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Introduction

General Introduction

Historical development of the notion of Causality

The concept of causality has been, in the past decades, the subject of many debates
in all fields of Sciences, as the development of new tools and theories highlighted the
complexity of Nature. As new tools were developed, the increasingly detailed repre-
sentation of our environment asked for new methodologies able to provide a deeper
comprehension of the underlying mechanisms that govern Nature. The concept of
Causality and even its existence has become a crucial question in modern Science.
We propose in a series of essays to contribute to this growing literature by looking at
the question of causal relationships identification and characterization in the field of
Finance and Econometrics. Our approach will be both methodological and empirical
with the development of new methodologies to infer causal links, and their application
to financial time series to better apprehend the relationships between agents in finan-
cial markets.

The notion of causality is particularly difficult to grasp as its definition is multiple
and evolved in time. The first proper theory of causality dates back to Aristotle who
conditioned the knowledge of a thing on the definition and understanding of its causes
1. In his Physics II, Aristotle highlighted, based on critical examination of the work
of his predecessors and the study of natural phenomena, four types of causes that
underlie everything that requires an explanation, from natural phenomena to human
action (Falcon, 2011):

e the material cause ("that out of which something is done")
e the efficient cause ("the primary source of change or rest of something done")
e the formal cause ("the form of what is to be done")

e the final cause ("that for the sake of which something is done")

'Posterior Analytics, APost. 71 b 9-11., 94 a 20
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The final cause has been introduced to account for the regularities observed in Nature
and the adaptations found throughout the fauna and the flora. The Aristotelians were
particularly concerned with the goal-directed process which could have produced these
regularities and adaptations to the environment. This theological approach has then
been central during the Medieval time where God, as the creator of our World, was
always considered as the main actor. So the question of causality could often reduce
to knowing if God could have created a World in which a specific causal relationship
could be observed. A good illustration is given by the work of Thomas Aquinas who
proposed a specific hierarchy for Aristotle causes: first the final causes, then the ef-
ficient causes followed by the material causes and finally the formal causes (May, 1970).

During the scientific revolution initiated partly by the work of Francis Bacon, the
meaning of the word "cause" changed and narrowed to the concept of efficient cause
which was more convenient for scientific investigation. David Hume gave the first
modern definition of causality using six assertions(Hume, 1738):

e "The cause and effect must be contiguous in space and time."
e "The cause must be prior to the effect."
e "There must be a constant union between the cause and effect"

e "The same cause always produces the same effect, and the same effect never
arises but from the same cause. This principle we derive from experience, and is
the source of most of our philosophical reasoning."

e "Where several different objects produce the same effect, it must be by means

of some quality, which we discover to be common amongst them."

e "The difference in the effects of two resembling objects must proceed from that
particular, in which they differ."

Nevertheless, the position of Hume on the ability of human to have certain knowledge
of causal relations was that there is nothing more to causality than the regular sequence
of phenomena and that such a regular sequence cannot give a necessary connection; in
consequence certainty could not be reached (White, 2013). Despite the fact that for
Hume neither logic nor experience gives us secure grounds from causality inference,
his assertions have inspired the different definitions of causality we use today, such
as the two principles behind the definition of Granger causality (Granger, 1969), the
cause happens prior to its effect and the cause has unique information about the future
evolution of its effect. We will come back to this specific definition of causality, as it

will represent the starting point of many of the development proposed in this thesis.
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Other approaches have been derived from the theory developed by Hume, such as
the counterfactual theory of causation whose main idea was proposed by Hume itself
in his Enquiry Concerning Human Understanding (Hume, 1748): "We may define a
cause to be an object followed by another, and where all the objects, similar to the
first, are followed by objects similar to the second". Nevertheless, Hume never really
explored this alternative counterfactual approach to causation. The main idea behind
the counterfactual causation is that causal link may be defined in terms of counterfac-
tual conditionals of the form "If A had not occurred, B would not have occurred". The
main difficulty with this theory of causation is the definition of suitable counterfactuals.

Closer to the principles used in this thesis, the probabilistic theory of causation has
benefited, in the past decades, from a growing interest among researches in disciplines
such as statistic, Economics, machine learning or artificial intelligence (Berzuini et al.,
2012), as it eased causality inference by reducing, to a certain extend, causality to
probabilities. According to researches such as Suppes (1970), this theory defines a
causal link in terms of the ability of a cause to increase the probability of observ-
ing its effects, everything else being equal. However, for Pearl (2000a) this vision is
too close to the counterfactual approach and shares the same problems. Therefore
Pearl (2000a) proposes instead to replace the inequality P(effect | cause)> P(effect)
by P(effect|do(cause))> P(effect). This means that instead of simply comparing the
probability of occurrence of the effect when the cause is observed, we should rather
consider the probability of observing the effect when the cause in voluntarily applied
and not simply passively observed. We can derive from Pearl’s vision the famous quote

" 2 in other word, counting the number of

that "correlation does not imply causation
lung cancer cases among smokers and the ones among non-smokers is not enough to
infer a causal link. Randomized experiments are needed to be able to infer a proper

causal link.

Causality in Sciences

As the earliest definitions of causality have been derived to study the fundamental
laws of Nature, we propose to start our investigation by looking at how causality is de-
fined and used in Physics. We will then move to other fields of Science and eventually
examine in more details its use in Finance and Econometrics. This broad analysis will
help us to understand how these precursory approaches to causality have influenced
its conceptualization in Finance and Econometrics.

2The phrase is generally attributed to Karl Pearson
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The explanatory ambition of physical sciences accounts for the ancient idea that ev-
erything may be explained by understanding the underlying laws of Nature. This idea
led to the concept of causal determinism which implies that once the laws of Nature
have been defined, every event may be explained by antecedent events together with a
set of laws of Nature. As stated by Laplace (1820): "We ought to regard the present
state of the universe as the effect of its antecedent state and as the cause of the state
that is to follow. An intelligence knowing all the forces acting in nature at a given
instant, as well as the momentary positions of all things in the universe, would be
able to comprehend in one single formula the motions of the largest bodies as well as
the lightest atoms in the world, provided that its intellect were sufficiently powerful
to subject all data to analysis; to it nothing would be uncertain, the future as well as
the past would be present to its eyes. The perfection that the human mind has been

able to give to astronomy affords but a feeble outline of such an intelligence."

Nevertheless, beyond theological consideration, 19th and 20th century mathematical
studies showed convincingly that neither a finite, nor an infinite but embedded-in-the-
world intelligence may have the computing power necessary to predict future states
of the entire world (Hoefer, 2016). Moreover, the development of Chaos theory which
demonstrates the sensitiveness of certain types of determinist causal structures on
initial conditions questioned the possibility of predicting future states for even small
systems. Another salient feature of Chaos theory is the fact that the outcome of a
chaotic system even if described by a deterministic causal structure could effectively
mimics a random or stochastic process. It makes it very difficult, even impossible, to
infer from certain systems a proper causal structure as in some instance we cannot for-
mally distinguish a deterministic system from an indeterministic one. This difficulty
has been raised by Suppes (1993) who states that: "There are processes which can
equally well be analyzed as deterministic systems of classical mechanics or as indeter-
ministic semi-Markov processes, no matter how many observations are made."

It implies that we may never be able to fully explain the behavior of our universe or
even detect certain types of causal patterns. This leads to the question of causality
legitimacy in Physical theory. Since the famous quote of Russel in 1913 "The law of
causality, I believe, like much that passes muster among philosophers, is a relic of a
bygone age, surviving, like the monarchy, only because it is erroneously supposed to
do no harm", issue have been raised on the actual existence of causality in Physics.
Indeed, Norton (2003) argues that causation even fails to hold for simple systems de-
scribe by Classical mechanics. He considers a ball at the top of a frictionless dome
whose motion equation is dependent on the radial distance from the top. He argues

then that following the first two laws of Newtonian mechanics that there exists more
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than one solution 3, meaning that the system fails to be deterministic or causal. 4

However, Zinkernagel (2010) demonstrates in his paper that the considered mass does
not respect the first law of Newtonian mechanics in the demonstration proposed by
Norton and advocate that there exists a clear ’causality content” in Newton’s first two
laws: "A body in uniform motion continues its motion unless the body is caused (by
a force) to change its motion (accelerate). The same causes (forces) acting in the
same circumstances will have the same effects." The debate is still open, but many
researchers shared the vision of Zinkernagel.

In special relativity, most of Newtonian mechanics is still valid as long as the effect of
speed is taken into account via the Lorentz transformation. Therefore, special relativ-
ity shares the causal content of Newtonian mechanics as both theories have the same
static, unchanging space-time structure. In addition, the fact that no object could
travel faster than the speed of light restricts the causes to be considered for a specific
effect. Indeed, causality in Special relativity implies that a cause cannot generate an
effect which is not in his front light cone (future) in the Minkowski representation.
Therefore causal influence cannot travel faster than the speed of light and can occur
only from the past to the future.

To get a clearer view of the implication of special relativity on the importance of
causality in the comprehension of our environment, let’s look in more details at the
effect of speed on the relative distance and time between events seen by different ob-
servers. As in the Newtonian mechanics, standard rods and clocks may be defined in
special relativity. These standard measures permit the definition of time intervals and
distances for observers with relative speed. Through the effects described by special
relativity, distances and time intervals between the same two events varies from one
observer to the other depending on their speed. Even the order between events could
change in special cases.

The introduction of the concept of space-time is therefore necessary to reach an ob-
jective reality, i.e. a universal agreement about distance and time between events.
Indeed, when using the definition of space-time, we get only one position and one time
for every events which allows to reach, through the definition of space-time intervals,

a universal agreement about the sequence of event. Space-time intervals are defined

3The equations possible outcomes are not confined to the ball staying at rest on the top of the
dome, the ball falling is also a valid solution of the equations.

4Newton first two laws state that: "Every object in a state of uniform motion tends to remain in
that state of motion unless an external force is applied to it" and that "The relationship between an
object’s mass m, its acceleration a, and the applied force F is F' = ma".
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by the following equation: S.I. = (dz? — (cdt)?) which includes a subtraction meaning
that we could get a positive, zero or negative space-time interval. If we get a positive
space-time interval, this means that no information can go from one event to the other
and we cannot reach universal agreement implying that there will always be observers
who disagree on which events happens first. If zero or negative, it means that there can
be a transfer of information between the events and everyone agree on the sequence
between these events®. This suggest that even if we do not agree on distance, time,
past, future or present, the only thing that we could know for sure about two events is
their ability to influence each other. This means that causality which corresponds to
negative space-time interval is the only thing that we could agree on. Time is there-
fore not responsible for causality but causality is responsible for time as we agree on
temporal distance only thanks to causality. Causality has therefore a central role in

this space-time vision of reality (Winnie, 1977).

The other major theory of the 20th century in physics is Quantum mechanics which
raised different questions about causality due to its probabilistic approach. At first
sight this theory seems to be acausal as the same cause could lead to different out-
comes. But we know from non-relativistic Quantum physics that a physical system is
described by wavefunction resulting from the Schrédinger equation which is fully deter-
ministic. The final outcome nevertheless depends on the measurement of the system.
Physicists have postulated that this measurement led to an indeterministic collapse
of the wavefunction with probabilities for the different outcomes (Hoefer, 2016). The
Probabilistic theory of causation tells us then that it should exist a causal structure, as
outcomes without any causes could not be predicted even probabilistically. As Pratt
(2003) states: "quantum systems certainly behave unpredictably, but if they were not
subject to any causal factors whatsoever, it would be difficult to understand why their
collective behavior displays statistical regularities". This raises the question of deter-
mining the existence or not of a definite causal structure pre-existing the measurement.
The theorems developed by Kochen and Specker (1967), and by Bell (1964), the fa-
mous Bell inequallities, imply that quantum mechanics is incompatible with physical
observables possessing pre-existing hidden values determining the potential outcome of
the physical observables measures. But does it hold for causality structure (Brukner,
2014)? Hardy (2005) developed a new framework to address this question by defining
causal structures that are both dynamical to account for the effects of general rela-
tivity, and indefinite like quantum observables. This new framework is based on the
definition of the ’causaloid’ which represents a mathematical object regrouping infor-
mation about the structure of causal relations between two point of space-time.

5This result confirm the fact that an effect has to be in the light cone of its cause
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Despite the different theories addressing the difficult question of measurement, the
question is still open and affects other field of Science such as Neuroscience where
it relates to the notion of consciousness. Indeed as mentioned earlier, the standard
interpretation of quantum physics implies that all objects in our environment exist in
an objective, unambiguous state only when they are being observed, measured (Pratt,
2003). Many scientist and philosopher highlighted the importance of consciousness
to solve the measurement problem ( Wigner (1962); Eccles and Popper (1977); Toben
(1974); Faber (1986) to quote only a few). The specific outcome is causally determined
by the measurement done by a conscious observer. A large part of the literature has
been devoted to the relationship existing between the concept of causality and pro-
cesses of consciousness (see among others Kafatos and Nadeau (1990); Corbi et al.
(2000); McGinn (2004)). Despite the fact that this standard interpretation appeals to
notions too anthropomorphic (i.e. measurement and consciousness) and seems too ad
hoc to be a fundamental law of nature; it nevertheless influenced numerous researchers
in their quest to define the relationships between mind and brain and how classical and
quantum causality work at both levels (see Wurzman and Giordano (2009); Thompson
(1990))

Beyond these philosophical aspects of Neuroscience, other researches have been de-
voted to the understanding of the processes at work to acquire, maintain, and utilize
an up-to-date system of causal information and to infer, from this system, effects from
potential causes (Patterson and Barbey, 2012). Closer to what we will do in this the-
sis, a large body of the literature in neuroscience relates to the understanding of the
brain functions in terms of transmissions between parts of the brain or even between
neurons. The inference of causal link between parts of the brain permits the charac-
terization of the functional circuits which underpin important brain functions such as
perception, cognition, behavior, and even consciousness (Seth et al., 2015). The tools
used to study such functional circuits are very close to the ones we study and develop
in this thesis, as they use mainly time series as raw material to investigate the causality
structure. As systems such as brain are very complex in terms of causal structure, dif-
ferent levels of precision or representations of causal structure are possible. Functional
connectivity aims at describing the dependencies between a set of variables without
making any hypothesis about the underlying causal structure producing the observed
patterns. On the contrary, the effective connectivity tries to provide the simplest
causal structure able to describe the observed patterns in the set of selected variables
(Friston et al., 2013). While functional connectivity relies on simple pairwise causality
measures such as the one based on Granger principles, effective connectivity asks for
more elaborate strategies to keep only the more relevant causal links. This could be
achieved by comparing how well different causal structures describe the time evolution

of the set of selected variables or by adopting pruning approaches such as Lizier and
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Rubinov (2013); Pearl (2000b); Spirtes et al. (2000) which tries to retain only the most
valuable causal links.

These kinds of approaches are also well established in Biology especially in genetics.
In a nutshell, two sets of causes may be identified in Biology, the proximate causes
which represents responses to the environment and the ultimate causes which are re-
sponsible for the genetic heritage via the evolution processes. If we recall Aristotle
and his interest in the comprehension of Nature, we may postulate that his definition
of final cause derives directly from the incredible adaptively of the living things and
that this definition of final cause inspired biologist for their ultimate causes. The main
limitation in the identification of ultimate causes comes from the characteristics of evo-
lution such as the randomness of mutations, the uniqueness of every biological entity
or the emergence of new qualities through reproduction (Mayr, 1961). The functional
approach tries, in contrast, to identify proximate causes, i.e. how a specific genotype
causes certain phenotype. This approach shares therefore a lot with the methods de-
veloped in Neuroscience . However, the functional approach is not immune to specific
problems. Indeed, this approach does not treat simply the question of how genes in-
teract and produce the observable outcomes, a more complete view of how the cell is
organized is necessary. Once the structure of the DNA is taken into account, other
regulatory elements interact with the DNA sequences to determine which protein has
to be produced. Indeed, both the cell and its environment should be considered in
addition to the DNA to understand the production of proteins (Noble, 2008). We
see clearly here than we cannot simply look at the relationship between genotype and
phenotype, a complex environment has to be considered. The same issues arise in
Climatology where different types of factors interact to form a very complex system
including feedback loop. Beyond the usual simulation approach, new methodologies
based on causal theory emerge to analyze these systems from a different perspectives
(see van Nes et al. (2015); Hassani et al. (2016))but also to go beyond the usual cor-

relation analysis (van Nes et al., 2015).

Causality in Finance and Economics

We have so far highlighted the central role of causality in many domains of Science,
and the questions it raises. Let’s now look at its implication in the disciplines which
will be at the core of this thesis, the Economics and Finance. If we recall the four
types of causes proposed by Aristotle, material and formal causes are the most funda-
mental for economic ontology for many philosophers of Economics (Méki, Cambridge
University Press). However, the influence of physics is such that in practice the con-

cept of efficient cause is often preferred by practitioners (Bunge, 1963; Hoover, 2008).
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As illustrated by the title of the seminal work of Adam Smith "An Inquiry into the
Nature and Causes of the Wealth of Nation" (Smith, 1776), causality has always be
one of the main preoccupations in Economics. David Hume also emphasized the role
of causation in public affairs, i.e. Economics (Hume, 1742), even if as we have seen ear-
lier his vision about the possibility of causal inference was relatively skeptical. Other
economists such as John Stuart Mill had a more positive view of causality inference
but was more skeptical about its use in Economics as he states in his Political Economy
(Mill, 1848) that Economics was an "inexact and separate Science". He considered
Economics as a Science where the guiding principles were essentially known "a priori"
through the definition of ceteris paribus clauses (see Hausman (1992)). As we will
see later, this vision of causality had a profound impact on the way causality will be

treated in Economics.

In the late 19th and early 20th century, researchers such as Francis Galton and Karl
Pearson set the foundation of modern statistical science with the development of con-
cepts such as correlation (Galton, 1888; Stigler, 1989), standard deviation, regression
analysis or the method of moments (Walker, 1975; Pearson, 1900). The notion of
correlation or statistical significance in regression analysis (Edgeworth, 1885), relates
directly to the notion of causality. However, in contrast with simple correlation the
statistical significance of a coefficient in a regression provides further information about
the direction of the relationship and is therefore closer to the notion of causality. The
development of new theories in Economics, in the early 20th century, led to the vi-
sion of a partial or general equilibrium ruling the economy (Marshall, 1930; Walras,
1954). This implied simultaneity in different processes, such as the definition of price
and quantity, which questions the possibility of inferring causal relationships. Indeed
simultaneity leads to a symmetric relation in term of statistical significance, i.e. a prob-
lem of observational equivalence resulting in the now familiar problem of identification
in econometric. The identification problem relates for example to the definition of the
supply and demand curves of any goods, knowing only the price and quantity, which is
impossible without any other knowledge about the underlying process as the price and
quantity are defined simultaneously. This identification problem has been addressed
by the Cowles Commission in the fifties (Koopmans, 1950; Hood and Koopmans, 1953)
which proposed to rely on additional causal determinants that discriminate otherwise
simultaneous relationships (Hoover, 2008). These additional parameters could be, in
the case of milk, hay price for the supply curve and the period of the year for the
demand curve (higher consumption in winter for hot chocolate and in summer for ice
cream). In the econometric language, these additional parameters are called exogenous
variables while the parameters of interest are called endogenous. Even if, at first sight,
causality seems to be pushed at the background in this identification process, we can

emphasize that the discrimination is only possible if the endogenous parameters are
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causally determined by several exogenous parameters, i.e. the discrimination is done
via the identification of causal relationships.

In addition to the approach proposed by the Cowles Commision which is referred as
"structural" as it implies an underlying structural model describing the evolution of
the endogenous variables, other approaches have been proposed. The "process analy-
sis" approach relies on the asymmetry of causality stressed by the condition of Hume
"The cause must be prior to the effect" (Morgan, 1991). This second approach has
gained interest only in the nineties, the structuralism being preferred since the Cowles
Commision (Hoover, 2004). In addition to the differentiation between ’structural’ and
‘process’ approaches, Hoover proposed two other distinctions in the causal theories
developed in Economics and Econometrics, the approaches which relies on an ’a pri-
ori’ identification of the relationships to be considered and the ones which try to infer
causes directly from data.

The ’a priori’ structural approach is the one that has been proposed by the Cowles
Commision with the term ’a priori” implying that assumptions are made on the un-
derlying causal structure. The inferential structural approach which derived partially
from the framework developed by the Cowles commission, has first been proposed by
Simon(Simon, 1953) in 1953 and then further developed by Hoover (1990, 2001) to
nonlinear systems of equation found in modern rational-expectations models. The
main idea is to infer causal structures not on the basis of temporal dependence but by

considering recursive process. Let’s look at the following bivariate system:

Ty = ﬁyt‘f‘ﬁi (1)
W= € (2)

Where ¢} and €? are independent white noise.

Following Simon, in this bivariate system Y causes X, as Y is recursively ordered
ahead of X. Indeed, we need to know the value of Y to determine the value of X but
we know everything about Y without knowing X. Y could therefore be used to control
the outcomes of X. Nevertheless, we still face a problem of discrimination. Indeed if
we consider now the related system described by:

Ty = ftl (3)
o= az+ & (4)
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Where o = Bo%(e2)/(5%0%(€2) + o2(€})), & = € + Be? and & = (1 —af)e? — ae; where
¢! and &7 are uncorrelated and 0?(d) represents the variance of 4.

This second system provides exactly the same form as the first one, once the two ex-
pressions are expressed in terms of €] and 7. However, considering the second system,
the previous causality criterion indicates that X causes Y although the reverse is true
once we express in term of €} and €. How can we determine the true direction of this
relationship? This observational equivalence problem which called previously for an ’a
priori’ knowledge of the considered model structure, is treated by Simon via controlled
or natural experiments on the data. If it is possible to modify, via an experiment, the
distribution of Y conditioned on X without modifying the marginal distribution of X,
we would face the structure of the second system where X causes Y. It would indeed
involve a modification of either a or & without affecting &!. The fact that Simon rely
on experimental data explains why his approach is referred to 'inferential’ rather than

"a priori’.

One of the most used and known causal approaches is due to Granger (1969) who pro-
posed an ’inferential process’ approach relying on two assertions we already mentioned:
the cause happens prior to its effect and the cause has unique information about the
future values of its effect. In contrast with the inferential structural approach, the
Granger causality focuses on temporal dependence to infer a causal relationship be-
tween two variables. Suppes (1970) consider this approach as a remarkable example of
the modern probabilistic approach to causality in line with the theory proposed in the
18th century by Hume. Indeed the main definition of Granger causality implies the
following rules: considering two stationary ergodic processes X; and Y}, it is said that
Y Granger causes X if P[xyy1 € A|Q] # Ploi € Al — yi] with ; representing the
amount of data available to describe x;,1. It implies that if X can be better predicted
using the past values of Y and X rather than sole past values of X, Y Granger causes
X. The operational definition proposed by Granger (1969) relies on the following lin-
ear regression model:

. = Po+ Puzi—1 + By + & (5)
Yy = Bo+ Pazi—1 + Boyi1 + € (6)

With Y Granger-causing X if 515 # 0 and X Granger-causing Y if 85 # 0. While
Granger-causality imply, in general, inferential structural causality the reversed is not
true. Indeed taking the structural form of Eq.3 and 4, we get the following system of

equations:
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Ty = Oy + Pruri1 + Py +a (7)
Y = YT+ BuTi1 + Py + € (8)

If we are interested in knowing if Y causes X, we see that structural causality implies
that either 6 or 15 must be different from 0 in order to observe a causal link. While for
Granger causality, Y is considered as causing X if 15 + 6320 # 0 (Hoover, 2008). This
means that if f15 = B2 = 0, Y does not Granger cause X although Y still structurally
causes X as long as 6 # 0.

While the "a priori" structural approach does not make any clear reference to empirical
reality when considering causal processes, the "a priori" process approach proposed
by Zellner (1979) sides with Granger on the necessity of predictability in causal attri-
bution (process). Zellner’s vision of causality is close to the one developed by Feigl
(1953) who understand causality in terms of predictability according to law. Therefore
Zellner departs from Granger definition and sides with Simons on the importance of an
underlying structure in order to discriminate causal laws from false causal generaliza-
tions. His definition of law is not as rigid as in physics or mathematics. He considers a
law as a probabilistic description of a succession of states of the world (Hoover, 2008)
and follows therefore a Bayesian approach of inference on which he apply a specific
framework to reduce the possible range of causal relationships to consider (Savage’s

"small world" assumption (Savage, 1972)).

Not all causality definitions fit in one of these four categories and other approaches
have been proposed. One good example of a methodology that lies at the edges of two
categories is the structural VAR of Sims (1982, 1986). This approach is an evolution of
the VAR (vector auto-regressive) model proposed by Sims, which considers the effect
of a shock on several variables to assess a causal structure. As in the Granger causality
framework, it relies on the error terms of linear regressions but here the focus is put
on the error terms reflecting the shocks. These error terms being rarely independent,
an orthogonalization process is needed to obtain a diagonal covariance matrix. This

was done by considering a recursive model in the vein of Simon.

Yt = P11 + Prri1 + € (9)
Yt = VT + Pati1 + BT + € (10)
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This solution implies the arbitrary choice of a recursive order by considering Y in the
set of explanatory variables of X, or the reverse. This explain the term ’structural’
in the SVAR specification as we have to consider which of 6 and v in Eq. 7-8 have
to be set to zero (see Eq.9-10 for the two cases applied on Y). Even if it relies on
the VAR approach, this model is therefore closer to the ’a priori’ framework than to
the inferential one and could be considered as a semi-structural approach as only the
structure of contemporaneous variable have to be specified, not the structure of the
lagged variables, i.e. the 5 (Hoover, 2008). Different orthogonalization processes have
been proposed, such as the cholesky-factor orthogonalisation where the first variable
to be considered is only affected contemporaneously by its own innovations, the second
is then affected contemporaneously by its own innovations and by the first variable

and so on until the last variables.

Another class of methods that have been developed outside Economics but have been
recently extensively used in Finance and Economics relies on Graph-Theory (Pearl,
2000b; Spirtes et al., 2000). If the underlying graph model is undirected, the model is
referred as a Markov random field while for directed/causal model we rather refer to
as a Bayesian network. The main idea behind the concept of Bayesian network is that
any system may be represented by a graph in which each causal relationship is identify
by an arrow indicating the direction of the information flow (Selva and Hoover, 2003)
and represented by a joint probability distribution. Double-headed arrows represent
simultaneity while simple arrows identify causal structure. By considering an entire
system instead of pairwise relationships as previously, we get closer to network theory

by considering the complex environment around each individual node.

These methods developed in Graph-Theory rely primarily on pruning steps, by con-
sidering first a complete graph where every nodes are connected and applying a set of
rules to remove non causal links. These rules are based on probabilistic dependence
or independence tests which often use conditional correlation measures. Indeed the
causal links are not inferred from temporal relationships but by the results of the inde-
pendence test. For example, if we consider the following relationship A— > B— > C,
before any test of independence we should see a probabilistic link between C and A,
but once conditioned on B this relationship disappear and A and C are considered
as independent. The PC algorithm developed by Spirtes et al. (2000) is the most
illustrative example of this type of methods. It starts by considering a fully connected
graph and applies on it an independence test on each pair of variables via a correla-
tion measure. Once done, it applies on every pair of variables, a series of conditional
independence test, using variables in the close environment as conditions, in order to
remove the possible redundant links. The different methodologies that have developed
in Graph-Theory to treat the question of redundancy are mainly based the definition
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of a set of Formal Logic propositions. In this framework, the different nodes represent
the alphabet of the logic whereas the existence of a relationship between these nodes
depends on a set of function and logic connectors. However, Graph-Theory departs
from Formal Logic by its ability to treat relationships in a probabilistic way while For-
mal Logic considers that a proposition is either true or false. The pruning algorithms
developed in Graph-Theory are called DAG which stands for directed acyclical graph
meaning that we assume the existence of only recursive structures inside the graph
although variables could often present cyclicality in Finance and Economics.

An alternative approach based on the same idea of pruning steps is the general-to-
specific method which has its roots in the work of Sargan (1964) but was further devel-
oped and popularized by David Hendry and Hans-Martin Krolzig (Hendry and Krolzig,
1999, 2001). As with the PC algorithm, the identification of significant variables stems
from the application of a well-designed simplification algorithm which starts with a
pre-search stage and then sequentially dropping or adding variables based on a spe-
cific testing procedure. In contrast with Graph-Theory, the simplification procedure
is often based on a VAR specification. Hendry improved with several co-authors, this
procedure and apply it successfully in a series of influential time-series studies treating
aggregate demand-for-money and consumption functions (e.g., Davidson et al. (1978);
Hendry and Mizon (1978)). Hoover and J. Perez (1999) further explicit the guidelines
used in the simplification algorithm and adopted a multi-path strategy by considering
all possible initial paths to avoid 'path dependency’. Indeed by considering only one
path, such as successively removing the variable with the lowest absolute t-value, the
simplification algorithm could result in the suppression of relevant variables. Different
paths are therefore confronted to create a terminal model following specific criterion.
The simplification is then applied once again on the last terminal model until either
every path provides the same result or no more simplification are possible.

Going back to pairwise relationships, despite the high number of approaches that have
been proposed in the literature, the framework developed by Clive Granger is probably
the most prominent source of inspiration in the recent development of new causal-
ity measures in Economics and Finance. Indeed numerous approaches deriving from
Granger’s definition of causality have been proposed in the past decades to analyze
different types of information transmission, by considering for example the volatility
rather than the usual mean with methods such as the variance decompositions devel-
oped by Pesaran and Shin (1998) and further improved by Diebold and Yilmaz (2014)
as a connectedness measure or the LM (Lagrange multiplier) test of Hafner and Her-
wartz (2006). The LM test has been constructed specifically for causality in variance
through the adaptation of the general Lagrange Multiplier misspecification test, intro-
duced by Lundbergh and Terasvirta (2002), to the estimation of univariate GARCH
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(1,1) models. Other methods extend the linear regression specification of Granger
causality test in order to look at specific causal patterns, such as non-linear causal
relationship with the development of regime switching Granger causality (Psaradakis
et al., 2005b) based on the Markov regime switching specification, the Multivariate
Granger causality proposed by Barrett and Barnett (2010) to cope with relationships
between systems composed of more than one variable or the MIDAS Granger causality
developed by Ghysels et al. (2016) which is devoted to mixed frequency data.

Outside Finance and Economics, several methods deriving from Granger notion of
causality have been designed based on concept borrowed from different field of science
such as Information theory or statistical physics. One of these measures, which will be
extensively used in this thesis, is the transfer entropy which has been first proposed
by Schreiber (2000). The definition of transfer entropy borrows, for the Information
theory developed by Shannon (1948), the concept of information entropy which repre-
sents a measure of the information content of a system, i.e. the amount of information
needed to describe the configuration of a system. Shannon was the first to proposed a
physical definition of the concept of information which became a measurable quantity
via its entropy. As we will see in more details in the next chapter, transfer entropy is
based on the comparison between two conditional information entropies. In the first
one, the entropy of the series of occurrences representing a variable X is conditioned on
it past observations, while for the second one the entropy of X is conditioned on both
the past of X and the past of Y. If we observed a reduction of entropy when know-
ing the past of Y it implies that there is a transfer of information from the variable
Y to the variable X. Thanks to the definition of transfer entropy, the links existing
between systems may be seen as transfers of information, a more broad notion than

causal relationships as it encompasses a notion of quantity rather than only probability.

Research approach

We have seen so far that causality was a central question in many domains of science
and most of the visions that have been developed around this question are inter-related.
Indeed, each discipline provided a piece of the causality puzzle. While Newtonian and
special relativity highlighted the central role of causality in our understanding of how
our environment evolves, quantum mechanics led to a probabilistic approach of causal-
ity. This probabilistic vision played a crucial role in the development of measures, in
Finance and Economics, to study causal relationships. Other fields of science brought
elements to the discussion, such as biology, neuroscience or information theory which
rely, as Finance, heavily on time series. In addition, by considering highly complex

systems, i.e. the brain or genes, these disciplines had to consider not only trans-
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missions between pairs of variables but look at the broader picture and consider the
impact of their environment leading to the concept of network which is used nowadays
in various fields from the understanding of social networks to the definition of power
grid reliability. All these complementary visions of causality ask for the development
of inter-disciplinary approaches. This explains why it is so important to consider not
only the history of causality and the measures developed so far in Finance and Eco-
nomics, but also look at what has been done in other fields of Science. We propose
in this thesis to adopt this interdisciplinary approach which will allow us to develop
new methodologies in order to address some fundamental questions in Finance such
as the comprehension of how the current financial system works and how the complex

inter-relations existing between its members could affect its stability.

Beyond the question of the definition of valuable sources of inspiration for the devel-
opment of new methodologies to infer causal links, let’s consider the epistemological
framework that will be used throughout this thesis. The definition of such an episte-
mological framework is necessary to determine how knowledge may be produced and
how this knowledge may be justified. There are three important dimensions of the
Epistemology (Taskin and de Nanteuil, 2001): the validity of the scientific knowledge,
the meaning of the knowledge, and the limits of the knowledge. Different paths have
been proposed since the Renaissance to develop a theory of knowledge that could
answer those three aspects. The positivism seems the most dominant approach in
Finance and Economics (Friedman (1953) or Frankfurter (2007) among others) but
other trends have affected these fields of Science. The positivist approach is inductive
as it uses observed facts to create a new theory and then test it through the experience.
Methodologies developed in Finance follow partly this approach, as they often rely on
market data in order to proposed new theories about how the economy works. The se-
ries of essays proposed in this thesis follows this mainstream current of thought, as the
development, the validation and the application of the proposed models will be mainly
data driven. However, the proposed approaches goes beyond positivism, considering
the importance of the validation processes throughout the different chapters of this
thesis. We side rather with Popper, highlighting the importance of the falsifiability
of every models which determines their ability to provide useful knowledge about the
evolution of financial systems.

However, both the positivism and the falsificationism have several limitations in Fi-
nance and Economics. A first limitation is related to the validity of the many as-
sumptions on which financial models are based in order to simplify the underlying
complex process and be able to represent it. Indeed, ideological influences act on the
assumptions selection process (Frankfurter and McGoun, 1999). We therefore draw

away from the positivist approach to get closer to the structuralist one where the
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development of new knowledge depends on its own field and on the place one has in
this field. As Frankfurter and McGoun (1999) pointed out, modern Finance seems to
follow this trend and to be trapped in an epistemological approach impregnated by
ideologies which favors specific approaches and limits the innovation. Considering the
interdisciplinary approaches that we proposed to follow in this series of essays, we try
to draw away from the mainstream approaches proposed so far in Finance to infer
causal links. We propose indeed to consider the limitations of the current causality
measures used in Finance and look at approaches deriving from other fields of Science.
But we cannot entirely rule out the influences of our environment. Other facts tend to
influence our research subject and the way we treat it. Indeed, the history affects the
way we think and what knowledge we want to create. As Foucault (1982) said, "the
system of thought is the result of contingent turns of history". History plays a major
role in the development of new knowledge. The recent financial crisis, for example,
led to large changes in the way we saw the financial system. It permitted the devel-
opment of new methodologies related to network theory or causality measures which
have inspired the different topics addressed in this thesis.

Indeed, the recent literature on causality is very fruitful in Finance especially the appli-
cations of causality measures to investigate either the relationships between financial
assets or to understand the topology of a specific market and its impact on the system
fragility. The greater interdependence of markets across the globe explained by the
financial globalization and its effect on the global economy and social welfare during
turmoil periods, as illustrated by the financial crisis of 2008, highlighted the necessity
for a rethinking of economic and financial policies. The development of a new vision
requires a better understanding of the mechanisms governing information transmission
inside the economy. This transmission mechanism was investigated from a number of
perspectives, for different market and asset classes such as the equity market (Longin
and Solnik, 1995; Hong et al., 2009b; Celik, 2012; Dungey and Gajurel, 2014), the
financial market (Diebold and Yilmaz, 2014; Billio et al., 2012; Dungey et al., 2012),
the sovereign bond market(Longstaff et al., 2011; Gorea and Radev, 2014; Fernandez-
Rodrigueza et al., 2016) or the commodities (Bhar and Hammoudeh, 2011; Hegerty,
2016; Zhang et al., 2016).

This literature treating about interrelations focused primarily on the detection of stress
transmissions often identified as contagion (Dungey and Gajurel (2014); Pasquariello
(2006); Yuan (2005); Longin and Solnik (1995) to quote only a few). This contagion
phenomenon may be identified at several levels: inside a specific market, between
markets or between countries. The question of stress transmission may be addressed
at two different levels, a micro one where we consider individually each transmission

channel or at a macro one where the entire system is considered. This second approach
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often relies on topological measures coming from network theory to understand the
sources of the fragility of a system. A pioneering contribution in that vein has been
proposed by Billio et al. (2012) who estimate pairwise Granger causality on a large
set of data of financial institutions and apply then different topological measures to
understand the evolution of the financial system characteristics before and during the
financial crisis to relate the evolution of its topological characteristics to its fragility.

We propose, in this thesis, to follow both strategies by looking at how causal links
may be detected but also at how the interrelations organize themselves and how the
topology created by these individual connections could give information about the
system and the individual entities. We will focus in our applications, primarily on the
functioning of the global financial system, but also on the information transmission
between countries. We will consider mainly the western countries, especially the U.S.,
because of its central role in the recent financial crisis. As documented in the litera-
ture, several challenges have to be addressed to obtain an accurate representation of
causal relationships between financial entities. Among those challenges stands out the
absence of comprehensive and reliable information on physical connections and the
difficulties to obtain them (Feng et al., 2014). These difficulties are shared by other
fields than Finance including the spread of disease (Lipsitch et al., 2003; Wallinga and
Teunis, 2004) or human travel (Brockmann et al., 2006), to quote only a few. As an
alternative, a strand of the literature has recently proposed to rely on dependencies
between the asset prices as a proxy for physical connections. This approach is ex-
tremely convenient as it relies on easily available data and as it allows one to remain
agnostic on the specific channel through which the variables are connected. We rely
therefore, in every application presented in this thesis, on returns estimated from asset
prices to recover the possible underlying causal relationships between each variables

of the considered financial system.

