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Faculté des Sciences

Rue de Bruxelles, 61, B-5000 Namur, Belgium

Elaboration of quantum chemistry approaches for the simulation and the

interpretation of vibrational Sum Frequency Generation signatures of

functionalized surfaces

by Conrard Giresse Tetsassi Feugmo

Abstract

In this thesis, I developed an approach to simulate and interpret the Sum-Frequency Generation

(SFG) spectra of molecules adsorbed on different substrates. Vibrational SFG spectroscopy is

a technique based on nonlinear optics to characterize surfaces. This approach encompasses two

steps. First, the molecular properties (vibrational frequencies, IR and Raman quantities) are

evaluated using methods implemented in standard quantum chemistry programs. Second, the

macroscopic optical responses (the second-order nonlinear optical susceptibility tensors) of the

adsorbate on its substrate are determined within the three-layer model of the interface. To carry

out this latter step, a homemade Python program, named “SFG-from-QM”, has been elaborated

from scratch and the necessary equations have been implemented in it to account for the pa-

rameters of SFG measurements. This program can be installed on different operating systems

(Mac OS X, Unix, Linux, Windows). The particularities of the approach consist in i) including

a fragment of the substrate in the system during the quantum chemistry calculations. In par-

ticular, the ONIOM embedding scheme has been employed; ii) performing the calculations of

molecular properties using first principles methods. Moreover, though most of these calculations

are carried out at DFT levels, for the first time SFG spectra have been simulated using molecular

properties evaluated at the CCSD level. These latter constitute reference data to substantiate

DFT calculations. This approach has been illustrated in the case of organic monolayers (alkyl

and alkylsilane chains) covalently bonded to inorganic surfaces [H−Si(111) and SiO2] and for dif-

ferent polarization combinations (ppp, ssp, and sps), showing a good agreement with experiment

and therefore demonstrating its ability to unravel the surface structure. Moreover, equations

for SERS enhancement factor have been derived and applied in the case of thiophenol molecules

adsorbed on gold surfaces, highlighting its dependency on the nature of the adsorption site.
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Élaboration d’une approche de chimie quantique pour la simulation et

l’interprétation des signatures vibrationnelles de Génération de Fréquence Somme

de surfaces fonctionnalisées

par Conrard Giresse Tetsassi Feugmo

Résumé

Au cours de cette thèse, j’ai développé une approche pour simuler et interpréter les spectres de

génération de la fréquence somme (SFG) de molécules adsorbées sur différents substrats. La

spectroscopie vibrationnelle SFG est une technique qui s’appuie sur l’optique nonlinéaire pour

caractériser des surfaces. Cette approche comprend deux étapes. Tout d’abord, les propriétés

moléculaires (fréquences de vibration, intensités IR et Raman) sont évaluées à l’aide de méthodes

implementées dans les programmes standard de chimie quantique. Deuxièmement, les réponses

optiques macroscopiques (le tenseur de susceptibilité optique nonlinéaire de second ordre) de

l’adsorbat sur son substrat sont déterminées grâce au modèle à trois couches de l’interface. Pour

réaliser cette dernière étape, un programme en Python fait maison et nommé “SFG-from-QM”,

a été élaboré complètement et les équations nécessaires y ont été implémentées pour prendre

en compte les paramètres d’une mesure SFG. Ce programme peut être installé sur différents

systèmes d’exploitation (Mac OS X, Unix, Linux, Windows). Les particularités de l’approche

consistent à i) inclure un fragment du substrat dans le système lors des calculs de chimie quan-

tique. En particulier, le schéma d’incorporation ONIOM a été utilisé; ii) effectuer les calculs des

propriétés moléculaires en utilisant les méthodes des premiers principes. De plus, bien que la

plupart de ces calculs soient effectués en recourant à la DFT, des spectres SFG ont été simulés

pour la première fois en utilisant des propriétés moléculaires évaluées au niveau CCSD. Ces

derniers constituent des données de référence pour corroborer les calculs DFT. Cette approche

a été illustrée dans le cas de monocouches organiques (châınes d’alkyle et d’alkylsilane) liées par

covalence à des surfaces inorganiques [H−Si(111) et SiO2] et pour différentes combinaisons de

polarisation (ppp, ssp, et sps), montrant un bon accord avec l’expérience et démontrant ainsi sa

capacité à révéler la structure de la surface. De plus, des expressions ont été dérivées pour le

facteur d’exaltation relatif au phénomène SERS et elles ont été appliquées au cas de molécules de

thiophénol adsorbées sur des surfaces d’or. En particulier, nous avons souligné que les signatures

Raman et les exaltations dépendent de la nature du site d’absorption.
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don. Nous avons été vraiment bénis, et les bénédictions continueront à jaillir de

sa source éternelle d’amour. Il y aura des moments où nous ne comprendrons pas

pourquoi les mauvaises choses se produisent, pourquoi le mal prévaut, pourquoi

les ennuis nous envahissent, pourquoi même nous sommes ici sur terre. C’est

alors que nous devrons prier, cherchant à comprendre la grandeur, cherchant
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attitude que nous pourrons vraiment apprécier le plan divin, que nous pourrons
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Huit ans au Laboratoire de Chimie Théorique de l’Université de Namur, c’est
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INTRODUCTION

Motivations

Vibrations contain significant information on the structural, electronic and optical properties

of molecules and supramolecular assemblies. Bringing them out to light and interpreting them

allows us to understand the structure of these species as well as their organizations, their mod-

ifications following external disturbances (electrical stimuli, presence of ions, pH variation ...),

their reactivity, as well as the dynamics of their processes of exchange and energy dissipation. In

addition to traditional vibrational spectroscopies based on infrared light absorption or Raman

inelastic scattering, many other vibrational techniques have been developed over the last three

decades. Based on interactions between light and matter, they probe different facets of structures

and molecular properties. These include nonlinear spectroscopies, those involving electronic res-

onance phenomena and techniques specific to chiral structures. The Sum-Frequency Generation

(SFG) [1, 2] belongs to the first category while the resonant Raman technique [3] relates to the

second. The Vibrational Raman optical activity (VROA) [4] is specific to chiral structures.

In recent years, many works were published in which the structural and electronic properties of

chemi- and/or physi-sorbed molecules are calculated using the density functional theory (DFT)

[5]. Much less has been achieved with respect to the evaluation of molecular vibrational, electri-

cal and optical properties, such as polarizability or electronic absorption spectra. In addition,

the formation of organic monolayers covalently-bonded to inorganic surfaces is a topic of in-

tense research activity since many decades [6]. The main advantage of organic monolayers is

to add functionality to the inorganic surface via suitable adaptation of their surface proper-

ties. Indeed, these functionalized materials keep the characteristics of the bulk material (elec-

trical, magnetic, optical, mechanical and structural), while their surface properties (wetting,

passivation, biochemical affinity, etc.) are tuned through a nanosized grafting [7, 8]. Further-

more, the monolayer-modified system is a suitable template for the controlled immobilization

of biomolecules, for instance to build highly sensitive biosensing devices, including electrodes

for molecular recognition [9]. The covalent attachment can be performed via coupling reactions

between the chemically activated surfaces and molecules. Among these, silicon is one of the most

widely used semiconductors in modern technology and organic monolayers covalently bonded to

3



Introduction 4

silicon surfaces have gained much attention since their introduction [10], owing to their well-

defined structure and the possibility to introduce diverse electrical and optical functionalities to

the system [6, 11–13]. Nevertheless, the lack of control of those processes at the molecular level

might result in the formation of multilayers where the molecules have lost active conformation

or orientation [14–16]

My project concerns (simply resonant) SFG spectroscopy. Since its first observe by in 1987 by

Zhu, Suhr, and Shen [17], SFG has been developed to become a powerful spectroscopic technique,

currently employed in a broad range of multidisciplinary research fields, including surface science,

materials chemistry, biophysics, and electrochemistry. Indeed, its intrinsic surface specificity and

extreme sensitivity makes SFG a technique of choice to probe systems at their molecular scale.

The SFG activity appears in the vicinity of the vibrational resonances, i.e. when the frequency

of the infrared excitation wave (IR) corresponds to a vibrational transition (ω = 2πν = ∆E/~).

In the harmonic approximation, the amplitude of the transition is related to a vibrational first

hyperpolarizability

βijk ∝
3N−6∑
p=1

(
∂αij
∂Qp

)
e

(
∂µk
∂Qp

)
e

ωp − ωIR − iΓp
, (1)

whose elements in the numerator also determine the activities in IR and Raman spectroscopy.

This expression informs us that a vibration mode will be active in SFG if the mode is simul-

taneously active in IR and Raman. More generally, this condition can only be fulfilled if the

molecule is not centrosymmetric and its organization on the macroscopic scale is also non-

centrosymmetric. These conditions of symmetry make SFG a selective and interface-specific

vibrational spectroscopy (the SFG response of an isotropic medium is zero). Then, SFG has

been used to analyze interfacial structures, providing qualitative and quantitative insights into

surface coverage [18–20], composition and environment [21], as well as molecular order and

orientation [20, 22–24].

Contributions

Revealing (supra) molecular structures from experimental spectra is a challenge and often the

extracted information remains very cursory in comparison to the complexity and richness of

the signal. Reaching a deep level of interpretation is therefore a challenge to which theoretical

simulations and more particularly those derived from quantum mechanics can contribute. In

this last decade, research in the Theoretical Chemistry Laboratory (UNamur) was carried out

in this framework and focused on the development of methods for simulation and interpretation

of vibrational spectra, Raman, hyper-Raman, Raman resonant, VROA [25] and also SFG [26]

in collaboration with the Laser and Spectroscopy Laboratory (UNamur). Thus, recent work has
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shown how the experimental/theoretical amalgam provides access to structural information on

the organization of self-assembled organic layers [22, 27].

My doctoral thesis aims at developing quantum chemistry approaches to simulate and inter-

pret vibrational SFG signatures of functionalized surfaces with the particularity of i) including

the substrate in the system during the calculations; ii) performing the simulations with first-

principles calculations. My work will lead to the development of powerful tools for simulating

and interpreting SFG spectra and the implementation of a new computational program to im-

prove the level of analysis. My program can therefore be used in the areas of functionalized

surface design. From a simulation point of view, the approach that I develop i) includes the

characterization of molecular responses at the quantum level, ii) takes into account the opti-

cal properties of the medium by a three-layer model [The interface and the two media (bulk)

it separates] determining the Fresnel factors and iii) evaluates the macroscopic response (the

second-order susceptibility), by a sum on the different molecular components.

My thesis is divided in two parts. The first part consists of five chapters and is dedicated to

the theoretical background. Indeed, in the first chapter, we derive explicit expressions for the

response functions (electric susceptibilities) that describe the linear and nonlinear interactions

between a system and an external electric field. In the second chapter, I review the basic concepts

of electromagnetic wave propagation in linear and nonlinear materials (Fresnel formula). Then,

I derive the expressions of the molecular first (polarizability) and second-order (hyperpolariz-

ability) response functions through use of the density matrix formulation of quantum mechanics.

These molecular response functions are used to give the expressions of the macroscopic response

(the nonlinear optical susceptibility). Chapter 3 is dedicated to the vibrational spectroscopies.

It starts by a quick review on molecular vibrations and the harmonic approximation. Then, I

describe the basic theoretical aspects of IR, Raman, and SFG spectroscopies. The fourth chap-

ter focus on the quantum chemistry background. The general framework of the Schrödinger

equation and the Hamiltonian operator are presented, as well as the Hartree-Fock, the Coupled

Cluster, and the Density Functional Theory approximation methods. Finally, in the fifth chap-

ter I describe my approach and the homemade program developed for the simulation and the

interpretation of SFG signatures.

In the second part, Chapters 6 to 9, results are presented under the form of the corresponding

publications. Given that the SFG intensity is directly related to the IR and Raman activities,

I start by some simulations of IR and Raman signatures of aromatic thiols adsorbed on small

gold clusters (Chapter 6). Then, Chapters 7 and 8 report SFG simulations on alkyl chains

covalently bonded to hydrogen-terminated Si(111) substrates and alkylsilanes adsorbed onto

amorphous silica surfaces. Considering that all the previous calculations were done at the DFT

level, Chapter 9 presents the first SFG spectra based on molecular properties calculated at

the coupled cluster single and double (CCSD) level of approximation, which are simulated for

interfacial model alkyl chains.
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Chapter 1

Radiation-Matter Interactions:

Nonlinear Optics

The field of Nonlinear optics (NLO) is concerned with understanding the radiation-matter in-

teractions. When the material response, i.e. the electric polarization ~P , is a nonlinear function

of the applied electromagnetic field ~E of the light.

P

E

(a) Linear dielectric medium

P

E

(b) Nonlinear medium

Figure 1.1: The relation between the polarization vector and electric field

Indeed, if the incident field is weak and the medium isotropic, the induced dipoles are propor-

tional to the electric field (Fig. 1.1a) and aligned along this field. The material behaves as a

linear dielectrics. The dipole moment per unit volume or the polarization ~P of medium is then:

~P ≡ ~P (0) + ~P (1)

≡ ~P (0) + χ(1) · ~E (1.1)

where ~E is the applied field, ~P (0) is the static polarization, and χ(1) the first-order susceptibility

(linear).

11
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On the contrary, if the incident field is strong, the dipoles do not vary linearly with the applied

field (Fig. 1.1b). ~P is no more parallel to ~E and can point in any direction, depending on the

direction of the electric field and on the material anisotropy. To account for this, the susceptibility

(which relates ~P and ~E) must be a tensor. The polarization of the medium ~P is then:

~P ≡ ~P (0) + ~P (1) + ~P (2) + . . .

≡ ~P (0) + χ(1) · ~E + χ(2) : ~E ~E + . . . (1.2)

where χ(2) is the second-order susceptibility characterizing the nonlinear response of the medium.

In order to understand wave propagation in nonlinear media and the resulting phenomena, one

must solve two coupled problems: (i) the radiation of an electromagnetic field by the oscillation

of the charges and the nonlinear response of materials to the fields; (ii) how the various multipole

moments are affected by light depending on the variation of the electric field from point to point

in the material. These require an understanding of both the nonlinear Maxwell equations as well

as the mechanisms of the nonlinear response of the material at the quantum level.

In this chapter, we shall derive explicit expressions for the response functions that describe the

interactions of a system and an external electric field, based on the lecture notes of Kuzyk [1] and

the book of Barnerjee [2]. Then, we review some of the properties of optical waves propagating

through a medium. To this end, we enunciate Maxwell’s equations and derive the wave equations

in the case of Sum Frequency Generation (SFG). In addition Fresnel formulas are generalized

for the three layer model.

1.1 Response functions

When the applied electric field strength is much smaller than the electric fields that hold an

atom or molecule together the nonlinear properties of a material are described by expanding the

polarization in power series of the electric field. For a pure electric case it reads:

~
P ( ~ )E = ~P (0)( ~E) + ~P (1)( ~E) + ~P (2)( ~E) + . . .

~P =
∞∑
n=0

~P (n)(~r, t). (1.3)

In the time domain formulation, i-component of the first-order polarization reads

P
(1)
i (~r, t) = ε0

∫
space

d~R

∫ +∞

−∞
dτ T

(1)
ij (~r, t; ~R, τ)Ej(~R, τ), (1.4)

where Tij(~r, t; ~R, τ) is the response function, which carries all of the informations that relate the

applied electric field to the polarization:
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• Tij(~r, t; ~R, τ) is a tensor: it accounts for the anisotropy of the material.

• The polarization at one point ~r of the material is determined by the fields at other points
~R of the material, thus Tij(~r, t; ~R, τ) is non local and the integration is carried out over the

whole space.

• The polarization at a given time t depends on the electric field at previous times τ , thus

it is also “non local” in time and retardation effects are accounted for by performing the

integration over time.

