in-
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spired by the wind rose. For aspect map, we propose the icon (A), coloured in blue (same 

colour as UCM AoViews and GRL aspectual elements). We suggest either the icon (B.1) 

or the (B.2) to represent the pointcut map. For both, we fill the shape with a pattern Tex-

ture to refer to the role of a pointcut map. Furthermore, the second icon (B.2) is named 

“Pattern” to convey more effectively (Dual Coding) the role of the pointcut map. We did 

not apply that pattern to the pointcut stub of an aspect map to avoid any confusion. 

        

Figure 61 Icons to identify aspect map (A) and pointcut map (B.1 / B.2)  

It appears also important to show the three types of maps at the same time to help the 

reader compose the aspect to the base model (see Figure 62).  

 

 

Figure 62 The three types of maps: Base Model, Aspect Map, and Pointcut Map 
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6.6.2 AoGRL 

AoGRL introduced a vertical decomposition for which we improved the visual notation 

in Perceptual Discriminability (see Section 6.3.2) and Semantic Transparency (see Sec-

tion 6.4.2).  

We suggest using the contextualisation technique to easily navigate through large 

diagrams and reduce the complexity shown at a time. Figure 63 illustrates how the con-

textualisation technique could be applied for a specific actor (e.g., Actor A) and what a 

hover event on a GRL link (e.g., a correlation link) could show. In Figure 63 (left), we 

handle the diagrammatic complexity by intentionally hiding the elements of all actors 

except the focused Actor A. We also show the GRL links, which go outside Actor A, but 

we consider that a link goes from a GRL intentional element of Actor A to another Actor. 

Furthermore, in Figure 63 (right), we illustrate a hover mouse event on a correla-

tion link (in green). This triggers a CASE tool feature, which unfold all the elements of 

Actor C. Moreover, if we hover an element of Actor C, we will display all the links that 

go outside of Actor C boundary. 

 

Figure 63 Contextualisation technique applied on GRL actor A.  
A hover on correlation link (highlighted in green) shows all the Actor C ele-

ments 
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6.7. Visual Expressiveness  

Principle formulation: “Use the full range and capacities of visual variables”. 

 

In this section we measure how the graphic design space — composed of visual variables 

and their respective range of values — is used in AoURN.  

It is difficult to distinguish values of visual variables used in AoUCM since some 

of them were chosen for comprehension purposes. For instance, the aspect marker is 

sometimes coloured in red and sometimes in black. In our analysis, we consider all these 

variations to be part of AoUCM. However, we discuss the different cases to suggest what 

should be part of the primary and secondary notations.  

In Table 9, we measured the elements introduced to support AOM in UCM.  

Table 9 Design space covered by AoUCM 

! Power! Capacity! AoUCM!values! Saturation!*!
Location!
(x,y)! !Interval! !10!–!15! !/! !0%!

Shape! !Nominal! Unlimited!

!(conditional!
aspect!marker)!

!(aspect!marker!
tunnel!entrance)!

(aspect!marker!
tunnel!exit)!
!(anything!pointcut!
element)!

!(pointcut!
stub!+!aspect!marker)!

(start!of!pointcut!
expression!+!local!start!
point)!

!(end!of!pointcut!
expression;!local!end!

!/!!
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point)!
Colour! !Nominal! !7!–!10! Black&white,!grey,!red!! 30%!!
Texture! Nominal!! !2!–!5! !Dashed!line,!filled! !40%!

 

AoUCM uses almost the same design space as UCM. Therefore, it does neither better, 

nor worse than UCM except for Colour, which is now used in AoUCM. Texture could be 

used more extensively in AoUCM but instead of applying it to edges, the notation should 

use it to fill shapes (see Figure 61 (B.1) and (B.2)).   

AoGRL introduced new symbols to support AOM. However, their appearance are 

close to UCM or AoUCM concepts. It is not a drawback: even if it decreases the Percep-

tual Discriminability, it improves the understanding of the concepts. Indeed, symbols that 

are closely related to GRL (i.e., appearance and meaning) benefit to expert as they are 

already used to the language. In addition to these concepts, symbols that are close to 

AoUCM (e.g., AoGRL aspect marker and AoUCM aspect marker) increase understand-

ing, as they have to be learnt only once.  

Colour in AoGRL is even less used than in AoUCM, which gives a range of po-

tential values to use in further development of AoGRL. However, we should pay atten-

tion to the saturation value of 20% of Colour, which only takes into account the AoGRL 

elements. Indeed, if we gather GRL, AoGRL, and the version of GRL used in jUCMNav, 

that percentage would increase up to 40% (Black&White + shades of green + red + yel-

low). 

