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Abstract. The elytra from dry specimens of the hercules beetle,Dynastes
herculesappear khaki-green in a dry atmosphere and turn black passively
under high humidity levels. New scanning electron images, spectrophotometric
measurements and physical modelling are used to unveil the mechanism of
this colouration switch. The visible dry-state greenish colouration originates
from a widely open porous layer located 3µm below the cuticle surface. The
structure of this layer is three-dimensional, with a network of filamentary strings,
arranged in layers parallel to the cuticle surface and stiffening an array of strong
cylindrical pillars oriented normal to the surface. Unexpectedly, diffraction plays
a significant role in the broadband colouration of the cuticle in the dry state. The
backscattering caused by this layer disappears when water infiltrates the structure
and weakens the refractive index differences.
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1. Introduction

Nature supports at least two types of colouration mechanisms: selective absorption by
pigments and interferential light filtering by transparent inhomogeneous media. In the so-
called pigmentary mechanism, very common with living organisms, the scattering spectrum
is modulated by the excitation of electronic standing waves in dye molecules, while in the light
interference mechanism, the re-radiated spectrum is directly shaped by photon standing waves
in much larger structures. The latter mechanism requires the propagation of light in weakly
absorbing structures, such as multilayers, which produce interference after multiple reflections,
or gratings, which produce diffraction. In rarer cases, both effects combine when light
encounters more general three-dimensional (3D) structures—termed, when periodic, ‘photonic
crystals’—which combine refractive index variations in two or three space dimensions.

Colouration by interference, also referred to asstructural colouration, has been known
to occur in living organisms for quite a long time [1]–[11] and biologists have given
sustained attention to this subject throughout this time, including very recent years. Physicists
have renewed some interest for the study of these natural photonic structures much more
recently [12]–[14], mainly because these media happened to be very interesting examples
of optical metamaterials, that draw their optical properties from highly-tunable submicron
geometric shapes, rather than from the nature of the materials used to make them. These
complex structures, found on many living species: birds, insects, snakes, fish and even
mammals [15], could be a very effective and inspirative track to new visual effects or even
new optical devices [16].

The structure described in the present study is very special, because its optical response can
be drastically changed by its exposure to humidity. This phenomenon is one of the astonishing
characteristics of a tropical beetle,Dynastes hercules(see figure1). This visual effect was first
described and examined by Hinton and Jarman [17], who found its origin in a porous structure
made of chitin and air, organized with refractive index variations normal to the cuticle surface, in
a way essentially analogous to a simple multilayer stack. This organization led to the assumption
that the colouration could be explained by a porous multilayer with a reflectance that could be
controlled by flooding the layer with liquid water. However, this interpretation still needs to be
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Figure 1. The hercules beetleDynastes herculesshows a greenish colouration
with black spots. Some specimens may not present these black spots.

confirmed by a deeper physical analysis, measuring optical reflectance spectra and comparing
them with detailed numerical simulations of the optical response of the structure.

The distance between an ideal multilayer response and the actual visual effect produced
by the surface of the beetle’s elytra is visible by the naked eye. A multilayer stack
generally produces a bright metallic-like colour by multiple interferences and usually shows
iridescence [18], as the dominant reflected colour is blue-shifted when the angle of incidence
increases. This is not observed here, but it is known that structural iridescence can sometimes
be avoided by special choices of the multilayer parameters [19, 20] or by the introduction of a
sufficient level of disorder [21].

The insect studied here is sometimes called a ‘rhinoceros beetle’ because males have a long
appendix, resembling a horn, which can be even longer than the rest of the body. The hercules
beetle is known as one of the largest Coleoptera: it can in exceptional cases reach 170 mm in
length. It seems also to be the strongest creature on earth as it is able to carry 850 times its
own body weight. The larva which, in its final stage, measures 110 mm and weighs some 120 g,
feeds on rotten wood during two years. Then it transforms into a pupa and later to the adult
form. The adultDynastes herculesfeeds on rotten fruit on the floor of the mesohydrophilic
(meaning the ground is always moist) forests of Central America, North of South America
and the Antilles [22, 23]. The subspecieslichyi (Lachaume, 1985) under specific study here
can be found in Columbia, Venezuela, Peru, Ecuador, Bolivia and Brazil. Each subspecies [24]
has indeed its own area distribution (see figure2), the geographical isolation being one of the
criterions of the definition of a subspecies.

