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Abstract
In medical image analysis, image registration aims at analyzing several im-

ages acquired at different times or by different devices. More precisely, it
determines the suitable spatial transformation that allows these images to be
aligned in a common spatial domain. The common issues that are known
for the deformable 3D image registration problem include the computing time
that, especially for non-parametric transformations, may be quite troublesome
for some clinical applications. This thesis is concerned with the analysis of nu-
merical algorithms designed to solve efficiently the medical image registration
problem with a focus on the use of preconditioners to speedup iterative linear
system solvers. Our purpose is two-fold. First, we propose an extension in
the use of an existing package, FAIR from Jan Modersitzki, by allowing the
user to choose polynomial preconditioners and/or to choose large deformations.
Second, if applicable, we propose to use a compressed representation of data
with a given accuracy ε using Tensor-Train format to solve efficiently the lin-
ear systems. Within this tensor format, a low-rank preconditioner built with
spectral information is used to speedup and stabilize the system solver.

Résumé
En imagerie médicale, le recalage des images a pour objectif d’analyser

plusieurs images acquises à différents moments ou par différentes techniques.
Plus précisément, le recalage d’images médicales permet de déterminer la meilleure
transformation spatiale qui permet de passer d’une image à l’autre. Une telle
transformation facilite l’analyse de ces images car elle permet que ces images
soient alignées dans un même domaine spatial pour être comparées. Cette
thèse propose une analyse de quelques algorithmes numériques utilisés pour
résoudre efficacement le problème du recalage non rigide d’images médicales
3D pour des transformations non paramétriques. Cependant, il est établi que,
de manière générale, ces algorithmes sont coûteux en temps de calcul et en
mémoire de stockage. Ceci peut se révéler problématique pour certaines ap-
plications thérapeutiques. Dans le but d’accélérer ces algorithmes, cette thèse
s’est focalisé sur l’étude du préconditionnement des systèmes linéaires résolus
itérativement dans la phase d’optimisation du recalage. Cette thèse propose
une extension du package FAIR de Jan Modersitzki. D’une part, elle permet
à l’utilisateur de faire appel à des préconditioneurs polynomiaux, en plus des
preconditionneurs déjà existant dans le package. D’autre part, si faisable, elle
lui propose le choix d’utiliser des solveurs en un format tensoriel. Ce dernier,
exploitant la structure des données, permet une compression efficiente et une
troncature à un seuil de précision ε donné qui fait gagner du temps et de la
mémoire de stockage.
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Un très grand merci à mon papa Pascal Muhindo Nyenyezi et à ma maman
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ont été présents financièrement. Par exemple, Anne Lemaitre quand elle était
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famille, vous avez été tout pour moi. Je me sents chez moi vraiment. Merci
Mac, bisous Lune, Lisa, Linda, Lucie, Lorie et trois têtes à Robin. Vous êtes
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très utiles d’une manière ou d’une autre. Fabrice Muvundja, Philippine Sak-
ina, Juliette Passy, Gaston, Christian Nazili, Nathalie Masudi, Souzy Mbaka,
Godelive Batano, Constance De combrugghe, Christel Lamère Ngnambi, Vic-
toria Brandemann, Jacques Galangwa, Joseph bavurha, Séraphin Bireke, Isaac
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Introduction

In medical image analysis, it is common to analyse several images acquired
at different times or by different devices. This analysis may need a spatial
transformation that allows these images to be aligned in a common spatial
domain and correspondences to be established between them. This process is
called Image registration. Let us consider one of the images as the reference
image. The registration process aims to determine the suitable spatial transfor-
mation that deforms each of the other images, such that it becomes as similar
as possible to the reference image.

Although this problem seems relatively easy to address, its numerical reso-
lution faces significant technical and practical issues [1]. Firstly, this problem
is, in general, ill-posed according to Hadamard. This means that the existence
and uniqueness of the solution are not guaranteed, or the behaviour of the
solution may not depend continuously on the initial conditions. Secondly, the
choice of the dissimilarity measure, of the deformation model and of the opti-
mization method entails a compromise between the efficiency of the algorithm
and the richness of the description of the solution.

This compromise requires a good undestanding of the acquisition process
and the specific application. Furthermore, even when the problem is finally
well-posed, it is often ill-conditioned. Roughly speaking, this tells us that
small changes in the data induce significant changes in the results. To tackle
these issues, many registration algorithms have been proposed. They are es-
sentially distinguished by the way of choosing the dissimilarity measure, the
transformation space and the optimization method. A general review of these
algorithms is available in the surveys: [1], [2], [3] and references therein.

These days, rigid registration methods that use rotations, translations and
affine transformations are well understood. At the same time, almost all the
algorithms that use non-rigid transformations and that deform local regions
within the image, encounter many challenges. These challenges are related to
topology preservation, ill-posedness, ill-conditioning, inverse consistency, com-
puting time and storage memory demands. These issues are even more critical
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for 3D/4D high-resolution images.
For these reasons, many algorithms have been developed within the Demons

algorithms proposed by J-P Thirion [4]. Demons algorithms are popular and
widely used in professional contexts thanks to their linear complexity. How-
ever, for high-resolution and/or high-dimensional images (3D or even 4D), this
linear complexity may be unsatisfactory for clinical or therapeutic purposes.
One way of accelerating these algorithms is the use of super computers that
can do several computations in parallel and in a record time. But the cost of
such machines remains high and unaffordable for many hospitals. Currently,
reseachers are turning to other, less costly techniques such as the use of certain
computer architectures (for example, the CUDA from NVIDIA or Radeon HD
from AMD) [5] and through development of more efficient mathematical algo-
rithms. It is with this last perspective in mind that this research is oriented.

Scope and main contributions
This work aims to tackle the non-rigid and nonparametric registration prob-

lem for high-resolution 3D medical images, through the development of numeri-
cal optimization algorithms which offer a good compromise between complexity
and speed. To address this large-scale problem, we may refer to methods that
allow to reduce the storage and the cost of numerical operations. Let us assume
a d-dimensional array (d ≥ 3) with n entries in each direction. The data size of
such an array is N = nd. For n sufficiently large (e.g, n = 103), even linear com-
plexity O(N) = O(nd) might be far beyond any computer capacity [6, p.vii].
For this purpose, the task is to speed up the process with techniques that offer
possibilities of replacing a linear complexity O(N) with a quasi logarithmic
complexity O(d log(n)). This supposes the use of a compressed representation
of data with a given accuracy ε. Indeed, over the past few years in the field of
scientific computing, compression techniques for high-dimensional data using
suitable data sparse representation have been developed [6]. These representa-
tions, generally known as numerical tensor representations or numerical tensor
formats, are inspired by hierarchical matrix techniques, variables separability
and low-rank approximations. They allow the handling and solving, in an ef-
ficient way, of some numerical smooth problems with high-dimensional data
(see [6], [7], [8] and [9]). According to [6], under suitable conditions, some of
these representations (hierarchical tensor format and Tensor-Train format) are
stable and hopefully allow a reduced complexity fromO(nd) toO(d log(n)). For
numerical resolution of large optimization problems, such as systems encoun-
tered in 3D image registration, iterative algorithms such as the Preconditioned
Conjugate Gradient (PCG), the Minimal Residual method (MINRES) or the
Generalized Minimal Residual methods (GMRES), can be adapted to integrate
these numerical tensor approaches, see [9]. It is in this perspective that this
research project has been conducted. The two main contributions of this work
may be summarized as follows.

x



Design of appropriate preconditioners
In this work, we provide an analysis of certain preconditioners used to solve

large linear systems with Symmetric Positive Definite matrices arising in medi-
cal image registration (see Chapter 4). We highlight why and how the Tcheby-
chev polynomial preconditioner is well suited for such problems (see Section 4.4
and Section 4.4.3). We further illustrate this by numerical experiments in Sec-
tion 4.6.

Extension of the FAIR package
The Flexible Algorithms for Image Registration (FAIR) package was pro-

posed by Jan Modersitzki [10]. Although this package provides general algo-
rithms for any image (in dimension 2D and 3D), it focuses on medical images
in 2D. FAIR package uses the PCG-solver with Jacobi, Gauss-Seidel and in-
complete Cholesky preconditioning techniques to speed up and stabilize the
successive linear systems arising in the registration process. In this thesis, we
propose an extension of this package by providing an integrated and flexible
algorithm, FA4DMIR in Section 5.4 that allows to use, in addition to those
implemented in FAIR, polynomial preconditioners. In addition, this algorithm
allows a PCG solver in Tensor-Train format with low-rank preconditioners (see
Section 5.3.5). The goal is to address larger images, in particular, 3D medical
images for which there may be a constraint on computing time and thus a
compromise between speed and precision. Numerical experiments in Chapter 6
illustrate effectiveness of this algorithm on 3D medical images compared to
those implemented in FAIR.

Organisation of the thesis
This work is subdivided as follows:
Chapter 1 explains different steps of the registration process. It provides

an overview of the deformable medical image registration problem, from images
acquisition to the registration results, but does not address the interpretation
of the results.

Chapter 2 basically recalls numerical optimization methods, while the fo-
cus is on line-search strategy and the Conjugate Gradient methods that are
used in the final algorithm.

Chapter 3 presents the test environment used to compare certain linear
system solvers and certain registration algorithms.

Chapter 4 presents a discussion on some matrix preconditioning techniques
for large and sparse linear systems. Some preconditioners are explained and
compared. In the final algorithm, the user is allowed to call one of the proposed
preconditioners, depending on their context and need.

Chapter 5 addresses the numerical tensor formats, where the focus is on
low-rank approximations and linear system solvers in Tensor-Train format. The
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CONTENTS

last section of this chapter presents the proposed algorithm for Medical Image
Registration Problems that allows to use some preconditioner studied in previ-
ous chapter. This include the possibility of solving the linear system in tensor
format.

Chapter 6 presents some numerical experiments where three algorithms
are compared via the perfomance profile tool and some simulations on certain
images are presented. A short conclusion ends the work.

xii



Chapter 1
Deformable medical image
registration

In this chapter, imaging techniques and deformable image registration meth-
ods are presented. The intention is to enable the reader to understand concepts
and strategies behind the main registration algorithms while underlying these
concepts and their mathematical formulations. Medical image registration has
a wide range of potential applications [11, p.12]. These applications include
combining information from multiple imaging modalities, like for example, re-
lating functional information to structural information within images.

Image registration is also used for monitoring changes in shape, size, or
intensities over time. Another application consists of relating preoperative im-
ages and surgical plans to the physical reality of the patient in the operating
room during image guided surgery (or in the treatment suite during radiother-
apy). Finally, registration is used in relating an individual structural image to
a standardized atlas.

1.1 Image processing: an overview
The dramatic increase in availability, diversity and resolution of medical

image devices over the last few years calls for modern image processing tech-
niques. This challenge has been addressed in the field of artificial vision via
mathematical models and algorithms whose simulations may be regarded as
the end products. However, it should be noted that medical images suffer from
one or more of the following imperfections: low resolution (in the spatial and
spectral domains), high level of noise, low contrast, geometric deformations or
the presence of imaging artefacts, etc. [12, p.7].
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Deformable medical image registration

Most of these imperfections can be inherent to the imaging modality or the
results of a deliberate trade-off during acquisition. For example, X-ray images
offer low contrast for soft tissues, ultrasound produces very noisy images and
metallic implants will cause imaging artefacts in magnetic resonance images
(MRI images). Also, to get finer spatial sampling, a longer acquisition time
may be needed, while this increases the probability of patient movement and
thus blurring. Here are five key tasks that have been performed to support the
eye-brain system of the medical practitioners, for image analysis.

Segmentation

Image segmentation is a process whereby a structured visual representation is
created from an unstructured or less structured image. In current formulation,
the image segmentation aims to partition an image into homogeneous regions
that are semantically meaningful and easy to identify [13].

Image Smoothing

Smoothing is used in order to reduce noise and useless details within the im-
age, so as to simplify its analysis. This action of simplifying an image has to
preserve all important information and avoid too much distortion [14].

Registration

Registration is the process whose aim is to find a spatial transformation that
aligns multiple data sets in a common spatial space each other. This is the
topic of this thesis.

Visualization

Visualization of medical images includes the technological environment in which
image-guided procedures can be displayed. It allows the determination and
highlighting of information related to anatomical and functional properties of
tissues, often affected by disease [12] ( see also [15]). In medical image pro-
cessing, one refers to an anatomical reference providing orthogonal plans as
reference.

In Figure 1.1 from [16] the configuration of these plans is shown. Three
orthogonal plans are distinguished: axial (transverse) plan, coronal (frontal)
plan and sagital plan.

Simulation

Medical images play another important role due to simulations. They are used
to prepare, control and validate a specific therapy. Today’s simulations are
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Figure 1.1: Anatomical reference plans. Axial plan (A), coronal plan (B) and
sagittal plan (C) [16].

often used as an intermediate step between diagnosis and therapy itself. For
example, a virtual patient or organ may be built to simulate results of a given
therapy, an evolution of an artificial pathology or to control surgery [17].

This thesis has a focus on the registration problem. However, it is common
to integrate all these technologies into complete and coherent image-guided
therapy delivery systems. In such systems, the ultimate user is a human who
judges the utility of the procedure and who tunes the parameters [12].

1.2 Introduction to medical imaging
According to [12], medical images are acquired by very sophisticated tech-

niques that cross all biological scales beyond the visible photographs and mi-
croscopic images of the last century.
The evolution of medical imaging technology allows the organization of ob-
servations of biophysical phenomena and an increased ability to apply new
processing techniques. Moreover, today’s medical imaging techniques allow
multiple medical data to be combined into complex mathematical models of
physiological functions.

These medical imaging provide information on diverse physical phenom-
ena, such as the time variation of haemoglobin deoxygenation during neuronal
metabolism, or the diffusion of water molecules through and within tissues.
Medical image analysis is mainly used in the therapeutic process: Image-
Guided Therapy (IGT) and Image-Guided Surgery (IGS) for localization, tar-
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geting, monitoring, and control. For example, a doctor can non-invasively
monitor the healing of a damaged tissue or the growth of a brain tumor, and
determine an appropriate medical response.

Many different imaging techniques are used for clinical purposes. They are
based on different physical principles that can be more or less suited to a specific
pathology (see [18]). Two families of modalities are distinguished: structural
and functional modalities. These modalities are sometimes considered as com-
plementary when they offer different insights into the same underlying reality.
For example, one may fuse a functional and a structural image to localize a
tumor with precision.

Figure 1.2a illustrates, in its first row, functional images (coronal, sagital
and axial slices), where a tumor is in activity. To localize the tumor with pre-
cision, structural images are needed (they are visualized in the second row).
Finally, a registration is needed to fuse these images and localize the tumor.
This is visualized at the third row (images from [19]). Further, hands images
from FAIR of Jan Modersitzki [10] illustrate the fusion of monomodal registra-
tion results. The top image in 1.2b is a fixed image (with red landmarks), the
middle image is an image (moving image with green landmarks) to be deformed
and the bottom image is the fusion of these images after registration.

Structural or anatomical modalities

The anatomical modality provides informations about the anatomical struc-
ture. This modality includes, but is not limited to:

Radiography imaging (from X-rays)

X-ray imaging is the oldest medical imaging 1. For this, the patient is po-
sitioned between an X-ray tube that produces a set of electromagnetic waves
(X-rays of high-energy photons) and an X-ray detector. On the X-ray detector,
the X-rays are reconstructed within a degree of attenuation depending on the
properties of each scanned point of the patient’s body. These different attenu-
ations allow different organs of the patient to be distinguished [12].

Ultrasound (US) imaging

Ultrasounds are able to distinguish subtle variations among soft and fluid-
filled tissues. With this technique, high frequency sound waves are sent by a

1. From 1895, X-rays were discovered by Roentgen, but at that time it was not understood
that these X-rays are ionizing and that high doses are dangerous [12].
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transmitter into the body. There, they produce different patterns of echoes,
bouncing off the different organ tissues. Acquired by a receiver, these echoes are
forwarded to a computer which translates them into an image. As opposed to
X-rays, ultrasound techniques are not dangerous for organ tissues with ionizing
radiation. However, they produce very noisy images and require preprocessing
to distinguish very small features such as cysts in breast-like imagery.

Computed Tomography (CT) imaging

CT images are 3D reconstruction of 2D X-ray radiography, reconstructed
by computers from 2D projections using the Radon transform 2. These 2D
radiographs are acquired by rotating the X-ray tube around the body of the
patient. Between bones and soft tissues, CT images offer high contrast while
they offer low contrast between different soft tissues. To improve the image
quality, a chemical solution (opaque to X-rays) can be injected into the patient
to increase the contrast between tissues.

The difference between CT scan and X-ray imaging is that waves produced
by X-ray are emitted in one direction while those produced by CT-scan imag-
ing are emitted in all possible directions. It is important to note that as CT is
based on multiple radiographs, the effects of ionizing radiation should be con-
sidered. However, with modern devices it is claimed that the dose is sufficiently
low that there should be no major health risk issue.

Magnetic resonance imaging (MRI)

In this type of imaging, hydrogen nuclei of water are magnetically excited
in the body and the image reconstruction relies on their relaxation properties.

Following [12], the relaxation process is briefly described as follows: the pa-
tient is exposed to a burst of radio-frequency energy which elevates the energy
state of the nuclei in the presence of a magnetic field. Then, molecules shed
this energy into their surroundings while they undergo their normal micro-
scopic tumbling. Different tissues provide different relaxation rates that allow
to construct the image. MRI techniques are said to be harmless to patients
because they use strong magnetic fields and non ionizing radiation in the radio-
frequency range. Tissue contrasts within MRI techniques are better than those
from X-rays and provide higher-quality images, especially in brain and spinal
cord scans.

2. Let f(X) = f(x, y) be a compactly supported continuous function in R2. The Radon
transform Rf is a function defined on the space of straight lines L in R2 by the line integral
on each such line: Rf(L) =

∫
L
f(X)|dX| [20].
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Functional modalities

This modality provides insight into the metabolism of the underlying organs.
They include nuclear medecine modalities (Scintigraphy, Single Photon Emis-
sion Computed Tomography (SPECT), Positon Emission Tomography (PET)),
Functional Magnetic Resonance Imaging (fMRI) and others related.

Positon Emission Tomography (PET)

Two types of 3D nuclear medicine imaging studies include the Single Photon
Emission Computed Tomography (SPECT) and the Positron Emission Tomog-
raphy (PET) [26, p.15]. In general, the SPECT studies use radiotracers that
emits photons while decaying and the PET studies use radioactive isotopes
that decay by positron (also called positons, they are anti-electrons) emission.
In fact, radioactive isotopes are injected into the patient that emits positons.
The collision between positons and electrons produces pairs of gamma ray pho-
tons moving in different directions but having the same energy. The origin of
the photon pair can then be determined from their positions delay. Thus, if
one uses radioisotopes that have different properties for different tissues, this
modality allows pathologies to be visualized at the much finer molecular level.
However, the radiation dose in PET imaging is similar to a CT scan. Image
resolution may be poor and need preprocessing, see Figure 1.3d (see [21]).

Functional Magnetic Resonance Imaging (fMRI)

This functional modality is a refinement of the structural MRI that measures
temporal variations and diffusion of water molecules in an anisotropic environ-
ment. For more details see [12, 22] and references therein.

The most used image modalities are illustrated in Figure 1.3, where samples
of different modalities are shown. Although CT, US and MRI modalities are
all used for structural images, one can see that CT scan (see (1.3b)) images
are better for less soft tissues (for example, bone injuries, chest problems).
On the other hand, MRI-images (see (1.3c)) are well suited for soft tissues
(for example: pain in muscles, tendons or ligament injuries and brain tumors).
However, MRI imaging is expensive and time consuming. For this reason, US
imaging (see (1.3a) is more often used. For functional images, PET-images
(see (1.3d)) are less expensive but their resolution is not satisfactory. Many
alternatives have been proposed within fMRI (see 1.3e) and mixed imaging
such as PET-CT imaging (see 1.3f).

Properties of main imaging modalities are summarized in Table 1.1. In this
table, we present the main characteristics that can influence either the inter-
pretation of registration results or certain behaviours in numerical treatment.

6



Introduction to medical imaging

(a) Functional images at the top row, and structural
images at the middle row are fused using registra-
tion. The bottom row shows results of the fusion
and allow to localize the tumor with precision [19]. (b) Monomodal MRI

hands fusion after
registration with
landmarks [10].

Figure 1.2: Multimodal registration (images for tumor are multimodal: CT
and PET) and monomodal registration (hands images are monodal: all MRI)
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(a) US-image (b) CTscan-image (c) MRI-image

(d) PET-image (e) US-image (f) PET-CT-image

Figure 1.3: Illustration of most used medical image modalities. Images from
[23].
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CT MRI PET SPECT US
Main
charac-
teris-
tics

Scan body organs
using X-rays.

Produce ”slices”
that represents
human body
through applying
magnetic signals

Use nuclear imag-
ing techniques and
use tracers for dis-
ease diagnosis

Non invasive
based tech-
nique where
cross-sectional
images radio-
tracer within
human body are
structured

Produce quantitative
& qualitative diag-
nostic information
via sound waves
based techniques
that possesses high
temporal frequencies

Advan-
tages

Wide field of view

Detection of even
subtle differences
between body
tissues

Eliminates super-
position of images
from overlapping
structures

High spatial reso-
lution

High penetration
depth

Clinical transla-
tion.

High resolution,

Able to show
anatomical details

Does not use ioniz-
ing radiation

No short term ef-
fects are observed

Used to distinguish
between benign
and malignant
tumors in a single
imaging

Can image bio-
chemical and
physiological
phenomena

High sensitivity

High penetration
depth

Images free of
background

Confirm neu-
rodegerative
diseases

High sensitiv-
ity(but lower
that PET)

High penetration
depth

High spatial resolu-
tion

Low cost

Safety profile

Non invasive (no noo-
dles or injections)

widely available

No radiation

Easy to use

Disadvan-
tages

Limited sensitivity

Radiation

High dose per ex-
amination

Cost

Non specificity for
tissues

Poor soft tissue
contrast

Strong magnetic
field disturb

Can not be
used in patients
with metallic
devices, such as
pacemakers

Low throughput

Cost

Limited spatial
resolution

Radiation

High costs

Most expensive
technique

Motion artifacts
are the serious
problems

Lower resolution
compared to CT
and MRI

Interpretation is
very challeging

Blurring effects
are produced

Attenuation
compensation
is not possible
due to multiple
scattering of
electrons

Fails to predict
neuropsy-
chological
deficits

Limited spatial
resolution

Radiation

Operator dependent

Imaging limited to
vascular compartment

Difficult image pf
bone and lungs

Limited resolution

Attenuation can re-
duce the image’s res-
olution

Reflected very
strongly on passing
from tissue to gas or
vice versa

Contrast High High

Cost Intermediate Intermdiate High High Low

Radiation
source
and
type

X-rays(ionizing) Electric and Mag-
netic Fields (non
ionizing)

Positron(ionizing) photons(ionizing) Sound waves (non
ionnizing)

Table 1.1: Comparison between the main medical imaging techniques. Inspired
by [18, p.111-112, Table 1]
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1.3 Medical Image Registration Problem (MIRP)
In this section, concepts of image, grid and image registration are presented.

Spline cubic interpolation and three main key steps of the registration process
are highlighted: dissimilarity measure, transformation models and the opti-
mization method. The optimization step will be the focus in this thesis. This
section is mainly inspired by publications of Jan Modersitzki within [10, 24].

1.3.1 Image and grids
Given a spatial domain Ω ⊂ Rd, an image is considered as a mapping which

assigns to every spatial point x belonging to Ω, a gray value b(x) ∈ R. This
gray value, considered as the amount of energy from a light wave at the position
x, is called the image intensity at x or the voxel value (pixel value in 2D). The
image intensity being a non negative real value, the image is formally defined
in the following way [24].

Definition 1.1 (Image)
Given d ∈ N, a function b : Ω ⊂ Rd → R is a d-dimensional image

if
1. b is compactely supported,
2. 0 ≤ b(x) <∞, ∀x ∈ Rd,
3. for k > 0,

∫
Rd b(x)kdx is finite.

The set of d-dimensional images is denoted by

ImgΩ(d) = {b : Ω ⊂ Rd → R, b is a d-dimensional image}. (1.1)

The spatial dimension d of the image is generally 2 or 3. The set Img(d) of all
d-dimensional images is a differentiable manifold [24].

In practice, an image is determined through the intensity values at each
spatial point x ∈ Rd. As the space Rd is infinite, the stored images (these
are discrete images) are samples of these continuous functions at some specific
points.

In the following, a discrete image will be denoted by dataI and a continuous
image obtained by interpolation will be denoted I(x) or simply I. Here, only
cubic spline interpolation is used because it is, at least, twice differentiable and
thus useful for fast continuous optimization methods. The interested reader is
referred to [10] and references therein for other interpolation techniques.
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Numbering, cells and Grids

Consider I : Ω ⊂ Rd −→ R, a d-dimensional image on a d-dimensional do-
main Ω = ×dl=1[ω2l−1 , ω2l ]. It is assumed that the support 3 of I is included in
the domain Ω, and we shall denote the boundary of Ω by ∂Ω. Image intensities
are sampled on some specific points of the domain. The set of all these points
is called a grid as defined in the following definition.

Definition 1.2 (Grid points, Grid, Grid vector)

Let d ∈ N, n(1), . . . , n(d) ∈ N, be some numbers and 1 ≤ jl ≤
n(l), 1 ≤ l ≤ d, be some indices. The points

xj1,...,jd
= (xj1 , . . . , xjd )T ∈ Ω ∪ ∂Ω (1.2)

are called grid points. These are points where intensities of the
image are sampled. A d-dimensional grid array,

X =
(
x
j1,...,jd

)
jl=1:n(l), l=1:d

∈ Rn
(1)×...×n(d)

, (1.3)

is the array of all the grid points of the image. It represents an
n(1) × . . . × n(d) grid, that is the set Ωd = {xj , j = 1 : N} where
N =

∏d
l=1 n

(l). Numbers 1 ≤ j ≤ N are related to the index vectors
(j1, . . . , jd) ∈ Nd, by the one-to-one lexicographical ordering given
by

j =
d−1∑
ν=1

(jν+1 − 1)
ν∏
µ=1

n(µ) + j1. (1.4)

The grid vector is the unfolding vector X = (xj)j=1:N ∈ RN .

Relating this to interpolation techniques, one needs to know how the inten-
sities are positioned in the spatial domain. Two types of grids are presented
here: the cell-centered grid Xc (c for centered) 4 and the nodal grid Xn (n for
nodal).

3. A compact set where I(x) is not zero is called support of I.
4. In this work, the term cell is used for both segments, cells and boxes.
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Definition 1.3 (Cell-centered and nodal grids)
Consider Ω = ×dl=1[w2l−1, w2l]. A cell-centered grid is a partitioning of
the space into congruent cells or boxes. Mathematically, it is expressed by

Xc =
{
xj = (ξ(1)

j1
, . . . , ξ

(d)
j
d

) ∈ Rd, jl = 1 : n(l), l = 1 : d
}
, (1.5)

where

ξ
(l)
j = ω2l−1 + (j − 0.5)h(l), and h(l) = (ω2l − ω2l−1)/n(l). (1.6)

The d-dimensional intervals

cellj = {xj = (x(1)
j , . . . , x

(d)
j ) ∈ Rd| − h(l)

2 < x
(l)
j − ξ

(l)
j <

h(l)

2 }

are called cells, while the cell centers are xj = (ξ(1)
j1
, . . . , ξ

(d)
j
d

).
A nodal grid is defined by spatial nodes given by

Xn =
{

(h(1)j1, . . . , h
(d)j

d
) ∈ Rd, jl = 0 : n(l), l = 1 : d

}
. (1.7)

Cell-centered and nodal grids are illustrated in Figure 1.4. The cell-centered
grid illustrated in Figure 1.4a, considers that intensities are sampled at centers
of given boxes or intervals (red points). One alternative of the cell-centered grid
is the nodal grid 1.4b. In the nodal grid, intensities of the image are considered
as a sample at the mesh points (red points).

Cell j

x1

x
2

x
3

(a) 3D cell-centered grid: intensi-
ties are sampled at the center of
the boxes (red points)

Cell j

x1

x
2

x
3

(b) 3D nodal grid: intensities are
sampled at the mesh points (red
points)

Figure 1.4: Cell-centered and Nodal grid models

In most cases, one may be interested in connecting grid concepts and num-
bering to discretization of partial differential equations (PDEs). This has to
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take into account the boundary conditions or initial conditions. For this pur-
pose, three types of grids are defined below:

Definition 1.4

Let d ∈ N, Ω = [0 1]d, and some positive integers n(1), . . . , n(d). For 1 ≤
jl ≤ n(l), 1 ≤ l ≤ d related to j by the relation (1.4), the grid points

xDj =
(

j1
n(1) + 1

, . . . ,
j
d

n(d) + 1

)T
, (1.8)

xNj =
(

2j1 − 1
2n(1) , . . . ,

2j
d
− 1

2n(d)

)T
, (1.9)

xPj =
(
j1 − 1
n(1) , . . . ,

j
d
− 1
n(d)

)T
, (1.10)

constitute the grids ΩD, ΩN and ΩP called respectively Dirichlet, Neu-
mann, and Periodic grids.

One can observe that, for Ω = [0 1]d cell-centered grids are Neumann grids.
In this work, the focus is on these Neumann grids.

1.3.2 Cubic spline interpolation
The objective is to find a continuous function I(x) called interpolant, defined

everywhere in the image domain Ω using known samples in this domain (cell-
centered points). This function interpolates the measurements dataI ∈ RN at
some cell-centers xj , j = 1 : N and it is assumed that the function vanishes
outside the image support domain. In variational settings, we minimize the
distance

ED,I(I(x), dataI) = 1
2‖I(x)− dataI‖2

RN
, (1.11)

under the constraints

I(xj) = dataI(j), j = 1 : N and I(x) = 0, ∀ x /∈ Ω. (1.12)

The condition (1.12) is called interpolation conditions. In this work, the con-
sidered function is a cubic spline. The unidimensional case is explained here,
while the multidimensional case is a direct generalization of the unidimensional
case, grace to Kronecker product [10].

The function from cubic spline interpolation is a linear combination of cubic
spline bases functions (B-splines). That is

I(x) =
N∑
j=1

cjb
j(x), (1.13)
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where b0(x) is called ”mother” spline and is given by:

b0(x) =


(x+ 2)3 −2 ≤ x < −1
−x3 − 2(x+ 1)3 + 6(x+ 1) −1 ≤ x < 0
x3 + 2(x− 1)3 − 6(x− 1) 0 ≤ x < 1
(2− x)3 1 ≤ x < 2
0 everywhere else,

(1.14)

and the other B-splines are defined by translation of b0(x) (also denoted simply
b(x)). That is, for j ∈ N,

bj(x) = b0(x− j), ∀x ∈ R. (1.15)
We now need to know the intensity at any point in the domain. From (1.6),
we have ξ(1)

j = ω1 + (j − 0.5)h(1) for l = 1 and we may omit l = 1 for this
unidimensional case. In addition, setting Ω = [0 1]), the cell centers are defined
by ξj = h(j − 0.5). Let us apply a linear transformation ξ → x = ξ/h + 0.5.
With this transformation, cell centers become xj = j, j = 1, . . . , N(= n(1))
while non cell centers x ∈ R can be writen in the form

x = j + η, 0 < η < 1, (1.16)
where j is the greatest integer that is less than x. As b(x) = 0 ∀x /∈ [−2, 2[
for the jth cell, bj(x) 6= 0 only if x ∈ [j − 2, j + 2[. That is, at least four
basis functions will not vanish in each cell. For each cell j, the function (1.13)
becomes:
I(x) = cj+2b

j+2(η − 2) + cj+1b
j+1(η − 1) + cjb

j(η) + cj−1b
j−1(η + 1). (1.17)

To determine the coefficients c = (c1, . . . , cN ), one evaluates (1.17) at the N
cell-centers while imposing the interpolation constraints (1.12), see [10]. Since
one can write any point as a sum of an integer and a reminder (see 1.16), the
evaluation of (1.17) gives rise to a matrix B of size N ×N :

B = (bkj )j=1:N,k=1:N =


4 1

1
. . . . . .
. . . . . . 1

1 4

 ∈ RN×N . (1.18)

The linear system
Bc = dataI (1.19)

remains to be solved. Its solution gives the coefficients c.
In the multidimensional case, we assume the separability 5 condition. Then,

the interpolation function is a Kronecker product of unidimensional functions

I(x) =
n(d)∑
j
d

=1
· · ·

n(1)∑
j1=1

cj1,...,jd b
j1(x(1)) · · · bjd (x(d)), (1.20)

5. Here, a multivariate function is considered separable if its Hessian is diagonal. This
allows to approximate the multivariate function by Kronecker product of univariate functions.
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where x = (x(1), . . . , x(d)).
Let us recall that the Kronecker product of two matrices A ∈ Rn(1)×n(2)

and B ∈ Rm(1)×m(2) is computed by :

A⊗B =

 a11B . . . a1n2B
...

. . .
...

an11B . . . an1n2B

 ∈ Rn
(1)m(1)×n(2)m(2)

, (1.21)

In this case, I(x) in (1.20) can be written :

I(x) = I(d)(x)⊗ . . .⊗ I(1)(x), (1.22)

and it can be shown (see [10]) that the matrix of the linear system to be solved
writes B = B(d) ⊗ . . .⊗B(1).

This cubic spline interpolation is known to be the best compromise between
efficacity (in term of computation cost) and differentiability (required for using
variational methods for optimization). However, one can observe oscillation
behaviour even where data may be constant. This means that, the obtained
continuous image by this interpolation is not sufficiently regular and needs to
be regularized.

Convolution methods may be used to regularize this function, using prede-
fined kernels. But the drawback of such methods is that they do not take into
account local information within the image. All points are equally treated. The
preferred methods use local information such as the gradient or the curvature
norm at each point. These are the regularization methods used in this work.

1.3.3 Regularization of the interpolant
The regularization of the interpolant aims to deal with the question of

whether we need a function that fits the data perfectly but may be less regular
or a more regular function that matches the data as well as possible. We may
not need a perfect fit of the data since these data are contaminated by noise
and are samples of more regular phenomena.

One way of regularizing the interpolant is to constrain the bending energy
of the interpolant

ER,I(I(x)) = 1
2

∫
Ω

(I”(x))2dx, (1.23)

to be minimized [10]. Here I”(x) expresses the second derivatives of the inter-
polant I(x). The interpolation problem (1.11) becomes :

min
I
ER,I(I(x)) subject to ED,I(I(x), dataI) = 0. (1.24)
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In this case, the fit of the data is a constraint and the regularity is relaxed. On
the other hand, one can insist on regularity and relax the fit. That is to solve
the problem

min
I
ED,I(I(x), dataI) subject to ER,I(I(x)) = 0. (1.25)

The regularization used in this work is a compromise obtained when (1.24) and
(1.25) are combined. That is to solve the problem

min
I

(ED,I(I(x), dataI) + λER,I(I(x))) , (1.26)

where λ ≥ 0 is a weighting parameter, called Tychonoff parameter, that allows
a balance between data fitting and regularity.

Since the function I(x) is parametrizable, the computations can be per-
formed in the parameter space to get coefficients of the regularized interpolant.
Thus, instead of solving (1.19), one minimizes (1.26) with,

ED,I(I(x), dataI) = 1
2‖Bc− dataI‖2

RN
(1.27)

and
ER,I(I(x)) = 1

2‖c‖
2
M = 1

2cTMc. (1.28)

The matrix M is computed evaluating

Mj,k =
∫

Ω
b”j(x)b”k(x)dx 1 ≤ j, k ≤ N. (1.29)

This can be seen by minimizing (1.23) in the L2-norm. Coefficients c are thus
solution of the minimization problem

min
c

(
1
2‖Bc− dataI‖2 + λ

2 cTMc
)
, (1.30)

whose minimizer is the unique solution of

(BTB + λM)c = BT dataI. (1.31)

In a more general approach, the matrix M can be replaced by an arbitrary
symmetric positive semidefinite weighting matrix P . This gives

(BTB + λP )c = BT dataI, (1.32)
that also allows a unique solution. When P is chosen to be the identity matrix
IN , the regularization is the so-called Tychonoff regularization. The Tychonoff-
Phillips regularization uses P = DTD where

D =

−1 1
. . . . . .

−1 1

 ∈ RN+1×N (1.33)
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approximates the first derivatives. P = M is theoretically justified since the
optimization is in the spline space (function that minimizes the bending en-
ergy).

In multidimensional settings, the generalization is direct using Kronecker
products: B =

⊗d
j=1B

j , P =
⊗d

j=1 P
j , M =

⊗d
j=1M

j and C =
⊗d

j=1 cj ,
and solving

(BTB + λP)c = BT dataI. (1.34)

1.3.4 Derivatives of the interpolant
The interpolant I(x) given by (1.20) can be written using the separability

assumption:

I(x) =
n(d)∑
j
d

=1
· · ·

n(1)∑
j1=1

cj1,...,jd b
j1(x(1)) · · · bjq (x(q)) · · · bjd (x(d)). (1.35)

Then, its first order partial derivatives are obtained via derivatives of B-splines
by the formulae

∂qI(x) =
n(d)∑
j
d

=1
· · ·

n(1)∑
j1=1

cj1,...,jd b
j1(x(1)) · · · (bjq (xq))′ · · · bjd (x(d)), (1.36)

where (bjq (x(q)))′ may be computed from (1.14). From discrete point of view,
let us consider the cell-centered grid with points xj ∈ Rd, j = 1 : N , that is
xj = (x(1)

j , . . . , x
(d)
j ). But all these coordinates can be stored in a long vector

X ∈ RNd of the form :

X = [x(1)
1 , . . . , x

(1)
N , x

(2)
1 , . . . , x

(2)
N . . . ;x(d)

1 , . . . , x
(d)
N ]T . (1.37)

In this formulation, the interpolant can be seen as the function I: RNd →
RN . It is defined such that its jth component is given by Ij(x) = I(xj) =
I(x(1)

j , ..., x
(d)
j ) and the Jacobian matrix obtained by the relation (1.36) is :

dI(x) =
[
∂Ij(x)
∂x(k)

]
j=1:N ; k=1:Nd

∈ RN×Nd, (1.38)

obtained by the relation (1.36). Let us note
∂I

(k)
j (x)

∂(x(k)
j )

the derivatives of the kth

component with respect to the jth variable in coordinate k, j = 1 : N, and k =
1 : d. Since the jth component Ij(x) depends only on xj = (x(1)

j , ..., x
(d)
j ), the

Jacobian is a block matrix with diagonal blocks of the form:
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dI(x) =



∂I
(1)
1 (x)

∂(x(1)
1 )

∂I
(2)
1 (x)

∂(x(2)
1 )

. . .
∂I

(d)
1 (x)

∂(x(d)
1 )

. . . . . . . . .
∂I

(1)
N (x)

∂(x(1)
N )

∂I
(2)
N (x)

∂(x(2)
N )

. . .
∂I

(d)
N (x)

∂(x(d)
N )


.

1.3.5 Variational formulation of the MIRP

Definition 1.5
The image registration problem aims to find a suitable spatial transforma-
tion that deforms one or more images such that, each transformed image
becomes as similar as possible to one fixed image, considered as the refer-
ence image.

Formally, consider If and Im, two d-dimensional continuous images (obtained
after interpolation). Let If be fixed, while Im is under deformations. The
registration problem aims to solve the minimization problem :

Φ̂ = argminΦ∈T ED(If , Im,Φ), (1.39)

where ED is a criteria that quantifies the dissimilarity between the two images
If and Im while T , the search space, is a set of admissible transformations
Φ : Rd → Rd. Then the functional to be minimized writes

F(Φ) = ED(If , Im,Φ). (1.40)

In this thesis, the “discretize and then optimize” approach is used. It con-
sists of replacing the continuous problem by a discrete problem taking into
account the required smoothness (regularization). Then, appropriate optimiza-
tion methods lead to a solution sufficiently close to that of the continuous prob-
lem. The Medical Image Registration Problem (MIRP) is an iterative process,
as shown in Figure 1.5, where the major work is done in the optimization loop
[26]. In this diagram, we propose that the fixed image be interpolated once.
This is not important and may be skipped since we neither use derivatives of
the fixed image nor its continuous form. However, as we use regularized in-
terpolation, this can help to regularize and thus to reduce noise in the image.
Conversely, deforming the moving image is equivalent to re-interpolating it in
the deformed grid. This is the reason why it is interpolated after each new
transformation from the optimization loop. Iterations are stopped when the
dissimilarity measure becomes small with respect to some predefined threshold.
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Fixed Image

Moving Image

Interpolator

Interpolator

Moving Image

Dissimilarity measure

Optimizer

Transformator

Figure 1.5: The MIRP considered as an itevative process.

The problem (1.39) is ill-posed according to Hadamard 6, because the unique-
ness of its solution is not guaranteed. Indeed, one wants to determine a vector
Φ(x) ∈ Ω ⊂ Rd from scalar information Im(x), ∀x ∈ Ω ⊂ Rd. Hence, one
solves an underdetermined problem. Therefore, there is a need to add an-
other term that regularizes the problem, adding information about the sought
transformation (see for example [10], page 118, [27] and [28]).

1.3.6 Regularizing the problem
The regularization of the interpolant is addressed in subsection 1.3.3. Here,

the same idea continues but the condition of regularity is rather imposed on a
transformation that is not parametric. The regularization term ER is added to
the problem (1.39), such that it becomes well-posed. This leads to the problem:

min
Φ∈T

ED(If , Im,Φ) + λER(Φ), (1.41)

where λ ∈ R+ is the Tychonoff parameter, that defines the weight of the regu-
larity with respect to the dissimilarity measure. Thus, the cost function (1.40)
is formulated as

F [Φ] = ED(If , Im,Φ) + λER(Φ). (1.42)

The term ER(Φ) imposes the function Φ to be sufficiently regular, that is,
it should be bijective (and consequently invertible) and continuously differen-
tiable. In other words, we will choose in the space T only the transformations
that better satisfy the criterion of regularity defined by the regularization term
ER. In this work we focus on the transformations which minimize a certain
energy constructed from local information, within the gradient (the Jacobian
matrix) or the Laplacian ( See [28]).

6. See the mathematics encyclopedia https://www.encyclopediaofmath.org/index.php/
Ill-posed_problems.
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Different choices related to the dissimilarity criteria ED, to the set of trans-
formations T and the optimization strategy are allowed. These choices are
generally guided by the application at hand, as well as by the nature and the
methods of the images acquisition. This leads to several classes of registration
methods (see [1],[2]). In the following subsection, main dissimilarity measures
are briefly presented.

1.3.7 Dissimilarity measures in MIRP
Let us consider If and Im respectively the fixed and the moving images.

Many ways exist to measure dissimilarities within images. However, any dis-
similarity measure may depend on some assumptions about the relationship
between the concerned images [29]. The most used dissimilarities or similari-
ties in medical image registration are listed below (see [10] for more details).

The Sum of Squared Differences (SSD)

Let us assume that gray values of corresponding points in the grid also
correspond, that is

Im[x] = If (x), ∀x ∈ Ω.

This assumption is called the constancy assumption. With this the assumption
we can measure the dissimilarity by

E
SSD

D =
∫

Ω
(Im[Φ(x)]− If (x))2dx. (1.43)

Another measure of a such consideration is the Sum of Absolute value Differ-
ences (SAD) of intensities ESADD =

∫
Ω |Im[Φ(x)]−If (x)|dx. However, note that

this assumption is most reliable and applicable if images are captured under
the same conditions and, in general, with the same modalities.

Normalized Gradient Fields (NGF)

In practice, the constancy assumption after which gray values of corre-
sponding points are equal appears rather restrictive and not applicable for
multimodal images [29]. An extension should take into account that contents
of the moving image Im is also displayed by intensity changes expressed by the
image gradient ∇Im. Therefore, the image gradient has to play a dominant
role in dissimilarity measure. This leads to dissimilarity measures based on
gradients, with general assumption

∇Im[Φ(x)] = ∇If (x), ∀x ∈ Ω. (1.44)

Since the gradient is orthogonal to the level set L(c) = {x : Im(x) = c}, this
assumption can be interpreted as capturing the misalignment of level sets [10].
However, the gradient also measures the strength of change and this is not
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a desirable information for multimodal registration. Therefore, the assump-
tion (1.44) has to be replaced by

∇Im[Φ(x)]
‖∇Im[Φ(x)]‖ = ∇If (x)

‖∇If (x)‖ , (1.45)

assuming ∇Im[Φ(x)],∇If (x) 6= 0. Moreover, the image noise may expand by
the normalization step, to corrupt the reliable information given by the gradi-
ent field. A parameter η is needed, called edge parameter that determines a
reliable edge |∇Im| > η from those contaminated by noise |∇Im| < η. Noting
Im[Φ(x)] = Im, the normalized gradient of Im is then given by

n[Im] = n[Im, η] = ∇Im√
|∇Im|2 + η2

and the similarity measure writes

E
NGF

D =
∫

Ω
(n[Im]Tn[If (x)])2dx. (1.46)

If no bias is to be feared, the ideal situation is such that the two gradient fields
are aligned. This means one maximizes (1.46). However, maximizing (1.46) is
equivalent to minimizing

E
NGF

D
=
∫

Ω

1− (n[Im]Tn[If ])2dx. (1.47)

Therefore, one minimizes the misalignment of the two images by minimiz-
ing (1.47).

Normalized cross-correlation (NCC)

Another way of passing over the constancy assumption is to assume a linear
relationship between intensities of Im and If [29]. This point of view assumes
that a linear function f exists such that

Im[Φ(x)] = f(If (x)), x ∈ Ω. (1.48)

In this context, dissimilarities are measured by the cross-correlation between
the fixed image and a linearly transformed version of the moving image [10].
From the fact that

(Im[Φ(x)]− If (x))2 = Im[Φ(x)]2 − 2Im[Φ(x)]If (x) + If (x)2,

one can observe that the right hand side of the equation above is minimized
when its second term 2Im[Φ(x)]If (x) is maximized. Therefore, we are inter-
ested in the cross-correlation given by

〈Im[Φ(x)], If (x)〉 =
∫
Rd
Im[Φ(x)]If (x)dx.
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However, the transformation may enable scaling of the moving image and lead
to biased measures. The commonly used similarity measure to be maximized
is, therefore, the normalized cross-correlation:

NCC[Im, If ] = E
NCC

D [Im, If ] = 〈Im[Φ(x)], If (x)〉
‖Im[Φ(x)]‖‖If (x)‖ , (1.49)

where ‖Im‖ =
√
〈Im, Im〉 and If (x), Im[Φ(x)] 6= 0. In the minimization formu-

lation, one has to minimize ENCC

D = 1−NCC[Im, If ]2.

Normalized Mutual Information (NMI)

Mutual information is the most commonly used similarity measure in mul-
timodal image registration. With the observation that : “A combined version
of two misaligned images should be more complex than the combined version
of the same two images when they are aligned”( [29] p. 16), the main idea is
then to maximize the normalized entropy of the joint density of Im[Φ(x)] and
If (x) [10]. Let us define a histogram summarizing all possible correspondences
in a sequence of N pairs of intensities by

ρhist(t, r) = #{(Iif , Ijm)|Iif = t and Ijm = r}/n, i, j = 1 : N. (1.50)

This is the number of all voxels whose intensities are equal to t in If and equal
to r in Im. Given a histogram ρhist, its joint entropy H may be written as:

H[ρhist] = −
∑
t,r

ρhist(t, r)logρhist(t, r) = − 1
n

∑
i,j

logρhist(Iim, I
j
f ). (1.51)

Defining the marginal densities

ρhistIf
(t) =

∑
r

ρhist(t, r), and ρhistIm (r) =
∑
t

ρhist(t, r),

the normalized mutual information to maximize is measured by

E
NMI

D [ρhist] = H[ρhistIf
] +H[ρhistIm ]−H[ρhist]. (1.52)

See [10, 29] for more details on mutual information and normalized mutual
information measures.

Once the dissimilarity measure is chosen, we need to fix also the search
space T . This informs on the nature of the sought transformation. The most
used transformations in image registration are shortly recalled below.

1.3.8 Transformations in MIRP
The type of spatial transformation or mapping used to perfectly overly two

images is one of the fundamental characteristics of any image registration tech-
nique [2]. In this section, the most used transformations are presented briefly
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while the focus is on deformable or non-rigid and non-parametric transforma-
tions.

Definition 1.6 (Degree of freedom)
The degree of freedom (DOF) of a transformation is the number of
independent parameters needed to represent this transformation.

The degree of freedom also characterizes the transformation type. The
higher is the degree of freedom, the more the transformation can express com-
plex changes but more regularization is also required. Table 1.2, that is a rough
modification of a table from [30, Table 2.1], presents the commonly used trans-
formations and their degree of freedom in 3D. These transformations may be

Type DOF(m) Remarks Parametric
Rigid 6 Applicable to rigid struc-

tures
yes

Affine 12 Coarse approximation of
non-rigid transformation

yes

Polynomial 3
∑p
i=1 C

0
i+2 Non-rigid approximation,

p is the polynomial degree
yes

Piece-wise affine 12N Trade-off DOF/non-
rigidity, N the number of
affine pieces

yes

Free-Form Deforma-
tion

3NxNyNz Non-rigid, (Nx, Ny, Nz) is
the grid size

no

Radial basis functions 3N N is the number of nodes,
non-rigid

yes

Deformation maps 3N N is the number of defor-
mation vectors

no

Table 1.2: Main transformations and their Degree of Freedom (DOF).

classified into parametric and non-parametric transformations.

Parametric transformations

Let us denote by m ∈ N the degree of freedom of a given transformation. A
transformation is parametric, when it can be expanded as combination of some
parameters aj and basis functions ϕj (j = 1 : m). Thus, the required transfor-
mation is a minimizer of a defined distance measure in the space spanned by
these basis functions [2]. The most used parametric transformations are rigid
transformations, affine transformations and polynomials transformations in a
general sens (this iclude piece-wise polynomials).

A rigid transformation reffers to a combination of rotation, translation and
a scale change (global zoom).
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An affine transformation reffers to a more global than rigid transformation
since it admits rotation, translation, shearing 7 and individual scaling (local
zoom) [10, p.49].

A polynomial transformation expresses higher variability by increasing its
degree. This means that increasing the degree does not always lead to more
accurate results. In addition, the more a transformation is rigid, less it has de-
gree of freedom but less it is accurate since it can not treat local information.
Conversely, the more a transformation is non-rigid, the more it is accurate but
the more it is hard to compute. Piecewise polynomial transformations are pro-
posed to give a compromise between the degree of freedom and the non-rigidity
(possibility to transform local elements). They include piecewise affine trans-
formations, spline-based transformations, and more ”unusual” polynomials [10].

Wavelets transformations are parametric transformations that use linear
combinations of wavelets basis functions. They mostly used in image recon-
struction.

The drawback of parametric transformations is that the basis is chosen arti-
ficially. Then, it remains difficult to justify one choice rather than another. To
overcome this drawback, non-parametric transformations have been addressed.
Below is a presentation of the general framework of non-parametric transfor-
mations.

