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We consider random walks on dynamical networks where edges appear and disappear during finite time
intervals. The process is grounded on three independent stochastic processes determining the walker’s waiting
time, the up time, and the down time of the edges. We first propose a comprehensive analytical and numerical
treatment on directed acyclic graphs. Once cycles are allowed in the network, non-Markovian trajectories may
emerge, remarkably even if the walker and the evolution of the network edges are governed by memoryless
Poisson processes. We then introduce a general analytical framework to characterize such non-Markovian walks

and validate our findings with numerical simulations.

DOI: 10.1103/PhysRevE.98.052307

I. INTRODUCTION

Random walks play a central role in different fields of
science [1-3]. Despite the apparent simplicity of the process,
the study of random walks remains an active domain of
research [4—8]. Within the field of network science, a central
theme focuses on the relation between patterns of diffusion
and network structure [9]. Important applications include the
design of centrality measures based on the density of walkers
on the nodes [10], or community detection methods looking
for regions of the network where a walker remains trapped
for long times [11-13]. The mathematical properties of ran-
dom walks on static networks are overall well established
[14], and essentially equivalent to those of a Markov chain.
However, the process becomes much more challenging when
the network is itself a dynamical entity, with edges appearing
and disappearing in the course of time [15—17]. The temporal
properties of networks have been observed and studied in a
variety of empirical systems, and their impact on diffusive
processes explored by means of numerical simulations [18—
20] and analytical tools [21].

Mathematical analysis of dynamics on temporal networks
often relies on the assumption that links activate during an
infinitesimal duration [22]. In the case of random walks,
this framework naturally reduces to standard continuous-time
random walks on static, weighted networks. Even in this sim-
plified case, however, the dynamics exhibits interesting prop-
erties including the so-called waiting-time paradox. When the
dynamics of the edges is Poissonian, trajectories are encoded
by a Markov chain, whereas the timings obtained from a
non-Poisson renewal process lead to nontrivial properties such
as the emergence of non-Markovian trajectories. In that case
the trajectory of the walker generally depends on its previous
jumps and not only on its current location [23,24]. The
emergence of non-Markovian trajectories is even more pro-
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nounced in situations when the activations of the edges are
correlated, often requiring the use of higher-order models for
the data [25,26]. However, this whole stream of research ne-
glects an important aspect of the edge dynamics: the nonzero
duration of their availability, which has been observed and
characterized in a variety of real-life systems, including sensor
data [27-29]. The finite duration of edges availability has
important practical implications, including in community de-
tection [30]. Theoretically, some results have been obtained
within the framework of switching systems, e.g., by replacing
the constant Laplacian matrix L by a time-dependent one
L(t) for the diffusion [31-33], but a master equation approach
derived from a microscopic model of the dynamics is, to the
best of our knowledge, still lacking.

Our main objective is to develop an analytical framework
for random walks on temporal networks with finite up times.
Given a network of potential connections between a fixed set
of nodes, the model is defined by three temporal processes.
Each process comes with its own time scale, associated to the
motion of the random walker, the time between two successive
active time spans of the edges, and the duration of these
time spans. In contrast with previous research, we derive
a master equation from the model specifications, without
implicitly assuming memoryless dynamics for the walker,
and consider the resulting trajectories of the random walker
[34]. The competition between three time scales makes the
problem particularly rich and we show how certain master
equations already known in the literature are recovered in
limit regimes. Indeed, the next section makes clear that our
framework is quite general, and therefore it can describe
the regular single time-scale continuous-time random walks
on networks, the so-called active node-centric and passive
edge-centric models. In the first case, the trajectory of the
walker is solely determined by the waiting time on the nodes,
since the edges are always active. In the second case, the
time spans between two instantaneous up times of the edges
determine the dynamics, as the walker is always ready to
jump. But generally speaking, not only one time scale prevails
and neither of the former two asymptotic regimes can capture
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the full dynamics, thereby establishing the need to study the
implications of three competing time scales.

This paper is organized as follows. In Sec. II, we describe
the model and its parameters. In Sec. III, we derive a master
equation for the density of the walker valid for directed acyclic
graphs (DAGs). Particular cases for the model parameters
and their ensuing dynamics are discussed. These equations
are revisited in Sec. IV, where we consider the impact of
cycles in the graph on the Markovianity of the process. The
analytical predictions are confronted with numerical simula-
tions throughout this work. Section V gives more details about
the numerical implementation of our formalism. We finally
conclude and give perspectives in Sec. V1.

II. MODEL

Let V be a fixed set of N nodes and E be a set of directed
edges between these nodes. We denote by G = (V, E) the
static graph determining which edges are available in the
dynamic graph with time-dependent adjacency matrix A(¢).
The dynamic graph can assume any of the 2/£! possible con-
figurations allowed by G. In our model-driven approach, each
edge (i, j) =i — j € E is characterized by the following:

(i) a down-time probability density function (PDF) D;;(t),
t € RT, which determines for how long the edge remains
inactive;

(i) an up-time PDF U;;(1), t € R", which rules the dura-
tion that the edge is available to the walker.

In this work, the random variables associated with the
densities U;; and D;; are assumed to have finite expectation.
The adjacency matrix can be written as

A= Giljyciz, ) (1) (1)
ieZ
with --- <t <1t) <0 <1t <--- the successive times of

the rewiring, and G; a fixed adjacency matrix (Fig. 1). Let
k}“(l) = 2?;1 Aji(t) be the in degree of node i at time ¢,
and k(1) = Zyzl A;; (1) be the out degree. We define the
set of nodes reachable from i in the underlying graph V; =
{j e V|i— je E}, and |V;]| its cardinality, namely the out

Ans(t)

O ® O
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@B O @
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FIG. 1. Directed temporal network with four nodes (below) and
the (1,3) entry of the time-dependent adjacency matrix A(z) (above).
Note that A(z) is right continuous and is given by A(z) = G; for
t; <t < t;41. In this example, the up time #,,4» — #,,4+1 of edge 1 —
3 follows the density Ujs(¢), while the down time t,,,4 — %, has
density Di3(¢). At every random rewiring time #;, almost surely only
one edge changes states.

degree of node i in G. Similarly, V/ ={j eV |j— i€ E}
and |V/| results to be the in degree of node i. We make the
assumption that there are no isolated nodes in G: for every
i € E, max{|V;|, |V/|} > 0

Let us define the random walk. A continuous-time random
walk on a dynamical graph with adjacency matrix A(t), ¢ €
R, is a process {A(t),iw(t)} where iy (t) € V is the node
occupied by the walker at time . Upon arrival on a node i, the
walker is assigned a waiting time according to the PDF ;(¢)
which generally depends on the node (see Fig. 2, first, second,
and third cartoon from the left). After the waiting time has
elapsed, the walker selects one of the available leaving edges
uniformly, namely with probability 1/k?"(¢). If no edge is
available, the walker is trapped on the node (Fig. 2, fourth
cartoon) and waits for the first leaving edge to appear to
perform the jump (Fig. 2, fifth cartoon). Note that in the latter
case, almost surely there is no choice to be made: no two or
more edges can activate at the same time.

Let us observe that a possible variant of this random walk
could consist of assigning a new waiting-time according to
Y; for the walker trapped on a node because of the lack of
available edges once it is ready to jump. This process was
studied in [34], where the authors exclusively focus on the
asymptotic state of the process.