Let’s consider only the temporal dependence at a particular point in space. In addition, assuming

that the response function is local: i.e. the polarization at a point ~r depends only on the value

of the field at this point ~r and the materials is homogeneous,

P
(1)
i (~r, t) = ε0

∫ +∞

−∞
T

(1)
ij (t, τ)Ej(~r, τ) dτ. (1.5)

This equation is characteristic of a linear system whose response to an impulse δ(t− τ) is equal

to T
(1)
ij (t, τ). If the system is time-invariant, T

(1)
ij (t, τ) = T

(1)
ij (t− τ), then Eq. (1.5) reads

P
(1)
i (~r, t) = ε0

∫ +∞

−∞
T

(1)
ij (t− τ)Ej(~r, τ) dτ. (1.6)

If we assume that T (1) obeys the causality condition T
(1)
ij (t−τ) = 0 for τ > t (i.e. the polarization

is only possible after the application of the field) and defining τ ′ = t− τ , Eq. (1.6) reads

P
(1)
i (~r, t) = ε0

∫ +∞

0

T
(1)
ij (τ ′)Ej(~r, t− τ ′) dτ ′ (1.7)

This is the polarization of a material at time t due to the fields acting locally over all times in

the past.

1.1.1 Frequency domain of response functions: electric susceptibili-

ties

Often it is more convenient and appropriate to consider the polarization in the frequency domain

[1]. The Fourier transforms of the electric field are defined by:



Chapter 1. Radiation-Matter interactions: Nonlinear Optics 14

Ej(t) =

∫ +∞

−∞
dωEj(ω)e−iωt, (1.8)

and

Ej(ω) =
1

2π

∫ +∞

−∞
dtEj(t)e

iωt. (1.9)

By introducing Eq. (1.8) into Eq. (1.7), one obtains

P
(1)
i (t) = ε0

∫ +∞

0

T
(1)
ij (τ ′)

∫ +∞

−∞
Ej(ω)e−iω(t−τ ′)dωdτ ′,

= ε0

∫ +∞

−∞

(∫ +∞

0

T
(1)
ij (τ ′)eiωτ

′
dτ ′
)
Ej(ω)e−iωtdω, (1.10)

= ε0

∫ +∞

−∞
χ

(1)
ij (−ω;ω)Ej(ω)e−iωtdω. (1.11)

Here we introduce the first-order electric susceptibility1

χ
(1)
ij (−ω;ω) =

∫ +∞

0

T
(1)
ij (τ ′)eiωτ

′
dτ ′. (1.12)

Then, one transforms the polarization into frequency space according to,

P
(1)
i (ω) =

1

2π

∫ +∞

−∞
P

(1)
i (t)eiωtdt, (1.13)

substituting Eq. (1.11) into Eq. (1.13) gives

P
(1)
i (ω) =

1

2π
ε0

∫ +∞

−∞

∫ +∞

−∞
χ

(1)
ij (−ωp;ωp)Ej(ωp)e−iωpteiωtdωpdt. (1.14)

Considering that

δ(ωp − ω) =
1

2π

∫ +∞

−∞
e−i(ωp−ω)tdt, (1.15)

1Throughout our text we introduce the notation χ(n)(−ωout;ωin). The negative sign on the outgoing frequen-
cies represents energy leaving the material, whereas the positive frequencies to the right of the semicolon represent
energy entering the system. This notation explicitly denotes energy conservation where,

∑
ωin =

∑
ωout.
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we obtain

P
(1)
i (ω) =

∫ +∞

−∞
ε0χ

(1)
ij (−ωp, ωp)Ej(ωp)δ(ωp − ω)dωp,

= ε0χ
(1)
ij (−ω, ω)Ej(ω). (1.16)

In the frequency domain, the linear polarization describes a simple relationship between the

electric field and the first-order electric susceptibility. The susceptibility is defined as the Fourier

transform of the response function.

1.1.2 Nonlinear response

The nonlinear response can be found with the same procedures. For the second order case, we

begin with the relationship between the contribution to the second-order polarization P
(2)
i (t)

and the response function T
(2)
ijk ,

P
(2)
i (t) = ε0

∫ +∞

−∞

∫ +∞

−∞
T

(2)
ijk (τp, τq)Ej(t− τp)Ek(t− τq)dτpdτq

= ε0

∫ +∞

−∞

∫ +∞

−∞
T

(2)
ijk (τp, τq)

(∫ +∞

0

Ej(ωp)e
−iωp(t−τp)dωp

)(∫ +∞

0

Ek(ωq)e
−iωq(t−τq)dωq

)
dτpdτq

= ε0

∫ +∞

−∞
dωp

∫ +∞

−∞
dωq

∫ +∞

0

dτp

∫ +∞

0

dτq T
(2)
ijk (τp, τq)e

iωpτpeiωqτqEj(ωp)Ek(ωq)e
−iωpte−iωqt.

(1.17)

Then, we simplify the expression by introducing the second-order susceptibility,

χ
(2)
ijk(−ω;ωp, ωq) =

∫ +∞

0

dτp

∫ +∞

0

dτq T
(2)
ijk (τp, τq)e

iωpτpeiωqτq (1.18)

The second-order polarization, then, is related to the second-order susceptibility by

P
(2)
i (t) = ε0

∫ +∞

−∞
dωp

∫ +∞

−∞
dωq χ

(2)
ijk(−ω;ωp, ωq)Ej(ωp)Ek(ωq)e

−iωpte−iωqt. (1.19)

Again, applying the inverse Fourier transform of P
(2)
i (t), one obtains
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P
(2)
i (ω) =

1

2π
ε0

∫ +∞

−∞
dωp

∫ +∞

−∞
dωq

∫ +∞

−∞
dt χ

(2)
ijk(−ω;ωp, ωq)Ej(ωp)Ek(ωq)e

−i(ωp+ωq−ω)t,

= ε0

∫ +∞

−∞
dωp

∫ +∞

−∞
dωq χ

(2)
ijk(−ω;ωp, ωq)Ej(ωp)Ek(ωq)δ(ωp + ωq − ω),

= ε0

∫ +∞

−∞
χ

(2)
ijk(−ω;ωp, ωq)Ej(ωp)Ek(ωq)dωq, with ω = ωp + ωq. (1.20)

Then, if the radiations (Ek(ωq)) are mono-chromatics like for laser, Eq. (1.20) reads

P
(2)
i (ω) = ε0χ

(2)
ijk(−ω;ωp, ωq)Ej(ωp)Ek(ωq) (1.21)

In general, the polarization of a material depends on the response functions that characterize it,

and can be expressed as

Pi = P
(0)
i + ε0

∑
j=X,Y,Z

χ
(1)
ij Ej + ε0

∑
j=X,Y,Z

∑
k=X,Y,Z

χ
(2)
ijkEjEk + . . . , (1.22)

where Pi is the i-component of the polarization. The first two terms refer to linear optics,

whereas the χ(n) (n ≥ 2) are the nonlinear terms.

1.2 Wave propagation

1.2.1 Maxwell’s equations

The fundamental theory of electromagnetic fields is based on Maxwell’s equations. In the dif-

ferential form, they are expressed as2

~∇ · ~E =
ρ

ε0

Gauss’s law (1.23)

~∇ · ~B = 0 Gauss’s for magnetism (1.24)

~∇× ~E +
∂ ~B

∂t
= 0 Maxwell-Faraday equation (1.25)

~∇× ~B − µ0ε0
∂ ~E

∂t
= µ0

~J Maxwell-Ampère equation, (1.26)

2Throughout the text, we use the bold for quantities with complex components that vary in time
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where ~E [V ·m−1] and ~B [J · A−1 ·m−2] are the electric field strength and the magnetic flux

density, respectively. ~J [A ·m−2] is the current density and ρ [C ·m−3] denotes the volume

electric charge density. ~J and ρ are the sources generating the electromagnetic fields. ε0

[8.85× 10−12 C · V−1 ·m−1] is the electric permittivity and µ0 [4π × 10−7 J · A−2 ·m−1] the mag-

netic permeability of vacuum.

Moreover, the electric and magnetic flux densities are related to the the electric and magnetic

field by the so called the constitutive relations,

~D = ε~E = ε0
~E + ~P (1.27)

~B = µ ~H = µ0
~H + ~M (1.28)

where ~H [A ·m−1] is the magnetic field strength, and ~D [C ·m−2] the electric flux density. ε

and µ are the electric permittivity and magnetic permeability of the medium, respectively. ~P

and ~M are the polarization and the magnetization of the medium, respectively. The charge and

current densities read

ρ = ρf − ~∇ · ~P (1.29)

~J = ~Jf +
∂ ~P

∂t
+ ~∇× ~M + · · · (1.30)

Here, one identifies the charge density due to the polarization of the material as ~∇ · ~P , and

the current due to the polarization and magnetization of the material as
∂ ~P

∂t
and ~∇ × ~M ,

respectively. ρf is the free charges density and ~Jf the free charges current.

1.2.2 Propagation of plane waves at the interface of two homoge-

neous media

Here, we are interested by the reflection and the refraction of plane waves at the interface of

two homogeneous media. Indeed, when a wave passes through an interface its properties can be

modified: i.e the direction of propagation, the speed of propagation, as well as the amplitude

and the phase of the field. In the following, we will discuss the first two properties, relying on

the approaches presented in the books of Barnerjee [2] and Boyd [3] as well as that presented in

the thesis of Caudano [4]. To that end, we consider a plane wave incident from a transparent

medium (Fig. 1.2) with permittivity εI and propagating in a lossy3 medium characterized by

the complex permittivity εT (ω) = ε
′
T (ω) + iε

′′
T (ω). θi, θr, and θt are the incidence, the reflection,

and the refraction angles, respectively.

3A medium in which an amount of the energy of a propagating electromagnetic wave is absorbed per unit
distance traveled by the wave
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µI , εI

µT , εT

~k
‖
i = ~k

‖
r = ~k

‖
t

~eZ

~eX

~eY

~ki
~kr

~kt

~k‖

θi

θt

θr

Figure 1.2: Illustration of Snell-Descartes Law

The electric field vectors are represented by plane waves of the form

~Ei(~r, t) = ~E
(0)
i ei(

~ki·~r−ωit), (1.31)

~Er(~r, t) = ~E(0)
r ei(

~kr·~r−ωrt), (1.32)

~Et(~r, t) = ~E
(0)
t ei(

~kt·~r−ωtt), (1.33)

where the superscript (0) indicates that the quantity is taken at Z = 0, and the propagation

vectors read:

~ki =ki(sin θi ~eX − cos θi ~eZ) = kiX ~eX − kiZ ~eZ , (1.34a)

~kr =kr(sin θr ~eX + cos θr ~eZ) = krX ~eX + krZ ~eZ , (1.34b)

~kt =kt(sin θt ~eX − cos θt ~eZ) = ktX ~eX − ktZ ~eZ , (1.34c)

with the dispersion relations:

ki = ω
√
µIεI =

ω

υI
= k0nI =

ω

c
nI , (1.35a)

kr = ki, (1.35b)

kt = ω
√
µT εT =

ω

υT
= k0ñT =

ω

c
ñT , (1.35c)

where ñT =

√
ε

(r)
T µ

(r)
T is the complex refractive index of medium “T”, ε

(r)
T and µ

(r)
T are the relative

permittivity and permeability, respectively, and k0 = ω
√
µ0ε0.
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From the Maxwell equations, four (boundary) conditions need to be maintained at the interface:

D⊥T −D⊥I = σsurf, (1.36)

B⊥T −B⊥I = 0, (1.37)

~E
‖
T − ~E

‖
I = 0, (1.38)

~H
‖
T − ~H

‖
I = ~Jsurf, (1.39)

where σsurf [C ·m−2], and ~Jsurf [A ·m−2] are the surface electric charge density and the surface

current density, respectively.

The phase matching condition at the interface (Z = 0) reads:
ei(

~ki·~r−ωit)|Z=0 = ei(
~kr·~r−ωrt)|Z=0 = ei(

~kt·~r−ωtt)|Z=0,

ωi = ωr = ωt = ω,

kiX = krX = ktX = kX .

(1.40)

According to Eq. (1.34)

kiZ =
√
k2
i − k2

X and ktZ =
√
k2
t − k2

X . (1.41)

When the medium “T” is also transparent (εT is real ⇔ ñT (ω) = nT ) and non-magnetic

(µT = µ0) the third line of Eq. (1.40) becomes:

ki sin θi = kr sin θr = k0nI sin θi = kt sin θt = k0nT sin θt (1.42)

nI sin θi = nT sin θt (1.43)

which are the Snell-Descartes law.

1.2.3 Fresnel formulas in uniform optical medium (isotopic)

The efficiency with which the incoming radiation produces a field at the interface is described

by the linear Fresnel factors; the same factors that describe reflection and refraction of light

beams at an interface. These factors describe the amplitude of the electric field, E, at various

locations relative to an incident field. In this section we review the two last properties mentioned

in Section 1.2.2, which are the variation of the amplitude of the fields at the interface as well as

that of the phase of each field. The wave vector and normal directions are commonly referenced

to the incidence plane (X-Z)(Fig. 1.3). When the electric field oscillates in that plane the light

is termed p-polarized, whereas when it is perpendicular to that plane it is s-polarized. So, the

electric field of s-polarized light is along the Y axis at the surface. In contrast, the field of

p-polarized light at the surface has a component that is along the X axis and a component that
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is along the Z axis; the balance between X and Z depends on the angle between the propagation

direction and the surface normal4.

~eX

~eZ

~eY

~Es

~Ep
p wave s wave

~Ei cos θi ~eX + sin θi ~eZ ~eY

~Er − cos θi ~eX + sin θi~eZ ~eY

~Et cos θt ~eX + sin θt ~eZ ~eY

Figure 1.3: The plane of incidence is defined by the surface normal and the propagation
direction. Polarization is defined with respect to this plane: p-polarized in the plane and

s-polarized perpendicular to the plane.

For a plane wave, the magnetic field vector is related to the electric field and the propagation

vectors by:

ω ~B = ~k × ~E =⇒ ~H =
1

ωµ
~k × ~E, k = ω

√
µε

=
ω
√
µε

ωµ
~ek × ~E =

1

η
~ek × ~E, (1.44)

~E = − 1

ωε
~k × ~H ,

= −ω
√
µε

ωε
~ek × ~H = −η ~ek × ~H , (1.45)

where ~ek is the direction of the wave vector and η =

√
µ

ε
is known as the intrinsic impedance of

the medium

Let’s suppose that the media are non-magnetic (µ = µ0) and that there is no current at the

interface ~Jsurf = 0, the bounding conditions for the parallel components (Eqs. (1.38) and (1.39))

4To obtain the relationships between the norms of the electric fields for X = 0, t = 0, and Z = 0 (|E(0)
i |,

|E(0)
r |, |E(0)

t |), one needs to insert Eq. (1.43) into the boundary conditions. But first, we need to differentiate
between two separate polarization states: p (vertical) and s (horizontal) linearly polarized light.
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read:

~E
‖
T = ~E

‖
I , (1.46)

~H
‖
T = ~H

‖
I , (1.47)

which leads to the following relationships:

H
(0)‖

i +H(0)‖
r = H

(0)‖
t , (1.48)

E
(0)‖

i + E(0)‖
r = E

(0)‖
t . (1.49)

s-Polarization

~eX

~eZ

~eY

εI , µI

εT , µT

~ki

θi

~kr

θr

~kt

θt

~Hi

θi

~Hr

θr

~Ht
θt

~Ei
~Er

~Et

p-Polarization

~eX

~eZ

~eY

εI , µI

εT , µT

~ki

θi

~kr

θr

~kt

θt

~Ei

θi

~Er

θr

~Et
θt

~Hi
~Hr

~Ht

Figure 1.4: Definition of the s-polarization (left) and p-polarization (right) of the electro-
magnetic field at the interface.

p-Polarization

The field vectors read (see Fig. 1.4):

~Ep
i = E

(0)
i (cos θi ~eX + sin θi ~eZ) ei(kiX X−kiZ Z−ωt) (1.50a)

~Ep
r = E(0)

r (− cos θi ~eX + sin θi~eZ) ei(krX X+krZ Z−ωt) (1.50b)

~Ep
t = E

(0)
t (cos θt ~eX + sin θt ~eZ) ei(ktX X−ktZ Z−ωt) (1.50c)

~Hp
i = −H(0)

i ~eY ei(kiX X−kiZ Z−ωt) (1.51a)

~Hp
r = −H(0)

r ~eY ei(krX X+krZ Z−ωt) (1.51b)

~Hp
t = −H(0)

t ~eY ei(ktX X−ktZ Z−ωt) (1.51c)
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The complex amplitudes of the incident, reflected, and transmitted fields can be represented as

~Ep
i = − 1

ωεI
~ki × ~Hp

i =
H

(0)
i

ωεI
(−kiZ~eX − kiX~eZ) , (1.52)

~Ep
r = − 1

ωεI
~kr × ~Hp

r =
H

(0)
r

ωεI
(krZ~eX − krX~eZ) , (1.53)

