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 Summary 
 

Bdelloid rotifers are notorious for their long-term evolution in the absence of meiosis, which 

led John Maynard Smith to dub them “evolutionary scandals” as it seemed to contravene the general 

prevalence of sexual reproduction in the animal kingdom. Although bdelloids do not exchange genes 

via conventional sex, evidence is mounting for their ongoing accumulation of non-metazoan genes 

through horizontal gene transfers. These transfers have been linked to the capacity of bdelloid 

rotifers to withstand desiccation at any stage in their life cycle, as desiccation creates multiple DNA 

double-strand breaks that are repaired upon rehydration. Furthermore, desiccated individuals group 

together and are easily dispersed by wind over extended geographical ranges. To understand the 

consequences of asexuality and desiccation on the evolution of bdelloid rotifers, my PhD thesis 

addressed several questions investigating the evolutionary and ecological dynamics of the 

widespread bdelloid lineage Adineta vaga, for which a draft reference genome was already available. 

First, by designing new genetic markers I detected, for the first time, apparent genetic 

exchanges among Adineta individuals sampled in the wild. I observed allele sharing that could be 

explained by inter-individual recombination among conspecific bdelloid individuals, as delimited 

using a tree-based approach as well as an allele sharing-based approach (haplowebs and a 

conspecificity matrix). Moreover, I detected incongruence in species boundaries inferred from 

distinct genetic markers, suggesting the occurrence of DNA transfers between species. These results 

were published in Current Biology and are presented in Chapter 1. A research group from Imperial 

College London challenged those results, and therefore I devoted Chapter 2 to discuss these 

criticisms and performed additional experiments to validate my observations, as presented in 

Chapter 3. 

Second, I further investigated the possible mechanisms underlying the observed patterns of 

genetic exchanges by conducting genomic analyses of the regions (<10 kb) surrounding the genetic 

markers I had previously studied. This revealed intermixed signatures of DNA transfers, gene 

conversion and asexual evolution, highlighting the highly dynamic nature of the genome of bdelloid 

rotifers as presented in Chapter 1. 

Third, the impact of various ecological parameters (dispersal, reproduction, survival, species 

interactions and environmental conditions) on the community structure of Adineta lineages was 

studied and presented in Chapter 4. A simple ecological model, combined with quantitative field 

data, was used to highlight the spatio-temporal dynamics of Adineta spp. natural communities. 

Overall, the model fitted empirical data well, showing that dispersal is the most important factor 

shaping bdelloid communities. Individuals disperse passively over long ranges, but the frequency of 

dispersal is correlated with geographical distance, i.e. there is more dispersal among close-by 

communities. In addition, I found that habitat preference varies among Adineta species and seems to 

have an effect on community dynamics. I also found that community dynamics vary with seasons: 

colonization and population expansion increase from spring to autumn, whereas strong bottlenecks 

happen in winter. Finally, very local sampling in the town of Namur revealed the dominance of one 

Adineta species in this area that is also present, albeit less abundantly, in other places around 

Belgium. The distribution of Adineta within Belgium is briefly presented in annex Chapter 5. 
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In this PhD thesis, I developed and applied new methods to study the evolutionary and 

ecological dynamics of bdelloid rotifer individuals from the genus Adineta, from genomes to natural 

communities. Overall, my results and published data suggest that despite their asexuality, the 

evolution of bdelloid rotifers reveals apparent genome diversification through chromosomal re-

arrangements and DNA transfers; genome homogenization through gene conversion; community 

diversification through passive dispersal; and habitat specialization. Desiccation may play an 

important role in all these processes, reinforcing its potential impact on the evolution of bdelloid 

rotifers. Yet, additional studies quantifying the exact consequences of desiccation at different levels 

(from genes to communities) will be necessary to resolve the mystery of these “evolutionary 

scandals”. 
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Résumé 
 

 Les rotifères bdelloïdes sont connus pour leur diversification et persistence durant plusieurs 

millions d’années en l’absence de méiose, ce qui conduit John Maynard Smith à les qualifier de 

« scandales de l’évolution ». En effet,  cela semble aller à l’encontre de la tendance générale qu’ont 

les espèces animales à se reproduire de manière sexuée. Bien que les bdelloïdes n’échangent pas de 

matériel génétique via une reproduction sexuée conventionnelle, de nombreuses preuves se sont 

accumulées quant à leur capacité à intégrer des gènes d’origines non-métazoaires via des transferts 

horizontaux. Ces transferts ont été corrélés à l’aptitude qu’ont les rotifères bdelloïdes à tolérer la 

dessiccation, et ce, à n’importe quel stade de leur cycle de vie. Lors de la dessiccation, l’ADN est 

fragmenté par de multiples cassures double-brins qui sont ensuite réparées lors de la réhydratation. 

De plus, les individus desséchés ont tendance à se regrouper et semblent facilement dispersés par le 

vent sur de grandes distances géographiques. Pour comprendre les conséquences de l’asexualité et 

de la dessiccation sur l’évolution des rotifères bdelloïdes, j’ai lors de cette thèse essayé de répondre 

à plusieurs questions concernant les dynamiques génétiques et écologiques d’Adineta vaga, espèce 

pour laquelle un génome de référence est disponible. 

 Premièrement, en développant de nouveaux marqueurs génétiques, j’ai détecté pour la 

première fois des échanges génétiques entre individus du genre Adineta échantillonnés dans la 

nature. J’ai observé des cas de transfert d’ADN ne pouvant s’expliquer que par des recombinaisons 

entre individus appartenant à une même espèce. Ces espèces ont été délimitées selon différentes 

approches basées sur de la phylogénie ou le partage d’allèles (haplowebs et matrices de 

conspécificité). De plus, j’ai pu détecter des incongruences dans l’assignation de certains individus à 

une espèce en fonction des différents marqueurs, ceci suggérant des transferts d’ADN entre espèces. 

Ces résultats furent publiés dans la revue Current Biology et sont présentés dans le premier chapitre 

de cette thèse. Un groupe de recherches de l’Imperial College de Londres ayant remis en doute ces 

résultats, j’ai discuté en plus amples détails ces critiques dans le Chapitre 2. J’ai également mis au 

point une nouvelle expérience visant à valider ces observations et dont les résultats sont présentés 

dans le troisième chapitre. 

Deuxièmement, j’ai exploré plus en profondeur les possibles mécanismes expliquant les cas 

d’échanges génétiques observés en réalisant une analyse génomique des régions (<10kb) bordant les 

marqueurs génétiques utilisés précédemment.  Ceci a permis de révéler différentes signatures de 

transferts d’ADN, de conversion génique et d’évolution asexuée, démontrant la nature très 

dynamique du génome des rotifères bdelloïdes comme indiqué dans le Chapitre 1. 

Troisièmement, un modèle écologique simple basé sur différents paramètres (dispersion, 

reproduction, survie, interactions inter-espèces et conditions environnementales), combiné à des 

données quantitatives collectées sur le terrain, a été utilisé pour comprendre la dynamique spatio-

temporelle des communautés d’Adineta spp. (Chapitre 4). En général, le modèle collait bien aux 

données empiriques, démontrant que la dispersion est le facteur le plus important pour expliquer la 

structure des communautés de rotifères bdelloïdes. Les individus sont dispersés passivement sur de 

longues distances, mais la fréquence à laquelle ils immigrent dans un patch donné est corrélé à la 

distance géographique, c’est-à-dire qu’il y a plus de dispersion entre des communautés locaisées 
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dans des régions proches. De plus, il apparaît que les différentes espèces d’Adineta ont des 

préférences distinctes en matière d’habitat. Les saisons semblent aussi jouer un rôle dans la 

dynamique des communautés de rotifères : la colonisation de nouveaux habitats et l’expansion des 

populations étant plus fortes du printemps à l’automne, alors que des « bottlenecks » important ont 

lieu en hiver. Pour finir, notre échantillonnage concentré sur Namur a permis de révéler la 

dominance d’une espèce d’Adineta dans cette région, alors qu’elle a été retrouvée mais en moins 

grande abondance dans d’autres endroits de Belgique. La distribution d’Adineta à travers la Belgique 

est présentée dans le Chapitre 5 (annexe). 

Durant cette thèse, j’ai développé et appliqué de nouvelles méthodes visant à étudier les 

dynamiques évolutives et écologiques du genre Adineta, de l’échelle du génome à celle des 

communautés. Au final, mes résultats et données publiées suggèrent qu’en dépit de leur asexualité, 

l’évolution des rotifères bdelloïdes est caractérisée par une diversification du génome via 

réarrangements des chromosomiques et transferts d’ADN ; une homogénéisation du génome lors 

d’événements de conversion génique ; une diversification des communautés par la dispersion 

passive et la spécialisation à l’habitat. La dessiccation pourrait jouer un rôle important dans ces 

différents processus, ce qui renforcerait son potentiel impact sur l’évolution des bdelloïdes. 

Cependant, des études supplémentaires permettant de quantifier les conséquences exactes de la 

dessiccation aux différents niveaux (des gènes aux communautés) seront nécessaires pour résoudre 

le mystère de ces « scandales de l’évolution ». 
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Preface 
 

“There is grandeur in this view of life, with its several powers, having been originally 

breathed into a few forms or into one; and that, whilst this planet has gone cycling on 

according to the fixed law of gravity, from so simple a beginning endless forms most beautiful 

and most wonderful have been, and are being, evolved.” 

Charles Darwin’s closing sentence “On the Origin of Species” (1859).  

"After sleeping through a hundred million centuries we have finally opened our eyes 

on a sumptuous planet, sparkling with colour, bountiful with life. Within decades we must 

close our eyes again. Isn't it a noble, an enlightened way of spending our brief time in the sun, 

to work at understanding the universe and how we have come to wake up in it? This is how I 

answer when I am asked -- as I am surprisingly often -- why I bother to get up in the mornings. 

To put it the other way round, isn't it sad to go to your grave without ever wondering why you 

were born? Who, with such a thought, would not spring from bed, eager to resume 

discovering the world and rejoicing to be a part of it?" 

Richard Dawkins, “Unweaving the Rainbow” (2000) 

“Nothing in biology makes sense except in the light of Evolution” 

Theodosius Dobzhansky (1973)  

I have always been intrigued by the evolutionary processes that, amongst the infinite number 

of possibilities, drove Nature to be shaped as we can currently contemplate it in all its magnificence. 

Yet, of all the evolutionary biology lectures I have attended, of all the evolution congresses I 

participated in and of all the scientific discussions I took part in, no topic tickled my curiosity more 

than the evolution of sex and its wide cohort of fascinating and puzzling consequences. Genes, 

genomic structures, organisms, life cycles, diversity and geographical distribution all play a role in this 

long and still unsolved mystery. Passionate thoughts started with Charles Darwin, who already 

questioned the role of sexuality, and vigorous discussions arose for the last two decades with the 

advent of molecular biology. Why sex? Finding a partner, fertilizing an egg and joining two genomes 

consist in a complicated and costly path when more straightforward routes are available. To 

understand the emergence and prevalence of sexual reproduction across higher eukaryotes, most 

researchers have tried to sort the pros and cons out of the several reproductive mechanisms 

developed by metazoans. Comparing distinct mechanisms, and by extend distinct species, to point 

out common key parameters that may answer the question of the prevalence of sex is the basis of 

scientific reflection. In the same vein, scientists have started to tackle this issue the other way around 

by asking “If sex is widespread in eukaryotes, it must confer selective advantages. Then do asexual 

species arise and persist, and how?” The emergence of new tools in the 21st century enables tracking 

hidden signs of sex in supposedly asexual organisms or to model conditions under which sex can 

theoretically arise. In this thesis, a wide variety of approaches was used to study a peculiar group of 

ancient asexual animals, the bdelloid rotifers, hopefully bringing new insights into the question of sex 

or the question of how asexuals persist in the long term. 
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General introduction 
 

“Nor do we know why nature should thus strive after the intercrossing of distinct 

individuals. We do not even in the least know the final cause of sexuality; why new beings 

should be produced by the union of the two sexual elements, instead of by a process of 

parthenogenesis… The whole subject is as yet hidden in darkness” 

 Charles Darwin (1862) 

“Sex is the queen of problems in evolutionary biology. Perhaps no other natural 

phenomenon has aroused so much interest; certainly none has sowed as much confusion.” 

Graham A. C. Bell (1982) 

“… if there is one event in the whole evolutionary sequence at which my own mind 

lets my awe still overcome my instinct to analyse, and where I might concede that there may 

be a difficulty in seeing a Darwinian gradualism hold sway throughout almost all, it is this 

event – the initiation of meiosis.” 

W. J. Hamilton (1999) 

 

 

 Why did sex appear in eukaryotes whereas prokaryotes successfully evolved 

asexually over more than 3 billion years? How sex is maintained despite heavy consequences at 

genetic, cellular, organismal and population levels? To better understand the evolution of sexual 

reproduction, we have to review the phenomenon of natural selection. The first part of this 

introduction will aim at giving a broad overview of how natural selection counter-balances the strong 

costs linked to sex relative to the benefits of being asexual. I will then develop the potential 

evolutionary mechanisms involved in the transition from sexual organisms to obligate asexuals. 

Finally, I will describe groups of organisms that evolved and diversified in spite of strict asexual 

reproduction which will lead us to the main goal of my thesis: how the bdelloid rotifers got the 

notorious status of ancient asexuals, from genome-level dynamics to community-level dynamics. 

 

The emergence of sexual reproduction as main eukaryotic driver for evolution 

Sexual reproduction and the cost of sex 

Although the reproductive mode is still obscure in many species, especially in the poorly 

studied protists, researchers estimate that more than 99.99% of eukaryotes reproduce sexually 

(Otto, 2008; Schurko et al, 2009; Speijer et al, 2015). The conservation of meiotic mechanisms among 

the wide range of taxa reproducing sexually incited scientists to accept that sex has probably evolved 

once at the origin of eukaryotes approximately 2 billion years ago (Cavalier-Smith, 2002; Zimmer, 

2009; Goodenough and Heitman, 2014; Lenormand et al, 2016). Sex diversified into several variants 

involving distinct mechanisms from molecular to organismal levels but the most simple and 
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generalized definition of sexual reproduction is the ploidy-number reduction (homologous genome 

separation) through 

meiosis (Figure 1a) 

followed by 

fertilization. This led 

to two major 

evolutionary 

consequences: 

genders and 

recombination (Bell, 

1982; Bengtsson, 

2009). Gender is the 

consequence of a 

divergence between 

the gametes resulting 

from meiosis, 

specializing into male 

(many small and 

motile cells) and 

female gametes (few, 

large and nutrient-rich 

cells) (Bell, 1982; 

Lehtonen and Kokko, 

2011). This 

divergence, called 

anisogamy, often 

extends back to the 

whole organism that 

produces them e.g. 

males and females 

that are 

morphologically 

distinct in many taxa. 

Recombination is the 

production of new 

combinations of genes resulting from segregation and crossing overs. The latter is the consequence 

of homologous chromosome pairing which is mediated by the induction of numerous DNA double-

strand breaks (DSBs) and the chiasmata formation (Figure 1b; Zickler and Kleckner, 2015). As stated 

by Mendel’s second law, pair of genes segregate and reassort independently into gametes during 

meiosis (as long as the genes considered are sufficiently distant to enable crossing-overs). 

Fertilization between gametes of sexually reproducing individuals also enables new allelic 

associations, eventually leading to some advantageous combinations. The diversity generated within 

the offspring resulting from sexual reproduction is the basis on which natural selection can act and 

enable evolution. Interestingly, even if meiosis is absent in bacteria and archaea, they can 

Figure 1 : Schematic representation of the different steps of meiosis (adapted from 
Lenormand et al, 2016). The top panel illustrates the different phases of a canonical female 
meiosis for each of the two meiotic divisions: prophase (P, with early and late prophase 
distinguished), metaphase (M), anaphase (A) and telophase (T). The nuclear membrane is 
indicated by the green contour (dashed when it starts fragmenting). The small black circles 
represent microtubule organizing centres and the black lines represent microtubules of the 
meiotic spindle. First and second polar bodies are shown as grey circles next to the oocyte 
(chromosomes inside the polar bodies are not shown). Homologous chromosomes are 
represented with the same colour with slightly different shades (e.g. orange and light 
orange). Homologous pairs segregate in meiosis I (reductional), then sister chromatids 
segregate in meiosis II (equational). The middle panel shows the meiotic cell cycle. The 
timing of the primary meiotic arrest is indicated by a red star, while the timing of the most 
common secondary arrests in different organisms is indicated by green stars. The lower 
panel indicates the important steps (DSB formation, crossing overs) occurring during 
prophase I. The synaptonemal complex is shown in yellow. Chromatin condenses in 
chromosomes throughout prophase I (only one pair of homologues is illustrated). In most 
species, telomeres attach to the nuclear envelope. The attachment plate is indicated by a 
grey bar. MSCI, meiotic sex chromosome inactivation. 
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occasionally transfer genes (conjugation, transduction and transformation) suggesting that 

recombination may be essential for their long-term survival.  

 However, the ubiquity of sex is puzzling when considering the evolutionary costs it implies. 

First, gender represents a considerable energetic investment in the development of new 

morphological traits and sex-related behavior (Andersson, 1994). Gender distinction often results in 

additional evolutionary constraints that do not apply to asexuals, such as sexual selection. Sexual 

selection was already recognized by Darwin and results in the development of traits giving nature 

much of its beauty. Peacock males grow a colorful tail for female attraction, fireflies flash through the 

night to find a mate and plants produce specific perfumes to lure insects that will carry pollen to 

partners. As a consequence, one gender (most often the male) will invest energy into traits that 

attract the opposite gender, but which may be detrimental in the context of resource competition for 

example. Indeed, many of the sexual selected traits turn out to be prejudicial in the strict concept of 

survival and competition. The peacocks cumbersome tail interferes with its escape from predators, 

the fireflies flashes signal its presence to insectivores, and plants need to invest energy in the 

production of complex aromatic molecules. Second, if natural selection is the prevalent force driving 

evolution, then sex continuously disrupts advantageous gene combinations that have been selected 

and maintained over generations (Charlesworth and Barton, 1996; Otto, 2009). In other words, it 

could be risky for an organism well adapted to its environment to mix its genome with another, 

eventually less adapted individual.  

George Williams and John Maynard Smith first 

pointed out the theoretical disadvantages of sexual 

reproduction relative to asexual reproduction (Maynard 

Smith, 1971; Williams, 1971), being qualified as “the 

twofold cost of sex” (Maynard Smith, 1978). This notorious 

hypothesis refers to the fact that in sexual reproduction, 

the unit is the couple (except in a few cases such as 

hermaphroditism) whereas in asexual organisms the unit is 

the individual. This means that unless the number of 

surviving offspring is twice higher in the sexually 

reproducing couple, the asexual individual will have a better 

reproductive output per capita (Figure 2). As a result, a 

sexually reproducing species should rapidly be outcompeted 

by mutants slowly shifting to asexuality that can randomly 

appear in the population (Doncaster et al, 2000). This is the case in the fish genus Poeciliopsis for 

which it has been demonstrated that in homogenous stream habitats, clonal lineages deriving from 

hybridization could eclipse their sexual relatives (Vrijenhoek and Pfeiler, 1997).  

In addition to those major costs, sexual reproduction opens new gates for diverse risks linked 

to frequent outcrossing. Sex facilitated the development and spreading of parasites infecting sexual 

organs resulting into sexually transmitted diseases. Similarly, since sexual reproduction enables 

frequent genomic recombination, transposable elements (TEs) propagate among the entire sexual 

population while it remains clustered within the asexual individuals carrying them and their progeny 

(Hickey, 1982; Arkhipova and Meselson, 2000). The accumulation of TEs in non-recombining genome 

portions can be extremely quick as the Drosophila miranda neo-Y chromosome accumulated a 19-

Figure 2 : Representation of the “twofold cost 
of sex” considering a similar fecundity for 
both the asexual and the sexual lineages. In 
the asexual lineage, the female produces two 
daughters that can then reproduce by 
cloning. In the sexual lineage, crossing 
between a male and a female is required 
leading to a reproductive output twice lower. 
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fold more TEs in <1 My relative to its homologous neo-X chromosome (Bachtrog et al, 2008). This 

could be detrimental as those elements may eventually disrupt essential gene functions (Arkhipova 

and Meselson, 2005; Bast et al, 2015). Moreover, populations reproducing sexually have a reduced 

capacity to colonize new habitats compared to asexuals since it requires the simultaneous 

immigration of one male and one female (or a gravid female) within the newly colonized area instead 

of a single asexual female. Finally, mathematical models have demonstrated that by speeding up the 

speciation rate, sex could lead to lower biodiversity in some conditions (Meliàn et al, 2012). Indeed, 

simulations showed that frequent speciation resulted in many species with low abundance, those 

being more sensitive to species interactions which strongly influenced the extinction dynamics.  

The origin of sexual reproduction 

Despite all those disadvantages, sexual reproduction is present in almost all eukaryotic clades 

with extremely rare cases of clades containing distinct long-term obligate parthenogenetic species, 

i.e. the production of a progeny in absence of fertilization (‘virgin birth’ in Greek). The frequency of 

sexual reproduction across eukaryotic taxa and the conservation of meiotic mechanisms led to the 

hypothesis that reductional cell division appeared early in the evolution of eukaryotes (Hamilton, 

1999; Cavalier-Smith, 2002; Goodenough and Heitman, 2014, Lenormand et al, 2016). Several 

hypotheses have been put forward on how this transition happened, but one of the best supported 

hypotheses argues that a primitive meiosis (often named ‘proto-meiosis’) took place long before true 

sex (Wilkins and Holliday, 2009; Zimmer, 2009; Lenormand et al, 2016). Proto-meiosis probably arose 

as a mechanism to return to haploidy in organisms in which higher ploidy was induced by haploid 

proto-eukaryote cell-cell fusion (parasexuality) or endoreplication (Lenormand et al, 2016).  

Indeed, the presence of an additional set of chromosomes without molecular monitoring by 

the cell, i.e. homologous chromosome pairing, may have promoted the possibility for deadly ectopic 

recombination (Coop and Przeworski, 2007; Carvalho and Lupski, 2016) between DNA fragment 

presenting micro-homologies. In this context, meiotic chromosome synapsis offers a non-negligible 

novelty to pair homologs tightly and favor accurate recombination (Wilkins and Holliday, 2009).  

With the evolution of meiosis and the underlying benefits, eukaryotes slowly shifted from a 

mostly haploid existence to a diploid life with episodic chromosome number reduction (haploid) 

necessary for sexual reproduction (Zimmer, 2009; Goodenough and Heitman, 2014). Yet, the two-

fold cost of sex had to be overcome to explain its evolutionary maintenance. 

 One hypothesis is that during periods of stress, rare sexually reproducing individuals 

emerged within asexual populations as it is observed in certain species. For example, sexuals can 

persist in a population of cyclical parthenogenetic monogononts when only a few individuals switch 

to sexual reproduction during stress conditions (Stelzer, 2011). Thus, genes responsible for sexual 

reproduction may have been transmitted from one generation to the other during periods of stress, 

especially in facultative asexuals (i.e. the alternating cycles of sexual and asexual reproduction) with 

low fitness, in order to segregate out of detrimental genomic backgrounds (Hadany and Otto, 2007; 

Hadany and Otto, 2009). Although it is now well admitted that sex arose in cyclical parthenogens, its 

maintenance and the evolution of obligate sexuality require additional explanations. Hadany and 

Beker (2007) demonstrated through a mathematical model that when some individuals are attractive 

enough to reproduce with a high amount of mates, they could have more offspring than simply by 

cloning themselves. Mutations favoring the sexiness of a few individuals may, thus, have promoted 
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the spreading of selfish sex genes in the population until asexual individuals eventually disappeared 

(Hadany and Beker, 2007; Kleiman and Hadany, 2015). 

The benefits of sex 

Why sex persists as the main reproductive mode among eukaryotes for approximately 2.0 

billion years (Miyamoto and Fitch, 1996) is another question. Mutants able to reproduce clonally 

often emerge within obligate sexual populations (Schön et al, 2009; Schwander et al, 2010) and those 

clones, freed from the twofold cost of sex, ought to take over their sexual relatives. However, given 

their rarity within the metazoans, something must restrain the spreading and persistence in the long-

term of asexuals. Extensive theoretical work has investigated the advantages of sexual reproduction 

despite its costs, some being outlined here, but it is not clear whether those advantages offset the 

twofold cost of sex.  

First, sex is known to speed up adaptation by bringing favorable mutations together faster 

than in asexuals and thus to enable quicker responses to frequently changing environments (related 

to seasonality, resource depletion, crowding …) (Fisher, 1930; Müller, 1932). New beneficial 

mutations entering an asexual population have good 

chances to arise in distinct competing lineages, only 

one of which will fix in the population (Figure 3). In a 

sexual population beneficial mutation appearing in 

distinct lineages can be brought together through 

recombination, increasing the speed of adaptation 

(yellow dot on Figure 3). This has been tested using 

the baker’s yeast Saccharomyces cerevisiae, with 

micro-evolution experiments demonstrating that 

sexual strains could fix and combine beneficial 

mutations more efficiently than asexual strains, 

resulting in an overall higher fitness (Goddard et al, 

2005; Gray and Goddard, 2012; McDonald et al, 2016). 

In contrast, those studies could not find any difference 

in fitness between asexual and sexual strains under 

permissive conditions. Under these considerations, 

one might think that sex would be favoured in 

unpredictable environments because it maintains heterogeneity in the populations. Yet, it is only the 

case under certain conditions where the association between loci frequently changes (fluctuating 

epistasis). In example, if two loci determine the adaptation to two environmental factors 

(temperature and humidity) that do not correlate (cold always associated with wet conditions and 

hot with dry conditions), there is no epistasis and recombination does not make any difference. In 

contrast, if associations between those environmental conditions vary over time resulting in a 

fluctuating epistasis, recombination can be favored because loci association is more frequently 

disrupted (see Barton et al, 2007). Similarly, sexual lineages of the fish genus Poeciliopsis were shown 

to colonize a broader range of ecological niches than there asexual relatives (Vrijenhoek and Pfeiler, 

1997). The more genetically diversified sexual Poeciliopsis lineage presented a higher average fitness 

overall than the asexual lineages but a lower fitness for a given niche (Figure 4). In this example, sex 

is advantageous because recombination tends to maintain populations at linkage equilibrium.  

Figure 3 : Favourable mutations arise independently 
in distinct asexual lineages. For example, A being 
advantageous over a, B over b and C over c. In the 
asexual lineage they have to accumulate one after 
the other in the same genome. In the Sexual 
population, favourable mutations found at different 
loci (a, b and c) can be combined rapidly through 
recombination (yellow dot).   
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Second, sexual reproduction is a powerful mechanism to purge the genome from harmful 

mutations. Natural selection eliminates less efficiently mutations if they are slightly deleterious 

(Lynch and Gabriel, 1990). If not lethal, deleterious mutations can fix in the population when they are 

linked to selected advantageous ones, a process known as genetic hitchhiking (Maynard Smith and 

Haigh, 1974; Rice, 1987). Inversely, beneficial mutations can be 

eliminated from the population when they are associated to 

unfavorable ones i.e. background selection (Charlesworth et al, 

1993). Those interactions among linked loci, named Hill-

Robertson effect, are more pronounced in asexuals whereas 

meiotic recombination frequently disrupts associations 

between loci (Hill and Robertson, 1966; McVean and 

Charlesworth, 2000). As a result, mutations can fix and 

accumulate over generations in asexuals, a process known as 

“Muller’s Ratchet”, until permanently reducing the fitness and 

population expansion (Muller, 1932; Barton and Charlesworth, 

1998). In contrast, homologous chromosomal recombination 

taking place during meiosis in sexual organisms can replace a 

defective version of a gene with the wild-type, recovering the 

ancestral beneficial genotype. In other words, sexual 

reproduction makes natural selection more efficient at sorting 

beneficial mutations from detrimental ones (McDonald et al, 

2016). For example, both beneficial and detrimental mutations 

fixed in populations of asexually reproducing S. cerevisiae 

whereas only beneficial mutations could fix in out-crossing 

populations highlighting the role of recombination in decoupling 

advantageous mutation from their genetic background (Figure 

5; McDonald et al, 2016). In a recent population genomic study, 

Lovell et al (2017) observed a higher mutation load (H0 = 0.23) in 

asexuals than in sexual individuals (H0 = 0.15) from sympatric 

populations, those deleterious mutations being more often 

present in the asexual genomes.  

Third, sex turns out to be an 

efficient defense against the infection by 

parasites. Mathematical models indicated 

that host-parasite interactions resulted in 

their co-evolution, also known as the Red 

Queen hypothesis (Hamilton, 1980). In 

this context, asexuality is particularly 

disadvantageous as parasites able to 

infect the most frequent host strain will 

be favored (Koskella and Lively, 2009; 

Wolinska and Spaak, 2009). Meanwhile, 

sexual organisms can permanently 

produce new resistant strains that can 

Figure 4 : Frozen Niche variation and 
asymmetric competition between new 
clones and their sexual progenitors. (A) A 
sexual population exhibits genetic variation 
for the utilization efficiency of a natural 
resource that is evenly distributed. (B) A 
range of genotypes is frozen among clones 
produced by the sexual ancestor. (C) Too 
high a rate of clonal formation will eclipse 
resource use by the sexual ancestor and lead 
to its extinction. (D) Natural selection rapidly 
eliminates clones that substantially overlap 
one-another and the centrally distributed 
sexual phenotypes, leading to stable 
coexistence if rate of clonal origins is not too 
high. 

Figure 5 : Fitness effects of individual mutations (from McDonald et al, 
2016). a) and b) Mutation trajectories in an asexual (a) and sexual (b) 
line. Orange mutations are significantly beneficial; blue are 
deleterious; gray are unmeasured or consistent with neutrality. c) 
Identities and fitness effects of significantly beneficial or deleterious 
mutations (chromosome number in parenthesis). 
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thus expand rapidly in the population until a 

parasite finally gets adapted to this strain. Those 

population boom-and-bust cycles were 

experimentally highlighted in the nematode 

Caenorhabditis elegans and its parasite Serratia 

marcescens interaction (Morran et al, 2011). In 

control conditions, reproduction by selfing was 

constantly more frequent than outcrossing in the 

C. elegans population. Inversely, outcrossing was 

preferred when S. marcescens was present and 

coevolution took place (Figure 6). Identical results 

were observed in natural conditions in the 

freshwater snail Potamopyrgus antipodarum in 

which sexual populations were generally less 

infected by the parasitic trematodes Microphallus 

sp. than the coexisting asexual populations 

(Vergara et al, 2014). 

Finally, the two-fold cost endured by a sexual population can be counter-balanced by the 

access to a wider range of resources than its asexual competitor (Pound et al, 2002, Crummett et al, 

2013). For example, asexual lineages of the fish genus Poeciliopsis were shown to co-exist with their 

sexual relatives under heterogeneous environmental conditions (Vrijenhoek and Pfeiler, 1997). In 

that example, clonal lineages derives from generalist sexual species but as a given genotype is 

inherited and possibilities for recombination are eliminated, the resulting parthenogenetic lineages 

became specialists (i.e. each clonal lineage has a subset of all the niches that were suitable for the 

sexual ancestor) (Vrijenhoek and Parker Jr, 2009). This evolutionary concept was described as the 

Frozen Niche-Variation (Figure 4; Vrijenhoek, 1979). Because intra-specific competition is stronger 

than competition between species (Chesson, 2000), the accumulation of asexual clones in a sexual 

population will substantially be slowed (Doncaster et al, 2000; Pound et al, 2002). 

 

The emergence of asexual taxa in metazoan 

New asexual lineages derive from sexual ancestors 

The evolutionary advantage conferred by sexual reproduction is obvious when looking at the 

eukaryotic tree of life since most taxa contain species reproducing sexually. Asexual species are 

restricted to a few tips of the eukaryotic tree. However, many groups have not been investigated in 

detail yet (Figure 7; adapted from Speijer et al, 2015). The restricted distribution of asexual taxa 

despite the frequent apparition of asexual lineages among sexual populations suggests that 

asexuality is a short-term strategy relative to sex (Paland et al, 2005; Schurko et al, 2009; Neiman et 

al, 2009), that speciation is less frequent in asexuals and/or that they rapidly revert to sex 

(Schwander and Crespi, 2009). Indeed, it has been estimated that on average only 1 out of 1000 

species is asexual (Vrijenhoek, 1998) and half of them are less than 500,000 years old and, thus, 

relatively young in comparison with the average age of a species, e.g.  primate species are ≈4 My old 

(Neiman et al, 2009). However, parthenogenesis can be much more frequent in particular taxa as it 

Figure 6 : Wild-type outcrossing rates over time (from 

Morran et al, 2011). Outcrossing rates in wild-type 

populations were not manipulated and free to evolve 

during the experiment. The wild-type populations were 

exposed to three different treatments: control (no S. 

marcescens; dotted line), evolution (fixed strain of S. 

marcescens; dashed line), and coevolution (coevolving S. 

marcescens; solid line) for 30 generations. Error bars, 2 

SEM. 
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has been demonstrated in the hexapode Aphytis for 

which 38% of the described species are asexual (van 

der Kooi et al, 2017). Moreover, it is commonly 

admitted that all the described asexual taxa are 

deriving from sexual ancestors (Bell, 1982; Neiman et 

al, 2014). There are indeed several mechanisms 

involved in the transition to obligate parthenogenesis, 

such as infection by micro-organisms, interspecific 

hybridization and mutations in meiotic genes.  

Infection by endosymbiotic bacteria  

Many cases of transitions from sex to 

parthenogenesis have been linked with the presence of 

intra-cellular endosymbiotic bacteria, especially in 

insects (reviewed in van der Kooi et al, 2017). The most 

notorious example is the interaction between 

Wolbachia and its parasitoid wasp host but surveys 

suggested that more than 30% (Duron et al, 2008) of 

sampled arthropods are infected by common 

endosymbiotic bacteria, i.e. Wolbachia, Cardinium and 

Rickettsia (Weeks and Breeuwer, 2001; Werren et al, 

2008, Cordaux et al, 2011), that feminize the 

populations. The intra-cellular endosymbiotic bacteria 

are located within 

the host cells 

cytoplasm and, 

thus, can only be 

transmitted by the 

female to the next generation as only the nuclear content of 

male sperm is transmitted to the progeny. Thus, it is beneficial 

for the endosymbiont to favor the production of infected 

daughters in spite of sons in order to ensure its own 

transmission. In Wolbachia, this is achieved by various 

mechanisms such as the feminization of genetic males, the killing 

of male progeny from infected females, the induction of egg-

sperm cytoplasmic incompatibilities and the development of 

unfertilized eggs i.e. parthenogenesis (Werren et al, 2008; van 

der Kooi and Schwander, 2014a). Interestingly, parthenogenetic 

females were demonstrated to be able to revert to sex once 

treated with antibiotics that removed their parthenogenesis-

inducing endosymbiont (Stouthamer et al, 1990). 

Parthenogenesis induction by endosymbionts is tightly linked to 

haplodiploid species because, in this system, females can 

Figure 7 : Distribution of (meiotic) sex and selected 
sex-related features in eukaryotes (adapted from 
Speijer et al, 2015). The schematic phylogeny is a 
consensus of recent literature. *Root position 
(uptake of an α-proteobacterium at the origin of the 
eukaryotes); root positions suggested by other 
studies are indicated by small arrows. For each 
lineage, previously reported or assumed presence 
of sex is indicated: black boxes, well-documented 
sex; gray boxes, limited evidence for sex (rare direct 
observations, indirect inference from genomic 
data); no boxes, no published evidence. Absence of 
boxes does not directly imply absence in a lineage, 
especially for those given in gray, with limited (or 
absent) genome-scale sequence data. 

Figure 8 : Mechanisms responsible for the 
propagation of Wolbachia in haplodiploid 
species. As Wolbachia is dwelling in its host 
cytoplasm, it is transmitted to the next 
generation through female oocytes but not by 
male sperms (as only the nuclei content are 
transmitted). As a result, Wolbachia induces 
parthenogenesis in its host females in order to 
avoid the dead-end represented by males. 
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produce progeny without males (Figure 8; Cordaux et al, 2011, van der Kooi et al, 2017).  

Hybridization of distinct species 

Parthenogenesis may be retrieved 

when interspecific hybridization occurs as 

it has been observed in vertebrates 

(Neaves and Baumann, 2011). Around 80 

taxa of asexual vertebrates have been 

described so far, specifically among fishes, 

amphibians and squamate reptiles 

(Kearney et al, 2009; Neaves and Baumann, 

2011). In most known instances, asexuality 

has arisen through interspecific 

hybridization, resulting in a high 

heterozygosity level that may play a 

significant role in their persistence over 

thousands of generations (Brown et al, 

1995; Ament-Velásquez et al, 2016). In the 

peculiar reproductive mode 

hybridogenesis, the reduced oocytes 

produced by the female contain only the genetic material that came from the mother lineage. When 

fertilized by a sperm of a male from another species (Figure 9a), the descendant carries both parental 

haploid genomes in the somatic cells, but only the maternal haploid non-recombinant set of 

chromosomes is transmitted to the next generation as the paternal genome is selectively excluded 

during oogenesis. This mode of reproduction is only viable when the unisexual (all-females) lineage is 

tightly ecologically associated with its sexual parent species (Lamatsch and Stöck, 2009). Because 

distinct species often contain rearranged chromosomes and disrupted synteny, hybrids often have an 

inefficient meiosis resulting in a low viability. Interspecific hybridization may therefore result in the 

development of alternative mechanisms to rescue viable egg production, such as obligate 

parthenogenesis (Schwander and Crespi, 2008). Gynogenesis, another mode of unisexual 

reproduction occurring in some fishes and amphibians, could have also led to obligate 

parthenogenesis. In this case, the embryogenesis of the unreduced oocyte produced by the female 

will only start its development when stimulated by the sperm of a related sexually-reproducing 

species (Figure 9b; Neaves and Baumann, 2011). In this process too, it is tempting to imagine that 

divergence leading to cytological incompatibilities between the oocyte and the sperm may impede 

the stimulus necessary for the embryo development and leave the female with no other option than 

go through obligate parthenogenesis, although this has, to our knowledge, not been documented 

yet. Finally, the emergence of asexual females from a sexual population can happen when erroneous 

meiotic divisions produce unreduced eggs that hatch spontaneously, a mechanism called 

tychoparthenogenesis (Schwander et al, 2010). In populations where males are rare, some females 

may fail to find a mate and produce daughters through a low rate of tychoparthenogenesis (Figure 

9c). As a consequence, the biased sex-ratio increases and it has been hypothesized that this may lead 

to asexuality through a positive feedback loop as observed in some Timema stick insects (Schwander 

et al, 2010).  