Non-parametric transformations

Non-parametric transformations are naturally non-rigid. In non-parametric
settings, the transformation is applied to each voxel in the image domain. Thus,
the degree of freedom depends on the number of voxels and the dimension of
the space. In 3D, as each voxel is determined by 3 coordinates, the degree of
freedom is three times the number of voxels in the image. Commonly, at each
point x ∈ Ω, the non-parametric transformation is given as addition of the
identity with a displacement field. That is,

Φ(x) = (Id+ u)(x) = x+ u(x), where u : Rd → Rd, (1.53)

is the displacement field also called the deformation. Observe that, the trans-
formation is explicitly determined by the displacement field u. Thus, in the
rest, u and Φ may be interchanged if no confusion is possible. Figure 1.6 il-
lustrates the displacement field in 2D. Given a fixed grid, one computes some
small numbers with their orientations (sign) to get a deformed grid by addition.

7. The shear transformation, called shearing, displaces each point in a fixed direction by an
amount proportional to its signed distance from a line that is parallel to that direction https:
//en.wikipedia.org/wiki/Shear_mapping.
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Undeformed Grid
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Figure 1.6: Illustration of a deformation in a non-parametric transformation.

Theoretically, The transformation Φ(x) is assumed to map homologous lo-
cations in the moving image physiology to the reference image physiology (for-
ward mapping, see Figure 1.7a). However, in practice and from an imple-
mentation point of view, the sought transformation has to map homologous
locations from moving image physiology in the reference image physiology and
interpolate therein (backward mapping). Mathematically, instead of evaluat-
ing Im[Φ(x)]− If (x) one evaluates Im(x)− If [Φ−1(x)] that are equivalent for
invertible Φ.

Figure 1.7b illustrates the reasons why it is not advisable to use the forward
transformation. One computes a new physical position for the moving image
and needs to interpolate intensities from fixed image therein (forward transfor-
mation). However, since the grid of the moving image is under deformations,
the spacing may not still be regular and interpolation of such intensities may
cause numerical instabilities. To overcome this, the backward approach com-
putes new positions while the interpolation is still done in the grid of the fixed
image that remains regular. In brief, Forward transformations interpolate in a
deformed grid (irregular spacing), while backward transformations interpolate
in the initial fixed grid where spacing remains regular.

To compute this inverse, one can assume ‖u‖ sufficiently small such that

(id+ u)−1 = id− u, (1.54)

and
Φ(x) = x+ u(x) and Φ−1(x) = x− u(x). (1.55)

Regularization techniques of non-parametric transformations have been de-
signed and used to dictate the nature of the deformation model 8 u. In general,
three main classes of transformation models are distinguished: those inspired
by physical models, those inspired by interpolation and approximation theory,

8. Variational approaches in general attempt to determine a function, not just a set of
parameters ([1]).
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Figure 1.7: Forward Vs backward transformations.

and those called knowledge-based deformation models (that use prior informa-
tion regarding the sought deformation). To these are added models that satisfy
a specific task constraint [1].

Without being exhaustive, a short overview on different spatial transforma-
tions derived from physical models is presented. In this context, the deformable
image registration is modelled as a physical process described by one or more
partial differential equations (PDE). The resolution of these PDE by numerical
methods (Finite Element Methods, Finite Differences Methods , Finite Vol-
umes Methods or characteristics methods) gives the desired transformation.
The following short descriptions are based on references [24], [1] and [2].

Elastic Body Models

Proposed by C. Broit in [31], elastic model considers the image under de-
formation as an elastic body. Let

u : Rd → Rd, with u(j) ∈ C2(Rd), ∀ j = 1 : d, (1.56)

be a displacement field where C2(Rd) is the set of twice continuously differen-
tiable functions on Rd. Then it is imposed to the sought transformation to be
the one that minimizes the potential energy of linear elasticity given by:

ER(u) = 1
2

∫
Ω
µe(trace(∇uT∇u) + λe(trace(∇u)2)dx, (1.57)

where the parameter µe refers to the rigidity and quantifies the stiffness of
the material while λe is the Lamé first coefficient (no physical interpretation
but serves for simplification in some expression describing Hooke’s law, see [24]
and [32]).

The first-order optimality condition ∇J [u] = 0 of the function (1.42) when
the dissimilarity measure is given by (1.43) and the regularisation term is given
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by (1.57) (see [24]) leads to the so called Navier-Cauchy equation:

µe∆(u) + (λe + µe)∇(∇.u) + F = 0, (1.58)

where the registration is led by the external force fields

F = (Im − If )∇Im, Im = Im[x+ u(x)], If = If (x), (1.59)

which contain the residuals and derivatives of the deformed image. The equa-
tion that describes the deformation is (1.58). While external forces (1.59) are
deforming the image, internal forces imposed by the elastic constraints of the
body impose regularity of the displacement field until equilibrium.

Viscous Fluid Flow Models

In this type of model, the image under deformation is considered as a viscous
fluid whose deformation is governed by the Navier-Stokes equation. The design
is similar to the elastic model. Let F be given by (1.59), the Navier-Stokes
equation writes:

µf∇(v) + (λf + µf )∇(∇.v) + F = 0. (1.60)

Observe that this equation is similar to (1.58) where the displacement field
is replaced by a velocity field and parameters λf and µf are adapted to the
fluid context where they characterize viscosity coefficients. This model does not
assume small deformations (‖u‖ <<), it is able to recover large deformations
[33]. The velocity field is related to the displacement field by the equation

v(x, t) = d

dt
u(x, t), (1.61)

that has to be integrated to approximate the displacement field u. This model
is well suited for large deformations, for example when images concern fluid ma-
terials but are less appropriate for soft tissues (see [24, p. 136]). An important
drawback remains the computational inefficiency unless parallel programming
is used [33].

Diffusion model

The diffusion model considers the registration as a diffusion process gov-
erned by the general equation

∆u+ F = 0, (1.62)

where F is given by (1.59) and under appropriate initial and boundary con-
ditions. Observe that, this equation can be derived from (1.58) for λe = −µe
to a multiplicative constant, where ∆ is a Laplace-like operator. The version
proposed by J-P Thirion [4], is the most popular but the most controversial
also, due to lack of sound theoretical justification ([1] and [24]). Its solution
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may not even verify the equation (1.62).

The diffusion model has been subsequently formalized by [24] and proved to
be particularly effective and fast. Thus, it remains popular in both professional
and research communities although there is no acceptable physical interpreta-
tion for the image registration, see [24].

Curvature model

First-order models (Elastic, Fluid or Diffusion) need an affine pre-registration
([24], page 173). Applications for which a pre-registration can not be guaran-
teed use the curvature model. This model is governed by the equation

∆2u+ F = 0. (1.63)

It is a second-order model and therefore it admits a smoother transformation
than the others. In addition, it is faster. However, it is also limited to small
deformations and may not preserve anatomical topology of certain images.

Flow of diffeomorphisms model

In this model, the registration process is considered as a transportation
of particles in a specific space. Then deformations are determined from their
instantaneous velocities using the Lagrange transport equation [33]. The term
of regularization is given by

ER(v) =
∫ 1

0
||vt||2V dt, (1.64)

where ||.||V is a given norm defined on the space V of smooth velocity vector
fields such that ||u||V = ||Du||L2 and D is a differential operator. This method
admits large deformations and is often called LDDMM (Large Deformation
Diffeomorphic Metric Mapping) This approach will be developed later. To learn
more about these methods, see for xample [34] to [35]. Although this method
produces a diffeomorphic transformation, it is not symmetric by construction.
Other techniques have been developed for a diffeomorphic symmetric algorithm
(see [36]).

1.3.9 Common issues in deformable MIRP
There are some constraints in medical image analysis that may appear com-

mon to be imposed to the transformation such that it exhibits special proper-
ties. Those constraints include:
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Topology preservation

This criterion ensures that, during deformation, the connected structures
remain so, and that the neighborhood and adjacency properties are preserved
[28]. Thus, the transformation should not introduce cracks in the deformed
image. Topology preserving algorithms produce a mapping that is continuous,
locally one-to-one and that has a continuous inverse. The Jacobian determinant
contains information regarding the injectivity of the mapping and has to be
greater than zero. The differentiability of the transformation is needed to
compute the Jacobian determinant.

Inverse consistency

The asymmetric behaviour of registration algorithms is such that, when in-
terchanging reference and moving images, the algorithm does not estimate the
inverse transformation. The aim of inverse consistency constraint is to tackle
this asymmetric behaviour, constraining the forward and the backward trans-
formation to be inverse mappings of one another. This requires the sought
transformation to be continuous and invertible with continuous inverse. An
algorithm that verifies this property should therefore verify the topology con-
servation. In this way one can switch from one image to another and vice versa.
For other techniques to get such transformations, see for example the survey
[1] and references therein.

Symmetry

As with inverse consistency, the symmetry constraint aims to tackle asym-
metry of registration algorithms. It uses either a symmetric objective function
by construction or estimates two transformations by simultaneously mapping
the two images in a common domain. The final mapping from one image to
another is calculated by inverting one transformation function and composing
it with the other:

f ◦ Im = g ◦ If and Φ = g−1 ◦ f, Φ−1 = f−1 ◦ g.

Diffeomorphism

Diffeomorphic tranformations also preserve topology. In addition, they are
invertible, at least theoretically, and both the diffeomorphic transformations
and their inverse are differentiable. A diffeomorphism maps a differentiable
manifold to another. Observe that, if the transformation is diffeomophic, it
preserves topology and it is symmetric. This means that this constraint includes
the others, at least theoretically.
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Time and storage memory consuming

Currently, the need to register high resolution and high dimensional images
is increasing. In particular, deformable medical image registration for 3D/4D
high resolution images causes considerable problems. For example, images of
size [103, 103, 103] within a cell-centered grid, lead to linear systems of size
3.109× 3.109 that need to be solved iteratively. This results in algorithms that
need significant storage memory and computing time.

In addition, one can observe the so called “curse of dimensionality”. This
means that when the dimension is augmented, the computational cost increases
exponentially with respect to the dimension. According to [5], almost all de-
formable 3D medical images registration algorithms face the problem of com-
puting time. This computing time may be a significant issue for some clinical
applications.

Although in many cases, when the registration quality is improved the com-
puting time increases [34, 37], it would be naive to think that the more expen-
sive an algorithm is, the better is the quality of registration. A good algorithm
may try to reduce the computing time with little or no deterioration of the
registration quality. This is possible when there is some a priori knowledge
available, when using some properties of numerical operators and compression
techniques and when using an efficient implementation in the process.

These issues are the main challenges for deformable medical image regis-
tration problems. This thesis mainly addresses the issue of time and memory
consuming while we impose some criteria to the transformation to be at least
locally diffeomorphic.

1.3.10 The cost function
We now need to build the cost function whose optimization will be the main

task in the rest of this thesis. For this purpose, we have chosen to minimize
the SSD dissimilarity measure (1.43) while the deformations are modelled fol-
lowing the elastic model. It will be shown that the diffusion model can be
considered as a particular case of the elastic model. In these settings, the
regularizations used are essentially based on the L2-norm of the differential
operators applied to the displacement field u. The cost function derived from
the equation (1.42)considering the measure (1.43) and the regularizer (1.57)
writes

F [u] = 1
2‖Im[Φ(x)]− If (x)‖2L2 + λ

2

∫
Ω
‖Bu‖2L2dx, (1.65)

where
B = µe∆ + (λe + µe)∇(∇), (1.66)
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is the differential operator and

Φ = Id+ u. (1.67)

To optimize the function (1.65), the main techniques are addressed in chap-
ter 2. Several image registration algorithms have been provided (see [1]) but
most of them are designed for specific applications. More general libraries in-
clude the Insight Segmentation and Registration Toolkit (ITK 9). However ITK
is an advanced cross-platform developed through high programming methdolo-
gies in C++ language and this makes it less attractive for educational purposes.
However, one of the most popular algorithm implemented in ITK is the Demons
algorithm from [4]. In addition, a more educational package is the Flexible Al-
gorithms for Image Registration (FAIR) provided by Jan Modersitzki [10] and
this thesis follows the main methodology provided by this package. Below we
present the main principles of FAIR algorithms (for deformable nonparametric
registration) and principles of the Demons algorithms that have inspired this
work.

1.4 Some registration algorithms
1.4.1 Flexible Algorithms for Image Registration (FAIR)

The FAIR package from Modersitzki [10] is a library of algorithms for medi-
cal image registration implemented in Matlab, whose object is educational and
aresearch oriented.

It presents the registration process in an integrated and flexible approach
(from storage to displaying results). In this library, the variational formulation
of the registration problem, the discretization of different differential operators,
the techniques of interpolation and the optimization of the functional are ex-
plained. In addition, a relatively efficient way of implementing each of these
topics is provided, including a matrix-free framework. Concerning optimiza-
tion, the emphasis is on Gauss-Newton like methods with line search strategy.

Linear systems are solved by iterative methods. These methods mainly use
the Preconditioned Conjugate Gradient method with Jacobi or Gauss-Seidel
preconditioning techniques. Other optimization methods such as trust-region
methods are outlined but not sufficiently developed. A multilevel and mul-
tiscale approach is sufficiently developed and encouraged. Since deformable
transformation is expensive, one may reduce the cost by applying first a rigid
or affine transformation to be closer the solution. This is called pre-registration.

Figure 1.8 visualizes the main steps of a FAIR-like deformable registration.
The optimization loop is the most expensive step.

9. https://itk.org
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step1 Download images and adapt formats

step2 Reduce the resolution
to work first on coarser grids

step3 Interpolate (and regularize)
to work with continuous images

step4 Compute derivatives of Im

step5 Initialize Φ by Φref = Id
or by a pre-registration

step6 Compute the objective
function and its derivatives

step7 Enter the optimization loop

Max level ?(finest grid)

Return resultsGo to finer grid and repeat from step 3

YesNo

Figure 1.8: FAIR process: main steps in a multiresolution approach.

Multilevel approach

The multilevel approach is one of the most successful techniques in med-
ical image registration, especially in high resolution or/and high dimensional
images. Consider If and Im ∈ Rn(1)×n(2)×...×n(d)

, two images within two cell-
centered grids in a common domain Ω. By fusing adjacent cells of these grids
while averaging their intensities, more regular measurements are obtained and
the size of the problem is halved. The resolution of the image is also halved.
Example 1.1

Example, for k = 1 : d, consider nk = 2L, L ∈ N and data dataIkL =
dataIk ∈ Rnk . In Matlab, the representation of these data at level l − 1
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from data of level l (for l = L : −1 : 1) writes:

dataIkl−1 = (dataIkl (1 : 2 : nk − 1) + dataIkl (2 : 2 : nk))/2 ∈ Rn
k/2.

Thus, one chooses to make the first registration for the data at the lowest level
(for example l = lmin = 3 is the coarsest grid), and refines the results to the
higher levels until reaching the initial resolution of the images at the finest grid.

FAIR objective function and derivatives

Again, the focus is on the SSD dissimilarity measure which is more com-
monly used in FAIR. For multimodal registration, we may argue a little on the
NGF to link with the SSD.

Let us consider, once more, If and Im with the same size [n(1), n(2), n(3)]
in [0, 1]d. For simplicity, consider n(1) = n(2) = n(3) = n. Since our objective
function (1.41) is formed of two terms, we deal with each one separately and
sum after. We have:

E
SSD

D = 1
2

∫
Ω

(Im[Φ(x)]− If (x))2dx. (1.68)

Given a cell-centered grid of width h =
∏d
l=1 h

l, one gets the discrete measure

E
SSD

D = 1
2h‖Im[Φ(x)]− If (x)‖2

RNd
, (1.69)

where
x = [x(1)

1 , ..., x
(1)
N , x

(2)
1 , ..., x

(2)
N , ..., x

(d)
1 , ..., x

(d)
N ]T ∈ RNd

and the discretization of y = Φ(x) writes

y = [y(1)
1 , ..., y

(1)
N , y

(2)
1 , ..., y

(2)
N , ..., y

(d)
1 , ..., y

(d)
N ]T ∈ RNd.

In this context, y(k)
j = (Φref,(k)

j − u(k)
j ), j = 1 : N, k = 1 : d. In general,

Φref (x) = id(x), but when a pre-registration has been used, Φref is the re-
sult from this pre-registration. Anyway, since Φref does not change during
registration, one may calculate u and update Φ after each iteration by setting
Φ = Φref − u.

Let us set r def= (Im[x− u(x)]− If (x)), the equation (1.69) can be written

E
SSD

D = 1
2hr

T r, (1.70)
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and derivatives of this distance can be approximated by:

dE
SSD

D = hrdr, (1.71)

where dr = dIm, and dIm is the derivatives of the moving image (see (1.38)
for dIm), leading to the Jacobian matrix. The second-order derivatives are
approximated from this first-order information because it would be hard to
compute exact second derivatives. The approximation is given by

d2E
SSD

D = cstedrT dr = csteFTF def= HED , (1.72)

that uses the Gauss-Newton method explained in the following chapter. Note
that, the matrix (1.72) is symmetric by construction and positive semidefinite.
It is positive definite when the Jacobian matrix has full rank.

For more general distance measures (for example Normalized Gradient Fields
(NGF)), one gets:

ENGFD = ψ(r(u)),
dENGFD = dψ(r(u))dr(u), and
d2ENGFD = dr(u)T d2ψ(r(u))dr(u),

where ψ is some function enabling the distance to be expressed in term of the
residual r. For SSD, ψ is a constant. In the FAIR package, a function based
on a midpoint quadrature rule is provided and returns the current: ED, dED,
r,dr and eventually d2ψ. This is returned given inputs Im[x − u(x)], If (x), a
cell-centered grid x of N points and the domain Ω. At the same time, the
approximation of the hessian HED = d2ED = dr(u)T d2ψ(r(u))dr(u) is done
(see [10, p.111]).

For the regularization term, a differential operator B is considered discrete.
It is either the discretization of (1.66), its particular case (1.62) or one may use
any Laplace-like operator. Thus, discrete regularization writes

ER = λ

2h‖Bu‖
2
RNd , (1.73)

where h =
∏d
l=1 h

(l). Hence, we can determine the first derivatives with respect
to u:

dER = λhBTBu. (1.74)

As opposed to second derivatives of the first term (1.72), here the exact second
derivatives are available:

d2ER = λhBTB
def= HER (1.75)
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It is important to note that this matrix is symmetric and positive definite by
nature. Taking this into account, we form our discrete objective function:

F [u] = E
SSD

D + ER = 1
2h‖r‖

2
RNd

+ λ

2h‖Bu‖
2
RNd

. (1.76)

This is a functional since the variable u is a function. Its derivatives are:

dF [u] = dE
SSD

D + dER = hrdr + λhBTBu, (1.77)

that is the gradient of our functional and its Hessian is approximated by:

d2F [u] = d2E
SSD

D + d2ER = HED +HER
def= H. (1.78)

Observe that, while HED is simply semi-positive definite, HER is positive def-
inite. The sum is then positive definite and of course symmetric. This gives
rise to systems that are symmetric and positive definite.

Computation of these discrete operators are achieved using finite differences
methods on cell-centered grids. For the first-order operators, the 1D derivatives
approximation operator may be used, that is

∂h
k

n ≈
1
hk

−1 1
. . . . . .

−1 1

 ∈ Rnk−1,nk . (1.79)

For the second-order operators, the Central Finite Differences are performed
on a cell-centered grid supposing Dirichlet conditions, that is,

∂2,hk
n = 1

(hk)2


−2 1

1
. . . . . .
. . . −2 1

1 −2

 ∈ Rn
k×nk . (1.80)

Extension to high dimensions is achieved by Kronecker product. These opera-
tors and the obtained linear systems will be addressed in chapter 4.

Optimization

For optimization purposes, we refer to Taylor’s theorem to approximate
the objective function by its quadratic form at the current point u. Given a
function v such that ‖v‖ is small, Taylor’s theorem allows us to write

F [u+ v] ≈ F [u] + vT dF [u] + vT d2F [u]v. (1.81)

Optimizing this function with respect to v leads to d2F [u]v = −dF [u]. Then

Hv = −dF [u], (1.82)

35



Deformable medical image registration

(where H is given by (1.78)) is the system to be solved to get a new ap-
proximation of u that reduces the functional value. Thus, one updates the
transformation u by

uk+1 = uk + tv, (1.83)

where t should verify the Armijo conditions that we explain in chapter 2.

The system (1.82) may be performed using a Preconditioned Conjugate Gra-
dient (PCG) based method with Jacobi, Gauss-Seidel or incomplete Cholesky
based preconditioning. For large matrices, Gauss Seidel and Jacobi are more
used in FAIR. However, these methods become very time and memory consum-
ing for very large matrices. Accelerating the computation of the system (1.82)
will be the topic of the third chapter of this thesis.

The diagram 1.9 illustrates the process in the optimization loop of a typical
FAIR algorithm.

step1 Evaluate uk,F [uk], dF [uk] and d2F [uk]

step2 Enter the Solver loop for the system (1.82)

step3 Armijo line-search loop to compute the step size t

step4 Update the transformation

step5 Transform the moving image

step6 Evaluate the stopping criteria

step7 Convergence?

k = k + 1, return to step1 Go back to the outer loop (see Figure 1.8)

No
Yes

Figure 1.9: FAIR Optimization process (iteration k)
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In the algorithms presented in the FAIR package, the most expensive step
in the deformable registration process is the resolution of the linear systems.
Algorithms that escape to solve linear systems but use convolution after each
approximation include the Demons algorithms we present below.

1.4.2 The Demons algorithms
The principle

The main principle of the Demons 10 algorithm can be briefly described as
follows. The fixed image is assumed to be in a fix grid while the moving image
is in a deformable grid. The deformations of the deformable grid follow the
principle of Maxwell’s demons. Therefore, based on the polarity principle, the
image registration is considered here as a diffusion process where each point 11

in the fixed image is labelled by a “+” ( ’plus’ ) if its intensity is greater than
the intensity of its corresponding point in the fixed image, or by a “−” ( ’mines’
) in the opposite case. There is no deformation (diffusion) when intensities are
equal at corresponding points.

The following step is to compute elementary forces (attraction forces) that
have to deform each pixel/voxel in the moving image, following a descent di-
rection while the orientation of this direction will depend on the label at each
point. The steepest descent direction is often chosen by default. Then follows
a regularization by convolution using a Gaussian filter. This process is applied
in an iterative optimization process that provides an optimal transformation
Φ̂ after a sequence of intermediate transformations Φ0,Φ1, ...,Φn = Φ̂ ∈ T (T
being the set of transformations verifying a fixed regularity). In general, the
initial transformation is chosen to be the identity transformation Φ0 = Id.

Formally, consider If and Im, respectively the fixed and the moving images,
on a common domain Ω. After each iteration, the deformed image Φk+1(Im)
from Φk(Im) is the result of interactions between Φk(Im) and If created by
elementary forces guided by a set of demons Ds.

Informations related to each demon

Informations related to each demon include: the spatial position x in the
domain of the image, the current displacement u(x) = xx′ where x′ = Φ−1(x) 12

is the new position after deformation of the grid carrying the moving image,
the intensity value If (x) at the position x, a direction p (in general based on
the gradient ∇If (x) of the fixed image) and an orientation “in/out” based, in

10. Here we focus on the algorithm version from [4].
11. Points are used here but it can be a contour or a region as claimed in the indicated

reference. In this cas, some threshold are fixed for labelling.
12. At the initial step, x′ = x.
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general, on the difference between intensities in the two images at correspond-
ing positions.

Different variants are obtained by the choice of the positions of the demons
(all the points of the grid, certain points of the grid, contour points, etc.), of
the set of transformations (see subsection 1.3.8 ), of the interpolation method
(linear, by splines,by sinc, etc.), of the computation of the forces F (based on
the gradient, constant magnitude, optical flow like, etc.).

The algorithm Demons 1 framework

The Demons’ algorithms Demons 0 to Demons 3 from [4] follow, with a few
differences, the framework described below for Demons 1.

Let us denote If (x) (respectively Im(x)) the intensity at the position x in
the fixed image (respectively in the moving image). First, consider the whole
grid of the fixed image as the domain of demons and place demons at each voxel
(pixel) of If where ∇If 6= 0, i.e, Ds = If

13. Then, fix the transformations to
be in the set of free form deformations regularized by a Gaussian filter 14. The
following step is to compute the direction

−→
d (based on the gradient using only

If (x), Im(x′) and ∇If (x). Here,
−→
d is deduced from the optical flow theory

(see [4]) and normalized for numerical stability. The computed value is the
elementary deformation

−→v = (Im(x′)− If (x))×−→∇If (x)
(Im(x′)− If (x))2 + ‖−→∇If (x)‖2

, (1.84)

that is considered here as a displacement and then the direction is
−→
d = −−→v .

In what follow, we set v = −→v omitting the arrow over v for simplicity.

To move in the domain, domain points are labelled following these princi-
ples: one may either fix a constant threshold c in the fixed image and then de-
cide to labell “+” (Out) if If (x′) > c at each point x′ and “-” (In) if If (x′) < c.
One can also, as in Demons 1, label “+”(Out) if Im(x) − If (x′) > 0 and “-”
(In) if Im(x)− If (x′) < 0.

In Demons 1, v is considered as an elementary deformation, i.e, v = δΦ.
Setting

x′0 = Φ−1
0 (x) = x,

the transformation is then updated by

Φk+1 = Φk + δΦk, k = 0, 1, . . . .

13. In (Demons 0 and Demons 2, demons are considered only at contours points while in
Demons 3 demons are placed between two adjacent voxels of different labels.

14. Rigid transformation for Demons 0, affine for Demons 2 and Demons 3.
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The displacement δΦk is regularized by convolution with a Gaussian filter while
each position x′k is updated by computing the following position

x′k+1 = Φ−1
k+1(x).

At the new position, the intensity Im(x′) is estimated using trilinear (or bilin-
ear for 2D images) interpolation.

According to Thirion [4], v is an elementary deformation and not a velocity.
In some later variants, most of time v is considered as a velocity field. Fur-
thermore, the addition in Φk+1 = Φk + δΦk, does not allow the transformation
Φk+1 to preserve properties of the elementary displacements δΦk since it does
not provide a group structure to the set of functions.

The variant proposed by [37] overcomes the difficulty by using the compo-
sition Φk+1 = Φk ◦ δΦk , and obtains invertible transformation. In addition,
he proposed an other variant in [38] called “diffeomorphic demons”, where the
transformation is diffeomorphic. In this variant, v is a velocity field that has
to be integrated to obtain a displacement field.

Apart from a few variants, these algorithms have the advantage that the
computation of the gradient is made only once before the iterative process be-
cause it is calculated within the fixed image. In addition, the pixels or voxels
of the moving image are simultaneously stretched or narrowed according to the
labels. This allows a significant gain in computation time. There are many
variants of the Demons algorithms (see [1],[4],[38] and [39] but the most popu-
lar are Symmetric and Diffeomorphic Demons.

However, in spite of the success of these algorithms, the linear complexity
they offer remains relatively expensive (in terms of computation time and stor-
age) with respect to some clinical applications, particularly for high resolution
or high dimensional images.
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Chapter 2
Introduction to nonlinear
optimization methods

2.1 Fundamentals of unconstrained optimization
problems

Optimization is a process of finding the best solution in a specified envi-
ronment or under defined circumstances. This practice can be expressed as a
search for conditions that minimize effort or maximize benefit. To address the
problem, the effort or benefit is modelled as a function of some variables. The
nature of such a function, the information available on that function or its vari-
ables, and the nature of the variables, lead to different types of optimization
problems [40]. In addition, these variables may be subject to constraints that
the solution has to verify. These constraints are usually expressed as equalities
or inequalities. This gives rise to constrained and unconstrained optimization
problems.

There is no method designed to efficiently solve all optimization problems.
Instead, different methods have been developed to address specific optimization
problems. In this thesis, the function is considered real and nonlinear, the
variables are real numbers and no constraints are assumed. Since it is known
that in applications, variables are often subject to constraints, unconstrained
optimization techniques may be considered to be less important. However,
these techniques are used for more general problems, including reformulated
constrained and global minimization problems. This chapter is mainly inspired
from the book of J. Nocedal and S.J. Wright [40].

A general, unconstrained nonlinear optimization problem is defined as
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min
x∈Rn

f(x), (2.1)

where the minimization formulation is commonly used since any maximization
problem can be converted into a minimization problem due to the equivalence
max(f ) = −min(−f ). The real function f : Rn → R denotes a continuous func-
tion and is mostly called objective function in the optimization field but it is
also known as cost function, loss function, utility function or energy functional
in other fields [41].

The optimization process consists of choosing values of x in the defined do-
main that leads to lower value of f . A global minimizer of problem (2.1) is a
vector x∗ ∈ Rn satisfying f(x∗) ≤ f(x), ∀x ∈ Rn. In general, it is difficult to
find the global minimizer of f for nonconvex and nonlinear functions. Instead,
one is interested in identifying a point x∗ achieving the smallest value of f in
a neighborhood N ⊂ Rn. Such a solution is known as local solution. A local
minimizer x∗ is a point such that f(x∗) ≤ f(x),∀ x ∈ N ⊂ Rn. Such a solution
is known to be weak since it may not be unique. Then, a strict local minimizer
x∗ is a point such that f(x∗) < f(x), ∀ x ∈ N ⊂ Rn, x 6= x∗.

Searching for local minimizer is of interest. Firstly because it can be pro-
cessed iteratively to approximate a global minimizer. Secondly, it can be suffi-
cient for the decision maker and thirdly, it can be the global minimizer under
certain conditions. The theorem below states the conditions under which a
local minimizer is also the global minimizer.
Theorem 2.1

When f is a convex function, any local minimizer x∗ is a global minimizer
of f . If in addition f is differentiable, then any stationary point, that is a
point x such that ∇f(x) = 0, is a global minimizer of f .

Proof. See [40], p. 16
Although the case in theorem 2.1 seems simpler, it is the base for many iter-

ative methods. For example, when the objective function is differentiable, one
may iteratively minimize its quadratic approximation. When this quadratic
approximation being is convex, Theorem 2.1 is applied. This is repeated until
certain criteria are met. These techniques are studied in the following subsec-
tion.

2.1.1 Optimality conditions
To conclude that a given point x∗ is a local minimizer, instead of examin-

ing all the points in the neighborhood of x∗, one may use theoretical results
to identify the local minimizer when the function is sufficiently smooth. These
results are generally derived from the Taylor’s theorem. While there are many
versions of Taylor’s theorem, here we are interested in the one that states how
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and under which conditions, a general smooth nonlinear function is well ap-
proximated by a linear or a quadratic function at a local point. Then, we will
focus on methods that use the gradient ∇f and the Hessian ∇2f to minimize
the function f .

Theorem 2.2 (Taylor’s theorem)
Suppose that f : Rn → R is continuoustly diffenrentiable and that p ∈ Rn.
Then we have that

f(x+ p) = f(x) +∇f(x+ tp)T p, (2.2)

for some t ∈ [0, 1]. Moreover, when f is twice continuously differentiable,
we have that

∇f(x+ p) = ∇f(x) +
∫ 1

0
∇2f(x+ tp)pdt, (2.3)

and that

f(x+ p) = f(x) +∇f(x)T p+ 1
2p

T∇2f(x+ tp)p, (2.4)

for some t ∈ [0, 1].

Proof. See for example [42, p. 98]
The three following theorems state the optimality conditions for problem

(2.1) and their proofs are available in [40]. The theorem below, known as the
first-order optimality condition, assumes that x∗ is a local minimizer, then de-
duces a property about the gradient ∇f(x∗). This is important because, if one
knows how the gradient behaves at a local minimizer, then one may be looking
at the gradient behaviour to characterize candidates to optimality.

Theorem 2.3 (First-order necessary optimality condition)
If x∗ is a local minimizer, and f is continuously differentiable in an open
neighborhood of x∗, then

∇f(x∗) = 0. (2.5)

Proof. See [40, p.15]
The points that verify (2.5) are called first-order stationary points. A sta-

tionary point might not be a solution although many algorithms are designed
simply to determine stationary points. A second-order necessary condition has
been established using second-order derivatives information in addition to the
gradient information. It is stated in the following theorem.
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Theorem 2.4 (Second-order necessary optimality conditions)
If x∗ is a local minimizer of f and ∇2f exists and is continuous in an open
neighborhood of x∗, then

∇f(x∗) = 0 and ∇2f(x∗) is positive semi definite. (2.6)

Proof. See [40, p.15]
A guarantee that x∗ is a strict local minimizer of f is obtained when we

have a sufficient condition on the derivatives of f at the point x∗. This is stated
is the following theorem.

Theorem 2.5 (Second-order sufficient optimality conditions)
If ∇2f is continuous in an open neighborhood of x∗, ∇f(x∗) = 0 and
∇2f(x∗) is positive definite, Then x∗ is a strict local minimizer of f .

Proof. See [40, p.16]
This theorem gives the characteristics that ensure that one gets a local min-

imizer. Thus, whenever the gradient goes to zero and the Hessian is positive
definite at a point y, any small move from y will increase the function value.
We conclude that we are at a local minimizer y = x∗.

In general, an algorithm for unconstrained minimization problem generates
a sequence of iterates {xk}k=0,1,2,... where the user supplies a starting point x0.
The choice of x0 may be guided by the knowledge of the application at hand,
by a systematic approach or in some arbitrary manner. Starting at x0, the
algorithm will terminate when either no more progress is possible, or when it
seems that a solution has been approximated with sufficient accuracy. To move
from one iterate xk to the next iterate xk+1, the algorithm uses informations
about the function at xk and possibly at previous iterates, while imposing the
function to a lower value at xk+1 than at xk 1. In moving from xk to xk+1 it is
common to look for a direction pk in which the condition f(xk+1) < f(xk) is
the most satisfied and a distance of the move to this next iterate.

Two fundamental strategies exist for this move (from xk to xk+1). The
trust-region strategy and the line-search strategy. They differ in the order in
which they choose the direction and the distance of the move. The line-search
strategy first fixes the direction pk, then identifies an appropriate distance αk
known as the step length. The trust-region strategy on the other hand, first
chooses a maximum distance ∆k, namely the trust-region radius, and then
searches for a direction and a step-length that improves better, subject to this

1. There exist nonmonotone algorithms that do not insist on a decrease in f at every step
but after some prescribed m iterations.
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distance constraint. In this work, only the principles of the trust-region strat-
egy will be recalled, while the focus is on the line-search strategy.

In the remain, we use the notation fk,∇fk,∇2fk to denote respectively
the function value f(xk), the gradient ∇f(xk) and the Hessian ∇2f(xk) of the
function at xk.

2.1.2 Line-search strategy
In line-search strategy, new points are computed from previous ones, fol-

lowing iterates of the type

xk+1 = xk + αkpk. (2.7)

Thus, to update the current value, one needs to know the search direction pk
that informs in which direction the function decreases and a scalar αk called
the step length, that specifies how far one should go in that direction to obtain
a sufficient decrease in the function.

Descent directions

Consider a vector xk ∈ Rn, a descent direction pk at xk is such that

pTk∇fk < 0. (2.8)

Line-search methods use any descent direction, one that guaranties a decrease
in f . A descent direction usually takes the form

pk = −B−1
k ∇fk. (2.9)

It can be shown that each direction that makes strictly less than π/2 randian
angle with −∇fk produces a decrease in the value of f , provided that the step
length is sufficiently small.

To verify this, observe that according to Taylor’s theorem, for any direction
pk and any small positive scalar (step length) αk, we have

f(xk + αkpk) = fk + αkp
T
k∇fk +O(α2

k‖pk‖2). (2.10)

The rate of change in f along the direction pk at the current point xk is the
coefficient of αk, namely pTk∇fk. Hence, decrease is guaranteed with the unit
direction pk, that is the solution of the problem

min
pk

pTk∇fk, subject to ‖pk‖ = 1. (2.11)

Consider θ the angle between pk and ∇fk, we have pTk∇fk = ‖pk‖‖∇fk‖ cos θ.
Since −1 ≤ cos(θ) ≤ 1, the minimizer is attained when cos θ = −1 and then

pk = −∇fk/‖∇fk‖ (2.12)
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offers the most obvious choice of search direction with sufficient decrease. This
direction is called steepest descent direction and is orthogonal to the contours
of the function.

The steepest descent method is a line-search method that uses pk = −∇fk
at each step. Easy computation is the main advantage of the steepest descent
method, since it requires only first derivatives of the function. In addition, the
convergence of the steepest descent method is guaranteed. However it is known
to be slow, especially for ill-scaled problems.

Instead of using the first-order Taylor’s series (2.10), we may use the second-
order approximation. This gives:

f(xk + αkpk) ≈ fk + αkp
T
k∇fk + 1

2α
2
kp
T
k∇2fkpk

def= mk(pk). (2.13)

Assuming that ∇2fk is positive definite, the minimizer of mk(pk) is called the
Newton direction that is the vector pNk , given by

pNk = −(∇2fk)−1∇fk. (2.14)

When the model mk(pk) approximate sufficiently well the true function f(x)
near the current point xk, the Newton direction is interesting because it catches
the curvature of the quadratic model. Unless the gradient ∇fk (and conse-
quently pNk ) is zero, we have that ∇fkT pNk = −∇fkT (∇2fk)−1∇fk < 0 because
(∇2fk)−1 is positive definite. This indicates that the Newton direction is a de-
scent direction. However, if ∇2fk is not positive definite, the Newton direction
may be not defined because (∇2fk)−1 may not exist and when it exists, it is
not guaranteed that it is a descent direction since ∇fkT (∇2fk)−1∇fk is not
always positive.

Newton methods are optimization methods that use the newton direction.
Their main advantage is that, they have a quadratic rate of convergence es-
pecially when they are in the neighbourhood of the solution. The main dis-
advantange of this direction is the need for explicit computation of second
derivatives ∇2fk constituting the Hessian that are often expensive, unman-
ageable and error-prone. An alternative to Newton’s direction is the so called
quasi-Newton direction, where instead of computing the true Hessian, one uses
an approximation Bk ≈ ∇2fk. We have

pQNk = −B−1
k ∇fk, (2.15)

and this direction is often updated at each iteration. This direction do not
require an explicit computation of the Hessian but if Bk is positive definite,
quasi-Newton methods may still attain a local superlinear convergence rate. In
practice, the fact that the changes in the gradient provide informations about
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second derivatives along the search direction is exploited. That is (see [40,
p.137])

BkαkP
QN
k ≈ ∇fk+1 −∇fk. (2.16)

More practical use of these methods approximate at each iteration the inverse of
Bk instead of Bk itself. This makes the quasi-Newton methods very attractive
for large-scale optimization problems where it is expensive to explicitly compute
the Hessian due to the high number of variables.

Step length

In line-search strategies, when the direction is chosen, the question is how
long should we go in that direction. There are two possibilities, either one
determines the exact step length or one can use some heuristics. The ex-
act line search aims to determine the step length αk that minimizes exactly
φ(αk) = f(xk + αkpk) ≈ fk + αkp

T
k∇fk + α2

kp
T
k∇2fkpk, αk > 0. However, in

general, this exact line search is impossible or too expensive. The alternative
is the use of inexact line searches that aim to achieve sufficient decrease in the
function f using some heuristics.

To allow sufficient decrease in the objective function, the step length αk has
to verify the inequality

f(xk + αkpk) ≤ fk + c1αk∇fTk pk, (2.17)

for some constant c1 ∈ [0, 1]. This inequality (2.17) is also called Armijo
condition. The scalar c1 is chosen in practice to be small, say c1 = 10−4. The
sufficient decrease condition is not always enough to make reasonable progress.
It can admit a very small step length. To avoid all these very short steps, a
second condition known as curvature condition has to be satisfied. This requires

∇f(xk + αkpk)T pk ≥ c2∇fTk pk, (2.18)

for some constant c2 ∈ [c1, 1], where c1 is the constant from (2.17). The curva-
ture condition ensures that the slope of φ, φ′(α) at αk is greater than c2 times
the initial slope φ′(0). This indicates for a slope φ′(α) strongly negative that
moving further along the choosen direction one can reduce f significantly. The
sufficient decrease condition and the curvature condition are known collectively
as the Wolfe conditions.

Another heuristic is the Goldstein conditions that ensure that the step
length α achieves sufficient decrease but is not too short. It has to verify
the double inequalities

f(xk) + (1− c)αk∇fTk pk ≤ f(xk + αkpk)T pk ≤ f(xk) + cαk∇fTk pk, (2.19)

with 0 < c < 1/2. The Goldstein conditions are often used in Newton-type
methods but are not well suited for quasi-Newton methods that maintain a
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positive definite Hessian approximation. Many algorithms do not explictly
evaluate all the conditions. They use instead the so-called backtraking strategy.
The idea of backtracking is to skip the test for the curvature condition and
use only the sufficient decrease test. For this purpose, an initial value α0 is set
sufficiently high and is reduced iteratively until the sufficient decrease (2.17) is
verified. Here is a pseudo code of the backtracking algorithm.

Algorithm 2.1 (Backtracking Line Search)
Choose α0 > 0, c ∈ [0 1], ρ ∈ [0 1]; α← α0;

While f(xp + αpk) > f(xk) + cα∇f(xk)T pk
α← ρα;

end(While)

On the one hand, the initial trial step length is often taken to be α0 = 1
for Newton and quasi-Newton directions. This choice ensures that unit step
lengths will always be taken whenever the algorithm is in a neighbourhood
of the solution, and this allows the high rate-of-convergence of these methods
to take effects. On the other hand, methods that do not provide well scaled
search directions, such as the steepest descent method and conjugate gradient
methods, should use information on the algorithm at the current and previous
iterations to make an initial guess.

One of the most used strategies is to interpolate data within fk−1, fk and
∇fTk−1pk. One of the most used formulae is:

α0 = 2(fk − fk−1)
∇fTk pk

. (2.20)

This initial step length is used in the presented algorithm in chapter 5.4.

Trust-region strategy
The trust-region strategy is an alternative to the line-search strategy. This

method uses information gathered about f , to construct a model function mk

whose behaviour near the current point xk is similar to that of f . This model
mk is then minimized in a well designed region around xk where it is expected
that it approximates well the objective function f . This means, at each iteration
we approximately solve the trust-region subproblem:

min
p∈Rn

mk(xk + p), where xk + p lies inside the trust-region. (2.21)

In most cases, the trust-region is a ball defined by ‖p‖2 < ∆ where ∆, the
trust-region radius, is a strict positive scalar. When the candidate solution
does not produce a sufficient decrease in f , it would be due to the fact that the
region is too large, then the region may be shrunk and (2.21) is re-resolved. In
other cases, either the region is kept identical or it is enlarged. For details on
this strategy see [40] and [43].
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2.2 Conjugate Gradient (CG) methods and lin-
ear systems

Problems with very large size, say millions of variables, can be solved ef-
ficiently only when the computational cost and the storage requirements are
kept at a tolerable level. Some approaches are more effective for these problems
within the Conjugate Gradient (CG) method. Other methods include, appro-
priate inexact Newton methods (based on sparse factorizations of the Hessian
matrix when factorization methods are affordable) and adapted quasi-Newton
methods (e.g. those exploiting structural properties such as partial separabil-
ity).

Now, let us consider a specific case of a minimization problem (2.1) where
the objective function is a quadratic function given by

q(x) = 1
2x

TAx− bTx, (2.22)

with A ∈ RN×N and b ∈ RN . By the second-order necessary optimality con-
ditions (see 2.4), if x∗ is a local minimizer of f, then the gradient given by
∇q(x∗) = Ax∗ − b has to be zero and the Hessian,∇2q(x∗) = A, has to be
positive definite. In this case, the minimizer x∗ is the unique solution of the
linear system

Ax = b. (2.23)

Solving efficiently (2.23) for n very large, is an active research area and is
very useful in scientific computing. To introduce the CG method, we define
first the Krylov subspace. Consider a matrix A ∈ RN×N , the Krylov subspace
is the space of all vector x ∈ RN that can be written as x = p(A)v where p is
a polynomial of degree k and v is an appropriate vector. This is stated in the
following definition for the linear system (2.23).

Definition 2.6 (Krylov subspace)
Given the matrix A ∈ RN×N in (2.23) and an initial solution x0 ∈
RN , the Krylov subspace of degree k ≤ N generated by the matrix
A and the vector r0 = b−Ax0 is defined by

Kk(A, r0) = span{r0, Ar0, · · · , Ak−1r0}. (2.24)

The CG method is one of the so-called Krylov methods. These methods
minimize over a set of nested Krylov subspaces (2.24). They are among the
most successful methods currently available in numerical linear algebra[44].
Introduced by Stiefel and Hestenes (1952), the Conjugate Gradient (CG) algo-
rithm is among the most used iterative method for solving large linear systems
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with positive definite matrices. In addition, it has been adapted to solve gen-
eral non-linear optimization problems [40]. Let us now present the general CG
method.

2.2.1 The CG method
The CG method is an alternative to Gaussian elimination well suited for

solving large linear systems. As stated above, The CG method minimizes the
quadratic function (2.22) on the Krylov subspace (2.24) assuming A ∈ RN×N is
symmetric and positive definite. Its performance is related to the distribution
of the eigenvalues of the coefficient matrix A. The minimizer of such convex
quadratic function is the solution of the linear system (2.23), since the gradient
of this convex quadratic function is the residual of the linear system. That is,

∇q(x) = Ax− b. (2.25)

Consider x = xk, then
rk

def= b−Axk. (2.26)

Starting with an initial guess x0 ∈ RN , set r0 = b−Ax0 and an initial direction
(the steepest descent direction) p0 = −∇q(x0) = r0 . Then, the CG algorithm
generates a sequence of iterates {xk} where each iterate is computed with
small informations from small previous iterates. Here we use the so called three
two-terms recurrence. This means, the job is done by three vectors that need
another term each, to be updated (two terms) in the loop iteration.

To establish the CG algorithm, let us consider x0 as given and

xk+1 = xk + αkpk, k = 1, 2, . . . . (2.27)

By minimizing φ(αk) = q(xk + αkpk) from (2.22) exactly, we get

αk = rTk pk
pTkApk

. (2.28)

This is an exact step length. Observe that at iteration k + 1, (2.27) in (2.26)
gives

rk+1 = rk − αkApk, (2.29)

that is an efficient fast update of the residual. The CG algorithm economically
generates a set of directions with a property known as A-conjugacy defined
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below.

Definition 2.7 (A-conjugate directions)
Nonzeros vectors {p0, p1, . . . , pl} are said to be conjugate with re-
spect to the symmetric positive definite matrix A if

pTi Apj = 0, ∀i 6= j. (2.30)

Starting by the initial steepest descent direction p0 = r0, the new directions
pk, k = 1, 2, . . . are computed as a linear combinations of the residuals rk and
the previous direction pk−1. Thus,

pk = rk + βkpk−1, (2.31)

where the scalar βk has to be determined by the requirement that pk−1 and pk
must be conjugate with respect to A. To determine βk, let us premultiply (2.31)
by pTk−1A while imposing the A-conjugacy pTk−1Apk = 0, we obtain

βk = rTk Apk−1

pTk−1Apk−1
. (2.32)

We need also the residuals to be orthogonal to the directions and each of
them to belong to the Krylov subspace defined above. This ensures that the
minimizer is a sum of x0 and a linear combination of A-conjugate directions.
These arguments are stated in the theorem below, whose demonstration can
be found in [40].
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Theorem 2.8 (Expanding subspace minimization)
Let x0 ∈ RN be any starting point and suppose that the sequence {xk} is

generated by the CG algorithm applying (2.27), (2.28). Then

rTk pi = 0, for i = 0, 1, . . . , k − 1, (2.33)

and xk is the minimizer of q(x) = xTAx− bTx over the set

{x|x = x0 + span{p0, p1, . . . , pk−1}}. (2.34)

Proof. See [40, p.106].
When the residuals are mutually orthogonal while each of them and each

direction belong to the Krylov subspace, the theorem below ensures that the
CG method will terminate in a finite number of iterations, at most n. This
property can be lost if orthogonality is destroyed.
Theorem 2.9

Suppose that the kth iterate generated by the Conjugate Gradient method
is not the solution point x∗. The following properties hold

rTk ri = 0, for i = 0, 1, . . . , k − 1, (2.35)
span{r0, r1, . . . , rk} = span{r0, Ar0, . . . , A

kr0}, (2.36)
span{p0, p1, . . . , pk} = span{r0, Ar0, . . . , A

kr0}, (2.37)
pTkApi = 0, for i = 0, 1, . . . , k − 1. (2.38)

Therefore, the sequence {xk} converge to x∗ in at most N steps.

Proof. See [40, p.109]. In practice, from (2.33) and (2.31), we compute

αk = rTk rk
pTkApk

, (2.39)

and using the fact that αkApk = rk − rk+1, we have

βk =
rTk+1rk+1

rTk rk
. (2.40)

This enables a simple algorithm to be performed with three two-term recur-
rences in a complete CG algorithm (see Algorithm (2.2)).
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Algorithm 2.2 (CG algorithm)

Given x0;
Set r0 ← b−Ax0; p0 ← r0; k ← 0;
While rk 6= 0

αk ←
rTk rk
pTkApk

;

xk+1 ← xk + αkpk;
rk+1 ← rk − αkApk;

βk+1 ←
rTk+1rk+1

rTk rk
;

pk+1 ← rk+1 + βk+1pk;
k ← k + 1;

end(While)

Note that, at each iteration in Algorithm (2.2), we need no more than the
information from the last two iterations. The computational task concerns the
matrix-vector product Apk and two inner products pTk (Apk) and rTk+1rk+1.

Let us investigate the amount of work involved in the Algorithm (2.2) in
terms of flops 2. Assuming the matrix A is full, in each loop, three inner prod-
ucts are computed to involve 3 ∗ (2N) = 6Nflops, one matrix-vector product
that involves 2N2flops, three scalar-vector products involve 3N flops and three
additions that involve 3N flops. In total, the amount of flops in each loop is
approximated to N

flops
= 2N2 + 12N.

In finite precision, the CG method may loose the properties above. In
that case, the convergence behaviour of the algorithm is affected. This will
be addressed in Subsection 4.2.1. In exact arithmetics, the definition below
offers an important indicator on how the CG method may behave on a specific
linear system. It is called the condition number of the coefficient matrix of the
system.

2. Here we consider a flop to be the amount of work associated to a single point floating
operation including addition (or substracting) and multiplication.
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Definition 2.10 (Condition number)
Given a nonsingular matrix A, the condition number of A is the
quantity noted and defined by

k(A) = ‖A‖‖A−1‖, (2.41)

where any matrix norm can be used. For symmetric positive def-
inite matrices and Euclidean norm, the condition number can be
expressed by k(A) = λN

λ1
where λN and λ1 are respectively the

greatest and smallest eigenvalues of A. In this case, k(A) is the
spectral condition number of A.

2.2.2 The CG convergence rate
Theorem 2.9 states that in exact arithmetic, the CG algorithm will termi-

nate at the solution in at most N iterations. It is interesting to note that, if
the distribution of eigenvalues of A has favorable features, the algorithm will
identify the solution in far fewer than N operations. This property is stated in
the following theorems.
Theorem 2.11

If A ∈ RN×N has r ≤ N distincts eigenvalues, the CG algorithm 2.2 will
terminate with xk = x∗ for some k ≤ r.

Proof. See [43, p. 85]
This states that the number of CG iterations does not exceed the rank

of A. Clearly, the more the eigenvalues of A are clustered, the faster is the
CG algorithm. Note that, given a symmetric positive definite matrix A, the
A-norm of a vector x is defined by

‖x‖A =
√
xTAx.

Theorem 2.12 below states that reducing the condition number of the matrix
A improves the convergence rate of the CG algorithm.
Theorem 2.12

The error εk = xk − x∗ of the iterates generated by the CG algorithm 2.2
satisfies the inequality

‖εk‖A
‖ε0‖A

≤ 2
(√

k(A)− 1√
k(A) + 1

)k
, (2.42)

where k(A) is the spectral condition number of A.
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Proof. See [43] p. 85.
Thus, the following theorem has to be stated.

