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ABSTRACT

Despite the advent of high performance computing resources, the calcula-
tions applied to the large systems may remain intractable. Methods to reduce
the level of details are therefore essential to allow fast calculations, but also
to provide new insights into the systems under study. In this chapter, various
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techniques and application domains related to the leveling of molecular
properties through low-resolution, smoothing, denoising, or coarse-graining
approaches, are presented. A focus 1s done on Gaussian smoothing, wavelet
multi-resolution analysis, crystallography-based methods, as well as discreti-
zation methods. An emphasis 1s given on the use of smoothed charge density
distribution functions and their extrema to generate reduced point charge mod-
els (RPCM) of proteins. Molecular dynamics simulations based on RPCMs
are reported for three ubiquitin complexes. Results are discussed based on the
ability of such models to generate stable protein-ligand conformations.

8.1 INTRODUCTION

Computer resources have now become sufficiently powerful to enable
simulations of large systems at a classical level. Therefore, biological
macromolecules and supramolecular complexes, for example, can be
modeled with atomic details. However, when the systems include huge
numbers of degrees of freedom and/or environment considerations, or
when they contain unnecessary details like noise, calculations may remain
too long. Low-resolution and smoothing techniques can thus bring an aid
to the modeling of large systems. On the experimental point of view, low-
resolution representations are also extremely useful in the refinement or
interpretation of images generated by experimental approaches such as
electron microscopy (EM) or X-ray diffraction. For example, a challenge
in structural biology 1s to establish the structure of complex systems,
which require high-resolution structural determination methods to gener-
ate atomic models of the individual components. Complexes created from
the well-resolved individual components are imaged at a lower resolution
to validate the interpretation of the experimental low-resolution image.

In this chapter, some methods that are used to level out molecular proper-
ties and fields, or to generate reduced discrete molecular representations of
biomolecules, are presented. Applications are then given 1n various fields,
with an emphasis on the use of smoothed charge density (CD) distribu-
tion functions and their extrema to generate reduced point charge models
(RPCM) of proteins. Specific calculations based on RPCMs are reported for
ubiquitin-ligand complexes modeled through Molecular Dynamics (MD)
simulations. Results are discussed based on the ability of such models to
generate stable protein-ligand conformations.
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8.2 METHODS

8.2.1 SPLINE APPROXIMATION

The approximation of mathematical functions within a given interval defined
by control points 1s among the numerous applications of, e.g., B-splines (basis
splines) n science. Such piecewise polynomial functions (Eq. 1), whose shape
1s determined by the control points, are characterized by continuity conditions
at their junctions, and are for example often used to smooth experimental data.

p(x)=a, +ax+ a2x2 +...+ ak_lxk_l (1)

InEq. (1), kand k— 1 are the order and the maximum degree of the B-spline
function, respectively. The resolution of the smoothed function thus depends
on the number of polynomials used to approximate the maitial function and on
their order k. The use of B-splines does not require any a priori knowledge
regarding the trend followed by the data. In a relatively recent paper, Klasson
details how to construct spline functions in spreadsheets to smooth experi-
mental data [1]. Earlier, Oberlin and Scheraga [2] used B-spline functions to
approximate, through a pre-calculated potential energy, the interaction energy
between rigid and fixed parts of a molecular system. A well-known application
of splines 1s the ribbon representation of molecules like proteins and DNA,
which allows a clear picture of the secondary structure and fold of the mac-
romolecules (Figure 8.1). Contributions to such representations were brought
by Carson [4] who also used B-splines to model molecular surfaces [5]. In his
work, Carson applied B-spline filters to represent protein backbones, folds, as
well as surfaces, with a suggested implication in structure-based drug design.
Additional references regarding the approximation of molecular surfaces can
be found in the work of Bajaj et al. [6].

8.2.2 GAUSSIAN TRANSFORMATION

Gaussian transformation, also known as Gaussian smoothing or blurring,
belongs to the so-called kernel-based techniques. A function f{x) 1s smoothed
through a convolution product with a Gaussian smoothing kernel G(x-y,7):

Fx,) =[G(x—=y,0) f (x)dx )
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2FID

FIGURE 8.1 Catmull-Rom spline representation of Ubiquitin complexes obtained using
VMD [3]. The ligand is displayed in black. Residues Leu8, Ile44, and Val70 of Ubiquitin are
shown in black. The zinc ion in structure 2FID is shown as a gray sphere.
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where:

1 _(x_y)z

4¢ 3
Nk ®

G(x—y,t)=

The convolution product leads to mathematical equations that involve a
smoothing parameter ¢, also called deformation or smoothing parameter, that 1s
modulated to smooth (7 1s increased) or unsmooth (7 is decreased) f(x). Various
transformations of elementary functions are reported by Mor¢ et al. [7]. Such a
smoothing technique 1s easily applicable to three-dimensional (3D) molecular
properties represented themselves by Gaussian functions. Indeed, the convolu-
tion products can be calculated using analytical formula as illustrated later in
the paper for the treatment of electron density (ED) and CD fields. Smoothing
the function f{x) through a convolution product with a Gaussian is equivalent to
define f{x,?) as 1ts deformed version that 1s directly expressed as the solution of
the diffusion equation according to the formalism presented by Kostrowicki et
al. [8]. The method 1s thus known as diffusion equation method (DEM). In their
paper, the authors used the procedure to the smoothing of mteraction potentials
mn order to facilitate the global optimization of atom clusters. The technique was
also applied to the prediction of a crystal structures, like S, [9]. An example of a
one-dimensional (1D) smoothed potential energy function f{x,?) 1s illustrated mn
Figure 8.2. As the smoothing factor 7 increases, the two 1nitial potential energy
wells progressively disappear to eventually lead to a single minima.

In the following sub-sections, 3D molecular fields like ED and CD are
given as particular application cases.

8.2.2.1 Application to Promolecular Electron Density Distribution
Functions

Promolecular models, 1.e., molecular models built with non-interacting
atoms, have often turned out to lead to very good approximated representa-
tions of ED distributions for the purpose of a number of applications as var-
1ed as chemical bond analysis or molecular similarity applications [10—17].
In the promolecular atomic shell approximation (PASA) approach devel-
oped by Carbo-Dorca and co-workers, a promolecular ED distribution r,,

is calculated as a weighted summation over atomic ED distributions r, 1.e.,
No. atoms

Py = 2Z,p;, where VA 1s the atomic number of atom i. r 1s described 1n
i
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FIGURE 8.2 Gaussian smoothing of a hypothetical 1D potential energy function
Frt)y=—l(1+4b )12 D 0] (14 4p Y122 0440) ) with b = 0.75 (arbitrary units).
The original unsmoothed signal is obtained when 7= 0.

terms of series of squared 1s-type Gaussian functions fitted to atomic basis
set representations [18,19]:

2

5 2 3/4 X
Pi (I'—Ri ) = ZW}- j (J] e—g}-_;-|r—R‘.| (4)
= V4

where R is the position vector of atom 7, and W, and z, are the fitted param-
eters, respectively. The number of Is-type functions used to approximate
the ED of an atom may vary depending on the model. When applied to r, as
given in Eq. (4), the Gaussian smoothing approach leads to:

- ,-‘J-|r—R,-|2

I+4hl-_jx

5
p.,r-R,)= Z}ai' J(1+4b, )7 e (5)
JI:

where:

b 6/4
b, ; =2¢; a,; =W [_g‘] (6)
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In this context, the smoothing parameter 7 is seen as the product of a dif-
fusion coefficient with time. Figure 8.3 shows the evolution of the promo-
lecular ED distribution of Piroxicam, an anti-inflammatory drug molecule,
as t increases from 0.0 to 2.5 bohr’. Coordinates were retrieved from the
crystallographic structural database (CSD) [20,21]. The smoothing involves
a decrease in the number of maxima, initially located on the atoms, and even-
tually leads to a single maximum located on the SO, group of the 1,2-thiazine
dioxide ring of the molecule.

8.2.2.2 Application to Electrostatic Potential Functions

The electrostatic potential function F, (r) generated by a molecule M can
be approximated by a summation over its atomic contributions using the
Coulomb equation:

No. atoms q!_

b —
wo="8"

(7)

t= 0.0 bohr? t=1.1 bohr?

t=2.5 bohr?