Figure 9 : Distinct reproductive mechanisms that may favour the 

induction of parthenogenetic lineages. a) Hybridogenesis, b) 

gynogenesis and c) tychoparthenogenesis. 
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Alteration of sex/asex cycles 

Transition to obligate asexuality can be the consequence of spontaneous mutations in 

meiotic genes, particularly in facultative or cyclical asexual species that regularly switch from sexual 

to asexual reproduction (Serra and Snell, 2009; Stelzer et al, 2010). If the meiotic machinery is 

disrupted, those species can only reproduce through parthenogenesis. Facultative asexuality, the 

production of seeds both through sexual and asexual mechanisms, is widespread in plants. Cyclical 

parthenogenesis has essentially been observed in animals among which cladocerans, trematodes, 

cynipid insects and monogonont rotifers and it is the reproductive mode in which asexual 

generations alternate with sexual ones (Neiman et al, 2014). In both facultative and cyclical 

asexuality, switching from the asexual reproductive mode to sexuality has been associated with 

stress, sexual reproduction and the adaptive power of recombination predominating under 

unfavourable conditions. In those species, no novel adaptations are required as all the genetic and 

developmental machinery for parthenogenesis is constitutively present facilitating the transition to 

obligate asexuality (van der Kooi and Schwander, 2014b). Simple genetic changes could alter the 

pathways inducing sexual reproduction, for example, by shifting the threshold of the environmental 

signal triggering parthenogenesis to a level beyond natural range. Furthermore, in cyclical 

parthenogens recessive alleles of the genes responsible for obligate asexuality may evolve and 

remain undetected for several generations in heterozygous individuals until their frequency is high 

enough for homozygotes to appear in the population resulting in a transition to obligate asexuality 

(Stelzer et al, 2010). This has been observed in the monogonont rotifer Brachionus calyciflorus for 

which self-fertilization of heterozygous individuals produced obligate parthenogens at a ratio 1:3, the 

frequency of homozygous offspring. Stelzer et al (2010) hypothesized that this switch was probably 

due to a single locus op (obligate parthenogenesis) although they could not totally exclude the 

possibility for epistatic interactions among several unlinked loci.  
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The different types of asexuality and their consequences 

Asexual taxa offer unique opportunities to understand how they survive without sex and to 

study the evolutionary consequences of the absence of sexual reproduction. In 2011, Neiman and 

Schwander listed distinct modes of asexual reproduction and how studying those cases could give 

insights in the prevalence of sex (Figure 10 adapted from Neiman and Schwander, 2011). First, 

comparing meiotic and mitotic parthenogens can provide information about the theoretical role of 

meiosis in limiting deleterious mutation accumulation. Indeed, because meiotic parthenogens 

maintain recombination and segregation, they should accumulate deleterious mutations slower than 

purely mitotic lineages (Haccou and Schneider, 2004). Second, if diversity is one of the major 

elements explaining the success of sex, assemblages comprising independently-derived asexual 

lineages should be more persistent than single-origin clonal lineages (Maynard Smith, 1978). Third, 

meiotic parthenogenesis can either be characterized by a rapid loss of heterozygosity (gamete 

duplication or terminal fusion) or heterozygosity excess (central fusion, premeiotic chromosome 

Figure 10 : The major parthenogenesis modes in animals and their consequences for the maintenance of heterozygosity and genetic 

variation among offspring (adapted from Neiman and Schwander, 2011). 
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duplication or incomplete meiosis) whereas mitotic parthenogens (apomixis) are expected to 

maintain heterozygosity (Figure 10; Neiman and Schwander, 2011). As a result, comparing different 

types of parthenogenesis could bring new insights into the evolutionary importance of 

heterozygosity. Similarly, asexual lineages originating from hybridization should present some 

advantages over non-hybrid parthenogens. Finally, evaluating the ploidy levels of old sexual lineages 

may be relevant as polyploidy confers a temporary protection against recessive deleterious alleles 

(Otto and Whitton, 2000; Selmecki et al, 2015).  

Even though most of the asexual eukaryotic species currently described are relatively young 

(Neiman et al, 2009), a few groups of organisms have persisted and diversified in absence of sex for 

several tens of million years, namely the bdelloid rotifers (Mark Welch and Meselson, 2000; Flot et al, 

2013; Tang et al, 2014), the darwinulid ostracods (Schön et al, 2009) and the oribatid mites (Domes 

et al, 2007; Laumann et al, 2007). Studying the different parthenogenetic lineages, their origin, the 

number of times they arose independently and their age may finally give a chance to put an end to 

the numerous discussions concerning the “implications of sex” that have appeared throughout the 

history of evolutionary biology (Table 1, adapted from Neiman et al, 2009).  

Table 1 : Current estimates of asexual lineage age across a diverse set of eukaryotic taxa (adapted from Neiman et al, 2009). 
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Something of an evolutionary scandal: the bdelloid rotifers 
 

“I formed the strong impression that the study of parthenogenesis is, at least, 

beginning to tell us something about the evolutionary significance of sex. Much remains to be 

done. The Bdelloids remain something of an evolutionary scandal. We need to know the age of 

at least some natural clones; the extent of genetic diversity that can arise within them; and 

whether deleterious mutations accumulate in them by the ratchet mechanism […]. The 

suggestion that sex is needed in the evolutionary race against parasites should be 

investigated.” 

J. Maynard Smith (1986) 

 In the present thesis, we studied the bdelloid rotifers (etymology: bdella, leech; rota + ferre, 

wheel-bearer), the most notorious “ancient asexuals” currently known within metazoans (Mark 

Welch and Meselson, 2000; Schön 

et al, 2009; Flot et al, 2013; 

Fontaneto and Barraclough, 2015). 

Bdelloid rotifers have apparently 

persisted without meiosis or 

males for 40-100 My according to 

fossil evidence and estimations 

from molecular data (Poinar and 

Ricci, 1992; Tang et al, 2014). The 

paradox of their long-term survival 

without meiosis or sex has long 

been recognized as “something of 

an evolutionary scandal” 

(Maynard Smith (1986). 

Nonetheless, those microscopic 

animals (100 µm to 1.5 mm) have 

diversified into hundreds of 

morphologically described species 

(Segers, 2007) colonizing different 

types of limno-terrestrial habitats 

in which temperature, humidity or 

salt content vary unpredictably 

(Ricci and Balsamo, 2000). More 

recently, studies using genetically-

based species delimitation tools 

have highlighted that the bdelloid 

morpho-species Rotaria rotatoria 

and Adineta vaga were actually 

composed of several 

independently evolving entities 

refuting the hypothesis that sex is 

Figure 11 : Reproductive organs and oogenesis in bdelloid rotifers. a) Schematic and 

b) photograph of A. vaga’s germovitellarium showing its organization around the 

gut. c) Egg formation through the formation of two polar bodies as expected if 

apomixis derived from meiosis with the two reduction divisions conserved or d) 

with only one reduction division. 
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necessary for diversification into evolutionary species (Fontaneto et al, 2007; Fontaneto et al, 2008; 

Fontaneto and Barraclough, 2015).  

Here, I will detail the distinct pieces of evidence for the asexuality of bdelloid rotifers. I will 

then describe their ecology and report studies proving the existence of species in bdelloids. Finally, I 

will develop some possible scenario for the origin of bdelloid from their sister clade monogononta. 

Evidence for long-term asexuality 

 The most straightforward evidence of bdelloid asexuality is that males or at least male organs 

have never been reported since bdelloid were first observed almost 350 years ago (van 

Leeuwenhoek, 1677 and 1702), whereas females ovaries (two) are clearly distinguishable along the 

digestive system in all species (Figure 11a and b). Given the number of studies on bdelloid rotifers 

and the number of individuals observed since the invention of the microscope, Birky Jr (2010) 

estimated that, if bdelloid males exist, their frequency would approximately be 8.1x10-6. This 

estimation takes into account the uncertain report of Wesenberg-Lund (1930) who wrote “With 

great hesitation I venture to remark, that twice I saw among the thousands of Philodinidae a little 

creature, unquestionably a rotifer male […] both times I failed to get it isolated”, even though its 

description most likely corresponds to a male monogonont that happened to be in the same sample 

(Mark Welch et al, 2009). Bdelloid males existing or not, they are extremely rare and the frequency 

of sexual reproduction appears too low to exert an influence on the evolutionary processes of 

bdelloids.  

 In addition to the wide range of morphological data 

available, the asexual status of bdelloid rotifers was confirmed by 

two cytological studies that investigated the ploidy level during 

oogenesis (Hsu, 1956a and 1956b). In both Philodina roseola and 

Habrotrocha tridens, there are two phases of chromosome 

doubling and maturation divisions, after which one polar body 

(two in total) is extruded to restore the initial ploidy, but 

chromosome pairing was never observed (Hsu, 1956a and 

1956b). Yet, those two steps of chromosome doubling have not 

been reported since then and do not seem to fit the observations 

of Adineta vaga oogenesis (M. Terwagne, pers. comm.). Another 

study on Macrotrachela sp. demonstrated that the total number 

of oocytes in the germarium was fixed in young individuals, with 

no new oocytes being produced during its life-cycle (eutely, i.e. 

fixed number of cells) (Figure 11a; Pagani et al, 1993). In mature 

individuals (2 days old after hatching) the chromosomes number 

in all the primary oocytes doubles and subsequently, mature 

oocytes form an egg, one at a time (Pagani et al, 1993). Flow 

cytometry studies on A. vaga demonstrated that oocytes 

presented twice the amount of DNA observed in somatic cells, 

indicating that oocytes were blocked in G2 phase until mitotic 

division in the egg (M. Terwagne, pers. comm.). Indeed, only 12 

condensed chromosomes are visible in eggs blocked at 

metaphase within the mother (Figure 11b; J. Virgo, pers. comm.). 

Figure 12 : Representation of the genomic 

organization of six bdelloid species adapted 

from Mark Welch et al, 2009. Most 

chromosomes have approximatively the 

same size and shape. In P. roseola, M. 

quadricornifera and H. tridens, one big 

chromosome is V-shaped. In some species, 

there are also additional "dot" 

chromosomes. A limited number of regions 

have been mapped to chromosomes by 

FISH: red = region around hsp82 gene, blue = 

region around Hox5-like gene, green = 

region around Hox6-like gene, yellow = 

unsequenced YAC clone. 
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Intriguingly, one polar body is produced after this first mitotic division and is clearly visible in the egg. 

It is currently hard to tell if something occurs in the oocyte between the pause in G2 phase and the 

first mitotic division in the egg (Figure 11c). However, the occurrence of a first reduction division as 

depitcted by Hsu (1956a and b) seems impossible as the resulting progeny would be highly 

homozygous, which was never observed. Thus, our current view of A. vaga oogenesis is inconstistent 

with canonical meiosis, ruling out the possibility for sex. Interestingly, P. roseola and H. tridens 

harbor 13 chromosomes: ten indistinguishable ones, one twice bigger than others and two small 

“dot” chromosomes of unequal sizes (Mark Welch et al, 2004a). This odd number of chromosomes is 

incompatible with predictions that previous karyotypes corresponded to anaphases. It also suggested 

that aneuploidy or genomic rearrangement occurred in bdelloids which is incompatible with 

conventional meiosis too (Figure 12; Mark Welch et al, 2009).  

The most direct evidence supporting the long-term absence of meiosis in bdelloid rotifers 

come from the peculiar structure of their genome. Chromosome staining by FISH (Fluorescent In Situ 

Hydridization) with allele-specific probes on P. roseola embryos indicated that genes are organized in 

quartets of four homologous 

regions that can be classified into 

two pairs of alleles (A1/A2 and 

B1/B2) (Mark Welch et al, 2004b). 

Within allelic pairs, the two gene 

copies are on average 3.8% 

different at the nucleotide level 

while the distance between 

ohnologous pairs (As vs Bs) is on 

average 26.4%, a structure 

qualified as ‘degenerate 

tetraploidy’ (Figure 13a and b, 

Mark Welch and Meselson, 2000; 

Mark Welch et al, 2004b; Mark 

Welch et al, 2008; Hur et al. 2009; 

Flot et al, 2013). The availability 

of the first bdelloid rotifer genome 

confirmed this degenerate 

tetraploidy, with ≈40% of the 

49.300 genes being present in four 

copies within Adineta vaga, the 

remaining genes presenting lower 

ploidy levels (Flot et al, 2013). This 

degenerate tetraploid structure is 

likely explained by whole-genome duplication followed by the loss of several gene copies over 

generations and the divergence of ohnologous pairs in the absence of sex (Mark Welch et al, 2008; 

Flot et al, 2013).  

In addition, chromosome rearrangements were detected in the genome of A. vaga, while the 

karyotypes of P. roseola or H. tridens contain one big odd chromosome probably representing a 

chromosome fusion (Mark Welch and Meselson, 1998). Flot et al (2013) also presented evidence for 

Figure 13 : Degenerate tetraploidy as observed in A. vaga. a) The genome is 
constituted of 12 chromosomes of similar size. b) Chromosomes are organized 
in quartet composed of two allelic pairs A1/A2 and B1/B2. The genetic 
distances and the collinearity is conserved within pairs (3% of nucleotide 
divergence and identical gene contents), but only partially between pairs 
(>20% of nucleotide divergence and gene re-arranged). c) In pairwise 
comparisons, allelic pairs are represented by high collinearity and low Ks (in 
purple) whereas ohnologs are characterized by a drop in collinearity and 
higher Ks (orange) (from Flot et al, 2013). d) Circos plot of four aligned 
scaffolds constituting a quartet (from Flot et al, 2013). 
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17 palindromic regions, i.e. regions where blocks of colinear genes (allelic copies) are present in 

reverse direction on the same chromosome and nowhere else in the genome, and 3 regions 

harboring direct allelic repeats (Figure 14a). Furthermore, homologous allelic blocks could be defined 

locally but do not appear to extend to 

the chromosome level, i.e. 

breakpoints in the collinearity are 

observed, the gene order being 

altered among chromosomes (Figure 

14b; Flot et al, 2013). With such 

structure, it is impossible to have a 

conventional meiosis which requires 

the pairing of entire, homologous 

chromosomes and separate the 

genome into distinct haploid sets 

(Figure 14c). However, even if peculiar 

genomic structures have been 

observed in A. vaga, one has to 

confirm this in other bdelloid families 

to confirm the asexual status of all 

bdelloids.  

Sex-related genes has also 

been investigated in A. vaga and in the 

transcriptome of A. ricciae with the 

hypothesis that missing key genes for 

sperm-production or meiosis would 

rule out the possibility of sex (Schurko 

and Logsdon, 2008; Flot et al, 2013). 

Contrasting results have been obtained, some 

genes involved in male gametogenesis or 

meiosis are present in bdelloid rotifers 

(Spo11, MutS, Msh4, Msh5 …) but others are 

missing (Msh3, Rad52 …) (Hanson et al, 2013; 

Flot et al, 2013). It is difficult to draw any 

conclusions based on the presence/absence 

of those genes since genes related to sex can 

be non-functional or have alternative 

functions, e.g. the meiosis-specific gene 

Spo11 is present in A. vaga but its function of 

DSB creation could eventually be used in 

bdelloid rotifers to induce breaks when not 

desiccated, promoting DNA DSB repair and 

gene conversion (homogenizing the genome) 

(Flot et al, 2013). Desiccation is the ability to 

tolerate long periods of drought, often by entering a paused metabolic state named “tun” for 

Figure 14 : Adineta vaga genome organization (Flot et al, 2013). a) 
Palindromic regions are found on 17 scaffolds (dark red) and direct repeats 
on 3 scaffolds (light red). b) Collinearity breakpoints (stars) indicate regions 
where homologies with a given scaffold stop highlighting the absence of 
homologies between chromosomes along their full-length. c) Those 
signatures (a and b) are incompatible with conventional meiosis as 
chromosomes organization does not allow for pairing, but does not impede 
mitosis. 

Figure 15 : Transposable elements (in red) can increase within 
an asexual lineage, but if they have deleterious effects on their 
host genome, lineages that carry them will eventually go 
extinct. In a sexual population, transposable elements can 
spread horizontally through the whole population. 
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bdelloid rotifers (Ricci et al, 2007; Hespeels et al, 2014). It has been demonstrated that under 

desiccation residual water constituted only 6.5% of A. vaga weight and that DNA double-strands 

breaks accumulated over time (Hespeels et al, 2014). Inversely, bdelloid rotifers are able to efficiently 

repair their fragmented genome upon rehydration (Gladyshev and Meselson, 2008; Hespeels et al, 

2014). Accurate pairing of homologous regions could be mediated by proteins originally involved in 

meiosis when DNA strand breaks are repaired using homologs as template (Mark Welch et al, 2008; 

Flot et al, 2013; Hespeels et al, 2014). Finally, the absence or the low frequency of several classes of 

transposable elements found in bdelloid rotifers compared with sexual species fits the prediction 

that asexual lineages should be purged of most TEs (Figure 15) or at least that bdelloids have a 

machinery inactivating them (Arkhipova and Meselson, 2000; Arkhipova and Meselson, 2005; Flot et 

al, 2013).  

To conclude this part, the apparent absence of males and the peculiar genomic structure 

impeding traditional meiosis seem to support the long-term asexuality of bdelloid rotifers (Danchin 

et al, 2011; Fontaneto and Barraclough, 2015). Even though the presence of extremely rare males 

and an alternative meiotic mechanism could still be plausible (M. Meselson comment on Flot et al, 

2013, available on Nature website), additional research needs to be conducted. 

Asexuals, yet diversified 

 Throughout their asexual 

evolution, bdelloid rotifers have 

diverged into more than 460 

morphospecies (Segers, 2007; Figure 

16) which are all characterized by a 

small, elongated and transparent body 

(approximatively 1000 nuclei forming 

different syncitia, confirmed by FACS J. 

Virgo and M. Terwagne, pers. comm.) 

divided into three regions: the head, 

the trunk and the foot (Ricci and 

Balsamo, 2000). Most bdelloid species 

use the characteristic ciliated region on 

their head, namely the corona, to 

propel in the water column and feed 

by creating a flow that goes through 

their mastax, composed of two jaws, 

where organic debris, bacteria and 

algae are filtered and crushed. The 

digestive, excretory and reproductive 

organs are contained in the trunk, 

wrapped in the pseudocoelome. The foot, often ending in a few toes, is used for adhesion to the 

substratum by the secretion of a sticky compound. All those anatomical features can vary a lot in size 

and shape across species and have therefore been used by taxonomist for classification (Donner, 

1965; Fontaneto et al, 2007a; Birky Jr et al, 2011). For example, in the Adinetidae family, the corona 

is located ventrally and used to scratch the substratum while sliding on the surface (Figure 16). Those 

Figure 16 : SEM Pictures of Some Species of bdelloid rotifers (Fontaneto 

et al, 2007). (A) Rotaria neptunia, lateral view; (B) Rotaria macrura, 

ventral view; (C) Rotaria tardigrada, dorsal view; (D) Rotaria sordida, 

lateral view. Scale bars: 100 μm. (E) Adineta vaga (picture of G. Melone) 

and (F) Adineta vaga (picture of B. Hespeels). 



 30  

 

different morphospecies present contrasting life-cycles (Ricci, 1983; Ricci and Caprioli, 2005) and 

ecological requirements (Fontaneto and Ambrosini, 2010; Fontaneto et al, 2011), reinforcing the 

designation of species within this clade, despite the sexual criterion underlying the species definition. 

More recently, DNA-based taxonomy have provided evidence for independently evolving entities 

even within morphological species (Fontaneto et al, 2007b; Birky Jr et al, 2011; Fontaneto, 2014, 

Tang et al, 2014). Those studies mainly used the mtDNA and ribosomal sequences to delimit genetic 

clusters in the genus Rotaria and Adineta revealing the existence of more species than described 

from morphology, i.e. cryptic species (Fontaneto et al, 2007b; Birky Jr et al, 2011). For example, more 

than 70 cryptic species were identified genetically within the species complex Rotaria rotatoria 

(Fontaneto, 2014).  

 In addition to the wide diversity of morphologies, bdelloid rotifers also vary in their ecology. 

Most species colonize freshwater environments over a wide range of temperatures and pH, e.g. 

Antarctic species withstand temperatures below -40°C and heating above 100°C (Radzikowski, 2013).  

Those freshwater species are particularly frequent in temporarily humid habitats (mosses, lichens, 

pools, birdbaths …) where populations can reach high densities, e.g. Fontaneto and colleagues (2011) 

counted 347 specimens in a 2.5cm² lichen patch. Their success in semi-terrestrial environments is 

due to their ability to survive alternating periods of desiccation-rehydration by entering a paused 

metabolic state at any stage of their life-cycle (Ricci et al, 2007; Hespeels et al, 2014). Desiccation, 

also known as anhydrobiosis, is widespread in nature with a variety of bacteria, plants and protists 

and able to tolerate it, suggesting its ancient acquisition probably to colonize land mass (reviewed in 

Rebecchi et al, 2007). However, in metazoans desiccation is rarer with only a few clades capable to 

whitstand it and only three phyla in which desiccation can occur at any stage of the life cycle: 

tardigrades, nematodes and bdelloid rotifers (Rebecchi et al, 2007). When desiccated, the resistance 

of bdelloid rotifers to extreme conditions is surprising with records of individuals tolerating exposure 

to liquid helium (-269°C), heating above 150°C, hyper-gravity (20G) or high doses of radiations (Ricci 

et al, 2005; Gladyshev and Meselson, 2008; Radzikowski, 2013; Hespeels et al, 2014). However, a few 

bdelloid species are exclusively aquatic living in streams or even in marine habitats. One of the best 

examples of ecological specialization described yet is the niche partition of two related Rotaria 

species, both living as epibiont on the crustacean Asellus aquaticus, but on distinct part of their host 

(Fontaneto and Ambrosini, 2010). 

The evidence obtained by genetic and morphological methods to delimitate species within 

bdelloid rotifers questioned the role of sex in speciation (Fontaneto and Barraclough, 2015). It has 

been suggested that ecological and geographical isolation act as the main vectors for speciation in 

asexuals whereas reproductive isolation represents an additional parameter in sexual species. 

How bdelloids avoided the fate of other asexual species 

 How did bdelloid rotifers avoid the fate of countless other species that go extinct when 

abandoning sex is not fully understood, but several bdelloid features may play an important role in 

their survival and diversification as asexuals? A first element is the absence of the expected Meselson 

effect in bdelloid rotifers (Mark Welch et al, 2008; Flot et al, 2013). Without meiotic recombination, 

homologous alleles should evolve independently, resulting in an increased level of heterozygosity 

between alleles (Mark Welch and Meselson, 2000). However, in bdelloid rotifers, the expected high 

divergence between alleles was not observed. It has been suggested that the observed signatures of 

gene conversion between alleles within the genome of A. vaga may play a role in preventing the 
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accumulation of mutations since colinear regions are used as template to repair the multiple DNA 

double-strand breaks (DSBs) apparent when desiccated for a prolonged period (Mark Welch et al, 

2008; Gladyshev et al, 2008; Flot et al, 2013; Hespeels et al, 2014) (Figure 17). Frequent gene 

conversion should indeed slow down the accumulation of deleterious mutations that makes 

asexuality an evolutionary dead-end. Interestingly, meiosis is initiated by genetically programmed 

DSBs which can reach a surprisingly high number (de Massy, 2013), it would therefore be interesting 

to evaluate if the number of DSBs resulting from prolonged desiccation and meiosis are comparable 

in order to estimate if those mechanisms can result in a similar amount of gene conversion. Similarly, 

studying the exact role of genes present in the bdelloid genomes and coding for proteins involved in 

the ZMM pathway (Msh4 and Msh5), a pro-crossover machinery, could eventually reveal 

mechanisms for homologous chromosome recombination without meiosis. Another interesting point 

to consider is the existence of bdelloid species living in permanently humid habitats and if those 

species present higher heterozygosity than frequently desiccated species. Alternatively, studying the 

role of Spo11 in those non-desiccating species could reveal why this meiotic gene is conserved in 

bdelloid rotifers and its 

eventual role in 

generating DNA breaks to 

initiate gene conversion 

without desiccation. On 

the one hand, Birky Jr 

reports on his website 

(http://www.eebweb.ariz

ona.edu/faculty/birky/Birk

yLab.html) that isolated A. 

vaga individuals could 

only survive for 22 

generations when kept 

hydrated but in the other 

hand going through cycles 

of desiccation-rehydration 

drastically reverse this 

fitness decline (Ricci et al, 

2007) indicating that 

bdelloids not only tolerate 

such stresses but depend 

on it. Additionally, Brandt 

and co-authors (2017) 

recently showed that, in 

oribatid mites, large population sizes (≈ 350 000 individuals/m²) could efficiently reduce the impact 

of mutation accumulation that vow asexuals to extinction. This observation was mathematically 

demonstrated by the fact that huge effective population can relax the effect of genetic drift, natural 

selection remaining as the only prevalent force driving evolution in that case (Lynch et al, 1993). 

Although further studies on this aspect have to be done on bdelloids, it would not be surprising to 

Figure 17 : Comparison between molecularly and desiccation induced DNA breaks. During 
meiosis, spo11 induces DNA double-strand breaks in order to trigger the chiasma 
formation that will result in the pairing of homologous chromosomes. DNA DSBs repair 
through strand invasion and Holliday junction resolution can either result in gene 
conversion or in crossovers. Similarly, DNA DSBs resulting from desiccation can be 
repaired through strand invasion which will result in gene conversion as observed in Flot 
et al, 2013. It is currently unknown if crossovers can be produced by this mechanisms in 
bdelloid rotifers. 
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find similar results given the observed densities of bdelloid (347 bdelloids in a 2.5cm² moss patch 

represents >500 000 individuals/m²). 

 Second, desiccation plays an important role in the evolution of bdelloid rotifers by reducing 

the impact of co-evolving parasites predicted by the Red Queen theory. It has been demonstrated 

that bdelloid populations were rapidly infected and killed by endoparasitic fungi of the genus 

Rotiferophthora which spores develop into hyphae when ingested. However, long desiccation 

periods could reduce the amount of bdelloid killed by their parasites as the former withstand 

anhydrobiosis much better (Wilson and Sherman, 2010). The survival rate and establishment of a 

new clonal population of bdelloid was even more frequent when long desiccation periods were 

combined with subsequent wind dispersal as it is often the case in nature (Wilson and Sherman, 

2010; Wilson and Sherman, 2013). Therefore, decoupling from parasites and pathogens by playing a 

never-ending hide-and-seek game could substantially reduce the co-evolutionary burden imposed to 

asexual lineages. 

Third, desiccation has been hypothesized to promote diversification in bdelloid rotifers by 

facilitating DNA acquisition from non-related organisms, i.e. a process known as horizontal gene 

transfer (HGT). Such transfers are common among bacteria, but the integration of foreign elements 

in nucleus-wrapped genomes makes it more complex in eukaryotes, especially in multicellular ones 

where the transfers have to occur specifically in the germline in order to be heritable (Andersson, 

2005). In many cases, the acquired gene may be incompatible with the receiver genome and 

experience strong negative selection. However, integration in the recipient genome through 

homologous recombination requires only 25 bp at one or both ends of the donor segment and can 

be effective even between highly divergent regions (Majewski and Cohan, 1999; Popa et al, 2011). 

Several genes from non-metazoan origins have been detected in bdelloid rotifers genome 

representing 8-10% of their genes set (Gladyshev et al, 2008; Flot et al, 2013; Eyres et al, 2015), some 

of which having been shown to be expressed (Hespeels et al, 2015; Eyres et al, 2015). This high 

amount of HGTs have been attributed to the ability of bdelloid rotifers to undergo cycles of 

desiccation that result in DNA breakage and repair upon which foreign genes could be integrated 

(Gladyshev et al, 2008; Flot et al, 2013; Hespeels et al, 2014). Indeed, Eyres et al (2015) highlighted a 

significant correlation between the frequency of desiccation and the acquisition of novel DNA. Yet, 

bdelloid species living in permanently aquatic habitats harbor unique foreign genes indicating that 

other mechanisms may favor HGTs (Eyres et al, 2015). Feeding activities (Yue et al, 2013; Grant et al, 

2014), or alternatively weakened eggs exposed to extreme environments (Hotopp et al, 2007; Yue et 

al, 2012, Soucy et al, 2015), have often been linked with gene transfers. Even though diversification 

and acquisition of novel functions through horizontal gene transfers may play an important role in 

bdelloid evolution, the tetraploid structure of their genome could already be a key parameter in 

itself. Indeed, in addition to masking deleterious recessive alleles, polyploidy can provide the bases 

for neo- or sub-functionalization of genes could result in novel genetic variation and adaptation 

(Soltis et al, 2014; Blanc-Mathieu et al, 2017). 

 Finally, whole-genome sequencing of A. vaga revealed that only 3% of the genome was 

composed of transposons, much less than other metazoans (Flot et al, 2013, Arkhipova and 

Rodriguez, 2013, Blanc-Mathieu et al, 2017). The diversity of TEs reported in that study was 

surprisingly high (255 different TE families found) but most of them were present in one or two full 

copies and often restricted to telomeric regions. It seems that bdelloid rotifers harbor efficient RNA-
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mediated silencing processes to suppress TEs mobility and maintain genome integrity (Rodriguez and 

Arkhipova, 2016). Interestingly, it appears that TEs are co-located with foreign genes and that RNA-

based silencing processes help to integrate and domesticate them.   

Asexuality, degenerate tetraploidy and desiccation tolerance, causes or consequences?  

A last point I want to address before going through the main objectives of the present thesis 

is the origin of bdelloid rotifers. Several hints of the possible scenarios leading to the emergence of 

bdelloids have been put forward in between other observations but no studies have really focused 

on this topic (Donner, 1965; Ricci, 1998; Mark Welch and Meselson, 2000; Hur et al, 2008; Mark 

Welch et al, 2008). From those published studies, we can admit that Bdelloidea is a monophyletic 

Class composed of species that are all 

asexually reproducing (Donner, 1965; 

Mark Welch and Meselson, 2000; 

Mark Welch et al, 2008), desiccation-

tolerant although some aquatic 

species have lost this ability 

secondarily (Ricci et al, 1998; Eyres et 

al, 2015) and tetraploids (Hur et al, 

2008). For this last point it is difficult 

to determine if bdelloids common 

ancestor was a real tetraploid or if it 

had already partially lost some gene 

copies. If those traits have seemingly 

been inherited from a common ancestor to all bdelloids, the question remains to understand which 

scenario could have led to the origin of this ancestor.  

The relationship of Class Bdelloidea with other Rotifera (Monogononta and Seisonidea) is 

commonly accepted but the phylogeny inside this clade has been widely debated, especially due to 

the potential relationship with one additional clade (Acanthocephala) (Mark Welch, 2000; Fontaneto 

and Jondelius, 2011; Tang et al, 2014; Sielaff et al, 2016). The most recent phylogeny based on whole 

mitochondrial genome sequences,  in agreement with previous assumption based on morphological 

and ecological data, groups Seisonidea and Acanthocephala (Pararotatoria) with Bdelloidea 

(Hemirotifera), Monogononta being considered as the sister clade of Hemirotifera (Figure 18; Sielaff 

et al, 2016). Given the topology of this phylogeny, it is tempting to hypothesize that Monogononta 

and Hemirotifera have inherited diploidy, cyclical parthenogenesis and desiccation-tolerance from a 

common ancestor, the latest as a prerequisite to colonize terrestrial habitats (Radzikowski, 2013). On 

the one hand, parthenogenesis was possibly lost in Pararotatoria which specialized into parasitism, 

sex offering its non-negligible advantages in the context of host/parasite co-evolution. On the other 

hand, Bdelloidea may have emerged as a result of an autopolyploidization i.e. whole-genome 

duplication, or an allopolyploidization event i.e. hybridization of two closely related species (Mark 

Welch and Meselson, 2000). Even though both scenarios are theoretically possible to explain the 

peculiar genomic structure observed in bdelloid rotifers, allopolyploidy seems more likely. Indeed, 

autopolyploidy implies that a diploid genome A||B would have duplicated into two pairs A||A’ and 

B||B’ within which genetic divergence would be null or close and the synteny between A and B (i.e. 

among all four copies in the tetraploid descendant) would be conserved in the ancestor in order to 

perform correct meiosis. It is more likely that hybridization between two related species with 

Figure 18 : Phylogenetic relation among the four classes of animals 
constituting the Phylum Rotifera. Information on their ecology, genome 
organization, reproductive modes and desiccation tolerance are also 
provided. 
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genotypes A||A’ and B||B’ that have diverged over time, would result in offsprings presenting 

syntenic discordances. This additional set of chromosomes impeding the successful functioning of 

meiosis and leading to the rare production of apomictic eggs (Figure 19). The possibility for 

hybridization is appealing if we consider that the common ancestor of Bdelloidea could have been 

cyclically parthenogenetic and was able to produce males and reduced eggs. Furthermore, 

hybridization between individuals with remarkably different genome sizes has been observed in the 

monogonont from the Brachionus species demonstrating the possibility of the present hypothesis 

(Riss et al, 2017). In the successive generations of hybrid lineages, the relaxed pressure for tight 

chromosomes pairing contributed to the loss of synteny and gene copies loss (i.e. degenerate 

tetraploidy) through a positive feedback loop until the frequency of meiosis totally disappeared.  

Although the hybridization between two species of monogonont-like ancestors could nicely 

explain the tetraploidy and the loss of sex in bdelloid rotifers, it is necessary to include the 

acquisition of “all-stages desiccation-tolerance” in the scenario to explain how asexuality was 

maintained over evolutionary scales. Monogonont are able to produce resting eggs that tolerate 

desiccation when reduced eggs are fertilized by haploid males. It is possible that desiccation, 

essential for propagules dispersion in the ancestor, could have evolved in Bdelloidea to keep genomic 

integrity through gene conversion. Because sex was loss, desiccation became a major mechanism 

impeding mutation load and enabling survival to parasites. Selection for individuals able to enter 

desiccation at any stage of their life cycle led bdelloid rotifers may thus have counter-balanced the 

lack of sex. The early apparition of “all-stages desiccation-tolerance” in Bdelloidea is supported by 

the fact that an important fraction of the HGTs observed in their genome are common between 

distinct bdelloid Families and even with the ones found in non-desiccating species (Eyres et al, 2015). 

It is thus likely that the bdelloid ancestor acquired those HGTs found in all bdelloid species, 

eventually upon DNA repair that took place after desiccation events. A few bdelloid species 

secondarily lost this ability when they returned to a fully aquatic life (Ricci, 1998). All-stages 

Figure 19 : Hypothetical origin of class Bdelloidea from a cyclical parthenogenetic ancestor. The two main accepted mechanisms that could have 
resulted in the degenerate tetraploidy are presented (allopolyploidy and autopolyploidy). 
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desiccation-tolerance probably required several intermediate adaptations such as modifications of 

the molecular pathways inducing desiccation in the egg, induction of efficient DNA repair 

mechanisms and organs wrapping. Nonetheless, the selective advantages conferred by hybridization 

and polyploidization (Ament‐Velásquez et al, 2016; Alix et al, 2017; Blanc-Mathieu et al, 2017) could 

have given sufficient times for those adaptations to fix.  

 

Goals of the present thesis 

In this introductory chapter, I have presented the “paradox of sex” and theoretical 

advantages conferred by sexual reproduction. I have then summarized a few mechanisms that are 

known to result in the origin of parthenogenetic lineages. Finally, I have developed the case of the 

bdelloid rotifers which have evolved and diversified over millions of years apparently without sexual 

reproduction. Even though many studies have contributed to a deeper understanding regarding the 

existence of such successful asexual taxa, there is much left to do.  

First, despite a genomic structure theoretically incompatible with conventional meiosis, there 

is still a possibility for bdelloids to engage in rare cryptic sex (parasexuality, Oenothera-like meiosis, 

or other undescribed mechanisms). In Chapter I, I will present the first part of my thesis during which 

we set up an unprecedented study combining population genetics and genomics to detect plausible 

recombination events.  

Questions addressed: 

1) Are individuals collected from a very local-scale study genetically diversified or purely clonal? 

2) If bdelloid rotifers accumulate gene of non-metazoan origins, are interbdelloid transfers 

possible? 

3) If so, what are the underlying mechanisms enabling those transfers? 

Second, I will develop and clarify several issues imposed by the experimental settings used in the 

first chapter and pointed out by colleagues and other scientists in the field (Chapter II). 

Questions addressed: 

1) How can cross-contamination signals be distinguished from sequencing background noise? 

2) Are whole-genome amplification reactions biasing the results?  

3) Are the patterns of intra- and interspecific transfers resulting from cross-contaminations? 

Third, an additional study to detect cryptic sex or alternative recombination mechanisms, taking 

into account all the interesting and relevant remarks and thoughts, will be described in chapter III. 

This third chapter was done in collaboration with Matthieu Terwagne (Post-doc, LEGE, UNamur) and 

with the helpful technical support of Ludovic Herter (Technician, LEGE, UNamur). 

Questions addressed: 

1) Can we retrieve signals of intra- and interspecific DNA transfers in bdelloid without whole-

genome amplification step? 

2) Is genetic distance among donor and receiver a barrier to those transfers? 
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3) What is the size of the transferred DNA fragments? 

The second part of this thesis will be sensitively different, with experiments targeting the impact 

of asexuality at community levels. The peculiarities of bdelloid rotifers in term of reproduction, life 

cycles, stress tolerance, dispersion have diverse theoretical eco-evolutionary consequences that have 

been widely studied, especially in connections with spatial distribution. However, there is currently a 

lack of studies focusing on the communities spatio-temporal dynamics. In Chapter IV, I will present 

the results of a spatio-temporal dynamics experiment that was combined with an ecological model to 

understand which parameters shaped bdelloid communities (stochasticity, seasons, habitat …). 

Questions addressed: 

1) Which ecological parameters could explain the bdelloid community structure observed in 

chapter one? 

2) Can several cryptic Adineta species co-occur in a same patch or do species exclude each 

others? 

3) Are species assemblage changing through seasons or are communities stable? 

In the fifth chapter, I will briefly present the results on bdelloids communities obtained within 

the framework of the SPEEDY project (Spatial and environmental determinants of Eco-Evolutionary 

Dynamics) which aims at understanding community changes throughout a gradient of anthropogenic 

disturbances. 

Questions addressed: 

1) Are bdelloid rotifers communities affected by urbanization gradients or not? 

2) Are species assemblages observed around Namur similar to the ones found throughout 

Flanders?  

 Finally, I will briefly present the different species I started to isolate from nature and describe 

the different methods tested to keep them in lab conditions. I decided to include this sixth chapter as 

a side project because, overall, culture maintenance and optimization represented several hours of 

work weekly. In addition, this collection represents a unique clone bank that is widely used as a basis 

for several projects conducted by the LEGE laboratory (RADseq, comparative genomics, 

karyotypes…). 

 Those six chapters will be concluded by a wide and, I hope, comprehensive discussion about 

the interest of this thesis and the few new thoughts it provides for the understanding in the 

evolution of bdelloid rotifers, asexuality and the “paradox of sex”. 
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Details on the methods used throughout the 

thesis 
 
 A few methods specific to species delimitation, in silico sequence phasing and genetic 
diversity representation were repetively used throughout the present thesis; it may thus be worth to 
provide some details on those methods for none specialists. 
 

Champuru and Phase 
In box 1, two methods developed to reconstruct sequences from the patterns of double-

peaks observed on the chromatograms of heterozygous individuals are presented. The most widely 
used option to genotype heterozygous individuals is to PCR-amplify both alleles using a same primer 
pair and then insert the resulting amplicons 
into plasmids that will be inserted in bacteria 
for replication. Each of the resulting bacterial 
colonies contains only one of the two original 
alleles and is used for plasmid extraction and 
Sanger-sequencing. Screening several 
colonies increases the chance to retrieve each 
allele. Even though this method is efficient 
and allows obtaining “clean” sequences with 
low background noise, it is time consuming 
and expensive, especially in large studies 
when hundreds of individuals are genotyped. 
Alternatively, directly Sanger-sequence in 
both directions (forward and reverse) the PCR 
amplicons containing the two alleles of 
heterozygous individuals can enable efficient 
genotyping too. The chromatograms obtained 
will represent of mix of two distinct 
sequences (clear double-peaks) and 
background noise (underrepresented 
contaminants, PCR-induced errors). Two 
methods enable to reconstruct the two 
original alleles in silico based on the patterns 
of double-peaks observed when the forward 
and reverse chromatograms of an individual 
are aligned. a) Champuru relies on the 
pattern of double-peaks produced by the 
presence of two similar sequences distinguish 
by indels. Double-peaks will start to be 
frequent after the site at which the indel 
occurred. Aligning the forward and reverse 
chromatograms in the two possible 
alternatives can efficiently enable to 
reconstruct both alleles without cloning into 
plasmids. b) In cases where the two alleles 
are not distinguished by an indel, the patterns of double-peaks are not sufficient to resolve the 
problem. In this example, the only two mutations lead to four possible combinations (ATATGACTTG, 
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ATATGACATG, ATCTGACTTG and ATCTGACATG), each having 25% chances to be correct. Using a 
larger dataset containing other individuals from the population will enable phasing with higher 
probabilities if for example the allele ATATGACTTG and ATCTGACATG were observed in the 
population but never the two others.  
 