Theorem 2.13
If A has eigenvalues λN ≥ λN−1 ≥ . . . ≥ λ1 > 0 then we have

‖xk+1 − x∗‖2A
‖x0 − x∗‖2A

≤
(
λN−k − λ1

λN−k + λ1

)2
(2.43)

Proof. See [40, pp.115-116] and indication therein.
This theorem states that the convergence rate of the CG algorithm is also

affected by the distribution of the smallest eigenvalues. Theorems 2.12,2.11
and 2.13 above are the basis of the idea of preconditioning the CG algorithm,
presented roughly in the following subsection and developed in chapter 4.

2.2.3 Preconditioned Conjugate Gradient (PCG)
Preconditioning techniques aim to transform a system Ax = b into a new

equivalent system with a more favourable eigenvalues distribution. To accel-
erate Krylov subspace methods, one may act on the spectral properties of the
matrix since this impacts their convergence rate. In particular, since the CG
method requires only matrix-vector products at each iteration (and few vector
operations such as dot products and vector updates), the major computational
work depends on the number of iterations it may take to obtain an acceptable
level of accuracy.

Although for sparse or structured matrices the CG method may be effi-
ciently implemented, it requires preconditioning to be really effective [45] and
ensure that the number of iterations is kept relatively small. In practice, if the
matrix A is symmetric and positive definite, which must be the case for CG
algorithms, the required preconditioner is a non singular matrix P that has to
be symmetric, positive definite and such that the condition number of P−1A,
k(P−1A), is decreased compared to k(A). When this preconditioner is avail-
able or has been designed implicitly, the Preconditioned Conjugate Gradient
(PCG) algorithm is used. The PCG algorithm from [40, P. 119] is given in
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Algorithm 2.3 below.

Algorithm 2.3 (PCG algorithm)

Given x0;
Set r0 ← Ax0 − b;
Solve Py0 = r0 for y0;
Set p0 ← −y0, k ← 0;
While rk 6= 0

αk ←
rTk yk
pTkApk

;

xk+1 ← xk + αkpk;
rk+1 ← rk + αkApk;
Solve Pyk+1 = rk+1;

βk+1 ←
rTk+1yk+1

rTk yk
;

pk+1 ← −yk+1 + βk+1pk;
k ← k + 1;

end(While)

Techniques to design effective preconditioners are discussed in chapter 4.

2.3 Nonlinear least-squares problems
Least-squares problems occur in many applications such as data fitting,

prediction and model calibration. This is also the case for MIRP (see (1.65)).
The minimization formulation of a least-squares problem has the special form

min
x∈RN

f(x) = min
x∈RN

1
2

m∑
j=1

r2
j (x), (2.44)

where each rj : RN → R, j = 1 : m is referred to as the residual. To minimize
the objective function (2.44) efficiently, we have to exploit its special structure
and its derivatives. Gathering the individual residual rj in a residual vector

r : RN → Rm,

such that
r(x) = (r1(x), r2(x), . . . , rm(x))T ,

we can rewrite (2.44) as

min
x∈RN

f(x) = min
x∈RN

1
2‖r(x)‖22 = min

x∈RN
1
2r(x)T r(x). (2.45)
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The task is to determine the vector x ∈ RN that minimizes the 2-norm of
the function (2.44) (see [46]). When the residual functions rj are all linear, the
problem is a linear least-squares. But in our case, the functions rj in (2.25) are
nonlinear. The idea is to replace the function (2.44) at the current point by
its quadratic Taylor’s approximation. However, this quadratic approximation
needs second derivatives of each residual function, and this makes the strategy
really prohibitive. Instead of computing the exact Hessian, these second deriva-
tives are approximated to constitute the well known Gauss-Newton method (see
[40] or [46]) briefly presented below.

2.3.1 Gauss-Newton Method
Let us consider that the m residual functions are smooth and continuously

differentiable. The gradient of the function (2.44) is:

∇f(x) =
m∑
j=1

rj(x)∇rj(x) = J(x)T r(x) (2.46)

where J(x) =

 ∇r1(x)T
...

∇rm(x)T

 =


∂r1

∂x1
. . .

∂r1

∂xn
...

. . .
...

∂rm
∂x1

. . .
∂rm
∂xn

.

 is the Jacobian matrix.

The Hessian is given by:

∇2f(x) =
m∑
j=1
∇rj(x)∇rj(x)T +

m∑
j=1

rj(x)∇2rj(x),

that can be written using Jacobian notations as

∇2f(x) = J(x)TJ(x) +
m∑
j=1

rj(x)∇2rj(x). (2.47)

However, the computation of the right-hand second term is expensive for large
problems. Thus, assuming either the residuals are close to affine functions near
the solution or residuals are really small enough (i.e ‖∇2rj(x)‖ are small), the
second term in (2.47) is relatively small compared to the first one and can be
neglected. Such an approximation is often effective especially when the term
J(x)TJ(x) dominates the second term in (2.47). In this case, the individual
norms of second derivatives of the residuals (that is, |rj(x)|‖∇2rj(x)‖ are suffi-
ciently small compared to eigenvalues of the approximation J(x)TJ(x). When
the approximation is really effective, the convergence rate of the Gauss-Newton
method is rapid (near quadratic). However, when these assumptions are not
verified, the approximation is not good and the convergence rate is linear. In
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this case, it is better to use quasi-Newton methods or to refer to hybrid meth-
ods [40, page 262].

The major trick for least-squares problems minimization is that the Hessian
is approximated by Jacobian informations at xk:

Hk = H(xk) def= J(xk)TJ(xk). (2.48)

This approximated Hessian is symmetric, however it is positive definite only if
the Jacobian is of full-rank. When minimizing the function (2.44), we can use
the line-search strategy where the search direction pGNk is the solution of the
linear system

J(xk)TJ(xk)pGNk = −J(xk)T r(xk). (2.49)

This equation known as normal equation can be written

Hpk = g (2.50)

where H = J(xk)TJ(xk) and g = −J(xk)T r(xk). Another advantage of the
Gauss-Newton method is the fact that, for a full-rank Jacobian and non-zero
gradient ∇fk = −J(xk)T r(xk), the search direction pGNk is always a descent
direction. This ensures effectiveness of a line search strategy. Here is a pseudo-
code of Gauss-Newton algorithm.

Algorithm 2.4 (Gauss-Newton (GN) algorithm)
Given r(x);
Initialization.
k = 0; and
xk = 0; For k ← 0, 1, 2, . . .

Compute r(xk) , J(xk);
Hk ← J(xk)TJ(xk);
gk ← −J(xk)T r(xk);
Solve Hkp

GN
k = gk;

Compute αk; (non exact line search)
xk+1 ← xk + αkpk

end(For)

The linear system (2.50) can be solved by direct methods within Gauss elim-
ination method or LU method but for very large systems, iterative methods
such as CG method may be preferable. Iterative methods have some advan-
tages: first, they allow the storage of matrices to be avoided (only refer to some
matrix-vector products). Second, they allow the algorithm to be stopped at
a given precision. In any case, the linear system needs to be preconditioned
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for speed, stability and precision. Some preconditioning techniques applied to
medical image registration are the topic of the chapter 4 while we present first
the test environment in the following chapter, Chapter 3, to prepare numerical
experiments.
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Chapter 3
Images and test environment

In Chapter 1 we have presented the Medical Image Registration Problem.
We have highlighted some common issues and have presented some algorithms.
In chapter 2 we have presented some optimization techniques that are used to
tackle the MIRP issues. We have noticed that, one of the main steps which is
time and memory consuming in MIRP, is the linear system resolution. Thus,
we address the issue of efficient system solvers in Chapter 4. In this chapter,
we present the images that we use to compare MIRP algorithms and system
solvers. We present also the used tool for comparison, the performance profile,
and the computer caracteristiques. Solvers are compared in Chapter 4 while
the algorithms are compared later in Chapter 6.

In the Section 3.1 we present the images that constitute our test problems
(the database) for simulations. In Section 3.2 we present the performance
profiles tool used for benchmarking algorithms and solvers.

3.1 The images
We have 11 couples of images for numerical experiments. Each image is

partitioned in a number of levels, where each level is considered as a particular
test problem. Four couples of images were taken from the FAIR package and
seven couples of images were provided by Hubert Meurisse, a physicist from
the nuclear medicine department of the CHU-UCL-Namur Hospital of Mont
Godine. These images are poorly visualized in Annexe A

Image level

A 3D image is a three dimensional array, where the size is often given by
three positive integers. In most of cases, these integers express the number
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of pixels, in each physical direction related to the spatial resolution of the
image. The more this spatial resolution is higher, the more the image is clear
but the more the treatment deals with large number of information. Thus, by
assuming the intensities in the array were captured on finer grids, one can stil
have a clear image by fusing adjacent cells of the image grid while averaging
their intensities, more regular measurements are obtained and the size of the
problem is halved. The resolution of the image is also halved.

The convention here is to assume that the level of an image is the maximal
power of two in the expression of its number of pixels. Hence, for example an
image is of level 1 if it is of size [2, 2, 2]. The images of sizes [128, 64, 128],
[64, 64, 128] and [128, 128, 128], are of level 7.

Database images

Table 3.1 presents images used for our numerical experiments. In column
1, num indicates the number of the image, here alphabetic order is used. The
name of the image in column 2 indicates, in general, the region of the body
under study and sometimes the place of acquisition when the region is repeated.
The type in column 3, indicates the acquisition modality of the image. The
format in column 4, indicates the file format and the numeric class for storage,
in column 5 the size of the image, size, indicates the resolution of the image.
The product of the size expresses the number of voxels in the image. The system
size, syst-size, in column 6, indicates an approximation of the size of the system
induced from the image registration at the fixed level (see Section 1.4.1). The
levels in column 7 indicate the number of levels used to register the images in
a multilevel approach.
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num image type format size syst-
size

levels

1 Brain MRI uint8 (128, 64, 128) ≈ 3107 4
2 Chest CT Dicom

uint8
(512, 512, 1024) ≈ 8108 6

3 Crane MRI Dicom
uint8

(512, 512, 256) ≈ 2107 6

8 Foetus CT Dicom
uint8

(512, 512, 128) ≈ 2108 5

4 Knee MRI Dicom
uint8

(128, 64, 128) ≈ 3106 4

5 Lung CT Dicom
uint8

(512, 512, 1024) ≈ 8108 6

6 Neurocranium CT-scan Dicom
uint8

(256, 256, 64) ≈ 3107 5

7 PET-CT1 CT Dicom
uint8

(256, 256, 64) ≈ 3107 5

9 PET-CT2 CT Dicom
uint8

(512, 512, 1024) ≈ 8108 6

10 Phantom CT Dicom
uint8

(128, 64, 128) ≈ 3106 4

11 Mice PET Dicom
uint8

(128, 128, 32) ≈ 3106 3

Table 3.1: List of images that constitute our test database (given in couple).

3.2 Performance profiles
The performance profile is a tool that has gained interest of researchers by

allowing to analyze and benchmark optimization solvers. Below we present an
overview of this tool that will be used in Chapter 4 and in Chapter 6.

3.2.1 Overviews
Following Dolan and Moré [47], benchmarking optimization algorithms ne-

cessitates three components, (see also [48, 49]). First, we define the set of
benchmark problems denoted by P. The number of problems in this set will
be denoted by np. In this work, this is formed by our images and we consider
that for a given image, different levels constitute different problems. Thus, the
number of problems is the sum of the numbers in the 7th column of Table 3.1:

np = #P = 54.

Second, the set of optimization solvers is denoted by S. These are designed
to solve any of our problems. Third, the convergence test is a criteria that
has to be verified by each algorithm (or solver) on a given problem. When
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this criteria is verified, the problem is considered as solved. Although for linear
system solvers, the convergence test is expected to be verified in a neighborhood
of a local minimizer, this is not the case for registration algorithms. For this
last, a simple threshold may be made on the functional decrease to estimate
that the problem is solved. We denote by µf the maximal number of function
evaluations 1 for each problem. A solver s ∈ S is considered as having failed
to solve a problem p ∈ P, if it did not verify the convergence test within µf
iterations.

The benchmark results are produced by running each linear system solver
or each registration algorithm s ∈ S on any problem p ∈ P and recording the
function values in a three dimensional array

A(µf , np, ns),

where
A(fk, p, s), 1 ≤ k ≤ µf , 1 ≤ p ≤ np, 1 ≤ s ≤ ns

contains the function value reached by the solver s on problem p at iteration
k.

For any pair (p, s) ∈ P × S, a performance measure tp,s > 0 is the mea-
sured effort for solver s to verify the convergence test when solving problem p.
This can be the number of function evaluations required to satisfy the conver-
gence test, the time or other criteria. The more tp,s is large, the worse is the
performance. The performance ratio is defined by

rp,s = tp,s
min {tp,s, s ∈ S}

, (3.1)

and compares the performance of a given solver s on a problem p with respect
to the best performance of any solver on this specific problem [47]. With this
definition, rp,s is always greater than 1 and the performance ratio of the best
solver s on a particular problem p is rp,s = 1. By convention, a parameter rM ,
such that, for all p and any s, rp,s ≤ rM is used when solver s fails to satisfy
the convergence test. The parameter rM can be considered ∞.

Let us consider α ∈ R and define [47]

ρs(α) = 1
np
size{p ∈ P : rp,s ≤ α} (3.2)

as the probability for solver s ∈ S that a performance ratio rp,s is within a
factor α of the best possible ratio. The function ρs(α) is then a (cumulative)
distribution function for performance ratio and informs how well the solver s
performs relative to the other solvers in S on the set of problems P. In general,
ρs(α) indicates the proportion of problems with a performance ratio at most α.

1. Here function evaluation denotes both the evaluation of the residual norm for linear
system solvers and the functional evaluation for registration algorithms. Similarly, the term
solver may designates both a linear system solver and a registration algorithm.
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In particular, ρs(1) denotes the fraction of problems for which solver s performs
the best and ρs(α), for α sufficiently large, is the fraction of problems solved by
the solver s. The preferable solvers are, thus, those with high values for ρs(α).

Consider that tp,s > 0 measures the effort for solver s to verify the conver-
gence test when solving problem p while the best solver ŝ requires t̂p,ŝ for the
same problem. The factor α in ρs(α) is such that

tp,s ≥ αt̂p,ŝ.

This means, the solver s requires at least α times the efforts of the best solver
to verify the convergence test.

Solvers are compared in Chapter 4 while the algorithms are compared later
in Chapter 6. We present in Chapter 4 and in Chapter 6 some numerical
experiments to illustrate the behaviour of algorithms and solvers described in
chapters 4 and in Chapter 5.

3.3 specific toolboxes
For this work, we have used many matlab classical toolboxes. In addition

to the FAIR package, we have used the following specific toolboxes. Tensorlab
toolbox (see [50]) a toolbox for tensor computations and signal processing that
we used to a full array in a sparse one.

htucker toolbox (see [51]) for linear systems in tensor formats.
tt-toolbox (see [52]) for linear system in Tensor-Train formats.

3.4 Characteristics of the computer
The tests in this thesis are implemented in Matlab and we have two test

environments. The first tests, concerned by relatively small and medium im-
ages, were performed on a local computer with one processor intel CoreTM i5,
3.2GHz × 4.

The second test environment, concerned by larger images, were the hercules
machine, one of the CECI clusters 2 The allocated resources in this environment
are described in Table 3.2

4 processors CPU = 4
Memory 16GB per processor
Compiler Matlab on slurm smp

Table 3.2: Host computer characteristic

2. http://www.ceci-hpc.be/hercules and http://www.ptci.unamur.be/hercules .
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Chapter 4
Linear system solvers and
preconditioning for 3D MIRP

As stated in the previous chapters, most nonrigid registration processes
require resolution of large linear systems. For nonparametric registration tech-
niques, these linear systems are derived from physical principles, modelled
as Partial Differential Equations (PDEs), whose resolution allows to obtain
a smooth displacement field. On the one hand, such linear systems are gener-
ally ill-conditioned. This leads to low convergence rates of the algorithms used
to solve the problem, or to inaccurate solutions. On the other hand, many ap-
plications of registration algorithms such as cancer screening in intraoperative
brain shift estimation (in image guided neurosurgery) require faster registra-
tion algorithms [53]. Thus, there is a need to provide efficient system solvers
especially for deformable nonparametric registration applied to high-resolution
3D images. In such applications, the system resolution is indeed among the
most expensive steps.

One way of designing efficient system solvers is the analysis of structures
of general operators or matrices used by the algorithms. Getting insights into
those structures may enable a reduction of the number of expensive operations
such as matrix-vector products and thus to speed up the registration process. In
this chapter, we are especially interested in speeding up the Conjugate Gradient
(CG) algorithm by providing well suited preconditioners (see Section 2.2).

For designing efficient system solvers, one may analyze structures of general
operators or matrices used by the algorithms. In our case, although these
systems are often sparse and structured, they are very large and ill-conditioned.
Thus, their solvers are time consuming and their complexity in operation counts
is polynomial. As a consequence, fast and superfast direct methods reveal
numerical instabilities and thus lead to breakdowns or inaccurate solutions.
The most used alternative are iterative system solvers that enable a reduction
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of the number of expensive operations such as matrix-vector products and thus
a speed up of the registration process. Although iterative solvers provide only
an approximation of the solution, they are well suited for very large systems
when cheap and well suited preconditioners are available. Preconditioners may
be stationary (Jacobi, Gauss-Seidel or SOR) and non-stationary (polynonmial
or low-rank tensors).

In this chapter, we present roughly the general techniques of preconditioning
linear systems of the form

Ax = b, (4.1)

where A ∈ RN×N is large, sparse and Symmetric Positive-Definite (SPD) con-
structed from MIRP. This matrix approximates, in some way, the Hessian of
the functional (1.65). Except in Section 4.5 where the system is derived from
a Gauss-Newton strategy, in other sections the approximation is based only on
the differential operator (see (1.58) and (1.58)). The vectors x, b belong to RN
with b that contain information about the images to be registered (see 1.59).

4.1 Systems from Elastic and Diffusion models
Let us suppose that the registration problem consists of deforming an elastic

material with linear elasticity [24, 32]. From the formulation (1.65), we need a
displacement field, u = [u(1), u(2), . . . , u(d)] 1, that minimizes the elastic linear
energy, expressed by

E
R

(u) =
∫

Ω

µ

4

d∑
j,k=1

(
∂xju

(k) + ∂xku
(j)
)2

+ λ

2 (divu)2dx, (4.2)

where the scalars µ and λ are the so-called Lamé constants [24]. These scalars
refer to the rigidity of the elastic body under deformations. The deformation
of an elastic body assumes an external force has been applied on it, while the
strain of the body, related to its inner stress, is opposed to this external force.
The final shape of the body will result from an equilibrium of the external
forces and the inner stress.

For physical interpretation, we refer to [24, pp. 84-94]. Note that, this
linear elastic energy (4.2 is invariant with respect to rigid transformations.
This enables the use of a rigid pre-registration before elastic deformation. In
addition, with homogenous Dirichlet or Neumann boundary conditions, this
functional is positive definite [24], that is, ∀u 6= 0, E

R
(u) > 0, and symmetric

by construction. This leads to symmetric positive definite matrices well suited
for many linear system solvers. The particular case of equation (4.2) when

1. The notation u(k) indicates the component of u in the kth direction, k = 1, 2, . . . , d.
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d = 3 writes:

E
R

(u) =
∫
R3

λ

2
(
∂x1u

(1) + ∂x2u
(2) + ∂x3u

(3))2
+µ
{(
∂x1u

(1))2 +
(
∂x2u

(2))2 +
(
∂x3u

(3))2}
+µ

2

{(
∂x1u

(2) + ∂x2u
(1))2 +

(
∂x1u

(3) + ∂x3u
(1))2 +

(
∂x2u

(3) + ∂x3u
(2))2} dx.

In this general approach, another advantage is that regularisation by linear elas-
tic energy minimization takes into account the coupling between coordinates
during deformations. This means that it considers the fact that a deformation
along one axis impacts positions of points with respect to the other axes.

The Euler-Lagrange equation is derived from the fact that, (see for e.g, [24,
34]), at a local minimizer function of a differentiable functional, the derivative
of this functional is zero. Since we are interested in finding a local minimizer
of the functional (1.65), we may determine a small and smooth displacement v
where the Gâteaux derivative of the functional is zero.

The following theorem states the Gâteaux derivative of the registration
cost functional with elastic regularisation. This allows the deformation that
minimizes the linear elastic energy to be computed while fitting images to be
registered. The theorem uses the Euclidean scalar product 〈., .〉

Rd
on Rd and

the L2-norm ‖.‖L2 , that is the Euclidean norm for square-integrable functions.
The notation (C2(Rd))d expresses the set of functions whose components are
at least twice continuously differentiable each on Rd.
Theorem 4.1 ([24])

Let
J [u] = 1

2‖Im[x− u(x)]− If (x)‖2L2 + λ

2ER(u),

be a functional where E
R

(u) is given by (4.2). Given a displacement field
u ∈ (C2(Rd))d and a perturbation v ∈ (C2(Rd))d, the Gâteau derivatives
of J is given by

dJ [u, v] =
∫

Ω
〈F − µ∆u− (µ+ λ)∇divu, v〉

Rd
dx. (4.3)

where F = F (x1, x2, x3) is given by (1.59).

Proof. See [24, p. 100]
The theorem above can be used to derive the Euler-Lagrange equation of

the process that describes the equilibrium between the external forces and the
inner strain of the body. In an optimization context, we are interested in the
stationary point of J [u] that may be sufficient as minimizer of (1.65). Thus,
we need to find a displacement field u such that dJ [u, v] = 0. That is, we need
to solve the equation∫

Ω
〈F − µ∆u− (µ+ λ)∇divu, v〉

Rd
dx = 0. (4.4)
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Since this equality has to be verified by any perturbation v that is not nec-
essarily zero, the first quantity of the inner product above must vanish. We
have

(µ∆ + (µ+ λ)∇div)u = F. (4.5)

This allows us to define the elastic operator as

Ael = µ∆ + (µ+ λ)∇div. (4.6)

To determine u that verifies (4.4), we have to solve the linear system (4.5)
that can be rewritten

Aelu = F. (4.7)

We are interested in providing efficient numerical resolution of equation (4.7).
To this equation, we have to add a second equation obtained by the diffusion
model that we discussed roughly in section (1.3.8). To establish the equation
from the diffusion model, we refer to [24, 4, 10]. Here, we decide to derive the
equation (forgetting physical interpretation) by considering µ = 1 and λ = −1
in the elastic model (4.7). The operator of the equation in (4.7) becomes

Adif = ∆, (4.8)

where ∆ is the 3-dimensional Laplace operator. Then we need to efficiently
solve a multidimensional Laplacian linear equation

Adifu = F. (4.9)

After we have formed the linear systems (4.7) and (4.9), it remains to de-
sign an appropriate solver for their solutions. Note that these systems are,
in general, very large. For example, the registration of two 3D images of size
[512, 512, 512] leads to a linear system with coefficient matrix A ∈ R3N×3N

where N = 227. This means, we have to solve a linear system that is suffi-
ciently large with, roughly, 4108 unknowns . It is obvious in this case that, the
convergence rate of a registration algorithm is related to the efficiency of its
linear system solver.

In linear algebra, large scale linear system solvers seek for algorithms which
should require only linear complexity (in term of operations count), especially
for matrix-vector product, and if possible, the matrix inversion. Since this may
be too difficult for general matrices, one may work with special families of ma-
trices. An ideal family of such matrices is the family of diagonal matrices [54].

Observe that, for matrices A, B ∈ Rm×m, m ∈ N and a vector x ∈ Rm,
only diagonal matrices allow the standard operations Ax,A+B,A∗B and A−1,
to be performed with linear complexity (in term of operations count) [54].

In addition to diagonal matrices, sparse matrices form another interesting
family for algorithms that require only matrix-vector product as ”expensive”
operation.
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Thus, one way of designing an efficient linear system solver is to exploit the
structure of the matrix system. For specific structures, such as diagonal, block
diagonal, sparse, Toeplitz or Hankel matrices, there exist direct fast and very
fast solvers (see e.g, [49]).

It is known that direct solvers can prove to be robust and attractive for
their predictability. For these methods the requirements in term of computing
time and storage can be known in advance [55]. Thus, to solve the large linear
systems (4.7) and (4.9), one may have the temptation of using direct methods.
Since the efficiency of direct methods relie on specific structure of the system
matrix, it is of importance to analyse the structure of matrices at hand. Below,
we present the structure of our system matrices Ael and Adif .

4.1.1 Structure and sparsity of Ael and Adif

Since Ael and Adif are derived from discretization of PDEs, they are nat-
urally sparse. The sparsity patterns may change slightly with respect to the
discretization method and boundary conditions, but in general, these matrices
stay sparse.

Figure 4.1 displays the sparsity patterns of Ael (left) and Adif (right) for
a three-dimensional finite differences discretization. The Dirichlet boundary
conditions are assumed for both systems. The size of the matrices is [6144 ×
6144] but nonzeros elements are reduced, respectively, to 92512 and 43360 that
are small compared to (6144)2 that should have dense matrices.
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(a) Ael sparsity patterns:
n(1) = 16, n(2) = 16, n(3) = 8
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(b) Adif sparsity patterns:
n(1) = 16, n(2) = 16, n(3) = 8

Figure 4.1: Sparsity of elastic and diffusion operators

Now, it is important to know where are located the non zero elements. One
can verify that, by developing the relation (4.2), the linear operator Ael in 3D
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can be written

Ael =

(λ+ 2µ)∂x1x1u
(1) + µ∂x2x2u

(1) + µ∂x3x3u
(1)

µ∂x1x1u
(2) + (λ+ 2µ)∂x2x2u

(2) + µ∂x3x3u
(2)

µ∂x1x1u
(3) + µ∂x2x2u

(3) + (λ+ 2µ)∂x3x3u
(3)


+ (λ+ µ)

∂x1x2u
(2) + ∂x1x3u

(3)

∂x1x2u
(1) + ∂x2x3u

(3)

∂x1x3u
(1) + ∂x2x3u

(2)

 .

Observe that, with appropriate discretizations based on finite differences meth-
ods, Ael is a real matrix of size 3N×3N whereN = n(1)n(2)n(3) and [n(1), n(2), n(3)]
expresses the size of the image. For more on these discretization schemes, we
refer to J. Modersitzki [10].

Then, using finite differences methods, let us set

A(11) = (λ+ 2µ)∂x1x1u
(1) + µ∂x2x2u

(1) + µ∂x3x3u
(1)

A(12) = (λ+ µ)∂x1x2u
(1)

A(13) = (λ+ µ)∂x1x3u
(1)

A(21) = (λ+ µ)∂x2x1u
(2)

A(22) = µ∂x1x1u
(2) + (λ+ 2µ)∂x2x2u

(2) + µ∂x3x3u
(2)

A(23) = (λ+ µ)∂x2x3u
(2)

A(31) = (λ+ µ)∂x3x1u
(3)

A(32) = (λ+ µ)∂x3x2u
(3)

A(33) = µ∂x1x1u
(3) + µ∂x2x2u

(3) + (λ+ 2µ)∂x3x3u
(3)

.

Then, we can approximate these second derivatives by

∂xjxju(x) = u(x+ hjej)− 2u(x) + u(x− hjej)
h2
j

+O(h2
j ) (4.10)

and

∂xjxku(x) = 1
4hjhk

u(x+ hjej + hkek)− u(x− hjej + hkek)

−u(x+ hjej − hkek) + u(x− hjej − hkek) +O(h2
j + h2

k).
(4.11)

To compute efficiently these quantities, one can use 3-by-3-by-3 stencil ma-
trices by defining

αj,k,l =


−2(λ+ 4µ), if j = k = l = 2,
(λ+ 2µ), if j = 1, 3, k = l = 2,
µ, if j = k = 2, l = 1, 3,
µ, if j = l = 2, k = 1, 3,
0, other wise

and setting

βj,k,l = λ+ µ

4

 1, if j = 2 and (k = l = 1 or k = l = 3),
−1, if j = 2 and (k = 1, l = 3 or k = 3, l = 1),
0, other wise.
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S
(11)
j,k,l = αj,k,l S

(12)
j,k,l = βl,j,k S

(13)
j,k,l = βk,l,j

S
(21)
j,k,l = βl,j,k S

(22)
j,k,l = αk,l,j S

(23)
j,k,l = βj,k,l

S
(31)
j,k,l = βk,l,j S

(32)
j,k,l = βj,k,l S

(33)
j,k,l = αl,j,k

Table 4.1: 3D stencil arrays.

Based on these definitions, we can define three dimensional arrays, as stencil
arrays. This is presented in Table 4.1.

Observe that the action of Ael on the displacement field u can be seen as a
convolution of each component of u by the corresponding stencil matrix, that
is,

Ael[u(x)] =

S
(11) ∗ u(1)(x) S

(12) ∗ u(2)(x) S
(13) ∗ u(3)(x)

S
(21) ∗ u(1)(x) S

(22) ∗ u(2)(x) S
(23) ∗ u(3)(x)

S
(31) ∗ u(1)(x) S

(32) ∗ u(2)(x) S
(33) ∗ u(3)(x)

 ,

where ∗ is the convolution operation. For instance,

S
(11)
∗ u(1)

j,k,l =
1∑

r,s,t=−1
S

(11)

2+r,2+s,2+t ∗ u
(1)
j+r,k+s,l+t.

This can also be seen as a product of a block matrix by the vectorized function
u, in the form

Ael[u(x)] =

A
(11)

A
(12)

A
(13)

A
(21)

A
(22)

A
(23)

A
(31)

A
(32)

A
(33)


u(1)(x)
u(2)(x)
u(3)(x)


The elastic matrix is then a block-matrix

Ael =

A
(11)

A
(12)

A
(13)

A
(21)

A
(22)

A
(23)

A
(31)

A
(32)

A
(33)

 , (4.12)

while the diffusion operator Adif is the three dimensional Laplacian. They are
both naturally symmetric positive definite.

While it is obvious that the matrices Ael and Adif are not diagonal, they are
clearly highly structured and sparse. Thus, cheap transformations may allow
to diagonalize them and then work with diagonal or block diagonal matrices.
The most known cheap transformations are Fast Fourier Transforms (FFTs) or
their related Discrete Cosine Transforms (DCTs). With such fast methods, it is
possible to solve the linear systems (4.7) and (4.9) with complexity O(Nlog2N)
[56] or even O(NlogN) [24] where N ∈ N is the number of voxels of the image.
Below, we present DCT of the operator (4.8) and FFT of the operator (4.6).
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4.1.2 Factorization of Ael and Adif

Factorisation of Ael
To decompose Ael we follow the procedure in [24], the block-matrix formed

by A(jk), j, k = 1, 2, . . . , d can be transformed using circulant matrices defined
below. The advantage of using circulant matrices is that they are diagonalizable
by the Fourier matrix and allow equivalence between the convolution operation
and the matrix-vector product. Thus, we need to use circulant matrices in order
to transform Ael in a block diagonal matrix. This means a block-matrix whose
blocks are all diagonals. The definition of a circulant matrix is stated below:
Definition 4.2 (circulant matrix)

Given m ∈ N, a matrix is called circulant, if it is generated by an m-vector
c = [c0, c1, . . . , cm−1] such that

Cm =


c0 c1 . . . cm−2 cm−1

cm−1 c0 cm−2
...

. . . . . . . . .
c2 c0 c1
c1 c2 . . . cm−1 c0

 , (4.13)

where it can be seen that each row (respectively each column) is a cyclic
shift of the preceding row (respectively column).

The specific circulant matrix we will use here is

Cm =


0 1 0 . . . 0
0 0 1 0
...

. . . . . .
0 1
1 0 . . . 0 0

 . (4.14)

It can be shown that any circulant matrix Cm is unitary. This means that
CTmCm = CmC

T
m = Im and C−1

m = CTm. In addition, it is known that any
circulant matrix can be diagonalized by the Fourier matrix

Fm = 1√
m

(
w(j−1)(k−1)
m

)m−1

j,k=0
, (4.15)

where wm = e−2πi/m is the mth root of unity and i2 = −1. This is stated in
the following result demonstrated in [57].
Proposition 4.3

Let m ∈ N, Fm be the Fourier matrix defined in (4.15) and

Λm = diag(w0
m, w

(1)
m , . . . , wm−1

m ),
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be a diagonal matrix. Then,
1. the Fourier matrix is unitary, that is, F−1

m = FHm where FHm indicates
the conjugate transpose of the matrix Fm,

2. the circulant matrix Cm is diagonalized by Fm, that is

FHmCmFm = Λm, (4.16)

3. any linear combination of circulant matrices Zm =
∑m
j=1 αjC

j
m is

diagonalized by Fm, with

FHmZmFm =
m∑
j=1

αj(Λm)j . (4.17)

Using this proposition, it is demonstrated in [24] that the blocks of the
matrix Ael in (4.12) can be written as block-circulant, that is, with blocks that
are circulants and that those blocks can be factorized using Fourier matrices.

This means that, the Fourier matrix allows to transform the initial matrix
into a block matrix whose blocks are diagonal.

Finally the matrix A ∈ R(3n(1)n(2)n(3))×(3n(1)n(2)n(3)) (cfr (4.12)) allow the
transformation

FHAF =

D(11) D(12) D(13)

D(21) D(22) D(23)

D(31) D(32) D(33)


where F = I3⊗Fn(3)⊗Fn(2)⊗Fn(1) , and D(pq), p, q ∈ {1, 2, 3} are block diagonal
matrices.

Now this allows the linear system (4.7) to be solved by applying explicit
fast inversion of block diagonal matrices D(pq), p, q = 1, 2, 3 and applying some
FFTs [24].

However, the matrix A or matrices D(pq) to be inverted by the fast or
superfast algorithms might be singular or very ill-conditioned [24, p. 109].
This situation often leads to break-down or causes numerical instability that
may lead to inaccurate solutions. In the case of singularity, J. Modersitzki
[24] proposed to compute the Moore-Penrose pseudo inverses to overcome the
problem. He proposed the algorithm below, where for direct use in matlab,
the command fft3 reffers to the Fast Fourier Transforms in three dimensional
space.
Algorithm 4.1 ([24])

Given x = [x(1), x(2), x(3)], F = [f1(x), f2(x), f3(x)] we are looking for u =
[u(1), u(2), u(3)] such that Aelu(x) = F (x)

For r = 1 : 3
F̃ (r) = fft3(fr(x));

end
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For j = 1 : n(1), for k = 1 : n(2), for l = 1;n(3)

Solve

ũ
(1)
l,k,j

ũ
(2)
l,k,j

ũ
(3)
l,k,j

 =

D
(11)
l,k,j D

(12)
l,k,j D

(13)
l,k,j

D
(21)
l,k,j D

(22)
l,k,j D

(23)
l,k,j

D
(31)
l,k,j D

(32)
l,k,j D

(33)
l,k,j


†F̃

(1)
l,k,j

F̃
(2)
l,k,j

F̃
(3)
l,k,j


end
For r = 1 : 3

u(r) = fft3−1(ũ(r));
end

where D† indicates the Moore-Penrose pseudo-inverse of the matrix D. This
algorithm solves the linear system with numerical complexity O(NlogN), N =∏3
k=1 n

k.

Factorisation of Adif
Observe that for the diffusion model (4.8) the transformation may be sim-

plified because the mixte derivatives are zeros. Then, we can use variables
separability and thus the Kronecker product defined in (1.21). With this con-
figuration, Adif is a Laplacian operator in 3D that writes

Adif = In(3) ⊗ In(2) ⊗∆n(1) + In(3) ⊗∆n(2) ⊗ In(1) + ∆n(3) ⊗ In(2) ⊗ In(1) , (4.18)

where ∆n(k) , n(k) ∈ N, k = 1, 2, 3, is the unidimensional Laplacian operator
given by

∆n(k) = 1
h(k)2



−2 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2


∈ Rn

(k)×n(k)
.

The variable separability that allows the expression (4.18) enables to study
and compute eigenelements of the operator Adif via unidimensional Laplacian.
Thus, the matrix Adif can be diagonalized by discrete sine or cosine transforms.
In what follows, we use the Discrete Sine Transfor (DST). The use of this
transformation is twofold. At the one hand, they provide diagonal matrices for
efficient direct linear system solvers. At the other hand, they provide analytic
expressions of eigenvalues and associated eigenvectors that can be used for
designing efficient preconditioners for iteratives solvers (these are presented in
the next section).

Let us define

θj
k

= j
k
π

(n(k) + 1)
, j

k
= 1 : n(k), , k = 1, 2, 3. (4.19)
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It can be shown that, the eigenvalues of Adif are given by

λj1,j2 ,j3 = 4
[
sin2

(
θj1
2

)
+ sin2

(
θj2
2

)
+ sin2

(
θj3
2

)]
, (4.20)

for jk = 1, 2, . . . , n(k), k = 1, 2, 3. Equivalently, by using

2sin2
(
θ

2

)
= 1− cos(θ),

λj1 ,j2 ,j3 = 6− 2
[
cos
(
θj1

)
+ cos

(
θj2

)
+ cos

(
θj3

)]
.

The associated eigenvectors are Kronecker product of unidimensional eigenvectors.
The unidimensional eigenvectors associated to the jth

k
eigenvalue of the operator ∆n(k)

is given by
vi
k

=
√

2/(n(k) + 1) sin
(
ikθjk

)
, jk = 1 : n(k).

The eigenvector associated to the 3-dimensional Laplacian is then

vi1 ,i2 ,i3 = vi1 ⊗ vi2 ⊗ vi3 . (4.21)

If

Vn(k) =
(√

2/(n(k) + 1) sin
(
ikθjk

))n(k)

i
k
, j
k

=1

is the orthonormal matrix of the unidimensional Laplacian eigenvectors, the orthonor-
mal matrix of the 3-dimensional Laplacian is given by

V = Vn(3) ⊗ Vn(2) ⊗ Vn(1) , (4.22)

and one can verify that

V TV = IN , and V TAdifV = Λ, (4.23)

where Λ is a diagonal matrix whose elements are eigenvalues defined by (4.20) and
N = n(1)n(2)n(3).

Figure 4.2 illustrates the eigenvalues distribution of both Adif , Laplace operator,
(top left) and Ael (top right) with the parameters µ = 1 and λ = 1 . One can see
that they have almost the same distribution but the upper bound of Ael depends also
on the parameters λ and µ from the formulation. In the figure, one can see that the
eigenvalues are not uniformly distributed. Instead, there is concentration of smaller
eigenvalues and concentration of relatively higher eigenvalues. The subfigures (4.2a),
and (4.2b) display ordered eigenvalues of Adif and Ael for matrices of size 6144×6144
The subfigures (4.2c), and (4.2d) make the x-axis on a log scale to show that there
are many eigenvalues closer to zero for Adif but smaller for Ael, respectively, and
no upper bound for the latter. The condition number for these specific cases are
k(Adif ) = 1015 and k(Ael) = 106. Notice that, for the matrix (4.8), when n(k) is
relatively large ( e.g n(k) ≥ 100, ∀k = 1, 2, 3), this matrix has identical eigenvalues in
practice and thus low-rank.

In addition, the more the size N = n(1)n(2)n(3) increases, the more there are quasi
similar eigenvalues that reduce the number of clusters. On the other hand, the ratio
between the smallest and the highest eigenvalues increases. This is due to the fact
that, for jk = n(k), k = 1, 2, 3, the lower bound decreases and tends to zero.
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Figure 4.2: Eigenvalues distribution of Adif ( (4.2a) and (4.2c)) and Ael( (4.2b)
and (4.2d)). The size of both matrices is 6144× 6144.

We have factorized our matrices and direct fast methods have explored these
factorisations to solve the linear systems (see for example [58]). However, it is known
that the matrices Ael and Adif or even the blocks D(pq) are very ill conditioned.
Thus, these fast and superfast direct methods have numerical instabilities and lead to
breakdowns or inaccurate solutions. An alternative is the use of iterative algorithms.
But one should note that, iterative solvers provide only an approximation to the
solution of the linear system and may introduce further inner iterations. Since the
matrices Ael and Adif are symmetric and positive definite, the Conjugate Gradient
(CG) algorithm described in Section 2.2 is the iterative method of choice for these
linear systems.

To have an iterative method that is competitive with the fast and superfast direct
methods, we have to provide an algorithm with at most linear complexity. This is
possible, only if there is possibility to build a ”low-cost” preconditioner, in term of
operation counts and that should be, in addition, easy to apply. We address certain
preconditioning techniques in the section below.
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4.2 Introduction to preconditioning techniques
In Section 2.2, we have presented certain results on the CG convergence rate. In

those studies, the analysis of rounding errors is not taken into account although their
effects may be unacceptable in practice [59]. In the following section, we present
a rough analysis of the CG convergence rate in presence of rounding errors and we
present certain preconditioning techniques that may address this issue.

4.2.1 Convergence of the CG algorithm in finite precision
The problem of rounding errors for the CG algorithm has been addressed by many

authors in the literature (see for example [60, 61, 62]). In the aim of enphasizing on
the role of the right-hand side in the convergence rate of the CG algorithm, we present
in this subsection, some results on the CG behaviour in finite precision following the
papers [63] and [64]. The analysis of the CG convergence rate presented here does not
focus on the process of achieving the solution but on getting insight into the earlier
behaviour of the algorithm.

One of the sources of rounding errors in the CG algorithm may be the loss of
orthogonality of the residual vectors. The CG algorithm is known to be sensitive to
this loss of orthogonality, since this changes the theoritical convergence properties of
the CG algorithm. In particular, the loss of orthogonality delays the convergence and
may even prevent the attainable accuracy [63]. However, it has been shown that, for
some matrices, a small change in the eigenvalue distribution can lead to a large change
in the sensitivity of the CG algorithm with respect to rounding errors [65]. Thus,
after a brief analysis of the loss of orthogonality of the residual vectors in the CG
algorithm, we will present a way of changing the coefficient matrix of the system such
that the eigenvalue distribution of the new matrix becomes less sensitive to rounding
errors. This is a way of preconditioning the system addressed in this chapter.

Let us assume that the CG algorithm is designed to solve the linear system (2.23).
Then, we present below the convergence behaviour of the CG algorithm at iteration
k > 0, k ∈ N. As presented in Section (2.2), given an initial guess x0, at the iteration
k, the CG algorithm aims to minimize the energy norm of the error on the Krylov
subspace Kk(A, r0) (see 2.24).

Thus, the convergence rate of the CG algorithm can be analyzed by comparing
the current error ‖x∗ − xk‖2A to the initial error ‖x∗ − x0‖2A in the A-norm. For this
purpose, let us notice three equivalent expressions stated in the following remark.
Remark 4.1

Let x∗ denotes the solution of the linear system Ax = b, that is, Ax∗ = b.

Consider r = b − Ax, ‖r‖2A−1 = rTA−1r and q(x) = 1
2x

TAx − bTx. Then, the
expressions

‖r‖2A−1 , (4.24)
‖x− x∗‖2A (4.25)

and
2q(x) + bTA−1b (4.26)

are equivalent.
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This can be proved by an easy verification with basic linear algebra operations.

The CG algorithm analyzed here is computationally based on the three-two terms
recurrences {

rk = rk−1 − αkApk−1,
xk ∈ x0 +Kk(A, r0),
pk = rk + βkpk−1,

(4.27)

With the CG properties stated in Theorem 2.9. The residual vectors {r0, r1, . . . , rk−1}
form an orthogonal basis and search direction vectors {p0, p1, . . . , pk−1} form an A-
orthogonal basis in the Krylov subspace Kk(A, r0).

The notation xk ∈ x0 +Kk(A, r0) means that there exists certain real γj , j = 0 :
k − 1 such that

xk = x0 +
k−1∑
j=0

γjA
jr0, (4.28)

and this writes again xk = x0 + pk−1(A)r0. Since by definition

rk = b−Axk = b−A(x0 + pk−1(A)r0) = (1− pk(A))r0

and p0 = r0, one can, using (4.28), reformulate the residual vector relation in its
polynomial form:

rk = φk(A)r0, (4.29)
where

φk(A) = 1− pk(A) (4.30)
is a polynomial of degree not greater than k and that verifies φk(0) = 1. This means
we may impose the constraint that fixes the constant term of the residual polynomial
to 1 and this guaranties the convergence of the Neumann series in A. Similarly (see
for example Strakovs in [63]), the kth error can be written as a polynomial in A
applied to the initial error. That is,

x∗ − xk = φk(A)(x∗ − x0). (4.31)

The relation (4.29) links the search of orthogonal residual vectors in Krylov sub-
spaces to search of orthogonal polynomials in polynomial spaces. For this last, the
orthogonality is related to the inner product defined by the Riemann-Stieltjes integral
(see annexe C) with appropriate weight functions ω(λ) that play an important role
in the convergence rate of the CG algorithm.

In the Krylov subspace, to get an optimal approximation of the solution at iter-
ation k, the vector xk is expected to be a minimizer of (4.31) that lies in the whole
Krylov subspace of degree k. However, due to rounding errors, one may get an ap-
proximation polynomial of degree less than k. In this case, the approximation is said
to be suboptimal. Otherwise, it is known that, the Krylov subspace

Kk(A, r0) = span
{
r0, Ar0, A

2r0, . . . , A
k−1r0

}
,

with the basis {
r0, Ar0, A

2r0, . . . , A
k−1r0

}
, (4.32)

is in general ill conditioned. Hence in practice, accumulation of rounding errors will
certainly lead to loss of orthogonality [63]. In particular, for increasing k, the vectors
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Ajr0, 1 ≤ j ≤ k − 1 will eventually become linearly dependent and this leads, as we
said above, to a suboptimal solution because the computed direction lies in a Krylov
subspace of order less than expected. Therefore, the arithmetic behaviour of the
CG algorithm is often related to rounding errors due to loss of orthogonality among
computed directions and residuals [45].

Let us now address the convergence rate of the CG algorithm at iteration k in a
polynomials space. In this case, we have to minimize

‖x∗ − xk‖2A = min
z∈x0+Kk(A,r0)

‖x∗ − z‖2A.

where Kk(A, r0) is a space of polynomials of degree not greater than k. Now, the
problem becomes a search of a polynomial z. Thus, it can be verified that for any
z ∈ Kk(A, r0), we have that, z = x0 +

∑k−1
j=0 γjA

jr0, where γj , j = 0 : k − 1 are
some real coefficients.

Let Φk denote the set of all polynomials of a degree not greater than k verifying
φk(0) = 1. The global minimizer z = xk of ‖x∗−xk‖2A can be understood as a solution
of

min
z∈x0+Kk(A,r0)

‖x∗ − z‖2A = min
φk∈Φk

(rT0 φk(A)A−1φk(A)r0),

with φ(0) = 1, for all φ ∈ Φk.
As the eigen decompositions

A = UΛUT and A−1 = UΛ−1UT (4.33)

where Λ = diag(λ1, λ2, . . . , λN ) are allowed, we can write

φk(A) = Uφk(Λ)UT = Udiag(φk(λj))UT , j = 1, 2 . . . , N =
N∑
j=1

φk(λj)ujuTj .

Thus

‖x∗ − xk‖2A = min
φk∈Φk

{
N∑
j=1

(r0, uj)2([φk(λj)]2)
λj

}
(4.34)

The relation (4.34) shows that, for Symmetric Positive Definite matrices, the CG
rate of convergence is determined by the distribution of eigenvalues of the coefficients
matrix and the components of r0 in each eigenvector direction. This is particularly
important from linear systems from MIRP since the initial residual contains the
information about the images and often presents significant variability as we will
indicate later in this chapter.

In addition, setting y = rT0 U, we get

‖x∗ − xk‖2A = min
φk∈Φk

{
N∑
j=1

y([φk(λj)]2)yT

λj

}

= min
φk∈Φk

{
N∑
j=1

[φk(λj)]2y2
j

λj

}
and for k = 0

‖x∗ − x0‖2A =
N∑
j=1

[φ0(λj)]2y2
j

λj
=

N∑
j=1

y2
j

λj
. (4.35)
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Note that, since A is Symmetric Positive Definite, for all x, y ∈ RN ,

xTAy = xTUΛUT y

By setting x = (Ux) and y = (Uy) one writes

xTAy = 0 if and only if xTΛy = 0

and
N∑
j=1

λjx
T
j yj = 0

The ratio ‖x
∗ − xk‖2A

‖x∗ − x0‖2A
shows that the CG convergence rate is an orthogonal poly-

nomial in the eigenvalues of A.
To get a bound on this convergence rate, let us define

β(λ1, λ2, . . . , λN ) = min
φk∈Φk

max
λj∈σ(A)

|φk(λj)|, (4.36)

we get

‖x∗ − xk‖2A =
N∑
j=1

[φk(λj)]2)y2
j

λj

≤ β(λ1, λ2, . . . , λN )2
N∑
j=1

y2
j

λj

= β(λ1, λ2, . . . , λN )2‖x∗ − x0‖2A. (4.37)

This leads to

‖rk‖A−1

‖r0‖A−1
=
√
‖x∗ − xk‖A√
‖x∗ − x0‖A

≤ β(λ1, λ2, . . . , λN ). (4.38)

By replacing the discrete set σ(A) by a large continuous set [a, b] = E ⊃ σ(A), the
minimax problem in (4.36) is known to admit a unique solution (see for example [66])
given by

φk+1(p) = Tk+1

(
b+ a− 2p
b− a

)
/Tk+1

(
b+ a

b− a

)
, ∀, p ∈ [a, b]. (4.39)

where Tk, k = 0, 1, . . . are shifted and scaled Tchebychev polynomials of first kind
with T0(p) = 1, T1(p) = p and Tk+1(p) = 2pTk − Tk−1.

The advantage of this formula is the possibility to obtain orthogonal polynomials
with a recurrence formulae. The CG algorithm is expected to provide a sequence
of orthogonal residuals via the Lanczos process but the task is then to preserve this
orthogonality in practical finite precision 2.

Let us link the Lanczos process to the CG algorithm. Given the matrix A and
the initial residual r0, the Lanczos process, in an ideal case, produces a sequence of

2. Note that the Lanczos process may also suffer from the same effects (loss of orthogo-
nality)
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orthonormal vectors v1, v2, . . . , via the recurrence relations (see [63, p.59]) that begin
by

v1 = r0

‖r0‖
, δ1 = 0

and for k = 1, 2, . . . ,

σk = vTk (Avk − δkvk−1),
wk = Avk − σkvk − δkvk−1),
δk+1 = ‖wk‖, (if δk+1 = 0 then stop;
vk+1 = wk

δk+1

(4.40)

This process provides the matrix

Vk = [v1, v2, . . . , vk]

of size N × k formed by the Lanczos vectors and the tridiagonal matrix

Lk =


σ1 δ2

δ2 σ2
. . .

. . . . . . δk
δk σk


with positive subdiagonals.

Lanczos methods approximate k eigenvalues of the matrix A from those of the
tridiagonal matrix Lk. The link between the CG and the Lanczos processes (see for
example [64] include the relations

σk = 1
αk−1

+ βk−1

αk−2
, β0 = 1, α−1 = 1.