Main contributions

Each chapter of the thesis shares a similar framework: we first introduce the topic
and the different problems it raises and then propose a solution in the form of a new
methodology or existing methodologies in the case of the first chapter. The method-
ologies are then tested in a simulation exercise to validate or characterize them. Once
validated, we apply the methods on empirical data to treat a specific topic in Finance
often related to the financial system. In the first two chapters, the application to
empirical data helps also in confirming the results of the validation obtained via the

Monte Carlo simulations.
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The main validation strategy in Sciences is to perform multiple times independent ex-
periments and estimate based on the results of the experiment and the prediction of the
model, statistics about the uncertainty of the proposed model. However, when dealing
with modelization of financial data, we cannot perform independent experiments as
we deal with continuous time series. The proposed solution is to rely on simulation
of financial time series based on their main characteristics that have been highlighted
in the literature. We follow this validation strategy in the four chapter of this thesis.
However in the first two chapters, we rely additionally on non experimental data which
is not common in Economics of Finance. Indeed, the relationships between financial
time series being not know a priori we cannot use supervised approaches which relies
on reproducible experimental data. In order to avoid this shortcoming, we propose to
identify a proxy allowing the determination of the quality of our models estimates. As
we will see in more details, the proposed proxy account for the information content of

the causal structures identified by our different models.

The methodological part of this thesis has the objective of understanding the causality
in its complexity, by looking at different aspects of causality such as the importance
of the environment around a causal link and the different channel through which in-
formation can travel. Each chapter will therefore bring a new piece of the causality
puzzle. Our work relies mainly on Granger concepts of causality. We start therefore,
in the first chapter, by considering two pairwise causality measures based on these con-
cepts: Granger causality which has been extensively used in Finance and Economics
and transfer entropy which derives from information theory and has been applied only

a few times on financial data.

The objective of this first chapter is to introduce the question of causality by describing
the functioning of these two simple methods and the main concepts that led to their
development. We compare then, the ability of both measures to detect different types
of connections illustrating the main features of financial time series. To achieve this
objective, we use several well-known data generating processes (DGP). After having
characterized both measures in the context of financial data, we look at their informa-
tion content in the application. The objective is to determine if there is a difference
between the two measures, and if a difference exists, if their information content are

complementary.

In the second chapter, we try to go beyond the simple pairwise approach and look
at the impact of the environment around the variables transmitting and receiving the
information. Indeed the pairwise approach tends to overestimate the number of causal
relationships by considering both the direct and indirect links. We mean by indirect



XXiv INTRODUCTION

links, the links that are due only to the existence of information transiting by a third
variable. Let’s take the example of a variable A sending information to a variable
B which in turns sends information to a variable C. When using a simple pairwise
approach, we should observe a transmission of information from A to B, B to C and
A to C. While the first two are considered as direct connections, the third one is an
indirect one, only caused by the existence of a transfer from A to B and from B to
C. This link does not really exist and represents a redundancy in the global informa-
tion transfer, as it relates to the portion of the information received from A that B
effectively transmitted to C. The elimination of such indirect links is one of the most
crucial challenges to be addressed to get an effective representation of a network.

Inspired by Graph-Theory, the proposed algorithm uses conditional information trans-
fers and Formal Logic propositions to get rid of these indirect links. Two types of
indirect links are considered, the ones that are caused by lagged relationships such as
the example presented before, if we consider a lag of one period between the transfer
from A to B and B to C and a lag of two periods between A and C. The other one
is caused by instantaneous causal relationships. In this case we consider an instan-
taneous information transfer either between A en B or between B and C, the other
having a lag of one period as well as the transfer between A and C. Both cases are
treated by the algorithm with the additional objective of reducing as much as pos-
sible the dimension of the conditional information transfer to be estimated. To this
extend, we have been inspired by the general-to-specific approach as well as by the
directed acyclical graph techniques. Indeed, the proposed framework follows the two
steps approach of the Bayesian network models, i.e. an initialization step followed by a
pruning step. However, the conditional probability distributions that Bayesian models
rely on during the pruning process, are replaced by conditional causality measures but
as in Graph-Theory the emphasis is put on the selection of the right conditions during
the pruning procedure. Indeed our parsimonious approach relies on a pre-search step
where every connection are tested using a simple pairwise approach. In a second step,
the algorithm uses conditional measure to prune the network from its non-relevant

causal relationships.

Beyond this question of effective links, going back the simpler case of pairwise connec-
tions, we may find that more than one channel may be used to transfer information
between two systems; either because the system is represented by several variables
or that we can decompose each variable into spectrum using frequency or quantile
decomposition. For such complex systems, the transfer of information can happen at
different levels or in other words through different channels. If we consider the usual
pairwise approach, only one channel at a time may be investigated which prevents us

from considering in one measure every possible channels. Inspired by Neuroscience
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where multivariate connectivity is a common problematic and by papers such as Bar-
rett and Barnett (2010), we will try to address, in the last two chapters, this complex
question of multi-channel transmissions. We will get away from the usual problematic
of multivariate explanatory variables to account for systems characterized by both
multivariate explanatory and dependent variables. The aim of these last chapters is
therefore to look at the evolution, in time, of the relative importance of every channels
in one global measure.

We propose two different frameworks: the first one will rely on the simplifying as-
sumption that, at each time step, a specific channel dominates the information transfer
between the two considered systems. We therefore start by the creation of a measure
of the relative importance of each channel at every time steps. Once defined, the
objective of the algorithm is to determine, for the considered step, the channel that
maximizes the information transfer. These two steps are performed for every time
steps and the selected channels form a map of the time evolution of the channels’
activity. To avoid instability in the channel selection, a softening procedure is applied.
This framework was originally developed for the transfer entropy causality measure

but is also applied on the regression based, Granger causality measure.

The last chapter of the thesis treats the same question of multichannel relationships
but from a different perspective. Rather than considering the relative importance of
every channel at each time step, our methodology relies here on the regime switching
Granger causality test (Psaradakis et al., 2005b) which enables us to look at the entire
time window in one step. We propose to modify the regime switching model to take
into account multiple dependent variables. Instead of considering each explanatory
variable as a possible source of information for one specific dependent variable, we
consider every possible channel represented by a specific pair of dependent and ex-
planatory variable, as a possible state of the world. The Markov regime switching
framework provides comprehensive information about the probability of activity of
every channel for each time step.

We have so far presented the different methodological questions which will be raised
in the four chapters of this thesis, but not yet the empirical applications. The purpose
of these applications will be twofold, first we will try to demonstrate empirically the
interest of the different methodologies developed so far, but these methods will also be
a way to address some crucial questions in Finance. In the first three chapters we will
look more deeply into the functioning of the western financial system. Chapter 1 and
2 will try to highlight the possible link existing between the level of risk of the finan-
cial system and its topological characteristics. These topological characteristics will

be estimated on networks inferred using the algorithm developed in chapter 2, which
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allows us to get rid of the possible redundant causal relationships. We will look at the
possible link from two perspectives; we will first consider the system as a whole by
looking at the average level of risk in the financial market to assess the existence of a
link between the systemic risk and the topology of the financial network. We then pro-
pose in chapter 2, to look at this question from a micro perspective by considering the
impact of the topological characteristics of the individual financial institutions on their
own risk level. We therefore withdraw from the alternative question of which financial
institutions contribute the most to the risk of the system (see Brunnermeier et al.
(2009); Acharya (2009); Anand et al. (2012); Battiston et al. (2012) among others)
and treat the reverse question of how the system and, more specifically, its topology
could impact the fragility of a specific institution. Another objective of the application
proposed in chapter 2 will be to determine the effect of the dataset frequency on the
ability of the topological characteristic to describe the evolution of the risk. We aim
therefore at defining the optimal frequency leading to the network representation clos-
est to the true underlying network. This optimal frequency is determined by using the
topological characteristics ability to describe the risk level, as a proxy of the distance
between the network inferred and the true underlying network. Looking at this proxy,
we try to define which frequency leads to the network representation giving the higher
explanatory power. The considered frequencies are, daily, hourly and high frequency,

l.e. every 15 minutes.

In contrast with chapter 1 and 2, the application developed in chapter 3 does not
consider the entire system but look in more details at the way financial institutions
communicate to each other. We propose to decompose the asset prices of every consid-
ered financial institution into either frequency or quantile spectra. These spectra are
then used to estimate a multi-channel information transfer between every connected
pair of U.S. financial institutions using the two measures developed in the method-
ological part. Indeed every institution will be represented by a set of time dependent

variables representing the different frequencies or the different quantiles.

As for the chapter 4, we withdraw from the question of the financial system connectivity
and look at a higher level by considering the relationships existing between countries
around the world. We do not rely on signal decomposition anymore, we rather consider
different financial parameters to define the economic health of every countries in our
dataset. The regime switching multi-channel causality measure developed earlier helps
us to define for each country which financial variables are involved in the information
transmissions and which financial variables are affected by other countries. In addition
to the inference of information channels between countries, we also look more deeply
at the impact of the commodities market on the information transfer dynamics by

considering this market as a possible additional channel of information transmissions.



Chapter 1

Testing causality in financial time
series

1.1 Introduction

As recalled by Hlavackova-Schindlera et al. (2007), identifying causal relationships be-
tween variables has been the fundamental issue of most natural and social sciences
over the history of human knowledge. In the aftermath of the recent crisis, the topic
has experienced a regain of interest in the finance literature searching for a salient
quantification of financial indstitutions’ exposure to the so-called "systemic risk" that
is the risk that an individual institution’s default spreads out to the entire financial
system then impacts the real economy by damaging economic growth and social wel-
fare. Indeed, different approaches have been proposed in the literature to assess the
level of threat an individual institution represents to the system relying on various
techniques (see Acharya, 2009; Brunnermeier et al., 2009; Adrian and Brunnermeier,
2009 or Brownlees and Engle, 2017 among others). A specific strand of the literature
considers that the answer lies in the topological properties of the financial system itself
(see in particular Battiston et al., 2012; Krause and Giansante, 2012). More specifi-
cally, those contributions rely on the conception that the financial system constitutes
a complex network of financial institutions (the nodes of the network) caracterized
by different features and linked by means of various channels. Those channels can be
physical (e.g. cross-exposures as in Boss et al., 2004; Masi and Gallegati, 2012) or
inferred from observable stock market data (e.g. prices, as done in Billio et al., 2012;
Diebold and Yilmaz, 2014 or Bianchi et al., 2015 using various techniques) by cons-
dering that if features from two nodes are dependent according to a specific measure
of correlation or causality there should be an underlying (physical) link between them.
As physical linkages are most of the time not directly observable, this last approach
has appeared convenient to capture information transfer between financial institutions.

In addition, if we believe that prices do reveal all the relevant information available
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in the market, it allows to remain agnostic on the specific channels through which

information transfer operates.

Although there is no unique definition of causality, it seems that in economics and
finance in particular, the approach popularized by Clive W. Granger (see Granger,
1969, Granger, 2003, among other contributions) has concentrated most of the empiri-
cal developments within the field. Based on the well known intuition that (i) the cause
should occur prior to its effect and that (ii) causal variables should content unique in-
formation allowing to better predict the effect, various direct testing procedure based
on estimations of linear models have been developed in both time series and panel
contexts (see Granger, 1980, Holtz-FEakin et al., 1988, Nair-Reichert and Weinhold,
2001 or more recently Dumitrescu and Hurlin, 2012). While those approaches have
been extensively - and in an exclusive manner - used in empirical contributions in
economics and finance (see Geweke et al., 1983 and more recently Hoover, 2008 for
surveys), other sciences such as cognitive sciences, physics or machine learning have
relied on more general concepts, mixing statistical representation, graph theory and
counter-factual reasoning (see Pearl, 2009 highly influential contribution for a deep
understanding of the concept). A specific branch of this literature that we believe
is particularly fruitful, borrows from the developments in information theory (Shan-
non, 1948) and the concepts of entropy and transfer entropy to reappraise the issue of
causality. Indeed, it has been shown that close links exist between the informational
transfer entropy measures (Shannon, 1948; Schreiber, 2000) and that of causality de-
veloped by Granger (1969), see Barnett et al. (2009) or Hlavackova-Schindler (2011).

Our aim within this chapter is to assess the accuracy of those information-based mea-
sures of causality and develop a testing procedure to assess whether they lead to better
identification of causal relationships between financial variables than standard Granger
procedures. Indeed, the equivalence between transfer entropy and the linear form of
Granger causality test highlighted by Barnett et al. (2009), was shown only under the
assumption of Gaussianity of the underlying time series. But financial variables have,
in general, many specific features incompatible with the simple Gaussian representa-
tion. Financial variables are most of the time nonstationary, returns are therefore often
preferred when conducting financial analysis. These returns are stationary in mean
but typically not in variance as their volatility can evolve in time. On top of this ques-
tion of stationarity, one has also to take into account the fact that financial variables
are typically asymmetrical, leptokurtic and possess fat tails (see Cont (2001) among
others). We propose therefore to investigate how these characteristics may affect the
ability of Granger based causality measures and transfer entropy to infer causal links.
We conduct a simulation exercise based on different data generating processes (DGPs)

exhibiting some striking features of financial variables such as their non linearity using
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regime switching specification, their fat tails using causal co-jump specification and
their heteroskedasticity by considering a causal generalized autoregressive conditional
heteroscedastic (GARCH) specification.

Once we have established an alternative methodology to identify causal dependence
between financial time series, we propose in an empirical application to implement it
to retrieve financial networks and revisit the question of how risk and topological char-
acteristics are interrelated, considering here, additionally the influence of the causality
measure used to infer the network representing the financial system. To that aim,
we first investigate the differences existing between the informational content of the
networks estimated with the usual Granger causality test and the ones estimated with
transfer entropy, considering also their potential complementarity. We then discuss the
still unexplored question of how sensitive is the network to its environment, i.e. how
the knowledge of the environment influences the definition of the network topology.
We defined here the environment as a set of relevant components not included in the
considered network but that may still impact the relationships between the members
of this network. We address, therefore, empirically the difficult question of network
optimal sampling (see Krivitsky and Kolaczyk, 2015; Kolaczyk, 2017) considering the
following questions: How does the environment affect the network characteristics? How
transfer entropy and Granger causality measures deal with this additional information
sources? Are we mislead when considering only partial network settings? To achieve
this second objective, we rely on the effective network inference algorithm proposed in
Dahlqgvist and Gnabo (2018). This algorithm is based on conditional causality mea-
sures which allow to take care of possible indirect links. The conditions applied on
the causal estimators play a crucial role in the definition of the relationships between
members of the network. Therefore, the size of the environment which is used as an
additional source of information during the inference procedure, should modify to a
certain extend the topology of the inferred network.

Empirically, the chapter focuses on the European and U.S. financial system. We
consider four different datasets, the first one contains the CDS spreads of 24 European
and U.S. Systematically Important Financial Institutions (SIFIs) and represents the
network of interest. The three others, which will be incrementally added to the original
dataset to account for the surrounding environment of the considered SIFIs, gather the
CDS spreads of selected banks, insurance companies and real estate companies. We
assess the impact of the surrounding environment of the SIFIs network by looking at
the ability of the topological properties of the inferred network to describe the evolution
of its own risk level. We incrementally increase the number of considered peripheral
financial institutions to infer our effective networks. This allows us to assess the added

value of the knowledge of these peripheral financial institutions in the definition of the
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links existing between the SIFIs, i.e. the impact of the environment on the pruning

procedure of the effective network inference algorithm.

As a whole, our contribution with this chapter is threefold. First we contribute to
the methodological literature by proposing a causality testing procedure that relies
on transfer entropy measure!. More specifically, we propose a new symbolization
procedure in the framework of Marschinski and Kantz (2002) effective transfer entropy,
that allows to consider different parts of the distribution function of the times series of
interest when inferring transfer entropy. Second, we document in a simulation-based
exercise the added value of the effective transfer entropy in presence of highly nonlinear
systems compared to alternative approaches. Third, we apply this framework along the
standard Granger causality measure to revisit systemic risk measures based on network
representations estimated from market data, considering both the complementarity of
these approaches and the difficult question of network sampling. The remainder of the
chapter is the following. Section 1.2 reviews the concept of Granger causality, entropy
and transfer entropy and exposes our methodology to estimate transfer entropy and
develop a bootstrap-based inference methods. Section 1.3 exposes the various DGPs
we assume for our financial processes and exposes the results regarding the competing
measures of causality. Section 1.4 then turns to the empirical application and exposes
the data, estimation method and results. Finally, Section 1.5 concludes.

1.2 On causality detection

1.2.1 From Granger representation to entropy and transfer en-

tropy measures

As recalled by Guo et al. (2010) and Bressler and Seth (2011), the concept of Granger
causality stems from the pioneering work of Wiener (1956), which states that one vari-
able or time series should be called " causal" to another if the ability to predict the
second variable or time series is improved by incorporating information about the first
one. Granger (1969) later formalized this idea and provided a practical implementa-
tion method in the context of linear autoregressive models of stochastic processes.

!'Note that a concomitant contribution (Diks and Fang, 2017) has proposed a very similar testing
framework to ours, see Béreau and Dahlqvist (2014).
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More formally and considering two stationary ergodic? processes X and Y, it is said
that Y Granger causes X if future values of X, i.e. say x;,1, can be better predicted
using joint past values of Y and X rather than the sole past values of X, which leads
to:

P [l’t_;,_l € A‘Qt] §é P [.Tt+1 € A|Qt - yt] (1].)

with € representing the set of observations available to describe future state of X.
As stated by Granger (1980), for that inequality to hold, ¥ needs to contain unique
information about what value X will take in the immediate future.

The operational definition proposed by Granger (1969) relies on the linear regression
model expressed in Eq.1.2 as follows:

L L
T, = o+ Z T + Z Biys—1 + ¢ (1.2)
=1 =1

where the null hypothesis of Y not Granger causing X corresponds to the joint nullity
of B, Vi € {1,..., L} leading to Eq.1.3:

L
vo= o+ Y oz + (1.3)
=1

The intuition is the following. Since Eq.1.2 contains more explanatory variables than
Eq.1.3, the variance of ¢; is at most as high as that of 7. In particular, if the variance of
the residual component ¢, is significantly less than that of 7,, it implies an improvement
in the prediction of future values of X due to Y. Different tests have been proposed
to measure how much Y causes X, such as the Wald test:

02 — 0?2

Fylx =T 5= (1.4)

the likelihood-ratio test of Geweke (1982):

~2

g
Flix =T Ina—‘;t (1.5)
e

2The ergodicity is a necessary condition to be able to infer, from a given sample, the statistical
properties of the time series while the stationarity insure the stability in time of these properties.This
notion of ergodicity is therefore similar to the one uses in the context of Markov chains as it requires
a positive probability to pass from any state to any other in one step in order to avoid converging
in a given state which would result in the differentiation between the statistical properties estimated
over time and over the phase space.
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or the Lagrange multiplier test:

~2 2

JT;LM —T. Uﬂt Uat
Y—=X T ~9
Uat

(1.6)

The Wald test performs better for small sample sizes. Statistical inference on that test
can be developed according to the distribution of two alternative statistics which are
both computed under the null of joint nullity of beta; as follows:

. . 87]1 - Agt/L
1. The Granger-Sargent statistic: Fy_.x = ) ~w, Fror—ar

52 /(T — 2L
02 — 52
2. The Granger-Wald statistic: Fy_,x =T - —2—— ~p, X7

T
Both statistics are asymptotically equivalent. Nevertheless, the Granger-Wald test has
a higher power in case of small sample sizes. Those developments have been further
extended to test causal relationships beyond the linear regression context between two
time series of limited dimension. In particular, nonlinear extensions relying on thresh-
old models and Markov-Switching specifications (see Billio and DiSanzo, 2006 for a
survey) or alternative non-parametric and semi-parametric methods (see Taamouti
et al., 2012 or Jeong et al., 2012 among recent contributions in the field) have been
suggested in the literature to cope for potential nonlinear dependence structures while
shrinkage methodologies such as Lasso-Granger algorithms have been introduced to
address linear causality testing in presence of high-dimensional time series, see Ba-

hadori and Liu (2012) and Liu and Bahadori (2012) for a survey of recent extensions.

More recently, transfer entropy, a concept borrowed from statistical physics and infor-
mation theory has been suggested in the literature (see Kwon and Yang, 2008; Kim
et al., 2012; Zaremba and Aste, 2014 to quote only a few), as an alternative measure
to Granger causality. This causality measure presents the advantage to be "model
agnostic" in the sense that it only depends on the estimation of multivariate entropies
taken from the probability distributions of tested variables, and sensitive to nonlinear

signal properties.

The foundation of the concept of entropy may be found in Rudolf Clausius’s research
in thermodynamics in the 1850s which led to the first definition of entropy as the
dissipative energy used during a change of state. This measure can be seen as the
thermodynamic quantity representing the inability of a system to transform its thermal
energy into mechanical works. In the late 19th century, Ludwig Boltzmann and others
gave entropy a more formal statistical definition. In such a context, the entropy

measures the multiplicity of a system’s microstates and how their probabilities are
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spread out. Assuming kg to be the Boltzmann constant and p; the probability that
the system is in its " microstate, the entropy takes the following logarithmic form:

S=—kp» pilogp;, (1.7)

=1

with kg, the Boltzmann constant

Shannon (1948) extended this definition in the context of information theory, to create
the information entropy, a measure of the information content of a system, i.e. the
amount of information needed to describe the configuration of a system. In such a
framework, the concept of system must be understood as a series of discrete outcomes.
Assuming a discrete variable X with a probability distribution p(x;) and z; the different
states of X, the Shannon entropy is defined by:

m

S.= =3 pla) log, (), (1.8)

i=1

with X a variable with m outcomes {x1, ..., x,,} and I(p,,) = —logap(z;) the informa-
tion content of realization x;

The Shannon entropy corresponds to the expected value of the information of the dis-
tribution of X, in other words, when expressed in logarithm of basis 2, it gives the
average number of bits needed to optimally encode all realizations z; of the distribution
X. The higher the uncertainty of the process, the more bits will be needed to encode
the realizations. As an extreme case, when one realization is certain, i.e. associated to
a probability one, the associated information content of x; and thus entropy of X, is
null. On the contrary, when all outcomes are equally likely, the entropy is maximized.
This last result is known as the " Gibbs inequality". For more details on entropy and

statistical physics in general, one can refer to Mezard and Montanari (2009).

It has to be noted that although Shannon entropy provides information about spe-
cific outcomes, it does not give an explicit description about the contribution of its
components. The conditional form of information entropy may help to estimate such
contributions of additional variables to the uncertainty of the whole series. The condi-
tional Shannon entropy measures the increase of the system entropy imputable to new
observations, in other words the increase in uncertainty due to these new variables.
For an entropy of order n, the conditional Shannon entropy linked to an additional

variable of length one is given by:
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m

CSS = - Zp(£i17 -~-7xin+1)10g2p(xin+1 ‘ Liy s 7xln) (19)

i=1

From another point of view, the conditional entropy determine to which extend the

knowledge of a series of outcome may help to predict future values of the variable X.

In his contribution, Schreiber (2000) used this definition of entropy and the theory de-
veloped earlier by Granger to define a new approach of causality based on information
theory. The main idea of Granger was to test whether the prediction of future values
of X knowing its past would be improved by the knowledge of another time series Y.
Schreiber followed a similar approach using conditional Shannon entropy rather than
linear regression. Its definition of causality or information transfer can be seen as the
difference between the information about future observations of X gained from the
joint past observations of X and Y, and the information about future observation of X
gained from sole past observations of X. Formally, transfer entropy can be seen as the
difference between two conditional Shannon entropies. Other definitions of entropy
may be used such as the Tsallis entropy (Tsallis, 1988) , the Renyi entropy (Renyi,
1960) or the k-entropy (Wada and Suyari, 2013). These alternative generalizations of
Boltzmann-Shannon information entropy measure rely on additional parameters and
emphasize only parts of the probability density function, which could lead to improve-
ments but come to the cost of higher complexity and are beyond the scope of the

present chapter.

Assuming X and Y, two stationary Markov processes of order n and m, the trans-
fer entropy determines to which extend the knowledge of the process Y reduces the
uncertainty in the future values of the process X given its own past.

Ty x = H(iﬂt | xt—n) - H(% | It—myt—m) (1-10)
= Z p(mtaajtfnvyt—m) loga(p($t | xtfnaytfm)) (1-11)

Tt Tt—n Yt—m
= Y p(@e T Yeem) 108, (p(xr | 21-0)) (1.12)

T, Tt—n, Yt—m

Tt | Tpeny Yt—m
= S p(@n T Yem) log, (p“’t % )> (1.13)

p(ft | $t—n)

Tty Tt—m Yt—m

This definition of transfer entropy can be seen as the deviation of the bivariate sys-

tem from the assumption of no information flow summarized by the Markov property
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p(z | —pn) = p(xy | T4—ny Ys—m). This deviation measures the information flow be-
tween Y and X and is called the Kullback-Liebler distance/divergence, see Mezard and
Montanari (2009) previously quoted.

1.2.2 Transfer entropy as a nonlinear measure

The origins of transfer entropy capacity to detect nonlinear relationships follows di-
rectly from its definition. Unlike Granger causality, no hypotheses are made on the
kind of relationship existing between the different series of outcomes. The determina-
tion of conditional entropy is based solely on a frequency analysis of specific patterns
(%4, X4, Ys—m] for which no assumptions are made on the type of dependence structure
linking z; and y;_,.

Following the definition of transfer entropy made in Sec.1.2.1, we know that for a
set of conditional probabilities (P(xt | T, Yeem)1, P(T | Ty Yemm)2y ooy Py |
Tt—py Yt—m) k) with k£ the number of possible patterns, the conditional entropy

H (zy | ©4—n, Y1—m) may be reduced if a positive number of conditional probability
P(xy | @4—pn,Yt—m); differ from the equiprobable case, in other words when the vari-
ance of the conditional probabilities set is higher than zero. Once applied to transfer
entropy this concept means that in order to observe a directed link between Y and X,
the variance of the set of conditional probabilities P(x; | Z¢—y, Yt—m); should be higher
than the one of the set of conditional probabilities P(x; | x;—,);, therefore adding y;_,
in the condition should make the original probability distribution less uniform. More
than one conditional probability distribution of P(z; | Zt—n, Y4—m); complies with this
pattern of increased variance, implying that several patterns may describe the link ex-
isting between both series of outcomes. The aggregation of these patterns corresponds
therefore to a broader class of nonlinear relationships between X and past Y. In this
framework, the most interesting patterns are the ones that result in a higher condi-
tional probabilities P(x; | 1y, Y1—m); compared to the other conditional probabilities
P(xy | ®4—pn,Y1—m); sharing the same z; and z;_,, but with a different y,_,,. Indeed
they represent the channels use to transfer the information between both systems. As
can be seen, transfer entropy determines the causal relationship between two series of
outcomes by comparing pairs of conditional probabilities distant from the equiproba-
ble case when conditioning on Y. Transfer entropy may therefore focus only on subsets
of the system to directly find the source of the transfer information in contrast with
other causality measures such as the linear form of Granger causality test which looks

at average and continuous relationships.
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1.2.3 Estimation and statistical inference

As showed in Section 1.2.1, the determination of transfer entropy implies the estima-
tion of a set of joint probabilities based on discrete variables. Traditionally, financial
series, and returns in particular, are modeled as continuous random variables (usually
log-Normally iid series). They thus have to be discretized to allow transfer entropy
estimation. There is an extensive literature treating the problem of probability dis-
tribution function estimation and more broadly entropy estimation (for an extensive
review see Hlavackova-Schindlera et al., 2007). A high number of possible approaches
have been explored such as kernel estimators (Moon et al., 1995), maximum likelihood
(Paninski (2003)), neural networks (Schraudolph, 2004) or partitioning. Although
some of them provided better estimates (Steuer et al., 2002), partitioning has gained
in popularity in the empirical literature (Staniek and Lehnertz, 2008; Kwon and Yang,
2008; Dimpfl and Peter, 2013; Wang and Yu, 2012) as the other methods are often
computationally intensive which make them difficult to apply to larger dataset. The
implementation of partitioning rules appears as a practical solution to limit the num-
ber of possible outcomes allowing the determination of joint probabilities using simple
frequency analysis. In order to assure an effective partitioning, the stationarity of the
sample must be verified. We propose in this chapter to partition the observations into
discretized levels following encoding rules based on specific quantiles of the sample.
Other partitioning methods have been proposed in the literature (see the generalized
binning with B-splines of Daub et al. (2004) or the adaptive partitioning of Darbel-
lay and Vajda (1999) to quote only a few) but considering the specificity of financial
variables, the quantile approach is often preferred as it allows to highlight more easily
some of the main features of these variables. An alphabet of n symbols implies n — 1

quantile levels. Assuming an alphabet of three symbols the encoding rules follows:

1 if 0; € [O,QL[
Pi=4 2 ifo € gL, qu] (1.14)
3 if 0 € [QU, 1[

where q;, and gy provide the position of the lower and upper quantiles in the distri-
bution function of o;, the price observed at time t relatively to the maximum value
observed over the entire sample.

Every data point is replaced by a specific symbol depending on the above encoding
rules. The probabilities are then generated using a simple counting method calculating

the number of occurrence of each pattern in a predefined time window.

Inspired by spectral analysis, an extension of the quantile symbolization method is



1.2. ON CAUSALITY DETECTION 11

proposed in this chapter. The new approach intends to differentiate the source of
information transfer or causality according to their location on the probability dis-
tribution of the time series outcomes. In this framework, we draw away from the
equipartioning approach (Butte and Kohane (2000); Daub et al. (2004)) and divide
the sample distribution in five regions, two regions of interest positioned on either side
of the 50 percent quantile with each a specific symbol and the remaining regions shar-
ing a common symbol. The two regions of interest are characterized by their position
relative to the 50 percent quantile and a specific bandwidth. The range of possible
position depends directly on the bandwidth of the considered regions, with the num-
ber of possible positions decreasing when the bandwidth increases. The aim of this
approach is to differentiate what happens in the center or the core of the distribu-
tion from what happens in the tails, the extend to which realizations are considered
in the core vs. the tail depending of the position and bandwidth parameters. This
symbolization process seems especially relevant for financial time series characterized
by asymmetric correlation patterns (see Ang and Chen, 2002; Campbell et al., 2002;
Bae et al., 2003 or Patton, 2004 among others) and potential nonlinearities.

(3 ifo; €0,qz]
1 if o, € [q1,qr + 01|
P, = 3 if o, € [qr + 1, qu — v (1.15)
2 ifofqr — du, qul
L 3 ifo € [qu. 1]

where g7, and d;, give the lower bound and the size of the lower region of interest while
qu and dy provide the upper bound and the size of the upper region of interest.

Based on a set of possible bandwidths (dz, 0y ), a transfer entropy map is then created
by testing every position within the possible range q;/qu = j-sps with sps the stepsize
and j € [0,(0.5 —J)/sps]. In the symmetrical case, same bandwidth and same set of
position, this method provides a two dimensional transfer entropy map, the first axis
representing the considered bandwidth size and the second one the positions of both
regions compared to the 50 percent quantile. Examples of this transfer entropy map

are provided in Section 1.3 below when assuming various DGPs for the price time series.

The symbolization methodology used to simplify the complex behaviour of the time
series also participates to the ability of transfer entropy measure to detect potential
linear or nonlinear causal patterns. By reducing the complexity of the system through

categorization, transfer entropy is able to consider x; sensitivity to specific stimuli



12 CHAPTER 1. TESTING CAUSALITY IN FINANCIAL TIME SERIES

_

2 I
2 2
S S

°

05 -
03 o
03
045
0.49
05

Quantile

Figure 1.1: Spectral quantile symbolization, symmetrical position 30%, bandwidth 15%

(i and y;_,, )3, getting rid of the impact of small changes on the overall relationship
as the error terms does to some extent in the Granger causality linear test. Indeed,
each region of the probability distribution is considered separately, reducing the po-
tential impact of the noise present in the other regions of the probability distribution.
The resulting transfer entropy map should therefore provide more precise information
regarding the causal relationships, along the identification of the regions of the prob-
ability distribution of time series X and Y having the higher causal dependency. The
definition of the bandwidth and the set of positions directly affect the resolution of
the analysis.

As recalled in Mezard and Montanari (2009), the determination of the true level of
transfer entropy requires processes of infinite length in order to compute the right tran-
sition probabilities. In practice however, transition probabilities have to be estimated
from a finite sample. Marschinski and Kantz (2002) demonstrated the existence of a
bias in the estimation of transfer entropy due to the small sample effect. To limit this
bias, those authors proposed an adjustment of the transfer entropy based on a boot-
strap methodology. Their unbiased estimation, called " effective transfer entropy",
is defined as the difference between the regular transfer entropy and a bootstrapped

transfer entropy as follows:

ETY—>X = TY—>X - TYBOOt—>X (1'16)

where Ty, ,_,x represents the transfer entropy with the series Y being bootstrapped.

3In our simulation exercises, n = m = 1 but results could easily be extended to higher order
processes.
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Through this bootstrapped Y, all statistical dependencies between the two series are
removed. As Ty, ,_,x converges to zero for increasing sample size, all non zero val-
ues of Ty, ., .x demonstrate the presence of a bias due to small sample effects and
should therefore be removed. We propose to rely on this methodology to construct
our statistical test of the existence of a causal relationship using transfer entropy. The
statistical test regroups the following steps:

e Step 1: Estimate n times the transfer entropy measure based on n independent
draws from n resampled series Y (bootstrapped Y).

e Step 2: Build a probability distribution function of the bootstrapped transfer

entropies, IC(Ty,,,,—x) using a Kernel approach (Gaussian Kernel)

e Step 3: Determine the bias at a specific confidence level o using the Kernel
distribution K*(Ty,,,,—x)

e Step 4: Estimate the effective transfer entropy by removing the estimated bias
from the original transfer entropy ETy ,x = Ty, x — K*(Ty,,,,—x)

The Kernel density gives the probability distribution of transfer entropy levels in the
case of no information transfer. A positive effective transfer entropy confirms the
existence of a transfer of information, if null or negative no information transfer may
be found. Indeed the null hypothesis for the transfer entropy is Ty _,x = 0 which is
equivalent to p(x; | x;—,) = p(x¢ | T4—n, Yt—m) but once the small sample effect is taken
into account the null hypothesis becomes: Ty _,x > Ty, ,_.x or every possible values
of Ty, ,—x with the statistical test given by:

Ty—x ~ty K(Tyg,p—x) (1.17)

Regarding the bootstrap of Y, we rely on a block bootstrap to maintain time de-
pendence of the original data within the bootstrapped time series. We draw from a
uniform distribution both the position and size of every blocks. The resulting blocks

are concatenated to form a new time series for Y.

1.3 Simulations and first conclusions

In order to explore in more detail the properties of the models presented in Sectionl.2.1,
we rely on Monte Carlo simulations performed on various data generating process al-
lowing for linear vs. nonlinear specification and dependencies in mean and variance

between the two processes of interest, Y and X. In particular, we try to disentangle
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under which circumstances the two approaches, i.e. Granger causality vs. transfer
entropy could lead to significant differentiated results. We proposed four different
models that in a simplified way mimic the main behaviors of financial time series
following the current literature, a Vector Autoregressive model, a Markov Switching
model (Psaradakis et al., 2005a) and a Co-jump model for the causal processes (An-
dersen et al., 2007) in mean and a Multivariate Stochastic Volatility process with
Granger causality for the causal processes in variance (Yu and Meyer, 2006). Indeed
Sewell (2011) demonstrates that the distribution of returns in financial time series is
often non-stationary due to the volatility clustering and has a positive kurtosis in-
creasing when the time interval between two observations decreases. Non-linearities
are also reported in both the mean and variance of returns. All these elements tend to

demonstrate the interest of considering the proposed set of data generating processes.

1.3.1 Data generating processes

Sitmulation 1: VAR specification

The primary test of both methodologies involves the classical VAR approach. This first
model allows to compare the behavior of both techniques using the assumption behind
the most common definition of Granger Causality. For simplicity, we will consider a
linear coupling in only one direction. Let’s assume two autoregressive processes X and
Y, with X being also influenced by Y in a linear way. The value x and y at time t are
determined as follows:

Ty = ar1+ By + (1 —a— P)ey, (1.18)
Ty = (Syt,1 + (1 — 5)€ty (119)

The coupling strength is determined by the factor g for which a range of values from
0.5 to 0.05 is used. The other parameters are chosen based on the estimation of a VAR
model on a set of financial data regrouping equities, bonds, CDS and foreign exchange
leading to an average value of the parameters a and 9 of 0.06. The error term is defined
by an uncorrelated Gaussian noise with zero mean and unit standard deviation and
the factor (1 — a — f3) is applied in order to get a unitary evolution in the long term.
The initial value of X and Y are determined by the same zero mean white noise process.

Stmulation 2: Markov Switching specification

We investigate in a second step, the effect of nonlinear relationships on our causality

tests. A Markov Switching Granger Causality model is added to the two other causality
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measures to assess the ability of Granger causality framework to identify non-linear
relationships. This model is a simplified version of the Markov Switching Granger
Causality technique proposed by Psaradakis et al. (2005a). The two states character-
izing the Markov Switching part of the model determine the presence or absence of a
link between the variable X and Y.

T, = ox4_1+¢e when s, =0 (1.20)

ry = axry1+ Py—1+¢e when s, =1 (1.21)

The transition between both states is defined by the following transition probabilities:
pij =P(sy =j | 511 =) (1.22)

The statistical inference is performed via the t-ratio of the estimated S.

The first nonlinear DGP to be considered is the Markov Switching VAR with two
regimes which defines the behavior of the variable X, the variable Y following a simple
VAR. The first state is characterized by a one direction linear coupling between Y and
X and the second one by a simple VAR.

T, = oari 1+ Py +(1—a—pF)e, whens, =0 (1.23)
Yy = O+ (1 —0)e, whens, =1 (1.24)

The transition between both states depends on a simple normal distribution function
with zero mean and one unit standard deviation with a probability of observing a
transmission from Y to X varying between 80 percent and 1 percent. The parameter
S is fixed at a 0.25 level and the o and ¢ keep their value of 0.06 used in the previous
VAR data generating process. The error terms follow the usual zero mean white noise

process.

Simulation 3: Co-jump specification

The second nonlinear simulation is based on a causal extension of the co-Jump process
developed by Andersen et al. (2007) which allows us to look at the impact of fat tails on
the causal link detectability. This causal co-jump process features a diffusion process,
a specific jump component for each variable and a co-jump component lagged by one
period for the variable X compare to Y to generate the causal relationships from Y

to X. Usually written in continuous time, we can represent the co-jump process in
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discrete time as follows:

mC]+a

:r‘“’ c

T, = <mgC — Nz (eij — 1) Aej <e o 1)) + 0,68 + jay + ¢ji—(1.25)
J’/+UJ mej+02; y . .

vy o= [ my—Ajy (e — 1> A¢j <e 2 1) + oyef + Jyr + g (1.26)

with m the mean value, \j;, A;, and A.; the intensity of respectively the jump process
of X, Y and the causal co-jump, o the variance of the different processes and ¢ a

Gaussian white noise.