Table 10 Design space of AoGRL 

! Power! Capacity! AoUCM!values! Saturation!*!
Location!
(x,y)! !Interval! !10!–!15! !/! 0%!

Shape! !Nominal! Unlimited!
!(aspect!marker)!

(pointcut!marker)!
(Pointcut!Deletion!Marker)!

!/!!

Colour! !Nominal! !7!–!10! Black&white,!red!! 20%!!

Texture!
!

Nominal!!
!2!–!5!

!Dashed!line!(e.g.,!pointcut!
marker),!filled!(e.g.,!aspect!

marker)!
40%!
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6.8. Principle of Dual Coding 

Principle formulation: “Use text to complement graphics”. 

 

AoUCM and AoGRL rely on the metaclass Comment [19] to store information. Genon 

et al. held that the Comment metaclass should not be considered as an example of “An-

notation”. As we agree with them, we will not develop any further. 

 AoUCM uses hybrid symbols to encode the pointcut stub. Both the diamond shape and 

the text “P” are needed to represent a pointcut stub. Indeed, without the text “P” (see Fig-

ure 64, (a)), we would confuse the pointcut stub with an UCM pointcut (see Figure 64, 

(b)). 

 

Figure 64 AoUCM Pointcut stub (a) / UCM stub (b) 

We do not consider that the AoGRL pointcut stub ( ) is case of hybrid symbol since it 

has dashed edges and it is not filled unlike the AoGRL aspect marker ( ). Therefore, 

even without its text “P”, we could recognize a pointcut stub. 

That being said, we consider that there is no case of hybrid symbol in the AoGRL 

notation.  

Text is used in AoUCM and AoGRL to encode more sophisticated concepts such 

as a textual matching mechanism. It allows matching on names of UCM and GRL ele-

ments. However, this mechanism takes place at the diagram level. 

 

P

"""(a)" ""(b)"
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6.9. Graphic Economy 

Principle formulation: “The number of different graphical symbols should be cognitively 

manageable”. 

 AoUCM 
In [13], Genon et al. evaluated the graphic complexity to 28, to which we should add 11 

elements brought by AoUCM. A total of 39 symbols can reveal not manageable. Howev-

er, we should take into account that some of the AoUCM symbols are similar to UCM 

symbols. Moreover, UCM and even more AoUCM target an audience of experts who can 

deal with a larger visual vocabulary, i.e., the number of symbols in the notation.  

Instead of reducing the visual vocabulary, we suggest to increase it in order to 

solve the symbol deficit that we assessed with Semiotic Clarity. We proposed two new 

symbols: one for the aspect map ( ) and another for the pointcut map ( ). 

If the visual vocabulary of AoUCM is an issue, we could replace the regular 

marker and the conditional aspect marker by the tunnelling aspect markers (entrance + 

exit). Indeed, the tunnelling aspect marker is more general than the two other kinds of 

aspect markers. The others concepts of AoUCM are essential to support AOM in UCM. 

We suggest to keep them in the visual notation.  

 AoGRL 
In [23], Moody and Heymans evaluated the graphical complexity of i* to 16. However, 

we cannot take that complexity for GRL because the GRL notation is more general than 

i*. We evaluate the complexity of GRL to 29 graphical symbols.  

To this number, we add a graphical complexity of 3 introduced by AoGRL. The graphical 

complexity of AoGRL is low because several concepts are not graphically represented 

(e.g., anytype element). Unlike UCM that needs to be read according to a direction (i.e., 

from a start point to and end point), GRL does not include such a direction of reading. 

Therefore, there is no need to create symbols according to a direction such as the en-

trance/exit aspect marker of AoUCM. The three AoGRL symbols are mandatory to sup-

port AOM. In consequence, we could not remove any of them.  

Aspect' Pointcut(
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Chapter 7. Future Work 

This chapter includes the suggestion of a new line of research that uses CASE tool fea-

tures to improve the cognitive effectiveness of notations. Moreover, we propose a piece 

of software to automatize evaluation of visual notations. 

7.1. Supporting the PoN with CASE tools 

Some principles of the theory (e.g., principle of Cognitive Integration) refer to 

features of modelling languages that have to be handled by CASE tools. However, it 

seems to us that the PoN does not explicitly consider such tools. Yet, for instance, in the 

Cognitive Fit principle, criticism is made about modelling languages that are designed for 

“pre-computer era” which “make little use of the powerful capabilities of modern 

graphics software”. These elements lead us to consider features enabled by CASE tools. 