The greenish colour of theDynastes herculesturns to black as water penetrates the
multilayer (see figure3). The beetle looks totally dark under very humid conditions (more than
80% humidity [17]). Only a few insects are known to change their colouration reversibly by
modifying the level of hydration of their elytra: some of the most spectacular species belong to
the Cassidinae family [25] and undergo active colouration changes when the insect get stressed.

The biological and evolutive advantage that drove the development of this capability is
not known. Hinton and Jarman [26] speculated that, under tropical climates, the humidity level
increases at night and the beetle becomes black, reaching a better state of camouflage at the
time the imago insect is most active. During the day when the humidity level decreases, its
greenish colouration better matches its tropical coloured environment. However this camouflage

New Journal of Physics 10 (2008) 033014 (http://www.njp.org/)

http://www.njp.org/


4

Figure 2. Geographical distribution of some subspecies ofDynastes hercules
includingDynastes hercules lichyi(from [22]).

Figure 3. (a) TheDynastes herculesis greenish with eventually black spots under
normal condition of humidity. (b) When put over ebulliant water (in order to
produce a level of humidity above 80%) the beetle presents a black colouration
on all its body.

hypothesis is highly questionable due to the fact that another hercules beetle, the species
Hercules neptunus, similar in length and morphology to the one studied, shares some repartition
area of theDynastes herculesand exhibits a totally black appearance. Because either a green or
a black beetle is undetectable in such an environment, the reason for the change of colour might
not be related to camouflage.

Another possible function, also proposed by Hinton and Jarman, is thermoregulation. The
beetle is still dark when the sun rises, so that it will warm up faster than if green. During
the day, the change of colour would prevent the beetle from accumulating heat too fast. This
second hypothesis conflicts with two facts. The first is that only the male presents this change
of colouration. The female is indeed totally dark except for the apex (i.e. the tip of a wing) of
the elytra, but presents nearly the same activity as the male (field observations). The second
fact is that this beetle is active during the night and lives in an environment with poor direct
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Figure 4. Diffusive reflectance spectrum of the cuticle of theDynastes hercules.
The curve is taken when the beetle is greenish (humidity level around 40%).

illumination, making the hypothesis of a male specimen basking in the sun unlikely. The reason
(if any. . . ) whyDynastes herculeshas evolved the ability to change colour with humidity is still
a mystery which waits to be unveiled.

The aim of the present study is to provide updated data on the morphology of this
naturalhygrochromicstructure, to obtain detailed optical data for various humidity states and
to re-examine the colouration mechanism with the help of extensive numerical light-scattering
simulations. Optical measurements were first carried out with a spectrophotometer in order
to quantify the colouration of the beetle in its two reversible states: greenish and black, and
at intermediate humidity levels. In parallel, scanning electron microscopy (SEM) was carried
out to provide renewed information about the hygrochromic structure, benefiting from imaging
improvements brought by thirty years of technology refinement. The modelling part of this
work allows us into ensure that the structure seen on SEM images is responsible for the colour
observed and reveals the details of the colour selecting mechanism involved.

2. Spectral analysis of both states of Dynastes hercules

The male specimen used for this study originates from Ecuador and was acquired from an
insect collector in Lyon, France. One of the elytra of the beetle (i.e. the hard case that protects
the insect’s wings) was removed. Part of it was then glued and pressed on a microscope slide,
coloured face up, in order to improve the sample flatness. The humidity level was measured
with a RS-1360 digital humidity and temperature meter. Spectroscopic measurements were
performed using an Avaspec 2048/2 fibre-optic spectrophotometer equipped with an integrating
sphere. The sample was illuminated by an unbalanced deuterium–halogen source and the diffuse
reflectance spectrum (using the integrating sphere) shown in figure4 was obtained under a
dry atmosphere (40% humidity). The noise at large wavelengths indicates the limited intensity
provided there by the halogen source used. The spectrum shows two rather wide components,
one centred near 930 nm (beyond the human visible spectrum end, near 700 nm) and the other
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Figure 5. Reflectance spectra of the cuticle ofDynastes hercules. The curve
labelledGreenish colouris taken when the beetle is greenish under a humidity
level of 75%. The curve labelledBlack colouris taken when the beetle is totally
black under a humidity of 100%. In between, spectra at progressive increasing
level of humidity are shown (86, 91, 95 and 97%, respectively).