~Ep
t = − 1

ωεT
~kt × ~Hp

t =
H

(0)
t

ωεT
(−ktZ~eX − ktX~eZ) . (1.54)

From the Boundary conditions (Eq. (1.47)):

H
(0)
i

εI
kiZ −

H
(0)
r

εI
krZ =

H
(0)
t

εT
ktZ . (1.55)

When combining with Eq. (1.48), it then follows that:

H(0)
r =

εTkiZ − εIktZ
εTkrZ + εIktZ

H
(0)
i =

εTkIZ − εIkTZ
εTkIZ + εIkTZ

H
(0)
i , (1.56)

H
(0)
t =

εT
εI

εI (kiZ + krZ )

εTkrZ + εIktZ
H

(0)
i =

2εTkIZ
εTkIZ + εIkTZ

H
(0)
i , (1.57)

where kiZ = krZ = kIZ , and the subscripts “I” and “T” stand for the media. It is straightforward

from Eq. (1.44) that

E
(0)
i = ηIH

(0)
i , E(0)

r = ηIH
(0)
r , E

(0)
t = ηTH

(0)
t . (1.58)

Then the coefficients of reflection and transmission read:

rp =
E

(0)
r

E
(0)
i

=
εTkIZ − εIkTZ
εTkIZ + εIkTZ

, (1.59)

tp =
E

(0)
t

E
(0)
i

=
2εTkIZ

εTkIZ + εIkTZ

√
εI
εT

(1.60)

s-Polarization

The electric and magnetic field vectors reads (see Fig. 1.4):

~Es
i = E

(0)
i ~eY ei(kiX X−kiZ Z−ωt) (1.61a)

~Es
r = E(0)

r ~eY ei(krX X+krZ Z−ωt) (1.61b)

~Es
t = E

(0)
t ~eY ei(ktX X−kZ Z−ωt) (1.61c)
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~Hs
i = H

(0)
i (cos θi ~eX + sin θi ~eZ) ei(kiX X−kiZ Z−ωt) (1.62a)

~Hs
r = H(0)

r (− cos θi ~eX + sin θi~eZ) ei(krX X+krZ Z−ωt) (1.62b)

~Hs
t = H

(0)
t (cos θt ~eX + sin θt ~eZ) ei(ktX X−ktZ Z−ωt) (1.62c)

Similarly to the p-polarization, the complex amplitudes of the incident, reflected, and transmitted

fields can be represented as

~Hs
i =

1

ωµ0

~ki × ~Es
i =

E
(0)
i

ωµ0

(kiZ~eX + kiX~eZ) , (1.63)

~Hs
r =

1

ωµ0

~kr × ~Es
r =

E
(0)
r

ωµ0

(−krZ~eX + krX~eZ) , (1.64)

~Hs
t =

1

ωµ0

~kt × ~Es
t =

E
(0)
t

ωµ0

(ktZ~eX + ktX~eZ) . (1.65)

From the Boundary conditions (Eq. (1.46)):

E
(0)
i kiZ − E(0)

r krZ = E
(0)
t ktZ ,(

E
(0)
i − E(0)

r

)
kIZ = E

(0)
t kTZ . (1.66)

One can therefore derive the coefficients of reflection and transmission as:

rs =
E

(0)
r

E
(0)
i

=
kIZ − kTZ
kIZ + kTZ

, (1.67)

ts =
E

(0)
t

E
(0)
i

=
2kIZ

kIZ + kTZ
. (1.68)

Using the expression of the wave vectors ]Eq. (1.34)], the Fresnel formulas as a function of the

incident (θi) and transmission (θt) angles are given in Table 1.1.

Table 1.1: Fresnel formulas as a function of the incident (θi) and transmission (θt)angles

p wave s wave

Reflected
rp =

nT cos θi − nI cos θt
nT cos θi + nI cos θt

rs =
nI cos θi − nT cos θt
nI cos θi + nT cos θt

Transmitted
tp =

2nI cos θi
nT cos θi + nI cos θt

ts =
2nI cos θi

nI cos θi + nT cos θt
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When taking into account the Snell-Descartes law [Eq. (1.43)], θt can be related to θi:

sin θt =
nI
nT

sin θi,

cos θt =
√

1− sin2 θt =

√
1− n2

I

n2
T

sin2 θi.

The Fresnel formulas as a function of the incident angle θi can be rewritten as given in Table 1.2,

whereas Fig. 1.5 displays a sketch for nI = 1 and nT = 1.5.

Table 1.2: Fresnel formulas in function of the incident angle θi

p wave s wave

Reflected
rp =

nT cos θi − nI
√

1− n2
I

n2
T

sin2 θi

nT cos θi + nI

√
1− n2

I

n2
T

sin2 θi

rs =
nI cos θi − nT

√
1− n2

I

n2
T

sin2 θi

nI cos θi + nT

√
1− n2

I

n2
T

sin2 θi

Transmitted tp =
2nI cos θi

nT cos θi + nI

√
1− n2

I

n2
T

sin2 θi

ts =
2nI cos θi

nI cos θi + nT

√
1− n2

I

n2
T

sin2 θi

−1.0
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Figure 1.5: Reflection and transmission coefficients, for the s and p polarized wave. Curves
are plotted using the expressions in Table 1.2, for nI = 1 and nT = 1.5

Total electric field at the surface

Let’s define the total field at the surface as
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~E
(0)
tot = ~E

(0)
i + ~E(0)

r (1.69)

where ~E
(0)
i and ~E

(0)
r are given in Eqs. (1.50) and (1.61) for the s and p polarizations

~E
(0)
i = E

(0)
i

[
cosφ (cos θi~eX + sin θi ~eZ) + sinφ eiϕ~eY

]
, (1.70)

~E(0)
r = E

(0)
i

[
rp cosφ (− cos θi~eX + sin θi~eZ) + rs sinφ eiϕ~eY

]
, (1.71)

where ϕ is the phase angle between the incident s and p polarized fields, and cosφ and sinφ

define their relative amplitude. The total electric field can be written as :

~E
(0)
i + ~E(0)

r =

(cos θi − rp cos θi) cosφ

(1 + rs) sinφ eiϕ

(sin θi + rp sin θi) cosφ

E
(0)
i =

cos θi (1− rp) cosφ

(1 + rs) sinφ eiϕ

sin θi (1 + rp) cosφ

E
(0)
i

~E
(0)
tot =

1− rp 0 0

0 1 + rs 0

0 0 1 + rp

 ~E
(0)
i = F ~E

(0)
i . (1.72)

The tensor F is denoted as the “Fresnel factor”. The X and Z contributions comes from the

p-polarization and the Y components from the s-polarization.

By using the Fresnel formulas, we obtain:

~E
(0)
tot =


1− εTkIZ − εIkTZ

εTkIZ + εIkTZ
0 0

0 1 +
kIZ − kTZ
kIZ + kTZ

0

0 0 1 +
εTkIZ − εIkTZ
εTkIZ + εIkTZ

E
(0)
i ,

=


2εIkTZ

εTkIZ + εIkTZ
0 0

0
2kIZ

kIZ + kTZ
0

0 0
2εTkIZ

εTkIZ + εIkTZ

E
(0)
i , (1.73)

then, using Eqs. (1.34), (1.35) and (1.41) the diagonal elements of the F matrix can be rewritten

as
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FXX =
2εIkTZ

εTkIZ + εIkTZ
=

2ε
(r)
I

√
ε

(r)
T − ε

(r)
I sin2 θ

ε
(r)
T

√
ε

(r)
I cos θ + ε

(r)
I

√
ε

(r)
T − ε

(r)
I sin2 θ

FYY =
2kIZ

kIZ + kTZ
=

2

√
ε

(r)
I cos θ√

ε
(r)
I cos θ +

√
ε

(r)
T − ε

(r)
I sin2 θ

FZZ =
2εTkIZ

εTkIZ + εIkTZ
=

2ε
(r)
T

√
ε

(r)
I cos θ

ε
(r)
T

√
ε

(r)
I cos θ + ε

(r)
I

√
ε

(r)
T − ε

(r)
I sin2 θ

(1.74)

1.2.4 Poynting vector and the Intensity

The Poynting vector ~S(t) gives the instantenous rate of electromagnetic energy flowing in the

direction of propagation:

~S(t) = ~E(t)× ~H(t). (1.75)

The intensity I is the mean rate of energy flowing, which is the average of the magnitude of
~S(~r, t) over a complete period of the wave. For a plane wave,〈

~S
〉
t

=
1

2
Re
(
~E × ~H∗

)
=

1

2

(
~E(0) × ~H(0)

)
=

1

2µ

(
~E(0) × ~B(0)

)
=

1

2ωµ

[
~E(0) × (~k × ~E(0))

]
, ~k = k0n~ek

=
k0n

2ωµ
| ~E(0)|2~ek, k0 = ω

√
µ0ε0

=
n
√
µ0ε0

2µ
| ~E(0)|2~ek. (1.76)

For a non-magnetic medium (µ = µ0):〈
~S
〉
t

=
1

2

n
√
µ0ε0

µ0

| ~E(0)|2~ek

=
1

2
n

√
ε0
µ0

| ~E(0)|2~ek

=
1

2
ncε0| ~E(0)|2~ek, c =

1√
µ0ε0

. (1.77)
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Then, the intensity can be written as

I =
∣∣∣〈~S〉

t

∣∣∣ =
1

2
ncε0| ~E(0)|2. (1.78)

From this, we can define the reflectance R and the transmittance T as the ratio between the

intensity of the different vectors:

R =
(1/2)nIε0c| ~E(0)

r |2

(1/2)nIε0c| ~E(0)
i |2

=

(
E

(0)
r

E
(0)
i

)2

, (1.79)

T =
(1/2)nT ε0c| ~E(0)

t |2

(1/2)nIε0c| ~E(0)
i |2

cos θt
cos θi

=
nT cos θt
nI cos θi

(
E

(0)
t

E
(0)
i

)2

. (1.80)

The corresponding expressions for both polarizations are given in Table 1.3, whereas Fig. 1.6

displays a sketch for nI = 1 and nT = 1.5.

Table 1.3: Reflectance and Transmittance

p wave s wave

R

(
nT cos θi − nI cos θt
nT cos θi + nI cos θt

)2

=

nT cos θi − nI
√

1− n2
I

n2
T

sin2 θi

nT cos θi + nI

√
1− n2

I

n2
T

sin2 θi

2

(
nI cos θi − nT cos θt
nI cos θi + nT cos θt

)2

=

nI cos θi − nT
√

1− n2
I

n2
T

sin2 θi

nI cos θi + nT

√
1− n2

I

n2
T

sin2 θi

2

T

4nInT cos θi cos θt

(nT cos θi + nI cos θt)
2

=
4nInT cos θi

√
1− n2

I

n2
T

sin2 θi(
nT cos θi + nI

√
1− n2

I

n2
T

sin2 θi

)2

4nInT cos θi cos θt

(nI cos θi + nT cos θt)
2

=
4nInT cos θi

√
1− n2

I

n2
T

sin2 θi(
nI cos θi + nT

√
1− n2

I

n2
T

sin2 θi

)2

R + T 1 1
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Figure 1.6: Reflectance R and transmittance T (Table 1.3) when the wave is propagating
from a less to more refractive medium. nI = 1, nT = 1.5

1.3 Wave equations at boundaries of optical nonlinear

media

1.3.1 Wave equations in nonlinear media

Here, we are interested in the solution of Maxwell’s equations (Eqs. (1.23) to (1.26)) in regions

of space that contain no free charges and no free currents, so that

ρf = 0 and ~Jf = ~0. (1.81)

We also assume that
~∇× ~M = ~0. (1.82)

By considering Eq. (1.25)

~∇× ~E = −∂
~B

∂t
, Maxwell-Faraday

~∇× ~∇× ~E(~r, t) = − ∂

∂t

[
~∇× ~B(~r, t)

]
. (1.83)

Then, inserting Eqs. (1.26), (1.28) and (1.30) in to Eq. (1.83) one obtains
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~∇× ~∇× ~E(~r, t) =− ∂

∂t

{
µ0
∂

∂t

[
ε0
~E(~r, t) + ~P (~r, t)

]}
(1.84)

−∇2 ~E(~r, t) =− µ0
∂2 ~D(~r, t)

∂t2
, (1.85)

where

~∇× ~∇× ~E(~r, t) = ∇
[
∇ · ~E(~r, t)

]
−∇2 ~E(~r, t) = −∇2 ~E(~r, t). (1.86)

The polarization ~P and displacement vector ~D can be split in to linear and nonlinear parts as

~P =~P (1) + ~P (NL) (1.87)

~D = ~D(1) + ~D(NL) (1.88)

where the linear part of ~D(1) is given by

~D(1) =ε0
~E + ~P (1)

=ε0ε
(r) ~E, where ε(r) is a scalar quantity. (1.89)

Using Eqs. (1.87) to (1.89), Eq. (1.85) can be written as

−∇2 ~E(~r, t) + µ0
∂2 ~D(1)(~r, t)

∂t2
=− µ0

∂2 ~P (NL)(~r, t)

∂t2
(1.90)

−∇2 ~E(~r, t) + µ0ε0ε
(r)∂

2 ~E(~r, t)

∂t2
=− µ0

∂2 ~P (NL)(~r, t)

∂t2
(1.91)

Eq. (1.91) is non-homogenous differential equation. The general solution consists of the solution

of the homogeneous equation plus one particular solution of the inhomogeneous equation. For the

case of a dispersive medium5, we must consider each frequency component of the field separately.

We then represent the total electric field and the total polarization as the sum of their various

frequency components:

~E(~r, t) =
∑
q

~E(kq, ωq) =
∑
q

~Eqe
i(~kq ·~r−ωqt), (1.92)

~PNL(~r, t) =
∑
n≥2

~P (n) =
∑
m

~PNL(km, ωm) =
∑
m

~PNL
m ei(

~km·~r−ωmt). (1.93)

Inserting Eqs. (1.92) and (1.93) in to Eq. (1.91), one finds that a new plane wave ~E(k, ω) of the

electric field verifies the equation if its frequency ω is in the range of the frequency of the non

linear polarization. We write

5 a dispersive medium is a medium in which waves of different frequencies travel at different velocities (this
occurs because the index of refraction of the medium is frequency-dependent.)
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[
−∇2 − ω2µ0ε0ε

(r)(ω)
]
~E(k, ω) = µ0ω

2 ~PNL
m (km, ωm = ω). (1.94)

In Eq. (1.94), it clearly appears that the frequencies of the electric field ~E(k, ω) and of the

polarization ~PNL(km, ωm = ω) are identical, whereas their associated wave vectors are different.

Equality of these wave vectors corresponds to the phase matching condition.

Now, we consider that the frequency ω of the outgoing wave is the linear combination of n

original frequencies. Then, to characterize the amplitudes of the electric field at the frequency ω

and at the n initial frequencies, there exists a set of n+ 1 coupled differential equations arising

from Eq. (1.94). Let us consider the lowest-order (second-order) nonlinearity with three waves

(Fig. 1.7) at frequencies ω1, ω2, and ω3 = ω1+ω2. We obtain a system of three complex nonlinear

coupled wave vector equations,[
−∇2 − ω2

1µ0ε0ε
(r)(ω1)

]
~E(k1, ω1) = µ0ω

2
1
~P (2)(ω1)

= µ0ω
2
1 ε0χ

(2)(ω1 = −ω2 + ω3) : ~E∗(k2, ω2)~E(k3, ω3),

(1.95a)[
−∇2 − ω2

2µ0ε0ε
(r)(ω2)

]
~E(k2, ω2) = µ0ω

2
2
~P (2)(ω2)

= µ0ω
2
2 ε0χ

(2)(ω2 = ω3 − ω1) : ~E(k3, ω3)~E∗(k1, ω1), (1.95b)[
−∇2 − ω2

3µ0ε0ε
(r)(ω3)

]
~E(k3, ω3) = µ0ω

2
3
~P (2)(ω3)

= µ0ω
2
3 ε0χ

(2)(ω3 = ω1 + ω2) : ~E(k1, ω1)~E(k2, ω2). (1.95c)

In these equations, ε(r)(ω) and χ(2) are complex quantities. The solutions of Eq. (1.95c) must

satisfy boundary conditions. Moreover, we neglect the coupling with Eqs. (1.95a) and (1.95b).