Our model is an extension of the standard active node-
centric and passive edge-centric random walks in temporal
networks [17], where edge duration is instantaneous. In the
former, the motion is determined by the waiting time of
the walker and, once a jump takes place, all the edges in
G are available—or at least the ones exiting from the node
where the walker is located. In the latter case, the walker is
ready to jump as soon as it arrives on a new node, and it takes
the first edge that appears—the walker thus passively follows
the appearing edges modeled by a renewal process. These
two cases correspond to asymptotic regimes described by our
model when a time scale dominates over the others. In general,
however, the process is determined by the competition of three
time scales. Figure 2 summarizes possible scenarios labeled
from A to D corresponding to the four distinct cases, where
the dynamics of the down and up times are either significantly
shorter or significantly longer than the characteristic waiting
time of the walker. At the right border of the domain, in the
region ranging from B to C, when the walker is ready to
jump, the possible extra waiting time for an edge to become
available is usually short, and the network dynamics can be
neglected. Therefore, the node-centric random walk is a good
proxy for our model. In the region centered around D, the
same type of analysis leads instead to neglecting the waiting
time of the walker. In general however, as in the center of the
domain, in the area between the dotted regions, neither the
walker nor the edge’s dynamics can be neglected. This region
is the focus of our work.

III. CASE OF DIRECTED ACYCLIC GRAPHS

As a first step, we consider the trajectory of a walker
performing a random walk as defined above on a directed
acyclic graph (DAG). The reason for that is twofold:

(1) DAGs include directed trees and find many applica-
tions; see for instance [35]. Every undirected graph possesses
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FIG. 2. Three time scales are present in the model: One governs the rest state of the walker in the nodes and two associated with the
duration of the up times and down times of the edges. The overall dynamics will depend on the relative weights of such time scales, as
we schematically report here. The bottom panel represents the up-time and down-time durations of the edges with respect to the walker’s
self-imposed waiting time upon arrival on a node. The four corners identified by the letters A—D represent the cases where the time scale
for the edge’s dynamics is clearly separated from that of the walker (hereby located in the center of the domain of the bottom panel, and
schematically represented by a standing icon). Each of these four situations is described by one of the four top panels, representing typical
up-time and down-time probability density functions (PDF’s) U(¢) and D(t), which complement the walker’s possibly node-dependent PDF
¥ (t) as the three dynamical parameters of the model. The rectangles with the red and blue bars show representative realizations of the stochastic
processes of edge active and inactive time spans according to the densities reported above. The blue shaded (respectively red hatched) rectangles
stand for periods of edge availability (respectively unavailability). The proposed model depends on the four parameters in the bottom right
panel. It is general enough to tackle also the situations where there is no sharp time-scale separation, and none of the dynamics is extreme
enough to be neglected, as in the region bounded by the dashed lines in the bottom panel.

is expected to be good when edges along a path can be
considered statistically independent. The conditions for this
to hold will be discussed further in Sec. IV.

As will become clear (see Sec. III E), the model on DAGs
can be viewed as a one-density, node-centric (or edge-centric)
random walk.

an acyclic orientation. Moreover, by contracting each strongly
connected component, every directed graph can be mapped
to a DAG. Figure 3 illustrates that process. The material
presented in this section therefore provides tools to analyze
a random walk on a coarse-grained model obtained by con-
densation of a given graph into a DAG.

(2) As we will show next, the presence of cycles in the
graph will remove the Markov property from the random

walk. Hence, the analysis of our model on a DAG will serve,
in a second step, as a limiting case on which to consider
more general organizations. The approximation using DAGs

2 3(3)

(a) (b)

FIG. 3. Mapping of a directed network with cycles (a) to a DAG
(b) through a condensation process. Strongly connected components
are transformed into supernodes.

A. Master equation on a DAG

The notations in this section are adapted from [22]. Let
n;(t) be the probability for the walker to be on node i at time
t’

ni(t) = Pliw() =i}. 2
If g;(¢) is the PDF of the arrival time on node i, and ®;(¢, 7)

is the probability to stay on node i on the interval [z, 7] with T
the arrival time on node i, then

ni(t) =/ qi(T)®;(r, T)d. 3
0

Let T; (¢, T) be the PDF of the transition time from node i to
J, with T the arrival time on node i. Let also T,; (¢, T) denote
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the PDF of the time of the jump from node i. We have

O;(t,7)=1 —/ T.;(v, T)dv

t
=1— [ > T t)dv. 4)
tojev;
We want to write the column vector n(t)=

(n1(2), ..., ny())T in terms of the transition density T;;
and of the initial condition n(0). Looking at (3) and (4), we
search for an appropriate expression for ¢g;(¢). Let q,.(k)(t) be
the probability to arrive on node i at time ¢ in exactly k € N
jumps. Then we have

a® =Y q’O=Y ¢+ 6

k=0 k>1

with initial condition ¢\” (1) = n;(0)3(¢). Equivalently,

g =) a0 +4"0), (6)
k=0
where
g V) = Zfo " (W) Tj(t, v)dv. (7)
J

Summing on both sides over k£ > 0 and adding qi(o)(t) yields
1
w=Y [ aonend a0, ®)
—Jo
J

. ,qN(t))T, we have
q(t) =Tqt) +q0@), 9)

where 7 is the linear integral operator acting on () defined
by

In vector form, with q(¢) = (g1(2), . .

t
Tq(t) :/ T, v)qiv)dv, i=1,...,N, (10)
0

where T (¢, v) is a matrix function with component (i, j) given
by T;;(z, v). Due to the acyclic nature of the graph and as
will become clear after remark 3 at the end of Sec. IIIC,
the transition density actually only depends on the duration
t — 7. As a result, Eq. (10) is a convolution and applying a
Laplace transform allows us to solve (9) for q(¢), as was done
in Ref. [22].

Once q(¢) is found, we consider Eq. (3), which can be cast
under the form

n(r) = Pq(1), 1D
where operator P is diagonal and given by
t
Pal = [ @i, =1 N (12)
0

Observe that this is again a convolution, because ®;(z, 1)
is essentially ®;(# — 7). The right-hand side of (12) can be
computed directly in the time domain, or through a Laplace
transform. In the latter case we obtain for each component
n;(s) = fooo n;(t)e'dt a product in the Laplace domain, and

we ultimately find n(¢) = (n,(¢), ..., ny(¢)) as a function of
the initial density n(0) by computing the inverse transform of
these products.

B. On the use of the Laplace transform in the case of a DAG

It is not mandatory to use the Laplace transform to solve
the integral equations for q(z) and then get n(z). We can
proceed directly in the time domain and solve the equation
relying on the acyclic nature of the graph. We detail this
alternative approach, which does not rely on the convolution
structure of the integral equations.

Remark 1. This method also applies when we drop the
acyclic assumption on G in Sec. IV and we have to solve
Eq. (50).

Let us first recall Neumann’s Lemma.

Theorem 1. Let T be a linear bounded operator on a Ba-
nach space X. If ||T| = sup <, ITx[| <1, then I — T is
invertible and is given by the Neumann series

I-T)y ' =Y T=1+T+T"+-.

k=0

The theorem is applicable for this convolution-type linear
Volterra integral equation with square integrable convolution
kernels (see [36] Theorem 3.7.7, p. 77), and Eq. (9) gives

a)=U-T"'q0)

=2 T4 (13)
k=0

= > T*s8(t)n(0). (14)
k=0

If we compute the iterates of 7 acting on q¥(¢), we see
that the successive terms 7%q©(¢), with q©(r) = nP8(¢),
account for the probability to arrive on a given node at time ¢,
starting from the initial condition n®), in exactly k steps.