Haplotype networks and haplowebs 
 In box 2, methods to visualize the genetic diversity and the sequences distribution across a 
sampled population are presented. a) A haplotype network is a network in which each haplotype (a 
given haploid sequence from the 
population, often a mitochondrial 
marker) is represented by a circle. 
The size of each circle is 
proportional to the frequency of the 
corresponding haplotype in the 
population. In the example, 
haplotype A is the most frequent 
whereas B and D are rare. The 
haplotypes are linked and the 
number of mutations separating 
each haplotype is indicated (in red). 
Two mutations distinguish 
haplotype A from B and two other 
mutations distinguish A from C. As a 
result, four mutations separate B 
from C. The polymorphic sites can 
also be indicated instead of the 
number of mutations, but for clarity 
we rarely show this information. b) 
Haplowebs are networks on which 
sequences co-occuring in one 
heterozygous individual for a given 
locus (i.e. alleles) are linked (blue 
curves). In the example, 
heterozygous individuals present 
genotype A||B for the marker 
sequenced but most individuals are 
homozygous A||A as represented 
by the higher frequency of A. It is 
also possible to make the width of 
the blue curve vary with the frequency of the corresponding heterozygote in the population. c) 
Alleles that are linked directly or indirectly form fields for recombination (FFRs) that can be regarded 
as species (i.e. species are individuals that are susceptible to exchange alleles through sex). In the 
example, individuals harbouring genotype A||B and individuals harbouring genotype B||C are 
present in the sampled population. As a result, alleles A, B and C form one FFR because individuals 
harbouring genotype A||C are virtually possible. In contrast, even if a single mutation distinguishes D 
from E, they never co-occurred in one heterozygous individual in the present dataset and are thus 
considered as distinct FFRs (i.e. belonging to different species). This method of species delineation is 
obviously influenced by the sampling size, the frequency of each genotype and the ability to phase 
the alleles correctly as larger samples, homogeneous distribution of genotype frequencies and 
correct phasing will impact the number of links (blue curves) on the haplowebs. 
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Generalized mixed Yule-coalescent method (GMYC) 
In box 3, a tree-based method for species delineation, named generalized mixed Yule-

coalescent method (GMYC), is 
presented. In this method a statistical 
test is applied to an ultrametric 
phylogenetic tree to distinguish if the 
branching pattern follows a 
distribution attributable to speciation 
or coalescence. On longer timescales 
genetic drift and selection have time to 
influence the evolution of the locus 
under scope, i.e. speciation. In 
contrast, on shorter timescales, those 
parameters have lower (or nul) 
impacts on the sequences distribution; 
the resulting tree topology is thus due 
to coalescent processes. In the GMYC 
method a threshold distinguishes 
speciation from coalescence is 
statistically determined based on the 
branching rate. Branching occurring 
after the threshold corresponds to 
coalescence and the resulting clusters 
of sequences correspond to species. In 
this example, two clusters (in red) are 
delimited, a third branch correspond 
to the outgroup used to root the tree. 
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Chapter 1: Allele sharing among bdelloid rotifers 

of the genus Adineta, evidence for sexuality or for 

horizontal gene transfer? 
 

 In this first chapter we have conducted a population genetic study coupled with genomics 

data to study the genetic diversity present among individuals of the species Adineta vaga collected at 

a local scale within a park in Belgium. As demonstrated in a few published studies, morphospecies 

within the bdelloid rotifers appear to contain genetically diverse entities, akin to cryptic species 

(Fontaneto et al, 2007; Fontaneto et al, 2009; Kaya et al, 2009). Therefore, using genetic markers 

enabling species delimitation within the morphospecies A. vaga was required here to define at which 

taxonomic scale the observed diversity occured. A few genetic markers had already been used in 

previous studies, some of which based on fosmid libraries (Hur et al, 2009) containing the histones 

genes or the four copies of the hsp82 genes (Mark Welch and Meselson, 2000; Hur et al, 2009). 

However, those markers are too conserved and this lack of variability makes them unsuitable for 

population genetics studies. Other nuclear markers were designed around the widely used 18S and 

28S rDNA subunits but did not present satisfying variability compared to the mtCOI marker 

(Fontaneto et al, 2007; Tang et al, 2012). As our aim was to study the genetic diversity among 

individuals of the focal species A. vaga, we first tried to design genome-scale markers by developing 

microsatellites and AFLP markers in a preliminary study, but without success (Dr. Xiang Li thesis and 

N. Debortoli master thesis). Alternatively, we took advantage of the first A. vaga genome that had 

just been published (Flot et al, 2013) to design new variable exon-primed intron-crossing (EPIC) 

nuclear markers that could work on all bdelloid species, or at least the entire Adinetidae family. We 

designed our markers in order to amplify the two copies of one allelic pair simultaneously and 

directly Sanger-sequenced the resulting amplicons without cloning to limit time and money waste 

(Stephens, 2001; Flot et al, 2006; Flot, 2007; Flot, 2010).  

 At the time the experimental design of my population genetic study was established, the first 

evidence of horizontal gene transfer (HGT) from non-metazoan origin within bdelloid rotifer 

genomes were published (Gladyshev et al, 2008; Boschetti et al, 2012), with additional studies 

confirming this high level of HGT within this animal clade (Flot et al, 2013; Eyres et al, 2015) . Indeed, 

around 8-10% of the genes in the A. vaga genome were predicted to be horizontally acquired and 

coming from bacteria, plants and fungi. It was hypothesized that this high amount of HGTs was 

desiccation-mediated (Boschetti et al, 2012; Eyres et al, 2015). During desiccation bdelloid rotifers 

were shown to accumulate DNA DSBs (Hespeels et al, 2014) which may help the incorporation of 

DNA fragments from their environment during DNA repair upon rehydration. Even though the exact 

mechanism responsible for those numerous HGTs is still unknown, the fact that the bdelloid genome 

is inclined to the integration of foreign DNA resulted in the hypothesis that genetic transfers among 

bdelloid individuals may also occur.  

Starting in 2012 a population genetic study targeting the genetic diversity found within a 

single bdelloid morphospecies sampled in the wild by using new genetic markers expected to be 

highly variable (exon-primed intron-crossing markers), we hypothesized that our experimental setup 

could also identify whether transfer of genetic material between bdelloid rotifers may occur. Here, it 
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is important to emphasize that we sampled more than 500 Adineta vaga individuals inhabiting 

habitats that dry out frequently (i.e. lichen patches on trees and soil samples) and within a small 

geographic region, being the park Louise-Marie, in order to detect such exchanges. Moreover, 

bdelloid rotifers were shown to harbor allelic copies with on average nucleotide divergences around 

3% (Mark Welch et al, 2008; Flot et al, 2013) despite their asexual evolution. The limited 

accumulation of mutations among alleles is probably the result of frequent gene conversion events 

between alleles, probably during DNA DSB repair (Flot et al, 2013). If DNA transfers among bdelloid 

individuals are rare, focusing on recent exchanges may increase the chances to observe such cases, 

gene conversion eventually masking them over longer timescales. In addition, eventual transfers 

among genetically identical clones, e.g. sisters, would be undetectable emphasizing the importance 

to work on a high number of distinct individuals (high intra- and interspecific diversity). The more 

SNPs separating the received and the original DNA sequence, the better to exclude the possibility for 

the accumulation of identical SNPs independently. 

The results of this chapter were published in Current Biology:  

Debortoli, N., Li, X., Eyres, I., Fontaneto, D., Hespeels, B., Tang, C. Q., ... & Van Doninck, K. (2016). 

Genetic exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to 

meiotic sex. Current Biology, 26(6), 723-732.  
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HIGHLIGHTS 

 Bdelloid individuals of the genus Adineta exchange DNA within and between species 

 Genomic signatures are found of asexual evolution, gene conversion and recombination 

 Horizontal genetic exchange appears more likely than sex in bdelloid rotifers 
 

Summary 

Although strict asexuality is supposed to be an evolutionary dead end, morphological, 
cytogenetic and genomic data suggest that bdelloid rotifers, a clade of microscopic animals, have 
persisted and diversified for more than 60 Myr in an ameiotic fashion. Moreover, the genome of 
bdelloids of the genus Adineta comprises 8-10% of genes of putative non-metazoan origin, 
indicating that horizontal gene transfers are frequent within this group and suggesting that this 
mechanism may also promote genetic exchanges among bdelloids as well. To test this hypothesis, 
we used five independent sequence markers to study the genetic diversity of 576 Adineta vaga 
individuals from a park in Belgium. Haplowebs and GMYC analyses revealed the existence of six 
species among our sampled A. vaga individuals, with strong evidence of both intra- and 
interspecific recombination. Comparison of genomic regions of three allele-sharing individuals 
further revealed signatures of asexual evolution and/or gene conversion adjacent to patterns of 
inter-individual recombination. Our findings suggest that bdelloids evolve asexually but exchange 
DNA horizontally both within and between species.  
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Introduction 

Bdelloid rotifers are microscopic, aquatic animals often considered an evolutionary scandal 
because they have apparently evolved asexually for more than 60 Myr [1]. Evidence for their long-
term evolution in the absence of conventional sex (here defined as the alternation of meiosis and 
fertilization events) has accumulated since their first observation by van Leeuwenhoek [2] and has 
recently been summarized by Fontaneto and Barraclough [3]. Earlier cytological studies on two 
bdelloid species described egg production by two maturation divisions from primary oocytes without 
chromosome pairing or reduction in chromosome number [4][5]. This absence of meiosis was 
corroborated by the recent publication of the draft genome of Adineta vaga, which appears devoid 
of homologous chromosomes, hence ruling out the possibility of conventional meiosis [6]. However, 
these results could not dismiss the presence of alternative mechanisms of genetic exchange among 
bdelloid rotifers.  

The idea that bdelloids acquire genes horizontally was first suggested by the observation that 
8-10% of the genes found within Adineta’s genome [6][7] and transcriptome [8] are of putative non-
metazoan origin, indicating  that bdelloids are receptive to horizontal gene transfer (HGT). Although 
the exact molecular mechanisms behind these HGTs remain unidentified, they were hypothesized to 
result from the periods of desiccation experienced by bdelloids in their ephemeral habitats (such as 
lichens and mosses) [6][7]. Indeed, Hespeels et al. [9] demonstrated that desiccated A. vaga 
individuals accumulate multiple DNA double-strand breaks (DSBs) that get repaired upon 
rehydration, opening an avenue for the horizontal integration of foreign DNA. In addition desiccation 
may also compromise the integrity of cell membranes, thereby facilitating the entry of foreign genes 
into rotifer cells [8]. Consistent with this desiccation hypothesis, Eyres et al. [10] demonstrated 
recently that the level of horizontal gene transfer is higher in bdelloid species of the genus Rotaria 
that experience regular desiccation events in their semi-terrestrial habitats than in other species 
inhabiting permanent water bodies and unable to resist desiccation. 
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The observation of high numbers of horizontally transferred genes in bdelloids led us to 
hypothesize that they could also exchange genes among themselves [6]. This hypothesis was recently 
supported by a study reporting signatures of allele sharing between three individuals within one 
mitochondrial 
clade of the 
bdelloid genus 
Macrotrachela 
[11]. However, the 
authors of this 
study interpreted 
their results as 
evidence for sexual 
reproduction, 
possibly occurring 
via an atypical 
Oenothera-like 
mode of meiosis 
requiring neither 
chromosome 
pairing nor 
segregation [11]. In 
Oenothera, 
heterozygous 
chromosomal 
translocations 
prevent 

homologous 
pairing and 
therefore only 
telomeres pair and 
recombine, 
resulting in the 
formation of meiotic rings in which alternating parental chromosomes co-segregate into two linkage 
groups (alpha and beta). Since only alpha and beta gametes can cross, heterozygosity is maintained 
within the population (hence the term “permanent translocation heterozygosity” (PTH) to designate 
this system). The consequence of this atypical meiosis is that chromosomes are non-recombining 
along 90% of their length and the 10% that do recombine contain very few genes, if any; hence 
haplotypes are maintained from one generation to the next and the whole genome behaves as a 
single linkage group [12]. Reproduction in PTH Oenothera species is predominantly by selfing, 
although hybridisation between PTH forms may occur (resulting in new PTH forms akin to species) 
[12] [13] [14]. In their study of bdelloid rotifers of the genus Macrotrachela, Signorovitch et al. [11] 
observed matching allele-sharing patterns among 3 bdelloid isolates at 4 genomic loci (ranging in size 
from 2.8 to 9.7 kb) and hypothesized that such PTH type of crossing was responsible for these 
patterns. This suggestion opened the intriguing possibility that bdelloids may be engaging in meiosis 
and sexual reproduction despite their lack of homologous chromosomes. 

 To examine whether the observation of Signorovitch et al. [12] held for all bdelloids, we 
performed a population genetic study of the bdelloid rotifer species complex A. vaga by taking 
advantage of its available genome sequence. More than 500 individuals were sampled at a local scale 
(one public park in Belgium) and species were delineated using tree-based and allele sharing-based 
approaches [15] on five independent markers. We acknowledge that the term ‘species’ may not be 

Figure 1 : Median-joining haplotype network of the COI sequences obtained from the 576 A. vaga 
individuals collected. The frequencies of the forty COI haplotypes identified are proportional to the 
circle size. Each individual is coloured according to its assignment to one of the six species (A-F) 
determined using the conspecificity matrix (Figure 2). The number of mutations (SNPs) separating two 
haplotypes is indicated in red when higher than one. One individual assigned to species A according to 
the conspecificity matrix (Fig. 2) harboured a COI sequence (haplotype 10) attributable to species C. 
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appropriate for organisms that do not have meiosis and such term may encounter some difficulties in 
some readers. Yet, the definition of ‘species’ may be multifaceted, and we here make explicit use of 
this term to identify independently evolving entities that represent arenas for evolution analysing the 
patterns in genetic diversity, as they would be expected in other more traditional sexual species in 
animals. Such DNA taxonomy approach is commonly applied in comparisons between sexual and 
asexual rotifers [1] [3]. Our study revealed the presence of several cryptic species in our dataset as 
well as signatures of intra- and interspecific genetic exchanges. We further sequenced the genome of 

three conspecific allele-sharing individuals and assembled contigs around each of our four nuclear 
markers in order to look at recombination patterns alongside their genome.  

Results 

Evidence for cryptic species within A. vaga 

A total of 576 bdelloid rotifers morphologically identified as Adineta vaga were isolated from 
36 lichen and soil patches distributed in one park in Belgium. A portion (631 bp) of the mitochondrial 
cytochrome c oxidase 1 gene (COI) was successfully sequenced in all these 576 individuals, yielding a 
total of 40 distinct haplotypes (Fig. 1). Eighty-two individuals representative of the different COI 
haplotypes and distinct patches were selected for further sequencing of four independent nuclear 
markers. Three of these markers (28S, EPIC25 and EPIC63) were successfully amplified and 
sequenced for all these individuals, whereas amplification of the Nu1054 marker did not work for 18 

individuals. 
Haploweb 

analyses of each 
nuclear marker 
yielded six (28S), 

fourteen 
(Nu1054), fifteen 
(EPIC63) and 
eighteen (EPIC25) 
fields for 

recombination 
(FFRs), i.e. 
putative species 
(see Fig. S1) [16] 
[17], among the 
82 individuals 
sequenced. The 
40 haplotypes in 
our COI dataset 
were considered 
as FFRs in the 

downstream 
analysis, which 
integrated the 
information from 
all markers into a 

single 
conspecificity 

matrix. Upon 
clustering, the 
matrix revealed 
six distinct blocks, 

Figure 2 : Conspecificity matrix highlighting the congruence between the five markers, resulting in the 
delineation of six species (A-F) among the 82 A. vaga individuals sequenced. This matrix was obtained 
computing, for each pair of individuals, a conspecificity score equal to the number of independent markers 
supporting the hypothesis of their conspecificity, , then reordering the rows and columns to maximize the 
scores along the diagonal. The highest scores (5 out of 5) are shown in red, whereas the lowest scores are 
shown in white (and the intermediate scores in various shades of pink). The black frames indicate incongruent 
species assignment for six individuals (red arrows). The twelve individuals (Ind38-47, 54 and 55) isolated from 
the same patch and harbouring the same COI haplotype 12 form one dense red block on the bottom right 
corner of the matrix. 
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i.e. six consensus clusters akin to species (labelled A-F on Fig. 2). Overall, species delimitation using 
the conspecificity matrix on all markers and the Generalized Mixed Yule-Coalescent approach on the 
COI database (GMYC, Fig. S2) [18][19] [20] gave identical results: six genetic clusters were found 
within the sampled Adineta vaga dataset, referred to as six distinct species (A to F) in the rest of the 

manuscript. The COI network and the haplowebs of each nuclear marker were coloured according to 
the delimitation obtained from the conspecificity matrix, revealing either perfect (28S) or high 
congruence (COI, EPIC25, EPIC63, Nu1054) with the six molecularly defined species (Fig. 1 and 3).  

All the nuclear genotypes of the 12 individuals harbouring the COI haplotype 12 (Fig. 1) were 
identical (aside from one individual harbouring a single SNP on the 28S marker), consistent with a 
clonal mode of reproduction for species C. Indeed, the clonal diversity indexes for this species ranged 
from 0.005 to 0.571, suggesting that the “true” clonal diversity for this species was quite low. For 
species A and B these calculations were inconclusive: for species A it was because the range was very 
large (0.070 for COI haplotypes vs. 0.909 for multilocus genotypes), whereas for species B it was 
because only one specimen of this species was available. However, for species D, E and F the clonal 
richness index [21] calculated using only COI haplotypes  ranged from 0.316 to 0.696 whereas the 

Figure 3 : Haplowebs of the nuclear markers a) 28S rDNA, b) Nu1054, c) EPIC63 and d) EPIC25 amplified in 82 A. vaga 
individuals. Haplowebs consist in median-joining haplotype networks on top of which links (here shown in blue and red) 
are added between haplotypes (alleles) that co-occur within heterozygous individuals. Each individual is coloured 
according to its assignment to one of the six species (A-F) determined by the conspecificity matrix. One individual from 
species C had the same sequence than individuals from species E for the Nu1054 marker (Fig. 3b). For the EPIC63 marker, 
one individual from species A had one allele identical to individuals from species E and its other allele was closely related 
to species E (Fig. 3c). Two individuals assigned to the A and C species according to the conspecificity matrix harboured an 
EPIC25 sequence identical to individuals from species E and one heterozygous individual from species A presented two 
alleles similar to individuals from species C (Fig. 3d). The red links highlight individuals belonging to haplotype trios and 
represent signatures of allele sharing. The number of mutations (SNPs) separating two haplotypes is indicated in red 
when higher than one. The frequency of each haplotype is not represented on this figure as all circles were drawn with 
equal sizes. 
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clonal richness index calculated from the multilocus genotypes were all equal to 1.000 (Suppl. Data), 
suggesting frequent recombination. 

Inter-specific DNA Transfers 

We observed six individuals (Ind1, 5, 21, 23, 58 and 66) that were assigned to distinct 
species according to different markers, as indicated by the framed rectangles on the conspecificity 
matrix that did not fall within the diagonal (Figure 2). The species assignment of each individual 

according to each genetic marker is summarized on Figure 4: the 82 individuals analysed are 
connected to the genetic sequence retrieved for each of the five markers, and the six species are 
colour-coded as in the haplowebs and labelled A to F. In total, 76 individuals were assigned to a 
single species (blurred links) congruently by all markers. In contrast, five individuals (Ind5, Ind21, 
Ind23, Ind58 and Ind66) had genetic markers (bright colours) attributed to two distinct species, e.g. 
Ind5 had COI, 28S, EPIC63 and Nu1054 sequences from species A but harboured EPIC25 sequences 

Figure 4 : Circular plot summarizing the species affiliation of each of the 82 A. vaga individuals according to each of our 
five markers (except markers/species combinations for which amplification and/or sequencing did not work). Each 
individual (Ind) is connected by links to each of the five markers sequenced. The colours correspond to the six species (A-
F) defined by conspecificity matrix. Six individuals have sequences being assigned to different species as indicated by the 
arrows. 
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from species C. These five individuals were homozygous at the loci that were incongruent. In 
addition, one individual (Ind1) assigned to species A, harboured genetic markers belonging to two 
other distinct species (C for EPIC25 and E for EPIC63, Fig. 4); this individual was heterozygote for 
these two latter markers (Fig. 3c and 3d).  

Intra-specific Haplotype Sharing 

We observed two cases of EPIC25 haplotypes being shared by heterozygous individuals in a 
cyclic fashion (Fig. 3d), and one such case with the Nu1054 marker (Fig. 3b). Each of these cycles 
comprised three haplotypes and we therefore refer to them as “haplotype trios” (displayed as red 
links on the figures 3b and 3d). Each haplotype trio occurred within a species, i.e., no individual of 
two different species shared haplotypes in a cyclic fashion. Although the observation of three distinct 
haplotypes a, b and c in heterozygous individuals with genotypes (a||b) and (b||c) may be explained 
by mutations and gene conversions alone, their co-occurrence in three genotypes (a||b), (b||c) and 
(c||a) can only be explained by recombination between individuals. Indeed, the haplotypes (or 
alleles) a1, b1 and c1 in the first trio (in species C on Fig. 3d) were separated by four to eight point 
mutations, making convergence unlikely. In the second trio (species A of marker EPIC25, Fig. 3d), a 
single nucleotide polymorphism (SNP) distinguished the a2 and b2 haplotypes whereas the b2 and c2 
haplotypes differed only in their number of short tandem repeats (TTC4 and TTC5 respectively). As a 
tandem repeat difference was not enough to exclude the hypothesis of convergent evolution or 
sequencing error, the flanking regions were sequenced till a length of 761 bp, yielding five additional 
SNPs between haplotypes b2 and c2 (results not shown). The third cycle was observed for the Nu1054 
marker: a single SNP distinguished alleles a3 and b3, whereas two SNPs separated b3 and c3. These 
patterns of genetic recombination among conspecific individuals were confirmed by re-sequencing 
each marker directly using the original gDNA of each individual instead of the WGA products, yielding 
identical results. 

Genome Dynamics 

The genomic data of the three individuals forming the trio of species C for EPIC25 marker 
(with genotypes a1||b1, a1||c1 and b1||c1) were heavily contaminated by gut and environmental 
bacteria (mostly Pseudomonas), and the sequencing coverage was highly heterogeneous due to the 
whole-genome amplification step conducted prior to library preparation. Nevertheless, we managed 
to assemble contigs of 5 to 10.5 kb around each of our nuclear markers (Fig. 5). Although the 
posterior probabilities of our reconstructed haplotypes using PHASE were rather low (see Suppl. 
Data), the sequences of our markers were identical for both Sanger and Illumina sequencing, 
confirming that our haplotype reconstruction method from the patterns of double peaks was highly 
accurate. We did not detect any additional copy of the EPIC25, EPIC63 and Nu1054 markers, nor any 
additional 28S rDNA sequence type, in any of the three genomes assembled.  

Analysis of the alignments using RDP3 detected two recombining regions of respectively 
1865 bp and 1031 bp on the contigs harbouring the EPIC25 marker and one recombining region of 
4547 bp on the contigs harbouring the EPIC63 marker (Fig. 5b, grey areas). In contrast, no 
recombination was detected in the trio of the Nu1054 region.  
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The maximum-likelihood trees built from each region showed three contrasting patterns (Fig. 
5a). First, the phylogeny obtained for the Nu1054 region was consistent with expectations for 
asexually evolving nuclear alleles: both alleles within each individual are diverging independently in 
the absence of recombination and therefore clustered in separate clades [22]. Second, other regions 
presented signatures of inter-individual recombination (2831-4695 bp and 8110-9141 bp on EPIC25 
and 2574-7121 bp on EPIC63) as confirmed by phylogenetic analyses with each of the three 
individuals sharing one allele with the two others (segregation and recombination). Last, the regions 
adjacent to those signatures of inter-individual recombination presented phylogenetic signatures of 
gene conversion events, i.e. the replacement of one allele by a copy of its homologue in the same 
individual.  

Interestingly, the longest contig assembled around the EPIC25 marker (10 539 bp) showed a 
patchwork of signatures of asexual evolution, gene conversion and recombination, with the 

conversion events having occurred within individual 42 on both sides of the recombined region (the 
two identical alleles are shown in red and blue on Fig. 5a). 

For the three individuals (Ind 31, 42, 51) of species C whose genomes were sequenced, we 
also assembled contigs around the heat-shock protein (hsp82) and histone his3 genes (for which 

Figure 5 : Representation of the contigs assembled around the Nu1054, EPIC25 and EPIC63 markers for the three 
individuals (Ind31, Ind42 and Ind51) whose genome was sequenced. The size of each aligned region is indicated. The 
maximum-likelihood (GTR+G+I) trees indicate the evolutionary pattern for each portion of the contigs. Coloured tree 
labels correspond to the recombination patterns highlighted (grey areas) in the alignments. The tree built from the 
Nu1054 regions is characteristic of asexual evolution; the trees built from the other regions indicate allele sharing (i.e. 
recombination) among individuals and gene conversion events (shown with black dots on the trees and with white 
arrows on the phylogenies). The trees were rooted using the Adineta vaga homologous sequences from [6]. The tables 
show the results of the five recombination detection methods implemented in RDP3. 
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recombination was reported within the genus Macrotrachela [11]). The hsp82 assembly (1399 bp) 
produced a tree indicating allele sharing (i.e. recombination) between our three genotypes a1||b1, 
a1||c1 and b1||c1, whereas the four copies of his3 (1642 bp when aligned) presented a pattern 
consistent with asexual evolution combined with gene conversion (Fig. S3).  

Discussion 

Our molecular approaches delimited six distinct species among wild-sampled bdelloid rotifers 
of the morphospecies A. vaga. This corroborates previous studies that detected cryptic species 
within the bdelloid morphospecies A. vaga [23] as well as in other bdelloid and monogonont rotifer 
species (see [20] [24] [25]). Although most of the genetic exchanges we detected occurred within 
these six cryptic species, some individuals combined marker sequences attributed to different 
species (Fig. 2 and 4). This provides strong evidence that inter- and intraspecific DNA exchanges 
occur within the bdelloid rotifer genus Adineta.  

Sequencing the genomes of three species C individuals showing allele sharing (Ind 31, 42 and 
51) revealed a striking patchwork pattern of regions exhibiting signatures of asexual evolution, inter-
individual recombination and/or gene conversion (Figure 5). This pattern is unlikely to arise in the 
case of PTH (Oenothera-like) meiosis since haplotypes are transferred as entire blocks and only the 
relatively small and gene-poor telomeric regions experience intra-individual recombination (Fig. 6) 
[26]. Although such pattern may be produced by conventional meiotic recombination besides HGT 
(Fig. 6), our previous analysis of the genome structure of A. vaga showed that it lacks homologous 
chromosomes, making meiotic pairing and allelic segregation impossible and therefore conventional 
meiosis unlikely [6].  

As only a total of five independent nuclear regions ranging in size from 5 to 10 kb were 
assessed in the present study and in the one of Signorovitch et al. [11], the question whether 
horizontal exchanges occur along the entire genome remains open. However, an indication might be 
found in the distribution of interkingdom HGTs (i.e. HGTs originating from bacteria, fungi and plants): 
195 such genes of putative non-metazoan origin (AI>45) were distributed all across the ten largest 
scaffolds (1.08-0.93Mbp, ~4.1% of the total genome) of the A. vaga draft genome (Fig. S4). This result 
suggests that HGTs in the bdelloid A. vaga occur across their entire genome, and since the 
interkingdom HGTs are up to 8067bp long (see Suppl. Data), it seems plausible that the intra- and 
interspecific recombination patterns observed here and in Signorovitch et al. [11] also result from 
horizontal exchanges.  

The recombination events observed in the bdelloids A. vaga, Macrotrachela [11] (integrating 
both non-metazoan and bdelloid DNA) and Rotaria ([10] for non-metazoan DNA) may be mediated 
by various mechanisms of DNA repair taking place after the DSB accumulation experienced during 
prolonged desiccation events [8]. For example, distantly related genetic material, e.g. of non-
metazoan origin [6], could be integrated during DSB repair by non-homologous end-joining 
mechanisms requiring no homology between the repaired fragments. In contrast, DNA exchange 
between closely related individuals may be mediated by DSB repair through homologous 
recombination (HR), since the frequency of homologous recombination is strongly correlated with 
the degree of identity between the recombining DNA fragments and dramatically declines as the 
sequences diverge [27]. This hypothesis is reinforced by the observation that no additional copy of 
the EPIC25 locus was found in our A. vaga individuals, as would have been expected if new copies 
had been integrated into the genome in addition to the original copies. Instead, the transferred 
sequences replaced the original ones in the recipient individuals. As a consequence, closely related 
species should be more prone to genetic exchanges, which would explain why our study, focusing on 
intrageneric variation within the morphospecies A. vaga, detected multiple cases of genetic 
transfers.  
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Another intriguing observation is that 
we did not detect any A. vaga individual 
harbouring two alleles of two distinct species 
at any locus studied. Instead, five of the six 
interspecific recombining individuals (Ind5, 
Ind21, Ind23, Ind58 and Ind66) were 
homozygous at the loci transferred, whereas 
the sixth individual (Ind 1) was heterozygous at 
the two transferred loci (EPIC25 and EPIC63) 
but presented in both cases two alleles from 
the same donor species. We speculate that 
after the integration of DNA, gene conversion 
promptly copied the integrated DNA on its 
homologous region (or vice versa). This is 
consistent with previous calculations showing 
that gene conversion occurs frequently in A. 
vaga (namely, 25 times more often than point 
mutation) [6]. 

Our phylogenetic analysis of 
assembled genomic regions of the three 
individuals belonging to species C also 
presented a pattern indicating past allele 
sharing for the EPIC63 marker (Fig. 5), although no haplotype trio was observed in the haploweb for 
the EPIC63 marker (Fig. 3c). This is because only closed cycles were considered for detecting 
haplotypes trios, whereas open cycles (i.e., groups of haplotypes that would be joined in a cyclic 

Figure 6 : Representation of the signatures expected under three potential mechanisms leading to allele sharing in regard 
to the mosaic genome structure observed for the individuals (Ind31, Ind42 and Ind51) whose genome was sequenced. 
Conventional sex refers to classical meiosis during which paternal and maternal (blue and green) chromosomes pair, 
segregates and form gametes that fuse with the gametes of another individual (red) leading to genome-wide exchanges. 
Colinearity is maintained because chromosome pairing is required at each generation. In the PTH model (Oenothera-like 
meiosis), colinearity is not mandatory as pairing is restricted to the chromosomes extremities. Chromosomes form two 
linkage group (blue and green) that segregate into two distinct gamete types ; fertilization only occurs between opposing 
gamete types. As for Oenothera-like meiosis, asexuality does not require chromosome pairing nor segregation. Frequent 
horizontal gene transfers (HGTs) between asexually diverging individuals lead to a patchwork pattern of signatures of 
allele-sharing mixed up with other regions exhibiting asexual evolution and/or gene conversion. 

Figure 7 : Hypothetical evolutionary scenario explaining 
the transition from a pattern of shared alleles between 
three genotypes (left, as in species C for locus EPIC25) 
into a pattern of open cycles indicating past intraspecific 
recombination (as in species C for locus EPIC63 locus). a) 
Following recombination between individuals with 
genotypes a||b and c||b, a third genotype is formed 
(a||c), yielding a haplotype trio for that specific locus (in 
red). b) Subsequent point mutations accumulate, 
producing new genotypes in the population (c||d, c||e, 
a||f). c) After a few generations, the original haplotype 
trio may not be detectable anymore (either because of 
insufficient sampling or of genotype extinction) but open 
cycles (blue dashes) are still present as vestiges of past 
recombination events. 
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fashion if one would neglect a few mutations) may indicate more ancient genetic exchanges followed 
by SNP accumulation (Fig. 7). If we include such open cycles when detecting genetic exchanges, all 
the individuals of species A for the EPIC25 marker show evidence of past recombination, as well as 
most individuals from species C (Fig. 3d). An open cycle is also found among species A at the Nu1054 
marker, although here the individuals involved seem to have accumulated more mutations since the 
recombination events. These results suggest that the inter-individual recombination in bdelloids may 
be even higher than suggested by the number of haplotypes trios detected in our analyses.  

The two species A and C for which we observed intraspecific recombination were also the 
most frequent in the community (see Fig. 1). This may suggest that intraspecific recombination is rare 
and only detectable under large sampling. Alternatively, intraspecific transfers could increase the 
fitness of those individuals, as suggested by Signorovitch et al. [11]. One possible explanation for the 
persistence of species in bdelloids could be niche differentiation [3]. To test this hypothesis, we 
analysed whether the assemblages of A. vaga species and haplotypes within each patch sampled, 
differed significantly from the null hypothesis of random assortment. Both Fisher’s exact test and an 
analysis of phylogenetic structure of communities (see Suppl. Data) revealed highly significant 
departures from randomness and significant phylogenetic clustering. Because dispersal does not 
seem to be limiting in bdelloid rotifers [20] ecological specialisation may be the major parameter 
influencing spatial clustering which would support the hypothesis that differences in ecology 
maintain bdelloid species boundaries despite interspecific genetic exchanges. Moreover Hespeels et 
al. [9] reported that A. vaga individuals tend to group before entering desiccation, a phenomenon 
that may favour genetic transfers between related individuals sharing the same niche.  

To conclude, our observations do not support the hypothesis of an Oenothera-like meiosis in 
bdelloids but are consistent with intra- and interspecific horizontal genetic transfers. As proposed 
previously [6] [9] [10] [28], desiccation could be the key mechanism shaping the genomes of 
bdelloids by mediating the introduction of new genetic material horizontally and by homogenizing 
the genome through frequent gene conversion events associated to DNA repair. As already 
suggested in Flot et al. [6], the homogenizing and diversifying roles of sex seems replaced in bdelloids 
by gene conversion and horizontal DNA transfer, in an unexpected (and possibly unique) 
convergence of evolutionary strategy with bacteria. Indeed, simulations suggest that unidirectional 
horizontal transfers are almost as efficient as bidirectional sexual recombination in preventing the 
accumulation of deleterious mutations and promoting the fixation of beneficial ones [29] [30]. We 
propose here to designate ‘sapphomixis’ (from “Sappho” the greek lesbian poetess and “mixis”) this 
ameiotic strategy of allelic exchange and recombination among asexual, morphologically female 
organisms. 

Our data presented here added one more piece of evidence to the asexuality of bdelloid 
rotifers; other pieces of evidence for their asexuality include the apparent absence of males or male 
organs in all individuals studied (whereas the PTH model would probably require the presence of 
males), the fact that meiosis was never observed in bdelloids so far, and the finding that A. vaga’s 
genome structure is incompatible with meiotic pairing and allelic segregation. Although none of 
these arguments is decisive on its own, their accumulation makes in our view bdelloid sexuality much 
less likely than horizontal genetic exchange.  

Experimental procedures 

Samples collection and DNA extraction 

Thirty-six patches (25 lichen and 11 soil patches) were collected from five trees (of the 
genera Acer and Platanus) spread over less than 300 m² in Parc Louise-Marie, Namur, Belgium. The 
thirty-six collected patches were hydrated with spring water in separate Petri dishes, and all active 
bdelloid individuals morphologically identified as Adineta vaga that recovered from anhydrobiosis 
within 48 hours were isolated (following the protocol of [23]). DNA was extracted from each A. vaga 
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individual separately using the QIAamp DNA Micro kit (Qiagen) according to the manufacturer’s 
instructions.  

Markers development, DNA amplification and sequencing for each isolated individual are 
described in the supplemental data. 

Phasing of Nuclear Markers from Direct Sanger Sequencing and Species Delimitation 

For nuclear markers, the haplotypes of heterozygotes were directly reconstructed from the 
patterns of double peaks in the forward and reverse chromatograms for each nuclear marker [31] by 
using Champuru 1.0 [32], SeqPHASE [33] and PHASE [34]. 

Species delimitation was performed using two DNA taxonomy methods, one based on shared 
alleles [16] and the other one based on variation in branching rates in phylogenetic trees [17][18]. 
Haplotype webs (haplowebs in short) are haplotype networks or trees on which curves are added 
connecting haplotypes found co-occurring in heterozygous individuals [16]. A group of haplotypes 
linked together by heterozygotes forms an allele pool and the corresponding group of individuals is 
called a field for recombination (FFR), i.e., a putative species [17]. In contrast, the GMYC (generalized 
mixed Yule-coalescent) approach to species delimitation rests on the assumption that intraspecific 
branching follows a different model than interspecific branching [18]. 

To investigate allele sharing, median-joining haplotype networks [35] were constructed using 
the program Network, exported into PDF using Network Publisher (Fluxus Technology) and turned 
into haplowebs using Inkscape [36]. The allele sharing information from all our markers was then 
integrated into one consensus species delimitation using a “conspecificity matrix” approach. In this 
matrix, the conspecificity score of each pair of individuals is the number of markers for which these 
individuals belong to the same FFR. After computing this matrix, we reordered the rows and columns 
of the resulting sum to maximize the scores along the diagonal using the hierarchical clustering 
method implemented in the R package “heatmap3” [37]. Using this graphical, intuitive approach, 
species appear as blocks along the diagonal of the matrix (characterized by high conspecificity scores 
within blocks and low scores among them). 

For the GMYC approach, our COI dataset was combined with other published COI sequences 
including 110 Adineta haplotypes from Fontaneto et al. [23] and 6 Adineta haplotypes from Birky Jr 
[38]. As outgroup in our tree, we used two sequences of the monogonont rotifer species Brachionus 
plicatilis downloaded from GenBank (accession numbers AF266895.1 and AF266853.1; [39]). We 
constructed an ultrametric Bayesian tree using the program BEAST v1.6.2 [40] with a single sequence 
for each haplotype as recommended by Tang et al. [41]. We chose the GTR+Γ4+I substitution model 
selected by jModelTest 3.8 [42] following the Bayesian Information Criterion [43]. The Markov chain 
Monte Carlo (MCMC) was run for108 generations with sampling every 10,000 generations. The tree 
with maximal clade credibility among the last 1,000 trees sampled by BEAST was determined using 
TreeAnnotator v 1.6.2 as implemented in the BEAST package [40]. This ultrametric tree was used as 
input for the GMYC analysis using the SPLITS R package (http://r-forge.r-project.org/projects/splits/). 
This method uses a maximum-likelihood approach to detect the shift in branching rate from 
interspecific branching (expected to follow a Yule model) to intraspecific branching (modelled as a 
neutral coalescent) [18][19].  