7.1.1 Need for CASE Tools in Modelling Languages 

CASE tools provide specific features that could support some principles of the PoN. The 

PoN theory itself refers to the need for designing modelling languages by taking into ac-

count the capabilities of modern graphics software ([25], pp. 772).  

7.1.2 Extending Bertin’s Visual Variables 

Several principles of the PoN rely on the Bertin’s visual variables (see Figure 65), which 

where published before the development of CASE tools software. The visual variables 

consider only static characteristics and not dynamics one that can be introduced by mod-

ern graphics software such as CASE tools. 
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Figure 65 Bertin’s visual variables (from Genon et al. in [10]) 

 

These reasons drive us to propose a new visual variable (inspired by Rebah et al. in [32] 

and Carpendale in [7]) called “Animation”. This visual variable is not restricted to the 

idea of movement from a point A to a point B. It could be generalized as any significant 

change in one or more of the current visual variables. Nevertheless, all kinds of anima-

tions can be encompassed by this definition. Indeed, CASE tools offer capabilities that 

cannot be described in terms of these visual variables such as a deformation or a focus 

(e.g., highlighting the edge of a shape with a flashy colour for a short period of time) on a 

graphical symbol. These features could modify how to shape looks but it would do that 

for a short period of time  

Animations can be seen according to two perspectives: either as a technical vari-

able (i.e., applied to a single graphical symbol to highlight a phenomenon) or as a model-

ling variable, which is applied to a group of graphical symbols. Furthermore, the model-

ling variable perspective can be used to show temporal changes across a diagram to im-

prove the comprehension of a diagram. Indeed, we could use modelling variable as a 

means for explaining diagrams in a step-by-step way instead of showing only the last 

versions.  

 Animation as a technical variable 
The visual variable animation is composed of several properties. The properties of Ani-

mation are: animation type, trigger of the animation, duration of the animation, and fre-

quency of the animation. A graphical symbol could have one to many animations. Each 

Animation is characterized by its properties. An Animation type could be either a signifi-
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cant change in one/multiple of its visual variable(s) or animation features offered by a 

CASE tool. Each Animation has a trigger, which defines the start of the animation while 

the length of the animation is defined by the duration property. Moreover, a frequency 

could be defined, which will execute the animation repeatedly by defining the number of 

repetitions and interval between them. The UML state diagram depicted in Figure 66 il-

lustrates a graphical symbol regarding its static and animation states. It shows that a 

graphical symbol never lasts forever in the animation state. 

 

Figure 66 State Diagram of a Graphical Symbol  
according to its static and animation states 

Bertin’s visual variables have to be chosen in accordance with the Bertin’s list of visual 

characteristics (e.g., associative, quantitative). Indeed, some visual variables are more 

appropriate to encode associative than qualitative information (e.g., Colour).   

According to Carpendale [7], animations could be used to encode: selective, associative, 

quantitative, or ordered characteristics. Moreover, its capacity range (i.e., number of per-

ceptible steps for a characteristic) is theoretically infinite.  
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 Animation as a modelling variable 
For centuries, cartographers convey information through graphical representation. Nowa-

days, the computer era enables cartography to not only see a phenomenon but also make 

visual comparisons, relationships/causes of anomalies, and ability to show trends for 

long-term analysis of a phenomenon.  

 

This kind of use is not related to highlighting a graphical symbol (i.e., animation as a 

technical variable). It can be used to facilitate understanding of a phenomenon by using 

animation on a group of symbols. At the diagram level, we could define a scenario of 

animations that involves one to several graphical symbols. It includes animations applied 

to individual graphical symbols and those applied to a group of graphical symbols.  

The difference between the animation as a technical variable and modelling vari-

able rely on the scope and the purpose of the animation. The technical variable is related 

to a single graphical symbol and has the purpose to point out that symbol. In contrary, 

animations as modelling variable have a larger scope and purpose, they are applied to 

several graphical symbols (i.e., a group of graphical symbols), and they bring useful fea-

tures such handling complexity of a diagram.  

 Static and Dynamic Visual Variables 
Bertin’s visual variables are static variables. With the visual variable animation, we add 

dynamic capabilities to graphical symbols. However, both worlds coexist because static 

graphical symbols could be represented by omitting the visual variable Animation. Fur-

thermore, for animations like deformation, the graphical symbol is changed only for a 

fixed period of time and at the end of the animation, it is reset to its initial state.   