This imposes the equality of the parallel components (Fig. 1.2) of the wave vectors of the fields

oscillating at the same frequency. The X-Y plane is parallel to the surface (The ~eZ axis is normal

to the interface). The incident wave vectors (~k1i and ~k2i) are oriented so that their Y -component

are opposite (k1i,Y = −k2i,Y ) as shown in Fig. 1.7.

(~k1i + ~k2i) · ~r‖ = ~k3r · ~r‖ = ~k3t · ~r‖ = ~k3s · ~r‖. (1.96)

It follows that

k3r,X = k3s,X = k1t,X + k2t,X = k1i,X + k2i,X ,

k3r,Y = k3s,Y = k1t,Y + k2t,Y = k1i,Y + k2i,Y = 0. (1.97)

Cancellation of the second line in Eq. (1.97) comes from the particular choice of the axis. It

results that all the field oscillating at the frequency ω3 propagates in the same plane (Y = 0, see

Fig. 1.7). The reflection and refraction laws of the nonlinear wave comes from the conservation
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~k3s=~k1t+~k2t
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non linear(Z < 0)

θ1i

θ2i

θ3r

θ3t
θ3s

Figure 1.7: Geometrical relationships between the wave vectors of two planes waves, incident
on the plane boundary of a nonlinear medium, and the reflected and transmitted waves at the

sum frequency

of ~k‖.

~k
‖
1i + ~k

‖
2i = ~k

‖
3s = ~k

‖
3r = ~k

‖
3t, (1.98)

∥∥∥~k3s

∥∥∥2

=
∣∣∣~k1i

∣∣∣2 sin2 θ1i +
∣∣∣~k2i

∣∣∣2 sin2 θ2i + 2 cos τ
∣∣∣~k1i

∣∣∣ ∣∣∣~k2i

∣∣∣ sin θ1i sin θ2i,

=
∣∣∣~k3s

∣∣∣2 sin2 θ3s,

=
∣∣∣~k3r

∣∣∣2 sin2 θ3r,

=
∣∣∣~k3t

∣∣∣2 sin2 θ3t, (1.99)

k2 = ε(r)ω2/c2. (1.100)

The reflected and refracted angles depend explicitly on the frequencies

ε
(r)
T ω2

3sin2θ3t = ε
(r)
I ω2

3sin2θ3r,

= ε
(r)
I ω2

1sin2θ1i + ε
(r)
I ω2

2sin2θ2i + 2 cos τ

[(
ε

(r)
I

)2

ω1ω2 sin θ1i sin θ2i

]
. (1.101)

Eq. (1.101) is extremely important since it states that the process at ω3 is directional, which

facilitates the collections of photons in the experiment.



Chapter 1. Radiation-Matter interactions: Nonlinear Optics 32

When both incident waves are in the same incident plane (τ = 0 or π), Eq. (1.101) simplifies as

ω3

√
ε

(r)
I sin θ3r = ω3

√
ε

(r)
T sin θ3t,

= ω1

√
ε

(r)
I sin θ1i ± ω2

√
ε

(r)
I sin θ2i. (1.102)

Directions of nonlinear wave depend on the directions and the frequencies of the incident waves

(Fig. 1.8). The plus sign of Eq. (1.102) applies if the input beams are copropagating and

the minus sign if they are counterpropagating. Moreover, the reflected and transmitted waves

generated at the nonlinear frequency verify the Snell-Descartes law Eq. (1.43)

ω3

√
ε

(r)
I sin θ3r =ω3

√
ε

(r)
T sin θ3t,

sin θ3r

sin θ3t

=

√
ε

(r)
T√
ε

(r)
I

. (1.103)
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Figure 1.8: Dependence of the reflected angle of the nonlinear wave as a function of the
wavenumber of the incident waves. λ1 = 800 nm, 532 nm, and 400 nm; ω2 ∝ ν̄IR : 1000 −

3000 cm−1. Reproduced from Caudano [4]

1.3.2 Sum-Frequency Generation (SFG) at interfaces

Often, Eq. (1.95) cannot be solved exactly and must be solved using approximations. For

example, in the case of SFG of thin film, one can assume that the decrease in the intensity of

the pump beams is negligible, as well as the nonlinear polarization at the incident frequencies.

Thus, one should consider only one wave equation (Eq. (1.95c)), the amplitudes of the initial

frequencies being treated as parameters.
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The electric field at the frequency (ω3) should obey Maxwell’s nonlinear optical equation:

~∇× ~E = −∂
~B

∂t
= iω3

~B, (1.104a)

~∇× ~H = −∂ε0ε
(r) ~E

∂t
+
∂ ~P (2)(~r, t)

∂t
= iω3ε0ε

(r) ~E − iω3
~P (2)(~r, t). (1.104b)

Eqs. (1.104a) and (1.104b) are non-homogenous differential equations. The general solution

consists of the solution of the homogeneous equation plus one particular solution of the inho-

mogeneous equation. Far from the interface, the solution of these equations are homogeneous

waves:

~E+∞
tot = ~E3re

i(~k3r·~r−ω3t), (1.105a)

~E−∞tot = ~E3te
i(~k3t·~r−ω3t). (1.105b)

Consider the interface between two semi-infinite media Fig. 1.9. εI εl, and εT are the electric

permittivity of the incident medium, the thin film, and the substrate, respectively. According

to Fig. 1.9 the interface is perpendicular to the Z-axis and the thickness of the thin film d tends

to 0.

For a thin film, the nonlinear source is an effective polarization, which can be modeled by using

a δ Dirac’s function at the depth Z = 0 from the interface

~P (2) ≈ ~P
(2)
surfe

i~k‖·~rδ(Z), (1.106)

where the complex amplitude of the polarization depends on the depth Z
(
~P

(2)
surf = P

(2)
surf (Z)~̂p

)
and ~k‖ is the parallel component of the polarization wave vector at the interface. ~̂p is the direction

of the nonlinear polarization

~̂p = p̂X~eX + p̂Y ~eY + p̂Z~eZ . (1.107)

The solution for the transmitted and reflected nonlinear radiations from the interface can be

determined by solving Maxwell’s equations with a nonlinear source of polarization occupying a

finite volume and then taking the limit as the thickness goes to zero.

To deduce the intensity of the reflected and transmitted waves in the first and second linear

environments, we must first determine the contribution value of the oscillating electric field to

the sum-frequency in the thin film, and then make use of boundary conditions.
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Figure 1.9: Schematic representation of SFG at the interface between a linear medium and
nonlinear medium. This figure shows the XZ-plane, and Z = 0 defines the interface

The boundary conditions for the perpendicular components of the flux density (Eq. (1.36)) read

(no charge at the surface ≡ σsurf = 0),

D⊥l = D⊥I =⇒ εlE
⊥
l = εIE

⊥
I , (1.108)

E⊥l =
εI
εl
E⊥I . (1.109)

The components of the reflected electric field at the surface of the film is given by:

~ENL
l = F ~Eli. (1.110)

The Fresnel Factors F can be derived from Eq. (1.73) as :

F =


2εIkTZ

εTkIZ + εIkTZ
0 0

0
2kIZ

kIZ + kTZ
0

0 0
εI
εl

2εTkIZ
εTkIZ + εIkTZ

 , (1.111)

where the diagonal terms can be denoted as
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FXX =
2εIkTZ

εTkIZ + εIkTZ
=

2ε
(r)
I

√
ε

(r)
T − ε

(r)
I sin2 θ

ε
(r)
T

√
ε

(r)
I cos θ + ε

(r)
I

√
ε

(r)
T − ε

(r)
I sin2 θ

,

FYY =
2kIZ

kIZ + kTZ
=

2

√
ε

(r)
I cos θ√

ε
(r)
I cos θ +

√
ε

(r)
T − ε

(r)
I sin2 θ

,

FZZ =
εI
εl

2εTkIZ
εTkIZ + εIkTZ

=
ε

(r)
I

ε
(r)
l

2ε
(r)
T

√
ε

(r)
I cos θ

ε
(r)
T

√
ε

(r)
I cos θ + ε

(r)
I

√
ε

(r)
T − ε

(r)
I sin2 θ

.

(1.112)

The complete problem for the slab of finite thickness was solved by Bloembergen and Pershan

[5]. An alternative approach deriving boundary conditions to match electric and magnetic fields

across the polarized sheet was also proposed by Heinz [6, 7], which has also been used by Caudano

[4], and recently by Shen [8].

Heinz derived the following expression for the radiated field at the sum-frequency, at the interface

in terms of the pump fields in the bulk media:

~̂e⊥ · ~E3r = i
1

2

ω3

c

1√
ε(r) cos θ3r

[
F3(ω3)~̂e⊥ · χ(2)

s : F1(ω1)~̂e1iF2(ω2)~̂e2i

]
E

(0)
1i E

(0)
2i (1.113)

where, ~̂e⊥ is the polarization vector associated with ~E3r. ~̂e
⊥ is perpendicular to the wave vector

~k3r. ~̂e1i and ~̂e2i are the polarization vectors of the pump fields ~E
(0)
1i and ~E

(0)
2i . χ

(2)
s is the effective

nonlinear susceptibility of the thin film. FI is a second rank tensor describing propagation into

the interface (Fresnel factor).

Considering that the nonlinear polarization vanishes in the media I, and the conservation of

the parallel component of the wave vector at the interface (~k
‖
3r = ~k

‖
3t = ~k‖), the solutions of

Maxwell’s equations can be derived in the form

~E(r) = f(Z)~E−∞tot (~r) + f(Z)~E+∞
tot (~r) + ~eInte

i~k‖·~rδ(Z), (1.114a)

~B(r) = f(Z) ~B−∞tot (~r) + f(Z) ~B+∞
tot (~r), (1.114b)

where the function f corresponds to a step function

f(Z) =

 0 Z < 0,

1 Z > 0.
(1.115)
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The ~eInt term describes the auto-spanned field at the interface. ~eInt can be related to the

nonlinear polarization by:

ε0ε
(r)
l ~eInt = −P (2)

Z ~eZ = −P (2)(Z = 0)p̂Z~eZ . (1.116)

Then, the solutions of Eq. (1.104) can be derived (after applying the boundary conditions:

(Z = Z0 = 0) in the form:

E3r,Y eiZ0·k3r,Z − E3t,Y eiZ0·k3t,Z = 0, (1.117a)

−E3r,XeiZ0·k3r,Z + E3t,XeiZ0·k3t,Z + ik‖P (2)p̂Z
1

ε0ε
(r)
l

= 0, (1.117b)

H3r,Y eiZ0·k3r,Z −H3t,Y eiZ0·k3t,Z = −iω3P
(2)p̂X , (1.117c)

−H3r,XeiZ0·k3r,Z +H3t,XeiZ0·k3t,Z = −iω3P
(2)p̂Z . (1.117d)

Taking into consideration the definition of the amplitude of the fields in each polarization

(Fig. 1.10), and the relationships between the electric and magnetic fields of plane waves (µ0ωH =

kE), two cases can be defined:

s-polarization

~̂p = p̂Y ~eY , (1.118)E3re
iZ0·k3r,Z = E3te

iZ0·k3t,Z ,

k3r cos θ3rE3re
iZ0·k3r,Z + k3t cos θ3tE3te

iZ0·k3t,Z = +iµ0ω
2
3P

(2)p̂Y .
(1.119)

p-polarization

~̂p = p̂X~eX + p̂Z~eZ (1.120)− cos θ3rE3re
iZ0·k3r,Z − cos θ3tE3te

iZ0·k3t,Z = −ik‖P (2)p̂Z
1

ε0ε
(r)
l

,

+k3rE3re
iZ0·k3r,Z − k3tE3te

iZ0·k3t,Z = −iµ0ω
2
3P

(2)p̂X .
(1.121)
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θ3r

~H3t
θ3t

~E3r

~E3t

~P (2) = P ~̂p
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Figure 1.10: The angles for the nonlinear polarization and the transmitted and reflected waves
generated by this polarization, for the case that the electric vectors are normal (s-polarized)

and parallel (p-polarized) to the plane of reflection.

Solving Eqs. (1.119) and (1.121) lead to,

Es
3r = i

ω2
3

c2

1

k3r cos θ3r + k3t cos θ3t

p̂Y
P (2)(Z0)

ε0

eiZ0·k3r,z , (1.122a)

Es
3t = i

ω2
3

c2

1

k3r cos θ3r + k3t cos θ3t

p̂Y
P (2)(Z0)

ε0

eiZ0·k3t,z , (1.122b)

and

Ep
3r = i

1

k3t cos θ3r + k3r cos θ3t

[
1

εl
k3tk

‖p̂Z −
ω2

3

c2
cos θ3tp̂X

]
P (2)(Z0)

ε0

eiZ0·k3r,z , (1.123a)

Ep
3t = i

1

k3t cos θ3r + k3r cos θ3t

[
1

εl
k3rk

‖p̂Z +
ω2

3

c2
cos θ3rp̂X

]
P (2)(Z0)

ε0

eiZ0·k3t,z . (1.123b)

Then, using the expression of the parallel component of the wave vector (k‖ = k3r sin θ3r =

k3t sin θ3t), as well as the appropriate transformations, the fields reflected by the interface at

sum-frequency, in terms of Fresnel factors read:

Es
3r = i

ω3

c

1

2

√
ε

(r)
I cos θ3r

[
2k3r,Z

k3r,Z + k3t,Z

]
p̂Y
P (2)(Z0)

ε0

eiZ0·k3r,Z , (1.124a)

Ep
3r = i

ω3

c

1

2

√
ε

(r)
I cos θ3r

[
2εIk3t,Z

εTk3r,Z + εIk3t,Z

]
p̂X(− cos θ3r)

P (2)(Z0)

ε0

eiZ0·k3r,Z

+ i
ω3

c

1

2

√
ε

(r)
I cos θ3r

[
2εTk3r,Z

εTk3r,Z + εIk3t,Z

εI
εl

]
p̂Z sin θ3r

P (2)(Z0)

ε0

eiZ0·k3r,Z , (1.124b)
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while

Es
3t = i

ω3

c

1

2

√
ε

(r)
T cos θ3t

[
2k3t,Z

k3r,Z + k3t,Z

]
p̂Y
P (2)(Z0)

ε0

eiZ0·k3t,Z , (1.125a)

Ep
3t = i

ω3

c

1

2

√
ε

(r)
T cos θ3t

[
2εTk3r,Z

εIk3r,Z + εTk3t,Z

]
p̂X cos θ3t

P (2)(Z0)

ε0

eiZ0·k3t,Z

+ i
ω3

c

1

2

√
ε

(r)
T cos θ3t

[
2εIk3t,Z

εIk3r,Z + εTk3t,Z

εT
εl

]
p̂Z sin θ3t

P (2)(Z0)

ε0

eiZ0·k3t,Z , (1.125b)

characterize the field generated at the sum frequency by the interface and transmitted in the

substrate.

In the Chapter 3 we will rely on Eqs. (1.113) and (1.125) to derive the equations

for intensities reflected at the sum-frequency for different sets of polarizations.
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Chapter 2

Quantum Theory of Nonlinear

Susceptibilities

In Chapter 1, we reviewed the basic concepts of electromagnetic wave propagation in linear

and nonlinear materials. However, optical propagation in many materials is nonlinear, in the

sense that the polarization depends nonlinearly on the optical field in the medium. Then,

molecular nonlinear optics is the description of the change of the molecular optical properties

by the presence of an intense light field. In general, the response of the charges depends on the

frequency of the electric field, and the hyperpolarizabilities are therefore frequency-dependent.

Knowing that the electric field separates charges in a material, the charge distribution can be

described as a series of moments. Indeed, electric field induces a dipole moment, a field gradient

(the quadrupole), etc. This interaction is formulated using the concept of the nonlinear response

of the material at the quantum level.

In this chapter, we use time-dependent perturbation theory and assume that the solutions to

the eigenvalue problem of the unperturbed system are known. This approach relies on that

developed by Boyd [1] as well as Kuzyk [2]. In practice we are of course not able to obtain

exact solutions even to the unperturbed system, but our analysis will nevertheless highlight

the dependence of the hyperpolarizabilities on other molecular parameters such as excitation

energies and transition moments. Then, we derive the expressions for the molecular first and

second-order response functions that describe the system.

2.1 Calculating the Nonlinear Optical Susceptibilities

2.1.1 Schrödinger equation

For a quantum-mechanical system in a particular quantum-mechanical state that we designate

s, we can describe all the physical properties of the system in terms of its wavefunction ψs(~r, t).

