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Abstract

This thesis draws a panorama of main technologies related to databases, from relational
to non-relational, including NoSQL technologies but also NewSQL. They are compared
and a critical eye is brought on advantages and disadvantages of each of them. Moreover,
this thesis describes two approaches that complete each other to apprehend database mi-
gration: the transformational and co-transformational approaches. After providing that
global view about databases and database migration, this thesis covers two distinct as-
pects.

In a first time, it aims at bringing a method to perform a complete migration from a
relational database towards a non-relational database with a particular focus on Datomic
as target technology. To do so, the method addresses three crucial elements.

The first element addressed is the structure. By combining two different processes that
are the database reverse engineering and the database forward engineering, the migration
method has for a goal to match the relational model and Datomic’s data model in order
to ensure that there is no loss in the information capacity. The second element addressed
is the data. The method describes the complete data conversion process that consists of
inserting the existing data within the target database while transforming it according
to the structure changes and preventing information loss. The last element addressed is
the application program(s). The method aims at providing a systematic approach that
allows the existing application program(s) to communicate with the target database while
balancing aspects such as the possibilities offered by the new technology, the security and
the necessary effort to convert the program.

In a second time, this thesis focuses on a sample of NoSQL technologies which support
Datomic. An evaluation of the performance of these databases has been made in order
to choose the most appropriate database for the OSCAR system, in a future work. The
benchmark “Yahoo! Cloud Serving Benchmark” has been used to evaluation the sample
of NoSQL technologies.

Keywords: Cassandra, Couchbase, Database migration, Datomic, DynamoDB, ETL,
MongoDB, NoSQL, YCSB, Riak
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Glossary

Aggregate in NoSQL
An aggregate is a set of related objects that you can treat as an unit [Lamllari, 2013].

Agile Software Development
Agile Software Development gathers a lot of development methods which fit with
change promoting adaptive planning, evolutionary development, early delivery and
continuous improvement.

American National Standards Institute (ANSI)
The American National Standards Institute is a private non-profit organization
which has as goal to promote standards about products, processes, systems, and
personnel in the United States.

Availability in CAP
The availability of a system measures its ability to keep working even if there is any
problem. [Strauch et al., 2011].

Big data
Big data represents the phenomenon where the volume of data and its variety are
overgrowing and data is produced more and more in real-time [Laney, 2001].

Business Intelligence
Business Intelligence (BI) designates tools, methods and techniques used to analyze
data from multiple sources and process it to obtain meaningful information that
will be used for strategic decisions.

Cluster
A computer cluster can be considered as a set of connected computers that work
together and can be see as a single one system. Each one is to perform the same
kind of task.

Consistency in CAP
The consistency of a system measures its ability to be "in a consistent state after
the execution of an operation" [Strauch et al., 2011].

Data Integration
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Chapter 0 – Glossary

Data Integration (DI) represents the concrete methods, tools and techniques allow-
ing data mapping from multiple sources towards a data warehouse.

Data Warehousing
Data Warehousing (DW) is the process of gathering multiple source data models
and map them into a target data model. This process is performed at a high level
of abstraction and is concretely supported by Data Integration techniques.

ETL tool
An ETL (Extract-Transform-Load) tool is a computer software that performs the
tasks of extracting data, transforming it and loading it in a context of data ware-
housing or database migration.

First-order logic
"First-order logic is symbolized reasoning in which each sentence, or statement, is
broken down into a subject and a predicate. The predicate modifies or defines the
properties of the subject. In first-order logic, a predicate can only refer to a single
subject. First-order logic is also known as first-order predicate calculus or first-order
functional calculus." [WhatIs, 2015a]

International Standards Organization (ISO)
The International Standards Organisation is an international standard-setting body
which is composed of many other organizations in charge of standards.

Load balancing
Load balancing is to reduce the throughput on any computing resource by distribut-
ing workload across multiple ones.

Network Partition Tolerance in CAP
This is the ability to recover from the failure of a network device involving a network
to be split.

OLAP
On-line Analytical Processing (OLAP) involves relatively low volume of transactions
with regards to OLTP. But queries are often very complex and involve aggregations
and the response time is very important and this kind of system is also strongly
related to data mining.

OLTP
On-line Transaction Processing (OLTP) involves a large number of short on-line
transactions (INSERT, UPDATE, DELETE). Its main goal is to be fast query pro-
cessing maintaining data integrity in multi-access environments.

14



OSCAR System
The OSCAR System stores Electronic Medical Records (EMRs) designed to help
improve health care from individual to population health levels while reducing costs
[Oscar, 2015].

Relation
Relation R of degree n is a subset of the cartesian product S1 x S2 x ... x Sn where
Sx are sets. Its elements are tuples of the same type and unordered in mathematics.

Transaction
A list of operations involving changes to the database if they all are correctly exe-
cuted. If not, the transaction is aborted and nothing is updated into the database.

WebCrawler
WebCrawler is a metasearch engine which provides users to find images, audio,
video, news, etc... from Google and Yahoo for example.
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Chapter 1

Introduction

1.1 Motivations

Nowadays, data tend to become so big it is increasingly difficult to treat them with
common tools. Furthermore, they are always faster generated, shared and updated, along
with becoming less and less homogeneous. In other words, today’s data is voluminous,
varied and swift. That trend is called the Big Data phenomenon.

That phenomenon is a real concern for the industry, at the point that many organiza-
tions such as Amazon, Google and others decided to address it and to employ different
means to store and share data. Those other ways are called NoSQL. Indeed, traditional
relational databases were not able anymore to cope with their needs, greatly slowing the
operation of those companies. However, enterprises specialized in online services are not
the only ones impacted by the limits of relational databases. Many work domains see their
needs and expectations in terms of data treatment grow with years, such as banking and
health sectors. An increasing number of organizations of all sizes are concerned by the
phenomenon and have to find solutions in order to maintain the quality of the services
they propose.

A fundamental issue met by those actors is the gap between the two types of tech-
nologies, often keeping them stuck to their old system. Indeed, those new technologies
are the most often used to begin new projects rather than maintaining and making the
existing ones evolve. Thus, though companies decide to change the way they store data,
the migration from a relational database towards a non-relational database is very un-
common and mostly performed by those that can afford a non-standardized process. This
process requires a deep analysis to capture the match between both data models that are
by definition different. Between the existing restrictive model and the new one with no or
few constraints, a compromise has to be found.

Furthermore, there is currently no standardization regarding NoSQL databases. Even
though multiple new technologies of that kind emerge, each brings its own way to appre-
hend that explosion of data. There exist technology families that share common charac-
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Chapter 1 – Introduction

teristics, but no real consensus has been found and that classification makes it even more
difficult to address the database migration. Indeed, MongoDB, DynamoDB, BigTable,
Cassandra and others all possess their own data model and their own data manipulation
language. That disparity does not exist for relational databases that respect the same data
model and implement the same language (SQL). To build a consensus, it is necessary to
go beyond technologies and reflect at a higher level of abstraction.

Finally, even if the Big Data phenomenon is growing and necessitates another mean to
store data, NoSQL is not necessarily the absolute answer. Indeed, that kind of storage
insures no or few consistency. Domains like healthcare do need high accuracy in the
information they manipulate. Lives are at stake and it is not conceivable that a patient’s
data integrity can be put in jeopardy. Thus, a compromise between the old too restrictive
and the new model must be found in order to be efficient while maintaining accuracy.

1.2 Problem Statement

The need for high volume data treatment shows SQL’s weaknesses and highlights
NoSQL technologies. However, a major issue emerges: the deep disparity between the
relational and non-relational worlds. Fundamentally, those two types of technologies have
different structures and architectures, relying on different principles. Where relational
databases seek data consistency, NoSQL technologies relaxes it to aim at a greater avail-
ability.

Besides, standardization of the relational world has been made possible by the pioneers
of the domain and its great diffusion within enterprises. Thence, relational databases align
on a common data model and implement a common language, SQL. On the other hand,
the non-relational world tends to break away from the different principles relative to this
standard in order to address technological needs. Those being different depending on the
context, linked NoSQL technologies do not always share the same objectives, whether at
the technical level or at the data model level, thus impeding a standardization of the
non-relational world.

1.3 Scope of Work

A common issue is shared by situations such as those described above. That issue
involves both relational databases and non-relational databases. Our thesis will aim at
covering as much as possible those different technologies to characterize and compare
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them on the logical side as well as the technical side. Indeed, this thesis will attempt to
establish a genuine topography of existing NoSQL technologies.

Moreover, our fundamental goal is to build a bridge between those very different con-
ceptions and technologies. We will detail what is a database migration, the steps and
different methods that exist. Thus, we will define a method by exploring those that fit
the best to the context of migrating from a relational database to a NoSQL database.
This method is not specific to a particular technology but rather aims at being general in
order to put aside the lack of standardization of that kind of data storage.

Finally, since our case study is a healthcare system, the target of our migration method
must ensure accuracy in the data stored and manipulated. For that reason, a data model
called New SQL will be presented.

1.4 Research Questions

1. Is it possible to migrate an existing database from the relational world to the non-
relational world (NoSQL)?

(a) If it is, how can that be achieved? What are the global steps to perform that
migration?

i. How to convert the database schema without suffering any loss of infor-
mation?
A. What are the necessary processes to perform that conversion?
B. What is a schema’s information capacity? What are the different ways

to apprehend it while performing those transformations?
C. Are there particular mechanisms that facilitate those transformations?

If there are, how to use them concretely?
ii. How to achieve the synchronization between existing source data and the

target database?
A. What are the elements involved in that synchronization?
B. What are the steps to follow to run a target system up to date with

no loss of information?

(b) If it is not possible as it is, are there hypothesis or assumptions necessary to
make in order for it to become possible?
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2. How to define the performance of databases? How is the performance influenced?
Why is it interesting to measure the performance of databases? How to evaluate the
performance of databases? What are the techniques used for that?

(a) Which type of the chosen technique is used for the evaluation of selected
databases?

(b) What are the results of this evaluation?
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Technological background

2.1 Relational databases

2.1.1 Relational model

Relational databases are based on the relational model elaborated by Edgar F. Codd in
1969. This model relies on the theory of relations from the mathematics. But the relations
are quite perceived as tables with column(s) named. Each row represents an atomic tuple
of a relation, their ordering does not matter and they are all different in content. However
each of them can change over time unlike relations in mathematics [Codd, 1990].

2.1.2 Relational database management system

The management of relational databases is intended to share numerous data among
numerous users. It is possible thanks to the manipulation of tables by a language based
on the first-order predicate logic as the Structure Query Language (SQL). This is the
standard from 1986 by American National Standards Institute (ANSI) and from 1987
by the International Standards Organization (ISO). This language is now used by all
Relational Database Management Systems (RDBMS).

Also, Relational Database Management Systems must ensure data integrity with some
features [Codd, 1990] to share data with users. Here are some of them:

• Entity integrity: Entity integrity is guaranteed by the primary key mechanism.
This is a combination of column(s) where the value in each row identifies that row
uniquely. This must have an unique non-null value for each row.

• Referential integrity: Referential integrity is supported by the foreign key feature.
This is a combination of column(s) where the value in each row refers a primary key
with the same structure. This must refer to an existing row in the parent table.

• Uniqueness: This constraint can be declared on set of columns and makes it unique.
In other words, the value in each row identifies this row uniquely.
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• Not-null: This constraint for a column requires that this one has no "null" value.

• Check: This mechanism defines a range of values which is possible for one or more
columns.

But also, RDBMSs must support the transactions [Codd, 1990] while ensuring ACID
properties to process them reliably [Gray et al., 1981]:

• Atomicity: A transaction either concludes entirely or not at all.

• Consistency: All operations will preserve a consistent state of the database. It
means that every constraint is still correct after the completion of any transaction.

• Isolation: No matter the number of concurrent transactions, they are all executed
as if they were one after the other.

• Durability: Once a transaction is committed, it cannot be repealed.

Though, RDBMSs have emerged three decades ago and have been developed by a lot of
companies as Oracle, IBM and Microsoft for example.They have become the standard in
the market of data stores. But, today, industry’s needs have evolved and the Big Data has
emerged [Laney, 2001]. RDBMSs need to scale up to meet the new needs. But relations
and database normalization, which has deleting all redundancies into tables, impede this
scaling [Needham, 2013].

2.2 Non-relational databases

The main principle of non-relational databases aims to reject what Edgar F. Codd pro-
mulgated, the non duplication of rows [Codd, 1990]. Although many critics are mentioned
about this new kind of databases as being just a "Hype" for example [Strauch et al., 2011],
non-relational databases are to address this Big Data phenomenon.

This section will be subdivided into two parts according to the two big classes of non-
relational databases: NoSQL and NewSQL.

2.2.1 NoSQL

2.2.1.1 Overview

NoSQL is a pretty young technology (less than 10 years) and means "Not Only SQL"
because NoSQL databases are not based on the relational model and they are not intended
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to replace the relational databases [Lamllari, 2013].

The goal is not to erase traditional databases but to do what they can not anymore, such
as to support the Web 2.0 and all OLTP/OLAP-style applications involved. Indeed, Web
2.0 involves much more interactivity through an internal complexity of the technology
[Rouse, 2015b] and by definition is used by thousands or even millions users. There are
more and more reads and writes, more and more data [Cattell, 2010]. Facebook, Twitter
and Amazon among others are mainly concerned.

Therefore, it is necessary to be horizontally scalable. This means adding new clusters
with minimal resources [Jatana et al., 2012] to allow load balancing, performance and
efficiency. That is what NoSQL databases aim to provide. Though, this kind of databases
is more flexible than traditional ones [Veronika Abramova, 2014]. Moreover, the NoSQL
technologies are designed to effectively operate replication and fragmentation of data with
a simple data model. The ACID transaction model is inadequate to make way for a more
flexible model [Hainaut, 2015].

The first databases referred as being NoSQL are the BigTable distributed storage system
at Google aiming to store results from the WebCrawlers but also the Dynamo technology
at Amazon [DeCandia et al., 2007a]. Since, many technologies compose NoSQL class of
databases like MongoDB, riak, Infinispan and others.

2.2.1.2 Features

All NoSQL databases have three main characteristics that allow them to be the answer
to Big Data phenomenon [Lamllari, 2013].

• Schema flexibility: They can contain a mix of structured, semi-structured and
unstructured data.

• High performance: NoSQL technologies are developed to run on clusters thanks
to use of aggregate that speeds up the operations.

• Application development agility: NoSQL technologies also make the AGILE
development easier because they take less time to stand, run and go from concept
to implementation because the focus moves to domain design.

Furthermore, [Gajendran, 2011] argues that NoSQL databases have some other common
concepts. Here is a small list of these:
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• Sharding: Sharding is used to partition records on different clusters under some
common key.

• Consistent hashing: This mechanism uses the same hash function in order to hash
the object and the node.

• Map-reduce: This concept is designed by Google to process large data sets. There
are a map function, generates intermediate key/value pairs from processing of initial
key/value pair, and a reduce function, merges all intermediate values associated with
the same intermediate key.

• MVCC: This mechanism is used to provide concurrent access to the database. It
guarantees a read-consistent view of the database, but resulting in multiple conflict-
ing versions.

• Vector clocks: When data are distributed among different clusters in a asyn-
chronous distributed system, a modification can affect the consistency of the
database. This mechanism is used to maintain version of each node.

2.2.1.3 Consistency Availability Partition Theorem

In order to know more about non-relational databases, it is important to know its place
in the data stores landscape. Though, Consistency Availability Partition tolerance (CAP)
theorem has been mentioned for the first time by Eric Allen Brewer in a keynote at
ACM’s Principles of Distributed Computing [Brewer et Eric, 2000]. According to him, it
is impossible to optimize consistency, availability and network partition tolerance at the
same time but just two of them. CAP is now widely used by big companies as Amazon
or Google because it settles the trade-off that they have to do when they build a DBMS
[Strauch et al., 2011]. In other terms, this theorem allows them to combine as well as
possible consistency and availability [Lamllari, 2013].

However, this theorem is often confused with ACID and BASE (Basically Available,
Soft-state, Eventually consistency) principles although they do not treat the same thing.
ACID and BASE are not about a trade-off but they are just a way of implementing
database operations [DB, 2015][Lamllari, 2013]. Unlike ACID properties that promote
consistency and isolation, BASE approach encourages the fact that the system basi-
cally functions everytime in a known-state eventually but not consistent all the time
[Strauch et al., 2011]. In other terms, BASE approach promotes “availability, graceful
degradation, and performance” [Brewer et Eric, 2000].
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Though, E. Brewer divides the different systems into three different categories through
his theorem as presented in the figure 2.1:

1. AP systems: Systems focus on high availability and network partition tolerance to
keep working as much time as possible and being more scalable than other categories.

2. CA systems: Systems first focus on consistency to ensure data reliability and then
availability.

3. CP systems: Systems focus on consistency with more scalability than CA to have
reliability and flexibility at the same time.

Figure 2.1: CAP systems [Lamllari, 2013]

2.2.1.4 Families

Among all AP and CP systems, there are different kinds of NoSQL storages divided
into several families according to their specificities. Nowadays, there is no standard that
properly lists all of them but here are the most popular types of NoSQL technologies:

1. Key-value stores: Data is represented as a collection of key-value pairs.

2. Document stores: Key-value where value is the document (semi-structured data).
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3. Column stores: A form of key-value stores with an organization in a semi-
schematized and hierarchical pattern through columns.

4. Graph stores: Databases organized in graphs where entities are nodes and rela-
tionships are edges.

2.2.1.4.a Key-value store

The first NoSQL technology covered in this thesis is the data storage named “Key-Value
Store”. This is one of the simplest technology but the key-value store is not a less efficient
and powerful model than others. This technology is based on a very simple system using a
key and a value, which represents the data. The figure 2.2 illustrates this principle, where
the arrow means that the key is associated with its value (the key “1a34” is associated with
the value “Value 1”). This principle is called “the key-value” pair. This kind of storage
refers to “hash tables” principle where the key is used as an index, which makes the key-
value store faster than traditional relational database management systems. So, the key
is the only way to retrieve data in the database. This data may be of various types, either
a data type (such as Integer, String, Array, etc.) defined by the programming language,
or an object [Nayak et al., 2013] [Cattell, 2010].

Figure 2.2: Key-Value Store Representation

Thanks to this very simple structure, key-value stores are completely schema-less. Thus,
new values can be easily added, without affecting other stored data or the availability of
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the database. However, a drawback for being schema-less is that it is difficult to create
customized views of data. The particularity of kind of store is that it uses the cache
memory for complex queries or queries that are frequently requested. This allows to faster
execute queries. While the other queries are simply stored in memory. The performances
are better than SQL queries.

Moreover, the table 2.1 is a table thought by [Lamllari, 2013], which gives a summary
of favorable situations for the use of key-value stores and situations where this technology
is not suitable.

Best used for Not suitable for
Big Data Complex query and aggregation needs

Cache or Blob data Relationships between sets of data
Session and Shopping cart data Multi-operations transaction

Online Social Gaming Key ranges processing
User profiles

Table 2.1: Application Use Cases for Key-Value Stores [Lamllari, 2013]

2.2.1.4.b Document store

Another NoSQL technology is “Document store databases”. This type of database can
be seen as a database that stores data in the form of documents. The term “document”
refers to the concept of record in relational database but a document is more flexible due
to the fact that it is schema-less. A document store supports more complex data than key-
value store but it uses the same “key-value” mechanism [Cattell, 2010]. It contains key-
value pairs within documents where keys have to be unique. A set of documents is called
a collection. To ensure that all documents are unique, each of them encapsulates an “ID”
key, which is a simple string or a string representing an URI or a path [Nayak et al., 2013].
This is represented in the figure 2.3 which is a comparison of a relational- and a document
store representation.

In contrast to key-value stores, the value is a well-known document format such as XML,
BSON, JSON, etc. Moreover, a document store database can contain multiple types of
documents and nested documents [Cattell, 2010]. This type of database is perfect for
systems which need to store document having specific characteristics than can not be
stored in a table. Moreover, the structure of the fields in documents is dynamic, meaning
that users can modify, add or delete fields from existing document [Bryden, ].
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Figure 2.3: Document Store Representation

Moreover, the table 2.2 is a table thought by [Lamllari, 2013], which gives a summary
of favorable situations for the use of document stores and situations where this technology
is not suitable.

Best used for Not suitable for
Big Data Multiple document transaction

Event Logging Ad-hoc queries
Content Management Systems

Blogging Platforms
Web and Real-Time analytics

E-commerce Application
Online Social Gaming

Table 2.2: Application Use Cases for Document Stores [Lamllari, 2013]

2.2.1.4.c Column store

Column-oriented databases are part of a database type called “Extensible record store”.
This type had been motivated by Google with its system named “Big Table”. “Big Ta-
ble” is “a distributed storage system for managing structured data that is designed to
scale to a very large size: petabytes of data across thousands of commodity servers”
[Chang et al., 2006].

Thus, adding new machines to this system is facilitated by its architecture. It also offers
several mechanisms such as persistence, consistency and fault tolerance. “Big Table” is
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used in a plurality of applications developed by Google itself such as Gmail, YouTube
and Google Earth. Due to “Big Table”, Google ignited a craze for the “Extensible Record
Store” database systems [Cattell, 2010].

Moreover, the “Extensible record store” database type groups two different types of
database that have the capacity to solve same queries:

• Row-Oriented databases: handle rows (horizontal partitioning)

• Column-Oriented databases: handle columns (vertical partitioning)

The general principle of column-oriented databases is opposed to relational databases.
While RDBMS store their records in rows one after the other, a column-oriented database
stores a dataset of one column and all columns are individually treated [Abadi et al., 2009].
The figure 2.4 illustrates the difference between these two database types. Naturally, it
is possible to rebuild one row from several columns but it requires some complex mecha-
nisms.

The vertical partitioning of the database has been thought in the 70’ and studies had
been made in order to find and to show advantages of this kind of model in comparison
with the traditional row-based storages [Abadi et al., 2009]. However, several factors (like
marketing needs and the small amount of data to be processed) enabled traditional row-
base storages to keep an important place in society.

Figure 2.4: Column-Oriented Database representation
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Structuring the database depending on columns allows speeding up operations when
these operations only affect a small group of columns. A DBMS only needs to read the
values of columns required for processing a given query [Stonebraker et al., 2005] which
allows not having to collect irrelevant data in memory. For example, take a table with four
columns, each containing 1GB data. If the query only uses data from the third column,
1GB data have potentially been processed. Accordingly, read- and write operations on
all columns are expensive costs. However, some databases use advantages of reading on
small amount of columns and the benefits of storage optimized for write operations, as
discussed in the section dedicated to “Cassandra” system [Steemann, 2012].

Because columns contain values of same type, it can compress data in order to retrieve
more data when a query is executed. The compression enables to reduce disks I/O when
read- and write operations are processed on columns. It can have an expensive cost for
the CPU. Moreover, operations on this type of database are made by blocks, reducing the
number of function call [Steemann, 2012].

2.2.1.4.d Graph database

Before anything else, this section had been written according to [Robinson et al., 2013].
So, a graph is a set of nodes (to model things) and relationships (to model structure)
between nodes that connect them.

In that way, a graph database is an online database management system with CRUD
(Create, Read, Update, Delete) methods such as those found in relational databases.
Graph databases are built for being used with transactional (OLTP — Online Transaction
Processing) systems. Graph databases keep a set of proven features from the relational
databases (such as transaction, ACID — Atomicity, Consistency, Isolation and Durability
—, etc.). A lot of big companies like Google, Facebook, Twitter, etc. are using graph
databases to manipulate and store information, especially to maintain account histories
because it is easy to manipulate with graphs.

To explain the concept of graph databases, we focus on one of them, named Neo4J which
is the most popular graph database and because there is no other section dedicated to
graph database in this thesis. According to Neo4J developers, Neo4J is “embedded, disk-
based, fully transactional Java persistence engine that stores data structured in graphs
rather than in tables ”. Furthermore, Neo4J is open source which is an advantage.
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Relational and NoSQL databases issues from the point of view of graph
databases

Relational and some NoSQL databases lack of relationships. For example, relational
database need to join tables to find friends of mine at different depth (“depth 2” in the
figure 2.5 means that the queries look for friends of friends of me, etc).

Figure 2.5: Finding friends at different depth

Figure 2.5 shows us the time needed in seconds to execute simple queries to find friends
of mine. We can see that Neo4J execution time is faster than RDBMS execution time due
to the complexity of joints in relational databases.

The other NoSQL databases store sets of disconnected values, documents, etc. So, it is
difficult to use them for connected data or graphs. Without going into details, there are
strategies for adding relationships to such stories but not for free.

Cypher Query Language

The chosen language for Neo4J is Cypher which is a language for describing and query-
ing property graphs. Cypher allows expressing complicated databases queries. The clauses
of Cypher look familiar, especially for SQL developers, that makes Cypher easy to learn.
It is important to bear in mind that Cypher is optimized for reading and not for writing.

Labels, constraints and indexes are used to speed up queries. Due to label, it is possible
to group nodes together and by doing so, create a constraint on this label to help enforce
data integrity because. For example, it is possible to use unique constraints to ensure that
property values are unique for all nodes with a specific label. Concerning indexes, we can
create indexes that will improve the performance when looking for nodes within the set
of nodes.
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Architecture

Neo4J is peculiar because it can be run in server as well as embedded mode. These two
modes have their advantages and their drawbacks. The first is the most common way of
deploying the database and its advantages are:

• REST API

• Platform independence

• Scaling independence

• Isolation from application garbage collector (GC) behaviors

But Neo4J in server mode has a few drawbacks:

• Network overhead

• Per-request transactions

Whereas the second mode means that Neo4J runs in the same process as our application,
its advantages are:

• Low latency

• Choice of APIs

• Explicit transactions

• Named indexes

But Neo4J in embedded mode has a few drawbacks :

• JVM Only

• Garbage collector behaviors

• Database life cycle

According to [Robinson et al., 2013], “Embedded Neo4j can be clustered for high avail-
ability and horizontal read scaling just as the server version. In fact, it is possible to run a
mixed cluster of embedded and server instances (clustering is performed at the database
level, rather than the server level).”, it shows that it is possible to mix embedded and
server mode to improve our architecture, if necessary.
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Another important thing of the architecture is clustering. In simple words, clustering
consists of connecting two or more computers together in such a way that they behave
like a single computer. There are several strategies for clustering in Neo4J which works
with a number of slaves and a master. The first is replication which involves directing
of write queries to the master and then replicated to slaves because it provides a bigger
reliability, availability and consistency of data. Otherwise, it is possible to directly write
queries to slaves but it is slower than writing directly to the master. A second strategy is
to use queue to buffer writes and regulate load.

The load balancing concept is important to maximize throughput and reduce latency in
clusters networks. However, Neo4J does not include native load balancing but it relies on
the load balancing capabilities of the network infrastructure. It is important to separate
flows of read and write queries. The majority of write queries should be directed to the
master by a write load balancer while read queries traffic should be directed to the entire
cluster by a read load balancer.