7.1.3 Animation and the PoN’s Principles 

Animations, as technical or modelling variable, could further enhance every principles of 

the PoN. In the following sections, we will restrict the implication of the visual variable 

animation to three principles: Perceptual Discriminability, Complexity Management, and 

Cognitive Integration. These principles are essential for visual notations that are used by 

experts (e.g., AoURN) since the diagrammatic complexity (i.e., number of symbols on a 

diagram) and the number of diagrams tend to increase over the modelling process. The 
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Complexity Management goes hand-in-hand with the Cognitive Integration (i.e., on de-

compose and the other one integrate). Beyond these two key points, we know that Per-

ceptual Discriminability is also important for experts because of the increase of dia-

grammatic complexity. Indeed, the more symbols that appear on a diagram (i.e., symbol 

instances, or tokens), the more we should consider a larger visual distance between these 

symbols (i.e., symbol types).  

7.1.4 Principle of Perceptual Discriminability 

The visual distance between two graphical symbols could be highly increased by apply-

ing Animation, which according to empirical studies is the most cognitively efficient way 

of focusing human attention to a phenomenon. Moody stated that shapes play a special 

role in discriminating between symbols (in [25], “primacy of shape”). We state that ani-

mations play an even more important role. 

There are multiple ways to discriminate graphical symbols with animation as a 

technical variable. Symbols could be distinguished by applying different type of anima-

tions. We could differentiate two graphical symbols by animating one and not the other 

(animation vs none-animation, see Figure 67, (a)). In addition to this variance of basic 

animation, we could differentiate two graphical symbols that are animated by changing 

their animation types (see Figure 67, (b)), by modifying their frequency property both 

the number of repetitions and the interval between two animations (Figure 67, (c)) or by 

manipulating their duration time of animation (see Figure 67, (d)). Figure 67 illustrates 

the four properties of Animation. The movement is represented by the tail of degradation 

colour.  
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Figure 67 Differentiation between symbols by using one of the animation property 

We could increase the discriminability of symbols by changing multiple animation prop-

erties (e.g., animation vs none-animation + changing frequencies). In the point of view of 

the discriminability principle, the more properties are different, the better. 

Animations have to be supported by CASE tools, which could offer limitless fea-

tures to support the Perceptual Discriminability. The difficulty is then more about finding 

a suitable animation for a specific situation.  

7.1.5 Principle of Complexity Management 

The diagrammatic complexity, as explained by Moody, is measured by the number of 

elements on a diagram. Moody gave notation-level features to reduce it. However, some 

CASE tools offer features to handle this kind of complexity, which is exactly the concern 

of this section. 

Complexity is related to a group of graphical symbols and not to individual graph-

ical symbols. For this reason, the animations as a modelling variable are more suited in 

this section. 

 

Case tools features 

Feature 1: The online maps give the ability to zoom in and zoom out. That process in-

crease/decrease the data displayed on a map. The same idea can be applied to flat model 

(i.e., a modelling language that does not support vertical hierarchy) such as GRL. These 



 

 109 

models do not have any modularization feature (i.e., vertical decomposition) in their no-

tational level. Moreover, it is not appropriate to add such features in the notation-level for 

several reasons like standardization issues6 or simply habits taken by the modellers. 

Therefore, we can add a feature that will automatically (i.e., in accordance with algo-

rithms) add/remove artefacts to the diagram in according with a zoom in/zoom out but-

ton.  

 

Feature 2: Books describe stories in a linear way, which improve the overall complexity 

because the reader has had the time to understand the different elements of the story. Fur-

thermore, complexity has been added step by step. By contrast, diagrams show the final 

result, it is like showing the beginning to the end of a story all at once. Therefore, it 

seems to us that an ability to design and play scenarios for diagram comprehension is an 

interesting asset. In this way, a typical user will learn from simple to complex concepts at 

its own pace. Unlike books, CASE tools may handle both forward and rewind feature. 

The rewind feature is important to comprehend misunderstood steps of the scenario. Fig-

ure 68 represents a step-by-step diagram visualization feature. The user can visualize 

the different steps either in chronological (S1 » S2 » S3) or in non-chronological order (S3 

» S2 » S1).  

 

 

Figure 68 Step-by-Step Diagram Visualization.  

                                                
6 It seems very unlikely such modularization features can be added after the modelling language has been 
standardized. Indeed, such features alter how the modelling language is perceived. 
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7.1.6 Principle of Cognitive Integration 

Among all the PoN principles, the Cognitive Integration is the one that will benefit more 

of CASE tools support.  

In the conceptual integration, Moody stated that the contextualisation technique 

could be used in diagrammatic context. We think that such contextualisation should be 

used in CASE tools level because otherwise it will increase in the number of diagrams. 