Genomic Sequencing, Assembly and Analyses 

We used the remaining gDNA (10-12ng) of three individuals (Ind31, Ind 42 and Ind51) that 
shared alleles of marker EPIC25 for whole-genome sequencing using the Illumina HiSeq2500 platform 
(Genomics core, UZ Leuven, Belgium). Because of the very low amount of input material, we started 
by performing 10 whole-genome amplification cycles before library preparation. Paired-end 
sequencing yielded in total approximately 100 million 101-bp read pairs for each individual. 
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Additional sequencing was performed for Ind42 (up to a total of 167 million 101-bp read pairs), as 
this library appeared more contaminated with non-bdelloid DNA compared to Ind31 and Ind51. 

As de novo assemblies of the reads were extremely fragmented (data not shown), we 
resorted to assemble targeted genome regions using the MITObim package [44] that runs MIRA [45] 
iteratively, using our Sanger-sequenced genetic markers as baits. Each assembled contig was then 
scrutinized for SNPs using SAMtools [46] and Tablet [47]. The contigs were aligned in MAFFT (E-INS-i 
method [48]) and phased using SeqPHASE [33] and PHASE [34].  

The phased sequences were then analysed with different methods (RDP, GENECONV, 
Chimaera, MaxChi and Bootscan) implemented in RDP3 [49] using default settings except that the 
general options “linear sequences”, “Bonferroni corrections” and “window size of 10” were selected 
to detect recombination events. Those methods measure the relatedness (pairwise genetic 
distances, phylogenies or substitution distributions e.g. chi square value, Pearson’s regression) of 
sequences using a window-based scanning approach. As our dataset was small (six sequences), RDP3 
could not infer which sequences were the parental ones or the recombinant, and we therefore did 
not consider this information. Regions for which more than three methods detected recombination 
events were considered as recombinant and the different DNA fragments delimited were used to 
build maximum-likelihood trees in MEGA5 [50] following the GTR+Γ4+I model chosen by jModelTest 
[51] following the Bayesian Information Criterion [43]. 
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Supplemental information: Genetic Exchange among Bdelloid 

Rotifers Is More Likely Due to Horizontal Gene Transfer Than 

to Meiotic Sex. 

Experimental procedures 

COI PCR Amplification and Sequencing  

A fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene was PCR-

amplified using universal primers [S1] (Suppl. Data, Table 1). Amplifications were performed in 25 μL 

reaction mixtures containing 1X GoTaq reaction buffer (1.5 mM MgCl2), 0.2 mM of each dNTP, 0.5 

μM of each primer, 0.5 U of GoTaq DNA Polymerase (Promega), and 2 μL (ca. 10 ng) of genomic DNA. 

PCR conditions comprised an initial denaturation at 94°C for 4 min; followed by 30 cycles of 45 s 

denaturation at 94°C, 45 s annealing at 40°C, and 50 s elongation at 72°C; and a final elongation step 

of 10 min at 72°C. PCR products were sequenced in both directions with the same primers used for 

amplification (Genoscreen, Lille, France). Sequences were assembled and edited using Sequencher4 

(Gene Codes).  

28S rDNA Marker Development, Amplification and Sequencing 
A large fragment of the 28S rDNA gene was PCR-amplified using primers designed from a set 

of full-length rotifer sequences (~2800bp) obtained from GenBank (Adineta vaga [DQ089739]; 

Epiphanes senta [DQ089742]; Brachionus patulus [AY829084] and Rotaria rotatoria [DQ089743]). 

These sequences were aligned in Geneious 5.4.2 [S2] using the MAFFT [48] plugin with the default 

settings. Four overlapping primer pairs (Suppl. Data, Table 1) were designed to provide a broad 

amplification success across both bdelloid and monogonont rotifers by binding to conservative 

regions; amplicon sizes ranged from 500 to 700bp. PCR conditions were the same as for COI except 

that the annealing temperature was in this case 60°C.  

EPIC25 and EPIC63 Marker Design and Amplification 

We adapted the pipeline for designing exon-primed, intron-crossing (EPIC) markers 

developed by Li et al. [S3]. Here, we used the coding sequences (CDS) of the Adineta vaga genome 

[6] from which we selected introns of 350-450 bp surrounded by exons longer than 50bp. To check 

the copy number of each candidate EPIC marker retrieved from the pipeline, we blasted each exon 

against the genome scaffolds using BioEdit 2.2.10 [S4] and selected only genes with four copies 

present in the genome (because of its degenerate tetraploid structure [6]) with a threshold e-value 

of 10-5. We aligned the four copies using MAFFT ([19]; E-INS-i method) then designed the PCR primer 

pair EPIC25+63F and EPIC25+63R (Suppl. Data, Table 1) using Primer3 (http://primer3.ut.ee/ [S5]). 

To obtain chromatograms with double peaks but no triple or quadruple peaks, we designed 

ohnologue-specific sequencing primers EPIC25F, EPIC25R, EPIC63F and EPIC63R (Suppl. Data, Table 

1). 

The designed EPIC markers were PCR-amplified using the same protocol as for COI but with an 

annealing temperature of 54°C.  

Nu1054 Marker Development and Amplification 

Orthologs from transcriptomes of the bdelloid species Rotaria socialis, R. magnacalcarata, R. 

sordida, and R. tardigrada present in the Adineta ricciae transcriptome [8] were aligned using MAFFT 

http://primer3.ut.ee/
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([48]; E-INS-i method). Primers were designed using Primer3 [S8] with a minimum and optimal 

annealing temperature of 45°C and 50°C, respectively, but using default settings for all the other 

parameters. Twenty-four primer pairs were screened by PCR using four genomic DNA extracts from 

lab cultures of Adineta riccae, Adineta vaga, Habrotrocha bidens, and Habrotrocha elusa elusa. Of 

these 24 primer pairs, Nu1054F and Nu1054R (Table 1) consistently amplified a 418-bp fragment. 

This marker, called Nu1054, is present in two copies in the A. vaga reference genome [6] and is of 

non-metazoan origin. 
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Supplemental figures and legends 

Figure S1: Haploweb of the nuclear markers a) 28S rDNA, b) Nu1054, c) EPIC63 and d) EPIC25 

amplified in 82 Adineta individuals. Haplowebs consist in median-joining haplotype networks on top 

of which links (here shown in blue) are added between haplotypes (alleles) that co-occur within 

heterozygous individuals. The number of mutations (SNPs) separating two haplotypes is indicated in 

red when higher than one. The frequency of each haplotype is not represented as all circles are of 

the same size. Each allele pool (group of haplotypes linked together by heterozygous individuals) are 

represented in grey. 

Figure S2: Pruned ultrametric tree showing the six species delimited by the GMYC method (Pons et 

al, 2006). The original tree built from the total COI dataset (our 40 haplotypes, 110 haplotypes from 

Fontaneto et al (2011), 6 haplotypes from Birky Jr et al (2010) and two Brachionus sequences  used as 

outgroup (Gomez et al, 2000) for the GMYC analysis and the statistics of the test are available in the 

Excel file. The pattern of intra-specific branching (neutral coalescence) is represented in red whereas 

inter-specific branching (Yule process) is in black. The six species (A-F) delimited by the congruence 

matrix method are indicated. 

Figure S3: Representation of the contigs assembled around the hsp82 and his3 markers (Hur et al, 

2009; Signorovitch et al, 2015) for the three individuals we sequenced. The size of each aligned 

region is indicated. The Maximum-Likelihood (GTR+G+I, MEGA5) trees indicate the evolutionary 

pattern for each portion of the contigs. Coloured tree labels correspond to the recombination 

patterns highlighted in the alignments. The two allelic pairs (A1/A2 and B1/B2) of each individual 
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were represented for the his3 locus. The tree built from the his3 region is characteristic of asexual 

evolution (for the allelic pair B) followed by a gene conversion event in ind42 (for the allelic pair A). In 

contrast, the tree built from the hsp82 region is representative of allele-sharing among individuals. 

The trees were rooted with the Adineta vaga homologous sequences from Flot et al (2013) but were 

not displayed.  

Figure S4: Distribution of the horizontally acquired genes along the ten longest scaffolds of the draft 

genome of Adineta vaga (Flot et al, 2013). In total, 195 genes harboured by those ten scaffolds had 

an Alien Index superior to 45 (AI>45). The blue dots indicate the location of each HGT for each 

scaffold. 

Table S1: Sequences of the primer pairs used to amplify the five genetic markers. 
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Chapter 2: Response and thoughts on Wilson and 

colleagues comments 
 

 Soon after the publication of our results (see chapter 1) in Current Biology, various comments 

from the scientific community emerged. The first comment was made by Matthew Meselson and 

colleagues who reported allele sharing among three individuals from the same Macrotrachela 

quadricornifera mitochondrial clade (Signorovitch et al, 2015). Their approach was similar to our 

experimental setup, a genetic study using four unlinked genomic regions (2.8-9.7kb) corresponding 

to the his (A and B) and hsp (A and B) genes, and sampling only bdelloid individuals identified as M. 

quadricornifera, but isolated from different geographic areas. Interestingly, the authors observed 

one pattern of allele sharing across all the loci studied between three individuals, a hallmark of sex. 

Given the ameiotic genome structure of bdelloid rotifers, they concluded that their results could still 

be explained by sexual reproduction with a specific Oenothera-like meiosis without chromosome 

pairing (except at the telomeric regions). In our publication, we refuted this hypothesis by arguing 

that such meiotic mechanisms should result in the exchange of complete haplotypes sets whereas 

we observed a patchwork of signatures (recombination, gene conversion and asexual divergence) 

within a specific genomic region, giving more weight to the possibility for horizontal gene transfer 

among bdelloids. Although their results and interpretation were slightly different than ours, both 

studies led to the main conclusion that DNA transfers were possible among bdelloid rotifers but that 

further investigations were needed (Signorovitch et al, 2016; Flot et al, 2016; see also comment of 

Schwander, 2016). 

 Later, Chris Wilson and colleagues (in prep.) argued that our results could be explained by 

cross-contaminations between individuals. In their paper, the authors raised concerns about the 

possibility for DNA transfers between individuals with a genetic divergence of approximately 30% 

(mtCOI similarity between species C and E is 86.4%, see chapter 1). Moreover, they invoked that the 

use of whole-genome amplification kits on single bdelloid individuals may easily amplify contaminant 

DNA and bias the results of our Current Biology paper. More specifically, samples contaminated by 

the presence of a second individual could produce the same pattern we observed if WGA unequally 

amplifies each allele present depending on the GC-content. The authors presented different 

conditions in which WGA could indeed induce amplification biases. They used the mtCOI 

chromatograms from our study to check the presence of more than one individual per sample 

because each animal should harbor only one mtCOI haplotype and this was the only marker 

sequenced prior WGA. The statistical method Wilson et al. (in prep.) designed to detect contaminant 

sequences (ConTAMPR) was manually applied to some of our samples presenting signatures for 

interspecific transfers (Debortoli et al, 2016), revealing contamination signals. The method could not 

be applied to our samples with signatures of intraspecific transfers. In this chapter 2 we discuss their 

results and make some clarifications about our own results. Furthermore, we automatized their 

ConTAMPR method, which appears an interesting tool to verify contaminations in WGA samples, to 

make analyses reproducible as we showed that it was sensitive to errors when implemented 

manually. 
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The response to Meselson’s comment was published in Current Biology: 

Flot, J. F., Debortoli, N., Hallet, B., & Van Doninck, K. (2016). Response to Signorovitch et al. Current 

Biology, 26(16), R755. 
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Published paper: Response to Signorovitch et al. 
Jean-François Flot*, Nicolas Debortoli, Bernard Hallet and Karine Van Doninck* 

*Corresponding authors 

Summary 

Signorovitch et al. [1] comment that an Oenothera-like meiosis [2] could produce a pattern 
similar to what we observed in our study of natural isolates of the bdelloid rotifer Adineta vaga, 
which we attributed to horizontal gene transfers (HGTs) [3]. Indeed, our HGT hypothesis appears at 
first sight difficult to conciliate with their observation of a congruent pattern of allele sharing at four 
large loci possibly located on different chromosomes [4]. However, one might imagine conditions 
under which massive horizontal gene transfer between bdelloid individuals could produce such a 
pattern, notably if the individuals involved had previously lost most of their heterozygosity because 
of their exposure to frequent desiccation (which produces DNA double-strand breaks [5]). In the 
published A. vaga genome the loss of heterozygosity due to large-scale gene conversion events or 
break-induced replication covers only about 10% of the genome [6], but this percentage may be 
much higher in environmental isolates that often experience desiccation. Besides, if an Oenothera-
like mode of meiosis occurs in bdelloids frequently enough to be detected in a single sampling of 29 
individuals (as in [4]), one would expect males and meiosis to be observed at least occasionally, and 
instances of congruent allele sharing across loci should turn up frequently in genetic surveys. This 
was not the case in [3]: among the 82 A. vaga individuals sequenced for four nuclear markers, no trio 
of individuals presented congruent patterns of shared sequences at different loci. For these reasons, 
and in the absence of any direct evidence for an Oenothera-like meiosis in bdelloids, we still consider 
inter-bdelloid HGTs a more parsimonious explanation for our results. 

Main Text 

Clearly, additional multilocus surveys of allele sharing in bdelloid populations will be required 
to solve the puzzling discrepancy between our observations and those of Signorovitch et al., as well 
as to determine the mechanism and frequency of genetic exchange among bdelloids. A completely 
assembled bdelloid genome sequence would also allow us to test the hypothesis of an Oenothera-
like mode of meiosis: one prediction of this model is that pairs of colinear telomeric regions should 
be detected (see Figure 6 in [3]). Besides, one might imagine that several distinct mechanisms 
mediate genetic exchange in bdelloids, possibly in a genus or clade-specific fashion (notably, the 
uneven chromosome numbers of Philodina rosela and Habrotrocha tridens mentioned in [4] do not 
seem compatible with the Oenothera model, in which there should be an equal number of α and β 
chromosomes [2]). Whatever the outcome, this is an exciting time for rotiferology, as upcoming 
population genomic surveys will allow us to unravel and quantify how bdelloid rotifers, which were 
until recently dubbed “ancient asexual scandals” [7], actually exchange genetic information. 
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Submitted paper: Response to Wilson et al. 
Debortoli N., Hallet B., Flot J.-F. & K. Van Doninck 

Introduction 

A group of microscopic metazoans, namely the bdelloid rotifers, have reproduced asexually 

for over 60 million years and, as such, have been considered as “evolutionary scandals” (Maynard 

Smith, 1978). The most direct evidence of bdelloid asexuality was provided by the whole-genome 

sequencing of the first lineage, Adineta vaga, which contains alleles organized as palindromes on the 

same chromosome, a structure incompatible with conventional meiosis (Flot et al., 2013). However, 

two recent publications based on population genetic analyses showed signatures of DNA transfers 

within and between bdelloid species (Signorovitch et al., 2015; Debortoli et al., 2016). These results 

did start some debates among researchers in this field, commenting on those results (Umen 2015; 

Signorovitch et al., 2016; Flot et al., 2016; Schwander 2016; Wilson et al., pers. comm.).  

It is however not so surprising to observe signatures of DNA exchanges in animal species with 

unusually high number of horizontal gene transfers (HGTs) from non-metazoan sources (Gladyshev et 

al., 2008; Flot et al., 2013; Eyres et al., 2015). Even though no precise mechanism underlying those 

massive HGTs have ever been determined, different characteristics of bdelloid rotifers may promote 

such transfers. First, most bdelloid species desiccate frequently in their temporarily semi-terrestrial 

habitats, a phenomenon known to induce multiple genomic double-strand breaks. During desiccation 

fragmented DNA could enter more easily through the leaky membranes and subsequently be 

integrated in the genome following DNA DSB repair (Hespeels et al., 2014; Eyres et al., 2015). 

Second, the presences of previously undescribed giant transposable elements, called terminons, in 

telomeric regions that can exceed 40 kb in length and in-between which host genes are captured. 

Those elements are strongly co-located with foreign genes in A. vaga, eventually participating in 

intra- and intergenomic transfers (Arkhipova et al., 2017). 

In a recent comment on the paper of Debortoli et al. (2016), Wilson et al. however 

postulated that “Evidence for inter- and intraspecific horizontal genetic transfers among anciently 

asexual bdelloid rotifers is explained by cross-contamination” after a detailed examination of our 

raw data (Wilson et al., in prep). The authors have developed a simple, yet interesting, statistical 

method (ConTAMPR) to evaluate if the pattern of double peaks observed in the recombining 

individuals were due to sample contaminations. This comment results from a year-long discussion 

and collaboration during which we tested several alternative hypotheses taking into account their 

cross-contamination concerns. We are aware that contaminations have been at the origin of several 

incorrect claims of HGTs (Tardigrades, photosynthetic slugs). We therefore started a new experiment 

based on a more adapted, experimental setup already before the release of Debortoli et al (2016). 

Yet, it is important to note here that the results of our CB paper (Debortoli et al. 2016) are strong 

enough to discard their contamination hypothesis, which we outline in the present chapter.  

Precisions regarding the sampling and bdelloid rotifer isolation protocol 

The first argument raised by Wilson et al. in favor of the contamination hypothesis is that “In 

every case where incongruence was reported, the inferred donor species was recovered from the 

same maple or plane tree as the recipient individual at the time of sampling […]. If genetic exchange 

occurs so promiscuously among such diverse and mobile animals, why should every donor species 

happen to be sampled in the same small area as the recipients at the same time? Even more striking, 
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every case of incongruence involves a haplotype whose sequence is identical to a haplotype found 

'natively' in one of the other 81 rotifers sampled”. This is actually not the case. As an example, Ind1 

(with signatures of interspecific recombination) harbored the allele hap9 for marker EPIC25, which 

was never observed in any other individual.  Besides, in the cases of interspecific DNA exchanges, the 

“recipient” and the “donor” could be found on the same tree, but never within the exact same lichen 

or soil patch. For example, Ind1 (named B14) harbored markers from species A, C and E and was 

sampled in lichen B1 whereas the only individuals from the same tree B attributed to species C were 

found in lichen B2, more than a meter away and similarly, individuals from tree B belonging to 

species E were present in lichen B3 near the roots. The same observation can be made for the other 

cases of interspecific transfers. This was probably a misunderstanding of our results that deserved 

additional precision here. 

In addition, we want to clarify here our isolation protocol because of the main criticism by 

Wilson et al. suggesting that our methodology was not rigorous enough to avoid contaminations. We 

isolated single bdelloid individuals in individual Eppendorf tubes using the same commonly accepted 

method (Ricci and Melone, 2000; Fontaneto et al., 2008; Wilson and Sherman, 2010; Iakovenko et al., 

2013). More specifically, each individual was washed by pipetting it into several clean Spa® water 

drops and transferred to one tube. To avoid any contamination, we used new pipette tips and 

distinct water drops for each transferred individual. We then centrifuged each tube to pellet the 

individual and inspected its presence under binoculars. If no individual was visible at this step, the 

tube was discarded. We are aware of the difficulties to manipulate and isolate active bdelloid 

rotifers, especially Adineta species, which are particularly sticky. However, we think that this 

commonly used protocol should have prevented contamination by a second individual, and should 

certainly not have resulted in more than 10 contaminations (the number of individuals with inter- 

and intra-specific signatures). We were surprised that our isolation protocol was challenged by the 

authors as their own isolation method was summarized by “individual rotifers were transferred singly 

by pipette from a source population” (Wilson and Sherman, 2010) and did not differ from the general 

protocol used by several rotiferologists. Moreover, Wilson et al. did not provide an alternative 

protocol for Adineta species isolation, even upon request. To the best of our understanding, the only 

difference between both protocols is the use of glass tips instead of plastic ones.  

Testing for whole-genome amplification skewness 

After our first discussions with Wilson et al. in October 2016, raising doubts about the results 

of DNA transfers among bdelloid species (Debortoli et al., 2016), we checked for the skewness 

induced by the Illustra GenomiPhi V2 DNA amplification kit (GE Healthcare). We used two distinct A. 

vaga species kept in culture, initially named AD008 and 42.1D5. The percentage identity between 

those two species at the mtCOI marker is 84.7%, similarly to the species A and E (86.1%) or species C 

and E (86.4%) for which we found interspecific recombinants (Debortoli et al., 2016). We isolated 

single animals from each species in individual Eppendorf tubes using the same method than in our 

original study. We extracted the gDNA of each individual independently and quantified it using the 

Qubit fluorometric quantitation protocol (Thermo Fisher Scientific). We then mixed gDNA of the two 

species in triplicates according to three distinct ratios, 1:1, 1:10 and 1:50, strain AD008 being 

underrepresented for the last two dilutions. The nine tubes were then submitted to WGA and the 

resulting amplicons were used as template for PCR-amplification of the nuclear Nu1054 marker, as in 

Debortoli et al. (2016). 
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We could retrieve signals corresponding to the distinct alleles of both AD008 and 42.1D5 in 

the chromatograms of eight out of the nine samples; even the ones that were diluted 1:50 (Figure 1). 

This shows evidence that there is a skew linked to the WGA and/or PCR reactions. Those results 

indicate that a low amount of DNA from one individual can become majority when amplified 

together with the DNA of a second individual. However in one of the 1:1 dilution replicate, only the 

alleles of one individual were retrieved suggesting possible strong amplification biases. Wilson et al. 

reported that this could be due to higher affinity of the Illustra GenomiPhi V2 DNA amplification kit 

for templates with lower GC content (Han et al., 2012). Here, the amplification bias was in favour of 

the template with the higher GC content, although the difference between the two rotifer species 

was limited in Nu1054 region (35.6-37.7% in strain AD008 whereas clone 42.1D5 had a GC content of 

34.2-35.1%). It is not possible at this stage to know if the bias results from differences in GC content 

or simply from clone-specific mutations in the priming sites. 

Finally, a preoccupying pattern resulting from WGA was observed at the red star position 

(Figure 1). At this site, the minority peak expected “G” (black) was missing, indicating the absence of 

one (AD008_allele_a) of the four alleles on the chromatogram. In our study Debortoli et al. (2016) we 

never had one allele of one individual combined with the allele of a second individual, resulting in a 

diploid “hybrid” individual. Moreover, in our study, if contamination by a second individual occurred 

in the same tube, it should have been in a 1:1 dilution ratio. We are however aware here that a lot of 

caution should been taken when using multiple amplification steps. 

 

Figure 1 : Chromatograms of the Nu1054 marker amplified from WGA amplicons. The gDNA of individual 42.1D5 and 
AD008 were mixed in 1:1, 1:10 and 1:50 ratios prior WGA respectively. The chromatogram of each dilution was aligned 
for minority peak analysis. The varying sites of the expected four alleles are presented below the Sanger chromatograms. 
The red star highlights the site for which an expected secondary peak is missing. 

The ConTAMPR method to determine the presence of contaminant sequences 

Wilson and co-authors presented a simple method to statistically distinguish random 

sequencing noise from contamination. The method proposed by Wilson et al. consists in aligning the 

chromatograms obtained through Sanger sequencing in both directions with a potentially 

contaminant sequence and, for each polymorphic site, record the rank of the base fitting the 

contaminant haplotype. Contingency tables are then used to determine if the overall distribution of 

the peak ranks significantly differed from a null distribution as expected under the random noise 
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often observed in Sanger chromatograms. Wilson et al. applied this simple quantitative method, 

named ConTAMPR, to their own dataset showing that uncontaminated samples presented minority 

peaks distribution suiting the null model. In contrast, samples that were deliberately contaminated 

by putting two individuals of distinct species (Adineta sp. AD006 and A. vaga AD008, 87.5% identity 

for mtCOI) in a same tube provided results that were significantly deviating from the null 

expectation. 

We think that this method is interesting as it reduces the chances to cherry-pick 

accommodating peaks. The application of this method is however restricted to a dataset for which 

the potential contaminant, or closely related sequences, are known. In addition, this χ²-based 

method is highly sensitive to sample size, i.e. the number of observations or SNPs between the 

compared haplotypes. It may thus be irrelevant to apply it to compare closely related sequences.  

Intraspecific DNA transfers  

The main conclusions of Debortoli et al. (2016) stemmed from the observation of allele-

sharing patterns within the EPIC25 and Nu1054 haplowebs that were interpreted as evidence for 

intraspecific DNA transfers (see Figure 3b, d and Figure 5 from Debortoli et al., 2016). On those 

haplowebs, individuals from a same species harboured genotypes a||b, b||c and a||c in a cyclic 

fashion that can hardly be explained other than intraspecific DNA transfers. This pattern was 

observed at two loci (EPIC25 and Nu1054) in species A and at one locus (EPIC25) in species C (Table 

1). In the case of intraspecific exchanges it is more complicated to check for DNA contamination by 

other individuals as the number of SNPs is reduced in the mtCOI (0-21 SNPs within species A and 0-3 

SNPs within species C). We had a closer look at the mtCOI sequences of all the individuals involved in 

the cycles and could not retrieve minority peaks testifying the presence of a second haplotype. To 

rule out all doubts, we applied the ConTAMPR method to those individuals, even though this may be 

irrelevant when haplotypes are separated by a really low genetic distance, leading to a restricted 

number of observations to which χ² is sensitive. We could not find any significant correlation 

between the distribution of minority peaks rank and the presence of a potential contaminant, even 

when the chromatograms were aligned with the most distantly related haplotype (hap1|hap9 = 15 

SNPs) that would be statistically less sensitive. 
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Table 1 Individuals from Debortoli et al. (2016) dataset that belonged to species A and C for which patterns of allele 
sharing were observed. Each genotype contributing to the allele sharing cycle is highlighted in a different colour. 

 

Since the mtCOI chromatograms of the individuals involved in the intraspecific transfers are 

not showing any evidence of contamination by a second individual, we had a closer look at the DNA 

fragment transferred, the EPIC25 chromatograms. Here, we show a more detailed example of one 

highly variable region (6 SNPs over 37bp) that highlights the cyclic pattern observed in Debortoli et al 

(2016) by providing the chromatograms of three individuals described as recombinant (Ind31, Ind42 

and Ind51, Figure 2). The stars on those clean chromatograms indicate the SNPs considered in the 

study, the colors of the stars represent the sites that were variable across each pair of individuals. In 

figure 2 we only considered those variable sites and reconstructed the alleles according to the peak 

rank (1st or 2nd), giving sequences that corresponded to the alleles reconstructed through statistical 

methods (PHASE) in Debortoli et al. (2016). Those sequences were used for the haploweb 

reconstruction on which the three alleles retrieved (white, grey and black) were linked when found 

co-occurring in a heterozygous individual. While this is not providing additional results than our 

original paper, we think that this more detailed explanation could help readers to better understand 

our haploweb method used and rule out all doubts about those intraspecific DNA exchange patterns.  
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Figure 2 Evidence for intraspecific recombination for the nuclear marker EPIC25. a) Chromatograms of three Adineta 
vaga individuals (Ind31, 42 and 51) involved in allele sharing patterns. The secondary peaks considered in Debortoli et al. 
(2016) are highlighted by stars: the pattern of double-peaks in Ind51 is a heterozygous mixture of an allele from Ind31 
(red stars) and the other allele from Ind42 (black stars). b) Phased alleles inferred from the chromatograms with one 
allele or haplotype represented by the 1

st
 peaks and the second haplotype by the 2

nd
 peaks. This reconstruction was 

congruent with the one obtained through the statistical method (PHASE) used in Debortoli et al. (2016). c) Simplified 
haploweb built from the phased alleles of Ind31, 42 and 51. The red numbers indicate the number of SNPs separating 
two alleles. Each allele is linked to another by a red curve when they co-occur in heterozygous individuals. 

At this point, one can still hypothesize that this pattern of double peaks in the 

chromatograms may be the result of a bias caused by WGA (although the GC-content of the alleles of 

interest is almost identical, 48.6-49.5%). Indeed, if the gDNA of two individuals (Ind42 with genotype 

hap6-10 and Ind51 with genotype hap10-14) was present in the same tube and WGA mostly 

amplified hap6 and hap14, an artefactual individual with a genotype identical to Ind31 would be 

produced. If this was the case, and since we had to perform ten cycles of WGA to generate enough 

DNA for Illumina® library preparation and sequencing, one would expect to find reads corresponding 

to the four variants, even at very low coverage. This was never the case in our dataset. 

Whole-genome sequencing of the three individuals (Ind31, 42 and 51) involved in the 

intraspecific allele sharing pattern for EPIC25 marker (see species C, Figure 3b and 5 from Debortoli 
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et al., 2016), it would be an undeniable evidence to show reads that overlap the recombination 

breakpoints we found (orange reads on Figure 3). Hopelessly, we could not find such reads as the 

region in-between two SNPs at the breakpoint locus was larger (X+Y) than the read size being 250bp 

(X) (Figure 3). Thus, no single read could physically overlap the entire breakpoint region. This is 

important to point out as the same problem could apply to future studies on recombination among 

bdelloid rotifers, requiring therefore long-reads technology (PacBio, Oxford Nanopore). 

 

Figure 3 Contig assembled around the EPIC25 marker (adapted from Debortoli et al., 2016). a) Sites at which Illumina® 
reads (orange) would irrevocably support breakpoints and thus recombination. b) Representation of the assembly at one 
of the breakpoint region. The white and grey alleles (SNPs in red) are supported by multiple reads but the distance 
between the breakpoint informative SNPs (X+Y) is longer than the reads size (X). 

First, on Fig3b and d from Debortoli et al. (2016), several individuals of species A show 

patterns of allele sharing in a cyclic fashion (genotypes a|b, a|c and b|c). If those patterns were due 

to the presence of two individuals in a tube, one would expect that the individuals implicated in the 

allele-sharing trio for marker Nu1054 (Ind 11, 13, 15 and 20) would be the same ones for marker 

EPIC25 (Ind 6, 7, 9, 11, 12, 13, 15, 17 and 18). Second, the fact that each of the three different 

genotypes taking part in the cycle for marker EPIC25 are supported by at least two individuals 

reduces the chances to explain this pattern by cross-contaminations.  

Discussions and thoughts about the contamination risks pointed out by Chris Wilson 

As often seen in Sanger sequencing output, there was a baseline noise in the chromatograms 

from Debortoli et al. (2016). Most of the time, this noise was low in comparison with the clear 

majority peaks or resulted from polymerase slippage in large poly-A regions. However, finding 

secondary peaks that would indubitably be congruent with the presence of a second haplotype in the 
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mtCOI chromatograms would deserve special attention especially when it comes to horizontal gene 

transfers. Indeed, except in some peculiar cases of DNA exchanges, such as described in 

parasexuality where cytoplasmic mixing occurs or HGT of mtCOI itself, individuals should not harbor 

more than one mtCOI haplotype. With this concern, Dr. Chris Wilson (in prep) took a closer look at 

our dataset and pointed out some minority peaks that he suggested as being the evidence for a 

second A. vaga species haplotype in the chromatograms representing interspecific recombinants. 

According to Wilson “the most eye-catching case is sample B14 (Ind1)”, with several secondary peaks 

present that could represent a contamination by haplotypes hap12 (species C) and hap31 (species E). 

Although we admitted that this chromatogram was the noisiest and that several minority peaks were 

congruent with additional A. vaga haplotypes, it is impossible to highlight these distinct haplotypes 

from the random smaller peaks (see Figure 4). It is moreover not surprising to find several minority 

peaks when working with specimens directly isolated from nature, where plant and metazoan debris 

are present. DNA fragments could have been amplified, even after several washing steps, because 

we did not get rid of the gut content or the outside cuticle. It is therefore necessary to remain careful 

here and not to cherry-pick subsets of peaks (colored arrows on Figure 4) to refute a result. 

 

Figure 4 Chromatograms from Ind1 (B14) mtCOI sequence from Debortoli et al. (2016) pointed out by Wilson et al. The 
signal was increased to observe the minority peaks and find patterns corresponding to contaminant haplotypes. The 
variable sites are pointed out by colored nucleotides in the alignment below. The colored arrows are the minority peaks 
taken into account by Wilson et al. Asterisk 1 was considered by Wilson and co-authors as particularly informative as the 
signal was “strong”. Asterisk 2 highlight a site with even stronger signal which turns out to be irrelevant. 

Even in A. vaga individuals that were not identified as putative recombinants for the studied 

markers, one can observe several minority peaks and find a subset that would depict the presence of 

a second haplotype. As an example figure 5 depicts a region of the mtCOI marker of Ind16 (species 

A), showing the secondary peaks due to slippage: some sites may reveal the presence of a second 

individual from species C in the same tube (highlighted by 1), but there are peaks unrelated to 
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slippage or a second species (highlighted by 2). Therefore, such small secondary peaks cannot be 

considered as informative. We have discussed and rechecked all the other interspecific recombinants 

from Debortoli et al. (2016) and could not distinguish a clear signal of contamination by the presence 

of a second haplotype (see below).  

 

Figure 5 Chromatograms from Ind16 (C31) mtCOI sequence from Debortoli et al. (2016). It is possible to call for the 
presence of a second haplotype by selecting a subset of accommodating secondary peaks (1) without considering the 
minority peaks on the whole sequence (2). 

 

Checking the impact of WGA on the interspecific recombinants 

A puzzling case to analyze is Ind21 for which the mtCOI marker and the nuclear 28S rDNA 

marker belonged to species A whereas the additional three nuclear markers EPIC25, EPIC63 and 

Nu1054 belonged to species E. The alleles sequenced for those three last markers were all found 

within the single individual Ind81 from species E (Table 2). Here, the hypothesis of a WGA bias due to 

differences in GC content seems more plausible as EPIC25, EPIC63 and Nu1054 had a higher GC% in 

species E than in A, whereas mtCOI and 28S markers had similar GC content across both species 

(Table 3). In that case, one alternative hypothesis could be that the multiple copies of mtCOI and 28S 

of Ind21 (corresponding to species A) were exponentially amplified by WGA and masked those 

markers of species E while amplification of other nuclear regions was strongly skewed towards 

species E, eventually masking the species A alleles. In general, the 28S chromatograms were very 

clean, with almost no noise except for a couple of individuals. Even when increasing the signal, 

secondary peaks were still low for Ind21 and likely to be due to polymerase slippage (Figure 6a). In 

order to compare with the quality of an individual without any interspecific exchange, Figure 6b 

shows the 28S chromatogram of Ind18 attributed to species A. The black dots under the alignment 

indicate the differences between sequences from species A and sequences from species E. On the 

top chromatogram, we see some small secondary-peaks similar to the ones observed for Ind21 

(Figure 6b).  
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Table 2 Summary of the genotypes for individuals attributed to species A and E (simplified from Debortoli et al., 2016). 
Ind21 presented mtCOI and 28S rDNA from species A, as in Ind2, but EPIC25, EPIC63 and Nu1054 from species E, as in 
Ind81. 

 

Table 3 GC content (%) at for each marker in the trio presented in Table 2. 
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Figure 6 Chromatograms from the 28S rDNA marker of a) Ind21 and b) Ind18. Even when the signal was increased to 
show the minority peaks, those remained extremely low. 

We could not find clear patterns of minority peaks that would reveal the presence of DNA 

from a second individual on the chromatograms obtained by Sanger-sequencing of the mtCOI marker 

amplified directly from gDNA. However, if WGA can be biased towards underrepresented DNA 

templates we would eventually be able to retrieve such signal by PCR-amplifying the WGA products 

instead of the gDNA. We used the WGA products of the individuals identified as interspecific 

recombinants in Debortoli et al. (2016), when there was some DNA left (Ind5, 23, 58 and 66) for 

mtCOI amplification and sequencing in both directions. The profile of minority peaks was then 

carefully inspected but no relevant signal could be detected in at least three of the four individuals 

(Ind5, 23 and 58). The chromatograms corresponding to Ind66 presented a few secondary peaks that 

matched the SNPs expected if a contamination by mtCOI haplotype hap31, as harbored by Ind81. 

This observation indicated that rare DNA templates can be made visible by successive biased 

amplifications steps.  

Using ConTAMPR on Debortoli et al (2016) mtCOI dataset corresponding to the 

interspecific exchanges 

Besides testing their ConTAMPR method on deliberately contaminated samples, Wilson et al. 

also applied their statistical method to the chromatograms from individuals showing interspecific 

exchanges in our paper Debortoli et al. 2016 and postulated that our conclusions resulted from 

contaminations. As it is often tricky to assess the rank of the expected nucleotides correctly due to 

little shifts between the major peak and the corresponding minority peaks, or due to polymerase 

slippage or weak signals, we used the same ConTAMPR method independently on the COI 

chromatograms of the same six individuals and had contrasting results. To eliminate the chance of 
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cherry-picking the peaks, we also asked a naïve observer to perform the same task in parallel. The 

analysis conducted by both observers gave congruent outputs that differed from the ones obtained 

by Wilson et al (2018). Because ConTAMPR results are hardly reproducible, error prone and time 

consuming, we automatized the ConTAMPR method with Dr. Jitendra Narayan from the LEGE 

research group in order to distinguish contaminations from background noise 

(https://github.com/jnarayan81/ConTAMPR) without bias. The determination of minor peaks is 

slightly different between the manual and the automatized method (Figure 7). In the manual 

method, we systematically determined the highest minor peak within of close-by the major peak as 

secondary peak. In contrast, the minor peak with the largest surface within the major peak was 

ranked as the secondary peak in the automatized method.  

 

Figure 7 Implementation differences in the ConTAMPR method. In the manual method, the height of each minor peak 
determines its rank. In the automatized method, the surface under each minor peak is calculated and the rank of each 
minor peak is determined according to the surface it delimits.  

The automatized version of ConTAMPR allowed us to analyse our whole dataset of 82 

individuals instead of focusing solely on the individuals showing signal of recombinations and the 

expected contaminants. Overall, the results obtained through ConTAMPR when applied manually or 

automatized were most of the time congruent for the six individuals pointed out by Wilson et al 

(2018). However, the automatized version found three additional cases of contamination (Figure 8). 

In those three cases, the differences between the manual method and the automatized method 

were low, indicating that the Chi²-test p-value oscillated around 0.05. Nonetheless, the automatized 

ConTAMPR confirmed the observation of Wilson et al, (2018) that Ind1 and Ind21 could be 

contaminated by sequences found in species E and species C, respectively. However, when using 

autoConTAMPR to cross-compare each COI chromatogram pair from the whole dataset, instead of 

focusing solely on individuals pointed out by Wilson et al (2018), we retrieved significant hits (P<1%) 

for 49 of the 80 individuals (61%) for which both chromatograms were available (two individuals 

were not taken into account because of low quality). We ran the autoConTAMPR method on an 

amphipod dataset which resulted in 42/67 individuals (63%) with contamination signals. This 

indicates that the frequent background contamination detected by autoConTAMPR in our Current 

Biology dataset is not unusual for COI chromatograms and can be parsimoniously explained by 

minute amounts of carry-over or post-PCR contamination. 

In addition, we analysed the forward and reverse chromatograms separately instead of 

combining information from both as in Wilson et al (2018). For our Current Biology dataset we found 

41 (51%) significant hits in the forward chromatograms and 18 (22.5%) signiticant hits in reverse 

https://github.com/jnarayan81/ConTAMPR
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chromatograms, whereas only four individuals (B11, A3B1, Hprim12 and H4-04; 5%) had P<1% hits on 

the same sequence for both chromatograms. Only one of the six rotifers for which we inferred 

putative interspecific gene transfers (B11) had identical P<1% hits on both chromatograms: these 

were matches with species D and E, whereas the inferred horizontal transfer was from E to A. 