Furthermore, to maintain a high performance with a dataset that exceeds main mem-
ory space, Neo4J implements the solution of “cache sharding”. Cache sharing consists of
directing each request to a database instance in a special cluster where a part of the graph
required to satisfy the request is likely already in main memory.

Performance

Performance increases when dealing with connected data (unlike relational databases
and some NoSQL stores). For example, in relational databases, performance decreases
when the dataset becomes bigger because of join-intensive query while a graph database
tends to remain constant even as the dataset gets bigger. Furthermore, execution time
for each query is not concerned with the size of the entire graph, but rather the size of
relevant part of the graph to satisfy the query.

There are three areas to optimize performance. The first is to increase the object cache,
the second is to increase the percentage of the store mapped into the filesystem cache and
the third is to invest in faster disks (SSDs or enterprise flash hardware).

The two first need to increase RAM memory. Without going into details, allocating
RAM to object cache is more expensive per graph than allocating RAM to filesystem
cache because graphs on object cache can be up to 10 times bigger than their on-disk
representations. However, allocation of RAM (for object- and filesystem cache depends
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on the estimated size of the graph. According to figure 2.6, these different strategies have
costs, there are trade-offs between performance and cost.

Figure 2.6: Trade-offs between performance and cost

That being said, each family can be categorized according to their performance, scal-
ability, flexibility, complexity and functionality. Table 2.3 pictures how each one differs
from the other. But also, the table highlights better flexibility and performance for NoSQL
than relational databases.

Performance Scalability Flexibility Complexity Functionality
Key-Value Stores high high high none variable (none)
Column stores high high moderate low minimal

Document stores high variable (high) high low variable (low)
Graph databases variable variable high high graph theory

Relational databases variable variable low moderate relational algebra

Table 2.3: Classifications - Categorization and Comparison by Scofield and Popescu
[Strauch et al., 2011]

2.2.2 NewSQL

Another emerging way to store data than NoSQL is called NewSQL. Even though ACID
transaction model is not flexible enough [Hainaut, 2015], it is still relevant in some cases.
That is why this new kind of databases is born to meet new needs but this time also has
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the goal to preserve ACID properties while ensuring scalability. In other words, NewSQL
aims at merging the integrity of traditional databases with the scalability of NoSQL. This
is made possible by three different approaches: a new database, a new MySQL storage
engine or a transparent clustering [Lamllari, 2013].

This concept is relatively new and there is not a lot of documentation yet. But Datomic’s
data model used in this thesis is close with this family of data stores as described below.

2.2.2.1 Datomic

2.2.2.1.a Data Model

All databases are built on fundamental units. In the case of Datomic, there is only one
unit, the atomic fact called Datom [Hickey, 2013]. A Datom is immutable. It means that
it is impossible to update it. Instead, a new Datom should be added if the reality changed
while the old stays in the database. Datoms are indexed and index in Datomic does not
point the data but contains it. Moreover, storage and cache services are the distribution
network of the index’s data segment [Datomic, 2015c].
A Datom is identified by four properties:

• Entity

• Attribute

• Value

• Transaction (database time)

For example, let us consider that we want to store the fact that our new client is named
« Henry Dupont », we would represent this as below:

[<e-id> <attribute> <value> <tx-id>]: [ 167 :client/name "Henry Dupont" 102 ]

In the light of this example, Datomic’s data model is close with the key-value model
even though this belongs to NewSQL stores.

On the contrary of relational databases composed by a plurality of constructions (tables,
columns, rows, etc.), Datomic is only composed by facts as described above. It could totally
seem “schema-less” but Datomic requires the definition of its attributes [Datomic, 2015c].
Attributes are generally defined in files of EDN format by data structures composed of

35



Chapter 2 – Technological background

lists of maps and not by DDL code like in SQL [Hickey, 2013]. The following is an example
of “client’s name” attribute:

[ ;; client {:db/id #db/id[:db.part/db]
:db/ident :client/name
:db/valueType :db.type/string
:db/cardinality :db.cardinality/one
:db/fulltext true
:db/doc "A client’s name"
:db.install/_attribute :db.part/db} ]

Despite these attribute definitions, Datomic schema is so minimal that the applications
written on the basis of its data model are not subject to the rigidity of applications
written on the basis of relational databases [Datomic, 2015c]. For example, the rigidity
due to “NULL” notion disappears because Datomic attributes do not have any constraint
about their existence. Therefore, entities are open and sparse [Datomic, 2015d].

Before elaborating each property composing an attribute in more details
[Datomic, 2015d]. A notion specific to Datomic did not define yet.
Datomic databases are divided into several partitions. They are intended to group seman-
tically equivalent things improving the performance of queries. There are 3 partitions by
default as pictured in the table 2.4.

Name Description
:db.part/db System’s partition
:db.part/tx Transactions’ partition
:db.part/user User’s partition

Table 2.4: Typology of default partitions in Datomic

System’s partition contains all attributes and subpartitions of a Datomic schema. Oth-
erwise, user’s partition is used to store Datoms. A good practice consists of create par-
titions according to an area. Each partition gathers related Datoms and speeds requests
up [Datomic, 2015c].

Though, it is now possible to understand all the properties that define attributes of
Datomic as explained in the table 2.5.
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Property Explanation
:db/id [key] [key] determines the partition where the attribute

is stored
:db/ident: <namespace>/<name>
(Required)

Specifying the attribute’s name ":<names-
pace>/<name>"

:db/valueType <type> (Required) Specifying data type of the attribute’s values
:db/cardinality (Required) Specifying value’s cardinality of the attribute (one

or many)
:db/doc The attribute’s documentation
:db/unique Uniqueness constraint (upsertable or not)
:db/index <true|false> False by default but if true, an index is created
:db/fulltext <true|false> False by default but if true, a full text index is

created
:db/isComponent Specifying the attribute’s reference to a sub-

component
:db/noHistory False by default but if true, it means that the pre-

vious values should not be stored anymore
:db.install/_attribute Attach the attribute with a partition

Table 2.5: Attribute definition in Datomic

2.2.2.1.b Architecture

Datomic’s architecture is quite different from classic databases due to its data model.
Its general architecture is pictured in the figure 2.7 and here will be presented in more
details each component of it.

As we can see in the figure 2.8, the application is seen as a Peer which calls Datomic
Peer Library to query a database. Anything can be a peer from the moment he has
datomic-specific application code [Datomic, 2015a].

Datomic’s peer library is embedded in your peer (application) and is the intermediary
between your application and the rest of the database. It is in charge of providing data
access, query capability, submitting transactions and accepting changes from the trans-
actor. But also, this library provides caching which is filled along the reading of facts
from the Storage Service. In the end, this cache implementing a least-recently used policy
represents a copy of many facts in the database. On the one hand, this feature allows
reducing the network traffic for reading. On the other hand, this ability to query locally
provides query results as simple data structures. There is no need to have abstractions
nor object-relational mapping layers [Datomic, 2015a][Datomic, 2015b].
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Figure 2.7: Datomic architecture [Datomic, 2015a]

Figure 2.8: The Peer Library [Datomic, 2015b]
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Also, another component very important in Datomic’s architecture is the transactor
as pictured in the figure 2.9. This part is requested when new facts are added into the
Storage Service. Indeed, he stores them as transactions using ACID properties. Then, the
transactor notifies all peers so that they can add the new facts into the cache managed
by Datomic’s Peer Library [Datomic, 2015a].

Figure 2.9: The Peer Library [Datomic, 2015b]

At this moment, all components of Datomic are described. In other words, Datomic
is a kind of database management system without the database. This technology is not
standalone and needs a storage service from outside except if the product is still in devel-
opment. There is a special mode for that (i.e. dev mode) [Datomic, 2015b].

But when the application needs to be launched, at the same time higher performance
and scalability are needed. There is no other way than integrating a storage service and
Datomic supports a lot of them as SQL database, DynamoDB or a key/value store.
Depending on configurations of the peer library and the transactor, they can bind to one
of the external storage protocols [Datomic, 2015b]:

1. ddb by DynamoDB

2. riak by Riak

3. cass by Cassandra

4. couchbase by Couchbase

5. inf by Infinispan

6. sql by SQL database like PostgreSQL
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In conclusion, there is a very particular concept which belongs to Datomic: Time. As a
matter of fact, as explained in the sub-section 2.2.2.1.a, every fact is immutable. It means
that there is no update but only adds which overpass the old facts. This immutability also
provides a stable and consistent view as long as Peer needs one. Datomic allows keeping
a complete versioning about all database states from the beginning. Though, the most
recent set of facts is queried by default. But it is also possible to access data from the past.
It is even possible to compare different facts coming from different times [Datomic, 2015a].

2.3 Sample of NoSQL technologies

This section gives a sample of NoSQL technologies which support Datomic. In that
way, Amazon DynamoDB, Riak, Cassandra, Couchbase and MongoDB will be presented.
A careful reader will note that MongoDB does not support Datomic. The reason of its
presentation is that MongoDB is a reference for the document store family. So, it is an
opportunity to be aware of what it is possible to do with it.

Moreover, those technologies are pretty young (less than 10 years) and may evolve since
the writing of this thesis.

2.3.1 AmazonDynamoDB

Amazon is one of the leaders in terms of electronic commerce and cloud comput-
ing. The company provides its services to millions of users from around the world
[Ama, 2015]. This requires high performance, reliability, efficiency, availability and being
highly scalable in order to continuously expand the platform and the IT infrastructure
[DeCandia et al., 2007b]. Naturally, all those aspects are extremely important for such a
company because an issue with one of those aspects may have several negative impacts at
the financial and customer levels. To avoid any problem, Amazon uses a highly decentral-
ized and loosely coupled architecture. In that way, when a customer makes purchases on
the platform and that the used cluster is failing, the customer can continue his shopping
without realizing technical incidents.

Amazon offers a plethora of products and services in order to be ubiquitous on the
electronic commerce, also called e-commerce. Over the years, the company expanded its
activities. And it is in 2006 that the service called “Amazon Web Service” (AWS) was
officially launched [His, 2015]. AWS has been created to provide online services to other
websites or customer applications, by using cloud computing [Services, 2015c]. Moreover,
AWS includes different services such as Amazon Simple Storage Service (Amazon S3)
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and amazon Elastic Compute Cloud (Amazon EC2) which are the most known. The first
service offers secure, highly scalable and durable object storages to developers and IT
teams [Services, 2015b]. While the second service is a web service that provides resizable
compute capacity in the cloud [Services, 2015a]. Those different services can be used
alone or with other AWS services. Furthermore, Amazon Web Services bills its services
in accordance with the use and the rates may vary for each service. In 2014, AWS had a
turnover of $4,6 billions.

In addition, Amazon Web Service has developed a NoSQL database management sys-
tem, which is nothing other than Amazon DynamoDB. Unlike other NoSQL technologies
presented in this thesis, this type of database is not open source1. Amazon DynamoDB is
a part of the Key-Value store family which is fully managed in the cloud. This database
is designed to provide fast performance, high availability, high scalability and reliability.
Amazon developed the AWS Management Console to help its customers to easily create
their databases [Services, 2012] [DeCandia et al., 2007b] [Nayak et al., 2013].

The availability of DynamoDB is achieved by the automatic data replication and data
synchronization on three different data centers in different AWS regions. This allow ac-
cessing to data even when there are failures in the system. Due to the replication and syn-
chronization of DynamoDB tables across different AWS regions, the data can be accessed
from anywhere in the world in a minimum latency. Given that DynamoDB is designed
to be an eventually consistent system, a data versioning is implemented [Services, 2012]
[DeCandia et al., 2007b] [Nayak et al., 2013].

Moreover, DynamoDB provides a transparency in terms of storage and throughput to be
highly scalable. This means that the amount of storage and throughput that you can dial
up at a time are not limited. The database scales horizontally in order to add a new cluster
to cope with increased demand of a particular service, which is allowed by the partitioning
of data across multiple storage hosts. DynamoDB being schema-less provides the flexibility
of the database [Services, 2012] [DeCandia et al., 2007b] [Nayak et al., 2013].

DynamoDB offers fast and predictable performance due to the use of Solid State Disks
(SSDs) for all data. The access to the data is faster than if data are stored on traditional
hard drives. DynamoDB is designed to maintain consistent at any scale.

Furthermore, DynamoDB’s data model contains different related concepts such as ta-
bles, items and attributes. A database is a collection of tables, a table is a collection of

1Refers to Amazon’s website to know the price
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items and an item is a collection of attributes. An attribute can be single-valued or multi-
valued. Due to the fact that DynamoDB is schema-less, it is not required to define all of
the data types and attribute names in advance. This database only requires that tables
have a primary key to create and maintain indexes for those primary key values. However,
it is a benefit for some applications to have secondary keys in order to allow efficient access
to data with attributes different than the primary key. This is the reason why DynamoDB
provides secondary indexes [Services, 2012] [DeCandia et al., 2007b] [Nayak et al., 2013].
There are two types of secondary index:

Global secondary index: An index with a hash-and-range key (a key that is made of
two attributes) that can be different from those on the table.

Local secondary index: An index that has the same hash key (a key that is made of
one attribute which is generally the id) as the table, but a different range key.

Moreover, DynamoDB supports different data types:

Document types: List (which contains an ordered collection of values) and Map (which
constains an unordered collection of attributes).

Multi-valued types: Binary Set, Number set and String Set.

Multi-valued types: Binary, Boolean, Null, Number and String.

2.3.2 Riak

Riak is an open source project developed by Basho and written in Erlang. This system
has the particularity to be considered as a “key-value store” and a “document store”.
However, Basho mainly describes it as an advanced “key-value” store but it has more
functionalities than the other key-value stores [Cattell, 2010]. Therefore, Riak associates
a key with values such as a short string, a JSON object, video files, etc. This implies that
Riak objects can have multiple fields like documents and objects are organized into buck-
ets, which can be compared to a collection supported by document stores [Basho, 2015].
Unlike document stores, Riak has no query mechanisms and the only lookup can be made
on primary key.

Moreover, Riak implements bucket types, which are essentially a flat namespace in Riak,
in order to allow to store objects with the same key in different buckets. Buckets types are
used for identical replication from different buckets to assign common configurations to
those buckets. The replication is fundamental in Riak and is supported by a master-less
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mechanism, which means that all nodes play the same role in the system. Riak ensures the
distribution of data across nodes using consistent hashing [Basho, 2015]. A map-reduce
mechanism is also implemented in order to share the workload over all nodes in a cluster.

As seen before, NoSQL technologies can not guarantee the CAP theorem. Hence, Riak
is designed to deliver a maximum read and write availability at the expense of strong
consistency. So, the system offers an eventually consistency. In a highly-available system,
it is unavoidable to have conflicts between replicas. The consistency can be adjusted by
defining the minimum number of replicas that must successfully respond to a read or
write request [Cattell, 2010]. Furthermore, Riak uses the vector clock mechanism in order
to enable clients to increase the consistency of the system. So, the vector clock ensures at
the read time that conflicts are resolved [Basho, 2015].

With regard to concurrency, Riak uses the MVCC mechanism to resolve conflicts. So,
Riak determines, at the end of the operation, if there are potential conflicts between
same stored data. The MVCC mechanism marks the new version of changed data and
marks the old version as obsolete. Hence, there is no overwriting of the old data and
multiple versions are stored in the system [Grolinger et al., 2013]. Moreover, the master-
less mechanism enables each node to handle a read/write operation for any other node
[Basho, 2015].

According to [Nayak et al., 2013], Riak is to be avoided for highly centralized data
storage projects using unchanging data structures but is well suited to managing personal
information of the user for social networking websites or Massively Multi-players Online
Role Playing Games, to build mobile applications on cloud, etc.

2.3.3 Couchbase

In February 2011, Couchbase was designed as a result of the merger of Membase and
CouchOne, founder of Apache CouchDB. Couchbase uses the forces of each of them and
is an open source project. In that way, it is interesting to take a look at both of these
NoSQL technologies.

Membase was developed as an open source project by the company bearing the same
name. Membase provided a distributed key-value database with integrated memcached
caching technology [Cou, 2011]. Membase provides persistence and replication to the
memcached system, which is required to be qualified as a “data store” [Cattell, 2010].
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The memcached system is a distributed memory object caching system offering high
performance, designed for dynamic web applications. The particularity of the memcached
system is that all clusters are into the same virtual pool of memory in order to optimally
distribute memory. Without a memcached system, some clusters have more memory than
needed. Therefore, this unused memory can be allocated to other clusters using a mem-
cached system [Memcached, 2015].

Moreover, the force of this system is that Membase provides the ability to elastically
add or remove servers in a running system, transferring data and dynamically redirecting
requests in the meantime [Cattell, 2010]. This is provided by the fact that all nodes are
equal into the cluster. Any node can replace any other node at any time. This allows to
have consistent performance without additional cost.

With regard to the replication, Membase uses an asynchronous replication with a multi-
master mechanism, where multiple nodes can process write requests, which are propagated
to remaining the nodes. Unlike master-slave replication, all directions for the propagation
are allowed [Grolinger et al., 2013].

Membase is used by some of world’s busiest web applications, such as Zynga supporting
several millions users per day.

Unlike Membase, Apache CouchDB is a document database developed as an open source
project by CouchOne in order to facilitate the data synchronization across mobile, desktop
and cloud platforms. Given that CouchDB is schema-free document model, it fits well for
web applications, which may not have a fixed schema. CouchDB has the particularity
that it uses JSON documents to store data and provides a RESTful interface to clients
[Cattell, 2010].

Moreover, CouchDB uses the JavaScript language as query language [Nayak et al., 2013].
This database provides a “map-reduce” mechanism to distribute queries across several
nodes but this mechanism has a significant cost. Concerning the scalability, CouchDB
achieves it through asynchronous replication [Cattell, 2010]. This means that when a
modification occurs, only changed fields are transferred across clusters and not the whole
documents. While the durability is achieved due to the writing of all updates on docu-
ments and indexes to the end of a file on commit. The coupling of MVCC mechanism and
the durability provides ACID semantics at the document level [Cattell, 2010].
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Moreover, CouchDB does not guarantee the consistency because when the same doc-
ument in two different clusters is modified, the system detects the conflict. To solve it,
CouchDB saves the most recent version of the document and the other is saved in the
document’s history to allow the access to it if necessary [Couchbase, ].

Therefore, Couchbase is a combination of a key-value store and a document store but is
considered as a document store using JSON document format for storing data. Couchbase
is designed for interactive web applications with low-latency requirements [Gosselé, 2014]
[Couchbase, 2015]. Moreover, this system supports primary and secondary indexes on data
using B-trees and implements almost all of the mechanism of Membase and CouchDB pre-
viously presented. In that way, Couchbase uses an asynchronous replication to distribute
data across clusters with a multi-masters mechanism as used by Membase. The consis-
tency is strong within one cluster but is not guaranteed with more than one cluster.

In addition, Couchbase implements optimistic concurrency control by using “Check and
set”, which performs a write operation only if the record has not been changed by another
client since its last reading [Grolinger et al., 2013]. Couchbase does not implement multi-
operations transaction while presented as an ACID-compliant.

2.3.4 MongoDB

According to the DB-Engines Ranking2, MongoDB is the most popular NoSQL database.
MongoDB is developed using C++ in an open-source project by the company 10gen Inc
and released in 2009 [Nayak et al., 2013]. It is a schema-less document store database
whose the main goal is to gather the fast and highly scalable key-value stores and
feature-rich traditional RDBMSs such as secondary indexes, range queries and sorting
[Strauch et al., 2011].

The architecture of MongoDB is based on the master-slave mechanism. This archi-
tecture allows the management of failover. When a master server goes down, MongoDB
promotes a slave server, which is a backup server, to a master server. So, the master-slave
structure is used for replication. The write operations are sent directly to the master server,
which propagates modifications across slave serves of its cluster, while read operations can
be sent to master and slave servers. While MongoDB does not provide consistency of a
traditional DBMS, it can provide a “local” consistency on the modification of the docu-
ment [Cattell, 2010]. According to [Hainaut, 2015], the distribution of documents uses a
shard key, which is the “ID” key seen before and common to all documents of the same

2http://db-engines.com/en/ranking
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collection. Thanks to a hash function, MongoDB is able to assign documents to the right
node of the cluster [Hainaut, 2015].

With regard to the data model of MongoDB and as seen before, MongoDB stores
documents with common characteristics in a collection and a set of collections forms the
database. MongoDB server can contain several databases. Moreover, MongoDB stores
data in a BSON format, which is a binary JSON format, and each document can have
its own structure due to the fact that MongoDB is a schema-less database. Furthermore,
a document can contain a combination of documents, so, a document can become very
complex [V, 2014] [Strauch et al., 2011].

MongoDB provides indexes on document which avoid scanning all collections to find
document that matches the query statement. Thus, indexes can improve the efficiency of
read operations. Each collection has an index on the “ID” key and this index is unique
[mongoDB, 2015].

2.3.5 Cassandra

Cassandra is a “Column-oriented” database system developped by Facebook. Facebook
is the largest social networking platform with more than 1 billion of users each month
[Statista, 2015]. Facebook has some strict requirements in term of performance, reliability
and efficiency to meet the needs of users. Facebook must also be highly scalable because
the number of users is steadily increasing. That was the leitmotif for the development
of Cassandra by Facebook [Lakshman et Malik, 2008]. This system requires processing a
large amount of write operations (update- and insert operations), becoming a requirement
for Cassandra.

In 2008, the development of Cassandra was echoed by Apache Software Foundations
to become an Open source project, developed using Java. Nowadays, Cassandra is still in
charge of the management of database of more than 1,500 enterprises of all sizes.

Moreover, the data model of Cassandra is based on several denominations that differ
from relational databases, based on “Big Table” by Google and Amazon’s Dynamo system.
In that way, Cassandra includes a set of column family which can be assimilated to the
“table” concept of other databases. There are two types of column family: simple and
super column families. The particularity of this super column family is that it may be
seen as a column family within a column family. In other terms, this column family
contains columns which are values of a column of a row [Hainaut, 2015].
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Due to the Client API developed using Java, the data manipulations is done via 3
functions:

• get(table, key, columnName)

• insert(table, key, rowMutation)

• delete(table, key, columnName)

Regarding the architecture of Cassandra, it has been thought in order to offer a large
availability, good performance and a good scalability, bearing in mind that the hardware
and software may encounter failures. Cassandra offers a peer-to-peer architecture type
with the particularity that all nodes are the same, meaning that the master-slave concept
is not present. This allows to have no single point of failure like that can happen for
architectures adopting the principle of master-slave [Datastax, 2013].

The data distribution is made across all nodes. It is automatic and transparent for users
and developers. The data replication for each nodes is provided by Cassandra which are
stored on other machines in the cluster. Thus, when the nodes of the system are down,
it is possible to retrieve a copy of these nodes in the cluster in other to have a stable
system. Moreover, when write operations are processed on a node A which is down, data
are stored on another node B until the node A goes back in action [Datastax, 2013].

Write operations are cached in memory, which is flushed to disk [Cattell, 2010]. Thanks
to this, the speed of write operations is better than the speed of read operations. That
can be seen as a sort of disadvantage for Cassandra [Nayak et al., 2013].

According to [Datastax, 2013], Cassandra is more appropriate for the following cases:

• Real-time, big data workloads

• Social media input and analysis

• Online web retail

• Most write-intensive systems

• ...
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2.4 Non-Relational versus Relational Databases

Having now explained each kind of database, their properties and the CAP theorem,
here are all the differences on all levels from data model to data integrity explained in the
table 2.6.

Features RDBMS NoSQL
Data model Relational model Domain driven
Data modeling drivers Start from available data Data access and update patterns
Transactions Almost all support ACID Atomic transactions at the aggregate

level
Data types Strongly typed Loosely typed
Joins Yes Emulated at the application layer
Indexing Primary, secondary and different stor-

age types
Limited

Design Complexity Persistence layer Application layer
Role-Based access
functionalities

Yes No support

Data integrity Responsible is Persistence layer Shifted at the application layer
Consistency Strong (also tunable by the applica-

tion)
Eventual (also tunable by the applica-
tion)

Schema mismatch de-
tection

Database Application/Data access layer

Query support Complex and ad-hoc queries Not suitable for ad-hoc and complex
queries

Query language SQL REST, Client libraries, Protocol buffers
Query optimization Responsibility of database Responsibility is shifted to the applica-

tion

Table 2.6: RDBMS versus NoSQL features comparison [Lamllari, 2013]

In addition, RDBMS, NoSQL and NewSQL can be compared in the light of this
taxonomy in the table 2.7.

Features RDBMS NoSQL NewSQL
Data model Relational model Domain driven Relational model
Transactions ACID (almost all) BASE ACID
Querying SQL REST, Client

Libraries, Proto-
col buffers

SQL

CAP classification CA AP/CP Mainly CP

Table 2.7: SQL vs NoSQL vs NewSQL according to CAP [Lamllari, 2013]
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2.5 CASE Tools

CASE, which is an anagram for Computer Aided Software Engineering, tools are a set of
application program in order to help development and maintenance of software projects
[Tutorialspoint, 2015]. These projects are usually complex or on larger scale involving
many software components and people [Rouse, 2015a]. Since the 1970’s, CASE tools are
playing a major role in improving software productivity and quality and in supporting
the software development process [Baik, 2000]. The use of CASE tools allows developers,
testers, managers,... to have a common view of the project at each stage of development.
This is facilitated by a central repository which contains common, integrated and consis-
tent information from any phase of the system life development cycle supported by the
CASE tool [Not, 2008a]. This is why there are a large interest in such tools.

At the begin of the 1990’s, the annual worldwide market for such tools was $ 4.8 billion
and tripled in 5 years [Jarzabek et Huand, 1998]. It shows us that there was a real demand
in these kinds of tools from companies, so, several CASE tools were developed. Naturally,
several factors contribute to choose the appropriate CASE tools such as the economic
status of the company or its area [Kemerer, 1992]. Although there was a large interest in
CASE tools, a lot of companies had difficulties to use them because it required a large
effort to learn its specific syntax.

2.5.1 CASE Tools classification

There are a plurality of classifications of CASE technologies in literature
[Loucopoulos, 1995]. The first classified CASE in four categories, namely, language-centred
(based on a programming language), structure-centred (based on the idea of an environ-
ment generation), toolkit environments (set of tools which supports the programming
phase of the development) and method-based (focused on a specific method for the de-
velopment of software systems).

A second classification [Sommerville, 2008], introduced by [Fuggetta 1993], proposes
that CASE technologies should be classified into three categories, based on a framework
and depicted in the figure 2.10 below:

• Tools: support only specific tasks in development of the system such as the verifica-
tion of the consistency of a design, the compilation of a program, the comparaison
of test results, etc. In general, Tools may be general-purpose, stand-alone tools (e.g.
a word-processor) or may be grouped into workbenches.
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• Workbenches: support one or more process phases or activities such as specifica-
tion, design, etc. Workbenches generally integrate one or more tools with different
degree of integration.

• Environments: support a large part software process. They normally include sev-
eral integrated workbenches.

Figure 2.10: Tools, Workbenches and Environment [Fuggetta 1993]

The figure 2.10 shows us some examples of processes supported by each previous
categories.