Indeed, if each specific context has to be represented, it will lead to a significant increase 

in the number of diagrams. Figure 69 is an example given by Moody to represent contex-

tualization. It is clear that such a feature is more scalable as a CASE tools feature than as 

a notation-level feature. A feature in a CASE tool will automatically show the context 

depending on the user’s focus. If the focus process has to be done to all the systems of the 

Figure 69 (left), we will need eight focused diagrams (like the one on the right of Figure 

69). Here, only one interactive diagram is necessary at the software level.  

                

Figure 69 Initial Diagram with eight system (left) 
Contextualization applied to one system (in yellow, right)  

(from Moody in [25]) 

In addition to contextualization, the perceptual integration could also benefit from CASE 

tools features. All CASE tools have the ability to identify diagrams. CASE tools like 

jUCMNav have the ability to navigate through the hierarchical decomposition (e.g., 

jUCMNav supports navigation through UCM stubs). Finally, level numbering is an easy 

feature to develop in CASE tools. 

Key feature: From my point of view, the most important feature for the Cognitive 

Integration is the navigational map. Most CASE tools offer a mini-map view of the cur-

rent selected diagram. The idea of Moody is more ambitious; the navigational map will 

not only represent the current diagram but all of the diagram of the model. The links be-
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tween diagrams should also be represented. We think that such features require the use of 

CASE tools. Nevertheless, the notational level could give a standard to represent a sum-

mary version of a diagram. Several kinds of links should be defined such as hierarchy 

link, which will allow navigation from a parent to a child, or the opposite. Besides the 

hierarchy, it would be useful to represent subsystems links, which will allow navigation 

between chunks of the system. 

 Moreover, users could define their own links depending on business related dia-

grams. A user-defined link could also be useful when defining a scenario for learning 

purposes (see feature 2 of Complexity Management). One of the steps in the scenario can 

be a link that will automatically open another diagram at a defined step. Figure 70 shows 

an example on how a goTo link may be used to pass from the GRL diagram to the step 

128 of the UCM diagram (right). The reverse way can also be modelled, i.e., from the 

UCM diagram to the GRL diagram. The goTo link is activated either by the user (to go to 

the next or previous step of the step-by-step visualization feature of Complexity Man-

agement) or by the CASE tool itself. 

  

 

Figure 70 Navigation from a diagram to another using the user-defined goTo link. 
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7.2. Towards an Automatization of the Evaluation of Visual 

Notations 

The PoN Assessment Software is composed of two major components: the Java software 

and the specifications of spreadsheet files.  

The Figure 71 represents the main components of the software. Firstly, we explain 

the scope and the interactions among the sub-components of the Java program (i.e., ap-

plication) and then we will define the different spreadsheet files.  

   

 

Figure 71 UML Component Diagram of the PoN Assessment Software 
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7.2.1 Java Program 

The program is composed of 3 components: LanguageElements, Phys-

icsOfNotations and Statistics. The LanguageElements component has 

the responsibility to read and gather information from the spreadsheet files. The infor-

mation included these spreadsheets such as the symbol pictures or graphical symbol val-

ues is casted into data classes (e.g., Graphem,SetConcepts) that are used across the 

program. Moreover, the program enables model checking of the data contained in the 

spreadsheet files. Basically, it alerts the user about wrong values present in the spread-

sheet files such as values that are not included in a certain range. Technically, we use 

Apache POI (i.e., API developed by the Apache Software Foundation) to manipulate the 

Microsoft Excel files with our Java program. The PhysicsOfNotations component 

contains the formulae to compute the Semiotic Clarity and Perceptual Discriminability. In 

order to process the visual variable shape, we chose use the pattern-based matching tech-

nique developed in Section 5.3.1. The Statistics component is responsible for generating 

a PDF report that contains the list of semantic constructs, the graphical symbols, their 

binding and the metrics. The report is generated by using the iText API, an open source 

library that allows the creation and the manipulation of PDF documents. The Graphics 

sub-component is responsible for generating graphics of the statistics by using the 

jFreeChart API, a Java library to create graphic charts. 
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7.2.2 Specifications of Spreadsheet Files  

There are three spreadsheet files: Semantic Concepts file, Graphical Symbols file and the 

Graphical Patterns file. These files are the main data that are required by the Java applica-

tion. 

 Semantic Concepts File  
Let us take a line i of the spreadsheet. 

 A B C D E 

i Ai Bi Ci Di Ei 

 

The different values must respect these specifications: 

- Ai contains the identifier of the semantic concept. (mandatory) 

- Bi contains a list of identifiers separated by a comma. These identifiers are 

the graphical symbols associated to Ai. (optional7) 

- Ci contains a definition or the name of the semantic concept (optional) 

- Di contains the page reference or the figure where the semantic concept 

has been taken such as from a certain page of a specification document. 