41
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This wavefunction obeys the time-dependent Schrödinger equation:

i~
∂ψs(~r, t)

∂t
= Ĥψs(~r, t), (2.1)

where Ĥ is the Hamiltonian operator of the system. In order to determine how the wavefunction

evolves in time, it is often helpful to make explicit use of the fact that the eigenstates of the

unperturbed Hamiltonian Ĥ0 form a complete set of basis functions. We can hence represent

the wavefunction of state s as

ψs(~r, t) =
∑
n

Cs
n(t)un(~r). (2.2)

The functions un(~r) are the eigensolutions to the time-independent Schrödinger equation

Ĥ0un(~r) = Enun(~r), (2.3)

and are therefore orthonormal ∫
u∗m(~r)un(~r) dτ ≡ 〈m|n〉 = δmn. (2.4)

The expansion coefficient Cs
n(t) gives the probability amplitude that the system is found in state

|n〉 by measurement performed at time t. The time evolution of ψs(~r, t) can be specified in terms

of the time evolution of each of the expansion coefficient Cs
n(t).

To determine how these coefficients evolve in time, we introduce Eq. (2.2) into Schrödinger’s

equation (Eq. (2.1)):

i~
∑
n

dCs
n(t)

dt
un(~r) =

∑
n

Cs
n(t)Ĥun(~r),

i~
∑
n

dCs
n(t)

dt
|n〉 =

∑
n

Cs
n(t)Ĥ|n〉. (2.5)

Then, let’s multiply Eq. (2.5) by 〈m|

i~
∑
n

dCs
n(t)

dt
〈m|n〉 =

∑
n

Cs
n(t)〈m|Ĥ|n〉, (2.6)

and after accounting for the orthogonality relation Eq. (2.4) and defining Hmn = 〈m|Ĥ|n〉, one

obtains

i~
d

dt
Cs
m(t) =

∑
n

Cs
n(t)Hmn. (2.7)
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2.1.2 Density operator and quantum Liouville equation

The expectation value of any observable quantity can be calculated in terms of the wavefunction

of the system. A basic postulate of quantum mechanics states that any observable quantity O is

associated with a Hermitian operator Ô. The expectation value of Ô is then obtained according

to the prescription

〈Ô〉 = 〈ψs|Ô|ψs〉. (2.8)

Here, the angular brackets denote a quantum-mechanical average and

〈ψs(t)| =
∑
m

Cs∗
m (t)〈m| since |ψs(t)〉 =

∑
n

Cs
n(t)|n〉. (2.9)

The expectation value 〈Ô〉 can then be expressed in terms of the probability amplitudes Cs
n(t)

by introducing Eq. (2.9) into Eq. (2.8) to obtain

〈Ô〉 =
∑
m

∑
n

Cs∗
mC

s
nOmn, (2.10)

where we have introduced the matrix elements Omn of the operator Ô, defined through

Omn = 〈m|Ô|n〉. (2.11)

Under the circumstances where the precise state of the system is unknown, the density matrix

formalism can be used to describe the system in a statistical sense. Let us denote by ps the

probability that the system is in the state s. The quantity ps is to be understood as a classical

rather than a quantum-mechanical probability. Hence ps simply reflects our lack of knowledge

of the actual quantum-mechanical state of the system.∑
n

|Cs
n|2 =1 quantum-mechanical probability, (2.12)∑

s

ps =1 classical probability. (2.13)

The ensemble average is

〈O〉 =
∑
s

ps〈ψs|Ô|ψs〉, (2.14)

where the over-bar denotes an ensemble average, that is, an average over all of the possible states

of the system. Again, Eq. (2.8) can be employed to rewrite this quantity as:
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〈O〉 =
∑
s

ps
∑
mn

Cs∗
mC

s
nOmn,

=
∑
mn

ρnmOmn. (2.15)

In terms of ps, we define the elements of the density matrix of the system by

ρnm =
∑
s

psC
s∗
mC

s
n = Cs∗

mC
s
n. (2.16)

The density matrices combine both quantum and classical probabilities. The diagonal elements

ρnn give the “population” of the system in energy eigenstate |n〉, whereas the off-diagonal

elements ρnm gives the “coherence” between levels |n〉 and |m〉, in the sense that ρmn will be

nonzero only if the system is in a coherent superposition of energy eigenstate |n〉 and |m〉.

ρnn =
∑
s

ps|Cs
n|2, (2.17)

ρnm =
∑
s

psC
s∗
mC

s
n. (2.18)

The double summation in the Eq. (2.15) can be simplified as follows1:

〈O〉 =
∑
mn

ρnmOmn =
∑
n

(∑
m

ρnmOmn

)
,

=
∑
n

(
ρO
)
nn

= tr
(
ρO
)
. (2.19)

Note that the corresponding density operator is expressed in the terms of the bra and ket wave

functions

ρ̂ =
∑
mn

ρnm|n〉〈m| =
∑
s

ps|ψs〉〈ψs|, (2.20)

and that its matrix elements are obtained by projection on the eigenstates such as to recover

Eq. (2.16)

ρnm = 〈n|ρ̂|m〉 =
∑
s

ps〈n|ψs〉〈ψs|m〉 =
∑
s

psC
s
nC

s∗
m . (2.21)

Knowing that the expectation value of any observable quantity can be determined straightfor-

wardly in terms of the density matrix, in order to determine how any expectation value evolves

in time, it is thus only necessary to determine how the density matrix itself evolves in time. By

1Density matrices can be used to calculate the expectation value of any observable Ô
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direct time differentiation of Eq. (2.20), we find that

∂ρ̂

∂t
=

∂

∂t

∑
s

ps|ψs〉〈ψs|,

=
∑
s

∂ps
∂t
|ψs〉〈ψs|+

∑
s

ps

(
∂|ψs〉
∂t
〈ψs|+ |ψs〉

∂〈ψs|
∂t

)
. (2.22)

Let us assume that the classic probability is time-independent.

∂ρ̂

∂t
=
∑
s

ps

(
∂|ψs〉
∂t
〈ψs|+ |ψs〉

∂〈ψs|
∂t

)
, (2.23)

we can then evaluate the second term straightforwardly by using Schrödinger’s equation

∂ρ̂

∂t
= − i

~
∑
s

ps(Ĥ|ψs〉〈ψs| − |ψs〉〈ψs|Ĥ),

= − i
~

[
Ĥ
(∑

s

ps|ψs〉〈ψs|
)
−
(∑

s

ps|ψs〉〈ψs|
)
Ĥ
]
. (2.24)

The evolution of the density matrix is therefore given by its commutator with the Hamiltonian:

∂ρ̂

∂t
= − i

~

(
Ĥρ̂− ρ̂Ĥ

)
= − i

~

[
Ĥ, ρ̂

]
, (2.25)

which is known as the Liouville’s quantum equation.

If now we consider that the classical probability is time-dependent, one gets

∂ρ̂

∂t
= − i

~

[
Ĥ, ρ̂

]
+
∑
s

∂ps
∂t
|ψs〉〈ψs|. (2.26)

The second term represents the interactions of the system that can not be conveniently included

in the Hamiltonian. There is more than one way to model such interactions. One can include

such effects in the formalism by adding phenomenological damping terms to the equation of

motion Eq. (2.25). We shall often model such processes by taking the density matrix equation

to have the form

∂ρ̂nm
∂t

= − i
~

[
Ĥ, ρ̂

]
nm
− γnm

(
ρnm − ρ(eq)

nm

)︸ ︷︷ ︸
exponential decay with

respect to the equilibrium

. (2.27)

We are thereby asserting that at thermal equilibrium the excited states of the system may contain

population (i.e., ρ
(eq)
nm 6= 0), but that thermal excitation, which is expected to be an incoherent

process, cannot produce any coherent superpositions of atomic states (ρ
(eq)
nm = 0 for n 6= m).
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Since γnm is the decay rate, we assume thatρ
(eq)
nm = 0 for n 6= m,

γnm = γmn physical assumption.
(2.28)

2.1.3 Perturbed solution of the density matrix equation

The evolution of the density matrix can be determined using perturbation theory. The Hamil-

tonian can be split into two parts as

Ĥ = Ĥ0 + λV̂ (t) (2.29)

where Ĥ0 is the Hamiltonian for the free system and V̂ (t) represents the dipolar energy of

interaction of the system with the externally applied electric radiation field [V̂ (t) = −λ~̂µ · ~E(t)],

with ~̂µ = −e~̂r). This interaction is assumed to be weak in the sense that in the ground state

the expectation value and matrix elements of V̂ are much smaller than the expectation value of

Ĥ0. The density matrix equation of motion with the phenomenological inclusion of damping is

given by Eq. (2.27)

∂ρ̂nm
∂t

= − i
~

[
Ĥ, ρ̂

]
nm
− γnm

(
ρnm − ρ(eq)

nm

)
. (2.30)

Then, using Eq. (2.29) the commutator splits into two terms[
Ĥ, ρ̂

]
nm

=
[
Ĥ0, ρ̂

]
nm

+ λ
[
V̂ , ρ̂

]
nm
. (2.31)

The commutator can thus be expanded as[
Ĥ0, ρ̂

]
nm

=
∑
l

(H0,nlρlm − ρnlH0,lm),

=
∑
l

(Enδnlρlm − ρnlδlmEm),

= Enρnm − Emρnm = (En − Em)ρnm, (2.32)

[
V̂ , ρ̂

]
nm

=
∑
l

(Vnlρlm − ρnlVlm). (2.33)

Through use of Eqs. (2.32) and (2.33), the density matrix equation of motion [Eq. (2.27)] thus

becomes
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∂ρnm
∂t

= −iρnmωnm −
i

~
∑
l

(Vnlρlm − ρnlVlm)− γnm
(
ρnm − ρ(eq)

nm

)
,

= −iρnmωnm −
i

~

[
V̂ , ρ̂

]
nm
− γnm

(
ρnm − ρ(eq)

nm

)
, (2.34)

where ωnm = En−Em
~ .

We now seek a solution to Eq. (2.34) in the form of a power series in λ:

ρnm = ρ(0)
nm + λρ(1)

nm + λ2ρ(2)
nm + · · · . (2.35)

We thereby obtain the set of equations

∂ρ
(0)
nm

∂t
= −iωnmρ(0)

nm − γnm
(
ρ(0)
nm − ρ(eq)

nm

)
, (2.36a)

∂ρ
(1)
nm

∂t
= −(iωnm + γnm)ρ(1)

nm − i~−1
[
V̂ , ρ̂(0)

]
nm
, (2.36b)

∂ρ
(2)
nm

∂t
= −(iωnm + γnm)ρ(2)

nm − i~−1
[
V̂ , ρ̂(1)

]
nm
, (2.36c)

...

∂ρ
(k)
nm

∂t
= −(iωnm + γnm)ρ(k)

nm − i~−1
[
V̂ , ρ̂(k−1)

]
nm
. (2.36d)

Eq. (2.36a) describes the time evolution of the system in the absence of any external field. We

take the steady-state2 solution to this equation to be

ρ(0)
nm(t) = ρ(eq)

nm , (2.37)

where for the reasons given in Eq. (2.28)

ρ(eq)
nm = 0 for n 6= m. (2.38)

Then, the successive higher-order contributions can be found by the integration of the recurrence

relation [Eq. (2.36d)]

ρ(k)
nm = e−(iωnm+γnm)t

∫ t

−∞

−i
~

[
V̂ (t′), ρ̂(k−1)(t′)

]
nm
e(iωnm+γnm)t′ dt′. (2.39)

2In systems theory, a system or a process is in a steady state if the variables (called state variables) which
define the behavior of the system or the process are unchanging in time.
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2.2 Molecular response functions

For a molecule, it is appropriate to characterize the response to an electric field by its dipole

moment, given by

µα = µ0
α +

∑
β

ααβEβ +
1

2

∑
βγ

βαβγEβEγ +
1

6

∑
βγζ

γαβγζEβEγEζ + · · · (2.40)

where µα is the α-component of the dipole moment of the molecule; where µ0
α is the α-component

of the static permanent dipole moment; ααβ is the αβ-component of the polarizability, βαβγ is

the αβγ-component of the first hyperpolarizability, and γαβγζ is the αβγζ-component of the

second hyperpolarizability.

2.2.1 First-order response: Polarizability

The first-order response is obtained from the first-order recurrence relation [Eq. (2.39)]

ρ(1)
nm = e−(iωnm+γnm)t

∫ t

−∞

−i
~

[
V̂ (t′), ρ̂(0)

]
nm
e(iωnm+γnm)t′ dt′. (2.41)

As before the interaction Hamiltonian is given by

V̂ (t′) = −~̂µ · ~E(t′). (2.42)

We represent the applied field as

~E(t′) =
∑
q

~Eqe
−iωqt′ . (2.43)

The commutator can be expressed as

[
V̂ (t′), ρ̂(0)

]
nm

=
∑
l

(
Vnl(t

′)ρ(0)
lm − ρ

(0)
nl Vlm(t′)

)
,

= −
∑
l

(
~µnlρ

(0)
lm − ρ

(0)
nl ~µlm

)
· ~E(t′),

= −
(
ρ(0)
mm − ρ(0)

nn

)
~µnm · ~E(t′). (2.44)

Then, Eq. (2.41) can be rewritten as
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ρ(1)
nm =

i

~
e−(iωnm+γnm)t

(
ρ(0)
mm − ρ(0)

nn

)
~µnm ·

∑
q

~Eq
(0)
∫ t

−∞
e[i(ωnm−ωq)+γnm)]t′ dt′,

=
1

~
(
ρ(0)
mm − ρ(0)

nn

)∑
q

~µnm · ~Eq
(ωnm − ωq)− iγnm

e−iωqt (2.45)

the first-order response can be found from the first-order density matrix

〈~µ(t)〉(1) = tr
[
ρ̂(1)~̂µ

]
=
∑
n,m

ρ(1)
nm~µmn,

〈~µ(t)〉(1) =
1

~
∑
nm

(
ρ(0)
mm − ρ(0)

nn

)∑
q

~µnm · ~Eq
(ωnm − ωq)− iγnm

~µmne
−iωqt. (2.46)

We are interested in the various frequency components of 〈~µ〉(1), whose complex amplitudes

〈~µ(ωq)〉 are defined through

〈~µ〉(1) =
∑
q

〈~µ(ωq)〉(1)e−iωqt, (2.47)

〈~µ(ωq)〉(1) =
∑
α,β

ααβ(−ωq;ωq)Eβ
q ~eα, (2.48)

so that,

ααβ(−ωq;ωq) =
1

~
∑
nm

(
ρ(0)
mm − ρ(0)

nn

) µαmnµ
β
nm

(ωnm − ωq)− iγnm
. (2.49)

The polarizability can be expressed in terms of the population of each level

ααβ(−ωq;ωq) =
1

~
∑
nm

(
ρ(0)
mm

µαmnµ
β
nm

(ωnm − ωq)− iγnm
− ρnn(0) µαmnµ

β
nm

(ωnm − ωq)− iγmn

)
. (2.50)

The dummy indices n and m of the second term are switched: n↔ m

ααβ(−ωq;−ωq) =
1

~
∑
nm

(
ρ(0)
mm

µαmnµ
β
nm

(ωnm − ωq)− iγnm
− ρmm(0) µαnmµ

β
mn

(ωmn − ωq)− iγnm

)
,

=
1

~
∑
nm

ρ(0)
mm

(
µαmnµ

β
nm

(ωnm − ωq)− iγnm
+

µαnmµ
β
mn

(ωnm + ωq) + iγnm

)
. (2.51)

where ωnm = −ωmn and γnm = γmn
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At low temperature only the ground state is occupied: ρ
(0)
mm = |g〉 〈g|

ααβ(−ωq;ωq) =
1

~
∑
nm

δgm

(
µαmnµ

β
nm

(ωnm − ωq)− iγnm
+

µαnmµ
β
mn

(ωnm + ωq) + iγnm

)
,

=
1

~
∑
n

(
µαgnµ

β
ng

(ωng − ωq)− iγng
+

µαngµ
β
gn

(ωng + ωq) + iγng

)
. (2.52)

2.2.2 Second-order response: First hyperpolarizability

In the present section, we calculate the second-order nonlinear optical susceptibility through the

use of the density matrix formulation of quantum mechanics. From the perturbation expansion