FIGURE 8.3 Iso-contours of the PASA ED distributions of Piroxicam (CSD code:
BIYSEHO5) calculated at £ = 0.0 bohr? (iso = 0.1, 0.2, 0.3 e/bohr?), 7 = 1.1 bohr? (iso = 0.1,
0.15, 0.2 e/bohr?®), and 7= 2.5 boh1? (iso = 0.05, 0.075, 0.10 e7/bohr?).
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where ¢, being the net charge of atom i. A smoothed version of the potential
generated by atom 7, F, (r — R)) can be written as:[22]

where erf'stands for the error function. An analytical expression for the corre-
sponding CD function r, (r —R) can be obtained from the Poisson equation:

_VEq)”(r -R))=p,,(r-R;) %)
and 1s expressed as:

Jr-R,|* /41

q;
pi,z(r_Ri):We (10)

In such a formalism, r, (r — R)) cannot be calculated at 7= 0. Indeed, that
situation corresponds to the original Coulomb potential for which the solu-
tion of the Poisson equation 1s zero. Figure 8.4 shows the evolution of the
CD distribution of Piroxicam as f increases from 0.05 to 2.0 bohr®. Atomic
charges g were calculated using the restrained electrostatic potential (RESP)
method applied at the Hartree-Fock (HF) 6-31G* level and calculated with
the program Gaussian09 [23]. From a situation where the maxima and min-
1ma of the electrostatic potential are located at the level of the atoms, one
evolves toward a decrease in the number of extrema which can be located
away from the molecular structure.

8.2.3 CRYSTALLOGRAPHY-BASED METHOD APPLIED TO THE
ELECTRON DENSITY

Within the crystallographic approach, an ED distribution function r(r) 1s
written as the Fourier transform of the structure factors F(h):

l —2mh.r
pr)= V{%:F(h)e 2 (11)
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e /:f ‘--»/*\- % s
e,/" T - =
&

= 2.0 bohr?

FIGURE 8.4 Iso-contours of the CD distributions of Piroxicam (CSD code: BIYSEHO0S5)
calculated using RESP charge values g, obtained using the program Gaussian09 [22] (HF
6-31G* level) at £ = 0.05 bohr? (iso = -0.25, —0.10, 0.10, 0.25 e7/bohr?), = 1.1 bohr? (iso
=-0.0025, 0.0025, 0.01 e/bohr?), and 7 = 2.0 bohr? (iso = —0.0005, 0.0005, 0.003 e/bohr?).
Negative and positive iso-contours are displayed using meshes and plain surfaces, respectively.

where V'1s the volume of the unit cell and h 1s a reciprocal space vector. The
structure factors F(h) are mathematically expressed as:

sin @

2
F(h)= No.azmﬁe_Bi(TJ o 2R, (12)
i=1

where f 1s the atomic form factor of atom 7, and B_1s the corresponding iso-
tropic temperature factor. Such ED maps can be calculated at various resolu-
tion levels using crystallography programs such as XTAL [24]. In practice,
the number of known structure factors occurring in Eq. (11) 1s not infinite
and varies with the resolution.

In crystallography, the resolution d  is a well-known concept which 1s

siné 1
=—— 13

defined using Bragg’s law:
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where 26 1s the angle between the diffracted and the primary beams of wave-
length |, and d__ depends on different parameters including the quality of the
crystal, the chemical composition, the radiation used, and the temperature of
the experiment. Figure 8.5 depicts the crystallographic ED distribution of
the Piroxicam molecule calculated from tabulated fj’ factors for independent
atoms using the program XTAL [24] at two resolution levels.

If one considers that the so-called overall isotropic temperature factor B
1s equivalent to 8p”u’, where u” is the mean square atomic displacement, it is
found that > = 2¢ [25]. The crystallographic resolution d _ thus differs from
the smoothing parameter  which is here related to the dynamical quantity z-.

8.2.4 WAVELET-BASED MULTI-RESOLUTION ANALYSIS

Wavelet-based techniques do not require the treated signal to be a Gaussian
function as needed with the blurring method described above. In practice,
wavelet theory 1s commonly applied to the treatment of signals and images,
e.g., in analytical chemistry [26-29], or in spectroscopy [30, 31], but appli-
cations to bioinformatics and computational biology [32] as well as to chem-
1stry [33, 34] and chemometrics [34—36] have been reported.

8.2.4.1 Wavelet Transforms

A wavelet transform (WT) is a localized transform in both space (or time)
and frequency which uses integration kernels called wavelets. A basis set of
wavelet functions {Y (x)} 1s built on translated and dilated versions of a so-
called mother wavelet Y(x):

15 A 3.0A

FIGURE 8.5 Iso-contours of the crystallography-based promolecular ED distributions of
Piroxicam (CSD code: BIYSEHOS) calculated using the program XTAL [24] at a resolution
of (left) 1.5 A (iso = 1.0, 3.0, 5.0 e/A%) and (right) 3.0 A (iso = 1.0, 1.5, 2.0 e/A%).
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x—b

¥, (x)= \/IE ‘P( » j witha E Ry, b ER (14)

where a 1s the scaling parameter which allows to capture changes in fre-
quency, and b 1s the shift along the x axis applied to analyze space (time)-
dependent variations of a signal. The projection <f,¥ > ofa square integrable
signal f(x) onto this basis according to:

(F0,) = [ fCOW, (x) dx (15)

1s the result from a continuous wavelet transform (CWT). Y 1s often required
to have a certain number p of vanishing moments:

[x"¥(x)dx=0 withn=0,1, ..., p-1 (16)

where p 1s also known as the order of Y. In Figure 8.6, one illustrates the
absolute values of the CWT coefficients obtained from the analysis of
a-helix propensity descriptors [38] of the amino acids that constitute three
ubiquitin ligands (Figure 8.1). The descriptors are reported under the name
BLAM930101 1n the amino acid database AA index that 1s publically avail-
able [39]. BLAMO930101 1s found to be at the center of a cluster of a-propen-
sity descriptors of AA index [40]. The initial signal 1s progressively smoothed
up to the point where a limited number of minima are obtained. For Vps27
UIM-1, a single minimum appears at scale a = 16, around Ile267 (residue
13), and 1s further stabilized at Glu268 (residue 14) at larger scales. For 10ta
UBMI, four minima occur at scale a = 13, at the level of Leu63, Asp71,
Asp81, and Lys94 (residues 2, 10, 20, and 33). For the Rabex-5 fragment,
Cys19-Lys20, Gly27, Cys38-Trp39, GIn50, and GIn59-Glu67 (residues 5-6,
14, 25-26, 37, and 46-54), correspond to minima in the signal transformed
at scale a = 13. It 1s a scale value that corresponds to a pronounced shift of
the coefficient minima along the residue axis. These specific locations will
be discussed in the Section 8.3.4.2.

For numerical purposes, the CWT can be discretized, by restricting the
parameters a and b to the points of a dyadic lattice. Thus, 1f a and b/a are set
equal to 27 and 1, respectively, Eqs. (14) and (15) are written as:

P, =2/2W(2! ~k) withjk€Z (17)
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Scale a

= U w0

1
5 10 15 20 10_ 20 30
Residue number Residue number

Vps27 UIM-1 [ota UBM-1

20 40 60
Residue number

Rabex-5 fragment

FIGURE 8.6 Absolute value of the wavelet coefficients obtained from the CWT using Y
= D15 applied to a-helix propensity descriptors of three Ubiquitin ligands. (Top left) Vps27
UIM-1 (PDB code: 1Q0W), (top right) iota UBM1 (PDB code: 2MBB), and (bottom) a bovine
Rabex-5 fragment (PDB code: 2FID). Calculations were achieved using MATLAB [37].

f(x)= ZJk(falek> ¥ () (18)

The discrete wavelet transform (DWT) of f(x) 1s calculated by passing
the signal through two filters, 1.e., a low-pass filter F to obtain the convolu-
tion of f{x) with F, and a high-pass filter Y to generate the details, or wave-
let coefficients. The procedure can be iteratively repeated by applying the
decomposition to the first convolution product, and so on.

8.2.4.2 Multi-Resolution Analysis

A wavelet multi-resolution analysis (WMRA) 1s a mathematical construc-
tion used to express an arbitrary function fT]L*(R) at various levels of detail.



Applications of Leveling Methods 209

The function f{x) 1s developed as in Eq. (18) where </, ij>, also written
djk, are called the wavelet coefficients. In practice, the wavelet expansion is
truncated at a scale J:

Jo-1
f(x)= %cﬂc(bjk(x)+ Y Yd ¥, (x)with ¢, =(f, D) (19)

j=T k

where it 1s chosen here to set the resolution of the original signal J equal
to zero. Coefficients ¢, are projections of the function fonto a space built
on the basis set {F _(x)}. Thus, lower resolution signals are characterized by
negative values for J. In Eq. (19), the first sum 1s a coarse representation of f;
where f'1s replaced by a linear combination of a finite number of translations
of the scaling functions F  (x). The remaining terms are refinements (details)
determined at each scale j by translations of the wavelet Y’jo(x) that are added
to obtain a successively more detailed approximation of f{x). For example,
B-spline functions can be considered as scaling functions as illustrated by
Stollnitz et al. [41,42] and applied by Carson [5] to model protein backbones
and DNA surfaces at various levels of resolution.