(optional) 

- Ei contains a group tag of assessment allowing more specific assessments 

depending on the group tag. (optional) 

The Ei tag allows us to define groups separated by commas, to which a semantic concept 

belongs. The assessment could then target a certain group of semantic concepts. This 

technique allows us to see for instance the evolution of a modelling language against the 

PoN by defining different tags for the newer semantic concepts.  

 

 

 

 

 

                                                
7 If there is no value, the cell must contain the slash character (/) 
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 Graphical Symbols File  
The values of the line i must respect these specifications:  

- Ai contains the identifier of the graphical symbol. (mandatory) 

- Bi contains a list of identifiers separated by a comma. Each of these identi-

fiers are semantic constructs which correspond to the graphical symbol Ai. 

(optional) 

- Ci contains an image of the graphical symbol. (optional) 

- Di contains a reference to a pattern. (optional) 

- Ei, Fi, Gi are the shape categories which have been defined by Störrle and 

Fish. (Line, Icon, Shape) (optional) 

- Hi is the texture applied to the border of a graphical symbol (e.g., dashed). 

(optional) 

- Ii defines whether the graphical symbol is filled with a colour. (optional) 

- Ji contains the text that is written near the figure. It allows us to capture 

the textual differentiation defined by Störrle and Fish. (optional) 

- Ki contains the size of the graphical symbol (XS, S, M, L). (mandatory) 

- Li contains a group tag of assessment allowing more specific assessments 

depending on the group tag. (optional) 

 Patterns File 
The values of the line i must respect these specifications:  

- Ai the identifier of the pattern. (mandatory) 

- Bi the image of the pattern. (optional) 
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Chapter 8. Conclusion 

The Physics of Notations (PoN) is a theory meant to design and assess visual notations. 

While the theoretical foundations of the theory have been quite largely discussed in the 

literature, only few research exists on its operationalization. In this thesis, we undertake 

that task. More precisely, we study the falsifiability of the PoN to determine the level of 

operationalization that the theory should be able to provide. The analysis reveals that 

most of the principles of the theory belong to the group of Type IV theory: theories for 

explaining and predicting. To be operationalized, a theory needs to reach Type V. Based 

on these observations, we decided to focus our work on Semiotic Clarity and Perceptual 

Discriminability, two of the nine principles that compose the PoN.  

We based our work on previous research where the PoN was once applied in an 

ad-hoc (and informal) manner and another one where the authors turned the informal 

metrics into mathematical formulae. We noticed that the mathematical formulae allow 

automatic computation but did not provide results significantly better than the informal 

analysis. Regarding Semiotic Clarity, we conclude that the metrics obtained with mathe-

matical formulae are either mathematically equivalent or not significantly different. The 

analysis of Perceptual Discriminability does not benefit from mathematical formulae due 

to the lack of empirical evaluation. For these two principles, we introduced new metrics 

that provide more accurate results when applied to a larger set of notations.  

To evaluate our proposal, we analyze the cognitive effectiveness of the Aspect-

oriented User Requirements Notation (AoURN) according to the PoN by using the three 

approaches: the informal manner, the original mathematical formulae and the improved 

ones. AoURN extends ITU-T’s User Requirements Notation (URN) to support encapsu-

lation of cross-cutting concerns in requirements models. Most of the issues found in 

AoURN are related to the complexity brought by Aspect-oriented Modelling. Therefore, 

special attention has been drawn to the principles of Complexity Management and Cogni-

tive Effectiveness. We propose improvements at the notational level by providing a set of 
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cognitively more efficient symbol for AoURN. We showed that our improved metrics 

provide more accurate results than the current operationalization of the theory. We also 

discuss how CASE tools could integrate principles of the PoN. 

We obtained a more surprising observation: the improved formulae provide re-

sults that are almost identical to those obtained in an informal way. This observation 

leads us to the conclusion that regardless of how the PoN is applied, the greatest interest 

in its application relies in the interpretation of the results and the improvements that can 

be envisioned. One of the major challenges that still has to be addressed relates to a fine-

grained understanding of the interactions between the principles of the PoN. It would in 

order to prioritize depending on the context, task and audience. Research on this aspect 

should definitely be undertaken.   
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Appendix A: Shape Comparison 

In this appendix, we illustrate how two shapes can be compared to one another by using 

the shape context defined by Belongie et al. [4]. 