Regarding the other five individuals: B39 (inferred mitochondrial capture from C to E) had no P<1% 

hit; B22 (inferred transfers from E to C) had a P<1% hit with species F (for the forward 

chromatogram) but none with species E; B3B1 (inferred transfer from E to A) had P<1% matches with 

species E and D for the forward chromatogram; B14 (inferred transfers from C and E to A) had P<1% 

matches with species D and E (for the reverse chromatogram) but none with species C; and D14 

(inferred transfer from C to A) had P<1% matches with species B, D, E and F (for the forward 

chromatogram) but none with species C. Hence, it appears difficult to draw any definitive conclusion 

regarding interspecific recombination at this stage. 

 

Figure 8 ConTAMPR output. The mtCOI chromatograms for each of the six interspecific recombinant individuals Ind1, 5 
21, 23, 58 and 66 (B14, D14, B11, B3B1, B22 and B39, respectively) were aligned with the putative contaminant 
haplotypes. When possible, the mtCOI chromatograms amplified from WGA amplicons were also used. The distribution 
of minority peaks rank is indicated by the figures and the Chi-square test p-value is indicated when significantly different 
than the null model (*). a) The ConTAMPR method was applied manually and b) implemented through our automatized 
version.  

Another interesting observation is that for Ind5 (D14), Ind23 (B3B1), Ind58 (B22) and Ind66 

(B39) we could not detect any pattern of minority peaks that deviated from the null model when 

using the original chromatograms obtained from the direct mtCOI amplification of fresh gDNA (χ² p-

value = 0.21, 0.56, 0.423 and 0.066, respectively) (Figure 8), both in the manual and automatized 

method. In contrast, we had significant deviation from the null hypothesis when using the 

automatized method on the chromatograms if WGA products were used as template for mtCOI 

amplification. Those results are less evident to interpret; the amount of “contaminating” DNA was 

probably so low that it does not appear on the chromatograms originating from gDNA but could 

become visible when WGA products were used. This highlights the hypothesis presented by Wilson 

et al. that Illustra GenomiPhi V2 DNA amplification kit (GE Healthcare) may have resulted in a skewed 

amplification and traces of contaminant DNA become amplified.  

In our sense, those results show that it is tricky to clearly tell real contamination by a second 

individual from random sequencing noise or contamination by other taxa (bacteria, plants,…), even 

when using the ConTAMPR method of Wilson et al.  Yet, we thank the authors for their fruitful critics 
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and discussions that certainly raised concerns about the use of WGA kits when it comes to the HGTs 

question.  

Mechanistic issue 

The last concern of Wilson et al. was related to our hypothesis that “DNA double-strand 

break repair through homologous recombination” could maybe enable horizontal genetic exchanges 

in bdelloid rotifers. First, we would like to emphasize here that this hypothesis indeed requires 

additional data to unravel the mechanisms responsible for DNA transfers in bdelloid rotifers. Yet, 

homologous recombination is a possible explanation, especially with regards to the intraspecific 

recombination patterns observed on Figure 5 from Debortoli et al (2016). It is still not clear how 

interspecific recombination is mediated and it would not be surprising that different mechanisms 

could be involved. Although Wilson et al. argue that the genetic distance separating the individuals 

for which we detected interspecific HGTs is beyond the limits observed in other organisms; we think 

that it is tricky to compare the mechanisms potentially involved in bdelloid rotifers with the ones 

known in some model organisms knowing that bdelloid rotifers have integrated non-metazoan genes 

within their genome. 

In addition, we want to add here that within this discussion, parasexuality should still be 

considered as a mechanism for genetic exchange that may result in a similar pattern than the one 

observed here taking into account the WGA biases. In some basidiomycete fungi, successful mating 

between two haploid individuals produces short-term diploid cells with cytoplasmic mixing that 

carries the possibility for multiple mitochondrial haplotypes in the progeny (Anderson and Kohn, 

1998). Parasexuality does not require chromosome pairing during meiosis which is compatible with 

bdelloids genome structure.  

Conclusions 

In conclusion, we do not think that Wilson et al. arguments are strong enough to refute the 

results of Debortoli et al. (2016). None of their concerns, neither their analyses, focused on 

intraspecific horizontal genetic transfers for which we provided the largest piece of evidence (Fig 1, 2, 

3 and 5). The results of interspecific recombination are indeed more puzzling and we are continuing 

studying this in more detail. We have added in our new protocols triplicates analysis of each sample. 

We are confident that our isolation protocol did not enable the presence of more than a single 

individual per tube (and certainly not repetitively), we will although never be able to eliminate 

foreign DNA from the gut or cuticle completely. 

We thought about potential contaminations and the possibility to perform population 

genetics/genomics experiments in order to tackle irrevocably the question of DNA exchanges among 

species of bdelloids back in 2015 when a specific procedure was designed and started, this is 

discussed more in detail in chapter 3.  
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Chapter 3: More evidence for allele sharing 

among bdelloid rotifers of the genus Adineta. 
 

 When gathering the first data supposing patterns of allele sharing (as presented in Debortoli 

et al, 2016), we were aware that the amount of DNA retrieved from a single Adineta individual 

sampled in the wild would be a limiting factor impeding our full understanding of this mystery of 

genetic exchanges within this asexual clade. Indeed, a single A. vaga contains ≈0.2ng of DNA (as one 

nucleus contains 0.21pg and one individual is composed of approximately 1000 cells) making whole-

genome sequencing of one individual difficult to study at the genomic level the patterns of genetic 

exchanges. In addition, while being cautious with contaminations when working with specimens 

isolated from nature, we can never exclude the possibility for the presence of foreign DNA enclosed 

in the gut or stuck to the cuticle of individuals being amplified when using whole-genome 

amplification kits. As previously discussed, some signatures of DNA transfers, as pointed out by 

Wilson et al (2017) (see Chapter 2), should be verified even if we were very cautious during the 

isolation of single individuals per tube. Moreover, it appeared obvious that employing whole-genome 

amplifications could lead to biases, eventually resulting in the overrepresentation of initially rare, 

foreign DNA. 

 In 2015, we designed a new experiment relying on clonal cultures of each individual collected 

from moss patches. The whole-genome amplification step was not required since we would work 

with bdelloid clones that were dense enough. In addition, we wanted to study at which taxonomic 

level DNA transfers occurred (intraspecific, interspecific, intergenera, interfamilies). We were indeed 

surprised by the concern of Wilson et al (2017) about interspecific genetic transfers within bdelloid 

rotifers while different cases of inter-kingdom transfers are commonly accepted (Gladyshev et al, 

2008; Boschetti et al, 2012; Flot et al, 2013; Eyres et al, 2015).  

We isolated bdelloid specimens from fifty nearby moss patches, representing a total of 301 

individuals that were cultured. Debortoli et al (2016) and additional preliminary studies revealed the 

importance to genotype a large number of individuals to detect genetic transfers, highlighting the 

rarity of such events. Moreover, enough variability is required among sequences to detect such 

transfers (which will be undetectable between clones). However, this experimental setup turned out 

to be unsuitable as we could only genotype a limited number of individuals per genetic species (Table 

1). We retrieved indeed a large number of individuals, but many of them could not be cultured stably 

reducing the final number of specimens per species in our dataset. 

In this chapter, I will first briefly go through the main results obtained for the entire dataset 

comprising individuals from all bdelloid families and partly conducted by my master student B. 

Delcomenne. Even though those results are still preliminary, we observed several patterns of DNA 

transfers. Then, I will provide the preliminary results of a refined study focusing on Adinetidae. 
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Preliminary results on DNA transfers between bdelloid 

rotifers individuals from distinct families 
 

 A wide sampling campaign was carried out in order to isolate and culture as many bdelloid 

rotifers individuals as possible, from all families encountered. We sampled four times (June, October 

and December 2015, as well as March 2016) around the Park d’Haugimont site, representing a total 

of fourty patches (22 lichens, 14 mosses, 1 piece of tree bark and 2 sediments from a dry pond) and a 

single time (August 2016) on a slag heap where ten mosses patches were retrieved. We managed to 

isolate and culture 344 individuals from the 452 observed among the fifty patches. We identified 

morphologically 310 

individuals to family 

level (133 Adinetidae, 

72 Habrotrochidae and 

105 Philodinidae), 

whereas thirty-four 

specimens could not 

be confidently 

identified. When each 

clonal culture reached 

>10 individuals we 

started genotyping 

using one 

mitochondrial marker 

(COI) and four nuclear 

markers (HisB, 

Nu1054, Scaff1 and 

28S rDNA). The success 

rate for each marker 

varied across cultures 

(especially for marker 

HisB) and some 

cultures went extinct 

while we were 

genotyping, resulting in 

partial data for most 

cultures (see 

Supplemental Table 1). 

 Even though this preliminary dataset (Supplemental Table 1) was partial, we used the 

information retrieved from the alleles co-occurring in heterozygous individuals to build a 

conspecificity matrix (see Chapter 1 and next part of Chapter 3; Figure 1). Fourty-three species were 

delineated by the matrix, with nineteen of them being represented by only one individual. 

Interestingly, three individuals (2A5, 32A6 and 32B6) harboured alleles from distinct species, 

highlighted by signals outside the diagonal (Figure 1) as observed in Debortoli et al (2016). Individual 

Figure 1 : Conspecificity matrix built from data retrieved from all bdelloid individuals 
genotyped. Red blocks along the diagonal represent individuals sharing 1 to 5 alleles 
(corresponding to the five regions sequenced), the darker the more alleles are in common. As a 
result, blocks along the diagonal represent species. Blocks outside the diagonal indicate 
individuals belonging to one block, but also sharing one allele with another species, i.e. 
considered as interspecific DNA exchange. 
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2A5 was morphologically identified as Habrotrochidae and harboured alleles identical to 2B4 

(Habrotrochidae) for marker COI, 28S and Scaff1, one of the two alleles  found at locus Nu1054 was 

identical to the allele observed in 21A3 (Philodinidae). Similarly, individuals 32A6 and 32B6 

(morphologically undetermined) presented the same genotype as individual 32B2 (morphologically 

undetermined) except for one Nu1054 allele identical to 30C4 (Pleuretra sp., Philodinidae).  

 We designed specific primer pairs in order to amplify each allele independently to screen for 

more such cases in individuals from the same clonal cultures than 2A5, 32A6 and 32B6. In example, 

one primer pair could only amplify the Nu1054 sequences observed in 2B4 (Nu1054_2B4) while a 

second primer pair could only amplify the Nu1054 sequences found in 21A3 (Nu1054_21A3). Our 

specific primers Nu1054_2B4 produced amplicons when gDNA from individual 2B4 (Habrotrochidae) 

was used as template, but did not work on individual 21A3 (Philodinidae). In contrast, our specific 

primers Nu1054_21A3 amplified the gDNA from individual 21A3 but not 2B4, showing specificity of 

the designed primers. When screening for more recombinant individuals in the 2A5 clonal culture 

using those specific primers, we retrieved three clones for which amplification worked with both 

specific primers pairs out of 20 clones screened. The success rate was even lower after a second 

screening of the same 2A5 culture, with only one individual presenting amplicons for both specific 

primers pairs out of 50 clones screened. We used the gDNA extracted from this same individual to 

amplify the Nu1054 marker with the original Nu1054 primers (not allele specific) and directly Sanger-

sequenced half of the amplicons obtained while the other half was used for cloning into plasmids to 

sequence each allele separately. With this method, we were able to retrieve four alleles in 2A5; two 

alleles identical to 2B4 (1 and 3) and two alleles identical to 21A3 (47 and 53). Unfortunately, we 

have developed allele specific primers for the 32A6 and 32B6 cases but we never obtained amplicons 

while screening those cultures for additional recombinant individuals. As a result, we decided to 

focus on the trio composed by individuals 2A5, 2B4 and 21A3, taking particular care to those cultures 

in order to avoid cross-contamination. When the cultures reached a density of 30 000 individuals, we 

collected the individuals for DNA extraction using the PureGene extraction kit® and sent the samples 

for whole-genome sequencing (Illumina®, HiSeq2500, 2x250bp; Genoscope, Evry, France). 

 The Illumina® libraries obtained were used to retrieve the five genetic markers used for 

genotyping (mtCOI, 28S rDNA, HisB, Scaff1 and Nu1054 for which recombinant signals were 

observed). The baiting and elongation around the markers was done using MITObim, a package that 

runs MIRA iteratively to reconstruct contigs. Although we could reconstruct short contigs around our 

five markers when baiting with the 2B4 sequences, we could not retrieve one single read in the 

library corresponding to individual 2A5 that corresponded to the COI, 28S, HisB, Scaff1 and even 

Nu1054 sequences observed in individual 21A3. This observation suggests that cross-contaminations 

between 2A5 and 21A3 gDNA could be responsible for the pattern observed in Table 1 or that the 

recombining region was rapidly lost throughout generations. One puzzling result is the fact that we 

could observe signals of recombination five times independently for this case after our screening, 

eventually eluding the contamination hypothesis. Similarly, individual 32A6 and 32B6 presented 

patterns of possible recombination and were identical for the regions sequenced. This suggest either 

that we cross-contaminated those two samples in exactly the same way or that those two individuals 

are daughters of an uncultured recombinant. Because improved assembly methods need to be 

developed (ongoing) in order to further investigate the sequenced genomes and because screening 

more individuals is expensive and time-consuming, we focused on Adinetidae populations which are 

easier to maintain under laboratory conditions. According to our experience, a large genetic diversity 
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within species is important to delineate species (GMYC, ABGD, conspecificity matrix) and to observe 

genetic exchanges. In the next part of this chapter, I will describe in details the methods and results 

of a study targeting the intraspecific genetic exchanges in Adinetidae. 

Table 1 : Table showing the genotype of individuals involved in potential interspecific exchanges for each of the five 
markers sequenced. 

 

 

 

  



 101  

 

DNA transfers among conspecific individuals from the genus 

Adineta confirmed 
Debortoli, N.*1, Terwagne, M.*1 & Van Doninck, K.1 

*First authors, both equally contributed to this manuscript 

1Laboratory of Evolutionary Genetics and Ecology, URBE, NAXYS, University of Namur, Rue de 

Bruxelles 61, Namur, Belgium 

Introduction 

 The asexual evolution of bdelloid rotifers has been admitted since a wide range of studies, 

from genomics to morphology, have reported the absence of conventional meiosis (i.e. the pairing, 

segregation and re-assortment of chromosomes) (Hsu, 1956 a and b; Mark Welch et al, 2008; Flot et 

al, 2013; Fontaneto and Barraclough, 2015) and the absence of males (Mark Welch et al, 2009). The 

most compelling evidence, being recently confirmed by new genomic studies, is the presence of 

palindromic alleles on single chromosomes (Flot et al, 2013; Karine Van Doninck, pers. comm. of 

ongoing research).  

Yet, even though this peculiar structure is not compatible with conventional meiotic 

processes, alternative mechanisms for the exchange of DNA material remain possible. Recent studies 

have indeed reported signatures of DNA transfers among bdelloid rotifers (Signorovitch et al, 2015; 

Debortoli et al, 2016; Vakhrusheva et al, poster at SMBE congress). Those results have been widely 

debated, the mechanisms for such transfers and the taxonomic range at which they occur (intra-

species, inter-species, inter-genera or inter-families) still being obscure (Signorovitch et al, 2016; 

Schwander et al, 2016; Flot et al, 2016; Wilson et al, in review). However, a massive number of 

horizontal gene transfers (HGTs) from non-metazoan origin have been detected in bdelloid rotifers, 

constituting up to 8-10% of the predicted genes (Gladyshev et al, 2008; Flot et al, 2013; Eyres et al, 

2015). Those observations seem to highlight the absence of a taxonomic barrier for HGT in bdelloid 

rotifers; DNA from other kingdoms being integrated within their genome and expressed. Moreover, 

the transcriptomic study of Eyres et al (2015) demonstrated that around half of the HGTs were 

shared among bdelloids of distinct families suggesting their acquisition prior to bdelloid radiation. In 

addition, HGTs appear ongoing in bdelloid rotifers and significantly correlated with resistance to 

desiccation, the number of such events being on average 12.8 transfers per million years (Eyres et al, 

2015). Yet, non-desiccating species keep accumulating foreign genes too, at a slower rate though, 

suggesting the possibility for mechanisms alternative to desiccation to integrate DNA. In addition, the 

constraints (genetic distance, GC content, presence of introns …) for the acquisition of genes from 

non-metazoan origin are probably more important than the ones for DNA transfers among bdelloids, 

eventually relying on other molecular processes.  

Sex-related mechanisms that do not require chromosome pairing have been put forward to 

explain DNA exchanges (Flot et al, 2013; Signorovitch et al, 2015). The Oenothera-like meiosis 

proposed by Signorovitch et al (2015) would theoretically be possible as no chromosomes pairing or 

segregation is necessary. In this system, the chromosomes of each parent form distinct groups 

(linkage group α and β) that pair and recombine only at telomeric regions (Cleland, 1972; Golczyk et 

al, 2008). Since only crosses between α and β gametes are possible, heterozygosity is preserved 

within populations. As recombination is restricted to telomeres, haplotypes are maintained through 
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generations and rearrangements occurring within haplotypes also (Dietrich et al, 1997). Alternatively, 

parasexuality as described in Candida albicans, could also explain allele sharing patterns across 

multiple loci. In such reproductive system, diploid cells of each mating type a and α (determined by a 

single gene MTL, mating-type-like) fuse to form a tetraploid zygote (Hull and Johnson, 1999). The 

tetraploid daughter cells can divide by mitosis but they will eventually return to a diploid state 

through several unequal divisions with non-disjunction of chromosomes, a process called “concerted 

chromosome loss” (Bennett and Johnson, 2003; Hickman et al, 2015). Parasexuality or Oenothera-

like meiosis would fit the observation of allele sharing across multiple loci between individuals 

(Signorovitch et al, 2015). Yet, no unusual chromosome pairing have been reported neither 

aneuploid bdelloid individuals suggesting extremely rare events, if any. 

 Confirming DNA exchange in bdelloid rotifers, understanding the mechanisms underlying 

these transfers and the frequency at which they occur, in comparison to HGTs from non-metazoan 

origin, would bring new insights on the evolutionary success of bdelloid rotifers. Here, we designed 

an experiment to study DNA exchanges in which we maintained clonal cultures of each bdelloid 

individual isolated from natural moss patches. We focused on the genus Adineta for which a 

reference genome is available (Flot et al, 2013) and because it can be easily cultured in lab 

conditions. Frequent cleaning of the clonal cultures and re-isolation of individuals was performed to 

limit cross-contaminations. Furthermore, clonal cultures enabled genotyping without whole-genome 

amplification step, reducing the chances for experimental artifacts. 

Material and Methods 

Sampling, culturing and individual isolation 

We collected nearby moss patches from the ground located around an old slag heap in 

Courcelles, Belgium [50°26'50.57"N; 4°21'30.98"E] where we have identified several Adineta species 

in a preliminary study. The sampling period took place in August 2016. Dry substrate patches (>5 

cm²) were collected and re-hydrated in mineral water (Spa®) overnight in separate Petri dishes. Each 

active individual morphologically identified as Adineta sp. (Donner, 1965) was then carefully pipetted 

in successive Spa® water drops and isolated in an individual well (24-wells plates). Particular care was 

taken to avoid more than a single individual per well. Each individual was then monitored during a 

few weeks, fed with autoclaved lettuce extract and washed by transfer into a clean well if necessary. 

The genotyping was only applied to clones that reached a population of at least 10 individuals, which 

we considered as a proxy to limit culture crash and loss. We isolated one individual of each stable 

culture into a new tube in which 35 µL of Chelex® and 1µL of Proteinase K were added for genomic 

DNA extraction. This mix was then heated for 20’ at 56°C followed by 10’ at 95°C and centrifuged for 

5’ at 14000rpm. For each individual, the extracted DNA present in the supernatant was carefully 

transferred to a new tube for genotyping. 

Individual genotyping 

We first genotyped all the stable cultures by PCR-amplifying a fragment of the mitochondrial 

cytochrome oxidase subunit I (COI) marker using the universal HCOI and LCOI primers (Table 2; 

Folmer et al, 1994). The PCR mixes contained 1X GoTaq reaction buffer (1.5 mM MgCl2), 0.2 mM of 

each dNTP, 0.5 µM of both primers, 0.5 U of GoTaq DNA Polymerase (Promega), 5µL (≈10 ng) of 

gDNA and pure PCR reaction water for a total volume of 25 µL. The amplification conditions started 

with an initial denaturation at 94°C for 4’; followed by 60 cycles of 45” denaturation at 94°C, 45” 
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annealing at 40°C and 50” elongation at 72°C; a final elongation step was conducted for 10’ at 72°C. 

The resulting amplicons were Sanger-sequenced in both directions using the same primers as for the 

PCR (Genewiz UK Ltd, Stortford, UK) and the chromatograms were assembled with Sequencher4 

(Gene Codes). 

We further genotyped with four additional nuclear markers the clones that were identified 

using the mitochondrial COI marker. Two of them, the 28S rDNA and Nu1054 markers, consistently 

amplified across all bdelloid families and were used as in Debortoli et al (2016). The only exception is 

that we performed the PCR 

amplification directly on the gDNA 

of single individuals, i.e. no whole-

genome amplification (WGA) step, 

and, for the 28S marker, we used 

the Phusion polymerase (NEB) to 

amplify the whole fragment length 

(≈2800bp). The PCR mixes 

contained 5X HF buffer, 0.2 mM of 

each dNTP, 0.5 µM of both primers, 

0.2µL of GoTaq DNA Polymerase 

(Promega), 5µL (≈10 ng) of gDNA 

and pure PCR reaction water for a 

total volume of 25 µL. PCR 

conditions consisted in an initial 

denaturation of 30” at 98°C; 35 cycles of 10” denaturation at 98°C and annealing/elongation 1’35” at 

72°C; a final 10’ elongation at 72°C. The 28S amplicons were then sequenced using two pairs of 

nested primers (Table 2), each fragment being approximately 700bp-long while the Nu1054 

amplicons were sequenced using the same primers than for amplification (≈450bp). 

Two additional markers (Scaff1 and HisB) were developed by aligning the Adineta vaga 

genome to the available bdelloid transcriptomes Rotaria socialis, R. magnacalcarata, R. sordida, R. 

tardigrade and A. ricciae (Boschetti et al, 2012; Flot et al, 2013; Eyres et al, 2015), and with the 

published his sequences for HisB (Van Doninck et al, 2009). We checked the number of copies for 

both markers into the Adineta vaga reference genome using tblastx in order to design primers 

specific to a single allelic pair. Primers were designed with Primer3 using default settings and each 

primer pair was tested on clones from available lab cultures representing at least one species of the 

Adinetidae, Habrotrochidae and Philodinidae families. For both the Scaff1 (≈500bp) and HisB 

(≈520bp) markers the PCR mix was composed of 1X GoTaq reaction buffer (1.5 mM MgCl2), 0.2 mM 

of each dNTP, 0.8 µM of both primers (Table 2), 1 U of GoTaq DNA Polymerase (Promega), 5µL (≈10 

ng) of gDNA and pure PCR reaction water for a total volume of 25 µL. The reaction programs were 

identical to the one used for the COI marker except for the annealing temperature which was set to 

54°C and 58°C for Scaff1 and HisB, respectively. 

As further genotyping with four nuclear markers (28S, HisB, Nu1054 and Scaff1) required 

more gDNA than extracted from a single individual and as whole-genome amplifications was shown 

to induce biases (Wilson et al, in review), we considered that all individuals from a given clonal 

culture were identical and used several clones isolated in distinct tubes here.  

Table 2 : List of primers used for each marker and the expected size of the 
corresponding amplicons. 
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Phasing sequences and species delimitation 

For the four nuclear markers, the forward and reverse chromatograms of each clone were 

used to phase the two alleles of heterozygotes directly from the patterns of double-peaks observed 

(Stephens et al, 2001; Flot et al, 2006; Flot, 2007; Flot, 2010). The sequences obtained for each 

marker were aligned in MAFFT (E-INS-i method; Katoh et al, 2013) and used as input to generate 

haplowebs (Flot et al, 2010). Connections between alleles that co-occur in heterozygous individuals 

were added to median-joining networks (Fluxus Technology; Bandelt et al, 1999) to form distinct 

allele pools, called fields for recombination (FFRs), i.e. putative species (Doyle, 1995). The allele-

sharing information present in each haploweb was then used to compute the conspecificity matrix in 

which a score is attributed to each pair of individual corresponding to the number of markers 

assigning this pair to a same FFR (Debortoli et al, 2016). The resulting square matrix was then 

reordered to maximize scores along the diagonal using hierarchical clustering in R package 

“heatmap3” (Zhao et al, 2014). The blocks formed correspond to species within which scores are 

higher than scores between species. 

In addition, we used the General-mixed Yule Coalescent (GMYC) method on our COI dataset 

that relies on a maximum likelihood approach to detect a transition from speciation to coalescence in 

the branching rate pattern (Pons et al, 2006; Monaghan et al, 2009). As the GMYC can be sensitive to 

undersampling and to the frequency of singletons (Talavera et al, 2013; Tang et al, 2014), we aligned 

our COI sequences with those obtained in other projects and with available public data (GenBank). 

One unique sequence was then selected for each distinct haplotype and this dataset was used to 

generate an ultrametric Bayesian tree (BEAST v 1.6.2; Drummond and Rambaut, 2007) using the 

GTR+Γ4+I substitution model. For each group, the Markov chain Monte Carlo (MCMC) was run three 

times independently for 108 generations, sampling every 104 generations, and combined into a single 

consensus maximal clade credibility tree (LogCombiner and TreeAnnotator packages). The consensus 

tree was submitted to the General-mixed Yule coalescent (GMYC) analysis in R, using SPLITS (http://r-

forge.r-project.org/projects/splits/). 

Finally, we used a third approach, namely the Automatic Barcode Gap Discovery (ABGD), 

based on the distribution of pairwise genetic distance among haplotypes to delimit species. A 

“barcode-gap” can often be observed between the distribution of distances among haplotypes 

belonging to a same species and the distance between haplotypes from distinct species (Puillandre et 

al, 2011). Our aligned COI dataset was submitted to ABGD in command line mode using default 

parameters (software download at http://wwwabi.snv.jussieu.fr/public/abgd/). 

Confirming the phasing sequences 

We checked the sequences obtained from direct phasing using the forward and reverse 

chromatograms by cloning the same PCR-products into plasmids using the pGEM®-T Easy Vector kit 

according to the provided protocol (Promega). This enabled us to check that no chimeric sequences 

were created during allelic reconstruction using the statistical method PHASE or through manual 

editing during the length-variant heterozygote phasing with Champuru v1.0 (Stephens et al, 2001; 

Flot et al, 2006; Flot, 2007; Flot, 2010). In addition, sequencing cloned PCR-products may reveal 

additional rare alleles (large screening eventually required) that were not visible on the 

chromatograms retrieved from direct sequencing.  

http://r-forge.r-project.org/projects/splits/
http://r-forge.r-project.org/projects/splits/
http://wwwabi.snv.jussieu.fr/public/abgd/
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Culture preparation for whole-genome sequencing 

The clonal cultures for which the conspecificity matrix highlighted incongruences or for which 

the haplowebs presented patterns of allele-

sharing were boosted by feeding and 

cleaning them more regularly in order to 

reach a population of ≈30 000 individuals for 

whole-genome sequencing (WGS). The 

rotifers of each clonal culture were pooled 

in respective individual Falcon tubes (50mL), 

centrifuged for 10’ at 4000 rpm (4°C) and 

stored at -80°C in separated cryotubes. We 

extracted the genomic DNA of each sample 

using the PureGene kit according to the 

supplied protocol and sequenced on an 

Illumina HiSeq2500 platform (Genoscope, 

Evry, France). 

Results 

Sampling and species delimitation 

A total of 130 individuals morphologically identified as Adineta sp. were isolated from ten 

moss patches around the slag heap (Courcelles, Belgium). Overall, 104 individuals (80%) led to stable 

cultures that were further used for genotyping (Table 3) and among which we could retrieve 26 

distinct mtCOI haplotypes (haplotype diversity: Hd = 0.926 and nucleotide diversity: π= 0.085). The 

GMYC approach significantly 

delimited 117 species 

(confidence interval: 109-

126) across the whole 

dataset built-up from the 

present study and the COI 

sequences available on 

GenBank, ten of which 

corresponded to species 

sampled throughout the 

present study (species A-J, 

Figure 2). Interestingly, the 

ABGD method congruently 

delimited nine species, 

regrouping species D and E 

of the GMYC within one 

single cluster (Figure 2).  

Further genotyping 

using the 28S rDNA and the 

Scaff1 nuclear markers 

worked consistently across 

Figure 2 : Pruned phylogenetic tree presenting the COI haplotypes 
retrieved in this study. For the original tree see chapter 4. Species 
delimitations based on three methods (GMYC, ABGD and 
conspecificity matrix) are indicated. 

Figure 3 : Haplowebs built for each of the four nuclear markers sequenced (HisB, Nu1054, 

Scaff1 and 28S). Each circle represents a sequenced allele and its frequency in the population 

(size is proportional). When alleles are co-occurring in one heterozygous individual, the 

corresponding circles are linked on the haploweb (blue lines). Each color corresponds to one 

of the five (α-ε) species delimited in Figure 2. Red figures indicate the number of mutations 

separating two alleles. The red links highlight pattern of intraspecific DNA exchanges. 
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all Adineta species whereas the HisB and Nu1054 markers provided contrasting results working only 

on a subset of individuals (Table 3). The four haplowebs built by using the information of 

heterozygous individuals delimited 5 to 11 FFRs depending on the marker considered (Figure 3). 

When gathered in the conspecificity matrix, the information retrieved from those four nuclear 

markers and the mitochondrial COI marker delimited a total of five distinct species (species α-ε), 

merging sister clusters delimited by the GMYC and ABGD methods (Figure 2 and Figure 4). 

Table 3 : Summary of the alleles found in each Adineta for each of the five markers sequenced.  
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Intra-specific DNA transfers 

In three cases, individuals belonging to a same 

species shared alleles in a cyclic fashion (Figure 3) as 

observed in Debortoli et al. (2016). In the first case, 

three genotypes within species β were connected in a 

cyclic fashion for marker HisB, with seven individuals 

harboring alleles 3||6, five individuals harboring 

alleles 3||9 and one individual presenting alleles 6||9 

(Table 4 and Figure 5). However, the number of SNPs 

distinguishing each allele ranges from 3 to 8 mutations 

and only a single gene conversion event between 

position 335 and 379 could result in the transition 

from genotype 3||9 to genotype 6||9 (Figure 5, HisB). 

The five individuals presenting alleles 3||9 were 

identical for the five markers sequenced while the 

seven individuals harbouring alleles 3||6 for marker 

HisB were different for the other markers used. For 

ten out of twelve heterozygous individuals forming 

this cycle, allele phasing via in silico methods 

(Stephens et al, 2001; Flot et al, 2006; Flot, 2007; Flot, 

2010; Flot et al, 2010) was confirmed by cloning the PCR-products into plasmids prior Sanger-

sequencing. For the two other individuals (48.1C3 and 48.1B5), only one allele was retrieved 

Figure 4 : Conspecificity matrix built from data 
retrieved from only Adineta individuals found in 
Courcelles (Belgium). Blocks along the diagonal 
represent individuals sharing 1 (yellow) to 5 (red) 
alleles (corresponding to the five regions 
sequenced). As a result, blocks along the diagonal 
represent cryptic species. 

Figure 5 : Detailed analysis of the patterns of intraspecific DNA exchanges observed in Figure 3. Tables show the loci at which 
mutations occurred for individuals involved in the cycle. Gene conversions and SNPs theoretically explaining the transition from 
one allele to the other and resulting in the formation of a cycle without inter-individual exchange are indicated in green. 
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eventually due to under-sampling. In nine cases, additional sequences were found, but those 

additional copies were chimeras of the two alleles probably due to template switching during the 

final steps of the PCR reaction (Kanagawa, 2003). Additional PCR programs in which final elongation 

step was aborted were used to avoid this kind of artifacts, but no amplicons were obtained under the 

conditions tested. In addition, a more complex cycle composed of four distinct genotypes (3||6, 

6||5, 5||7 and 7||3) was observed for this same species β on HisB. However, only one SNP 

distinguished alleles 5 and 7 from allele 3 (Figure 5, Nu1054). Another case of allele-sharing was 

observed for marker HisB, but among individuals belonging to species γ. Here again, only one 

mutation separated allele 14 and 15 causing transition from genotype 14||17 to 15||17 or inversely 

(Figure 3).  

Finally, a last case of individuals sharing alleles in a cyclic fashion was observed in species β 

but for marker Nu1054 (Figure 3). This cycle was composed of five distinct genotypes (8||11, 11||7, 

7||12, 12||15 and 15||8) in which alleles are separated by one to six mutations. Yet, a single 

mutation at position 299 would convert genotype 8||11 into genotype 8||12 simplifying the pattern 

into a cycle of three distinct genotypes (Figure 5). In this simplified cycle alleles are separated by two 

to six mutations but at least two mutations are necessary for the transition of one genotype to 

another. Here, the PCR-products corresponding to the individuals forming this cycle could not be 

cloned into plasmids as amplification did not work anymore, even though several PCR conditions as 

well as new primers and polymerase were tested. 

Discussion 

Patterns of allele sharing among individuals belonging to the same species were observed in 

this preliminary study with no whole-genome amplification step included, reducing the chances to 

generate genetic chimeras as recently debated (Debortoli et al, 2016, Wilson et al, 2018). Those 

patterns were similar to the ones observed in a previous study (Debortoli et al, 2016) and only three 

individuals were enough to close the cycle (Figure 3). However, after more detailed analyses of the 

sequences composing those cycles it appeared that only few mutations or a gene conversion event 

could explain the so-called allele sharing pattern for the markers sequenced (Figure 5). In another 

case, the cycle involved five individuals of species β but a DNA transfer among two individuals 

followed by a single point mutation would explain the exchange observed (Figure 5). 

Another hypothesis parsimoniously explaining the patterns observed would be the presence 

of additional copies in the genomes, such as paralogs, with our genetic marker eventually amplifying 

different copies in distinct individuals. For the cycle observed in Nu1054 marker, alleles 8 and 15 

were clearly distinguishable on the chromatograms of individual 48.1B3 but an additional allele 12 

could have remained hidden due to PCR-biases. Similarly, the chromatograms obtained from 

individual 42.2D6 contained copies 12 and 15, allele 8 being eventually invisible. Overall, those biases 

would result in different sets of allele pairs being amplified and producing the cycle observed. This 

last hypothesis is very unlikely since we cloned and sequenced the amplicons of interest separately 

and could not detect the presence of such additional copies. Furthermore, one would expect to find 

at least a few cases in which more than two copies would be visible on the chromatograms obtained 

through direct amplicon sequencing (Figure 6). More specifically, additional alleles would not be 

visible on chromatograms from clone 48.1B3 (and the two others with same genotype) as a mix of 

alleles 8 and 15 results in a pattern theoretically containing the peaks expected under any 

combination of alleles 8, 12 and 15 (Figure 6). In contrast, chromatograms from clone 42.2D6 (and 
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the two other clones with the same genotype, see Table 4) should harbor minor peaks at position 

365 and 369 testifying the presence of allele 8 in addition to alleles 12 and 15. Similarly, 

chromatograms from clone 42.3B2 (and the five other clones with identical genotype, see Table 4) 

should present minor peaks at position 133 and 182, indicating the presence of the unconsidered 

allele 15. However, species β appeared to be widely sampled as twenty-nine individuals were 

genotyped for this species and the amplification rate was high (96.5-100%) for each marker used; 

yet, we never observed any additional minor peak among our data. As a result, even though we could 

not verify through cloning the number of copies of Nu1054 for this allele sharing pattern, we are 

particularly confident that the cyclic patterns observed are not due to technical artifacts.  

The patterns of allele sharing 

observed here may answer another 

question that was pointed out in the 

comments to Debortoli et al (2016) 

regarding the mechanisms responsible 

for such transfers. Indeed, distinct 

individuals are involved in the cycles 

observed for HisB and Nu1054, 

characterizing allele sharing among 

conspecific individuals (Table 4). Clones 

presenting genotype 3||9 and 6||9 for 

HisB harbor alleles that were not 

included in the cycle delimited for marker Nu1054 (genotypes 8||13 and 12||14). If a sex-related 

mechanism, such as Oenothera-like meiosis, was responsible for the patterns observed, one would 

expect to find similar patterns across multiple loci. Yet, the number of markers sequenced here is 

probably too small to infer the exact mechanisms. In the present case, two independent 

recombination events (sex-like or HGT) are more likely, the first event probably being a 

recombination between individuals harboring genotypes 8||15 and 12||15 at locus Nu1054 (e.g. 

between individuals 42.2D6 and individual 43.1C3) leading to the formation of a non-sampled 

recombinant. Then, a few mutations accumulated in the expanding population at different loci (e.g. 

Nu1054 cycles became more complex, with the formation of additional genotypes) resulting in the 

genotype observed in individual 42.3B2. Meanwhile, a second recombination among individuals 

similar to 43.1C3 and 42.2A4 resulted in individuals presenting a genotype similar to the one found in 

individual 48.1A2. Sequencing the genome of each clonal lineage involved in the allele sharing cycles 

described in species β would confirm those results since longer DNA regions, including the studied 

markers, and more DNA regions will be analyzed between the recombinants. If sharing of genetically 

near-identical alleles is observed throughout the genomes of the candidate individuals, the most 

parsimonious explanation would most likely be sex-related. If sharing is observed on a restricted 

number of loci, then horizontal gene transfers could be the key mechanism underlying the patterns 

observed. Dr. Matthieu Terwagne is working on the genome sequencing of the clones involved in the 

allele sharing cycles.  

Figure 6 : Patterns of double-peaks expected in case of cross-
contaminations between individual 42.2D6 and 42.3B2. 
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Table 4 : Detailed table focusing on species β for which two patterns of intraspecific exchanges were found. The 
genotypes described on Figure 5 are colored in orange. 

 

One would expect that sex-related mechanisms may potentially be more frequent than 

horizontal gene transfers of DNA fragments. Bdelloids however go often through cycles of 

desiccation/rehydration in their semi-terrestrial habitats during which the genome and cell integrity 

is compromised and then repaired, enhancing the chances for such transfers. It is hard to determine 

this frequency based on the present study as our experimental procedure aimed at being qualitative 

instead of quantitative to validate/invalidate the observation of Signorovitch et al (2015) and 

Debortoli et al (2016). Indeed, we isolated all Adineta individuals observed in the dried patches 

collected, but we could not culture all of them. Yet, we may still be able to provide a rough idea of 

how long ago this event occurred based on the diversity among individuals involved in the cycles. 

Indeed, if DNA transfers among conspecific individuals are rare, one may expect that the different 

individuals involved in the allele sharing cycles are daughters of the individuals that originally 

recombined (e.g. 44.1A1, 48.1A2, 48.1B2, 48.1C2 and 48.1C3 are probably relatives). This explanation 

would be more parsimonious than multiple independent exchanges among closely related 

individuals. If daughters diverge, one may hypothesize that the DNA transfer occurred a few 

generations ago and that clones had time to accumulate mutations or even additional transfers. As 

an example, all the clones harboring genotype 8||11 for Nu1054, and thus involved in the cycle 

observed in species β, have exactly the same genotype for all the other markers sequenced, 

suggesting a recent clonal expansion (Table …). In contrast, individuals presenting alleles 12||15 for 

Nu1054 differed at locus HisB by a few mutations (six to seven SNPs; Figure 5) indicating longer 

divergence time. Similarly, individuals harboring alleles 8||15 for Nu1054 differed by a few 

mutations for marker COI, Scaff1 and HisB (Figure 3). A simple hypothesis for these observations is 
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that individuals reproducing asexually for several generations diverged at multiple loci, then a DNA 

transfer event occurs between two distinct individuals (still conspecific) followed by a clonal 

expansion of the recombinant. Interestingly, the two most frequent genotypes found in species β are 

indeed the recombinant ones, i.e. one locus is involved in a allele sharing cycle. The absence of 

divergence among the daughters of one recombinant individual suggests that this event is quite 

recent. 