Nowadays, CASE tools are classified into 3 different categories according to their ac-
tivities and in reference to the Waterfall Model in the figure 2.11 below and is the most
popular classification [Loucopoulos, 1995] [Not, 2008b]:

• UPPER CASE Tools: Support the analysis and design phases of the system
development life cycle and ignore the implementation of the system in an automatic
manner. This name is due to the fact that these phases are at the top of the waterfall
model.

• LOWER CASE Tools: Support the implementation and the maintenance phases
of the system development life cycle and ignore the requirements and design of the
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system. This name is due to the fact that these phase are at the bottom of the
waterfall model.

• INTEGRATED CASE Tools: Support all stages of the lifecylce and provide the
functionality of both upper and lower CASE tools. Hence, integrated CASE tools
focus on all features of the system development life cycle.

Figure 2.11: Waterfall Model

In short, the waterfall model (represented in the figure 2.11 [Rouse, 2007b]) is the
first process model introduced in Software Engineering and ensures that the project will
be a success. This model is divided into separate phases (see the figure 2.11), which
are sequential and linear [ISTQB, 2015], and each phase must be completed before the
beginning of the next phase.

The figure 2.11 shows us that upper CASE tools focus on the mission, objectives,
strategies, resources, operational plans, etc of the system. These processes are only at the
early stages of the development of the system.
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Concerning lower CASE tools, they focus on the conceptual model of the system to
generate an executable form of it from different algorithms. For example, it is possible to
generate a relational database schema, to normalize database relations and to generate the
SQL code from specifications. The next section will present a software called DB-Main,
which is capable to do this kind of generation [Loucopoulos, 1995].

2.5.2 Kinds of CASE Tools

There are a plethora of different sorts of CASE Tools. This subsection will present some
of these categories with a short explanation (all of these come from [Tutorialspoint, 2015]).

• Diagram tools: Diagram tools are used to graphically represent components, data
and control flow of the system among various software components and system
structure, generally without effort. These tools allow creating a flowchart which is
a type of diagram that represents an algorithm, workflow or process, showing the
steps as boxes of various kinds, and their order by connecting them with arrows.

• Process Modeling Tools: Process modeling is a method to create software pro-
cess model, which is used to develop the software. Process modeling tools help the
managers to choose a process model or modify it like the requirement of software
product. For example, EPF Composer which is a framework for Eclipse. This frame-
work aims at creating a customizable software process and supports a large variety
of types of project [EPF, 2014].

• Project Management Tools: Project Management Tools are used for project
planning, cost and effort estimation, project scheduling and resource planning. In
project management, the execution of every mentioned step in software project
management must be strictly respected by managers. Moreover, these tools help in
storing and sharing project information in real-time throughout the organization.
For example, GanttProject is a free project management software [Gan, 2015].

• Documentation Tools: Documentation in a software project contains all informa-
tion of all phases of the system development life cycle from the beginning to the end
of the project. Documentation tools are used to generate documents for (technical-
and end-) users. Technical users refer to system manual, reference manual, training
manual, installation manuals, etc. because they generally are in the development
team. The end user documents describe the functioning and how-to of the system
such as user manual for everyone who will use it. For example, Doxygen is a free
licensed documentation generator able to produce software documentation from the
source code of a program [Dox, 2015].
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• Analysis Tools: Analysis tools are used to collect requirements from all placehold-
ers of a project and to automatically check if there are any inconsistencies, data
redundancies, inaccuracies in the diagram, etc. There are different tools for differ-
ent purpose, for example, Accompa is used for requirement analysis whereas Visible
Analyst is used for a total analysis.

• Design Tools: Design tools are used by the designer to conceptualize the structure
of the software. It exists a “Computer-aided design” (CAD) to help a designer to
create, modify, analyze or optimize the design. There are a plethora of design tools.

• Programming Tools: Programming tools are computer programs used by devel-
opers to create, modify, maintain, test, etc the source code of a project. These
tools consist of programming environments like an integrated development environ-
ment (IDE). For example, Eclipse which is an essential tools for any Java developer
[Ecl, 2015].

• Prototyping Tools: A prototype is used to provide an initial look of the product
and how it will work by simulating of a few functionalities. Prototypes have different
level of fidelity (low-, medium-, high-). Typically, the low-fidelity prototype is a
paper prototype, focused on the interaction aspect. The medium-fidelity prototype
is a clickable wireframe and the high-fidelity prototype is a faithful representation
of the interaction behaviour and the look and feel of the system. This prototype can
be fully programmed.
Prototypes tools are used to help a team to quickly build prototypes due to the
existing information. For example, Mockup Builder is a wireframe and create a
prototype from requirements [Moc, 2013].

• Web Development Tools:Web Developments tools are used to help web develop-
ers to test and debug their source codes. Moreover, these tools assist web developers
to design their interface. They can directly see what they are developing. For exam-
ple, Fontello, Foundation 3 are Web Developments tools.

• Quality Assurance Tools: Quality assurance in a software organization is any
process of checking to see if the software product being developed complies with
requirements and organization standards [Rouse, 2007a]. Quality Assurance Tools
is a set of control and software testing tools. For example, AppsWatch is a testing
tool for performance, a web testing, etc [App, 2015].

• Maintenance Tools: After the delivery, a software need to be maintained and can
need some modifications. Logging, error reporting techniques, etc. are useful for the
maintenance of a software. Maintenance tools provide these techniques.
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• Data Modeling Tools: Data modeling is often the first step in database design
due to an analysis of data objects and their relationships to other data objects
[Webopedia, 2015]. So, designers create a conceptual schema of data objects related
to each other. The data modeling of a database starts from a conceptual model to a
logical model to a physical schema. Data modeling tools are used to help designers to
do this. For example, DB-Main is a free tool for data modeling and data architecture
(See the next section to have more information about it).

This list of tools is not complete but provides an indication of the kinds of existing
tools.

2.5.3 Advantages and Disadvantages

This subsection will present a non-exhaustive list of advantages and disadvantages of
CASE tools [Petruska, 2011].

2.5.3.1 Advantages

• Time saving: CASE tools have an important advantage because they can save
time to complete different tasks of the system development life cycle.

• Better documentation: Due to documentation generation tools, there is a better
documentation which is produced at every phases of the system development life
cycle.

• Accurancy: CASE tools can better meet the user needs and requirements. They
can detect different errors and this is important because a correction requires less
effort when it is done at an early stage.

• Non-programmer: CASE tools used in programming allow a person without pro-
gramming background to develop a program.

• Maintenance: The cost in maintenance is reduced due to CASE tools used in
other stages of the system development life cycle. Indeed, there are better analysis,
automatic code generation, etc.

2.5.3.2 Disadvantages

• Cost: An important disadvantage of CASE tools is the cost which is not cheap. Con-
cerning costs, many factors come into play such as hardware and systems, software,
training and consulting.
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• Customization: Some CASE tools can be difficult to customize because developers
of these tools do not allow it.

2.6 DB-Main

Before the development of DB-Main [Englebert et al., 1995], CASE tools often provided
partials solutions to the engineering problems of the databases. There were some weakness
in those tools, e.g., ignorance of non-functional requirements, a lack of flexibility, ignorance
of some processes, etc. The idea of a tool such as DB-Main was born from these gaps, to
have a tool which will pay attention to non-functional requirements such as optimization,
to flexibility and some key processes such as maintenance.

Nowadays [DB-, 2015], DB-MAIN was developed and it is a free3 tool for data modeling
and data architecture. This tool is developed in C++ with the widget toolkit “wxWidgets”
and runs on Windows, Linux and Mac OSX. The purpose of this tool is helping developers
and analyst in different data engineering processes. Here is a list of these processes:

• Design processes: requirement analysis, conceptual design, normalization, schema
integration, logical design, physical design, schema optimization, code generation.

• Transformations: schema transformation, model transformation, ETL.

• Reverse engineering and program understanding: schema analysis (COBOL, CO-
DASYL, IMS, IDMS, SQL, XML, ...), code analysis, data and data flow reverse
engineering.

• Maintenance, evolution and integration: database migration, database evolution,
impact analysis, database integration and federation, data wrapper design and gen-
eration.

• And many other domains like temporal and active databases, datawarehouse, XML
engineering, ...

DB-Main allows users to develop new functions and extend its repository due to possi-
bilities to add new plugins. Moreover, DB-Main contains a plethora of functions used in
data modeling, such as code generator (SQL, MySQL, etc.) and a JDBC extractor (which
extracts database structures to a JDBC driver), etc.

3It is possible to buy license for extra functionalities such as XML extractor, etc. Go to www.db-main.
be for more information.
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2.7 ETL tools

Many Extract-Transform-Load tools are currently available on the market, along with
varied comparative reviews covering part of the tools. Since constituting an exhaustive
comparative list of them would go beyond the scope of this thesis, we will present the
principal tools the most often cited in the literature.

Whether in the scientific articles or in industrial papers, the following tools are con-
sidered the most common ETL tools systematically compared [Yousuf et Rizvi, 2011]
[Thota, ] [Jovanovic, 2015]:

• Pentaho Data Integration

• Talend Open Studio

• Clover

• Jaspersoft

• Informatica PowerCenter

• Inaplex Inaport

• Oracle Warehouse Builder

• Oracle Data Integration

• IBM Information Server

• IBM DataStage

• Microsoft SQL ServerIntegration Services

• SAP BusinessObjects Data Integrator

Among those tools, we only retained tools that provide a direct transition towards
NoSQL storage services compatible with our target database technology Datomic (i.e.
DynamoDB, Riak, Cassandra, Couchbase and Infinispan). Indeed, even though Datomic
supports SQL storage systems, we do not consider this kind of system an ideal target for
the type of migration depicted in this thesis and thus do not take them into account in
this overview.
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2.7.1 Pentaho Data Integration

Pentaho is a company specialized in open source Business Intelligence (BI). It provides
multiple BI-related softwares in two editions : an Enterprise Edition and a Community
Edition. Versions differ in the amount of functionalities they offer and the support of the
product.

Pentaho Data Integration, also named Kettle, consists of multiple functionalities, among
which a performing ETL tool relying on a Graphical User Interface (GUI). The ETL
process is centred around two key-concepts : transformations and jobs. A transformation
is an individual ETL process as depicted in the Data Conversion part. Transformations
can be combined and scheduled inside jobs. Pentaho Data Integration is known for its
wide range of connectors allowing data migration from and towards many types of sources
[Pentaho, 2015].

2.7.2 Talend Open Studio

Talend is a company specialized in data management and data integration. It proposes
a wide range of products in that field, including Big Data Integration, Cloud Integration,
Data Integration, Application Integration and Master Data Management in two editions
: an Enterprise Edition and a Talend Open Studio Edition. Versions differ in the amount
of functionalities they offer and the support of the product.

Talend Open Studio Data Integration is among others an ETL tool focusing on ease of
use and thus providing an intuitive interface combined with a lot of connectivity possibil-
ities. The tool’s key-concept is the representation of data through metadata stocked in a
repository accessible to the user [Talend, 2015].

2.7.3 CloverETL

CloverETL is an ETL tool declined in multiple editions : the free Community Edi-
tion, the Designer Edition, the Server Standard Edition, the Server Corporate Edition
and the Cluster Edition, each version increasing the number of functionalities included.
CloverETL is based on Java and is consequently available as either an Eclipse plug-in or
a standalone application. The tool represents data transformations as dataflows displayed
in a graph composed of edges and pipes, the data being transferred and transformed from
one component to another through a pipe [Clover, 2015].
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2.7.4 Jaspersoft

TIBCO Software Inc. is a company specialized in Business Intelligence. It offers various
products including reporting and analytics tools, a cloud solution for BI, mobile tools
and a Big Data Business Intelligence software that provides ETL functionalities. Business
Intelligence softwares are declined in five editions : the Community Edition, the Reporting
Edition, the AWS Edition, the Professional Edition and the Enterprise Edition proposing
an increasing range of functionalities.

The Big Data Business Intelligence tool proposing to combine multiple data sources in
a data warehouse and perform real time analysis, it also allows using the ETL function to
convert the data from one technology to another. Compatible database technologies are
varied, encompassing MongoDB, Amazon Redshift, Hadoop, Google Big Query, Cassandra
and Cloudera [Inc., 2015].

2.7.5 Informatica PowerCenter

Informatica Corporation is a software development company providing multiple prod-
ucts in various fields including Big Data, Cloud Integration, Data Integration, Data Qual-
ity, Data Security, Informatica Platform, Integration Platform-as-a-Service and Master
Data Management.

Among Data Integration products is PowerCenter, a tool used for multiple purposes
including ETL processes. The tool is declined in three editions : the Standard Edition, the
Advanced Edition and the Premium Edition, all being paid solutions. Key features of the
product encompass business and IT collaboration, reusability, automation, ease of use,
metadata management, scalability, performance and zero downtime [Corporation, 2015].
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3.1 Database migration

Firstly, any process of database engineering is located at three different levels
[Hainaut, 2012]:

1. Conceptual: This is the most abstraction level. At the conceptual level, there is
no technological dependency.

2. Logical: Just under the conceptual level, the logical level implements data struc-
tures and constraints according to the technology concerned.

3. Physical: The lowest level is purely physical and mainly focuses on what will sup-
port the database and its structure like storages, indexes and others.

Secondly, a migration between two different databases implies three different ob-
jects : the database schema, the data and the application programs using the database
[Hainaut, 2006]. These objects are respectively involved by three different processes pic-
tured in the figure 3.1.

1. Schema conversion: The bridge between two different data models has to ensure
that both database schemas have at least the same semantics.

2. Data conversion: Data from the source database have to be rethought according
to the target database, its structure and its data model.

3. Program conversion: Application programs have to be tailored to still communi-
cate to the new database with the same behavior than before.

Each process has to be executed to consider the database platform migration as finished.

3.1.1 Transformational approach

The transformational approach is mainly used to operate a migration in the database
area. This approach is a part of Model-Driven engineering and makes sense for us because
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Figure 3.1: General migration schema [Clève, 2009]

this allows producing databases from abstract models in an efficient and an automatic
way.

The transformational approach mainly focuses on the database schema. Its main
goal aims to ensure that each transformation is correctness-preserving. In other terms,
this approach guarantees keeping the same information content all along the process
[Hainaut, 2006].

3.1.1.1 Schema conversion

There are two distinct processes to migrate the structure of a database. The first one
is the database reverse engineering and the second is the database forward engineering.

3.1.1.1.a Database reverse engineering

The goal of reverse engineering aims to understand, to know how and why a system
has been built. The reverse engineering process looks for implicit structures which led to
this building and has to go beyond what looks obvious. There are a lot of methods and
studies to operate this process.

These methods depend on the context in which the process is executed. Since our
method of migration focuses on databases, its goal consists of documenting these by ag-
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gregating its schemas. These schemas are abstracts and made from source DDL code,
programs and other information sources. Those shall correspond to the domain supported
by the database concerned. And the database reverse engineering should under no cir-
cumstances alter data [Hainaut, 2012].

The database reverse engineering is based on three different processes as pictured in
the figure 3.2.

Figure 3.2: Database reverse engineering process [Clève, 2009]

Physical extraction

The physical extraction is purely technical, capable of being automated and extract
from DDL source code, the physical schema of the database. Only explicit structures like
tables and columns are extracted. This first process is common and essential to build the
base [Hainaut, 2012].

Logical extraction

From the whole of information sources (cf. Figure 3.2, p. 61), the physical schema
is enriched by implicit structures. Even though it is already possible from the physical
schema as it is to deduce some interesting properties like a primary key when there is
an index on a non-identifying column for example, it is not enough to find all implicit
structures essential to understand the domain of the database concerned [Hainaut, 2012].
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As a matter of fact, another information source very interesting to derive properties is
the program using the database. Several kinds of analysis are possible and are divided
into two families: static and dynamic analysis [Hainaut, 2012].
The static analysis focuses on SQL statements which are not dynamically generated. But a
lot of SQL statements are dynamically generated as pictured for exemple in the figure 3.3
[Clève, 2009]. In such case, dynamic analysis is more relevant. But no matter what the
kind of analysis is chosen, both are based on finding dependencies between queries (or
into only one) to derive foreign keys for example.

Figure 3.3: Dynamic SQL query [Clève, 2009]

The dynamic analysis is implemented in two phases. On the one hand, there is the
tracing aiming to retrieve a SQL trace executed at runtime during the program execution.
On the other hand, there is the analysis of this trace to derive interesting properties from
the database and/or from the program.
Ideally, the capture has to be focused on the four phases of the dynamic generation of the
query (i.e. statement preparation, value injection, query execution and result extraction).
There are several methods and techniques to do it as summarized in the figure 3.4.

Figure 3.4: SQL tracing techniques [Clève, 2009]
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In more details, here are presented each method of SQL tracing, their description,
advantages and drawbacks [Clève, 2009].

DBMS logs
The best known database management systems provide logging. Thanks to this fea-
ture, it is possible to keep all queries executed against the database. This function-
ality is easy and free but does not cover all four phases for the dynamic generation
of queries but just the query execution. Unfortunately, the recovered trace can also
be polluted by system queries or others coming from programs others than those
observed. But it is still convenient because there is no source code modification.

API substitution
As its name suggests, API (Application Program Interface) substitution consists of
replacing the legacy API database access (like JDBC for example) by another one
incorporating tracing statements. Thus, the four phases are executed and traced
in parallel. There is no source code modification and the analysis is more accurate
than by using DBMS logs. That being said, API substitution is more difficult to
maintain, compile and modify.

API overloading
API overloading process wraps the legacy API database access into an intermediate
one where tracing statements are implemented. This solution also provides accurate
analysis like the previous one by covering all four phases about the dynamic gen-
eration of queries. But, there is source code modification and still no source code
location.

Program instrumentation
This way of catching SQL trace involves a lot of modifications into the source code
but allows getting source code points. In point of fact, program instrumentation
consists of adding tracing statements directly inside the program. All four phases
are covered but the source code points must be translated into initial source code
location.

Aspect-based Tracing
Finally, Aspect-based Tracing is a paradigm which specifies separately the tracing
functionality by means of aspects. This means that we state the functions corre-
sponding to four phases (statement preparation, value injection, query execution
and result extraction) as pointcuts. Then the program is running and when a func-
tion stated as pointcut is called, this program stops its linear execution to carry out
what we have coded before according to each implementation. The analysis is com-
plete, the program is more modular than program instrumentation for example but
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did not meet a great success. There are only a few languages allowing this paradigm
(Java, C, C++, Cobol).

Then, the SQL trace analysis depends on the richness of the SQL trace retrieved before
but also the final goals defined. This phase can be achieved in many ways. Actually, the
SQL trace analysis can be carried out On-The-Fly or Off-Line, intra-execution or inter-
execution, intra-query or inter-queries and based on trace only or more [Clève, 2009].
If the final goal aims to retrieve implicit foreign keys from a program, the SQL trace
analysis can be executed Off-Line into an only trace execution and based on just the
trace. It will analyse between several queries looking for output-input and input-input
dependencies. If there are the same values into both queries, this could mean a relationship
between tables referred on both sides. But it is also possible to infer foreign keys into an
only query by looking at jointures [Clève, 2009].

To conclude about the logical extraction process of database reverse engineering, once
the schema has been aggregated by all implicit structures found, it is important to remove
other structures such as indexes, storages and other physical buildings to obtain the right
logical database schema [Hainaut, 2012].

Conceptualization

Conceptualization takes as an input the logical database schema from the previous pro-
cess (as described above) and creates the corresponding normalized conceptual database
schema as an output. There are several conceptual schemas possible from one logical
schema because one construction in this schema can have multiple interpretations at the
conceptual level. Also, this process is not obvious because designers could have opti-
mized the logical schema and have maybe used non-standard patterns to build it. But
also databases have history, they can know different periods with different ways of doing.
Though, this process can be subdivided into two subprocesses called "untranslation" and
"unoptimization" [Hainaut, 2012] to manage all these difficulties. These two processes seek
to produce a conceptual schema devoid of all technical constraints due to DBMS source.

First, the untranslation of a logical schema is the exact opposite of the logical design
discussed later. This aims at choosing a sample of possible transformations from the con-
ceptual to the logical level and to go in the opposite way, from logical to conceptual.
For example, this process translates from foreign keys towards relationships. Also, this
process can translate series of heterogeneous attributes with similar names to compound
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attributes and series of homogeneous attributes with similar names to multivalued at-
tributes [Hainaut, 2012].

Then, the unoptimization of a logical schema aims to erase all logical constructions
built before for the only reason to make the database more efficient. There is no standard
for this process but there are three kinds of methods [Hainaut, 2012]:

• Schemas restructuring: Schemas restructuring joins tables which have been di-
vided before into multiple ones.

• Structural redundancy: Structural redundancy deletes structures which are mul-
tiple and do not provide any value.

• Internal redundancy: Internal redundancy normalizes objects (entity type or/and
relationships).

3.1.1.1.b Database forward engineering

The second process is the database forward engineering which produces the code from
the conceptual schema as described in the figure 3.5. This is the opposite way of database
reverse engineering.

Figure 3.5: Database forward engineering [Clève, 2009]

Conceptual analysis

Understanding the domain supported by the database concerned is the main goal of the
conceptual analysis. From users requirements, this analysis produces a complete, correct
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and normalized conceptual schema. But also, this analysis can produce a dynamic schema
which highlights the behavior that the database will have to respect later [Hainaut, 2012].
A priori, in the context of a migration, the database reverse engineering process has
already built the conceptual schema and this phase has no great interest anymore. Except
if users and domain requirements require a shift at the conceptual level too. For example,
if the migration is also the opportunity to comply the database structure to the standards.

Logical design

The logical design aims to produce a logical schema from the conceptual schema built
before. This schema has to fit with the data model of the target RDBMS. In other words,
this schema is located at a lower abstraction level since it is more technology-dependent
than the conceptual schema. Usually, this process is automatable because it can be sup-
ported by a well-defined transformation plan. This transformation plan gathers all neces-
sary rules to migrate from the conceptual schema devoid of all technological constraints
and the logical schema which fits with a precise data model. Also, one of the most im-
portant properties that this plan has to respect is the semantics preserving all along the
process. This means that it is important that every construction within the conceptual
schema has its equivalent into the logical schema [Hainaut, 2012].

Physical design

The physical design process has the goal to enrich the input logical schema by tech-
nical mechanisms like indexes and storages. Though, each table is attached to a precise
storage and some columns are indexed. But also, it is possible to modify the structure
of logical schema according to some technical requirements to speed queries up. In short,
the physical design aims to make applications using the database as efficient as possible.

Coding

Once the physical schema is built, the last phase aims to translate each construct of
this into an understandable code for the target RBDMS. That being said, each construct
is not always directly translatable. Though, this phase is semi-automatable. On the one
hand, understandable constructs are translated but on the other hand, remaining ones
need additional code. But in the end, every construct of the physical schema have to find
their correspondent into the code to respect the original semantic structure.
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Hence, all along these two processes, the semantic is the element to keep. And to carry
out all these transformations between different technologies and abstraction levels, there
is one solution to reduce the complexity, a pivot model between them.

3.1.1.2 Pivot model

Incorporate an intermediate between the different technologies involved by these trans-
formations reduces the amount of mappings. Indeed, if we have to pass from M for-
malisms to N formalisms, instead of NxM mappings, there are just N+M mappings. Also,
if we use a pivot model which has been approved, it serves as proof of transformations
[Hainaut, 2006].

Furthermore, "Generic Entity-Relationship" (GER) formalism will be used in this thesis.
It supports concepts as schemas, entity type, domains, attributes, relationship types, keys
and other constraints [Hainaut, 2006].

This model is well defined for the relational databases because this fits very well with
entity-relationship DBMS models as described in the table 3.1.

Relational constructs GER constructs Assembly rules
Database schema Schema

Table Entity type An entity type includes at least
one attribute

Domain Simple domain
Nullable column Single-valued and atomic at-

tribute with cardinality [0-1]
Not null column Single-valued and atomic at-

tribute with cardinality [1-1]
Primary key Primary identifier A primary identifier comprises

attributes with cardinality [1-
1]

Unique constraint Secondary identifier
Foreign key Reference group The composition of the refer-

ence group must be the same
as that of the target identifier

SQL names GER names GER names must follow the
SQL syntax

Table 3.1: Mappings of some concepts in the relational databases [Hainaut, 2006]
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As a matter of fact, GER model has two ways to be defined, the first is the concrete
view with ER diagrammatic connections and the second is the abstract view which is
"an extended N1NF model in which all GER constructs are given a uniform relational
interpretation" [Hainaut, 1996]. These two views can be compared and allow to prove
properties about the database.

Also, GER formalism is made from data structures which can be specified at three
different abstraction levels: the conceptual, logical and physical levels [Hainaut, 2006].

3.1.1.2.a Conceptual level

The first one is the conceptual level where "a GER schema specifies entity types, re-
lationship types and attributes. [...] The model also includes such advanced constructs as
is-a relationships, multivalued and compound attributes, roles with cardinality constraints,
entity and relationship identifiers, attribute domains,..." [Hainaut, 1996] as pictured in
the figure 3.6.

Figure 3.6: GER constructs at conceptual level [Hainaut, 1996]

Though, the abstract view formally describes what is graphically pictured in the con-
crete view. Here, an entity type is pictured by an entity subset or another entity domain.
An attribute is described by a relation "desc-of-X" and a relationship type is represented
by a relation [Hainaut, 1996].
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3.1.1.2.b Logical level

Then, there is the logical level where GER aims to define logical structures. It means
that GER adapts its specifications according to the chosen DBMS model. "A logical entity
represents a record, an object class, a segment type or a table, a logical attribute represents
a field or a column, a relationship type represents a set type or a parent-child relationship"
[Hainaut, 1996], etc.

The figure 3.7 represents the fact that an inclusion constraint is used to represent a
foreign key in the abstract view. Whereas in the concrete view, a foreign key is represented
"by the ref keyword, and by an arc toward the referenced identifier" [Hainaut, 1996].

Figure 3.7: GER constructs at logical level [Hainaut, 1996]
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3.1.1.2.c Physical level

The third and the lowest level is the physical level. A physical GER schema includes
concepts like entity collection which represents record repositories as files but also access
keys specify access mechanisms like indexes.

In the figure 3.8, on the one hand, the collect-of clauses in the abstract view and cylinder
symbols in the concrete view represent collections. On the other hand, the access-key
keyword in the abstract view and the acc keyword in the concrete view represent access
keys [Hainaut, 1996].

Figure 3.8: GER constructs at physical level [Hainaut, 1996]

3.1.1.3 Schema transformation

3.1.1.3.a Definition

The schema transformation in this thesis is seen as an operator T replacing a construct
C by another C’ from a schema S to another S’. The schema transformation is not just
about structural mapping but also instance mapping. Indeed, the structural mapping (T)
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is about the syntax whereas the instance mapping (t) is about the semantics. Though, a
schema transformation is defined by its mappings: Σ = <T,t> [Hainaut, 1996].