A fast and accurate algorithm due to Mallat, named the ‘pyramid algo-
rithm’ or the fast wavelet transform (FWT) [43], 1s applicable to signals con-
sisting of 2" data points. Its aim 1s to derive a mapping between the sequence
{cj} and the sequences {Cj—l} and {a}_l} through the following identities
[44.45]:

Ciag = %hkcj,ZHk (20)

diy = %gkd;‘,ZHk (21)

where the numbers £,_are called the filter coefficients, and the wavelet coef-
ficients g, are obtained directly from the filter coefficients h,_[46]:

8r = (_l)khkmx—k, where k=0,1, ...,k

max

(22)

Equations (20) and (21) are further applied to the sequence {Cj—l} in order
to obtain the new sequences {C}_g} and {“}_2}- This procedure is repeated
until the full FWT 1s achieved. The full procedure is named the cascade
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algorithm. Equation (21) shows that the calculation of coefficients {Cj—l}
from coefficients {cj} mmplies a downsampling, 1.e., the number of coef-
ficients 1s reduced by 2. It 1s also known as a decimated wavelet analysis.
On the contrary, reconstruction implies an upsampling procedure, 1.e., the
number of data point 1s multiplied by 2 at each level of resolution.

The inverse mapping can be derived according to:

Ci = %hf—zkc Lk +§ 8ok s (23)

The inverse FWT 1s obtained by repeated application of this equation for
j=J+1,J+2, .. up toJO.

For example, Main and Wilson used an inverse WT approach to increase
the resolution of ED maps [47]. The method proposed by the authors 1s based
on a preliminary design of histograms of wavelet coefficients obtained from
one-level WT decomposition of identified ED maps. Then, their procedure
consists, as briefly summarized, of the following steps: (1) a one-level WT
decomposition of a low-resolution ED map, (11) the creation of an ordered
list of the wavelet coefficients, (111) a match of the wavelet coefficients with
the preliminary obtained histograms, (1v) an inverse WT to generate the
higher resolution ED map.

8.2.4.3 Multidimensional Cases and Smoothing

A simple way to obtain wavelet coefficients in dimensions higher than one
1s to carry out a 1D wavelet decomposition for each variable separately. The
standard decomposition, described by Stollnitz et al., consists in the applica-
tion of a 1D FWT to each row of data values [41,42]. The operation gives,
for each of them, an average signal along with detail coefficients. Next, these
transformed rows are treated as if they formed an image, and a 1D FWT 1s
applied to each column. In the non-standard decomposition scheme, opera-
tions in rows and columns alternate. One applies a one-level decomposition
to each row, followed by a one-level decomposition to each column. Then,
one repeats the process on the resulting filtered image, and so on.

To obtain an image at various levels of decomposition, a smoothing pro-
cedure 1s required, which 1s applied before reconstructing the original signal
as follows: all details generated after a given number of decomposition lev-
els using a FWT are set equal to zero before a full reconstruction procedure
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1s applied to restore the original number of data points. An example applied
to the 3D promolecular ED of Piroxicam using the Daubechies’ wavelet of
order 10, D10, 1s displayed in Figure 8.7. Similarly to the crystallography-
based approach, smoothing the PASA ED grid mnvolves a decrease in the
number of maxima which are 1nitially located on the atoms, then on the rings
and heteroatoms. The procedure eventually leads to a single maximum.

In the so-called ‘a trous’ algorithm, the smoothing procedure 1s imple-
mented as a convolution product with a symmetric filter. The corresponding
WT i1s achieved by inserting zeroes between the h, coefficients [48]. The
algorithm 1s 1illustrated by Gonzalez-Audicana et al. in a paper compar-
ing the Mallat and the ‘a trous’ algorithms [49], and relations between the
two approaches are discussed by Shensa [50]. While the Mallat algorithm
leads, at each resolution level, to a decrease in the number of points in an
1mage, that number remains constant with the ‘a trous’ algorithm. As already
mentioned for the Mallat algorithm, a reconstruction 1s necessary to pre-
serve the number of data points in an image. The application of the ‘a trous’
algorithm to the promolecular ED grid of Piroxicam using the Daubechies’
wavelet of order 10, D10, 1s illustrated in Figure 8.8. As in Figure 8.7, at
the wavelet transformation level J = —5, there 1s only one maximum left,
which is slightly displaced away from the SO, group. That single maximum
was located on the sulfur atom with the Gaussian blurring and crystallogra-
phy-based approaches, which thus appear to be more sensitive to the atomic
number of the heaviest atom.

FIGURE 8.7 Iso-contours of the smoothed PASA ED distributions of Piroxicam (CSD
code: BIYSEHOS) calculated using the FWT approach with @ =D10. (Left) /J=-4 (iso =0.1,
0.2, 0.25 e/A%) and (right) J = -5 (iso = 0.03, 0.1, 0.125 e/A?%). The grid size is 2% x 2% x 2%
and the grid interval is 0.125 A.
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J=-4 J=-5

FIGURE 8.8 Iso-contours of the smoothed PASA ED distributions of Piroxinam (CSD
code: BIYSEHO0S) calculated using the ‘a trous’ approach with the Lagrangian-based D10
filter. (Left) J=—4 (iso = 0.1, 0.2, 0.3 e/A%) and (right) /= -5 (iso = 0.05, 0.1, 0.125 e/A%).
The grid size is 2% x 2% x 2% and the grid interval is 0.125 A.

8.2.5 MOLECULAR DYNAMICS-RELATED APPROACHES

In addition to direct smoothing procedures described, e.g., by Eqs. (2) and
(19), specific approaches are also currently applied to artificially smooth
functions such as complex potential energy hyper-surfaces (PES), to allow a
molecular system to visit less probable energy wells in a faster way during
a MD simulation. Rather than modifying the force field (FF) itself, like it 1s
done in potential smoothing approaches, the FF 1s biased by an extra term.
This can be done either by reducing the energy barriers, through the hyper-
dynamics approach, or by progressively filling the already visited energy
wells, through the metadynamics and flooding approaches.

8.2.5.1 Hyperdynamics

The aim of hyperdynamics 1s to build an auxiliary system, which actually 1s
the original system with a faster dynamics [51-53]. A bias potential AV(r) 1s
added to the original potential energy function V(r), which allows a reduc-
tion of the height of the energy barriers:

0 ifV(r)>E
AV(r)={ (E-V(r))* V) < E (24)
a+ E-V(r)

The approach thus requires a bias potential characterized by E
and a that control the depth and flatness of the biased potential wells,
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respectively. At each time step of the simulation, the system undergoes
forces that correspond to an increased potential energy value, allowing
1t to more easily cross energy barriers. This 1s illustrated in Figure 8.9
for a hypothetical 1D potential energy curve. The figure shows the effect
of decreasing the value a on the energy barrier occurring between two
potential wells. With respect to the Gaussian blurring method (Figure
8.2), the two potential wells stay preserved but are leveled out in the
hyperdynamics approach.

8.2.5.2 Metadynamics

As for hyperdynamics, an auxiliary system is built as being the orig-
nal system driven by collective variables s(r). Such variables can be
distances, torsion angles, a coordination number, lattice vectors, a sol-
vation energy, a root mean square deviation (RMSD), etc. depending
upon the system under consideration. A time-dependent bias potential
AV(s(r),time) 1s added to the original potential function V(r) to avoid the
system visiting already explored regions in the collective variable space
[54, 55]. Doing so, at each time step, the potential energy involves a sum
of extra Gaussian-type contributions, each depending on a previously
visited state:

-10 -5 0 5 10

—Original function
—alpha =0.05
--alpha=0.5

-1

f(x)

FIGURE 8.9 Effect of the application of a hyperdynamics bias to a hypothetical 1D
potential energy function V(x) = (07622 + g 0757022 with E =—0.05 (arbitrary units).
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. 2
) all previous MD steps H_S'(r)— _5'([‘1, m
AV.(s(r),time) = > wexp| — e (25)
i=l

This can be visualized as a well filling procedure, as nicely 1illustrated in
Figure 1 of the paper by Barducci et al. [55].

To limit the total number of PES minima, or to avoid having to visit sev-
eral times the minima as done, for example, when using Monte Carlo (MC) or
MD approaches, the principle of flooding energy minima can be applied until
the system finds a way towards the global minima. When carrying out MD
simulations, the kinetic energy can be adjusted [56]. In a MC procedure, the
so-called basin hopping method was proposed which consists in the transfor-
mation of the PES such that all the potential energy values characterizing an
energy well are replaced by the single minimal energy value [57]. The PES
thus adopts a staircase shape where local energy barriers are neglected.