occurring around 580 nm and extending down to about 420 nm. This second contribution adds a
very desaturated yellow-green colour to the non-perceptible red-infrared component. This could
explain why the human eye sees a greenish (khaki-green) colour as a result of this spectrally
broad scattering.

In order to record the transformation of the elytra from green to black under varying
hygroscopic conditions, measurements were performed in a backscattering conformation at
normal incidence (i.e. normal to the average surface of the elytra). The reflectance must
be limited to a specular geometry because the integrating sphere does not support a high
hygrometry level. A bifurcated optic fibre was used both to illuminate the sample and to collect
the backscattered light. The slow increase of humidity level was obtained by putting the sample
under a large plexiglas box containing a source of ebullient water.

The series of reflectance spectra in figure5 indicates a decrease of the reflection factor as
the humidity level is raised. It also shows that the change is progressive. The curve labelled
Greenish colourmatches the khaki-green colour observed in the dry state and, as the ambient
humidity increases, the reflection factor decreases everywhere in the human visible range. It
should be noted that the intensity remains high in the infrared part but this does not influence
the observed colour. When the environment is saturated with vapour the reflectance spectrum
(labelledBlack colour) shows a much weaker intensity, in agreement with the black appearance
of the elytra. Note that the difference in intensity between these spectra and the one presented
in figure 4 is due to the modification of the measurement configuration, however the general
aspect is conserved (the peak near 930 nm is not visible on these spectra).

The processes are reversible and easy to reproduce: when the humidity level decreases the
colour reverts to khaki-green, and the entire cycle can be repeated many times without damaging
the elytron structure. Small black patches, however, consistently persist even if the humidity
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Figure 6. Scanning electron micrographs of the cuticle ofDynastes hercules. (a)
There is an external wax layer with a lot of cracks that allow water to penetrate
the structure. This cover is partly removed, allowing the spongy multilayer
underneath to be seen. (b) This image allows us to obtain the parameter of the
structure for the modelling.

level is low: these permanent black spots have been noticed by entomologists, who describe
them as random, their location and even number on the elytra varying on different specimens of
the same species. It could be assumed that water is trapped in these spots and cannot evaporate,
or—more plausibly—that the colouring structure is highly disturbed.

3. Scanning electron microscope images of the cuticle

The other elytron was used to prepare SEM samples. The cuticle (i.e. the external body cover,
usually composed of fibrous molecules such as chitin, the most common compound found in
insects’ exoskeletons) is very hard and immersion in liquid nitrogen allows the sample to be
broken with an increased chance of a neat fracture. The images were recorded with a Philips
XL20 SEM.

Figure6(a) reveals a spongy multilayer of some 3.7µm under a protective wax cover. Note
also that the outer part of the cuticle exhibits a number of straight cracks. It is assumed that, in
the dry insect, these cracks allow water to penetrate the elytron to wet the multilayer, destroy
the scattering strength of its components, and leave a clear view of the black substrate. As the
humidity decreases, the water evaporates through the same cracks and the structure returns to
its original greenish aspect. Note that the role of the cracks is not so clear with living animals:
a specimen ofDynastes herculessspherculeswas kept alive in the laboratory and the external
surface of its cuticle seemed hydrophobic enough to make external wetting rather difficult. The
living insect did appear completely black in some circumstances, but the exact conditions for
the occurrence of the black transformation are still uncertain.