 

Let us assume that we want to compare the two shapes (a) and (b) of the  

Figure 1. The edge elements of these shapes must be converted to a set of N feature 

points. These points are obtained by an algorithm that transforms a shape into a set of 

points (see Figure 2). We should now consider a set of vectors originating from a feature 

point to the N-1 remaining other feature points. For instance, a set of vectors could be the 

vectors that took their origin from a feature point ( ). Obviously, this set of vectors is a 

rich descriptor of the shape according to the feature point ( ) because the description de-

pends on the configuration of the other points compared to the feature point. Therefore, 

we obtain a precise description for each feature point. However, the set of vectors could 

not be used directly since shapes and their sampled representation vary from one instance 

to another. 

Instead of considering the set of vectors, we will consider the distribution over 

relative positions (i.e., points which belong to defined areas). Belongie et al. used a log-

polar coordinate system, i.e., a 2-D coordinate system where each point is described by a 

distance and the angle formed from a certain point (e.g., the origin, a feature point). This 

coordinate system is more sensitive to the nearby points than the more distant ones rela-

tive to a feature point (e.g., the feature point ( )). They split a two-dimensional surface 

around a feature point in 12 equally spaced angle bins and five equally spaced log-radius 

bins. Figure 3 shows the diagram of log-polar histogram bins used to compute the shape 

contexts. The shape context is now represented by a 12!x!5 matrix !. Each element of ! 

represents the number of points (represented by a shade of grey, dark=large value of 

points), which lies on an area, formed by the angle and distance bin. The 0 shows graph-

ically how the points are linked to !. The matrix ! represents the shape context of the 

feature point ( ). 
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Figure 1     Original shapes 

                                               

Figure 2 Sampled edge points of shape (a) and shape (b) of Figure 1.  
Notice the feature points ( ), ( ) and ( ). 

        

Figure 3 Diagram of log-polar for the feature point ( ).  



 

 123 

 

Figure 4 Building the shape context histogram (e.g., the two-dimensional matrix)  
of the feature point ( ). The more points lies on an area < !, ! > the darker 
!(!, !) becomes. 

Let us assume that we also computed the shape context of the feature points ( ) and ( ). 

The shape contexts of the Figure 5 (a) and (c) look very similar to each other. Mathemat-

ically, the distance between two shape context histograms is measured with a Chi-

squared test. 

   

Figure 5 Shape context of the feature points ( ) = (a) , ( ) = (b) and ( ) = (c). 
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For every match like (a) and (c) (Figure 5), Belongie et al. estimated the transformation 

between them using iteratively the Thin Plate Sline (TPS) technique [6].  

Figure 6 represents the transformation between the two shapes. 

 

Figure 6 Transformation between shapes 
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Appendix B: Gathering of Semantic Constructs 
and Graphical Symbols of URN and AoURN 

In this appendix, we present the metaclasses (either the semantic constructs or the graph-

ical symbols) of AoURN according to the six categories defined in Table 3. The URN 

elements, AoGRL and AoUCM are coloured in back, blue and orange, respectively. 
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Figure 7 Elements of URN and AoURN that lies  
in the To consider set (see Table 3) 

To Consider  

1. Z151.F4'UCM_Condition'

2. Z151.F60'UCM_NodeConnection'
3. Z151.F60'UCM_Responsibility'

4. Z151.F60'UCM_RespRef'
5. Z151.F60'UCM_StartPoint'

6. Z151.F60'UCM_EndPoint'
7. Z151.F60'UCM_OrFork'

8. Z151.F60'UCM_OrJoin'
9. Z151.F60'UCM_AndFork'

10. Z151.F60'UCM_AndJoin'

11. Z151.F60'UCM_EmptyPoint'

12. Z151.F60'UCM_WaitingPlace'

13. Z151.F60'UCM_Timer'
14. Z151.F60'UCM_FailurePoint'

15. Z151.F60'UCM_Connect'
16. Z151.F60'UCM_Stub'

17. Z151.F77'UCM_PluginBinding'

18. Z151.F77'UCM_InBinding'

19. Z151.F77'UCM_OutBinding'

20. Z151.F85'UCM_ComponentRef'

21. Z151.F85'UCM_Component'

22. Z151.F85'UCM_ComponentType'
23. Z151.F85'

UCM_ComponentBinding'

24. Z151.F94'UCM_OWPoisson'

25. Z151.F94'UCM_OWPeriodic'

26. Z151.F94'OWUniform'

27. Z151.F94'UCM_OWPhaseType'

28. Z151.F94'UCM_ClosedWorkload'

29. Z151.F94'UCM_PassiveRessource'
30. Z151.F94'

UCM_ProcessingRessource'
31. Z151.F94'

UCM_ExternalOperation'

32. Z151.F94'UCM_Demand'
'

'
 

33. Z151.F10'GRL_Actor'X'F31'ActorRef'
34. Z151.F10'GRL_IntentionalElement'–''F35'

IntentionalElementRef'