8.2.6 DISCRETIZATION TECHNIQUES

In this section, procedures used to replace a discrete or continuous molecular
property by a limited number of discrete data points are briefly presented.
The so-called vector quantization (VQ) algorithms are well-known 1n data
compression processes. They approximate an initial distribution probability
of data points by a set of representative vectors. The methodology consists in
the partitioning of the initial space into compact and well-separated clusters of
points in such a way that all data points in one group are replaced by a single
representative data point for that particular group. Each representative point 1s
named a code vector. Clusters can, for example, be estimated from distance
criteria, by a tessellation technique like Delaunay triangulation, ... or by con-
volution with a Gaussian function [58]. De-Alarcon et al. applied their tech-
nique to the lowering of resolution of van der Waals surfaces of proteins and to
cryo-EM maps [58]. Starting from an 1nitial low-resolution map, they obtain a
limited number of pseudo-atoms (code vectors), each characterized by a prob-
ability distribution function. Volumetric elements, named alpha shapes, are
associated with the pseudo-atoms of the map and are used for the detection of
deep clefts and channels in the protein system. Wriggers et al. [59, 60] pro-
posed VQ procedures, implemented 1n the package Situs, to quantize two EM
grids, at an atomic and a lower resolution, to rapidly enable the search for the
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best match between the two so-obtained VQ representations. In partial relation
with VQ, Vorobjev proposed a method to locate low-resolution binding sites
of a protein from 1its solvent accessible surface (SAS) represented by a set of
discrete dots [61]. Binding sites result from the clustering of SAS-related dots
followed by the location of centers of dense clusters.

In their approach, Glick et al. [62, 63] represented small molecules
through a limited number of points obtained using a clustering of atoms
based on their separating distances. The authors developed a method for
ligand binding site identification on a protein. A hierarchy of models gener-
ated using a k-mean clustering algorithm for the ligand under consideration
1s established starting from the lowest resolution representation of the ligand,
1.e., one single point located at the mean position of the ligand atoms. The
resulting graphs were used 1n ligand-docking applications and illustrated the
decrease in the possible number of conformers.

An inverse procedure, starting from all the atoms of a molecule, was imple-
mented by Leherte et al. to locate critical points (CP), 1.e., points where the
gradient of the 3D field vanishes, in smoothed molecular fields [64]. It is based
on the work of Leung et al. whose algorithm was originally established to
cluster data by modeling the blurring effect of lateral retinal interconnections
based on scale space theory [65]. The various steps of the resulting algorithm
are as follow. (1) At scale = 0, each atom of a molecular structure 1s consid-
ered as a local extremum of the molecular field to be analyzed. All atoms are
then considered as the starting points of trajectories whose merging procedure
1s described hereafter. (11) As f increases from 0.0 to a given maximum value,
each extremum moves continuously along a path to reach a location in the
3D space where the gradient of the molecular field is zero. As ¢ increases,
trajectories progressively merge to CP locations. It 1s thus possible to assign,
to each CP, a number of atoms which correspond to the starting points of the
merged trajectories. (i11) The procedure can be carried out until the whole set
of extrema becomes one single point. This 1s the ultimate stopping criteria of
the merging procedure. Various applications can be found in previous publica-
tions [25, 66—69].

To analyze low-resolution ED grids obtained using crystallography-
based approaches, we used the program ORCRIT, that was developed
by Johnson [70]. The information generated by the topological analysis
method implemented in ORCRIT allowed, for example, as sign ellipsoids
centered at the CPs of ED grids of biomolecular systems to probe the inter-
action potential between a ligand and a DNA fragment [71], and between
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protein-DNA partners [72, 73], or to generate descriptors for small mol-
ecules [74, 75].

8.3 APPLICATION FIELDS

In this section, wherein some application domains are presented, a distinc-
tion 1s made between the smoothing of continuous or pseudo-continuous
functions as in global optimization, denoising, and molecular similarity
applications, and discrete representations, for example, in coarse-graining
studies. In that latter sub-section, specific applications of RPCMs to MD
simulations of proteins of ubiquitin complexes are also reported.

8.3.1 GLOBAL GEOMETRY OPTIMIZATION

Global optimization is one of the major fields of research that may require
the use of smoothed or low-resolution molecular properties [76]. Its aim 1s
to optimize a function considering some constraints, e.g., finding the global
minimum of a potential energy hypersurface. Constraining degrees of free-
dom and/or reducing the level of detail are helpful ways to tackle multiple
minima problems. Since they facilitate the overcome of energy barriers by
reducing the number and depth of energy wells, global geometry optimiza-
tion techniques are widely used, e.g., to generate atom clusters [56, 77].
A method to smooth interaction potential functions like well-known FFs
1s based on the results of the DEM [78], as for example implemented 1n
the program package TINKER [79]. It consists 1n calculating a convolution
product of the original energy function with a Gaussian as described earlier
1n the papers [8, 22, 77, 80—82]. As energy terms of conventional FFs are not
always suitable for direct applications of the diffusion equation, they need to
be replaced by, e.g., Gaussian approximations [8]. Mathematical formalisms
and applications to Ar clusters, small molecules, and docking of a-helices
were treated by Pappu et al. [78], and a study regarding a short peptide was
proposed by Hart et al. [22]. Other mathematical approaches used to reduce
the number of energy minima were reviewed by Schelstrate et al. [80] and
different smoothing functions were proposed by Grossfield and Ponder [81]
and Shao et al. [83].

In molecular distance geometry problems, which consist in the deter-
mination of a molecular structure from a set of interatomic distances,
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global optimization techniques can be based on a smoothing of the objec-
tive function. Various smoothing procedures are proposed in literature |7,
84—86]. The Gaussian transformation however appears to be mostly used
[7, 84, 85].

The case of molecular docking applications, 1.e., the search for an optimal
arrangement of molecular partners, asks for a scoring function, which 1is often
selected to be the potential energy of the system. For example, in the so-
called ‘stochastic approximation with smoothing’, the mathematical aspects
of the implementation differ from the DEM, but the main philosophy 1s simi-
lar in the sense that one initially looks for a single minimum in a smoothed
energy hypersurface and then one iteratively recovers the initial resolution

of the energy function while performing a minimization calculation at each
step [87].

8.3.2 MOLECULAR SIMILARITY

Global optimization algorithms are often sought to tackle molecular simi-
larity problems, which also involve many local solutions. A recent review
of similarity-based methods was, for example, proposed by Cai et al. [88].
A way to reduce the number of possible alignments 1s to lower the level
of detail of the molecular field under consideration [89-92]. To com-
pare molecular structures or surfaces, it 1s useful to model the molecular
properties to be compared using mathematical functions that allow fast
calculations involving the maximization of a similarity score or the mini-
mization of a distance-based score. The use of Gaussian functions for the
evaluation of the molecular similarity has been an attractive strategy as
it both allows short calculation times and it 1s easy to implement [93].
Indeed, using such functions, similarity measures are directly related to
distances between the atoms that constitute the molecular structures to be
compared [94, 95].

In our works about the superposition of small drug molecules [91, 92],
we used well-known similarity indices and applied them to smoothed ED
and CD distribution functions. We also evaluated molecular similarity by
representing molecular systems as graphs of CPs obtained from smoothed
ED distributions [74, 96].

Carbo-Dorca and co-workers were the first to report the now widely used
quantum molecular similarity -measure (QMSM) Z  *definition between
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two chemical systems characterized by ED distribution functions p and p,
[97-99]:

Z s =11Pa(r) O(r.1y) py(ry) drdr, (26)

Depending upon the nature of the operator O(r,r ), overlap-, Coulomb-
like, ... similarities are obtained [94, 100]. The similarity measures can be
combined to lead to similarity indices, such as the well-known Cosine-

like (also known as Carb¢), Tanimoto, or Hodgkin-Richards indices [93,
101-103]:

ZAB

SAB,Carbd =T 27
\(ZAAZBB @7)

VA
SAB Tanimoto = Az (28)
Z ant ZBB -Z AB
27
N AB, Hodgkin—Richards — 7 f; (29)
AA BB

As already mentioned in the Section 8.2, Carbo-Dorca and cowork-
ers developed the so-called atomic shell approximation (ASA) method, in
which atomic or molecular ED are expressed as linear combinations of 1s
Gaussian-type functions centered at atomic positions [104]. Such approxi-
mations were shown to be useful in QMSM calculations, especially to model
promolecular ED distribution functions [105] where the EDs are expressed
as sums over the contributions of independent atoms [18, 106, 107]. The
use of smoothed PASA models obtained using Eq. (5) allows to signifi-
cantly reduce the number of local solutions as illustrated in Figure 8.10 for
the alignment of C (CN), (CSD code: TCYETY) onto acridine (CSD code:

ACRDINO1), generated using S together with the overlap integral:

B, Tanimoto

Zys =[[pa(r) ppry)dnd, (30)

For the unsmoothed case, 1.e., at £ = 0 bohr?, multiple maxima are
obtained. Their number is drastically reduced to four at # = 0.1 bohr?, and a
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t= 1.4 bohr?