Remark 2. In general, the Neumann series does not offer
a practical way for computing (/ — 7)~! since it involves an
infinite number of terms. Because we make the assumption
that the underlying graph G has no cycles, the series can be
cut after d terms, where d is the diameter of the graph.

Based on (3) we can now compute n(¢) in terms of the tran-
sition density and of the initial conditions. Applying Leibniz’s
rule for differentiation under the integral sign, we obtain

t
ni(1) = q;(t) — f qi(t) Y Tji(t, T)de
0 jev;
t
=qi(t)—/0 qi(1)Tei (2, T)dT. 15)
The interpretation is that the rate of evolution of n;(¢) is
given by a sum of all arrivals minus the departures, with each
departure resulting from a previous arrival at any point in time.
Let us define a diagonal integral operator D acting on q by its
ith component:

[Da(0)]; = /0 Tt T)gs(1)d. (16)
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Equation (15) can now be written as

n(t) = (I —D)q(1)

= -D)) T, (17)

k=0

where we have used (13) to obtain the second equation.

C. Transition density on DAGs

The equation for n(#) remains abstract unless we can write
T;; explicitly in terms of the model parameters contained
in Fig. 2. For the sake of simplicity and without lack of
generality in the reasoning, we assume that all edges share the
same up-time and down-time densities: U;;(t) =: U(¢) and
D;j(t) =: D(t),foralli, j=1,..., N.

Let p denote the probability that a given edge of G is active
(up state) at a random time. Recall that we assume up-time and
down-time durations with finite expectation. It results that

p = Pledge i — j is active} = GERTIL (18)

where (f) = fR tf(t)dt is the mathematical expectation of
the random variable with PDF f(¢). We decompose the transi-
tion density in two terms: Tj; (¢, T) = (1) 4 (2). The first term
corresponds to the case that an edge is available to the jumper
at the end of his waiting time:

Vil

1/1Vi| -1 1
(1)2‘”"(“”Z%<|k|_1 )p"(l—p)'“ L9
k=1

Edge i — j has to be available, and needs to be chosen
amongst the | V;| — 1 other edges which are also active at time
t. A straightforward computation allows us to rewrite Eq. (19)
as

(1)=%(r—r)ﬁ[l—(l—p)‘vf‘]. (20)
The quantity between square brackets is the probability that
at least one edge is available. The factor 1/|V;| appears
because all outgoing edges are treated indifferently, and so
the probability to be chosen is distributed uniformly amongst
all edges including i — j.

In the second case represented by Fig. 4, the jump occurs
after the walker happened to be trapped. Let us observe that
when the walker becomes trapped on node i, then for a given
j € V; the time w before i — j becomes available has the
PDF

2 ! h
t)y=— D(v)dv 21
(1) D) /t v) 2D
as follows from the so-called bus paradox.

Edge i — j is selected by the trapped walker to perform
the jump a time ¢ if (i) the waiting time expires before ¢,
(ii) at that moment all other edges are not active and will
remain inactive at least until ¢, and (iii) edge i — j was also
down but becomes active exactly at time ¢. It results that

2) = /.f Yilx — Ol = p)P{w > 1 — x}]"!

x (1= p)P(t —x)dx (22)

walker arrives walker ready walker jumps

on node i to jump to node j
A () | |
1 1 1
I I
1 | —) \ _
0 : : :
|~ | N
! rY ¢ ! v time
I T 1 1t
[ >l >
PDF : 9, w (PDF : D)

FIG. 4. Waiting time w of the trapped walker on node i, before
edge i — j becomes active. The walker arrived at time 7 on node i.
After a waiting time determined by the density v;(¢), a jump can
be performed but none of the |V;| outgoing edges is active. The
walker needs to wait a subsequent duration w before a link—here to
node j—becomes available. So eventually the jump is performed at
time £.

or in a slightly more compact way,

2)=(- p)‘Vf'/ Yi(x — )2t — x)
x [P{w >t — x}]"V"ldx, (23)

where
o0
Plw>1t—x}= / D(s)ds. (24)
t—x
In short, we have shown that

Tjt,t)=c¢i(t — 1) + 02/ Yi(x — 1)

00 |Vil—1
X |:/ @(s)ds:l D(t — x)dx, (25)

where ¢; and ¢, depend only on (U), (D), and |V;|. For the
sake of readability, we have dropped the index i due to the
node dependence of ¢ and c¢;,. Observe that the distribution of
U only matters through its mean, because only the mean value
(U) influences the probability p. On the other hand, if the
walker is ready to jump during a down time, then the jumps
occur directly at the end of this down time, and so the full
distribution of D does matter.

Remark 3. Having assumed an acyclic directed network
allows us to consider all outgoing edges the same way. There
is no possibility for the walker to backtrack to its previous
step. The time when an edge becomes available to the walker
does not depend on the arrival time of the walker on the node,
and the density & of w can be applied for all outgoing edges.
Indeed, if on the contrary the walker could jump across the
cycle i — j — i, the probability for link i — j to still last
can be large. This would induce a bias on the next jump, giving
it more chance to end up again in j. It results that, as stated
before, T;;(¢, ) depends on the variables f and T through their
difference t — 7.

Remark 4. Also observe that the transition density is the
same for all j € V;, but the number of outgoing neighbors
matters and appears in the transition density via the strength
|Vi| of node i in the underlying graph.
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TABLE I. Selected particular cases. Here, § means a dirac distri-
bution in 0 and £(x) stands for exponential with rate x.

Vi (1) U@) D(1)
Case 1 8 1) ER)
Case 2 E(n) 8 EM)
Case 3 E(w) Em) E)

D. Limit cases on DAGs

In this section we shortly discuss some particular cases
listed in Table I.

1. Case 1

In this case the duration of each up time of a link is
instantaneous. The down time is exponentially distributed
with rate 1 while the walker’s waiting time is again instan-
taneous meaning the agent is always ready to jump. It is then
straightforward to see that the waiting time of a trapped walker
before a given edge activates has density

D(x) = 1/% /oo)\e_“ds = re ™ = D(x), (26)

which results from the memorylessness of the exponential
distribution. Moreover, the probability for an edge to be up at
a random time is p = 0, and it follows that (25) is computed
as

Tit,t)=[Plw >t —1}]I"V""'2(1 - 1)

00 [Vil—1
[/ Q(S)ds] Dt —71)

1
m)»IViI exp[—A Vit —1)].  (27)

The first factor results from the choice of one of the edges
(uniformly) in the underlying graph, while the second factor
shows the distribution is again exponential, with rate X |V;].
This is the density of the minimum of |V;| exponential distri-
butions with parameter A. Recall that T; (¢, T) depends only
on the difference ¢+ — v and on parameters of G. This shows
that the dynamics amounts to a Poisson CTRW on a static
graph. In this sense, we recover the result of [22].

Remark 5. If the down time is not exponentially dis-
tributed, it is still true that the transition density is written in
terms of the density Z;); corresponding to the minimum of
|V;| independent random variables with density Z:

1

Tii(t,7)= A

Da).i(t — 1). (28)
It is a straightforward calculation to see that
d Vil
Dayi(t) = ——[P(w > 0]

= |V;|[1 = F(1V" ' 2(1), (29)

where F,(¢) is the distribution function of the variable w with
density 2.