δk+1 =
√
βk

αk−1
,

vk+1 = (−1)k rk
‖rk‖

(4.41)

where the reals αk, βk are from the CG algorithm 2.2 while the σk, δk are from the
lanczos process 4.40. This allows to write

AVk = VkLk + δk+1vk+1e
T
k , (4.42)

where Vk = [v1, v2, . . . , vk] is a matrix of Lanczos vectors and eTk is the kth column of
the N by N identity matrix. From xk = x0+pk(A)r0, we may be interested by finding
a vector yk, via the use of orthogonality of the vectors rk on the basis {v1, v2, . . . , vk}
of the subspace Kk(A, r0). This means, the best approximation xk at iteration k is
such that

xk = x0 + Vkyk. (4.43)
To find yk, notice that the condition on orthogonality of vk+1 on v1, v2, . . . , vk allows
to write

vk+1 = φk(A)v1

where φk(A) ∈ Φk is an orthogonal monic polynomial (see Annexe (C) and the poly-
nomial φk(A) can be determined by solving the problem at the right-hand of (4.36).
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The obtained sequence of monic polynomials 1, φ1, φ2, . . . that are orthogonals with
respect to the weighted scalar product 〈., .〉ω defined by

〈f, g〉ω =
∫ b

a

f(λ)g(λ)dω(λ), ∀ f, g ∈ P (4.44)

where P is the space of polynomials. The distribution function ω(λ) defined at finite
points of increase λ1 < λ2 < . . . < λN (see Annexe C) corresponding to eigenvalues
of the matrix A defines the weights. The corresponding Riemann-Stieltjes integral
satisfies ∫ b

a

f(λ)dω(λ) =
N∑
i=1

ωif(λi)

can be solved accurately by Gauss quadrature.
In addition, the orthogonality of rk with respect to vectors in Vk allows us to

write
V Tk rk = 0

V Tk (b−Axk) = 0,
V Tk (b−Ax0 −AVkyk)

such that
V Tk AVkyk = V Tk r0 (4.45)

Since r0 = ‖r0‖v1 and V Tk constitute orthonormal vectors, The equation (4.45) writes

Lkyk = ‖r0‖e1, (4.46)

where e1 is the first column of the identity matrix and Lk = V Tk AVk is the tridiagonal
matrix constructed by the Lanczos process. By denoting the eigen decomposition of
Lk by

Lk = SΘST =
k∑
j=1

θjks
j
ks
j
k

T
, (4.47)

we can redefine the constant distribution function ω(λ) with the new k points of
increase a < θ1

k < θ2
k, . . . , θ

k
k < b

ωjk = (e1, s
j
k)2,

N∑
j=1

ωjk = 1, (4.48)

where sjk are eigenvectors of Lk and θjk their associated eigenvalues. Thus, we can de-
termine the k first polynomials from {1, φ1, φ2, . . . , φN} with the associated Riemann-
Stieltjes integral with the above distribution function by

φl = argmin
φ∈Φl

{∫ b

a

[φ(λ)]2dωk(λ)
}
, l = 0, 1, . . . , k. (4.49)

This is provided by the kth Gauss quadrature approximation. Since the Gauss
quadrature with k nodes and k weights can achieve 2k − 1 degree of exactness, this
ensures that the Riemann-Stieltjes integral will be exact for any polynomial of degree
less or equal to 2k − 1.
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From the informations above, it is clear that a CG algorithm is stable and behaves
correctly as expected when the process guaranties the preservation of orthogonality of
the residuals, the A-conjugancy of the directions and linear independency of Krylov
subspace basis.

However, this orthogonality and stability is related to rounding errors. To under-
stand the effects of rounding errors, the work of Paige is well known in litterature
(see [64], [65], [67]). Here we present, without demonstration some of the results wich
allows us to interpret some numerical results in (4.6) and we reffer to papers [64]
and [65] for more details.

Let us define the Ritz pairs from the Lanczos process. First, note that, the
eigenpairs (θjk, s

j
k) from (4.47) are called Lanczos pairs or primitive Ritz pairs. The

Ritz pairs are
(θjk, y

j
k), such that yjk = Vks

j
k (4.50)

where θjk is called Ritz value while yjk is called Ritz vector. Note that, at iteration k,
the Lanczos process approximates the Ritz pairs and one can verify from 4.42 that

Ayjk = θjky
j
k + δkvk+1(eTk sjk). (4.51)

The residual of the Ritz pair has 2-norm equal to

‖(eTk sjk)δk+1vk+1‖2 = (eTk sjk)δk. (4.52)

Thus, in finite precision, Lanczos vectors lose orthogonality in the computation
of rk due to cancelation when δk is small. In this case, the quality of Ritz value is
deteriorated. Three consequences of the relation (4.51) are of interest.

First, when (4.52) is too small, then a Ritz value has converged to an eigenvalue
of the matrix A.

Second, the loss of orthogonality is observeed only in the direction of converged
Ritz vectors.

Third, in finite precision, the loss of orthogonality in the Lanczos process depends
on the matrix A and on the initial vector v1. From this consequence, it is stated in [64,
p.37] that, the only initial vector that may suppress the loss of orthogonality should
be an initial vector where the order of magnitude of the components vary significantly.

The statement above explains likely why for the same system matrix, we may have
different convergence rate for different images, even with the same size. Especially
because the order of magnitude may vary significantly from one image to another
depending on the acquisition mode and the regularization.

Since we are able to act on the initial vector, and at the same time, act on the
coefficient matrix we may expect high rate of convergence using coefficient matrix with
well suited spectrum that may be less sensitive to rounding errors. This is allowed
by preconditioning techniques. In addition, it enables a high rate of convergence
obtained if the spectrum becomes more clustered. In the following section, we address
preconditioning techniques that allow clustering the spectrum of the system matrix.

4.2.2 Preconditioning the CG algorithm
As mentioned in Section 2.2.3, preconditioning a linear system (4.1) aims to trans-

form it into an equivalent one. The new linear system is expected to have more fa-
vorable properties concerning its eigenvalues distribution or clusters. To be effective,
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the preconditioner should be cheap to construct, to store and to apply. Below we
present three ways of transforming the linear system when preconditioning it.

Left preconditioning
The basic idea of this technique is to design the preconditioner P that approximates
A and is easy to invert. Then, one may compute P−1 ' A−1, that approximates the
inverse of A, and efficiently solve the system

P−1Ax = P−1b. (4.53)

A major drawback of the system (4.53) is that it may lose the symmetry because the
symmetry of A and P does not imply symmetry of P−1A. In addition, the inverse
may not be easy to compute, to store or to apply. However, for P positive definite,
P−1A is symmetric with respect to the P -inner-product 〈., .〉P .

Right preconditioning
As can be seen in the left preconditioning technique above (4.53), the preconditioner
affects both the operator A and the right-hand side b. The right preconditioning
affects only the operator A but not b using a variable change. However, it still loses
symmetry. It writes

AP−1u = b, x = P−1u. (4.54)
A compromise between left and right preconditioning is the use of split precondition-
ing.

Split preconditioning
To preserve the symmetry of the linear system while affecting less the right-hand side,
the split preconditioning technique is used. In this technique, the preconditioner is
used in factored form P = LLT where L may be the Cholesky factor or a matrix
square root of A. Then, the linear system writes

L−1AL−Tu = L−1b where LTx = u. (4.55)

The convergence rate of the CG algorithm depends now on k(L−1AL−T ) rather than
on k(A). This is done implicitly done in the PCG algorithm.

Without mentioning the physics-based preconditioners, multigrid or multilevel
preconditioners and block-preconditioners, there are two main classes of algebraic
preconditioners: implicit and explicit preconditioners. They are qualified as algebraic
since they are based only on information contained in the coefficient matrix of the
system. Implicit preconditioners address the problem by approximating the matrix
A with a matrix that is easy to invert, while explicit preconditioners approximate the
inverse of A.

Figure 4.3 presents a non exhaustive taxonomy on classes of these preconditition-
ers for SPD linear systems. Below we present a brief description of each of them.
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Preconditioners for solving Ax = b

Implicit (generally ≈ A) Explicit (generally ≈ A−1)

ILU Splitting and scaling LMP Polynomial SPAI

MILU
ILU(p)
etc.

Jacobi
GS
SOR
SSOR
etc.

T chebychev
LS
Neumann
etc.

Norm
minimization
Circulant
Spectral
etc.

Figure 4.3: Taxonomy on preconditioners of SPD systems

4.2.3 Incomplete LU preconditioning methods
The Incomplete LU factorization (ILU) of the matrix A gives rise to the denoted

ILU-preconditioner, one of the most effective preconditioners for large sparse linear
systems. It is used to approximate a lower sparse triangular matrix L and an upper
sparse matrix U such that LU aproximates A. In the symmetric case, it reduces to
incomplete Cholesky factorization ILLT and the cost may be halved, compared to
ILU for the nonsymmetric case. However, this technique may lose favorable struc-
ture as sparsity of the initial matrix. To keep a favorable structure, a variety of ILU
preconditioning methods have been developed. For example, some keep non-zero el-
ements only in predetermined positions. They include the zero fill-in ILU (ILU(0)),
the p-level fill-in ILU (ILU(p)) and the ILU with threshold (ILUT ). Other ILU
methods use to substract entries of the newly formed row or column from the main
diagonal to preserve the column sum. They are called Modified ILU (MILU). More
on these preconditioners and their variants can be found in [68]. Preconditioners
based on incomplete factorization may provide ill-conditioned factors and lead to in-
accurate solutions. In addition, these methods are still highly sequential and may not
present any advantage on parallel computers [45]. Splitting preconditioners present
an interesting alternative.
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4.2.4 Splitting preconditioning methods
From the linear system Ax = b and given an initial solution x0, splitting pre-

conditioning techniques approximate the current solution xk+1 from the previous xk
based on the iterations

Mxk+1 = Nxk + b, (4.56)
where the splitting of A is given by

A = M −N. (4.57)

When splitting the matrix A, it is important to ensure that M is regular and easy to
invert for effectiveness. This gives rise to iterates

xk+1 = M−1Nxk +M−1b. (4.58)

The splitting preconditioning methods are, in general, highly parallel and gener-
ally easy to implement [69]. In most cases, the splitting is considered as the sum of
three components of A, setting

A = D − L− U, (4.59)

where D,L,U are respectively the diagonal, the strict lower triangular and the strict
upper triangular components of A. Since for symmetric positive definite matrices,
the diagonal D is regular, the following preconditioning techniques can be defined
(see [68, pp.283-284]).

Jacobi preconditioning method
Set M = D, N = L+ U and get the iterations (4.58). For components of the vector
xk+1, the ith component writes (see [70, 119])

xik+1 = −
N∑

j=1 j 6=i

aij
aii

xjk + bi
aii
. (4.60)

This possibility of computing components independently each other makes the method
appropriate for parallel computing.

Gauss-Seidel method (GS)
Given the splitting (4.57), set M = D−L, N = U and get the iterations (4.58). For
components of the vector xk+1, the ith component writes (see [70, 120])

xik+1 = −
i−1∑
j=1

aij
aii

xjk+1 −
N∑

j=i+1

aij
aii

xjk + bi
aii
. (4.61)

Observe that the Gauss-Seidel method is like Jacobi method except that Gauss-
Seidel method uses the i− 1 components computed yet in the current approximation
of the other components. Setting M = D−L gives the so called forward Gauss-Seidel
method that is equivalent to the backward Gauss-Seidel method obtained by setting
M = D − U .
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Successive Overrelaxation method (SOR)
The SOR is a variant of GS where a relaxation parameter ω ∈ R allows to set
M = 1

ω
(D − ωL), N = 1

ω
((1 − ω)D + ωU), where ω ∈ R is a relaxation parameter,

and get the iterations (4.58). For components of the vector xk+1, the ith component
writes (see [70, 120])

xik+1 = xik + ω

(
−

i−1∑
j=1

aij
aii

xjk+1 −
N∑

j=i+1

aij
aii

xjk + bi
aii
− xik

)
.

Setting ω = 1, one gets the Gauss-Seidel method. Thus one can define the forward
and backward SOR following the definition in the GS method. The Symmetric SOR
(SSOR) uses simultaneously the forward and backward framework.

4.2.5 Sparse Approximation Inverse (SPAI) methods
Consider the linear system Ax = b, where A ∈ RN×N is sparse and large. The

SPAI methods approximate the preconditioner M that minimizes the Frobenius norm
‖I −AM‖, where I is the identity matrix. that is

min
M∈S

‖I −AM‖2F = min
M∈S

N∑
j=1

‖ej −Amj‖22,

where S is the set of sparse matrices and ej , mj are the jth columns of, respectively,
the idenity matrix and the matrix M . The importance of this constraint S is to filter
the entries of A−1 with respect to their contribution quality for the preconditioner.
For example, one may need to drop entries that are small in absolute value with
respect to a given threshold. For general sparse matrices, it is not known in advance
where large entries of A−1 are located. But for banded SPD matrices, it is known
that the entries of A−1 are bounded along each row or column and exponentially
decaying [45]. Thus, the inverses of such matrices can be approximated by low-cost
techniques.

Different ways of approximating these inverses lead to different preconditioners.
Among the most known invariants of th SPAI method, is the factorized sparse inverse
approximation and the incomplete factorization followed by the inverse approxima-
tion.

In SPAI methods, the sparsity patterns may be fixed in advance. In this case, one
reduces the search to the submatrix Â = A(I, J) where I and J denote respectively
the particular rows and the columns indices of A that enter the definition of ej and
mj . One gets smaller vectors êj and m̂j such that the problem reduces to a small
least squares problem where the norm

‖êj − Âm̂j‖2

is minimized. There are several strategies to capture automatically the sparsity pat-
terns when it is difficult to prescribe it in advance. These strategies may use geometric
and topological informations or use information on the absolute values of the entries.

An attractive feature of SPAI method is that they are naturally parallelizable.
However, cheaper preconditioners are those with high sparsity patterns but these

89



Linear system solvers and preconditioning for 3D MIRP

may not lead to significant improvement in the solver. More improvement may be
obtained when the preconditioner becomes dense but this also becomes expensive. A
smart compromise is required to use SPAI preconditioners. In the following section,
we focus on the Limited Memory Preconditioners (LMP) that can be seen as low cost
explicit preconditioner.

4.3 Limited Memory Preconditioners (LMP)
In general, the LMP preconditioner approximates the inverse of a matrix within

a subspace, using a reduced number of vectors. Let the matrix A ∈ RN×N be SPD
and S be a matrix of size N × (k + 1) containing (k+ 1) linearly independent vectors
s0, s1, . . . , sk. Following J. Tshimanga in [71], the LMP preconditioner is the matrix

Hk+1 :=
[
IN − S(STAS)−1STA

]
M
[
IN −AS(STAS)−1ST

]
+ θS(STAS)−1ST ,

(4.62)
where M is another preconditioner called first-order preconditioner and the scalar
θ ∈ R is a shift factor. Here we consider M = I, the identity matrix, and θ = 1.

One can verify that, for k + 1 = N , we have HN = A−1. Observe that, for
k small enough compared to N , the matrix STAS is small and consequently easy
to inverse. Thus, the most expensive operation in this construction would be the
product AS or the equivalent STA. But note that, one does not need to compute
or explicitly store entries of Hk+1 but simply use matrix-vector products in some
procedures both in construction and application. The needed information concerns
the vectors sj , j = 0, 1, . . . , k and some information about the matrix STAS of size
k + 1 × k + 1. Note that the preconditioner Hk+1 is invariant under change of basis
for vectors in S. Thus, the following proposition is proved in [71].
Proposition 4.4

Let the matrix Z ∈ RN×(k+1) verify Z = SX where X is a square and invertible
matrix of order k + 1. Then

S(STAS)−1ST = Z(ZTAZ)−1ZT ,

and the preconditioner Hk+1 in (4.62) writes again

Hk+1 =
[
IN − Z(ZTAZ)−1ZTA

] [
IN −AZ(ZTAZ)−1ZT

]
+ Z(ZTAZ)−1ZT .

For the preconditioner Hk+1 to approximates the inverse of A, the application
of the preconditoner may take various forms. Thus, the proposition below presents
different forms of the LMP Hk+1 . These forms include the inverse Bk+1 of Hk+1 and
the factors that allow the LMP to be used in a splitting preconditioning technique.
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Proposition 4.5
Assume Hk+1 is constructed following (4.62), then, these equalities hold

Hk+1 = (IN − SR−1R−TSTA)(In −ASR−1R−TST ) + (SR−1R−TST ),

Bk+1 = IN +ASR−1R−TSTA− SU−1U−TST , (4.63)

Gk+1 = IN − SR−1R−TSTA+ SR−1U−TST , (4.64)

G−1
k+1 = IN − SU−1U−TST + SU−1R−TSTA, (4.65)

with B−1
k+1 = Hk+1 and Gk+1G

T
k+1 = Hk+1 and where R and U are upper trian-

gular matrices from Cholesky decomposition of STAS = RTR and STS = UTU,
respectively.

Proof. See [71, p.50].
This theorem allows right, left or split preconditiong techniques to be used with

an LMP. In addition, if the Cholesky factors R and U are available, the computation
efforts may be halved. Properties of the preconditioner Hk+1 have been studied in [71]
and [72]. Some of these properties are:

First, the preconditioner Hk+1 may act on one part of the spectrum of A and
leave the other part invariant. In practice, one should keep the part that already has
favorable properties such as a cluster of eigenvalues arround 1 invariant. Second, one
can verify that Hk+1 amounts to A−1 if k + 1 = N . Note that in this case, S is a
square matrix of full rank and thus invertible. Third, the application of Hk+1 to A
may extend the pre-existing cluster of eigenvalues around 1 without either destroying
the pre-existing ones or extending pre-existing clusters around other eigenvalues.

As stated in the paper [72], about the cluster of eigenvalues around 1 the remark
below expresses what we have observed by simulations.
Remark 4.2

Consider that the matrix A has a cluster of eigenvalues arround 1 of multiplicity m
with 0 ≤ m < N, and associated to eigenvectors {v1, . . . , vm}. Assume in addition
that, among the chosen vectors [s0, . . . , sk] to construct the preconditioner, there
are k′ with 0 ≤ k′ ≤ k+ 1 that are a linear combination of vectors from V . Thus,
the multiplicity of the cluster around 1 will amount to m+ (k+ 1)− k′. Thus, in
the best case, the maximal cluster arround 1 is then m+k+1 obtained for k′ = 0.
This means all the used vectors sj are linearly independant with the eigenvectors
associated to the eigenvalue 1. In general, two cases can be distinguished.

1. If 0 ≤ m < k + 1 (more vectors in S than the dimension of the eigenspace
associated to the eigenvalue 1) or m > k + 1 while k′ < k + 1 (less vectors
in S than the dimension of the eigenspace associated to the eigenvalue 1
but some of them are not linear combination of eigenvectors v1, . . . , vm), in
both cases the dimension of the eigenspace associated to the eigenvalue 1 is
increased (this is additivity). This means the cluster around 1 is increased
but Hk+1 will act on the spectrum of A as H

k−k′+1 .

2. If m > k + 1 and k′ = k + 1, one obtains invariance, that is the cluster
arround 1 remains m. Hk+1 will act on the spectrum of A as H0 = IN the
identity matrix. This is the worst case.
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From this remark, one is guaranteed that the LMP preconditioner can not deteri-
orate the spectrum. However, it advises a wise choice of vectors in S (that are not in
the eigenspace associated to eigenvalue 1). Observe that, no assumption is made in
advance on the vectors in S apart from their linear independency. However, it is clear
from the remark above that, the more one chooses vectors with specific properties,
such as orthogonality, A-conjugancy or A-invariance, the more the preconditioner is
effective in the CG-algorithm. Thus, the quality of the preconditioner Hk+1 depends
on properties of the vectors used for its construction and their relationship with re-
spect to the matrix A. Three points below assume that the vectors in S have some
specific properties.

Using orthogonal vectors
Let vectors s0, s1, . . . , sk be orthogonal. That is

sTj sk

{
= 0 if j 6= k,
= 1 if j = k.

(4.66)

Since these orthogonal vectors have no relationship with the matrix A, they may not
allow significant advantages for the LMP Hk+1 . However this orthogonality prop-
erty saves cost and simplifies the computation of Bk+1 and G−1

k+1 where STS occurs
(see 4.65), because STS amounts to the identity Ik+1 in this case.

Using A-invariant subspace basis vectors
In opposition to simple orthogonality property, one gets more simplification by

considering that s0, . . . , sk are in a A-invariant vectors subspace. This means that,
for j = 0, 1, . . . , k,

Asj ∈ span(s0, s1, . . . , sk).
As a consequence, there exists a non-singular matrix X of order k + 1 such that
AS = SX. This leads to simplifications in the formulation of the LMP forms given
in equations (4.65) as stated in the following proposition.
Proposition 4.6

Let A ∈ RN×N be SPD and assume that the columns in S ∈ RN×(k+1) form
a basis of an A-invariant subspace, that is AS = SX where X is an invertible
matrix of order k + 1. For Hk+1 defined in (4.62), these equalities hold:

Hk+1 = IN − SU−1U−TST + SX−1U−1U−TST , (4.67)

Bk+1 = IN + SU−1U−TXTST − SU−1U−TST , (4.68)

Gk+1 = IN − SR−1R−TXTST + SR−1U−TST , (4.69)

G−1
k+1 = IN − SU−1UTST + SU−1R−TXTST , (4.70)

where R and U are upper triangular matrices from Cholesky factorisation such
that STAS = RTR and STS = UTU, while B−1

k+1 = Hk+1 and Gk+1G
T
k+1 = Hk+1 .

The main advantage of using A-invariant subspace of vectors is that, instead of com-
puting the product AS with matrices of respective orders N × N and N × (k + 1),
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one may compute the product SX with matrices of respective orders N × (k + 1) by
(k + 1)× (k + 1).

Using A-conjugate vectors
A-conjugate vectors are defined by the relation

sTj Asi

{
= 0 if j 6= i
> 0 if j = i,

(4.71)

for j, i = 0, 1, . . . . With A-conjugate vectors in S, one gets significant simplifica-
tion in the computation and the application of the preconditioner Hk+1 as stated in
Lemma 4.7 and Proposition 4.8 below.
Lemma 4.7

Let A ∈ RN×N be SPD and assume that the columns in S ∈ RN×(k+1) are
conjugate with respect to A. Then

Hk+1 =

(
IN −

k∑
j=0

sjs
T
j

sTj Asj
A

)(
IN −

k∑
j=0

A
sjs

T
j

sTj Asj

)
+

k∑
j=0

sjs
T
j

sTj Asj
. (4.72)

Proof. See [71, p. 69]
Notice that this formulation allows one to avoid computing sTj Ask whenever j 6= k.

In addition, it allows to use a recurrence formulation of different forms of the LMP
as shown in the following proposition.
Proposition 4.8

Let assumptions of Lemma 4.7 be satisfied. Then, setting H0 = B0 = IN we
have:

Hk+1 =
(
IN −

sks
T
k

sTkAsk
A

)
Hk

(
IN −A

sks
T
k

sTkAsk

)
+ sks

T
k

sTkAsk
, (4.73)

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+ Asks

T
kA

sTkAsk
. (4.74)

Gk+1 = [IN − sk
(
ρks

T
kA− γksTkBk

)
]Gk, (4.75)

G−1
k+1 = G−1

k+1 [IN + sk
(
γks

T
kA− σksTkBk

)
], (4.76)

where ρk =
(
sTkAsk

)−1, γk =
(
sTkBksk

)− 1
2
(
sTkAsk

)− 1
2 and σk =

(
sTkBksk

)−1
.

With respect to the above properties, three types of LMP preconditioners have
been studied: spectral LMP, Ritz-LMP and Quasi-newton LMP. They are presented
and compared in [71]. Here we simply analyze the application of the spectral LMP
on our linear systems while the others are briefly mentioned.

The spectral LMP
The spectral LMP uses eigeninformation from the SPD matrix A ∈ RN×N . Since

eigenvectors verify orthogonality, A-conjugacy and A-invariance, they are well suited
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to build the LMP preconditioner. This is the LMP we are interested in and that
is developed roughly in the following section. However, one should note that it is
difficult to obtain these eigen elements for general large sparse matrices. This is the
reason why one may use one of the other following LMP preconditioners with respect
to the context.

The Ritz-LMP
Let A ∈ RN×N be SPD. Approximating eigenpairs of A from a subspace S ⊂ RN

leads to the Ritz pair (4.50) (θ, z) ∈ R× S and a residual vector (4.51)

r = Az − θz.

The Ritz-LMP builds S from this Ritz information (Ritz pairs), which is an ap-
proximation of the spectral information. J. Tshimanga in [71] showed that in many
cases, the Ritz-LMP behaves like the spectral LMP. However, the Ritz pairs may
be also expensive to compute. Then, the quasi-Newton LMP presented below is an
alternative.

The quasi-Newton LMP
Instead of using spectral information (spectral LMP) or their approximation

(Ritz-LMP), the quasi-Newton LMP builds S using A-conjugate vectors from the CG
algorithm. These are the directions pj , j = 1 : k + 1 that verify the relation (2.30).
It supposes one has to call first the CG algorithm without preconditioner (or with
first-level preconditioner) such that information is gathered and then build the LMP
preconditioner with this information. This LMP will then be used in the next call
of the CG algorithm. The need to run first iterations with a non-preconditioned
CG makes the quasi-Newton LMP less attractive for very large and ill-conditioned
systems than other preconditioning techniques.

4.3.1 The spectral LMP on Adif

Since one can compute some eigenvalues ofAdif in a relatively easy way, (see (4.20)),
the spectral LMP has to be investigated. Let us recall that eigen elements (λj , vj)j=1:N
verify the properties

Avi = λivi, vTi vi = 1, i = 1 : N
vTi vj = 0, if i 6= j, i, j = 1 : N
vTi Avj = 0, if i 6= j, i, j = 1 : N
vTi Avi = λi > 0, i = 1 : N

.

When k+1 eigenvectors are available, then the LMP preconditioner is constructed
in one of the formulations presented in the proposition below from [71, p.75]
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Proposition 4.9
Let some eigenvectors v0, v1 . . . , vk of A be given. Then, we have

Hk+1 =
k∏
j=0

[
IN −

(
1− 1

λj

)
vjv

T
j

]
, (4.77)

Gk+1 =
k∏
j=0

[
IN −

(
1− 1√

λj

)
vjv

T
j

]
, (4.78)

G−1
k+1 =

0∏
j=k

[
IN −

(
1−

√
λj

)
vjv

T
j

]
, (4.79)

Bk+1 =
0∏
j=k

[
IN − (1− λj) vjvTj

]
. (4.80)

The most important property here is this possibility of using the approximation recur-
sively. This helps to use the preconditioner with a chosen number of eigenvectors and
to improve it later if needed. Observe that when applying Hk+1 , it is needed to store
2(k + 1) vectors of RN (see [72, p.17]). In addition, the application to an arbitrary
vector y costs 10(k+ 1)N operations [71, p.53]. This indicates that one should avoid
increasing the number k+ 1 of vectors in S. At the same time, this number indicates
the number of eigenvalues that will amount to one in the preconditioned system. So
once more, a compromise is needed.

Figure 4.4 and Figure 4.5 visualize the effects of spectral LMP on the spectrum
of Adif . On a matrix of size (512× 512), the spectrum of A is shown (blue) and the
spectrum of Hk+1A (red) is shown for k+ 1 = 40 and k+ 1 = 240 in Figure 4.4 while
k + 1 = 360 and k + 1 = 512 in Figure 4.5.
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Figure 4.4: Comparison of the spectrum of A = Adif and Hk+1A. n1 = n2 =
n3 = 8, N = 512. The spectrum of A is shown (blue) and the spectrum of
Hk+1A (red) is shown for k + 1 = 40 and k + 1 = 512 respectively.
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Figure 4.5: Comparison of the spectrum of A = Adif and Hk+1A. n1 = n2 =
n3 = 8, N = 512. The spectrum of A is shown (blue) and the spectrum of
Hk+1A (red) is shown for k + 1 = 360 and k + 1 = 512 respectively. For
k + 1 = N = 512, Hk+1A is the identity.

4.3.2 LMP limitation for MIRP
The LMP preconditioner uses a discrete scalar product. Using vectors from S will

amount eigenvalues to 1, one after one. Even when the eigenvalues are quasi equal,
each of them has to be treated since their related eigenvectors are different. Thus,
when there are too many eigenvalues to treat, the LMP may take significant mem-
ory and computing time. For example, for systems whose spectrum are represented
in Figure 4.4, there is almost only one eigenvalue around 1 before preconditioning.
The LMP needs respectively 40, 240, 360 and 512 vectors in S (see (4.62)) to build an
LMP that increases the cluster around 1 to respectively 40, 240, 360 and 512 eigen-
values. Then, for such very large and sparse systems, the storage and application
of LMP become more expensive than other techniques such as polynomial or sparse
factorization preconditioners.

Since the extreme eigenvalues can be known or well approximated for matrices Ael
and Adif , one way of dealing with this increasing need of storage and computation
cost is to use a continuous scalar product. Such a scalar product may use some
numerical quadrature with high degree of exactness. This is appropriate to polynomial
preconditioners that may capture the spectrum with low-degree polynomials. The
polynomial preconditioners are presented in the following section. For this purpose,
we may exploite the use of polynomial preconditioners.

4.4 Polynomial preconditioning for MIRP
At first glance, polynomial preconditioners are less appropriate for large and

sparse SPD linear systems solved using Krylov subspace methods. This can be stated
by observing that, in the CG algorithm, the main goal is to reduce the number of
matrix-vector products. Unfortunately, the polynomial preconditioners require also
matrix-vector products in the preconditioning phase. Thus, to stay competitive, the
number of iterations in the preconditioning phase must stay small while leading to
significant improvement to the convergence rate of the CG. It has been established
(see for example [73]) that, if m is the number of terms in the polynomial, the gen-
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eral cost increases linearly in O(m+ 1) although the number of iterations in the CG
decreases more slowly than O(1/(m+ 1)). However, there exists some motivations to
use polynomial preconditioners, within these presented below.

Motivation for polynomial preconditioner
There are features and context in which polynomial preconditioners are really

effective and competitive. Here is a description of a specific context when they are
still effective. First, in the context where at least, extreme eigenelements are explic-
itly known or their reliable approximation is available. Second, when large sparse
matrices are SPD and that the whole spectrum can be captured by a low-degree
polynomial [74]. Third, when distributed memory parallel machines are used where
dot product operations and access to matrices need to be significantly reduced [45].
Fourth, when the spectrum is almost continuous, because in opposition to other
Krylov methods, polynomial preconditioners are built using a continuous scalar prod-
uct.

In addition, from [75, pp.46-47] consider m, the number of terms in the polyno-
mial. It has been established that: ”k steps of polynomial preconditioning methods are
exactly equivalent to km steps for classical original methods. For Tchebyshev meth-
ods, the preconditioned iteration may improve the number of iterations by at most a
factor m. Thus, even if there is no gain in the number of matrix-vector products,
an important fraction of inner-products and update operations are eliminated. Thus,
efficiency is increased.”

Furthermore, in addition to these criteria, one should note that, polynomial pre-
conditioners do not need any additional storage and may be combined with other
preconditioners. Two most known polynomial preconditioners are discussed in the
following section and numerical results are presented.

4.4.1 Introduction to polynomial preconditioners
Let denote Pm =

{
Pm(λ) ≡

∑m

i=0 ciλ
i | ci ∈ R

}
, the set of polynomials of degree

less or equal to m. A polynomial preconditioner transforms the linear system

Ax = b

in
Pm(A)Ax = Pm(A)b. (4.81)

Following [76], the construction of the preconditioner can be achieved by searching
the best polynomial, that is, a low degree polynomial allowing to approximate the
inverse of the coefficient matrix A. This can be achieved by minimizing

min
M
‖I − pm(A)A‖

in appropriate norm, and imposing the initial condition p0(A) = 1 to the spectral
radius is less or equal to 1. Let set pm(A) = M, and use the eigen decomposition
A = UΛU−1 where Λ = diag(λ1, . . . , λN ) as stated in (4.33). The above minimization
problem is well suited in the infinity norm and writes

find pm ∈ Pm such that min
p∈Pm

‖I − pm(A)A‖∞ (4.82)
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Note that
min
p∈Pm

‖I − pm(A)A‖∞ ≤ min
pm∈Pm

max
λ∈σ(A)

|1− pm(λ)λ|

By setting
φm = 1− pm(λ)

and Φm the set of polynomials φm as defined in (??) we have

min
p∈Pm

‖I − pm(A)A‖∞ ≤ min
φm+1∈Φm+1

max
λ∈σ(A)

|φm+1(λ)|

where we recall from (4.27), (4.28) and (4.29) that

rm = b−Axm, (4.83)
xm = x0 + φm−1(A)r0, (4.84)

where rm is the mth residual and from (4.30)

rm = φm(A)r0. (4.85)

The only difference with 2.24 is the continuous inner product (see e.g [69]) that
must valid on the spectrum σ(A). Therefore, polynomial Krylov iterative methods
are often used when the spectrum is known or one may replace the discrete set of
eigenvalues by a larger and continuous set [76, p.196].

Let λmin , λmax be the smallest and the highest eigenvalues of the matrix A, re-
spectively. One can consider

Θ = [a, b] ⊂ R, (4.86)
an interval that contains σ(A) with 0 ≤ a ≤ λmin < λmax ≤ b, to be the best
approximation of σ(A). Given the approximation of extreme eigenvalues, one may
implement the polynomial Krylov iterative method following these two fundamental
properties:

1. The kth residual polynomial rk is the one that minimizes the uniform norm
among all residual polynomials in Θ.

2. Polynomials {rk} are orthogonal with respect to the weighted scalar prod-
uct (4.44) defined on Θ.

Thus, the aim of the polynomial iterative methods is to guarantee that, at each
iteration, the chosen polynomial rk(A) is such that

‖rk‖A ≤ min
φk∈Pk,φk(0)=1

max
λ∈Θ
|φk(λ)| ‖r0‖A. (4.87)

This means one looks for an approximation solution of the minmax problem

min
φk∈Pk,φk(0)=1

max
λ∈Θ
|φk(λ)|. (4.88)

One way of building such orthogonal residual polynomials is the use of the recurrence
relationship (explained in Annexe C):

φ−1(λ) = 0,
φ0(λ) = 1,
γkφk(λ) = [λ+ (γk + βk)]φk−1(λ)− βkφk−2(λ), k ≥ 1.

(4.89)

Below the Neumann and Tchebychev polynomial preconditioners are presented.
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4.4.2 Neumann polynomial preconditioner
The Neumann preconditioner exploits the relation

1
1− λ =

∞∑
i=0

λi, (λ ∈ R), (4.90)

for all |λ| < 1, that proves that the sequence
∑∞

i=0 G
i, ∀G ∈ RN×N converges if and

only if ρ(G) < 1 where ρ(G) denotes the spectral radius 3 of G. Thus we have
∞∑
i=0

Gi = (I −G)−1. (4.91)

To show how this is used to aproximate the inverse of a SPD matrix A ∈ RN×N , let
us consider G = (I−ωA), where ω is a scaling factor chosen to ensure that ρ(G) < 1.
Rewriting ωA = I −G one gets

A−1 = ω(I −G)−1. (4.92)

Thus, the approximation of the inverse of A is allowed by the relation

A−1 = ω(I −G)−1 = ω

∞∑
i=0

Gi ≈ ω(I +G+G2 + . . .+Gm−1), (4.93)

where m is a natural integer. This lead to the sought Neumann preconditioner of the
form

Pm(A) = ω(I +G+G2 + . . .+Gm−1), G = (I − ωA). (4.94)
For SPD matrices, the scaling factor ω may be chosen to be the inverse of the best
approximation of the highest eigenvalue of the matrix A

(
ω = 1

λmax

)
.

Observe that this preconditioner does not require the storage of an additional
matrix apart from the initial coefficient matrix, but uses a sequence of matrix-vector
products. However, the greater the number of terms in (4.94), the better the precon-
ditioner but the more expensive it is to apply. Below, in Algorithm 4.2 we present a
Neumann preconditioning algorithm that returns the product between the precondi-
tioner and the residual in a Preconditioned Conjugate Gradient method.

3. The real ρ(G) is the radius of the smallest closed ball centered in zero and containing
all the eigenvalues of G. In particular, ρ(G) = λmax for G symmetric positive definite.
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Algorithm 4.2 ( Pm(A)r.)

Input : A, % system matrix,
I % identity matrix,
r, % vector to be multiplied byPm(A),
maxIter % maximal number of iterations
Θ = [a, b] % ≈ [λmin , λmax ].

Output: z = Pm(A)r
ω = 1

b
;

z = (I − ωA)r;
For (k = 1, 2, . . . ,maxIter);

z = (I − ωA)(r + z);
End(For)
z = ω(r + z)

Since the number of terms of the preconditioner infers the number of matrix-
vector products, it may not be interesting to use the Neumann preconditioner. This
can be illustrated in the example below.

Figure 4.6 compares the LMP and the Neumann polynomial preconditioners to
nonpreconditioned CG for the linear system of the form (4.9) of size 512. The number
of the Neumann polynomial terms is fixed at 20 and the number of vectors to build the
LMP preconditioner is respectively 20, 100, 140 and 512. We increased significantly
the number of vectors in the LMP (k+ 1 = 20, 100, 140, 512 respectivelly for plots on
top left, top right, bottom left and bottom right), while the number of CG iterations
decreases slowly (25, 22, 18 and 1 respectively). It is observed that in all the cases,
none of these preconditioners is efficient since the nonpreconditioned CG can reach the
solution with about 30 iterations. The use of the Neumann preconditioner necessitates
20 matrix-vector products times the 8 iterations of the PCG. To sum up, one has
done 160 matrix-vector products compared to only 30 in a nonpreconditioned case.
Ofcourse some inner products have been saved, but they can not compensate for
these additional matrix-vector products. For LMP, things are slightly different. The
application of an LMP with k+1 vectors (this is the product with the residual vector
of length N ) costs 10(k+1)N operations. This cost is less if k is too small compared
to N. However, one observes that for k + 1 = 20, the gain in the CG is insignificant
(4.6a). The augmentation of the number of vectors in the LMP increases the cost
10(k + 1)N of the matrix-vector product exponentially, while the decrease in the
number of CG iterations is sublinear (k + 1 = 20, 100, 140, 512 respectively for plots
(4.6a), (4.6b), (4.6c) and (4.6d)). This means, the gain in decrease of CG iterations
to reach the same precision is not sufficient compared to the additional cost due to
application of the preconditioner (20× 8 matrix-vector for Neumann and 10(k+ 1)N
operations in each LMP iteration.
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Figure 4.6: Comparison of LMP and Neumann polynomial preconditioners.

4.4.3 Tchebychev polynomial preconditioner
Let us consider that Pm(λ) is the solution of the problem (see also (4.82))

min
Pm∈Pm[Θ]

‖1− λPm(λ)‖, (4.95)

where λ ∈ Θ and Pm[Θ] is the set of polynomials of a degree not greater than m
on the continuous interval Θ containing the spectrum σ(A). To achieve an optimal
solution of the problem (4.95), one may solve an approximation problem using the
norm defined in Annexe C (equation C.4) from the continuous scalar product (4.44).
This leads to solve a weighted least-squares problem

min
Pm∈Pm[Θ]

‖1− λPm(λ)‖w, (4.96)

101



Linear system solvers and preconditioning for 3D MIRP

where λ ∈ Θ and whose solution is the sought polynomial preconditioner. When the
2-norm is used in (4.82), the preconditioner is said to be a least-square polynomial
preconditioner.

The Tchebychev polynomial preconditioner is the one that chooses to minimize
the uniform norm by solving the problem

min
Pm∈Pm

max
λ∈Θ
|1− λPm(λ)|. (4.97)

Setting εm+1 = minPm∈Pm maxλ∈Θ |1−λPm(λ)|, it can be shown that (see [69, p.59])

k(Pm(A)A) ≤ 1 + εm+1

1− εm+1
. (4.98)

This ensures that the condition number is reduced whenever εm+1 < 1. The linear
map λ→ Ψ(λ) = b+a−2λ

b−a is required to map the interval Θ = [a, b] onto the interval
[−1, 1] where the polynomial Tm(λ) (see (4.39)) has minimal uniform norm. taking
φm+1(λ) = 1−λpm(λ), one can verify that the solution of (4.97) [69] is characterized
by the following result.
Proposition 4.10

Let λ ∈ Θ = [a, b] ⊂ R, where 0 < a < b. Then

min
pm∈Pm

max
λ∈Θ
|1− λpm(λ)| =

∣∣∣∣Tm (Ψ(λ))
Tm (Ψ(0))

∣∣∣∣ =

∣∣∣∣∣Tm
(
b+a−2λ
b−a

)
Tm
(
b+a
b−a

) ∣∣∣∣∣ = p̂m(λ), (4.99)

where Tm(λ) is the Tchebychev polynomial of first kind and degree m ((4.39)).

Assuming

θ = b+ a

2 , δ = b− a
2 , σk = Tk

(
θ

δ

)
, (4.100)

and using the previous result (4.99), one can verify that

p̂k(λ) = 1
σk
Tk

(
θ − λ
δ

)
. (4.101)

Linking all this, we have the relations explained in [76, pp.196-198].

σ0 = 1,
σ1 = θ

δ
,

σk+1 = 2θ
δ
σk − σk−1,

ρ0 = 1
σ1,

ρk = 1
2σ1 − ρk−1

, k ≥ 1,

φ0(λ) = 1,
φ1(λ) = 1− λ

δ
,

φk+1(λ) = ρk[2(σ1 −
λ

δ
)φk(λ)− ρk−1φk−1(λ)], k ≥ 1.

This leads to the algorithm (4.3) of the Tchebyshev preconditioner [68, p.383]
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Algorithm 4.3 (Tchebychev preconditioner)

Input : A % system matrix;
r; %vector to be applied byPm(A);
maxIter; % max number of iterations
Θ = [a, b]; % ≈ [λmin , λmax ];

Output: z = Pm(A)r;
Initialization

θ = b+a
2 ; δ = b−a

2 ; σ0 = 1; σ1 = θ
δ
;

ρ0 ← 1
σ1

; z0 = 0; r0 = r; d0 = 1
θ
r;

% Loop
For (k = 1, 2, . . . ,maxIter);

zk = zk−1 + dk−1
rk = rk−1 +Adk−1
ρk = 1

2σ1−ρk−1
;

dk = ρkρk−1dk−1 + 2ρk
δ
rk;

End(For)
z = zk

Note that, there is no inner product in this algorithm. The cost of this precon-
ditioner is mainly the three vector updates in addition to the matrix-vector product.
Furthermore, as we stated in the motivation, in opposition to stationary precondi-
tioners (Ichol, see Subsections 4.2.3 and Jacobi, GS, SOR, see Subsection 4.2.4) the
user can control the degree of the polynomial. This is a common point with the LMP
preconditioner (see Sections 4.3) and Neumman polynomial preconditioner (see Sub-
section 4.4.2). However, to fix the degree of the polynomial is a main issue because
it impacts the number of matrix-vector products. This may be relatively large for
sufficient decrease in the min-max criteria (4.99) and, in general, the best degree is
not known in advance. A compromise is needed to fix the degree (low degree implies
low cost but also less improvement on the CG convergence rate and high degree im-
plies higher cost but higher improvement on the CG convergence rate. We will see
in Section 4.6 how the cost of this precoditioner impacts the total cost of the PCG
algorithm.

4.5 Systems from Gauss-Newton-like algorithm
The system from Gauss-Newton like algorithm is given by the equation (2.50) and

its derivation is explained in subsection (1.4.1). It has the general form

Ax = b, with A = DTD + JTJ (4.102)

where D is a discrete differential operator and J is the Jacobian of a residual func-
tion (2.46). In this thesis, The considered unidimensional differential operator is given
by (1.33). One can verify that, D(k)TD(k) = ∆(k) and the equation (4.102) writes
simply

A = DTD + JTJ, (4.103)
where DTD may be Ael or Adif depending on the choice of D (see Annexe B: equa-
tion B.2 or equation B.3) and J is the derivatives of the residual functions, that are
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cubic spline functions obtained from interpolation of the images. The derivatives can
be computed following (1.38). This second part of the matrix A above is given by

JTJ =



h111 h112 h113
. . . . . . . . .

hN11 hN12 hN13
h112 h122 h123

. . . . . . . . .
hN12 hN22 hN23

h113 h123 h133
. . . . . . . . .

hN13 hN23 hN33


∈ RdN×dN

(4.104)
where hikl = (∇Im[Φ(X(k)

i ])(∇Im[Φ(X(l)
i )), i = 1 : N, k, l = 1 : d and Im is the

moving image and ∇Im represents the derivatives of the moving image.
Figure 4.7 below visualizes the sparsity patterns of A Figure 4.7a while its spec-

trum is visualized by Figure 4.7b for image of size [448], N = 384.
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Figure 4.7: Sparsity and spectrum structures of the matrix A = DTD + JTJ
in (4.102)

The matrix A is obviously symmetric and positive definite. The symmetry is
obtained by construction. It is positive definite thanks to the first term operator (see
Section 4.1). Indeed, although the JTJ matrix is symmetric, it is positive definite
only when it has full rank. This is not always the case, in particular for Jacobian
from image interpolation. This also means that, it is likely that A has worse condition
number than Ael and Adif since the smallest eigenvalue is often zero in JTJ while
the highest will increase in all cases (unless the Jacobian is zero).

Preconditioning A is more complicated since the coefficient matrix is changing
after each inner loop and analytic extreme eigenvalues are not known. However, since
the structure of the first term dominates the second term (observe that JTJ has ony
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5 diagonals and the 2 sub diagonals are equal to the 2 super diagonals), thus we may
apply the same conditioning techniques.

In the following section, we compare splitting preconditioners (Jacobi and Sym-
metric Gauss-Seidel 4.2.4) with Tchebychev polynomial preconditioner 4.4.3, Neu-
mann polynomial preconditioner 4.4.2 and Incomplete Cholesky preconditioner 4.2.3
on images described in Chapter 3 within the local computer described there in.

4.6 Numerical experiments for system solvers
In this section we present numerical experiments for various preconditioners in the

CG algorithm 2.2 The goal is to compare the effectiness of polynomial preconditioners
(Neumann and Tchebychev) compared to splitting preconditioner (Jacobi and SGS)
and the default icomplete Cholesky. The PCG algorithm was applied to solve a linear
system of the form (4.9) from the 3D brain image registration within each of these
preconditioners. The image brain is one of those presented in Chapter 3 and the tests
are done on 4 levels (see 3.1) of the image to observe the sensitivity of each algorithm
to the size of the system and thus the step size of the discretization. The matrix is
thus a 3D Laplacian where the size is denoted N and varies for each level. nnz(A)
denotes the number of non zeros elements in the matrix A.

The stopping criteria is considered as the convergence test on the PCG solvers.
Since we aim to solve the problem

min
x∈RN

‖b−Ax‖2

by setting
rk = b−Axk

where xk is the solution computed at iteration k, we use the stopping criteria (see [49])

‖rk‖2 < δ1 or ‖AT rk‖2
‖rk‖2

≤ ‖A
T r0‖2
‖r0‖2

∗ δ2 (4.105)

where δ1 = 10−6 and δ2 = 10−5. As stated by Gould and Scott [49], this stopping
criteria allows to compare different preconditioners since it does not depend on the
used preconditioner. In addition, this stopping criteria is appropriate for our problems
since our systems are normal equations as it was stated in Section 2.3. The maximum
number of iterations was set to 500.

Practical considerations to compute the cost of each preconditioner is presented
below. Let be given a matrix A of size N and with nnz(A) number of nonzeros
elements in A. We consider each fundamental operation (addition, multiplication,
substraction, multiplication) as a single flop. Hence, we approximate the costs of the
matrix-vector product (matvec) by Cmv ≈ 2nnz(A), the dot product of two vectors
(inner product) by Cdot ≈ 2N and the vector update by Caxpy ≈ 2N . This allows us
to approximate the cost of each preconditioner. Note that, the Jacobi preconditioner
costs almost

CJac ≈ 2N
since this requires simple multipication with the inverse of the diagonal. The cost of
the Gauss-Seidel preconditioner and the cost of The Incomplet Cholesky factorization
with no fill-in can be approximated (see [68]) by

CSGS ≈ 3N + 2nnz(A)
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and
CIc(0) ≈ 3N + 2nnz(A).

For non stationnary preconditioners, it can be noticed that in Neumann precon-
ditioner one requires one matvec product and two updates at each iteration. For
Tchebychev polynomial, one needs one matvec product and three updates. Thus, for
a Neumann polynomial of degree m we have

CmNeum ≈ m(Cmv + 2Caxpy),

while
CmTcheb ≈ m(Cmv + 3Caxpy),

for a polynomial of degree m. Converting this in term of N and nnz(A) gives the Ta-
ble 4.2.

Operation Notation and Cost(flops)
Jacobi CJac ≈ 2N
SGS CSGS ≈ 3N + 2nnz(A)
Ic(0) CIc(0) ≈ 3N + 2nnz(A)
Neumann CNeum ≈ m(2nnz(A) + 4N)
Tchebychev CTcheb ≈ m(2nnz(A) + 6N)

Table 4.2: Flops count for preconditioners. N is the size of the matrix sys-
tem, nnz(A) is the number of nonzeros entries in A and m is the degree of
polynomial.

Since we know that the CG requires per iteration one matrix-vector product, three
updates and two dot products, the cost of one CG iteration is

CcgIt = Cmv + 3Caxpy + 2Cdot = 2nnz(A) + 10N.

Thus, to estimate the PCG cost of each solver we have

CpcgJac ≈ Itcg × (CcgIt + CJAC),
CpcgSGS ≈ Itcg × (CcgIt + CSGS),
CpcgIc(0) ≈ Itcg × (CcgIt + CIc(0)),
CpcgNeum ≈ Itcg × (CcgIt + CNeum),
CpcgTcheb ≈ Itcg × (CcgIt + CTcheb).

(4.106)

4.6.1 Comparison of the PCG convergence with different
preconditioners on the braine and Chest images

In this subsection, we pick up two images to compare in details five preconditioners
on these specific images. A more inclusive comparison is done in the next subsection
using the performance profile tool. The only reason for what the choice of these two
images was done is the density (ratio between the number of nonzero entries and the
length of the vector) of the right-hand side b at each level. In fact, the density of
the brain image was, in average, the highest ≈ 99, 9% while the density of the Chest
image was among the lowest ≈ 68, 9%. Unfortunately, this did not lead to particular
conclusion. The test was done on my computer described in Chapter 3.4.
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Table 4.3 and Table 4.4 present, respectively on the Brain and the Chest images,
a comparison of the Jacobi preconditioner (Jacobi), the Symmetric Gauss-Seidel pre-
conditioner (SGS), the default Incomplete Cholesky (Ichol) this means with fill in,
the Neumann polynomial with degree m = 50 and the Tchebychev polynomial with
degree m = 50. The operations counts are expressed in flops and 1Mflops = 106

flops. The 1st column presents the preconditioner (Precond), the 2nd is the polyno-
mial degree (for Neumann and Tchebychev), the third column describes the number
of CG iterations, the 4th column presents the cost of the preconditioner in terms
of Millions of flops based on Table 4.2, (Cprec = CpcgJac for Jacobi preconditioner,
Cprec = CpcgSGS for SGS preconditioner and so on), the 5th column presents the cost
of each CG iteration, the 6th column presents the total cost of the PCG algorithm
with the given preconditioner based on (4.106). The norm of the residual (4.105) is
presented in the 7th column while the computing time in seconds, computed using
the tic-toc Matlab command, is presented in the 8th column. Values with an ∗ denote
that the pcg did not converge. One can eliminate the Jacobi preconditioner (since it
does not converge for certain systems), eliminate the Cholesky preconditioner (since
it does not adress the large systems) and Neumann preconditioner since it is the most
expensive both in computing time and in flops count. It remains to compare SGS and
Tchebychev preconditioners. From this table, it is clear that the Tchebychev polyno-
mial preconditioner is the winner for large systems while SGS may be prefered for less
large systems in terms of flops count. The most important observation concerns the
computing time. One can observe that, even when the Tchebychev preconditioner is
expensive in terms of flops count, it converges faster. This may be explained by its
natural and easy parallelization. This confirms the assumption stated in the moti-
vation of Section 4.4. From this table, one can verify that, for small images (level 4
and 5 ). The Incomplete cholesky is the winner in term of computing time but it is
the most expensive in term of flops. Thus, definitly, SGS and Tchebychev are to be
preferred.