Figure 3.9: Schema transformation definition [Hainaut, 1996]

There are several ways to define the structural mapping of a schema transformation
and one of them is the predicative approach. In this approach, T is defined as a couple
of predicates <P,Q> where P determines the minimal precondition that C must respect
and Q is the maximal postcondition which must be met for C’. In other terms, this
couple defines what C and C’ should respect before and after the transformation: P(C)
⇒ Q(T(C)) [Hainaut, 1996].

Therefore, the schema transformation can be rewritten like this: Σ = <P,Q,t> where
P and Q are both second-order predicates. These predicates can be expressed with GER
formalism and t can be expressed in pseudo-code as described in the table 3.2.

P CUSTOMER,STOCK:entities
PURCH(CUSTOMER,STOCK)

Q

CUSTOMER,STOCK,PURCH:entities
CP(CUSTOMER,PURCH)
SP(STOCK,PURCH)
CP[PURCH]=PURCH
SP[PURSH]=PURCH
CP*SP:CUSTOMER,STOCK –>PURCH

t

for each p = (c,s) of the current instance of PURCH do
generate arbitrary entity p ’ of PURCH
insert (p’,c) in the current instance of CP
insert (p’,s) in the current instance of SP

Table 3.2: Predicative and procedural expression of the structural and instance mapping
of the transformation figure 3.10
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Figure 3.10: Transformation of a relationship type into an entity type [Hainaut, 1996]

That being said, this previous table describes only one transformation. Indeed, this
transformation belongs to a class of them. This class is specified by a transformation
scheme as we can see in the table 3.3.

P E1,E2:entities
R(E1,E2)

Q

E1,E2,R:entities
R1(E1,R)
R2(E2,R)
R1[R]=R
R2[R]=R
R1*R2:E1,E2 –>R

t

for each p = (c,s) of the current instance of PURCH do
generate arbitrary entity p ’ of PURCH
insert (p’,c) in the current instance of CP
insert (p’,s) in the current instance of SP

Table 3.3: The transformation scheme from which the transformation of this table 3.2
has been instantiated [Hainaut, 1996]

It is trivial to directly see the instantiation which has been operated.

3.1.1.3.b Semantical issues about schema transformations

Now about the semantics of these transformations, one of the most important proper-
ties aims to ensure that the target schema can substitute the source one with the same
information content capacity. This property is named semantics preservation or reversibil-
ity. So, there is only one thing to prove, the fact that the transformation is reversible to
prove the semantics preservation. Here is the definition:
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"A transformation Σ1 = <T1,t1> = <P1,Q1,t1> is reversible, iff there exists a transfor-
mation Σ2 = <T2,t2> = <P2,Q2,t2> such that, for any construct C, and any instance
c of C: P1(C) ⇒ ([T2(T1(C))=C] and [t2(t1(c))=c]). Σ2 is the inverse of Σ1, but the
converse is not true. For instance, an arbitrary instance c’ of T(C) may not satisfy the
property c’=t1(t2(c’))" [Hainaut, 2006]

For example, transformation schemes described in these tables 3.4 and 3.5 are reversible
transformations.

P R(U)
I J K = U ; I J K I

Q R1(I,J)
R2(I,K)

t

for each r = (r1,r2) of the current instance of R do
generate arbitrary entity r’ of R
insert (r’,e1) in the current instance of R1
insert (r’,e2) in the current instance of R2

Table 3.4: Project-join decomposition [Hainaut, 1996]

P
R(I,K,M); I,K not empty
S(K,L); K not empty
S[K] ⊆ R[K]

Q
R(I,K,M); I,K not empty
T(I,L); I not empty
T[I] ⊆ R[I]

t1

let r be the current instance of R,
let s be the current instance of S,
let t b an instance of T,
t = (r*s)[I,L]

t2

let r be the current instance of R,
let t be the current instance of T,
let s b an instance of S,
s = (r*t)[K,L]

Table 3.5: The composition transformation [Hainaut, 1996]

Indeed, these transformations are reversible because "the instance of R can always be
recovered by the natural join f the corresponding instances of R1 and R2" [Hainaut, 1996].
They also allow to prove other ones because they represent a scientific truth which cannot
be disproved.
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3.1.2 Co-Transformational approach

3.1.2.1 Overview

Previous steps described how to design a target structure capable of holding the in-
formation from the source database. So far, this new system is empty and cannot com-
municate to the application program(s) since the technology used has changed. A co-
transformational approach consists of impacting the database schema modifications to
both the data and the application program(s). Thus, this approach extends the transfor-
mational approach described in the previous section. Thereby, to perform a full database
migration including not only the structure but also the data itself and the application
program(s), we will follow in this thesis a transformational approach, which is also a
co-transformational approach and vice versa [Cleve et Hainaut, 2006].

The goals of the co-transformational approach are highlighted in yellow in the fig-
ure 3.11.

Figure 3.11: Database evolution processes and supporting techniques [Cleve, 2015]

Multiple processes exist to suit those needs and will be described in this section. They
are separated in two categories:

1. Data: Processes related to data conversion that transform the data structure in
respect to the target database’s specificities and data model

2. Application programs: Processes related to program conversion that modify
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(parts of) programs so they can maintain the same behaviour while communicating
with the new database

3.1.2.2 Data conversion

Data conversion consists of migrating the data existing within the source database into
the target database, while respecting its structure and data model. This procedure allows
avoiding starting over with a brand new and empty database, and keep maintaining and
using existing data. There are two paradigms when it comes to migrate data [Klaus, 2009]:

1. Target-pull: Only the data necessary to the target system is migrated, which is
simpler and cheaper to perform

2. Source-push: The whole data from the old system is migrated, which is more
complex and expensive to perform

Since only a part of the source attributes generally need to figure in the target database,
the target-pull paradigm is the most often chosen option, even though the source-push
would be ideal. Data conversion has a generic architecture composed of three main phases
depicted in figure 3.12 [Klaus, 2009].

Figure 3.12: Generic Migration Architecture [Klaus, 2009]

1. Extract: At first, the whole data is copied in order to be filtered to only keep the
data to migrate and reject the rest

2. Transform: Then, the data to be migrated is restructured and mapped to fit in the
target schema

3. Load: At last, the transformed data is loaded within the target database, thus
completing the data migration
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During those steps, other actions like calculating statistics can be performed. Once the
data is migrated, there is a verification phase insuring the correctness of the data loaded
within the target database [Klaus, 2009].

3.1.2.3 ETL tools

ETL tools allow the user to define data-flows using a visual programming language.
Those data-flows represent the mapping between one or more data sources and their
destination in the target database structure [Klaus, 2009]. Originally, ETL tools were
conceived as a way to automate Data Warehousing processes. Thus, ETL were - and are -
mostly used in the context of business intelligence and more recently big data. Typically,
an ETL tool is used for each data type to be extracted, transformed and loaded in a data
warehouse [Simitsis et Vassiliadis, 2003]. In the case of database migration, data will be
loaded in a target database rather than in a data warehouse.

3.1.2.3.a Extract step

The extract step aims at collecting the data that will later be transformed and loaded in
the target database. To do so, this step has two objectives and is consequently divided in
two sub-steps [Klaus, 2009].

Download sub-step The first objective is to decouple the data from the project itself
to keep only raw data without any interference. Most to all data is downloaded on an
external copy on which transformations will be performed without risking perturbations
from the project’s daily operations.

Filtering sub-step This sub-step consists of choosing objects that will make it to the
target system. As precised earlier, most data migration opt for a target-pull approach
rather than a source-push, thus rejecting part of the data that is not relevant or necessary
to the operation of the target system. Haller identifies three main filtering patterns that
are used during data conversion:

1. Attribute value based filtering: Filtering a row based on a given criteria, typi-
cally the value of an attribute, independently of other rows and tables

2. Selection table based filtering: Filtering a row based on the value of one or more
attribute(s) in another table, typically using a foreign key or a join

3. Aggregation based filtering: Filtering a row based on the information in multiple
rows and multiple tables, typically using aggregation functions
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The result of this step is a set of data independent from the project and ready to be
transformed and restructured. Figure 3.13 gives an example of the complete extract step
for a banking data system [Klaus, 2009].

Figure 3.13: Extract step [Klaus, 2009]

3.1.2.3.b Transform step

The transform step aims at converting and restructuring the data in order to fit in the
target database’s structure. Depending on the objects being migrated, two pattern groups
can be employed to transform the data.

Mapping The first pattern group is used when objects have similar data-models in
both databases and focuses on mapping source attributes to their counterpart in the
target database. Haller distinguishes two patterns within this group [Klaus, 2009]:

1. Mapping table: The mapping is represented in an intermediate table that contains
the source database attribute’s value(s) and their equivalent in the target database

2. Mapping function: The mapping is too complex to be simply displayed in a
translation table, and thus is represented by a function that takes one or more
source attribute(s) as an input and produces one or more target attribute(s)

Figure 3.14 depicts the mapping pattern group and provides an example of both pat-
terns’ usage. We can observe the translation table MAP_COUNTRY mapping countries’
names to their ISO code counterpart used in the target database. Furthermore, CONTRI-
BUTION_MARGIN and ASSETS attributes are used as an input of a function F that
produces a CLASSIFICATION for each customer in the target database.
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Figure 3.14: Sample Tables Mapping Pattern Group [Klaus, 2009]

Restructuring The second pattern group is used when objects have different data-
models in both databases, and the source structure has to be consequently reworked to
fit in the target database. This group contains three restructuring patterns [Klaus, 2009]:

1. Simple Attribute Move: An attribute remains the same during the transforma-
tion but is transferred from one table to another one

2. Expansion: The target database relies on enhanced semantics and thus one or more
attributes are added to the target structure

3. Reduction: On the opposite, the target database relies on lessened semantics and
thus one or more attributes disappear, which may be mandatory logged in another
table depending on the context

Figure 3.15 depicts the restructuring pattern group and provides an example of the
three patterns’ usage. We can observe the attribute COUNTRY incurring a name change
and moving from the source table T_ADDRESS to the target table T_CUSTOMER.
The source table T_ACC, becoming the target table T_ACCOUNT, gains an attribute
DISCOUNT which has the consequence to add a level of granularity to the data model.
On the other way around, considering T_ACC as the target table, a granularity level is
lost from the data model and so a LOG table is added to save the information.
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Figure 3.15: Restructuring Pattern Group Examples [Klaus, 2009]

3.1.2.3.c Load step

Once the data has been correctly extracted and transformed, the load step aims at con-
cluding data conversion by inserting that data in the target database. To do so, three
different patterns exist [Klaus, 2009].

Direct approach The data is directly inserted in the target tables without the use of
an API, which is at first sight the cheapest approach but also the most risky considering
that migration errors, apart from severe ones, will not be detected, resulting in the need
of a highly trained migration team with deep knowledge and understanding of internal
tables and manually implemented checks.

Simple API approach The data is transferred to an API (within API tables) that
performs loading procedures which also check failures or non-compliances with the data-
model, thus decreasing the need of a highly trained migration team that may still want
to manually implement checks in addition to existing checks.

Workflow-based API approach The data is transferred to an API (within API ta-
bles) that performs procedures used for inserting data. Contrarily to the simple API
approach, the workflow-based API approach invokes the workflow separately for each ob-
ject to load them one by one in the target database, leading in the use of an external
process that does not need any additional cost to be implemented and checked.

Figure 3.16 details differences between the three approaches.

79



Chapter 3 – State of the art

Figure 3.16: Data Loading Approaches [Klaus, 2009]

3.1.2.3.d Reconciliation

Despite the use of ETL tools ensuring data consistency and being careful when choosing
which patterns to perform during the conversion, the process of data migration remains
challenging and potentially risky in terms of data loss. Data being a precious resource,
particularly for data-intensive systems, it is important to ensure the integrity of migrated
data by verificating data and testing validation [Paygude et Devale, 2011].

Haller designates this process as the Reconciliation Process and focuses on checking
selected attributes of all objects in an automated way. Using this method, a reconciliation
sheet is constituted and is typically composed of two parts : statistics and migration
errors. Three patterns are distinguished to derive this sheet [Klaus, 2009]:

Top-down pattern In this simple approach, the number of objects in both databases
is counted and statistics are established based on this census.

Bottom-up equivalence pattern This approach, the most useful when no restruc-
turing is involved, goes further than pure statistics and allows identifying which objects
got lost by selecting a unique key for each row of a table in both databases and checking
if there is a match for all rows.

Bottom-up fingerprint pattern This approach, adapted from the previous one in
case a restructuring is involved, allows to identify which objects got lost by selecting a
fingerprint for one or more rows of a table in both databases based on the values of one
or more attributes and checking if there is a match between the source set of rows and
the target one.

Figure 3.17 gives an example of a reconciliation sheet composed using both the bottom-
up equivalence pattern to determine which rows were added and deleted and the bottom-
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up fingerprint pattern to determine which rows differ in their values. In this case, the
bottom-up equivalence pattern is not sufficient to determine which rows differ regarding
the interest rate since the ideal key <ACCOUNT_ID, LIMIT> cannot be used due to
a restructuring of the attribute LIMIT which is maximal in the source and minimal in
the target. Thus, the selected fingerprint is the sum of the RATE attribute for a unique
ACCOUNT_ID, which leads to conclude that the object 1000225055 changed and the
object 1000765208 disappeared.

Figure 3.17: Reconciliation Sheet Generation Process [Klaus, 2009]
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Paygude and Devale propose to automate those verifications within a single tool
that takes the mapping between the source and the target database as an input along-
side with user queries in order to produce standardized reports. In figure 3.18, they
detail the types of inconsistencies that might occur during the data conversion phase
[Paygude et Devale, 2011].

Figure 3.18: Data inconsistencies [Paygude et Devale, 2011]

3.1.2.4 Program conversion

Program conversion consists of creating the bond between the target database and the
source application program(s), thus enabling communication and overall system operation,
completing the database migration process. To do so, the source program application(s)
must be modified according to two principles [Hainaut et al., 2008].

1. Comply with the target API of the DMS: In order to be able to send queries
to the database, the adequate data manipulation language and interaction protocols
have to be used

2. Comply with the target database’s structure: In order for the queries sent to
be relevant and produce results, the data has to be manipulated in its adequate for-
mat which may have changed in regards to its original format during the migration
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Three general strategies have been identified to perform program conversion and will
be detailed in the next sections.

3.1.2.4.a Wrapper strategy

The wrapper strategy allows the source program application(s) to communicate with
the database while incurring very little alterations. The principle is that a new element, the
wrapper, is introduced between the program and the database. Wrappers simulate the be-
haviour of the legacy DMS, translate queries from the application program and map them
to the target DMS technology. Figure 3.19 illustrates this concept [Hainaut et al., 2008].

Figure 3.19: Wrapper-based migration architecture: a wrapper allows the data managed
by a new DMS to be accessed by the legacy programs [Hainaut et al., 2008]

Figure 3.20 gives an example of a program conversion using this strategy.

Figure 3.20: Legacy Cobol code fragment converted using the Wrapper
strategy[Hainaut et al., 2008]
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In order to conserve all manipulations’ possibilities, a wrapper has to be built for each
source data record type, simulating the behaviour of the legacy DMS for manipulating this
object. Thus, the wrapper strategy does not imply deep modification to the source code
since only calls to the legacy DMS are replaced by wrapper invocations. The complexity of
the wrappers depends on the differences between the source and target physical schemas.
On the one hand, if structures are alike, each query will be translated in the target DMS
language ; and on the other hand, if structures differ, a query can potentially have an
impact on multiple entities. This approach is automatable, wrappers generators already
exist for a few DMS.

3.1.2.4.b Statements rewriting strategy

The statements rewriting strategy consists of replacing DML statements of the legacy
system by DML statements of the new DMS, providing a direct communication with the
database without changing the program’s logic. Each DML statement must be located in
the source code and translated, thus leading to a complexity and length of the process
directly related to the complexity of the application program. This approach is particularly
efficient if a Data Access Object or a similar structure is employed to access the data.
Figure 3.21 gives an example of a program conversion using this strategy.

Similarly to the wrapper strategy, the complexity of the translated statements depends
on the structural difference between the source and target physical schemas. On the one
hand, if structures are alike, each query will be translated in the target DMS language
; and on the other hand, if structures differ, a query can potentially have an impact on
multiple entities, thus leading to a more complex translation. This approach is also fully
automatable [Hainaut et al., 2008].

3.1.2.4.c Logic rewriting strategy

The logic rewriting strategy differs from the others in the sense that the application
program is deeply modified to make the most of the target DMS’ possibilities. Thus, the
logic of the application is reviewed and adapted to the target DML. The strategy consists
of [Hainaut et al., 2008].

1. Identifying the file access statements

2. Identifying and understanding the statements and the data objects that
depend on these access statements

3. Rewriting these statements as a whole and redefining these data objects
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Figure 3.22 gives an example of a program conversion using this strategy:

Figure 3.22: Legacy Cobol code fragment converted using the Logic Rewriting
strategy[Hainaut et al., 2008]

The process is complex but produces a system in a total harmony with its new attached
database. Automation of this task is not possible, but tools facilitating the work can be
developed. The results of this strategy is optimal if the database migration process is
complex and the structures differ, due to a deep reverse and forward engineering phases
[Hainaut et al., 2008].
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Figure 3.21: Legacy Cobol code fragment converted using the Statements Rewriting
strategy[Hainaut et al., 2008]
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Chapter 4

General overview

We have introduced this thesis as being for a part a migration methodology from
relational towards non-relational databases and more particularly those which respect
Datomic’s data model.

Thus, this methodology describes a database platform migration and aims at stan-
dardizing the transition from the relational to the non-relational world. This process is
intended to support all relational databases in input and several non-relational databases
in output. Because of the lack of standardization among non-relational databases, we have
decided to select a data model more abstract at logical level to cover more than just one
NoSQL database technology.

Figure 4.1 illustrates the different processes described in the methodology and neces-
sary to perform in order to successfully migrate a database composing a system with
application program(s).

Figure 4.1: Migration schema of our methodology

Indeed, this methodology will be divided in two distinct parts, one dedicated to the
schema conversion process and the other to both data and program conversion processes.
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4.1 Schema conversion

Figure 4.2: Migration schema [Clève, 2009]

First, the schema conversion will be discussed. This is the first phase of our migra-
tion methodology and this one involves processes and techniques tinted in yellow in the
figure 4.3.

Figure 4.3: Database evolution processes and supporting techniques [Clève, 2009]

Figure 4.4 pictures the general approach chosen for the schema conversion from the
source to the target data model in our migration methodology.

This approach is called "semantic" because this allows getting an in-depth understand-
ing about the database and provides high-quality results [Clève, 2009].
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Figure 4.4: Semantic approach [Clève, 2009]

It is performed in successive steps and goes through three different abstract levels: con-
ceptual, logical and physical. This approach is further divided itself into two parts. First,
the database reverse engineering which produces the database conceptual schema from
the source DDL code and other information sources. Second, the database forward engi-
neering which carries out the transformation in the opposite way. It produces the target
DDL code from the database conceptual schema made by the database reverse engineer-
ing previously.
By the way, the chapter 6 will be sub-divided according to these two processes.
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4.2 Data synchronization

Successfully transform the source database’s schema towards a target schema is a critical
step in the database migration process but does not mark the end of it. Indeed, the
information stored in the source database cannot directly be used in the context of the
target database, and at this point the application program is not able to communicate
with the target database.

Thus, in order to complete the process, a data synchronization phase has to occur.
This phase consists not only of migrating the content of the source database to obtain
a target database up with the state of the system, but also of giving the means to the
application program(s) to query and update the target database to maintain it up to date.
Figure 4.5 illustrates the situation by highlighting the steps to be applied to complete the
migration:

Figure 4.5: Database platform migration [Cleve, 2009]

Two distinct processes can be distinguished and compose the data synchronization
phase. On the one hand, the data conversion process aims at extracting the existing
data stored in the source database, transforming it according to the target database’s
standards, and loading it into it. One the other hand, the program conversion process aims
at adapting the source code to ensure the communication between the target database
and the application program.

In this part, we will cover both data conversion and program conversion processes. In
a first time, we will detail possible approaches applicable to the processes, and we will
in a second time suggest a general methodology suitable to the specific case of database
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migration from relational to NoSQL and specifically Datomic. We will also illustrate this
methodology by applying it to our study case: the migration of a subset of the demographic
information of the Oscar system towards Datomic.
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Chapter 5

Tools support

5.1 Schema conversion

As seen in the previous chapter "General Overview", schema conversion is carried out
by successive steps.

The first one is the database reverse engineering and there are already a lot of technolo-
gies that support this process. Our method does not impose anything. That being said,
in the context of our case study, we only used DBMS logs to get traces and DB-Main for
building the conceptual schema from the DDL code.

The second step is the database forward engineering. From the conceptual schema built
by the previous step, the migration method generates corresponding understandable code
for Datomic thanks to DB-Main 9.1.6. This is a good choice because it allows integrating
plugins for adapting the transformation plan. In order to materialize the transformation
plan of our migration method, we developed our own plugins on Eclipse Kepler with Java
6. These plugins are indeed two java classes for the two phases logical design and coding.
The physical design is semi-automatable and the automatable part is already implemented
by DB-Main.

5.2 Data synchronization

Similarly to the schema conversion, the data synchronization phase is decomposed in
two steps.

The first step is the data conversion for which we employ an ETL tool (as described
in the "State of the art") to migrate data from a source to a target database. Many tools
exist, but we narrowed the selection in chapter 2 to those directly supporting migration
towards NoSQL. To illustrate the operation of this kind of tools, we used Pentaho Data
Integration on our case study: the OSCAR system.

93



Chapter 5 – Tools support

The second step is the program conversion, for which we employ both wrappers and
logic rewriting as described in chapter 3. While logic rewriting does not necessitate the
support of an external tool but the modification of the existing code, wrappers do consist
of self-developed or generated softwares. However, in the context of this thesis, we remain
at a conceptual level for this step and thus do not use nor developed concrete software(s).
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Chapter 6

Schema Conversion

6.1 Database reverse engineering

Although names differ between the figure 6.1 and the ascending part of the semantic
approach chosen for the schema conversion in the migration method (cf. figure 4.4, p. 89),
these picture the same processes.

Figure 6.1: Database reverse engineering process [Clève, 2009]

In our case, this process does absolutely not depend on NoSQL, the target technology
of our migration method but only focuses on the source technology which is a relational
database. It is important to know that the database reverse engineering process has al-
ready been experienced a lot of times on this kind of technology. It means that there are
already a lot of case studies.

We have already explained what is the goal of the database reverse engineering process
and its different phases in the chapter 3. However, these need to be adapted to our
migration method.

6.1.1 Physical extraction

First, the physical extraction being automatable does not require a lot of time. This
process only needs to chose the right software to extract from the DDL source code, the
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right physical schema. Many softwares allow that. Nevertheless, we advise to directly use
a software being a part of CASE tools and which has this extraction feature. Indeed,
the following processes will need a modeling tool and therefore it is more relevant to do
everything with the same software.

6.1.2 Logical extraction

Once the physical schema is produced, the logical extraction process enriches it by all
implicit structures and namely foreign keys missing. Since we do not want to be dependent
on one context, any method described sooner (cf. Chapter 3, Section 3.1.1.1.a, p. 60) can
be used depending on the cost allowed. For example, if there is not a lot of money to
do the reverse engineering, we advise to use DBMS logs for the SQL tracing and to do
the analysis based on heuristics. But clearly, the best way to carry out this process is to
use other methods like API substitution or overloading at the logical extraction. But if
the program is coded in Java for example, Aspect-based tracing is still a good solution.
About the tracing analysis, more is better.

6.1.3 Conceptualization

About the first step of the conceptualization process which is the untranslation, this
must first define a range of logical design transformations as pictured for example in the
figure 6.2. But instead of going from left to right, this step goes from right to left. The
complexity is to chose the right range of transformations according to the logical schema
in input. There is no guideline and this step needs a good experience.

Figure 6.2: Transformation from an attribute to a type of entity [Hainaut, 1996]

Then the second step also needs well trained professionals. As a matter of fact, this step
goes far beyond the schema as such because to be correctly executed, this step requires to
become familiar with the database history and all people who have worked on this before.
.

That being said, the complexity of the conceptualization process mainly depends on
the time allotted on it and goals defined. But more is obviously better.
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6.2 Database forward engineering

Now that the database reverse engineering process has been presented as the upstream
part of the figure 4.4, p. 89, it is time to describe the downstream part. This section is
about the database forward engineering which is already explained in the state of the art
(cf. figure 6.3, p. 97). This process is particularly essential to go from the source to the
target databases. This aims at proving the possibility of a migration from a relational
database towards a non-relational database which implements Datomic as data model.
As much as possible, this database forward engineering process has to guarantee that all
schema transformations all along this process preserve the initial semantics.

Figure 6.3: Database forward engineering [Clève, 2009]

6.2.1 Conceptual analysis

Since the migration method is about a database platform migration, there is no concep-
tual modification. The given conceptual schema made by the database reverse engineering
before remains unchanged. Though, the database conceptual design is of no benefit.

6.2.2 Logical design

A conceptual schema gives a clear view about the scope studied. But this kind of schema
is not understandable for a database management system and its data model, Datomic
in this case. The goal of this logical design is to adapt the conceptual schema according
to Datomic’s data model. It is possible thanks to the elaboration of an action/transfor-
mation plan gathering the whole necessary transformations. These transformations must
be semantics preserving. In order to prove that, GER formalism will be used as pivot
model and it will be essential to show as much as possible that these transformations are
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reversible. As much as possible because along the establishment of the transformation
plan several assumptions will have to be made to ensure the same information capacity.

6.2.2.1 Adapt the attribute names (and quit types of entities)

According to Datomic’s data model defined before and the relational databases, the
differences are such big between these two worlds that it is important keeping in Datomic
some relational concepts to make the transition between them possible. The first concept is
about the organization of attributes. In Datomic, there is no attachment to any concept
like tables in SQL. The notion of “type of entity” has no mapping in Datomic. But
related attributes still need to be considered together. Those are named clusters and are
graphically pictured like tables in SQL. About the name of these attributes, it is the first
action carried out by the transformation plan because this does not change the semantic,
only the syntax. It only means adapting names to map to rules of the nomenclature in
Datomic as pictured in the figure 6.4.

Figure 6.4: Example of names adaptation

Though, the architecture of an attribute name in Datomic is [:<X>/<Y>]. X is replaced
by the name of the type of entity where the attributes come from. It allows to keep track
of the origin semantic about the type of entity of each attribute. Then, Y is replaced by
the same attribute name.

6.2.2.2 Change attributes data type

After adapting attribute names, the transformation plan needs to change data types
of the conceptual model to map to Datomic’s data types. This is the second step of the
transformation plan and the table 6.1 describes the mappings between the different data
types keeping as much as possible the same range of values.

There are several possibilities to change data types but only of one them has to be chosen
in the context of an automation of the transformation plan. In the cases of “Varchar”,
“Numeric” and “Float”, these choices are underlined and totally arbitrary. Nevertheless,
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Data type of DB-Main Data type of Datomic
Char :db.type/string

Varchar
:db.type/string
:db.type/uuid
:db.type/uri

Numeric :db.type/long
:db.type/bigint

Date :db.type/instant
Boolean :db.type/boolean

Float
:db.type/float
:db.type/double
:db.type/bigdec

Compound /
Object type /
User defined /
Sequence /
Index /

Table 6.1: Data types mapping

the range of values is bigger for each data type in Datomic. Thus, the process can import
all data from source to target databases. This is lossless but if there is any change about
data into the target database, the migration in the opposite way could fail if the data
values exceed the range.