The occurrence of both types of jump is determined by a Poisson process with the
intensity for the causal co-jump ranging from 5 percent to 0.5 percent. The other
parameters are once again estimated based on the set of financial data used for the
calibration of the VAR model.

jxt _ (Nt)\jz - Nt)\j ) ( mgz+0']x5t]a; — ]_) (127)
jyt — <Nt)‘jy _ Nt)\j ) (emw-i-ij&tw - 1) (128)
Cjt — <NtAc] _ NACJ> < mc]“l‘o' 57‘ _ 1> (1'29)

where N* follows a poisson process with P(N* = k) = e‘”’,\c—)!k and A the intensity of
the Poisson process.

Stmulation 4: Multivariate Stochastic Volatility specification

The fourth type of process, to be considered in this chapter, is a Multivariate Stochas-
tic Volatility process with Granger causality which will benchmark the ability of our
causality measures to capture relationship in variance. We rely here on the Lagrange
Multiplier test (LM test) developed by Hafner and Herwartz (2006) to compare the re-
sults of the three previous causality measures with a test that has been designed specif-
ically for causality in variance. This causality measure is an adaptation of the general
Lagrange Multiplier misspecification test, introduced by Lundbergh and Terasvirta
(2002), to the estimation of univariate GARCH (1,1) models.

ht—l—lw = Qg+ ﬁxm? + 6mht1 (130)
1
Ty = €$p(§htz)\t> Et, /\t =1+ Stye (131)

where sy, = (Y2, hy,)’. The existence of a causal relationship in variance between X

and Y is controlled by the parameter 6 so that the null and alternative hypothesis of
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the LM test are Hy : § = 0, Hy : € # 0. The LM test is constructed by means of the

score of the Gaussian log-likelihood function of ¢, evaluated at § = 0 and the variance
of the set of parameter 1, = (ay, B, 0,) evaluated at § = 0, noted Q@ = V' (¢),).

D)siy) ~m, X*(2) (1.32)

Ma

LM = (1/4T)(

o~
Il

1

T
(F, = Dsi, )0 (e
t=1

b (
Stysty StyZta

1 t=1 t

to
thztz ! Z Ztacsty (133)

1 t=1

Mﬂ

Q' = (k/4AT)(

T
t =

where £ = (1/T) ZtT:l(éfz —1)% 2z, = (1/hy, ) (Ohy, [0%s))

The Multivariate Stochastic Volatility process (Yu and Meyer, 2006), considered for
the analysis of causality in variance, is specified as follow:

1
Ty = €$p(§htz>€tz (134)

1
Ye = €$p(§hty>5ty (1.35)
hivr, = po+alle, — pz) + B(he, — p1y) + e, (1.36)
hiva, = py+alhe, — py) +m, (1.37)

where 7;, and 7;, are Gaussian white noise with zero mean and variance o, and o,
respectively. The parameters p, o and n have been estimated based on the set of
financial data use previously (resp. -8, 0.7 and 0.8).

1.3.2 Results

The Monte Carlo exercise consists in the simulation of times series for the four different
DGPs presented in the previous section. We rely on the modulation of two parameters
to compare the different causality measures; namely the parameters controlling the
strength of the link between both times series as well as the length of the times series
used to infer the causal relationship. This second parameter is specifically designed to
challenge transfer entropy, as the small sample effect which affects its ability to infer
properly causal relationships, increases when the window size reduces. The causal link
is tested in both directions, from Y to X and from X to Y, allowing us to compute
the true positive and false positive rates for both parametrizations. For each values of
the strength parameters, 500 samples are simulated each of them containing 1500 ob-
servations. Turning to the times series length, we rely on the same number of samples
and test window sizes ranging between 100 and 3000 observations®.

4The strength parameter of each DGP is fixed for the entire set of the window sizes with 3 = 0.15
for the VAR specification, a probability of regime switch fixed at 4% for the Markov switching VAR
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In addition to the power and size of the considered statistical test for the different
DGP, we additionally report the performance of the considered approaches in terms
of receiver operating characteristic curve (ROC) and precision-recall curve (PR) (see
Marbach et al., 2012). The PR curve measures the balance between the result rel-
evancy, i.e. its precision and the recall which gives the percentage of truly relevant
results returned by the test. The ROC curve provides a performance index for binary
classifiers, reporting the true positive rate against the false negative rate. The higher
the area under the curve the better the classifier with a value of 0.5 for a random classi-
fier. Both curves are estimated based on sample sizes of 1500 observations. For all four
comparison tools, the existence of a causal relationship is estimated for each pair of
times series by using the statistical inference methodologies presented previously, i.e.
a Wald test for Granger causality, a t-ratio for Markov Switching Granger causality,
the LM test for the GARCH based causality model and a bootstrapped estimation for
the transfer entropy. The average percentage of true and false positive rates are then
computed based on the 500 samples generated. A significance level of 5% is selected
for all causality measures except for the estimation of the ROC and PR curves where
a set of 20 different significance levels are used.

For each DGP, the position and bandwidth used in the transfer entropy estimation
are selected in order to maximize its effective value. This optimization is done via
the estimation of transfer entropy based on spectral symbolization®. For both VAR
and Markov Switching DGPs, the position is set to 20 percent and the bandwidth to
30 percent as we face an average relationship. As for the causal co-jump process, the
jumps occurring in the tails of the distribution, a position of 49 percent and a band-
width of 1 percent are preferred. Finally, for the Multivariate Stochastic Volatility
process with Granger causality, the highest transfer entropy is found for a position of
5 percent and a bandwidth of 45 percent. Fig.1.1,1.2 and 1.3 summarize the results

for the three DGPs designed to simulate causal relationships in mean.
Result 1: VAR specification

As can be seen from Fig.1.1, the Granger causality performs clearly better than the
transfer entropy for the VAR specification which is not surprising as the VAR rep-
resents the underlying framework of the Granger causality measure. However, when
considering larger data sets, both measures seem to perform equivalently. This re-
sult tends to confirm the equivalence between Granger causality and transfer entropy,

specification, the causal jump intensity at 0.015 and 5 = 0.75 for the multivariate stochastic volatility
specification.
5Detailed results are available on request from the authors.
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highlighted by Barnett et al. (2009), once the issue of small sample effect has been
dealt with.

Result 2: Markov Switching specification

When turning to the regime switching VAR specification, the Markov Switching Granger
causality framework does not seem to perform better than Granger causality or transfer
entropy, with Granger causality being better in term of power for almost the entire sets
of strength parameters and window sizes but also a higher PR curve. We also see that
the performance of the Markov Switching Granger causality worsen when the window
size increases which could be due to the higher complexity of this model and conver-
gence problems in the maximum likelihood estimation procedure. The good results of
the Granger causality for the nonlinear Markov Switching specification demonstrate
that Granger causality does not need a continuous relationship between the two pro-
cesses to work properly and that as long as Y brings, at specific moment, information
reducing the uncertainty about the outcome of X, the model is able to detect ac-
curately the occurrence of information transmission. We again note the equivalence

between Granger causality and transfer entropy for large datasets.
Result 3: Co-jump specification

Although Granger causality performed better for the two VAR-based DGPs, the re-
sults of Fig.1.3 demonstrate the ability of transfer entropy to outperform Granger
causality when facing highly nonlinear processes caused by rare events. Regarding
the size, we observe that transfer entropy has, in most cases, a lower rate than the
two other causality measures. The results are especially striking when considering the
ROC and PR curves. Besides, in the case of rare events transfer entropy seems to

suffer less from a small sample bias.

These good results of transfer entropy for the causal co-jump DGP may be partly
explained by its ability to focus only on specific patterns to determine the causal
relationship. In contrast with transfer entropy, Granger causality tries to define an
average relationship using the whole sample, which means in this case, mainly data
where no information transfer occurs. The Granger causality test being based on the
comparison between the variance of the error terms from both the restricted and un-
restricted models, the few observations helping to predict future states of X are not
numerous enough to modify significantly the variance of the unrestricted model. It
seems therefore that Granger causality needs more occurrences to be able to infer a

causal link in presence of rare causal events.
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On the contrary, in the case of continuous linear causal relationships, the transfer
entropy loses this advantage because the whole set of probabilities become a source
of relevant information. In this situation, the higher resolution of Granger causality
leads to a better performance. Indeed the quantile symbolization limits the capacity
of transfer entropy to observe information transfer when facing low transfer coefficient.
Increasing the number of categories may seem at first sight a convenient solution but
it usually takes place alongside with an increase of the small sample effect.

Result 4: Multivariate Stochastic Volatility specification

Finally, turning to the results of the Multivariate Stochastic Volatility process, it shows
that transfer entropy is much more effective in detecting causal relationships in vari-
ance than simple Granger based models. Transfer Entropy even performs better than
the dedicated Lagrange Multiplier test for the higher transfer rates. These results tend
to prove that transfer entropy may be used as a broader causality measure, taking into
account relationships in linear as well as nonlinear models and both in mean and vari-
ance. These results constitute only an overview of the capabilities of transfer entropy.
However, they show that for some form of nonlinearity and skewness in the data,
transfer entropy leads to better identification of causal relationships. Those features
are common for financial time series (see Jondeau et al. (2007)). As such, transfer
entropy should be seen as a good complementary causality measure to be used along
the usual Granger causality when dealing with financial data. The question of their
complementarity will be further investigated in the empirical application detailed in
Section 1.4. Eventually, when considering the complexity of the considered models in
terms of number of parameters to be estimated, transfer entropy being non paramet-
ric, it presents a clear advantage in term of parameter parsimony. The results of our
simulations tend indeed to confirm the negative impact of the number of parameters to
be estimated on the models ability to infer causal relationships, looking at the results
of the Markov switching specification when considering large datasets or at the LM
specification for higher transfer rates. However, this advantages is partly compensated
by the small sample effect which affects more the transfer entropy.
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1.4 Application to European and U.S. financial sec-

tor

1.4.1 Motivations

We propose in this section an empirical application on a selected set of European and
U.S. financial institutions to document the complex relationship that exists between
the network characteristics of the financial system and its overall systemic risk level.
The network of interest for this application is composed of 24 Systematically Impor-
tant Financial Institutions, the so-called "SIFIs", active in the U.S. and in Europe.
We believe as Battiston et al. (2012) or Diebold and Yilmaz (2014), that focusing on a
small group of financial institutions is sufficient to capture the overall level of systemic
risk within the global financial system as long as those institutions represent the main
sources of distress dissemination due to their central position within the system. Our
endogenous variable consists thus in the overall risk measure of the system, defined
as the average level of risk of the financial institutions composing our network, and is
approximated using the Max%Loss approach of Ballaa et al. (2014). The network is
generated by relying alternatively on the linear form of Granger causality (GC) as well
as the transfer entropy (TE) measures. We then compute various topological metrics
in the vein of Diebold and Yilmaz (2014), such as average connectivity, eigenvector
centrality or betweenness centrality measures to describe the evolution of risk over
time. Beyond the determination of the explanatory power of those alternative topo-
logical characteristics on risk, which has already been addressed to some extent in the
empirical finance literature, a second objective of this application is to understand to
what extend the selected causality measure (GC vs. TE) may affect the information
content of these topological characteristics with regard to systemic risk prediction. In
other words we aim to study whether: (i) one specific causality measure allows to con-
vey more relevant information than the other with regard to systemic risk prediction
and in case both measures do not convey the same type of information, (i) whether
they are complementary or substitutes. We aim to address those questions by consid-
ering first separately the explanatory power of each measure, then jointly.

The algorithm we use to infer our SIFI network is designed to partially address the
problem of omitted variables by conditioning the information transfer between in-
stitutions on the relevant environment surrounding both the emitter and receiver of
information (for more details see Dahlqvist and Gnabo (2018)). But this relevant
environment is not necessarily limited to the institutions included in the network of
interest. We thus propose while focusing our attention on the SIFI network, to consider
additionnally external sources of information that would come outside this group of

24 financial institutions by including incrementally in the network inference process,
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three additional groups of financial institutions composed of banks, insurance com-
panies and real estate companies respectively. This allows us to address partially the
difficult question of network sampling, that is the fact that network topology may differ
substancially when assessed at the sample level (when nodes and/or links are not fully
observed, or selected randomly) compared to the (generally unobserved) population
level. Here we limit the discussion to the exploration of the accurate network sample
size, that is the number of units (nodes and links between them) that are relevant
in our context to infer stable and salient characteristics with regard to systemic risk
prediction, see Krivitsky and Kolaczyk (2015) or more recently Kolaczyk (2017) for
an extensive discussion on the topic. More concretely, we study the possible added
value of including the surrounding environment (vs. restricting the analysis to the sole
network of SIFIs) in the definition of the relationship between the SIFIs and determine
how it could improve the explanatory power of the network topological characteristics
of the SIFT sub-network in the prediction of the overall systemic risk. We also propose
to compare how different causality measures deal with increasing sample sizes.

1.4.2 Data description

Our dataset consists in the corporate CDS spreads of 104 financial institutions from
both Europe and the United States. Theses financial institutions may be labelled in
four different categories: (i) the SIFIs on which our study focuses®, that we disentan-
gle from the other (ii) banks, (iii) insurance companies or (iv) real estate companies
from the sample. The CDS spreads represent the daily midpoints of bid-ask prices
of 5-year contracts, which is the most widely used measure in the literature due to
their higher liquidity. The data cover the period from January 2005 to January 2016
which corresponds to 2896 daily observations for each financial institution. We in-
cluded companies who have filed for bankruptcy, have been restructured or merged
with other financial institutions mainly during the turmoil of the last financial crisis,
including all the available data. The selected institutions provide observations for at
least 60 percent of the considered time frame. To cope with potential non-stationarity,
we estimate the daily variations of the CDS spreads.

1.4.3 Network inference and topological measures estimations

The estimation of the network using TE starts by the definition of the optimal quan-
tiles used for the symbolization of the times series. To that aim, we rely on the spectral

quantile symbolization method developed earlier, to obtain for each pair of financial

6We identify the SIFIs according to the G-SIB ranking established in 2015 by the Financial
Stability Board, see http://www.fsb.org/2015/11/fsb-publishes-the-2015-update-of-the-g-
sib-list/.
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institutions the optimal bandwidth and position in order to define precisely the regions
of the probability distribution where the main information transfer occurs. As can be
seen in Fig.1.2, we begin by estimating a TE map and then select the bandwidth and
position giving the highest value of TE. We use a stepsize of 0.05 for the position and
select six different bandwidths (0.05, 0.1, 0.2, 0.3, 0.4, 0.45 resp.). We then estimate
the TE at a significance level of 0.05 and use the whole sample of 2895 observations for
the estimation in order to get an average relationship. With 104 financial institutions,
we get 104 - (104 — 1) = 10712 optimal bandwidths and positions which are regrouped
in two adjacency matrices further used to generate the networks. We see in Fig.1.2
that on average both regions of interest are located in the tails of the probability dis-
tribution rather than in the core. The slope of the curve being relatively small, it
implies that the size of the bandwidth is usually important with on average a value of

0.18, which tends to prove that we are not looking only at extreme events.
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Figure 1.2: We see here the average optimal regions on either side of the 50 percent quantile. The
value reported on the Y-axis, represents the number of time the quantiles reported on the X-axis have
been selected to be part of the range of quantile included in the two regions of interest.

Equipped with the optimal positions and bandwidths for the TE estimation, we apply
the effective network inference algorithm on the four different nested datasets, the first
one including the sole 24 SIFIs, the second adding 32 banks to the previous, then, 33
insurance companies in the third and finally, adding an additional set of 15 real estate
companies to complete the environment. To account for network dynamicity, we follow
the literature by applying a rolling window approach Dungey et al. (2012); Billio et al.
(2012) with a window size of 480 observations corresponding to two years (considering
20 trading days per month on average) and a stepsize of 5 observations corresponding
to a week. The size of two years has been selected to have sufficient observations to
limit the small sample effect for the estimation of TE measures. The effective network

inference algorithm is divided in two steps, a first one where a pre-search analysis is
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performed, connecting institutions using simple pairwise causality estimation, and a
second step where the network is cleaned from indirect links using conditional causality
estimation. For the first step, the significance level is set for both causality measures to
0.01 while for the second one a significance level of 0.05 is preferred as the conditioning
reduces the detectability of causal links due to the higher dimension of the estimation.
We also choose, for the estimation of the network, a time horizon of two lags, meaning
that the presence of causal links will be tested for a lag of one and two periods, the
resulting estimated networks will provide therefore two adjacency matrices, one for

each lag.
Band/Pos  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.05 0.0027 0.0001 O 0 0.0012 0 0 0 0.0072
0.1 0.0024 0.0020 O 0 0 0 0 0.0051
0.2 0.0064 0.0072 0.0050  0.0007 O 0.00243
0.3 0.0163 0.0101 0.00204 0.0005
0.4 0.0139 0.0010
0.45 0.0026

Table 1.5: This table reports the transfer entropy estimation of the information transfer from ING
to Bank of America for the different bandwidths and positions. As can be seen from the results, the
maximum transfer entropy corresponds to a bandwidth of 0.3 and a position of 0.05.

Once the set of networks have been estimated for the four datasets, we extract the
information relative to the sole 24 SIFIs institutions from the various networks consid-
ered, which implies to reduce the size of the resulting adjacency matrices and neglect all
lines and columns relative to other types of institutions. Doing so, we are able to better
capture the impact on systemic risk prediction, of incorporating a wider information
set when generating the network. In a second step, we apply on these sub-networks
a second set of rolling windows to limit the instability of the observed connections,
caused by the sensitiveness of the estimated networks to outliers. This second set of
rolling windows have a window size of 20 networks covering therefore a period of 580
observations, and a stepsize of one period corresponding to one week. We then sum,
for each window, the adjacency matrices of the 20 networks for both lags and apply a
filter to remove the less stable connections. The filter assigns a connection between two
financial institutions if the link appears more than a predefined percentage of time in
the summed adjacency matrix. This percentage has been optimized for both causality
measures to maximize the information content of the estimated network, leading for
all datasets to a value of 15 percent for GC and surprisingly a value of 0 percent for the
TE, meaning no filtering. Equipped with the filtered networks, we compute a stability
measure for both GS and TE, expressing the average percentage of time a connection
is observed between two connected institutions. This stability measure provides useful

insights about the average strength of the links inferred by our two causality measures
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and their ability to detect causal links. Lower values of this stability index would
indicate less reliable causal estimations in the case of linear relationships or a higher
sensitivity to either rare events or outliers. From Fig.1.3 (a-b), we see that the stabil-
ity is much higher in the case of GC based networks which could be explained by the
higher sensitivity of TE to rare events. There is also a relatively strong difference for
the networks estimated with TE between the first dataset (DS1) and the three others
(DS2-4) which implies that TE is much more sensitive to the background noise brought
by the peripheral institutions. This result tends to demonstrate that (i) the question
of the optimal sample size is indeed crucial since network characteristics between core
SIFTs institutions vary significantly when considering various information sets, (ii) the
optimal network sample size may differ from one causality measure to another. The
linear regression results should provide further information regarding the information
content of the inferred networks. We see nevertheless for both causality measures a

higher stability rate during the financial crisis.

Fig.1.3 (c) reports the average distance between the networks estimated with TE and
the ones estimated with GC, with a value of 1 for a perfect match between both net-
works and 0 for no common connections. We see that apart from the period just
before the crisis, the two measures seem to give a quite different view of the relation-
ships between the SIFIs, meaning that they should bring different information about

the underlying network.

We finally use the filtered adjacency matrices to compute the different topological char-
acteristics allowing us to define how the topology of the network contributes to the risk
of the system. We propose here to follow Ballaa et al. (2014) or Billio et al. (2012) and
carry out linear regressions. However, in contrast with their approaches, we perform
temporal linear regressions on the dependent and explanatory variables averaged for
all the 24 STFIs of our network, highlighting how the sub-network works as a whole and
how the evolution of the risk level could be explained by the considered explanatory
variables. In line with Ballaa et al. (2014), we define the risk/fragility of an institution
as the maximum percentage financial loss during a specific period of time; also called
Max%Loss. The considered period of time corresponds to the same period of 580 ob-
servations used for the determination of the filtered networks. We then estimate four
different topological measures based on these filtered networks, namely: the average
number of connections inside the network, the eigenvector centrality, the betweeness
centrality as well as the clustering coefficient. The eigenvector centrality measures the
influence of each node on the rest of the network based on the idea that connections to
highly connected nodes contribute more to risk diffusion. As for the betweeness cen-
trality it assesses the influence of a node by computing the number of shortest paths
from all the other nodes of the network that pass through the considered node. Finally
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inside the network estimated with both causality measures. Graph c presents the distance between
both network representation
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the clustering coefficient estimates the probability that adjacent nodes are connected 7.

As these different measures are based on close concepts, we start by performing a VIF
test to look for possible multicolinearity. The result shows no sign of multicolinearity
between these measures for almost all datasets which allows us to include those various
explanatory variables simultaneously in our regressions as their information content
does not seem redundant. The usual preliminary analysis is then performed before
each regression to test for heteroskedasticity and autocorrelation. Having detected

8 we estimate the heteroskedasticity and

signs of autocorrelation of the error terms
autocorrelation consistent (HAC) covariance matrix using the procedure developed by
Newey and West (1987) to correctly compute the t-value and significance level of the

explanatory variables.

Dataset/Measure Transitivity Betweeness EV Centrality  Connectivity

coeff t-stat coeff t-stat coeff  t-stat coeff t-stat
Dataset 1 TE 0,070 0,22 -0,018 -4,61 ** 1,007 4,24 ** -0,157 -5,31 ** 0,45
GC -0,230 -1,25 -0,004 -1,49 0,482 3,75 ** -0,024 -2,89 ** 0,41
Dataset 2 TE -0,198 -2,36 * -0,001 -0,55 0,327 3,36 ** 0,069 3,54 ** 0,53
GC -0,068 -0,30 -0,004 -2,39 * 0,010 0,11 -0,011  -1,89 0,44
Dataset 3 TE 0,267 2,44 * 0,002 1,78 0,115 0,93 0,100 4,42 ** 0,41
GC -0,077  -0,36 -0,005 -2,54 * 0,262 248 * -0,020 -3,67 ** 0,45
Dataset 4 TE -0,003 -0,02 0,002 0,84 0,515 3,71 ** 0,018 0,77 0,25
GC -0,148 -1,16 -0,005 -2,34 * 0,626 4,46 ** -0,026 -2,36 * 0,53

Table 1.6: This table reports the results of linear regressions based on the network of 24 SIFIs
with as explanatory variables the topological measures estimated with successively TE and GC. The
results are reported for the four datasets. (* and ** stand for statistical significance at the 5% and
1% levels, respectively.)

Table 1.6 overviews the results for the linear regressions using either TE or GC to infer
the network. As can be seen from the significance tests, the main drivers of the average
risk level are the average connectivity as well as the average eigenvector centrality. As
for the coefficients, it seems that the average eigenvector centrality increases the risk of
the system, while the connectivity shows less clear results with positive and negative
coefficients. We also see from the R-squared values that the additional information
brought by the surrounding environment, increases clearly the ability of the topologi-
cal characteristics to describe properly the evolution of the risk level when using GC.
The results are less clear for TE, with a clear increase when including the set of banks,
but with a decrease when including all the financial institutions. This may be partly
explained by the lower number of connections per node when the size of the surround-
ing environment increases, as presented in Fig.1.4. We see that the increasing size of

the network leads for the TE based sub-network to a strict reduction of the connec-

7A more formal description of the different topological measures is provided in Appendix A.2.
8Results of autocorrelation and heteroskedasticity tests are available upon request from the au-
thors.
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tivity in contrast with the sub-network based on GC where the average connectivity
remains stable. This could be explained by the different types of information detected
by both measures and/or by the possible difficulties of TE to estimate properly causal
relationships when the number of conditions to apply during the inference process
increases. This also may confirm that TE reaches more quickly its optimal network
sample size when considering relatively small windows sizes while GC is able to used
the information content of the entire set of peripheral institutions. The R-squared
value shows nevertheless that the information content of the SIFI network is relatively
similar when using TE or GC.
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Figure 1.4: Graphs a and b display the evolution in time of the average number of connections per
node for both the network estimated with GC and TE.

At this point, given the equivalence of both measures in terms of information content
of their respective networks, we may wonder if their information content are equivalent

or if they are complementary. Starting from the filtered networks already estimated,
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we propose to include in a single linear regression the four different topological char-
acteristics given by both GC and TE based networks. For most datasets we found
no sign of multicolinearity, meaning that these characteristics should provide distinct
information. The results from Table 1.7 confirm the complementarity of both causality
measures as we get clearly a higher percentage of explained variance when considering
both measures than the two separately. We also observe that the percentage of ex-
plained variance stays stable for all datasets which may be explained by the decrease
of the information content of the topological characteristics provided by the TE based
networks, partly compensated by the increase for the Granger based topological char-
acteristics. As for the coefficients, the signs are relatively equivalent to the case where

we considered these measures separately.

Dataset/Measure Transitivity Betweeness EV Centrality  Connectivity R?

Dataset 1 TE 0,08 0,67 -0,002 -0,93 0,253 1,55 0,025 -3,35 %% 0,59
GC 0,143 0,65 -0,015 -3,74** 0,725 3,24 *f 0,075 -3.27** 0,59
Dataset 2 TE 0,039 034 -0,002 -1,03 0,011 0,27 20,011 -1,49 0,57
GC 0,128 -1,12 -0,003 -2,59 ** 0,200 2,30* 0,037 2,78 ** 0,57
Dataset 3 TE 0,037 034 -0,003 -2,65* 0,026 0,13 20,015 -1,91 0,58
GC 0,406 1,58 0,001 0,48 0,118 0,52 0,050 1,45 0,58
Dataset 4 TE 20,003 -0,03 -0,005 -3,56*f 0,539 4,95* -0,020 -225* 0,56
GC 0,139 1,46 0,000 -0,29 0,199 1,18 0,023 2,00 0,56

Table 1.7: This table reports the results of linear regressions based on the network of 24 SIFIs
with as explanatory variables the topological measures estimated with both causality measures. The
results are reported for the four datasets. (* and ** stand for statistical significance at the 5% and
1% levels, respectively.)

1.5 Conclusion

In this chapter, we have explored the possibility to better identify causal relations
between financial series using empirical tools derived from information theory. Based
on simulations of possible alternative data generating processes for returns with causal
structure in mean and variance, we have studied the properties of those different causal-
ity measures based on rigorous testing beyond the Gaussian equivalence case put into
lights by Barnett et al. (2009). Results show that for highly nonlinear and/or non
Gaussian DGPs incorporating extreme and rare events and for causal relationships in
variance, transfer entropy leads to better causality detection than standard Granger
causality; the bootstrapped Kernel statistical tests which are associated to this mea-
sure, presenting better results in terms of power and size but also in terms of ROC
and PR curves.

An empirical application using daily CDS of European and U.S. financial institutions

has then been proposed to compare the information content of the networks estimated
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with both causality measures. This comparison has been performed by studying the
impact of the topological characteristics of our networks on the evolution of the average
risk level of a system composed of 24 SIFIs. We additionally considered the influence of
the surrounding environment of the network in the definition of its connectivity using
an algorithm treating the issue of redundancies in the information transfer process.
We found that the information content of the networks estimated with each causality
measure explained well the evolution of this risk, considering the high percentage
of variance explained by our models. We also showed that both causality measures
were complementary. Regarding the effect of the peripheral institutions on the SIFIs
network, we proved its positive impact on the information content of the networks
estimated with Granger causality for all type of financial institutions and for banks in
the case of transfer entropy. These results demonstrate that the ability of a network to
benefit from the information content of its surrounding environment depends directly
on the ability of the underlying measure to treat high dimensional estimation. In
the case of transfer entropy such high dimensional estimation requires longer time
series. Apart from that, the results do not provide a clear limit on the network sample
size for the considered application. Indeed, for the Granger causality based inference
process the entire set of peripheral institutions increased the information content of
the inferred networks.



Chapter 2

Effective Network Inference Algorithm

2.1 Introduction

Over the past decades, complex network research has received increasing attention
from the literature analyzing the developments in experimental science as well as in
human and social sciences. Such developments have become necessary in order to
describe systems in which interactions are governed by stochastic phenomena. Along
these lines, several tools have been developed in or borrowed from areas such as sta-
tistical physics, information theory and computer sciences to explore and understand
further complex systems.

Among the fields that have newly embraced the complex system perspective, the fields
of economics and finance stand out markedly with contributions such as Haldane
(2009); Haldane and May (2011); Battiston et al. (2012); Billio et al. (2012); Cohen-
Cole et al. (2011); Matthew et al. (2014); Diebold and Yilmaz (2014); Acemoglu et al.
(2015); Brummitt and Kobayashi (2015), to mention a few. In the aftermath of the fi-
nancial crisis, understanding the causes of such a breakdown and in particular how the
failure of a financial institution could propagate within the system and extend to the
real economy became a central question in the quest of proper regulatory framework,
calling for a shift from micro to macro or system-wide risk perspective. In particular,
a growing interest has emerged among academics, policymakers and practitioners for
having a deeper knowledge of the connectedness among financial institutions. One of
the main issue in this quest however lies in the absence of comprehensive and reliable
information on physical links between financial entities, such as interbank loans or
syndication via common assets, and the difficulties to obtain them (Feng et al., 2014;
ECB, Januray 2011). Against this background, a now common approach in the liter-
ature to infer unobserved links and reconstruct the whole financial network consists
in making use of the statistical measurement (be it correlation, transfer entropy or

Granger causality measures for instance) of temporal dependencies between one or

35
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several observable characteristics associated to the nodes such as their stock market
returns. In this framework, financial institutions represent the nodes of the network

with the linkages reflecting the relative influences between pairs of firms.

Areas such as epidemiology (Lipsitch et al., 2003; Wallinga and Teunis, 2004), genetics
(Zhang et al., 2012; Tung et al., 2007), neuroscience (Vicente et al., 2011) or human
travel (Brockmann et al., 2006) follow a similar approach by considering interacting
systems that can be modeled in terms of signals propagating over underlying networks
(Rodriguez et al., 2014). Given the difficulty of observing the actual network structure,
a growing interest exists in the literature for inference procedures based on time series
representing a parameter of the underlying network such as fMRI or EEG data in neu-
roscience, gene expression data in genetics or asset prices in finance (Billio et al., 2012;
Vicente et al., 2011; Liao et al., 2011).While convenient and intuitive, the time-series
approach to network reconstruction is not immune to specific problems. One of the
major problems stems from the inability to accurately separate a direct dependence
between a pair of entities from indirect effects coming through the remaining part of

the network. We propose to address this issue in this contribution.

In a regression setting, this problem corresponds to the omitted-variable bias. Such
a bias, in a network context, could end-up to wrongly associate two nodes that are
not directly connected (false positive) or fail to detect a connection that exists (false
negative) because the parameters capturing their relationship are not accurately esti-
mated. Traditionally, this is dealt with by extending a set of independent variables to
control for the auxiliary effects. However, when the network is large, the solution is
not trivial, as one potentially needs to add a very large set of regressors, the so-called
control variables or controls, especially if the dependence stems from lagged variables.
Without a specific treatment of the problem, statistical tests, whether in the absence
of controls or conversely in the presence of an excessive number of controls, are likely
to perform poorly.

Different strategies are proposed in the econometric literature to deal with or at least
mitigate the aforementioned problem. The least absolute shrinkage and selection op-
erator (LASSO) technique, developed two decades ago (Tibshirani, 1996), has recently
received increasing attention for retrieving financial networks (Diebold and Yilmaz,
2014). The method consists in applying least squares estimation subject to some
constraint. The constraint is to ease the variable selection so as to obtain a parsi-
monious model. A well-known alternative to LASSO in the econometric literature is
the general-to-specific approach developed by David Hendry and Hans-Martin Krolzig
(Hendry and Krolzig, 1999, 2001, 2003). In this case, the identification of significant

variables stems from the application of a well-designed simplification algorithm. The
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most basic steps of the algorithm involve first estimating the complete model in a pre-
search stage and then sequentially dropping or adding variables based on a specific

testing procedure.

Alternative strategies have been proposed outside the field of finance and econometrics
to eliminate spurious relationships from time series data such as the so-called silencing
approach (Barzel and Barabasi, 2013) used to separate the direct and indirect links
in biological networks or the decomposed transfer entropy proposed by Runge et al.
(2012). Other approaches based on the concept of step algorithm developed in the
general-to-specific model have proven capable to infer effective networks (see, among
others, Pearl (2000b); Aliferis et al. (2003); Tsamardinos et al. (2003); Tung et al.
(2007); Zhang et al. (2012)). The main idea is to consider the environment around in-
dividuals transmitting and receiving the information. Conditional measures are used
to identify the true path through which information travels and to remove possible
redundancies in the information transfer. Two types of dependencies are considered
in the literature, the instantaneous dependence estimated using correlation or mu-
tual information and then studied using methodologies such as the directed acyclic
graph (DAG) technique (Pearl, 2000b; Spirtes et al., 2000), and the dynamic depen-
dence focusing on lagged relationships and estimated using transfer entropy or Granger
causality (Runge et al., 2012; Tung et al., 2007; Lizier and Rubinov, 2013). This second
approach, which we aim to further extend, provides more comprehensive information
on the network, as it enables to feature the direction of edges between two nodes.

In this study, we propose to follow the literature on step algorithms using both the
pre-search and pruning steps and develop a methodology that combines conditional
information transfer and greedy algorithm to infer effective networks. The effective
network approach Friston (1994) attempts to infer a minimal topological structure,
regrouping only the directed relationships that can properly describe the evolution
of the system. We further extend this approach and consider the possible spurious
connections due to both instantaneous and lagged causal relationships by applying an
extended set of possible conditions. As described above, the conditional information
transfer approach faces the problem of dimensionality stemming from both the large
number of nodes in the system and the fact that the relationship can exist for dif-
ferent lags. We pay particular attention in the algorithm to minimize the number of
conditions for each information transfer by considering only the most relevant ones.
Overall, this approach enables us to detect redundancies (i.e., lower the false positive
rate) as well as to mitigate the loss of efficiency stemming from high dimensionality
(i.e., lower the false negative rate).

In a series of simulation exercises using artificial networks, we confirm that our method-
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ology performs well compared to a set of state-of-the-art methodologies such as the
global silencing approach. Equipped with our approach, we investigate in the applica-
tion part, the link between the banks’ topology and systemic fragility. The past decade
shows an increasing interest among the academic community and financial regulators
to adopt a network perspective to describe and analyze financial markets. From the
regulators’ perspective, such an approach aims to identify critical relationships in the
market as well as to improve regulatory policies. Following the recent studies of Billio
et al. (2012), Sandoval (2014) or Diebold and Yilmaz (2014), who used asset prices
to retrieve financial networks and analyze their properties, we use data on large US
banks to assess the explanatory power of topological properties such as in-degree and
out-degree to describe financial institution fragility. As described in section 1.4, our
approach is well designed to deal with several important aspects of network recon-

struction in finance.

The rest of the chapter is organized as follows. Section 2.2 introduces the concept
of network and the difficulties associated to its determination. Section 2.3 presents
our algorithm. In section 2.4, we demonstrate via Monte Carlo simulations the perfor-
mance of our approach compared to other methodologies. Section 2.5 then turns to the
empirical application and exposes the data, estimation method and results. Finally,

Section 2.6 concludes.

2.2 Network structure, information decomposition,

and indirect links

In a multivariate time series framework, the network is usually represented by an
oriented graph made of a set of nodes, each represented by a stationary time series
X = {xt}tzl,---,T7 and a set of oriented edges specifying the relationship between the
nodes through the definition of information transfer. Each node X can therefore be
characterized by a set of parents Py, (X) € R”*T, with P the number of parents of
X, from which the node receives information, and a set of children Cg_(X) € RE*T,
with C' the number of children of X, to which the node transfers information. These
relationships are characterized by a specific temporal structure, according to which
the value of node X at a specified time t is partly determined by the value of its
predecessors at a time t — k,, where k, depends on the lag structure of the rela-
tionship. Each term of the index vector k, represents a specific subset of parents,
P, (X) € R *T with the same lag k, compared to X, with therefore P, defining
the number of parents with a lag of k,. As Eq.2.1 shows, the information content of X
can be decomposed into three components: information from the past of X, denoted

by I(xi, zi—k,); information from the set of parents in previous periods k,, denoted
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by I(z¢, Pr,(X) | 1—k,); and a stochastic factor Sy(z;) representing the remaining
information from other sources or created by X itself (Lizier and Rubinov, 2013).

I(zy) = I(2e, p—py) + L (24, Prop (X) | Tp—ie,) + Se(2) (2.1)

with kg = (1,-- -, k7o),

Our main interest in this chapter is to determine the set of parents Py, (X) to be
included in the information transfer I(w;, Py, (X) | #¢—k,). To examine which nodes
in the network deserve to be included in this set, we need to consider two types of
links that exist between a parent node and a child node: the usual direct links where
a clear causal relationship can be established from a node to another regardless of the
rest of the system, and the indirect links by which the relationship between one node
and another depends on at least one auxiliary node in the system. The existence of
indirect links leads to redundancies in the information transfer process. When faced
with indirect links, the child node seems to receive the same information from different
sources. Therefore, the transfer of information cannot be expressed as a simple sum
of the contribution of each source, as presented in Eq.2.2, but a pruning process is
required to remove the redundant sources. The objective of the algorithm developed
in this chapter is therefore to define, for each node, the minimal set of sources Py, (X)
to be included in I(;, Pk, (X) | 24—, ) to allow X to be conditionally independent from
the remaining nodes X \ Pg,(X) of the network, where X = {X"} _, represents
all the nodes inside the considered network.

N

I, Puo(X) | 2iok,) # Y 12, Py (X) | @iiy) (2.2)

i=1

At this stage, we distinguish between two types of indirect links depending on whether
the true parent of X receives information from the source of the indirect link or trans-
mits information to the source of the indirect link (cases 2 and 3, respectively, in Fig.1).
This definition of indirect links goes beyond the traditional one, which considers only
case 2 (Florens and Mouchart, 1982). The elimination of these indirect links relies
on conditional information transfer measures and on specific hypotheses for each type
of indirect links. We illustrate the main idea behind the elimination of both types
of indirect links in Fig.1 as follows. In case 1, information is transferred to node X
from its parent W. In case 2, node X receives information from its parent, denoted
by Z. In addition, information is transferred from node Y to Z. Thus, a spurious
information transfer may occur between Y and X if we disregard the rest of the net-
work, as we could wrongly associate to Y the fraction of information Z transmitted
to X. The contribution of the transmitter Y to X will therefore disappear when con-

ditioned on Z, but not the contribution of Z when conditioned on Y, as long as Z
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transmits other personal information, which is usually the case for non-deterministic
information treatment or transfer. Now, if the transmitter Y is the true parent of X,
as displayed in case 3, we rely on the fact that for each transfer of information, a loss
occurs between the transmission and reception of information (in this case, between
Y and Z). A minimum information transfer should therefore always survive for the
transmitter Y when conditioned on Z, but will disappear for Z when conditioned on
the transmitter Y.