Figure 4.8 illustrates the results of Table 4.3 while Figure 4.9 illustrates the results
of Table 4.4

To benchmark these PCG solvers, now all the database of our images is used and
we use a profile performance to benschmark them. This is presented in the following
subsection.

4.6.2 Performance profiles of system solvers
In this subsection, we are especially interested in benchmarking the iterative sys-

tem solvers, presented in the previous subsection The bechmark is done on the large
set of 3D medical images presented in Chapter 3. Although it is recognized (see for
example [49]) that it is rare to get a single system solver that is the best for all the
problems, results of performance profile indicate which solver has the highest proba-
bility of being the best within a factor f ∈ [1,∞[ (see 3.2, here f has the role of α) and
considering a limited computional budget in terms of time and memory requirements.

In this work, we follow the methodology in [49] to compare PCG solvers described
in 4. The set of solvers contains 5 PCG solvers, that is

ns = #S = 5.

These solvers are run on the set of 54 problems formed by 3D images from Ta-
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precond m Itcg Cprec
(Mflops)

CcgIt
(Mflops)

Cpcg
(Mflops)

residual
norm

time(s)

Level 4, N = 6144, nnz(A) = 132576
Jacobi − 500 1.2×10−2 0.32 1.66×102 4.8×10−6∗ 0.13
SGS − 78 4.5×10−2 0.32 2.84×101 9.5×10−7 0.15
Ichol − 1 7.7×104 0.32 7.7×104 3.2×10−7 0.23
Neumann 50 78 2.5×100 0.32 2.19×102 9.2×10−7 1.10
Tchebychev 50 4 3.2×100 0.32 1.40×101 4.9×10−7 0.19
Level 5, N = 49152, nnz(A) = 1 143 744
Jacobi − 500 9.8×10−2 2.7 1.39×103 3.5×10−6∗ 1.35
SGS − 119 2.4×100 2.7 6.10×102 9.0×10−7 2.79
Ichol − 5 3.9×107 2.7 1.95×108 1.4×10−7 17.72
Neumann 50 82 1.2×102 2.7 1.03×104 9.1×10−7 15.41
Tchebychev 50 4 1.2×102 2.7 5.26×102 9.2×10−8 2.25
Level 6, N = 393216, nnz(A) = 9 488 256
Jacobi − 500 7.0×10−1 22.9 1.18×104 1.9×10−5∗ 19.31
SGS − 172 2.0×101 22.9 7.37×103 9.2×10−7 36.24
Ichol − − − − − −
Neumann 50 118 1.0×103 22.9 1.23×105 4.2×10−7 321.34
Tchebychev 50 6 1.1×103 22.9 6.49×103 1.6×10−8 45.73
Level 7, N = 3 145 728, nnz(A) = 77 270 784
Jacobi − 500 6.3×100 185 9.56×104 9×10−4∗ 49.9
SGS − 244 1.6×102 185 8.41×104 9.7×10−7 223
Ichol − − − − −
Neumann 50 167 8.3×103 185 1.41×106 9.8×10−7 1180
Tchebychev 50 8 8.6×103 185 7.02×104 9.6×10−7 145.6

Table 4.3: Comparison of the PCG convergence with different preconditioners
on the brain image, level 4 to level 7

ble 3.1 where each level of an image is considered as a different problem. Thus

np = #S = 54.

The stopping criteria (4.105) is used here as the convergence test and the maximal
number of iterations is set to 500. Hence, a problem is considered as solved if the
convergence test is verified within 500 iterations.

Figure 4.10 presents a comparison of performance profiles for PCG solvers with
respect to the number of iterations. Consider at one hand, f = 1, comparing di-
rectly the performance ratios of the five solvers. One can see that the PCG with
Tchebychev polynomial preconditioner is the winner over all the others and the Ja-
cobi preconditioner is the worse. The SGS preconditioner is competitive with the
Neumann polynomial but one can observe from Table 4.3 and Table 4.4 that the
Neumann preconditioner is the most expensive. Consider at the other hand, f = 40,
and observe that, respectively, ρSGS (40) ≈ 94%, ρIchol(40) ≈ 81%, ρJacobi(40) ≈ 5%,
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precond m Itcg Cprec
(Mflops)

CcgIt
(Mflops)

Cpcg
(Mflops)

residual
norm

time(s)

Level 4, N = 3072, nnz(A) = 63744
Jacobi − 249 6.1×10−2 0.15 5.25×101 8.3×10−7 0.11
SGS − 72 1.3×10−1 0.15 2.01×101 9.8×10−7 0.11
Ichol − 2 9.6×103 0.15 1.92×104 9.3×10−7 0.09
Neumann 50 50 6.9×100 0.15 3.52×102 9.9×10−7 0.54
Tchebychev 50 4 7.3×100 0.15 2.98×101 4.1×10−7 0.21
Level 5, N = 24576, nnz(A) = 561 408
Jacobi − 397 4.9×10−2 1.36 19.5 9.9×10−7 1.003
SGS − 110 1.2×100 1.36 2.80×102 9.6×10−7 0.99
Ichol − 4 4.9×106 1.36 1.96×107 1.6×10−8 3.29
Neumann 50 76 6.1×101 1.36 4.73×103 8.5×10−7 7.68
Tchebychev 50 4 6.3×101 1.36 2.57×102 5.0×10−7 1.4
Level 6, N = 196608, nnz(A) = 471 696
Jacobi − 500 3.9×10−1 2.9 1.64×103 8.3×10−6∗ 6.86
SGS − 161 1.5×100 2.9 7.13×102 9.9×10−7 18.5
Ichol − − − − −
Neumann 50 111 8.7×101 2.9 9.92×103 9.1×10−7 110
Tchebychev 50 6 1.1×102 2.9 6.53×102 1.6×10−7 14.71
Level 7, N = 3 145 728, nnz(A) = 77 270 784
Jacobi − 500 3.1×100 185 9.40×104 5.5×10−4∗ 56.5
SGS − 233 8.1×101 185 6.19×104 9.5×10−7 254.3
Ichol − − − − −
Neumann 50 159 4.2×103 185 6.60×105 9.4×10−7 1265
Tchebychev 50 8 4.3×103 185 3.59×104 4.1×10−7 208

Table 4.4: Comparison of the PCG convergence with different preconditioners
on the chest image, from level 4 to level 7.

ρCheby (40) ≈ 100%, ρNeumann(40) ≈ 94%. This means that the SGS, the Ichol, the
Jacobi and the Neumann solvers, respectively, require up to 40 times the efforts (it-
erations) of the best solver (Cheby) to solve, respectively, almost 94%, 81%, 5%, 94%
of problems.

As a conclusion to this chapter, we suggest the use of the Tchebychev polynomial
preconditioner or SGS preconditioners to address linear systems from 3D medical
image registration.

However, very large images and when the induced system are highly structured
as (4.9), one may think of using more appropriate techniques. Such techniques include
numerical tensor methods that we present in the following chapter.
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Figure 4.8: Comparison of the PCG convergence with different preconditioners
on linear systems from 3D brain registration
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Figure 4.9: Comparison of the PCG convergence with different preconditioners
on linear system from 3D chest registration.
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Chapter 5
Numerical tensor formats and
linear systems in 3D MIRP

Introduction
As stated in previous chapters, the medical image registration problem needs to

solve a sequence of linear systems during the optimization process. Although these
systems are often sparse and structured, they are very large and ill-conditioned. Thus,
their system solvers are time consuming and their complexity in operation counts is
polynomial. In addition, although in best cases (diagonal matrices) they can achieve
linear complexity, this linear complexity may be unsatisfactory for very large and
high-dimensional images.

In Chapter 1, we have presented the Demons algorithms (this does not solve ex-
plitly the linear systems (see 1.4.2)) whose complexity is linear O(N) (where N is the
number of image voxels). In Chapter 4, we have presented certain algorithms with
quasi linear complexityO(NlogN) based essentially on Fast Discrete Sine Transforms
(FDST), Fast Fourier Trabsforms (FFT) or Additive Splitting Operators (ASO). How-
ever, these linear and quasi linear complexities are obtained by direct methods known
to scale poorly in terms of operation counts and memory consuming for very large
problems arising from PDEs discretization [55].

Conversely, iterative methods may require fewer operations and storage when
an approximation of a solution with relatively low accuracy is needed [55]. Al-
though these methods are considered reliable compared to direct methods for high-
dimensional and large problems, they may fail or be unable to achieve the desired
accuracy. Especially for high dimensional PDEs problems, iterative methods require
reliable preconditioners. The construction and application costs of the preconditioner
may be higher, making the iterative solver less attractive.

Another way of accelerating the registration process is the development of al-
gorithms which offer the best compromise between complexity and speed [1]. Over
the last few years, compression techniques for high-dimensional data using suitable
data sparse representations have been developed [6]. In general, these representations
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known as numerical tensor representations are inspired by variables separability, hi-
erarchical matrix techniques and low-rank approximations (see for example [6, 7, 8]
and references therein). In this chapter, we use numerical tensor techniques to solve
certain large linear systems from MIRP.

A numerical tensor can be defined informally as a multidimensional array where
the position of each entry is determined by multiple indices. The number d of indices
used to determine the position of an entry is called the order or dimension of the
tensor. So, a tensor of order d, has d principal directions (axes) that will be called
generally modes of the tensor.

With respect to large linear systems, tensor representations allow the transforma-
tion of these linear systems into appropriate multilinear systems and exploit trunca-
tion, sparsity and parallelization of the process to reduce the computational cost and
time. In addition, calculations in each unidimensional subspace of the problem may
be enabled.

Note that, numerical tensors have been used for decades in data processing and
analysis of multidimensional phenomena. In general, numerical tensor elements and
operations are considered as generalizing vectors, matrices and operations from linear
algebra (dimension d = {1, 2}) in a multidimensional context (dimension d > 2) to be
explored by multilinear algebra. However, although tensor spaces are generated from
vector spaces, there are certain concepts from vector spaces whose properties are not
straightforward generalized in tensor spaces of dimension greater than two [8, p.15].

For example, the best low-rank approximation (in the sense of least-squares) for
matrices (d = 2) may be provided by the singular value decomposition (SVD) via
the well known Eckhardt-Young theorem (mentioned for example in [77]). Unfor-
tunately, the concept of rank that is uniquely defined for matrices, is not uniquely
defined for general tensors with d > 2. Hence, the theorem mentioned above is not
straightforward generalized in dimension d > 2. The idea of MultiLinear Singular
Value Decomposition (MLSVD) (see for example [50], [78]) and High Order Singular
Value Decomposition (HOSVD) (see for example [6]) came to fill in this gap.

However, it has been shown (see [6]) that under certain conditions, some tensor
representations may enable to reduce the complexity, in term of number of param-
eters, of matrix-data of size [nd × nd], n, d ∈ N from O(nd) to O(dlog(n)) in a
d-dimensional space. It is then important to transform such matrices and vectors in
tensor formats expecting that the complexity will be reduced significantly by com-
pressing and truncating the data.

For medical image registration, numerical tensors have been used for example
in [79], where the authors approximated a nonseparable filter by a low-rank separable
filter based on tensor approximation. A rank-one tensor via Tucker decomposition
was approximated and used to replace a large matrix filter. The authors were able
to obtain a significant gain in computational time and storage compared to classical
methods (without numerical tensor tools). However, the algorithm that the authors
proposed could not preserve the precision of the classical methods, since the rank-one
approximation was not enough for a good filter approximation.

In this thesis, We aim to speed up the registration process with tensor techniques
by offering possibilities to replace a linear complexity O(N) by a quasi logarithmic
complexity O(d logN), where N ∈ N is the number of image voxels and d is the
image dimension. However we focus only on the system solver, which is often the most
expensive step in the process. This supposes the use of a compressed representation of
data with a given accuracy ε (0 ≤ ε < 1). Certainly, this needs a good understanding
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of both the acquisition process of the images and the application at hand. For this
purpose, we propose an adapted Preconditioned Conjugate Gradient algorithm [40]
to solve the large linear systems

MAx = Mb, M,A ∈ RN×N , x,b ∈ RN , (5.1)

in appropriate tensor format. The system (5.1) arises from 3D deformable medical
image registration and has to be reformulated in a particular tensor representation
(here the Tensor-Train representation 5.3).

On the one hand, the matrix A is a three-dimensional Laplace-like operator, for
which it is possible to reorganize indices of components as products of new multi-
indices that admits variables separability [80, 81]. For this purpose, the operator A
is expressed as a sum of Kronecker products and the preconditioner M is a low-rank
approximation of its inverse, computed via eigen elements. On the other hand, the
right-hand side b contains information from the images. The success of its low-rank
approximation depends on the nature (modality) of the images and this infers the
quality of the low-rank linear system solution x as this will be illustrated numerically
in Chapter 6.

In this chapter, we recall the main ingredients for processing numerical tensors.
The main definitions and operations are addressed in Section 5.1 while the commonly
used formats are presented in Section 5.2. The focus is on Tensor-Train format in
Section 5.3 before using these formats in Section ?? to construct a low-rank precondi-
tioner for multidimensional Laplacian operators for linear systems arising in medical
image registration.

5.1 General techniques with numerical tensors
This section concerns general concepts and operations that are useful for a good

understanding of system solvers in numerical tensor formats. In general, the number
of entries in a numerical tensor increases exponentially with respect to the number
of dimensions of the tensor. For multilinear systems in particular, the number of
unknowns and the number of equations have an exponential rate of increase with
respect to the dimension. This exponential rate of increase is commonly referred to
as the curse of dimenionality (see [82]) and is reflected into the computational and
the storage requirements. In scientific computing, certain tensor representations and
tensor decompositions, such as Canonical Polyadic (CP), Tensor-Train (TT) and Hi-
erarchical Tensor (HT), have been developed to cope with this curse of dimensionality
(see [6], [82]). However, the best approximation is not guaranteed to exist for the CP
representation for d > 3 and tensor rank greater than 1. In addition, numerical in-
stabilities are reported in the CP representation (see [83], [84]). Thus, the focus will
be on TT representations.

To illustrate the importance of referring to tensor methods for the application in
this thesis, consider a registration problem of two 3D images (d = 3,) whose equal
size is [n(1), n(2), n(3)]. For simplicity we assume n(1) = n(2) = n(3) = n. In this case,
The problem induces successive linear systems

Ax = b, A ∈ RN×N , x,b ∈ RN .

where one has to treat N equations with N unknowns with N = n3. For example,
if n = 1024, one needs to solve a linear system of size N = n3 ≈ 230, exceeding
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the capacity of many standard computers. However, considering x,b as tensors of
Rn ⊗Rn ⊗Rn, for appropriate A and under suitable conditions, the exponential cost
n3 can be reduced to O(3n) (see [6, p. 11]). To perform these operations, the matrix
A has to be written as a sum of Kronecker products and thus be considered as a
multilinear map that acts on tensor elements in Rn ⊗ Rn ⊗ Rn.

5.1.1 Notations
In the remainder of this chapter, unless specific stated indications, we will use

calligraphic upper case, bold upper case, upper case, bold lower case, and lower case
to denote, respectively, a high-order tensor space, high-order tensor, a matrix or a
vector space, a vector and a scalar. For example, we may denote a tensor space by
A, a tensor by A, a matrix by A, a vector space by V , a vector by a, and a scalar by
a.

The notation V (k) denotes a vector space of dimension n(k) and thus

V (1), V (2), . . . , V (d)

indicate vector spaces generating the tensor space

V =
d⊗
k=1

V (k).

When other d-tuple vector spaces are needed, we will use letters

W (k), X(k)

and the involved vector spaces are assumed to be defined over the same field K (here
K = R). Vectors from V (k) are denoted v(k) and when there are a family of such
vectors we use a further index with subscript k. For example, v(k)

jk
, jk = 1, 2, . . . , n(k)

may denote n(k) vectors of the vector space V (k).
In this chapter, we will refer to the following index sets:

D = {1, 2, . . . , d},
I1 = {1, 2, . . . , n(1)},
I2 = {1, 2, . . . , n(2)},

...
Id = {1, 2, . . . , n(d)}.

Using the index set
Ik = {1, 2, . . . , n(k)}

with cardinality #Ik = n(k), the vector v(k) with components(
v

(k)
1 , v

(k)
2 , . . . , v

(k)
n(k)

)
may be denoted by

v(k)
jk
, v

(k)
jk
∈ R, jk ∈ Ik, .
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A tensor is said to be symmetric [85] when its array of indices is invariant under
permutations:

Aj1,j2,...,jd = Aσ(j1,j2,...,jd),

where σ is any permutation. This property may not reappear in the remaining, but it
is implicitly used to reorganize indices in some tensor representations. Thus, we may
write V (k) = RIk instead of V (k) = Rn

(k)
, to emphasize that permutations of indices

are allowed. This means that, ordering in the sets Ik, k = 1, 2, . . . , d may be of less
importance since indices of the entries are elements of their Cartesian product. For
example, of between them such as A ∈ RI1×I2×...×Id denotes a d-dimensional tensor
whose entries are located by elements of the Cartesian product of Ik, k = 1, . . . , d.
However, we may still be denoting

A ∈ Rn
(1)×n(2)...×n(d)

when we assume that the indices are fixed (not under permutations).
Let us consider that for each k ∈ D we have a vector space V (k) with a basis

B(k) =
(

e(k)
1 , e(k)

2 , . . . , e(k)
n(k)

)
.

A vector of V (k) can be written

v(k) = v
(k)
1 e(k)

1 + v
(k)
2 e(k)

2 + . . .+ v
(k)
n(k)e

(k)
n(k) .

Before we introduce other notations, let us define the tensor product, known as
the Kronecker product that has been recalled in (1.21) for general matrices. We
have to emphasize that this operation is among the most useful in numerical tensor
calculation. For two vectors a ∈ Rn

(1)
and b ∈ Rn

(2)
, we have to distinguish two

different but equivalent uses of Kronecker product. The first results in a long vector
whose length is the product of lengths of inputs.

For a =


a1
a2
...

an(1)

 , b =


b1
b2
...

bn(2)

 , a ⊗ b =


a1b
a2b

...
an(1)b

 ∈ Rn
(1).n(2)

. (5.2)

The second use of the tensor product is some times called outer product. It results in
a rank-one matrix of size n(1) × n(2) :

a ⊗ b = abT =


a1bT
a2bT

...
an(1)bT

 ∈ Rn
(1)×n(2)

. (5.3)

Whenever there is no other specific indications, the notation ⊗ will refer to this
last tensor product. Observe that the product of two tensors of order one (vectors)
results in a tensor of order two (matrix). Orders have been added up.

The notation
⊗dk=1v(k) = v(1) ⊗ v(2) ⊗ . . .⊗ v(d)
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indicates the Kronecker product of d vectors

v(1) ∈ V (1),v(2) ∈ V (2), . . . ,v(d) ∈ V (d).

Finally, we consider a numerical tensor V ∈ V as a multidimensional array whose
numerical values are

vj1 j2 ...jd = V(j1 , j2 , ..., jd),

where each index jk varies up to the number n(k) that is the dimension of its associated
vector space V (k).

5.1.2 Visual representation
A numerical tensor can also be seen as an array that is a high-order generalization

of scalars (tensor of order d = 0), vectors (tensor of order d = 1), matrices (tensor of
order d = 2), while a tensor of order d > 2 is called simply a tensor (see [82]).

Figure 5.1 illustrates visual representation of numerical tensors of order d =
0, 1, 2, 3, 4, 5 that are respectively scalar, vector, matrix, 3rd-order tensor, 4th-order
tensor and 5th-order tensor. Two ways of representing tensors are presented. Either
by a dot with lines that represent the directions or by boxes and slices. Tensors of
order d > 3 can also be represented as a stack of volumes. A 0-order tensor is a
scalar (5.1a), a 1-order tensor is a vector (5.1b), matrices are 2-order tensors (5.1c),
a 3-order tensor is visualized in (5.8b) as a stack of slices (matrices), 5-order tensor
is visualized in (5.1e) as a stack of 3-order tensors and in (5.1g) as a stack of stacks
of slices. A more general representation of a 5-order tensor is shown in (5.1f) while a
4-order tensor is highlighted as a part of the 5-order tensor in (5.1e).

A vector can be expressed in row mode or in column mode. For matrices, columns
may refer to the first mode while rows refer to the second mode (the inverse can be also
assumed). The concept of mode allows to generalize these concepts of rows, columns,
axis or directions for high-dimensional tensors. In 3D, we consider the lexicographic
ordering shown in Figure 5.2.

Comparatively to matrices, the mode-n vectors of a tensor are called fibers. They
are obtained by fixing all but one index. For example, a fiber of a 4-order tensor V
can be written

a = V(:, :, j3 , :), j3 = 1, 2, . . . , n(3).

Note that, in a tensor of order d, one can define a k-th order slice (1 ≤ k ≤ d) by
fixing all but k indices (see [8], for examples).
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• ≡
(a) Scalar a(d = 0)

/

•

≡

(b) Vector a(d = 1)

/

/

• ≡

(c) Matrix A (d = 2)

/ /•
/

≡

(d) Tensor A (d = 3) (e) Tensor A (d = 5). The
red contour highlights a 4-
order tensor.

/ /•
/

/ |

(f) Tensor A (d = 5)
(g) Tensor A (d = 5) in terms of
block matrices

Figure 5.1: Visual representation of numerical tensors. tensors of order d =
0, 1, 2, 3, 4, 5 that are respectively scalar, vector, matrix, 3rd-order tensor, 4th-
order tensor and 5th-order tensor.

Let us now define a tensor space. Following Hackbush [6, p.57], one way of defining
a d-dimensional tensor space is as follows.
Definition 5.1 (Tensor space)

Let be given d + 1 vector spaces V (1), V (2), . . . , V (d), of respective dimensions
n(1), n(2), . . . , n(d) and V on a common field K. Consider

B(k) =
(

e(k)
j
k

)
, 1 ≤ jk ≤ n

(k),

the respective bases of the d vector spaces
(
V (k)) , k = 1 : d. The mapping

⊗ : V (1) × V (2) × . . .× V (d) −→ V, (5.4)

is a tensor product and V is an algebraic tensor space if these properties hold:
1. span property: V = span

{
⊗d
k=1v(k), v(k) ∈ V (k)} ;
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Mode 1

321
(a) Ordering in mode 1

Mode 2

1

2

3

(b) Ordering in mode 2

Mode 3

1
2

3

(c) Ordering in mode 3

Figure 5.2: Consideration of modes and ordering in 3D

2. ⊗ is multilinear: for all λ ∈ K, v(k),w(k) ∈ V (k), and k ∈ {1, 2, . . . , d}

v(1) ⊗ v(2) ⊗ . . .⊗
(
λv(k) + w(k))⊗ . . .⊗ v(d) =

λ
(
v(1) ⊗ v(2) ⊗ . . .⊗ v(k) ⊗ . . .⊗ v(d))+(v(1) ⊗ v(2) ⊗ . . .⊗w(k) ⊗ . . .⊗ v(d)) ;

3. the linearly independent vectors
{

v(k)
j
k

}
⊂ V (k) imply linearly independent

vectors
{
⊗dk=1v

(k)
j
k

}
⊂ V, where jk ∈ Ik = {1, ..., n(k)} and n(k) is the

dimension of the vector space V (k).
Then, the space V equipped with this mapping (this tensor product) is called
algebraic tensor space or simply tensor space and is sometimes denoted V =
a
⊗d

k=1V
(k) (a, for algebraic). Finally, the dimension of the tensor space is

dim(V) =
d∏
k=1

dim(V (k)).

If, in addition, each of the d vector spaces is a Banach space, with a norm ‖.‖V (k) ,
the space V is a topological tensor space sometimes denoted V = ‖.‖

⊗
V (k). In

finite dimension, the normed spaces equipped with the tensor product are Banach
tensor spaces and the distinction between the topological and algebraic tensor spaces
is omitted. In the following, unless otherwise stated, V =

⊗d

k=1V
(k) is a tensor space

of finite dimension. It is generated by vector spaces of general form V (k) = RIk , k =
1 : d.

To make a link with matrices, tensors are considered as mappings from lin-
ear spaces to other linear spaces whose coordinates transform multilinearly under
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a change of bases [85].

5.1.3 Tensor in full format
Let

(
V (k)) , k = 1 : d be vector spaces and B(k) =

(
e(k)
j
k

)
, 1 ≤ jk ≤ n

(k) be their
respective bases. A tensor V, element of a tensor space V generated by vector spaces
V (k), can be written in the form:

V =
n(1)∑
j1=1

...

n(d)∑
j
d

=1

vj1 j2 ...jd ⊗
d
k=1 e(k)

j
k
, vj1 j2 ...jd ∈ R. (5.5)

The tensor is said to be in full format when it is defined by all the coefficients(
vj1 j2 ...jd

)
1≤j

k
≤n(k), 1≤k≤d

. In other words, it is represented as a d-dimensional ar-
ray with all its entries. From the relation (5.5), a basis B of V is defined by the tensor
product of vector space bases as B = B(1) × ...×B(d) and dim(V) =

∏d

k=1 n
(k).

Figure 5.3 illustrates a three dimensional tensor as a 3-dimensional array with its
scalar entries (left), the same tensor is presented as a stack of fibers (middle) and as
a stack of matrices or 2D-slices (right).

27 entries 9 fibers 3 slices

Figure 5.3: A 3D tensor in full format can be seen as 3× 3× 3 array (left) or
as 3× 3 fibers (middle), where each fiber is a vector of 3 entries, or as a stack
of 3 slices (right) where each slice is a matrix of order 3× 3.

5.1.4 Some numerical tensor treatments
Vectorization of tensors

Matrices and multidimensional arrays can be easily reshaped in a vector by or-
dering their entries in long columns following the so-called lexicographical ordering 1.
Given a tensor A ∈ RI1×I2×...×Id , where each entry is determined by a d-tuple
(j1 , j2 , . . . , jd), a natural number N =

∏d

k=1 #Ik and an index set J = {1, 2, . . . , N},
one can obtain a long vector a from this tensor, where each entry is determined by
one index j ∈ J, by defining an isomorphism (see [86])

φ : (j1 , j2 , . . . , jd) ∈ I1 × I2 × . . .× Id 7−→ J

1. Different program languages may use different lexicographical orderings [6, 157].
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such that

j = φ(j1 , j2 , . . . , jd) = j1 +
d∑
k=2

(jk − 1)
k−1∏
l=1

n(l). (5.6)

In practice, the indices in J can be obtained as

J =


I1
I2
...
Id

 ∈ Rn
(1).n(2).....n(d)

.

Matricization of tensors
The matricization known also as unfolding or flattening is an operation of reshap-

ing a tensor into a matrix. A tensor A ∈ RI1×I2×...×Id can be transformed into a ma-
trix in different ways. The idea is to shrink the dimension-set D = {1, 2, . . . , d} into 2
disjoint and complementary subsets t and tc such that ∅ ( t ( D and tc = D\t. Then,
one gets index sets It = ×k∈tIk (that will constitute row indices) and Itc = ×

k∈tc Ik
(that will constitute column indices). Then the t- matricization of A is given by

Mt(A) = A(t) ∈ RIt×Itc , (5.7)

where Mt is considered as a t-matricization mapping. The entries of the matrix A(t)

are A(t)(p, q) where the indices p and q are given by

p = j1 +
∑k

r=2(jr − 1)
∏r−1
l=1 n

(l)

q = jk+1 +
∑d

r=k+2(jr − 1)
∏r−1
l=1 n

(l).
(5.8)

The t-rank is the rank of the matrix A(t).
For t that is a singleton, one forms the so-called mode-k matrices or mode k

unfolding matrices given by

A(k) ∈ RIk×(I1×I2×...×Ik−1×Ik+1×...×Id), k = 1 : d. (5.9)

Observe that, it suffices to reshape a matrix by fixing the index corresponding to the
index-set Ik in row-mode while varying all the other indices in the column-mode. The
matrix A(k) is equivalent to the whole tensor but it is a matrix in mode k. The entry
aj1 j2 ...jd becomes ail where i = jk and

l = j1 +
∑k−1

r=2 (jr − 1)
∏r−1
l=1 n

(l) +
∑d

r=k+1(jr − 1)
∏r−1
l=1 n

(l). (5.10)

Example
Given a 3-order tensor A ∈ R3×3×3 with n(1) = n(2) = n(3) = 3, its size is

n = [3, 3, 3] and its number of entries is N = 27. Figure 5.4 illustrates the indices
ordering considered here for a 3-dimensional tensor. The figure shows that for different
modes, indices designates different thinks but the whole tensors is described by any
mode.

When vectorized, its entries will be positioned from 1 to 27 (one may use the vec
command of Matlab). The matricization of A in the respective modes 1, 2, 3 (see [87,
p.220]), gives the following 3 index matrices.
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mode 1

m
ode

2

mod
e 3

111
211
311

112
212
312

113
213
313

121
221
321

122
222
322

123
223
323

131
231
331

132
232
332

133
233
333

Mode 1

i, j, k

i→ row index

j → column index

k → slice index

Mode 2

i, j, k

i→ slice index
j → column index
k → row index

Mode 3

i, j, k

i→ row index
j → slice index

k → column index

Figure 5.4: Indices in a 3-order tensor.

A(1) =
111 112 113 121 122 123 131 132 133
211 212 213 221 222 223 231 232 233
311 312 313 321 322 323 331 332 333

A(2) =
111 112 113 211 212 213 311 312 313
121 122 123 221 222 223 321 322 323
131 132 133 231 232 233 331 332 333

A(3) =
111 121 131 211 221 231 311 321 331
112 122 132 212 222 232 312 322 332
113 123 133 213 223 233 313 323 333

Observe that, for each k = 1, 2, 3, the row number of matrix A(k) corresponds to
the kth index of the tensor A.

Figure 5.5 visualizes a 3-dimensional tensor of size (3× 3× 3) and its unfoldings
in mode 1, mode 2 and mode 3 respectively. The number rk, k = 1, 2, 3 denotes the
rank the the unfolding matrix in mode k.

A ∈ R3×3×3
A(1) ∈ R3×9

r1 = rank(A(1))

A(2) ∈ R9×3

r2 = rank(A(2))

A(3) ∈ R3×9

r3 = rank(A(3))

Figure 5.5: From left to right: tensor of order d = 3, size (3 × 3 × 3) and it’s
matricization in mode 1, mode 2, and mode 3, respectively.
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Tensorization of vectors
The tensorization of a vector is the opposite operation to the vectorization of a

tensor. Since the relation (5.6) is a bijection, its reciprocal can be used to tensorize
vectors. Consider a vector x ∈ RN where N =

∏d

k=1 n
(k) for some n(k) ∈ N, the

tensorization of x leads to a d-dimensional tensor X of size [n(1), . . . , n(d)] such that

X(j1 , j2 , . . . , jd) = xj

where j is given by the relation (5.6).

Tensor-matrix product
We follow [88] for the definitions below. To introduce the general notation of

tensor-matrix product, we need to recall the principles of matrix-matrix product,
denoted here by the dot. Let be given matrices F ∈ RI1×I2 , U ∈ RI1×J1 and V ∈
RI2×J2 . Then we can compute the product

G = UT .F.V ∈ RJ1×J2 (5.11)

obeing the compatibility of the mode sizes. Analizing the product (5.11) [88] one can
note that the rows of F are multiplied by U (not UT ) while the columns of F are
multiplied by V . In the same way, it can be noticed 2 that, in the matrix result G,
the rows of U are associated to the row space of G while the rows of V are associated
to the column space of G. Thus, one may avoid to transpose U but work with the
so-called mode-k multiplication ×k such that

G = F ×1 U ×2 V. (5.12)

The notation in (5.12) means that the matrix F is mulplied by U in mode 1 (row
mode) and by V in mode-2 (columns mode).

In general, the k-mode multiplication is given in the definition below (see [88])
Definition 5.2

Let be given a tensor A ∈ RI1×I2×...×Id and a matrix M ∈ RIk×Jk , 1 ≤ k ≤ d.
The k-mode product of A andM denoted A×kM is a (I1 × . . .× Ik−1 × Jk × Ik+1 . . . Id)
tensor whose entries are given by

(A×kM) (i1, i2, . . . , ik−1, jk, ik+1, . . . , id)
def=
∑
ik

ai1i2...ik−1ikik+1...idmikjk .

(5.13)

Given then tensor A ∈ RI1×I2×...×Id and matrices F ∈ RIk×Jk , G ∈ RIl×Jl . The
k-mode product verifies the properties:

(A×k F )×l G = (A×l G)×k F = A×k F ×l G. (5.14)

Given the tensor A ∈ RI1×I2×...×Id and matrices F ∈ RIk×Jk and G ∈ RJk×Kk .

(A×k F )×k G = A×k (G.F ). (5.15)

2. In [88] the mode-1 represents the columns mode while here this is represented by rows
mode.
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Tensor-tensor product
In general, given tensors A ∈ RI1×I2×...×Id1 and B ∈ RJ1×J2×...×Jd2 , their prod-

uct gives a tensor C of order d1 + d2 such that

C
(
i1 , i2 , . . . id1 , j1 , j2 , . . . , jd2

)
= A (i1 , i2 , . . . id1) B

(
j1, j2 , . . . , jd2

)
= A⊗B (5.16)

For example, from the product
(

1
0

)
⊗
(

1
0

)
⊗
(

1
1

)
=
(

1 0
0 0

)
⊗
(

1
1

)
we get a 3-

dimensional tensor A ∈ R2×2×2 that has two identical slices
(

1 0
0 0

)
and may be

given by its mode-1 unfolding

A(1) =
[

1 0 1 0
0 0 0 0

]
Khatri-Rao product

Another product from the Kronecker product is the Khatri-Rao product. Consider
the matrices A = [a1, ...,ar] ∈ Rn×r and B = [b1, ...,br] ∈ Rm×r where ak and bk
denote the kth column of A and B respectively. The Khatri-Rao product of A and B
is the matrix

C = A�B ∈ Rnm×r (5.17)
whose columns are the Kronecker product (5.2) of respective columns of A and B.
That is

ci = ai ⊗ bi, i = 1 : r.

Contracted product
The multiplication of tensors can be generalized simply by the so- called contracted

product. The contraction can be done on a specific mode (mode-k product) or on
multiple modes: for two vectors u,v ∈ Rn

(1)
the mode-1 product is simply the classical

scalar product

u.v =
n(1)∑
i=1

uivi.

For a matrix A ∈ Rn
(1)×n(2)

and vectors u ∈ Rn
(1)
,v ∈ Rn

(2)
we can use the following

products to express matrix-vector products:

Av = A×1 v ∈ Rn
(1)

mode-1 product,
uTA = A×2 u ∈ Rn

(2)
mode-2 product,

uTAv = A×1 v×2 u ∈ R mode-1-mode-2 product.

Observe that on the last multiplication the contraction is made on the two modes
and the result is a scalar. Thus, given two tensor A ∈ RI1×I2×...×Id1 and B ∈
RJ1×J2×...×Jd2 , if there is Ik = Jk, 1 ≤ k ≤ d1, d2 then the mode-k product is given
by

C = (A×k B) =
n(k)∑
j
k

=1

Ai1 ,...,ik ,...id1
Bj1 ,...,jk−1 ,jk ,jk+1 ...,jd2

≡ A×k B(k). (5.18)
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The product (5.18) is the general contracted product where the corresponding direc-
tions are contracted and the resulting tensor C is of order d = d1 + d2 − 2. The full
multilinear product contracts all the directions and writes

C = 〈A,B〉 = A×1 B
(1) ×2 B

(2) . . .×k B(k)

that results in a scalar. This is the tensor inner product. Of course, the number of
indices in corresponding directions have to be equal.

The Kronecker product can be generalized to operators, especially to separable
differential operators [89]. The interesting tasks now include efficient storage of ten-
sors and relevant mathematical operations for efficient computation of these stored
tensors. Answers to these tasks have lead to certain tensor formats. For PDEs, one
way is to specify some basis functions and then store the coefficients in these bases
representations [89]. Before we address the most known representation formats, note
that reliable representation of data may lead to significant saving of storage memory
and operations. This is illustrated by the example below from [6, p. 171].
Example 5.1

Consider the index set I0 = {0, 1, 2, . . . , N − 1} and a vector (x)i = υi, i ∈ I0,
and υ ∈ R, with N =

∏d

k=1 n
(k), for some n(k) ∈ N, n(k) ≥ 2. For d = 2, the

matricization of the vector x gives the matrix

M =


υ0 υn

(1)
. . . υ(n(2)−1)n(1)

υ1 υn
(1)+1 . . . υn

(2)−1n(1)+1

...
...

. . .
...

υn
(1)−1 υ2n(1)−1 . . . υn

(2)n(1)−1

 =


υ0

υ1

υ2

...
υn

(1)−1




υ0

υn
(1)

υ2n(1)

. . .

υ(n(2)−1)n(1)


T

.

The last equality shows that M is a rank-one matrix that can be written using
the tensor product and saving significant memory:

M =


υ0

υ1

υ2

...
υn

(1)−1

⊗


υ0

υn
(1)

υ2n(1)

. . .

υ(n(2)−1)n(1)

 .

The same calculation can be made for d = 3 getting

T =


υ0

υ1

υ2

...
υn

(1)−1

⊗


υ0

υn
(1)

υ2n(1)

...
υ(n(2)−1)n(1)

⊗


υ0

υn
(1)n(2)

υ2n(1)n(2)

. . .

υ(n(3)−1)n(2)n(1)

 .

The next proposition can be proved by induction following the example above.
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Proposition 5.3

Consider N = n(1)n(2) . . . n(d) with n(k) ≥ 2, for all 1 ≤ k ≤ d, and set I0 =
{0, 1, 2, . . . , N − 1}. The vector (x)i =

(
υi
)
, i ∈ I0 and υ ∈ R corresponds to

the elementary tensor v(1) ⊗ v(2) ⊗ . . .⊗ v(d) where v(k) ∈ RIk and is defined by

v(k) =


υ0

υp
(k)

υ2p(k)

...
υ(n(k)−1)p(k)

 with p(k) =
k−1∏
l=1

n(l).

In the case where,n(k) = 2 for all k ∈ {1, 2, . . . , d}, that is, N = 2d and p(k) = 2k−1,

then v(k) =
(

1
υ2k−1

)
and the data size is reduced from N to 2d = 2logN.

In addition to the saving of memory storage enabled by appropriate representation
of tensors, such representations may also lead to more stable algorithms [6, p.172].
Thus, it is important to investigate different representations of tensors. This requires
the definition of elementary tensors.
Definition 5.4 (Elementary tensor)

An elementary tensor is any tensor of V =
⊗d

k=1V
(k) that can be written as:

V = ⊗dk=1v(k), v(k) ∈ V (k). In other words, any tensor that can be written
as a single tensor product of vectors is qualified elementary tensor. The set of
elementary tensors in V is denoted here by

C1(V) =
{
⊗dk=1v(k), v(k) ∈ V (k)} . (5.19)

Any tensor can be approximated using elementary tensors. Let V be a a d-dimensional
tensor from V. Then, it can be written

V =
r∑
j=1

αj ⊗dk=1 v(k)
j , αj ∈ R, v(k)

j ∈ V (k). (5.20)

Here, the tensor is considered as a linear combination of elementary tensors. This
allows us to introduce the concept of tensor rank and other tensor representations or
formats. However, notice that for tensors, the concept of rank is not uniquely defined.
Below we present certain concepts denoting tensor rank.
Definition 5.5 (Canonical tensor rank)

Let V be a a d-dimensional tensor. The smallest integer such that the tensor
V can be expressed by (5.20) is called the canonical tensor rank of V. In other
words, it is the smallest number of elementary tensors used to represent the tensor.

Note that, unlike matrix rank, tensor rank may exceed all the dimension sizes. In
addition, for tensors of order d > 2, the tensor rank may depend on the field (weither
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real or complex) [90]. For example, consider tensors A,G ∈ R2×2×2 defined by their
mode-1 unfoldings (see 5.9):

A(1) =
[

1 0 1 0
0 0 0 0

]
and

G(1) =
[

2 0 0 −2
0 −2 −2 0

]
.

In the real field, the tensor A has rank 1 because it can be written

A =
(

1
0

)
⊗
(

1
0

)
⊗
(

1
1

)
.

Conversely, in the real field the tensor G needs three elementary tensors:

G = 4
(

1
0

)⊗3

+
(
−1
−1

)⊗3

+
(
−1
1

)⊗3

.

where the notation x⊗k =
kfactors︷ ︸︸ ︷

x⊗ x . . .⊗ x is the tensor product of identical k factors.
However, if the decomposition in the complex field is allowed, by considering

√
−1 = i,

we may write

G =
(

1
i

)⊗3

+
(

1
−i

)⊗3

.

We conclude that the tensor G has canonical tensor rank 3 in R and 2 in C. From this
example, one can observe that imposing the decomposition to be in R, may increase
the rank. This situation is general and due to this, many ranks have been defined,
such as nonnegative rank, symmetric rank, border rank, structured rank,Tucker rank,
hierarchical Tucker rank, Tensor Train rank or core tensor rank. We refer to [85] for
these concepts while some of them are subsequently defined.

In addition to the canonical tensor rank, we can define a multilinear rank as
follows.
Definition 5.6 (Multilinear rank)

Given a tensor A of order d, its multilinear rank denoted ml-rank(A) is the d-
tuple (r1, r2, . . . , rd) =

(
rank(A(1)), rank(A(2)), . . . , rank(A(d))

)
, where each rk

is the number of linearly independent columns (or rows) vectors of the matrix
obtained after matricization of the tensor in mode k. That is

rk,= rank(A(k)), k = 1, 2, . . . , d. (5.21)

5.2 Tensor formats and tensor decompositions
Currently, in addition to the full format introduced in the previous section, four

tensor formats are the most commonly used in numerical tensor analysis (see [6]).
These formats are representations of the tensor in a way that allows an efficient
processing of its elements.
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We give a brief description of three of them in this section and a fourth is further
developed in the next section, and will be used more specifically. We refer to [6] and
[8] for more details.

5.2.1 Canonical Polyadic (CP) format
A tensor is given under canonical format, or polyadic canonical format, when

it is written as a linear combination of R elementary tensors. That is, a tensor
F ∈ V = ⊗dk=1V

(k) where V (k) = RIk is written as

F =
∑R

i=1
giu(1)

i ⊗ u(2)
i . . .⊗u(d)

i , (5.22)

where R is the canonical rank of F and u(k)
i , i = 1, . . . , n(k) are vector from vector

space V (k) of dimension n(k). Since a scalar product is assumed to be defined on the
considered tensor space, one may impose the vectors u(k)

i , k = 1 : d, i = 1 : n(k)

to be of unite norm. In this context, scalars gi, i = 1 : R form a d-dimensional
array G whose matricization in any mode is diagonal. Thus, the decomposition can
be equivalently written in matrix format

F = G×1 U
(1) ×2 U

(2) . . .×dU (d), (5.23)

where G = diagd(g1, g2, ..., gR) is the core tensor that is d-diagonal. This means that
it is diagonal in a d-dimensional space (its matricization in any mode is diagonal).
The factors (U (k))k=1:d are factor matrices built with the vectors u(k)

i and the nota-
tion ×k represents the mode-k product (5.12). Using the Khatri-Rao product � and
matricization of the tensor F, the relation (5.23) writes :

F (k) = U (k)G(k)(U (d) � ...� U (k+1) � U (k−1)...� U (1))T , k = 1 : d, (5.24)

where F (k) is the matrix representation of the tensor in mode k.
Figure 5.6 illustrates the canonical polyadic decomposition of a 3-order tensor,

where the decomposition is presented as a linear combination of rank-one tensors.
The core tensor G is a d-diagonal matrix.

This format has the advantage that the core tensor is diagonal but a significant
disadvantage is that the matrix factors (U (k))k=1:d are not necessarily orthogonal,
and the rank R may be too large. One may impose an orthogonality constraint on
the matrix factors while the the core tensor might not still diagonal. This is the idea
of Tucker format.

5.2.2 Tucker format
A tensor is said to be in a Tucker format when it is written as a product of a

core tensor, smaller in size than the initial tensor, with orthogonal matrix factors.
Hence, given a tensor F ∈ V = ⊗dk=1V

(k) where V (k) = RIk with n(k) = #Ik large
and rk < n(k), k = 1 : d, one writes:

F =
r1∑
i1=1

r2∑
i2=1

.. . . .

rd∑
id=1

gi1i2...idu
(1)
i1
⊗ u(2)

i2
. . .⊗u(d)

id
. (5.25)
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Polyadic decomposition

≈ g1

u1
(2)

u1
(1)

u1
(3)

+ . . .+ gR

uR
(2)

uR
(1)

uR
(3)

(a) Illustration of the CP format of a tensor of order d = 3 in R rank-one tensors

Polyadic decomposition

≈

U (2)

U (3)

U (1)

G

(b) Matrix form of the CP decomposition

Figure 5.6: Polyadic decomposition in 3D

where u(k)
i , i = 1, . . . , n(k) are vectors from vector spaces V (k) of dimension n(k) that

are, in general, orthonormal. By setting

G̃ =
r1∑
i1=1

r2∑
i2=1

.. . . .

rd∑
id=1

gi1i2...id

we get a tensor called Tucker core tensor of order (r1, r2, . . . , rd) smaller than the
original one. In matrix form it writes

F = G̃×1 U
(1) ×2 U

(2) . . .×d U (d). (5.26)

Figure 5.7 illustrates the Tucker decomposition format of a 3-order tensor, where
one can consider the core tensor G̃ as a compressed format of F since the matrix
factor are orthogonal.

The Tucker format is attractive in that the matrix factors are often chosen or-
thogonal. The advantage being that several operations will be restricted to the single
core tensor which is then a compressed form of the initial tensor. The more the
compression is significant (rk << n(k), k = 1 : d) without significative loss, the more
efficient the Tucker format.

However, it has the disadvantage of always having a core tensor that is mul-
tidimensional and not diagonal. Thus, the algorithmic complexity will still grow
exponentially with respect to the dimension d. Hence, the use of Tucker hierarchical
formats or Tensor-Train (TT) that try to combine the advantages of CP and Tucker
representations is required. In this work, we focus on Tensor-Train formats which can
be seen as a special case of Hierarchical Tucker format [6].
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Tucker decomposition
F

≈

U (2)

U (3)

U (1)

G̃

Figure 5.7: Illustration of the Tucker decomposition.

5.2.3 Hierarchical Tucker format
The main idea of the Hierarchical Tucker representation is the way of approxi-

mating a numerical tensor A from a tensor space

V = ⊗dk=1V
(k),

by a numerical tensor
Ã ∈ Ṽ = ⊗dk=1U

(k), (5.27)
built via vector subspaces U (k) with minimal rank for each V (k). To make this ap-
proximation effective, a dimensional tree is used. This tree allows the dimensionality
of the high-order tensor to be reduced by using High Order Singular Value Decom-
position (HOSVD) and truncature (see [6, 78, 88] for HOSVD).

The binary dimensional tree T is the most used. One considers that the dimension
set D = {1, ..., d} is the root of the tree, it is at level 0. Each node of T is a non-empty
subset of D. Any node t of T such that #t = 1 is called leaf of T and the set of all
leaves is denoted L(T). The notation I (T) = T \ L(T) represents the set of nodes
t such that there are two children t1 and t2, each non-empty with t = t1 ∪ t2 and
t1 ∩ t2 = ∅. To each node t ∈ T one defines a maximal rank r such that at each level
l, the t-rank rt is smaller than r. The t-rank rt is defined in (5.7). If a node t is at
level l, its children {t1, t2} are at level l + 1.

Hence, the set of all hierarchical Tucker tensors is given by:

HTr (V) = {A ∈ V : rt(A) ≤ r, ∀t ∈ T}. (5.28)

Any element of HTr (V) can be written with the form:

A =
rD∑
i=1

rD∑
j=1

αDijuD1
i ⊗ uD2

j , D = D1 ∪D2, D1 ∩D2 = ∅, αDij ∈ R, (5.29)

and

u(t)
k =

rt∑
i=1

rt∑
j=1

α
(t)
ijku

(t1)
i ⊗ u(t2)

j , t = t1∪ t2, t1∩ t2 = ∅, α(t)
ijk ∈ R, ∀t ∈ I (T), (5.30)
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where I (T) = T \D. A tensor is determined in Hierarchical Tucker format by defining
the transfer tensor (α(t))t∈I(T) and its space vector basis (u(t)

i )t∈L(T),i∈{1,...,rt}.
One way of determining the bases

B(t) = [u(t)
i ] ∈ U (t), i = 1, 2, . . . , rt (5.31)

and the transfer tensors α(t)
ijk refers to the so called High-order Singular Value De-

composition that we present below.

High Order Singular Value Decomposition (HOSVD)
The matricization map (5.7) allows us to define a matrix that correspond to the

tensor (A) at each node of the tree in mode t, denoted Mt(A) ( where t is a subset of
the dimension set D). Considering the left singular vectors u(t)

i of Mt(A), one forms
an orthonormal basis

B(t) = [u(t)
1 ,u(t)

2 , . . . ,u(t)
rt ]

such that
U (t) = span{u(t)

i , 1 ≤ i ≤ rt}
for all t ∈ T. Such bases at each vertex of the tree form the so-called HOSVD bases
(see [6, p.339]). However, if one should store all the entries of these bases, it would
require huge storage. Instead, the Hierarchical representation uses some recursive
frames that allow to express the bases at vertex t ∈ T by means of its sons bases
B(t1) and B(t2). In this case, only the bases of leaf nodes (t ∈ L(T ) is a singleton)
have to be stored explicitly while bases at higher levels are implicitly formed via
kronecker product and the so-called transfert tensors (see [6]). The coefficients α(t)

ijk

may be built by the left singular values of the matrix Mt(A) or by eigenvalues of

Mt(A)Mt(A)T

with some recursive truncations. The procedure is repeated for each subset t ⊂ D
as described in [6, 11.3.3]. This procedure one of the High Order Singular Value
Decomposition HOSVD that is a generalizing the matrix SVD. For more details, we
refer to [6, Chap. 11] for this construction while other HOSVD in other formats are
presented in, for example [78] and referencies therein.

Figure 5.8 illustrates a hierarchical tensor tree Figure 5.8a of a 7-dimensional
tensor A and its representation in hierarchal Figure 5.8b format following the concepts
in 5.1.2. The first node at level 0 is the root of the tree with D = {1, . . . , 7} and
each next level is formad by two disjoind subset of the previous. In Figure 5.8b
the • indicates a contracted product between two tensors and the number of bared
segment indicates the resulting dimension of the result tensor. One can see that (by
observing Figure 5.8b), at the root tensor the result tensor is a matrix (two dimension)
while each non leaf and non root node represents a 3-dimensional tensor. The leaves
represent the unidimensional subspaces U (k), k = 1 : d from where are constructed
unidimensional bases B(k) defined at (5.31).
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{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3} {4, 5, 6, 7}

{1} {2, 3} {4, 5} {6, 7}

{2} {3} {4} {5} {6} {7}

(a) Dimension tree:A (d = 7).