O OO

0.9+
mmm MC node 1
0.8l MC node 2
MC node 3
— DAG node 1
0.7} ——DAG node 2 | |
= — DAG node 3
S 061 B
>
-
= 05| *
Q
E
S 04f .
=
Q,
0.3+ |
0.2 |
0.1 |
0 Il Il Il Il
0 1 2 3 4 5 6

time

FIG. 5. Validation of the analytical model on a DAG in case 3 of
Table I. All densities are exponential: ¥ ~ E(u =1), U ~ E(n =
1), D ~ (A = 1). The Monte Carlo simulation is the average of
10° independent trajectories of a single walker and yields the shaded
areas representing a confidence interval of one standard deviation
above and below the mean. The solid curves represent the probabili-
ties n; (¢) obtained from the analytical model. The inset magnifies the
central part of the main figure, and shows clearly that the modeling
falls in line with the numerical simulations. The graph is a directed
chain with three nodes, as shown in the top right corner.

2. Cases 2 and 3

In these two cases, the computation of 7;; and ®; yield
compact expressions (see Appendixes A and B). The ex-
actness of the expressions result from the network being
acyclic. An integration of the analytical model is compared
against Monte Carlo simulation on Fig. 5 in case 3 where all
distributions are exponential.

E. Equivalent node- and edge-centric models

In all possible cases (thus beyond exponential distribu-
tions), the model for DAGs can be cast into a nodes-only
process on a static network, or into an edges-only process with
instantaneous durations of edges availability, and a walker
with no waiting time.

In the former case for instance, only a waiting-time density
of the walker is retained, and it can be computed from the
densities i, U, and D of the original model. For the sake
of compactness, we assume all edges to follow the same
densities. The all-in-one waiting-time PDF for the walker in
node i with |V;| > 0is

Wi (t) = (i * Dayi)(), (30)
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where * denotes a convolution in the time variable and with
Daayi(0) = (1= p)""Dyyy i (0) + [1 = (1 = p)V18(r). 31)
It results that

(1) = (1 — p)V( % Dy ) @) + 11— (1= p)!Vlg ).
(32)

The model reduction in the edge-centric case can be de-
duced from this formula. Let X; be the random variable with
density ¥; and let Y;, be the random variable for the waiting
time associated in the reduced model to an edge originating
from node i with degree |V;| > 0. Then X; is the minimum
of |V;| independent and identically distributed (i.i.d.) random
variables such as Y;, and we know

Fx,(t)=1—(1— Fy )", (33)
yielding
Fy,(t) =1 —[1 — Fx, ()], (34)

The PDF A;, of the waiting time on the edge can be obtained
via
1

Aio(t) = |V|

[1— Fx, (O (2). (35)

IV. CYCLES AND EMERGENCE OF MEMORY

The random walk under scrutiny in this work involves three
processes, each with its own time scale and characterized by
the densities v;, U, and D. Section II and Fig. 2 in particular
offered a qualitative evidence of three possible scenarios. In
the first one, the durations of the down times are fast with
respect to the typical walkers’ waiting time, and node-centric
modeling proves applicable. In the second one, the down times
(respectively the up times) are relatively slow (respectively
fast) as compared to the walker, and edge-centric modeling
is effective. In the third scenario however, when none of
the two previous assumptions holds true, the modeling needs
not neglect any of the three processes. This claim is hereby
sustained by Fig. 6 where the evolution of Nyjonte Carlo (¢) from
5 x 103 Monte Carlo simulations is compared with the predic-
tions from the active node-centric and the passive edge-centric
models, in the all-exponential case. In the former model,
the dynamics of the edges is neglected: a static network is
assumed and the master equation is

fcive = —Macive(I — diag(|Vil, ..., [Vy)7'G),  (36)

where G is the adjacency matrix of the underlying network
G and the time is scaled by the rate u of the walker. In the
latter case, the walker has no own waiting time. The dynamics
between the up times of the edges is accounted for, while the
up times themselves are instantaneous. Therefore, the time is
scaled according to the rate A of the down times and

l:lpassive = _npassive(diag(| Vi |7 e |VN|) - G) (37)

The norm of the error between the numerical simulation and
the two models is then integrated over the duration T of the
simulations,

T
Emodel(T) = [ ”nmodel(s) — IMonte Carlo(s)”sta (38)
0

(a) (b)

active node-centric passive edge-centric

up-time rate (logy 1)

down-time rate (logy A)

down-time rate (logy A)

0-="0%0

FIG. 6. Comparison of the classical active node-centric (a) and
passive edge-centric (b) models with a Monte Carlo simulation
involving 5 x 103 independent trajectories. The errors E (T ) and
Epassive(T') between the predictions of the models and the actual
(Monte Carlo) probabilities n;(z) as given by Eq. (38) are plotted
for various combinations of the rates of the exponential up-time and
down-time densities 7 and A. The walker’s exponential density has
rate = 1 on all nodes. Each of the four regimes marked by the
letters A—D correspond to the four scenarios previously identified
on Fig. 2. Section IV aims at providing the necessary modeling
framework to cover the full domain of this plot, and to even go
beyond the case considered here, allowing not clearly separated time
scales. The graph appears at the bottom of the figure, and the duration
of the simulations is 7 = 10.

where “model” stands for “active” or “passive.” Note that
in the three preceding equations, Npegel 1S @ Tow vector. The
outcome is represented by Fig. 6 in the (log, A, log, n) plane,
having chosen a rate i = 1 for y; on the nodes.

The region where both errors are large demonstrates the
need for the inclusive model developed in Sec. III, where
the full interplay of the walker’s and edges’ behaviors are
accounted for. The results derived thus far relied on an as-
sumption of independence between events, i.e., links creation
and destruction, encountered by the random walker. This
assumption is clearly valid for DAGs but ceases to hold true
when the underlying network has cycles. In that case, the
walker may be influenced by the statistical information left at
the previous passage, which may induce biases in the walker’s
trajectory [23,24]. The acyclic predictions are however ex-
pected to remain good approximations if the process on the
nodes () is slow with respect to the edges dynamics, either
in the case of long cycles or also locally if nodes have a
high degree. In other cases, as illustrated in Fig. 7, one can
observe significant deviations between the approximation and
the numerical simulations of the process, even in situations
when each of the three processes is a Poisson process. In such
cases, we will observe the emergence of memory, or loss of
the Markov property, in the trajectories of the walker.

In general, if cycles are present in the network, the state
space is the full trajectory of the random walk, which makes
the problem intractable analytically. We hereby propose a
method estimating the corrections due to cycles of a given
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«@- DAG node 2 | _
== DAG node 3

0.35 -

asymptotic state n;(t — 00)
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Bgp..
1 1 1 1 u.\.ﬂ

0 1 2 3 4 5 6 7 8
walker rate p

FIG. 7. The formulas for DAGs are no longer valid if there are
cycles, as can be seen from this comparison with Monte Carlo
simulations. In this figure, the stationary state n;(f — o0) in each
node for varying values of the rate u of the exponential density
of the walker’s waiting time ¥ (¢) is plotted resulting from Monte
Carlo simulation (solid lines with filled markers) and the analytical
model on DAG’s (dotted lines with empty markers). The width of
the shading around the Monte Carlo curves corresponds to twice the
standard deviation of the mean computed on 4 x 10* independent
trajectories. The up and down time also follows exponential distri-
butions, U ~ E(n = 1), D ~ £(\ = 1), and the initial condition of
the walk is n(0) = (1, 0, 0)7. This example illustrates that when the
time scale of the walker is faster, the memory effect becomes more
pronounced and the error with respect to the Monte Carlo simulations
increases. The graph is the one of Fig. 6.

length, and which generalizes the results in Sec. III. Although
the proposed framework is general, we restrict the following
discussion to contributions of cycles of length 2. This choice is
motivated by the sake of simplicity and speeds up numerical
simulations, as the incorporation of long cycles comes with
increased computational cost. Also note that longer cycles are
associated to weaker corrections, as more time between two
passages tends to wash out footprints left by the walker.