Jirect connection Indirect connection

Figure 2.1: The figure displays three types of direct and indirect connections from the upper node
to the lower one. Existing directed edges are drawn in bold lines; the non-existing or spuriously
detected ones are drawn in dotted lines. Case 2 represents the situation where the true parent
receives information from the source of the indirect link, and case 3, the situation where the true
parent sends information to the source of the indirect link.

2.3 Network inference algorithm

In what follows, we develop a novel multilag approach that differentiates two levels of
relationship, inter-lag and intra-lag information transfers, both of which could lead to
the development of indirect links. As regards the indirect links due to inter-lag rela-
tionships, the new methodology exploits a two-way algorithm by using both the parent
and children nodes of the transmitter to remove the two types of indirect relationships
presented in Sec.2.2 . Let P,ip (X) € RT be a vector representing one of the parents of
X with lag k,, where P, (X) is the set of parents of node X with a lag of k, and i the
parent index inside the set Py, (X). This means that each node P,ip (X), considered at
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first as parent of node X, will be removed from the set of parents of X, Py, (X), if it
does not transmit information to X while conditioned at the same time on its own set

of parents and children connected to node X.

Case 1 Case 3

Inter-lag redundancies Intra-lag redundancy

Figure 2.2: In case 1, the transmission from Y to W and from W to X lead to the detection of
a spurious link between Y and X, which can be removed by conditioning the transfer from Y to X
on its child W. In case 2, the transmission from V to X and from V to Y lead to the detection of a
spurious link between Y and X, which can be removed by conditioning the transfer from Y to X on
its parent W. As regards case 3, the transmission from Y and X and Y to Z or Z to Y lead to the
detection of a spurious link between Y and X which can be remove by conditioning on Z. This last
case corresponds simply to the case 1 or 2 with an instantaneous transfer of information between the
true parent of X and the source of the spurious link Z which acts either as W or V.

The algorithm also controls for intra-lag redundancies. This form of redundancies
stems from relationships that appear instantaneous, considering the frequency of ob-
servations used to build the network, but shares the same root causes of inter-lag
redundancies (see Fig.2.2). The main objective here is not the estimation of instanta-
neous links between parents, but rather the elimination of redundancies in the informa-
tion transfer process due to this kind of relationships. Considering the set of parents
Py, (X) of a node X at a specific lag k, the method seeks to estimate for each parent
P,ip (X) in this set, the minimum information transfer to node X, considering its im-
mediate environment in terms of lag. The resulting information transfer is estimated
by conditioning each transfer between a parent P,ip (X) and X on a specific subset of
the other parents of X with the same lag k,. This specific subset is defined using a
greedy algorithm that incrementally adds new conditions from the set Py, (X)\ P}, (X)
to the information transfer between the considered parent P,ip (X) and the node X.
At each step, the condition that maximizes the reduction of information transfer be-
tween P,’;p (X) and X is selected. The greedy algorithm stops when no more reduction
is observed in the conditional information transfer. The intuition behind this greedy

approach follows the same idea as that for inter-lag relationships considering the two
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types of possible indirect links, but here the connection between the true transmitter
of information and the source of the indirect link appears instantaneous considering
the sampling frequency. By removing the effect of indirect links due to both inter- and
intra-lag relationships, we define in our algorithm a minimum information transfer for
each parent. Therefore, the sum of all specific information transfers will never sum up
to I(zy, Pr,(X) | 24—k,); however, our objective is the determination of all oriented
edges in our network considering redundancies.

The elimination of inter-lag or intra-lag redundancies as described above requires us
to condition the information transfer on parents and children of each pair of nodes.
Without any prior on the set of existing connections in the network, this would require
us to condition on all nodes for each time lag. Against this background, the second
objective of the algorithm is to reduce the dimension of the condition set to apply in
order to limit the loss of efficiency due to small-sample effect (Runge et al., 2012).
To this end, we initialize the algorithm by estimating pairwise information transfers
for the entire set of nodes. Using pairwise information transfers as prior allows us to
drastically reduce the number of conditions used at every further step to clean the
network. Indeed, the pruning steps can use this temporary network to simultaneously
define the set of parents to be considered for each node and the conditions to be
applied to these parents so as to remove the possible indirect links. We will there-
fore not consider the entire set of nodes as other approaches do (Lizier and Rubinov,
2013; Tibshirani, 1996), but rely on the fact that the local environment (i.e., direct
parents and children) of each node will regroup all the information on the evolution
of the network relevant to the considered node. We focus our attention on this local
environment to define the true sources of information for each node inside the network.

At this stage, considering the limited knowledge owing to pairwise estimation, we
define a temporary set of parents and children that will be adjusted in the pruning
process. For each node, the temporary sets of parents and children are represented as
follows (Runge, 92):

Prp(X) = {viep, 1V € X\ X, k> 0,1(zy,0-p, | T1-,) >0}, (2.3)

CkC(X) = {U)t € X\X, k’c > O,I(wt,.flft,kc

wt,kw) > 0}, (24)

The different steps of the algorithm are as follows. To begin with, we estimate a tem-
porary network by removing the most distinct non-causal relationships using a simple

pairwise information transfer method. We then use this information in the pruning
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step to apply parsimonious conditions based on the set of parents and children of each
node, represented respectively by Eqgs.2.3 and 2.4. In this pruning step, we first elimi-
nate the indirect links due to lagged relationships and then remove the ones caused by
instantaneous relationships. We first eliminate the inter-lag indirect links because part
of the indirect links due to intra-lag relationships are in fact imputable to inter-lag
relationships. Indeed, if two nodes Y and Z have a common parent V with a lag of &k
and this parent sends information to a third node X with a higher lag, a spurious con-
nection could appear between the two nodes Y /Z and the node X. This indirect link
can be removed in just one step by conditioning on the common parent V', whereas
two steps and a complementary condition would be necessary if we first considered
the intra-lag connections (i.e., Z and V to remove the indirect link between Y and
X, and Y and V for Z). Therefore, by considering first the nodes responsible for the
inter-lag indirect links, the set of conditions at the end of this first substep is such that
some intra-lag redundancies are already treated, leading to a reduction in number of
conditions needed in the second substep, and therefore to a reduction in number of
conditions to be included in the estimation of the effective transfer of information. As
regards the order in which the possible transmitters are treated, we choose a simple
bottom-up approach, starting with the transmitter with the lowest lag to the one with
the highest lag relative to the receiver. This approach leads to similar results as for the
top-down approach, but decreases the computing speed. Indeed, most of the inter-lag
indirect links are parent driven; that is, the true parent transmits information to the
source of the indirect link, and since this type of indirect links are removed faster with
the bottom-up approach, they do not appear as conditions for parents with higher
lags. The detailed steps of our iterative algorithm are as follows:

e Pre-search step: This first step applies a filter to the considered complete network
and eliminates the most distinct non-causal relationships through the detection

of information transfers:

For a given number of lags k., called horizons, estimate the N(N-1) possible
connections inside the network, with N the number of nodes, using the uncon-
ditioned information transfer

Y g} X I(.T?t, Yt—k ’ .7715,]%) > 0. (25)

For each connected pair of nodes, compare the amount of information transferred
for k =1, ..., kmae and keep the highest information transfer!.

!The choice of keeping the highest information transfer seems more natural, as it is reasonable
to assume in a number of cases that the transfer mainly happens at a specific lag. However, the
algorithm is flexible to alternative choices, such as always keeping the information transfer with the
lowest or highest lag.
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This first step returns a temporary network of m < k... layers consisting of
direct and indirect links. In a few instances, the pairwise approach might fail
to detect existing links. This may happen when direct and indirect information
transfers strictly cancel out each other. As illustrated in the simulation part of
this chapter, such cases do not significantly affect the algorithm’s performance.
On the other hand, using this pairwise network as a prior might help mitigate
the problem of dimensionality.

Pruning step: This second step aims to remove the indirect links due to lagged
(substep A) as well as instantaneous (substep B) causal relationships:

Following the bottom-up approach, remove redundant information transfers.
qu each node X’ €¢ X = {Xn}n:1,~--,N’ begin with the parent node Yki;j =
P,f/,p (XYVj=1,--- ,P,f;p, with the lowest lag k, compared to X", and apply the
following substeps:

A. Remove the inter-lag redundancies in the information coming from Y,j;j =
P,ip(X ) by conditioning the information transfer on both its parents and
children who are also connected to X".

Regroup both parents and children of the node Y,fl’)j in a unique condition
set

7 ={viyuwil. (2.6)

With Vz%j = {Pkg(Y,j;j ) N Pra (X Z)}, the set of parent nodes of Y,:Z’)j con-
nected to X* and k% their lags compared to X".

With W, = {Ckg(Y,j;j ) N Prear (X ‘)}, the set of children nodes of Ykng con-
nected to X* and k3’ their lags compared to X * (see Fig.2.3 for a graphical

representation).

* Now, estimate the information transfer conditioned on this set. The parent
node Yy’ is disconnected from X" if the following condition is not fulfilled:

I(z/, ZUZ’_jkp | xi—szg—jkm) > 0. (2.7)

The outcome of substep A is the estimated information transfer between
Yk’j and X, lowered from the part imputable to inter-lag redundancies (see
Eq.2.7).
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Figure 2.3: The figure provides a graphical definition of the different groups of conditions used
in the pruning process: V;%J the group of nodes which are the parents of nodes Y7 and X? at the
P

same times but with lags of respectively ky = ki — k, and kj, W,ii, the group of nodes which are
P

simultaneously the parents of X with a lag of k3" and children of Y7 with a lag of k¥ = k, — k3" and
finally szg the group of nodes which are the parents of X with the same lag k, as Y7.

B. Greedy algorithm: If Y,:I"j stays, after substep A, a valuable source of in-
formation for X?, estimate the minimal information transfer between both
nodes using as conditions the other parents of X* sharing the same lag &, as
Y,j;]. This set of parents is defined as YZ}‘? =P, (X9 \Yki;j, with g € R

the indices of the considered parents.

* For each parent Y,f;l € YZ;’ , evaluate the difference between the information
transfer from Y,jj to X* conditioned on Z,Zc’ic and the one conditioned on
both Z,i’zc and Y,:;l, as described in Eq.2.8.

I(z/, yZ—jkp [ szkpc) — I(z;, yZ—jkp [T zszpca yZ—kp) (2.8)

* At each iteration, select the parent Yki;l that provides the largest incremen-
tal information transfer variation and include the considered parent Y,j;l in

the set of conditions Z,i’j (see Eq.2.9). Remove from Yﬁc’g the selected par-
pc P
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ent Yki;;l and any other parents included in Y;’f for which no information

transfer variation is observed.

max( I (zf, ytlﬁkp | T} szk,,)

—I(zy, yt—]kp | Tk Zt—]k,,cv yt—kp)a leg) (29)

Repeat both substeps as long as YZ’f is not empty.

If non-zero, the resulting value represents the final effective information
transfer between nodes Ylj;j and X* at lag k,, cleaned from the effects of
both inter- and intra-lag redundancies. If the resulting value is below or

equal to zero, the node Y,f};j is removed from the set of parents of X?,

Pr, (X7).

* Repeat substeps A and B for the next parent Y;;’ "of X' with a lag k,, higher
P

or equivalent to Y,j};’ .

* Reiterate these operations for each node X¢ € X = {X n}n=1,.~ N included in the

considered network to eventually obtain the effective network cleaned of indirect

links.

2.3.1 Extension

When facing a reduced number of observations, two modifications may be applied to
the algorithm to decrease the dimension of the information transfer estimation and
limit the small-sample effect. First, substep A may be divided into two successive
stages by cquitioning Y,f;j first on the set of parents Vki;j and then on the set of
children W,”. The set of conditions Z,Z’Zc regrouping both parents and children may
also be set to zero at the beginning of substep B. These modifications enable us to
test each type of condition separately and reduce the number of conditions applied
at each step. Nevertheless, the interactions between these types of conditions cannot
be identified, leading possibly to a higher false positive rate. This modified algorithm
has been tested successfully with the simulated networks of Sec.2.4 and showed results
relatively similar to those of the full algorithm with clearly a higher false positive rate.

An extension of the algorithm may be proposed to include links whose effect can only
be detected through interactions (e.g., XOR function). A third sub-step, described in
Appendix B3, may be included to deal with this type of relationships.
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Figure 2.4: The figure regroups the cutting up of substep A into two successive stages (the condi-
tioning of parents on the right and children in the middle) and substep B (on the left).

2.4 Simulation

To explore the performance of our approach, we carry out a Monte-Carlo simulation
exercise. The simulated networks include both temporal dependent and contempora-
neous relationships (i.e., resp. inter- and intra-lag) in order to assess the behavior of
the two main stages of our algorithm (substeps A and B). The topology of the simu-
lated networks is generated randomly and allows cycles, i.e. feedback loops?. Scale-free
network being the usual representation in finance as well as in other fields of science
(Barabasi and Albert, 1999), the inter-lag degree distribution of the generated nodes
follows a power law with v = 2.5 and up to 6 incoming edges per nodes. The simulator
assigns to each edge a lag of 1 with a probability of 70 percent and a lag of 2 with
the remaining probability of 30 percent. Regarding the creation of the intra-lag links,
two additional rules are applied: the receiver and the transmitter must not be already
connected, and either the transmitter or the receiver must have at least one child.
The objective of both rules is to increase the number of potential intra-lag indirect
links and challenge the inference algorithms ability to prune this type of indirect links.
For each pair of node respecting the previous rules, an instantaneous link is created
20 percent of the time. The network generator starts with the creation of inter-lag
connections, going from node to node, and then adds intra-lag connections in a second

2The number of cycles have been estimated for the different sets of networks with an average
number of 8.2 and 22.5 cycles per network for the networks composed of respectively 20 and 40
nodes.
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step. All connections are stored in an adjacency matrix with their lag as parameter.

The time series of each node is then estimated based on the connections stored in
the adjacency matrix using two different frameworks, a vector auto-regression (VAR)
structure to account for linear relationships and a regime switching specification to
account for non-linear behavior. Taking the case presented in Fig.2.4, Eq.2.10 provides
the evolution of the time series Y following the VAR specification. The coupling
strengths are set to § € [0.4,0.6] for inter-lag relationships and 6 € [0.5,0.6] for
intra-lag relationships. We choose relatively high values for these coefficients because
the main idea behind these simulations is to assess the ability of our algorithm to
disentangle the direct links from the indirect ones, and not the ability of the selected
causality measures to detect information transfers.

Y =y + Bwiky +0y)y, + e (2.10)

where the parameters 8 and ¢ regulate the coupling strength for respectively the inter-
lag and intra-lag relationships, and ¢, represents an independent Gaussian white noise

with zero mean and a variance of one.

As regards the regime switching specification, Eq.2.11 gives the general framework
used to generate the time series. Each node connected to Y transmits its information
intermittently depending on the state of the world s;. The transition between the
different states depends on a Poisson process with an intensity of 10 percent. The
coupling strengths $ and ¢ are defined in the same way as for the VAR specification.

o= ayl, + Pwi—gz + 51/54@7 +e When sp =0 (2.11)
yz = Oéylzf.—l —I— 6yf_kp + €t When St — ]. (212)
v = ayi, +fwg +e When s, =2 (2.13)

We compare the results of our technique using both transfer entropy and Granger
causality (see Appendix B1) as information transfer measure, denoted respectively by
TE and GC, and four other state-of-the-art methodologies, the Greedy methodology
(Lizier and Rubinov, 2013), denoted by Greedy; the Minimum Description Length
methodology (Zhao et al., 2006) denoted by MDL; the Global Silencing methodology
(Barzel and Barabasi, 2013; Feizi et al., 2013); and the Granger LASSO method (Tib-
shirani, 1996).

The Greedy algorithm uses transfer entropy as the information transfer measure,
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whereas the MDL and Global Silencing methodologies use a causal form of mutual
information (for more details, see Zhao et al. (2006)). The Global Silencing methodol-
ogy and MDL use the first step of our algorithm as initialization. The resulting multi-
lag matrix is merged for the Global Silencing methodology to form a two-dimensional
matrix. As regards the Granger LASSO method, for each variable, all the dataset
nodes are included in the model for the selected time horizon of two lags. The main
parameter influencing the performance of our algorithm and the Greedy methodology
is the p-value used as threshold to remove the non-causal links. The MDL relies on
a parameter which accounts for the influence of the network coding length on its cost
function while the two last methodologies relies on an ad hoc threshold determining

the level at which a link should be considered as indirect.

As commonly done in the literature, we assess the performance of our algorithm and
other methodologies by comparing the inferred effective network with the known under-
lying network created by the simulator. We report the performance of the considered
approaches in terms of area under the receiver operating characteristic curve (AU-
ROC) and area under the precision-recall curve (AUPR), as commonly done in the
literature (Marbach et al., 2012). Two different ROC curves are proposed to consider
both inter and intra-lag indirect links. The first one uses the traditional total number
of false positives while the second ROC curve, called instantaneous ROC, relies on the
number of false positive imputable to an instantaneous links. We start our simulation
exercise by generating 100 simulated networks composed of 20 nodes and represented
by time series of 200 observations. We apply on them the five different methodologies.

Fig.2.5(a) shows the performance of the different methodologies using simulated net-
works including 20 nodes. From the the AUROC graph, we see that our algorithm
using both information transfer measures, TE and GC, does well compared to the other
methodologies, with an AUROC of respectively 0.96 and 0.93 3. In terms of instanta-
neous ROC curves, the difference is still significant for the GC based model but less
pronounced for the TE based model which is closer to the other methodologies. Despite
the lower values compared to the previous ROC curves, we see that our algorithm is
still able to remove effectively indirect links produced by instantaneous relationships.
The Greedy algorithm, which is specifically designed to treat intra-lag indirect links,
do not provide better results and seems to suffer more than our algorithm from the
curse of dimensionality with an AUROC of 0.87. With regards the precision-recall

curves, our algorithm using GC as underlying information transmission measure, pro-

3The difference between the results obtained with both information transmission measures should
shrink if we consider longer time series as transfer entropy suffers more from the small sample ef-
fect. Indeed it has been proven that transfer entropy and Granger causality where equivalent in the
Gaussian case (Barnett et al., 2009).
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vides good results with an AUPR of 0.68, while the other curves are relatively close
although the ones associated with TE and LASSO are a bit higher than the others with
an AUPR of respectively 0.60 and 0.57. The other four state of the art methodologies
are in general relatively close to each others in terms of AUPR, AUROC and AUIROC.
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The first simulated networks included only 20 nodes to challenge the five considered
approaches, but how well do they perform when considering a larger network? To an-
swer this question, we suggest to run a second set of simulated networks composed of
40 nodes and compare the results with the ones obtained in the previous run. Looking
at the result from Fig.2.5(b), the proposed algorithm performs better, with an AUROC
of around 0.97 for both information transfer measures. The ability of our algorithm to
infer the underlying network seems even to increase slightly with the number of nodes,
especially for the TE based model. The AUPR values are relatively similar to the ones
observed previously. The good results associated with our algorithm, independently
from the number of nodes, arise from its ability to reduce the high dimensionality of
the network inference puzzle via the pre-search step. The inference procedure can then
be applied on smaller parts of the network, conserving a low dimensionality whenever

the size of the complete network.

We eventually consider the impact of non linear information transmissions on the abil-
ity of the fives methodologies to infer properly the underlying networks. We simulate
100 networks composed of 20 nodes and use the regime switching specification to gen-
erate the time series. The results provided in Fig.2.6 show the negative effect of non
linearity on all methodologies with lower AUROC, AUIROC and AUPR. Nevertheless,
the reduction is more pronounced for the other methodologies. Indeed, our algorithm
demonstrates its ability to cope with non linear information transmissions, especially
when using transfer entropy, the result being, in this case, very similar to the one ob-
tained with the VAR specification. This results from the higher sensitivity of transfer
entropy to non linear patterns. Considering the three simulation sets, the runner-up
methodology seem to be mainly the LASSO approach.
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We have thus shown through these simulations that, regardless of the underlying
causality measure selected, the proposed algorithm generally performs better than
the other methodologies we considered when examining both intra- and inter-lag rela-
tionships. Moreover, in spite of good results in some instances, the other approaches*
necessitate good calibration of their parameters, making it difficult to use in practical
applications on real data without other information on the underlying network.

2.5 Application to the US financial sector

In this section, we propose an empirical application of our network inference algorithm
to shed new light on important issues of systemic risk assessment. As documented in
the literature, several challenges have to be addressed to obtain an accurate repre-
sentation of financial networks and in turn characterize their topology. Among those
challenges stands out the absence of comprehensive and reliable information on physi-
cal connections, such as interbank loans or syndication via common assets (Feng et al.,
2014; ECB, Januray 2011). As an alternative, a strand of the literature has recently
proposed to rely on dependencies between the asset prices of financial institutions as
a measure of connections (Billio et al., 2012; Diebold and Yilmaz, 2014; Barigozzi and
Brownlees, 2013). This approach is convenient for different reasons among which our
ability to remain agnostic on the specific channel through which two institutions are
connected. Another advantage of such an approach lies in that asset prices are easily
available data for a large set of world-wide institutions. A pioneering contribution in
this line of research has been proposed by Billio et al. (2012), who estimate pairwise
Granger causality on a large set of data. While both convenient and intuitive, this
approach is not immune to specific problems. First, it has to account for time variation
of the networks, as links can appear and disappear over time depending on the banks’
contracts with other banks. Second, there is no consensus on the data frequency at
which this estimation should be made and whether this choice impacts the retrieved
network. Third, the pairwise approach can lead to a misrepresentation of connectivity
as it does not allow to separate direct links from the indirect ones. Fourth, when
adopting the Granger causality approach, one needs to specify the lag structure of the
time series dependence, as the connections might be invisible with a single lag but

appear as we go down the past (Barigozzi and Brownlees, 2013).

In what follows, we apply our methodology and analyze the evolution of the financial
network characteristics before, during, and after the recent financial crisis and its im-
pact on the fragility of financial institutions. Our algorithm seems particularly well

4Apart from the Greedy methodology which also relies on the definition of a p-value.
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suited to tackle this issue. As described in the previous sections, it is designed to
identify direct links efficiently while accounting for multilag relationships. Following
the literature, it can also easily accommodate dynamicity in the networks by applying
a rolling window approach (Dungey et al., 2012; Billio et al., 2012). Eventually, we use
data at different frequencies, including high-frequency data, to analyze how frequency
sensitive the network topology and its impact on bank fragility can be.

For our multi-frequency analysis, we use the stock returns at three different frequen-
cies, daily observations, hourly observations, and high-frequency observations, that is,
every 15 minutes. We then rely on measures in the vein of Diebold and Yilmaz (2014),
such as the average in- and out-degree or the eigenvector of centrality, to determine
the relationship between the topological evolution of the network and the risk level
of its components. We therefore withdraw from the alternative question of which fi-
nancial institutions contribute the most to the risk of the system (see Brunnermeier
et al. (2009); Adrian and Brunnermeier (2009); Acharya (2009); Anand et al. (2012);
Battiston et al. (2012) among others) and treat the reverse question of how the system
and, more specifically, its topology could impact the fragility of a specific institution.
Different approaches have been proposed to analyze bank fragility, such as the SRISK
measure of Acharya et al. (2012) 5, DebtRank (see Battiston et al. (2012); Thurner
and Poledna (2013); Bardoscia et al. (2015) to quote only a few), or closer to what
we do Ballaa et al. (2014); Billio et al. (2012), which relates it to the financial institu-
tions’ topological characteristics. However, to our knowledge, this is the first study to
propose the use of both low-frequency and high-frequency data for this type of analy-
sis. Moreover, the aforementioned studies are not designed to properly deal with the
redundancy issues that could strongly affect the final results.

2.5.1 Topological measures estimation

Following Ballaa et al. (2014), we focus on the largest US banks. The selected dataset
regroups the stock returns of 22 financial institutions traded on the NYSE and Nas-
daq, covering the period from January 2005 to January 2013. As a preliminary step in
network estimation, we filter out our dataset from the effect of common global factors
using a market index%. The filter is a simple linear regression done with stock returns
as the dependent variable and the S&P 500 as explanatory variable. The residual of
the linear regression is then used to estimate the networks. In order to explore the

relationship between financial institutions both in mean and variance, we follow the

5The SRISK measure uses a conditional form of capital shortfall, with market risk level as the
condition.

6Billio et al. (2012) use this approach for their robustness analysis and do not find qualitative
differences in their results.
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recent literature on non-parametric volatility measures (Barndorff-Nielsen and Shep-
hard, 2003; Andersen et al., 2005; Mykland and Zhang, 2009; Andersen et al., 2010) by
using high frequency data (i.e., 15 minutes) to reconstruct lower-frequency volatility
(i.e., daily), which forms a fourth sample. Specifically, we use an approach similar to
the one developed in Barndorff-Nielsen and Shephard (2003) to consider the possible
outliers in our dataset by computing a jump-robust measure of volatility, namely, the
Bipower variation.

We begin our analysis by applying our network inference algorithm on the data using
conditional Granger causality as transfer information measure. As shown in the sim-
ulation exercise, this information transfer measure performs well with small samples.
Therefore, it allows us to reduce the number of observations needed to reconstruct the
network. For each frequency, we consider window sizes of 240 observations to estimate
the information transfer, which corresponds to one year for daily frequency, since we
have 20 trading days per month on average. Since the number of observation is fixed
for all frequencies, we have a common level of bias from the small-sample effect. The

network dynamics is then characterized using traditional rolling windows”.

A well-known issue of rolling windows is their sensitiveness to outliers, which can lead
to highly volatile indicators of interconnectedness. To deal with this issue and smooth
the indicators, we apply a second set of rolling windows on the estimated networks
with a window size of six months and stepsize of one period for all frequencies. For
each pair of nodes, we compute the number of times a transfer of information is ob-
served in the set of networks included in each six-month window. Each pair of nodes is
then considered as connected if the number of connections observed in each six-month
window exceeds a threshold of 10 percent. We eventually estimate three topological
measures using these filtered network representations: the average number of outgoing

and incoming connections per node and the eigenvector of centrality.

“For daily frequency, the step size is five observations, corresponding to a week; for the hourly
(resp. 15 minutes) frequency, the step size is six observations (resp. 24 observations), corresponding
to a trading day.
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Fig.2.7 displays, for four different samples, the evolution over time of the average con-
nectivity® and eigenvector of centrality. The averages computed are based on the 22
financial institutions of the dataset. As the graphs show, the networks inferred from
the daily frequencies show more pronounced variation and clearer patterns, especially
during the crisis, suggesting a lower level of noise and potentially more information
content. We also observe an increase in connections detected with higher frequency
data in the crisis period, and, more specifically, in the last part of 2008 and 2009. This
peak, which is not visible for daily frequency-based networks, might suggest that the
transfer of information accelerates in crisis periods, thereby being better detected with
high-frequency data.

2.5.2 Financial institutions’ risk and topological measures

Equipped with the retrieved networks and using different measures, we propose to
follow Ballaa et al. (2014) and determine how topological characteristics contribute to
the risk of financial institutions. In line with Ballaa et al. (2014); Billio et al. (2012),
we define the exposure of an institution as the maximum percentage financial loss dur-
ing a specific period of time; also called Max%Loss. We use the same window size as
used previously to compute the Max%Loss series and carry out linear regressions using
the Max%Loss series as dependent variable, and the number of incoming edges, the
number of outgoing edges, and the eigenvector of centrality as explanatory variables.
A preliminary analysis is then performed for each institution; this consists of the usual
multi-colinearity, auto-correlation of errors, and heteroscedasticity tests®. Since signs
of auto-correlation of error terms have been detected for most institutions and fre-
quencies, we estimate the heteroskedasticity and autocorrelation consistent (HAC) co-
variance matrix using the procedure developed by Newey and West (1987) to correctly

compute the covariance matrix of the explanatory variables'.

Finally, we estimate
the percentage of the explained variance attributable to the different predictors as the

squared semi-partial correlation.

As evoked earlier, our empirical procedure should shed light on two important ques-
tions: (i) Do topological measures such as in-degree and out-degree as well as the
eigenvector of centrality provide a good indication of financial institution fragility? (ii)
Is the information content of the topological measures constructed from low-frequency

data the same as that constructed from high-frequency data? The regression results

8 As we computed the average values for 22 banks, the in-degree and out-degree give similar results.

9The related tests for multi-colinearity, auto-correlation of errors, and heteroscedasticity are re-
spectively the VIF test, the Durbin Watson test, and the Breusch-Pagan test, using the R package
CAR of Fox and Weisberg (2011) and LMTEST of Zeileis and Hothorn (2002).

10We use the R package Sandwish of Zeileis (2004) to estimate the HAC covariance matrix.
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Ticker Eigenvector In-degree Out-degree
coeff  t-stat R? coeff  t-stat R? coeff  t-stat R?

SNV -0,352  -1,942 0,121 0,078 4,071 ** 0,032 0,042 1,614 0,193
STI -0,881 -3,599 ** 0,140 0,064 4,942 ** 0,178 0,075 2,213 * 0,136
ZION -0,578 -2,835 *F 0,278 0,047 1,684 0,138 0,045 3,870 ** 0,074
BBT -0,461 -1,723 0,014 0,030 1,197 0,083 0,021 0,685 0,048
HCBK -0,457 -3,010 ** 0,127 0,044 5575** 0,072 0,036 2,585 * 0,208
NYCB -0,155 -0,985 0,133 -0,037 -2,262 * 0,018 0,022 2,680 ** 0,096
RF -0,677  -4,334 ** 0,002 0,122 4,380 ** 0,109 0,008 0,670 0,426
JPM -0,657 -4,214 ** 0,192 0,022 1,740 0,322 0,040 3,287 ** 0,041
MS -0,268 -2,062 * 0,230 0,009 0,639 0,037 0,042 7,011 ** 0,006
STT -0,191 -2,384 * 0,008 0,076 5,201 ** 0,018 0,011 2,796 ** 0,219
WEFC -0,601 -3,610 ** 0,089 0,029 1,811 0,122 0,034 6,708 ** 0,035
BAC -0,998 -7,202 ** 0,014 0,115 4,022 ** 0,192 0,022 1,253 0,229
BK -0,545 -2,487 * 0,179 0,032 3,426 ** 0,233 0,042 3,624 ** 0,153
C -1,535 -7,908 ** 0,175 0,067 4,435** 0,378 0,073 5,595 ** 0,156
GS -0,034 -0,225 0,089 0,019 0,830 0,001 0,021 23,833 ** 0,019
FITB -1,114 -5,118 ** 0,466 0,054 3,909 ** 0,408 0,086 7,567 ** 0,064
HBAN -0,616 -2,278 * 0,113 0,055 1,635 0,065 0,070 2,679 ** 0,132

KEY  -0,462 -6,036** 0397 0,065 4,052* 0,106 0,053 7,800 ** 0,270
MTB  -0,527 -9,752 ** 0,131 0,051 2,132* 0,142 0,042 5302 ** 0,122
PBCT -0,766 -5,068 ** 0,194 0,073 7,101 ** 0,199 0,060 9,637 ** 0,419
PNC  -0,586 -12,041** 0,108 0,099 10,462 ** 0,052 0,085 14,665 ** 0,363
CBSH -0,318 -4,201 ** 0,555 0,020 1,953 0,108 0,048 6,579 ** 0,048

Table 2.1: This table reports the results of linear regression using the daily returns of 22 US financial
institutions selected for our application as base for network estimation.(* and ** stand for statistical
significance at the 5% and 1% levels, respectively.)

are reported in Tables 1-4 for the three different frequencies. For the daily frequency,
we use both returns and volatility. The tables report the estimated coefficient, the
t-statistic, the p-value, and the percentage of the explained variance attached to each
variable. We find that the three topological characteristics are significant determinants
of the Max%Loss variable for most financial institutions. The number of significant
variables is nevertheless lower for the highest frequency, suggesting the presence of
noise in the data. Moreover, the volatility data seem to better capture the dynamics
of the networks with, on average, a higher percentage of explained variance for all
variables. The signs of the coefficients are similar for almost all frequencies and all
financial institutions. The coefficients for in-degree and out-degree are clearly positive,
indicating that more connected institutions in and out are more prone to losses. The
positive sign of the incoming edges seems to support the view that institutions with an
increasing number of in-coming links are more subject to shocks from the system and
therefore are more fragile. As for the number of outgoing edges, its positive impact on
risk may be explained by feedback mechanisms, according to which a stress in highly
connected institutions is more likely to be transmitted to the rest of the system. As
a result, the worsening of the financial environment deteriorates further the financial

condition of institutions under stress. The coefficients of the eigenvector of centrality
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Ticker Eigenvector In-degree Out-degree

coeff  t-stat R? coeff  t-stat R? coeff  t-stat R?
SNV -0,504 -2,431 * 0,316 0,026 3,015 ** 0,158 0,040 4,450 ** 0,158
STI -1,039 -5,024 ** 0,121 0,033 11,558 ** 0,257 0,229 2,059 * 0,257

ZION  -0,267 -2,063* 0,021 0067 8828** 0,624 0014 -1,494 0,624
BBT  -0,611 -5515*f 0,060 0030 258 * 0277 0,059 3,988 *% 0,277

HCBK 0,370 1,199 0,000 0,005 0,927 0,011 0,042 0,012 0,011
NYCB  -0,644 -16,859 ** 0,057 0,023 7,765 ** 0227 0433 2,932 %% 0,227
RF 0,201 -2,331* 0,117 0,041 3,397 ** 0,462 0,016 5,085 ** 0,462
JPM 0,004 2,121 * 0,057 0,016 9,046 ** 0,082 0,006 4,545 ** 0,082
MS 0,737 10,305 ** 0,030 0,042 6,987 ** 0,429 0,128 2,640 ** 0,429
STT  -0,358 -4,863 ** 0,372 0,022 6,202 * 0,127 0,077 11,062 ** 0,127
WFC 0,165 -1,176 0,053 0,001 0,353 0,000 0,016 2,782 ** 0,000
BAC  -0,997 -18,541 ** 0,327 0,039 4,487 ** 0,202 0,161 42,988 ** 0,202
BK 0,487 -3,942 ** 0,460 0,001 0,340 0,001 0254 5,512%% 0,001
C 0,177 0,848 0,001 0,062 5,559 ** 0,283 0,002 -0,356 0,283
GS 0,387 -6,830 ** 0,098 0,018 5,689 ** 0,085 0,050 15459 ** 0,085
FITB  -0,372 -1,460 0,001 0,071 15,906 ** 0,668 0,022 0,242 0,668
HBAN  -0,301 -5,047 ** 0,028 0,038 8578 ** 0249 0,012 1979* 0,249
KEY  -0,58 -1,661 0,327 0,004 0,301 0,002 0,057 3,294 ** 0,002
MTB 0,068 1,431 0,016 0,026 7,238 ** 0,337 0,001 -5720** 0,337

PBCT -0,517 -4,778 ** 0,080 0,015 3,013 ** 0,141 0,131 6,748 ** 0,141
PNC  -1,258 -3,043** 0218 0,023 2011* 0,130 0498 3,839 ** 0,130
CBSH -0,384 -10,736 ** 0,754 0,000 -0,033 0,000 0,160 6,899 ** 0,000

Table 2.2: This table reports the results of linear regression using the daily volatilities of 22 US
financial institutions selected for our application as base for network estimation. (* and ** stand for
statistical significance at the 5% and 1% levels, respectively.)

are usually negative. This measure of centrality is slightly more complex than the pre-
vious ones as it combines information on both the number of in- and out-degree links
and the importance of the connected nodes. With this in mind, our result indicates
that the more the banks are connected to important institutions, once we control for
the number of in- and out-degree links, the lower their level of risk. As for the per-
centage of explained variance, it differs significantly from one institution to another,
but tends to prove the importance of the number of outgoing and incoming edges.

Finally, we discuss how sensitive these results are to the choice of data frequency.
Several insights can be drawn from our results. First, topological indicators matter
for all the considered frequencies. Second, significant differences exist between them.
Thus, topological indicators explain financial fragility in more instances with high-
frequency (1 hour) information than with low-frequency information (1 day). However,
this result reverses for very high (15 min) frequencies. This finding is corroborated
by the explanatory power of the different regressions, which is on average 37 percent
(R-square) for daily observations, compared to 38 percent for hourly and 25 percent
for 15-minute observations. Thus, we can assume a trade-off between information

and noise when increasing the frequency of data, leading to an optimal frequency to



2.5. APPLICATION TO THE US FINANCIAL SECTOR 61

Ticker Eigenvector In-degree Out-degree

coeff  t-stat R? coeff  t-stat R? coeff  t-stat R?
SNV -0,644 -3,557 ** 0,179 0,044 4,932 ** 0,150 0,044 7,741 ** 0,210
STI -0,611 -5,554 ** 0,118 0,052 4,685 ** 0,196 0,029 7,838 ** 0,308

ZION  -0,627 -2,413* 0,037 0,046 5597 ** 0,111 0,025 2,631 ** 0,195
BBT  -0,333 -4,796 ** 0,323 0,033 2,949 ** 0,066 0,035 8,749 ** (0,188
HCBK  -0,186 -2,195* 0,139 0,020 3211 *% 0,051 0,013 5,143 %% 0,127
NYCB  -0,375 -2,993 ** 0,037 0,022 3,047 ** 0,165 0,012 2535* 0,107

RF 0,529 6,234 ** 0,166 0,062 5,745 ** 0,094 0,043 9,701 ** 0,426
JPM  -0,537 -3,169 ** 0,177 0,016 2,962 ** 0,282 0,024 1,856 0,043
MS 0,646 -3,538 ** 0,517 0,028 2,275* 0,312 0,043 6,021 ** 0,122
STT  -0,437 -10,128 ** 0,344 0,020 6,874 ** 0,117 0,035 9,255 ** 0,063
WFC  -0,352 -1,925 0,055 0,028 5,649 ** 0,036 0,027 2502* 0,109
BAC  -0,504 -1,574 0,163 0,042 2,388 * 0,081 0,031 3,831 % 0,177
BK 20,262 -5969 ** 0,334 0,022 4,975 *% 0,111 0,020 12,217 ** 0,142
C 0,836 -3,576 ** 0,292 0,044 2,262* 0,144 0,053 4,779 ** 0,088
GS 20,529 -2,690 ** 0,175 0,040 2,814 ** 0285 0,026 2,301 * 0,396

FITB  -0,608 -5211*f 0241 0,053 3,024 ** 0,127 0,041 2,786 ** 0,167
HBAN  -0,573 -4,582** 0,109 0,052 6,336 ** 0,107 0,037 6,088 ** 0,239
KEY  -0,480 -3,077 ** 0,312 0,039 8,649 ** 0,009 0,041 4,392 ** 0,167
MTB  -0,317 -4,147 ** 0,025 0,027 6,991 ** 0,065 0,010 3,237 ** 0,201
PBCT -0,449 -2545* 0292 0,023 2,529 * 0,326 0,028 2,588 ** 0,134
PNC  -0,537 -3,798 ** 0,179 0,036 4,992 ** 0,157 0,043 3,779 ** 0,234
CBSH -0,276 -6,730 ** 0,328 0,018 4,736 ** 0,221 0,016 10,602 ** 0,186

Table 2.3: This table reports the results of linear regression using the hourly returns of 22 US
financial institutions selected for our application as base for network estimation. (* and ** stand for
statistical significance at the 5% and 1% levels, respectively.)

retrieve financial networks from asset prices for systemic risk assessment.