•
/ /

•
| /

•
/ /

•
|

•
| /

•
| /

•
| /

U (1) U (2) U (3) U (4) U (5) U (6) U (7)

(b) Hierarchical Tensor decomposition A (d = 7)

Figure 5.8: Compression hierarchical tree (d = 7)

5.3 Tensor-Train decomposition and low-rank
Approximation

5.3.1 Tensor-Train(TT) format and TT-decomposition
In this section and in the remainder, AT and vT indicate, respectively, the trans-

pose of a matrix A and the transpose of a vector v.
A Tensor-Train format of a multidimensional array can be considered as a par-

ticular case of its Hierarchical Tensor-format. In this case, each node of the binary
dimension tree is formed by a singleton and its complementary (see for example [6,
pp. 374-375] for more details).

The main motivations for using the TT-format are both the possibility of repre-
senting exactly a high-order tensor with few parameters or the possibility of approx-
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imating it by a low-rank tensor with a given accuracy by fewer parameters [91]. In
addition, efficient algorithms have been addressed to compute optimal ranks rk en-
abling a given high-order tensor to be represented in the TT-format with a required
accuracy ε. Further, reshaping large-scale matrices and vectors into high-order ten-
sors and approximating them in TT format allows certain algebraic operations to be
performed such as addition and matrix-vector product in logarithmic time complex-
ity [91].

The TT-representation of a tensorized vector or matrix A can be considered as a
low-rank representation performed successively on its matricizations A(k), k = 1 : d.
These matricizations often lead to linear dependence among rows or columns that
may be removed by standard transformation of rows and columns. Thus, the TT
decomposition of large vectors and large-scale matrices uses a recursive Kronecker-
product representation with use of common bases [92].

To represent a tensor A ∈ RI1×I2×...×Id in TT format, we have to determine l
components 3 (l ≥ d) U (k), k = 1, ..., l such that

A(i1, i2, . . . , il) ≈
∑

α0,α1,...,αl

U
(1)

(α0 , i1 , α1)U
(2)

(α1 , i2 , α2) . . .U
(l)

(αl−1 , il , αl),

(5.32)
where the components U(k), 1 ≤ k ≤ l are called core tensors. In general, each U(k)

is a 3-dimensional array for large vectors.
For example, consider a vector

x ∈ Rn
(1).n(2)....n(d)

.

This vector can be reshaped in an array x ∈ RI1×I2×...×Id , where #Ik = n(k), ∀k ∈
{1, 2, . . . , l}. To convert this vector in the form (5.32), each core will depend on
one initial index ik ∈ Ik and on two auxiliary index variables αk−1 ∈ Kk−1, αk ∈
Kk, ∀ k ∈ Kk = {1, 2, . . . , rk}, k = 1 : l. The numbers rk are called the TT-rank of
the vector and r1 = rl = 1 by definition. We may refer to this as a TT-vector and
using Kronecker product of mode-2 fibers (columns), we may write

x ≈
r1∑

α1=1

r2∑
α2=1

. . .

rl−1∑
αl−1=1

= U
(1)

(1, i1 , α1)⊗U
(2)

(α1 , i2 , α2)⊗ . . .⊗U
(l)

(αl−1 , il , 1).

For a large-scale matrix A ∈ Rm×n, the TT-representation is obtained in the same
way by extension of (5.32) where each core is now a 4-dimensional array. The matrix
A can be reshaped as an array

A ∈ RI1×I2×...×Id1×J1×J2×...×Jd2 , d1, d2 ∈ N

called TT-matrix, where

m =
d1∏
k=1

#Ik

3. The new dimension l is used as an artificial dimension and has to be distinguished from
the real dimension d. When l = d, then the real dimension of the problem is used.
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and

n =
d2∏
k=1

#Jk.

Thus, one can approximate its TT-representation using Kronecker product of mode-2
slices (matrices) and write

A ≈

r1∑
α1=1

r2∑
α2=1

. . .

rl−1∑
αl−1=1

U
(1)

(1, i1 , j1 , α1)⊗U
(2)

(α1 , i2 , j2 , α2)⊗ . . .⊗U
(l)

(αl−1 , il , jl , 1).

Figure 5.9 visualizes the TT-format where for TT-vectors, the boundary conditions
give rise to matrices on extremes and 3-order tensors any where else, linked by mode-1
contracted product. The form of a train is shown by Figure 5.9a while the equivalent
but more general form is shown by Figure 5.9b. Figure 5.9c visualizes the TT-
representation of large matrices where we have 3-dimensional arrays on extremes and
4-dimensional arrays anywhere else.

(a) Tensor-Train format of 7th-order TT-vector

•/ •/
/
/ •
/
/ •
/
/ •
/
/ •
/
/ •
/
/ • /

(b) Tensor-Train format of 7th-order TT-vector.

•/
/
•/
/
/

/
•
/
/

/
•
/
/

/
•
/
/

/
•
/
/

/
•
/
/

/
• /
/

(c) Tensor- Train format of 7th-order TT-matrix represented

Figure 5.9: Tensor-Train format of 7th-order. The form of a train is shown
by Figure 5.9a while the equivalent but more general form is shown by Fig-
ure 5.9b. Figure 5.9c visualizes the TT-representation of large matrices where
we have 3-dimensional on extremes and 4-dimensional arrays anywhere else.

Let us now show how these cores are built. First, recall that when some variables
separability is possible, any matrix A ∈ Rm×n can be written as a sum of Kronecker
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product of certain vectors:

A =
r∑
j=1

uj ⊗ vj =
r∑
j=1

ujv
T
j ,

where r is the rank of the matrix A [92]. This allows to write a matrix A in the
form of dyadic (skeleton) decomposition: A = UV T . In other words, the matrix A
whose entries can be denoted A(i, j), i = 1 : m, j = 1 : n, can be considered as
a Kronecker product of two matrices G(1) ∈ Rm

(1)×n(1)
and G(2) ∈ Rm

(2)×n(2)
such

that (m,n) = (m(1).m(2), n(1).n(2)). This means we can write

A = G(1) ⊗G(2) = [G(1)(i1, j1)G(2)] i1 = 1 : m(1), j1 = 1 : n(1). (5.33)

Thus, the decomposition relies on a certain splitting of spatial indices and can be
done recursively. To understand this split, let us consider row and column indices of
A as multi-indices:

(i, j) = (i1i2, j1j2), and A(i, j) = A(i1i2, j1j2).

Observe that the indices i and j from the Kronecker product A = G(1) ⊗ G(2) are
not separated but are products of mode-indices [92]. The idea of variables separation
is to reshape the matrix A in a new matrix Ã with special multi-indices that admit
separation. This means, we should reshape the matrix A in the form

Ã(i1j1, i2j2) ≈ A(i1i2, j1j2) i1 = 1 : m(1), i2 = 1 : m(2), j1 = 1 : n(1), j2 = 1 : n(2),
(5.34)

such that Ã(i1j1, i2j2) is a matrix of low rank. Since most matrices are not represented
by a single Kronecker product, we may have a sum of Kronecker products that writes

Ã =
r∑

α=1

G(1)
α ⊗G(2)

α , (5.35)

where G(k)
α is a matrix. The natural integer r is known as the Kronecker-rank of the

representation while it is called the Kronecker-rank of the matrix Ã when it is the
minimal possible for all the representations of the form (5.35) (see [92]).

The right-hand side of the equation (5.35) allows to write the matrix A with

r(m(1)n(1) +m(2)n(2))

entries that can be significantly smaller than

mn = m(1)n(1)m(2)n(2),

for small r. Thus, the number of parameters to represent the matrix A has been
reduced. In order to futher compress the representation, we may increase the number
of Kronecker factors while decreasing the size of each matrix factor. That is,

Ã =
r∑

α=1

⊗lk=1G
(k)
α , (5.36)
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where G(k)
α is a parameter dependent matrix. With this formulation, the size of each

G
(k)
α is decreased but l, l ≥ d, factors are used. This means that we have enlarged the

dimension d while we have created small blocks that form the core tensor. This core
tensor is expected to have small rank r. Consider, for simplicity, that the matrix A is
of order n. One can observe that the main advantage depends on the rate of increase
of r when n decreases. If r increases slowly while n has significantly decreased, we
get an important reduction of parameters. Instead of manipulating n2 entries od A
one may manipulate NTT

p parameters where

NTT
p << n2.

In particular, when the order of A is a power of 2, that is, n = 2d, we may enlarge the
dimension to the maximal tensor dimension d while each G(k)

α has now 2×2 blocks. In
this case, the representation is called Quantized Tensor-Train (QTT) representation.
Such a representation allows to reduce significantly the number of parameters in the
tensor. The number of parameters is then given (see [80]) by

NQTT
p = 4rlog2n. (5.37)

Consider now we need to approximate a d-dimensional tensor of size [n, n, . . . , n]
and nd entries, by a new tensor with few parameters, compared to nd. For this
purpose, a TT-vector a and a TT-matrix A have to be approximated by new tensors
ã and Ã of respective forms

ã = G(1)(j1)G(2)(j2) . . .G(d)(jd), (5.38)

and
Ã = G(1)(i1, j1)G(2)(i2, j2) . . .G(d)(id, jd), (5.39)

where each

G(k)(jk) = U(k)
rk−1,jk,rk

and G(k)(ik, jk) = U(k)
rk−1,ik,jk,rk

respectively. Each factor of this notation is a kind of parameter-dependent block
matrix with rk−1× rk blocks where the d-tuple (r0, r1, . . . , rd) is called TT-ranks and
the relations r0 = rd = 1 are imposed as boundary conditions. The maximal rank

r = max{rk}, k = 1 : d− 1

is expected to be small while, given a threshold ε (0 < ε < 1) the approximation
verifies

‖a − ã‖F < ε,

respectively,
‖A− Ã‖F < ε

where ‖.‖F denotes the Frobenius norm. In general, the approximation is done via
k-matricization 5.9 in each mode. An upper bound on the rank rk is given by the
theorem below from [80, p. 2298].
Theorem 5.7

If for each unfolding matrix of the form (5.9) of a d-dimensional tensor A such
that rank(A(k)) = rk, then there is a decomposition (5.38), respectively (5.39)
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with TT-ranks not higher than rk where rk is the rank of the k-matricization,
A(k), of the tensor A.

hence, the decomposition may be performed via singular value or QR decompositions.
Proof. See [80, p. 2298]

Now it may be important to know how better is the approximation in low-rank
TT-tensor format. The following theorem and corollaries prensent the expected ac-
curacy when approximating a low-rank Tensor-Train with a given accuracy using
singular value decomposition.

Theorem 5.8 (See [80])

Suppose the unfolding matrix A(k) of the tensor A verifies

A(k) = B(k) + E(k), with rank(A(k)) = rk, and ‖E(k)‖F = εk, (5.40)

where k = 1, 2, . . . , d − 1. Then the TT-SVD computes a tensor in TT format
with TT-ranks rk and

‖A− B̃‖F ≤

√√√√d−1∑
k=1

ε2k. (5.41)

Proof. See [80, p. 2299]
Two corollaries (proved in [80] and in [93]) provide information on how better is the

TT-approximation compared to the CP approximation and the best approximation
via SVD.
Corollary 5.9

If a tensor A admits a canonical approximation with R terms and accuracy ε, then
there exists a TT-approximation with TT-ranks rk ≤ R and accuracy

√
d− 1ε.

Corollary 5.10
Given a tensor A and TT-ranks bounds rk, the best approximation to A in
the Frobenius norm with TT-ranks, denoted by Abest, always exist and the TT-
approximation B computed by TT-SVD algorithm is quasi-optimal and we have
that

‖A−B‖F ≤
√
d− 1‖A−Abest‖F . (5.42)

This last corollary compares the TT-approximation computed by SVD with the best
approximation in Frobenius norm.

Now, we need to link the TT-Tensor operations to known matrix operations. The
lemma below, that is proved in [92] explains that a matrix that can be written as
Kronecker product can be considered as a block matrix. This allows to link the matrix
operations with TT-tensor operations since one may be manipalating the blocks as
matrices.
Definition 5.11

Given a decomposition of the form (5.35) and, suppose that A is of order m× n,
with m = m(1)m(2) and n = n(1)n(2) such that G(1)

α and G(2)
α are of order m(1) ×
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n(1) and m(2) × n(2), respectively. Then A can be considered as a block matrix:

A = [Ai1j1 ], 1 ≤ i1 ≤ m(1), 1 ≤ j1 ≤ n(1), (5.43)

refered to as the core matrix of A.

This definition will serve in the reminder to manipulate the small blocs that form the
core matrix of differential operator we use in MIRP.

Let us adress the possibility to solve more efficiently the linear system (4.9) us-
ing TT-Tensor format. For this purpose, we focus on Quintized TT (QTT) repre-
sentations of tridiagonal Toeplitz-like matrices, and especially the negative Laplace
operator in a d-dimensional space. The Quantized Tensor Train (QTT)format is a
TT-representation applied to a vector or a matrix after introduction of virtual di-
mensions by reshaping the vector or the matrix to smaller mode size (in general n(k)

is reduced to 2, ∀1 ≤ k ≤ l).
From the definition above, given an array A with size

(m(1) × . . .×m(d))× (n(1) × . . .× n(d)),

its TT-representation given by

Ai1,...,id
j1,...,jd

=
∑r1

α1
. . .
∑rd−1

αd−1
U (1)(α0, i1, j1, α1)U (2)(α1, i2, j2, α2)

. . . U (d)(αd−1, id, jd, αd),
(5.44)

can be interpreted as contracted product of four-dimensional arrays. In this case,
each four-dimensional array U (k), 1 ≤ k ≤ d is a block matrix that is considered as
the TT-core or core matrix of A. To be explicit, let us consider one TT-core U as a
4 dimensional array of size (p,m, n, q).
Definition 5.12

The TT-core U is said to have TT-core ranks or TT-ranks (p, q) and mode size
(m,n) if it is formed by pq blocks of size (m,n) each. That is

U(α1, i, j, α2) = (Uα1,α2)i,j , α = 1 : p, α2 = 1 : q, i = 1 : m, j = 1 : n.

Then we can write

U =

U11 . . . U1q
...

. . .
...

Up1 . . . Upq

 . (5.45)

To perform operations with these core matrices, a specific product called rank core
product and denoted by 1 is defined below (see [81, p.745]).

Definition 5.13 (Rank-core product)

Consider core matrices U (1) and U (2) with respective core-ranks r0×r1 and r1×r2
composed by blocs U (1)

α0α1 for U (1) and U
(2)
α1α2 ,for U (2) 1 ≤ αk ≤ rk, 0 ≤ k ≤ 2,

where each block is of mode size m(1)×n(1) in the core U (1) and m(2)×n(2) in the
core U (2). The rank-core product of U (1) and U (2) is a core matrix U = U (1) 1
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U (2) of core rank r0 × r2 and blocks of mode sizes m(1)n(1) ×m(2)n(2):

Uα0α2 =
r1∑
α1

U (1)
α0α1 ⊗ U

(2)
α1α2 , 1 ≤ α0 ≤ r0, 1 ≤ α2 ≤ r2.

Observe that, the rank-core product can be considered as a usual matrix-by-
matrix product where matrix elements are replaced by blocks and the usual multipli-
cation is replaced by the Kronecker product[

U
(1)
11 U

(1)
12

U
(1)
21 U

(1)
22

]
1

[
U

(2)
11 U

(2)
12

U
(2)
21 U

(2)
22

]
=
[
U

(1)
11 ⊗ U

(2)
11 + U

(1)
12 ⊗ U

(2)
21 U

(1)
11 ⊗ U

(2)
12 + U

(1)
12 ⊗ U

(2)
22

U
(1)
21 ⊗ U

(2)
11 + U

(1)
22 ⊗ U

(2)
21 U

(1)
21 ⊗ U

(2)
12 + U

(1)
22 ⊗ U

(2)
22

]
.

With this notation, we can write the relation (5.39) by

Ã = U(1)
1 U(2)

1 . . . 1 U(d). (5.46)

The rank-core product verifies the properties below. For l ∈ N, l ≥ 2 and tensors

A = U(1)
1 U(2)

1 . . . 1 U(l), B = V(1)
1 V(2)

1 . . . 1 V(l),

with appropriate core ranks and mode sizes, we have:

αA + βB =
[
U (1) V (1)

]
1

[
U (2)

V (2)

]
1 . . . 1

[
U (d−1)

V (d−1)

]
1

[
αU (d)

βV (d)

]
.

From the Kronecker product and multilinearity it can be verified that[
α1U

(1) β1U
(1)

α1U
(1) β1U

(1)

]
1

[
α2U

(2) α2U
(2)

β2U
(2) β2U

(2)

]
=

([
U (1)

V (1)

]
1
[
α1 β1

])
1

([
α2
β2

]
1
[
U (2) V (2)

])
= (α1α2 + β1β2)

[
U (1)

V (1)

]
1
[
U (2) V (2)

]
.

This property allows to detect linear dependace of rows or columns in the core
matrices and thus reveals the true TT-rank of the TT-representation. In particular,
for QTT-representation, the blocks below are used to desctibe and manipulate QTT
structures of tridiagonal Toeplitz-like matrices (see [81, p.747]):

E =
(

1 0
0 1

)
, F =

(
0 1
0 0

)
, E1 =

(
1 0
0 0

)
, E2 =

(
0 0
0 1

)
,

G =
(

0 1
1 0

)
, H =

(
1 1
1 1

)
, K =

(
1 −1
−1 1

)
, L =

(
−1 0
0 1

)
.

(5.47)

From these small matrices and by noting

A1k =

kfactors︷ ︸︸ ︷
A 1 A 1 . . . 1 A,

the proposition below allows a QTT structure of any tridiagonal Toeplitz matrix to
be represented in QTT format.
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Proposition 5.14
Assume l ≥ 2 and α, β, γ are real numbers. Then the matrix

A(l) =



α β

γ α
. . .

. . . . . . . . .
. . . α β

γ α

 ,

of size 2l × 2l has the following QTT representation of TT-ranks 3, 3, . . . , 3.

A(l) =
(
E FT F

)
1

E FT F
F

FT

1(l−2)

1

αE + βF + γFT

γF
βFT

 . (5.48)

Denote that, the TT-rank (3, 3, . . . , ) means each core matrix has three small blocks.
Now, we can apply this proposition to unidimensional and multidimensional Laplace
operators following the developments in [81]. Consider d > 2 and lk ∈ N, lk > 1 for
1 ≤ k ≤ d. The unidimensional matrix ∆(lk), 1 ≤ k ≤ d, with size 2lk × 2lk , is given
by

∆(lk)
DD =


2 −1

−1 2
. . .

. . . . . . −1
−1 2 −1

−1 2

 or ∆(lk)
DN =


2 −1

−1 2
. . .

. . . . . . −1
−1 2 −1

−1 1

 ,

where the ∆(lk)
DD is the unidimensional Laplace operator with Dirichlet boundary con-

dition while ∆(lk)
DN is the same operator but with mixed Dirichlet-Neumann boundary

conditions. The equality
∆(lk)
DN = ∆(lk)

DD − I
⊗d
∗ (5.49)

where

I∗ =

(
1

)

and I⊗d∗ =

d factors︷ ︸︸ ︷
I ⊗ I ⊗ . . .⊗ I allows to apply results from one of the two operators to the

other. Although we are interested in the d-dimensional Laplace operator expressed
by

∆(l1,...,ld) = a1∆(l1)⊗M (l2)⊗. . .⊗M (ld)+. . .+M (l1)⊗. . .⊗M (ld−1)⊗ad∆(ld), (5.50)

we need to express first the QTT structure of unidimensional operator and generalize
after. For finite difference methods, the matrix M (lk) = I is the identity while for
finite element methods, M (lk) can be given by other tridiagonal matrices (see [81]).

The QTT representation of the unidimensional Laplace operators are obtained by
applying the Proposition 5.14 with α = 2, β = −1 and γ = −1:
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Corollary 5.15
For l ≥ 3 we have

∆(l)
DD =

(
E FT F

)
1

E FT F
F

FT

1(l−2)

1

2E − F − FT
−F
−FT

 (5.51)

and using also (5.49)

∆(l)
DN =

(
E FT F E2

)
1

E FT F
F

FT

E2


1(l−2)

1

2E − F − FT
−F
−FT
−E2

 .

(5.52)

From these representations, one can observe that following definition 5.12, the
TT-ranks of ∆(l)

DD and ∆(l)
DN is 3, 3, . . . , 3 and 4, 4, . . . , 4. respectively. We have in

each core matrix 3 and 4 blocks respectively.
The multidimensional Laplace operator writes in the general form

L(d) = B(1) ⊗M (2) ⊗M (3) ⊗ . . .⊗M (d−2) ⊗M (d−1) ⊗M (d)

+ L(1) ⊗B(2) ⊗M (3) ⊗ . . .⊗M (d−2) ⊗M (d−1) ⊗M (d)

+ . . .⊗ L(1) ⊗ L(2) ⊗ L(3) ⊗ . . .⊗ L(d−2) ⊗B(d−1) ⊗M (d)

+ L(1) ⊗ L(2) ⊗ L(3) ⊗ . . .⊗ L(d−2) ⊗ L(d−1) ⊗B(d)

(5.53)

where L(k),M (k) and B(k) are matrices of size m(k) × n(k), 1 ≤ k ≤ d. On can verify
(see [81])that they can be represented in QTT format with TT-core ranks (2, . . . , 2)
in terms of blocks L(k),M (k) and B(k). That is,

L(d) =
(
L(1) B(1)

)
1

(
L(2) B(2)

R(2)

)
1 . . . 1

(
L(d−1) B(d−1)

M (d−1)

)
1

(
B(d)

M (d)

)
.

(5.54)
In our case, L(k) = M (k) = I(k) and B(k) = ∆(lk)

DD .
Observe that, since Kronecker product is successively used, small quantities may

be multiplied. This results in very small quantities that may lead to numerical insta-
bilities. Thus, truncation is required when working with TT-tensor format. This is
addressed in the following subsection.

5.3.2 Rounding in TT format
We aim to analyze rounding errors that may arise when either converting a general

tensor in TT-tensor format or when truncating a TT-tensor after certain operations.

Converting a general tensor into a TT-tensor using, for example TT-SVD, is al-
ready expensive for high-dimensional tensors. However, if the tensor is given in a
certain structured format, the complexity of the task may be significantly reduced.
Consider a tensor that is already in TT format but with TT-ranks that are subop-
timal. Such suboptimal ranks are often greater than the real ranks and may grow
whenever some linear operations (such as addition, tensor-vector product or mode-k
products) are performed.
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One way of avoiding the TT-ranks growth is the use of some compression tech-
niques and certain truncature to reduce these ranks while maintaining the accuracy
as good as possible. Many iterative tensorial operations tend to increase the rank
of the result tensor. When these operations are repeated many times, the rank will
continue to rise and may explode. For this reason, it is judicious to replace after each
operation a result As of rank s sufficiently large by its approximation Br of rank r
relatively smaller.

The truncation operator Tr,s is defined either by fixing the destination rank r or
by fixing a threshold ε > 0 such that ||As −Br|| < ε and r < s. Thus,

Br = Tr,s(A)⇔ ||As −Br|| < ε, r < s, (5.55)

within an appropriate norm. When the destination rank r is fixed we may denote
the truncation operator simply Tr. A result in [6, p.354] (Theorem 11.56) proves
the existence of a best approximation for problems in hierarchical tensor format and
thus in TT format. When this approximation (Tr,s) uses the HOSVD, that is (s −
r) smallest eigenvalues and their associated eigenvectors are neglected in each k-
matricization, the theorem 11.64 in [6, 362] shows that the approximation verifies

||A−Br|| ≤
√

2d− 3||A−Bbest||. (5.56)

where d is the dimension of these tensors, s is the maximal rank of the actual tensor
A and r is the destination rank, that is the fixed maximal rank of the tensor B
approximating A.

In this thesis we present another technique proposed by Oseledets for TT-
decomposition [80]. This technique uses successive QR and SV D decompositions.
Consider a tensor in the form (5.39) with TT-ranks (rk), k = 1, . . . , d − 1. The aim
is to estimate the optimal smaller rank (r

′
k), r

′
k ≤ rk, k = 1, . . . , d − 1 while the

accuracy is maintained as high as possible. This truncation operation should allow a
low-parametric representation of the tensor.

Consider the tensor A = G(1)(j1)G(2)(j2) . . .G(d)(jd) described in (5.38). To
compress this tensor, we may first matricize it in, for example, mode-one and apply
its dyadic decomposition:

A(1) = UV T , (5.57)
where

U(j1, α1) = G(1)(j1, α1) (5.58)
and

V (j2, . . . , jd, α1) = G(2)(α1, j2)G(3)(j3) . . .G(d)(jd). (5.59)
At the one hand, since the size of the full tensor A is (n(1), n(2), . . . , n(d)), the size
of the mode-1 matricization is (n(1),

∏d

k=2 n
(k)). Thus, the matrix U is small and its

QR-decomposition may be direct and cheap. At the other hand, the matrix V is very
large and its QR-decomposition requires some structured procedures. In the case the
decompositions

U = QuRu, and V = QvRv, (5.60)
are available, we can build a small matrix P = RuR

T
v of size r× r whose SVD is easy

to compute:
P = XΣY T . (5.61)
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The matrix Σ is diagonal with size r̂ × r̂ where r̂ ≤ r is obtained after truncation 4

while X and Y are of size r × r̂ with orthonormal columns. For the matrix A(1),
matrices of dominant singular vectors are Û = QuX and V̂ = QvY.

Since the QR-decomposition of U might be direct, let us now describe how the
QR-decomposition of V can be done structurally. For this purpose, its needed to
orthogonolize some factors. The lemma below from [80, p.2302] denotes that for TT-
decomposition with orthogonal cores, the corresponding matrices have orthonormal
rows.

Lemma 5.16
If a tensor Z is expressed as

Z(α1, j2, . . . , jd) = Q(2)(j2)Q(3)(j3) . . . Q(d)(jd), (5.62)

where Q(k)(jk) is a rk−1 × rk matrix, k = 1, 2, . . . , d, and rd = 1 (for fixed
jk, k = 2, ..., d, the product reduces to a vector of length r1, which is indexed by
α1), and the matrices Q(k)(jk) satisfy orthogonality condition∑

jk

Q(k)(jk)
(
Q(k)(jk)

)T
= Irk−1 (5.63)

where Irk−1 is the identity matrix of size rk−1, and Z, considered as a matrix Z
of size r1 ×

∏d

k=2 n
(k), has orthonormal rows:

(ZZT )α1α̂1 =
∑

j2,...,jd

Z(α1, j2, . . . , jd)Z(α̂1, j2, . . . , jd) = δα1α̂1 .

By using this lemma, one can address a structured QR-decomposition of the
matrix V given in TT format. Consider

V (j2, . . . , jd) = G(2)(j2) . . .G(d)(jd).

By an algorithm that sweeps all the cores from right to left, one may orthogonalize
the cores G(k)(jk), k = {d, d− 1, . . . , 2}, following the steps below.

First, since rd = 1, G(d)(jd) is a (rd−1, n
(d)) matrix whose QR-decomposition

writes
G(d)(jd) = R(d)Q(d)(jd),

where the size of R(d) is (rd−1, rd−1) and Q(d)(jd) of size (rd−1, n
(d)) has orthogonal

rows: ∑
jd

Q(d)(jd)
(
Q(d)(jd)

)T
= Ird−1 .

Then, setting
G
′(d−1)(jd−1) = G(d−1)(jd−1)R(d)

4. The truncation may be done by fixing r̂ or following a threshold ε̂. In addition, notice
that in this case r̂ may be the sought smaller rank r′ or may be reduced once more according
to the threshold.
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leads to a core tensor of the same size using core-contracted product with size trans-
formation (

rd−2, n
(d−1), rd−1

)
× (rd−1, rd−1) −→

(
rd−2, n

(d−1), rd−1
)
.

This allows us to write

V (j2, . . . , jd) = G(2)(j2) . . .G
′(d−1)(jd)Q(d)(jd),

with Q(d)(jd) that satisfies (5.63).

By induction we may suppose at the step s = k+1, that the cores (d, d−1, . . . k+1)
are othogonal. Thus we have the representation

V (j2, . . . , jd) = G(2)(j2) . . .G
′(k)(jk)Q(k+1)(jk+1) . . . Q(d)(jd), (5.64)

where matrices Q(s)(js), s = k + 1, . . . , d, satisfy (5.63) and it can be shown that at
step s = k, the transformation still hold. For this purpose, it suffices to compute

G
′(k)(jk) = R(k)Q(k)(jk) (5.65)

with ∑
jk

Q(k)(jk)
(
Q(k)(jk)

)T
= Irk−1 , (5.66)

and to observe that the matrix R(k) of size (rk−1, rk−1) is independent of jk.

This leads to the conclusion that Q(k) and R(k) can be computed via the orthog-
onalization of rows of the matrix G obtained by reshaping G(k) into a matrix of size
rk−1, n

(k)rk. Thus, we have computed the QR-decomposition using the core tensors
G(k)(jk) of the TT-decomposition of the matrix A. To perform the compression, one
may compute the compressed SVD and contract two cores containing common index
set (e.g, α1 in (5.44)) with two small matrices.

The whole process is presented in Algorithm 5.1 from [80]. In this algorithm the
notation QRrows denotes a QR factorisation with a Q-factor that has orthonormal
rows. By SV Dδ, we denote a singular value decomposition where all singular values
smaller that δ are set to zero.

Algorithm 5.1 (TT-rounding)

Inputs: d-dimensional tensor A with cores G(k) and accuracy ε
Output : B in TT-format with TT-ranks rk via new cores G(k)

These ranks rk are δ-ranks from matricized A(k) from A in mode k
such that

‖A−B‖F ≤ ε‖A‖F , and δ = ε√
d− 1

‖A‖F .

Compute truncation parameter δ = ε√
d− 1

‖A‖F
% Orthonormalization

for k = d : −1 : 2
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[G(k)(βk−1, jkβk), R(αk−1, βk−1)] = QRrowsG
(k)(αk−1, jkβk);

G(k−1) = G(k) ×3 R;
end for

% Compression
for k = 1 : 1 : d− 1

[G(k)(βk−1jk, γk),Λ, V (βk−1, γk)] = SV Dδ(G(k)(βk−1jk;βk);
G(k+1) = G(k+1) ×1 (V Λ)T ;

end for

After the first mode has been compressed, a same algorithm may be used to
compute the structured QR-decomposition of U (and V ) as above for other modes.
Thus, the dimensionality reduction is performed in the computation of matrices RU ,
Rv (see (5.60), of the QR-decomposition and in the compi-utation of singular values,
of the reduced rank and of matrices X and Y in (5.61). However, we may avoid these
decomposition for every mode from scratch by using information from previous steps
(see [80] for more details). The number of operations required for TT-rounding is
approximated to be O(dnr3) if we assume n(k) ∼ n and rk ∼ r and estimating that
each right-left QR-decomposition of the nr×r matrices costs O(nr3) operations if we
begin by a Tucker decomposition and apply the TT-decomposition to its core only,
the complexity may be reduced to

O(dnr2 + dr4)

where the first term is the cost of d-sequentiel QR-decomposition of Tucker factors.
We are ready to adress the solution of the linear system (4.9) for which the

operator is a Laplacian and thus takes the form (5.53) and the right-hand side is
given by (1.59) but is tensorized in the form (5.38).

5.3.3 Linear systems in TT format
We are concerned by a Conjugate Gradient solver but instead of storing matri-

ces and vectors in their initial structures, the solution is sought in the TT-format.
Consider a linear system

Ax = b, (5.67)
where both the matrix A and the right-hand side b are represented in Tensor-Train
format. In this context, vectors of length N = n(1)n(2) . . . n(d) are considered tensors
of size n(1)×n(2)× . . .×n(d) with low TT-ranks and square matrices acting on them
are tensors of size n(1).n(1) × n(2).n(2) . . . × n(d).n(d). By hypothesis, the system is
very large. Thus, the exact solution might be very hard to obtain. The aim is to
approximate the solution with a given accuracy using Krylov-like methods (here the
CG) 2.2. The system above has to be treated as an overdetermined linear system by
fixing all the cores but one:

n(k)∑
jk=1

A(ik, jk)x(jk) = b(ik), 1 ≤ ik, jk ≤ n(k), (5.68)

where A(ik, jk) is a matrix of size N (k)×N (k) with N (k) =
∏
s,s 6=k n

(s) for each fixed
(ik, jk) and vectors x(jk),b(ik) are vectors of length N (k). Since we need all cores to
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be fixed except one, G(k), there exists w(jk) such that

x(jk) = Qw(jk), (5.69)

where Q is a matrix of size N (k)×r(k−1)r(k). The matrix Q might be made orthogonal
or can be treated as a tensor of the form

Q(i1, . . . , ik−1, ik+1, . . . , id, αk−1αk)

= G(1)(i1) . . . G(k−1)(ik, αk−1)G(k+1)(αk+1, ik+1) . . . Gd(id).
To have the matrix Q with orthonormal columns, the cores Gs, s=1:k−1 have to be
orthonormalized from the left while the cores Gs, s=k+1:d are orthonormalized from
the right.

The restriction (5.69) leads to smaller linear systems of the form∑
jk

(QTA(ik, jk)Q)w(jk) = QTb(ik), (5.70)

called local problem, where each matrix

B(ik, jk) = QTA(ik, jk)Q (5.71)

is smaller and has size rk−1rk × rk−1rk while the full matrix

B =
∑
jk

(QTA(ik, jk)Q) (5.72)

in (5.70) has size rk−1rkn
(k) × n(k)rk−1rk. Each linear system in the sum (5.70) is

called local problem. Matrices B(ik, jk) can be computed from the TT-representation
of A and x and a linear system has to be solved at each such step. Although B is
small compared to the initial matrix, its size can still be large. Thus, it is advisable
not to form explicitly the matrix B but to solve either this local problem by iterative
solver such as the CG algorithm. The CG solver minimizes the quadratic function

〈Ax,x〉 − 2〈b,x〉, (5.73)

where 〈., .〉 denotes the scalar product 5 in tensor format and x is associated with the
tensor x(i1, . . . , id) = G(1)(i1)G(2)(i2) . . . G(d)(id) with small TT-ranks. Most of used
algorithms for such systems use the Alternating Least Squares (ALS) method. For
this method, all the cores are fixed except one. The minimization problem for each
core is linear and may be solved iteratively with respect to one unknown and one
alternates for each mode.

However, the ALS method requires all the TT-ranks to be known in advance and
its convergence is known to be slow [94]. To tackle these limitations, Modified ALS
(MALS) have been proposed [95, 96]. The MALS comes from the so called Density
Matrix renormalization Groups (DMRG) [97]. The DMRG was proposed to look for
minimal eigenvalues and wavefunctions of a quantum spin system with k spins.

Following the paper [94], the DMRG we are exploring here is an ALS-like algo-
rithm where, instead of solving with respect to one core as in (5.68), one minimizes

5. This scalar product is reduced to Euclidean scalar product when matricizations are
used.
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over a pair of cores G(k)(ik)G(k+1)(ik+1) represented by a supercore using contraction
over one common rank dimension (αk omitted in the formulation below):

W (ik, ik+1) = G(k)(ik)G(k+1)(ik+1). (5.74)

This is not formulated explicitly but is taken into account when formulating the
local problem (5.70). This gives rise to contraction, compression and thus truncation
while the algorithm explores less directions (modes). However, if A comes from a
discretization of a high dimensional equation, the local problem may be larger since
the one dimensional size n is not usually small. In such case, the Quantized TT-format
is more appropriate. The QTT-format allows any vector of a univariate function on a
grid with 2l(l ∈ N, l ≥ 2) points to be transformed in a structured high dimensional
array considering n = 2l. Then, a vector can be considered as a d-dimensional QTT-
tensor with mode sizes 2 by binary coding. Such tensorization can be generalized to
any dimension arbitrarily.

Let us consider that a l variables function is discretized on a tensor grid with
n = 2l points in each direction. After QTT-tensorization, let r = maxk∈{1,...,l}{rk}
be the maximal rank of TT-ranks. One can observe that, using iterative methods,
local problems will have at most 4r2 unknowns depending on the ranks and not on
the dimension l. Unfortunatly, this dependence on the TT-ranks grows exponentially,
leading to the curse of ranks. Thus, truncation is required.

In addition to ranks growth in local calculations, local problems are often ill-
conditioned and have to be preconditioned. Fortunately, we may be able to compute
a preconditioner with sufficiently small complexity [94], since a matrix inversion with
sufficient accuracy is enabled in TT-format. To make all the processus work in an
algorithm, four key aspects have been pointed out in the reference paper [94].

Solve large systems iteratively, small ones exactly
The linear system (5.67) is transformed into the sum (5.70) where small equations

are solved. In general, from (5.69), the matrix [Qw(jk)]n
k

jk=1 is the full vector x, of size
[n(1), n(2), . . . , n(d)], reshaped into an N (k) ×n(k) matrix, with N (k) =

∏d

l=1 k 6=l n
(k).

Considering Q as an orthogonal projector and assuming the local residual

QTA(ik, jk)Qw(jk)−QT b(ik)

for a given jk has norm reduced to a given threshold ε, one can verify that this
local residual norm can not be greater than the global residual norm. In fact, the
equation (5.67) can be rewritten

QTAx = QTb

such that
‖QTAx−QTb‖ = ε

where one can verify that
‖Q‖‖Ax− b‖ ≥ ε.

Since ‖Q‖ = 1, one gets ‖Ax− b‖ ≥ ε that shows that the global residual norm can
not be less than the local one. For this reason, it is advised to solve local systems
accurately. In addition, if TT-ranks are small enough (this is the case for Laplace-
like operators), it is recommended to assemble the full matrix B in (5.72) of size
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n2r2 × n2r2 and to solve local systems by direct solvers. Then, when TT-ranks
become larger ( n2r2 ≥ 1000 as proposed in [94]), iterative solvers have to be run.
Fast convergence of this last is expected since it starts with a residual that is already
small.

Truncation based on the residuals
In the DMRG algorithm, the supercore W (ik, ik+1) = G(k)G(k+1) (see (5.74))

is optimized by construction via its SVD and the kth TT-ranks can be determined
adaptively from the SVD. However, the approximation is accurate only in the Eu-
clidean norm (or its equivalent). For A with a large condition number (for example
multidimensional Laplace operators or others from finite differences methods) and for
the available approximation x̂ of x in the Frobenius norm, we have ‖x− x̂‖ ≤ ε that
leads to a residual norm ‖Ax̂−b‖ that can be large. Thus, instead of approximating

W (ik, ik+1) = Ŵ (ik, ik+1) = Gk(ik)Gk+1(ik+1)

via adaptative SVD, one approximates with a fixed rank r that has to provide a local
residual norm ‖BŴ − b‖ not worse than the original. This means, the truncation is
made by setting to zeros all singular values from r+ 1. The value of r may be chosen
by trial and error such that the local residual norm is small. Of course, this requires
additional matrix-vector products, but their cost is expected to be compensated by
much improved convergence.

Random restart
Suppose all local residuals are reported to be small but the obtained solution

is not adequate for the global system. This arises when the algorithm is trapped
in local minima. Such a situation can be checked by computing the global residual
norm ‖Ax−b‖. However, a cheaper way of checking is to compare 〈Ax, z〉 and 〈b, z〉
where z is a random vector with fixed TT-ranks (say,2). If the difference is large, the
convergence is not obtained and the process has to restart.

Fast matrix-vector product computation
In the CG solvers, the matrix-vector product is the most expensive operation.

Here, it means the product between a tensorized matrix by a tensorized vector in
TT-format. Since the matrix A in TT-format can be expressed by its cores

A(i1, . . . , id, j1, . . . , jd) = G(1)(i1, j1) . . .G(d)(id, jd)

where G(k)(ik, jk) are like parameter-dependent matrices of order rk−1 × rk, and
similarly is the vector x = x(1)(j1) . . .x(d)(jd), the matrix-vector product is the com-
putation of the sum

y(i1, . . . , id) =
∑

(j1,...,jd) G(1)(i1, j1) . . .G(d)(id, jd)x(1)(j1) . . .x(d)(jd)
=

∑
(j1,...,jd)(G

(1)(i1, j1)⊗ x(1)(j1)) . . . (G(d)(id, jd)⊗ x(d)(jd))
= y(1)(i1) . . .y(d)(id)

where
y(k)(ik) =

∑
jk

(G(k)(ik, jk)⊗ x(k)(jk)). (5.75)
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The TT-ranks of y are the products of ranks for the TT-matrix and for the TT-vector.
When the ranks are kept small, the computation of y(k) can be realized by a matrix-
by-matrix product. The summation over jk is equivalent to the product of a matrix
of size r2n×n from G(k)(ik, jk) (obtained by reordering and reshaping the dimension)
by a matrix of size n × r2 from X(k)(jk). The complexity of this matrix-by-matrix
product is O(n2r4) leading to O(dn2r4) for the total matrix-by-vector product. This
remains reasonable as long as r << n.

Since after almost each operation the TT-ranks grow, truncation has to be applied.
Application of the TT-rounding algorithm necessitates O(dnr6) operations. For n
very large, one may first apply the Tucker format to the matrix and the vector and
then TT-decomposition is applied to the compressed core. Several techniques have
been proposed to compute quickly the matrix-by-vector product [94], [98] and aim
to avoid explosion of TT-ranks. These techniques often combine multiplication and
rounding in one step [80]. If the approximate TT-ranks of a product are also O(r),
the total cost of this matrix-vector algorithm is O(n2r4) and may be O(n2r2 + dr6)
if the Tucker format is used.
Algorithm 5.2 (Matrix-vector product)

Inputs: matrix A with cores G(k)(ik, jk) and vector x with cores x(k)(jk).
Output : y = Ax;
for k = 1:d

y(k)(ik) =
∑

jk
G(k)(ik, jk)⊗ x(k)(jk);

end(For)

Fast dot product
The following algorithm allows efficient computation of the dot product.

Algorithm 5.3 (Dot product)

Inputs: Tensor A with cores G(k)(jk) and tensor B with cores H(k)(jk)
Output : w = 〈A,B〉;

v =
∑

j1
G(1)(j1)⊗H(1)(j1);

for k = 2:d
pk(jk) = v

(
G(k)(jk)⊗H(k)(jk)

)
;

v =
∑

jk
pk(jk);

end(For) w = v.

After defining these operations, one gets a Conjugate Gradient algorithm in TT-
tensor format as presented below with 2 new operations: contracted product and
truncation in TT.
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Algorithm 5.4 (CG in TT-format)

Given x0, ε > 0, and max-rankr ≥ 1
r0 ← Ax0 − b;
p0 ← −r0, k ← 0;
While‖rk‖ > ε

αk ←
〈rk, rk〉
〈rk,Ark〉

; %Compute the steplength

xk+1 ← Tr(xk + αkpk); %Update the truncated solution
rk+1 ← Tr(rk − αkApk) %Update the truncated residual

βk+1 ←
〈rk+1, rk+1〉
〈rk, rk〉

%EnsureA− conjugatedirections

pk+1 ← Tr(−rk+1 + βk+1pk) %Updatethetruncateddescentdirection
k ← k + 1
End (while)

5.3.4 A solver for systems from 3D MIRP
Now let us solve a general linear system

Ax = b, (5.76)

where A ∈ RN×N , x,b ∈ RN and will be expressed in tensor format (for this reason,
they are written with bold case).

The operator
The matrix (4.9) is a d-dimensional differential operator that can be written of

the form (see Annexe (B.3)

A =

(
d∑
k=1

In(1) ⊗ . . . In(k−1) ⊗A(k) ⊗ In(k+1) . . .⊗ In(d)

)
, (5.77)

where

A(k) = 1
h(k)2



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2

 ∈ Rn
(k)×n(k)

.

Instead of positivity, one may use negativity by working with −A(k). As for matrices,
the convergence rate of a CG-like algorithm is connected to the condition number
of the tensor A. Let the matrices A(k) be positive definite with eigenvalues λ(k)

1 ≥
λ

(k)
2 ≥ . . . ≥ λ(k)

n(k) > 0. Then, the condition number of the tensor A is given by

k(A) =
d∑
k=1

k(A(k)) =
∑d

k=1 λ
(k)
1∑d

k=1 λ
(k)
n(k)

. (5.78)
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In the simple case where n(k) = n for all k, the eigenvalues λ(k)
µ = λµ, 1 ≤ µ ≤ n(k)

for each matrix A(k) and the following remark from [6, p.467] presents the relation
between the condition number of A and of the matrix A(k).

Remark 5.1

The condition number of the tensor A depends on the numbers n(k) but not on
the dimension d. In particular, the following inequalities hold:

min
k
k(A(k)) ≤ k(A) ≤ max

k
k(A(k)). (5.79)

This remark encourages enlargement of the dimension d (when it is possible) while
decreasing the matrix-sizes n(k). And from this point of view, the QTT-solvers are
recommanded.

One can observe that this operator is general and not related to the application at
hand, the image registration here. However, the size of the operator is derived from
the size of the images to be registered. All the important information on images for
registration is carried in the right-hand side b. Thus, a particular attention has to be
paid to this and this is developed below.

The right-hand side
In general, the image is stored in a long vector of length N =

∏d

k=1 n
(k) and

indices 1 ≤ j ≤ N are used to localize each image intensity and each grid point.
Using the isomorphism j ⇔ (j1 , . . . , jd), let us consider the vectorized grid points xj =
a+jh, h = b− a

N + 1, where [a, b] is the domain of the vectorized image. The intensities

are values u(j) = f(xj) j=1:N on a uniform grid. Assuming each n(k) is a power of 2,
there exists p ∈ N such that N = 2p. Thus the indices j = j1 + 2j2 + . . .+ 2p−1jp can
be reshaped into a QTT-tensor by the formula [99]

u(j) = f(xj) = f(a+ jh) = f(a+ (j1 + 2j2 + . . .+ 2p−1jp)h). (5.80)

For tk = a

p
+ 2kjkh (using the trick a = p

a

p
) we have

f(xj) = f(t1 + t2 + . . .+ tp).

For example, observe that t1 + t2 + . . .+ tp for p = 4 gives

t1 + t2 + t3 + t4 =
(
t1 1

)( 1
t2 + t3 + t4

)
=

(
t1 1

)( 1 0
t2 1

)(
1

t3 + t4

)
=

(
t1 1

)( 1 0
t2 1

)(
1 0
t3 1

)(
1
t4

)
that is in QTT-format. These grid points can then be approximated by functions
such as linear functions f(x) = λx = λ(t1 + t2 + . . . + tp), exponential functions
f(x) = exp(λx) exp(λt1) exp(λt2) . . . exp(λtp), polynomial functions f(x) = xq = (t1 +
t2 + . . .+ tp)q or a combination of them.
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For non-parametric image registration, the function to be evaluated to these grid
points (see 1.59) is

b(xj) = β[(IfΦ−1 − Im)∇Im](xj)
where β is a constant that may take into account some statistical parameters in the
images (for example the mean, the dispersion or some normalization values). If and
Im are respectively the fixed and moving images interpolated via spline functions
while Φ = Id + u is the sought transformation. Remember Φ−1 = Id − u where u
is the computed displacement field. The notation dIm denotes the derivatives of the
moving image. Thus, by using TT-tensor format, an internal truncation is made and
may be considered as regularization of the images. However, some images may be
more sensitive to such truncation, as will be observed by numerical experiments in
Chap 6.

5.3.5 Preconditioning
For most structured matrices, the inverse approximation is expected to be cheap.

Thus, the privileged preconditioner is the approximate inverse, provided that this will
preserve the structure and the sparsity patterns of the matrix. Here we present three
ways of computing the inverse (two approximations and an exact computation for
QTT Laplacian), but our algorithm use especially the approximation by exponential
sum.

Preconditioning via Exponential Sums Inverse (ESI)
Consider a matrix A such that its spectrum, denoted σ(A), is contained in the

left complex halfplane:
σ(A) ⊂ {z ∈ C : Re(z) < 0}.

It is easy to verify that

A

(
−
∫ ∞

0
exp(tA)dt

)
= −

∫ ∞
0

A exp(tA)dt = −
∫ ∞

0

d

dt
exp(tA)dt = exp(0A) = I.

Thus,

A−1 = −
∫ ∞

0
exp(tA)dt. (5.81)

Let us now consider the Kronecker tensor (this can be considered as a large matrix)
A−1, the inverse of A that can be approximated by extending (5.81) (see [98]) to
multidimensional case. This is given by

A−1 = −
∫ ∞

0

d⊗
k=1

exp(tA(k))dt, (5.82)

since

exp(tA) = exp

(
t

d∑
k=1

A(k)

)
=

d∏
k=1

exp
(
tA(k)) =

d⊗
k=1

exp
(
tA(k)).

The preconditioner M we are computing is an approximation of A−1 performed by
quadrature (formula of Stenger [98]) of the integral (5.82). This is given in the
following theorem
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Theorem 5.17
Consider a tensor A given by the formula (5.77) with the spectrum contained
in Ω = [λmin, λmax] ⊕ i[−µ, µ] ⊆ C− = {z ∈ C : Re(z) < 0}. Let Γ denote the
boundary of −[1,Λ + 1]⊕ i[−µ− 1, µ+ 1] For k, j ∈ N and

hst = π2
√
k
, (5.83)

tj = log
(

exp(jhst) +
√

1 + exp(2jhst)
)
, (5.84)

wj = hst√
1 + exp(−2jhst)

, (5.85)

the tensor

M = −
k∑

j=−k

2wj
λmin

d⊗
i=1

exp
( 2tj
λmin

A(i)
)

(5.86)

fulfils

‖A−1−M‖ ≤ Cst‖A‖
πλmin

exp
(

2µλ−1
min + 1
π

− π
√

2k
)
×
∮

Γ

∥∥∥∥(λI − 2
λmin

A
)−1∥∥∥∥ dΓλ.

(5.87)

An other interesting algorithm for approximating the inverse is the Newton-Shulz
algorithm.

Preconditioner via Newton-Schulz algorithm
The Newton-Schulz algorithm is an iterative approximation of the inverse M (for

matrices [76, p.75] and for tensors [6, 100, 101, p.412]) via a fixed point iterations
described below. The algorithm stops when the norm ‖I−AMk‖ is becomes less than
a given threshold. A quadratic convergence to A−1 is reported whenever ‖I−AMk‖ <
1
Algorithm 5.5 (Newton-Schulz)

0 < α ∈ R;
M0 = αI;
For k = 1, ...

Mk = Tr,ε(Mk−1(2I−AMk−1))
end(For)

A modified approach has been proposed by Oseledets & all [101] where the trun-
cation is adapted and gives the following algorithm.
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Algorithm 5.6 (Modified Newton-Schulz)

Choose an initial guess M0 ≈ A−1

Y0 = AM0
For

Hk = Tr,ε(2I−Yk)
Yk+1 = Tr,ε(YkHk)
Mk+1 = Tr,ε(MkYk)

end(For)

Theoretically, in an ideal case, we will have Hk → I,Yk → I, and Mk+1 → A−1.
However, in Newton-Shulz algorithms a matrix-by-matrix product is required at each
step. If this can be feasible for some structured matrices, these algorithms are rec-
ommended. In most cases, it becomes infeasible, in particular when the TT-ranks
of the product become larger and larger. Explicit inverse has also been proposed for
multidimensional Laplace operators.

