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PACS 89.75.Hc … Networks and genealogical trees
PACS 89.75.Kd … Patterns
PACS 89.75.Fb … Structures and organization in complex systems

Abstract … A new class of patterns for multiplex networks is studied, which consists ina collection
of di�erent homogeneous states each referred to a distinct layer. The associated stability diagram
exhibits a tricritical point, as a function of the inter-layer di�usion c oe�cients. The patterns, made
of alternating homogeneous layers of networks, are dynamically selected via non-homogeneous
perturbations superposed to the underlying, globally homogeneous, “xed point a nd by properly
modulating the coupling strength between layers. Furthermore, layer-homogene ous “xed points
can turn unstable following a mechanism à la Turing, instigated by the intra-layer di�usion. This
novel class of solutions enriches the spectrum of dynamical phenomena as displayed within the
variegated realm of multiplex science.

Copyright c� EPLA, 2018

Countless systems in Nature exhibit patterns and regu-
larities. Chemistry [1,2], biology [3,4] and neuroscience [5]
are just few examples of “elds in which a macroscopic or-
der spontaneously emerges from the microscopic interplay
between many interacting agents.

A particular subset of processes driving the onset of pat-
terns is represented by reaction-di�usion systems,i.e. sys-
tems made of at least two interacting species undergoing
spatial di�usion. Introduced in the context of mammals
pigmentation by Alan Turing [6], these systems obey an
activator-inhibitor dynamics. Under suitable conditions,
the di�usion drives an instability by amplifying a pertur-
bation superposed to a homogeneous stable “xed point.
The perturbation grows and, balanced by non-linear in-
teractions, leads to spatially inhomogeneous steady states,
termed in the literature Turing patterns.

Although regular lattices de“ne a suitable framework
to model physical reaction-di�usion systems, recently the
theory has been extended so as to include complex net-
works [7], as the underlying medium where species are
bound to di�use. This approach is motivated by the fact
that many real-world systems, ranging from ecology [8]
to the brain structure [9], passing through the modeling
of social communities [10], can be easily schematised by

invoking the concept of graph [11]. In this context, nu-
merous works have revealed a plethora of interesting phe-
nomena, ascribing to the discrete nature of the embedding
support a leading role [12,13].

However, the standard approach to network theory is
not always able to encode for the high complexity of real-
world systems,e.g., the human brain [14], the transporta-
tion network [15,16] and, in general, systems composed by
multiple sub-layers. For this reason, a step forward has
been taken in the modeling which led to the introduction
of the concept of multiplex networks, i.e., interconnected
multi-layered graph [17]. The properties of multiplex net-
works have been widely addressed in the literature. This
includes investigating the non-trivial interplay between
structure and dynamics [18…20]. A general theory for Tur-
ing patterns on multiplex networks has been developed
in [21,22]. Interestingly, di�usion among adjacent layers
can enhance or suppress the instability [21].

In this work we analyse further the zoology of phenom-
ena that can emerge from a reaction-di�usion system de-
“ned on multiplex networks. In particular, we focus on a
new class of instability-driven patterns, veritable attrac-
tor of the inspected system, which are homogeneous per
layer [23], as depicted in “g. 1. These states can turn

48006-p1
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Fig. 1: (Color online) Illustrative example of a layer-
homogeneous “xed point as obtained for the case of a mul-
tiplex network composed by M = 5 Watts-Strogatz layers [24],
with probability of rewiring p = 0 .5 and average connectivity
ranging from 2 to 5. Each network is made of N = 100 nodes.
Here, the Brusselator model is assumed, with parameter b = 9,
c = 30. The di�usion constant are set to the values D 12

u =
D 23

u = D 34
u = D 45

u = 1 and D 12
v = D 23

v = D 34
v = D 45

v = 10. To
facilitate visualization, only 30% of the links in each layer and
40% of the links among layers have been drawn.

unstable due to the injection of a non-homogeneous per-
turbation which may resonate with the intra-layer di�u-
sion terms. Each layer of a multiplex network can be also
thought as an individual node of a corresponding network
of layers. In this setting, it is tempting to interpret the
novel family of “xed points as coarse-grained patterns,
which combines di�erent macro-units so as to re”ect the
complexity of a multi-layers arrangement. We shall also
prove that such coarse-grained patterns can be dynam-
ically selected following a Turing-like instability of the
global homogeneous equilibrium, the inter-layer di�usivity
acting as the key control parameter.