FIGURE 8.10 Iso-similarity contour maps calculated from the alignment of the PASA
ED of C,(CN),(CSD code: TCYETY) (black sticks) on Acridine (CSD code: ACRDINO1)
(light gray sticks) using the overlap integral measure combined with the Tanimoto index,
obtained at 7 = 0.0 bohr? (iso = 0.04, 0.07), 0.1 bohr? (iso = 0.1, 0.3), and 1.4 bohr? (iso =
0.3, 0.5, 0.7). To generate the maps, a grid is defined around the largest ligand. The center
of mass of C,(CN), 1s placed at each grid point and its optimal orientation 1s determined as
corresponding to the maximum value of S, at that point. The example is taken from the

' Tanimoto

test cases studied in Constans et al. work [108].

single maximum S, “value of 0.74 1s obtained at = 1.4 bohr?. At t=
0, the atoms tends to be superimposed while at larger smoothing values, the
global shape of the molecules are aligned.

Molecular surfaces can also be approximated using low-resolution
functions, e.g., spherical harmonics [109]. Ritchie et al. suggested that
surface representations which contain too high-resolution details may not
be particularly convenient to search for regions of similarity or comple-
mentarity between two molecules [109]. The authors therefore proposed
the use of low-resolution real spherical harmonics to represent and com-
pare macromolecular surface shapes. Rotations of a molecular surface can
thus be simulated by rotating only the harmonic expansion coefficients.
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Hakkoymaz et al. adapted well-known molecular similarity indices, like
the Carbo-Dorca and Hodgkin indices, to wavelet coefficients [110]. They
applied the revised similarity indices to a multi-resolution analysis (MRA)
decomposition of electrostatic potential grid points. Rather than working
with modified similarity indices, Beck and Schindler used the original
indices but applied them to a MRA decomposition of a 3D molecular field,
like the ED [111]. Martin et al. applied a similar MRA analysis, but used
graph descriptions of the MRA molecular images in molecular alignment
applications [112].

The search for similarity degrees through wavelet coefficients 1s a well-
known technique to also compare protein sequences, represented either
by their 3D Ca coordinates [113], or by their amino acid sequence [114].
Transmembrane proteins are good study cases since their membrane and
non-membrane regions are constituted by sequences of contiguous amino
acid residues. In Fisher’s work, the smoothing of a hydropathy profile to
predict the location of helices in transmembrane proteins is achieved by
setting to zero wavelet coefficients associated with high frequencies of the
hydropathy signals [114]. The sequences are submitted to a wavelet-based
filtering algorithm, that provides smoothed profiles whose reduced number
of extrema are 1dentified to transmembrane helices, as also achieved using
a CWT by Qiu et al. [115] and by Vannuci and Lio [116]. de Trad et al.
proposed a method that is based on the MRA decomposition of a protein
sequence signal built from the Fourier transform of amino acid properties
like the electron-1on interaction potential [117]. A DWT is then applied to
the transformed sequences in order to decompose the data into a number
of levels. Two protein sequences can be compared at each level through
the calculation of a cross-correlation coefficient, which 1s seen as a simi-
larity score. Sabarish and Thomas applied a similar approach to protein
sequence similarity and functional classification [118]. They used a DWT
to decompose profiles of amino acid properties. It was followed by a corre-
lation analysis that allows the classification of protein sets into functional
classes. The conservation of physico-chemical properties in a function-
ally similar family of proteins was also studied by MRA [119]. Wen et al.
applied 46 kinds of wavelets to a set of protein profiles, at various levels of
decomposition, and defined a metrics to quantitatively evaluate the simi-
larity degree between any two protein sequences with low identity [120].
In addition to the calculation of cross-correlation analysis, the comparison
of protein profiles reconstructed after zeroing detail coefficients can be
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quantified using a distance-based criteria, such as in the work of Krishnan
etal. [121].

The MRA technique was also applied to DNA strands, transformed to a
sequence of integers (Adenine = 1, Thymine =2, Cytosine = 3, Guanine = 4),
by Tsonis et al. who detected localized periodic patterns and suggested DNA
construction rules [122]. Machado et al. used complex numbers (Adenine =
1 + {0, Thymine = 0 + il, Cytosine = —1 + i0, Guanine = 0 — 71) to encode
human DNA and showed that the Shannon continuous wavelet led to inter-
pretable patterns [123], while Mena-Chalco et al. decomposed DNA strands
into four binary sequences, one for each nucleic base, so as to consider a
single descriptor for each base [124].

8.3.3 DENOISING OF SIGNALS AND IMAGES

Smoothing and denoising are related by the fact that the methods aim at
separating useful and useless information 1n a data set or a signal [34]. In a
smoothing approach, high-frequency components are removed while, in a
denoising approach, low-amplitude components are removed [125].

In a DWT approach, smoothing of a signal 1s achieved through the fol-
lowing four steps: (1) transform the signal up to a selected level, (11) rec-
ognize the wavelet coefficients associated with the highest frequencies,
1.e., the detail coefficients, (111) cancel those coefficients, and (1v) apply an
inverse WT to the resulting signal. It has, for example, been achieved to
smooth PASA ED or QM ED distribution functions of drug molecules in
order to further generate a limited amount of CPs used in molecular align-
ments [74].

Denoising 1s achieved by canceling wavelet detail coefficients that
are lower than a threshold value. This 1s called hard tresholding. One can
distinguishes between hard and soft tresholding where values slightly
below the threshold are not set to zero but attenuated so as to obtain
smoother transitions between the original and the deleted values. These
two approaches were tested by Pilard and Epelboin in their work about
the restoration of noisy X-ray topographs [126]. Several threshold values
and methods are presented by Ergen [127] to denoise heart sounds, and by
Jeena et al. [128]. Non-reconstructed signals can also be useful, as shown
by Chen et al. in their work about the parametrization of CG potential
energy functions of DNA [129]. The authors decompose all-atom distance,
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angle, ... probability distributions calculated from all-atom MD simula-
tions to generate the corresponding stretching, bending, and non-bonded
coarse-grained versions.

Simulating proteins at low-resolution is a way to overcome structural
maccuracies i1ssued from NMR data or from an approximate model. In
their paper, Vakser et al. digitized a protein image onto a 3D grid [130].
Any grid point outside the molecular volume was set equal to 0, other-
wise 1t was set equal to a numerical value corresponding to the protein
surface or to the protein core, as also applied by Katchalski-Katzir et
al. in a docking procedure [131]. The structural elements smaller than
the grid interval are thus eliminated from the initial protein structure.
The approach 1s implemented in the program GRAMM (Global RAnge
Molecular Matching) reviewed together with other docking techniques
by Russell et al. [132]. Vakser and colleagues studied large sets of protein
complexes, at various resolution levels, and showed that low-resolution
docking can provide gross structural features of protein-protein organiza-
tion [133, 134].

Denoising procedures are also useful to locate water molecules in experi-
mental ED maps. For example, Nittinger et al. [ 135] first generate a Gaussian
expression for the ED associated with water molecules from a set of PDB
structures and analyze it to classify the water molecules. They suggest that
the procedure could be extended to detect misleadingly placed water mol-
ecules through a difference of Gaussian filters characterized each by a dif-
ferent width.

8.3.4 DISCRETE REPRESENTATIONS OF BIOMOLECULAR
STRUCTURES AND PROPERTIES

8.3.4.1 Coarse-Grained Representations

For several years, much effort has been put into accelerating computational
techniques such as MD and normal mode analysis for simulating large biologi-
cal systems [136—138]. Enhancements to these well-known algorithmic proce-
dures are based, notably, on a spatial coarse-graining of the molecular structures
[139, 140]. Techniques that are relevant to coarse-graining of molecular struc-
tures are not necessarily linked to the smoothing of molecular properties, but
they are nevertheless based ona decrease 1n the number of degrees of freedom
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and 1n the level of details. Rather than simulating the molecules at their atomic
level, one reduces their description to a limited set of points, either centered
on selected sites/atoms such the Ca atoms of a protein backbone [136, 141,
142], on the center of mass of specific groups of atoms like amino acid resi-
dues [143], or on a set of merged atoms [144]. A shape-based coarse-graining
approach [145, 146], now implemented i the program VMD [3], was proposed
to generate highly coarse-grained descriptions of biomolecular complexes like
viral capsids, proteins, and membranes. The authors used a reduced set of point
masses, determined from a Voronoi-based partitioning of the molecules into
domains of atoms, to reproduce the overall shape of the systems while respect-
g the mass distribution.[145,146] Reviews on the progresses on coarse grain
(CG) models can be found in several other references [147—154].