[Eq. (2.39)], the general result for the second-order correction to ρ̂ is given by

ρ(2)
nm = e−(iωnm+γnm)t

∫ t

−∞

−i
~

[
V̂ (t′), ρ̂(1)

]
nm
e(iωnm+γnm)t′ dt′, (2.53)

In addition, using a development similar to Eq. (2.44) and inserting Eq. (2.45) in the commutator

of Eq. (2.53) one obtains

[
V̂ (t′), ρ̂(1)

]
nm

=− ~−1
∑
l

(
ρ(0)
mm − ρ(0)

ll

)∑
q,r

[~µlm · ~Eq][~µnl · ~Er]
(ωlm − ωq)− iγlm

e−i(ωq+ωr)t
′

+ ~−1
∑
l

(
ρ

(0)
ll − ρ(0)

nn

)∑
q,r

[~µnl · ~Eq][~µlm · ~Er]
(ωnl − ωq)− iγnl

e−i(ωq+ωr)t
′
, (2.54)

so that, after inserting into Eq. (2.53), one obtains

ρ(2)
nm =e−(iωnm+γnm)t

[∫ t

−∞

i

~2

∑
l

(
ρ(0)
mm − ρ(0)

ll

)∑
q,r

[~µlm · ~Eq][~µnl · ~Er]
(ωlm − ωq)− iγlm

e−i(ωq+ωr)t
′
e(iωnm+γnm)t′ dt′

−
∫ t

−∞

i

~2

∑
l

(
ρ

(0)
ll − ρ(0)

nn

)∑
q,r

[~µnl · ~Eq][~µlm · ~Er]
(ωnl − ωq)− iγnl

e−i(ωq+ωr)t
′
e(iωnm+γnm)t′ dt′

]
, (2.55)

ρ(2)
nm =e−(iωnm+γnm)t

[
i

~2

∑
l

(
ρ(0)
mm − ρ(0)

ll

)∑
q,r

[~µlm · ~Eq][~µnl · ~Er]
(ωlm − ωq)− iγlm(

1

−iωq − iωr + iωnm + γnm

)
e−i(ωq+ωr)te(iωnm+γnm)t

− i

~2

∑
l

(
ρ

(0)
ll − ρ(0)

nn

)∑
q,r

[~µnl · ~Eq][~µlm · ~Er]
(ωnl − ωq)− iγnl(

1

−iωq − iωr + iωnm + γnm

)
e−i(ωq+ωr)te(iωnm+γnm)t

]
,
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ρ(2)
nm =

[
i

~2

∑
l

(
ρ(0)
mm − ρ(0)

ll

)∑
q,r

[~µlm · ~Eq][~µnl · ~Er]
(ωlm − ωq)− iγlm

(
1

−iωq − iωr + iωnm + γnm

)
e−i(ωq+ωr)t

− i

~2

∑
l

(
ρ

(0)
ll − ρ(0)

nn

)∑
q,r

[~µnl · ~Eq][~µlm · ~Er]
(ωnl − ωq)− iγnl

(
1

−iωq − iωr + iωnm + γnm

)
e−i(ωq+ωr)t

]
,

=
∑
l

∑
q,r

e−i(ωq+ωr)t
[(
ρ

(0)
mm − ρ(0)

ll

)
~2

[~µlm · ~Eq][~µnl · ~Er]
[(ωlm − ωq)− iγlm][(ωnm − ωq − ωr)− iγnm]

−
(
ρ

(0)
ll − ρ

(0)
nn

)
~2

[~µnl · ~Eq][~µlm · ~Er]
[(ωnl − ωq)− iγnl][(ωnm − ωq − ωr)− iγnm]

]
, (2.56)

=
∑
q,r

∑
l

Knmle
−i(ωq+ωr)t. (2.57)

The expectation value of the atomic dipole moment is then found from the second-order density

matrix:

〈~µ(t)〉(2) =tr
[
ρ̂(2)~̂µ

]
=
∑
n,m

ρ(2)
nm~µmn,

=
∑
q,r

∑
l,m,n

e−i(ωq+ωr)tKnml~µmn,

=
1

~2

∑
q,r

∑
l,m,n

e−i(ωq+ωr)t
[(
ρ(0)
mm − ρ(0)

ll

) (
~µlm · ~Eq

)(
~µnl · ~Er

)(
ωlm − ωq − iγlm

)(
ωnm − ωq − ωr − iγnm

)~µmn
−
(
ρ

(0)
ll − ρ(0)

nn

) (
~µnl · ~Eq

)(
~µlm · ~Er

)(
ωnl − ωq − iγnl

)(
ωnm − ωq − ωr − iγnm

)~µmn].
(2.58)

Again, we are interested in the various frequency components [Eq. (2.47)]. In particular, in the

complex amplitude of the component of the dipole moment oscillating at frequency ωq + ωr:

〈~µ(ωq, ωr)〉(2) =
1

~2

∑
l,m,n

~µmn

[(
ρ(0)
mm − ρ(0)

ll

) (
~µlm · ~Eq

)(
~µnl · ~Er

)(
ωlm − ωq − iγlm

)(
ωnm − ωq − ωr − iγnm

)
−
(
ρ

(0)
ll − ρ(0)

nn

) (
~µnl · ~Eq

)(
~µlm · ~Er

)(
ωnl − ωq − iγnl

)(
ωnm − ωq − ωr − iγnm

)]. (2.59)

We now define first hyperpolarizability through the equation

〈~µ(ωq, ωr)〉(2) =
∑
α,β,γ

βαβγ(−ωq − ωr;ωq, ωr)Eβ
rE

γ
q ~eα
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〈~µ(ωq, ωr)〉(2) =
1

~2

∑
α,β,γ

Eβ
rE

γ
q

∑
l,m,n

[(
ρ(0)
mm − ρ(0)

ll

) µαmnµ
γ
lmµ

β
nl(

ωlm − ωq − iγlm
)(
ωnm − ωq − ωr − iγnm

)
−
(
ρ

(0)
ll − ρ(0)

nn

) µαmnµ
γ
nlµ

β
lm(

ωnl − ωq − iγnl
)(
ωnm − ωq − ωr − iγnm

)]~eα.
(2.60)

The first hyperpolarizability reads

βαβγ (−ωq − ωr;ωq, ωr) =
1

~2

∑
l,m,n

[(
ρ(0)
mm − ρ(0)

ll

) µαmnµ
γ
lmµ

β
nl(

ωlm − ωq − iγlm
)(
ωnm − ωq − ωr − iγnm

)
(2.61a)

−
(
ρ

(0)
ll − ρ(0)

nn

) µαmnµ
γ
nlµ

β
lm(

ωnl − ωq − iγnl
)(
ωnm − ωq − ωr − iγnm

)].
(2.61b)

We have labeled the two terms that appear in this expression (2.61a) and (2.61b) so that we can

keep track of how these terms contribute to our final expression. Eq. (2.61) does not possess

intrinsic permutation symmetry, which we require the susceptibility to possess.

βαβγ (−ωq − ωr;ωq, ωr) 6= βαγβ (−ωq − ωr;ωr, ωq) . (2.62)

We therefore define the first hyperpolarizability to be one-half the sum of the right-hand side of

Eq. (2.61) with an analogous expression obtained by simultaneously interchanging ωq with ωr

βαβγ (−ωq − ωr;ωq, ωr) =
1

2

[
βαβγ (−ωq − ωr;ωq, ωr) + βαγβ (−ωq − ωr;ωr, ωq)

]
. (2.63)

We thereby obtain the result

βαβγ (−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

{(
ρ(0)
mm − ρ(0)

ll

)[ µαmnµ
γ
lmµ

β
nl(

ωlm − ωq − iγlm
)(
ωnm − ωq − ωr − iγnm

)
(2.64a)

+
µαmnµ

β
lmµ

γ
nl(

ωlm − ωr − iγlm
)(
ωnm − ωq − ωr − iγnm

)]
(2.64b)

−
(
ρ

(0)
ll − ρ(0)

nn

)[ µαmnµ
γ
nlµ

β
lm(

ωnl − ωq − iγnl
)(
ωnm − ωq − ωr − iγnm

)
(2.64c)

+
µαmnµ

β
nlµ

γ
lm(

ωnl − ωr − iγnl
)(
ωnm − ωq − ωr − iγnm

)]}.
(2.64d)
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This expression displays intrinsic permutation symmetry. We thereby recast first hyperpolariz-

ability into the form (Appendix A)

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µαlnµ

β
nmµ

γ
ml(

ωml−ωq − iγml
)(
ωnl−ωq−ωr − iγnl

) (2.65a)

+
µαlnµ

γ
nmµ

β
ml(

ωml−ωr − iγml
)(
ωnl−ωq−ωr − iγnl

) (2.65b)

+
µβlnµ

α
nmµ

γ
ml(

ωml−ωq − iγml
)(
ωnm+ωq+ωr + iγnm

) (2.65c)

+
µγlnµ

α
nmµ

β
ml(

ωml−ωr − iγml
)(
ωnm+ωq+ωr + iγnm

) (2.65d)

+
µγlnµ

α
nmµ

β
ml(

ωnl+ωq + iγnl
)(
ωmn−ωq−ωr − iγmn

) (2.65e)

+
µβlnµ

α
nmµ

γ
ml(

ωnl+ωr + iγnl
)(
ωmn−ωq−ωr − iγmn

) (2.65f)

+
µγlnµ

β
nmµ

α
ml(

ωnl+ωq + iγnl
)(
ωml+ωq+ωr + iγml

) (2.65g)

+
µβlnµ

γ
nmµ

α
ml(

ωnl+ωr + iγnl
)(
ωml+ωq+ωr + iγml

)]. (2.65h)

2.2.3 From microscopic to macroscopic responses

Each component of the generated surface polarization reads (cf Eq. (1.21))

P
(2)
I (ωq, ωr) = ε0

∑
J,K

∑
q,r

χ
(2)
IJK(−ωq − ωr;ωq, ωr)FJE(0)

J (ωr)FKE
(0)
K (ωq) (2.66)

where the F are the Fresnel factors.

The relationship between the molecular first hyperpolarizability β and bulk (macroscopic) sus-

ceptibility χ(2) is calculated under the assumption that the molecular nonlinear optical properties

are not severely perturbed by neighboring molecules. The bulk susceptibility is, then, the sta-

tistical average of the molecular first hyperpolarizability [3],

χ
(2)
IJK =

N

ε0

∑
α,β,γ

〈TIα,Jβ,Kγ(φ, θ, ξ)βαβγ(−ωq − ωr;ωq, ωr)〉 (2.67)

where N is the number density of the nonlinear optical molecules, T is the transformation

matrix between the laboratory and molecular coordinate systems (related by the Euler angles
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φ, θ, and ξ), and the angle brackets denote the statistical average. χ
(2)
IJK is one of the key

quantities that we need for calculating the SFG intensities. More details are given

in Section 3.4.
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Chapter 3

Vibrational Spectroscopies of Molecules

on Surfaces

In Chapters 1 and 2, some of the basics concepts on radiation-matter interactions are discussed.

In particular, we have discussed the propagation of a light beam in the context of linear and

nonlinear optics, as well as the response of materials (polarizability and hyperpolarizabilities).

These interactions could also be studied in terms of Spectroscopy. Indeed, Spectroscopy is the

study of the spectrum of a physical phenomenon, that means the decomposition in energy scale,

or any other quantity related to energy (frequency, wavelength, etc.). Depending on the nature

of the interaction different types of spectroscopy can be distinguished. Among others, vibra-

tional spectroscopy is a powerful mean of identification, characterization, structure elucidation

of surface species generated upon molecular adsorption and the species generated by surface

reactions. In addition there are a number of techniques that have been specifically developed to

study the vibrations of molecules at interfaces (RAIRS, SERS, EELS, SFG, etc.).

This chapter will start by a quick review on molecular vibrations and the harmonic approxima-

tion, dealing with Schrödinger equation of the nuclei, normal modes, and harmonic oscillator.

Then, a description of the basic theoretical aspects of some vibrational spectroscopies are dis-

cussed. They are arranged in this order: IR, Raman, then SFG. Indeed, in the harmonic

approximation to be SFG active a normal mode should be both IR and Raman active.

57
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3.1 Molecular Vibrations

3.1.1 The Schrödinger equation for the nuclei

Within the Born-Oppenheimer approximation, the Hamiltonian for the nuclei (A) contains two

terms: the kinetic energy of the nuclei and a potential V :

ĤNucl = −
N∑
A

∑
α=x,y,z

~2

2MA

∂2

∂R2
Aα

+ V (~R1, ~R2, . . . , ~RN). (3.1)

The potential V describes the potential energy surface (PES), and is made of two terms:

• The electronic energy, solution of the electronic Hamiltonian for a given geometry:

εelec(~r1, ~r2, . . . , ~rN),

• The repulsion between all pairs of nuclei:
1

2

∑
A

∑
B 6=A

e2

4πε0

ZAZB

|~RAB|

In order to solve the Schrödinger equation of the nuclei, we need to know the potential V . The

potential can always be decomposed as a Taylor series:

V = V0︸︷︷︸
set to 0

+
3N∑
Aα

(
∂V

∂RAα

)
e︸ ︷︷ ︸

=0

RAα +
1

2

3N∑
Aα

3N∑
Bβ

(
∂2V

∂RAα∂RBβ

)
e

RAαRBβ (3.2)

+
1

6

3N∑
Aα

3N∑
Bβ

3N∑
Cγ

(
∂3V

∂rAα∂RBβ∂RCγ

)
e

RAαRBβRCγ + . . . ,

where the subscript “e” stand for the equilibrium geometry. Within that geometry, the second

term of Eq. (3.2) is equal to 0, and the Hamiltonian for the nuclei is therefore given by

ĤNucl = −
3N∑
Aα

~2

2MA

∂2

∂R2
Aα

+
1

2

3N∑
Aα

3N∑
Bβ

(
∂2V

∂RAα∂RBβ

)
e

RAαRBβ + . . . (3.3)

We define a new set of coordinates, the mass-weighted Cartesian coordinates:

Rm
Aα =

√
MARAα, (3.4)
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so that the Hamiltonian reads:

ĤNucl = −~2

2

3N∑
Aα

∂2

∂(Rm
Aα)2

+
1

2

3N∑
Aα

3N∑
Bβ

(
∂2V

∂Rm
Aα∂R

m
Bβ

)
e

Rm
AαR

m
Bβ,+ . . . (3.5)

Let’s introduce the normal mode coordinates as unitary transformation of the mass-weighted

Cartesian coordinates:

Qk =
3N∑
Aα

Rm
AαUAα,k, (3.6)

Rm
Aα =

∑
k

QkUAα,k. (3.7)

Using this definition, the Hamiltonian can be rewritten as:

ĤNucl = −~2

2

∑
k

∑
l

3N∑
Aα

∂

∂Qk

∂

∂Ql

UAα,kUAα,l (3.8)

+
1

2

∑
k

∑
l

3N∑
Aα

3N∑
Bβ

UAα,kUBβ,l

(
∂2V

∂Rm
Aα∂R

m
Bβ

)
e

QkQl + . . .

= −~2

2

∑
k

∂2

∂Q2
k

+
1

2

∑
k

ω2
kQ

2
k + . . .

In the previous equation, the unitary transformation U was chosen such that:

3N∑
Aα

3N∑
Bβ

UAα,kUBβ,l

(
∂2V

∂Rm
Aα∂R

m
Bβ

)
e︸ ︷︷ ︸

Hm
Aα,Bβ

= ω2
kδkl, (3.9)

U †HmU = ω2. (3.10)

This is an eigenvalue problem.

• The eigenvalues give the frequencies of the normal modes: ω2
k = 4π2ν2

k = 4π2c2ν̄2
k

• The eigenvectors are the normal mode coordinate expressions in terms of the mass-weighted

Cartesian ones: UAα,k = 〈Rm
Aα|Qk〉 = QAα,k

• Qc
Aα,k = (1/

√
MA)QAα,k are the components of the kth mode in terms of Cartesian coordi-

nates.
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3.1.2 The harmonic approximation

3.1.2.1 Mechanical harmonicity

The Hamiltonian expression (Eq. (3.3)) in the normal coordinate basis reads:

Ĥ = −~2

2

∑
k

∂2

∂Q2
k

+
1

2

∑
k

ω2
kQ

2
k +

1

6

∑
k

∑
l

∑
m

FklmQkQlQm + . . . (3.11)

In the harmonic approximation, we neglect all the terms that are beyond the quadratic terms

(green terms), and the Hamiltonian becomes:

Ĥ =
∑
k

[
−~2

2

∂2

∂Q2
k

+
1

2
ω2
kQ

2
k

]
. (3.12)

The Hamiltonian is separable, so that the wave functions |vi〉, eigenfunctions of the Schrödinger

equation are products of the harmonic oscillator wave functions |vik(Qk)〉, while their energy are

sums of harmonic oscillator energies:

|vi〉 =
∏
k

|vik(Qk)〉, (3.13)

Evi =
∑
k

Ek
vik
. (3.14)

The harmonic oscillator wave function and energy are given by:

|vik(Qk)〉 =

√
1

2ν
i
kνik!