2.5.3 Empirical comparison with pairwise Granger causality

As already mentioned, pairwise estimations are relatively common in finance to infer
networks. Therefore, we propose, as a final exercise to assess the added value of our
algorithm, to compare the information content of the network inferred in the previous
section with the information content we would obtain by using a simple pairwise ap-
proach. Indeed, the more precise representation of the network in our algorithm could
increase the information content of the different variables used in the previous section

to describe the evolution of financial institution risk.

In order to simplify our analysis, we focus on daily returns and volatility. The network
estimations for the pairwise approach use the pre-search step of our algorithm with
the same parameters. We follow the approach described in the previous section, again
with two levels of rolling windows for topological parameter estimation and linear
regressions based on these variables. As evident from Tables 5 and 6, for both data
sets, there is a clear decrease in the number of significant variables when using the

pairwise approach compared to the results obtained with our algorithm (see Tables
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Ticker Eigenvector In-degree Out-degree
coeff  t-stat R? coeff  t-stat R? coeff  t-stat R?

SNV -0,491 -3,973 ** 0,241 0,014 1,849 0,106 0,023 7,858 ** 0,052

STI -0,444 -1,724 0,237 0,013 4,728 ** 0,110 0,021 3,171 ** 0,045

ZION  -0,431 -4,398 ** 0,123 0,018 8372 *% 0,059 0,024 3,197 ** 0,109
BBT  -0,370 -3,266 ** 0,172 0,017 2,789 ** 0,118 0,016 2,464 * 0,160
HCBK  -0,005 -0,123 0,003 0,006 1,555 0,000 0,001 0,512 0,084
NYCB -0,292 -2,388* 0,193 0,006 1,412 0,187 0,010 2,978 ** 0,030

RF 0,707 -3,545 ** 0,287 0,021 2,704 ** 0200 0,032 3,502 ** 0,110
JPM  -0,368 -2,711 ** 0,052 0013 2345* 0,076 0,011 1,728 0,138
MS 0,353 -1,813 0,062 0,022 2,048 * 0,057 0,015 2485* 0,176
STT  -0,444 -3,343 ** 0,062 0,023 2,539 * 0,119 0,013 2,844 ** 0,240

WFC 0,608 -2,924 ** 0,310 0,002 0,413 0,256 0,027 3,104 ** 0,001
BAC  -0,477 -2,160* 0,102 0,026 2,023* 0,102 0,016 2,558* 0,166

BK 0,337 -2431* 0,175 0,010 1,694 0,141 0,014 2,937 ** 0,069
C 0,409 -1,993* 0,073 0,032 3,687 ** 0,061 0,016 1,902 0,196
GS 0,282 -1,960 0,188 0,009 2.412* 0,080 0,015 2,711 ** 0,048

FITB  -0,392 -4,561 ** 0,129 0,024 3,368 ** 0,054 0,021 8,592 ** 0,153
HBAN  -0,720 -2,615 ** 0,144 0,021 2,951 ** 0,155 0,029 2,693 ** 0,139
KEY  -0,155 -1,050 0,022 0,023 3,966 ** 0,000 0,008 1,525 0,216
MTB  -0,337 -2,287* 0,108 0,019 2897 ** 0,114 0,013 2,712 ** 0,202
PBCT -0,295 -2,934 ** 0,143 0,011 1,768 0,184 0,012 3,018 ** 0,118
PNC  -0,299 -5.452** 0,115 0,015 2,634 ** 0,076 0,014 2,836 ** 0,123
CBSH -0,236 -2475* 0,046 0,010 2,016* 0,178 0,004 1,911 0,194

Table 2.4: This table reports the linear regression results using the high-frequency returns of 22 US
financial institutions selected for our application as base for network estimation. (* and ** stand for
statistical significance at the 5% and 1% levels, respectively.)

1 and 2). Apart from the in-degree for the volatility data set, a similar trend can
be seen for the percentage of explained variance with, on average, a decrease ranging
between 28 and 46 percent for the pairwise approach. As for the coefficients, we obtain,
overall, the same signs as in Tables 1 and 2 with a negative impact of the eigenvector
of centrality and a positive impact on the firm’s risk for the in- and out-degree. We
can therefore conclude that our algorithm tends to provide more precise information

on interactions within the network.

2.6 Conclusion

In this second chapter, we explored the possibility of improving network inference
from temporal data acting on two different levels. We proposed a novel approach
taking into account the effects of both redundancies in information transfer processes
and increasing dimensionality on information transfer estimation. We tried to reduce
the impact of redundancies caused by both inter- and intra-lag relationships and to
minimize the number of conditions to apply to each information transfer to discard
these redundancies. The proposed approach may be divided into two main steps: the

elimination of inter-lag spurious connections by taking as condition both the parents
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Ticker Eigenvector In-degree Out-degree
coeff  t-stat R? coeff  t-stat R? coeff  t-stat R?

SNV -0,425 -1,858 0,064 0,054 13,613 ** 0,241 -0,015 -4,915** 0,056
STI -1,184 -5,733 ** 0,000 -0,022 -2,339 ** 0,099 0,052 6,228 * 0,354
ZION 0,928 1,152 0,250 -0,043 -5,879 0,173 0,003 0,131 ** 0,001
BBT 0,204 6,721 ** 0,000 -0,001 -0,190 0,001 -0,006 -1,800 0,004
HCBK 0,086 0,292 0,770 0,027 3,090 ** 0,111 -0,010 -0,490 ** 0,081
NYCB 0,853 0,393 ** 0,001 0,012 0,918 ** 0,036 -0,031 -4,695 0,244
RF -0,970 -15,694 0,118 0,005 0,716 0,003 0,021 1,534 0,052
JPM -0,903 -242,28 ** 0,000 0,022 3,002 0,119 -0,014 -1,911 ** 0,078
MS -0,005 -0,014 0,989 -0,017 -2,441 ** 0,148 0,032 4,399 * 0,315
STT -0,016 -0,087 0,931 0,008 1,789 ** 0,024 -0,032 -0,826 0,228
WEFC 1,393 1,846 0,066 -0,014 -1,764 * 0,048 -0,031 -2,084 0,297
BAC -1,345 -5,151 ** 0,000 0,016 11,981 ** 0,022 0,016 4,467 ** 0,058
BK -0,030 -0,043 0,965 -0,020 -1,337 0,099 0,016 0,112 0,053
C -2,638 -11,848 ** 0,001 0,052 3431 ** 0,199 0,044 22,279 ** 0,314
GS 0,232 0,948 0,344 -0,015 -3,254 * 0,185 0,009 1,987 ** 0,026
FITB -0,784 -4,933 ** 0,001 0,033 5,104 0,177 -0,012 -1,490 ** 0,010
HBAN 1,452 4,944 ** 0,001 0,028 4,868 ** 0,141 -0,073 ~-17,64 ** 0,380
KEY -1,041 -2,151 * 0,032 -0,013 -1,348 ** 0,042 0,037 3,502 0,219
MTB 0,612 7,096 ** 0,001 -0,006 -0,610** 0,009 -0,007 -5,377 0,012
PBCT -0,668 -2,826** 0,006 -0,003 -0,806 * 0,004 0,018 2,543 0,094

PNC 1,614 6,543 ** 0,001 -0,014 -2,086 ** 0,011 -0,040 -9,941 * 0,352
CBSH 1,130 6,503 ** 0,001 -0,027 -24,66 ** 0,505 -0,012 -3,379 ** 0,064

Table 2.5: This table reports the results of linear regression using the daily volatilities of 22 US
financial institutions selected for our application as base for network estimation using pairwise Granger
causality. (* and ** stand for statistical significance at the 5% and 1% levels, respectively.)

and children nodes of the transmitter, and the greedy algorithm trying to reduce the
impact of instantaneous information transfer by conditioning each transmitter on the

other parents of the receiver sharing the same lag.

We demonstrated that our two-level approach provides good results compared to state-
of-the-art methodologies using Monte Carlo network simulations including inter- and
intra-lag connections or only inter-lag connections. We showed that for a small sam-
ple, conditional Granger causality is the adequate measure for information transfer
estimation. Transfer entropy proves to be as effective for larger samples. Moreover,
this approach is relatively simple to implement and is flexible, as it can be used with
different causality measures and extended to specific relationships, such as links whose
effect can only be detected through interactions.

We then applied the new algorithm to financial data to analyze the evolution of the
US banking sector during the financial crisis. We proposed a new approach to ex-
amine the impact of topological characteristics on financial institutions risk. While
using linear regressions, we showed the relevance of the environment and the position

of an institution inside the network to describe the evolution of its risk. The in-degree,
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Ticker Eigenvector In-degree Out-degree
coeff  t-stat R? coeff  t-stat R? coeff  t-stat R?

SNV -0,443 -1,643 0,101 0,040 1,868 0,117 0,028 1,241 0,203
STI -0,332  -2,221 * 0,288 -0,030 -1,146 0,072 0,072 2,978 ** 0,031
ZION -0,161  -3,093 ** 0,263 -0,005 -0,647 0,020 0,037 4,952 ** 0,002
BBT -0,805 -4,621 ** 0,201 0,029 1,303 0,566 0,034 4,854 ** 0,052
HCBK 0,157 0,560 0,002 -0,003 -0,348 0,013 0,003 0,200 0,001
NYCB -0,091 -11,221 ** 0,102 0,018 13,500 ** 0,015 0,016 5,700 ** 0,047
RF -0,465 -2,750 ** 0,091 0,036 2,896 ** 0,077 0,032 2,627 ** 0,074
JPM 0,037 0,353 0,085 -0,004 -0,316 0,001 0,024 2,771 ** 0,005
MS 0,406 2,840 ** 0,012 -0,004 -0,274 0,079 0,009 1,633 0,002
STT 0,192 1,165 0,007 0,029 10,592 ** 0,040 -0,008 -0,595 0,172
WEFC -0,272  -1,456 0,079 -0,011 -0,596 0,062 0,033 3,583 ** 0,005
BAC 0,035 0,170 0,101 0,079 8,837 ** 0,000 -0,047 -2,280 * 0,603
BK -0,050 -0,428 0,032 0,008 1,522 0,004 0,017 1,307 0,025
C -0,686 -0,910 0,058 0,024 0,730 0,051 0,052 1,686 0,015
GS 0,013 0,633 0,148 -0,001 -0,301 0,000 0,021 27,492 ** 0,001
FITB -0,337  -2,222 * 0,393 -0,024 -1,146 0,043 0,071 7,493 ** 0,021
HBAN 0,001 0,013 0,007 0,060 2,228 * 0,000 0,008 0,789 0,144
KEY -0,297 -1,915 0,102 0,036 2,819 *f 0,063 0,025 3,729 ** 0,220
MTB -0,798 -3,382 ** (0,319 0,012 0,736 0,260 0,047 6,866 ** 0,007
PBCT 0,265 5,993 ** 0,029 0,006 2,873 ** 0,089 -0,009 -7,777 ** 0,031
PNC 0,314 1,023 0,221 -0,025 -1,045 0,044 0,046 3,812 *F 0,066

CBSH -0,348 -3,316 ** 0,030 0,018 6,022 ** 0,240 0,008 2,517 * 0,246

Table 2.6: This table reports the results of linear regression using the daily returns of 22 US
financial institutions selected for our application as base for network estimation using pairwise Granger
causality. (* and ** stand for statistical significance at the 5% and 1% levels, respectively.)

out-degree, and eigenvector of centrality have proved to be determinants of this risk
and the results for the different frequencies showed that it exists a trade-off between
information and noise leading to an optimal frequency to retrieve financial networks.
Finally, we compared these results with those obtained using a simple pairwise ap-
proach and confirmed that our algorithm gives a more precise view of the interactions

inside networks and therefore gives more information on financial institution fragility.



Chapter 3

Multichannel Information Transfer
Estimation

3.1 Introduction

The past decades have seen, in many domains of Science, the development of different
tools to better understand the behavior of complex systems in terms of dynamical
interactions among their components. This strand of the literature has been recently,
mainly devoted to the inference and analysis of network topology, as shows by the
numerous contributions in this field (see Zhang et al. (2012); Barigozzi and Brownlees
(2013); Barzel and Barabasi (2013) to quote only a few). The network approach helps
in understanding the interactions, at a micro level, between its different members,
but the relevant interactions may occur at different scales within a larger system. We
could indeed consider complex systems such as the world financial sector, the human
brain or cells as a series of sub-networks, each having their own specific character-
istics, but exchanging information at a higher level through the variables describing
their components. The analysis of these interactions operating between sub-networks
may be achieved by considering each of them as a multivariate sub-system described
by a series of time dependent parameters represented by their nodes. The detection
of links between such multivariate complex systems asks for the development of new
methodologies able to assess the information flow between a series of predictor and

predictee variables represented by the system components.

Most of the existing literature related to information transfer treated the question of
multivariate causality detection only partially by looking either at a series of pairwise
causality measures to define a global relationship as done in panel analysis (Weinhold
(1996); Dumitrescu and Hurlin (2012)) or looking at the effect of several predictor
variables using only one predictee variable (Stramaglia et al. (2012)). We propose

in this third chapter a new multi-channel causality framework in the vein of Barrett
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and Barnett (2010) to identify information flow between a series of predictors and a
series of predictees. In addition to the definition of a global information flow between
two systems, we propose, as done to some extent in regime switching causality mod-
els (Psaradakis et al. (2005b)), to define, at each time step, the local driving pair of
parameters involved in the information transfer process. Two multi-channel causal-
ity measures are developed in the chapter, one based on the linear regression form
of Granger causality (Granger (1969); Geweke (1982)) and the other based on the
transfer entropy measure proposed by Schreiber (2000) to account for linear as well as
non-linear relationships. The main idea behind our measures is the definition of the
local explanatory power of each predictor on every predictee variables and compare
them to define the pair of parameters which locally dominates the information transfer
process. Once selected for each time step, we aggregate all the relevant observations
to estimate a global information flow. We propose therefore a single framework from

which we derive two different multichannel causality measures.

We have so far demonstrated the interest of this kind of approach to assess, at a macro
level, the interactions existing between systems. But at a lower scale, a multi-channel
causality measure may also help in understanding in more details the interaction be-
tween two individual components. Indeed, the time series of an individual component
may be converted in a set of time dependent variables by decomposing the time series
in terms of quantiles or in term of frequencies via wavelet transform. The spectral rep-
resentation of time series for causality detection has been used widely in Finance and
Economics (see Lemmens et al. (2008); Hacker et al. (2014); Bodart and B. (2009);
Croux and Reusens (2013); Ciner (2011) among other contributions), Neuroscience
(Sato et al. (2006); Brovelli et al. (2004); Friston et al. (2014)) and biology. Most
on-going research use the framework proposed by Geweke (1982) which allows to test
for causality at each frequency. Although the framework has been adapted for multi-
variate time series analysis (Barrett and Barnett (2010)), the frequency must always
be the same for the predictor and predictee variables. Using our new methodology and
wavelet transform, would allow us to assess the cross-frequency information transfer

in a single measure looking at transfers with similar or different frequencies.

After having presented our two measures and tested their ability to detect multi-
channel information transfer via Monte Carlo simulations, we propose an empirical
application investigating the dynamical interactions existing in the U.S. financial sys-
tem at both macro and micro scales. We first start by representing the financial system
by a directed network using the methodology proposed by the author in Dahlqvist and
Gnabo (2018). We then define, at a micro level, the different channels used in the in-
formation transfer process between pairs of connected financial institutions. These

channels are expressed both in terms of spectral representation and probability distri-
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bution. We eventually look, more broadly, at the information transmission between
different parts of the financial system, by dissociating the systematically important

financial institutions (SIFI) from the rest of the system.

The remainder of this chapter is organized as follows. Section 3.2 discusses briefly the
concepts of Granger causality and present our multi-channel Granger causality test
(MCGC). In Section 3.3, we introduce the main ideas behind the transfer entropy and
adapt the model to multi-channel causality detection. Section 3.4 studies via Monte
Carlo simulations the ability of the two measures to detect multi-channel information
transfer using both linear and non linear data generating processes (DGP). Then, Sec-
tion 3.5 applies the proposed causality measures on a data-set regrouping the major

U.S. financial institutions. Section 3.6 eventually concludes.

3.2 Granger based multi-channel causality detection

The root of Granger causality definition dates back to the pioneering work of Wiener
(1956) which proposed to define this concept of causality as the ability of a times series
to improve the prediction of a another times series. Granger (1969) later formalized
this idea using two simple principles: the cause occurs prior to its effect and the
cause has unique impact on the future values of its effect. In the context of linear
autoregressive models, if we consider two stationary ergodic processes X € RT and
Y € R, it is said that Y Granger causes X, if predictions of future values of X
based on the past value of Y and on its own past are more precise than the predictions
of future values of X knowing only its own past. When using linear regressions, the
estimation of Granger causality relies on the comparison of the error terms of two
linear regressions, an unrestricted one defined by:

L L
r, = [o+ Z byxi_; + Z boys—1 + €4 (3.1)
=1 =1

and a restricted form, including only the past of X and therefore represented by a
simple autoregressive model (AR):

L
Ty = [o+ Z by + (3.2)
=1

The testing procedure is then based on the comparison of the variability of the error

terms of both regressions. Eq.3.1 containing more explanatory variables than Eq.3.2,
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the variability of €, should be higher or equal to n;. If the variability of ¢, is significantly
less than the variability of 7, it means that the time series Y brings information about
the future of X leading thus to an improvement in the prediction of future values of X.
As such, different statistical tests have been proposed to compare the variance of the
error terms of both the unrestricted and restricted models such as the Granger-Sargent
statistic or the Granger-Wald statistic. After having tested different significance tests,
we rely in this chapter on the Granger-Sargent statistic which gives the best ratio of
false positive on true positive rate. The Granger Sargent statistic is estimated via a
bootstrap approach which is preferred to the usual Granger-Sargent significance test,
as the optimization used for the multichannel causality test modifies the probability
distribution of non causality meaning that we cannot rely anymore on a single F-
statistic. The Granger-Sargent statistic tests for the null hypothesis of joint nullity of
By for the conditional and unconditional form of Granger causality. The test statistic

is given by:

(SSR, — SSR,)/K
SSR,/(T —2L)

gSY—)X -

where SSR, = Y.} n? and SSR, = 3./ €.

In the proposed bootstrap framework, the F-statistic is computed several times with
the time series Y bootstrapped to remove any dependencies. The obtained set of
values provides an estimation of the F-statistics for non causality. A Gaussian kernel
approach allows the estimation of a probability distribution of non causality based
on this set of F-statistics. This probability distribution of non causality is finally
used to estimate the probability of observing the initial GSy_, x in the population of
GShoot(v)—x Which gives the significance of the causal link. This last step requires to
compute the F-statistic for the non bootstrapped time series Y. The obtained value is
then compared with the probability distribution of non causality to obtain eventually
the probability of the existence of a causal link. The lower false positive rate of our
bootstrap approach compared to the usual Granger-Sargent test goes along a loss of
computational efficiency as the F statistic has to be estimated several time with the
source series bootstrapped in order to construct the probability distribution of non
causality. This leads to a higher computation time.

3.2.1 Model description

As mentioned in the introduction, we consider in this chapter, systems that are char-
acterized by more than one times series, either because these systems have different

parameters characterizing them or that their main time series may be divided in sub-
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series via quantile or spectral decomposition. In the current literature, pairwise ap-
proach are usually adopted in a panel framework to estimate the relationships between
these kinds of system, by estimating an average relationships between each pair of pa-
rameters. We propose in this section to develop a more global approach by considering
in one estimation all the channels, i.e. pair of times series, through which information
may transit between the considered multivariate systems. Indeed, as can be done to
some extend in the Markov regime switching approach, we try with this algorithm
to answer three questions: (i) Does the knowledge of the evolution of one particular
system improves the prediction of another one? (ii) When does the transfer of infor-
mation occurs for a specific channel? (iii) Which channels are preponderant in the
description of future states of the system receiving the information? But in contrast
with the Markov regime switching approach, we are not looking only at how different
explanatory variables may explain the evolution of one dependent variable, we consid-

ered several explanatory and dependent variables to infer the causal relationships.

The first algorithm, called mutli-channel Granger causality (MCGC), relies on the
Granger causality approach we presented before, to define, at each time step, which
couple of time series participates the most to the information transfer process. Indeed,
the selection of the 'active’ channel is done via the comparison of the local explanatory
power of the different transmitting time series. This comparison is based on the error
terms of the restricted and unrestricted linear regressions, taking as postulate that
the channel through which the highest volume of information transits, will show the
highest reduction of the error terms when considering the additional explanatory vari-
able. We need therefore to consider only normalized times series to be able to properly
compare their respective error terms. The simplest normalization may be achieved by

dividing all the observations of a specific time series by its standard deviation.

We starts by estimating for all possible couples of times series representing the differ-
ent channels, the restricted and unrestricted linear regressions via the usual ordinary
least square (OLS). Considering the relationships between two systems Y € R¥*T
and X € RM*T described respectively by N and M parameters evolving in time,
with T the number of observations, this gives us the following N x M couples of linear
regressions to be estimated:

L L
ZL‘; = ﬁo + Z bllxi_l + Z bglxi_l + E;J (35)
=1 =1

L
v, o= fot+ > buzi, +m,7, (3.6)

=1
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withie I ={1,--- ,M}and j€ J={1,--- ,N}.

Once estimated, the absolute difference between the unrestricted and restricted error
terms of the different pair of linear regressions are stored in a time dependent adjacency
matrix A; = {a :i € I,j € Jite{l,---,T}} € RVM with the elements of the
matrix given by:

a7 = |ei| = |ni? (37)
Two additional time dependent adjacency matrices U, = {u}’} and R, = {r}”’} store
respectively the error terms of the unrestricted and restricted linear regressions. We

compute then for each time step t, the lowest error terms observed in A; which forms
a matrix B, = {b’} defined by:

i 1 if a7’ = min(A,)
t p—t

(3.8)

0 otherwise

In its current form, the matrix B, shows a relatively high temporal instability in term
of channels’ variations due to the linear representation used in the regression model. To
avoid the effect of this instability in the determination of the optimal channel through
which the information is locally transmitted, we rely on a rolling window approach to
smooth the channels’ variations. The rolling windows are applied on the matrix B,
and the true channel is defined as the one showing the highest number of occurrences
in B, for a specific time window. The stepsize is fixed to one step while the size of the

window w will be chosen so as to maximize the resulting information transfer.

1 if Zt”ﬁw/ 2 bf;’j = max th+w/ 2 B,

by t=try—w/2 t=trp—w/2 (3.9>

C g
tT’lU .
0 otherwise

with t,, € [w/2,L —w/2].

The matrix C;,, € RY*M which provides the selected channel for each time step, is
then used to reconstructed the two series of error terms on which the bootstrapped
Granger-Sargent test will be performed. As can be seen from Eq.3.10, C, , allows to

select the optimal error terms in U; and the respective terms in R;.
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2 =J(C,, oR, )" (3.10)
2 =J(C,, oU, )J7, (3.11)

with J € RN J" € R>M unit vectors composed of one and used to sum all the
values contained in the matrix Cy,, o R,,, and C} o U, providing the term in U,
and in Ry related to the selected optimal channel for the time step t.

The causality test which is performed using both vector of error terms Z* and ZY,
gives the p-value corresponding to the global flow of information between the system Y
and X while the matrix C;,, gives for each time step, the channel which participates
the most to this information flow. As mentioned earlier, different window sizes are
tested to maximize the information transfer. The optimal window size is defined as
the one that minimizes the p-value of the causality test. We make here the additional
assumption that optimal channel selection represented by C  , i.e. the one closest to
the reality, coincides with the one minimizing the p-value. We therefore consider that
the selected window size is optimal for both the minimization of the p-value and the
minimization of the distance between C,, and the true underlying channel dynamics.
This distance will be further investigated in the simulation part. We can eventually

summarize the main steps of the algorithm as follows:

e Estimation of the restricted and unrestricted linear regressions for each possible
channel from which is computed the adjacency matrices R; and U; containing

their respective error terms.

e Determination of the local optimal channel, for each time step, by selecting in
A, the minimal difference between the absolute error terms of the unrestricted

and restricted models

e Smoothing of the resulting vector B; using a rolling window approach. Different
window sizes w are tested to maximize the information flow based on the p-value

of the causality test.

e Definition of the time series Z* and ZY representing the 'restricted’” and 'unre-
stricted’ error terms for the optimal channels selection. At each time step the

optimal pair of time series are selected based on the matrix Cy,,

e Estimation of the information flow for the different window sizes w using the
bootstrapped Granger-Sargent test and selection of the optimal window size

through the minimization of the p-value.
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An additional step may be applied at the beginning of the algorithm to improve the
channels detection. It involves a pre-search step where the usual pairwise Granger
causality test is performed for each pair of time series. Once performed, we apply the
previous steps on the channels for which an information transfer has been detected in
the pre-search step. This allows us to consider only the most relevant time series and
therefore potentially reduce the number of wrongly selected channels. Nevertheless,
it means that the considered channels should reach a minimal activity level to be de-
tected in this first step. This implies that channels in which information transit only
in a few instance will be discarded even if they potentially lead, at some point, the

information transfer process between both systems.

3.3 Transfer entropy based multi-channel causality

detection

Before introducing the second multi-channel causality measure, we discuss briefly the
concept of transfer entropy on which is based this second algorithm. Assuming W and
Z, two stationary Markov processes of order h and k, the transfer entropy determines
the reduction in uncertainty about Z when learning the past of W the past of Z being

already known until an order h. The formal definition is given by:

Tw_yz = H(Z’t | Zt—h) - H(Zt | Zt—hywt—k:) (3-12)
= > Pl zn wiei)l0ga(p(zt | zeons wiok) (3.13)
Zty2t—h,Wt—k
p(zt | Zt—hawt—k)
= _ _)log, 3.14
Z p(Zt;Zt hy Wy k) 0g. ( p(Zt | Zt—h) ) ( )

ZtyZt—h Wt—k

The estimation of the different joint probabilities may be done via a Kernel approach
(Schreiber (2000)) or more simply using a symbolization process (Staniek and Lehnertz
(2008)). We favor here the second approach, as it is computationally more efficient to
reduce the complexity of the signal contained in the time series before the estimation
of the joint probabilities. We define a specific alphabet for each time series using the
spectral quantile symbolization (SQS) proposed in chapter 1, but other approaches
may be used to compute the joint probabilities. The complexity of the symbolization
derives directly from the number of quantiles considered to separate the different re-
gions, each of them represented by a specific symbol. Once the times series have been
symbolized, the different probabilities are computed based on a frequency analysis of

the different patterns.
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As the transfer entropy suffers from small sample effect, a bias due the finite size of the
time series used for the estimation of the joint probabilities, we apply a bootstrapped
methodology similar to the one used with the Granger causality setup to remove this

bias. This methodology defines the effective transfer entropy as follows:

TEy 7z =Twoz = Ty, sz (3.15)

where T'EY,, ., is the value of transfer entropy, with series W bootstrapped to re-
move any dependencies and « the specific significance level of the test. This value is
obtained via a Gaussian kernel approach using a series of transfer entropy with series
W bootstrapped.

3.3.1 Model description

Similarly to the Granger causality based measure, we start by considering two systems
X and Y described by several parameters indexed respectively by i € I = {1,--- M}
and j € J ={1,---, M} whose evolution in time is represented by time series depend-
ing on the index t. The first step of the multi-channel transfer entropy algorithm
(MCTE) is to symbolize the different time series. The quantiles used in the SQS are
selected based on the maximization of the overall transfer entropy between each pair
of time series. We obtain, for each channel, a specific set of quantiles for the time
series representing the receiver and the transmitter. It implies a different symboliza-
tion for the N x M pairs of time series. As the symbols of these different channels
will be mixed in the maximization process used to determine the overall transfer of
information, we have to consider a different alphabet for each channel. We store then
the symbolized time series in two separate time dependent adjacency matrices, one

related to the transmitter and the other to the receiver, they are denoted respectively

S, = {sij} and R, = {rij}

We then determine for each pair of time series X* and Y7 the relative importance of
each observation of Y7 in the definition of the overall information flow from Y to X.
Taking the simple case of two stationary Markov processes of order 1, we look at the
impact of removing yf_l from the estimation of both joint probabilities, p(z¢, zi_,, y{_l)
and p(xi_,, yg_l) on the transfer entropy value. We rely here on the fact that only some
observations participate to the information transfer process, and that the removal of
such observations should lead to an overall reduction of the transfer entropy value.

These observations are the ones that increase the asymmetry existing in the condi-
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tional probability distribution p(zi, 2! | | y/_,) relative to the possible values taken
by yg_l. By removing this type of observations, we make the conditional probability
distribution p(zi, «!_, | y/_,) more symmetric and therefore closer to the case of a
conditional probability equivalent for all y/_, which should reduce the overall transfer
of information. The opposite may be true for observations of Y7 which do not help
in the understanding of future values of X?. In this case, the removal of the obser-
vation could lead to an asymmetrization of the conditional probability distribution
p(xi,zi_, | y/_,) and thus to an increase of the transfer entropy. This means that
if we observed a negative variation, the selected observation Y7 helps in describing
future state of X* and if positive this means that the observation Y/ does not bring
any valuable information about the future state of X*. This transfer entropy variation

is given by Eq.3.16.

AT}t’JaXi —Iyiyioxi T Tyixi (3.16)

Once we have estimated, for each time step and each pair of parameters, the variation
of transfer entropy, we define the 'active’ channel as the pair of parameters presenting
the highest reduction of transfer entropy. This minimal variations are then stored in
a time dependent adjacency matrix B; = bi’j € RV*M,

bi’j _ min A, if ai’j = min A, (3.17)
0 otherwise
with here the adjacency matrix A; defined by:
ATE 1 AT, o - ATH
o ATfV‘lﬁxz AT;?HXQ o AT;,'J,_»Q (3.18)
AT;‘I_W AT;;%Xi AT{*V'HXZ-

As more than one pair of time series may show a negative local variation of transfer
entropy, we are again only able to define which channel is dominating at a specific
moment the information transfer process. Additionally, thanks to the symbolization
process we do not have to normalize the time series before applying our algorithm as
we did for the Granger based measure. The symbolization process acts as a normal-

ization due to the quantiles used to assign the different symbols.
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The next step involves the rolling windows approach we used in Sect.3.2 to reduce the
temporal variability of the selected pair of time series in matrix B;. This step is even
more essential for the transfer entropy based measure because of the non-linearity of the
information flow we usually try to detect with this causality measure. Indeed, for these
types of relationship we often observe a higher sparsity of the patterns representing
the transfer of information. We compute then, for each pair of parameters, the average
variation observed in the considered rolling window. Based on this average value, we
select the pair of parameters showing the lowest average transfer entropy variation and
store it in an adjacency matrix C;,, given by:

. t+w/2 ij s trwtw/2
i )1 if Ztmztmfw/z by’ = min Zt:trw—w/z B; 319
Clrw = ] ( . )
0 otherwise

with ¢, € [w/2,L —w/2].

Once a pair of time series has been selected for each time step, we estimate the final
transfer entropy by first defining the composite time series of the system transmitting
the information and the one receiving it, based on the symbols stored in the time
dependent adjacency matrices S; = {si’} and R, = {r}’} and the channel activity

matrix C;. These two times series are determined as follows:

Zt = J(Ct7-w O Rtrw)J,T (320)
Wy = J(Ct'rw o) Strw)J/T (321)

with J € RPN J' € R™M unit vectors composed of one and used to sum all the
values contained in the matrix Cy , o R, and C,, o S, providing the term in R,

and in S; related to the selected optimal channel for the time step ¢.

After having computed the transfer entropy for different time windows w based on
the vectors Z and W, we have to define the effective transfer entropies to get rid of
both the impact of our optimization process and the small sample effect. Indeed, as
we have selected, at each time step, the pair of parameters showing the lowest transfer
entropy variation, we have artificially increased the resulting global transfer entropy.
This increase is especially striking for the smallest windows of the stabilization process
as can be seen from Fig.3.1. Therefore we cannot simply bootstrapped the resulting
W time series; we need to apply the previous steps on a bootstrapped system in which

each time series Y/ representing a parameter of the system Y is bootstrapped. Given
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the series of bootstrapped transfer entropies for each window size w, we are able to
estimate the effective transfer entropy at a specific level using Eq.3.16. We may also
define the probability of observing our underlying transfer entropy in the population
of bootstrapped transfer entropies to a get a value comparable to the p-value of the
MCGC. In both case a Gaussian kernel is used to define the probability distribution
of the the bootstrapped transfer entropies. The different steps of the algorithm may

be summarized as follows:

e Symbolization of every pair of time series via SQS and creation of two time de-
pendent adjacency matrices Sy = {s;’} and R, = {r;’} regrouping the resulting
symbol for respectively the transmitter and the receiver of the information

e Estimation of the transfer entropy variation for each pair of time series and each
observations; the resulting variations are stored in the matrix A;.

e Determination of the local optimal channel for each time step, by selecting the

minimal transfer entropy variation contained in A,

e Smoothing of the resulting vector B; using a rolling window approach. For
each window, the selected channel is the one reporting the lowest total transfer
entropy variation. Different windows sizes w are tested to optimize the smoothing

by maximizing the resulting effective transfer entropy.

e Definition of the symbolized time series Z and W based on the pair of time series
selected in Cy,,,.

e Estimation of the transfer entropy for the different window sizes w based on the
time series Z and W. Definition of the effective transfer entropy using a boot-
strapped approach consisting in applying the previous step on a bootstrapped
version of the system Y. Use this bootstrapped values to compute either the
effective transfer entropy or the probability of information transfer using a Gaus-

sian kernel.

Recalling what has been done in Sect.3.2, we may add a pre-search step to select only
the channels for which a transfer information is observed considering the whole sam-
ple. This increase the ability of our algorithm to detect the true underlying channels.
Another filter may be applied during the selection of the ’active’ channel. Indeed, as
a positive variation of transfer entropy is considered as a 'non causal’ observation, if
we face this kind of observation for every channels, we should conclude that no infor-
mation transfer occur for the selected time step. We could therefore add an additional
state indicating that no information transfer is underway during a specific time step.
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Figure 3.1: The figure shows the evolution of the bootstrapped transfer entropy relative to the
window sizes selected during the stabilization process.

3.4 Simulation

We run a Monte Carlo experiment to investigate the ability of both our models to first
accurately represent the true information transfer and then to effectively detect the
periods during which a channel is dominating the information transfer process. We
consider two groups of data generating processes (DGPs) simulating the information
transfer either linearly or non-linearly. This allows us to test both causality measures,
knowing the Granger based model should normally have a higher detection rate in case
of linear relationships while transfer entropy based model should perform better for
non-linear ones. The two simulated systems X and Y are represented by three time
varying parameters. We consider sequentially two, three and four connected pairs
of times series to define the ability of our model to infer causal relationships when
the complexity of the information transfer process increases. In each case, the regime
switching is done via a Poisson process for which we test ten different intensities ranging
from 10 percent to 1 percent to determine the impact of the switching frequency on
the causality detection. The connected time series of the system X are simulated as

followed when considering a linear information transfer:
xf =ar; + Py, +(1—a—pB)e  when s, =0 (3.22)
wd=ax}  + Py +(1—a—pB)e  whens, =1 (3.23)

with € a Gaussian white noise with zero mean and unit standard deviation and s,

defined as follows:
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1 f{s; 1 =1&p, =0 1=0&p =1
o — if {514 pe =0} or {si1 pe =1} (3.24)
0 otherwise

with p; = pois(1, 1) and I the intensity.

The non connected series X* and all the time series Y7 follow the usual auto-regressive

process (AR):

i =arl | +(1—a) (3.25)
yl = oyl +(1-a)p (3.26)

where i € {1,2,3} depending on the period and j € {1,2,3}.

As can be seen from Eq.3.22, we connect for this simulation set, alternatively the time
series X! and Y*! and X! and Y3. The two other DGPs with respectively three and
four connected pair of nodes are described by similar equations except for the deter-
mination of s;. In those cases, the Poisson process defines at which frequency a switch
occurs but then a uniform distribution is used to determine which channel is selected
for the next period. The 8 parameters are set for all simulations to 0.6 while the « is
set to 0.2 during information transfer period and then to 0.4 for the AR part. We then
simulate 200 systems for each DGP and each intensity. The window sizes used for the
definition of the optimal channel selection, range between 4 and 60 observations with
a step-size of 4 observations. For the transfer entropy based measure, we start the
estimation by defining, for each pair of simulated time series, the position and band-
width used in the SQS that maximize the resulting transfer entropy. The significance
level is then set to 0.05 for both causality measures and the number of bootstrapped

time series to 10 for the estimation of the effective transfer entropy.