Figure 6(b) indicates that the structure observed is more complex and disordered than
a multilayer. The colouring layer is structured as an array of strong vertical columns,
perpendicular to the cuticle surface, which supports a layered network of horizontal filaments
forming thin permeable plates. The separation between the vertical columns is not much larger
than the separation between the horizontal filamentary layers, so that this criss-crossed structure
should be classified as a 3D photonic crystal, if the disorder is put aside. The characteristic
of this structure is that the empty region is singly connected, as in artificial structures like the
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woodpile photonic crystal [27, 28], or in other natural structures like the tree-like shaped ridges
of theMorphobutterfly [29]. The structure’s fully connected empty space will propagate water
if the material surface (columns and filaments) is reasonably hydrophilic. The cuticle surface
of beetles can be either hydrophobic or hydrophilic, some insects presenting both characters on
the same individual [30].

Confirmation that this structure is at the origin of the colouration change is that a strong
mechanical stress applied on elytra causes a green region to become black. This suggests that
the stress drastically reduces the layer spacing to create an almost continuous medium and
this effectively destroys the reflector without any wetting. Unexpectedly, this destruction is
sometimes reversible: it has been observed that, when impregnated with water and then left
to dry, the green colouration reappears. This experiment has not been subjected to deeper study,
but its value as a mechanical memory effect should not be neglected.

The parameters needed to model the optical properties of the structure can be deduced
from the SEM images. The material is assumed to be mainly chitin, the basic compound in
insects’ exoskeletons. The columns, separated by a distance of 610 nm (± 15 nm), have an
average diameter of 412 nm (±5 nm) and a height of 3.7µm (± 0.015µm). There are nearly 10
permeable filamentary slabs with an average thickness of 174 nm (± 5 nm). These are separated
by hollow gaps with an average width of 197 nm (± 5 nm). These parameters will prove useful
for estimating the optical response, the subject of the next section.

4. Modelling the hygrochromic structure

4.1. Simplified model

For a low-index contrast multilayer, as in the present chitin–air structure, the location of the
frequency gaps can be predicted, so that the spectral range of the reflectance bands is known
[31, 32]. Near normal incidence, a multilayer of perioda develops gaps at wavelengths where
the average-index light line meets the Brillouin zone boundaries. These gaps occur at the
following wavelengths [18]:

λ =
2an

m
, (1)

wheren is the average refractive index of the structure (to be determined) andm is an integer
chosen so that the reflected wavelengthλ lies in the human visible spectrum. The period is
easily obtained from the SEM images:a = 174 + 197= 371 nm, i.e. the sum of the heights of
the two kinds of plates (chitin and chitin/air). The average refractive index is less obvious: the
precise homogeneization of an optical structure is a difficult problem that has been considered
in very recent works [33]. In the present work, due to the irregularity of the structure, we will
only produce estimates.

The first step is the evaluation of the refractive index of the chitin/air layers. Considering
the proportion of chitin and air in one layer, the dielectric constantε (n =

√
ε ) is given by the

average of the perpendicular component:

l

ε⊥

=
lch

εch
+

lair

εair

and the parallel one:

lε// = lchεch + lairεair,
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whereεch = 2.43 andεair = 1.00. According to the parameters obtained from the SEM images
(lch = 412 nm,lair = 610 nm), the dielectric constant of the chitin/air plates, obtained from an
average of the perpendicular and the parallel constants, is found to be equal toε = 1.445.

Using the same formulae, the average refractive index of the whole structure is obtained
from the dielectric constants of the chitin and chitin/air plates, with the new parameters (still
from the SEM images)lch = 174 nm for the chitin plates’ height andlair = 197 nm for the
chitin/air plates’ height. The constant isεch = 1.845 and so the refractive index is equal to
nch = 1.36.

With these parameters, equation (1) can be applied to the structure ofDynastes hercules.
With m = 1, the dominant reflected wavelength isλ = 1009 nm, which is beyond the human
visible spectrum and is consistent with the experimental infrared structure observed near 930 nm
in figure4. With m = 2, the wavelength isλ = 504 nm, which can explain the broad structure
near 580 nm which develops in the hemispheric reflectance. The agreement is not perfect, but
our model is highly idealized.