The development of CG interaction potential functions 1s generally made
etther from atomistic interaction potential [155] or MD results [156—-159], via
experimental data such as B-factors [160], or through the fitting of a poten-
tial function achieved by matching CG and atomistic distributions [156].
For example, Lyman et al. presented a new method for fitting spring con-
stants to mean square CG-CG distance fluctuations computed from atom-
1stic MD [161]. Orellana et al. also developed an approach to design robust
and transferable elastic network models that fit MD simulation data so as to
best approximate local and global protein flexibility [162]. CG interaction
potential can also be designed by fitting energy functions to smoothed all-
atom energy profiles [129], or by applying the Inverse Monte Carlo approach
[163], used for iteratively adjusting a CG potential function until it matches a
target radial distribution function. Another example is the parametrization of
the MARTINI FF, designed to reproduce partitioning free energies between
polar and a polar phases of a large number of chemical systems [164, 165].
The model is based on a four-to-one mapping, 1.e., four heavy atoms are
represented by a single interaction center, except for small ring-like frag-
ments. In the UNRES model, a peptidic chain 1s represented by a sequence
of backbone beads located at peptide bonds, while side chains are modeled
as single beads attached to the Ca atoms, which are considered only to define
the molecular geometry [166]. In the so-called SimFold CG description and
energy function, a mixed representation is used. Residues of aqueous proteins
are represented by backbone atoms N, Ca, C, O, and H, and one side chain
centroid [167, 168]. The more recent SIRAH force field, applicable to DNA
and proteins, 1s intended to capture temperature and solvent effects without the
need of any structural constraints as required imn MARTINI. [142]. Multiscale
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methods, that combine several levels of description, are also appealing since
they allow to model limited regions of space with details while representing
the outer regions by coarser models [149, 169, 170]. Multiscaling 1s not only
used at the level of molecular structure representation, but 1s also applied
to solve the atom equations of motion in MD simulations. Particularly, He
et al. described the so-called smoothed molecular dynamics (SMD) method
wherein the equations of motion are solved for nodes of a grid to generate
nodal velocities and accelerations [171]. Atomic velocities and positions are
then updated using the properties of the node they are associated with. In such
a way, the SMD time step can be much larger than the conventional MD time
step, depending upon the grid element size.

The advantage of using non-atomic representations is not limited to the
increase of the speed of computation. Simplified representations of protein
geometry have also been used by many groups to reduce sensitivity to
small perturbations in conformation, e.g., when docking a ligand versus
a receptor [172, 173]. Sternberg et al. replaced amino acid residues with
spheres of varying size and performed docking to maximize the buried
surface area [173].

In DNA, structural elements such as chains and bases can be modeled as
rigid segments connected through energetic terms [174—176]. Particularly,
von Kitzing and coworkers described an approach which reduces the number
of degrees of freedom by assembling certain groups of atoms into configu-
rational structures with less degrees of freedom [174, 175]. Corresponding
potential energy functions were constructed with respect to these new vari-
ables using methods from the theory of wavelets, splines, and radial basis
functions. DNA 1s, under such a description, represented by two kinds of
rigid substructures: the bases and the phosphate groups, and one rotational
group: the ribose subunit. In a recent paper, Naomé et al. developed a CG
model and interaction potential to accurately reproduce the structural fea-
tures of the underlying atomistic DNA system [159]. The authors used a
one-site representation of the DNA nucleotides together with a limited
number of intramolecular and intermolecular pair interaction potentials.

To model small molecules, the grouping of atoms to form pseudo-atoms
1s often achieved to accelerate the search of substructures in large databases
[177,178], in molecular similarity applications [74], and in docking calcula-
tions [62, 63]. Among the most recent review papers in the field of reduced

graph representation of small molecules, one can cite, for example, the work
of Birchall and Gillet [179].
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8.3.4.2 Reduced Point Charge Models of Proteins

In previous works, we described an approach to model, through MD simu-
lations, protein systems using an hybrid Amber99SB FF mixing all-atom
bonded and van der Waals terms with reduced point charge sets [67—69].
Such a model allows to preserve the information regarding the atomic posi-
tions and does not require any back-mapping procedure to recover the all-
atom structure of the system. It also eliminates some drawback related to the
use of CG models, such as structure collapsing [180].

The RPCMs 1nvolve, for each amino acid, a limited amount of point
charges located at the extrema of their smoothed positive and negative CD
distribution function (Figure 8.11). Cao and Voth also used a CG genera-
tion procedure wherein they treat separately positive and negative charges
to represent effective dipole moments [181]. Figure 8.11 1illustrates posi-
tive and negative iso-contours of the CD of the structure Gly-Hisd-Gly
built from Amber99SB atomic charges according to Eq. (10). The CD 1is
smoothed at a level of £ = 1.7 bohr* and 1s characterized by two extrema
located on the amino acid backbones and three extrema located on the Hisd
side chain.

FIGURE 8.11 Iso-contours of the smoothed CD distributions (7 = 1.7 bohr?) built from the
positive (plain surface; iso =0.001, 0.0055) and the negative Amber99SB charges (mesh; iso
=-0.001, —0.0055 e7/bohr) for Gly-Hisd-Gly. Point charges are located at the extrema of the
negative (black spheres) and positive CD (gray spheres).
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In our last study [69], it was shown that the RPCMs built with charges
values fitted to electrostatic forces, and mostly located on selected atoms,
led to MD trajectories that are, to some extent, similar to the all-atom ones.
Here, we perform MD simulations of three ubiquitin complexes over lon-
ger time scales than previously reported to verify the stability of the com-
plexes generated under RPCM conditions. Applications are given for the
three ubiquitin complexes Vps27 UIM-1—ubiquitin [182], Iota UBM 1-ubig-
uitin [183], and a bovine Rabex-5 fragment complexed with ubiquitin [184].
Representations of the PDB structures are shown in Figure 8.1. The three
ligands mteract with a hydrophobic patch of ubiquitin centered around its
Leus8, Ile 44, and Val70 residues. The Vps27 UIM-1 1s a helix with contigu-
ous hydrophobic residues [ 182], Iota UBM-1 1s characterized by a helix-turn-
helix motif [183], and Rabex-5 binds to ubiquitin very similarly to Vps27
UIM-1, 1in a reverse orientation [184]. The Vps27 UIM-1 and Rabex-5 are
helices whose amino acid sequence interacting with the hydrophobic patch
of ubiquitin 1s constituted by alternating charged and nonpolar residues.
The helix fold 1s such that the nonpolar residues face the receptor while the
charged residues are oriented towards the solvent. Particularly, hydrophobic
residues Leu262, Ile 263, Ala266, [1e267, and Leu271 of Vps27 UIM-1, and
Ile51, TrpSS, LeuS7, AlaS8, and Leu61 of Rabex-5are mnvolved in hydro-
phobic ligand-protein ‘contacts’. The ligand 10ta UBM1 of complex 2MBB
contains less charged residues, with a nonpolar sequence, 1.e., Leu78-Pro79-
Val80, that 1s located at the level of its turn. The sequence 1s surrounded by
other nonpolar residues facing the receptor, like Pro67, Val70, Val74, Phe75,
I1e82 and Ile86.

Each of the Leu8, Ile44, and Val70 residues of ubiquitin belongs to a
p-strand, 1.e., f1, 3, and 5, respectively. Minimum distance maps between
each ligand and its receptor (Figure 8.12), obtained from the analysis of the
100 ns all-atom MD trajectories described below, clearly show three regions
of minimal distances involving those three strands. In complexes 1Q0W and
2MBB, about the whole sequence of the ligand closely interact with strands
pF1 (residues 1 to 8), B3 (residues 40 to 45), and S5 (residues 66 to 72) of
ubiquitin.

MD simulations carried out with GROMACS 4.5.5 [185,186] and the
Amber99SB FF [187] were first applied to model all-atom and RPCM struc-
tures, under conditions described in our last work, 1.e., an equilibration stage of
40.1 ns followed by a 20 ns production stage [69]. All crystal water molecules
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FIGURE 8.12 Ligand-receptor minimum distance maps calculated from the 100 ns
production stages of the AA, - and AA_, . MD simulations and from the 20 ns production
stage of the RPCM MD simulation. (Top) Vps27 UIM-1-Ubiquitin (PDB code: 1Q0W),
(center) iota UBM1-Ubiquitin (PDB code: 2MBB), and (bottom) a bovine Rabex-5 fragment
complexed with Ubiquitin (PDB code: 2FID). Scale goes from 0 to 1.5 nm (black to white)
using a distance increment of 0.30 nm.

and the Zn 10n of structure 2FID were removed. Structures were solvated n
TIP4P-Ew water [188], and sodium 1ons were used to cancel the total electric
charge. The final conformations of the 20 ns RPCM MD trajectories were
considered as starting points for additional all-atom simulations, named here
AA_ . carried out with a 20 ns equilibration stage and a 100 ns production
stage (50 x 10° steps with a time step of 0.002 ps) in the NPT ensemble at 1 bar
and 300 K. Frames were saved every 20,000 steps. In addition, the initial all-
atom MD trajectory was extended by a 100 ns long calculation. Thus, for each
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of the three protein systems, three MD trajectories were analyzed, 1.e., a 100
ns long all-atom MD started from the PDB structure of the complex (AA ).
a 20 ns long RPCM MD, and a 100 ns long all-atom MD started from the final
RPCM frame (AA_, ). In addition, all-atom 100 ns long MD simulations of
the unbound ligands in water were also carried out at 1 bar and 300 K.