79

3.4. SIMULATION

‘97eI 9AT)ISOd ONI) WINWIXRUW 91} PUR 9)el SI} UdoM)a(q dOURISIP dFRIAR 9}
Os[e pUe I9JSURI) UOTYRULIOJUI JO onyea )saY3IY o1} SUIAIS ozIs MopUIM o) Sulsn uaym 99el aanisod anIy afereae o1y 110dar (p) pue (q) seIndy oy ], oyel
aaryIsod anay 1soySIy o1} 0} SUIPRS] 9ZIS MOPUIM 9FRIOAR 9} SOAIS OS[R ASYJ, ‘S[PUURYD SUIA[IOpun amI} o) pue dojs oW} [ORS e PaIIa[as [oUURD oY)
Surredwiod uem o)l 9ATYISOd dNI) JSoYSIY o) 0) SUIPLS] 9ZIS MOPUIM 9} PUR A}I[esned pdurir) pue AdOIJUd IojsurI) JO ULID) UL oN[RA )SoUSIY o) SUIALIS
0ZIS MOPULM 9]} UM} SUOIJRAIOSUO JO IOGUINU UL POssaIdxo 0ue)sSIp oSeioae oY) ‘JO(J POseq Ieoul] oy} 10§ ‘moys(d) pue () soandy oy, :g ¢ oINS

d5J seuuetd 9211} 10] 9yel aayisod ani,(p) IO S[PUURTD 9011} 10] 9ZIS MOPUIAA (D)
Aouanbaly Buiyoyms Aouanbayy Buiyoums
o oL0 800 900 00 200 0L0 800 900 ¥0°0 200
= | | | | | | o | | | | |
5 21 > °] Bl
o *® @
o 9 Lo S
= | @ o = ]
m m i=1 o M..
o I ] 3 -® o
g o = i 3
= 5 £ B B!
3 3 2 3
= ] @ g - D
m Wv (%] % - N M
3 2 = 5 ro a2
o S L m
g ® ~ |09 v 29 - R @
2] ©7 3L -o- ETE N
3 2
o
d5J s[euueyd om) 10j 93er aaryisod onif (q) 5 S[PUURTD 0M) I0] 9ZIS MOPUIA (®)
Aouanbaly Buiyoyms Aouanbayy Buiyoums

o oL0 800 900 00 200 0L0 80°0 900 ¥0°0 200
= | | | | | | | | | |
m.. A_U PP it v S O - O W

o o o
g & (o D . 5
3 @ o < 8
3 Lo 2 = =
g 81 RS - 5
2 7 o5 X g
2 >% 8 98 5
c o 2 = =
® o o £ o N z
- - ©o @ N S 2
2 8 ° 2
= I T H
< I o | [}
® O =) © L= N
g 7 o o
o



80 CHAPTER 3. MULTICHANNEL INFORMATION TRANSFER ESTIMATION

"93RI 9ATYISOd OTLI) WNWIXRU 9} PUR 9)el SIY) UMD 9OURISIP
o8eIoA® ) OS[R PUR JI9JSURI} UOIJRULIOJUT JO oN[eA 1s9Y3IY oY) SUIALS oZIS MOpUIM o) Sulsn Usym ojel aA1isod oni) agersar o) syoder (q) o3y oy,
‘oyel oA1yISOd OnIy 1soYSIY oY) 03 SUIPS] 9ZIS MOPUIM 9FRIOAR 9} SOAIS Os[e A9Y ], 'S[oUURYD SUIAIOPUN NI} oY) pue dojs oW [ord I8 POJId[as [oUURYD
o) Surredwod waym 9jel dATIISOd NIy 1SeySIY oY) 0} JFUIPRS] 9ZIS MOPUIM dY) puR AjIesned wduelr) pue AJoIjus I9JsueI) JO ULIS) UL SN[RA }SOYSIY oY)
SUIAIS 0ZIS MOPUIA O} U0OMID( SUOIJRAIISO JO IOQUINU UT PossaIdxo ooue)sIp odeioar oy ‘JO (] POseq IedUl] 9y} 10J ‘SMmoys (®) oIndy oy, :¢ ¢ 9IN3I

d5HJ speuuetp moj 103 93er aanisod oni,(q) JdOH S[PUURTD INOJ I0J 9ZIs MOPUIAA ()
Aouanbaly Buiyoyms Aouanbayy Buiyoums

o 0Lo 80°0 900 00 00 (Y] 800 900 ¥0°0 00
= 1 | | | 1 1 | | | 1
(2]
£ e ° o
3 &
e g ~ | BN m
) . @ o ° 3
3 4 § = -~ 3
£ S S 5 3 3
2 ° 5 g Fo g
S g § e :
5 @, = - o =
c o | = g
g 2 5§ 5 |2
2 g ® G
g 29 29 )
5 m‘ 131 - 31 o™ K
)



3.4. SIMULATION 81

Fig.3.2 reports the results of the simulation for the three different DGPs with the
x-axis representing the different intensities. We look here at the ability of the two
causality measures to detect the true underlying ’active’ channels and verify the hy-
pothesis that the window sizes selected via information transfer maximization gives
the closest representation of the true channels dynamic. We use therefore two different
sets of measures based respectively on the average window sizes and on the average
true positive rate which is defined as the number of observations for which the selected
channel matches the true underlying one on the total number of observations. The
figures on the left show the average window size giving the highest true positive rate,
and the distance between this window size and the one selected when maximizing the
information transfer, i.e. minimizing the p-value of the MCGC and maximizing the
value of the effective MCTE.

As can be seen from Fig.3.2 (a), (¢) and Fig.3.3 (a), the optimal window size increases
for both MCGC and MCTE when the intensity decreases meaning that the windows
size could be an indicator of the underlying switching frequency. We also see that the
distance between the optimal window size and the selected one, increases with the av-
erage size of the window. As regards the true positive rate, Fig.3.2 (b), (d) and Fig.3.3
(b) provides both the true positive rate obtained when the window size is selected
using the information transfer and the distance between this true positive rate and the
optimal one. We observe a clear increase of the true positive rate when the switching
frequency decreases. We see also that the true positive rate does not seem to suffer
from an increase in the underlying model complexity with overall similar values for
the three cases. The distance between both true positive rates is also shrinking when
the switching frequency decreases. It seems therefore that the curvature of the true
positive rate given the window size become less pronounce around the optimum when
the intensity reduces, i.e. the switching frequency rises. This could explain the diffi-
culties to select the right window size for low intensity values. It is worth mentioning
that the transfer of information is detected with both methods for all intensities.

As regards the simulation using non-linear information transfers, we follow the same
approach by looking at the effect of the switching frequency and the complexity of the
information transfer dynamic. The simulated connected time series of the system X,
for a non-linear information transfer, are given by:

zf =ar;_ + By ) +(1—a—p)eg  when s, =0 (3.27)
w=ard  +B80E )+ (1—a—pB)e  whens =1 (3.28)

with the non connected pairs X' and all the time series Y7 following again an AR
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process:

zi=arl |+ (1—a) (3.29)
v = ayi + (1= a)y (3.:30)

where i € {1, 2,3} depending on the period and j € {1, 2, 3}.
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Fig.3.4 and 3.5 gives the same measures as in the linear case. As can be seen from
Fig.3.4 (b), (d) and 3.5 (b), the transfer entropy based measure work very well com-
pared to the Granger causality based measure, with results similar to the linear case.
These good results are not a surprise as transfer entropy is often used to study non
linear relationships. The bad results for the Granger causality based measure come
simply from the fact that apart from the case of only two ’active’ channels, it does
not detect any causal relationship between the two systems. As for the results from
Fig.3.4 (a), (c) and 3.5 (a), we have a similar trend compared to the previous linear

case.

We have so far assessed the ability of both causality measures to detect the true un-
derlying channels using different switching frequencies and linear as well as non linear
relationships. Nevertheless, we have not yet inquired the impact of the strength of
these relationships on their detectability. We propose to examine this effect by con-
sidering the most simple simulation set which uses linear information transfer and
includes only two ’active’ channels. We fix the intensity of the Poisson process to 2
percent and test then different value for the [ parameter ranging from 0.3 to 0.75.
The results are reported in Fig.3.6, with figure (a) presenting the average value of
the effective transfer entropy and the logarithm of the average p-value estimated via
the bootstrapped approach for the Granger based model. We see from these results
and comparing with Fig.3.6(b) that the ability of our models to represent correctly
the underlying channel dynamics depends directly from the results of both model in
terms of effective transfer entropy and p-value. The results from Fig.3.6(c) shows that
the transfer entropy detects surprisingly better the information transfer for the lowest
value of the [ parameter despite the fact that the underlying model is linear.
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We have shown in this series of Monte Carlo simulations that our model could detect
in most cases a transfer of information between two multivariate systems, indepen-
dently of the relationship complexity. We have also proven that the ability of both
multi-channel measures to determine the true channel dynamics increases when the
frequency of the channel switching decreases. The value of the effective MCTE or the
p-value of the MCGC could be a good measure of the distance between the detected
channel dynamics and the true underlying one, as these values evolve in a similar fash-
ion compared to the true positive rates. Although the distance between the optimal
window size and the one detected can be sometimes relatively high, the result in term
of true positive rate does not seem to be significantly affected, especially when the
switching frequency decreases. Finally, the MCTE seems to detect more easily a link
between two systems when the strength of the relationship decreases. The MCTE

should also be the measure to consider when looking at non-linear relationships.

3.5 Application to Financial institutions

In order to demonstrate the usefulness of our new causality measures, we propose an
empirical application looking at the interactions existing between individual financial
institutions inside the U.S. financial system or between parts of this system. As illus-
trated by its implication in the financial crisis of 2008, the U.S. financial institutions
play a crucial role in the stability of the global financial system. A better understand-
ing of the dynamics of the channels through which information propagates inside the
system seems therefore important to solve many outstanding issues in finance. In this
application, we look at these dynamics from two different perspectives. We start by
defining, at a micro level, the channels through which information are transmitted be-
tween pairs of financial institutions by considering different frequencies and different
quantiles inside the time series probability distribution. In a second step, we consider
at a broader level, the transmission between subgroups of financial institutions.

Looking from the micro perspective, we have seen in Sect.3.1 that the usual frame-
work used for causal analysis in the frequency domain involves the model proposed by
Geweke (1982) and further developed by Breitung and Candelon (2006). In contrast
with this literature (Lemmens et al. (2008); Bodart and B. (2009); Croux and Reusens
(2013); Ciner (2011)), we propose in this application to apply our new method on the
wavelet transform of the selected times series to allow us to look at cross-frequency
causal relationships. Several studies have already relied on wavelet transforms to
consider causal relationships at different frequencies in the context of Economics(see
Hacker et al. (2014) or Alzahrani et al. (2014)) but not cross-frequency causal relation-
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ships. The rationales behind the investigation of causal relationships in the frequency
domain comes from the existence of multiple investment horizons across market play-
ers. Indeed, the market participants investing in financial products such as shares
have different objectives and therefore different horizons, mutual or hedges funds hav-
ing longer horizon and market makers or daily traders speculating on movements in
the shorter term. It implies that several frequencies may carry different information
related to the financial institution fundamentals on longer term or rumors and market
volatility on shorter term. The relative importance of the different frequencies may of
course evolves in time, with a higher importance of high frequencies in period of tur-
moil and lower ones in period of growth. Our multichannel model applied on wavelet

transforms may accommodate these different features of the financial market.

Regarding the effect of the probability distribution parameters on the causality detec-
tion, we draw away from the traditional approach of Granger causality which looks
primarily at the relationships existing in mean and variance (see among others Granger
(1969); Hafner and Herwartz (2006)) as it considers only parts of the distribution. In-
spired by the literature on quantile regressions (Koenker and Bassett, 1978) and the
recent development of methods to infer causality over different quantiles (Chuang
et al., 2009; Chen et al., 2009) or in the left tail using a Value-at-Risk (VaR) frame-
work (Hong et al., 2009a; Candelon et al., 2013), we adapt our model based on Granger
causality to detect dynamically the quantiles responsible for the information transfer
between financial institutions. We propose then a complementary approach based on
the transfer entropy version of our algorithm to look in more details at cross-quantile
transmissions. Indeed the quantile regression framework considers only information
transmission and reception at a given quantile. We proposed therefore to benefit the
flexibility of the symbolization process used in the transfer entropy estimation to be
able to look at information transmission with different quantiles for the transmitter

and the receiver time series.

We eventually look, from a macro perspective, at the transmission between parts of
the financial system as it is done to some extend in Yang and Zhou (2013) where they
use clusters and principal component analysis (PCA) to reduce the complexity of each
group and be able to estimate information transfer with the usual Granger causality
framework. Our new algorithm allows us to avoid this PCA and to keep the entire set
of times series in each group. We define in this application two subgroups and analyze
the links existing between the systematically important financial institutions (SIFI)
and the rest of the financial network. Indeed, given the systemic importance of these
institutions, their relationships with the rest of the system should give us information
about their impact on the financial sector fragility. Each connection between financial

institutions from both groups is here considered as a possible channel for the transmis-
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sion of information between the two sub-systems. We then apply our method to infer

dynamically the channels activity between the two subgroups of financial institutions.

3.5.1 Empirical data and network inference

In this application, we employ stock prices of 22 U.S. financial institutions traded on
the NYSE and Nasdaq, covering the period from January 2005 to January 2013. Our
dataset includes the largest U.S. financial institutions along 8 institutions included in
the list of current SIFIs. Two different data frequencies are used in the application
with daily and hourly stock prices.

The first step of our analysis is the definition of the causal links to be considered in
our model. The determination of the relevant links is done by inferring the effective
network representing our financial system using the method proposed by the author
in Dahlqvist and Gnabo (2018) which takes care of possible indirect links. In order to
properly infer the network, we first estimate the daily and hourly variations of the stock
prices in order to avoid the issue of stationarity. Then, the resulting data-set is filtered
from the effect of common global factors using linear regressions with as explanatory
variable the index S&P 500. The residuals of each time series is then used for the
estimation of the effective network which is done in two steps: a pre-search step where
a pairwise causality test is performed on every pair of financial institutions to connect
the network and a pruning step where the possible indirect links are removed using
conditional causality test. Except for the Sect.3.5.4, we use the traditional Granger
causality for the estimation of the network. The application is mainly based on the
Granger causality version of the proposed algorithm as it suffers less from small sample
effect and is computationally more efficient although it gives only a partial view as it

is design to tackle only linear relationships.

3.5.2 Mutli-channel causality detection in the frequency do-
main

Once the effective networks have been estimated for both the daily and hourly data-
sets, we may look in more details at how the information circulates inside these net-
works. We start by considering the different frequencies at which a signal may be
sent and received. Each time series of the considered data-set is therefore decomposed
into a series of signals representing the different frequencies. This decomposition is
done via a wavelet transform with five different wavelengths of respectively 4, 8, 16,
32 and 64 observations. Once estimated, the set of signals obtained for each financial
institution is considered as an individual system on which the method presented in

Sect.3.2.1 may be applied.
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Figure 3.7: This figure gives the results of the MCGC for the dataset using daily stock returns. It
provides for each channels, represented by a specific pair of frequencies, the percentage of information
traveling inside the network which passes through them. The y-axis reports the receiving frequencies
while the different curves give the transmitting frequencies.

The effective network estimated in the previous section allow us to consider only the
most relevant connections inside the system by considering only the connected pair of
nodes in this effective network. Before applying the multichannel Granger causality
test, we first normalize all time series by dividing each observations by the standard de-
viation of its time series which enables us to compare properly the error terms of every
time series. The window sizes tested in the model ranges from 20 to 500 observations
with a stepsize of 20 observations in order to scan a large set of possible windows sizes.
The MCGC is based on the Granger-Sargent bootstrapped methodology presented in
Sect.3.2. Regarding the lag at which the causal relationships are estimated, we have
tested for each pair of frequencies, several lags by applying, on the wavelet transforms,
a simple Granger causality test for the entire sample. As in Alzahrani et al. (2014), the
optimal lags for the different pairs of frequencies, i.e. the ones minimizing the p-value,
are very close to each other. We select therefore a lag of one period for every pairs
of frequencies as it represents the most frequent lags. However our approach being
very flexible, a specific lag could be selected for each pair of frequencies/channels. The
results of the MCGC provides three different information for each pair of institutions,
the p-value of the Granger-Sargent bootstrapped causality test, the selected optimal
rolling window size and a temporal adjacency matrix giving for each time step, the
selected transmitting and receiving frequencies. We then aggregate, for the entire net-

work, the information regarding the different frequencies by summing the adjacency
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matrices of all connected pair of nodes inside the network. This gives us, for each time
step, a global repartition of the channels used for the information transfer.
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Figure 3.8: This figure gives the results of the MCGC for the dataset using hourly stock returns. It
provides for each channels, represented by a specific pair of frequencies, the percentage of information
traveling inside the network which passes through them. The y-axis reports the receiving frequencies
while the different curves give the transmitting frequencies.

The results are presented in Fig.3.7 and 3.8. As can be seen from both figures, the
transfer of information inside the network occurs mainly at the higher frequencies with
the wavelength of 4 and 8 observations showing the highest values. They represent
together and for both datasets, around 65 percent of the total information circulating
inside the network. We observe, for the daily dataset, a clear increase of importance
of the highest frequencies in the beginning and during the financial crisis which may
be explained by the higher volatility in the market. Both the amount of information
considered as relevant and the speed at which these information are treated increase
during period of turmoil. The mix of uncertainty and overreaction of the actors inside
the market increase therefore the frequency of significant price changes leading to a
higher information content of these highest frequencies. We find also that for the two
datasets, the cross-frequency transfers occur mainly in the lowest wavelength with a
clear information transfer between the wavelength of 8 observations to the one of 4
observations. When looking at the results of the significance test, 78 percent of the
connected pair of nodes inside the effective network are significant when considering
the MCGC test for the daily dataset and 92 percent for the hourly dataset. The re-

sults presented in Fig.3.7 and 3.8 include only the pairs of connected nodes for which a
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causal link have been detected with the MCGC at a significance level of 0.05. Finally,
we get an average optimal window size of 150 observations for the daily frequency and
29 for the hourly frequency showing that the switching are relatively sparse especially
for the daily dataset when considering its total length.

3.5.3 Quantile mutli-channel causality detection

After having documented the information transfer between nodes in terms of frequency;,
we now look more closely to the probability distribution. We start by adapting the
quantile regression framework of Koenker and Bassett (1978) to the multi-channel
Granger causality test by replacing the error terms resulting from the usual ordinary
least square approach by the ones estimated using quantile regression. As different
quantiles may be used for the estimation of the [ parameter, we consider each quan-
tile as a specific channel. This framework allows only co-quantile transfers, i.e. transfer
of information between two time series at the same quantile. The cross-quantile trans-
fer will be further discussed in the next section when using the multi-channel transfer
entropy. As for the analysis in the frequency domain, we apply for each data-set,
the adapted MCGC on the pair of connected nodes taken from the inferred network.
Five different quantiles are used in the estimation, the 0.5 quantile giving the usual
linear regression framework, the 0.3 and 0.7 quantiles to look at the upper part of the
distribution for respectively the negative and positive variations and the 0.1 and 0.9
quantiles assessing the extreme variations. The resulting adjacency matrices estimated
for each pair of connected nodes are then used to compute the relative importance of

each channel in the information transfer process occurring inside the network.

As can be seen from Fig.3.9 and 3.10, the information transfers occur mainly at the
tails of the probability distribution, showing that the market reacts more to extreme
variations. Indeed, these two channels represent for the daily and the hourly dataset
respectively 63 and 73 percent of the total information circulating in the network.
Surprisingly, we observed for the daily frequency dataset that during the financial cri-
sis, the percentage of information transfer decreases for the lowest quantile while it
increases for the highest one. This means that during such periods, the market pays
more attention to positive variations in the environment of financial institutions than
to negative ones which contrasts with the common idea that negative variations spread
more quickly to the surrounding environment than positive ones. As for the time evo-
lution of the relative importance of each channel when using the hourly frequency
dataset, we see that the two tails evolve in opposite phase during the crisis mean-
ing that investors pay alternatively more attention on positive and negative extreme

variations. With regards the results of the significance test for the daily and hourly
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Figure 3.9: This figure gives the results of the MCGC for the dataset using daily stock returns. It
provides for each channels, represented by a specific quantile, the percentage of information traveling
inside the network which passes through them. The y-axis reports the different quantiles.
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Figure 3.10: This figure gives the results of the MCGC for the dataset using hourly stock returns. It
provides for each channels, represented by a specific quantile, the percentage of information traveling
inside the network which passes through them. The y-axis reports the different quantiles.

frequency, we have respectively 94 percent and 79 percent of the pairs connected inside
the network for which a multi-channel causal link may be found at a significance level

of 0.05. In contrast to the frequency analysis, the average optimal window sizes give,
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a lower size for the daily dataset with 84 observations and a higher one for the hourly
dataset with 150 observations. Nevertheless, when considering the frequency of both
datasets, the switching frequency for the daily dataset is still low.

3.5.4 Cross-quantile mutli-channel causality detection

With the objective of extending the previous quantile analysis to cross-quantile infor-
mation transfer, we propose in this section to use the transfer entropy based multichan-
nel causality measure. Indeed, thanks to the symbolization process used to estimate
the transfer entropy, we are able to consider information transfer between times series
symbolized using different encoding rules. We may therefore use the spectral quantile
symbolization method to look at the interaction between time series with a different
set of quantiles for the transmitter and the receiver. This method of symbolization
uses two parameters, a position and a bandwidth. The position corresponds to the
beginning of the regions of interest on either side of the 50 percent quantile while the
bandwidth represents the size of these regions of interest. Both regions get a specific
symbol while the remaining parts of the probability distribution share a third symbol.
The different pairs of position and bandwidth assigned to each couple of time series
represent then a specific channel of communication between the two systems. We have
selected 4 different sets of position and bandwidth in order to consider the different
parts of the probability distribution with respectively a position and bandwidth of:
0.05-0.45, 0.2-0.3, 0.35-0.15 and 0.45-0.5. These different sets help us to look at both
extreme and average relationships and with these 4 sets we get 16 potential channels.
We start the analysis by inferring the effective network using the same methodology
as before but taking transfer entropy as causality measure instead of Granger causal-
ity. Once estimated, the MCTE is applied on every connected pair of nodes inside
the effective network. Then, as done in the previous section, we estimate the relative
importance of each channel for the different time steps by averaging on all connected
pairs inside the networks.

Looking at Fig.3.11, we see clearly the impact of the financial crisis on the channels
dynamic inside the financial sector. Although the extreme variation seems to have
little impact on the information transfer process before and after the financial crisis,
they are clearly leading this process during the period of turmoil between 2008-2010.
We see indeed for both the receiver and the transmitter a high percentage of transfer
between the two highest quantiles, i.e. 0.35-0.15 and 0.45-0.05, during this period.
The reverse is true for the average relationship represented by the two other quantiles,
with a leading role during the periods of stability and a decreasing influence during
the financial crisis, with even a total disappearance of the channels with parameters

0.05-0.45 for the receiver. This evolution can be explained by the combination of the
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Figure 3.11: This figure gives the results of the MCTE for the dataset using daily stock returns.
It provides for each channels, represented by two positions and bandwidth, one for each node, the
percentage of information traveling inside the network which passes through them. The y-axis reports
the different positions and bandwidth of the receiver while the different curves give these parameters
for the transmitter.

higher volatility during period of crisis which leads to an increasing number of extreme
variations, and the fact that investor are more concerned by extreme variations during
such periods. As for the cross-quantile transfers, we identify a clear evolution between
the periods before and after the crisis, with the channels with parameters 0.05-0.45 for
the transmitter leading after the crisis while the channels with parameters 0.2-0.3 and
0.35-0.15 were leading before. This means that the investors are looking more broadly
at the environment of the financial institutions in term of probability distribution and
not only at the highest variations. When looking at the value of the effective transfer
entropy, we see that 80 percent of the connected pair of nodes, selected during the
network inference process, are still significant for our multichannel analysis. Finally
the average window size is 115 observations demonstrating a relatively low switching
frequency considering the 2018 observations of our daily dataset.

3.5.5 Mutli-channel causality detection

The objective of this last section is to look at the US financial system from a macro
perspective by considering groups of financial institutions instead of individual pair of
nodes as done previously. We divide our dataset in two subgroups and analyze how

these groups interact based on the identification of the main channels through which
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the information transits from one group to the other. The first group consists in the
financial institutions included in our data-set which are considered as systematically
important for the global financial system, while the second group regroups all the other
institutions. The connected pairs forming the effective network inferred in Sect.3.5.1
are used as a base to determine the possible channels of communication between the
two groups. We estimate then the MCGC both from the SIFI group to peripheral
financial institutions and from the peripheral financial institutions to the SIFI group.

This estimation is based once again on normalized time series.
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Fig.3.12 and 3.13 provide, for each time step, the pair of financial institution lead-
ing the information transfer between the two systems for respectively the daily and
hourly frequency. We note that the transfer from the SIFIs to the rest of the network
seems more stable in time than the transfer of information in the reverse direction,
with longer periods of transfer for the different channels. When looking at the finan-
cial crisis period, we observe that Goldman Sachs and Barclays lead the information
transfer process to the peripheral financial institutions for both data-sets, along with
JP Morgan Chase for the daily frequency. Overall Goldman Sachs and Barclays seems
to be the main source of information for the peripheral system, leading the information
transfer process 36.1 and 28.6 percent of the time for the daily frequency and 21.1 and
19.3 percent of the time for the hourly data-set. We also see from these graphs that
some financial institutions have lost their importance during and after the financial
crisis such as Citigroup for the hourly dataset and Morgan Stanley for both datasets.
As for the reverse causal relationship from non-SIFI to SIFIs, we find that the sources
of information are more fragmented for the SIFIs, meaning that this group looks more
broadly at the evolution of their environment. With regards to the significance test,
we see a clear causal link in both directions for the two datasets. Looking at the high
value of the significance test, the channels representation should be close to the true

underlying one.

3.6 Conclusion

We proposed in this chapter a new method to estimate the causal relationships existing
between complex systems described by several parameters. Additionally to the detec-
tion of causal links, the proposed approach gives insights on the underlying dynamics
of the information transfer process by defining at each time step through which chan-
nel the flux of information is the highest. We developed two different multi-channel
causality tests based on different definition of causality, the multi-channel Granger
Causality test which accounts mainly for linear causal relationships and the multi-
channel transfer entropy test which looks at both linear and non linear information
transfer. Both tests are easy to implement and can be used for several purposes, from
the analysis of macro systems to the estimation, at a lower level, of cross-spectral and

cross-quantile information transfers between individual series.

We performed thereafter a Monte Carlo simulation exercise, assessing how our mod-
els react to different configurations of coupled systems, looking at the effect of the
switching frequency, the strength of the relationships, the type of relationships and

the complexity of the channels dynamic involved in the information transfer. We
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demonstrated the ability of our models to infer properly this channels dynamic, espe-
cially for low switching frequencies which are often observed in the case of financial
time series as proven by the empirical application. Both models show equivalent re-
sults when the underlying dynamic is linear, while the transfer entropy based measure

shows better results for the non linear dynamic.

We eventually proposed an empirical application to illustrate the usefulness of the new
framework; looking at the relationships existing between individual financial institu-
tions inside the U.S. financial sector as well as between parts of the financial sector,
focusing our attention mainly on the systematically important financial institutions.
The results of the multi-channel Granger causality test in the frequency domain shows
that the transfer of information occurs mainly at high frequency especially during the
financial crisis of 2008. As for the quantile and cross quantile analysis, it provided a
clear insight on the importance of the extreme variations during the financial crisis
confirming the importance of the tails in periods of turmoil. We finally demonstrated
the interest of the methods when looking at groups of financial institutions to ana-
lyze the channels dynamic during period of stress or to determine to which extent the

sources of information for a specific group were concentrated and stable in time.
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Figure 3.13: The figures (a) and (b) shows, for the hourly frequency dataset, the pair of nodes
leading the information transfer from the SIFI group to the rest of the network for (a) and reversely
for (b). The figures report only the pair of node which have led the information transfer for at least
one time step.



Chapter 4

Cross-country Information

Transmissions

Introduction

Throughout the last decade, new methodologies and approaches have been developed
to better understand the interconnections existing between parts of the global economic
system, especially after the last financial crisis. Indeed, the greater interdependence
of markets across the globe explained by the financial globalization, and the financial
crisis of 2008 highlighted the necessity for a rethinking of economic and financial poli-
cies which requires a better understanding of the mechanisms governing information
transmission inside the economy. This transmission mechanism was investigated from a
number of perspectives, relying mainly on causality analysis, for different markets and
asset classes such as the equity market Longin and Solnik (1995); Hong et al. (2009b);
Celik (2012); Dungey and Gajurel (2014), the financial market Diebold and Yilmaz
(2014); Billio et al. (2012), the sovereign bond market Longstaff et al. (2011); Gorea
and Radev (2014); Fernandez-Rodrigueza et al. (2016) or the commodities Smiech
et al. (2015); Bhar and Hammoudeh (2011); Hegerty (2016); Zhang et al. (2016).

The literature related to interrelations focuses primarily on the detection of stress
transmissions often identified as contagion. Contagion may be defined as cross-country
transmissions of shocks or more generally as cross-country spillover effects. As recalled
by Dungey and Gajurel (2014), the current literature identifies two possible theories
of contagion. The first theory defines the interdependence of economies through real
and financial linkages such as flows of goods, service and capital, as the main carrier
of information. The second strand of the literature argues that stress transmission
occurs from one country to another due to the lack of anticipation of investors having
incomplete information. Indeed a shock in one country may trigger a reassessment of

the risks in other countries by international investors Pasquariello (2006); Yuan (2005).
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This risk reassessment also called "Wake up call" in Bekaert et al. (2014) increases
the relative importance of domestic fundamentals in the transmission of stress during

period of turmoil.

We propose in this chapter to consider a more broad connectedness measure that does
not only consider shocks in order to infer the causal relationships that we identify
as information transmissions. We rely on a new framework inspired by the concept
of causality developed by Granger (1969) which has already been extensively used to
study the interrelations existing inside the economic system (see Ratanapakorn and
Sharma (2007); Pradhan et al. (2014); Jammazi et al. (2017) among others). However,
in contrast with the current literature which often considers one type of asset or one
market at a time, we propose to consider several types of asset at the same time to es-
timate more globally the transmission of information between countries. Each country
is therefore characterized by a set of financial variables on which a novel multichannel
causality test is applied.

In our multichannel framework, a channel is defined as a pair of parameters charac-
terizing the state of two different systems. Each system being described in terms of
several parameters, different channels may possibly convey causal relationships over
time. In the proposed application, the fundamentals represent the different parame-
ters while the considered systems are countries. The set of selected fundamentals has
been therefore chosen so as to proxy the state of each country economy. The objec-
tive of the chapter is therefore not the identification of contagion periods but rather
the analysis of the evolution of the channel through which the information is trans-
mitted depending on the period considered: crisis period vs. non crisis period. We
consider thus not only stress transmission but more broadly information transmission,
i.e. inter-dependencies affecting either positively or negatively countries, and analyze
how the channels through which the information transits evolve in period of turmoil
where contagion may be observed.

To empirically assess the relative contribution of several transmission channels over
time, our econometric framework should accommodate two important features: (i)
multivariate dimension and (ii) a time varying dimension. Inspired by the work of Bar-
rett and Barnett (2010); Geweke (1982) who adapted the univariate Granger causality
test to the multivariate case, we propose an extension of the Markov regime switching
Granger causality test developed by Psaradakis et al. (2005b) to account for informa-
tion transmission between distinct multivariate systems. In our model, each regime
corresponds to a specific pair of variables including one of the financial variables de-
scribing the country receiving the information, i.e. the dependent variable and one

of the financial variables describing the country transmitting the information, i.e. the
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explanatory variable. The proposed framework enables us to go beyond the usual es-
timation of cross-country inter-dependencies by considering multiple explanatory and
dependent variables describing two different systems. This method allows us to define
both the existence of a causal link and the main channels through which the informa-

tion transit at each time step.

Our empirical investigation starts by the analysis of cross-country information chan-
nels. We consider five different measures of economic wealth for each country: an
equity index, an index representing the main financial institutions of the country, the
sovereign debt returns, the exchange rate of the local currency and a measure of the
volatility inside the equity market. These indicators regroup most of the financial vari-
ables extensively used in the literature to treat inter-dependencies between countries.
Aside from the identification of cross-country connectedness, the aim of the chapter is
also to consider the interactions existing between countries and the commodity markets
and determine if commodities could be considered as an additional indirect channel

used to transmit information from one country to another.

Overall, the chapter contribution to the literature is mainly threefold. First, we pro-
pose a multichannel approach which is able to define the existence of causal relation-
ships between distinct complex systems such as countries which could be characterized
by several features (e.g. equity indices, sovereign bonds). This approach provides also a
clear view on the dominating channels of transmission over time. Secondly, we propose
an empirical application of this model to assess the evolution of the relationships exist-
ing between countries forming the world major economies. Different financial variables
are considered to identify potentially different channels of information transmission,
focusing our attention on the global financial crisis and on the European sovereign
debt crisis. Third, we include in our investigation the effect of the commodity markets
as it plays a key role in both the real economy and the financial system.

The chapter is structured in the following manner. The second section presents the
multichannel causality measure deriving for the Markov switching setting. In the third
section, we present the data-set used in the empirical study, outline the methodology
and present the results for the model including only the countries and the model
including the additional effect of the commodity market. We finally concludes on the

main contributions of the chapter in the last section.
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4.1 MultiChannel Markov Switching Granger Causal-
ity

The concept of Markov-switching regressions was first proposed in econometrics by
Goldfeld and Quandt (1973) and then Cosslett and Lee (1985) who introduced the
estimation via a likelihood function. The formulation we use in this chapter derives
directly from the work of Hamilton (1988, 1994) who developed an iterative inference
algorithm, namely the Markov switching model. This approach is one of the most
popular nonlinear time series models in the literature and many variants have been
proposed ever since. The model, we develop in this chapter, is and extension of a Vec-
tor Autoregressive (VAR) variant of Hamilton’s model proposed by Krolzig (1997) and
then extended by Psaradakis et al. (2005b) for causality detection using the approach
of Granger (1969). The proposed approach being based on the concept of causality
developed by Granger (1969), we draw away from the "a priori structural" approach
(e.g. instrumental variables) that have been used extensively in the microeconomet-
rics literature (see Hoover (2004) and Hoover (2008) for surveys). Indeed Granger’s
approach may be qualified as an "inferential process" approach, as it relies directly on
the data ("inferential") and on the asymmetry of causality stressed by the condition of
Hume "The cause must be prior to the effect" ("process")Morgan (1991) to estimate
the causal relationships. However, the interest for Granger based approaches in eco-
nomics and finance has increased in recent years Ratanapakorn and Sharma (2007);
Billio et al. (2012); Pradhan et al. (2014); Jammazi et al. (2017).

We consider, in our model, two systems X and Y characterized each by a set of
time dependent variables X = {x},--- 2N} € R¥*T with N defining the number
of parameters characterizing the system X, and Y = {y},--- ,yM} € RM*T with
M defining the number of parameters characterizing the system Y. The objective of
the framework, we developed hereafter, is the detection of a possible transmission of
information from system Y to system X and the definition of the favored channel for
each time step. The channels are defined as pairs of time series composed of one time
dependent variable of system X and another of system Y. If a causal link may be
inferred between both variables, the channel is considered as active in the information
transfer process. The channels are, nevertheless, not mutually exclusive as for each
time step, a probability of activity is provided for each channels.

We start by defining the relationship between our two systems thanks to a multivariate
VAR model taking into account both the effects of the past of X and Y on the current
value of X. We see in Eq.4.1 that both the dependent and explanatory variable are
multivariate.
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L
X, = a+)Y BiXi+R,®Y +e (4.1)

=1

Here ® represents the coefficient characterizing the transfer of information from the

system Y to the system X and is defined by:

¢1,1 ¢1,2
® ¢2,1 ¢2,2
(b];f,l (b].\f,Q

¢1,M
2,M
a (42)

¢N,M

with ¢ the coefficient characterizing the relationship between the j** parameter of

the system Y and the i parameter of the system X with a lag of 1.

As for the parameter Ry, it provides the information about the active channel at each

time step and is given by:

1,1 1,2

Ty Ty
2,1 2,2

R, Ty Ty
N1 N2

Ty Ty

(4.3)

Here, all 7/ are latent random variables that reflect the regime of the system for every

time step t. Each variable r}”’ takes its value in the set of {0,1} which implies an

information transmission from the variable j of system Y to the variable i of system

X for r;7 = 1 and no transmission for ;7 = 0. Considering the number of parameters

for both systems, there exist N x M possible states which are represented by a new

parameter S;:
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1 if 7t =1

2 if rp?=1

M +1 if 7t =1

(N x M it =1

Assuming that R, is the realization of a two-state Markov chain, we get (N x M)?
possible states of nature and the probability for each state of nature is given by:

Pr(Se=r|S1=1q) =Dpgr (4.5)

with ¢,7 € {1,--- ,N x M} .

In this framework, the probability of a regime switch depends only on the value of the
most recent regime which involves a short term memory, but other specifications may
be applied to take into account a longer period of the systems past. Following the
definition of S;, we create two new vectors representing the selected variables in the
systems X and Y in each state of nature Sy, X* and , X"

We do not observe S; directly but only its effect on the behavior of X; knowing X;_;
and Y;_;. The probability density governing X, can be fully described by determining
the set of parameters in Eq.4.1, i.e. the intercept a, the auto-regressive coefficient
B3, the causal parameters ®;, the transition probabilities p,, and the variance of the
Gaussian white noise g;. Based on this probability law, we can infer the probability
of observing each state of nature S; for every time step using an iterative algorithm.
We start by rewriting the probability of observing @; in the state r in time step t as:

fr,t = P’I"(St = T|Qt, 9) (46)

Here €, is the set of information available to describe X, , we get therefore 2, =
{Xi 1, , X4, Y} As for 6, it regroups all the parameters of the model 8 =
{a, 81, ®,pyr,0}. With N variables for the system X and M parameters for the
system Y, we get a total number of (2x N+ N x L+ N x M+ (N x M)?+1) parameters
to be estimated. The sum of the §,., for the N x M possible regimes equals unity as
they represent all the possible outcomes. We then follow the approach first proposed
by Hamilton (1988) and apply an iterative procedure to infer the &, for all the time
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step t. Each iteration involves the estimation of a likelihood function which represents
the weighted probability of observing the different possible outcomes considering the
set of estimated parameters and the past realizations of the system. The likelihood

function is defined as a conditional density of X; in the following manner:

NxM NxM

F(XiQ1,0) = Z Z ParrtSq,t—1 (4.7)

where 7,, gives the Gaussian density of X; for the N x M different regimes:

1 exp X - S BX] Y —a
Vimo 252

ey = f(Xe|Se =7,1,0) = (4.8)

with o acting as the mean of the probability density.

We are then able to estimate the probability of observing the system in the state r at
time t, based on the likelihood function, the transition probabilities p, ., the probability
of observing the system in the different possible state q at previous time step t-1, and
the Gaussian density of X; for the different regimes. As can be seen from Eq.4.9, the
probability §,.; represent simply the sum of the probability of observing the final state
r considering all the possible initial state q at time t-1, weighted by their likelihood
nr+ and then divided by the total weighted probability of observing every possible final
states (the likelihood function).