Finally, we could not identify in our study signatures of interspecific transfers as presented in 

Debortoli et al (2016) (Figure 4). This does not mean that such transfers among more genetically 

distant individuals are not possible. However, our results point out that the frequency of interspecies 

transfers is probably much lower, potentially indicating that the molecular mechanisms responsible 

for such events are different than the ones for intraspecific transfers. A RADsequencing study started 

by Dr. Marie Cariou will investigate interspecific transfers through phylogenomic. 
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Chapter 4: Bdelloid rotifer communities shaped 

by seasons, inter-specific variations and 

geographical distance 
 

 This fourth chapter is in connection with the initial aim of the experiment conducted in 

chapter 1, i.e. the study of diversity and structure of bdelloid rotifers community at a very local scale. 

Even though we mainly discussed the patterns of potential genetic transfers observed in that 

chapter, the results on community structure per se were really interesting too. First of all, a total of 

six distinct cryptic Adineta species (labelled A-F) were retrieved, one of which (species C) was 

extremely abundant representing 68.75% of the individuals sampled (Debortoli et al, 2016). 

Interestingly, this species was present in 38.89% of the patches sampled but extremely rare in 

patches collected from the soil (Table 1) suggesting adaptation to the local conditions. Second, we 

did not test it statistically, but it seemed that other species were absent or rare in patches colonized 

by dominant species C. Yet, it is hard to tell if this pattern is due to high competition strength of 

species C or different habitat preferences as shown for distinct morphospecies (Fontaneto et al, 

2011). Similarly, some species were frequent in patches located on tree trunks at higher heights 

(species A and C) whereas other species seemed specific to patches collected near or from the soil 

(species E and F). Soil was hypothesized to desiccate less frequently than patches more exposed to 

wind (e.g. on trunks) and, as a result, to harbor more desiccation-sensitive parasites infecting 

bdelloid rotifers (Wilson et al, 2013). However, it remains unclear if the species present at ground 

levels were permanently dwelling there or if frequent immigration from the metacommunity caused 

the species distribution observed. The same question applies to the two species that were extremely 

rare, being represented by only one or four individuals (species B and D, respectively). It would not 

be surprising that frequent immigration may play an important role in the community structure as 

bdelloid rotifers are known to be easily dispersed by wind (Fontenato et al, 2006a; Fontaneto and 

Ricci, 2006b; Wilson et al, 2013), but this has still to be tested. 

 Another important question that has only had little consideration concerns the temporal 

dynamics of bdelloid communities (Ricci et al, 1989). Several ecological processes could explain the 

abundance of the dominant species C, such as frequent immigration from a source population or 

rapid clonal reproduction of rare colonizers. In both cases, it would also be relevant to understand if 

processes responsible for those dynamics are constant over time or vary with environmental 

conditions. Bdelloid rotifers have been shown to follow distribution patterns similar to protists which 

also have wide dispersal ranges (Fontaneto et al, 2006a). Nonetheless, bdelloids life cycle is 

sensitively different from protists, probably leading to slightly distinct dynamics. Overall, answering 

those questions would bring more insights into the evolutionary success of bdelloid rotifers in spite 

of their asexual reproduction. 

 In this chapter, we developed a simple ecological model to simulate the colonization of bare 

habitat and the early development of bdelloid communities. The different parameters and biological 

traits presented above (i.e. immigration, reproduction, species interaction strength, survival and 

environmental conditions) were implemented into distinct ecological scenario in order to 
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discriminate the intrinsic effect of each. We controlled the accuracy of this model by comparing the 

simulations with field data collected every three months. 

References 

 
Debortoli, N., Li, X., Eyres, I., Fontaneto, D., Hespeels, B., Tang, C. Q., ... & Van Doninck, K. (2016). Genetic 

exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to meiotic sex. Current 

Biology, 26(6), 723-732.  

Fontaneto, D., & Ricci, C. (2006b). Spatial gradients in species diversity of microscopic animals: the case of 
bdelloid rotifers at high altitude. Journal of Biogeography, 33(7), 1305-1313. 
 
Fontaneto, D., Ficetola, G. F., Ambrosini, R., & Ricci, C. (2006a). Patterns of diversity in microscopic animals: are 
they comparable to those in protists or in larger animals?. Global Ecology and Biogeography, 15(2), 153-162. 
 
Ricci, C., Pagani, M., & Bolzern, A. M. (1989). Temporal analysis of clonal structure in a moss bdelloid 
population. In Rotifer Symposium V (pp. 145-152). Springer Netherlands. 
 
Wilson, C. G., & Sherman, P. W. (2013). Spatial and temporal escape from fungal parasitism in natural 

communities of anciently asexual bdelloid rotifers. Proceedings of the Royal Society of London B: Biological 

Sciences, 280(1765), 20131255. 



 117  

 

 

Table 1 : Frequency of each species (A-F) isolated from the thirty-six patches collected in Park Louise-Marie (Namur, 
Belgium) and presented in Chapter 1. The location of each patch on/around each tree is indicated; “high” patches were 
sampled above 1.5m, “low” patches were collected below “0.5m” and “soil” represents patches located on the ground 
around tree roots. 
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Abstract 

 Bdelloid rotifers communities have been postulated to follow the same dynamics than for 

other microscopic organisms due to their high capacity to be passively dispersed by wind when 

desiccated. Here, we used a simple competition model to test if habitat preferences solely could 

explain bdelloid distribution over time or if dispersal limitation also plays a role. In order to test if our 

model correctly fitted the colonization of new habitats, we compared the simulations with Adineta 

communities collected seasonally for two years on rooftops (Namur, Belgium). We tested five 

ecological scenarios based on five hypotheses possibly explaining the bdelloid rotifers dynamics and 

found that immigration was the most critical parameter under the conditions tested with one species 

rapidly colonizing habitat patches and overcompeting most others. In addition, we run the model 

under different levels of environmental conditions (permissive, intermediate and harsh) to simulate 

community variations across seasons and found that communities endure important bottlenecks 

yearly in winter. Overall, our study indicates distinct immigration rates and habitat preferences 

amongst cryptic Adineta species. 

Introduction 

For many micro-organisms, frequent and long-range dispersal often makes global diversity 

(gamma) similar to local diversity (alpha) (Finlay, 2002). Some studies even suggest that the 

distribution of microscopic species is a function of habitat preferences rather than of dispersal 

limitation or historical contingency (Bass and Cavalier-Smith, 2004; Costello and Chaudhary, 2017). 

This has also been suggested for bdelloid rotifers, a clade of microscopic animals (<2mm) showing 

distinct specificities for habitat type and strong dispersal capacity (Fontaneto et al, 2006a; Fontaneto 

et al, 2011).  

Bdelloid rotifers are very abundant animals in semi-terrestrial habitats such as soil, moss and 

lichen patches (Fontaneto et al, 2006a; Fontaneto et al, 2007; Fontaneto et al, 2008) forming small 

propagules, called “tuns”, when entering a dormant stage during long periods of drought or freezing 

(Ricci, 1998; Ricci and Caprioli, 2005). Available data reveal patchy local distribution of bdelloids, with 

almost no overlap in species composition among different substratum (Fontaneto et al, 2006a; 

Fontaneto et al, 2007; Fontaneto et al, 2008), suggesting specificity to habitat type (Fontaneto et al, 

2006a; Fontaneto and Ricci, 2006b; Fontaneto et al, 2011). However, “tun” formation provides them 

strong dispersal capacity: they can easily disperse with the wind or be attached to microscopic 

sediments that can be passively transported over large distances, enabling a large geographic 

distribution of bdelloid rotifer species (Fontaneto and Ricci, 2006b; Wilson, 2011).  

While the life-span of bdelloid rotifers rarely exceeds 30 days, propagules can persist several 

years in desiccated state and eventually return to an active state upon rehydration (Guidetti and 
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Jönsson, 2002). Survival after desiccation has never been quantified under harsh environmental 

conditions, but laboratory experiments demonstrated that survival could be extremely high under 

controlled permissive conditions depending on the protocol used (Ricci, 1998; Hespeels et al, 2014).  

For example, survival could reach 60-100% when groups of 10-20 individuals of Adineta vaga or 

Philodina vorax were desiccated on filter paper respectively (Ricci, 1998). In contrast, single A. vaga 

individuals desiccated on agarose rarely survived (Hespeels et al, 2014).  Ricci and Caprioli (2005) 

even described a reproductive boost following rehydration of the desiccated propagules. Desiccation 

therefore appears a critical component of the bdelloid rotifers life-cycle also providing a way out 

from parasites (Wilson et al, 2010; Wilson, 2011). It has indeed been shown that the association of 

bdelloid rotifers with their Rotiferophthora parasites could be disrupted when dry periods were 

coupled with wind dispersal, the parasites being less desiccation-tolerant. Besides their extreme 

desiccation tolerance, bdelloids are remarkable for their asexual mode of reproduction Maynard 

Smith, 1978). No males or meiosis have ever been observed in bdelloids and their genome appears 

incompatible with homologous chromosome pairing, ruling out the possibility for sexual 

reproduction (Flot et al, 2013; Fontenato and Barraclough, 2015). Each female is able to clone 

herself, which allows rapid colonization of new habitats starting from a single individual. 

Here, we studied how those peculiar eco-evolutionary features could impact the spatial and 

temporal dynamics of 

bdelloid communities. 

Several studies have been 

published on the spatial 

distribution of bdelloid 

rotifers species showing 

large dispersal capacities 

and low but significant 

habitat preferences 

(Fontaneto et al, 2006a 

and 2011). To our 

knowledge, only one 

study included the 

temporal dynamics, 

describing no variation in 

species composition with 

seasonality (Ricci et al, 

1989). However, this study 

focused on a single large 

moss patch from which 

subsamples were collected 

monthly. As a result, it is 

difficult to disentangle the 

different ecological 

parameters (dispersal, habitat preferences, species interactions, environmental variations…) and 

their respective impact on community structure, each subsample being inter-dependent. We carried 

out controlled, quantitative field experiments during two years, sampling every three months nine 

Figure 1 : Probability distribution tested for the model under five distinct scenarios. On 
the left panel: two scenarios are presented. In one scenario, the probabilities of a given 
parameters are identical across all species (neutral). In the other scenario, the 
probabilities vary across species (non-neutral). On the right panel:  five scenarios build 
from distinct combinations (neutral and non-neutral) of two parameters (the species-
specific probability to immigrate in the community (in green) and fitness (in black)) are 
shown. a) In scenario 1, all species have the same probabilities to immigrate, reproduce 
and survive at each time-step (linear distribution). b) In scenario 2, the probability to 
immigrate is identical across species, but the probability distributions to reproduce and 
survive vary. c) Scenario 3 simulates conditions opposite to scenario 2, reproduction and 
survival are equal for all species but the probability to immigrate varies across species. d) 
Solid lines represent scenario 4 which models a trade-off between the probabilities to 
immigrate and the fact to reproduce and survive. The dashed lines on d) represent 
scenario 5 in which probabilities to immigrate, reproduce and survive at each time-step 
co-vary. 
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communities located on three distinct roofs in Namur (Belgium) and analyzed the data with a simple 

competition model. Using the model, we simulated colonization and the subsequent community 

dynamics of bdelloid individuals of the genus Adineta. Our model included variation among 

individuals and species and relied on solely three main parameters: the immigration rate (i.e. the 

dispersal capacities of each species), the survival probability, and the reproductive output of each 

individual. The two latter parameters may be regarded to as indicative of species fitness. We ran the 

model under five distinct scenarios (Figure 1), making various assumptions on how fitness and 

dispersal contributed to local dynamics, and compared the resulting simulations to our experimental 

data.  

In a first scenario, we assumed all species to have similar fitness (Adineta species have similar 

feeding capacities as they all graze on the substrate surface), similar dispersal rate (size of ‘tuns’ is 

comparable), and having closely related life-cycles resembling the assumptions underlying neutral 

models (Hubell, 2001). Species co-occurrence is only short-lived and due to stochastic events (birth-

death-immigration). In a second scenario we also assumed similar dispersal rates, but distinct habitat 

preferences depicted by distinct probabilities to survive and reproduce (Fontaneto et al, 2006a and 

2011). In a third scenario we assumed that dispersal rate varied across species. We define dispersal 

rate as the chance for one individual to be passively transported to the community from the 

metacommunity. This could be the case in the context of a source-sink dynamic in which extremely 

abundant species, at a given place, could immigrate more frequently in nearby habitat patches 

(Amarasekare and Nisbet, 2001; Lowe and McPeek, 2014). In a fourth scenario, we assumed that 

fitness and dispersal rate covaried negatively.  This scenario reflects the observation of Ricci and 

Caprioli (2005) that life-history traits of bdelloid rotifers could vary with habitat preferences, 

providing evidence for a shorter life span, a higher fecundity and earlier age at first reproduction in 

bdelloid species that do not desiccate and inhabit permanent freshwater bodies. As a consequence, 

bdelloid species less tolerant to desiccation should have limited dispersal capacities but a higher 

reproductive output. Finally, in a fifth scenario all parameters covaried positively. We postulated that 

one or a few species are widely represented in the nearby area due to specific adaptation, favoring 

the chances for short-range dispersal and persistence. We included this scenario because Debortoli 

et al (2016) observed that the two most abundant species in the local community (named species A 

and C) were also the one present in most samples (39-44% of the lichens sampled) (see also Ricci et 

al, 1989). It has been shown in other microscopic species that community similarity decreased 

significantly with geographical distance, more than with environmental distance (Soininen et al, 

2007). 

Materials and methods 

Sampling and species delimitation 

We selected three flat roofs located across the UNamur campus (Belgium, Namur; 

50°27'58.27"N;  4°51'37.76"E) on each of which we placed three Petri dishes (Ø = 10 cm) filled with 

20mL of 3% solid agarose. To avoid any contamination the dishes were kept closed with Parafilm® 

until being placed on the respective roofs. The three Petri dishes from a same roof were located 8-25 

meters from each other whereas 32-148 meters separated the dishes from distinct roofs. Each Petri 

dish was fixed on a block and maintained leaned for three months, being exposed to environmental 

conditions and to passive dispersal of micro-organisms (Figure 2a). This kind of setting resulted in a 

humid but not submerged community mimicking the limno-terrestrial habitat of rotifers with the 
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layer of agarose 

buffering 

humidity 

variations and 

forming a 

suitable 

substrate for 

bdelloid rotifers 

(Wilson and 

Sherman, 2013). 

Every three 

months, each 

dish on each 

roof was carefully sealed with Parafilm® and brought back to the lab for morphological identification 

and isolation of each Adineta sp. individual morphologically determined following Donner (1965). 

Our isolation protocol consisted in washing each bdelloid rotifer by pipetting it into successive clean 

Spa® water drops and transferring it to an individual tube. Each tube was then briefly centrifuged to 

pellet the isolated animal and inspected under a binocular to make sure that only a single rotifer was 

present. If no individual was found in the tube, the tube was discarded (no second individual was 

added into the tube to avoid contamination).  

In parallel, we did place one Petri dish, prepared with the same method, next to each of the 

trimestral dishes and left it one full year on the roof. It was then collected and analyzed like the 

others. The experiment took place from December 2013 to December 2015, in total 8 samplings of 

the trimestral dishes were done and 2 samplings of the yearly dishes (Figure 2b). 

The genomic DNA of each isolated Adineta sp. individual was then extracted using the 

Chelex® protocol: each sample was mixed with 35µL of Chelex® solution [InstaGeneTM Matrix, Bio-

Rad, #7326030] and 1 µL of proteinase K [Qiagen, #19133], homogenized by vortexing, heated 20 

min at 56°C and 10 min at 95°C. Then, the Chelex® beads were precipitated for 5 min at 14000 rpm 

and the supernatant containing the genomic DNA was transferred to a new tube and stored at -20°C. 

We used the data from Debortoli et al (2016) in which all individuals sampled were genotyped and 

calculated a rarefaction curve (‘vegan’ R package; Oksanen et al, 2007) to delimit the minimum 

subset of individuals to genotype in order to retrieve accurate species richness (Supplemental figure 

1). As a result, for each combination of dish per sampling period, a subset of 24 individuals were 

randomly selected to amplify a portion of the mitochondrial cytochrome c oxidase subunit I (COI) 

gene using Folmer’s universal primers (HCOI: 5’ - TAA ACT TCA GGG TGA CCA AAA AAT CA - 3’ and 

LCOI: 5’ - GGT CAA CAA ATC ATA AAG ATA TTG G - 3’; Folmer et al, 1994). The PCR conditions were 

the same as in Debortoli et al (2016), except that the quantity of gDNA used was 5µL and that the 

number of cycles was set to 60. The amplicons were sent for Sanger sequencing to the GENEWIZ 

facilities (anciently Beckman-Coulter Genomics, UK). 

The COI sequences obtained were aligned with 258 Adineta sp. sequences from GenBank and 

378 Adineta sp. sequences from our own projects using MAFFT (E-INS-i method; Katoh and Standley, 

2013) and visualized in MEGA5 (Tamura et al, 2011). One sequence was selected for each distinct 

Figure 2 : Experimental design for A. vaga sampling on the roofs of UNamur campus (Belgium, 
Namur; 50°27'58.27"N; 4°51'37.76"E). a) Representation of the freshly placed 10cm² Petri dishes that 
were coated with 3% agarose and maintained inclined to enable moisture without bathing. b) On 
each of the three roofs, three distinct empty Petri dishes were set and replaced every three months 
with fresh dishes. The replaced dishes were brought back to the lab for community analyses. In 
parallel three additional dishes were placed on each roof for a period of one full year before being 
replaced. This experiment was conducted for two years. 
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haplotype resulting in a final dataset of 364 COI unique sequences (Supplemental table 1) of 589bp 

which was used for the ultrametric Bayesian tree reconstruction (BEAST v1.6.2; Drummond and 

Rambaut, 2007). We used the same parameters than previously applied to bdelloid rotifers to 

generate the trees (Tang et al, 2014; Debortoli et al, 2016) except that we combined 3 independent 

analyses with the LogCombiner package to avoid MCMC to be stuck in a local optimum. The resulting 

tree was used as input for species delimitation by the General-Mixed Yule Coalescent method with 

single threshold (Pons et al, 2006; Fujisawa and Barraclough, 2013). 

Community diversity across roofs and seasons 

We represented our entire dataset on a species matrix clustered in order to group 

communities that present similar species assemblages using “heatmap3” package on R (Zhao et al, 

2014). For each Petri dish, we calculated the total abundance, the number of species delimited by 

the GMYC method (referred to as “richness”), and Pielou’s Index of evenness (Pielou, 1966). We also 

calculated the Bray-Curtis indices of dissimilarities for each pair of communities using the “vegan” R 

package (Bray and Curtis, 1957; Oksanen et al, 2007). Then, we computed a Mantel test to identify 

whether dissimilarities between communities was related to geographic distance and ANOVA tests to 

identify which parameters (seasons and roofs) affected the different metrics calculated for each 

community (abundance, species richness, Pielou’s index of evenness, spatial dissimilarities). The 

meteorological data were provided by the Royal Meteorological Institute (IRM, see Supplemental 

table 2) which has a recording station located just outside Namur. Finally, we ran a factorial analysis 

(R, “ade4” package) to define species assemblages and community structures. 

Model 

We used a discrete time competition model (Beverton and Holt, 1957; Hart et al, 2016), but 

allowing overlapping generations. The model incorporates three processes which intuitively apply to 

bdelloid rotifers: clonal reproduction, passive immigration, and survival: 

𝐺𝑖 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖 , 𝑔𝑖)     (1) 

𝑀𝑖 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1,𝑚𝑖)     (2) 

𝑆𝑖 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖 , 𝑠𝑖)                  (3) 

where Ni is the abundance of species i; gi is its probability to reproduce; mi is its probability to 

immigrate in the community; and si is its probability to survive. Gi is the number of individuals from 

this species that will reproduce. Mi is the number of immigrating individuals of species i (either 0 or 

1). Si is the number of individuals of species i that survive.  

The actual reproductive output from the reproducing individuals is given by 𝐺𝑖𝐶𝑖, where Ci measures 

the intensity of competition within and among species: 

𝐶𝑖 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(
𝑌𝑖

1+
∑ 𝛼𝑖,𝑗𝐺𝑗
𝑛
𝑗

𝐾

)    (4) 

with Yi the fecundity per individual of species i, K is the habitat size, and αi, j is the intra- and inter-

specific interaction strength.  

Thus, the equation allows intraspecific variations and the overall dynamics of species i is given by: 
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𝑁𝑖,𝑡+1 = 𝐺𝑖𝐶𝑖 + 𝑆𝑖 +𝑀𝑖     (5) 

Parameters setting 

1) Default parameters  

To our knowledge, no studies measured survival or reproduction in field conditions for 

bdelloid species. Ricci et al (1983) observed that, in laboratory conditions (at 20°C), Adineta vaga 

lived 17 days on average with the main reproduction occurring during the early days of maturity and 

then slowly decreasing until death. They calculated that one Adineta vaga individual produced on 

average 1.2 eggs per day throughout its reproductive days, that the mean generation time was 7.7 

days and that the intrinsic population increase was 0.344. As a result, we set Y equal to 1 for all 

species, corresponding to realistic numbers of eggs laid per individual at each time-step (i.e. one 

week or one generation)(Supplemental figure 2a). Although we observed one reproductive peak at 

day 6 during which fecundity reached 6 eggs, we estimated that this was due to controlled laboratory 

conditions and rarely the case in nature (see Supplemental data). Thus, we simplified the model by 

considering that fecundity was independent of the individual age and we implemented a stable 

fecundity throughout the simulations. We set the probability to reproduce (gi) to 0.3 as Ricci (1983) 

observed a similar rate of natural increase in A. vaga (Supplemental figure 2b). We always ran the 

model for 12 time-steps, each representing one week, to simulate three months of community 

dynamics, which corresponded to our field experiment. For the parameters defined here, the 

maximum number of individuals for the species with the highest reproductive output would be 60 

individuals after 12 time-steps on average.  

We tested several survival probabilities (si) and obtained that 0.9 was the most accurate 

value in order to have around 40% of the initial population still alive after 12 time-steps, as observed 

in our preliminary studies on clone AD008 (Supplemental figure 2c and Supplemental data).The 

average number of immigrants per week was calculated in a preliminary study during which we used 

the same experimental design, but sampled dishes weekly. There were Adineta individuals in 13 out 

of 48 Petri dishes (13/48 = 0.271) after one week and 20 Adineta individuals in total (20/48 =0.417). 

As three dishes presented more than one individual, we could not determine if each rotifer 

immigrated independently or if the first colonizer reproduced; we therefore decided to set the 

probability to immigrate from the metacommunity (mi) to 0.3 for Adineta species. Finally, we set the 

habitat size (K) to 150 as the maximum number of Adineta individuals found in a single lichen patch 

by Debortoli et al (2016) was 157. 

2) Experimental factors 

We ran the model according to the five scenarios explained in the introduction (Figure 1 and 

Supplemental figure 3). Furthermore, we considered that the indices of population growth calculated 

by Ricci et al (1983) in optimal laboratory conditions probably overestimated the reproductive output 

in harsher field conditions. We therefore ran each of the five scenarios three times: reproduction, 

survival and dispersal probabilities were 2 times lower in intermediate conditions (orange in 

Supplemental figure 3) and 10 times lower harsh conditions (red) than in permissive (green), 

respectively.  

We ran all simulations using four different types of probability distributions for gi, si and mi: 

linear, exponential and normal, as well as a hybrid between the exponential and normal distribution 
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(Supplemental figure 3). Except for scenario 1, we predicate that probabilities to immigrate, 

reproduce and survive at each time-step are not equal across all species. The exponential and the 

normal distributions also represent differences among species, but one (exponential) or a few 

(normal) species are supposed to be particularly efficient at immigrating and well adapted in 

comparison with the other species (Ricci et al, 1989; Fontaneto et al, 2011; Debortoli et al, 2016). We 

also tested a hybrid between an exponential and a normal distribution that would represent the case 

in which one species adapted to the local conditions outcompetes a few other species that are able 

to colonize and persist in sub-optimal conditions, e.g. species from alike habitats located in the 

nearby area. For scenario 1, only the linear distribution is applicable. 

Finally, because, to our knowledge, no information about the ecological interactions between 

bdelloid species are available, we ran the model under three arbitrary intensities of intra- and inter-

species interaction strength (with αi,j = 0, 0.1 and 0.2).  

Comparison with field data 

For each combination of scenario (5), conditions (3), distribution shape (5) and species 

interaction strength (3), we simulated 100 communities. We started all simulations with n species 

(delimited by the GMYC analysis) of null abundance to represent the empty communities at t0. At 

each of the 12 time-steps, the frequency of each species was recorded. 

In order to estimate the accuracy of the model, we compared the simulations with the 

experimental data as t the difference Δ between data and predictions (De Laender et al, 2014): 

𝛥 = −∑|𝑙𝑜𝑔(𝐴𝑝𝑟𝑒𝑑 + 1) − 𝑙𝑜𝑔(𝐴𝑜𝑏𝑠,𝑖 + 1)|

𝑟

𝑖=1

 

Where r is the number of communities and A is the variable of interest (the relative abundance of 

each species across the whole simulation, the abundance of individuals in each patch, species 

richness, evenness, or spatial dissimilarities) at t=12. Values of Δ approximating zero indicate a better 

model fit. Then, the sum of all the Δ calculated for each simulation was calculated to compare global 

best model fit. The model and all statistics were run in R, using the “vegan” package for Pielou’s 

index of species evenness and spatial β-diversity (Oksanen et al, 2007). 

Results 

Meta-community structure 

We isolated bdelloid individuals morphologically identified as Adineta sp. from 81 out of the 

90 roof patches sampled during two years, representing a total of 2663 Adineta individuals (median = 

16.5 individuals per patch, range = 0-118). The sampling details and the subset of 1169 individuals for 

which we successfully sequenced the mtCOI marker are described in Table 1. This represented a total 

of 56 distinct mtCOI haplotypes that were combined with the published Adineta sequences to delimit 

genetic clusters (i.e. species) using the General-mixed Yule coalescent approach. This method 

significantly delimited 117 species within Adineta (confidence interval: 111-135; number of ML 

entities identified being 119 – 2 outgroup sequences; LR test: 0.0), 24 species were retrieved in our 

two-year study on the roofs (Supplemental figure 4).  
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Table 1: Sampling details and community 

statistics of the field data. The “location” 

column indicates the roof and the replicate 

from which each of the 90 community was 

sampled and analyzed, the time point and 

the corresponding season are also 

presented. For each community, the total 

number of Adineta individuals isolated is in 

the “Ind.Sampled” column and the subset of 

individuals genotyped in “Ind.Genotyped”. 

Species richness, Pielou’s index of species 

evenness (α-diversity) and spatial 

dissimilarities (β-diversity) are shown. NA 

corresponds to rows for which calculations 

were not applicable. 



 126  

 

Interestingly, eight of the 24 species retrieved during our experiment (species 6, 7, 9, 13, 14, 

15, 16, 19) have already been sampled from lichen patches throughout Belgium (SPEEDY project, 

unpublished, see chapter 5 in annex), four species (7, 9, 14 and 19) corresponded to species also 

previously detected in the park of Namur next to the University (referred to as Species A, B, C and F 

in Debortoli et al, 2016) (Figure 3). The dominant species 9 represented 788 out of the 1169 

individuals (67.41%) genotyped and was retrieved in 64 roof patches (71.11%) during the two years 

(Figure 4). Two other species (species 8 and 13) were present in several roof patches sampled (22 

and 18 patches respectively) but were much less abundant (93 and 97 individuals respectively) and 

not widespread within Belgium. The other species were less frequently found in our Petri dishes and 

were present at lower densities (see supplemental data for details and Figure 4).  

 

Figure 3 : Pruned ultrametric tree built from our local mtCOI dataset and Adineta sp. sequences available on GenBank. 
Only the 24 GMYC-defined species that were collected on the roof experiment are represented (boxes) in this simplified 
version of the ultrametric tree (Supplemental figure 4 and 5). Haplotypes that cluster within a same evolutionary entity 
are linked by red branches. Black squares indicate the haplotypes from the roofs dataset whereas blue, orange, green 
and red squares highlight the haplotypes that were retrieved from other studies and were sampled in Namur, Louvain-
La-Neuve (LLN), flanders (Speedy) and outside Belgium, respectively. 
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Community diversity across roofs and seasons 

The species richness in each roof patch ranged from 0 to 5 (median = 2) and Pielou’s index of 

species evenness ranged from 0 to 1 (median = 0.66). The linear models revealed that roof location 

(A, B and C) did not influence significantly neither abundance of individual sampled nor species 

evenness and only slightly richness (p-value = 0.045, adjusted R² = 0.047) with a lower diversity on 

the BUMP roof (Table 2, Figure 4). In contrast, all metrics were significantly affected by seasons. 

Indeed, the number of individuals sampled was significantly higher in autumn (median = 30, range 1-

118) and lower in winter (median = 9.5, range = 0-60) than in the other seasons (medians = 22.5-26, 

ranges = 0-93) as suggested by the ANOVA (Table 2, Figure 5).  We also calculated which 

meteorological parameters (T°, relative humidity, rainfall and wind) varied the most across seasons. 

Autumn was characterized by slightly higher minimum humidity than other seasons whereas summer 

and spring were much drier (df = 3; R² = 0.424; p < 2e-16; Supplemental table 3, Supplemental figure 

6). Temperatures were also significantly lower in winter than in other seasons (df = 3; R² = 0.604; p < 

2e-16). Rainfall and wind intensity varied significantly among seasons but those variations were small 

(df = 3; R² = 0.015 and 0.056; p < 0.005 and 5.35e-09, respectively).  

Table 2: Results of ANOVA analyzing the 

responses of each community to the roof 

location, the season and their interaction. 

The metrics significantly affected by one 

parameter are indicated by stars (* p-value 

<0.05; ** p-value <0.01; *** p-value 

<0.001). The adjusted R² indicates the 

fraction of the explained variability 

calculated from a linear model for each 

variable. 
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 Figure 4 : Clustered matrix of species distribution. The matrix was built from the presence/absence of 

each species in each non-empty community collected (81 communities) on the roofs and the 

communities of each sample were then clustered hierarchically according to the species composition. 

Colored boxes indicate the presence of a species in a specific dish. The box color represents the season 

at which this species was present and the boxes under the matrix show on which roof it was sampled 

(A, B and C are in violet, red and turquoise, respectively). Grey boxes indicate that the species was 

sampled in the dishes collected yearly. The number of individuals genotyped for each species in each 

patch is indicated in the boxes. The species richness found within each patch is indicated in the patch 

box, under the matrix. 
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Modelling the spatio-temporal dynamics of Adineta sp. 

Our simulations best fitted the experimental data when scenario 3 and 5 were run under 

permissive conditions (Supplemental figure 7a). In both cases, distinct immigration probabilities 

among cryptic Adineta species were hypothesized suggesting that this parameter could probably be 

the most important parameter shaping the bdelloid community dynamics. Second, the likelihood of 

our simulations considerably improved when exponential and normal distributions were used for the 

immigration, the reproduction and the survival probabilities (Supplemental figure 7a). On the one 

hand, the exponential distribution produced communities with one highly dominant species 

representing 55.1 to 73.86% of the individuals as observed experimentally (Supplemental figure 7b). 

On the other hand, more species (up to fourteen) were retrieved over the hundred communities 

simulated when the normal distribution was used (Supplemental figure 7c), better fitting the field 

data. As a result, the combination of those two types of distribution as used under the hybrid model 

produced results that slightly better fitted the experimental data (Figure 6). Third, the different 

values of intra and inter-specific competition strength tested did not affect the model under the 

combination of parameters tested. 

Figure 5: Summary statistics boxplots by 

seasons and roofs. The number of 

individuals sampled, the species richness, 

the Pielou’s index of species evenness and 

the spatial dissimilarities are presented 

among communities grouped by seasons 

and roofs.  
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Using the scenarios that best fitted the data (3 and 5 under the hybrid distribution), we used 

the model to simulate the history of the communities sampled on our three roofs, as only final 

composition was observed empirically. These simulations suggest that most of the dishes were 

rapidly colonized, as 23.4 and 25.7% (scenario 3 and 5, respectively) of the communities already 

harbored at least one individual after the first time-step (Figure 7a). Following colonization, most 

communities were growing exponentially until week 12. In general, the species with the highest 

immigration probability dominated the community and represented 40.23 and 76.15% of all the 

individuals sampled according to scenario 3 and 5, respectively (Figure 7a). Yet, new species still 

arrived and were able to persist even though the primary colonizer had already settled (abundance 

exponentially increasing and evenness reaching a plateau, Figure 7b). The simulated β-diversity 

dynamics suggest that, at the onset, communities were quite similar, with the same species 

immigrating in the different Petri dishes (Figure 7b). As the rarer species immigrated over time, β-

diversity slowly decreased. At the end of the simulation, only 6.4% (scenario 3) and 16.0% (scenario 

5) of the dishes were empty (experimentally we observed that 10% of the plates were empty after 

two years). Some of those empty dishes were colonized during earlier time-steps but the immigrating 

individuals could not reproduce or died rapidly, while other dishes were never colonized (Figure 7c). 

Figure 6: Fit of the simulated communities 

to the experimental data from the roofs. 

The pseudolikelihood (Δ) calculated for the 

simulated communities according to 

scenario 3 and 5 under different types of 

probabilities distribution for the 

immigration parameter (exponential, 

normal and a hybrid of both; see also 

supplemental figure 7a for other models). 

Pseudolikelihood values closer to 0 indicate 

better fit of the simulations to the data 

collected from the roofs experiment. 
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Our statistical analysis demonstrated a significant effect of season, with larger and more 

diversified communities in autumn than in winter. Therefore, we compared the simulations to the 

communities observed experimentally for each season separately. This suggested that harsher 

conditions model the communities sampled in winter best. Indeed the winter communities were 

better fitted by the harsh and inter mediate conditions whatever the scenario (mean = -2.20). In 

contrast, permissive conditions suit communities from the autumnal, spring and summer sampling 

best (with pseudolikelihoods mean for autumn and spring = -2.83; for summer mean = -1.62, see 

Supplemental figure 9). 

 

  

Figure 7 : Fit of the communities simulated according to the hybrid model with the experimental data. a) The overall number of colonized 
roof communities at sampling time (12 weeks) was 90% and 23.4-25.7% after 1 week or 84-93.6% after 12 weeks (i.e. time-steps) for the 
simulated communities. The roofs communities were colonized by 24 species overall and the relative abundance (not shown when <5%) of 
the dominant species represented 67.41%. Under scenario 3, simulated communities contained 20 species overall after 12 weeks, one of 
which accounted for 40.23% of individuals whereas 14 species dominated by one species (76.15%) were present in the simulations under 
scenario 5. b) The quantiles (Q50 plane line; Q05 and Q95, dotted lines) for species richness, abundance of individuals and diversity 
(evenness and spatial dissimilarities) were calculated at each time-step (12 weeks) for the simulated community (100 simulations) and 
plotted with the results of the roofs data (colored symbols) for comparison. c) The number of individual present in each of the simulated 
community at each time-step is plotted. The red lines correspond to the communities that were empty after time-step 12 (3 months) and 
the black dotted lines indicate the non-empty 
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Discussion 

Dispersal and colonization of new habitat patches 

We confronted model simulations to an extensive field experiment to examine the 

importance of dispersal and local processes for bdelloid rotifer community composition. Our model 

fitted the data best when species differed in their immigration probability, but only when this 

probability covaried positively with reproduction probability (scenario 5), or when all species had the 

same reproduction probability (scenario 3). Those results suggest that the effect of reproduction and 

survival (i.e. fitness) was low but not negligible, at least within the range of values tested. Thus, 

efficient immigration combined with effective reproduction (scenario 5) would explain the diversity 

of cryptic species observed and principally the dominance of species 9 within A. vaga species 

complex on roofs C and B. This would especially explain why the species richness observed on roof C 

was significantly lower. In addition, the spatial β-diversity calculated from the simulations suggests 

that most communities are similar at early stages of colonization, indicating that the same species 

tend to arrive first in most dishes (Figure 7). After this early colonization, the species with the highest 

survival and reproduction probabilities starts to quickly expand while some new species immigrate 

independently in the different communities (spatial β-diversity slowly decreases until week 12). 

However, those new species cannot develop much as median β-diversity stays above 0.7, indicating 

that the communities present in distinct Petri dishes are roughly the same, with only a few species 

unique to any particular dish. This could represent the case where one species is perfectly adapted to 

its habitat and rare species can survive in suboptimal conditions but cannot reproduce. Inversely, 

rarer immigration in the communities from roof A may limit or delay colonization by species 9, 

leaving available space for species 13-18, 22 and 24 from more distant areas. We cannot be sure of 

which parameter could limit dispersal on roof A, but this roof was surrounded by other buildings 

while C and B were more isolated and closer to the park in which species 9 is extremely abundant. In 

a theoretical point of view, scenario 2 where fitness varies across species but dispersal is identical 

may produce a similar community structure with all species able to immigrate but only a few ones 

surviving in the newly colonized patch. Yet, simulations under scenario 2 produced communities with 

pseudolikelihood (mean = -2.7 and -4.3 for the exponential and normal distribution respectively) to 

fit the field data lower than scenario 3 (mean pseudolikelihood = -2.3 and -2.8 for the exponential 

and normal distribution respectively) and scenario 5 (mean pseudolikelihood = -2.2 and -2.8 for the 

exponential and normal distribution respectively). One possibility is that immigration rate was too 

low for all species for scenario 2 under the tested values; increasing four-fold the immigration rates 

indeed slightly improved the model fit for scenario 2 (mean pseudolikelihood = -2.5 and -3.1 for the 

exponential and normal distribution, data not shown). However, this was due to a better fit of the 

species evenness and β-diversity generated but a lower fit of the species richness and abundance of 

individuals (with 20 species per patch representing a mean of 80 individuals per patch under those 

parameters whereas field data suggested 1-5 species representing a mean of 16.5 individuals per 

patch). Modifying the distribution of the survival and reproduction probabilities (i.e. changing the λ 

factor) could further increase the simulations under scenario 2 by inducing a more stringent species 

filter (species richness decrease) but this would be speculative since no quantitative data about the 

fitness differences across Adineta spp. are currently available. 

Even though our simulations highlight the importance of dispersal as the factor having the 

highest impact on community structure, it is more the order of magnitude in the differences among 

species that fitted experimental data best. Indeed, switching from a linear distribution of immigration 
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probability to the hybrid between exponential and normal distribution contributed to an increase of 

pseudolikelihood of the model especially for scenario 3 and 5. This observation does not 

automatically imply that Adineta species have distinct dispersal capacities but rather that 

immigration is also a consequence of distinct habitat preferences among species.  Even if all species 

have similar dispersal capacities, the chances to immigrate may be positively correlated with its 

presence in the nearby habitats (source-sink dynamic). This is corroborated by the fact that the most 

abundant species (species 9 representing 67.41% of all individuals genotyped) in our study was 

omnipresent in Belgium and especially in Namur (Figure 3). It is not clear whether geographical 

distance between sites have an effect on species composition of bdelloid assemblages (Fontaneto 

and Ricci, 2006b; Fontaneto et al, 2008, Fontaneto et al, 2011), but it is the case for other 

microscopic species (Soininen et al, 2007; Lopes et al, 2016).  