Preconditioner via Explicit Inversion(EI)
Consider notations and matrices defined in (5.47), then it can be shown that

(see [81]) for (n = [2l, 2l] l ≥ 3) we have:

(∆l)−1 =

[
E L ET E

]
1

I L ET E
2N

L+ ET N
L+ E N


1(k−2)

1

 N + L
2N

N + L+ ET

N + L+ E

 .
The Preconditioned (PCG) in Tensor-Train format is presented below:

Algorithm 5.7 (PCG in TT-tensor representation)
Given x0 , ε > 0 M % A preconditioner

r0 = b−Ax0; z0 =Mr0; p0 = −z0 , k = 0;
While ‖rk‖ > ε

αk = 〈rk,pk〉
〈pk,Apk〉

xk+1 = Tr(xk + αkpk)
rk+1 = Tr(b−Axk+1)

zk+1 =Mrk+1,

βk+1 = −〈zk+1,Apk〉
〈pk,Apk〉

pk+1 = Tr(zk+1 + βk+1pk)
k ← k + 1

End (while)

5.4 FA4DMIR algorithm
In this section we present the algorithm proposed in this thesis. We propose

to call the algorithm Flexible Algorithm For Deformable Medical Image Registration
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(FA4DMIR). This algorithm is based on Flexible Algorithms for Image Registration
(FAIR) package from Jan Modersitzki [10]. Although our study focused on 3D im-
ages, 2D images can be registered by this algorithm. One is allowed to run the reg-
istration in a multilevel approach from a given minimal level lmin parameter (1.4.1).

The main features we have introduced in the general nonparametric FAIR-algorithms
(see [10, p.137] include the way of solving linear systems and the way of computing
the displacement field.

For linear systems, FA4DMIR algorithm enables two main extensions. First, it al-
lows to use polynomial preconditioners 4.4, in particular the Tchebychev polynomial
preconditioner that has proved to be effective for linear systems from image regis-
tration. These Neumann and Tchebychev polynomials preconditioners, are added
to matrix splitting preconditioners that pre-exist in the FAIR package. Second, the
FA4DMIR algorithm allows to the user to solve linear systems from image registra-
tion usig Tensor algorithms. In particular to solve linear systems within Tensor-Train
format. This format allows efficient low-rank approximation 5.3 and efficient system
solvers 5.3.3 that may lead to fast algorithms for large and high dimensional images.
However, these images have to be less dense such that a sparse representation is
allowed at a reasonable cost.

According to the displacement field large diffeomorphic deformations we have
included the possibility a diffeomorphic transformation using the Large Deformation
Difeomorphic Metric Mapping (LDDMM) (see Annexe E). The efficiency of linear sys-
tem solvers is decisive for the efficiency of the registration algorithm. The FA4DMIR
algorithm is flexible both because it inherits the FAIR package and it is flexible in the
choice of parameters. A structure of parameters is provided to allow one the choice
of wether the registration may be done in matrix or tensor format and the user can
choose the preconditioner (SGS, Ichol, Jacobi,Tchebyshev or Neumann for matrices
(see Chapter 4.2) and Newton-Schulz, ESI or EI (see Section 5.3.5) for tensors).

The user supplies the tolerance on the variable tolX, on the function tolJ, on the
gradient tolG and an expected final value for the functional Jstop.

A more diffeormorphic displacement can be obtained by successive compositions.
However, this is facultative in FA4DMIR since, the more one wants a diffeomorphic
displacement, the less there is a reduction in the function value and this induces a low
convergence rate. To compute a diffeomorphic displacement, one uses an averaging
interpolation (command interpn in Matlab) and this is implemented in FA4DMIR by
the function velocity2displacement. The number of time steps T has to be supplied
by the user. Then, setting φ 1

T = X + 1
T

v where X is the initial grid and v comes
from the linear solver, one loops on the time steps. The large deformation is thus
considered as the composition of a series of T small deformations.

A pseudo-code of the algorithm is presented below while the organisation of the
code is explained in Annexe G.
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Algorithm 5.8 (FA4DMIR)
Input : If and Im % reference and moving images
For lmin : lmax % loop on different levels

Interpolate images within the grid (cubic spline);
Compute J, dJ and d2J ;
Evaluate stopping criteria

While not (stopping criteria)
% PCG in TT-Tensor (recommended) or keep matrix format

Solve Av = b;
% loop to get diffeomorphic displacement from velocity;

φ = velocity2displacement(v, T );
Compute α; % by Line search strategy
Φk+1 = Φk + αφ;
Update Im and ∇Im;
Update J, dJ and d2J ;

end (While)
End (For)

The stopping criteria in FA4DMIR relies on the following behaviour:
1. Less change in the objective function value (Jold− Jc) <= tolJ ∗ (1 + |Jstop|)
2. Less change in our variable |Φold − Φcurrent| <= tolX ∗ (1 + norm(Φcurrent))
3. Gradient in absolute value is less than a tolerance fixed on it? |dJ | <= tolG ∗

(1 + abs(Jstop))
4. At a stationary point norm(dJ) <= eps = 1e− 12
5. Maximum number of iterations iter >= maxIter

The stopping criteria stop becomes true if 1, 2, 3 are simultaneously verified or if one
of 4 and 5 is verified.

Numerical experiments presented in the following Chapter 6 illustrates how better
is FA4DMIR with respect to the other algorithms in the FAIR package.
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Chapter 6
Numerical experiments in 3D
MIRP

Since the focus of this thesis is on speeding up deformable 3D medical image
registration process, this chapter aims to compare three registration algorithms with
respect to their earlier behaviour and the computation time. This means that we are
not interested in finding the minimizer of our functional (1.65), since this may be
very hard to obtain, but in the reduction of the function value for a given budget in
term of iterations and time. A particular focus is on the FA4DMIR algorithm, since
this is one of the major contributions of this thesis. In what follows, the function
value indicates the value of the functional (1.65). We present our three registration
algorithms in Section 6.1 and we benchmark them therein via a perfomance profile
based on the earlier decrease of the function value. Then, in Section 6.2, we present
the dependency of FA4DMIR of the fixed maximal TT-rank and in Section 6.3, we
present simulations for the three algorithms on some of our images presented in 3
where each level of each image is considered as a particular problem. A conclusion
ends the chapter.

6.1 Performance profile of 3 deformable regis-
tration algorithms

The algorithms
The three algorithms we present here can be considered as three versions of a

deformable nonparametric registration algorithm from the FAIR package. However,
they are considered as three different algorithms since they differ either in the way
of approximating the Hessian of the functional we are minimizing or in the way of
solving the linear system induced by the process to get the search direction 2.1.2 in
the optimization process.

The first algorithm, denoted FAIR, is the registration algorithm that uses the
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approximation
A = DTD ≈ ∇2F

where D is the differential operator described in annexe B. The linear system is
solved by a PCG solver with Symmetric Gaus-Seidel (SGS) or Tchebychev polynomial
preconditioner 4.4. This algorithm has the advantage that it uses a matrix-based
operations that are well known. In addition, it is a differential operator, that remains
constant during iterations. Thus, this matrix is computed and stored once and thus
the problem is a multiple second-hand systems to be solved (see annexe (D.1)). The
disadvantage of this algorithm is that the Hessian approximation may be inefficient
since it may not catch second order information for the functional (1.65). This infers
to it the slow convergence rate of first-order methods.

The second algorithm, denoted by FA4DMIR, approximates the Hessian as this
former ( FAIR algorithm)

A = DTD ≈ ∇2F

but solves the linear system in TT-tensor format 5.3.3. The advantage with respect
to the above algorithm is the possibility to compress and truncate certain operations
such that the computation time is reduced for very large systems.

Finally, the third algorithm, denoted by FAIR-GN, approximates better the Hes-
sian, following the Gauss-Newton procedure (see subsection 2.3):

A = JTJ +DTD ≈ ∇2F.

where J is the Jacobian matrix from the residual functions (2.44). This algorithm is
expected to be the most effective both in terms of rate of convergence and in terms
of precision but also the most expensive in terms of time consumption since each
iteration is the most expensive. This algorithm is recommended when the system is
not very large and if the second-order information is sufficiently captured by a certain
use of the Jacobian. However, it necessitates computation and storage of the Jacobian
matrix and may be more sensitive to errors. Thus it may be slower and may suffer
from error accumulation for very large systems as shown in simulations below.

In the remainder, we compare these three algorithms on our set of eleven couples of
3D medical images 3.1. As stated above, since the functional (1.65) to be minimized
is expensive, we are not interested in a convergence test related to finding a local
minimizer but simply in the early decrease of the function value by our algorithms.

Benchmarking
In this subsection we aim to evaluate and compare the three optimization algo-

rithms (FAIR, FAIR-GN and FA4DMIR) using the performance profile process. The
performance profile is considered here as a tool that enables a benchmarking process
and allows analysis of the performance of each algorithm on the set of images given
a limited computational budget in terms of time and memory. By plotting the best
function value with respect to the number of functional evaluations, we compare the
trajectories of these algorithms. This allows us to determine the algorithm that of-
fers the most important reduction with the defined computational budget and the
convergence test.

Here, the set of benchmark problems P is formed by different levels of our im-
ages 3.1 and thus

np = #P = 54.
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Second, the set of optimization solvers (algorithms) S is defined here by the three
algorithms described above:

ns = #S = 3.
Third, we define below a convergence test.

Since the deformable registration problem on 3D images has expensive functional
evaluations, we are interested in the convergence behaviour measured by the decrease
of the function value within early iterations. This follows the convergence test (see [48,
p.2]):

Fc ≤ FL + τ (F0 − FL) (6.1)
where 0 < τ ≤ 1 is a fixed tolerance, F0 is the starting function value, Fc is the
current function value and FL is considered as the smallest value of he functional F
reached by any of the three algorithms within a given number µf of iterations. The
convergence test (6.1) can also be written

(F0 − Fc) ≥ η (F0 − FL) . (6.2)
In this last formulation, the current reduction is requested to be at least (F0 − Fc)
η = 1− τ times the best possible reduction (F0 − FL) . This is equivalent to(

1− Fc
F0

)
≥ η

(
1− FL

F0

)
. (6.3)

For example, the convergence test (6.1) with τ = 10−1 ⇒ η = 0.9 may represent a
modest reduction of 90% of the total possible reduction. This is used as performance
profile test since no algorithm may be able to reach an accurate estimate of F at a
local minimizer.

The results describe a short-term behaviour of our three algorithms FAIR, FAIR-
GN and FA4DMIR on the set P. The maximal number of functional evaluations is
µf = 100, the maximal time is set to 8.4104 (one day) and other limit resources are
described in Table 3.2.

The function values generated by the solver s on problem p are in a column vector
hs,p ∈ Rµf . If, at iteration k < µf , the solver s has verified the performance test, then
all the successive function values F (ul), k < l ≤ µf are set to F (uk). In this case,
F (uk) is the best function value produced by solver s after k iterations. These vectors
are gathered into a 3-dimensional array A where the first slice (matrix) is formed by
the history of the solver 1 to each problem (one column vector by problem), the second
slice for the solver 2 and the third slice for solver 3. For each problem, FL was taken
as the minimal function value achieved by any solver after at most µf itarations.

Figure 6.1 presents the performance profile for our three optimization algorithms
with the convergence test (6.3) where η = 0.1. Consider at one hand α = 1 and observe
that ρFAIR(1) ≈ 27%, ρFA4DMIR(1) ≈ 30% and ρFAIR−GN (1) = 52%. This means
that the FAIR-GN algorithm has the best performance profile since it verifies the
convergence test (where FL is fixed to 0.51e− 2) earlier on 52% of the 54 problems.
However, none of the algorithms verifies the convergence test on the whole set of
problems. The reason is that, for very large images, the budget in terms of time
and memory requirements was not suffiscient. The algorithms could not work on
some image high levels. At the other hand, if we consider α = 8 it can be seen
that ρFA4DMIR(8) ≈ 60%, ρFAIR(8) = 51% and ρFAIR−GN (8) = 55%. This means
that, each of the algorithms FAIR and FAIR − GN requires 8 times the number
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Figure 6.1: Comparison of the performance profiles between FAIR, FAIR-GN
and FA4DMIR on a set of 54 3D images. The factor α is such that a given
algorithm requires at least α times the efforts of the best algorithm to verify
the convergence test.
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of functional evaluations as FA4DMIR on respectively (roughly) 9% and 5% of
problems.

As proposed in [49], it makes sense to analyze the performance profiles of two by
two algorithms separately.

Figure 6.2 presents the comparison of the performance profiles between The FAIR
and the FA4DMIR algorithms with the convergence test (6.3). Here again η = 0.1 one
can observe that FA4DMIR dominates FAIR in both convergence rate and robustness.
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Figure 6.2: Comparison of the performance profiles of FAIR and FA4DMIR on
a set of 54 3D images.

Figure 6.3 presents the comparison of the performance profiles between FAIR and
FAIR-GN (top) and shows that FAIR-GN performs better than FAIR whereas FAIR
is more robust since it reaches the tolerance value FL on roughly 80% where FAIR-
GN reaches it on 70% of problems. On the right, a comparison of the performance
profiles between FAIR-Gn and FA4DMIR shows that FAIR-GN performs better that
FA4DMIR, but this last is more robust since it reaches the tolerance value FL on
roughly 75% problems against 70% for FAIR-GN.
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Figure 6.3: Comparison of performance profiles between FAIR and FAIR-GN
(top) and between FAIR-GN and FA4DMIR (bottom) on a set of 54 3D images.
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6.2 FA4DMIR and TT-rank
In this subsection we aim to highlight that one of the key element for a good use

of tensor algorithms in TT formats is the truncature. When the truncature is based
on a fixed destination rank (see 5.3.2), the choice of the destination rank (maximal
rank for truncature) is not obvious. However, one may use certain indications from
the literature.

6.2.1 FA4DMIR and TT-rank dependency
As stated in [6, p.475] there exists two strategies to perform tensor operations for

optimisation problems with respect to truncation.
At the one hand, one may perform tensor operations within a truncation strategy

constrained to minimize the approximation relative error. In this case, the tensor
rank (here TT-rank) of the solution is determined adaptatively.

At the other hand, one may fix the tensor-rank and try to optimize the parameters
with this fixed rank. It is this second strategy we use in this thesis. To solve the
linear system (5.67), one needs an exponential decrease of the error to the solution.
For this purpose, good approximations lead to good convergence rate. A bound on
TT-ranks of Laplacian-like operators is known (see [98] or [6, 424]). Thus, when the
mode size n(k) in each direction is relatively small, the system operator (left-hand)
is well approximated. Then, the behaviour of the algorithm depends more on the
structure of the right-hand side b.

According to L. Grasedyck in [98], the right-hand side given by

b = ⊗lk=1b
(k), b(k) ∈ Rn

(k)
(6.4)

is required to be smooth and sparse to allow exponential decrease of the error.
For the first requirement, the smoothness, the right-hand side in our application

is smooth since it is formed by the product of the residual functions of interpolated
images and the derivatives of the moving image. The images are cubic spline functions
that are at least twice differentiable. Thus, the right hand side can be considered as a
grid function b(x1, . . . , xl) that may be approximated by a product of low Kronecker-
rank unidimensional functions (see 5.3.4)

b̃(x(1), . . . , x(l)) =
l∏

k=1

f
(k)
j (x(k))

with an exponentially decaying error [98]. However, as noted by Grasedyck, when
the dimension l → ∞ the decay rate of the error tends to 1 and the approximation
may become poorer. Thus, this has to be controlled.

For the second requirement, while it is almost certain to have sparse right-hand
side, here the sparsity patterns depend on each image. Then, we are based on what
is stated in [98]. That is, if the tensor vector b has m nonzeros entries with m <<

N =
∏l

k=1 it can be decomposed by m tensor vectors that can be approximated
by low rank tensors. Thus, less the right-hand side has nonzero entries, better its
approximated by low-rank TT tensor.

An additional element, that is specific to the application in this thesis, is the
sensitivity to truncation for some images. As we presented roughly in the previ-
ous chapter 5.3.4, MRI images are more sensitive to truncature based on neglecting

165



Numerical experiments in 3D MIRP

smaller singular values and their associated singular vectors. The reason is that, the
acquisition techniques are based on magnetic fields orientations that localize water
and fat material in the body excited by radio waves. Thus, sensitivity to truncature
and sparsity patterns may explain why the use of Tensors methods may better im-
prove for certain registration problems and less for others, even when the problems are
of the same size. In fact, when the approximation rank is too small, the method may
even fail for less sparse and sensitive images. For this it is recommanded to increase
the rank. But, this may increase the complexity or cause numerical instabilities.

Figure 6.4 presents three registrations of the crane image at level 6 (craneLev6)
using FA4DMIR. It is observed that, by fixing the the rank to 4 (red line in left plot)
improves the function reduction compared to the rank fixed to 2 (blue line in left
plot) while it increases the compution time (red line in the right plot). However, if
the rank is fixed to 6 (green line in both plots) one can observe that this does not
improve the reduction of the function value and it does not reduce computing time.
From this observation, one can note that it is hard to fix the rank in advance. In this
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Figure 6.4: TT-rank dependency: Function value decreases more when the
rank is increased (left plot) while this increases the computational time (right
plot).

work the approximation rank were fixed taking into account the minimal value of the
L-curve produced by the mlrankest tool from Tensorlab [50]. This L-curve allows to
visualize a balance between the upperbound of different core tensors and the relative
error of a given LMLRA [78]. With this plot, one gets insight about the interval
where the rank should be picked. In our case, the minimal rank was often chosen.

Figure 6.5 visualizes the l-curve of the right-hand side of the foetus image (level
7, size [27, 27, 26]) and shows that the rank interval is [3, 31]. Thus, we fix our rank
to 3.

6.2.2 PCG convergence: matrix format versus TT-format
The use of TT format is already a preconditioning techniques since this uses a

low-rank approximation and allows more stable numerical operations. Figure 6.6
presents the reduction of the residual norm of the CG algorithm with respect to the
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Figure 6.5: L-curve produced by the mlrankest from Tensorlab [50].

number of iterations. The aim is to compare the non-preconditioned matrix CG (red
doted line) with the non-preconditioned TT CG(blue line) on the foetusLev6 (left)
and foetusLev7 (right). It is observed that the CG in TT format, even with no
preconditioner, is already a kind of preconditioned matrix CG. One can observe that
for FoetusLev7, the rank 3 we picked is already improving the convergence rate.

However, it is important to note that, preconditioning in TT-format is very im-
portant, not only to accelerate the algorithms but also to stabilize the operations.

In the section below, we compare our algorithms on certain fixed levels of each of
our images.
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Figure 6.6: Matrix PCG convergence versus TT-PCG convergence on the Foeu-
tusLev6 (left) and FoetusLev7 (right)

6.3 Comparison of algorithms at fixed levels
In what follows, we present the function value reduction and the cumulated time

within 100 iterations for fixed levels of each image. The objectif is to point out the
sensitivity of each of the three algorithms with respect to the increase of the problem
size. This increase of the problem size is related to the size of the discretization step,
that is smaller at high levels and larger for low levels. The goal is to highlight that,
the FA4DMIR algorithm may be well suited for larger images. Some of our problems
are presented below and others are in the Annexe F

In FAIR4DMIR, the TT-rank was fixed to 3 for all the problems. For FAIR and
FAIR-GN we used Tchebychev polynomial preconditioner 4.4.3 and for FA4DMIR
used the preconditioning via exponetial sums inverse 5.3.5.

6.3.1 The crane image
The 3D crane images were provided by Hubert Meurisse, CHU-UCL-Namur mont

Godine hospital, service d’imagerie médicale. The images are of size [512, 512, 256]
and they are registered on six levels as presented in the Table 6.1.

In this subsection, we analyze the registration on 4 levels: 4, 5, 6 and 7 in the aim
of comparison with other images.

Figure 6.7 presents the function value decrease with respect to the number of
iterations on the crane images. It is observed that the FAIR algorithm (in blue)
performs better for all most all the levels: level 4 (top left), level 5 (top right) and
level 6 (bottom left). The FAIR-GN algorithm (in red) and the FA4DMIR algorithm
(in green) are less attractive for these levels. However, one can observe that the
gap is not very significant and the larger is the size of the image, better becomes
the FA4DMIR algorithm compared to FAIR and FAIR-GN . It becomes even the
most accurate at level 7 (bottom right). Although one should expect FAIR-GN to be
the most attractive since it uses a kind of second order information, this is not the
case for this image. The reason may be that, the Jacobian did not catch sufficient
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Levels Size System size Problem id
4 (16, 16, 8) 6 144 CraneLev4
5 (32, 32, 16) 49 152 CraneLev5
6 (64, 64, 32) 393 216 CraneLev6
7 (128, 128, 64) 3 145 728 CraneLev7
8 (256, 256, 128) 25 165 824 CraneLev8
9 (512, 512, 256) 201 326 592 CraneLev9

Table 6.1: Crane images: six levels of a couple of crane images in 3D. These
images were provided by Hubert Meurisse, CHU-UCL-Namur, mont Godine
hospital, nuclear medecine department. The images are of size [512, 512, 256]

second-order information. We now observe the time spent by each algorithm during
the registration. The summary of reached values is presented 6.2

Figure 6.8 presents the cumulated computation time on the crane images. It
is observed that FAIR is faster than FAIR-GN and FA4DMIR for low levels: level 4
(top left) and level 5 (top right) while for high level images FA4DMIR becomes faster:
level 6 (bottom left) and level 7 (bottom right). This confirm that the FA4DMIR
algorithm is faster and less sensitive to the problem size.

Table 6.2 summarizes the results reached by the algorithms presented in Figure 6.7
and Figure 6.8. Runing 100 iterations at each level, this table presents the reached
function value (Fc), the ratio Fc/F0 where Fc is the current function value and F0 is
the initial function value, and the cumulated time (Tc).

Figure 6.9 presents a sample of results for the crane image registration, with a
mulitilevel approach. The shown results concern the level 7. At low levels (4, 5 and
6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top row:
fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).

6.3.2 The brain image
The couple of 3D brain images is available in the FAIR package. According to

notes in this package, these images were provided by Ron Kikinis, Surgical Plan-
ning Laboratory, Brigham and Women’s Hospital, Boston. The images are of size
[128, 64, 128] and were given on the domain Ω = [0, 20, 0, 10, 0, 20]. They are regis-
tered on four levels.

Table 6.3 presents the size of the brain images at fixed levels and indicates the
size of linear systems to be solved by iterative solvers at this level. In addition, an
identification label is provided for each level to identify it as one of the problems in
the database.
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Figure 6.7: Crane images: comparison of the decrease of the function value
with respect to the number of iterations for FAIR, FAIR-GN and FA4DMIR
on crane image registration at fixed levels: level 4 (top left), level 5 (top right),
level 6 (bottom left) and level 7 (at bottom right).

Figure 6.10 presents the decrease of the function value with respect to the number
of iterations for each of the three algorithms: FAIR (blue line), FAIR-GN (red doted
line) and FA4DMIR (green line). It can be observed that The FAIR algorithm is
the winner to lower levels (BrainLev4, at the top left, BrainLev5 at the top right
and BrainLev6 at the bottom left) while the FAIR-GN algorithm performs well at
level 7 (BrainLev7 at the bottom right). The FA4DMIR algorithm did not decrease
sufficiently the function value for this image. However, one can observe that the
FA4DMIR algorithm is less sensitive to the size of the problem. The behaviour of
the FA4DMIR algorithm may be explained by the sensitivity of the brain images to
truncation since they were acquired by Magnetic Resonance Images (MRI) 1.2. In
fact, the sensitivity to truncation leads to lack of precision and thus the algorithm
spends alot of time in the line search to find a step length that allows a suffiscient
decrease. Thus, we guess that the less performance of the FA4DMIR algorithm on
the brain images may be roughly explained by this sensitivity to truncation.

Figure 6.11 presents the cumulated computation time after 100 iterations. One
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Figure 6.8: Crane images: comparison of cumulated computing time with re-
spect to the number of iterations for FAIR, FAIR-GN and FA4DMIR on crane
image registration at fixed levels: level 4 (top left), level 5 (top right), level 6
(bottom left) and level 7 (at bottom right).

can see that FA4DMIR is the most expensive for the small level (BrainLev4 at the
top left), but becomes faster when the size is enlarged: level 5 (top right), level 6
(bottom left) and level 7 (bottom right). Of course, this may of less importance since
the FA4DMIR algorithm did not decrease the function sufficiently (see Figure 6.11).
However, it is important to note that, since one may be interested in the best com-
promise between time and precision, the speed of FA4DMIR for larger images may
be of importance, even for such images. A more concrete way to improve the rate of
function decrease for FA4DMIR should be the increase of the maximal TT-rank.

Table 6.4 summarizes the results reached by the algorithms presented in figure Fig-
ure 6.10 and Figure 6.11. This table presents the reached function value (Fc), the
ratio Fc/F0 where Fc is the current function value and F0 is the initial function value,
and the cumulated time (Tc).

The less effectiveness of the FA4DMIR algorithm for this image can be explained
by the nature of the image. First, the brain image was dense (no zero entry) and
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Fc Fc/F0 Tc
Level 4
From 1.1 108 1 0
FAIR 5.3 105 4.8 10−3 4.4 102

FAIR-GN 1.4 106 1.2 10−2 6.54 102

FA4DMIR 4.1 106 3.7 10−2 2.6 103

Level 5
From 5.2 108 1 0
FAIR 1.2 107 2.3 10−2 1.7 103

FAIR-GN 5.4 107 1.0 10−1 4.3 103

FA4DMIR 6.4 107 1.2 10−1 5.2 103

Level 6
From 8.5 108 1 0
FAIR 7.7 107 9.0 10−2 5.6 103

FAIR-GN 2.6 108 3.0 10−1 1.2 104

FA4DMIR 2.2 108 2.5 10−1 5.1 103

Level 7
From 2.2 109 1 0
FAIR 9.4 108 4.2 10−1 8.9 104

FAIR-GN 6.3 108 2.8 10−1 3.5 105

FA4DMIR 5.5 108 2.5 10−1 8.4 105

Table 6.2: Crane images: for each level of the crane images, this table presents
the reached function value (Fc), the ratio Fc/F0 and the cumulated time time
(Tc) for 100 iterations.

Levels Size System size Problem id
4 (16, 8, 16) 6 144 BrainLev4
5 (32, 16, 32) 49 152 BrainLev5
6 (64, 32, 64) 393 216 BrainLev6
7 (128, 64, 128) 3 145 728 BrainLev7

Table 6.3: Brain images: four levels of a couple of brain images in 3D. These
images are available in the FAIR package [10].

so less sparse than the others. Second, we argue that, since the brain image is
acquired by MRI techniques (see 1.2) it may be more sensitive to truncation based on
singular value decomposition since the acquisition takes into account the orientations
of the excited nuclei represented in some singular vectors associated to very small
eigenvalues. So, much truncation may lead to loss of significant information when
related singular values are put to zero.

Figure 6.12 presents a sample of results for the brain image registration, with a
mulitilevel approach. The shown results concern the level 7. At low levels (4, 5 and
6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top row:
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visualization of 3D Crane fixed image

(a) Crane Fixed image

visualization of 3D Crane moving image

(b) Crane Moving image

visualization of 3D Crane initial difference

(c) Initial difference

visualization of 3D Crane deformed (FA4DMIR)

(d) Crane deformed image
(FA4DMIR)

visualization of 3D Crane deformed (FAIR)

(e) Crane deformed image
(FAIR)

visualization of 3D Crane deformed (FAIR−GN)

(f) Crane deformed image
(FAIR-GN)

visualization of 3D Crane current difference (FA4DMIR)

(g) Current difference
(FA4DMIR)

visualization of 3D Crane current difference (FAIR)

(h) Current difference
(FAIR)

visualization of 3D Crane current difference (FAIR−GN)

(i) Current difference
(FAIR-GN)

Figure 6.9: Crane images: sample of crane image registration results at level 7.

fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).
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Figure 6.10: Brain images: comparison of the decrease of the function value
with respect to the number of iterations for FAIR (blue), FAIR-GN (red) and
FA4DMIR (green) on brain image registration at fixed levels: level 4 (top left),
level 5 (top right), level 6 (bottom left) and level 7 (bottom right).
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Figure 6.11: Brain images: comparison of the cumulated time with respect
to the number of iterations for FAIR (blue line), FAIR-GN (red line) and
FA4DMIR (green line) on brain image registration at fixed levels: level 4 (top
left), level 5 (top right), level 6 (bottom left) and level 7 ( bottom right).
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Fc Fc/F0 Tc
Level 4
From 1.5 107 1 0
FAIR 1.5 104 1.0 10−3 1.5 102

FAIR-GN 2.5 104 1.6 10−3 4.1 102

FA4DMIR 2.8 105 1.8 10−1 1.2 103

Level 5
From 5.8 107 1 0
FAIR 9.8 104 1.6 10−3 2.7 103

FAIR-GN 2.9 105 5.0 10−3 8.7 103

FA4DMIR 1.01 107 1.7 10−1 6.4 103

Level 6
From 1.1 108 1 0
FAIR 1.05 106 9.5 10−3 2.2 104

FAIR-GN 7.05 106 6.4 10−2 2.2 104

FA4DMIR 9.36 106 8.5 10−2 2.6 104

Level 7
From 2.9 108 1 0
FAIR 8.19 106 2.8 10−2 2.38 105

FAIR-GN 4.62 106 1.5 10−2 6.13 105

FA4DMIR 9.8 107 3.3 10−1 2.39 105

Table 6.4: Brain images: for each level of the brain images, this table presents
the reached function value (Fc), the ratio Fc/F0 and the cumulated time (Tc).

176



Comparison of algorithms at fixed levels

visualization of 3D brain fixed image

(a) Brain Fixed image

visualization of 3D brain moving image

(b) Brain Moving image

visualization of 3D brain initial difference

(c) Brain initial difference

visualization of 3D brain deformed image

(d) Brain deformed image
(FA4DMIR)

visualization of 3D brain deformed image (FAIR)

(e) Brain deformed image
(FAIR)

visualization of 3D brain deformed image (FAIR−GN)

(f) Brain deformed image
(FAIR-GN)

visualization of 3D brain actual difference

(g) Brain current difference
(FA4DMIR)

visualization of 3D brain actual difference (FAIR)

(h) Brain current difference
(FAIR)

visualization of 3D brain actual difference (FAIR−GN)

(i) Brain current difference
(FAIR-GN)

Figure 6.12: Brain image registration results: level 7
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6.3.3 The foetus images
The 3D foetus images were provided by Hubert Meurisse, CHU-UCL-Namur mont

Godine hospital, nuclear medecine department. The images are of size [512, 512, 128]
and they are registered on five levels as presented in the Table 6.5.

Levels Size System size Problem id
4 (32, 32, 8) 24 576 FoetusLev4
5 (64, 64, 16) 196 608 FoetusLev5
6 (128, 128, 32) 1 572 864 FoetusLev6
7 (256, 256, 64) 12 582 912 FoetusLev7
8 (512, 512, 128) 100 663 296 FoetusLev8

Table 6.5: Foetus images: five levels of a couple of foetus images in 3D. These
images were provided by Hubert Meurisse, CHU-UCL-Namur, mont Godine
hospital, nuclear medecine department.

We analyse, here again, the registration on 4 fixed levels: 4, 5, 6 and 7 in the aim
of comparison. while the level 8 is shown in Annexe F.

Figure 6.13 presents the decrease of the function value on the foetus images with
respect to the number of iterations. Once more, in the top plots (level 4 and level 5)
the FAIR algorithm (in blue) performs better than FAIR-GN (in red) and FA4DMIR
(in green) However, in the bottom plots (level 6 and level 7) the preferences between
FAIR and FA4DMIR algorithms changes. Now, it is observed that FA4DMIR (in
green) performs better. Since the high levels are more expensive that lower levels,
the algorithm that performs well at high levels is to be preferred. Thus, FA4DMIR
is the winner here. Observe now the computing time.

Figure 6.14 presents the cumulated computation time for foetus images. Once
more, it is observed that FAIR is faster than FAIR-GN and FA4DMIR for the top plots
(levels 4 and 5) and recall that it decreases better the function value for those levels.
These are relatively small images. In the bottom left plot (level 6) the FA4DMIR
algorithm becomes as faster as the FAIR algorithm. In the bottom right plot (level 7)
the FA4DMIR algorithm is now faster than FAIR while the FAIR-GN stills the most
expensive as expected. The fact that foetus images were acquired by CT methods
explains the improvements of the FA4DMIR algorithm.

Table 6.6 summarizes the results reached by the algorithms presented in Fig-
ure 6.13 and Figure 6.14.

Figure 6.15 presents a sample of results for the foetus image registration, with a
mulitilevel approach. The shown results concern the level 7. At low levels (4, 5 and
6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top row:
fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).

178



Comparison of algorithms at fixed levels

0 20 40 60 80 100
10

9

10
10

Comparison of algorithms on FoetusLev4

F
u

n
c

ti
o

n
 v

a
lu

e

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

0 20 40 60 80 100
10

9

10
10

10
11

Comparison of algorithms on FoetusLev5

F
u

n
c

ti
o

n
 v

a
lu

e

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

0 20 40 60 80 100
10

9

10
10

10
11

Comparison of algorithms on FoetusLev6

F
u

n
c

ti
o

n
 v

a
lu

e

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

0 20 40 60 80 100

10
10.1

10
10.2

10
10.3

10
10.4

10
10.5

Comparison of algorithms on FoetusLev7

F
u

n
c

ti
o

n
 v

a
lu

e

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

Figure 6.13: Foetus images: Comparison of the function value decrease with
respect to the number of iterations for FAIR (blue line), FAIR-GN (red line)
and FA4DMIR (green line) on brain image registration at fixed levels: level 4
(top left), level 5 (top right), level 6 (bottom left) and level 7 ( bottom right).

6.3.4 The mice image
The 3D mice images here are available in the FAIR package [10]. The images are

of size [128, 128, 32] and were given on the domain Ω = [0, 128, 0, 128, 0, 32]. They
are registered on three levels: 4, 5 and 6 as presented in the Table 6.7.

Figure 6.16 presents the decrease of the function value with respect to the number
of iterations on the mice images registration. Contrary to expectations, it is observed
that the FA4DMIR algorithm (in green) performs better than FAIR algorithm and
FAIR-GN algorithm at all levels (from level 4 to level 6). These are small images.
The main explication is that the mice images are sparse. The original images were of
size [128, 128, 24] what means some zeros slices have been added and this makes the
problem sparse.

Figure 6.17 presents the cumulated computation time after 100 iterations on the
mice images. One can see that, although FA4DMIR decreased significantly the func-
tion, it is expensive for level 4 (top left) and for level 5 (top right) than the FAIR
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Figure 6.14: Foetus images: Comparison of the cumulated time with respect
to the number of iterations for FAIR (blue line), FAIR-GN (red line) and
FA4DMIR (green line) on brain image registration at fixed levels: level 4 (top
left), level 5 (top right), level 6 (bottom left) and level 7 ( bottom right).

algorithm. It becomes as faster as FAIR at level 6 (bottom plot). This is quite normal
since these images are of small size, and thus the other methods perform well.

Table 6.8 summarizes the results reached by the algorithms presented in figure Fig-
ure 6.16 and Figure 6.17. Runing 100 iterations for each level on the mice images, this
table presents the reached function value (Fc), the ratio Fc/F0 and the cumulated
time (Tc).

Figure 6.18 presents a sample of results for the mice image registration, with a
mulitilevel approach. The shown results concern the level 7. At low levels (4, 5 and
6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top row:
fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).

180
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Fc Fc/F0 Tc
Level 4
From 2.2 1010 1 0
FAIR 1.2 109 5.4 10−2 2.3 102

FAIR-GN 6.0 109 2.7 10−1 3.1 102

FA4DMIR 7.3 109 3.3 10−1 1.2 103

Level 5
From 4.1 1010 1 0
FAIR 2.6 109 6.3 10−2 8.9 102

FAIR-GN 1.8 1010 4.3 10−1 8.5 104

FA4DMIR 6.8 109 1.6 10−1 1.2 104

Level 6
From 5.9 1010 1 0
FAIR 2.4 1010 4.0 10−1 3.2 105

FAIR-GN 5.1 1010 8.6 10−1 1.0 106

FA4DMIR 7.9 109 1.3 10−1 1.2 105

Level 7
From 3.9 1010 1 0
FAIR 1.7 1010 4.3 10−1 9.8 105

FAIR-GN 2.5 1010 6.4 10−1 9.7 106

FA4DMIR 1.0 1010 3.9 10−1 1.2 105

Table 6.6: Foetus images: for each level of the foetus images, this table presents
the reached functional value (Fc), the ratio Fc/F0 and the cumulated time (Tc).

Levels Size System size Problem id
4 (32, 32, 8) 24 576 MiceLev4
5 (64, 64, 16) 196 608 MiceLev5
6 (128, 128, 32) 1 572 864 MiceLev6

Table 6.7: Mice: three levels of a couple of mice images in 3D. These images
are available in the FAIR package from Jan Modersitzki.
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visualization of 3D Foetus fixed image

(a) Foetus fixed image

visualization of 3D Foetus moving image

(b) Foetus moving image

visualization of 3D Foetus initial difference

(c) foetus initial difference
visualization of 3D Foetus deformed image (FA4DMIR)

(d) Foetus deformed image
(FA4DMIR)

visualization of 3D foetus deformed (FAIR)

(e) Foetus deformed image
(FAIR)

visualization of 3D foetus deformed (FAIR−GN)

(f) Foetus deformed image
(FAIR-GN)

visualization of 3D Foetus current difference (FA4DMIR)

(g) Foetus current differ-
ence (FA4DMIR)

visualization of 3D foetus current difference (FAIR)

(h) Foetus current differ-
ence (FAIR)

visualization of 3D foetus actual difference (FAIR−GN)

(i) Foetus current differ-
ence (FAIR-GN)

Figure 6.15: Foetus image registration results (sample)
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Figure 6.16: Mice images: comparison of the function value decrease with
respect to the number of iterations on 3D mice images. level 4 (top left), level
5 (top right) and level 6 (bottom)
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Figure 6.17: Mice images: comparison of computation time with respect to the
number of iterations for mice images.level 4 (top left), level 5 (top right) and
level 6 (bottom)
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Fc Fc/F0 Tc
Level 4
From 5.7 106 1 0
FAIR 1.1 106 1.9 10−1 7.9 102

FAIR-GN 1.8 106 3.1 10−1 1.9 103

FA4DMIR 2.9 104 5.0 10−3 3.8 103

Level 5
From 1.9 107 1 0
FAIR 3.1 106 1.6 10−1 4.9 103

FAIR-GN 3.9 106 2.0 10−1 1.7 104

FA4DMIR 2.8 105 1.4 10−2 1.0 104

Level 6
From 3.4 107 1 0
FAIR 2.7 106 7.9 10−2 4.6 104

FAIR-GN 2.9 106 8.3 10−2 1.3 105

FA4DMIR 2.3 106 6.7 10−2 5.3 104

Table 6.8: Mice images: for each level, this table presents the reached func-
tion value (Fc), the ratio Fc/F0 and the cumulated time time (Tc) after 100
iterations on mice images.
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visualization of 3D mice fixed image

(a) mice Fixed image

visualization of 3D mice moving image

(b) mice Moving image

visualization of 3D mice initial difference

(c) mice initial difference
visualization of 3D mice deformed image (FA4DMIR)

(d) Mice deformed image
(FA4DMIR)

visualization of 3D mice deformed image (FAIR)

(e) Mice deformed
image (FAIR)

visualization of 3D mice deformed image (FAIR−GN)

(f) Mice deformed image
(FAIR-GN)

visualization of 3D mice actual difference

(g) Mice current differ-
ence (FA4DMIR)

visualization of 3D mice actual difference (FAIR)

(h) Mice current dif-
ference (FAIR)

visualization of 3D mice actual difference (FAIR−GN)

(i) Mice current differ-
ence (FAIR-GN)

Figure 6.18: Mice image registration results
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6.3.5 The knee image
The 3D knee images are available in the FAIR package and were provided by

Thomas Netsch, philips research, Hambourg, Germany. The images of size [128, 64, 128]
were given on the domain Ω = [0, 128, 0, 62, 0, 128] and are registered on four levels
as shown in Table 6.9

Level Size System size Problem id
4 (16, 8, 16) 6 144× 6 144 KneeLev4
5 (32, 16, 32) 49 152× 49 152 KneeLev5
6 (64, 32, 64) 393 216× 393 216 KneeLev6
7 (128, 64, 128) 3 145 728×3 145 728 KneeLev7

Table 6.9: Knee images: four levels of a couple of knee images in 3D. These
images are available in the FAIR package.

Figure 6.19 presents the decrease of the function value with respect to the number
of iterations on the knee images registration. For these images, the FAIR-GN algo-
rithm (in red) performs better at all levels ( level 4 (top left), level 5 (top right), level
6 (bottom left) and level 7 (bottom right)) than the FAIR algorithm (in blue) and
FA4DMIR algorithm (in green). Comparison between FAIR and FA4DMIR shows
that the FA4DMIR algorithm perform well than the FAIR algorithm even for low
levels (small size images). This may be explained by the nature of the image. In fact,
the knee image seems to be less sensitive to truncation since they were acquired by
CT-scan techniques . Thus, good local approximations allow faster registration for
FAIR-GN and less sensitivity explains the performance of FA4DMIR compared to
FAIR.

Figure 6.20 presents the cumulated computation time after 100 iterations. It is
observed that FA4DMIR is faster than FAIR and FAIR-GN at all the levels ( level
4 (top left), level 5 (top right), level 6 (bottom left) and level 7 (bottom right)).
This confirm that these images are less sensitive to truncation. For these images, the
algorithms behave as expected. The FAIR-GN algorithm is the most precise but the
most expensive while the FA4DMIR is the faster.

Table 6.10 summarizes the results reached by the algorithms presented in fig-
ure Figure 6.19 and Figure 6.20 . Runing 100 iterations for each level on the knee
images, this table presents the reached function value (Fc), the ratio Fc/F0 and the
cumulated time (Tc).

Figure 6.21 presents a sample of results for the knee image registration, with a
mulitilevel approach. The shown results concern the level 7. At low levels (4, 5 and
6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top row:
fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).
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Figure 6.19: Knee images: comparison of the function value with respect to
the number of iterations on the knee images registration at fixed levels: level 4
(top left), level 5 (top right), level 6 (bottom left) and level 7 (bottom right).

6.3.6 The chest image
The 3D chest images were provided by Hubert Meurisse, CHU-UCL-Namur mont

Godine hospital, nuclear medecine department. The images are of size [512, 512, 1024]
and they are registered on six levels as presented in the Table 6.11.

In this subsection, we analyze the registration on 4 levels: 4, 5, 6 and 7 in the aim
of comparison with other images.

Figure 6.22 presents the decrease of the function value with respect to the number
of iterations on the chest image registration. It can be observed that, the FAIR-GN
algorithm (in red) performs better at low levels ( level 4 (top left) and level 5 (top
right)) while FA4DMIR algorithm (in red) is better at high levels (level 6 at the
bottom left and level 7 at the bottom right). Observe that even for low levels (4
and 5), the FA4DMIR algorithm performs well than the FAIR algorithm everywhere.
Once again, the reason may be the nature of the image (CT-scan) but not the sparsity
patterns because these image where dense in average.

Figure 6.23 presents the cumulated computation time after 100 iterations on the
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Figure 6.20: Knee images: comparison of FAIR (blue), FAIR-GN (red) and
FA4DMIR (green) with respect of the computation time at fixed levels: level 4
(top left), level 5 (top right), level 6 (bottom left) and level 7 (bottom right).

chest images. It is observed that FAIR-GN is as faster as FA4DMIR for low levels:
level 4 (top left) and level 5 (top right) but this becomes faster for high levels: level 6
(bottom left) and level 7 (bottom right). Comparison between FAIR and FA4DMIR
shows that this last performs better for any level.
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Fc Fc/F0 Tc
Level 4
From 5.8 107 1 0
FAIR 3.2 106 5.5 10−2 5.1 102

FAIR-GN 9.8 105 1.6 10−2 3.1 102

FA4DMIR 8.9 105 1.5 10−2 8.7 101

Level 5
From 6.8 107 1 0
FAIR 9.9 106 1.4 10−2 4.9 103

FAIR-GN 2.6 106 3.8 10−3 1.1 103

FA4DMIR 1.9 107 2.7 10−1 1.2 102

Level 6
From 1.0 108 1 0
FAIR 8.1 107 8.1 10−1 1.4 104

FAIR-GN 9.4 106 9.4 10−2 5.9 104

FA4DMIR 4.1 107 4.1 10−1 3.0 102

Level 7
From 1.3 108 1 0
FAIR 6.6 107 5.0 10−1 5.8 104

FAIR-GN 2.0 107 1.5 10−1 1.6 105

FA4DMIR 6.0 107 4.6 10−1 3.2 103

Table 6.10: Knee images: for each level of the knee images, this table presents
the reached function value (Fc), the ratio Fc/F0 and the cumulated time (Tc)
for 100 iterations.

Levels Size System size Problem id
4 (16, 16, 32) 24 576 ChestLev4
5 (32, 32, 64) 196 608 ChestLev5
6 (64, 64, 128) 1 572 864 ChestLev6
7 (128, 128, 256) 12 582 912 ChestLev7
8 (256, 256, 1024) 100 663 296 ChestLev8
9 (512, 512, 1024) 805 306 368 ChestLev9

Table 6.11: Chest images: six levels of a couple of chest images in 3D. These
images were provided by Hubert Meurisse, CHU-UCL-Unamur mont Godine
hospital. Nuclear medicine
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visualization of 3D knee fixed image

(a) knee Fixed image

visualization of 3D knee moving image

(b) knee Moving image

visualization of 3D knee initial difference

(c) knee initial difference
visualization of 3D knee deformed image

(d) Deformed image
(FA4DMIR)

visualization of 3D knee deformed image (FAIR)

(e) Deformed image
(FAIR)

visualization of 3D knee deformed image (FAIR−GN)

(f) Deformed image (FAIR-
GN)

visualization of 3D knee actual difference

(g) Current difference
(FA4DMIR)

visualization of 3D knee actual difference (FAIR)

(h) Current difference
(FAIR)

visualization of 3D knee actual difference (FAIR−GN)

(i) Current difference im-
age (FAIR-GN)

Figure 6.21: Knee image registration results
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Figure 6.22: Chest images: Comparison of the decrease of the function value
with respect to the number of iterations for FAIR (blue line), FAIR-GN (red
line) and FA4DMIR (green line) at fixed levels: level 4 (top left), level 5 (top
right), level 6 (bottom left) and level 7 (at bottom right).
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Figure 6.23: Chest images: comparison of the cumulated computation time
with respect to the number of iterations for FAIR (blue line), FAIR-GN (red
line) and FA4DMIR (green line) at fixed levels: level 4 (top left), level 5 (top
right), level 6 (bottom left) and level 7 (bottom right).
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Table 6.12 summarizes the results reached by the algorithms presented in fig-
ure Figure 6.22 and Figure 6.23 . Runing 100 iterations for each level on the chest
images, this table presents the reached function value (Fc), the ratio Fc/F0 and the
cumulated time (Tc).

Fc Fc/F0 Tc
Level 4
From 8.2 104 1 0
FAIR 2.3 103 2.5 10−2 5.1 102

FAIR-GN 1.0 10−1 1.0 10−6 4.3 103

FA4DMIR 2.1 103 2.3 10−2 5.1 103

Level 5
From 9.1 105 1 0
FAIR 2.1 104 2.4 10−2 1.2 103

FAIR-GN 8.9 10−1 9.7 10−7 2.1 104

FA4DMIR 2.2 104 2.3 10−2 3.2 103

Level 6
From 1.1 107 1 0
FAIR 7.1 105 6.4 10−2 8.9 104

FAIR-GN 5.0 105 4.5 10−2 1.3 105

FA4DMIR 8.1 104 7.3 10−3 8.2 104

Level 7
From 6.2 107 1 0
FAIR 7.2 106 1.1 10−1 1.4 105

FAIR-GN 4.5 106 7.2 10−2 3.1 105

FA4DMIR 1.3 106 2.0 10−2 1.1 105

Table 6.12: Chest images: for each level of the chest images, this table presents
the reached function value (Fc), the ratio Fc/F0 and the cumulated time (Tc)
for 100 iterations.

Figure 6.24 presents a sample of results for the chest image registration, with a
mulitilevel approach. The shown results concern the level 7. At low levels (4, 5 and
6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top row:
fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).

6.3.7 The neurocranium (braincase) image
The 3D neurocranium images were provided by Hubert Meurisse, CHU-UCL-

Namur mont Godine hospital, nuclear medecine department. The images are of size
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visualization of 3D Chest fixed image

(a) Fixed image

visualization of 3D Chest moving image

(b) Moving image

visualization of 3D Chest initial difference

(c) Initial difference
visualization of 3D Chest deformed image

(d) Deformed image
(FA4DMIR)

visualization of 3D Chest deformed image (FAIR)

(e) Deformed image
(FAIR)

visualization of 3D Chest deformed image (FAIR−GN)

(f) Deformed image
(FAIR-GN)

visualization of 3D Chest actual difference

(g) Current diference
(FA4DMIR)

visualization of 3D Chest actual difference (FAIR)

(h) Current diference
(FAIR)

visualization of 3D Chest actual difference (FAIR−GN)

(i) Current diference
(FAIR-GN)

Figure 6.24: Chest image registration results level 7

[256, 256, 64] and they are registered on four levels as presented in the Table 6.13.
In this section we analyze the registration on 4 levels: 4, 5, 6 and 7 in the aim of

comparison with other images. Figure 6.25 presents the decrease of the function value
with respect to the number of iterations for each of the three algorithms. The FAIR-
GN algorithm perform better that the other at any level. Contrary to expectation,
the FA4DMIR algorithm is worse algorithm at any level. However, the gap to the
best algorithm, here the FAIR-GN decreases with the increase of the problem size.

Figure 6.26 presents the cumulated computation time after 100 iterations on the
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Levels Size System size Problem id
4 (16, 16, 4) 3 072 NeurocraniumLev4
5 (32, 32, 8) 24 576 NeurocraniumLev5
6 (64, 64, 16) 196 608 NeurocraniumLev6
7 (128, 128, 32) 1 572 864 NeurocraniumLev7
8 (256, 256, 64) 12 582 912 NeurocraniumLev8

Table 6.13: Neurocranium images: five levels of a couple of neurocranium
images in 3D. These images were provided by Hubert Meurisse, CHU-UCL-
Namur mont Godine hospital, nuclear medecine department.
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Figure 6.25: Neurocranium images. Comparison of the decrease of the function
value with respect to the number of iterations on NeuroCranium images at fixed
levels: level 4 (top plots) and level 5 (bottom plots).

NeuroCranium images. One may observe that the FA4DMIR algorithm that is the
most time consuming at level 4 becomes more and more faster as the problem size is
enlarged. It becomes the faster level 7 (bottom right).

Table 6.14 summarizes the results reached by the algorithms presented in Fig-
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Figure 6.26: Comparison of the decrease of the function value with respect to
the number of iterations on NeuroCranium images at fixed levels: level 6 (top
plots) and level 7 (bottom plots).

ure 6.25 and Figure 6.26 . Runing 100 iterations for each level on the Neurocranium
images images, this table presents the reached function value (Fc), the ratio Fc/F0
and the cumulated time (Tc).