NxM
Zq pq#‘”ntfq,t—l

S TS )

(4.9)

By performing this iteration from t=1 to t=T, with T the length of the time series
characterizing the two systems, we get the following global log-likelihood function:

log [f(X1, X2, -, X7|Xo)] = log [Z FX |, 9)] (4.10)

We then maximize the resulting log-likelihood function to obtain the optimal set of
parameters 6, i.e. the one that minimizes the most the error terms of Eq.4.1 weighted
by the probabilities of the states of nature S; instead of the latent factor R;. The
maximization of the resulting log-likelihood function is done via a quasi-Newton opti-
mization algorithm based on the Broyden-Fletcher-Goldfarb-Shano secant to update

the Hessian but other optimization algorithm may be considered. The value of &,
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is then inferred for each time step t using this set of optimal parameters. The sta-
tistical inference of a causal link between the system Y and X is finally performed
via the F-stat of the estimated ¢ which provides information about the existence of
a transmission of information for each considered channel. In contrast with Barrett
and Barnett (2010), we do not get a global statistic of the existence of a causal link
between the two systems but one value per channel which could be considered as more
precise. In addition, we are able to define at each time step the probability of a transfer
through every possible channels. A multivariate extension of the causal time varying
VAR approach of Christopoulos and Leén-Ledesma (2008) could also be considered
as an alternative to this procedure. Nevertheless, our approach is model free and is
able to treat more complex transition patterns between regimes compared to the single
smooth transition considered in Christopoulos and Leon-Ledesma (2008). It provides
also, in a single estimation, information about the existence of a causal relationship
for every channels and their relative activity in terms of information transmission for
each time step.

As can be seen from Eq.4.10 and 4.9, we have to initialize the algorithm by defining
g0 for the step t = 1. If we assume that the considered Markov chain is ergodic,
we can simply set &0 = Pr(S; = q | €0,0) equal to the unconditional probability
&0 = Pr(S; = ¢). Following the approach proposed by Hamilton (1994), theses initial
probabilities may be estimated from the (N x M + 1)th row of the matrix (A*A)~1A!
with A defined as:

A= (IN“f,_ P) (4.11)

with P the matrix of p,, and Iy a diagonal matrix of dimension N x M.

4.2 Results and Discussion

4.2.1 Cross-country information transmissions

As recalled by the numerous contributions related to risk transmission (see Longin and
Solnik (1995); Hong et al. (2009b); Diebold and Yilmaz (2009); Billio et al. (2012);
Longstaff et al. (2011); Gorea and Radev (2014) to quote only a few) several channels
of information transmission exist between countries, such as their stock market, finan-
cial institutions, sovereign bond yield, exchange rate or interest rate among others. We
have selected, in this chapter, five different high frequency, i.e. daily, variables reflect-

ing the overall state of a country: the main stock market index, an index regrouping
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the main financial institutions of the country, a volatility index, the exchange rate and
the 5 years USD denominated sovereign bond yield. Most of the selected financial
variables have already been extensively used in the literature to treat interdependen-

cles between countries.

Related studies are Longin and Solnik (1995) or Diebold and Yilmaz (2009) which
find empirical evidences of stress transmission between international equity markets
or Celik (2012) which finds evidence of contagion for most of the developed and emerg-
ing countries during the 2008 financial crisis. They demonstrate the ability of stock
markets to reflect the information transmission between countries. This ability to rep-
resent cross-country relationships comes primarily from the fact that stock markets
reflect the evolution of a country production capacity both in terms of goods and ser-
vices and could therefore assess to some extend the evolution of the country balance
of payment as the exchange rate does also. With regards the exchange rate, we also
included it in the set of parameters for its close link with the commodity markets and
it will prove to be an important driver of the interdependencies between countries and

commodity markets.

System wide dependencies have also been analyzed for financial institutions. Hence, a
growing body of the current literature on contagion and network theory tries to under-
stand the main characteristics of the evolution of the connectivity inside the financial
market during the crisis of 2008 with contribution such as Billio et al. (2012); Diebold
and Yilmaz (2014); Minoiu and Reyes (2013); Tonzer (2015). Indeed, the financial
crisis highlighted the propensity of financial institutions risk to spill over to their en-
vironment and across border. This high level of interdependency may be explained
partly by the contractual linkages existing between this type of firms which increase
the counterparty risk. In addition to these spillover effects, the interplay between
fiscally strained sovereigns and stressed banks worsen the condition of the economy.
Indeed, strained public finances have limited the ability of some countries to support
their financial system through bailout. Fragile banking systems provided then less
support to the economic activity, which in turn further strains public finances. These
inter-dependencies between banks and sovereigns demonstrate the importance of con-
sidering the impact of external factors on a country’s banking system. We consider
therefore the evolution of the banking system as a relevant variable to be considered

in our multichannel analysis.

The European sovereign debt crisis of 2011 is another good illustration of contagion
between countries as demonstrated by Longstaff et al. (2011) which conclude that
sovereign debt returns are even more correlated than equity returns. This period has

been the subject of many studies about risk transmission between European sovereigns
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(Kalbaska and Gatkowski (2012); Metiu (2012); Alter and Beyer (2013) to quote a few)
and could therefore be a privileged channel during this period of time.

Eventually, the volatility index has been chosen to proxy the risk/stress level of a
country in order to assess possible stress spillovers between countries. Overall, the
selected financial variables have already proven their ability to describe interdepen-
dencies between countries. Nevertheless, the proposed multi-channel approach will
challenge this ability by considering together all parameters and provide additional

information about the evolution of these parameters relevance.

4.2.2 Data

In order to have an overview of the information transmission inside the global econ-
omy, we have selected 9 of the most important economies in the world with the United
States and Canada for the American continent, France, the United Kingdom, Italy
and Germany for Europe and China, Australia and Japan for the Asia-Pacific region.
All the financial variables are expressed in terms of daily variations. Table 1 reports
the stock market and the volatility indices selected for the empirical application but
also the financial institutions used to estimate the financial indices when no aggre-
gate indices were available. In this later case, the reconstructed financial indices were
computed as the weighted average of the daily returns of the country’s main finan-
cial institutions using the market capitalizations as weights. The volatility indices
are based on the implied volatility of the selected stock market indices. As for the
exchange rate, having included the U.S. in our analysis, we express all currencies in
terms of the IMF Special drawing rights (SDR) instead of the usual USD.

Regarding the data-set used to represent the commodity markets, we have selected
8 commodities covering 4 major sectors, precious metals with gold and silver, metal
with aluminum and copper, energy with crude oil and food with soybean, wheat and
corn. All the data-sets have been taken from Bloomberg and range from January
2001 to June 2016 representing 4030 daily observations, including the end of the early
2000s recession due to the dot-com bubble, the Global Financial Crisis of 2008 and
the European Sovereign Crisis of 2011.

4.2.3 Analysis of Cross-country information transmissions

We now turn to the first step of our empirical investigation by looking at cross-country
information transmissions. Each financial variables presented in the previous section
represents a possible transmitter or receiver of information which implies 25 possible

channels between two countries. In order to reduce the dimension of the model to
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Stock Index Volatility index Financial institutions
U.S. SP500 VIX S&P500 Bank
Canada  S&P/TSX60 VIXC Royal Bank of Canada

Toronto-Dominion Bank
Bank of Nova Scotia
Bank of Montreal
U.K. FTSE100 VEFTSE HSBC
Standard Chatered
Lloyd
Barclays
Royal Bank of Scotland
Germany DAX VDAX Commerzbank
Deutsche Bank
France CAC40 VCAC BNP Paribas
Société générale
Credit Agricole

Ttaly MIB30 IVMIB30 Intesa SanPaolo
Unicredit
Generali bank

China SSE50 VXFXI Bank of China

China Construction bank
Industrial and commercial bank of China
Agricultural Bank of China

Japan Nikkei VXJ Nikkei Bank

Australia S&P/ASX 200 AS51VIX S&P/ASX 200 Bank

Table 4.1: This table reports the list of the Stock indices, volatility indices selected for the different
countries and the list of banks used for the estimation of the financial indices.

be estimated, we start the estimation by applying a filter which eliminates the most
distinct non-causal relationships. This filter consists in a simple Granger causality test
which is applied for each pair of countries on the 25 possible channels. The significance
level of the causality test is set to 0.01 and if no connections are observed we increase
this level to 0.05. The Granger Causality test is applied on the complete time se-
ries. Once the active channels have been determined, we apply on it our multichannel
causality measure which provides for each channel three different information. The
first one is the p-value which gives information about the existence of a causal link
for a particular channel. Then it provides, for each time step, E; which includes the
matrix of §;; for every possible channels, i.e. the probability of channels’ activity for
each time step. Eventually it gives the p,, matrix representing the probability of all

possible regime switches.

Once all these information have been computed for each pair of countries, we first look
at the evolution of the global connectivity by regrouping the obtained results for the 9
countries. Fig.4.1 and 4.2 report the evolution of the probability of activity for the 25
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channels that are considered in this analysis. The activity for each channel has been
averaged over the 9 countries and then normalized to properly compare the results.
As can be seen from these figures, the probability of channels’ activity seems relatively
stable in time. However, we observe for several channels a regime switch occurring
mainly during the last financial crisis. The relative importance of the stock markets
and financial institutions as transmitter stay stable for the entire data-set while the
sovereign bond yield and the currencies become more influential. Surprisingly the
volatility indices seem to lose their significance during the crisis period of 2008-2010.
Those results highlight the interest of the proposed multi-channel approach which is
able to provide new insights regarding the information transmission inside the world

econoimy.
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the 9 countries of our data-set and then normalized.



114

CHAPTER 4. CROSS-COUNTRY INFORMATION TRANSMISSIONS

(e) Volatility-Sovereign

"

(d) Volatility-Volatility

i

(c) Volatility-Banks

M

(b) Volatility-Index

e

(a) Volatility-FX

ym

T T T T
0200 5100 0100 5000 0000

Ayaoe jo ebejusciad abesany

0¥00 SE00  0£00 SZ00 0200 SLO0

Ayanoe jo ebejuaciad abesany

T T T T
200 0200 S0 0L00 000
Auanoe jo abejusoiad abeleny

500 00 €00 200

AyAnoe Jo abejusolad abelony

0200 GO0 000 000 0000

Anaioe jo abejuaoiad abelany

2015

2010

Date

2005

2015

2010

Date

2005

2015

2010

Date

2005

2015

2010

Date

2005

2015

2010

Date

2005

(i) Sovereign-Sovereign

A

(i) Sovereign-Volatility

a

(h) Sovereign-Banks

s

(g) Sovereign-Index

b

(f) Sovereign-FX

Ve

el

T T T T T
0500  SP00 OO0 SE00  0£00

w0
8
g
=

Aynnoe jo abejusoiad abeleny

00 0£0°0 200 0200 SLO'0 0LO0 S000 0000

Aunnoe jo abejusoiad abeleny

T T T T
5100 0100 5000 0000

Ayanoe jo ebejusoiad abeleny

500 00 €00 200

3
3

Aunijoe jo ebejusolad abelaay

0200 5100 0100

Aunaioe jo ebejusolad abesany

2015

2010

Date

2005

2015

2010

Date

2005

2015

2010

Date

2005

2010 2015

Date

2005

2010 2015

Date

2005

These figures report the evolution of the probability of activity for every considered channel. The relative activity has been averaged over

Figure 4.2

the 9 countries of our data-set and then normalized.
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Our analysis relying on a large number of channels, we proposed to aggregate the pre-
vious results by considering the four main periods of the recent economic history. We
therefore divide the data-set into four periods: the pre-crisis period which goes until
the start of the Global Financial Crisis on the 9th of August 2007, the Global Financial
Crisis period which goes until the 15th of January 2010, the European Sovereign Debt
Crisis which goes until the 31st of October 2013 and finally the post crisis period. This
will ease the analysis while still allowing us to look at possible changes in the channels
dynamics during these different episodes. To get a more comprehensive and global
view, we have again summed and normalized the matrices of probability E; for the 9
countries and averaged them for the considered periods of time.

The results are reported in Table 4.2 and show that overall the main channel of cross-
country communication seems to be the currencies, with on average 18 percent of the
information traveling through this channel. The transfer of information between stock
markets represents the second largest channel with around 9 percent overall. The other
main channels are the Volatility to Currency, Sovereign bond yield to Currency and
Currency to Stock market, Financial institutions to Stock market and Stock market to
Financial institutions with on average 6 percent. We see, moreover, that in contrast
with the current literature which focuses its attention mainly on the importance of fi-
nancial institutions on stress transmission, the main carriers of information are rather
the currency and the stock market which are both the main receiver and transmitter
of information.

As for the evolution in time of the channels’ weight, the results confirms the obser-
vation made in Fig.4.1 and 4.2 with an increase of the importance of the currencies
and the stock markets, both as transmitters and receivers of information, as from the
beginning of the financial crisis. For the other channels, we do not see a clear evolution
of the repartition, apart from the volatility, which tends to prove that these channels
are relatively stable in time.

After having documented the global repartition of the channels and its evolution in
time, we may now look in more details at the repartition for each country of our data-
set. We use again the information provided by our multichannel causality measure to
compute, for each country, the average probability of activity of every channels in a 5
by 5 matrix by averaging the =, for the whole period. We then consider each country
from two perspectives, first as a receiver of information and then as a transmitter. We
select, in both cases, the channels for which the observed p-value is under 0.01. Once
normalized the resulting two matrices provide, for every countries in our data-set, an

overview of the channels used for both information outflows and inflows.
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Entire Period

Global FX Index Banks Volatility = Sovereign
FX 0,18 0,03 0,03 0,06 0,07
Index 0,06 0,09 0,06 0,02 0,02
Banks 0,02 0,06 0,03 0,05 0,02
Volatility 0,01 0,03 0,01 0,03 0,01
Sovereign 0,01 0,03 0,01 0,02 0,03
Pre-Crisis Period
Pre-C FX Index Banks Volatility  Sovereign
FX 0,16 0,03 0,03 0,06 0,07
Index 0,06 0,09 0,05 0,02 0,02
Banks 0,01 0,06 0,03 0,04 0,02

Volatility 0,02 0,04 0,02 0,04 0,02
Sovereign 0,01 0,03 - 0,02 0,04

Global Financial Crisis Period

Fin-C FX Index Banks Volatility Sovereign
FX 0,18 0,03 0,04 0,06 0,07
Index 0,06 0,09 0,06 0,02 0,02
Banks 0,02 0,06 0,03 0,03 0,02
Volatility - 0,04 0,01 0,03 0,01
Sovereign 0,01 0,04 0,01 0,02 0,04
European Sovereign Debt Crisis Period
Sov-C FX Index Banks Volatility Sovereign
FX 0,19 0,04 0,03 0,06 0,07
Index 0,07 0,10 0,06 0,02 0,02
Banks 0,02 0,07 0,03 0,05 0,02
Volatility - 0,03 0,01 0,02 -
Sovereign 0,01 0,03 0,01 0,01 0,03
Post-Crisis Period

Post-C FX Index Banks Volatility = Sovereign
FX 0,19 0,03 0,03 0,06 0,07
Index 0,07 0,10 0,06 0,02 0,02
Banks 0,02 0,07 0,04 0,05 0,02

Volatility - 0,03 0,01 0,02 -
Sovereign 0,01 0,02 0,01 - 0,03

Table 4.2: This table reports, for 5 different periods of the recent economic history, the probability of
activity of every channels of information considered in this application, averaged on all countries.The
vertical axis shows the variables of the country receiving the information and the horizontal axis, the
variables of the other country from which the information has been transmitting.

Table 4.3 provides the resulting channel’s activity index per country, both in terms
of inflows and outflows of information. The left part of the table gives the channels
through which the information reaches the considered country, with the vertical axis
giving the variable of this country, and the horizontal axis, the variable of the ag-
gregated transmitting countries. On the right side of the table, we get the reverse
information with the channels through which the information leaves the country, i.e.
the variables that impact the most the other countries. The horizontal axis provides
now the variables of the country of interest and the vertical axis, the variables of the
aggregated receiving countries. As can be seen from theses different tables, the high
percentage for the channel Currency-Currency comes mainly from the U.S., Canada,
Italy and China for the inflows and from Germany, France, Italy and Japan for the
outflows. In contrast with the common idea that the USD is the currency influencing

the most the global economy, the results shows on the contrary that the EUR and



4.2. RESULTS AND DISCUSSION 117

the JPY lead the information transmission process to the other currencies such as the
USD, the GBP and the CNY.

Looking now at the Stock market indices, we see that the influence of this variable is
especially high for the European countries for both information inflows and outflows
but also for Japan and Australia for the information inflows. In contrast with the
results obtained by Dungey and Gajurel (2014) which demonstrates the importance of
the U.S. equity market as a stress transmitter to other equity markets, when looking
at the results of our model, the U.S. equity market does not seem to play an important

role in the transmission of information as this channel represents only 2 percent.

With regards the financial institutions, our results confirm the importance of the U.K.
and U.S. financial sectors as transmitters of risk. The financial sector of the countries
from the Asia-Pacific region seems to be the most vulnerable to information coming
from other countries especially the Australian one. Australia is also, with the U.S.,
the country which influenced the most the others with respect to their sovereign bond
market. Germany is also a country for which the bond market has a relatively high
importance in terms of incoming information flows, especially from the foreign equity
market with both the volatility and stock market indices influencing its sovereign bond
market. We observed eventually that, except for Italy, countries transmitting a lot of
information with their volatility index, are countries for which the volatility index is

the least important parameters for information inflows.

After having considered aggregated results, we now turn to a more detailed description
by looking at the main channel of communication for each pair of connected countries.
As can be seen from Table 4.4, the results confirm the major role of the currencies in
the transmission of information to North America while the information transmission
inside the European Union is mainly driven by the financial and stock markets both in
terms of returns and volatilities. The transmissions from the European Union to Asia
involve two main channels, a Currency-Currency channel and a Financial market-Stock
market channel, highlighting the importance of the Euro and the European financial
industry in Asia. The Asian financial markets and currencies, in turn, tends to influ-
ence the European countries. As regards the links between North America and Europe,
we see that the European markets are very attentive to North American indicators.



U.S.
IN FX Index Banks Volatility Sovereign ouT FX Index Banks Volatility Sovereign
FX 0,48 - - 0,32 0,11 FX 0,05 0,01 0,10 - 0,11
Index - - - - 0,02 Index - 0,02 0,12 0,16 0,12
Banks - - 0,02 - 0,05 Banks - 0,02 0,03 0,02 0,10
Volatility - - - - - Volatility - 0,01 - 0,03 -
Sovereign - - - - - Sovereign - 0,08 - 0,02 -
Canada
IN FX Index Banks Volatility Sovereign ouT FX Index Banks Volatility Sovereign
FX 0,48 0,07 - - 0,24 FX - - - - 0,14
Index 0,08 - - - - Index 0,20 0,25 - 0,01 0,08
Banks - 0,02 - - - Banks 0,14 0,01 0,03 0,09 0,02
Volatility - - - 0,10 - Volatility - 0,01 0,01 0,01 -
Sovereign - - - - - Sovereign - - - - -
U.K.
IN FX Index Banks Volatility Sovereign ouT FX Index Banks Volatility Sovereign
FX 0,17 0,20 - 0,14 0,01 FX 0,06 - - - -
Index 0,03 0,17 - - - Index 0,04 - 0,14 - -
Banks - 0,14 0,06 - - Banks - - 0,20 0,08 -
Volatility - 0,01 0,01 - - Volatility 0,09 - - 0,03 -
Sovereign - - - - 0,06 Sovereign - 0,13 0,05 0,18 -
Germany
IN FX Index Banks Volatility Sovereign ouT FX Index Banks Volatility Sovereign
FX - - 0,06 - 0,27 FX 0,28 0,04 - - -
Index 0,14 0,13 - 0,01 0,02 Index - 0,20 0,10 - -
Banks 0,03 - - - - Banks - 0,07 - 0,08 -
Volatility - 0,02 0,02 0,10 - Volatility - 0,15 0,04 - 0,02
Sovereign - 0,09 - 0,12 - Sovereign - 0,02 0,01 - -
France
IN FX Index Banks Volatility Sovereign ouT FX Index Banks Volatility Sovereign
FX - - - - - FX 0,40 - - - -
Index 0,22 0,26 - 0,14 0,04 Index - 0,17 0,07 0,02 -
Banks 0,02 0,09 0,07 0,04 0,04 Banks - 0,03 0,02 0,07 -
Volatility - 0,02 0,06 0,01 - Volatility - 0,02 0,02 0,07 0,02
Sovereign - - - - - Sovereign - 0,03 - - 0,06
Italy
IN FX Index Banks Volatility Sovereign ouT FX Index Banks Volatility Sovereign
FX 0,18 0,01 0,23 - - FX 0,16 0,19 - 0,19 -
Index - 0,09 - - 0,08 Index - 0,11 0,05 - -
Banks - 0,05 - 0,08 0,01 Banks 0,01 0,12 0,02 - -
Volatility 0,01 0,23 - 0,02 - Volatility - 0,02 0,04 0,05 0,03
Sovereign - - - - - Sovereign - - - - -
China
IN FX Index Banks Volatility Sovereign ouT FX Index Banks Volatility Sovereign
FX 0,25 - - - - FX - - 0,19 0,13 -
Index - 0,03 0,02 - - Index - - - 0,04 -
Banks 0,09 0,03 0,08 0,07 0,01 Banks - 0,29 0,02 0,09 -
Volatility - - - - - Volatility - - - 0,04 -
Sovereign 0,10 0,12 - 0,01 0,16 Sovereign - 0,11 - - 0,08
Japan
IN FX Index Banks Volatility Sovereign ouT FX Index Banks Volatility Sovereign
FX 0,07 - - 0,10 - FX 0,53 - - - -
Index - 0,06 0,38 0,05 0,05 Index 0,25 - - - -
Banks - 0,07 0,03 0,10 0,06 Banks 0,01 0,06 - - 0,04
Volatility - - 0,01 0,01 0,01 Volatility - - - - -
Sovereign - - - - - Sovereign 0,11 - - - -
Australia
IN FX Index Banks Volatility Sovereign OouT FX Index Banks Volatility Sovereign
FX - - - - - FX - - - 0,27 0,32
Index 0,12 0,09 0,12 0,01 - Index - - 0,12 - 0,02
Banks - 0,19 0,06 0,11 - Banks - - 0,06 - 0,02
Volatility 0,06 - 0,02 - 0,05 Volatility - - - - -
Sovereign 0,01 0,05 0,05 - 0,06 Sovereign - - - - 0,18

Table 4.3: This table reports for the entire period, on the left, the main channels used for incoming
information with the vertical axis reporting the variables of the country receiving the information
and the horizontal axis reporting the variables of the other countries from which the information has
been transmitted. On the right, we have the main channels used for outgoing information with the
horizontal axis reporting the variables of the country transmitting the information and the vertical
axis reporting the variables of the other countries to which the information has been transmitted.

4.2.4 Commodity markets and Cross-country information trans-

fers

We investigate in this section the role of commodity markets in the transmission of
information between countries. The past decade has witnessed a strong modification of
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Rec/Trans  US CA UK DE FR 1T CN JP AU

UsS 0 FX-Sov 0 FX-FX FX-FX FX-Vol FI-FI FX-FX  FX-Vol
CA FX-FX 0 FX-FX FX-Ind Vol-Vol FX-FX 0 FX-FX  FX-Sov
UK 0 FX-Sov 0 Ind-Ind Sov-Sov FX-Ind FI-Ind FX-FX  FX-Vol
DE FX-Sov Ind-FX  Sov-Vol 0 Ind-Ind  Vol-Ind Sov-Ind 0 FX-Sov
FR Ind-Vol Ind-Ind O Ind-Ind 0 Vol-FI FI-Vol Ind-FX  FI-FI
1T Ind-Ind Ind-Sov  FI-Vol Vol-Ind Vol-Vol 0 FX-FI FX-FX 0

CN Sov-Ind  FI-FX FI-FI FX-FX FX-FX Ind-Ind O Sov-FX  Sov-Sov
JP Ind-FI 0 Ind-FI Ind-FI Ind-FI FX-FX FX-Vol 0 Ind-FI
AU 0 Ind-Ind  Vol-FX  Ind-FI Sov-Ind  Ind-FI FI-Vol Ind-FX 0

Table 4.4: This table reports for each pair of connected countries, the main channel driven the in-
formation transmission, with the horizontal axis reporting the countries transmitting the information
and the vertical axis reporting the countries receiving the information (with FX for the currencies,
FI for the financial indices, Ind for the stock market indices, Vol for the volatility indices and Sov for
the sovereign bonds).

commodities’ connections to the financial market, as they have been gradually included
in many portfolios of financial market players such as hedge funds and day traders for
a risk diversification purpose. This financialization of commodities Natanelov et al.
(2011); Creti et al. (2013) explains the large fluctuation observed in the market during
the last global financial crisis. These fluctuations affected many countries leading to
a capital outflow for exporting countries when the prices decreased due to the slow-
down of emerging market economy; and reducing their competitiveness when the prices
increased via currency appreciation. Commodities fluctuations have also impacted fi-
nancial system as illustrated by the recent drop in crude oil price which jeopardizes
many investments of financial institutions in new exploration projects, affecting the
stock market. These effects illustrates clearly the influence of commodities in the evo-
lution of the economy of both importing and exporting countries. Commodities could
therefore represent an additional channel of communication between importing and
exporting countries.

The topics addressed by the literature treating about commodities can be grouped
into three major categories, the papers that focus on the interdependencies between
commodity markets Escribano and Granger (1998); Ciner (2001), the ones that ex-
amine the spillovers between commodities and financial variables such as exchange
rates, interest rates or stock prices Bhar and Hammoudeh (2011) and the ones that
model the volatility of these commodities Beck (2001); Dahl and Iglesias (2009). In the
second type of approach, exchange rates are treated as the most important macroe-
conomic variable and could therefore be, as mentioned earlier, the preferred channel
of transmission between countries and the commodity markets in our analysis. This
section proposes therefore to contribute to this second strand of the literature about
commodities.
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4.2.5 Analysis of commodity markets and Cross-country infor-

mation transfers

We rely, in this section, on a similar procedure as the one developed for cross-country
interdependencies detection, in order to assess the information flows from the com-
modity markets to the different countries and from the countries to the commodity
markets. We create therefore a commodity system represented by the 8 variables pre-
sented earlier, gold, silver, aluminum, copper, crude oil, soybean, wheat and corn. We
start by estimating the active channel to be considered in our multichannel causality
measure by applying once again a bivariate Granger causality test. We then apply our
model and average the probability of activity for each channel for the whole sample
and for the different periods mentioned before.

We then start by aggregating the information for all the countries to get a global
overview of the inflows and outflows for the commodities. As can be seen from Ta-
ble 4.5, the commodities seems to impact mostly the currencies with for the entire
period, 52 percent of the total information flow imputable to the channel Commodity-
Currency. This clearly confirms the importance of the relationship between these two
markets and reinforce the conclusions of the abundant literature treating this subject
Bhar and Hammoudeh (2011); Lee and Chen (2006). The same is true for the stock
market indices with 28 percent overall. With regards the distinctive features of each
commodity, gold, metals and oil have clearly a much higher influence than food on ad-
vanced markets. Gold has the higher impact with 43 percent of the total information
flows, influencing mainly the evolution of exchange rates and stock market indices.
This high percentage and the impact on stock market indices is mainly due to its role
of safe haven asset, especially in time of crisis. As for the other metals, their impact on
currencies is mainly due to the importance of theses raw materials for both importing
and exporting countries’ economy. They seem to have a more global impact than oil
which influence only the stock market indices. Similarly to the results obtained for
the information flows between countries, we observed a great stability in time for the

channels repartition with only small variations when considering the different periods.

Table 4.6 provides information about the impact of countries fundamentals on the
commodity markets. In contrast with the major role of gold for the currencies and the
equities, we found no information transmitted from these different markets to gold.
Instead, it seems that copper and oil are highly influenced by the selected financial
variables. Nevertheless, this does not mean that these variables have no influence on
gold but just that this influence is less pronounced than for copper or oil. Overall the
commodities are mainly influenced by the exchange rate and by the equity market. As

for the evolution in time, we observed the same stability as before.
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Entire Period

ouT Gold  Silver Aluminium  Copper Oil Soybean ~ Wheat Corn
FX 0,24 - 0,12 0,16 - 0,01 - -
Index 0,15 - 0,03 - 0,07 0,03 - -
Banks 0,05 - - 0,04 - - - -
Volatility - 0,01 0,02 - 0,03 - - 0,01
Sovereign - - 0,03 - - - - -

Pre-Crisis Period

ouT Gold  Silver  Aluminium  Copper Oil Soybean ~ Wheat Corn
FX 025 - 0,12 0,17 - 0,01 - -
Index 0,12 - 0,03 - 0,05 0,02 - -
Banks 0,03 - - 0,06 - - - -
Volatility - 0,01 0,05 - 0,05 - - 0,01
Sovereign - - 0,02 - - - - -
Global Financial Crisis Period
ouT Gold  Silver  Aluminium  Copper Oil Soybean ~ Wheat  Corn
FX 0,25 0,01 0,13 0,16 - 0,01 - -
Index 0,14 - 0,03 - 0,07 0,03 - -
Banks 0,02 0,01 - 0,03 - - - 0,01
Volatility - 0,01 0,01 - 0,03 - - 0,01
Sovereign - - 0,04 - - - - -
European Sovereign Debt Crisis Period
ouT Gold  Silver  Aluminium  Copper Oil Soybean ~ Wheat Corn
FX 0,22 - 0,11 0,15 - 0,01 - -
Index 0,18 - 0,03 - 0,08 0,04 - -
Banks 0,07 - - 0,03 - - - 0,01
Volatility - 0,01 - - 0,01 - - -
Sovereign - - 0,03 - - - - -
Post-Crisis Period

ouT Gold  Silver  Aluminium  Copper Oil Soybean ~ Wheat  Corn
FX 0,22 - 0,10 0,15 - 0,01 - -
Index 0,17 - 0,04 - 0,08 0,04 - -
Banks 0,09 - - 0,04 - - - -
Volatility - 0,01 - - 0,01 - - -
Sovereign - - 0,03 - - - - -

Table 4.5: This table reports for the different periods, the main channels used for the transfer of
information from the commodity market to the countries of our data-set with the horizontal axis
reporting the variables of the commodity market transmitting the information and the vertical axis
reporting the variables of the countries to which the information is transmitted.

In order to assess the possible use of commodity markets as an additional indirect
channel for information transmission between the countries of our data-set, we now
consider, in more details, the relationships existing between the selected financial vari-
ables and the commodities for each country. To be able to compare properly the
strength of these relationships, we create five new data-sets, one for each type of fi-
nancial variables. These data-sets regroups for each financial variable the time series
of every countries. We then estimate using the same methodology as before the links
existing between the commodities and each of these data-set, looking at relationships
from the commodities to the financial variables and from the financial variables to the

commodities.

The resulting matrices are given in Table 4.7 for the transmission from the selected
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Pre-Crisis

IN FX Index Banks Volatility = Sovereign

Gold - - - - -

Silver - 0,02 0,03 - -

Aluminium - 0,09 - - -

Copper 0,20 0,22 0,05 - -

Oil 0,20 - - - -

Soybean - - - - -

‘Wheat - - 0,04 - -

Corn - 0,09 - 0,05 -
Post-Crisis

IN FX Index Banks Volatility  Sovereign

Gold - - - - -

Silver - 0,02 0,03 - -

Aluminium - 0,10 - - -

Copper 0,20 0,22 0,05 - -

Oil 0,20 - - - -

Soybean - - - - -

Wheat - - 0,04 - -

Corn - 0,09 - 0,05 -
Post-Crisis

IN FX Index Banks Volatility  Sovereign

Gold - - - - -

Silver - 0,02 0,03 - -

Aluminium - 0,08 - - -

Copper 0,20 0,21 0,05 - -

Oil 0,20 - - - -

Soybean - - - - -

Wheat - - 0,04 - -

Corn - 0,10 - 0,05 -
Post-Crisis

IN FX Index Banks Volatility Sovereign

Gold - - - - -

Silver - 0,02 0,03 - -

Aluminium - 0,08 - - -

Copper 0,20 0,23 0,05 - -

Oil 0,20 - - - -

Soybean - - - - -

‘Wheat - - 0,05 - -

Corn - 0,09 - 0,05 -
Post-Crisis

IN FX Index Banks Volatility  Sovereign

Gold - - - - -

Silver - 0,02 0,03 - -

Aluminium - 0,10 - - -

Copper 0,20 0,23 0,05 - -

0il 0,20 - - . .

Soybean - - - - -

Wheat - - 0,04 - -

Corn - 0,09 - 0,05 -

Table 4.6: This table reports for the different periods,

the main channels used for the transfer of

information from the countries of our data-set to the commodity market with the horizontal axis
reporting the variables of the countries transmitting the information and the vertical axis reporting
the variables of the commodity market to which the information is transmitted.

financial variables to the commodities and in Table 4.8 for the transmission in the

reverse direction. As can be seen for Table 4.7 , apart from the exchange rate, we

observe a transmission of information from the countries’ variables to the commodities

for North America and Europe, with food commodities mainly impacted by Europe
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and metal and oil by North America. This is in line with the fact that the U.S.
and Canada are large producers of oil and metals and that Europe contributes to the
commodity market mainly via food production. When looking now at Table 4.8, we
observe a clear transmission from the commodity markets to the Asian financial vari-
ables, with metals, oil and food impacting their fundamentals. This tends to prove
that, in addition to the cross-country channels highlighted in section 4.2.3, there seems
to exist a channel from North America to Asia using metals and oil as transmitter and
from Europe to Asia using food supply as transmitter. As for the exchange rate, we
see clearly that the commodities influence mainly the USD which may be explained
by the fact that most commodities, especially metals, are traded in USD and therefore
their prices influence the demand for this currency and in turn its value Bhar and
Hammoudeh (2011).

As we considered, in our analysis, several different times series in a single measure,
co-movements in the set of selected fundamentals may alter the results of our analysis.
Therefore, we repeated the analysis presented in the previous sections, by filtering the
raw data from common factor using for each country the first principal component of
the set of fundamentals characterizing the country. The results are qualitatively the

same and available upon request.
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Currencies

FX USD CAD GBP EUR CNY JPY AUD
Gold - - - - - - -
Silver - - -
Aluminium - - 0,95 - - - -
Copper - 0,02 - 0,02 - - -
Oil - - - - - - -
Soybean - - - - - - -
Wheat - - - - - - -
Corn - - - - - - -

Stock market indices

Equi US. CA UK. DE FR IT CN JP AU

Gold 0,31 - - - - - - - -
Silver -
Aluminium 0,42 - - - - - - - -
Copper -
Oil 0,27 - - - - - - - -
Soybean - - - - - - - - -
‘Wheat - - - - - - - - -
Corn - - - - - - - - -

Financial indices

FI US. CA UK. DE FR 1T CN JP AU
Gold - - - - - - _ - _
Silver - - - - - - - - -
Aluminium - - - - - - - - -
Copper - - - - - - - - _
Oil - - - - - - - - -
Soybean - - - - - - - - -

Wheat - - - 0,51 - _

Corn - - 0,04 - - 0,45 - - _

Volatility indices

Vol US. CA UK. DE FR IT CN JpP AU
Gold - - - - - Z -

Silver 0,29 - - - - - - - -
Aluminium 0,38 - - - - - - - -
Copper 0,33 - - - - - - - -
Oil - - - - - - - - -
Soybean - - - - - - - - -
Wheat - - - - - - - - -
Corn - - - - - - - - -

Sovereign bond yield

Sov U.S. CA UK. DE FR IT CN JP AU
Gold - - - - - - _ - _
Silver - - - - - - - - -
Aluminium - - - - - - - - -
Copper - -
oil - 100 - B, S B} _
Soybean - - - - - - _ _ _
Wheat - - - - - - - - -
Corn - - - - - - - - -

Table 4.7: This table reports for the entire period, the main channels through which the financial
variables of the selected countries influence commodities.

4.3 Conclusion

In this chapter, we explored the possibility of improving our understanding of the in-
formation flows inside the economy taking into account the greater interdependence of
markets due to the financial globalization. We proposed a new approach derived from

the Markov Switching model to infer the information transmissions between different
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Currencies

FX Gold  Silver  Aluminium Copper Oil Soybean Wheat Corn
USD 0,82 - - 0,17 - N - -
CAD - - - - - - - -
GBP 0,01 - - - - - - -
EUR - - - - - - - -
CNY - - - - - - - -
JPY - - - - - - - -
AUD - . - - - - . §

Stock market indices

Equi Gold Silver Aluminium Copper Oil Soybean ~ Wheat Corn
U.S. - - _

CA - - - - - - - -
U.K. - - - - - - - -

JP - - 0,11 - - - 0,21 -
AU - - 0,31 0,05 0,32 . - .

Financial indices

FI Gold  Silver  Aluminium Copper Oil Soybean Wheat Corn
U.S. - - - - - - - -

DE . . - § . . . .
FR - - - - - - - -
IT - - - - - - -
CN - - 0,31 - - - 0,65 -
JpP . . - - .
AU . . . . - - - 0,03

Volatility indices
Vol Gold  Silver  Aluminium Copper Oil  Soybean Wheat Corn

JP - 0,02 0,03 0,01 0,08 0,11 0,30 -
AU . 0,30 - - - - - 0,15

Sovereign bond yield

Sov Gold  Silver  Aluminium Copper Oil  Soybean Wheat Corn

CN - - - - 0,44 - - -

AU 0,26 . 0,28 : 0,01 0,02 . .

Table 4.8: This table reports for the entire period, the main channels through which the financial
variables of the selected countries are influenced by commodities.

multivariate systems. Beyond the global measure proposed by Barrett and Barnett
(2010) and the Granger causality test developed by Psaradakis et al. (2005b), our
approach provides a detailed view of the channels’ dynamics describing the informa-

tion transmission process between two complex systems, providing information on the
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channels’ activity at each time step.

We investigated using our new methodology the causal relationships existing between
9 countries representing the world major economies. Instead of looking at simple pair-
wise relationships, our new methodology enables us to look at the same time at several
channels of transmission by considering for each country 5 different financial variables
that have been selected to represent the state of each country.

The aggregated results demonstrated the importance of currencies and equities as both
transmitters and receivers of information in contrast with the common view that since
the Global Financial Crisis, the main vectors of information were the financial insti-
tutions. Nevertheless, the U.S. and U.K. financial sector have proven to be relatively
important sources of information. As for the currency channel, the Euro and the
Japanese Yen seem to be the main spreader of information influencing mainly the U.S.
dollar and the Canadian dollar. Eventually, the channels involving the stock market
indices were especially important inside the European Union.