Let us consider for the sake of simplicity a multiplex
composed by two layers, but observe that the model can
be readily extended to the case ofM -independent layers;
each layer is constituted byN nodes, and characterised by
a N × N adjacency matrix AK

ij , where the labelK = 1 , 2
denotes the layer of pertinence. By de“nition, AK

ij = 1 if
the nodesi and j are connected in the layerK , AK

ij = 0
otherwise. Let us observe that homologous nodes,i.e., the
•same nodeŽ belonging to di�erent layers, are, by de“ni-
tion, mutually connected. A two-species reaction-di�usion
system can hence be cast in the following form [21]:

�uK
i = f

�
uK

i , vK
i

�
+ D K

u

N�

j =1

L K
ij uK

j + D 12
u

�
uK +1

i Š uK
i

�
,

�vK
i = g

�
uK

i , vK
i

�
+ D K

v

N�

j =1

L K
ij vK

j + D 12
v

�
vK +1

i Š vK
i

�
,

(1)

assumingK = 1 , 2 and K + 1 to be 1 for K = 2. Here
uK

i and vK
i stand for the concentrations of the species on

the node i , as seen in layerK . L K
ij is the Laplacian ma-

trix associated to the K layer, L K
ij = AK

ij Š kK
i � ij , where

kK
i =

�
j AK

ij refers to the connectivity of node i belong-
ing to layer K (see footnote 1) and � ij is Kroenecker•s
delta. The matrix L K

ij is nothing but the discrete version
of a di�usion operator. D K

u (respectively, D K
v ) is the intra-

layer di�usion coe�cient of species u (respectively, v); D 12
u

(respectively, D 12
v ) denotes the inter-layer di�usion coe�-

cient associated to speciesu (respectively, v). Finally, the
non-linear functions f (·, ·) and g(·, ·) encode for the local
(on site) rule of interaction between the two considered
species. In the following we shall assume that one species
acts as an activator, by autocatalytically enhancing its
own production, while the other behaves as an inhibitor,
contrasting the activator growth.

The model in eq. (1) admits two classes of “xed points:
i) the globally homogeneous (GH) “xed points, i.e. uK

i =
�u and vK

i = �v for all i = 1 , . . . , N and for all K , namely
the equilibrium values are independent of the node and
the layer; ii) the layer-homogeneous (LH) “xed points, de-
“ned as uK

i = �uK and vK
i = �vK for all i = 1 , . . . , N . Note

that we here emphasised the dependence of the equilib-
rium value on the layer, through the index K .

To be concrete, let us consider a speci“c case study,
the so-called Brusselator model for which the local reac-
tion terms are given by f (u, v) = 1 Š (b+ 1) u + cu2v and
g(u, v) = buŠ cu2v, depending on the parametersb and c.
A straightforward computation allows one to determine
the GH “xed point �u = 1, �v = b/c. Determining the LH
“xed point proves more demanding and, to this end, we
rely on numerical methods. In the following, the param-
eters of the model are assigned so that the corresponding
GH “xed point is stable to external homogeneous pertur-
bation. In other words, (b, c) are selected in the region
where the a-spatial version of the Brusselator (i.e., the
model obtained when setting to zero all di�usion constants
in eqs. (1)) returns a stable “xed point.

Note that the GH “xed point depends only on the model
parameters b and c, since both the intra-layer and the
inter-layer di�usions vanish when all the nodes share the
same concentration, independently of the layer that they
are bound to occupy. On the other hand, LH “xed points
are also functions of the inter-layer di�usion coe�cients,
D 12

u and D 12
v , but do not depend on the intra-layer dif-

fusion constants, because the species display an identical
concentration on each layer, at equilibrium. Importantly,
the existence of these two classes of “xed points is indepen-
dent of the underlying topology of the layers composing
the multiplex network.