(ωk
π~

)1/4

e−
ωkQ

2
k

2~ Hνik

(√
ωk/~Qk

)
, (3.15)

Ek
vik

= ~ωk(νik +
1

2
), (3.16)

where Hν(x) are the Hermite polynomials (Table 3.1), νik = 0, 1, 2, . . . is the quantum number

associated to the k normal mode for the i state.

The Hermite polynomials satisfy the equation:

H ′′ν (x)− 2xH ′ν(x) + 2νHν(x) = 0, (3.17)

and the recursion relation

Hν+1(x) = 2xHν(x)− 2νHν−1(x). (3.18)
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Table 3.1: Hermite polynomials

ν Hν(x)

0 1
1 2x
2 4x2 − 2
3 8x3 − 12x
4 16x4 − 48x2 + 12
5 32x5 − 160x3 + 120x
6 64x6 − 480x4 + 720x2 − 120

3.1.2.2 Harmonic oscillator properties

Normalization

Let’s start with the overlap between two one-dimensional vibrational wave functions:

〈vik(Qk)|vfk (Qk)〉 =

√
1

2ν
i
k+νfk νik!ν

f
k !

√
ωk
π~

∫ ∞
−∞

e−
ωkQ

2
k

~ Hνik

(√
ωk/~Qk

)
Hνfk

(√
ωk/~Qk

)
dQk

(3.19)

Let’s define a new variable x =
√
ωk/~Qk and dx =

√
ωk/~ dQk

〈vik(Qk)|vfk (Qk)〉 =

√
1

2ν
i
k+νfk νik!ν

f
k !

√
1

π

∫ ∞
−∞

e−x
2

Hνik
(x)Hνfk

(x) dx (3.20)

where the integral over x works out as

∫ ∞
−∞

e−x
2

Hνik
(x)Hνfk

(x) dx =

{
0 if νik 6= νfk√
π2ν

i
kνik! if νik = νfk

, (3.21)

so that the overlap value confirms the orthogonalization:

〈vik(Qk)|vfk (Qk)〉 =

√
1

2ν
i
k+νfk νik!ν

f
k !

√
1

π

[√
π2ν

i
kνik!δνikν

f
k

]
= δνikν

f
k

(3.22)

Expectation value with Qk

〈vik(Qk)|Qk|vfk (Qk)〉 (3.23)

=

√
1

2ν
i
k+νfk νik!ν

f
k !

√
~
πωk

∫ ∞
−∞

e−x
2

Hνik
(x)Hνfk

(x)x dx (3.24)
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By using the recursive relation, derived from Eq. (3.18),

xHν(x) = νHν−1(x) +
1

2
Hν+1(x), (3.25)

the previous integral can be rewritten:

〈vik(Qk)|Qk|vfk (Qk)〉

=

[∫ ∞
−∞

e−x
2

Hνik
(x) νfkHνfk−1 (x) dx+

1

2

∫ ∞
−∞

e−x
2

Hνik
(x)Hνfk+1 (x) dx

]
(3.26)

=

√
1

2ν
i
k+νfk νik!ν

f
k !

√
~
πωk

[
νfk
√
π2ν

i
kνik!δνik,ν

f
k−1 +

1

2

√
π2ν

i
kνik!δνik,ν

f
k+1

]
(3.27)

In practice, the expectation value of Qk obeys to the following rules

〈vik(Qk)|Qk|vfk (Qk)〉 =



0 if νik = νfk√
~

2ωk

√
νik + 1 if νik = νfk − 1√

~
2ωk

√
νik if νik = νfk + 1

0 for other cases

(3.28)

Using similar development, the general rules that obeys the expectation of Q2
k can be derived as

〈vik(Qk)|Q2
k|vfk (Qk)〉 =


~
ωk

(
νik + 1

2

)
if νik = νfk

~
2ωk

√
(νik + 2)(νik + 1) if νik = νfk − 2

~
2ωk

√
(νik)(ν

i
k − 1) if νik = νfk + 2

0 for other cases

(3.29)

3.1.2.3 Double harmonic approximation

For any vibrational spectroscopies, the intensity associated to the fundamental transition is given

by the following integral:

Pζ = 〈v0|P (Q)|v1ζ〉 (3.30)

The expectation value of the electrical property P can be expanded as a Taylor series in Q’s:

P (Q) = P 0 +
∑
k

(
∂P

∂Qk

)
e

Qk +
1

2

∑
k

∑
l

(
∂2P

∂Qk∂Ql

)
e

QkQl + . . . (3.31)
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In the double harmonic approximation, in addition to the Hamiltonian truncated at the quadratic

term [i.e. the vibrational wavefunctions are limited to the harmonic contribution Eq. (3.15)] we

only consider the first two terms (in green) of the property P [Eq. (3.30)] so that the intensity

associated to a fundamental transition from the ground state to a normal mode ζ therefore reads:

Pζ =P 0〈0|01 . . . 0ζ . . . 1ζ . . . 03N−6〉+
∑
k

(
∂P

∂Qk

)
e

〈0|Qk|01 . . . 0ζ . . . 1ζ . . . 03N−6〉

=P 0〈01|01〉〈02|02〉 . . . 〈0ζ |1ζ〉 . . . 〈03N−6|03N−6〉

+

(
∂P

∂Q1

)
e

〈01|Q1|01〉〈02|02〉 . . . 〈0ζ |1ζ〉 . . . 〈03N−6|03N−6〉

+

(
∂P

∂Q2

)
e

〈01|01〉〈02|Q2|02〉 . . . 〈0ζ |1ζ〉 . . . 〈03N−6|03N−6〉

+ . . .

+

(
∂P

∂Qζ

)
e

〈01|01〉〈02|02〉 . . . 〈0ζ |Qζ |1ζ〉 . . . 〈03N−6|03N−6〉

+

(
∂P

∂Q3N−6)

)
e

〈01|01〉〈02|02〉 . . . 〈0ζ |1ζ〉 . . . 〈03N−6|Q3N−6|03N−6〉+ . . .

=

(
∂P

∂Qζ

)
e

〈01|01〉︸ ︷︷ ︸
=1

〈02|02〉︸ ︷︷ ︸
=1

. . . 〈0ζ |Qζ |1ζ〉︸ ︷︷ ︸
=

√
~

2ωζ

. . . 〈03N−6|03N−6︸ ︷︷ ︸
=1

〉

=

√
~

2ωζ

(
∂P

∂Qζ

)
e

. (3.32)

In the double harmonic approximation:

• The intensity associated to a normal mode ζ is related to the derivative of a property with

respect to this normal mode coordinates.

• Only transitions when just one vibrational quantum number changes by unity are allowed

(~ωζ).

3.1.3 Beyond the harmonic model: Anharmonic corrections

The truncation of the Taylor expansion of the molecular potential energy after the quadratic

term is an approximation, and in real molecules the neglected terms might be important, partic-

ularly for large displacements from equilibrium. The typical form of the potential energy surface

is shown in Fig. 3.1a, and because at high excitation it is less confining than a parabola, the

energy levels converge instead of staying uniformly separated. Thus, normal vibrational frequen-

cies computed with molecular orbital methods are well known to be overestimated due to the

harmonic approximation (and the incomplete consideration of electron correlation), in compari-

son with experimental fundamental frequencies. Therefore, it is common practice to scale these
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Fundamental 1st Overtone 2nd Overtone

(c)

Figure 3.1: (a) Potential energy curves of a diatomic molecule: Morse potential (blue line,
V (r) = De

(
[1− e−a(r−r0)]2 − 1

)
), harmonic parabolic potential (red line V (x) = 1/2 kx2).

(b) Example of intensity and frequency shifts due to Fermi resonance. The bottom top bands
represent two fundamental vibrations without Fermi resonance, and the top bands show the
change in bands as a result of these resonance coupling. (c) Energy levels for fundamental and

overtone infrared bands.

frequencies by an empirical factor1 leading to an improved and often sufficient agreement with

experiment for a wide range of systems. These scaling factors vary depending on the level of

calculation and of the basis set used to evaluate the Hessian [1–7].

3.1.4 Overtone, combination bands, and Fermi resonance

In vibrational spectroscopy, an overtone band is the spectral band that occurs in a vibrational

spectrum of a molecule when the molecule makes a transition (Fig. 3.1c) from the ground state

(v = 0) to the second excited state (v = 2). Combination bands arise when two modes absorbing

at fundamental wavenumbers ν̄1 and ν̄2 absorb energy simultaneously. The resulting band will

appear at (ν̄1 + ν̄2) wavenumber, but it is also possible to have a difference band where the

wavenumbers are substracted.

Fermi resonance (Fig. 3.1b) results in the shifting of the energies and intensities of absorption

bands that have nearly the same energy and symmetry in both IR and Raman spectroscopies.

The two bands are usually a fundamental vibration and either an overtone or combination band.

The wavefunctions for the two resonant vibrations mix according to the anharmonic oscillator

approximation, and the result is a shift in frequency and a change in intensity in the spectrum.

As a result, two strong bands are observed in the spectrum, instead of the expected strong and

weak bands. It is not possible to determine the contribution from each vibration because of the

resulting mixed wave function.

1However, it would have been more appropriate to explicitly account for the anharmonicity with the use
of Morse-like potentials (higher-order terms of the potential energy surface) but this would have substantially
increased the computational needs for moderate improvement.
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3.2 Infrared absorption spectroscopy

Infrared spectroscopy is a technique based on the vibrations of the atoms of a molecule. An

infrared spectrum is commonly obtained by passing infrared radiation through a sample and

determining what fraction of the incident radiation is absorbed at a particular energy. The

energy at which any peak in an absorption spectrum appears corresponds to the frequency of a

vibrational transition of the system.

3.2.1 IR intensity

In the most basic terms, the infrared spectrum is formed as a consequence of the absorption of

electromagnetic radiation at frequencies that correlate with the transition energy between two

vibrational levels of a molecule (Fig. 3.2). The transition rate of infrared absorption from an

initial state |i〉 to a continuum of final states |f〉 is given by

Wi→f =
π
(
~µfi · ~E

)2

2~
ρf , (3.33)

where ~µfi is the transition dipole moment, ~E the total electric field, and ρf =
dn

dε
the density of

final state (the number of levels per unit energy), and the scalar product

(
~µfi · ~E

)2

=
(
µfiXEX + µfiY EY + µfiZEZ

)2

=µfiXµ
fi
XE

2
X + µfiY µ

fi
Y E

2
Y + µfiZ µ

fi
ZE

2
Z

+ 2µfiXµ
fi
Y EXEY + 2µfiXµ

fi
ZEXEZ + 2µfiY µ

fi
ZEYEZ . (3.34)

In this equation both ~µfi and ~E are defined in the laboratory system coordinates (X, Y, Z).

However, ~µ is a molecular quantity i.e. calculated in the molecular system coordinates (x, y, z).

One therefore needs to transform it into the laboratory system coordinates:

µfiI =

x,y,z∑
α

µfiα TIα, (3.35)

where the TIα are the elements of the rotation matrix.
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Figure 3.2: IR and Raman energy levels

Applying this transformation and considering that the molecules are randomly oriented (isotropic

average of the tensor components) one obtains:

〈
µfiI µ

fi
J

〉
=

〈(
x,y,z∑
α

µfiα TIα

)(
x,y,z∑
β

µfiβ TJβ

)〉

=

x,y,z∑
α,β

µfiα µ
fi
β 〈TIαTJβ〉 ,

=

x,y,z∑
α,β

µfiα µ
fi
β

δαβ
3
, (3.36)

where 〈〉 defines the orientational average. Eq. (3.34) therefore reads (~µ = ~µfi)〈(
~µ · ~E

)2
〉

=
1

3

(
µ2
x + µ2

y + µ2
z

)
E2
X +

1

3

(
µ2
x + µ2

y + µ2
z

)
E2
Y +

1

3

(
µ2
x + µ2

y + µ2
z

)
E2
Z ,

=
1

3

(
µ2
x + µ2

y + µ2
z

) (
E2
X + E2

Y + E2
Z

)
,

=
1

3

(
µ2
x + µ2

y + µ2
z

)
E2, (3.37)

and Eq. (3.33) becomes,

Wfi =
π

6~
ρf

[(
µfix
)2

+
(
µfiy
)2

+
(
µfiz
)2
]
E2,

=
1

6ε0~2
ρrad

[(
µfix
)2

+
(
µfiy
)2

+
(
µfiz
)2
]
, (3.38)
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where ρrad = Ūhρf is the radiant energy density or energy density of radiations states and

Ū =
ε0E

2

2
is the energy density of the electromagnetic field [8]. Each photon has an energy hν.

The rate of change of energy density is

U =
dŪ

dt
= −hνWfi n(ν)dν, (3.39)

where n(ν)dν is the number density of molecules able to absorb light of frequency in the range

ν to ν + dν.

Now considering that the absorption occurs within a slab of thickness dl (Beer-Lambert Law

Fig. 3.3),

I0 I

l

I

I0
= exp(−εCml)

Figure 3.3: Beer-Lambert Law (Reproduced from www.texample.net/tikz). The dots repre-
sent the absorbing species. I0 is the initial light intensity, I is the light intensity after it passes
through the sample, Cm is the concentration of the sample, l is the path length, and ε is the

absorption coefficient.

dŪ

dt
=

dI(ν)

dl
dν =− hνWfi n(ν)dν, (3.40)

dI(ν) =− hνWfi n(ν)dl,

=− hνn(ν)
1

6ε0~2
ρrad

[(
µfix
)2

+
(
µfiy
)2

+
(
µfiz
)2
]

dl,

=− Ihν n(ν)

c

1

6ε0~2

[(
µfix
)2

+
(
µfiy
)2

+
(
µfiz
)2
]

dl,

dI(ν) =− ε(ν)CmIdl ⇒ I = I0e
−ε(ν)Cml, (3.41)

where ρrad =
I

c
, with I the light intensity, ε(ν) is the absorption coefficient, and Cm the molar

concentration of the sample. The absorption coefficient therefore reads

ε(ν) =
h

6ε0~2

n(ν)ν

Cmc

[(
µfix
)2

+
(
µfiy
)2

+
(
µfiz
)2
]
. (3.42)

http://www.texample.net/tikz/examples/area/optics/
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Let’s introduce the integrated absorption as∫
ε(ν)dν =

h

6ε0~2

[(
µfix
)2

+
(
µfiy
)2

+
(
µfiz
)2
] 1

cCm

∫
n(ν)νdν. (3.43)

However, this integrated absorption coefficient can also be defined as the sum of the absorption

coefficients over a band, and it corresponds to the area under the plot of molar absorption

coefficient as a function of wavenumber

A =

∫
band

ε(ν̄)dν̄ =
h

6ε0~2

[(
µfix
)2

+
(
µfiy
)2

+
(
µfiz
)2
] 1

Cmc

∫
band

n(ν̄)ν̄dν̄,

=
h

6ε0~2

[(
µfix
)2

+
(
µfiy
)2

+
(
µfiz
)2
] 1

cCm
Nν̄fi,

=NA

(
2π~ν̄fi
c

)
1

6ε0~2

[(
µfix
)2

+
(
µfiy
)2

+
(
µfiz
)2
]
,

=
πνfiNA

3ε0~c2

[(
µfix
)2

+
(
µfiy
)2

+
(
µfiz
)2
]
, (3.44)

where N = NACm is the volume density of molecules and ν̄ = ν̄fi is considered constant over

the interval. In Eq. (3.44), each component of the dipole moment can be expressed using the

Taylor expansion and the harmonic approximation (Section 3.1.2.3)

µα = (µα)e +
3N−6∑
k

(
∂µα
∂Qk

)
e

Qk (3.45)

Therefore, for normal mode p the transition dipole moment between |vi〉 = |0〉 and |vf〉 = |1〉
reads

µfiα = (µα)e 〈vf |vi〉︸ ︷︷ ︸
0

+
3N−6∑
k

(
∂µα
∂Qk

)
e

〈vf |Qk|vi〉 (3.46)

where the first term is equal to zero [Eq. (3.22)] and the second is non-zero only if |vf〉 and |vi〉
differ by one quantum number in only one mode of vibration [Eq. (3.28)]:

(
µfiα
)
p

=

(
~

4πνp

) 1
2
(
∂µα
∂Qp

)
e

(3.47)

One therefore obtains

A = IIRp =
πνpNA

3ε0~c2

(
~

4πνp

) x,y,z∑
α

(
∂µα
∂Qp

)2

e

,

IIRp =
NA

12ε0c2

[(
∂µx
∂Qp

)2

e

+

(
∂µy
∂Qp

)2

e

+

(
∂µz
∂Qp

)2

e

]
≡
[
m ·mol−1

]
(3.48)
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3.2.2 Selection rules for IR spectroscopy

The general rule for the vibrational transition vi → vf to be IR active is that at least one of

the three products 〈vf |µα|vi〉 (with α = x, y, z) is non-zero. This evaluation can be simplified

using the vanishing integral theorem and group theory: this theorem states that the product

〈vf |µα|vi〉 vanishes if the product of the symmetry representation of |vf〉, µα, and |vi〉 does not

contain the totally symmetric irreducible representation Γ1 of the group:

〈vf |µα|vi〉 6= 0⇒ Γ(vf )⊗ Γ(µα)⊗ Γ(vi) ⊃ Γ1 (3.49)

This general rule makes no statement as to the intensity with which a permitted transition will

appear in the IR spectrum. Thus its expresses a necessary condition but not a sufficient one for

IR activity.