A. Master equation with corrections for two-cycles

We need to enlarge the state space of the system in order
to allow a correction for two-cycles. Let us accordingly first
define g, (7, v) to be the arrival time density for the couple
(r,v) on nodes m’ — m — i. Observe that almost surely,
0 < v < 1. As depicted by Fig. 8, let T} (t|T, v) be the
conditional transition density across edge i — j at time f,
taking the two previous jumps into account: from m’ to m
at time v and from m to i at time t. It will become clear
that by the limited amount of memory we take into account,
this conditional density actually only depends on the durations
t —v and T — v. Let also ®;,,,»(¢|t, V) be the probability to

FIG. 8. Jump times and nodes in the definition of the transition
density Tjjimm (t|T, v). The arrows are labeled by the jump time.

Here, nodes m’ and i and nodes m and j are not necessarily different
nodes.

stay up to time ¢ on node i, having arrived at time t in the
node, and having made the two previous jumps at times v < T
as represented by Fig. 9. We have

t
Sutl) = 1= 3 [ T slrvyds. (9)
jevi ot
The normalization condition reads
lim @, (tlT,v) =0, VO<v<rT, (40)
t—00
and so
Z/ T (1T, v) ds = 1, (41)
jevi Ut

forall 0 <v<tand 1<i<N. In the remainder of this
section the computations assume the conditional transition
density to be known. Its exact form will be determined in the
next section.

Using the same steps as for acyclic graphs, let us first write
the probability that the walker is on node i at time 7 as

ni(t) =n ) +nV(0) + n*? @), (42)

where the superscript refers to the number of jumps performed
up to time ¢. The first two terms are not impacted by the
memory effect, and can be computed based on the transition
densities established under the no-cycle hypothesis:

(1) = / g (1)®i(t, T)dT = n;(0);(1,0),  (43)
0
and

t
n(r) = / q" (D)@ (1, T)dT
0

= > 1O [ T 0@ vdr @
0

meV/

NO ’..
Jump

before

FIG. 9. Jump times and nodes in the definition of the probability
D, (t]T, v). The arrows are labeled by the jump time. Nodes m’
and i could be the same node.

052307-8



RANDOM WALK ON TEMPORAL NETWORKS WITH LASTING ...

PHYSICAL REVIEW E 98, 052307 (2018)

It remains to compute n§k>2)(t) = Zk>2 nl(-k)(t). Note that in

nl(k)(t) we also need the transition density of the (k + 1)th
jump which determines the probability to stay put on node
i up to time ¢ after k jumps. For all k£ > 2 one can write

o= LT

] ]
—
m'—=m—i g, o

X @ (t|T, V) dvdT, 45)

k.k—1
qi(mm’ )(t7 U)

(k,k—1)

where again the superscript in ¢, ~ gives the number of

jumps. In order to determine nfkﬂ)(t) we will need
Gimm (T, V) = Y gl (T, V). (46)
k=2

Once we have computed this quantity, then the third term in
42), n;(t) = n'V(t) + n" 1) + n*Z? (1), will indeed follow

as
nf =33 ff Gimm (T, V)

m'—m—i 0<v<rT
X @iy (|7, v) dvdr, (47

and we have obtained the probability »;(¢) in function of the
initial condition n(0).

Let us therefore determine the arrival-times density in a
given number of jumps, q,.(i’,];fl)(-, -). Let us write Eq. (46) by
splitting the sum as

o0
Gimm (T, 0) = Y gt 7 (T, 0) + gl (T, v). (48)
k=2

In this expression, for all k > 2,
v
LR D N LN
m'ev!, 0
X q,(f,;ﬁ,;},)(v, vYydy' (49)
and using again (46), Eq. (48) becomes
v
qimm’(fa U) = Z / Ti\mm/m”(‘”‘)’ V,)
m”eV};/ 0
/ / 2,1)
X Qmm’m”(vv v )dU + qimm/(f» V)~ (50)
The extended initial condition of arrival times for the first two
jumps is given by
v
e ) = Ton(e =) [ T 0 = g0 000
0
= Tim(t =) Ty (V)1 (0), (51)

where T"ji(t) :=T;;i(t,0) is the transition density for the
acyclic case.

Equation (50) is a Volterra linear integral equation of
the second kind, with kernel given by the conditional tran-
sition density that is determined hereafter. We have a vec-
tor of unknown functions Q, where each component func-
tion G (-, -) 1 [0, 00)> = [0, 00) corresponds to a path
of length 2 in the underlying graph G. As will appear

T

FIG. 10. Jump times and edges through which the jumps occur
in the transition density Tj;;; (t|z, v). The arrows are labeled by the
jump time. Note that node i can possibly have other out neighbors
than j. The corresponding edges would then impact the transition
density through edge i — ;.

clearly in the sequel, this equation cannot be cast un-
der the form of a convolution, because as we will see
Tipmmm (TIV, V') = Tipmeme (T — V' [v — V', 0). Consequently,
the Laplace-transform-based method cannot be applied.

B. Transition density with correction for two-cycles

We want to compute 7j;uu (t]T, v). The trajectory before
the jump at time v is not taken into account and so only
durations starting from time v matter:

leimm’(t|Ts V) = leimm’(t — vt —v,0). (52)

Therefore, we need to determine T"j‘ imme (X)) 1=
Tjjimm (x]y,0), 0 < y < x. There are three cases, depending
on whether (m" — m — i) is a two-cycle or not.

(i) In the first case, m’ # i, and there is no memory effect
due to two-cycles. The density reads as before

Tjjimm (x1y) = Tji(x — y), (53)

where the right-hand side is the one from the modeling for
DAGs.

(ii) In the second case, (m’, m) = (i, j) and we have the
situation depicted by Fig. 10. The density cannot be written in
terms of the one obtained for acyclic graphs.

(iii) In the third case, m’ =i but m # j, as shown in
Fig. 11, and again, we do not have a reduction like in Eq. (53).

By definition, T'jjipmm (x]y) = Tjjimm (x]y, 0) with x = —
v and y =t —v. In the following, the letters ¢, 7, v will
indicate absolute times, whereas x and y are durations. We
will keep both in order to avoid having to assume a jump a
time 0. As before, in the second and third cases, we will write

Timm (X]y) = (1) + (2), (54)

where the first term corresponds to a jump at the end of the
waiting time on the node, whereas the second term is for the
jump of a trapped walker. The computation of both terms
requires us first to determine the probability for an edge to

FIG. 11. Jump times and edges corresponding to the jumps in the
transition density T, (¢|t, v). The arrows are labeled by the jump
time. Here, m and j are assumed to be different nodes. Not all out
neighbors of node i are represented, although they would influence
the transition density.

v t

T

052307-9



PETIT, GUEUNING, CARLETTI, LAUWENS, AND LAMBIOTTE

PHYSICAL REVIEW E 98, 052307 (2018)

be (un)available some time after having (not) jumped across
it.