The second part of our empirical investigation consisted in examining the relationships
existing between countries and the commodity markets and look at the possibility that
the commodity markets could represent an additional indirect channel of information
transmission between countries. Our results confirmed the major relationships existing
between commodities and exchange rates but also between commodities and equities.
These close ties concern primarily metals and oil. Eventually we have determined the
existence of a link between North America and Asia through oil and metals and from
Europe to Asia through agricultural and food commodities.



Conclusion

Each chapter of this thesis has contributed to the literature both methodologically and
empirically. The methodological part of the thesis had the objective of understand-
ing causality as a whole considering the many aspect of causality such as the type
of causality, the importance of the environment around a causal link or the different
channel through which information can travel. Each chapter brought a new piece of

this complex causality puzzle.

The objective of the first chapter was to introduce the question of causality by describ-
ing the functioning of two pairwise methods, transfer entropy and Granger causality
and the main concepts that led to their development. We explore the possibility to bet-
ter identify causal relations between financial series using transfer entropy, comparing
the results with Granger causality which is commonly used in economics and finance.
Based on simulations of possible data generating processes (DGPs) for returns with
causal relationship both in mean and variance, we studyied the properties of those
different measures based on rigorous testing beyond the Gaussian equivalence case
put into lights by Barnett et al. (2009).The DGPs were selected in order to replicate
some features of financial variables such non stationarity in variance, non linearity, or
kurtosis in the probability distribution.

Results show that for highly nonlinear and/or non Gaussian DGPs incorporating ex-
treme and rare events and for causal relationships in variance, transfer entropy leads
to better causality detection than standard Granger causality, the statistical tests as-
sociated to transfer entropy presented better results in terms of power and size but
also in terms of ROC and PR curves.

In the second chapter, we tried to go beyond the simple pairwise approach and look
at the impact of the environment around the variables transmitting and receiving the
information. Indeed the pairwise approach tends to overestimate the number of causal
relationships in a specific system by considering both the direct and indirect links.
Drawing on recent contributions proposing strategies to deal with this problem such

as the so-called "global silencing" approach of Barzel and Barabasi (2013) or "network

127
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deconvolution" of Feizi et al. (2013), we proposed a novel methodology to infer an
effective network structure from multivariate conditional information transfers. The
aim of the second chapter was to improve network inference from temporal data acting
on two different levels. The proposed approach takes into account the effects of both
increasing dimensionality on information transfer estimation and redundancies caused
by both inter- and intra-lag relationships. Our parsimonious approach relies on a pre-
search step where every connection is inferred using a simple pairwise approach. In
a second step, the algorithm uses conditional measure to prune the network from its

non-relevant causal relationships.

We relied on a Monte Carlo simulation exercise to demonstrate the effectiveness of our
novel approach compared to four other state of the art methodologies. We have shown
through these simulations that, regardless of the underlying causality measure selected,
the proposed algorithm generally performs better than the other methodologies when
examining both intra- and inter-lag relationships. On top of those good results in
terms of area under the ROC and PR curve, the other methodology necessitate a good
calibration of their parameters in contrast with our approach which necessitate only
the definition of a significance level. We also showed that for small samples, condi-
tional Granger causality is the adequate measure for information transfer estimation,
transfer entropy being as effective for larger samples as already demonstrated in the
first chapter.

Drawing away from the subject of network theory, we could consider in another way the
environment around a causal link by introducing in the causality estimation framework
more than one possible sources and destinations. The last two chapters are therefore
devoted to the development of two multichannel causality measures. These approach
allow to consider systems for which more than one channel are used to transfer infor-
mation; either because the system is represented by several variables or that we can
decompose each variable into spectrum using frequency or quantile decomposition. In-
spired by Neuroscience where multivariate connectivity is a common problematic and
by papers such as Barrett and Barnett (2010), we have tried to address this complex
question of multi-channel transmissions, getting away from the usual problematic of
multivariate explanatory variables to account for systems described by both multivari-
ate explanatory and dependent variables. The aim of these last chapters was therefore
to look at the evolution in time of the relative importance of every channel in one
global measure.

We proposed therefore two different frameworks: the first one presented in chapter 3,
relied on the simplifying assumption that, at each time step, a specific channel domi-

nates the information transfer between the two considered systems. Based on this new
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framework, we developed two different multi-channel causality measures derived from
the usual Granger causality to account for linear interactions and from the concept
of transfer entropy for nonlinear contribution. Our measures provide different infor-
mation about the inferred causal links: the strength of the global interaction between
the two sub-systems, the average frequency of the channel switches and the channel
contributing the most to the information transfer process for each time step.

The first step was to create a measure of the relative importance of each channel at
every time steps. Once defined, the algorithm determined, for the considered step, the
channel that maximizes the information transfer. These two steps were performed on
every observation and the selected channels form a map of the time evolution of the
channels’ activity. To avoid instability in the channel selection, a softening process is
applied.

As in the previous chapters, a Monte Carlo simulation exercise has been performed in
order to assess how the proposed models react to different configurations of coupled
systems, looking at the effect of the switching frequency, the strength of the relation-
ships, the type of relationships and the complexity of the channels dynamic involved
in the information transfer. The results of this simulation exercise demonstrated the
ability of our models to infer properly the channel dynamic, especially for low switch-
ing frequencies. Both models showed equivalent results when the underlying dynamic
is linear, while the transfer entropy based measure showed clearly better results for

the non linear dynamic.

In the last chapter we treated again the question of multichannel relationships but
from a different point of view. Beyond the global measure proposed by Barrett and
Barnett (2010) and the Granger causality test developed by Psaradakis et al. (2005b),
our approach provided a detailed view of the channels’ dynamics describing the infor-
mation transmission process between two complex systems; providing information on
the channels’ activity at each time step. Rather than considering the relative impor-
tance of every channel at each time step as in the models proposed in chapter 3, our
methodology relied here on the regime switching Granger causality test which enabled
us to look at the entire time window in one step. We proposed to modify the regime
switching model to take into account multiple dependent variables. Instead of con-
sidering each explanatory variable as a possible source of information for one specific
dependent variable, we considered every possible channel, represented by a specific
pair of dependent and explanatory variable, as a possible state of the world. The
Markov regime switching framework provided comprehensive information about the
probability of activity of every channel for each time step. A comparison between this

regime switching approach and the approaches developed in the chapter 3 is proposed
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in the appendix and demonstrate the higher effectiveness of the regime switching ap-
proach, although both methods are relatively close.

As mentioned earlier, the aim of this thesis was twofold, first the development of new
methodologies related to causality inference, then the investigation of several key ques-
tions raised by the literature in finance and economics. The empirical applications had
therefore two main objectives, first the demonstration of the empirical interest of the
different methodologies developed so far, then to address some crucial questions in fi-
nance and economics. The first three chapters have been devoted to the improvement
of our understanding of the western financial system and the relationships between
both its topology and systemic risk; whereas the last chapter consider some of the
most advanced economics from another point of view, relying on a more macroeco-

nomic approach.

In the first chapter, we proposed to use daily CDS observations of European and U.S.
financial institutions to achieve two main objectives. The first one was to assess the
ability of of Granger causality and transfer entropy to identify the relationships be-
tween the considered financial institutions by comparing the information content of
the networks estimated with both causality measures. The information content was
estimated by looking at the ability of the topological characteristics of the inferred
networks to properly describe the evolution of the risk associated with the financial
institutions via linear regressions. The second objective was to consider the influence
of the surrounding environment of a network in the definition of its connectivity. In
order to achieve this second objective we relied on the algorithm developed in chapter
2, as the treatment of the redundancies in the information transfer process requires the
conditioning on the environment of the node receiving or transmitting the information.
We considered a sub-sample of 24 systematically important financial institutions as
the main network of interest and considered additionally 80 other financial institutions
divided in three datasets which have been added iteratively to the set of condition to
be considered in the network inference procedure.

The results of this first application shows that the information content of the net-
works estimated with each causality measure explained well the evolution of the risk,
considering the high percentage of variance explained by our models. We also showed
that both causality measures were complementary. We demonstrated then the positive
impact of the surrounding environment on our network, the percentage of explained
variance of the topological characteristics of the inferred networks increasing as the
number of peripheral financial institutions included in the inference process built up.
Such results have been observed for Granger causality when considering all type of

financial institutions but only for banks in the case of transfer entropy. These results
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seemed to confirm that the ability of a network to benefit from the information con-
tent of its surrounding environment depends directly on the ability of the underlying
measure to treat high dimensional estimation. In the case of transfer entropy such
high dimensional estimation requires longer time series. Nevertheless our empirical
investigation was not able to provide a clear limit on the network sample size for the

considered application.

In the second chapter, we proposed a similar approach by considering again the impact
of topological characteristics of the inferred networks on U.S. financial institutions risk,
looking here at the influence of the frequency of the underlying data on the informa-
tion content of the networks. The results led to similar conclusions compared to the
first chapter with the position of an institution inside the network representing a key
element to describe the evolution of its risk. The results for the different frequencies
provided useful insights about the frequency dependencies of time series information
content, showing that it exists a clear trade-off between information and noise leading
to the existence of an optimal frequency to retrieve financial networks. Finally, we
compared these results with those obtained using a simple pairwise approach instead
of our network inference algorithm and confirmed that our algorithm gives a more
precise view of the interactions inside networks and therefore gives more information
on financial institution fragility.

In contrast with chapter 1 and 2, the application developed in chapter 3 does not
consider the entire system in terms of network but look rather at the way financial
institutions communicate to each other at a pairwise level using our multichannel ap-
proach. At this individual level, the considered channels between financial institutions
are expressed both in terms of spectral representation using wavelet transform and
probability distribution using quantile regressions. The obtained spectra have been
used to estimate a multi-channel information transfer between every connected pair
of U.S. financial institutions using the two measures developed in the methodological
part. Indeed, every financial institution was represented by a set of time dependent
variables representing the different frequencies or the different quantiles. The results
of the multi-channel Granger causality test in the frequency domain shows that the
transfer of information occurs mainly at high frequency especially during the financial
crisis of 2008 which is in line with the common assumption that financial market are
more reactive during turmoil period. As for the quantile and cross quantile analysis, it
provided a clear insight on the importance of the extreme variations during the finan-
cial crisis confirming the importance of the tails in periods of turmoil. The reverse is
true for period of stability where the entire probability distribution of the time series
outcome is taken into account.
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Eventually we examined, in the last chapter, the interrelationships among 9 advanced
economies from a macroeconomic point of view. We went, as in the chapter 3, beyond
the usual causal relationships, considering the time-varying dimension of the channels
conveying causal relationships. Looking at multichannel information transfer, we had
to describe each country as a multivariate system. Drawing from the spectral ap-
proach of chapter 3, we defined for these countries five different fundamental variables
reflecting its state: the main stock market index, an index regrouping the main finan-
cial institutions of the country, a volatility index, the exchange rate and the 5 years
USD denominated sovereign bond yield. We applied then our multichannel measure
on these sets of time series to determine, over time, the main channels through which

the information is transmitted between the different countries.

The aggregated results demonstrated the relevance of currencies and equities both as
transmitters and receivers of information, contrasting with the common view devel-
oped during the last Global Financial Crisis that the main vectors of information were
the financial institutions. Nevertheless, the U.S. and U.K. financial sector have proven
to be a relatively important source of information. As for the currency channel, the
Euro and the Japanese Yen seem to be the main spreader of information influencing
mainly the U.S. dollar and the Canadian dollar. Eventually, the channels involving
the stock market indices were especially important inside the European Union.

In a second step, we consider the relationships existing between these countries and
the commodities market and look at the possible use of the commodities market as an
indirect channel of information transmission between countries. Our results confirmed
the existence of a clear link between commodities and exchange rates but also between
commodities and equities, affecting mainly metals and oil. Eventually we have deter-
mined the existence of a link between North America and Asia through oil and metals
and from Europe to Asia through agricultural and food commodities.

The aim of this thesis has been to highlight the fact that performing a causality anal-
ysis was not an easy task and require a deep understanding of the notions behind
the different measures. Indeed, in order to be effective, such analysis has to take into
account the many limitations of the existing measures. The definition of these limita-
tions has been one of the backbones of this research considering the many simulation
exercises that have been performed in order to assess the usefulness of the different
considered causality measures. Without such a rigorous testing procedure, any em-
pirical investigation could not be undertaken without limiting severely the validity of
their conclusion; especially in social sciences where no theoretical law can describe
the underlying behavior linked to the observations. As a conclusion, I would like to

stress again the importance of this positivist research process in all field of science
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where every assertion should be assessed before being embedded in a larger empirical

or theoretical research.
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Appendix A.Testing causality in
financial time series

A.1. Selected financial institutions

Name Ticker Type Name Ticker Type
ING Bank NV ING SIFI MGIC Investment Corp MGIC FS
BNP Paribas SA BNP SIFI ‘Wachovia Corp WB FS
Banco Santander SA BME SIFI Western Union Co/The WU FS
HSBC Bank PLC HSBA SIFI American Express Co AXP FS
Credit Agricole SA ACA SIFI AXA SA Cs I
Societe Generale SA SG SIFI Allianz SE ALV I
Deutsche Bank AG DBK SIFI Assicurazioni Generali SpA G I
Barclays Bank PLC BARC SIFI Muenchener Ru.-Ges. AG MUV I
Royal Bank of Scotland PLC RBS SIFI Aviva PLC AV I
UniCredit SpA UucG SIFI Zurich Insurance Co Ltd ZURN I
Banco Bilbao Vizcaya Argentaria BBVA SIFI Aegon NV AGN I
Credit Suisse Group AG CSGN SIFI Legal & General Group PLC LGEN I
UBS AG UBSG SIFI Swiss Reinsurance Co Ltd SREN I
Dexia Credit Local SA DEXB SIFI Old Mutual PLC OML I
Nordea Bank AB NDA SIFI Hannover Rueck SE HNR1 I
Lloyds Bank PLC LLOY SIFI SCOR SE SCR I
Standard Chartered Bank STAN SIFI XLIT Ltd XLGLF I
Commerzbank AG CBK SIFI Aon PLC AON I
JPMorgan Chase & Co JPM SIFI Genworth Holdings Inc GNW I
Morgan Stanley MS SIFI Hartford Financial Services Group HIG I
Goldman Sachs Group Inc GS SIFI Lincoln National Corp LNC I
Bank of America Corp BAC SIFI Prudential Financial Inc PRU I
Citigroup Inc C SIFI Allstate Corp/The ALL I
Wells Fargo & Co WFC SIFI Travelers Cos Inc/The TRV I
Banque Populaire KN B Unum Group UNM I
Intesa Sanpaolo SpA ISB B CNA Financial Corp CNA 1
Cooperatieve Rabobank UA RBK B MBIA Insurance Corp MBIA 1
Banca Monte dei Paschi di Siena BMPS B Safeco Corp SAF I
Erste Group Bank AG EBS B Washington Mutual Inc WAMUQ 1
Allied Irish Banks PLC ALBK B American International Group AIG I
Banco Popular Espanol SA POP B Chubb Corp/The CB I
Banco Popolare SC BP B Manor Care Inc HCR MI
Banco Comercial Portugues SA BCP B MetLife Inc MET MI
Banco de Sabadell SA SAB B Cigna Corp CI MI
Banca Popolare di Milano Scarl PMI B Aetna Inc AET MI
Danske Bank A/S DANSKE B Humana Inc HUM MI
Svenska Handelsbanken AB SHBA B UnitedHealth Group Inc UNH MI
DNB Bank ASA DNB B Land Securities Group PLC LSGOF RE
Skandinaviska Enskilda Banken AB SEB B Unibail-Rodamco SE UL RE
Mediobanca SpA MB FS Hammerson PLC HMSO RE
Bear Stearns Cos LLC BS B Klepierre LI RE
Charles Schwab Corp SCHW B Gecina SA GFC RE
Federal Home Loan Mortgage Corp FMCC B Compass Group PLC CPG RE
Federal National Mortgage Association FNMA B ERP Operating LP ERPOP RE
Lehman Brothers Holdings Inc LEH B HCP Inc HCP RE
Merrill Lynch & Co Inc MER B Kimco Realty Corp KIM RE
H&R Block Inc HRB FS Prologis PLD RE
Invesco Ltd (EUR) IVZ FS Simon Property Group LP SPG RE
Loews Corp L FS DDR Corp DDR RE
Marsh & McLennan Cos Inc MMC FS AvalonBay Communities Inc AVB RE
Torchmark Corp TMK FS Boston Properties LP BXP RE
Janus Capital Group Inc JNS FS Capital One Financial Corp COF RE

Table A.1. This table reports the name, the ticker, the type of institution (SIFI for systematically
important financial institutions, B for banks, FS for financial services which have been included in
the set of banks, I for insurance, MI for medical insurance and RE for real estate) and the region of
the selected financial institutions for the application part.
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A.2. Topological measures

In this appendix, we define mathematically the different topological measures used in
the application of chapter 1.

The transitivity also called clustering coefficient provides a measure of the degree
to which nodes tend to cluster together or more precisely the extend to which the
neighborhood of a node is connected. Considering a graph G = {V, E} composed
of a set of nodes v € E linked by a set of edges e € E, the coefficient for a node 7 is
given by:

C = 2 | {ejk 1V, Vg ENi,ij EE}‘
’ ki(k; — 1)

with e, the edge between the node v; and v; IV;, the neighbors of the node v;; and
k; the number of neighbors of v;.

The betweeness centrality assesses the centrality of a node in a graph based on shortest
paths. A high betweeness centrality indicates that a given node interacts with other
nodes on relatively short paths. Its estimation is done by computing the number of
shortest paths from all the other nodes of the network that pass through the considered

node. For a given node v;, the measure is defined as follows:

BC,Z _ Z Ust(l/i)

Ost
ViFVjF vy, s

with o, the total number of shortest paths from node v; to node vy; and o4 (v;), the

number of shortest paths from node v; to node v, that pass through v;.

The eigenvector centrality measures the influence of each node on the rest of the net-
work based on the idea that connections to highly connected nodes contribute more.
For a given graph G described by an adjacency matrix A = {a;;, = 1Vej, € E | aj; = 0},
the eigenvector centrality for a node v; is given by:

1
EC, = X Z Clid‘[l'fj
jeG

with z; and A given by Az = \x.



Appendix B. Effective Inference
Algorithm

B.1. Information transfer measures

In this appendix, we describe two information measures that we used with our algo-

rithm, that is, Granger causality and transfer entropy.

We first introduce the concept of Granger causality. Formally, a process Y is said to
Granger cause another process X if the future values of X can be better predicted
using the past values of X and Y rather than only the past values of X. The formal
test developed by Granger (1969) relies on the linear regression model described by:

K K
r, = Bo+ Z T )+ Z BiYi—r + €1,
k=1 k=1

where the null hypothesis of Y that does not Granger cause X corresponds to the joint
nullity of gy, Vk € {1,..., K}, leading to:

K
xy = [o+ Z QRTi_f + Mt
k=1

The extension to conditional Granger causality requires the introduction of conditions
in the model. This leads to a similar null hypothesis corresponding to the joint nullity

of Bl'

Ty = Po+ Zf:l QT + Zle By
+2 i ZIL=1 Ojwi—; + &

Ty = Bo + 25:1 0Tk
+20i Zszl Wik + My

Vi e {1,...,c} with ¢ the number of conditions.
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We propose to rely on the usual Granger—Sargent statistic to test for the null hypothesis

of joint nullity of 3 for the conditional and unconditional form of Granger causality.

7, . _(55R,— SSR)/K -
YoX T SSR(T — 2+ n)K) o T RT-GamK

As for transfer entropy, this measure was first proposed by Schreiber (2000) and folows
the main idea behind Granger causality. Indeed, its definition of causality or informa-
tion transfer can be seen as the information gained on the future of a process X due
to the past of another process Y, already knowing the past of process X. Transfer
entropy defines this gain as the difference between two conditional Shannon entropies,
an unrestricted entropy including X and Y, and a restricted entropy including only
X. Assuming X and Y, two stationary Markov processes of order n and m, the trans-
fer entropy determines to what extent the knowledge of process Y should reduce the
uncertainty of process X, knowing the history of X itself.

Ty ox = H(x | vn) — H(T [ 4, Ys-m)
= th,zt_n,yt_m P(Tts Temns Yem) 108 (P(2t | Ttmn, Yim))
- Zwtﬁtt*nyytfm (T, To s Yt—m) 1080 (P(T1 | T1-1n))

= th,xt,n,yt,m p(xta Tt—n, yt—m) loga(%)
Taking the conditional form by introducing Z the set of conditions, the conditional

transfer entropy is as follows:

Ty x = H(x | Ttn, Zt—n)
_H(X | Tt—ns Yt—m, Zt—n)

We estimate the four joint probabilities using quantile symbolization. To determine
the true transfer entropy level, we need processes of infinite length so as to com-
pute the right transition probabilities. To avoid the finite sample bias, we use the
bootstrapped methodology proposed by Marschinski and Kantz (2002) to estimate
the effective transfer entropy. The effective transfer entropy can simply be defined as
follows:

Ely_ .x =Ty x — TYboot—>X

Variable Ty, ,_,x represents the transfer entropy with the series Y bootstrapped. By

this bootstrapping of Y, all the statistical dependencies between the two series are
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removed and therefore all the non-zero values of Ty, ,_,x demonstrate the presence of
bias due to the small-sample effect and should therefore be removed from the transfer
entropy estimation. This bias is determined at a specific level using a Kernel estima-
tion based on multiple bootstrapped transfer entropy estimations and then removed
from the original transfer entropy. This follows a two-step approach: first, estimate the
n transfer entropy with the series Y bootstrapped to build a probability distribution
function using a Gaussian kernel, and then obtain from the Kernel density the proba-
bility distribution of transfer entropy levels in the case of no information transfer, from
which we derive the value of the bias at a specific level. The number of bootstraps used
in the Kernel estimation for the effective transfer entropy has been set to 15 in this
chapter. As for quantile symbolization, the data has been divided into three regions,
two regions positioned at 46 percent on either side of the 50 percent quantile with a

bandwidth of 4 percent, and the rest forming the third region.

B.2. Algorithm code description

The code starts with the pre-analysis step which removes all the non causal links via
a for loop considering the n(n — 1) potential causal links from lag = 1 to lag = lagmax
(2-4). It then select the lag for which the information transfer is maximal (5). The
pruning step follows, going from one node to another. Once a node X is selected,
the algorithm starts by defining all the parents of X, called Y (8). Then one specific
parent Y is selected and all its parents and children also connected to X is included
in a set on which the transfer of information between Y and X is conditioned (9-13).
If the causal link survives to this step (14), the algorithm moves to the greedy part
which deals with the elimination of indirect links due to instantaneous relationships.
The algorithm select all the parents of X sharing the same lag as Y (15). The selected
nodes are then individually added to the set of conditions applied on the information
transfer between Y and X (17-19). The nodes leading to the maximum reduction
in the amount of information transferred is definitely added to the set of conditions
(20). The remaining nodes are tested iteratively until no more reduction is observed.
The resulting information transfer is kept in the network matrix Net (if > 0) and the
algorithm goes to the next parent of X (23). When all parents of X have been treated,

the algorithm moves to the next nodes until all nodes have been treated.
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I:Input: time series data set X = (X1, X2,---, X")
2: For k =1 to lagmqs do

3. V(i,5) € {1, ,n}* i # 4, Netyjp = IT(x}, x]_, | 2i_y )
4: end for

5: Net = max(Net; ;)

6:For i =1 ton do

7: For k, =1 to lagmae, do

8: ;Cp =Pk, (X%

9:  For j =1 to length(Y._,) do

10: Vi = {pky( ) 0 P (X’)}

11 Wil = {Gu )N Pkm,(Xl)}
122z ={viu W,iig,}

13: Net(i,y;-, kz,) = IT(xi, yiﬁkp | xiikm,zz’zkm)
14: If Net(i,y;, kp) >0 do

15 YUl =g\ v,

16: While Y;9"*“¥ > 0 do
17: For h =1 to length(Yi greedy) do
18: ITglr]eedy h — IT(.’E%, y | ‘/L‘t ke ’yt k ’thkpci)
19: End for
i, i, . i,greed
20: Zk,fm' = Zkfm- ‘U thch(ka V= max(ITgmedy))
21: Y;cfreedy _ Yz,greedy\
. i,greed . i,greed;
{Which(Y};2® = max(ITy,,,)), Which (Y% = 0)}
22: End While »
23: NEt(Zvy;7kp) = IT(I%,nykp | ‘Tifkmazi’zkpci)
24: End if
25: End for
26: End for
27:End for

B.3. Additional step treating Boolean relationships

C. For each node S};; = N\ Py, (X") with lag k, not connected to X", estimate the

following conditional information transfer:

* Condition first on the set of connected nodes sz = Py, (X") with lag k, and on
their parents and children Zzpc

i b i i i
IT(z/, St—ky | Tt—kgr Yt—ky» zk,,c) >0
For each positive conditional information transfer, connect S,]cp to X!

* Condition then on each S,i; V3 # [, on the set of connected nodes Y};p = P, (X9
with lag k, and on their parents and children Z};pc

il i i
]T<xt7sjt kp | @ kg St—kp7yt—kpvzkpc) >0

Vi %1
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For each positive conditional information transfer, connect S and S) to X*

B.4. Characterization of simulated network topology

We propose, in this appendix to analyze the connectivity distribution obtained with our
network simulator. As stated by Battiston et al. (2010), the study of the topology of
financial networks shows clearly the features of scale-free networks. Indeed, following
the definition of a scale-free network, they verify that the in-degree and out-degree
probability density functions display a power law for financial network. The objective
of this chapter is the proper inference of effective financial network. Therefore, in
order to be able to properly define the ability of the algorithm to infer the topology
of a financial network, the simulated networks should display the main features of a
true financial network. We verify this assumption by looking at the distribution of the
in-degree inside the simulated network. We differentiate the in-degree for the causal
links with a lag of one and two periods and for the instantaneous relationship. The
three probability density functions are then estimated based on simulated networks
composed of 20 nodes with up to 6 lagged connections per node and one instantaneous
connection per node. The results of Fig.B.1 confirm the powerlaw behavior of the
distribution function for the three types of connections considered in the simulation.
It implies that the results of the Monte-Carlo simulations may be extended to real

financial network.

— Lagof1
-~ Lagof2
-~ Instantaneous
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Figure B.1. The figure provides the distribution of the nodes connectivity for the instantaneous links,
and lag 1 and lag 2 links.



162 APPENDIX B. EFFECTIVE INFERENCE ALGORITHM
B.5. Characterization of simulated network topology

In this appendix, we demonstrate that the good results obtained by our algorithm can’t
be replicated by a simple ordering procedure based on the pre-search step. Indeed,
we may wonder if the proposed algorithm does not simply select the links presenting
the highest information transfer level through some sort of ordering procedure on the
results of the pairwise causality measures. We show here that it is not the case by
considering three possible approaches involving an ordering procedure to select the
direct links which differs only by the threshold applied to define the true direct links.
The three approached are based on the ordering of the adjacency matrix obtained at
the end of the pre-search step. For the first approach, there is no explicit thresh-
old but we select in the ordered adjacency matrix the connections with the lowest
p-value, the number of selected connections equals the number of direct links inferred
by our algorithm. We then look at the number of connections in the adjacency ma-
trix obtained by our algorithm, with a p-value higher than the highest p-value of the
selected connections in the ordered adjacency matrix from the pre-search step. The ob-
tained number of connections represents the connections inferred by our algorithm not
present in the selection based on the ordering procedure. This number is a good proxy
of the distance existing between the network inferred by our algorithm and the one ob-
tained by a simple ordering procedure. Considering the good results of our algorithm,
it shows also the ability of this ordering procedure to infer the true underlying network.

The second approach is based on the definition of a threshold. The threshold is defined
using either the network inferred with our algorithm or the true underlying network.
Indeed, we take respectively the highest p-value in the adjacency matrix obtained with
our algorithm or the highest p-value in the pre-search step adjacency matrix consid-
ering only the connections shared by this adjacency matrix and the one of the true
underlying network. Every connections from the ordered adjacency matrix with a p-
value lower than the threshold are selected. We estimate then the difference between
the number of selected connections and the number of connections obtained with our
algorithm in the case of the first threshold and the number of connections in the true
underlying network in the other case. This number is again considered as a proxy of
the distance between the network obtained with the ordering procedure and the one
obtained with our algorithm or the true one. Nevertheless, in contrast with the number
obtained in the previous paragraph, here we do not consider the number of connec-
tions not included in the network inferred with our algorithm, but rather the number
of additional connections compared to the network inferred with our algorithm, i.e.
the number of additional indirect links not treated.

Table B.1. presents the results for the three different approaches based on the sim-
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ulations of 100 networks with 20 nodes and up to 6 incoming edges represented by
times series of 300 observations. The results are expressed in percent by dividing the
numbers of true links detected by the number of connections inside either the network
inferred with our algorithm (first two) and the true underlying algorithm (last two).
As can be seen, the results obtained with our algorithm can’t be replicated by using a
simple ordering procedure even when considering the true underlying network to de-
fine the threshold use for the direct links selection. Indeed, the first approach provides
the right number of connections but not the correct ones, with only 15.9 percent of
the inferred link corresponding to true relationships for the Granger based estimation.
The second and third approaches have better results but still much lower than our
algorithm in terms of true positive rate with respectively 53.8 and 38.1 percent of the

true underlying relationships detected for the Granger based estimation.

True positive rate  Number threshold  Algorithm based Threshold  True network based threshold ENIA Algorithm

TE ENIA 30,2% 63,1% 30,1% 83,5%
GC ENIA 15,9% 53,8% 38,1% 99,6%

Table B.1. This table reports for the different ordering methodologies the true positive rate which
has to be compared to the true positive rate of effecitve network inference algorithm (ENIA) provided
in the last column
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Appendix C. Cross-country
Information Transmissions

C.1. Simulation exercise

This appendix consists in a Monte Carlo simulation exercise allowing the compari-
son between the model developed in chapter 4, i.e. Multichannel Markov Switching
Granger causality and the one proposed in chapter 3 called Multi-Channel Granger
Causality. For both models, we consider the results obtained with the algorithm in-
cluding or not a pre-search step. This additional step is used to reduce the complexity
of the estimation by reducing the number of possible channels to be taken into account.
The step consists in the estimation of a bivariate Granger Causality for each channel in
order to include in the further steps only the channels for which an average causal link
is observed for the whole sample. The effect of this pre-search step should therefore
be greater on the Multi-Channel Markov Switching Granger Causality (MCMSGC)
as the number of parameters to be estimated increases sharply with the number of
channels to be considered.

The data generating process used here, simulate the interaction between two systems
composed of three different variables. The system X receives information from the
system Y through three possible and exclusive channels, meaning that at each time
step only one channel is used for the transfer of information. The times series of the
system X are defined as follow for the active channels:

vf =ax; |+ Pyl + (1 —a—Be; when s, =0

v =axl |+ Pyl +(1—a—pB)e  whens, =1

¥ =ax}  + Pyl +(1—a—p)e when s; = 2

with &/ a Gaussian white noise with zero mean and unit standard deviation.

The state of nature s; is defined using a Poisson process which determines the switching

frequency. The non connected series X* and all the time series Y7 follow the usual

165



166 APPENDIX C. CROSS-COUNTRY INFORMATION TRANSMISSIONS

autoregressive process (AR):

vy =aryy + (1 - a)g

yg = 04927—1 + (1 - 04)77?

where i € {1,2,3} depending on the period and j € {1,2,3}.
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Figure C.1. The figure (a) reports the detection rates for both the MCGC and MCMSGC with and
without a pre-search step as a function of the strength of the causal relationship between the variables
of the system Y and X. The figure (a) reports the detection rates for the same models but here in
terms of switching frequency with the intensity of the Poisson process reported in the X-axis.
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We tested our DGP for different parametrization by changing the switching frequency,
i.e. the intensity of the Poisson process, and the strength of the causal link represented
by the [ parameters. In the first case, the intensity varies from 1 regime switch each
10 observations to 1 regime switch each 100 observations with a fixed 3 of 0.6. In the
second case, the switching frequency is fixed at 1 regime switch per 50 observations
and the strength parameter S ranges from 0.25 to 0.7. Fig.C.1 (a) and (b) give the
rate of detection of the true underlying channels for both models, with and without
pre search step, and for both parametrization. These results regroup for each set of
parameters, 100 simulated data-sets of 1000 observations. At each time step, the most
active channel for the MCMSGC is determined by selecting the channel providing
the highest inferred probability of information transfer for the considered time step
(see Sect.4.1). For the MCGC, this information is directly provided by the algorithm.
We then compute the detection rate by comparing the inferred active channels with
the true underlying active channel. As can be seen from Fig.C.1 (a), the MCMSGC
including a pre-search step shows a higher detection rate compared to the other models
when the strength of the causal link reduces with a detection rate stable for all the
value of the [ parameters considered in the simulation. We have a similar trend when
testing different switching frequencies, with a stable detection rate for the MCMSGC
including a pre-search step and a decreasing one when the switching frequency increases
for the MCGC. We see nevertheless, with both parametrization, that the MCMSGC
gives lower detection rates compared to the other methods when considering all the
possible channels. This arises from the fact that the number of parameters to be
estimated increases quickly with the number of channels and therefore reduces the
ability of the maximization algorithm to find an optimal solution. It highlights the
importance of the filtering procedure when using the MCMSGC as it improves both
the computing speed and the detection rates.
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Appendix D. Summary of main
contributions and publication status

Chapter 1: Testing causality in financial time series

The first chapter explores the possibility to better identify causal relations between
financial series using empirical tools derived from information theory. Indeed, a large
literature in physics and information theory shows that close links exist between the
informational entropy transfer measures (Shannon, 1948; Tsallis, 1988) and that of
causality developed by Granger (1969) which is commonly used in economics and fi-
nance. Based on simulations of possible data generating processes (DGPs) for returns
with causal relationship both in mean and variance, we study the properties of those
different measures based on rigorous testing beyond the Gaussian equivalence case
put into lights by Barnett et al. (2009). Results show that for nonlinear and/or non
Gaussian DGPs, transfer entropy measures perform better in terms of power and size
and thus better capture causal relations, when they exist, between two series. Having
documented the added value of informational measures to the identification of causal
relationships in specific cases, we explore, in the context of network inference, the abil-
ity of both measures to identify the relationships existing between European and U.S.
Systematically Important Financial Institutions (SIFIs). We propose to analyze how
network characteristics affect the systemic fragility of the financial system and also
determine the impact of the surrounding environment of the considered network on
the information content of its topology, addressing empirically the question of optimal

network sampling.
"Testing causality in financial time series: A comparison between Granger and infor-

mation theoretical based approaches” submitted to the Journal of Financial Economet-

rics.
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Chapter 2: Effective Network Inference Algorithm

Network representation has steadily gained in popularity over the past decades. In
many disciplines such as finance, genetics, neuroscience or human travel to cite a few,
the network may not directly be observable and needs to be inferred from time-series
data, leading to the issue of separating direct interactions between two entities forming
the network from indirect interactions coming through its remaining part. Drawing
on recent contributions proposing strategies to deal with this problem such as the so-
called "global silencing" approach of Barzel and Barabasi or "network deconvolution"
of Feizi et Al.(Nature Biotechnology, 31 (2013)), we propose a novel methodology to in-
fer an effective network structure from multivariate conditional information transfers.
Its core principal is to test the information transfer between two nodes through a step-
wise approach by conditioning the transfer for each pair on a specific set of relevant
nodes as identified by our algorithm from the rest of the network.The methodology
is model free and can be applied to high-dimensional networks with both inter-lag
and intra-lag relationships. It outperforms state-of-the-art approaches for eliminating
the redundancies and more generally retrieving simulated artificial networks in our
Monte-Carlo experiments. We apply the method to stock market data at different
frequencies (15 minutes, 1 hour, 1 day) to retrieve the network of US largest financial
institutions and then document how bank’s centrality measurements relate to bank’s
systemic vulnerability.

"Effective network inference through multivariate information transfer estimation”

published in Physica A, 499 (2018), pp. 376-394, 10.1016/j.physa.2018.02.053

R package for the Effective Network Inference Algorithm available at:
https://github.com/chdahlqvist /enia/releases

Chapter 3: Multichannel Information Transfer Estimation

The past decade has seen the development of new methods to infer causal rela-
tionships in biological and socio-economic complex systems, following the expansion
of network theory. Nevertheless, the standard estimation of causality still involves a
single pair of time dependent variables which could be conditioned, in some instance,
on its close environment. However, interactions may appear at a higher level between
parts of the considered systems represented by more than one variable. We propose to
study these types of relationships and develop a multi-channel framework, in the vein
of Barrett and Barnett (Phys. Rev. E, 81 (2010)), allowing the inference of causal

relationships between two sets of variables. Each channel represents the possible in-
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teraction between a variable of each sub-system. Based on this new framework, we
develop two different multi-channel causality measures derived from the usual Granger
causality to account for linear interactions and from the concept of transfer entropy for
nonlinear contribution. Our measures provide different information about the inferred
causal links: the strength of the global interaction between the two sub-systems, the
average frequency of the channel switches and the channel contributing the most to
the information transfer process for each time step. After having demonstrated the
ability of our measures to infer linear as well as nonlinear interactions, we propose
an application looking at the U.S. financial sector in order to better understand the
interactions between individual financial institutions, as well as parts of the financial
system. At the individual level, the considered channels between financial institutions
are expressed both in terms of spectral representation using wavelet transform and
probability distribution using quantile regressions. Beyond the application presented
in the chapter, this new multi-channel framework should be easy to implement in other
fields of complex systems science such as neuroscience, biology or physics.

Chapter 4: Cross-country information transmissions

This chapter examines the interrelationships among 9 advanced economies using a
novel multichannel approach to investigate, beyond the usual causal relationships, the
time-varying dimension of the channels conveying causal relationships. The model is
derived from the well-known Markov Switching setting and account for systems de-
scribed by multiple variables. A Markov switching causality measure is adapted to
account for information transmissions between distinct multivariate systems. Each
country is described by 5 different fundamental variables reflecting its state. Our mul-
tichannel causality measure is then applied on these sets of time series to determine,
over time, the main channels through which the information is transmitted between
the different countries. In a second step, we investigate the relationships existing be-
tween these countries and the commodity markets and look at the possible use of the
commodity markets as an indirect channel of information transmission between coun-

tries.

"Cross-country information transmissions and the role of commodity markets: A mul-
tichannel Markov switching approach” accepted for publication in Plos One on August
3, 2018.
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