This simplified model shows its limitations when the spectrum of figure4 is considered.
In particular, equation (1) does not account for the lateral variation of the refractive index, due
to the presence of the array of columns that reduces the translational invariance. If we assume
that this corrugation is periodic, the component of the incident wavevector parallel to the cuticle
surface is not strictly conserved: a 2D lattice vector of lengthg can be added as the wave
propagates in the colouring layer. When this is taken into account, equation (1) is modified as
follows:

λ =
2an√

m2 + (ag/π)2
. (2)

This includes the reflection predicted by equation (1), for g = 0, but also reflections at shorter
wavelengths, wheng 6= 0. The effect of the lateral refractive index variation is then primarily
to distribute the reflectance on the blue side of the reflection band predicted by the planar
homogeneous layer model. In the present case, since the lateral index corrugation is not periodic,
the lattice parameter must be considered to be very large, and the reciprocal lattice vectors are
built on a reciprocal unit cell which is very small, compared to the vertical lattice spacinga. This
means that the added reflections associated with the infraredm = 1 form a continuous sideband
extending towards the blue, possibly accounting for the asymmetric lineshape observed in
figures4 and5.

In the next section, we bring a confirmation of this analysis from an independent point of
view, based on the calculation of the response of a full 3D model.

4.2. Optical response of a 3D model structure

By solving Maxwell’s equations, the reflectance spectra of a photonic-crystal film can be
obtained. The most direct approach is the transfer–matrix method [34, 35], which takes full
account of the multiple scattering in 3D and describes the ingoing and outgoing light as simple
plane waves with precise propagating direction and polarization.

The model (see figure7) is constructed with parameters determined from SEM images.
It is formed of columns of chitin, related to each other by thin bars, also made of chitin. The
structure contains a singly connected network of pores, to be as close as possible to the observed
structure.
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Figure 7. Model of the structure producing the colour of the elytra ofDynastes
hercules. The porous structure is formed of chitin piles linked to each other by
chitin chains.

Since no iridescence is observed in the measured sample, the reflection must be insensitive
to the incidence and emerging angles, as well as any azimuthal variation of the illumination and
viewing angles. We then calculate the hemispheric reflectance, and average over all possible
polar and azimuthal incidence directions. The loss of significance of the incidence and emerging
directions is related to the strong disorder exhibited by the real structure, and the presence of
a thick diffusive layer covering the colouring structure. This cover layer is represented in our
model by a planar 3µm thick clear slab, but the averaging over the propagation directions will
replace the diffusive properties.

Figure8 shows theoretical spectra produced by the model. The first curve labelledDry
structurecorresponds to the dry porous structure. The strong reflection band around 980 nm
found in figure4 is recovered. The sideband, due to the lateral corrugation is also present,
extending from 900 nm to about 500 nm. For the square lattice used in the present model, the
lengths of the shortest reciprocal lattice vectors are given byg = η(2π/b), whereb = 1022 nm
is the lateral square-lattice parameter, and

η = 0, 1,
√

2, 2,
√

5, . . . .

The 3D reflectance calculation shows that the infrared gap and its sideband essentially contains
contributions from the reciprocal lattice vectorsg0, g1, g√

2 and g2 which are predicted by
equation (2) to lie respectively, atλ = 1009, 816, 704 and 572 nm. The decrease of the
sideband towards the blue, down to about 500 nm, agrees well with the observation but the
ordered model exaggerates the contributions of higher gaps, in the blue and ultraviolet. In spite
of these discrepancies, the physical origin of the dry-state colouration of the insect as a 3D
photonic-crystal effect is clear.

The other curve, labelledWet structureis calculated from the same 3D structure, but the
empty spaces are now filled with water (refractive index 1.33). One can immediately note
the drastic fall of intensity in the whole human visible spectrum, producing the black colour
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Figure 8. Theoretical reflectance spectra of the structure studied. The solid curve
labelledDry structurecorresponds to the dry porous structure. The dotted curve
labelledWet structurecorresponds to the same structure filled with water. The
predicted values of the reciprocal lattice vectors are shown.