1. Corrections on p = (U)/({(U) + (D))

When the walker returns to a node after completion of a
two-cycle, the next destination node depends on the choice
previously made from the same location. First, the outgoing
edge that was selected at the beginning of the cycle, say
i — j, has an increased probability [with respect to p =
(U)Y/((U) + (D))] to still be available. The smaller the time
y = t — v to go through the cycle and the subsequent walker’s
waiting time, the more pronounced this effect. Second, the
converse is also true for any edge, say i — j’, that wasn’t
selected. Not having been chosen in the past indicates a higher
probability to have been and still be down some short time
later. In the main body, we present the derivation for the first
effect,

pi(s,v) = P{i — jisupats |jumped across it at v}, (55)

whereas Appendix C contains the computations for the second
effect quantified by

piT(s, v) = P{i — j'isup at s |jumped across i — j at v}
(56)

for some s > v and j’ # j. Let us focus on the first effect,
measured by the difference between p*(s, v) and p. Observe
that this function only depends on the difference s — v. Let
us define §;, the probability that the jump i — j at time v
was done at the beginning of an up time, that is to say, the
walker was frustrated at the time of the jump. Observe that we
do not know the effective waiting time on the node before
the jump (a longer waiting time would have made a jump
after a frustration period more plausible). Hence, assuming
no memory beyond the last two jumps we have

G = (1 —p)"l (57)

Let us also define
Ui(x) = GUx) + (1 — )% (x),

the density of the remaining up time of edge i — j after
the jump at time v was performed, where % is computed
similarly to (21): % (x) = 1/(U) x [°U(x")dx’.

Remark 6. The value of g; is irrelevant in Eq. (58) if U is
an exponential density, because then U = % . In that case, U;
does not depend on the strength of node i in G and we will
drop the node-related index.

As illustrated by Fig. 12, we can write

x>0, (58

pi(s,v) = / Ui (r)dr + / @ D))
s 0

s —V

oo S—V
x/ U(t)dtdr+/ (U; * DxU % D)(r)
s—(v+r) 0

o0
x/ U@)dtdr+---. (59)
s—(v+r)
Introducing the notation for repeated convolutions
fRrrseg® = fuiinfrgx.. . xg, ki kyeN, (60)
——— ——

k, factors k, factors

i — 7]

up

down

time

i — 7
up

downﬁ D

time

up

down

time

FIG. 12. Parameters involved in the computation of p;(s, v).
Panels (a)—(c) represent respectively the first, second, and third terms
in Eq. (61). The three corresponding scenarios are the following:
either edge i — j remains up since time v and up to time s, or it
switches states twice before s, or it does so exactly four times on the
interval (v, s).

Eq. (59) has the compact form

oo
<
s—(v+r)
(%)

Remark 7. In contrast with p = GEIE the expression for
p; depends on the whole distribution of U, and not only on its
mean. Also note that it only depends on the difference s — v,
which is the time since the previous jump. See Fig. 14 for a

numerical illustration in the all-exponential case.

oo 0 s—v
pi(s,v) = / Ui (r)dr + Z/ (U; % D**D 5 U*)(r)
s—v k=0 0

U(t)dtdr. (61)

2. Second case: Tj;j;i(t|T, v)

Having computed the necessary corrections on p, we
are now in position to further develop Eq. (54). The first
term—the walker is not trapped when he jumps—reads

Vil
1 Vil =1
(1) liji) = ’(pl(t - T) _p,*(ts U)( )
(liji) kZ:]:k k—1

X (piT(tv ) - P,T(l, p))lVil=k
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up
down D D
L L L LN
T T T 7
v v4+r 5 .t time
T © walker
ready

“to jump

FIG. 13. Parameters involved in the second term of T};;; (¢|z, v)
given by Eq. (63). The figure corresponds to the term with k = 1,
that is to say the first up time is followed by k = 1 down-up cycle.

_ pr(t,v)
pla,v)

1= (1= pl@, v)
l/fi(f—f)|: A .

(62)

We notice that this expression is the same as for the acyclic
graphs, up to a correction factor p;(t, v)/ pj(t, V), and after
having replaced p by p;[ (t,v).

Using the same approach as for p}, we obtain the second
term of Tj;;;(t|t,v) corresponding to a walker who was
trapped before making the jump:

t < s—v
@)y = f Yi(s — r)[z / (U;  D* % U)(r)
T k=0 0
xD(t —v— r)dr:|
x [(1 = pl(s,v)P{w > 1 —s)VI"" ds.  (63)
The parameters are illustrated by Fig. 13. Relying on the

previous computation of pf(s, v), expression (63) simplifies
to the following one:

@)iijiy = / Yi(s — )1 = pi (s, v)(t —5)

X [(1 = pl(s,v)P{w > 1 —s}]VI1" ds. (64)

In this alternative form, (1 — p}(s, v))Z(t — s) refers to the
probability that edge i — j is down at time s, and will remain
so exactly until time # when it becomes available to the jumper
again.

3. Third case: Tj)imi(t|T, v) with m # j
The first term of the transition density in the case of Fig. 11
is given by
D)jjimiy
= ;(t — ©)[p/(t, v) x P{choose j | (i — m) is up}
+ (1 — pf(z,v)) x P{choose j | (i — m) is down}],
(65)
where the two still undetermined probabilities are for events
at time t. We can write
P{choose j | (i — m) is up}

[Vil=2

Vil =2
k=0 k

1
k+2
= |Vi|pj([» v)+(1— P,T(f, p))lvil=1
VIVl = Dplw)

x (pl(t, v (1 = pl(z, vy)lVil=+=2

(66)

and

P{choose j | (i — m) is down}

[Vil-2
t 3 Vil —2>
i(t7 U) (
g k=0 k

1
k+1
1—(1— pl(z,v)""!
- Vil — 1

x (p (1, V)F(1 = plz, v))ViI=F=2

, (67)

where the final forms (66) and (67) were obtained as in
Appendix C using identity (C8).

The second term can be shown to have the same expression
as in Eq. (64).

C. All-exponential case of Table I

We turn to the case where the three densities are exponen-
tial: ¥ has rate u, U has rate n, and D has rate A. Wherever
possible, we drop the index of the node dependence, such that
for instance E; becomes p*. Let us recall that in this case,
% =Uand U =U.

The expression of p* given in Eq. (61) and the second
term of the transition density given in Eq. (63) both require
us to compute the density U* « D**, which corresponds to
the sum of the random variables X g‘) + X %‘) where X 8‘)
(respectively X (Lf)) is the sum of k exponential random vari-
ables with parameter n (respectively A). It is well known that
X ~ Erlang(k, n), and X'}’ ~ Erlang(k, 1). Using [37] for
the convolution of Erlang densities, we find that the density of
Xg() + X%() is given by
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probability p*(s,v)

9 | | | | |
0 0 0.5 1 1.5 2 2.5 3

duration s — v

FIG. 14. Evolution of p*(s, v), i.e., the probability for an edge
to be in the up state at time s knowing it was available at time v,
in the all-exponential case for various ratios of /. The black series
with square markers and the red one with triangle markers come from
Eq. (69), whereas the blue series in the middle with circle markers
corresponds to (70). In all three cases, the horizontal solid or dashed
lines indicate the corresponding values of p = (U)/({U) + (D)) that
assumes no prior information.