Our results indicate that most species have low chances to colonize our local dishes, a few 

species have fair chances and only a restricted number of species have probabilities high enough to 

immigrate in multiple dishes within the time window of the study. The species with higher chances to 

immigrate into our dishes could correspond to the species present in the same geographical region 

as suggested by the presence of dominant species 9 around our experimental setting. However, 

species with fair chances to immigrate may be the ones from more distant areas (e.g. other European 

countries) as three species were found across the continent (species 11, 12 and 14). Finally, the two 

species (3 and 5) that were also sampled in the US could be indicative of low, but nonzero, 

immigration probabilities for geographically distant species. Although Fontaneto et al (2008) 

presented a similar conclusion, this study enabled us to more finely describe the spatial and temporal 

dispersal dynamics for Adineta sp., if not all bdelloid rotifers. Bdelloid rotifers can passively disperse 

with the wind and we sampled here four species (3, 5, 12 and 14) that have already been isolated in 

other European countries or even in the US. Fontaneto et al (2008) showed that although A. vaga 

geographical distribution was negatively correlated with species delimitation resolution (i.e. 

morphospecies are cosmopolitan whereas genetic clusters are generally locally distributed), cases of 

large distribution were detected for the lowest taxonomic rank. 

Finally, the total number of species present in the simulated community (at best fourteen 

species in total under scenario 3) was relatively low in comparison with the number of species 

sampled over the whole study (twenty-four species over the whole experimental data). However, as 

we pointed out that modifying the type of distribution improved the simulations, we think that 

testing additional distribution of probabilities or even simply testing different ranges of mean and 

standard deviation for the normal distribution could improve the model considerably.  

Community development throughout seasons 

Another important result inferred from our model is the impact of seasons on the dynamics 

of bdelloid rotifers communities. When parameterized for harsh and intermediate conditions, the 

model predictions compared well to our winter samples. Spring, summer and autumn samples were 

best predicted by the permissive scenarios. The main factor distinguishing winter from other seasons 

was lower daily minimal temperatures with frequent periods of frost. In another study on the 

temporal dynamics of Macrotrachela quadricornifera populations from mosses, Ricci et al (1989) 

concluded that the number of isolated individuals correlated with the average relative humidity prior 

sampling but not with temperature or rainfall. Indeed, relative humidity of the air impacts 

community dynamics since population growth is arrested during periods of desiccation while 
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reproduction is boosted immediately after rehydration (Ricci et al, 2007). Nevertheless, temperature 

is also playing a major role in reproductive rate. Several studies on Monogonont rotifers, a sister 

clade of Bdelloids, described an increase in generation time (due to lower reproductive rate and 

longer lifespan) when temperature decreased from 30°C to 15°C (Xiang et al, 2010; Kauler and 

Enesco, 2011). The same applies to the bdelloid rotifer A. vaga for which the number of laid eggs was 

lower and the egg development time was longer when individuals and eggs were incubated at 4°C 

instead of 25°C: less than 14% of the females laid one egg after 6 days at 4°C while at 25°C 87.5% of 

the females laid eggs within the first 20h, and 0 eggs hatched after 13 days at 4°C versus 40% 

hatching after 48h at 25°C  (M. Terwagne and L. Herter, personal communication). Strikingly, all the 

eggs incubated at 4°C for 13 days rapidly hatched when put back at 25°C. Thus, freezing periods 

combined with low temperatures and low reproductive rates tend to reduce populations sizes in 

winter in bdelloid rotifers followed by re-expansions when temperature increases.  

Indeed, six out of the nine in which no Adineta were found (7 trimestral dishes and 2 yearly 

dishes, Table 1 and Figure 7a) dishes were retrieved in winter and abundance was significantly lower 

during this season. We did not observe any other bdelloid families in those six dishes. The model 

suggests that some individuals arrived in those communities but that conditions were too harsh for 

any bdelloid species to persist over several time-steps (Figure 7c). It is unlikely that those dishes were 

empty due to a less efficient passive dispersal in winter as the corresponding two-yearly dishes were 

also empty. As the yearly dishes remained exposed to dispersal by wind for a full year, it is unlikely 

that no individuals ever colonized those dishes when all dishes sampled in summer or autumn were 

systematically colonized. The empty yearly dishes may reveal strong effects of winter conditions on 

rotifer communities. Temperatures were indeed significantly lower in winter, especially between 

December and January (Supplemental table 3), hindering population growth and explaining, at least 

partially, the significantly lower abundance retrieved during winter.  Even if most bdelloids are able 

to tolerate anhydrobiosis, it remains unclear if all species have a similar survival rate in natural 

conditions, especially among cryptic species. In addition, it seems that juveniles are more affected 

than adults (Ricci and Caprioli, 2005). In contrast, the higher abundance observed in autumnal 

communities was correlated with more humidity. Constant higher humidity enables rehydration and 

facilitates population growth from bdelloid rotifers propagules that may be spread by wind 

throughout the year. No significant abundance differences were observed between spring and 

summer, which were similar in terms of meteorological conditions, except for the higher 

temperatures observed during summer that may be beneficial for population growth to a certain 

extent. Extremely high temperatures (T° max > 20°c for 136 days in summer and T° max > 30°c for 13 

days) may result in fully desiccated communities that entered in a paused metabolism state. Those 

observations suggest that although A. vaga communities could survive throughout the year, the 

harsher conditions encountered in winter may result in an annual bottleneck followed by a new 

expansion that reaches a climax in autumn when temperatures and humidity are more stable. A 

second hypothesis would be that in autumn more suitable conditions for dispersal result in 

continuous immigration of the species from the metacommunity (source-sink dynamics). However, 

this is less likely as, in our model, immigration did not co-vary with harshness (Supplemental figure 

3). This suggests that the main parameters influencing population growth throughout the year are 

survival and reproduction.  
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Co-existence, competition and differential adaptation among cryptic species 

Interestingly, species 8 and 13 were also frequent and abundant throughout this study (93 

individuals genotyped in 22 roof patches and 97 individuals genotyped in 18 roof patches, 

respectively; Figure 4) but have never been sampled outside Belgium. The remaining 21 species 

appeared sporadically (less than ten times within the roof patches with seven species only found 

once). A similar observation was made with M. quadricornifera populations where one electromorph 

was retrieved several times within a moss throughout their two-year study, representing 78.7% of 

the community, while the four other electromorphs appeared occasionally (Ricci et al, 1989). These 

results suggest that distinct cryptic species co-occur periodically but that only some clones expand 

significantly or immigrate and settle frequently as depicted by our simulations under scenario 5 and 3 

respectively (Figure 1 and Supplemental figure 3).  

We also observed that eight species (species 13 to 18, 22 and 24), also present in Belgium but 

not in Namur, were almost exclusively found on roof A, where the dominant species 9 was less 

frequent (Figure 4). This may reveal local adaptation of those eight species to environmental 

conditions specific to roof A and/or limited dispersal of species 9 to this roof.  This suggests that 

species 9 probably presents a higher competitive strength than species 13 to 17, 22 and 24 which can 

only settle and expand when species 9 is absent, or rare. This remains speculative since we could not 

find any differences in the community modelled by the three degrees of intra and inter-species 

interaction strength. An inadequate value of K (habitat size, set to 150) could produce species 

densities much lower than real ones and reduce the impact of the competition factor. Although 

around 150 Adineta individuals have been observed in a single lichen patch, the habitat size may be 

much lower in this case, at least during the first time-steps modelled as the community had a low 

amount of resources (sterile agarose plates; K<150). A similar case, although rare, was observed for 

species 4 which was only detected two times in summer (12 and 18 individuals), but both times 

species 9 was absent. In this latter case, dispersal cannot explain the absence of the dominant 

species 9 as it was present in the other replicates from the same roof. The dominant abundance of 

species 4 in those two dishes could highlight adaptation to particularly dry and warm conditions or a 

difference in desiccation tolerance among cryptic Adineta species. 

To our knowledge, no studies have focused on habitat specialization, neither on desiccation 

tolerance differences among cryptic species of bdelloid rotifers. In the first case, it seems tricky to 

distinguish between the presence of a species due to habitat specialization or to its high abundance 

in the metacommunity acting as a permanent source. In the second case, several reports show that 

there are several degrees of tolerance to desiccation among morpho-species (Eyres et al, 2015) but 

none have focused on variations within species complexes. However, three cryptic species 

morphologically identified as Rotaria rotatoria have been reported to have distinct temperature 

preferences (Xiang et al, 2016), often linked to desiccation tolerance. In the present study, we did not 

identify physico-chemical parameters that may vary among the different dishes. However, if there 

are differences between dishes, they are probably due to variations between roofs rather than 

differences among dishes as the three replicates of each roof tended to give similar results. In 

addition, the meteorological records that we used were not precise enough to make any distinction 

between roofs although we doubt there could be consequent climatic differences between dishes 

located < 150 meters apart. The eventual habitat differences from each roof are thus more likely 

resulting from each community assemblage itself. We did not determine the number of other 

zooplankton and phytoplankton species but we observed that roof A communities were, in general, 
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poor whereas C and B communities often presented several bdelloid species, tardigrades, 

nematodes, paramecia and were crowded with algae. It is not surprising to find those taxa in our 

communities as their dispersal capacity is comparable to rotifers and they are often transported 

together on sediments by wind (Nkem et al, 2006). 

Conclusion 

Under the light of the results provided by our model simulating the dynamics of bdelloid 

rotifers communities, we showed that ecological scenarios in which cryptic Adineta species present 

distinct immigration probabilities fitted the experimental data more accurately. This observation 

highlights the prevalent role of dispersal in the dynamics shaping bdelloid rotifers communities. Our 

simulations using different distribution types widely contributed to the improvement of the model 

emphasizing the distinctive dispersal probabilities among species. Given that the most represented 

species in the present study was the species dominating in the nearby area, we showed distinct 

preferences and fitness among cryptic bdelloid species. The most adapted species (species 9) being 

extremely abundant around Namur, subsequent short-range dispersal of this species is more 

frequent than long-range dispersal of species from other Belgian regions or other countries. 

However, we did not retrieve the Adineta sp. that was exclusively present in the soil patches around 

Namur (species E in Debortoli et al, 2016) showing that species dwelling in patches more exposed to 

wind results in higher dispersal. Those observations seem to indicate that some species have adapted 

to soil habitat unsuitable for dispersal and in which more parasites are present (Wilson et al, 2011), 

whereas other species colonize higher patches were they can reach high abundance and disperse 

frequently. Yet, studies focusing on the differential adaptation among cryptic species would be 

required to better understand species distribution in bdelloid rotifers.  
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Supplemental information: Bdelloid rotifer communities 

shaped by immigration seasons, inter-specific variations and 

geographical distance 

Supplemental results 

Parameters settings and preliminary experiments 

In a preliminary study, we used lab cultures of the AD008 clone which supplied the reference 

Adineta vaga genome (Flot et al, 2013) to gather precise data on its life cycle and used that 

information to calibrate our model. We isolated 36 eggs in individual (P generation) wells (12-wells 

plates) coated with 2ml of 2% agarose (UltraPure Agarose, Invitrogen) in sterile conditions and 

monitored their reproductive output and survival for 34 days. After the hatching of P, each new laid 

egg (generation F1 and next ones) was counted and removed from the original well. On average, the 

isolated egg (P) hatched after 48h of development and the juvenile reached maturity after 48 

additional hours. When mature, the individual started to lay F1 eggs to reach a maximum of 6 eggs 

laid on average during day 6 after hatching (Supplemental figure 2f). After this peak, the fecundity 

slowly decreased until 0 at day 16 after hatching resulting to a mean of 20.2 eggs laid per capita 

(range: 8-28). The mean survival was above 95% before the peak in fecundity (day 6) after which it 

decreased slowly until the end of the reproductive period (day 16). Interestingly, around 40% of the P 

generation was still alive after 16 days and kept living until day 34 indicating that the reproductive 

effort is the main cause for death under lab conditions. 

Meta-community structure 

The GMYC method significantly delimited 117 species within Adineta, among which twenty-

four species were retrieved in our two-year study on the roofs (Supplemental figure 4). The mean 

genetic distance observed within species ranged from 0 to 0.0241 whereas the inter-species distance 

ranged from 0.0426 to 0.2178 (estimated using Tamura-Nei model; Tamura and Nei 1993; 

Supplemental table 5). While the most frequent species 9 represented 67.41% of the individuals 

sampled (67.41%) (Figure 4), one COI haplotype (Haplotype 1) within species 9 was particularly 

abundant throughout Belgium (Figure 3).   

In three cases, haplotypes sampled on the roofs of UNamur were regrouped within GMYC 

species together with haplotypes from other European countries (Figure 3): Turkey (species 11 and 

12) and Slovenia (species 14). This was also observed for several other haplotypes sampled in 

Belgium (Supplemental figure 4 and 5):  Serbia (species K), United Kingdom (species L, N, BE and CC), 

Ukraina (species N), France and Sweden (species BR), Italy and Poland (species CC). Six other species 

were built from haplotypes non-sampled in Belgium but in several other European countries (species 

AB, AH, BF, BP, BQ and CD). Finally, in five cases, haplotypes from European countries clustered with 

sequences sampled in other continents, two originating from Belgium and found on the roofs 

(species 3 and 5) and three from other European countries (species Y, AG and BN).  

The correspondence analysis showed that several communities correlated with the presence 

of eight species (species 10, 13 to 18, 22 and 24; Supplemental figure 8 and that species 8 and 9 were 

present at lower densities or absent in those patches. This seemed highly correlated with roof A as 

the three patches from this roof often harbored communities characterized by the presence of those 
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species and only low densities of species 8 and 9 (Figure 4). On roof C, the abundance of species 8 

and 9 was much higher (5.30 and 92.16%, respectively) while species 13 to 18, 20 and 24 were 

absent (Figure 4). A similar observation was found on roof B where species 8 and 9 represented 

14.35 and 67.12% of the individuals genotyped while species 13 to 18, 20 and 24 were rare (Figure 

4).  We also noted that species 4 and 5 were retrieved twice during the experiment when species 9 

was absent, both times in the same patch from roof B during the summer time-point. 
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Supplemental figures and tables legends 

Supplemental Figure 1: Rarefaction curve calculated to estimate the adequate subsampling size for 

genotyping. This was calculated from the dataset of Debortoli et al (2016) in which all individuals 

sampled were genotyped with the mtCOI marker. The number of individuals sampled in each of the 

36 patches (boxes) and the corresponding number of haplotypes retrieved are plotted. Interestingly, 

more diversified communities often contained less than 10 (7, 8, 17 and 23) individuals while most of 

the bigger communities harbored a single haplotype (11, 16 and 29). Three theoretical subsampling 

values (10, 15 and 20 individuals) are indicated by the red, orange and green lines respectively. With 

a subsample of 10 individuals, there are chances to miss haplotypes, i.e. underestimate the diversity, 

in 6 out of 36 patches (16.67%) whereas only 3 or 2 (8.34% and 5.56%) communities would be 

underestimated by genotyping 15 or 20 individuals, respectively. Here, a subset of 24 individuals was 

genotyped. 

Supplemental Figure 2: Parameters settings for the simulations. a) Three values of Y (low-density 

fecundity per individual) were tested in equation 4 and the resulting simulated number of eggs laid 

per capita at each time-step is presented in the boxplot. b) Boxplots showing the population growth 

at each time-step resulting from the different combinations of values for Gi (equation 1) and Y 

(equation 4) tested. c) Boxplots indicating the total number of eggs laid by each individual 

throughout its lifetime. d) Number of individuals in a given patch computed for distinct combinations 

of Gi (equation 1) and Y (equation 4). e) Fraction of individuals present at time-step 1 that survive 

through time-step 5 and time-step 12 under three values of survival probabilities si (0.9, 0.6 and 0.3, 

equation 2). f) Number of eggs laid each day after hatching calculated from the preliminary 

experiment (red line) and from the simulations (blue line). 
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Supplemental Figure 3: Probability distributions tested for the model under five distinct scenarios. In 

scenario 1, we assumed all species to have similar fitness, dispersal rate and life-cycles resembling 

the assumptions underlying neutral models. In scenario 2, we also assumed similar dispersal rates, 

but distinct fitness, depicted by distinct probabilities to survive and reproduce. In scenario 3, we 

assumed that only the dispersal rate varied across species. In scenario 4, we assumed that fitness and 

dispersal rate co-varied negatively.  In scenario 5, all parameters co-varied positively. In the 

simulations based on b) exponential or c) normal distributions, a few or several species have much 

higher chances to immigrate, reproduce and survive at each time-step. d) The hybrid distribution was 

built from a normal distribution to which we added one species with higher probabilities. This curve 

models an intermediate case in which one species is outcompeting the others and several species are 

able to persist in sub-optimal conditions. The vectors corresponding to those five scenarios and three 

conditions that were used in the model are provided in Supplemental Table 4 

Supplemental Figure 4: Ultrametric tree built from our local mtCOI dataset and Adineta sp. 

sequences available on GenBank. The 364 mtCOI sequences aligned using MAFFT (589 bp) and used 

as input for BEAST v1.6.2 are presented in supplemental table 1. The GTR+Γ4+I substitution model 

was selected by jModelTest 3.8 (Posada 2008). Three MCMC chain were run independently for 108 

generations with sampling every 10,000 generations and combined with the LogCombiner package to 

avoid local optimum. The tree with maximal clade credibility among the last 1,000 trees sampled by 

BEAST was determined using TreeAnnotator v.1.6.2 as implemented in the BEAST package 

(Drummond and Rambaut 2007). This ultrametric tree was used as input for the GMYC analysis using 

the R package “splits” (http://r-forge.r-project.org/projects/splits/). Haplotypes that clustered within 

a same evolutionary entity are linked by red branches. Red labels indicate haplotypes sampled on the 

roofs during our experiment and blue labels represent haplotypes collected in Belgium during other 

studies. Each of the 117 cluster (i.e. species) is indicated by a colored bar according to the 

distribution of the species: white bars indicate species that were sampled in a single country but not 

Belgium, brown bars are species sampled only on the roofs of our experiment, green bars are species 

present throughout Belgium (roofs are included) pink bars are species retrieved in several European 

countries and yellow bars indicate species that were found on different continents. Species labeled 

with letters (A-CR) show species not sampled in the present study and those labeled with red 

numbers (1-24) indicate the 24 species sampled on the UNamur roofs. The GMYC statistics are 

presented in the associated table. 

Supplemental Figure 5: Adineta species distribution. Species delimitation is given in supplemental 

figure 4 and the origin of the corresponding haplotype is indicated in supplemental table 1. Only the 

species that are found in more than one country are represented here. The species label indicates if 

it was sampled on the roofs of our study (red numbers) or from other studies (letters). The colored 

boxes next to the species label show the countries in which each species has been collected. The 

squared enlargement of Belgium represents the different sampling sites within the country and used 

within the tree of supplemental figure 4 (Roofs, Park Namur, Haugimont, LLN and Speedy). 

Supplemental Figure 6: Boxplots of the climatic parameters recorded for each season. The 

corresponding raw data, measured daily, provided by the IRM (Institut Royal Météorologique, 

Belgium) is given in supplemental table 2. The maximum and minimum relative humidity in the air 

(%) and temperature (°C) recorded, the highest wind speed (km/h) and the amount of precipitations 

(mm) is presented.  

http://r-forge.r-project.org/projects/splits/
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Supplemental Figure 7: Model fit to the experimental data. a) Likelihoods of the simulated 

communities fitting the roof data under linear, exponential (only scenario 2-5) and normal 

distributions (only scenario 2-5) for the probabilities of immigration, survival and reproduction at 

each time-step. b) and c) are pie charts representing the proportion of each species in the 

communities simulated by the model according to exponential and normal distributions. The results 

presented are the simulation of scenario 3 and 5 under permissive conditions which gave the highest 

likelihood to fit the experimental data from the roofs.  

Supplemental Figure 8: Correspondence analysis representing the structure of each community 

sampled on the roofs. The plotted component 1 (16.1%) and 2 (15.2%) contributed to 31.3% of the 

total variability. Most communities from roof B and C harbored majorly species 8 and 9 and were 

grouped. In contrast, species 10, 13, 14, 15, 16, 17, 18, 22 and 24 were almost exclusively found on 

roof A. Species 4 and 5 were retrieved twice on the roof B replicates. 

Supplemental Figure 9: Fit of the simulated communities to the experimental data for each season 

independently. The pseudolikelihood (Δ) was calculated for the hybrid model with the parameters of 

scenario 3 and 5 which provided the best results on Figure 6. Pseudolikelihood values closer to 0 

indicate better fit of the simulations to the data collected from the roofs experiment. 

Supplemental Table 1: List of mtCOI sequences retrieved from GenBank and used for the 

phylogenetic analyses. The sequence names are the same used on figure 4 and supplemental figure 

2. The location indicates in which country the corresponding individual was sampled when this 

information was available. 

Supplemental Table 2: Daily meteorological records provided by the IRM institute for the period 

covering the two-year roof experiment.  The seasons are indicated by colors: blue for winter, green 

for spring, yellow for summer and orange for autumn. 

Supplemental Table 3: Results of the ANOVA giving the climatic variation through seasons. The R² 

indicates the fit of the data to a linear model. 

Supplemental Table 4: List of values used to create the different vectors used as probability 

distributions for each parameter in the model. The vector codes are in R language.  

Supplemental Table 5: Intra and interspecific genetic distance for the 24 Adineta species sampled on 

the roofs. The distances were calculated using the Tamura-Nei model (Tamura and Nei 1993). The 

smallest and highest distances between species are highlighted in grey. The intraspecific distances 

(n/c when not applicable) are presented on the diagonal and the highest value is highlighted in black. 
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General discussion & Perspectives 
 

 In the precedent chapters, the different experiments conducted to understand the long-term 

survival of bdelloid rotifers in absence of conventional sex and their direct interpretations have been 

presented. Throughout this thesis we tackled several aspects of the evolution of those intriguing 

animals and it clearly appears that, in spite of being asexuals, their evolution is much more complex 

than simple lineages of females reproducing clonally. Structures turn out to be extremely dynamics 

from genomes to communities. In this final part, I will discuss the dynamics possibly ruling the 

evolution of Adineta species by affecting genomic the diversification/homogenization balance and 

the community structure over time. 

Gene conversion maintain genome homogeneity 

As presented throughout this thesis, it is now well established that bdelloid rotifers 

reproduce by apomictic parthenogenesis through which oocytes are produced by mitotic divisions of 

the germ line. As a result, each egg develops into a daughter that is theoretically a clone of the 

mother except for point mutations and mitotic crossovers (Symington et al, 2014). Indeed twelve 

individuals collected from the same lichen patch harbored identical genotypes for the five sequenced 

loci (see Chapter 1). Even if, over generations, 

point mutations should theoretically 

accumulate in the genome of asexual species 

until being detrimental, this was not observed 

in bdelloid rotifers as abundant gene 

conversion seemed to limit this effect (Flot et 

al, 2013). The exact mechanisms responsible 

for gene conversion in bdelloids are not yet 

known but have been suggested to be 

promoted by cycles of DNA breakage/repair 

occurring during desiccation/rehydration 

events. This hypothesis could partly explain 

how mutations accumulation (diversification) 

is balanced by gene conversion 

(homogenization) in bdelloid species dwelling 

in terrestrial habitats that frequently dry 

(mosses, lichens, ponds…). Alternatively, DNA 

breaks induced by molecular actors (e.g. 

involving spo11) could trigger gene conversion 

in permanently hydrated species. Yet, it seems 

interesting here to highlight that gene 

conversion does not automatically have a 

positive impact on genomes. Conversions can 

purge the genome from deleterious mutations 

that accumulated over generations but that is highly dependent to the genomic environment in 

which conversion occur. In example, a recessive allele can accumulate detrimental mutations if a 

healthy allelic gene maintains the function. The healthy allele having a 50:50 chance to be used as 

Figure 1 : Schematic representation of the impact of gene conversion in 
relation to the genomic environment. Two allelic regions (grey and white) 
separated by a few neutral mutations (blue bars) are represented. Over 
generations mutations accumulate, some of which can be detrimental (red 
bars, minus symbol) but masked by the dominant healthy allele (plus 
symbol). As each allele has 50:50 chances to be used as template during 
gene conversion, detrimental mutation can be either revealed or 
suppressed. The effect of gene conversion on the global genomic 
environment will then determine the fate of the affected lineage. 
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template; gene conversion could reveal the masked recessive deleterious alleles. The subsistence of 

the lineage in which gene conversion occurs will depend on the average resulting fitness, all loci 

being taken into account. It appears thus essential that gene conversion occurs frequently enough to 

limit the accumulation of “masked” mutation in recessive alleles (Figure 1). Comparing the genomes 

of two populations originating from a same strain, one being maintained hydrated and the other 

frequently going through desiccation cycles, could enable to quantify the impact of desiccation in 

balancing mutations accumulation. Similarly, transcriptomics studies to compare the expression of 

genes involved in DNA breaks could demonstrate if such genes could trigger mechanisms that replace 

desiccation in aquatic bdelloid species to mediate gene conversion.  

Tetraploidy and genetic transfers enable genomic diversification 

Even though point mutations can lead to genetic diversification and adaptation over the long 

term, this process is slow compared with the potential rate of adaptation conferred by sex. As 

explained in the introduction, in the one hand an asexual genome has to accumulate each beneficial 

mutation one by one to reach optimal fitness; in the other hand, beneficial mutations may not be 

maintained because they appear in a bad genomic background (e.g. a genome that already 

accumulated several detrimental mutations). In contrast, mutations can occur independently in 

distinct genomes and then be reunited by recombination in sexual populations which theoretically 

maintain lower levels of detrimental mutation accumulation. This is nicely depicted in monogonont 

rotifers in which clonal lineages can reproduce sexually to rapidly respond to environmental stresses. 

In bdelloid rotifers, the theoretical disadvantage of asexuality in terms of adaptive efficiency can be 

balanced by the degenerate tetraploid nature of their genome and the acquisition of new genes 

through horizontal genetic transfers.  

First, some genes being present in four copies (grouped in two pairs, see introduction), two 

copies can accumulate mutations which can eventually lead to new functions (neo-functionalization) 

while the two other copies vary much less and ensure the maintenance of the initial function. This is 

possible if gene conversion is taken into account, conversion within allelic pairs being more frequent 

than conversion between allelic pairs. As a result, the genetic distance within an allelic pair is 

maintained around 3% on average while the distance between pairs can be higher than 20%. Because 

this average distance of 3% is the result of a balance between gene conversion and point mutations, 

it could be possible to estimate the frequency of gene conversion just by knowing the mutation rate, 

one conversion occurring roughly every three mutations on the 100 bp DNA fragment. As, in several 

cases, one allelic pair is not expressed in bdelloid rotifers (Boris Hespeels, pers. comm.), it could 

indeed reveal the loss of function for this pair. Comparing the expression profiles of allelic pairs could 

thus reveal examples of gene neo-functionalization and the impact of this mechanism in the 

evolution of bdelloid rotifers.  

Second, bdelloid rotifers have been shown to harbor 8-10% of genes from non-metazoan 

origins (Gladyshev et al, 2008; Flot et al, 2013; Eyres et al, 2015). Acquiring foreign genes that may 

play a role in the response to environmental changes is an alternative way to diversify in absence of 

sex (Keeling and Palmer, 2008). Most genes acquired horizontally are predicted to originate from 

bacteria, fungi, protists and plants that are frequent within the same habitats than bdelloid rotifers 

(Gladyshev et al, 2008; Flot et al, 2013; Eyres et al, 2015). Thus, one appealing hypothesis is that 

bdelloid integrate the DNA released by organisms less tolerant to desiccation found within the same 

habitat patches. Similarly, Rotaria socialis seems to have taken up more genes from protists of class 
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Oligohymenophorea, both being epibiont of Asellus aquaticus (Eyres et al, 2015). Yet, different 

physical barriers have to be overpassed; environmental DNA has to enter the germ line nuclei and 

has to be integrated in the genome in order to be transmitted vertically; it has to be domesticated by 

the recipient genome and have a selective advantage in order to be maintained. Environmental DNA 

is known to be unstable, degrading in a few days once cell integrity is compromised (Lindahl, 1993); 

the donor and the receiver should thus be geographically close to each other when entering 

desiccation to enable HGTs. In addition, the germovitellarium in which oocytes matures and develop 

into eggs are in the close vicinity with the gut, especially when desiccated (Marotta et al, 2010). Nor 

connections between those organs neither cell pathways for the processing of environmental DNA 

have been shown yet. However, the fact that those organs are organized in syncytium could facilitate 

the delivery of foreign DNA into the oocytes once into the germovitellarium.  

The integration of the environmental DNA into the genome could be mediated by several 

molecular mechanisms such as non-homologous end-joining (NHEJ), homologous recombination (HR) 

or other mechanisms involving viruses or transposons for example. The transfers and integration of 

long fragments of DNA (>40kb) encoding multiple genes was shown to be mediated by a previously 

unknown transposable element (TE), called terminons, in Adineta vaga (Arkhipova et al, 2017). Those 

giant TEs can extend telomeres by tens of kb, eventually counteracting terminal erosion, and could 

possibly explain the frequency of gene transfers in bdelloid rotifers. Indeed, a significant number of 

foreign genes are shown to colocalize with transposable elements (TEs) in telomeric regions, 

suggesting their concerted acquisition (Gladyshev et al, 2008; Flot et al, 2013). Several cases of TE-

mediated horizontal gene transfers have been described in eukaryotes (Kidwell, 1993; Syvanen and 

Kado, 2001; Zaneveld et al, 2008), often transmitted by retroviruses that act as vectors (Yohn et al, 

2005). However, the fact that a large repertoire of TE families, but a very low copy number of TEs 

indicates the existence of efficient mechanisms limiting their proliferation within the genome 

(around 3% of the genome size only; Flot et al, 2013). The proximity of TEs with foreign genes could 

trigger the surveillance response by the host genome through the expression of RNA silencing 

pathways used to preserve genome integrity (Rodriguez and Arkhipova, 2016). RNAs libraries are 

indeed highly enriched in known TEs present in A. vaga genome. This process may result in the 

adaptation of foreign genes to the receiver genome by adjusting the transcriptional activity and the 

incorporation into metabolic pathways (Rodriguez and Arkhipova, 2016).  

Transcriptomics studies show that most genes from non-metazoan origin observed in 

bdelloid rotifers are expressed and have predicted functions for the catabolism of complex 

polysaccharide or response to stress probably playing an adaptive role in bdelloid rotifers (Eyres et al, 

2015).  Even though the exact role of the acquired genes have to be confirmed, this observation 

highlights the role of foreign gene acquisition in the evolution of bdelloid rotifers, especially for the 

adaptation to new habitats presenting different stressors and food. Furthermore, it appeared that 

non-desiccating species also independently accumulated foreign genes confirming the importance of 

HGTs in the adaptation of all bdelloid rotifers. Another observation from comparative 

transcriptomics and genomics studies is the domestication of the transferred genes through time (Pàl 

et al, 2005). Indeed, ancient HGTs have GC content similar to the receiver genomes and are present 

in two to four copies while genes recently acquired harbor distinct GC content and are often in a 

single copy (Flot et al, 2013; Eyres et al, 2015). Furthermore, ancient HGTs harbor short introns 

indicating a homogenization with the core genome of bdelloid rotifers while recent HGTs are often 

intron-less (Flot et al, 2013; Eyres et al, 2015). Here, if desiccation favors the transfer of foreign DNA 
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by fragmenting the genomes (Hespeels et al, 2014), it can also impact the maintenance of the 

acquired genes. Gene conversion resulting from the repair of DNA DSBs can either cause the loss of 

the horizontally acquired gene if the original sequence without HGT found on the allelic pair is used 

as template or promote its stabilization if the copy harboring the HGT is used as template. In the first 

case, both allelic regions will retrieve the sequence preceding the transfer whereas both copies will 

harbor the HGT, stabilizing it in the second case. Interestingly, the ancient horizontally acquired 

genes (common to Rotaria and Adineta species) associated with desiccation tolerance are being 

differentially lost in aquatic species showing that conferring a selective advantage is necessary for 

the maintenance of HGTs (Eyres et al, 2015). Under those considerations, the frequency of HGTs (5.1 

and 21.8 events per million years in non-desiccating and desiccating species, respectively) from non-

metazoan origin in bdelloids estimated by Eyres et al (2015) is probably an underestimation of the 

actual rate of transfers.  

Another important factor impacting the rate at which bdelloid could acquire foreign genes is 

the genetic distance separating the donor and receiver genomes (Wilson et al, in review). In the 

cases discussed above, we mostly talked about inter-kingdom events because inter-metazoan and 

especially inter-bdelloidea transfers are much more complex to detect given the lack of genomic data 

on the communities dwelling in moss and lichen patches. Even though the patterns of DNA transfer 

between Adineta species (Debortoli et al, 2016) are likely to be due to contaminations (discussed in 

chapter 2) our different observations should motivate additional experiments focusing on this topic. 

A particularly puzzling case (see introduction of chapter 3) is the observation of one individual 

morphologically identified as Habrotrocha which harbored two alleles corresponding to the expected 

Habrotrocha sequences and one allele identical to the ones identified in Philodina species for the 

Nu1054 marker. Even more interesting is the fact that we could retrieve those three alleles in 

multiple daughters, but not all, of the first isolate (2A5) used to start clonal cultures. Such case may 

indicate that the acquired Nu1054 copy is unstable and rapidly eliminated in the progeny, that our 

PCR-based approach is unsuitable for detecting all cases of HGTs, or that environmental DNA persist 

in the cultures for weeks despite several steps of cleaning and re-isolation. Here, contaminations 

seem very unlikely to explain the presence of one additional allele in individual 2A5 as it would 

require that the contaminant DNA was extremely abundant in the first isolate (isolated from the 

moss patch in <5µL of water) that was then cultured in big Petri dishes (30mL). Similarly, it could be 

that bacteria containing a homolog of Nu1054 are present in the cultures explaining why we retrieve 

one additional Nu1054 copy in some daughters. However, we would expect to retrieve this 

additional contaminant copy more often as bacteria would be homogeneously distributed in the 

whole Petri dish culture and not restricted to a few bdelloid clones. Alternatively, it could be that our 

Nu1054 marker is working differentially on distinct copies, preferentially amplifying the Habrotrocha 

alleles and only rarely the Philodina copy. In example, this marker could not amplify the alleles of one 

species (species F) in Debortoli et al (2016). It could also be that the acquired Philodina copy is 

transmitted over a few generations as non-chromosomal DNA, e.g. like plasmids in prokaryotes, 

rapidly disappearing if not integrated in the core genome. Finally, even if our observations 

correspond to an actual inter-bdelloid species DNA transfer, it may be that the acquired copy is 

eliminated by gene conversion, the allelic region without the HGT used as template to convert the 

newly acquired sequence. Although the case of DNA transfers between bdelloid species is obscure, 

we cannot exclude this possibility as they would probably be subjected to fewer constraints than 

inter-kingdom events. 
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First, A. vaga seem to group up in patches of dozens of individuals to better survive 

desiccation (Hespeels et al, 2014) eventually favoring the delivery of intact DNA among individuals. 

However, additional tests should be devoted to this simple observation to confirm that patches of 

individuals are the results of a real ecological process and not an experimental artifact. In Hespeels et 

al (2014), thousands of individuals were desiccated together in a water drop and even if the authors 

could demonstrate that the groups were not only formed by water tension, it remains unclear if 

living individuals clustered together because the slowly evaporating drop left less and less space to 

wander around. Furthermore, it is still unknown if distinct species would group together or 

separately. Second, it has been shown that Philodina roseola individuals tend to retain closely related 

DNA fragments longer than genetically distant DNA in their gut (Bininda-Emonds et al, 2016). Even if 

no evidence that this foreign DNA was then integrated in the receiver oocytes, this suggests that the 

time window during which related DNA can enter nuclei of the germ line is longer. Third, although 

the genetic distance among individuals from a same family (up to 36.1% divergence among Adineta 

spp. calculated using the COI marker) can be as high as the distance between individuals from 

distinct families (up to 36.1%), homologies can be maintained. Transfers of long DNA fragments (>20 

kb) have indeed been observed among yeasts of different families (Liti et al, 2006; Novo et al, 2009). 

Fourth, genes acquired from other bdelloid rotifers should be more easily maintained in the receiver 

genome because both donors and receivers present similar genomic features (introns, GC content…). 

The GC content is relatively stable across bdelloid rotifers (exons GC content = 33%, 30.7% and 33% 

in R. socialis, R. sordida and A. vaga, respectively) and the transferred genes should already present 

short introns (Eyres et al, 2015). Finally, even though only 44.4% of the transcripts from A. ricciae 

were found in Rotaria species indicating a wide variation in gene content among families, or at least 

differential gene expression, almost half of the expressed genes were common showing their 

importance in bdelloids life cycle (Eyres et al, 2015). There are thus higher chances that transfers 

among bdelloids will be adaptive and maintained, especially transfers within genus (85.6 to 91.6% of 

transcripts in common among Rotaria species). 

To conclude this part, even though the genomic signatures (genomic regions evolving 

asexually) observed in this thesis seem to exclude sex-related mechanism as explanation for the 

transfers of DNA among bdelloid rotifers, particularly transfers among individuals belonging to the 

same species, we cannot totally dismiss this possibility. The genomic structure (collinearity 

breakpoints and palindromes) found in A. vaga is not compatible with meiosis sensu stricto because 

it impede proper chromosome pairing, yet alternative mechanisms allow meiosis without pairing of 

homologous chromosomes (Flot et al, 2013; Signorovitch et al, 2015).  

Are sex-related mechanisms plausible? 

As discussed in Signorovitch et al (2015), meiosis requiring only pairing of telomeric regions, 

as found in Oenothera primroses, would be compatible with A. vaga genome and could simply 

explain the allele sharing patterns observed among conspecific individuals (see chapters 1 and 3). In 

Oenothera, the maternal and paternal chromosomes segregate as distinct entities during telophase 

1, there is no random re-assortment but rare crossing-overs are possible between telomeric regions 

of homologous chromosomes (Cleland, 1972; Golczyk et al, 2008). These ensembles of chromosomes 

(named Renner complexes α and β) are always transmitted together through generations and two 

Renner complexes from the same type cannot intercross (α/α impossible). Several variants of this 

peculiar meiosis are described; Renner complexes can form regular tetrads or rings of a few to all 
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chromosomes during prophase 1 (Golczyk et al, 2014). Similarly, parasexual reproduction as found in 

the fungi of the genus Candida or in some Paramecium species do not require chromosome pairing 

as the entire DNA content of both parents are transmitted, without reduction division. In C. albicans, 

cell fusion between the two mating types a and α followed by nuclei fusion (karyogamy) is triggered 

by pheromones (Hull and Johnson, 1999). The resulting egg has a transiently doubled ploidy level 

comprising both the entire parental genomes, followed by several aneuploidy stages during which 

chromosome copies are randomly lost over generations until parental ploidy is re-established 

(Bennett and Johnson, 2003; Hickman et al, 2015). When diploidy is restored, the resulting daughter 

cell can either be a, α or a mix of both. Parasexual reproduction enables chromosome re-assortment 

and crossing-overs between a and α types, without ploidy reduction.  