The minimum ligand-ubiquitin distance maps established from the 20 ns
RPCM and the 100 ns AA_, ., MD trajectories show that the three f-strands
of ubiquitin mentioned above are still involved in the interaction with the
ligands like they are during the AA  simulations (Figure 8.12). Particularly,
RPCM and AA_, , maps of the 10ta UBMI1 ligand are significantly similar to
the corresponding AA __ map. It is due to structural changes that are weaker
in complex 2 MBB than in the two other protein complexes, as illustrated
by the last conformation of the MD trajectories (Figure 8.13). In the case of
Vps27 UIM-1, the appearance of a turn during the RPCM-based simulation
induces a break in the first region of the corresponding minimum distance
map, 1.e., below residue 15 of ubiquitin. The turn imnvolves residues Ala266-
[1e267-Glu268-Leu269 of the ligand (residues 12 to 15), and also appears in
100 ns all-atom MD trajectories of the unbound ligand of structure 1Q0W
simulated in water (Figure 8.14). This 1s thus a weak poimnt in the ligand
sequence whose regularity 1s easily perturbed when the RPCM model 1s
used. The all-atom MD simulation of the 1solated 2MBB ligand preserves
the turn mvolving residues Leu78-Pro79-Val80 (residues 17 to 19 in Figure
8.14), and two end chain bents appear at the level of residues Gly89-Lys90
(residues 28 and 29) and Gly69 (residue 8). Regarding the Rabex-5 ligand,
the structural changes that occur during the AA_,  ~MD simulation of the
complex lead to a minimum distance map that is similar to the one obtained
from the 20 ns RPCM simulation (Figure 8.12). The initial helix structure of
the unbound ligand of 2FID simulated at the all-atom level 1s now destructed
at residues Ser36, Ile51-Glu52, and Glu65 (residues 23, 38-39, and 52 in
Figure 8.14).

Very interestingly, there 1s a rather good match between the residues
mvolved in non-helix regions of the ligands and those previously identified
through a CWT analysis (Figure 8.6). Indeed, low absolute values of the
wavelet coefficients actually correspond either to deconstructed regions of
the 1nitial a-helix structure of the three ligands, or turns, or characterize resi-
dues that precede preserved o-helix segments (Figure 8.14). It may involve
that an o.-propensity set of descriptors such-as BLAM930101 [38] 1s useful in
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1QOW

2MBB

2FID

AAPDB RPCM AARPCM

FIGURE 8.13 Last conformation of the three Ubiquitin complexes as obtained from the
100 ns production stages of the AA, . and AA MD simulations and from the 20 ns

RPCM
RPCM simulation. (Top) Vps27 UIM-1-Ubiquitin (PDB code: 1Q0W), (center) iota UBM1—
Ubiquitin (PDB code: 2MBB), and (bottom) a bovine Rabex-5 fragment complexed with

Ubiquitin (PDB code: 2FID). The ligand is displayed in black.



230 Theoretical and Quantum Chemistry at the Dawn of 21st Century

12-15

2FID

FIGURE 8.14 Last conformations of the three unbound Ubiquitin ligands simulated
in water as obtained from 100 ns all-atom MD production stages. Residues occurring in
destructed helix regions and turns are numbered and shown in black.

wavelet-based analysis to detect amino acid regions that are likely to lose their
o-helical structure.

Figure 8.13 also illustrates that the AA _ conformations stay close to the
PDB structure (Figure 8.1), except for 2FID whose long helix structure 1s
partly deconstructed. In the complex 2FID, major structural changes appear
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during the AA___ simulation due to the selection of a 1:1 ligand-ubiquitin
complex while, in the crystal structure, the ligand 1s actually in close interac-
tion with two ubiquitin molecules, the second one also interacting with a Zn
1on. As mentioned by Chakrabartty et al., 1solated helices derived from pro-
teins are unstable due to the lack of side chain interactions [189], which 1ni-
tially occurred 1n the present case between the receptor and the ligand. A loss
of secondary structure elements 1s also seen in RPCM conformations (Figure
8.13). The trend of 1QOW and 2FID ligands to be deconstructed during
RPCM simulations can be explained by the presence, in these two peptides,
of numerous charged residues, 1.e., 11 in 1QOW and 19 in 2FID. Particularly,
for IQOW and 2FID ligands, a cluster of five contiguous charged residues
are present, at the level of the N-terminal and C-terminal ends, respectively.
Thus, a modification in the point charge description 1s likely to more strongly
affect their dynamical behavior than for the 2MBB ligand.

The return to all-atom interactions in AA_, =~ simulations allows to
recover some regular secondary features in the structures. As emphasized
earlier [67], RPCMs can lead to deformed conformations of the systems
due to a lack of short-range electrostatic descriptions, which affect, notably,
the existence of intra- and inter-molecular H-bonds. However, such confor-
mations may appear to remain stable under all-atom MD simulation condi-
tions. The RMSD versus the initially optimized PDB conformations of the
complexes as well as the number of clusters detected during the production
stages are presented in Figure 8.15 and Table 8.1, respectively. The low vari-
ation of the RMSD functions and the small number of clusters emphasize the
stability of the AA_ ., trajectories, thus providing clues that RPCM simu-
lations can lead to the sampling of diverse and stable conformations. For
complex 2FID, the AA_, . RMSD function is even lower than the AA __
one (Figure 8.15). This higher stability comes with an increased number of
ligand-ubiquitin H-bonds, 1.e., 15 rather than 11 (Table 8.1).

The number of clusters 1s determined using the approach called ‘Gromos’
method [190]. It consists, for each conformation 1n a trajectory, in counting
the number of similar frames (called neighbors) considering a cut-off. The
structure with the largest number of neighbors, and all its neighbors, are
assumed to form a cluster, which 1s eliminated from the pool of already
existing clusters. The procedure is repeated for the remaining structures
in the pool. Cut-off values of 0.3 and 0.45 nm were selected to probe the
receptor and ligand conformations; respectively. These values were chosen
so as to keep small numbers of clusters for the ligand and ubiquitin when
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FIGURE 8.15 Time dependence of the protein RMSD calculated versus the initially
optimized solvated structure from the 100 ns production stages of the AA, - and AA,, ., MD
simulations and from the 20 ns production stage of the RPCM MD simulation. Plain line =

AA,y, gray line = RPCM, light gray line = AAg, .

simulated at the AA__ level. Indeed, smaller cut-off values would involve
additional clusters. Models RPCM lead to high numbers of clusters observed
for the ligands, denoting a more flexible structure. The ligand 1ota UBM1
involved in complex 2MBB 1s an exception where the limited number of
clusters reflects the high stability of the complex even at the RPCM level

of representation. Despite a large number of AA clusters, 1.e., three, the

RPCM
good conformational conservation of the 2MBB ligand might be explained
by the longer amino acid sequence of the ligand interacting with ubiquitin,
1.e., 38 residues rather than 24 for 1QOW. In all cases, the ubiquitin structure
stays rather stable during all production stages.

A close examination of the H-bonds formed between the ligand and

ubiquitin (Table 8.1) shows that the ligand forms less numerous H-bonds
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TABLE 8.1 Properties (Mean and Standard Deviation Values) of the Solvent Layers of
Thickness 0.35 nm Around the Protein Systems*
AAPDB RPCM AARPCM
MD production stage (ns) 100 20 100
1Q0W
No. of molecules 1953 + 46 2264 + 64 2063 + 65
No. of water-water H-bonds 436 + 20 537+21 464 £25
No. of protein-water H-bonds 282+9 291+ 10 312+ 12
No. of ligand-Ubiquitin H-bonds 5+£1 1+1 5+£2
No. of ligand/Ubiquitin clusters 1/1 13/1 1/1
2MBB
No. of molecules 2084 + 60 2444 + 67 2155 +81
No. of water-water H-bonds 465 £25 582+126 486 + 30
No. of protein-water H-bonds 30610 294 +7 310+ 13
No. of ligand-Ubiquitin H-bonds 5+£2 2+1 3+2
No. of ligand/Ubiquitin clusters 1/1 2/1 3/1
2FID
No. of molecules 2522+ 63 3047 + 68 2579+ 78
No. of water-water H-bonds 572 +26 737+25 590 + 28
No. of protein-water H-bonds 364+ 10 375+ 10 388+ 15
No. of ligand-Ubiquitin H-bonds 11+2 3+2 15+£2
No. of ligand/Ubiquitin clusters 4/1 6/1 2/1

*The number of conformational clusters observed during the MD production stages is also given for the
ligand and Ubiquitin.

at the RPCM level than at the all-atom level. For example, one H-bond
rather than five 1s formed in structure 1QOW, while only two and three
are present in the 2MBB and 2FID complexes, respectively. One also
observes that for complexes 1QOW and 2FID, a high number of ligand-
ubiquitin H-bonds are recovered at the AA_  level versus their corre-
sponding value obtained during the AA _ simulations. Values of 5 + 2
and 15 +2 rather than 5 £ 1 and 11 + 2 are indeed obtained (Table 8.1).
Contrarily, for structure 2MBB, a lower number of H-bonds at the AA_
level, 1.e., 3 £ 2 rather than 5 + 2, 1s observed, but this does not affect the
orientation of the ligand versus the receptor as conformations are rather
similar (Figure 8.13).