To study the stability of the above-mentioned “xed
points, we perform a standard linear stability analysis
and monitor the time evolution of a perturbation as-
sumed homogeneous per layer. In formulae, we shall

1Notice that kK
i does not account for inter-layers links.
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Fig. 2: Main panel: phase transitions in the reference plane (D 12
u , D 12

v ) for a multiplex network composed of two layers. Each
layer is made of a Watts-Strogatz network with N = 100 nodes, probability of rewiring p = 0 .5. The upper Watts-Strogatz
network originates from a ring with just nearest-neighbors couplings, while fo r the other network a third nearest-neighbors
lattice is assumed, as the initial skeleton. The curves refer to the Brusselator reaction model with b = 9 and c = 30. The dashed
line refers to the “rst-oder transition, the solid line stands for the second-orde r transition, the circle identi“es the position of
the tricritical point. In the lower portion of the plane, LH solutions are s table. Viceversa, in the upper region of the plane, GH
“xed points represent the stable equilibria. Upper inset: second-order bifurca tion diagram. �uK is plotted as a function of D 12

v ,
for D 12

u = 2 (dash-dotted upper line). GH solutions return an identical value of � uK , on both layers. GH solutions appear hence
as a degenerate single curve. LH “xed points yield two distinct pro“les, e ach associated to one of the layers of the examined
multiplex. Lower inset: “rst-order bifurcation diagram. � uK is represented as a function ofD 12

v , for D 12
u = 0 (dash-dotted lower

line). The qualitative scenario here depicted is robust against modulati ng the reaction parameters involved (as, e.g., b and c),
and/or altering the topology of the employed networks.

set uK
i = ū + �u K and vK

i = v̄ + �v K , � i , where
ū (respectively, v̄) is either �u (respectively, �v) or �uK (re-
spectively, �vK ), and linearise eqs. (1), for�u K , �v K small.
The analysis materialises in an interesting picture, which
can be e�caciously summarised in the plane (D 12

u , D 12
v ), as

reported in “g. 2. The parameters space is partitioned into
two regions: in the lower portion of the plane LH solutions
prove linearly stable. In the upper domain GH “xed points
are stable equilibria. The two regions are separated by a
transition line which we have determined analytically. The
dashed line identi“es a “rst-oder transition: by monitor-
ing �uK , as a function ofD 12

v , for D 12
u frozen to a value that

makes the crossing to happen where the transition is pre-
dicted discontinuous (horizontal, lower dash-dotted line),
one obtains the typical bifurcation diagram as displayed
in the lower inset of “g. 2. Conversely, when the transi-
tion is continuous (horizontal, upper dash-dotted line) one
recovers the usual pitchfork bifurcation, as shown in the
upper inset enclosed in “g. 2. First and second transition
lines merge together at a tricritical point, the black cir-
cle in “g. 2. The bifurcation diagram follows a linear
stability analysis. Formally, this implies computing the
spectrum of the Jacobian matrix, evaluated at the “xed
point. The transition lines correspond to the condition
where the largest real part of the computed eigenvalues is
found to be identically equal to zero. Since the “xed points

belonging to the LH class cannot be expressed in a closed
analytical form, the diagonalisation of the Jacobian is per-
formed numerically. The prediction relies hence on ana-
lytical techniques, but to “nalise the calculation numerical
methods are needed. As an important remark, we recall
that other families of critical points have been reported in
spreading dynamics on multiplex networks [25…27].

Given the above scenario several interesting questions
arise. When operating in the region where the LH “xed
point is shown to be stable, can one seed a di�usion-
driven instability à la Turing, triggered by a random non-
homogeneous perturbation? And can one obtain the LH
(coarse grained or homogeneous per layer) patterns, as
following a symmetry breaking instability of a GH sta-
ble equilibrium? These are the questions that we set to
answer in the following.

Taking inspiration from [21], we introduce a small per-
turbation ( �u K

i , �v K
i ) to the “xed point (�uK , �vK ) and lin-

earise eqs. (1) around it:

d
dt

�
� u
� v

�
= J

�
� u
� v

�
(2)

with

J =
�

f u + L u + D 12
u I f v

gu gv + L v + D 12
v I

�
,

48006-p3