6.2.2.3 Transform IDs

The third step is about identifier (ID) in the context of databases. "An identifiant is a
particular property of an object such that no two occurrences of this object exist with the
same value" [Merise, 2014]. In the case of a conceptual schema, IDs may be composed
of one or more attributes. On the one hand, if there is only one attribute, it is directly
translated towards a Datomic attribute declared as unique. In fact, there is no primary
id in this data model. Graphically, this constraint is represented by the symbol “id’” (cf.
figure 6.5). However on the other hand, there is no direct mapping if the identifier has
more than one attribute. It is impossible to set the uniqueness constraint about a group
of attributes in Datomic. Thus either the migration method limits the range of conceptual
schema as inputs in the database forward engineering. Or, this constraint is implemented
at the applicative layer in order to compensate what Datomic does not implement itself.

That being said, each fact (Datom) added into a Datomic database is accompanied by
a unique number (entity id). This unique number is similar to an auto-increment tech-
nical ID through all the tables in a relational logical schema to further understand what
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it is. This identifier is not represented in the conceptual schema and is implicit in the
concrete operation of Datomic. But this is represented in the logical schema and consid-
ered as primary ID of the cluster because it has a real importance for the relationships.
Graphically, it is represented as a primary ID (in the world of relational databases). The
transformations about IDs can be seen in the figure 6.5.

Figure 6.5: Example of IDs transformation

Let us now prove that these transformations do not lose any information capacity
and the example pictured into the figure 6.5 is used. The attribute called “:prescrip-
tion/script_no” is the ID of the type of entity “prescription” at the conceptual level. By
definition, it means that it is not possible to have more than one entity with the same value
about this attribute. If an attribute is defined at logical level in Datomic as “unique”, it
means exactly the same thing (c.f. Chapter 2, Section 2.2.2.1). Then adding a technical
attribute considered as universal ID is justified because it works that way in Datomic and
it does not affect the semantic because it is totally out of the scope. Of course, any other
version of the database that the current one cannot be considered because Datomic keeps
several states of database content and structure.

6.2.2.4 Transform relationships

This step is the last but not the least. It takes care of relationships. Each relationship in
Datomic is represented by a reference attribute (with data type :db/ref) which contains
the entity id of fact referred. This entity id is the technical id added at the previous step.
But there is a data type problem that arises. Indeed, there is no constraint about what
the reference attribute points. It could reference any other cluster than the one intended.
Though, the transformation plan assumes that each reference attribute points the right
cluster and entities into this cluster. But also, there is another problem in Datomic’s
data model: all attributes are optional. Indeed, if the range of conceptual schemas is
retrained to those with only optional attributes, there will not be anything left. Though,

100



6.2. Database forward engineering

this migration method has to assume in the context of this transformation plan that there
is a required attribute constraint in Datomic.

Also, it is important to know that all relationships in Datomic are bi-directional. In
other words, for example, an order’s :order/customer attribute is a relationship between
an order entity and a customer entity and can be retrieved in either direction. It means
that the order can be found from the customer or the customer from the order.

That being said, in the context of the transformation plan of the database forward
engineering, only these kinds of relationship are taken in consideration:

1. One-to-Many

2. One-to-One

3. Many-to-Many

6.2.2.4.a One-to-Many

Assuming R, a relationship between two types of entity X and Y so that there is only
one entity of Y related to each entity of X, and several entities of X related to each entity
Y. The transformation method is the following:

1. The relationship R is translated into a Datomic attribute with ":db.type/ref" as data
type

2. This attribute is named «:X/Y » or « :Y/X » according to the cluster where it is
attached to

(a) X/Y - The attribute is attached to cluster X and its cardinality is one
(“:db.cardinality/one”)

(b) Y/X - The attribute is attached to the cluster Y and its cardinality is many
(“:db.cardinality/many”)
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Figure 6.6: One-to-Many transformation: First case

Figure 6.7: One-to-Many transformation: Second case
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But is this transformation semantics-preserving in both cases? Let us use the example
in the figure 6.6 to prove the first case. Indeed, this operation aims at transforming a
relationship into an attribute (foreign key). There is a class of these transformations
which is already proved by successive applications of the project-join transformation and
the composition transformation (cf. tables 3.4 and 3.5). Hence, here is the transformation
T according to the example where P represents the abstract view of the left schema and
Q represents the abstract view of the right schema. Also, L and I are subsets of attributes
representing the rest.

T P

prescription,provider:entities
desc-of-prescription(prescription,prescription/technical_id,L)
desc-of-provider(provider,provider/technical_id,I)
R(prescription,provider)
desc-of-prescription[prescription]=prescription
desc-of-provider[provider]=R[provider]=provider

Q

precription,provider:clusters
desc-of-prescription(prescription,prescription/technical_id,prescription/provider,L)
desc-of-provider(provider,provider/technical_id,I)
desc-of-prescription[prescription/provider] ⊆ desc-of-provider[provider/technical_id]
desc-of-prescription[prescription] = prescription
desc-of-provider[provider] = provider

Table 6.2: One-to-Many relationship transformation: First case

Since the second case (c.f. figure 6.6) is also a transformation from a relationship to an
attribute, this one applies successively the composition and the project-join transforma-
tions too.

T P

prescription,provider:entities
desc-of-prescription(prescription,prescription/technical_id,L)
desc-of-provider(provider,provider/technical_id,I)
R(prescription,provider)
desc-of-prescription[prescription]=prescription
desc-of-provider[provider]=R[provider]=provider

Q

precription,provider:clusters
desc-of-prescription(prescription,prescription/technical_id,L)
desc-of-provider(provider,provider/technical_id,provider/prescription,I)
desc-of-provider[provider/prescription] ⊆ desc-of-prescription[prescription/technical_id]
desc-of-prescription[prescription] = prescription
desc-of-provider[provider] = provider

Table 6.3: One-to-Many relationship transformation: Second case
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Though, these two cases are semantically equivalent. The first one is children pointing
ancestors and the second one is the opposite. However, in the second case, there is a
problem about the normalization. Indeed, all prescriptions should be checked to see if
each one is different from the others. Even though there is no normalization issue in
NoSQL, the first one has been chosen in the context of this transformation plan for its
promiscuity to relational model. Indeed, there is no difference about efficiency between
both since reference attributes are bi-directional.

In conclusion of One-to-Many relationship, [1..1] –> [0..N] has just been covered and
there are other ones. Assuming the first case, let us explain each of it:

• [0..1] -> [0..N]: Since all attributes in Datomic are not required, this kind of
relationship is easier to translate. According to our example, the only difference
about the transformation T is that some prescriptions have no provider. It means
that the reference attribute is optional.

• [0..1] -> [1..N]: This relationship means that each provider has at least produced
one prescription. In the first case, the only difference is that the reference attribute
is optional again.

• [1..1] -> [1..N]: Even though the abstract views would change to represent that all
providers have at least produced one prescription, there is no final difference with
the first case.

6.2.2.4.b One-to-One

Assuming R, a relationship between two types of entity X and Y so that there is only
one entity (at most) of Y related to each entity of X, and one entity (at most) of X related
to each entity Y. The transformation method is the following:

1. The relationship R is translated into a Datomic attribute with ":db.type/ref" as data
type. This attribute is mono-value with the uniqueness constraint to meet maximum
limits (1) on both sides of the relationship.

2. This attribute is named «:X/Y » or « :Y/X » according to the cluster where it is
attached to

(a) X/Y - The attribute is attached to cluster X

(b) Y/X - The attribute is attached to the cluster Y
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Figure 6.8: One-to-One transformation: First case

Figure 6.9: One-to-One transformation: Second case

Again the goal aims at proving that this transformation method is semantics-preserving
in both cases. The examples pictured in the figures 6.8 and 6.9 are used to demonstrate the
case of one optional side whereas the other is required. Once again, these transformations
go from a relationship to an attribute (foreign key). According to the application of the
project-join and the composition transformations as described in the tables 3.4 and 3.5,
both preserve the semantics in the light of their respective abstract view (cf. tables 6.4
and 6.5).

T P

X,Y:entities
desc-of-X(X,X/technical_id,L)
desc-of-Y(Y,Y/technical_id,I)
R(X,Y)
desc-of-Y[Y]=Y
desc-of-X[X]=R[X]=X

Q

X,Y:clusters
desc-of-X(X,X/technical_id,X/Y,L)
desc-of-Y(Y,Y/technical_id,I)
desc-of-X[X/Y] ⊆ desc-of-Y[Y/technical_id]
desc-of-X[X] = X
desc-of-Y[Y] = Y

Table 6.4: One-to-One relationship transformation: First case

Thus, these two ways to transform One-to-One relationship work and are semantically
equivalent. The first case involves the introduction of a required attribute. Without any
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T P

X,Y:entities
desc-of-X(X,X/technical_id,L)
desc-of-Y(Y,Y/technical_id,I)
R(X,Y)
desc-of-Y[Y]=Y
desc-of-X[X]=R[X]=X

Q

X,Y:clusters
desc-of-X(X,X/technical_id,L)
desc-of-Y(Y,Y/technical_id,Y/X,I)
desc-of-Y[Y/X] ⊆ desc-of-X[X/technical_id]
desc-of-X[X] = X
desc-of-Y[Y] = Y

Table 6.5: One-to-One relationship transformation: Second case

assumption, there is no constraint like that in Datomic. But even though the second case
seems easier to implement, this one involves also a big constraint. Indeed, each entity
of X has to correspond with one of Y. This constraint cannot be implemented without
the applicative layer. In any case, the program will need adaptation and this is the first
case which has been chosen in the context of an automation for its promiscuity with the
relational world.

To cover all One-to-One relationships, other ones that only [1..1] <–> [0..1] have to be
discussed and here are some differences according to the first case:

• [1..1] <-> [1..1]: In this case, the relationship is equivalent. In any way the ref-
erential attribute is, there will not be any difference between this one and the first
case about semantics.

• [0..1] <-> [0..1]: Unlike other One-to-One relationships, a referential optional
attribute has to be added. There is no implementation of the required attribute
constraint in this way. But still needs the implementation of the constraint explained
just above.

6.2.2.4.c Many-to-Many

Assuming R, a relationship between two types of entity X and Y so that there are
several entities of Y related to each entity of X, and several entities of X related to each
entity Y. The transformation method is the following:

1. The relationship R is translated into a Datomic attribute with ":db.type/ref" as data
type. This attribute is multi-valued.
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2. This attribute is named «:X/Y » or « :Y/X » according to the cluster where it is
attached to

(a) X/Y - The attribute is attached to cluster X

(b) Y/X - The attribute is attached to the cluster Y

Creating another type of entity and two references pointing to the other two types of
entity like in the relational model could be also considered. But that would be totally con-
trary to the idea of NoSQL. Indeed, NoSQL has no interest in keeping the normalization.
And more than that, this transformation involves a decline in performance.

Figure 6.10: Many-to-Many transformation: First case

Figure 6.11: Many-to-Many transformation: Second case

Nevertheless, this transformation also belongs to the same class as others because this
one involves likewise a relationship into an attribute (foreign key) as pictured in fig-
ures 6.10 and 6.11. Again, thanks to these project-join and composition transformations
(cf. tables 3.4 and 3.5), these two ways to adapt Many-to-Many relationships are correct
according to the initial assumptions.

Since the automation is needed, there is a choice to make. The first case involves a
required attribute but the second one involves a big constraint too like in the context of
One-to-One relationships. Indeed, it is essential that each add of an entity X is subject of
a transaction where an entity Y is added too to preserve the semantic of R. Once again,
this transformation plan considers the first case because the mandatory attribute is easier
to implement at the applicative layer.
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T P

X,Y:entities
desc-of-X(X,X/technical_id,L)
desc-of-Y(Y,Y/technical_id,I)
R(X,Y)
desc-of-Y[Y]=Y
desc-of-X[X]=R[X]=X

Q

X,Y:clusters
desc-of-X(X,X/technical_id,X/Y,L)
desc-of-Y(Y,Y/technical_id,I)
desc-of-X[X/Y] ⊆ desc-of-Y[Y/technical_id]
desc-of-X[X] = X
desc-of-Y[Y] = Y

Table 6.6: Many-to-Many relationship transformation: First case

T P

X,Y:entities
desc-of-X(X,X/technical_id,L)
desc-of-Y(Y,Y/technical_id,I)
R(X,Y)
desc-of-Y[Y]=Y
desc-of-X[X]=R[X]=X

Q

X,Y:clusters
desc-of-X(X,X/technical_id,L)
desc-of-Y(Y,Y/technical_id,Y/X,I)
desc-of-Y[Y/X] ⊆ desc-of-X[X/technical_id]
desc-of-X[X] = X
desc-of-Y[Y] = Y

Table 6.7: Many-to-Many relationship transformation: Second case

Finally there are other kinds of Many-to-Many relationships than [1..N] <–> [0..N].
Here are some differences according to the first case:

• [0..N] <-> [0..N]: Unlike our choice to take the first case, here, we have to add a
referential attribute optional. But that is the only difference.

• [1..N] <-> [1..N]: In this case, there is no difference in the final result with respect
to the first case chosen when one part is optional and the other is required. That
being said, this case involves also implementing the other constraint as explained
above.
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6.2.2.5 Transformation plan

All the transformations described so far can be gathered into one transformation plan.
This one does not cover all possible constructions of a conceptual schema. However, it is
already enough to adapt the case study explained later from the conceptual to the logical
level according to Datomic’s data model.

Figure 6.12: Simple transformation plan

That being said, this logical step mainly highlights all the difficulties to adapt some-
thing very structured to a technology which is "schema-less". A lot of assumptions have
been made to keep proving the semantics-preserving like entity concept, required attribute
and others. However, the chapter about program conversion will make sense of this trans-
formation plan by exposing under which context this can be considered as lossless.

6.2.3 Physical design

The physical design is the opportunity to discuss about the optimal implementation of
Datomic. This step has two distinct goals. First, this is the last step before the translation
into an understandable code. Thus, the physical design needs to produce an understand-
able physical schema according to the target technology. Although with Datomic, the
target technology is already chosen at the logical level because unlike in the relational
world, NoSQL is not standardized and there is no common logic between all the non-
relational databases. Second, this step has for goal to enrich the logical schema according
to some technical requirements to improve the queries speed.

Since the first point is already treated, let us explain the second point, which focuses
on one and only issue: cost-benefit. The physical design is guided by this question re-
garding technical requirements. In other words, is that particular mechanism worth to be
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implemented according to the performance gain provided? There are two different ways
to consider these mechanisms.

6.2.3.1 Internal structure

The internal structure focuses on the relevance of adding some indexes on some at-
tributes. In Datomic, there are already indexes on the technical id and all attributes are
declared as unique. Since these attributes are the most often queried, this feature allows
speeding the requests up. However, if in the definition of any attribute, ":db/index" is
true, this attribute will be indexed too. Also, all referential attributes have to be indexed.
In this manner a query which involves more than one cluster will be faster. Also, some
other attributes could also be indexed depending on the study of the context concerned.

Despite the system is faster thanks to these indexes, those are purely technical. It means
that in each index, there is no value but just reference to it. But Datomic implements
fulltext indexes too. It is another kind of index where the value is directly store in it. This
index is particularly interesting when it is declared on an attribute where the data type
is string. Indeed, it allows to speed queries up on the name searched. Though, this fits
very well with other attributes than technical ids, unique and referential attributes.

6.2.3.2 External structure

This is not the schema which is concerned when it is about the external structure but
everything around Datomic. As described sooner (cf. Chapter 2, Section 2.2.2.1), Datomic
is a database management system without database and it needs a storage service to work
in production. Each storage service supported by Datomic has been already explained.
But which one would be optimal? This is the question of the external structure. And the
answer will be discussed in the Performance and Benchmarking chapter of this thesis.
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6.3 Coding

Finally, Coding is the last step of database forward engineering which produces under-
standable code for Datomic’s data model from the physical schema.

Datomic only understands data structures as lists of maps. These structures are com-
posed of only one element: attribute. From the physical schema, the Coding process trans-
lates every attribute and some of their constraints (uniqueness, cardinality, data type,
access key and component) as pictured in the figure 6.13.

Figure 6.13: Example of an attribute generation

The table 6.8 explains each line of this example in more details.

Attribute properties into the
physical diagram

Attribute properties into
Datomic

Name :demographic/demographic_no :db/ident
:demographic/demographic_no

Type :db.type/long :db/valueType :db.type/long
Uniqueness Yes :db/unique :db.unique/identity
Cardinality [1..1] :db/cardinality

:db.cardinality/one
Index No /
Fulltext No /

Component No /
Attribute location - :db/id #db/id[:db.part/db]

Attribute installation - :db.install/_attribute
:db.part/db

Table 6.8: Explanation about each row of the attribute pictured in this figure 6.13

That being said, the other constraints need to be implemented at the application layer
or another one than data as already exposed during the logical design explanation. Here
are some features/constraints in 6.9 that there is no way to represent into the Datomic’s
data model.
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Constraints/Features Idea of resolution
Required attribute Rigour of developer and/or a

mechanism that allows rejecting
a transaction if it does not insert
a fact without an a attribute re-
quired into a cluster

Composed id (with multi-attributes) /
Check After adding any fact, a daemon

could check if the last transac-
tion did not violate the different
clauses defined

Trigger After each transaction, a dae-
mon goes trough the modifica-
tions coming from this transac-
tions and checks if the trigger
clause is still true

Stored procedures A function into the program

Table 6.9: Additional constraints/features which need applicative implementations

6.4 Case study

We have chosen a subset of the OSCAR System related to prescriptions area as case
study. There was no documentation at all. Though, we had to recover this documentation
and as explained before, the best way to do that was to apply the database reverse
engineering process.

First, we did not need to extract a physical schema because the one related to pre-
scriptions was already available (cf. figure 6.16). Even if this was a subschema of what we
have discovered later during the logical extraction, we will keep this one as the reference
because the rest does not introduce any new construction.

Next, we carried out the logical extraction to recover implicit foreign keys and to get
rid of physical constructions such as indexes. To do so, we ran the system and executed
all operations related to prescriptions while keeping the trace of execution into the logs
of the databases chosen. Indeed, several storage spaces are involved by prescriptions into
this system. Also, we had no contact nor the budget to apply more methods. Then based
on some heuristics, we retrieved a lot of foreign keys which were not declared into the
DDL source code as we can see in the figure 6.16.

From this logical schema, we have applied the conceptualization process by using the
software "DB-main" which already implements the transformation plan for this kind of

112



6.4. Case study

database reverse engineering, and we obtained this conceptual schema as depicted in the
figure 6.17.

Finally, we reduced the conceptual schema (cf. figure 6.17) according to the subschema
(cf. figure 6.15) to obtain the conceptual subschema about prescriptions as pictured in
the figure 6.18.

Once the conceptual schema was produced, the database forward engineering process
must be applied to complete the schema conversion of our migration method.

This process includes the successive application of three steps (i.e. logical design, phys-
ical design and coding). Indeed, the conceptual analysis had no interest since this is a
database platform migration.

Though, we used the DB-Main plugin that we have developed to automate the database
forward engineering process, which can be download on “http://crespeigneromain.
wix.com/thesis”. This plugin implements the transformation plan described in the sec-
tion 6.2. By the successive application of the three steps, we have obtained the logical
and physical schema of prescriptions area of OSCAR system represented respectively in
the figures 6.19 et 6.20. But also, the plugin has generated an EDN file from the physical
schema. This file consists of lists of maps which is understandable for Datomic and as
much as possible true to the original semantics of physical schema in input. Here is a
sample of the EDN file generated from the physical schema. The figure 6.14 pictures the
attribute ":demographic/demographic_no" in Datomic.

Figure 6.14: Example of an attribute generation

Since the database forward engineering process described in the context of this migra-
tion method is able to produce an understandable code for Datomic from the conceptual
schema produced by the database reverse engineering process before, it is allowed to state
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that the schema conversion covers prescriptions area of the OSCAR system. Even though,
this statement has to be qualified with all assumptions taken to reach this point.
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Figure 6.15: Physical subschema of OSCAR database about prescribing
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Figure 6.18: Conceptual subschema of OSCAR database about prescribing

118



6.4. Case study

Figure 6.19: Logical schema of OSCAR database about prescribing according to Datomic
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Figure 6.20: Physical schema of OSCAR database about prescribing according to
Datomic
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Data conversion

7.1 Overview

This phase takes place during the database migration process after the target database
schema has been determined. Thus, we dispose of an existing database containing data, an
empty target database and source program(s). The objective of this phase is to convert
the data contained in the source database to fit the structure of the target database
and insert it into it. As observed in the state of the art, the data conversion phase of a
database migration relies systematically on an Extract-Transform-Load process which we
represented by the figure 3.12:

Figure 3.12: Generic Migration Architecture (repeated from page 75)
[Klaus, 2009]

The extract process will first copy the data to decouple it from the application and then
filter it to transform and load only relevant and necessary information.

The transform process will adapt the extracted data’s structure in order to fit to the
schema obtained after the schema transformation. In the context of this thesis, our case
study aims at adapting the original relational data to the Datomic schema we obtained
and that is described in the previous chapters.

The load process will insert the transformed data into the target database, thus com-
pleting the data conversion phase.
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This pattern is very general and systematically applied when it comes to data migra-
tion. However, multiple strategies exist and extend the global and abstract concepts of
Extract, Transform and Load. In this chapter, we will first detail the different existing
data migration methods, then motivate our choice of one of them and furnish a way to
select the appropriate tool related to this method in the case of migration towards NoSQL.
We will at last illustrate this method by applying it to our case study, the migration of a
subset of the demographics information from the OSCAR system.
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7.2 Data conversion approaches

We have given a general pattern of data conversion for database migration. In its
concrete application, multiple different strategies can be distinguished. We will classify
here general groups of data conversion methods, then propose a general method that will
be detailed when applied to our case study. Shweta, Pratiksha and Bendre identify three
different methods to migrate the data [Shweta et al., 2014]:

7.2.1 Data migrated manually beforehand

This method is performed when the old system cannot provide data required by the new
system. The raw data has to be reworked before switching to fit in the target database.
It is very costly and has a high error ratio [Shweta et al., 2014].

The Row-Oriented Implementation Paradigm A script is written for each object
type and encloses the mapping between the object in the old database and its counter-
part structure in the target database within a loop. Thus, the migration is oriented on
each row sequentially. The paradigm specifies the migration in an imperative way, easily
understandable and hiding data complexity [Klaus, 2009].

The Set-Oriented Implementation Paradigm Data are treated by sets, which are
data structures more complex than simple rows. A script is written for each set and
defines the mapping between the set in the old database and its counterpart structure in
the target database [Klaus, 2009].

7.2.2 Data generated by new system afterwards

This method designates the generation of data by the new system after switching from
the old database to the new one [Shweta et al., 2014].

7.2.3 Data migrated by tools beforehand

This method consists of using a data migration tool called ETL (Extract, Transform,
Load) that will perform the steps described earlier. Multiple tools of this kind proposing
a wide range of functionalities exist [Shweta et al., 2014]. Those kinds of tools will be
detailed in the next subsection.
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7.2.4 Comparison

In general, those approaches are not necessarily mutually exclusives and we will now
discuss of a way to apply and combine them in a strict method. In order to compare
relevant approaches, we will first sort them. In the context of this thesis, we will put
aside for now the approach 7.2.2 since it typically takes place once the migration has been
successfully performed, after the program transformation phase, which goes further than
the subject we are working on here.

Moreover, for more clarity, we propose to decompose the Data migrated manually
beforehand in two groups of methods, and to rename the Data migrated by tools beforehand,
which results in the following classification:

1. Manual data migration: Designates data migration methods that manually trans-
fer data from one database to the other, possibly copying and pasting information
or literally typing each row

2. Semi-automatic data migration: Encompasses Haller’s Row-Oriented Implemen-
tation Paradigm and Set-Oriented Implementation Paradigm, designates data mi-
gration methods that are realized by implementing one or multiple scripts that will
be manually orchestrated and called

3. Automatic data migration: Designates data migration methods that are realized
automatically by the use of an ETL tool

To compare those concepts, we build a comparative table 7.1 of those sorted methods
that will guide the construction of this method.

All those approaches are relevant in the context of migration towards NoSQL and thus
are all candidates for being a part of a data conversion method. The important costs
and risks of potential errors and data loss that can be observed for the manual and
semi-automatic approaches tend to suggest the use of an automatic approach (i.e. an
ETL tool) self-developed or already existing, at least for relatively large databases. This
choice is comforted by both academical world and business experiences [Clève et al., 2010]
[Devart, 2013]. That said, it is conceivable that some data structures might be too complex
to be parsed by an automatic tool. In this case, we propose using of a manual or semi-
automatic approach for those data types only. The next section will detail the choice
between a self-developed solution and an existing one, and in this case chosen on which
criteria. In all cases, a verification and validation phase is required in order to ensure the
integrity of migrated data. Thus, the method we suggest for relational data conversion
towards a Datomic structure is the following:
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1. Select or develop an ETL tool

2. Perform data migration using this tool

3. (If some data types are too complex to be directly migrated using the tool)
Employ the manual (purely manual or semi-automatic) approach for
those types

Method group Cost Risk Details
Manual data mi-
gration

Very high Very high The cost is very high for each data conversion
and since there is a heavy human involve-
ment, the risk of errors and data loss is very
high too. Thus it is a suitable solution for
small databases very well known by the team
and whose manual migration cost is lower
than the cost of understanding/developing a
tool or implementing a semi-automatic solu-
tion.

Semi-automatic
data migration

High High There is still the need for important human
involvement and high understanding of the
database structure for the team, but the par-
tially automatic approaches slightly reduce
costs and risks. Indeed, the cost will now re-
side in the implementation of scripts and pos-
sibly in understanding the database.

Automatic data
migration

Variable Reduced Depending on the use of an existing tool or
the internal development of a full ETL tool,
the cost will reside in understanding the tool
or developing it. Risks of data loss and errors
remain present but are reduced by the fully
automatic approach.

Table 7.1: Data migration methods comparison
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7.3 ETL tools

In this section, we assume that the choice of relying principally on an ETL tool is made.
At this step of the data conversion phase, two options are possible and will be discussed
now:

1. Developing an ETL tool

2. Employing an existing ETL tool

ETL tool development is a complex field of study and has been the subject of mul-
tiple research papers. Example of those research papers are the work of P. Vassiliadis
who contributed at the redaction of A Methodology for the Conceptual Modeling of ETL
Processes [Simitsis et Vassiliadis, 2003], A generic and customizable framework for the de-
sign of ETL scenarios [Vassiliadis et al., 2007] and Deciding the Physical Implementation
of ETL Workflows [Tziovara et al., 2007]. Those articles describe a complete process of
ETL-scenario implementation, from the conceptual design to the physical implementa-
tion. Since a self-developed ETL tool is not the approach we suggest in our method, the
development process of an ETL will not be detailed in this work and we will focus on
benefits and costs of the global implementation.