Oenothera-like mechanisms or parasexual cycles would more parsimoniously explain the 

patterns of allele sharing observed across several loci as described in Signorovitch et al (2015) than 

massive HGTs among bdelloid rotifers. But nor evidence for distinct Renner complexes neither 

distinct mating-types have ever been observed in bdelloid rotifers. Yet, several observations on 

bdelloid rotifers may question the possibility for such sex-related mechanisms.  

First, in laboratory, A. vaga individuals appear to group and spend a few time tightly 

interlaced when they are about to lay eggs (personal observation), sometimes forming patches of 

hundreds of individuals. Even though this is frequent in dense lab cultures, it is hard to tell if this is 

driven by a sexual behavior or if laying eggs linked together favor the egg development and if a 

similar behavior occurs in nature. It is also unknown if distinct species would group together or if this 

is species-specific. Furthermore, no sexual organs, motile gametes or other reproductive apparatus 

potentially involved in cell/cell fusion, as in Oenothera meiosis or in parasex, have ever been 

observed in bdelloid rotifers (Fontaneto and Barraclough, 2015).  

Second, Hsu described the formation of chromosome rings along the nucleus envelope in 

sexually immature Philodina roseola individuals and that this conformation in maintain until after the 

first maturation division of the oocyte (see Figure 1-4 in Hsu, 1956a). Hsu did not investigate such 

early maturation stages in Habrotrocha tridens (Hsu, 1956b). This observation has never been 

reported again since then, but more recent investigations mostly targeted oocytes blocked in 

metaphase or anaphase 1 by drugs derived from colchicine. It is possible that the chromosome ring 

observed in prophase 1 in Oenothera is disrupted at later stages.  

Finally, we did not observe more than two copies of the markers sequenced in the 

recombining individuals, neither cases of higher ploidy in the lab cultures used for karyotyping (344 

karyotypes in total, including 72 A. vaga karyotypes; Julie Virgo, personal communication) as 

expected in parasexual reproduction. Yet, it could be possible that such cases have never been 

observed if a first oocyte division takes place within the mother, prior egg formation. Then, within 

the laid egg the second division separate sister chromatids which results in the formation of an 

embryo with the parental ploidy level and one polar body as observed.  

All those mechanisms are very speculative as several elements have never been observed in 

bdelloid rotifers, yet we cannot totally exclude them as they would more parsimoniously explain the 

intraspecific exchanges observed in this thesis and the patterns observed in Signorovitch et al (2015) 

than multiple independent HGTs. In addition, one may question the possibility for those sex-related 

mechanisms to explain interspecific exchanges. Even though, telomeric regions seem widely 



 166  

 

conserved across taxa and thus Oenothera-like meiosis mechanistically plausible, such exchanges 

would result in a genomic signature incompatible with the degenerate tetraploidy observed as the 

genetic distance within allelic pairs would drastically exceed ≈3%, i.e. the distance between Adineta 

species is higher than 20% for EPIC25 homologs. 

Frequent dispersal and habitat sorting, the dynamics of bdelloid communities 

In the previous parts, we discussed the dynamics of bdelloids genome and even though the 

mechanisms responsible for genomic diversification remain unclear, the acquisition of genes 

horizontally cannot be questioned (whatever their origin). However, those events are probably rare 

enough (especially genes from non-metazoan origin) to be considered as a “replacement for sex”. As 

a result, the dynamics ruling the colonization of new habitats and the response to environmental 

changes must be different in bdelloid rotifers than in other metazoans reproducing sexually. A given 

species adapted to a given habitat or conditions can hardly adapt rapidly to changes if it do not 

benefit from the advantages of sexual reproduction. In bdelloid rotifers, desiccated propagules are 

frequently dispersed passively by wind. Thus, individuals immigrate in new habitats randomly, 

adapted or not. For organisms less tolerant to environmental stresses and with a lower dispersal 

rate, colonizing an unsuitable habitat is theoretically lethal. However, for bdelloid rotifers, a few 

individuals can persist as ‘tuns’ for years until environmental conditions become more appropriate. 

Alternatively, ‘tuns’ can be dispersed again into another habitat patch, eventually more suitable. 

Several cases observed throughout this thesis where only a single individual of a species was found 

around Namur could indicate such scenario (24.13% of the GMYC species observed in the thesis were 

represented by a single individual; see species B in chapter 1; species B, D, E, H and J in chapter 3; 

species 5, 6, 19, 20 and 23 in chapter 4; species K, AL and 19 in annex 5). Even though bdelloid 

rotifers are renowned for their tolerance to extreme conditions data concerning their survival as 

‘tuns’ in natural patches are still missing. Bdelloid adopt this ‘tun’ conformation under various kinds 

of stresses (food depletion, unsuitable temperatures, crowding, drugs…) and none solely desiccation-

related stress. However, it is unknown if ‘tuns’ persisting in humid conditions are more persistent 

than desiccated ones or if their metabolism is totally paused or just slowed down as the mastax is 

still active sometimes. A bdelloid propagule persisting for years despite adverse conditions have 

better chances to be transported in a suitable habitat at some point than individuals surviving as tuns 

for only a few days. As a result, dwelling in habitats well exposed to wind would be a predominant 

factor in the life cycle of bdelloid species. Interestingly, soil patches (see chapter 1) harbored a widely 

different Adineta spp. community. Much less individuals were sampled on soil patches (mean = 2.09 

versus 22.13 for trunk patches) and species were different than the ones sampled lichen patches 

collected on the trunks (species E was only found in soil patches whereas species D and F were 

retrieved only on trunks). Those observations may indicate that Adineta vaga diversified into several 

cryptic species with distinct habitat preferences, some species dwelling in patches often exposed to 

moisture (soil) and some species frequently going through cycles of desiccation/rehydration (lichen 

patches on trunks). Another hypothesis is that bdelloid communities in soil patches or other patches 

located near the ground are more exposed to parasites, such as Rotiferophthora fungi, due to 

increased moisture and direct connections between patches (Wilson and Sherman, 2013). In 

contrast, lichen patches submitted to frequent short desiccation periods and connected majorly by 

windblown dispersion present are parasites-free (Wilson and Sherman, 2013). However, our results 

suggest that bdelloid this spatio-temporal escape to parasites is not the only strategy explaining the 

evolutionary success of bdelloid rotifers. Indeed, some species seem to tolerate the presence of 
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parasites more than other species, eventually indicating cases of coevolution depicted by the Red 

Queen hypothesis. Yet, this has to be studied into more details. Furthermore, the spatio-temporal 

escape may be applicable to other cases than parasites. In this thesis, escape from other bdelloid 

species appeared important too, eventually due to inter-bdelloid interactions whatever those may 

represent (competition, predation …). In chapter 1, the two mostly represented species (species A 

and C) were found across all types of patches (soil or lichens) but rarely together or only at low 

densities. This was also the case in chapter 4 where a few species could only expand when the 

dominant species 9 (corresponding to C in chapter 1) was absent or rare. Interestingly, this was not 

linked to seasons suggesting that it was not environmental conditions that ruled community 

composition, but rather the roof location that limited immigration of species 9. Thus, one important 

conclusion about the dynamics of bdelloid communities is that dispersal reduces interactions 

between species that would otherwise exclude each other. 

Another key point is the observation that bdelloid communities are submitted to important 

bottlenecks during harsher periods, as in winter (chapter 4). Although our experimental setups could 

not enable us to follow precisely the dynamics for periods longer than a year, the fact that some 

individuals survived harsh conditions allows for rapid re-expansion when conditions are more 

suitable (during other seasons). Here, it would be interesting to test if the most represented species 

in a given community will have higher chances to have a few survivors than rare species, or if stress-

resistance is so different across species that rare species can go through the bottlenecks despite low 

population densities. In the first case, this would explain how bdelloid species can adapt and diversify 

through time as the dominant species would stay for several generations in a given habitat patch, 

having time to adapt over generations to slowly changing conditions. In the second case, one species 

dominating a community at a given timepoint may not be the dominant after the bottleneck and 

community composition would fluctuate from year to year, limiting species adaptation and 

diversification. In that scenario, diversification would be the result of a stochastic process by which 

one random species dominating the community at a given timepoint is favoured by permissive 

conditions and thus expand long enough for adaptation to play its role.  

Additional knowledges on the ecological response of bdelloid rotifers are compulsory to fully 

understand the dynamics responsible for their evolutionary success. Controlled lab experiments 

targeting species interactions and niche differentiation should be planned in future work. Co-

culturing distinct Adineta species and monitor the reproductive output of each species could reveal 

competition for resources. Similarly, adding distinct food resources may highlight distinct 

preferences across species and thus the possibility for co-existence over the long term. Studying 

other bdelloid families could also be informative as Philodinidae and Habrotrochidae (filtering the 

water column) present feeding behavior different from the ones observed in Adinetidae (scratching 

the substrate), eventually facilitating inter-families co-existence. Furthermore, precisely defining the 

correlation between geographic distance and frequency of immigration could be helpful to 

understand how communities are susceptible to changes in species composition. In addition, 

conducting a similar experiment than the one we performed on the roof tops by letting open Petri 

dishes exposed to immigration throughout the study could be done again, but this time allowing 

immigration for only a restricted period (e.g. closing the dish after a few days). This could 

demonstrate if rare species arriving during early colonization can expand when dominant local 

species are not present. Overall, this could help to understand more precisely the dynamics of 

bdelloid communities. Finally, wider sampling around Belgium and other countries to estimate the 
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global species diversity for genus Adineta could provide data about the rate of diversification of 

those asexual organisms and provide insights on how they adapt to distinct habitats in spite of sex. 
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Chapter 5: Eco-evolutionary dynamics along 

gradients of environmental anthropogenic 

disturbances 
 

 This chapter is part of a wider study led by Prof. Luc De Meester entitled “SPatial and 

environmental determinants of Eco-Evolutionary DYnamics: anthropogenic environments as a 

model” or SPEEDY project. This project aimed at understanding the impact of human activities on 

natural environment and their consequences at every biodiversity levels, from genes to ecosystems. 

Predicting the eco-evolutionary responses to environmental changes is essential to elaborate new 

conservation strategies (Lankau et al, 2011). The scheme of stratified sampling design of our field 

campaign covering a wide range of organisms consist in a unique experimental setup to study how 

spatial configuration of habitat patches influence eco-evolutionary dynamics (Kozak et al, 2008). The 

dispersal capacity of organisms and their regional abundance impact their dispersal rates, while 

habitat configuration affects the identity of the immigrants. Furthermore, the strength of local 

responses to environmental changes may vary across taxa that widely differ in reproductive mode 

and generation times. In this proposal, we tried to take into account those distinct eco-evolutionary 

dynamics, bringing together a consortium that has the capacity to tackle this multifaceted problem. I 

took part in this project, collaborating with Dr Diego Fontaneto, by working on the genetic diversity 

of bdelloid rotifers along gradients of anthropogenic disturbances. 

A first paper focusing on body size variations along a gradient of anthropogenic disturbances 

is currently under review. Body size is central to species interactions such as food web dynamics 

(Woodward et al, 2005) and intrinsically linked to metabolic rate (Brown et al, 2004). Urban areas 

being characterized by increased temperatures (Oke, 1982) are predicted to result in higher 

metabolic costs and oxygen stress with the consequence to lead to smaller body sizes (Scheffers et 

al, 2016). Urbanization, however, is associated with habitat fragmentation (Alberti et al, 2017) 

increasing the selection for highly dispersible phenotypes. In this first study, a shift of communities 

towards generally smaller species is shown, except for three taxa presenting a positive size-dispersal 

correlation among which bdelloid rotifers. This highlights the contrasting effects of urbanization on 

body size and the role of dispersal. Since body size is key to inter-specific relationships (Cheptou et al, 

2017), such shifts may impact urban ecosystem functioning. 

Those results are accepted for publication in Nature: 

Merckx, T., Souffreau, C., Kaiser, A., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I., Cours, M., 

Dahirel, M., Debortoli, N., De Wolf, K., Engelen, J. M. T., Fontaneto, D., Gianuca, A. T., Govaert, L., 

Hendrickx, F., Higuti, J., Lens, L., Martens, K., Matheve, H., Matthysen, E., Piano, E., Sablon, R., Schön, 

I., Van Doninck, K., De Meester, L., & Van Dyck, H., 2018. Body size shifts in aquatic and terrestrial 

urban communities. Nature 
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Introduction 

Human expansion over the last century results in an unprecedented detrimental impact on 

biodiversity from genes to ecosystems (Butchart et al, 2010; Barnosky et al, 2011). Depletion and 

fragmentation of natural habitats resulting from intensive land use are considered as major drivers of 

biodiversity loss. In contrast, human-altered environments can turn out to be favourable for a subset 

of organisms as new biotic and abiotic conditions emerge (Hobbs et al, 2006; Møller 2010). Thus, 

predicting the impact of human activities may be tricky for a wide variety of taxa.  

The novel conditions and habitats created by those worldwide environmental modifications 

linked to anthropogenic activities imply strong selection regimes that may change ecological and 

evolutionary dynamics. Evolutionary responses to environmental changes can occur at the same 

temporal and spatial scales and thus directly impact ecological responses (Kinnison and Hairston, 

2007). Eco-evolutionary dynamics are increasingly recognized as being of key importance for 

predictions about population and community responses to non-natural changes, such as climate 

change (De Meester et al, 2011; Urban et al, 2012) or landscape modifications (Cheptou et al, 2008). 

However, such predictions are mandatory to develop efficient strategies for biodiversity monitoring 

and conservation (Lankau et al, 2011). Spatial variation probably plays a major role in eco-

evolutionary dynamics as local populations and communities may be influenced by the arrival of pre-

adapted genotypes or species from the regional pool (Urban et al, 2012). In addition, anthropogenic 

disturbance exerts selection pressures that offer opportunities to study how organisms react and 

adapt to new and rapid environmental challenges.    

The present study aimed at characterizing the response of a group of microscopic animals 

with high dispersal capacities (Fontaneto and Ricci, 2006; Wilson, 2011), namely the bdelloid rotifers, 

to a gradient of urbanization.  The collected data were used to test our hypothesis that selection 

pressures due to urbanization impact microscopic animal communities composition and populations. 

We applied this hypothesis at two biodiversity levels: community composition and genetic diversity 

within the focal genus Adineta. For the first one, we studied assemblages of bdelloid species 

identified morphologically whereas for the genetic diversity, we focused on one genus widely spread 

in the communities and renown to comprise multiple cryptic species, namely Adineta. Our 

expectation is that, if an effect of urbanization is visible in bdelloids, a reduction in species richness 

and in heterogeneity between assemblages should be found at the community level in more 

urbanized sites; similarly, a reduction in genetic diversity could be hypothesized for the focal genus 
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Adineta sampled across the same urbanization gradient. We tested this prediction on different 

metrics of diversity on bdelloid communities found in lichens across an urbanization gradient in 

Belgium. 

Material and methods 

Plot, subplot and site determination 

A polygon delimited by the cities of 

Antwerp, Gent, Brussels and Leuven was 

used as area within which we determined 

gradients of urbanization (semi-natural, 

rural and urban). To select sites over a 

gradient in urbanization in a standardized 

way for the heterogeneous group of aquatic 

and terrestrial target organisms, a GIS-

based site selection was organised with 27 

plots of 3 by 3 km characterized as semi-

natural, rural or urban based on percentage 

of built-up area. Each of these plots was 

divided into 200 by 200 m subplots, which 

were characterized according to the same three levels of urbanization. Plot and subplot selection was 

done by UGent (Figure 1; see details in Supplemental methods). The sampling scheme was developed 

within the SPEEDY (“SPatial and environmental determinants of Eco-Evolutionary DYnamics: 

anthropogenic environments as a model”) project whose overall objective is to obtain integrated 

insight into the responses of communities to urbanization for a wide variety of taxonomic groups 

ranging from bacteria to birds. 

 

One subplot of each type (semi-natural, rural and urban) was selected within each of the 27 

plots leading to a total of 81 sampling sites. Because suitable sampling sites vary among the organism 

groups depending on their characteristics, different sites were selected depending on the target 

group. For bdelloid rotifers one lichen patch (≈10cm²) of Xanthoria was sampled per subplot and the 

type of substratum on which the patch grew was recorded (tree bark versus concrete). The sampling 

campaign took place in spring and summer 2013. We then collected two distinct subsamples (≈2cm²) 

from each patch to conduct two different analyses. One subsample was used to determine 

community structure based on morphological identification (work done by Dr. D. Fontaneto). The 

second subsample was treated at UNamur for population genetics analyses focusing on the Adineta 

spp. 

 

Individual isolation, identification and genotyping 

All bdelloids found in the subsample of each lichen patch used for morphological analyses 

were isolated and identified to species level according to the current taxonomical knowledge and 

nomenclature (Donner, 1965; Segers et al., 2012). 

 

In the other subsamples used for genetic analyses, each individual morphologically identified 

as Adineta spp. was isolated by pipetting and washed serially in sterile SPA® water drops. Each clean 

Figure 1 : Map of Flanders showing the 27 plots (3km x 3km). Green: 

0-3% built up ratio (semi-natural); yellow: 5-10% built up ratio 

(rural); red: >15% built up ratio (urban). 
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rotifer was placed in an autoclaved 1.5mL tube, briefly centrifuged to pellet the individual and 

checked under a binocular to make sure that a single individual was present. All individuals found 

within each subsample were used for DNA extraction according to the Chelex® protocol described in 

Chapter IV. When more than 24 individuals were sampled, we randomly selected 24 animals for DNA 

extraction as previous experience with genetic diversity of the focal species in Belgium suggested 

that the same mitochondrial lineage composed the population retrieved from a lichen patch 

(Debortoli et al, 2016). We amplified a fragment of the mtCOI gene (605bp) using universal primers 

(HCOI: 5’ - TAA ACT TCA GGG TGA CCA AAA AAT CA - 3’ and LCOI: 5’ - GGT CAA CAA ATC ATA AAG 

ATA TTG G - 3’; Folmer et al, 1994). The PCR conditions were the same as in Debortoli et al (2016), 

except that the quantity of gDNA used was 5µL and that the number of cycles was set to 60.  The 

forward and reverse chromatograms resulting from Sanger sequencing (GENEWIZ, UK) were 

assembled and edited in Sequencher4 and each sequence was then aligned in MAFFT (E-INS-i 

method; Katoh and Standley, 2013) and visualized in MEGA5 (Tamura et al, 2011).  

 

Phylogenetic reconstruction and species delimitation 

The obtained haplotype dataset was combined with all the sequences retrieved from other 

projects around Namur (Belgium) and the mtCOI data available on GenBank (see Supplemental Table 

1). A unique sequence was then selected for each distinct haplotype leading to a final dataset of 364 

COI sequence of 589bp, which was used for ultrametric Bayesian tree reconstruction in BEAST v1.6.2 

(Drummond and Rambaut, 2007). The details about the parameters used to generate the phylogeny 

were the same as those previously applied on other studies on bdelloid rotifers (Tang et al, 2014; 

Debortoli et al, 2016). To avoid confinement of the MCMC chain in a local optimum, we run the 

analysis three times independently and combined them with the LogCombiner software of the BEAST 

package. The resulting ultrametric tree was used as input for the General-Mixed Yule Coalescent 

method for species delimitation using the R version 3.1.1 (R Core Team, 2014) package “splits” (Pons 

et al, 2006; Fujisawa and Barraclough, 2013).  

We used an additional method, namely the Automatic Barcode Gap Discovery (ABGD), which 

relies on the distribution of pairwise genetic distance among haplotypes to delimit species. A 

“barcode-gap” can often be observed between the distribution of distances among haplotypes 

belonging to a same species and the distance between haplotypes from distinct species (Puillandre et 

al, 2011). All the mtCOI sequences retrieved for the focal genus Adineta were aligned in MAFFT (E-

INS-i method; Katoh and Standley, 2013) and the alignment was submitted to ABGD in command line 

mode using default parameters (software download at http://wwwabi.snv.jussieu.fr/public/abgd/). 

Community parameters and structure analyses 

To test if the degree of urbanization had an impact on community structure, we calculated, 

for each patch, the total abundance of individuals sampled, the species richness and Pielou’s index of 

species evenness (Pielou, 1966). We expected that patches from urbanized plots/subplots would 

harbor less even communities due to a better tolerance of a few species. In addition, we computed 

the community dissimilarities across space using Bray-Curtis index under the R package “vegan 2.3-5” 

(Oksanen et al, 2007). We expected that communities from a same plot/subplot type would be more 

similar than communities from distinct plots/subplots type since probably the same pool of species 

will tolerate higher degree of urbanization. We performed those computations for both the 

morphological species dataset and the genetic-based delineation of Adineta dataset. Note here that 
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for the focal genus Adineta, only a subset of 24 individuals was genotyped eventually biasing the 

actual community structure. We then performed ANOVA tests and linear models (R software) to 

analyze the community response to the plot/subplot type (rural, semi-natural and urban) and to the 

type of substrate on which patches grew. 

We also generated one clustered species matrix for each dataset in order to minimize the 

distance between patches based on the frequency of each species dwelling in it using the R package 

“heatmap3” (Zhao et al, 2014). We then calculated if there was a significant correlation between 

plot/subplot type and community composition using the Fisher’s exact test. 

Finally, we computed an AMOVA analysis under Arlequin version 3.5.1.3 (Excoffier and 

Lischer, 2010) on the Adineta sp. using the mtCOI dataset generated through the present study. 

Although AMOVA analyses rely on the decline in heterozygosity due to subdivision within a 

population, they have been widely applied at the community level in bacteria, probably because 

genetic mixing is limited (Roesh et al, 2009; Fridman et al, 2012; Zhao et al, 2012). As bdelloid rotifers 

reproduce clonally, we decided to apply the AMOVA (1000 permutations) on four different 

community structures to calculate fixation indices: we regrouped the lichen patches by location, plot 

type and subplot type. 

Results 

Sampling and diversity retrieved in the communities 

In total, we were able 

to collect lichen patches (≈ 

10cm²) in 80 out of 81 sites 

visited, identified as Xanthoria 

sp. In 65 cases, the patches 

were extracted from concrete 

substratum; all other 15 lichen 

patches were on tree barks. 

Regarding the results from the 

subsamples used for 

morphological identification, 

4918 bdelloid rotifers were 

isolated and identified as 21 

distinct morpho-species. The 

mean species richness in each 

patch was 2.43 (range 0-6) and 

the mean number of 

individuals isolated was 61.7 

(range 0-362) whereas the 

mean Pielou’s index of species 

evenness was 0.71 (range 0-1) 

(Figure 2). Even though the 

abundance seemed higher in 

the rural plots and subplots, 
Figure 2 : Boxplot indicating the metrics calculated for each plot, subplot and substrate type for 
the morphology based determination. The total number of rotifer individuals sampled, the 
species richness, Pielou’s index of evenness and community dissimilarities across space is for 
each patch collected is indicated. 
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there was no significant differences according to the ANOVA analyses, neither was the difference in 

species richness and evenness between the distinct plots/subplots (Table 1). 

 

We isolated 521 individuals identified as Adineta spp. from the 32 subsamples for DNA 

analyses where this genus was found. Interestingly, the number of individuals identified as Adineta 

spp. in the two subsamples originating from the same lichen was highly correlated but in six cases 

out of 32 (18.8%) we could find Adineta spp. in only one of the two subsamples. In five of the six 

cases, the abundance of individuals of the focal species was indeed low (≤ 4 individuals), yet in one 

case (lichen P9SR) we could isolate 56 individuals in the subsample used for morphological 

identification but none in the corresponding subsample used for genetic analyses suggesting that 

communities could be highly structured within a lichen patch. As a maximum of twenty-four 

individuals were used for each patch in order to reduce the costs, genotyping represented only 274 

of the 521 (52.6%) individuals isolated, resulting in a total of 43 distinct mtCOI haplotypes. Both the 

GMYC analysis and the ABGD method congruently delineated 17 distinct species from this dataset, 

the only exception being that ABGD further split species 15 into two species when the prior value for 

intraspecific divergence was set below 0.0129 (Supplemental Figure 1). The two most abundant 

species (species 14 and 15, representing respectively 29.9 and 42.3% of the individuals genotyped), 

where also found in other region of Belgium but were less frequent in those regions (Figure 3). On 

the contrary, the most abundant species sampled on the UNamur roofs or Park Louise-Marie (species 

9 and 13) were present but rarer over the area covered by the SPEEDY project (18 individuals in total 

distributed in four patches for species 9 and 3 individuals in a single patch for species 13). Finally, five 

other species were sampled during the SPEEDY project as well as in other places in Belgium but were 

rare in all areas (species 6, 16, 19, AZ and BR). Haplotypes sampled in other European countries also 

clustered with sequences sampled in the present study. This is the case for five species: species 14 in 

Slovenia, K in Serbia, N in the UK and Ukraina, BR in France and Sweden and CC in Italy, Poland and 

the UK. The remaining species were singletons that did not cluster with any of the available mtCOI 

haplotypes.  

Table 1: Results of the ANOVA analyzing the 

response of each metrics to the plot, 

subplot and substrate type for the 

morphologically determined bdelloid 

communities. 
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Figure 3 : Pruned ultrametric built from our local mtCOI dataset and Adineta vaga sequences available on GenBank. Only 
the 17 GMYC-defined Adineta species that were collected during the SPEEDY project are represented (boxes) in this 
simplified version of the ultrametric tree (Chapter IV, Supplemental figure 3). The posterior probabilities that support 
each node are indicated when lower than 0.95, otherwise black dots represent highly supported nodes. Haplotypes that 
cluster within a same evolutionary entity are linked by red branches. Green squares indicate the haplotypes from the 
SPEEDY dataset whereas blue, orange, black and red squares highlight the haplotypes that were retrieved from other 
studies and were sampled in Namur, Louvain-La-Neuve (LLN), roofs (Namur) and outside Belgium, respectively. 

The mean number of individuals isolated from the 33 subsamples containing Adinetida spp. 

was 15.8 individuals (range 1-77). The average cryptic species richness in each of those 33 patches 

was 1.63 (range 1-3 species) and the mean Pielou’s index of species evenness was 0.67 (range 0.21-1) 

(Figure 4).  

Plots, subplots and substrate impact on communities 

The clustered matrix generated from the matrix of abundance of each morpho-species in 

each patch did not show any clear differences in relation with the community present in a given 

patch and its location within a certain plot or subplot type and even with the substrate (Figure 5). Six 

species were frequent over all the lichen patches sampled: Macrotrachela ehrenbergii, Adineta vaga, 

Philodina vorax, Mniobia russeola, the not fully determined Mniobia sp1 and Habrotrocha pulchra, 

present in 41.74 to 24.69% of the patches sampled. Those six morpho-species were often present in 

the same patches (in 47 cases) at high densities (mean 68.81 individuals; range = 5 – 303). The 

remaining 15 morpho-species were less frequent (in 1 to 10 patches only) and at much lower 

densities except for Pleuretra lineata, which was present in seven patches but represented by a total 

of 598 individuals. 



 179  

 

The number of 

individuals sampled, the 

species evenness and the 

community dissimilarities 

across sample patches did 

not vary significantly with 

the degree of urbanization 

of the plot or subplot 

whichever the level of 

species identification 

(morphology or the 

genetic). In contrast, 

Adineta species richness 

varied significantly across 

plots type (ANOVA; F-stat = 

5.368; df = 2, 30; p = 0.011; 

Table 2) with rural plots 

presenting globally less 

species than the semi-

natural and urban plots. 

The clustered matrix 

generated from the matrix 

of abundance of Adineta 

species in each patch (Figure 6) showed that semi-natural plots tended to be colonized by the two 

most frequent species (species 14 and 15; 1.58 species per patch) but rarely by other Adineta sp., 

whereas rural plots were often colonized by a 

single species (1.13 species per patch), 

frequent or not. Similarly, urban plots were 

often colonized by several species (1.92 

species per patch) whichever the species was. 

However, Fisher’s exact test indicated that 

there was no significant correlation between 

plot or subplot type and colonization by the 

two dominant species or not (p-value = 

0.724). Interestingly, the clustered matrix 

suggested that species 14 and 15 could co-

exist within a patch but that the other species 

were rare when those two species were 

present.  

Even if the plot and subplot in which 

we sampled the patches did not seem to have an important impact on communities, the substrate 

type on which we collected each lichen patch significantly influenced the community structure. 

Indeed, we found less Adineta spp. on lichen collected on tree bark than on lichen extracted from 

concrete walls (ANOVA; F-stat = 8.838; df = 2, 30; p < 0.001). This was corroborated by the fact that 

Figure 4 : Boxplot indicating the metrics calculated for each plot, subplot and substrate type for the 
genetically-based species determination of the focal genus Adineta. The total number of rotifer 
individuals sampled, the species richness, Pielou’s index of evenness and community dissimilarities 
across space is for each patch collected is indicated. 

Table 2 : Results of the ANOVA analyzing the response of each 
metrics to the plot, subplot and substrate type for the genetically 
based species delineation of the focal genus Adineta. 
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communities in which species 14 and 15 were rare or absent significantly correlated with patches 

collected from tree bark (Figure 6; Fisher’s exact test p-value = 0.019). 

 

 

We performed an AMOVA analysis on the individuals identified as Adineta since we got 

molecular data for a subset of those individuals. We grouped the lichen patches by plot type, subplot 

type, substrate type and geographical location and in each case, found sensitively similar values: FST 

Figure 5: Clustered community 

matrix for the morphospecies 

dataset. The matrix was built from 

the presence/absence of each 

species in each non-empty 

community collected and the 

communities of each sample were 

then clustered hierarchically 

according to the species 

composition. Colored boxes 

indicate the plot, subplot or 

substrate type in which each 

plotted community was sampled.  

Figure 6: Clustered Adineta 

community matrix. The matrix 

was built from the 

presence/absence of each 

species in each non-empty 

community collected and the 

communities of each sample 

were then clustered 

hierarchically according to the 

species composition. Colored 

boxes indicate the plot, subplot 

or substrate type in which each 

plotted community was sampled.  
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ranged from 27.0 to 28.3 (p-value = 0.0), FSC ranged from 66.0 to 84.7 (p-value = 0.0) and FCT ranged 

from -12.9 to 6.9 (p-value > 0.05) (Table 3).  

Discussion 

Absence of variation in community assemblages along the gradient of urbanization 

Overall, the degree of habitat urbanization did not seem to influence bdelloid rotifers 

communities since none of the community structure parameters analyzed varied with the type of 

plot/subplot 

(semi-natural, 

rural or 

urban), except 

for richness in 

cryptic 

Adineta vaga 

Interestingly, 

even the 

AMOVA 

analyses 

suggested that 

plot and 

subplot type 

had little impact on the genetic diversity. Indeed, most of the genetic diversity (FSC: 66.0 – 84.7; p-

value = 0.0) retrieved was explained when comparison among patches was performed no matter if 

they were grouped by plot or subplot type. This highlighted the fact the genetic diversity is rather 

explained by the presence of distinct species in the sampled lichens than the existence of specific 

preferences to plot/subplot type. Similarly, the differences in species composition between groups of 

plot/subplot type was low and non-significant indicating the lack of real structure along the gradient 

of habitat urbanization (FCT: -12.9-6.9; p-value > 0.05). Finally, the rest of the genetic diversity 

observed resulted from the diversity found within each individual patch (FST: 27-28.3; p-value = 0.0). 

This community structure was also suggested by the clustered species matrix (Figure 6) on which the 

most abundant species 14 and 15 were present in 71.9% of the patches harboring Adinetidae, 

independently of the plot/subplot type (Fisher’s exact test: p-value = 0.724). Furthermore, the other 

Adineta species were often retrieved only once (species 6, 13, 19, K, Q, AL, AZ, BU and CC) or twice 

but in distinct plot/subplot type (e.g. species 9 and BR in rural and semi-natural subplots or species N 

and AR in urban and rural subplot). 

Similarly, bdelloid communities did not seem to be impacted by habitat urbanization when 

morphological species were considered either. Six morpho-species (Macrotrachela ehrenbergii, 

Adineta vaga, Philodina vorax, Mniobia russeola, Mniobia sp1 and Habrotrocha pulchra) were 

frequent throughout the plots/subplots sampled and abundant representing on average 68.81 

individuals in the patches they colonized. The other morphospecies seemed to appear sporadically 

independently of the plot/subplot type. The ANOVA analyses did not present any significant 

correlation between plot/subplot type and any of the community metrics tested (number of 

individuals, species richness, Pielou’s index of species evenness and community dissimilarities across 

space).  

Table 3 : Analysis of molecular variance (AMOVA) across communities regrouped by plot, subplot or substrate 
type. 
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This lack of community structure could be the result of rare and random immigration from 

the metacommunity species pool. Bdelloids capacity to tolerate dry period by entering a dormant 

stage that turn into propagules for dispersal by wind may promote such random immigration. The 

fact to retrieve a few species that were already described in other Belgian areas and the five cases in 

which we found specimens that clustered with individuals from other countries underlined the 

possibility for medium to long range dispersal from the metacommunity pool (Figure 3). In addition, 

bdelloid rotifers seem to present significant but weak degree of habitat specificity which may result 

in low species-sorting processes (Fontaneto et al, 2011). Thus, the absence of barriers to dispersal 

and the low habitat specialization may explain why bdelloid rotifer show patchy distribution at local 

scale, unrelated to urbanization but wide distribution at the regional to global scale. Such 

explanation was already proposed by Fontaneto et al (2006) who observed that there was no 

hierarchical structure in local assemblages of bdelloid rotifers and diversity in a single Italian valley 

was surprisingly high with respect to the known worldwide diversity.  

Ubiquitous morphospecies are complexes of habitat-specific cryptic species 

Interestingly, there was a significant correlation between the presence of dominant Adineta 

vaga (species 14 and 15) and the absence of other rarer Adineta species. It is hard to determine if 

those rare species were able to colonize a few patches because of habitat specialization or just 

because dominant species were absent or at low density. However, this may either reveal that 

bdelloid could present ecological requirement that we were not able to describe or that habitat are 

harder to colonize once already monopolized by a given species. Thus, competition may play a role in 

species assemblages of this taxon. Inversely, we could not find any correlation between the presence 

of the six most frequent species and the absence of rarer species when we considered them at the 

morphological level. This could indicate that bdelloid species are actually complexes of cryptic 

species which have distinct habitat preferences but that those preferences are invisible when species 

are considered at the morphological level. Such hypothesis is corroborated by the description of 

multiple species complexes across bdelloid species (Ricci et al, 1989; Fontaneto et al, 2007; 

Fontaneto et al, 2008; Birky Jr et al, 2011; Debortoli et al, 2016). 

It would make sense that competition among cryptic species is higher than competition 

between morphologically distinct species since feeding behavior and life cycle are similar if not 

identical within species complexes. This could explain why several morphospecies were often co-

occuring within the same patches while Adineta species 14 and 15 seemed to limit the presence of 

other Adineta vaga or that both species 14 and 15 were abundant within a same patch. 

Conclusions 

According to our results, the degree of landscape urbanization does not seem to affect 

bdelloid rotifers communities. We could not detect habitat preferences in morphologically 

determined species. However, some cryptic species of the focal genus Adineta seemed to mutually 

exclude each other, eventually through a competition process. 
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Chapter 6: Comparative genomics of distinct 

bdelloid families, how dynamic are bdelloid 

genomes? 
 

 In 2013, the first bdelloid genome has been published presenting features not compatible 

with conventional meiosis, i.e. pairing of homologous chromosomes (Flot et al, 2013). The peculiar 

genomic structure has since then been referred to as an evidence for the long-term asexuality of 

Adineta vaga, if not all other bdelloid species (Fontaneto and Barraclough, 2015; Debortoli et al, 

2016). However, the clonal lineage used for the whole-genome sequencing (originally named AD008) 

was first isolated and cultured in lab conditions approximately thirty years ago by Claudia Ricci (Ricci, 

1983) and may thus be a lab artifact. Here, we do no doubt the degenerate tetraploid structure as it 

had been observed in other bdelloid species (Hur et al, 2009), but rather the peculiarities that are not 

compatible with classical meiosis (collinearity breakpoints between allelic regions and palindromes, 

see introduction). Indeed, recent re-assemblies of the A. vaga genome involving multiple methods 

(PacBio reads were assembled with Falcon Unzip; Illumina® reads were assembled with BWISE and 

Illumina® reads 

obtained through 

contact genomics 

were assembled 

with GRAAL) 

enabled to recover 

fifteen scaffolds, 

ten of which have 

approximately the 

expected 

chromosomes 

sizes. Those ten 

scaffolds formed 

clear allelic pairs 

that extended to 

the whole length 

(allelic pair 1 to 5 

on Figure 1). 

Interestingly, one 

additional scaffold 

was slightly smaller 

(dot chromosome) 

but appeared 

palindromic (allelic 

pair 6 on Figure 1). 

Finally, four shorter 

scaffolds could not 

Figure 1 : Alignement of the fifteen scaffolds assembled (A-O) with themselves. The red and 
blue dots indicate sequence match (threshold of 2% divergence) in same and reverse 
orientation, respectively. Scaffolds F to O form clear allelic pairs (1 to 5), e.g. scaffold O 
perfectly aligns with itself and with scaffold N forming chromosome pairs 1/1’; similarly, 
scaffold K and L aligns perfectly together (forming pair 3/3’) but are in different orientation. 
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be further assembled but may constitute the last chromosome which also presented palindromic 

regions (allelic pair 7 on Figure 1). Even though this new assembly seems to fit the observation that 

A. vaga karyotype was constituted of 12 chromosomes (J. Virgo, personal communication; Mark 

Welch et al, 2009) assembly of the fragmented scaffolds (A-D) and palindromes confirmation needs 

to be done.  

Another question we wanted to address, if we confirm the genomic structure found in the 

reference genome, is whether those peculiarities were established early in the evolution of class 

Bdelloidea. To answer those questions, we isolated several individuals identified as Adinetidae, 

Habrotrochidae and Philodinidae from patches collected around Namur (Belgium) in September 

2013. Each isolated individual was then cultured in separated Petri dishes until the clonal population 

(≈30 000 individuals i.e. adults, juveniles and eggs) was large enough for the extraction of 

approximately 1µg of genomic DNA (QIAGEN DNeasy kit). In addition, we received from Birky a few 

specimens of the fourth bdelloid family, Philodinavidae, but could not maintain them in lab cultures. 

We sequenced the whole genome of one A. vaga strain (named COI3B) that was closely related to 

the reference genome (Flot et al, 2013) and one Habrotrochidae in November 2015 (2x250bp 

Illimuna® reads, Genomics Core, UZ Leuven, Belgium). As our Philodinidae cultures grow slower, we 

did not gather enough genomic DNA for WGS yet.  

 We tested several assemblers (Platanus, Discovar De Novo, MIRA…) with the help of Marie 

Cariou and Jitendra Narayan (both LEGE members) and checked the output of each method carefully. 

Even though we could not assemble the genomes of the two strains sequenced yet, due to 

unsuitable software (Platanus and Discovar De Nova) or extensive computation time (MIRA), we 

spent a few months checking the outputs. It appeared that Platanus and Discovar De Novo could not 

phase the allelic regions appropriately, resulting in almost diploid genomes with low N50 unsuitable 

for comparative genomics. I wanted to highlight this part even though no interesting results were 

obtained yet as it represented a considerable amount of work (weekly cultures maintenance and 

assembly checks) during which I gathered a collection of about 300 isolates in total that are now used 

in distinct project of the LEGE lab (MIS, ERC, RADseq, optimization of BWise,…). 
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