(nk)" (- 2k = —1
fX$)+X<[1)v>(f) )ZkZ[]—l)'< k—j >

x (A —n)Y{e™" + (—1>f'e‘“}}rf“ﬂm+<t>.

(63)
It follows that (61) becomes
oo S s—v
pr(s,v) = / U(r)ydr + Z/ fxijk+l)+x(11;+l)(r)
s—v k=0 0
oo
X f U(t)dtdr. (69)
s—(v+r)

Note again that index i is now needless. The above series can
be truncated to allow for a practical computation. In the case
that U and D share the same rate parameter A, this expression
further simplifies. A direct computation yields

pr(s,v) = e cosh[A(s —v)] = 1(1 + e M)y,

(70)

The second term being positive is the increase with respect
to p = 5, and it is smaller for a higher rate A and for larger
s — V. ThlS is because more up or down cycles will decrease
the memory effect on the state of the edge. A numerical
illustration of (69) and (70) is provided by Fig. 14.

On Fig. 15 the correctness of the first correction by p*
on p is assessed through comparison with a Monte Carlo
simulation. In order to evaluate it independently from the

1|212 t|7,v) Analytic
Tja1 t|7,v) Analytic

n WO ONE

—b= T}y, (t|7, v) Monte-Carlo

< T3j912(t|7, v) Monte-Carlo
s T (it v)
(t|r,v)

transition density

FIG. 15. Validation of the analytical formula for the memory
effect related to p*(-,-) in the conditional transition density. The
simultaneous effect of p?(-, -) was annihilated by replacing it by p
in the formulas of the density (red curves), which is therefore written
with the superscript * in the legend. The Monte Carlo simulation
of 5000 independent trajectories (blue series with triangle markers)
was designed so as to allow a memory effect solely on edge 2 — 1
of the graph appearing as an inset, thereby neglecting the effect
corresponding to pj . The rate of the walker is u = 8, the edges are
characterized by the rates A = 1 = and = 0.02 = 2v.

concurrent correction due to pj, we have set pl.T (-,-)=pin

the formulas of the conditional transition density, which is
then written as T}, (¢|7, v) to highlight the change.
Let us consider the second correction on p = (U)/((U) +

(D)), which is quantified by piT . Assuming again the same rate
for U and D, it follows directly from Egs. (C13) and (C3) that

pl(s,v) =1 — Lem 26 (1)

when we set | V;| = 2, a choice that maximizes the importance
of this effect. The second term represents the difference with
respect to p = 5 = 24;, and is such that P, '(s,v) = §; if s —
v — 0+andpi(s,v)—> pifs —v — +oo0.

Combining the effects of p* and p;[ results in Fig. 16 where
it appears clearly that a shorter time to go around the cycle
2 — 1 — 2 induces a stronger bias in favor of another jump
along 2 — 1 instead of 2 — 3.

A validation of the comprehensive analytical framework
through a simple numerical example is the purpose of Fig. 17.

V. NUMERICAL METHODS

We solved the Volterra vector integral equations (9) and
(50) by applying a trapezoidal scheme for discretization of
the integrals, by a method described in Ref. [36]. The initial
condition q'?(¢) = n(0)8(¢) arising in these equations was
approximated using a half-Gaussian-like positive function
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probability to stay on node ®9;9

FIG. 16. Stronger (empty blue triangle markers) vs weaker (filled
black triangle markers) memory effect depending on the time to
go through a cycle. On the left vertical axis, one sees that the
differentiation between the jump densities towards nodes 1 and 3,
respectively, is more pronounced when the duration T — v is smaller,
and decreases with . The resulting probabilities to stay put on
node 2 are plotted in red on the right vertical axis. The empty circle
markers correspond to a strong memory effect, and indicate a lower
probability to remain for a long time on the node before a jump,
when compared to the series with filled red circle markers (weaker
memory). The graph is the one of Fig. 15. The rates are u = 8,
n=1=2Xx, and v = 0.5, v =0.49 for the strong effect, whereas
7 = 0.5, v = 0.01 in the other case.

8. (t) parametrized by a small parameter €, such that

o0
4 (1) ~ n(0)5:(1), / Se(dr=1.  (72)
0

The numerical method uses Monte Carlo simulation to deter-
mine the probabilities n(¢) by averaging over a large set of
realizations. Each trajectory of the walker corresponds to a
new realization of the walker’s waiting times and of the up
and down time of the edges. The time interval [0, T) of the
simulation is discretized according to some partition 0 = 7y <
t) <--- <t, =T. The probability for the walker to be in
some node over some time window [#, #x+1] iS approximated
by the mean over all simulations, of the fraction of time spent
by the walker on that particular node. This is the same method
as in Ref. [22].

VI. CONCLUSION

A very common assumption in the study of dynamical
processes on networks is to take only the direction of the
edges and their weights into account. Accordingly, one often
assumes that temporal events on the edges occur as a Poisson
process. An important contribution of the field of temporal
networks is to question this assumption and to propose more
complex temporal models, including renewal processes with
arbitrary event-time distributions. Yet, in a majority of works,

1 T T T T T T
M-C node 1
0.9 M-C node 2

T T
—— DAG node 1
—— DAG node 2 | |
M-C node 3 --- Mem node 3 —— DAG node 3

08l M-C node 4 --- Mem node 4 ——DAG node 4 |

--- Mem node 1
--- Mem node 2

04+

probability n;(t)

0.3+

0.2

0.1,

FIG. 17. Numerical validation of the analytical framework
(dashed lines) accounting for the last-two-cycle memory effect.
The Monte Carlo simulation (shading) results from the average of
4 x 10* independent trajectories of a single walker. The shaded
areas determine an interval centered around the mean, of width
equal to twice the standard deviation. In this simulation, the walker
always starts in node 2 of the graph in panel (d). Due to the cycles
effect, the increase of n;(¢) for node 1 [inset (a)] is much slower
when compared with the curve resulting from the transition densities
valid for acyclic graphs (solid lines). Indeed, the memory effect
comes into play only after (and if) the walker has completed the
sequence 2 — 3 — 2. This effect then acts in favor of node 4, for
which the difference between the actual probability and the DAG
approximation is less dramatic [inset (b)]. Also observe that the
memory effect tends to bring the curves corresponding to the two
nodes belonging to the cycle closer together [nodes 2 and 3, inset
(c)]. By the same mechanism, the convergence of n,(¢) and n3(t) to
0 is notably slower. The dashed series resulting from the analytical
modeling with corrections are virtually indistinguishable from the
Monte Carlo ones, which shows the effectiveness of the developed
framework. The ratesare u = 8, n =1 = A.

one considers, implicitly or explicitly, instantaneous inter-
actions. The main purpose of this work was to incorporate
edge duration in stochastic models of temporal networks, and
to estimate its impact on random walk processes. We have
derived analytical expressions for various properties of the
process. As we have shown, those are exact on DAGs, and
we have presented corrections due to the presence of cycles
on the underlying network.