In Data Warehousing Tool Evaluation – ETL Focused [Rodriguez et al., 2012], Ro-
driguez, Lawson, Molina and Gutierrez confirm the heavier cost of self-developing a solu-
tion in comparison to the understanding and use of an existing tool. Furthermore, most of
the experiences and testimonies concerning this matter come from the industry, scientific
papers generally assuming the choice is already made and preferring to analyse how to
design and implement a tool or how to select an existing tool. Yet, we have taken care
to avoid ETL vendors’ articles and to rely only on independent experts’ or customer-side
opinions.

Beyond the complexity drawback, we can also identify advantages of the implemen-
tation of a self-developed solution. Indeed, a custom tool allows more freedom in its
design and permits narrowing the development complexity to the source and target data
structures of the migration. Furthermore, depending on the users’ needs, typical ETL
tool features such as a Graphical User Interface might be skipped. These characteristics,
added to the synthesis of existing tools’ strengths and weaknesses realized by Joy Mundy
[J., 2008], Data Warehouse/Business Intelligence consultant for the Kimball Group, allow
us to erect the following table 7.2:
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Self-developed ETL tool Existing ETL tool
Advantages - Warranty of the understanding

of the solution
- Freedom in the development
- Solution suited to the exact
needs

- Visual flow and self-
documentation
- Structured system design
- Operational resilience
- Data-lineage and data-
dependency functionality
-Advanced data cleansing func-
tionality
-Performance

Drawbacks - Complexity and costs of devel-
opment
- Possibly less advanced
functionalities

- Potential software licensing cost
- Uncertainty
- Reduced flexibility

Table 7.2: ETL solutions comparison

In general, we can conclude that self-developed solutions tend to suit small and simple
projects (i.e. few data types, simple structures, small-sized databases), recurrent migra-
tions and ETL-experienced users. Indeed, small and simple projects will lead to less and
simpler transformations to implement. What is more, a self-developed tool is the most
profitable when it is used multiple times, and recurrent migrations will lead to a team
experienced in migrating data and familiar with ETL concepts. In those cases, the cost of
developing a custom solution will be smaller than the cost of understanding and/or paying
a fee for an existing solution. The use of an existing ETL tool will be more interesting for
punctual and/or complex migrations, performed by less experienced teams, thanks to its
advanced and more accessible functionalities.

We make the assumption in this thesis that the system to migrate has a certain level
of complexity, comparable to the complexity level of our case study (the OSCAR system)
and that users are not ETL experts. Thus, we will opt in the next steps for the use of an
existing tool. Furthermore, this thesis aims at migrating towards a NoSQL database, more
specifically a Datomic database. Those technologies being relatively young, not all ETL
tools can be used for data conversion. However, the proportion of ETL tools proposing
a NoSQL output is increasing. We depicted in the Technological Background the main
ETL tools supporting migration towards NoSQL.
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7.3.1 ETL tool selection

There is a wide range of existing ETL tools, each with its strengths and weaknesses.
Some tools will perform better than others depending on the type, amount or structure
of data they take as an input or produce as an output. In this section, we will define a
selection method, and then follow it to select a suitable ETL tool for data migration from
a relational database to a NoSQL and Datomic database.

In their article Engineering trade study : extract, transform, load tools for data mi-
gration, Henry, Hoon, Hwang, Lee and DeVore defined a strict method for comparing
and selecting ETL tools. This approach consists of three key elements : Figures of Merit,
Criteria and Test scenarios [Henry et al., 2005].

Figures of Merit Figures of Merit represent the general measures of quality that will
allow the user to evaluate the ETL tool. There are six of them [Henry et al., 2005]:

1. Cost The cost of the use of a system represents both the eventual subscription or
usage fee and all implicit using costs

2. Ease of use The easier a tool will be to use, the more profitable it will be for users

3. Flexibility Flexibility represents the width of the range of features and function-
alities and the ability of a tool to be customized for specific uses

4. Robustness Robustness represents the ability of a tool to react to unplanned en-
vironment changes

5. Scalability Scalability represents the ability of a tool to cope with different volumes
of data and remain reactive

6. Speed The speed represents the overall performance of the tool

Criteria Criteria are the concrete elements of the tool that will be evaluated regarding
to the figures of merit. Because of the complexity of ETL tools, criteria will be gathered
in eight general groups [Henry et al., 2005]:

1. Product Architecture Related to the implementation of the product, encompasses
the installation process, the platform support, the recovery logic, the restart logic,
the intermediate storage, the parallel support and the documentation

2. Data Support Related to the types of data supported by the tool, encompasses
data formats support, data type support and real-time data
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3. Data extraction Related to the operation of the data extraction phase of the ETL
tool

4. Data Transformation Related to the operation of the data transformation phase
of the ETL tool, encompasses pre-built rules and transformations, rule-based trans-
formations, support for all basic mathematical and statistical functions, basic data
cleansing functionality availability, recursive processing support and code/scripting
support

5. Data Loading Related to the operation of the data loading phase of the ETL tool

6. Matching Related to the ability to match and merge information between multiple
data sets

7. Metadata Management Related to the management of Metadata, encompasses
extensibility, open storage format, metadata sharing and content reporting

8. Development Environment Related to the quality of the environment the user
will use to perform the migration, encompasses the Graphical User Interface sup-
port, the command line support, the integrated toolset, the sequential processing,
the debugging support, the ETL reporting, the centralized administration and the
scheduling

Test scenarios The ETL tool will be tested by following defined test scenarios that
will challenge criteria regarding figures of merit. Those scenarios should ideally be similar
in terms of data and functionalities to the final ETL processing. Also, they have to be
effective in testing each criterion and scalable [Henry et al., 2005].

Method Depending on the needs of the users, more or less importance will be given to
each figure of merit and criterion. To do so, weights will assigned to each element, thus
representing its relative importance in the general evaluation. The sum of the weights of all
criteria must equal 1, and the same goes for the sum of the weights of all figures of merit.
Put in another way, the weight repartition follows this equation [Henry et al., 2005]:

Figure 7.2: Weights repartition [Henry et al., 2005]
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Users will then follow the test scenarios and progressively attribute values from 1 to
5 to each criterion from each figure of merit. Values represent the degree of satisfaction
according to the following scale [Henry et al., 2005]:

Figure 7.3: Quantitative scale [Henry et al., 2005]

Scores will then be stored in an evaluation matrix such as depicted in fig 7.4
[Henry et al., 2005]:

Figure 7.4: Evaluation matrix [Henry et al., 2005]

The fulfilled evaluation matrix will then be used to compare the tested ETL tools’
results and select the most fitting one for the data migration in its particular context.

In the context of defining a database migration from relation towards NoSQL (Datomic)
method, we will now use those concepts and assign weights to figures of merit and criteria
in order to ease the comparison between ETL tools. To do so, we have to go further than
the technological context and make multiple assumptions. We suppose the migration
corresponds to a generic case we specify and is performed by a generic user profile we also
define. Here are the assumptions we make:

1. The migration is a one-time migration of a rather complex system including a wide
database structure and a consistent volume of data from a relational database to a
NoSQL database

2. The user is not an expert in database migration and has limited resources (i.e. the
user cannot or does not aspire to invest too much in an ETL tool he will not use
anymore once the data is migrated)
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Those two assumptions allow us to build tables 7.3 and 7.4 that assign weights to the
different figures of merit and criteria, thus providing a mean to compare tools and narrow
the possible ETL tools to be employed for such a migration.

Yet, though this weights assignment is fitting for the particular context we described,
it remains very specific and the slightest change in the migration environment can lead to
a different analysis of priorities. We do not pretend these tables to be universally fitting
whatever the context but we consider them relevant in the particular case of this thesis
and regarding the assumptions we made.

Figure of merit Weight Justification
Cost 0.20 As assumed, cost is an important metric and

even after filtering paying solutions, usage
costs still matter

Ease of use 0.20 As assumed, the user is not an expert in data
migration and thus needs an understandable
interface

Flexibility 0.20 The relational to NoSQL migration is not yet
very common in the industry, thus the tool
needs to be flexible enough to provide a way
to migrate towards an uncommon technol-
ogy, specifically Datomic

Robustness 0.10 Since the migration is a one-time process and
we aim in a first time at maintaining both
database working, the data conversion pro-
cess can possibly be restarted in case some-
thing goes wrong

Scalability 0.20 As assumed, the volume of data to be mi-
grated has a consequent size that the tool
has to cope with

Speed 0.10 Since the migration is a one-time process, the
performance of the data conversion process is
not the most important metric evaluated

Table 7.3: Weights for figures of merit

131



Chapter 7 – Data conversion

Weight
Ease of use
Product Architecture 0.20
Data Extraction 0.15
Data Transformation 0.15
Data Loading 0.15
Matching 0.15
Metadata Management 0.05
Development Environment 0.20
Flexibility
Product Architecture 0.10
Data Support 0.25
hline Data Extraction 0.15
Data Transformation 0.15
Data Loading 0.15
Matching 0.05
Metadata Management 0.05
Development Environment 0.10
Robustness
Product Architecture 0.20
Data Support 0.05
Data Extraction 0.15
Data Transformation 0.15
Data Loading 0.15
Matching 0.10
Metadata Management 0.10
Development Environment 0.10

Weight
Scalability
Product Architecture 0.10
Data Extraction 0.20
Data Transformation 0.20
Data Loading 0.20
Matching 0.05
Metadata Management 0.20
Development Environment 0.05
Speed
Product Architecture 0.05
Data Extraction 0.30
Data Transformation 0.30
Data Loading 0.30
Matching 0.05

Table 7.4: Weights for criteria

It is now possible to fill evaluation matrices by testing the operation of ETL tools on one
or more similar testing scenario(s). Since there exist many different tools and testing all of
them would go beyond the scope of this thesis, we will not detail their evaluation in this
section. We selected five tools we consider fitting for a database migration towards NoSQL
and Datomic that are described in the Technological Background chapter. Similarly, the
operation of the extract-transform-load process differs from one tool to another and we
will not detail it for all of them. We will illustrate Pentaho Data Integration’s operation
on our case study in the next section.
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7.3.2 ETL tools and Datomic

The case of a migration towards Datomic rather than any other NoSQL technology
is particular since Datomic is recent and thus few to no documentation of successful
migrations can be found. The difficulty is that at the moment this thesis is written, no
established ETL tool allows direct loading functionality towards Datomic.

Yet, that barrier does not mean that such a data conversion is not conceivable. Indeed,
as we have discussed in chapter 2 Datomic is directly compatible with multiple NoSQL
technologies such as Riak, Cassandra, Couchbase, DynamoDB or Infinispan. Moreover,
ETL tools described in the same chapter provide data loading functionalities towards
some of those technologies (depending on the tool employed). Being directly compatible
means that Datomic can use those technologies as storage system and can be installed on
a partition reserved for it and respecting its data model. Consequently, it is conceptually
possible to set a Datomic database up on the top of one of those storage technologies and
once that binding is realized to use an ETL tool to load data in that system. Though,
this remains a conceptual assumption since we did not test it in this thesis, and studying
the gap between Datomic and data storage technologies would be an interesting extended
work.
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7.4 Case study

The purpose of this section is to illustrate the data conversion method we described and
thus the concrete operation of an ETL tool on our case study : the OSCAR system. More
specifically, the case study we have been working on is a subset of OSCAR’s database
encompassing tables related to demographic and prescription information. Figures 6.16
and 6.19 depict the logical schemas of our case study before and after being converted to
Datomic’s data model.

We chose to illustrate the data conversion process for the content of the demographic
table. Figure 7.5 details the source and logical schemas of this table’s conversion.
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Figure 7.5: Source and target logical schemas of the demographic table from our case
study
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For illustration purpose, we chose arbitrarily the tool Pentaho Data Integration to per-
form the process given it is free, commonly used, well documented and supporting NoSQL
technologies. As discussed in section 7.3.2, no established ETL tool provides a direct load-
ing functionality towards Datomic, but such a process can be realized towards a directly
compatible with Datomic data storage technology. Among available technologies, we chose
to load the data within a Cassandra database, Cassandra being directly compatible with
Datomic. Consequently, the first step of the conversion was to install Cassandra on an
Ubuntu virtual machine, a process that we will not detail here. We also installed Pentaho
Data Integration (PDI) on the same machine.

We then exported the source schema in a flat CSV file and manually populated it for
50 rows. This file is used as the source of the ETL process. Thus, that data (showed in
the following figure) is no real data from OSCAR but artificial data used only for the
example. Figure 7.6 illustrates the first 11 fields of the file and their related 40 first rows.

In Pentaho Data Integration, we created a new transformation and defined four steps
for it as pictured in figure 7.7.

Figure 7.7: Extract-Transform-Load steps for our example
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Figure 7.6: Excerpt of the input flat CSV file

7.4.1 CSV file input

This step consists of selecting the CSV file that will be the input of the transformation,
along with determining which symbols are delimiters of fields. It is then possible to scan
the file to get the fields that will compose the table and precise their characteristics. The
interface used for this step is depicted in figure 7.8 and its output can be previewed in
figure 7.9.
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Figure 7.8: CSV file input transformation interface in PDI

7.4.2 Add field

This step consists of inserting the field :demographic/technical_id using the Add se-
quence transformation of PDI. This transformation allows to add an auto-incremented
field to the source data. Figure 7.10 shows the interface used to add such a field.

7.4.3 Transform fields

This step consists of modifying the fields’ names in order to correspond to the target
schema. The fields’ types cannot yet be redefined to match Datomic’s types since those
types are not directly compatible with standard Cassandra types. This is realized using
the Select values transformation in PDI whose interface is pictured in figure 7.11.
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Figure 7.9: Excerpt of the preview of the data extracted from the CSV file

7.4.4 Cassandra Output

This last step consists of creating the bond between the transformation and an existing
Cassandra database. Thus, the Cassandra host, port, keyspace, username and password
are specified along with the column family (or table) that will be the target of the trans-
formation and the field used as a key. Figure 7.12 illustrates the interface used for this
step.

We have thereby pictured the concrete operation of an ETL tool to convert relational
data to a NoSQL database. More specifically, we migrated data corresponding to the
demographic table of our case study towards Cassandra in respect to Datomic’s data
model.
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Figure 7.10: Add sequence transformation interface in PDI

Figure 7.11: Select values transformation interface in PDI
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Figure 7.12: Cassandra Output transformation interface in PDI
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Program conversion

8.1 Overview

At this point, we dispose of a target database that is filled with the transformed data
extracted from the source database. Still, it is not yet possible for the application pro-
gram(s) to execute queries and updates on this database since statements are written in
the source DMS’ logic and corresponding language. Figure 8.1 illustrates the situation of
the migration before performing the program conversion process:

Figure 8.1: Situation pre-program conversion

Thus, we need to make the applicative layer evolve to create the bond with the new
database, thus completing the whole database migration process. As expressed in the state
of the art, three strategies exist when it comes to converting the application program
[Hainaut et al., 2008]:

1. Wrapper strategy

2. Statements rewriting strategy

3. Logic rewriting strategy

However, selecting a particular strategy and accordingly transform the application pro-
gram(s) in order to create a communication link with the target database might not be
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the only aspect to take into account when planning and performing a database migra-
tion. Thus, it would be interesting to go further and to discuss the relationship between
legacy and target databases and application programs. In this chapter, we will establish
a global program conversion method for a database migration towards NoSQL/Datomic
and relying on the most suitable strategy(ies). The following sections will detail different
treatment approaches of both source and target database and develop their strengths and
weaknesses, in order to suggest a general method combining their benefits. During this
analysis, we will assume there is only one application program by abuse of language. Yet,
the concepts remain the same if there are multiple programs.
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8.2 Maintain both databases

A first approach of program conversion is to avoid getting rid of the legacy database and
make a use of it instead. Indeed, a database migration process might not aim at replacing
the legacy database by the new one, but to maintain both databases. For instance, this
possibility could be interesting in order to proceed to a comparison of attributes such
as performance or security. To achieve maintaining two databases while manipulating a
single applicative program, the three strategies have to be adapted.

8.2.1 Wrapper strategy

Using the wrapper strategy would allow performing changes while having very little
impact on the application program. Indeed, the DMS calls within the application program
along with related elements such as variables have to be replaced by wrapper calls. A
wrapper is implemented for each data record type manipulated. Within a wrapper, legacy
statements to the legacy DMS are not only re-stated, but are also followed by their
translation in the target DMS language. This way, each call from the application program
queries or updates both databases. In the specific case of queries, it is also the role of the
wrapper to cross the results and select which one of them will be sent to the program since
it expects one result only. Furthermore, employing an external element as an intermediate
within a system would necessarily increase its complexity and thus make future changes
more difficult to perform. Figure 8.2 illustrates the operation of the wrapper program
conversion strategy when maintaining both legacy and target databases:

Figure 8.2: Wrapper strategy applied when maintaining both source and target
databases
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8.2.2 Statements rewriting strategy

Using the statements rewriting strategy would have a slightly stronger impact on the
application program than using the wrapper strategy even though it would be moderate.
Indeed, if the application program is more directly modified than by using wrappers, the
changes remain concentrated to certain key areas within the source code that are the DMS
calls. Those calls are kept as they are in order to keep accessing the legacy database, but
are also augmented by target DMS statements. This way, each call from the application
program queries or updates both databases. In the specific case of queries, the application
program has to be enhanced to cross the results and select which one of them will be taken
into account. Figure 8.3 illustrates the operation of the statements rewriting program
conversion strategy when maintaining both legacy and target databases:

Figure 8.3: Statements rewriting strategy applied when maintaining both source and
target databases

8.2.3 Logic rewriting strategy

Using the logic rewriting strategy would have a strong impact and be more complex
in the optic of maintaining both source and target databases. The logic rewriting strat-
egy aims at deeply modifying the source code in order to make the best out of the target
DMS’ language and data model. However, deep modifications to the program’s logic would
prevent it to communicate with the legacy database, making it impossible to query and
update both source and target databases without adding one of the two other strategies
on the top on this one. Indeed, using wrappers or add legacy DMS statements within the
database calls in the new program logic would be necessary to maintain both databases.
Figure 8.4 illustrates the operation of the statements rewriting program conversion strat-
egy when maintaining both legacy and target databases:
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Figure 8.4: Logic rewriting strategy applied when maintaining both source and target
databases

8.2.4 Global analysis

Globally, the concept of maintaining both source and target databases operating presents
the advantages to ensure a high security of data, to offer the possibility to compare and
test both databases at runtime for each query or update and to allow the use of whichever
database is the most convenient in a given context. However, this approach is costly and
strongly affects performance since each query or update commanded by the application
program is performed twice. Yet, this concept might be viewed as a first program trans-
formation phase used to test the new database’ usage while securing the correct operation
of the application program by maintaining the legacy database.

Concerning the strategy the employ to support this concept, we summarize the char-
acteristics of the three strategies in the following way:

1. Wrapper strategy: Low impact on application program, emphasis on the source
DMS’ operation, conceived for short-term usage, easiest way to implement program
conversion for two databases

2. Statements rewriting strategy: Moderate impact on application program, em-
phasis on the source DMS’ operation, conceived for longer-term usage for similar
types of DMS

3. Logic rewriting: Strong impact and cost, emphasis on the target DMS’ operation,
conceived for long-term usage for different types of DMS, difficult to implement
while maintaining both databases
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8.3 Maintain target database only

A second approach of program conversion is to use only the target database and backup
or dispose of the existing one. Indeed, proceeding this way is a more traditional method
to perform a database migration, aiming for example at benefiting only from the features
of the target database. To achieve this type of program conversion, the three strategies
can be considered.

8.3.1 Wrapper strategy

Using the wrapper strategy would allow performing changes while having very little
impact to the application program. Indeed, the DMS calls within the application program
along with related elements such as variables have to be replaced by wrapper calls. A
wrapper is implemented for each data record type manipulated. Within a wrapper, legacy
statements to the legacy DMS are translated in the target DMS language so that by
calling the wrapper, the application program can query or update the target database.
Furthermore, employing an external element as an intermediate within a system would
necessarily increase its complexity and thus make future changes more difficult to perform.
Figure 8.5 illustrates the operation of the wrapper program conversion strategy when
maintaining the target database only:

Figure 8.5: Wrapper strategy applied when maintaining the target database only

8.3.2 Statements rewriting strategy

Using the statements rewriting strategy would have a slightly stronger impact on the
application program than using the wrapper strategy even though it would be moderate.
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Indeed, if the application program is more directly modified than by using wrappers, the
changes remain concentrated to certain key areas within the source code that are the
DMS calls. Those calls are replaced by target DMS statements. This way, each call from
the application program now directly queries or updates the target database. Figure 8.6
illustrates the operation of the statements rewriting program conversion strategy when
maintaining the target database only:

Figure 8.6: Statements rewriting strategy applied when maintaining the target database
only

8.3.3 Logic rewriting strategy

Using the logic rewriting strategy would have a strong impact on the application program.
Indeed, the logic rewriting strategy aims at deeply modifying the source code in order to
make the best out of the target DMS’ language and data model. If this strategy is the
most expensive and the slowest to implement, it is also the only one that benefits of the
full potential of the target DMS. Figure 8.7 illustrates the operation of the statements
rewriting program conversion strategy when maintaining the target database only:
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Figure 8.7: Logic rewriting strategy applied when maintaining the target database only

8.3.4 Global analysis

Globally, the concept of maintaining the target database operating only represents the
traditional view of database migration that can be justified by all features the new system
presents and that the legacy system lacked. It generally leads to a gain of performance.
Yet, this approach simply cuts all links with the existing database that will not be updated
nor queried anymore. Relying only on the target database means that the full operation
of the migrated system must be ensured beforehand. As we will see in the next section,
in a migration performed in ideal conditions, we prefer this approach as a second step
following the maintenance of both databases for a certain period of time.

Concerning the strategy the employ to support this concept, the characteristics of the
three strategies can be summarized in a way close to the one we detailed for maintaining
both databases:

1. Wrapper strategy: Low impact on application program, emphasis on the source
DMS’ operation, conceived for short-term usage

2. Statements rewriting strategy: Moderate impact on application program, em-
phasis on the source DMS’ operation, conceived for longer-term usage for similar
types of DMS

3. Logic rewriting: Strong impact and cost, emphasis on the target DMS’ operation,
conceived for long-term usage for different types of DMS
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8.4 Advocated method

In this section, we will rely on the conclusions of the preceding section to discuss of
a program conversion method in the particular context of database migration towards
NoSQL, specifically towards Datomic.

8.4.1 General method

We are aiming in this thesis at the migration of a relational database towards a NoSQL
database (Datomic in our case study). NoSQL and NewSQL DMS in general rely on very
different principles than traditional relational DMS (cf. state of the art) and Datomic is no
exception. Thus, the logic on which underpins the legacy application program has to evolve
during the migration process. This change, combined to the fact that Datomic databases
are relatively recent on the market and so lack of a consequent corpus of experiences,
tutorials and frequently asked questions, tends to lead to uncertainty about the operation
of the target system. Consequently, if time and budget allow it, we suggest a two-phases
approach of program transformation ensuring both a security of the data and a possibility
to test the new system while keeping maintaining the legacy database.

The first phase of the approach is to maintain both databases operating for a short
period of time. Since it is used for a trial time-lapse, the most fitting strategy we suggest
employing is the wrapper strategy, which is the cheapest, quickest to implement, with the
lowest impact on the application program and conceived for a short-time use. Indeed,
a logic rewriting strategy would necessitate a lot of effort and consequently would not
be interesting in the context of a short-term trial period. In the same way, a statements
rewriting strategy could be conceivable but since the source and target DMS are not
similar, the incurred costs and impact on the source code would not be worth this usage.
De plus, puisque la conversion de schéma est lossless comme expliqué dans le chapitre
6, si la nouvelle base de données est read-only, il est alors pas possible de corrompre
les contraintes. Ainsi, cette stratégie permet d’éviter l’implémentation des contraintes
Datomic au niveau applicatif.

The second phase of the approach is, after a period of testing and habituation to the
operation of the system with the target database, to cut the link with the legacy database
and maintain only the target database. Here again, the statements rewriting strategy is
compromised by the differences there are between both source and target DMS. Thus,
we suggest the logic rewriting strategy which is the one that will benefit the most of the
NoSQL DMS capabilities and aims at the longest-term usage. Since rewriting a program’s
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logic is a costly and possibly long process, it can be engaged on a copy of the source code
while queries and updates are reverberated on both still maintained databases during the
first phase. Furthermore, cutting the link with the legacy database is facilitated by the
use of the wrapper strategy in the previous phase.

We summarize the global suggested program conversion method in the following way:

1. Maintain both databases using the wrapper strategy

2. Maintain target database only using the logic rewriting strategy

We will now detail the concrete implementation of those two phases.

8.4.2 Building wrappers

Wrappers implementation and usage relies on the following concepts:

• The wrapper schema designates the schema used by the application program calling
the wrapper (the relational schema in this case)

• The database schema designates the schema of the database the wrapper commu-
nicates with (both relational and Datomic schema in this case since both databases
are maintained)

• The schema mapping designates the GER mapping as defined in the state of the
art (the mapping between the relational and Datomic schemas in this case)

Wrappers typically treat queries and updates following three main steps
[Thiran et al., 2005]:

1. Language mappings: Analyze the query/update and extract its semantics

2. Inter-schema mappings: Derive those semantics according to the schema trans-
formation

3. Language mappings and optimization: Translate the result in the target DML
language

Figure 8.8 illustrates the conversion process of a source query in a query understand-
able by the target database:
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Figure 8.8: Language and schema mappings of a wrapper query Q1 into a DML query
Q4 [Thiran et al., 2005]

In this thesis’ case, since we aim at maintaining both databases, the legacy DML state-
ment is systematically added to the translated query/update in order to reverberate all
changes to both databases.

While schemas and schemas transformation are defined using the GER model,
queries/updates are also expressed in an internal query language that represents
each query/update’s semantics and abstracts the DMS languages [Thiran et al., 2005].
Figure 8.9 illustrates a read/write (query/update) wrapper’s generic architecture
[Thiran et al., 2006]:

Figure 8.9: R/W wrapper architecture [Thiran et al., 2006]
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In this case, this generic architecture has to be refined to take into account two databases
instead of one. To do so, further than systematically coupling a translated query/update
with its source DML statement, a result selection module also has to be implemented in
the case of queries to select which result will be taken into account and sent as a result
to the legacy application program.

Furthermore, in the case of a migration towards Datomic (rather than towards another
NoSQL technology), a strategy to avoid implementing Datomic constraints seen in chapter
6 at the applicative level necessitates to adapt the method described above. Indeed, since
the schema conversion is lossless, if the target database is read-only and updated via
another mechanism (such as a data conversion process), it it not possible to corrupt
constraints. Thus, the wrappers do not need to translate updates but only queries so they
only keep the source database up to date and can query both databases. By doing so, the
testing character of this first step of program transformation takes all its sense since the
impact on the applicative layer is limited.