35. Z151.F10'GRL_Contribution'
36. Z151.F10'GRL_Decomposition''

37. Z151.F10'GRL_Dependency'
38. Z151.F24'GRL_EvaluationStrategy'
39. Z151.F24'GRL_Evaluation'
40. Z151.F26'GRL_Indicator'
41. Z151.F26'GRL_IndicatorEvaluation'
42. Z151.F26'GRL_LinearConversion'
43. Z151.F26'GRL_QualToQMapping'
44. Z151.F29'GRL_ContributionContext'
45. Z151.F29'GRL_ContributionChange'
46. Z151.F30'GRL_CollapsedActorRef'
47. AoGRL_Pointcut'Graph'
48. AoGRL_Pointcut'Marker'

49. AoGRL_Pointcut'Deletion'Marker'

50. AoGRL_Composition'Rule'

51. AoGRL_Aspect'Marker'

52. AoGRL_AoView'
53. AoGRL_Anytype'Pointcut'
54. AoUCM_Conditional'Marker'

55. AoUCM_Tunnel'Aspect'Marker'

56. AoUCM_Concern'Interaction'Graph'

57. AoUCM_Conflict'

58. AoUCM_Aspect'Map'

59. AoUCM_Pointcut'Stub'

60. AoUCM_Replacement'Pointcut'Stub'

61. AoUCM_Pointcut'Map'

62. AoUCM_Local'Start'Point'

63. AoUCM_Local'End'Point'

64. AoUCM_AoView'

65. AoUCM_Pointcut'Variable'
66. AoUCM_Anything'Pointcut'
'

'
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Figure 8 Elements of URN and AoURN that lies  
into either the Abstract or the Structural set 

Figure 9 Elements of URN and AoURN that lies into either the Collection or the 
Graphical set 

 

Abstract Structural 

1. Z151.F3'UCMmodelElement'

2. Z151.F60'PathNode'

3. Z151.F94'Workload'

4. Z151.F94'OpenWorkload'

5. Z151.F94'GeneralRessource'

6. Z151.F94'ActiveRessource'

7. Z151.F3'GRLmodelElement'

8. Z151.F9'ElementLink'

9. Z151.F29'ContributionContext'

10. Z151.F30'GRLNode'
11. Z151.F26'IndicatorConversion'

 

1. Z151.F3'URNspec'

2. Z151.F3'UCMspec'

3. Z151.F3'URNlink'

4. Z151.F3'URNmodelElement'

5. Z151.F3'Concern'

6. Z151.F3'Metadata'

7. Z151.F60'UCMmap'

8. Z151.F3'GRLSpec'

9. Z151.F9'GRLLinkableElement'

10. Z151.F9'GRLContainableElement'

11. Z151.F9'GRLmodelElement'

12. Z151.F24'StrategiesGroup'
13. Z151.F26'QualToQMappings'
14. Z151.F29'

ContributionContextGroup'
 

 

Collection Graphical 

1. Z151.F60(FailureKind(
2. Z151.F60(WaitKind(
3. Z151.F85(ComponentKind(
4. Z151.F94(TimeUnit(
5. Z151.F94(DeviceKind(
6. Z151.F9(ImportanceType(
7. Z151.F10(

IntentionalElementType(
8. Z151.F10(ContributionType(
9. Z151.F10(DecompositionType(
10. Z151.F24(QualitativeLabel(
11. AoUCM_F73(UCM(AspectKind(
12. AoUCM_F73((Ao)(UCM(

PointcutKind(
 

1. Z151.F5(ConcreteURNspec(
2. Z151.F6(Description(
3. Z151.F7(ConcreteCondition(
4. Z151.F95(DirectionArrow(
5. Z151.I.10(Label(
6. Z151.I.10(Position(
7. Z151.I.10(Size(
8. Z151.I.10(Comment(
9. Z151.I.10(ConcreteStyle(
10. Z151.F30(ConcreteGRLspec(
11. Z151.F30(GRLGraph(
12. Z151.F52(Label(
13. Z151.F30(LinkRefBendPoint(
14. Z151.F53(Position(
15. Z151.F54(Size(
16. Z151.F55(ConcreteStyle(
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Figure 10 Elements of URN that are not considered. 

 

Out of Scope 
1. Z151.F3'GRLspec'
2. Z151.F3'GRLmodelElement'
3. Z151.F92'ScenarioDef'
4. Z151.F92'ScenarioGroup'
5. Z151.F92'Initialization'
6. Z151.F92'Variable'
7. Z151.F92'EnumerationType'
8. Z151.F92'DatatypeKind'

 

 