The analysis of the protein-solvent interactions is-also carried out by focus-
g on the hydrogen bonds. A water layer of thickness 0.35 nm was determined
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around the protein complex and the mean numbers of water-water and water-
protein H bonds were calculated considering that layer of solvent molecules.
Analyses of the geometrical properties of the H-bonds were already reported
previously [67, 68]. They showed that the usually expected first layer of water
molecules 1s not structured any longer and intramolecular H-bonds strongly
lose their orientation preference as reflected by the H-Donor-Acceptor angle
values. The donor—acceptor distance distribution 1s however rather well pre-
served. Regarding the protein-water H-bonds, both distance and angle distri-
butions stay similar to the all-atom results. From Table 8.1, one observes a
larger number of water molecules 1n the layer close to the protein structure
when the RPCM 1s used. For example, 1n structure 1QOW, one gets 2264 mol-
ecules rather than 1953 and 2063 in the AA | _and AA__  cases, respectively.
It comes with an increase in the number of water-water H-bonds, 1.e., 266
versus 217 and 233. Contrarily, the number of protein-water H-bonds 1s rather
similar between the three charge models. For example, in structure 1QOW, the
number of such H-bonds 1s 282, 291, and 312, for trajectories AA ., RPCM,
and AA_ . respectively. The AA_  and AA__ trajectories behave simi-
larly in terms of water-water H-bonds. It was actually shown previously that
the use of a RPCM make the system very sensitive to the choice of the water
force field [68]. The solvent is largely over-structuring, in opposition to what
1s known at the all-atom level [191, 192].

A statistical analysis of the potential energy terms calculated from the
MD trajectories 1s reported in Table 8.2. Regarding the RPCM simulations,
a post-processing calculation of the energy terms was carried out at the all-
atom level. A good agreement 1s seen between the ligand-ubiquitin interac-
tion energy terms calculated for the RPCM conformations using the RPCM
and all-atom FFs. For example, values of —310.00 and —309.96 kJ.mol™ are
obtamed for the system 1QOW. The ligand-ubiquitin energy contributions
calculated at the all-atom level for the RPCM conformations are systemati-
cally higher than those obtained from the AA __ and AA_  _  trajectories.
Indeed, the latters involve additional stabilizing interactions like H-bonds. As
an example, the system 1QOW 1s characterized by intermolecular ubiquitin-
ligand energy values of —309.96 kJ.mol™ rather than —474.22 and —571.81
kJ.mol™. The all-atom version of the RPCM intramolecular potential energy
term 1s also always larger than the corresponding AA __ and AA_ . val-
ues. For example, one observes values of 20109.40, 18391.47, and 18984 .40
kJ.mol™, for the RPCM, AA, . and AA, . simulations, respectively. It illus-

trates that a change in the point charge model involves short-range constraints
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TABLE 8.2 All-Atom Mean Potential Energy Components (kJ.mol™) and Standard
Deviation Calculated From the Production Stages of the MD Simulations**

MD production AA, - RPCM AA o

stage (ns) 100 20 100

1Q0W

Intramolecular ubiquitin - 18391.47 + 195.57 20109.40 +191.14° 18984.40 +236.71

and ligand 16378.33 +180.78

Intermolecular ligand-
solvent

Intermolecular
ubiquitin-solvent

Intermolecular ligand-
ubiquitin
2MBB

Intramolecular ubiquitin
and ligand

Intermolecular ligand-
solvent

Intermolecular
ubiquitin-solvent

Intermolecular ligand-
ubiquitin
2FID

Intramolecular ubiquitin
and ligand

Intermolecular ligand-
solvent

Intermolecular
ubiquitin-solvent

Intermolecular ligand-
ubiquitin

—4238.10 £ 200.47

—8913.81 £258.05

—474.22 +72.52

22890.77 £ 199.86

—5427.15£210.47

—8658.39 £266.12

—603.10 + 102.54

25861.16 +226.01

—8826.55 £290.96

—7843.12+ 237.08

—868.46 + 93.99

—-4826.66 +230.72"
—4893.84 +227.79
-9556.34 + 259.89"
—9834.53+ 270.38
-309.96 £ 88.11°
—310.00 + 90.95

24099.64 + 23447
18311.47 + 206.65
—5782.59 +£195.94"
—5945.99+ 197.60
-8694.14 £ 262.15°
—8987.46 + 262.91
-307.30 £ 66.47"
—304.33+61.62

28035.89 +208.74"
2211524+ 181.82
-9966.49 + 241.66"

~10203.90 +
244.34

—8373.19 +£228.68"
—8655.84 + 234.09
—604.86 + 137.12"
—602.52+137.77

—4521.04 £210.44

-9517.71 £345.16

—517.81 £ 88.58

22672.63 +245.78

—5377.71 £263.47

—8788.56 £322.74

—358.22+£92.73

26576.76 + 306.60

-9631.28 £293.92

—7833.00 £ 387.20

—1176.00+ 116.91

*Values obtained with the all-atom AMBER99SB FF applied to the conformations generated during the

RPCM MD simulations.

**Long-range electrostatic contributions, calculated in the reciprocal space, are not considered in the

reported values. Values in italics are energy terms calculated with the RPCM charges.
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to the proteins. Those constraints are obviously less affecting the intermolec-
ular energy terms. Table 8.2 also shows that the protein-solvent contributions
are systematically lower for the RPCM models versus its all-atom counter-
part. The case of the complex 1QOW 1s again given here as an example, with
values of —4893.84 and —9834.53 versus —4826.66 and —9556.34 kJ.mol™, for
the RPCM and all-atom energy terms, respectively. It can be an explanation
to the increased influence of the solvent when a RPCM 1s used [68].

An interesting point to mention is related to the stability of the AA_
conformations, which may be characterized by more stabilizing ligand-
solvent and ubiquitin-solvent interaction energy values than in the AA
case. This 1s verified for complex 1QOW, ant partly for systems 2MBB
and 2FID where the ubiquitin-solvent and ligand-solvent energy values
are more stabilizing than in the AA __ cases with —8788.56 and —9631.28
kJ.mol™, respectively. However, the ligand-solvent and ubiquitin-solvent
counterparts are only slightly less stabilizing with —5377.71 and —7833.00
kJ.mol™, respectively. Also, in the cases of 1QOW and 2FID, the intermo-
lecular ligand-ubiquitin energy values calculated from the AA_ . trajec-
tories are lower than i the AA_ cases. This is not observed at all for
2MBB, a nevertheless well-preserved complex, with a value of —358.22
versus —603.10 kJ.mol™.

8.4 CONCLUSIONS AND PERSPECTIVES

The current development of computer resources allows to study more and
more complex systems over extended time scales. Consequently, more and
more data are generated for storage and analysis. The need for simple mod-
els thus remains crucial to decrease the complexity of a problem, to get rid
of useless data, or to reduce calculation time. Leveling and coarse-graining
procedures remain widely used and still present vivid perspectives in the
modeling of complex molecular systems and in the interpretation of experi-
mental low-resolution data.

Two pomts of views can be adopted when using reduced molecular
descriptions. Either one focuses on the generation of results that are similar
to those obtained at a higher level of detail, but at a lower cost and with sim-
pler algorithms, or one wishes to get results that differ from those obtained
at a higher level of detail, thus providing new and/or different insights to a
problem. In literature, various approaches are reported which, when applied
to a same problem, may lead to different results.
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Well-known methods such as spline approximation, Gaussian smooth-
ing, wavelet multi-resolution analysis, and crystallography reconstruction,
allow to level molecular properties. Discretization approaches such as vector
quantization, critical point analysis, and coarse-graining procedures, gener-
ate models that replace a molecular property or representation by a lim-
ited number of data points. Leveling techniques are very common, €.g., in
molecular graphics representations. Applications are found in many other
research fields like global structure optimization, denoising of modeled or
experimental data, molecular structure elucidation, similarity analysis, and
molecular simulations.

We present selected results obtained from the implementation of
smoothed electron density and charge density distribution functions in sim-
ilarity of small molecules and molecular dynamics applications of proteins.
Smoothing 1n similarity applications affects the number of possible solu-
tions but also provides new or different solutions to problem. For example,
1t tends to align molecules in terms of global shape rather than in terms of
atoms. On the other hand, the use of reduced point charge models of protein
complexes favors ligand conformations that are not particularly stabilized
at the all-atom level. Such conformations can however appear to be stable
when returning to the all-atom description. A change in the level of detail
of a protein complex 1s associated with a modification 1n the protein-solvent
interactions. Thus, a focus on the influence of the solvent, especially in
regards to the balance of protein-solvent interactions, and on the proper-
ties of protein systems as a function of the coarse-graining degree of the
solvent, are planned as perspectives to the results reported in the present
chapter.
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