Thus, we covered the typical internal operation of a wrapper and how to decline it to fit
this thesis’ case. We will not go further in the details of the implementation of a wrapper
since it goes beyond the scope of this work, but many references are available to illustrate
it, notably [Thiran et al., 2005], [Thiran et al., 2006] and [Cleve et Hainaut, 2006].

8.4.3 Rewriting the program’s logic

Rewriting the application program’s logic consists of adapting an existing source code
to the concepts and principles that lye behind a DMS. The effort necessary to review the
logic depends on the gap between the DMS logics. The logic behind a Cobol database is
different than the logic behind a relational database and thus requires lots of changes, and
the logic behind two relational databases running on different DMS is relatively similar,
thus minimizing the logic rewriting work.

Yet, unlike implementing wrappers or rewriting statements, rewriting the program’s
logic can modify and extend the system’s functionalities and can be performed in many
ways according to the expectations of the developers. The process strongly depends on
the context, the purpose of the system and on the motivations behind the migration.
Consequently, it is complex to educe a general approach or a set of good logic rewriting
principles. The two following paragraphs cover examples of logic differences in the case of
a migration from a relational database towards a Datomic database.
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In the case of Datomic, most of the effort will consist of working on the constraints
and globally the difference of rigidity between the relational database and the Datomic
database. Indeed, if the databases schemas are comparable in some ways, the flexibility
level is very different and will lead to divergent ways to access data. Attributes in the
relational world belong to an entity type and thus are part of a relationship and incur
constraints such as having a default value, being a primary key or else. In Datomic,
attributes are just names that can be found in any entity and that incur no explicit
constraints. This changes the way data is accessed. In the case of a migration towards
Datomic, the constraints must be taken into account at the applicative level if needed.

Another logic difference between relational databases and Datomic databases is the
immutability inherent to Datomic. Indeed, the update does not exist in Datomic and is
replaced by a Datom creation that will take the place of the previous one, while maintain-
ing it accessible. This is different than in the relational world where data can be updated,
and once the old state is, it cannot be accessed anymore. Thus, this opens doors for an
adapted application program to extend its functionalities and benefit from those new
possibilities.

The logic rewriting process’ impact on the application program also depends on the lo-
calisation of data accesses in the source code and the use of this data. The use of centralized
data accesses in key areas such as Data Access Objects would ease the identification of
portions of code to modify. Similarly, results of queries used in local methods with lim-
ited repercussions would be easier to treat than results split and interpreted throughout
the whole program. So, it is important to have a deep comprehension of the application
program in order to be able to apprehend the implications of database accesses on the
whole system’s operation.
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8.5 Case study

We will not illustrate the program conversion process on our case study due to the com-
plexity and width of the OSCAR system, making such an illustration worth a standalone
work. Indeed, if the data itself is centralized within database tables and can be isolated,
the call sites of a particular set of data is spread throughout the code. Yet, we will discuss
of specificities and difficulties inherent to the context our this case study.

The principal aspect specific to the OSCAR system to consider when converting the
application program would be its diversity. Indeed, OSCAR is developed and updated
in parallel by a lot of developers, each with his own coding standards and objectives.
This results in a heterogeneous system mixing multiple technologies and lacking a stan-
dard complete documentation. Consequently, the program conversion process, whether
performed by wrapper or by logic rewriting has to take into account this constraint. In
terms of wrappers, it will induce a multiplication of the number of wrappers to cope with
the different technologies along with the different record types. In terms of logic rewriting,
it will induce the necessity of adapting to multiple existing logics rather than one in the
generic case.

The wide range of authors, technologies and users, coupled with the consistent content of
the database, leads to a large system whose logic rewriting process will not be trivial. This
tends to support the method described in this thesis consisting of combining both wrapper
and logic rewriting approaches. Indeed, diversity and width of the system inherited from
its open source nature both increase risks of errors and dysfunctions, making it safer to
test the migration via wrappers while progressively rewriting the program’s logic. They
also provide the system with many potential testers.
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Performance

9.1 Overview

A general and precise definition of the performance concept is pretty complicated to
define due to the fact that it covers several different areas. Thus, this concept can be
applied to art, entertainment (such as music, film, theater, etc.), sport (from physical
sport to cars), business, computer sciences and many more. Nevertheless, the notion of
performance, and particularly how to measure it, is very important and recognized by
many people from functional disciplines.

The etymology of the word “performance” shows that “performance” is composed of the
verb “to perform” and the suffix “-ance” from the old French, meaning “Achievement”.
For centuries, the meaning of this word has evolved. Thus, around 1590, the meaning
of “performance” as “a thing performed” is appeared but around 1610, this meaning
changed to become “the action of performing a play, etc.”. While the performance as “a
public entertainment” appeared around 1709 and the art of the performance only emerged
in 1971. The different meanings is explained by the fact that the concept of performance
covers many areas [Dictionary, 2015].

Focus on the notion of performance in the computer world to provide a definition of the
word “performance“ in database area. In general terms, the performance of a computer
system can be defined in two ways [WhatIs, 2015b]:

• As being a set of amounted indicators for measuring the elapsed time for a computer
system to complete given tasks taking into account time and given resources.

• As being the computer speed executing a certain number of millions of instructions
per second (MIPS) throughout the benchmark test, which will explain in the next
section.

The performance of a computer system uses several concepts such as response time,
data volume, throughput, availability, resources available, etc.
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These first two concepts are key factors of database performance. When the data vol-
ume increases, the response time increases too. Therefore, these concepts are linked. How-
ever, the performance of a database can be significantly weakened because of the data
structure. So, a relational database will be mainly normalized (normal form) or non-
normalized (non-nomal form). This last type is the cause of more than 70% performance
issues [SQLpro, 2015]. This difference stems from the fact that a normalized structure is
characterized by a large number of small tables, containing very few columns and using
the method of “join” capable of providing a high speed to perform various operations.
While a non-normalized structure contains bigger tables, providing lower performance
for write operations (INSERT, UPDATE or DELETE) given that the DBMS (DataBase
Management System) activates a lock on the modified table, preventing other programs
to access it.

Figure 9.1: Normalized and Non-normalized database

The figure 9.1 shows the correlation between response time and data volume for the
normalized- and non-normalized databases. Therefore, when the data volume increases, a
normalized database will continue to provide a reasonably constant response time, unlike
the other structure which, from a certain threshold, can not provide an answer within
acceptable time.

At a time when population produces more and more data each day to such an extent
that between 2010 and 2012, more than 90% of information ever created before was
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produced, equivalent to 2.5 quintillion bytes of data [IBM, 2015]. Data are collected from
a plethora of electronic devices such as sensors, medical bracelet, smartphones, etc. This
is also called “Big Data”. Therefore, technologies referenced by the “Big Data” involve a
large number of data of various types which are changing rapidly [MongoDB, 2015]. The
volume (nowadays, tons of data are processed, for example, Facebook processes more than
500 terabytes of data each day), the velocity (tons of data are transmited simultaneously
and in a very short time, thousands of machines communicate with each other) and the
variety of data (data are not only “string”, “date” or “number” but can be other types
such as video, photo, audio, etc.) are key concepts of “Big Data”.

Coming back to the comments of the figure 9.1, the rise of “Big Data“ in society does
not allow settling for a non-normalized database because of the large volume of data.
Moreover, relational databases are not suitable for large data volume [Hainaut, 2015].

Moreover, the performance of databases does not only depend on response time and
data volume. Naturally, the database performance also depends on throughput, defined
by the capacity of a database to process data, resources available such as memory, storage
disk, cache controllers, CPU, etc [Mullins, 2015]. Therefore, the concept of availability
becomes significant in the definition of “performance”. A database, which is not available,
is naturally not efficient. However, the reciprocal is not true because an available database
does not involve that this database is efficient. So, the availability is metric for measuring
the performance.

The availability is an important issue for some business [Subharthi, 2008]. When a com-
pany delivers a service, such as a rental system of online DVD (such as Netfix) which rents
more than 2 million movies each day all around the world. The system must be contin-
uously available, even during a large number of simultaneous connections. Ten minutes
can be very expensive to the company.

Today, the performance of databases is an important issue, which requires a constant
evaluation for its measurement. However, the evaluation of database performances may be
complicated due to the fact that database systems may be different from each other with
specific requirements. Performance analysts nevertheless tried to establish mechanisms
allowing the performance evaluation from common key aspects of databases. This is also
called “Benchmarks”.
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9.2 Performance evaluation : Benchmarking

The goal of this section is to discuss about the evaluation of the performance of
databases and more specifically about benchmarks, by studying a few.

Globally, a benchmark is a measure of the quality of policies, products, strategies, etc.
of an organization in order to compare them to market leaders or to standard measures.
In other words, benchmarks are comparative studies of things with the objectives to get
the best.

To give a little history note about benchmarking, the latter has been invented in the
1980s by “Rank Xerox” company, specialized in photocopiers since the 1950s [Xerox, 2015].
While Xerox was the world leader in its field in the 1970s, some Japanese companies en-
tered the market by offering better copiers at a lower cost. And it was when Xerox decided
to compare itself to its direct competitor in order to learn more about possibility of re-
ducing costs while increasing productivity. An analysis made it possible due to pinpoint
the weak points of the company to make some changes. In the subsequent years, Xerox
increased its productivity by 18%. From that moment other companies started to put in
place such comparative studies and an interest appeared to become something indispens-
able nowadays [Blakeman, 2002].

This craze has spread in many areas, other then marketing such as computer sciences
and more specifically the databases. The evaluation of performances of databases has two
different goals [Subharthi, 2008]:

• To evaluate the best configuration and the operating environment of a single database
management system.

• To study several database management systems and to provide a systematic com-
parison of these systems.

When the comparison between several database management systems is the first ob-
jective, the method of benchmarks (aka benchmarking) is the best. The drawback of this
method is that it requires the complete installation of the different systems in order to ex-
ploit them. According to [Yao et Hevner, 1984], the evaluation of performance of DBMS
by benchmark is established through 3 phases :

Benchmark Design: The objective of this phase is to put in place the system environ-
ment in order to prepare the benchmark. Moreover, benchmark design includes 4
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steps, as shown in figure 9.2. These steps are the hardware and software configura-
tion of the system to prepare the benchmark, test data of database to execute the
benchmark, the benchmark workload that consists in considering different aspects of
transaction loads (query types, number of users, etc.) and the experimental design
based on the three previous steps consists in fixing variables and values which will
be used in the benchmark.

Benchmark Execution: This step is realized in order to collect performance data.

Benchmark Analysis: Once the benchmark execution completed, an analysis can be
realized in order to compare the results. This third phase allow analyzing of a single
system to observe its performances according to different algorithms used, or several
systems by comparing the performance of each system according to same criteria.

So, figure 9.2 is a schematic representation of the database system benchmark method-
ology thinking by the author. It is important to note that when a comparison of several
systems is realized, it is essential that the benchmark does not vary from one system to
another to have false results.

Furthermore, there are many different types of benchmarks, as pointed out by
[Stonebraker et Hellerstein, 1999]. According to them, there are basically two types of
benchmarks : those used for comparing price / performance that are also called Generic
benchmark, while the Application-Specific benchmarks intend to restrict to certain classes
of workloads. This last type of benchmark contains different “families” of benchmarks.
The best known is the “TPC” family (Transaction Processing Performance Council). Here
are the different families of benchmarks observed by Stonebraker :

SPEC: SPEC or “System Performance Evaluation Cooperative” is a family of bench-
marks intended to maintain a certain standardization of a set of different bench-
marks used to measure performance of CPU, graphic, workstations, virtualization,
etc1.

The Perfect Club: This family of benchmarks aims to represent scientific supercom-
puter workloads. The performance of these benchmarks is defined in term of
MFLOPS (Million FLoating-point Operations Per Second) of each program de-
signed for this family (there are more than 30 programs) on each machine evaluated
[Saavedra et Smith, ].

1A complete list of benchmarks of the SPEC family can be consulted on
https://www.spec.org/benchmarks.html#tools
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Figure 9.2: Database System Benchmark Methodology [Yao et Hevner, 1984]

TPC: TPC or “Transaction Processing Performance Council” is a family of benchmarks
measuring performances of transaction processing and of the database in term of
amount of transactions that can be executed in a given amount of time. The charac-
teristic of TPC family is that the benchmark do not only evaluate the components
of the database but rather the whole system including the database. This family
allows to better understand the business world2.

2A complete list of benchmarks of the TPC family can be consulted on
http://www.tpc.org/information/benchmarks.asp
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Always according to [Stonebraker et Hellerstein, 1999], a good benchmark must be
portable (the benchmark should be capable to be implemented on many different sys-
tems), relevant (it must directly translate a useful work), scalable (the benchmark must
be understandable). Therefore, what makes a good benchmark is how it is used. Naturally,
objectives of each benchmark are all different. It is important to choose the good bench-
mark according to the system which will be evaluated. The use of a wrong benchmark
can involve the collect of results that do not correspond to the desired evaluation. Some
errors can be made due to the fact that results infer a false conclusion.

Naturally, there are other performance evaluation methods of databases, other than
benchmarks. Without going into detail, certain system performance analysis methods
can be extended to databases, such as cost models, queuing models or even simulating
modeling (the diligent reader will inform him-/herself on his/her side to learn more about
these models).

Furthermore, some mechanisms for measuring the performance of specific databases
(such as real-time database systems, web-database systems, enterprise data mining system
or even object oriented system) have been developed in order to evaluate such systems
more easily. This thesis is not covering such system, thus these types of evaluation are
not discussed here.

9.3 Yahoo! Cloud Serving Benchmark

In the following parts of this thesis, the benchmark called “Yahoo! Cloud Serving Bench-
mark - YCSB” [Cooper et al., 2010] will be used in order to measure the performance of
some NoSQL databases. The particularities of the cloud serving system are that it can
handle a large amount of dataset, it can set new instances to easily add capacity to a
running system and it provides a high level of availability. Therefore, YCSB has been
developed to meet those needs.

This benchmark is pretty easy to use because it consists of a data generator and a
set of performance test to achieve but requires the complete installation of the different
systems. Once installations completed, the YCSB works as a black-box system because
users provide a properties file for the selected workload to the YCSB and the YCSB
returns a results file. These performance tests consist of running read- and write- (update
or insert) operations on the chosen database, this is called “Workload”. In this document,
four workloads are used:
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Workload A: 50% of read operations - 50% of update operations

Workload B: 50% of read operations - 25% of update operations - 25% of insert opera-
tions

Workload C: 100% of read operations

Workload D: 50% of update operations - 50% of insert operations

Thus, in order to evaluate NoSQL databases that interest us, 1,000,000 records have
been generated via the YCSB benchmark and a certain amount of read-/write operations
(from 10,000 to 300,000 operations) have been executed on these records. With such a
variation of amount of operations, it is possible to see if there are some differences between
a small amount and a large amount of operations on same data.

All those tests have been executed on a virtual machine Ubuntu 12.04.5 LTS 64bit with
4GB of RAM available, hosted on a computer with OSX Yosemite and a total of 8GB of
RAM. Furthermore, it is necessary to install the chosen database in order to evaluate its
performances.

The next section will evaluate MySQL, MongoDB, Couchbase and Cassandra. Unfor-
tunately, DynamoDB requires lots of money to get representative results and Riak is not
supported by YCSB.
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Performance of a sample NoSQL
technologies

10.1 Overview

As seen before in the dedicated section of the “Technical background” of this thesis,
NoSQL is a storage technology class that has the characteristic of being non-relational.
NoSQL is the acronym of “Not only SQL”. The NoSQL databases have been designed
with a view to complement relational databases and not to replace them.

Therefore, NoSQL databases have the advantages to be more flexible than traditional
relational database management systems, to offer horizontally scalability, high perfor-
mances, etc. Here is the list of NoSQL families covered in this thesis:

• Key-Value Stores

• Document Stores

• Column Stores

• Graph Databases

This chapter aims to evaluate the performance of different types of NoSQL technologies
that support Datomic and the relational database MySQL, used by the OSCAR system.
The particularity is that Datomic is not yet implemented on NoSQL databases because the
objective here is just to get a sense of performance of those databases. The implementation
of Datomic is one of the future works of this thesis.

Assuming that the systems evaluated already contain data, read- and write operations
will be performed on them. This fact may have an effect on the performance due to the
different mecanisms implemented such as storing data in cached memory. In that way,
the cache memory was not empty after each workload to have representative results. In
addition, the YCSB benchmark does not implement “join” mecanism (to refer to MySQL).
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10.2 Relational Database

10.2.1 YCSB Benchmarking of MySQL

This section presents the results collected through YCSB benchmark, which is presented
above. As a reminder, the tests have been performed on a virtual machine Ubuntu 12.04.5
LTS 64bit with 4GB of RAM available, hosted on a computer with OSX Yosemite and a
total of 8GB of RAM. Four batteries of tests (also called workload) have been performed
by processing between 10,000 et 300,000 operations (read-, update- and insert operation
depending on the purpose of workloads) over 1,000,000 records. The results of all Workload
can be consulted on the website: “http://crespeigneromain.wix.com/thesis”.

Moreover, MySQL may store data in cache memory. This memory was not empty after
each test in order to simulate a real running system.

Workload A Workload B
Operations RunTime(ms) Ops/sec RunTime(ms) Ops/sec

10000 4343 2302.56 7872 1270.33
20000 6914 2892.68 15458 1293.83
30000 8779 3417.25 22177 1352.75
40000 11361 3520.82 28191 1418.89
50000 14043 3560.49 35909 1392.41
150000 29466 5090.61 146546 1023.57
300000 49002 6122.20 267014 1123.54

Table 10.1: MySQL — Runtime and throughput of Workload A & B

The tables 10.1 and 10.2 contain the time of execution in millisecond and the through-
put in operations per second for each workload. The data of table 10.1 differ in the fact
that the workload A does not process insert operations, unlike the Workload B which runs
25% of insert operations and write operations. An important observation can be made
that the Workload B is slower than Workload A due to the adding of insert operations.
The difference is pretty huge when the amount of operations exceed 50,000. At this time
of analysis, insert operations draw attention to their negative impact on the performance
of MySQL system.

Once more, the table 10.2 shows clear differences in terms of runtime. The runtime
of Workload D is 10 times bigger than the runtime of Workload C. This finding is very
interesting because it is possible to confirm that the throughput of insert operations tend
to really have a negative impact on the total throughput for a large number of operations.
Moreover, the runtimes of the Workload A andWorkload C show that only read operations
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Workload C Workload D
Operations RunTime(ms) Ops/sec RunTime(ms) Ops/sec

10000 3888 2572.02 14468 691.18
20000 6474 3089.28 26882 743.99
30000 8874 3380.66 42655 703.32
40000 10640 3759.39 55838 716.36
50000 12344 4050.55 69465 719.79
150000 28935 5184.03 254160 590.18
300000 52807 5681.07 558622 537.04

Table 10.2: MySQL — Runtime and throughput of Workload C & D

and a mix of read- and write operations are almost similar. This may be explained by the
fact that MySQL stores data in cache memory when it is necessary.

To examine this, the tables 10.3, 10.4, 10.5 and 10.6 contain the average latency in
microsecond (us) and the amount of operations processed for each operation types. In
order to have a visual of these tables, the figures 10.1, 10.2, 10.3 and 10.41 are graphs
associated to these tables. Note that the axe of abscissa is not to scale because it goes
from 50,000 to 150,000 and from 150,000 to 300,000 operations. The software used to
draw graphs did not allow that. However, graphs are not biased.

With regard to the figure 10.1, the average latency of write operations (red color) is
constantly bigger than the average latency of read operations. The both read- and write
operations tend to decrease when the amount of operations increases to become almost
similar with a lot of operations. This may be a strange observation because the relational
database are not designed to handle a large quantity of operations but the cache memory
mechanism may be an explication.

The figure 10.2 is very interessant. There is a contrast between read-, update- and
insert operations. The figure 10.2 clearly shows the negative impact of insert operations
on the average latency. In addition, the average latency of insert operations increases
when the amount of operations also increases. This is an important observation because
the weakness of MySQL with insert operations appears not to be open to question. This
finding is also observed in the figure 10.4.

The figures 10.1 and The figure 10.3 illustrate the same curve for the read operations.
In that way, it is possible to observe that update operations do not influence the average
latency of the other.

1The appendix A - section “MySQL” - contains these figures with a bigger size to get a better look.
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Figure 10.1: MySQL Workload A Figure 10.2: MySQL Workload B

Figure 10.3: MySQL Workload C Figure 10.4: MySQL Workload D

Therefore, it is important to bear in mind that the machine (Linux 12.04) used to
perform tests may have ran other processes. Here was present the best case for MySQL,
that no “Join” mecasnism was tested. In conclusion, the performance evaluation of MySQL
reveals that this database is not appropriated for insert operations. For a large amount of
operations, the average latency of insert operations is too big to be efficient, especially in
system where this type of operation is current. However, the mechanism of cache memory
is getting interesting when there are large amounts of operations processed.
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Workload A Read Update
Operations AverageLatency (us) Operations AverageLatency (us) Operations

10000 3192.04 5002 4240.87 4998
20000 2663.16 10083 3539.27 9917
30000 2299.66 14944 3064.93 15056
40000 2257.39 19899 3015.24 20101
50000 2308.26 25186 2973.73 24814
150000 1817.90 75495 1996.43 74505
300000 1581.43 150116 1615.12 149884

Table 10.3: MySQL Workload A

Workload B Read Update Insert
Operations Average-

Latency
(us)

Operations Average-
Latency
(us)

Operations Average-
Latency
(us)

Operations

10000 1301.30 5022 1443.06 2489 23685.31 2489
20000 1392.67 10007 1605.52 4981 24559.43 5012
30000 913.65 14930 975.43 7506 24856.59 7564
40000 781.39 19873 957.56 10093 24403.13 10034
50000 706.76 25066 845.80 12405 25344.16 12529
150000 787.79 74956 1307.14 37365 35472.04 37679
300000 790.18 149816 2332.14 74905 31061.02 75279

Table 10.4: MySQL Workload B

Workload C Read
Operations AverageLatency (us) Operations

10000 3293.61 10000
20000 2867.14 20000
30000 2717.28 30000
40000 2488.49 40000
50000 2323.85 50000
150000 1843.94 150000
300000 1728.23 300000

Table 10.5: MySQL Workload C
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Workload D Update Insert
Operations AverageLatency (us) Operations AverageLatency (us) Operations

10000 1145.52 5003 25794.39 4997
20000 1162.34 9946 24364.21 10054
30000 1013.80 14980 26264.22 15020
40000 1065.52 19969 26219.23 20031
50000 950.95 25219 26430.21 24781
150000 2284.17 74614 30998.34 75386
300000 2934.71 150209 33976.47 149791

Table 10.6: MySQL Workload D
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10.3 Document store

10.3.1 YCSB Benchmarking of MongoDB

This section presents the results collected through YCSB benchmark, which is presented
above. As a reminder, the tests have been performed on a virtual machine Ubuntu 12.04.5
LTS 64bit with 4GB of RAM available, hosted on a computer with OSX Yosemite and a
total of 8GB of RAM. Four batteries of tests (also called workload) have been performed
by processing between 10,000 et 300,000 operations (read-, update- and insert operation
depending on the purpose of workloads) over 1,000,000 records. The results of all Workload
can be consulted on the website: “http://crespeigneromain.wix.com/thesis”.

Workload A Workload B
Operations RunTime(ms) Ops/sec RunTime(ms) Ops/sec

10000 4713 2121.79 4479 2232.64
20000 7412 2698.33 5921 3377.81
30000 8721 3439.97 8042 3730.42
40000 10058 3976.93 11306 3537.94
50000 11060 4520.8 13299 3759.68
150000 24341 6162.44 37082 4045.09
300000 63100 4754.36 81964 3660.14

Table 10.7: MongoDB — Runtime and throughput of Workload A & B

The tables 10.7 and 10.8 contain the time of execution in millisecond and the throughput
in operations per second for each workload. The data of table 10.7 differ in the fact that
the workload A does not process insert operations, unlike the Workload B which runs 25%
of insert operations and write operations. Under 40,000 operations, the Workload B is a bit
faster than the Workload A. When the number of operations exceeds 40,000, it seems that
the Workload B becomes slower than the Workload A. This difference may be explained
by the adding insert operations, which would tend to show that the insert operations have
an impact on the runtime during the execution of large amounts of operations.

For its part, the table 10.8 shows clear differences in terms of runtime. The runtime of
Workload C is bigger than the runtime of Workload D. Once there are large amount of
operation processed (300,000 operations), the execution time is doubled when there are
only read operations. This finding is very interesting because it is possible to observe that
the throughput of read operations tend to have a negative impact on the total throughput
for a large number of operations. Moreover, it is possible to observe that update operations
tend to have a positive impact on the total throughput. The tables 10.7 and 10.7 show that
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Workload C Workload D
Operations RunTime(ms) Ops/sec RunTime(ms) Ops/sec

10000 2999 3334.44 4420 2262.44
20000 5498 3637.69 8128 2460.63
30000 6334 4736.34 10528 2849.54
40000 8025 4984.42 11683 3423.78
50000 9171 5451.97 10488 4767.35
150000 26791 5598.9 39561 3791.61
300000 97929 3063.44 54298 5525.07

Table 10.8: MongoDB — Runtime and throughput of Workload C & D

write operations compensate the poor runtime of read operations when 300,000 operations
are processed.

To examine this, the tables 10.9, 10.10, 10.11 and 10.12 contain the average latency
in microsecond (us) and the amount of operations processed for each operation types. In
order to have a visual of these tables, the figures 10.5, 10.6, 10.7 and 10.82 are graphs
associated to these tables. Note that the axe of abscissa is not to scale because it goes
from 50,000 to 150,000 and from 150,000 to 300,000 operations. The software used to
draw graphs did not allow that. However, graphs are not biased.

With regard to the figure 10.5, it is interesting to see that the average latency of write
operations (red color) is constantly bigger than the average latency of read operations. The
both read- and write operations tend to decrease when the amount of operations increases.
Moreover, a peak of average latency is observed when there are a few operations.

The figure 10.6 reveals the same finding. An observation can be made that the average
latency of insert operations tends to decrease and to become smaller than the average of
update operations. Once again, the average latency decrease when the number of opera-
tions increases. This finding is also observed in the figure 10.8.

In contradiction with the table 10.9 where the runtime was the biggest, the figure
10.7 shows that the average latency is pretty small and decreases when the amount of
operations increases. At 300,000 operations, the average latency is the smaller than other
average latencies observed.

Therefore, how to explain the finding obtained from the table 10.8? This can be ex-
plained by the machine used to perform tests. The system (Linux 12.04) may have ran

2The appendix A - section “MongoDB” - contains these figures with a bigger size to get a better look.
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Figure 10.5: MongoDB Workload A Figure 10.6: MongoDB Workload B

Figure 10.7: MongoDB Workload C Figure 10.8: MongoDB Workload D

other processes that impacted the read operations. In conclusion, the performance evalua-
tion of MongoDB reveals that this database is appropriated for read operations. The write
operations are getting interesting when there are large amounts of operations processed.
This operation type has a negative impact on the performance with a few operations.