Figure 6.27 presents a sample of results for the neurcranium image registration,
with a mulitilevel approach. The shown results concern the level 7. At low levels (4, 5
and 6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top
row: fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).
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Fc Fc/F0 Tc
Level 4
From 7.2 107 1 0
FAIR 1.2 104 1.6 10−4 1.2 102

FAIR-GN 4.0 101 5.6 10−7 1.2 102

FA4DMIR 4.1 107 5.6 10−1 1.3 103

Level 5
From 1.0 108 1 0
FAIR 1.2 105 1.2 10−3 2.2 102

FAIR-GN 8.9 103 8.9 10−5 8.1 102

FA4DMIR 4.2 107 4.2 10−1 5.2 103

Level 6
From 5.1 108 1 0
FAIR 1.2 108 2.3 10−1 8.9 102

FAIR-GN 1.3 107 2.5 10−2 6.8 103

FA4DMIR 8.3 107 1.6 10−1 4.5 103

Level 7
From 1.0 109 1 0
FAIR 1.8 108 1.8 10−1 8.9 104

FAIR-GN 8.3 107 8.3 10−2 1.8 105

FA4DMIR 1.1 108 1.1 10−1 8.4 105

Table 6.14: Neurocranium images: for each level of the neurocranium images,
this table presents the reached function value (Fc), the ratio Fc/F0 and the
cumulated time (Tc) for 100 iterations.

6.3.8 The lung image
The 3D lung images were provided by Hubert Meurisse, CHU-UCL-Namur mont

Godine hospital, nuclear medecine department. The images are of size [512, 512, 1024]
and they are registered on six levels as presented in the Table 6.15.

Levels Size System size Problem id
4 (16, 16, 32) 24 576 LungLev4
5 (32, 32, 64) 196 608 lungLev5
6 (64, 64, 128) 1 572 864 LungLev6
7 (128, 128, 256) 12 582 912 LungLev7
8 (256, 256, 512) 100 663 296 LungLev8
9 (512, 512, 1024) 805 306 368 LungLev9

Table 6.15: Lung images. Six levels of a couple of lung images in 3D. These
images were provided by Hubert Meurisse, CHU-UCL-Namur mont Godine
hospital, nuclear medecine department.

Figure 6.28 presents the decrease of the functional value with respect to the num-
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visualization of 3D neuroCranium fixed image

(a) Fixed image

visualization of 3D neuroCranium moving image

(b) Moving image

visualization of 3D neuroCranium initial difference

(c) Initial difference
visualization of 3D neuroCranium deformed image

(d) Deformed image
(FA4DMIR)

visualization of 3D neuroCranium deformed image (FAIR)

(e) Deformed image
(FAIR)

visualization of 3D neuroCranium deformed image (FAIR−GN)

(f) Deformed image
(FAIR-GN)

visualization of 3D neuroCranium actual difference

(g) Current diference
(FA4DMIR)

visualization of 3D neuroCranium actual difference (FAIR)

(h) Current diference
(FAIR)

visualization of 3D neuroCranium actual difference (FAIR−GN)

(i) Current diference
(FAIR-GN)

Figure 6.27: Neurocranium image registration results level 7

ber of iterations for registration of lung images. It is observed that the FAIR-GN
algorithm (red line) is to be preferred for these images since it performs well than the
others. However, the FA4DMIR algorithm shows that the larger is the problem size,
the more it is expected to perform better. This is shown at level 7 (bottom right) it
becomes better.

Figure ?? illustrates the cumulated computation time after 100 iterations for lung
image registration. It is observed further that FA4DMIR algorithm (green line) is
time consuming at low levels but becomes the faster than FAIR and FAI-GN at high
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Figure 6.28: Lung images: comparison of the function value decrease with
respect to the number of iterations on lung images at fixed levels: level 4 (top
left), level 5 (top right), level 6 (bottom left) and level 7 (bottom right).

level.
Table 6.16 summarizes the results reached by the algorithms presented in Fig-

ure 6.28 and Figure 6.29 .
Figure 6.30 presents a sample of results for the lung image registration, with a

mulitilevel approach. The shown results concern the level 7. At low levels (4, 5 and
6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top row:
fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).
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Figure 6.29: Lung images: comparison of the cumulated computation time
with respect to the number of iterations on lung images at fixed levels: level 4
(top left), level 5 (top right), level 6 (bottom left) and level 7 (bottom right).
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Fc Fc/F0 Tc
Level 4
From 1.5 107 1 0
FAIR 1.2 105 8 10−3 2.2 102

FAIR-GN 9.5 100 6.3 10−7 3.5 103

FA4DMIR 9.8 103 6.5 10−4 4.6 103

Level 5
From 4.1 107 1 0
FAIR 1.0 106 2.4 10−2 1.7 103

FAIR-GN 3.5 101 8.5 10−7 1.3 104

FA4DMIR 5.0 106 1.2 10−1 5.2 103

Level 6
From 1.0 107 1 0
FAIR 9.7 104 9.7 10−3 2.5 104

FAIR-GN 3.1 105 3.1 10−2 1.7 104

FA4DMIR 3.0 105 3.0 10−2 1.1 104

Level 7
From 2.3 107 1 0
FAIR 1.4 106 6.0 10−2 4.1 104

FAIR-GN 1.6 106 6.9 10−2 4.1 105

FA4DMIR 1.0 106 4.3 10−2 4.0 104

Table 6.16: Lung images: for each level, this table presents the reached function
value (Fc), the ratio Fc/F0 where Fc is the current function value and F0 the
initial function value and the cumulated time time (Tc) for 100 iterations.
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visualization of 3D Lung fixed image

(a) Fixed image

visualization of 3D Lung moving image

(b) Moving image

visualization of 3D Lung initial difference

(c) Initial difference
visualization of 3D Lung deformed image

(d) Deformed image
(FA4DMIR)

visualization of 3D Chest deformed image (FAIR)

(e) Deformed image
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visualization of 3D Lung deformed image (FAIR−GN)

(f) Deformed image
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(i) Current diference
(FAIR-GN)

Figure 6.30: Lung image registration results level 7
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6.3.9 The phantom image
The 3D phantom images here are available in the FAIR package. The images are

of size [128, 64, 128] and were given on the domain Ω = [0, 64, 0, 64, 0, 64]. They are
registered on four levels as presented in the Table ??.

Levels Size System size Problem id
4 (16, 8, 16) 6 144 PhantomLev4
5 (32, 16, 32) 49 152 PhantomLev5
6 (64, 32, 64) 393 216 PhantomLev6
7 (128, 64, 128) 3 145 728 PhantomLev7

Table 6.17: Phantom images. Four levels of a couple of phantom images in 3D.
These images are available in the FAIR package.

Figure 6.31 presents the decrease of the functional value with respect to the
number of iterations on the phantom images registration. It is observed that the
FA4DMIR algorithm (green curve) performs better than FAIR algorithm (blue curve)
and than FAIR-GN algorithms at any level. Observe that this is true even for rela-
tivelly small images: level 4 (top left) and level 5 (top right). In fact, these phantom
images, in addition their favourable nature (CT-scan) were very sparse.

Figure 6.32 visualizes the cumulated computation time after 100 iterations for
lung images registration. One can observe that, although the images are sparse, the
FA4DMIR algorithm (green line) remains less competitive at low levels: level 4 (top
left) and level 5 (top right) while it becomes competitive for relatively high levels:
level 6 (bottom left) and level 7 (bottom right).

Table 6.18 prensents the summary of reached values by these three algorithms on
phantom images. This table presents summarizes results from Figure 6.31 and Fig-
ure 6.32.

Figure 6.33 presents a sample of results for the neurcranium image registration,
with a mulitilevel approach. The shown results concern the level 7. At low levels (4, 5
and 6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top
row: fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).
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Figure 6.31: Phantom images: comparison of the functional value decrease with
respect to the number of iterations on phantom images at fixed levels: level 4
(top left), level 5 (top right), level 6 (bottom left) and level 7 (bottom right).
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Figure 6.32: Phantom images: comparison of the cumulated computation time
with respect to the number of iterations on phantom images at fixed levels:
level 4 (top left), level 5 (top right), level 6 (bottom left) and level 7 (bottom
right).
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Fc Fc/F0 Tc
Level 4
From 4.8 107 1 0
FAIR 9.0 106 1.8 10−1 1.0 102

FAIR-GN 1.7 107 3.5 10−1 1.4 102

FA4DMIR 1.4 105 2.9 10−3 4.6 103

Level 5
From 7.2 107 1 0
FAIR 2.2 107 3.0 10−1 8.0 102

FAIR-GN 4.2 107 5.8 10−1 5.8 103

FA4DMIR 6.7 105 9.3 10−3 6.0 103

Level 6
From 8.3 107 1 0
FAIR 2.3 107 2.7 10−1 5.3 103

FAIR-GN 2.4 107 2.8 10−1 4.3 104

FA4DMIR 1.2 107 1.4 10−1 7.8 103

Level 7
From 1.1 108 1 0
FAIR 6.3 107 5.7 10−1 9.6 104

FAIR-GN 6.0 107 5.4 10−1 5.0 105

FA4DMIR 2.7 107 2.4 10−1 9.2 104

Table 6.18: Phantom images: for each level of phantom images, this table
presents the reached function value (Fc), the ratio Fc/F0 and the cumulated
time (Tc) for 100 iterations.
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visualization of 3D phantom fixed image

(a) phantom Fixed image

visualization of 3D phantom moving image

(b) phantom Moving image

visualization of 3D phantom initial difference

(c) phantom initial differ-
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visualization of 3D phantom deformed (FA4DMIR)

(d) Deformed image
(FA4DMIR)

visualization of 3D phantom deformed (FAIR)

(e) Deformed image
(FAIR)

visualization of 3D phantom deformed image (FAIR−GN)

(f) Deformed image
(FAIR-GN)

visualization of 3D phantom current difference (FA4DMIR)

(g) Final difference
(FA4DMIR)

visualization of 3D phantom current difference (FAIR)

(h) Final difference
(FAIR)

visualization of 3D phantom actual difference (FAIR−GN)

(i) Final difference
(FAIR-GN)

Figure 6.33: Phantom image registration results (sample)
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6.3.10 The PET-CT1 image
The 3D PET-CT1 images were provided by Hubert Meurisse, CHU-UCL-Namur

mont Godine hospital, nuclear medecine department. The images are of size [256, 256, 64]
and they are registered on five levels as presented in the Table 6.19.

Levels Size System size Problem id
4 (16, 16, 4) 3 072 PET-CTLev4
5 (32, 32, 8) 24 576 PET-CTLev5
6 (64, 64, 16) 196 608 PET-CTLev6
7 (128, 128, 32) 1 572 864 PET-CTLev7
8 (256, 256, 64) 12 582 912 PET-CTLev8

Table 6.19: PET-CT1 images: five levels of a couple of PET-CT1 images
images in 3D. These images were provided by Hubert Meurisse,CHU-UCL-
Namur mont Godine hospital, nuclear medecine department.

Figure 6.34 presents the decrease of the function value with respect to the number
of iterations on the PET-CT1 images registration. For these images, the FAIR4DMIR
algorithm (in red) performs better at all levels (level 4 (top left), level 5 (top right),
level 6 (bottom left) and level 7 (bottom right)) than the FAIR algorithm (blue line)
and FAIR-GN algorithm (green line). This is explained by the nature of the image
and these images were sparse. Comparison between FAIR and FA4DMIR shows that
the FA4DMIR algorithm perform well than the FAIR algorithm even for low levels
(small size images).

Figure 6.35 presents the cumulated computation time after 100 iterations on PET-
CT1 images. It is observed that FA4DMIR (green line) is faster than FAIR-GN (red
line) and FAIR (blue line) for all the levels (all the plots).

209



Numerical experiments in 3D MIRP

0 20 40 60 80 100
10

9

10
10

10
11

Comparison of algorithms on PET−CT1Lev4

F
u

n
c

ti
o

n
 v

a
lu

e

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

0 20 40 60 80 100
10

9

10
10

10
11

Comparison of algorithms on PET−CT1Lev5

F
u

n
c

ti
o

n
 v

a
lu

e

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

0 20 40 60 80 100
10

9

10
10

10
11

Comparison of algorithms on PET−CT1Lev6

F
u

n
c

ti
o

n
 v

a
lu

e

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

0 20 40 60 80 100
10

9

10
10

10
11

Comparison of algorithms on PET−CT1Lev7

F
u

n
c

ti
o

n
 v

a
lu

e

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

Figure 6.34: PET-CT1 images: comparison of the fuction value decrease with
respect to the number of iterations at fixed levels: level 4 (top left), level 5 (top
right), level 6 (bottom left) and level 7 (bottom right).

210



Comparison of algorithms at fixed levels

0 20 40 60 80 100
10

−1

10
0

10
1

10
2

10
3

10
4

Comparison of algorithms on PET−CT1Lev4

T
im

e
 (

c
u

m
u

la
te

d
 i

n
 s

e
c

o
n

d
s

)

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

0 20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

10
5

Comparison of algorithms on PET−CT1Lev5

T
im

e
 (

c
u

m
u

la
te

d
 i

n
 s

e
c

o
n

d
s

)

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

0 20 40 60 80 100
10

1

10
2

10
3

10
4

10
5

10
6

Comparison of algorithms on PET−CT1Lev6

T
im

e
 (

c
u

m
u

la
te

d
 i

n
 s

e
c

o
n

d
s

)

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

0 20 40 60 80 100
10

2

10
3

10
4

10
5

10
6

10
7

Comparison of algorithms on PET−CT1Lev7

T
im

e
 (

c
u

m
u

la
te

d
 i

n
 s

e
c

o
n

d
s

)

Iterations

 

 

FAIR

FAIR−GN

FA4DMIR

Figure 6.35: PET-CT1 images: comparison of the cumulated computation time
with respect to the number of iterations at fixed levels: level 4 (top left), level
5 (top right), level 6 (bottom left) and level 7 (bottom right).
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Table 6.20 prensents the summary of reached values by these three algorithms on
phantom images. This table presents summarizes results from Figure 6.34 and Fig-
ure 6.35.

Fc Fc/F0 Tc
Level 4
From 1.1 1010 1 0
FAIR 6.2 109 5.6 10−1 5.2 102

FAIR-GN 6.0 109 5.4 10−1 5.3 103

FA4DMIR 1.0 109 9.0 10−2 5.2 103

Level 5
From 4.8 1010 1 0
FAIR 2.0 109 4.1 10−2 1.1 103

FAIR-GN 5.2 109 1.0 10−1 3.1 104

FA4DMIR 1.2 109 2.5 10−2 1.1 103

Level 6
From 2.4 1010 1 0
FAIR 5.3 109 2.2 10−1 5.3 103

FAIR-GN 2.1 1010 8.7 10−1 4.3 104

FA4DMIR 4.2 109 1.7 10−1 9.1 103

Level 7
From 7.8 1010 1 0
FAIR 1.6 1010 2.0 10−1 1.1 105

FAIR-GN 6.1 1010 7.8 10−1 3.1 106

FA4DMIR 1.0 1010 1.2 10−1 8.2 104

Table 6.20: PET-CT1Images images: for each level of PET-CT1 images, this
table presents the reached function value (Fc), the ratio Fc/F0 and the cumu-
lated time (Tc) for 100 iterations.

Figure 6.36 presents a sample of results for the PET-CT1 image registration,
within a mulitilevel approach. The shown results concern the level 7. At low levels
(4, 5 and 6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top
row: fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).
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visualization of 3D PETCT2 fixed image

(a) PETCT1 Fixed image

visualization of 3D PETCT2 moving image

(b) PETCT1 Moving im-
age

visualization of 3D PETCT2 initial difference

(c) PETCT1 initial differ-
ence

visualization of 3D PETCT2 deformed image

(d) Deformed image
(FA4DMIR)

visualization of 3D PETCT2 deformed (FAIR)

(e) Deformed image
(FAIR)

visualization of 3D PETCT2 deformed FAIR−GN

(f) Deformed image
(FAIR-GN)

visualization of 3D PETCT2 actual difference

(g) Final difference
(FA4DMIR)

visualization of 3D PETCT2 current difference (FAIR)

(h) Final difference
(FAIR)

visualization of 3D PETCT2 current difference (FAIR−GN)

(i) Final difference
(FAIR-GN)

Figure 6.36: PET-CT1 image registration results
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6.3.11 The PET-CT2 image
The 3D pet-ctBouge images were provided by Hubert Meurisse, CHU-UCL-Namur

mont Godine hospital, nuclear medecine department. The images are of size [512, 512, 1024]
and they are registered on six levels as presented in the Table ??.

Levels Size System size Problem id
4 (16, 16, 32) 24 576PET-

CTBLev4
5 (32, 32, 64) 196 608 PET-CTBLev5
6 (64, 64, 128) 1 572 864 PET-CTBLev6
7 (128, 128, 256) 12 582 912 PET-CTBLev7
8 (256, 256, 1024) 100 663 296 PET-CTBLev8
9 (512, 512, 1024) 805 306 368 PET-CTBLev9

Figure 6.37 presents the decrease of the functional value with respect to the num-
ber of iterations for registration of PET-CT2 images. It is observed that the FAIR
algorithm (blue line) is to be preferred for these images since it performs well than the
others at any level except the level 4 (top left) where the FAIR-GN performs better.
For these images, the FA4DMIR algorithm is the worse, even for high levels. This
may be explained by the fact that the images are sensitive to truncation and, in ad-
dition, they were very dense. Figure 6.38 visualizes the cumulated computation time
after 100 iterations for PET-CT2 images registration. AS expected, one can observe
that the FA4DMIR algorithm (green line) remains less competitive at low levels: level
4 (top left) and level 5 (top right) while it becomes competitive for relatively high
levels: level 6 (bottom left) and level 7 (bottom right).

Table 6.21 prensents the summary of reached values by these three algorithms on
PET-CT2 images. This table summarizes results from Figure 6.37 and Figure 6.38.

Figure 6.39 presents a sample of results for the PET-CT1 image registration, with
a mulitilevel approach. The shown results concern the level 7. At low levels (4, 5 and
6) we run 100 iterations while at level 7 we run 10 iterations to save time. Top row:
fixed image (left), moving image or image to be deformed (middle) and the initial
difference (right). Middle row: the deformed image by the FA4DMIR algorithm (left),
the deformed image by the FAIR algorithm (middle) and the deformed image by the
FAIR-GN algorithm (right). Bottom row: the current difference after registration by
FA4DMIR algorithm (left), the current difference after registration by FAIR algorithm
(middle) and the current difference after registration FAIR-GN algorithm (right).
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Figure 6.37: PET-CT2 image: comparison of the decrease of the function value
with respect to the number of iterations at fixed levels: level 4 (top left), level
5 (top right), level 6 (bottom left) and level 7 (bottom right).
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Figure 6.38: PET-CT2 image: comparison of the cumulated computation time
with respect to the number of iterations at fixed levels: level 4 (top left), level
5 (top right), level 6 (bottom left) and level 7 (bottom right).
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Fc Fc/F0 Tc
Level 4
From 1.0 106 1 0
FAIR 1.0 104 1.0 10−2 1.2 102

FAIR-GN 1.2 100 1.2 10−6 9.3 102

FA4DMIR 2.0 105 2.0 10−1 3.6 103

Level 5
From 8.8 109 1 0
FAIR 7.8 107 8.9 10−3 2.1 103

FAIR-GN 2.5 109 2.8 10−1 2.1 104

FA4DMIR 1.0 109 1.1 10−1 7.1 103

Level 6
From 1.0 1010 1 0
FAIR 8.1 108 8.1 10−1 1.0 105

FAIR-GN 5.9 109 5.0 10−1 8.5 105

FA4DMIR 6.1 109 6.1 10−1 8.4 104

Level 7
From 1.0 1010 1 0
FAIR 9.8 108 9.8 10−2 1.1 105

FAIR-GN 5.2 109 5.2 10−1 1.1 106

FA4DMIR 7.2 109 7.2 10−1 9.2 104

Table 6.21: PETCT2 images: for each level of PET-CT2 images, this table
presents the reached function value (Fc), the ratio Fc/F0 and the cumulated
time (Tc) for 100 iterations.
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visualization of 3D PETCT1 fixed image

(a) PETCT2 Fixed image

visualization of 3D PETCT1 moving image

(b) PETCT2 Moving im-
age

visualization of 3D PETCT1 initial difference

(c) PETCT2 initial differ-
ence

visualization of 3D PETCT1 deformed image

(d) Deformed image
(FA4DMIR)

visualization of 3D PETCT1 deformed (FAIR)

(e) Deformed image
(FAIR)

visualization of 3D PETCT1 deformed FAIR−GN

(f) Deformed image
(FAIR-GN)

visualization of 3D PETCT1 actual difference

(g) Final difference
(FA4DMIR)

visualization of 3D PETCT1 current difference (FAIR)

(h) Final difference
(FAIR)

visualization of 3D PETCT1 current difference (FAIR−GN)

(i) Final difference
(FAIR-GN)

Figure 6.39: PETCT2 image registration results
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6.3.12 Conclusion
From the observations above, one can conclude that for larger images within

limited budget in term of computing time, the FA4DMIR algorithm is to be preferred.
In opposition, for smaller images the FAIR-GN algorithm is advised, in the hope that
the second order information will be captured by certain use of the Jacobian. Since
the acceleration may not be guaranteed by this last, the FAIR algorithm is also usefull.

We have observed that, in the linear systems, the more the right-hand side is
sparse, the more Tensor-Train methods are competitive. In addition, we argue that
algorithms using Tensor-Train methods perform well for UltraSound (US), Computed
Tomography (CT) and Positron Emission Tomography (PET) images, but are less
good on Magnetic Resonance Images (MRI). This has to be verified by futher research
using more test images.
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Conclusion and perspectives

In this work, we have addressed optimization algorithms used to solve medical
image registration problems. The focus was on the non-rigid and nonparametric
registration problem for high-resolution 3D medical images. Based on the observation
that this problem is highly time and memory consuming, we focused on studying
algorithms and proposing efficient techniques in order to accelerate the registration
process.

In the first chapter, we have proposed a large overview of image registration
problem algorithms. Then we have focused on developing techniques to accelerate
the image registration process. For this purpose, and based on the Flexible Algorithms
for Image Registration package (FAIR), we have pointed out that the most expensive
step in certain registration algorithms is the solution of linear systems arising in
this process. Therefore we have proposed in chapter 4 certain preconditioners that
may accelerate the resolution of the linear systems. We have found that, contrary
to what one could expect, the Tchebychev polynomial preconditioner is among the
most efficient preconditioners that may address the large linear systems from high
dimensional image registration.

Since linear systems from image registration problems arise from PDEs discretiza-
tion, they induce large, sparse and structured matrices, but in general ill-conditioned.
Hence, we have developed in Chapter 5 how these large matrices can be addressed
in numerical tensor representations and how the corresponding linear systems can be
solved by efficient new techniques from numerical tensor computing. We have shown
via numerical experiments in Chapter 6 how tensor methods may provide better com-
promise between speed and precision.

The final contribution of this thesis is an extension of the FAIR package by pro-
viding to the user, additional possibilities of speeding up the process. This includes
the possibility to use a Tchebychev polynomial preconditioner in the PCG solver
or to use a PCG solver in TT-Tensor format via a new algorithm that we propose
to call Flexible Algorithm for Deformable Medical Image Registration (FA4DMIR
(see 5.4)). In Chapter 6, we give some numerical illustrations on a set of real 3D
image registration problems of the usefulness of the proposed approach and in which
circumstances.

From the numerical experiments presented in Chapter 6 and from the litera-
ture, we may conclude that in the linear systems, the more the right-hand vector is
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sparse, the more Tensor-Train methods are competitive. In addition, The Tensor-
Train methods are well suited for parallel programming environment, better than in
matrix methods. Thus, the FA4DMIR algorithm performs well for large 3D images
with sparse structure in a parallel computing environment.

However, the Tensor-Train methods we have experimented still related on the
fixed maximal rank. A small rank may speed up the process but may lead to non
accurate results, while a high maximal rank may lead to very expensive algorithms.
A compromise has to be done and we recommend to get insight on l-rank from
tensorlab [50] to have an idea on the compressibility of the data.

The goal of the work was to design and develop efficient algorithms for 3D medical
image registration. Although we have proposed interesting suggestions, we have found
that registration algorithms for high 3D images is a challenging field where there
remains many issues. Among our perspectives, we would like first to address an
integrated way of using numerical tensor methods in the whole registration process.
This may allow more speed since the transfer cost from one format to another is
saved. Second, for polynomial preconditioners, we are interested in combining more
preconditioners to better address both the structure of the matrix and the right-hand
side of the system. In addition to this, we would like to work more closely with
professionals in hospital and clinical applications to address problems with direct
impact on the day-to-day life.
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Appendix A
Visualization of images

Here we visualize the images using the matlab command voxel3 from tensorlab.
Fixed images are visualized at the left side and moving images are visualized at the
right-hand side. We apologize for this poor visualization. More improvement for
visualization is planned for future work.

233



Appendix A. Visualization of images

(a) Brain fixed image (b) Brain moving image

(c) Chest fixed image (d) Chest moving image

(e) Crane fixed image (f) Crane moving image

(g) Foetus fixed image (h) Foetus moving image
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(i) Knee fixed image (j) Knee moving image

(k) Lung fixed image (l) Lung moving image

(m) neuroCranium fixed
(n) neuroCranium mov-
ing

(o) PET-CT1 fixed image (p) PET-CT1 moving im-
age
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Appendix A. Visualization of images

(q) PET-CT2 fixed image (r) PET-CT2 moving im-
age

(s) Phantom fixed image (t) Phantom moving im-
age

(u) Mice fixed image (v) Mice moving image
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Appendix B
Discrete differential operators

Let us consider an image of size [n(1), n(2), n(3)] on a three dimensional domain
ω. By simplicity let us assume n(1) = n(2) = n(3) = n and Ω = [0, 1]3. For a
given displacement field u =

[
u(1), u(2), u(3)] , we may approximate its first deriva-

tives following the backward finite differences methods. For this, we can apply the
unidimensional first derivatives operator

∂hn = 1
h

−1 1
. . . . . .

−1 1

 ∈ Rn×n+1. (B.1)

where h = h(1) = h(2) = h(3) = 1
n

to each component of the displacement field. Then,
the 3D discrete elastic operator defined by finite differences methods is given by

Ael = DTD

where

D =



√
µ∂h1 0 0√
µ∂h2 0 0√
µ∂h3 0 0
0 √

µ∂h1 0
0 √

µ∂h2 0
0 √

µ∂h3 0
0 0 √

µ∂h1
0 0 √

µ∂h2
0 0 √

µ∂h3√
λ+ µ∂h1

√
λ+ µ∂h2

√
λ+ µ∂h3 ,


(B.2)

where λ ≥ 0 and µ ≥ 0 are lamé parameters, see(??).
The Diffusion operator is given by

Adif = ∇ = DTD
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Appendix B. Discrete differential operators

the Laplacian operator where

D =



∂h1 0 0
∂h2 0 0
∂h3 0 0
0 ∂h1 0
0 ∂h2 0
0 ∂h3 0
0 0 ∂h1
0 0 ∂h2
0 0 ∂h3


. (B.3)

Note that, one can deduce the diffusion operator from the elastic operator by
setting µ = −λ.
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Appendix C
Riemann-Stieltjes integral and
orthogonal polynomials

Consider a finite interval [a, b] in the real line and two real functions f and w on
R. A subset P = {x0, x1, . . . , xn} of the closed interval [a, b] with a = x0 < x1 <
. . . < xn = b, (n ≥ 1) is called a partition of [a, b]. The norm of a partition P is the
number

V (P ) = max
1≤k≤max

(xk − xk−1)

that is the maximal spacing between two consecutive real points of the partition.
Let us consider two partitions P,Q defined on the interval [a, b]. If P ⊃ Q, P is

said to be finer than Q. One can see that this induces that V (P ) ≤ V (Q).
A tagged partition of [a, b] is a pair (P, t) where P = {x0, x1, . . . , xn} is a partition

of [a, b], and t = (t1, t2, . . . , tn) is such that xk−1 ≤ tk ≤ xk.
Now we are ready to define the Riemann-Stieltjes sum.

Definition C.1 (Riemann-Stieltjes (R-S) sum)
Let (P, t) be a tagged partition of [a, b] with P = {x0, x1, . . . , xn}. The Riemann-
Stieltjes sum of a function f with respect to the density function w is given by

s(P, t, f, w) =
n∑
k=1

f(tk) (w(xk)− w(xk−1)) . (C.1)

The function f is Riemann-Stieltjes integrable with respect to w, if there exists
a unique value

L = s(p, t, f, w) =
∫ b

a

f(λ)dw(λ) (C.2)

where w is called the distribution function.

The set R(w, a, b) is the set of Riemann-stieltjes integrable functions with respect
to w. If w(x) = x, then R(w, a, b) = R(a, b) is the set of Riemann integrable functions
on [a, b].

239



Appendix C. Riemann-Stieltjes integral and orthogonal polynomials

The theorem below facilitates the computation of the Riemann-Stieltjes integral.
Theorem C.2

Given a function f ∈ R(w, a, b), bounded on [a, b] with a continuous derivative
w′, we have fw′ ∈ R(w, a, b) and∫ b

a

f(λ)dw(λ) =
∫ b

a

f(λ)w′(λ)dλ.

The function w : [a, b] =⇒ R is said to have a bounded variation if

V ba (w) = sup

{
n∑
k=1

|w(xk)− w(xk−1)|, {xk}nk=0 a partition of [a, b]

}
<∞.

The following theorem ensures sufficient conditions for Riemann-Stieltjes integrability
of f .
Theorem C.3

Let f be continuous and w with bounded variations on the interval [a, b]. Then
f ∈ R(w, a, b).

A corollary of this theorem states that, if f is continuous and w non decreasing
on the interval [a, b], then f ∈ R(w, a, b). This can be observed by the fact that,
any function with bounded variation on [a, b], can be expressed as a difference of
two nondecreasing and bounded functions. Applying linearity of the integral one
concludes that f ∈ R(w, a, b). To compute efficiently the R-S integral, on emay define
weights at some specific points. The so called points of increase are well suited for
such points.
Definition C.4 (Points of increase)

Given a nondecreasing distribution function w. A point of increase of w is a point
in the neighborhood of which the function w is not constant. The finite or infinite
number of points of increase of w is denoted n(w).

The points of increase of a distribution function can be exploited for computing
the RS integral. Let us consider a distribution function w that is a piecewise constant
with N point of increase λ1, . . . , λN and positive weights w1, . . . , wN such that

w(λ) =


0 if a ≤ λ < λ1,∑i

j=1 wj if λi ≤ λ < λi+1,∑N

j=1 wj if λN ≤ λ < b,

then the Riemann-Stieltjes integral satisfies∫ b

a

f(λ)dw(λ) =
N∑
i=1

wif(λi)

Definition C.5 (weighted scalar product)
Let P be a space of polynomials and w be a nondecreasing function on [a, b], the
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weighted scalar product 〈., .〉w : P × P ⇐⇒ R is defined by

〈f, g〉w =
∫ b

a

f(λ)g(λ)dw(λ), ∀ f, g ∈ P. (C.3)

It is verified that{ 〈f, f〉w ≥ 0, ∀ f, g ∈ P,
〈f, f〉w = 0, only if f = 0,
〈f + g, h〉w = 〈f, h〉w + 〈g, h〉w,

The norm induced from this scalar product is given by

‖f‖w =
√
〈f, f〉w =

√∫ b

a

f(λ)2dw(λ) (C.4)

It is important to note that 〈., .〉w may not be a scalar product for a general
polynomial. For example, when w is a nondecreasing distribution with infinite number
of points of increase. However, when w has only N distinct points of increase while
PN−1 is a space of polynomials of degree less than N , the mapping 〈., .〉w is a scalar
product on PN−1.

Definition C.6 (Orthogonal polynomials)
Let 〈., .〉w be a scalar product on P the space of polynomials. A sequence of

polynomials φ0(λ), φ1(λ), . . . , φN (λ), . . . is orthogonal if

〈φj(λ), φk(λ)〉w = 0 ∀ j 6= k, j, k = 1 : N,

while
〈φj(λ), φj(λ)〉w 6= 0 ∀ j.

If in addition
〈φj(λ), φj(λ)〉w = 1 ∀ j, j = 1 : N,

the orthogonal polynomials are called orthonormal. An orthogonal polynomial is
said to be monic orthogonal when its leading coefficient is one.

Theorem C.7 ([102])
Consider a distribution function w and define the scalar product 〈., .〉w. If w has
infinite points of increase in the interval [a, b], then there exists an infinite but
unique sequence of monic orthogonal polynomials φ0(λ), φ1(λ), . . . , φN−1(λ), . . ..
If w has N distinct points of increase in [a, b], there exists a unique sequence of
monic orthogonal polynomials ϕ0(λ), ϕ1(λ), . . . ϕN (λ) which forms a basis of the
space PN−1 of polynomials of degree less than N [102].

One can generate the monic orthogonal polynomials so defined by using the Gram-
Schmidt method to orthogonalize the sequence of monomials 1, λ, λ2, . . . then obtain
the sequence of orthonormal polynomials by normalizing these monic orthogonal poly-
nomials. Both monic orthogonal polynomials and orthonormal polynomials have the
same roots [102].
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Appendix C. Riemann-Stieltjes integral and orthogonal polynomials

Theorem C.8 (Recurrence relation)
Let n(w) be the number of points of increase with respect to the distribution

function w. Given n < n(w), one gets a sequence of monic orthogonal polynomials
ϕ0, ϕ1, . . . ϕn by the three-term recurrence as follows:

ϕk+1(λ) = (λ− αk)ϕk(λ)− δkϕk−1(λ), (k = 0, 1, . . . , n− 1), (C.5)

where
ϕ−1(λ) = 0,
ϕ0(λ) = 1,

αk = 〈λϕk, ϕk〉w
〈λϕk, ϕk〉w

,

δk = 〈λϕk, ϕk〉w
〈λϕk−1, ϕk−1〉w

,

(k = 0, 1, . . . , n− 1)
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Appendix D
Tchebychev preconditioner for
multiple right-hand sides

Notice that, all the preconditioners we have discussed until now aim to improve the
condition number or the eigenvalues distribution of the matrix A in (4.1). Otherwise,
note that the coefficient matrices in linear systems (4.7) and (4.9) remain constant
during iterations. Only the right-side changes. Thus, it makes sens to address an
efficient resolution of a sequence of linear systems with the same coefficient matrix
but multiple right-hand sides. That is to solve

Axl = bl, l = 1, 2, . . . , <∞. (D.1)

This is addressed in the remainder of this chapter following the paper from Golub,
Ruiz and Touhami in [103]. In this paper, authors used the Tchebychev polynomial
as a filter and preconditioner. This reveals a particular interest for our application
since it addresses also the right-hand side that plays an important role on the preser-
vation of the residuals orthogonality for the CG in finite precision as we presented in
Section 4.2.1. In addition, authors proposed a way of combining Tchebyshev precon-
ditioner with other preconditioners.

The Tchebyshev polynomial was used to shift a part of the eigenvalue distribution
to one, such that the spectrum is more clustered around one. At the same time, this
preconditioner is used as a filter of the initial residual r0 = b − Ax0, such that
the eigencomponents in r0 associated to the shifted eigenvalues are reduced below
a threshold ε, called filter level. Since the convergence rate of the CG algorithm in
finite precision depends on both the initial residual and on the eigenvalue distribution
of the coefficient matrix (4.34), this procedure is likely to yield a rapid convergence
of the CG algorithm.

However, the efficiency has to be measured by comparing the construction cost
of the preconditioner, its application cost and the improvement it yields. For this
purpose, the major gain is obtained when some information from a first preconditioned
system

M−1Ax1 = M−1b1, (D.2)
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Appendix D. Tchebychev preconditioner for multiple right-hand sides

is saved and used to solve the following systems (that is l = 2, . . . in (D.1). This means
we combine the Tchebyshev preconditioner with an other preconditioner called first
order preconditioner.

According to [103], the gathered information allows the construction of a small
dimensional Krylov basis with eigeninformation linked to the smaller eigenvalues (that
were not shifted), and this is used to speedup the CG algorithm in further systems.

In practice, the matrix A is factorized as in (4.33) but with two terms

A = UΛUT = U1Λ1U
T
1 + U2Λ2U

T
2 , (D.3)

where Λ1 is a diagonal matrix with sorted eigenvalues greater than a cut-off parameter
µ, 0 < µ < λmax and Λ2 is its complementary (i.e Λ = Λ1 + Λ2).

First, given µ, λmax and a threshold ε, one may define a polynomial of degree m
from the Tchebyshev polynomials (4.99) by

T̃m(λ) = Tm (Ψµ(λ))
Tm (Ψµ(0)) (D.4)

where Ψµ(λ) maps the interval [µ, λmax ] onto [−1, 1]. Second, one can fix a degree m
of the polynomial Tm (Ψµ(λ)) such that 1

|Tm (Ψµ(0)) | < ε that implies

‖T̃m(λ)‖∞ < ε, on [µ, λmax ]. (D.5)

Then, a filtered residual vector z can be determined by applying the polynomial
T̃m(λ) to the residual r0:

z = T̃m(A)r0 = U1T̃m(Λ1)UT1 r0 + U2T̃m(Λ2)UT2 r0. (D.6)

The action of the filter on r0 can be measured by multiplying both sides of (D.6) and
evaluating the norm. This writes

‖UT1 z‖2 = ‖T̃m(Λ1)UT1 r0‖2 ≤ ‖T̃m(Λ1)‖2‖UT1 r0‖2 < ε‖UT1 r0‖2.

Thus, the eigencomponents in r0 associated to eigenvalues in [µ, λmax are reduced
bellow the filter level ε on [µ, λmax ]. Note that, since T̃m(λ) ≤ 1, ∀ λ the condition
on the filter level can be imposed in (4.101) by imposing 1

σm
< ε.

The algorithm called ChebFilter from [103] is presented in the algorithm D.1
below. Its inputs are respectively, the matrix A, the right-hand side vector b, the cut-
off parameter µ, the maximal eigenvalue λmax , the initial solution x0 and the filter
level ε. The outputs are the filtered residual z = T̃m(A)r0 and the corresponding
solution such that b−Ax = z.

Algorithm D.1 (ChebFilter)
Input: A, b, x0, λmax , µ, ε

% outputs are respectively the filtered residual, the current solution
Output: [z, x]

αµ = 2
λmax−µ

; dµ = λmax+µ
λmax−µ

;
x = x0; z = b−Ax;
σ0 = 1, σ1 = dµ; k = 1; y = x;
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x = x+ αµ
dµ
z;

z = b−Ax;
Do while 1

σk
> ε

σk+1 = 2σkdµ − σk−1;
p = 2 σk

σk+1
(dµx− αµz)− σk−1

σk+1
y;

y = x and x = p;
z = r0 −Ax;
k = k + 1;

End(Do).

Solving the remaining s systems

Axl = bl, l = 2, 3, . . . , s, (D.7)

may be facilitated by information from the run of PCG on the first system with the
ChebFilter as preconditioner. A Krylov basis Wk is formed by k search direction vec-
tors gathered while running k iterations of the PCG algorithm. From the properties
of the CG directions (2.30), this basis is A-orthogonal and thus Ac = WT

k AWk is
diagonal. This basis is kept for all the systems in (D.7) where r0 is projected onto
AWk along ker(WT

k ), such that the eigencomponents in a solution corresponding to
the smallest eigenvalues are obtained. The pseudo-code of the final algorithm is given
in algorithm D.2.
Algorithm D.2 ([103])

1. [x1,W ] = ChebF ilterCG(A, b1, x0, λmax , tol1,M1);
2. Ac = WTAW ;
3. For l = 2 : s

(a) x0 = WA−1
c WT bl;

(b) xl = PCG(A, bl, x0, tol2,M1)
4. End(For)

Unfortunately, the tests to combine the Tchebychev polynomial with other precon-
ditioners in MIRP have not yet lead to reliable conclusions. Thus, numerical results
are not presented in this thesis.

Another way of improving the optimization process in the MIRP is to approximate
better the Hessian of the functional (1.65). This leads to Gauss-Newton strategy. This
strategy is presented in general setting in Section 2.3 and particularly for MIRP in
Section 1.4.1. In the following section we present only the structure of the matrix
obtained to allow comparison with other systems for MIRP.
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Appendix E
Flow of diffeomorphisms

Given the manifold Md(Ω) The map

Φ : [0, 1]×Md(Ω)→Md(Ω)∀ t ∈ [0, 1], f ∈Md(Ω)

, such that
Φ(t, f) = Φt(f) = ft, Φt ∈ H1(Ω)

Φt(f) is a curve parametrized by t where Φ0 = Id ft ∈ Md is the observed image at
time t and (Φs(f))s=0:t is the path followed by (fs)s=0:t. The function Φt ∈ H1 being
differentiable, the velocity field Φ̇t = vt(Φt) is square integrable. Thus, the energy of
the curve Φt, associated to a metric A in H1 is

EA(vt(Φt)) =
∫ 1

0
‖vt(Φt)‖2Adt (E.1)

By using registration by flow of diffeomorphisms, one aims to determine a transfor-
mation Φ1 such that:

Φ0[Im(x)] = Im(x)
Φ1[Im(x)] = If (x)
EA(vt(Φt)) is minimized

Φ1 is the endpoint of the flow of a time-dependent velocity vt(Φt) Φ1 = Φ0+
∫ 1

0 vt(Φt)
In these settings, we minimize the functional

E(vt) = 1
σ2 ||If [Φ−1(x)]− Im(x)||2L2 +

∫ 1

0
||vt(Φ(x))||2H1dt (E.2)

where σ > 0 is a continuous weight parameter .
In this functional the first term minimizes the distance between the two images,

the second term minimizes the energy of the curves while enforcing the velocity field
to be sufficientely smooth. The required smoothness is enforced by defining a norm
on H1. This is done through a differential operator L such that

‖vt(Φt)‖2H1 = ‖L(Φt)‖2 = ‖Φt‖LTL
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Appendix E. Flow of diffeomorphisms

where L = α∆ or L = α∇, α > 0. Thus, instead of estimating a serie of velocity
fields, we need only to estimate an initial velocity field v0, then this initial velocity
plays the role of the instantaneous displacement u. The saugth transformation Φ1
will evolve from the identity Φ0 = Id and follows a dynamical path for a unit time
integration Φt, t ∈ [0 1] via composition. Φ1 = (Id+ vtT

T
)◦(Id+

vtT−1

T
)◦. . .◦(Id+ v0

T
)

This is achieved by interpoling the displacement field in the initial grid and the
averaging interpolation command interpn in Matlab.

For example, assume we have determined the initial velocity v0, then consider T
a number of time steps

For small deformations one has

T = 1
Φk+1 = Φk + v0

Φ−1
k+1 = Φk − v0

although, for large deformations one performs

Φk+ 1
T

= Φk + ( 1
T

)v0; Φk+ 2
T

= Φ 1
T
◦ Φ 1

T
Φk+ 3

T
= Φ 1

T
◦ Φ 2

T

and
Φk+1 = Φ 1

T
◦ ΦT−1

T
.
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Appendix F
Numerical experiments (following)

In all these larger images, the FA4DMIR is better since it reduces better the
functional value with les cumulated time.
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Figure F.1: Chest image level 8: comparison of function value reduction (left)
and computing time (right).
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Figure F.2: Chest image level 9: comparison of function value reduction (left)
and computing time (right).
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Figure F.3: crane image level 8: comparison of function value reduction (left)
and computing time (right).
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Figure F.4: Crane image level 9: comparison of function value reduction (left)
and computing time (right).
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Figure F.5: Foetus image level 8: comparison of function value reduction (left)
and computing time (right).
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Numerical experiments (following)
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Figure F.6: foetus image level 8: comparison of function value reduction (left)
and computing time (right).
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Figure F.7: PET-CT1 image level 8: comparison of function value reduction
(left) and computing time (right).
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Appendix G
FA4DMIR code organisation

addpath /home/justin/2011-08-10-FAIR/
addpath ../configs/
addpath ../drivers/
addpath ../figures/
addpath ../images/
addpath ../miscellaneous/
addpath ../posttreatments/
addpath ../pretreatments/
addpath ../results/
addpath ../solvers/
global Pb;
Pb.solver = ’Tensor’;
Pb.file_result = ’resultfile.mat’;
Pb.file_in = ’imagesFiles.mat’; % enter the images to be registered.

Pb.parameters = struct(’maxIter’,n, ’regularizer’,’mbCurvature’,’teta’,10, ’grid’,’cellCentered’,’omega’,[0 128 0 64 0 128],’lambda’,20,...
’systSol’,@myMatrixsolver,’solver’,’pcgSGS’,’prereg’,0,’beta’,10,...
’tol’,1e-6,’sigma’,32,’alpha’,0.1,’ChebIter’,10,’NeumanIter’,10,’gn’,1,...
’eigMajorant’,20,’build’,1,’minLevel’,5,’LevMaxC’,5,’fType’,’MatrixMDJ’,...
’systSol’,@HT_GenSystSol,’prereg’,0,’beta’,’10’,...
’Prec’,’InvLaplace’,’tol’,1e-6,’sigma’,32,’minLevel’,3,’LevmaxC’,9,...
’alpha’,0.01,’Nflows’,1,’build’,1);

switch Pb.solver;

case ’Tensor’
[yc,I_m,MLHist] = MultLevMIR_HT(imagesFiles,Pb);

case ’Matrix’
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FA4DMIR code organisation

[yc,I_m,MLHist] = MultLevMIR_MAT(imagesFiles,Pb);

In matrix case, only polynomial and LMP preconditioners are added to FAIR package
subroutines. Below the code used for tensor case.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%In MultLevMIR_HT(imagesFiles,Pb)%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% get multilevel data

MLT = getMultilevelImage(dataT,paraOpt.omega,struct(’minlevel’,minLevel));

MLR = getMultilevelImage(dataR,paraOpt.omega,struct(’minlevel’,minLevel));

%minLevel= paraOpt.level; This means the image with maximal resolution equal 2ˆ(minlevel)

level = minLevel;
paraOpt.level = level;

omega = paraOpt.omega;
% grid type
grid = paraOpt.grid;

switch grid,
case ’cellCentered’, getGrid = @(m) getCellCenteredGrid(paraOpt.omega,m);
case ’staggered’, getGrid = @(m) getStaggeredGrid(paraOpt.omega,m);
case ’nodal’, getGrid = @(m) getNodalGrid(paraOpt.omega,m);
otherwise, error(’nyi’);

end;

MLHist = cell(1, paraOpt.nrlevels);

xc = []; % current grid

fprintf(’\n\n’);
fprintf(’%s: MultiLevel Medical Image Registration Htensor\n’,mfilename)
fprintf(’-- distance=%s, regularizer=%s, alpha=%s, trafo=%s, fileIn=%s\n’,...

distance,regularizer,num2str(regularizer(’get’,’alpha’)),trafo, paraOpt.file_in);
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%--------------------------------------------------------------------------
for level=paraOpt.minLevel:paraOpt.LevMaxC

% save(old grid), update(m,grid,data coefficients)
xOld = xc;

m = size(MLT{level});

xc = getGrid(m);

paraOpt.m = m;

% interpolation coefficient

R= getSplineCoefficients(MLR{level},’dim’,paraOpt.dim,’regularizer’,’gradient’,’theta’,paraOpt.teta);

T= getSplineCoefficients(MLT{level},’dim’,paraOpt.dim,’regularizer’,’gradient’,’theta’,paraOpt.teta);

if level == minLevel && prereg, % parametric pre-registration

% for preregistration call Parametric Image Registration from FAIR package ---------------------------

% compute starting guess y0
if level == minLevel,

y0 = yRef; % the best known so far
else

% prolongate yc (coarse) y0 (current)
y0 = xc + mfPu(yc - xOld,omega,m/2);

end;

yStop = getGrid(m);
yc = y0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% %%%
%% [yc,I_m,hist] = oneLevelMIR_HT(Rc,T,yc,yStop,paraOpt);%%%
%% %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

k = (paraOpt.level-paraOpt.minLevel)+1;
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FA4DMIR code organisation

MLHist{k} = hist;
%

paraOpt.level = paraOpt.level+1;

end; %For level

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%oneLevelMIR_HT(Rc,T,yc,yStop,paraOpt)%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% handle objective function
objFunc = @ObjFuncReg;

% initialize the grid
x0 = getCellCenteredGrid(paraOpt.omega,paraOpt.m);
Jold = 0;
% handle large diformation diffeomorphic mapping
vel2Disp = @velocity2displacement;

% handle system solver by tensor method
systSol = @HT_LaplSysSolver;

interp = @splineInter;

tolJ = 1e-6; tolY = 1e-6; tolG = 1e-6;

STOP = zeros(5,1);

[Jc,dJ,Tc] = objFunc(T,Rc,yc,yRef,paraOpt);

[x, norm_r1] = systSol(dJ,paraOpt);

Jstop = Jc;

dispHis = @(var)fprintf(’%-4d %-8.4e %-8.4e %-8.4e %-8.4e %-8.4e %-4.2e %-2.2e\n’,var);
hisStr = {’iter’,’J’,’Jold-J’,’|\nabla J|’,’|dy|’,’red’,’LS’,’Tcum’};
hist = zeros(paraOpt.maxIter+1,8);

hist(1,:) = [0,Jc,0,norm(dJ),norm(yc-yStop),red,0,0];

dispHis(hist(1,:));

%[V] = systSol(dJ,paraOpt);

iter = 1;
------------------------------------
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while 1

yOld = yc;

STOP(1) = (iter>0) && abs(Jold-Jc) <= tolJ*(1+abs(Jstop));
STOP(2) = (iter>0) && (norm(yc-yOld) <= tolY*(1+norm(yStop)));
STOP(3) = norm(dJ) <= tolG*(1+abs(Jstop));
STOP(4) = norm(dJ) <= 1e6*eps;
STOP(5) = (iter > paraOpt.maxIter);

if all(STOP(1:3)) || any(STOP(4:5)), break; end;
%if Jc <= 3e7; break; end;

V = HT_GenSystSol(dJ,paraOpt);

paraOpt.build = 0;

dy=[reshape(reshape(full(V{1}),paraOpt.m),.[],1);reshape(reshape(full(V{2}),paraOpt.m),[],1);reshape(reshape(full(V{3}),paraOpt.m),[],1)];

J0 = Jold; Jold = Jc;

% perform Armijo line-search
[alpha,Yt,LS] = myRLin(ObjFctn,yc,dy,Jc,J0,dJ);
if ˜LS; break;end

yc = Yt;
Jold = Jc;

[Jc,dJ,Tc] = objFunc(T,Rc,yc,yStop,paraOpt);

hist(iter+1,:) = [iter,Jc,Jold-Jc,norm(dJ),norm(yc-yOld),red,alpha,Temp];

dispHis(hist(iter+1,:));

iter = iter+1;

end
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[72] S. Gratton, A. Sartenaer, and J. Tshimanga, “On a class of limited memory
preconditioners for large scale linear systems with multiple right-hand sides,”
SIAM Journal on Optimization, vol. 21, no. 3, pp. 912–935, 2011.

[73] O. Axelsson, “A survey of preconditioned iterative methods for linear systems of
algebraic equations,” BIT Numerical Mathematics, vol. 25, no. 1, pp. 165–187,
1985.

[74] S. Demko, W. F. Moss, and P. W. Smith, “Decay rates for inverses of band
matrices,” Mathematics of computation, vol. 43, no. 168, pp. 491–499, 1984.

[75] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution
of linear systems: building blocks for iterative methods. SIAM, 1994.

[76] K. Chen, Matrix preconditioning techniques and applications, vol. 19. Cam-
bridge University Press, 2005.

[77] J. Chen and Y. Saad, “On the tensor svd and the optimal low rank orthogonal
approximation of tensors,” SIAM Journal on Matrix Analysis and Applications,
vol. 30, no. 4, pp. 1709–1734, 2009.

[78] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value
decomposition,” SIAM journal on Matrix Analysis and Applications, vol. 21,
no. 4, pp. 1253–1278, 2000.
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