Figure 9. Theoretical reflectance spectrum of the structure studied assimilated to
a simple multilayer.

observed on the elytra under the high humidity level. All air/chitin interfaces in the model
become water/chitin interfaces, with a local normal reflectance that drop from 4.7 to 0.6%,
explaining the fact that the photonic-crystal structure loses the multiple scattering power which
allows the formation of gaps. The structure then becomes clear, leaving a free path for the
transmission of light to the absorbing substrate.

Figure9 shows a spectrum for an ideal planar multilayer with parameters (layer thicknesses
and refractive indices) consistent with our 3D model. There are no more chitin columns nor
filamentary plates, but the two kinds of homogeneous plates with effective refractive indices
alternate. The experimental band near 930 nm is retrieved, but the sideband is absent. The
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consequence is that no contribution to the reflectance appears in the human visible spectrum,
except for Fabry-Pérot resonances, due to the presence of sharp interfaces between the colouring
film boundaries. This emphasizes that, in contrast to many other natural photonic crystals, the
present structure colouration cannot be explained without the 3D structure inducing the sideband
of the infrared gap. Many 3D structures exist in nature, but many of them—on Lepidoptera like
Polyommatus daphnisor Coleoptera likeHoplia coerulea—produce zero-order lateral lattices
that do not provide the sideband described in the present work. The present optical device is
then of particular interest, even if its hygrochromic behaviour is neglected.

5. Conclusion

The change of colour of theDynastes herculesunder varying humidity is due to the penetration
of water into a 3D porous structure, attenuating the contrast of refractive index and leaving a
view of the pigmented absorbing substrate. This effect was observed and discussed several years
ago [17], but the present paper addresses the reverse engineering of this complex system in a
more complete way and clarifies several aspects of this hygrochromic effect.

The current knowledge of this system was supplemented by new, higher-resolution, SEM
images and by optical reflectance measurements. The physical analysis of this structure, assisted
by numerical simulations, has shown that the structure cannot be assimilated to a simple 1D
multilayer, but that its understanding requires a fully 3D treatment. This seems to be rather
exceptional: 3D-photonic crystals found in nature (among those studied by the authors) can be
viewed, in a first approach, as 1D multilayers. In the present case, reducing the structure to a
multilayer leads to the complete loss of the khaki-green colouration displayed by the beetle.

Hygrochromic behaviour could be an important property of an ‘intelligent’ material. Such
materials could be put to work as humidity sensors, perceptibly changing colour according to
the hygrometry level. This could be useful for example in food processing plants to monitor the
moisture level. Since optical properties can be transferred to other radiative spectral ranges by
scaling the structure lengths up or down, hygrochromic materials could also find thermal uses.
Microporous materials, such as natural zeolites, have been used as building blocks [36], with
the added benefit of temperature stabilization.
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Appendix

In this appendix, we give a brief justification of equation (2), which is fundamental to the
present analysis. We consider a semi-infinite photonic-crystal film with a ‘vertical’ periodicity
a (in the direction normal to its surface, set to thez-direction). The lateral (parallel to the
surface) periodicity is given by the 2D lattice vectorsEa1 andEa2, which generate the reciprocal
lattice vectorsEg. We consider the case where the incident light falls along the normal, so that
its wavevector has no lateral component. The wavevector inside the material has a normal
componentkz and, due to diffraction by the lateral periodic structure, a lateral component
Ek‖ = Eg.

As the wave angular frequencyω is conserved, the norm of the effective wavevector in the
photonic crystal is given by

|k|
2
= k2

z + k2
‖
= n2ω2

c2
,

wheren is the average refractive index of the whole structure. The condition for the opening of
a gap in the backscatter (z) direction is that the ‘vertical’ wavevector lies at the boundary of one
of the extended-scheme Brillouin zones, at

kz = m
π

a
,

wherea is the period of the photonic crystal normal to its surface. Putting this together gives us

n2ω2

c2
= m2π2

a2
+ g2.

It follows immediately that

λ =
2πc

ω
=

2an√
m2 + (ag/π)2

.
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