Workload A Read Update
Operations AverageLatency (us) Operations AverageLatency (us) Operations

10000 3866.55 4972 4510.36 5028
20000 2539.13 10005 3009.02 9995
30000 2404.73 15010 2823.12 14990
40000 2043.71 19828 2432.99 20172
50000 1932.12 24868 2223.14 25132
150000 1380.06 75125 1569.19 74875
300000 1027.47 150121 1238.08 149879

Table 10.9: MongoDB Workload A
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Workload B Read Update Insert
Operations Average-

Latency
(us)

Operations Average-
Latency
(us)

Operations Average-
Latency
(us)

Operations

10000 3308.58 5004 3717.87 2517 4399.54 2479
20000 2832.50 9969 3276.67 5007 3606.06 5024
30000 2471.58 14999 2818.84 7492 3085.26 7509
40000 2615.46 20011 2961.69 9940 3084.09 10049
50000 2241.27 24929 2558.83 12490 2646.85 12581
150000 1762.54 74995 2005.09 37578 1969.42 37427
300000 1303.77 149821 1517.16 75071 1501.66 75108

Table 10.10: MongoDB Workload B

Workload C Read
Operations AverageLatency (us) Operations

10000 2587.46 10000
20000 2009.45 20000
30000 2080.01 30000
40000 1678.13 40000
50000 1605.25 50000
150000 1106.85 150000
300000 880.37 300000

Table 10.11: MongoDB Workload C in term of operations per second

Workload D Update Insert
Operations AverageLatency (us) Operations AverageLatency (us) Operations

10000 5054.36 4924 5113.89 5076
20000 3901.33 10051 4056.98 9949
30000 3191.77 15068 3307.57 14932
40000 2938.13 19890 3065.44 20110
50000 2809.86 24888 2841.28 25112
150000 2151.32 74817 2108.09 75183
300000 1768.51 150202 1794.70 149798

Table 10.12: MongoDB Workload D in term of operations per second

174



10.3. Document store

10.3.2 YCSB Benchmarking of Couchbase

This section presents the results collected through YCSB benchmark, which is presented
above. As a reminder, the tests have been performed on a virtual machine Ubuntu 12.04.5
LTS 64bit with 4GB of RAM available, hosted on a computer with OSX Yosemite and
a total of 8GB of RAM. Unlike the others, the YCSB Benchmarking of Couchbase did
not benefit of the entire RAM capacity of the virtual machine because Couchbase needs
a part of the RAM capacity to simulate its own server. In that way, 2GB of RAM was
dedicated to Couchbase and 2GB of RAM was dedicated to the virtual machine. This has
a significant impact on the results.

Four batteries of tests (also called workload) have been performed by processing be-
tween 10,000 et 300,000 operations (read-, update- and insert operation depending on the
purpose of workloads) over 1,000,000 records. The results of all Workload can be consulted
on the website: “http://crespeigneromain.wix.com/thesis”.

Workload A Workload B
Operations RunTime(ms) Ops/sec RunTime(ms) Ops/sec

10000 5990 1669.45 5859 1706.77
20000 10024 1995.21 9594 2084.64
30000 10485 2861.23 11874 2526.53
40000 12631 3166.81 14000 2857.14
50000 15047 3322.92 15699 3184.92
150000 32489 4616.95 35625 4210.53
300000 54109 5544.36 71002 4225.23

Table 10.13: Couchbase — Runtime and throughput of Workload A & B

The tables 10.13 and 10.14 contain the time of execution in millisecond and the through-
put in operations per second for each workload. The difference of data in the table 10.13
is explained by the fact that the workload A does not process insert operations, unlike
the workload B which runs 25% of insert operations and write operations. Under 50,000
operations, there is no significant difference between runtime of each workload. Once the
number of operations reaches 150,000, a significant difference appears and shows that the
Workload A is faster than Workload B. This may be explained by the fact that adding
insert operations has a negative impact on the runtime execution of large amounts of
operations.

While there is a minor difference in the table 10.13, the table 10.14 directly shows
major differences in terms of runtime between the Workload C, which runs 100% of
read operations, and the Workload D, which runs 50% of update operations and 50% of
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Workload C Workload D
Operations RunTime(ms) Ops/sec RunTime(ms) Ops/sec

10000 5026 1989.65 10661 938
20000 7606 2629.50 15497 1290.57
30000 9084 3302.51 19241 1559.17
40000 10957 3650.63 20607 1941.09
50000 12624 3960.71 25158 1987.44
150000 30374 4938.43 51079 2936.63
300000 44743 6704.96 89763 3342.13

Table 10.14: Couchbase — Runtime and throughput of Workload C & D

insert operations. The execution time is doubled when there only are write operations.
A first observation could be made that the throughput of insert operations tend to have
a negative impact on the total throughput in the Workload A and B in the table 10.13.
Therefore, the runtime of the Workload D shows that only write operations tend to have
a negative impact on the total throughput. A reason could be that the insert operations
have a significant impact.

To deepen these results, the tables 10.15, 10.16, 10.17 and 10.18 contain the average
latency in microsecond (us) and the amount of operations processed for each operation
types. In order to have a visual of these tables, the figures 10.9, 10.10, 10.11 and 10.123

are graphs associated to these tables. Note that the axe of abscissa is not to scale because
it goes from 50,000 to 150,000 and from 150,000 to 300,000 operations. The software used
to draw graphs did not allow that. However, graphs are not biased.

With regard to the figure 10.9, it is interesting to see that the average latency of write
operations (red color) is constantly bigger than the average latency of read operations but
tend to significantly decreases when the amount of total operations increase. Moreover, a
peak of average latency is observed when there are a small number of operations.

The figure 10.10 reveals different findings. Firstly, the average latency of read operations
seems to be consistent while the average latency of write operations tend to decrease.
Secondly, the insert operations have a huge average latency when the amount of operations
is small. Thirdly, a large number of operations significantly decreases the average latency
of write operations and seems to be consistent between 150,000 and 300,000 operations.
This finding is also observed in the figure 10.12. However, the average latency of 25%
insert operations from 8,000 us to 11,000 us when there are 50% of insert operations.

3The appendix A - section “Couchbase” - contains these figures with a bigger size to get a better look.
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Figure 10.9: Couchbase Workload A Figure 10.10: Couchbase Workload B

Figure 10.11: Couchbase Workload C Figure 10.12: Couchbase Workload D

According to the table 10.15 where the runtime was the smallest, the figure 10.11 shows
that the average latency is pretty small and decreases when the amount of operations
increases to finally be below 1,500 us at 300,000 operations. This is the smaller average
latencies observed.

Therefore, these results show that insert operations have negative impact on the system
when a few operations are executed. However, it seems that the negative impact of insert
operations (and even update operations) with numerous operations tend to disappear
in term of average latency. Like MongoDB, Couchbase is beneficial for read operations,
while write operations are not appropriated when a small of operations is processed but
is suitable for a large number of operations.
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Workload A Read Update
Operations AverageLatency (us) Operations AverageLatency (us) Operations

10000 4209.03 4944 5070.87 5056
20000 3635.31 10036 4918.51 9964
30000 2464.56 14987 3574.92 15013
40000 2436.51 20018 3239.31 19982
50000 2510.16 24860 2978.75 25140
150000 1973.84 75007 2208.15 74993
300000 1665.86 149833 1830.1 150167

Table 10.15: Couchbase Workload A

Workload B Read Update Insert
Operations Average-

Latency
(us)

Operations Average-
Latency
(us)

Operations Average-
Latency
(us)

Operations

10000 2920.33 5039 4587.77 2448 8053.08 2513
20000 3082.62 10000 4137.40 5011 6381.08 4989
30000 2853.11 15098 3446.84 7460 4983.48 7442
40000 2617.27 19979 3127.28 9920 4338.83 10101
50000 2429.66 25038 2960.24 12553 3765.78 12409
150000 2076.82 74988 2295.19 37592 2624.19 37420
300000 2175.11 150309 2314.55 74760 2529.62 74931

Table 10.16: Couchbase Workload B

Workload C Read
Operations AverageLatency (us) Operations

10000 3929.82 10000
20000 3195.64 20000
30000 2634.59 30000
40000 2433.94 40000
50000 2287.6 50000
150000 1927.77 150000
300000 1452.30 300000

Table 10.17: Couchbase Workload C
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Workload D Update Insert
Operations AverageLatency (us) Operations AverageLatency (us) Operations

10000 7232.93 4940 11064.15 5060
20000 5746.79 9872 8241.40 10128
30000 5292.69 15020 6570.02 14980
40000 4240.90 19982 5105.08 20018
50000 4236.05 24985 5175.19 25015
150000 3101.88 74819 3461.76 75181
300000 2842.79 150073 2983.23 149927

Table 10.18: Couchbase Workload D
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10.4 Column-Oriented Databases

10.4.1 YCSB Benchmarking of Cassandra

This section presents the results collected through YCSB benchmark, which is presented
above. As a reminder, the tests have been performed on a virtual machine Ubuntu 12.04.5
LTS 64bit with 4GB of RAM available, hosted on a computer with OSX Yosemite and a
total of 8GB of RAM. Four batteries of tests (also called workload) have been performed
by processing between 10,000 et 300,000 operations (read-, update- and insert operation
depending on the purpose of workloads) over 1,000,000 records. The results of all Workload
can be consulted on the website: “http://crespeigneromain.wix.com/thesis”.

Workload A Workload B
Operations RunTime(ms) Ops/sec RunTime(ms) Ops/sec

10000 5990 1669.45 5859 1706.78
20000 10024 1995.21 9594 2084.64
30000 10485 2861.23 11874 2526.53
40000 12631 3166.81 14000 2857.14
50000 15047 3322.92 15699 3184.92
150000 32489 4616.95 35625 4210.53
300000 54109 5544.36 71002 4225.23

Table 10.19: Cassandra — Runtime and throughput of Workload A & B

The tables 10.19 and 10.20 contain the time of execution in millisecond and the through-
put in operations per second for each workload. Let observe the data from the table 10.19,
where the difference between workload A and B lies in the proportion of update- and insert
operations. Between 10,000 and 150,000 operations, the gaps between runtimes are not
significant but once in 300,000 operations, a difference of more than 15,000 ms (15 sec) is
felt. This difference may be explained by the adding insert operations, which would tend
to show that the insert operations have an impact on the runtime during the execution
of a large amount of operations.

For its part, the table 10.20 shows clear differences in terms of runtime. The execution
time is doubled when there only are write operations. The correlation of these four tests
clearly shows that the execution time is negatively impacted by write operations. However,
it is not possible to say at the sight of these simple tables that the speed of read operations
are better than the speed of write operations, which would contradict what was said at
the section dedicated to “Cassandra” in chapter “Fundamentals”.

180

http://crespeigneromain.wix.com/thesis


10.4. Column-Oriented Databases

Workload C Workload D
Operations RunTime(ms) Ops/sec RunTime(ms) Ops/sec

10000 5026 1989.65 10661 937.99
20000 7606 2629.50 15497 1290.57
30000 9084 3302.51 19241 1559.17
40000 10957 3650.63 20607 1941.09
50000 12624 3960.71 25158 1987.44
150000 30374 4938.43 51079 2936.63
300000 44743 6704.96 89763 3342.13

Table 10.20: Cassadra — Runtime and throughput of Workload C & D

To examine this, the tables 10.21, 10.22, 10.23 and 10.24 contain the average latency
in microsecond (us) and the amount of operations processed for each operation types.
In order to have a visual of these tables, the figures 10.13, 10.14, 10.15 and 10.164 are
graphs associated to these tables. Note that the axis of abscissa is not to scale because it
goes from 50,000 to 150,000 and from 150,000 to 300,000 operations. The software used
to draw graphs did not allow that. However, graphs are not biased.

With regard to the figure 10.13, it is interesting to see that the average latency of write
operations (red color) is constantly smaller than the average latency of read operations.
The read operations tend to greatly increase when the amount of operations increases.

The figure 10.14 reveals the same finding. The difference is that decreasing the pro-
portion of update operations has an impact on the average latency of read operations
because the average latency of read- and update operations are substantially similar, un-
til a certain amount of operations performed. For a small quantity of operations, the insert
operations have an average latency bigger than the two others but the average latency
tend to decrease when the amount of performed operations increase. Thus, for numerous
performed operations, the speed of processing of write operations are better than the
processing of read operations.

The figures 10.15 and 10.16 support previous observations, that when a large amount of
operations are performed, the average latency of read operation also tends to increase. On
the other side, the average latency of write operations tend to decrease when the number
of operations increase. So, Cassandra is more appropriate for systems that require a lot
of write operations on a large quantity of operations. It is not designed to be used for a
small amount of operations.

4The appendix A - section “Cassandra” - contains these figures with a bigger size to get a better look.
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Figure 10.13: Cassandra Workload A Figure 10.14: Cassandra Workload B

Figure 10.15: Cassandra Workload C Figure 10.16: Cassandra Workload D

Workload A Read Update
Operations AverageLatency (us) Operations AverageLatency (us) Operations

10000 4530.35 5093 4373.62 4907
20000 3708.47 10004 3431.08 9996
30000 2916.27 14949 2689.05 15051
40000 2570.52 19980 2339.89 20020
50000 2244.24 24838 2075.2 25162
150000 1716.09 74795 1483.77 75205
300000 2598.31 150533 1562.95 149467

Table 10.21: Cassandra Workload A
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Workload B Read Update Insert
Operations Average-

Latency
(us)

Operations Average-
Latency
(us)

Operations Average-
Latency
(us)

Operations

10000 3979.94 5022 4233.16 2497 4870.29 2481
20000 2725.68 9956 2707.37 5061 3264.30 4983
30000 2404.16 15004 2457.14 7485 3051.40 7511
40000 2849.74 20049 2575.30 9939 2769.91 10012
50000 2871.36 24954 2194.22 12571 2423.85 12475
150000 3000.13 75173 1773.54 37230 1953.24 37597
300000 3411.58 149956 1929.84 74823 2063.59 75221

Table 10.22: Cassandra Workload B

Workload C Read
Operations AverageLatency (us) Operations

10000 2781.81 10000
20000 2628.22 20000
30000 2028.28 30000
40000 1934.85 40000
50000 1771.24 50000
150000 1761.46 150000
300000 3237.78 300000

Table 10.23: Cassandra Workload C

Workload D Update Insert
Operations AverageLatency

(us)
Operations AverageLatency (us) Operations

10000 3322.23 4967 4977.48 5033
20000 3514.95 10046 4203.88 9954
30000 3153.31 15091 3631.13 14909
40000 2734.84 19923 2921.28 20077
50000 1937.18 24923 2157.55 25077
150000 2473.46 74994 2683.55 75006
300000 1726.11 150235 1847.67 149765

Table 10.24: Cassandra Workload D
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10.5 Short comparison

In conclusion of this chapter, a short comparison of the performance of MySQL, Mon-
goDB, Cassandra and Couchbase will be made. It is important to bear in mind that
Couchbase had 2GB of RAM allocated to its server and that MongoDB does not support
Datomic. Therefore, the results of Couchbase can not be compared to other database.
However, the table 10.25 contains all average latencies for each workload of each database
for 300,000 operations, including Couchbase.

In that way, MySQL is not appropriated for insert operations, unlike the others. The
workloads B and D show that the average latencies of insert operations for a large amount
of operations are respectively more than 30,000 us and more than 34,000 us. The strength
of MySQL lies in the cach memory mechanism which provides low latencies for read- and
update operations. MongoDB had the best results for each workload. So, MongoDB shows
that it is appropriated for each type of operations.

While Couchbase was performed with just 2GB of RAM, its results follow the same
general curve than MongoDB. Moreover, this database has best average latency for read
operations than Cassandra. So, Cassandra is really not appropriated for read operations.
Therefore, its results for write operations seems to be satisfactory because it is why
Cassandra is designed.

Workloads MySQL MongoDB Cassandra Couchbase

A
Read 1581.43 1027.47 2598.31 1665.86
Update 1615.12 1238.08 1562.95 1830.1

B
Read 790.18 1303.77 3411.58 2175.11
Update 2332.14 1517.16 1929.84 2314.55
Insert 31061.02 1501.66 2063.59 2529.62

C Read 1728.23 880.37 3237.78 1452.30

D
Update 2934.71 1768.51 1726.11 2842.79
Insert 33976.47 1794.70 1847.67 2983.23

Table 10.25: Average latency for each workload of each database
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Conclusion

At the end of this thesis, we can finally address our initial research questions. We
conclude that a migration from an existing relational database towards a non-relational
database is possible. We described in this thesis a method to perform that migration
which is decomposed in multiple steps.

In the context of that migration method, the first step is to migrate the structure. This
step aims at establishing a mapping between a schema which fits with the source data
model and a schema which fits with the target data model (cf. figure 4.2, p. 88).

On the one hand, the database reverse engineering has for a goal to retrieve the concep-
tual schema representing the domain supported by the database studied from both the
source DDL code and the program using that database. We did not retrieve the smallest
detail about this process but showed how it is possible to apply it. That being said, the
bottom line is the fact that this process can be applied on any database from the moment
it respects the relational model. Since this process is the first part of our chosen approach
(cf. figure 4.4, p. 89), it goes without saying that the starting point of our migration
method covers all relational database management systems. Also, through all steps of
the database reverse engineering process (i.e. physical extraction, logical extraction and
conceptualization), we can state that the final result is a conceptual schema devoid of any
technological constraint.

On the other hand, there is the database forward engineering process. This process has
for a goal to go from the conceptual schema fully abstract (produced by the database
reverse engineering process) towards an understandable code for a NoSQL technology. In
other words, this process is the descending part of our chosen approach about the schema
conversion into our method of migration pictured in the figure 4.4, page 89. However,
we were unable to generalize the target of our migration to the whole of non-relational
databases by their lack of standardization. Nevertheless, we proved thanks to a trans-
formation plan and the composition of several designs (i.e. conceptual analysis, logical
design, physical design and coding) that it is still possible to ensure lossless transforma-
tions between the source conceptual schema and the target code only understandable for
Datomic according to many assumptions. Indeed, this process shows how difficult it is to
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go from the relational to the non-relational world, from rigidity to flexibility. By definition,
many constraints from relational databases are contrary to NoSQL and need to be imple-
mented at another layer. That being said, the transformation plan (cf. figure figure 6.12,
page 6.12) is implemented under DB-Main where relationship transformations are proved
by the Generic Entity Relationship (GER). Also, we have chosen Datomic as target rather
than a precise non-relational database technology because Datomic allows covering more
than one NoSQL database (cf. Chapter 2, section 2.2.2.1, subsection 2.2.2.1.b, p. 37).

Therefore, when we combine these two processes, we ensure that the schema conversion
of our migration method is lossless between the DDL source code in SQL and the target
code understandable for Datomic. Also, this first step of our migration method is the first
filter of what can be migrated and what cannot be without making any assumption.

Once the structure is converted, the next step is to aim at synchronizing the data,
which means both inserting the existing data in the target database and providing ways
to access it. We described for this step a method taking as an input a relational database
and its schema transformation towards NoSQL and covering the conversion of both the
data itself and the application program(s) that communicate with the database.

The purpose of this step is to complete the database migration process and obtain
a new system where the new database, its Data Management System and the modified
application program, cohabit in harmony. This new system must at least offer the same
functionalities than the legacy one and can possibly extend them depending on the mo-
tivations behind the migration, along with preserving the original data’s semantics. The
proposed method is the following:

1. Phase 1: data conversion

(a) Select an ETL tool

(b) Perform data migration using this tool

(c) (If some data types are too complex to be directly migrated using the tool)
Employ the manual (purely manual or semi-automatic) approach for
those types

2. Phase 2: program conversion

(a) Maintain both databases by using the wrapper strategy

(b) Maintain the target database by using the logic rewriting strategy
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First, we detail the different data conversion approaches and elicit the most suitable one
for a database migration from relational to NoSQL and specifically Datomic respecting
multiple assumptions, and then describe a method to compare Extract-Transform-Load
tools. We then apply the tool Pentaho Data Integration on our study case to illustrate the
operation of an ETL tool in the concrete context of the data conversion of the demographic
table of Oscar. We describe the process we think is the most natural possible for a data
conversion respecting the assumptions we made. The result of those steps is a target
database filled with data semantically matching the source database’s content.

Then, we report the different program conversion approaches and strategies and suggest
a general method combining data safety and soft transition from one system to another
but at the cost of performance and time which we assumed the migrating team to dispose.
Here again, we describe the process we think ideal for a program conversion respecting
the assumptions we made. The result of those steps is a modified application program
capable of query and update the new database through the new DMS in an efficient way.

To complete the subject of the migration, another topic has been discussed, namely
the performance. Therefore, in the context of computer sciences and more specifically of
databases, the performance is an important concept due to the emergence of “Big Data”
and can be defined in two ways. The first one defines the performance as being a set of
amounted indicators for measuring the elapsed time for a computer system to complete
given tasks taking into account time and given resources. And the second one defines
the performance as being the computer speed executing a certain number of millions of
instructions per second. The performance is mainly impacted by the data structure of the
database but also by resources available, the throughput, etc. So, a lot of concepts are
included in the definition of “performance”.

Therefore, the performance of databases has different goals, such as the evaluation of the
best configuration and the operating environment of a single database management system
or to study several database management systems and to provide a systematic comparison
of these systems. This performance requires a constant evaluation for its measurement but
this constant evaluation of database performances can be complicated due to the fact that
database systems may be different from each other with specific requirements. However,
performance analysts tried to establish mechanisms allowing the performance evaluation
from common key aspects of databases. This is also called “Benchmarks”. There also are
other methods such as cost models, queuing models, etc.
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In that way, a benchmark can be defined as a comparative study of things with the
objectives to get the best. Benchmarks were designed to be used in the marketing area
but had spread in many areas such as computer sciences. Benchmarking is the best way to
compare several database management systems. There are different families of benchmarks
but the “Yahoo! Cloud Serving Benchmark” was chosen to compare a sample of NoSQL
technologies.

This benchmark requires the complete installation of the different systems and works
as a black-box system. Four workloads are used in order to evaluate the performance of
the NoSQL technologies. In that way, MySQL, MongoDB, Cassandra and Couchbase have
been evaluated with this benchmark. Unfortunately, DynamoDB requires lots of money
to get representative results and Riak is not supported by YCSB.

The results of those technologies show differences in terms of performance. In that
way, Cassandra is designed to perform a large amount of write operations and shows
poor performances when there are only read operations. Unlike Cassandra, MongoDB
and Couchbase are faster when there are only read operations and theirs performances
are impacted by write operations. This impact is attenuated with a large amount of
operations. So, in terms of performance, it is important to know the objectives of the
future system in order to choose the best technology.
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Future Work

12.1 Schema conversion

The part about schema conversion is not complete and highlights two major future
works.
On the one hand, this part is the first filter between what is possible to migrate and
what is not because it is the first phase of our migration method. And we have had
to take a lot of assumptions in order to ensure semantics-preserving or at least lossless
transformations. These assumptions can nevertheless materialize by an implementation
at the application layer or another than the data one. Either required attributes or tables
could be implemented by an API for example. Or another artifact which would gather the
whole of constraints and features which are not implemented in Datomic. This artifact
could be subject to a future work. This would involve an impact analysis of this artifact
on the working of Datomic. And then, it would be necessary to challenge the relevance of
Datomic as being our target technology of our migration method.

On the other hand, if Datomic is still relevant, the second work which could be inter-
esting would be to enrich this migration method by extending the transformation plan at
logical level. Indeed structures like is-a relationship are not considered yet. Even though
our transformation plan fits well with our case study, this is not enough to cover all pos-
sible schemas. And the final goal would be to have the most general method covering as
many areas as possible.

12.2 Data synchronization

The data synchronization process described in this thesis could not be treated exhaustively
and raises possibilities of future works. Indeed, some steps or sub-steps of this database
migration method represent a content substantial enough to be addressed in a separate
work. We identified four tracks of potential further research:

• Complete ETL tools comparison: We depicted in this work a method to com-
pare ETL tools using selected criteria and figures of merit. We proposed a weights
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assignment fitting for a migration corresponding to the context of our case study
and respecting assumptions we made. Yet, we did not test tools one by one to fill
an evaluation matrix in order to determine the most suitable tool for this particular
kind of migration. Performing a comparative analysis of most or all available ETL
tools would be a possibility to extend this thesis.

• Data reconciliation step: The data reconciliation step ensuring the integrity of
data and following the Extract-Transform-Load process has not been explored in
this thesis. We described it conceptually in the state of the art but did not go
further in its operation nor pictured it on our case study. Detailing the possible
approaches relative to this step and illustrating it on a concrete case study would
be an interesting extended work.

• Bridge between Datomic and the target storage service technology: Estab-
lished ETL tools do not allow direct loading data in a Datomic database but rather
in compatible data storage services. Thus, artifacts specific to Datomic’s architec-
ture and operation are not yet taken into account when performing the conversion.
Thereby, another possibility of future work would be to concretely set Datomic up in
a partition of a compatible data storage technology previously installed and perform
a data loading in that target database.

• Program conversion case study: The complexity of the Oscar system, due to
the diversity of technologies used, the width of the program itself and the number
of developers, results in the difficulty of rewriting the program’s logic, making the
illustration of a concrete program transformation worth a standalone work that
would be interesting to link to this thesis.

12.3 NoSQL performance

For this section, there are two major future works. The first one is to evaluate Amazon
DynamoDB and Riak. Amazon DynamoDB did not evaluate because it is not open source
and is expensive to have a representative evaluation of its performance. If an agreement
with Amazon could be reached to use DynamoDB for free for the duration of the per-
formance evaluation would allow to evaluate it without any cost. With a regard to Riak,
YCSB does not support this database. It would be interesting to use another benchmark in
order to have an idea of its performance. Naturally, it would be inappropriate to compare
this benchmark with another benchmark because theirs objectives are different.

The evaluation of the performance of the NoSQL technologies is not made from Datomic.
Its objective is to get a sense of the performance of those technologies and to be able to
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select the most suitable database management system for OSCAR. The second future
work is to implement Datomic on the chosen database and to evaluate it. This work can
be made on all databases but it will take some time to implement it.
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Appendix A

13.1 MySQL

Figure 13.1: MySQL Workload A

Figure 13.2: MySQL Workload B

193



Chapter 13 – Appendix A

Figure 13.3: MySQL Workload C

Figure 13.4: MySQL Workload D
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13.11 MongoDB

Figure 13.5: MongoDB Workload A

Figure 13.6: MongoDB Workload B
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Figure 13.7: MongoDB Workload C

Figure 13.8: MongoDB Workload D
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13.12 Couchbase

Figure 13.9: Couchbase Workload A

Figure 13.10: Couchbase Workload B
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Figure 13.11: Couchbase Workload C

Figure 13.12: Couchbase Workload D
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13.13 Cassandra

Figure 13.13: Cassandra Workload A

Figure 13.14: Cassandra Workload B
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Figure 13.15: Cassandra Workload C

Figure 13.16: Cassandra Workload D
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