This work is mostly theoretical but it has plenty of potential
applications in real-life systems. Take contact networks and
their impact on epidemic or information spreading as a canon-
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FIG. 18. A disruption-tolerant network based on mobile wireless
sensors. The top schematic represents three independent bus lines,
where two bus stops are shared by two different lines. The underlying
network of allowed connections is given in the bottom graph.

ical example. For instance, recent research on empirical face-
to-face network data collected via Bluetooth was performed
by the authors of [30]. They looked into the predictability of
the interactions between a large group of individuals taking
part in the study. It is representative that their work would
mostly rely on data, and doesn’t go as far as spreading
processes, where our modeling would come in handy. Indeed,
in such context the underlying network can prove acyclic,
at least at short time scales where few contacts are actually
active, thereby simplifying the use of our formalism. But
more importantly, the durations of availability time spans
of the edges are inevitably finite and, as results from [38]
and a wealth of publications relying on data collected by
the SocioPatterns initiative [39,40], they feature a long-tailed
distribution. This heterogeneity prohibits a well-defined time
scale for the interactions, but can be captured by the pro-
posed framework. In engineering, practical applications in-
clude peer-to-peer and proximity networks of mobile sensors
with wireless connections (cast under the framework of DTN:
disruption or tolerant networks). A good example would be
the diffusion of buses in a city that can communicate only
when they halt at the same bus stop [34] (see Fig. 18). Given
the central role of random walks in the design of algorithms on
networks, our results also open the way to generalize standard
tools such as PageRank for centrality measures and Markov
stability for community detection [12].

Yet, in our view, the key message of this paper is its em-
phasis on the importance of three time scales to characterize
diffusion on temporal networks, one for diffusion and two
for the edge dynamics. Future research directions include a
more thorough investigation on when certain time scales can
be neglected over other ones, hence leading to simplified
mathematical models, and models including a fourth time
scale, associated to the possible nonstationarity of the network
evolution, for instance due to circadian rhythms.

APPENDIX A: TRANSITION DENSITY FOR DAGS
IN CASE 2 OF TABLE I

When each up time of a link is instantaneous, (U) = 0,
p = 0 and the first term of 7; (¢, ) vanishes. The second term
yields

t
T,»,-(t,r)=me“f‘“vf"/ eHFMVIDY g (A1)

T

If o = A|V;], the integral equals t — v and Tj; (¢, T) = Au(t —
T)e #=7)_ Otherwise, a direct calculation yields

MU (prntt=n) _ ilVile-o)y

Tii(t,7) =
! MVil—pn

(A2)

Observe that taking the limit 4 — oo in the above expression
yields

1
Tji(t, T) = —A|V;]e MVl
ji(t,7) A Vil

(A3)
where the second factor is the density of the minimum of
|Vi| independent exponential densities with rate A. We have
recovered case 1. Starting from (A2) we have

;(t,7) = AV;]e 07T — e MVIE=my - (A4)

MVil =

The case that u = A|V;] is straightforward.

APPENDIX B: TRANSITION DENSITY FOR DAGS
IN CASE 3 OF TABLE I

When the up times of the links follow an exponential den-
sity £(n), we have p = ﬁ and the first term of Tj; (¢, 7) =
(1) + (2) reads

1
(1) = pe 0= (A= p)M,

(B1)
whereas the second term (2) in the more general case that p #
AlV;| is given by (A2) multiplied by (1 — Vil Following a
direct calculation, the probability to stay on node i for a time
of at least  — T now reads

1

@1, 7)=1-(1 —p)'Vf'(l -
MVil =

x ()\|‘/i|e—/1(t—f) _ Me—?»IV[(l—T)))

—[1 = (1= p)" N — e =), (B2)

APPENDIX C: COMPUTATION OF pf (s, v)

We consider a two-cycle i — j — i of the underlying
graph G where node i has at least one neighbor j’ other than
Jj. For the sake of compactness, we compute pT(s, v)—the
probability that edge i — j’ is down at time s knowing it
wasn’t selected by the walker at time v in the past—under
the assumption that the durations U (¢) and D(t) follow the
same distribution. The reasoning readily applies without this
assumption.

Let E; and E, denote respectively the events that i —
j is up at time s and at time v. Let E, and E| be the
corresponding events for edge i — j’ and let also F), be the
event that the walker jumped through i — j at time v. We
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write A the complement of event A, such that P{A U A} = 1
and P{A N A} = 0. Using the law of total probabilities for
conditional probabilities we have

pl(s.v) = P{E]|F,)}
= P{E,NE||F,} + P{E, N E|F,)
= P{E(|E, N F,}P{E|F,}
+ P{E,|E, N F,}P{E]|F.). 1)
Now, using the assumption that the up and down
times follow the same distribution, P{E.|E,NF,}=
pi(s,v) and P{E;|E_{)ﬂ F,} =1— pf(s,v). Also observe

that P{E_;lF,,} =1— P{E||F,}. So it only remains to com-
pute

pi == P{E,|F.}, (C2)

the probability for an edge to be available at some time,
knowing a jump was performed through a competing edge at
that time. This would yield the final expression

pls,v) = Q@i — Dpjs,v) = pi+ 1. (C3)

Let H, be the event that the jump at time v happened after the
walker was trapped. Recall that, per (57), we have P{H,} =
(1 — p)!"il = g;. Using again the law of total probabilities,

pi = P{E\|F, N H,} P{H,|F,}
T
+ P{E||F, N H,} P{H,|F,}. (C4)
—_—
=1-g;
In the second term,
P{E/NF,NH,)}
P{F, N H,}

where the denominator is decomposed as

P{F,NH,) = P{F,NH,|E,}P{E}}
+ P{F, N H,|E}}P(E]} (C6)

P{E,|F,NH,} = ; (C5)

with P{E/}=p=1— P{E_\’}}. Moreover, let E® be the
event that k out of |V;| —2 out neighbors of node i are
reachable at time v, so that

P{F, N H,|E,} = P{F,|E,}
[Vil=2

= > PIRIEX nE)P(EX|E})
k=0

[Vil-2

1 Vil =2\ , .
= _ 1— |Vi|-2—k
Z‘Dk+2x( k )p( 2

k=0

|Vil=2
Vil — 2) I [Vil—2—k
= E —=p (1=p)" . (CD)
k_0< ko k2

Using the same identity that allowed us to obtain (62),

n
—-1\1 1-(1-p)y
Z(n )—pk(l_p)n_kz ( p) . n21’
P k—1/k n
(C8)

one eventually finds that the right-hand side of (C7) reads
Vilp + (1 = p)Vi-!

IVil(Vil = Dp
Similarly, for the remaining factor of (C6) we have

P{F,NH,|E}}
[Vil-2

= Y PR, NHIEY NE)PEV|E])
k=0

=P{F,NH,|JEYNE}x P{EVE}

P{F,NH,|E}} = . Vil =2 2..(C9)

=p =(1-p)lil=2
[Vil-2
+ ) PR NHIENNE]} x PLEPIE])
k=
! =1/(k+1)p =(W:kl—2)pk(1,p)w,v\—2

[Vil-2
|Vi|_2> L Vil—2—k
=y —— = p)VIE(Cl0)
k_0< k k+1
and relying again on (C8),
iy L= (=)
P{F,NH,|E} = T Vil 2 2. (CI1)

Inserting (C9) and (C11) in Eq. (C6) leads to writing (C5) as
Vilp+ (1 =p)" =1

PlE/|F,NnH,)} = o
(2 b= v
and eventually (C2) becomes
Vi 1= p)Vil =1
5, = [Vilp + ( 12) Cwis2 13

Vil =1

The expression of pj (s, v) results from inserting (C13) into
(C3).
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