For example, the CH3 group (associated to the C3v symmetry) possesses three stretching modes

which are all IR active i) one symmetric mode (A1) (µα = µz, see Table 3.2) and a pair of

doubly-degenerate asymmetric modes (E) (µα = µx, µy). The vibrational ground state |vi〉
corresponds to the totally symmetric representation (Γ(vi) = Γ1 = A1, and Γ(vf ) = A1, E) so

that

Γ(vf )⊗ Γ(µα)⊗ Γ(vi) =

{
E

A1

}
⊗
{
E

A1

}
⊗ A1 ⊃ A1 (3.50)

Table 3.2: Characters table for space group C3v

Symmetry species Symmetry operations

E 2 C3 3σv IR Raman

A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0 (x, y) (Rx, Rz) (x2 − y2, xy) (xz, yz)

3.3 Raman scattering spectroscopy

When light interacts with matter, it can scatter inelastically. During that process (Fig. 3.2), the

material absorbs energy and the emitted photon has a lower energy than the absorbed photon

(this outcome is labeled Stokes Raman scattering) or the material loses energy and the emitted

photon has a higher energy than the absorbed photon (this outcome is labeled anti-Stokes Raman

scattering). The Raman effect, was experimentally discovered in 1928 by Raman and Krishnan

[9] in India. The energy difference between the absorbed and emitted photon corresponds to the

energy difference between two resonant states of the material.
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3.3.1 Raman Intensity

The Transition Polarizability Tensor αfi

In the Appendix A under the Born-Oppenheimer and Placzek’s approximations, the expression

of the ααβ component of the transition polarizability is derived in the form:

(ααβ)fi =
1

~
∑
er 6=eg

2ωereg(
ω2
ereg − ω2

0

) 〈vf |〈eg |µα| er〉 〈er |µβ| eg〉| vi〉 ,
=
〈
vf

∣∣∣(ααβ(Q))electronic
∣∣∣ vi〉 (3.51)

where |eg〉 and |er〉 are the ground electronic and virtual excited states, respectively. |vi〉 and

|vf〉 are the ground vibrational and first excited states, respectively.

Near equilibrium geometry, the polarizability is expanded along the vibrational normal coordi-

nates:

αelecαβ (Q) = (ααβ)e +
∑
k

(
∂ααβ
∂Qk

)
e

Qk +
1

2

∑
k,l

(
∂2ααβ
∂Qk∂Ql

)
e

QkQl + · · · (3.52)

Within the double harmonic approximation (Section 3.1.2.3), the expansion is truncated after

the first-order term and for a given transition, one obtains:

〈
vf
∣∣αelecαβ (Q)

∣∣ vi〉 = (ααβ)e 〈vf |vi〉︸ ︷︷ ︸
0

+
∑
k

(
∂ααβ
∂Qk

)
e

〈vf |Qk| vi〉 . (3.53)

Again, the first term is equal to zero [Eq. (3.22)] and the second is non-zero only if |vf〉 and |vi〉
differ by one quantum number in only one mode of vibration [Eq. (3.28)]. Now assuming that

|vi〉 is the ground vibrational state i.e. |vi〉 = |0〉 while the final state is |vf〉 = |1p〉 , i.e. the

oscillator p is in the first excited states and all the others in their ground state:

〈1p|αelecαβ (Q)|0〉 =

√
~

2ωp

(
∂ααβ
∂Qp

)
e

. (3.54)

Then, the ααβ of the transition polarizability associated to the p normal mode reads:

(ααβ)fip =

√
~

2ωp

(
∂ααβ
∂Qp

)
e

, (3.55)

=

√
h

8π2cν̄p

(
∂ααβ
∂Qp

)
e

. (3.56)
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Intensity of the scattered radiation

Let us consider a monochromatic light characterized by its frequency ω0, its state of polarization

p̂i [linear (⊥i or ‖i), circular, unpolarized (ni)], its propagation vector ~ni0 and its flux density

(irradiance) I = 1
2
cε0

(
E

(0)
i

)2

≡ [Js−1m−2] (where E
(0)
i is the amplitude of the electric field

strength of the incident radiation). As a result of the interaction of the incident radiation with a

material system some scattered radiations are produced. These scattered radiations consist in a

number of different frequency components propagating in various directions in space (Fig. 3.4).

A component of the scattered radiation is similarly characterized by ωs, p̂
s (state of polarization

of the scattered radiation), ~ns0, and its intensity I. In the following, I (θ; p̂s, p̂i) is the intensity

of the radiation of polarization state p̂s scattered along a general direction Oa defined by θ.

X

Y

Z

ω0

X

Y

Z

~ni0 = ~eZ , p̂
i

ω0,I

~ns0 = ~eX , p̂
s

ωs, I

θ b

c
a

~ns0

φ

(a) (b)

Figure 3.4: (a) Scattering in every direction. (b) Illumination geometry. The scattering
sample is located at the origin O and the direction of illumination is such that ~ni0 = ~eZ
and ~ns0 = ~ea. The scattered plane is the xz plane (grey area), and the general direction of
observation is Oa, which makes an angle θ with the Z-axis. Important special case of the

observation direction is θ = π/2 (~ns0 = ~eX)

By considering an assembly of N randomly oriented molecules (isotropic average of tensor

components) irradiated with a monochromatic light, the properties of the radiation scattered

along ~ns0 may be expressed alternatively in terms of its Stokes parameters Ss(θ) [10]:
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Ss(θ) ∝ 1

r2

{
F
(
a2, β2, δ2, θ, P, η, ζ

)}(
E

(0)
i

)2

(3.57)

where r is the distance along the observation direction at which the observation is made, E
(0)
i

refers to the incident radiation. The function F (a2, β2, δ2, θ, P, η, ζ) involves the combinations

of the transition tensor invariants a2, β2 and δ2 (which define the isotropic averages of the

transition tensor components), the angle θ and the polarization characteristics P , η and ζ of

the incident radiation (see Table 3.3), provided the molecules are non-chiral. The functions

F (a2, β2, δ2, θ, P, η, ζ) can be found in ref [10].

Table 3.3: Polarization characteristics for unpolarized and linear polarized light (The param-
eters P , η, and ζ are defined by the polarization ellipse [11]

p̂i P η ζ

ni 0 - -

⊥i 1 0 0

‖i 1 0 π/2

For an incident light of pulsation ω0 (~ni0 = ~eZ), the intensity of the scattered radiation (~ns0 = ~eZ ,

θ = π/2) at a distance X from the origin O along the direction defined by ~eX is determined by

the Stokes parameters

Ss0(π/2) =Nvi

(
ω2
s

4πε0c2X

)2 ~
2ωp0

{(
45a2

p + 13β2
p

90

)
Si0 −

(
45a2

p + β2
p

90

)
Si1

}
, (3.58)

Ss1(π/2) =Nvi

(
ω2
s

4πε0c2X

)2 ~
2ωp0

{(
45a2

p + β2
p

90

)
Si0 −

(
45a2

p + β2
p

90

)
Si1

}
, (3.59)

Ss2(π/2) =0, (3.60)

Ss3(π/2) =0, (3.61)

where a2
p and β2

p are the isotropic symmetric and anti-symmetric invariants of the transition

polarizability tensor, respectively (in the Einstein notation)

a2
p =

1

9

(
∂ααα
∂Qp

)
e

(
∂αββ
∂Qp

)
e

, (3.62)

β2
p =

[
3

(
∂ααβ
∂Qp

)
e

(
∂ααβ
∂Qp

)
e

−
(
∂ααα
∂Qp

)
e

(
∂αββ
∂Qp

)
e

]
. (3.63)
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Nvi is the number of molecules in the initial vibrational state vi. ωs is the pulsation of the

scattered radiation. The Stokes parameters of the incident light are given by

Si0 =
(
E

(0)
i

)2

, (3.64a)

Si1 =P
(
E

(0)
i

)2

cos(2η) cos(2ζ), (3.64b)

Si2 =P
(
E

(0)
i

)2

cos(2η) sin(2ζ), (3.64c)

Si3 =P
(
E

(0)
i

)2

sin(2η), (3.64d)

P =
[(
Si1
)2

+
(
Si2
)2

+
(
Si3
)2
] 1

2
/Si0, (3.64e)

S0 is the total intensity measured, S3 is the intensity of the circular polarized beam, S1 and S2

define the intensity of the linear polarized beam.

The Stokes parameters for scattered radiation linearly polarized with E
(0)
s,Y 6= 0 (p̂s =⊥s) and

E
(0)
s,Z 6= 0 (p̂s =‖s) are given by

Ss0
(
π/2;⊥s, p̂i

)
=

1

2
{Ss0(π/2) + Ss1(π/2)} , (3.65)

Ss1
(
π/2; ‖s, p̂i

)
=

1

2
{Ss0(π/2)− Ss1(π/2)} . (3.66)

The relationship between the intensity of the radiation I [J · s−1 · sr−1 ·molecule−1] from a single

molecule and the irradiance I [J · s−1 ·m−2] of the incident radiation has the general form

I =
dσ(θ)

dΩ
I , (3.67)

I =
1

2
cε0S0 =

1

2
cε0

(
E

(0)
i

)2

, (3.68)

where
dσ(θ)

dΩ
[m2 · sr−1 ·molecule−1] is the differential scattering cross-section per unit of solid

angle Ω of the Raman intensity detected at an angle θ of the detector. To convert the Stokes

parameters of the scattered radiation to intensities we multiply by the factor
1

2
cε0X

2, and use(
E

(0)
i

)2

= 2I /cε0

I
(
π/2;⊥s, p̂i

)
=Nvi

(
ω2
s

4πε0c2

)2 ~
2ωp0

{(
45a2

p + 7β2
p

90

)
−
(

45a2
p + β2

p

90

)
P cos(2η) cos(2ζ)

}
I ,

(3.69a)

I
(
π/2; ‖s, p̂i

)
=Nvi

(
ω2
s

4πε0c2

)2 ~
2ωp0

{
6β2

p

90

}
I . (3.69b)
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For natural radiation (unpolarized ≡ p̂i = ni) incident light the Raman intensity reads,

I
(
π/2;⊥s, ni

)
=Nvi

(
ω2
s

4πε0c2

)2 ~
2ωp0

{(
45a2

p + 7β2
p

90

)}
I , (3.70a)

I
(
π/2; ‖s, ni

)
=Nvi

(
ω2
s

4πε0c2

)2 ~
2ωp0

{
6β2

p

90

}
I , (3.70b)

Nvi =
N

1− e
(
− ~ωp
KT

) , (3.70c)

and the differential cross-section for the scattered radiation(stokes Raman) linearly polarized

with E
(0)
s,Y 6= 0 (p̂s =⊥s) can therefore be expressed as,

ndσ(π/2)p
dΩ

=
ω4
p

16πε2
0c

4

~
2ωp0

[
45a2

p + 7β2
p

90

]
1

1− e
(
− ~ωp
KT

) ≡ [m2 · sr−1 ·molecule−1]. (3.71)

3.3.2 Selection rules for Raman scattering

It follows from Eq. (3.51) that for a general vibrational transition from vi to vf to be Raman

active, at least one of the products 〈vf |ααβ| vi〉 must be non-zero. Again, using the vanishing

integral theorem and group theory (see Section 3.2.2) one finds

〈vf | (ααβ) |vi〉 6= 0⇒ Γ(vf )⊗ Γ (ααβ)⊗ Γ(vi) ⊃ Γ1 (3.72)

This general rule makes no statement as to the intensity with which a permitted transition will

appear in the Raman spectrum. In some cases the intensity may be so low as to be unobservable

experimentally. It is even possible that the intensity may be fortuitously zero. Thus the general

rule expresses a necessary condition but not a sufficient one for Raman activity.

3.3.3 Surface-enhanced Raman scattering (SERS)

In 1974, Fleischmann et al. [12] reported an unexpectedly strong Raman signal from a monolayer

of pyridine adsorbed on an electrochemically roughened silver electrode. They explained the

signal strength as the result of the large number of molecules on the increased surface area of the

rough electrode. In 1977, Jeanmaire and Duyne [13] and Albrecht and Creighton [14] confirmed

independently that result, a Raman enhancement of about a 105 − 106 factor compared with

the signal from the pyridine molecules in the absence of metal, and they concluded that such a

strong signal can not be explained by an increase in surface area alone.

Thereafter, it has been established that SERS is primarily a phenomenon associated with the

enhancement of the electromagnetic field in the vicinity of small metal particles that are optically

excited near an intense dipolar resonance such as a polarized surface-plasmon [15, 16]. An
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increased Raman signal appears due to magnification of both the incident (the field enhancement

scales as E4, where E is the local optical field) and Raman-scattered fields, an effect known as

“Electromagnetic enhancement” (Fig. 3.5).

Moreover, it has also been suggested that the electromagnetic mechanism is not the only one

that contributes to the enhancement. The electronic interaction between the molecules and the

metal surface can also modify the scattering process itself and produce a larger cross section

than what occurs by scattering light from the molecule alone, an effect known as “Electronic

enhancement or chemical SERS” [17–19].

Molecule

Metallic nanoparticle

Enhanced field

Excitation

Enhanced
Raman signal

Enhanced
excitation

Raman
scattering

Figure 3.5: Schematic illustration of the electromagnetic SERS enhancement using the two
process mechanism.

The enhancement factors can be evaluated with Eq. (3.73). Experimentally they are as high as

1014−15, which is sufficient to allow even single molecule detection using Raman. Further reading

on the topic can be found in refs [20–22].

EF =
ISERS

IRaman

,

=
σSERS

dΩ
/
σRaman

dΩ
. (3.73)

where ISERS and σSERS are the SERS intensity and cross-section, respectively, whereas IRaman

and σRaman are the Raman intensity and cross-section, respectively.
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3.4 Vibrational Sum-frequency Generation spectroscopy

3.4.1 General description

Infrared-visible Sum-frequency Generation (SFG) is a second-order nonlinear optical process in

which a tunable infrared ωIR laser beam is mixed with a visible ωvis laser beam to generate an

output beam at the sum frequency ωSFG = ωIR + ωvis (see Fig. 3.6). The generated SFG signal

is reflected from the substrate according to the phase-matching condition given in Eq. (1.101):

ε
(r)
I ω2

SFGsin2θSFG = ε
(r)
I ω2

IRsin2θIR + ε
(r)
I ω2

vissin
2θvis

+ 2 cos τ

[(
ε

(r)
I

)2

ωIRωvis sin θIR sin θvis

]
. (3.74)

In most applications, τ = 0 so that after using

√
ε

(r)
I (ω) = nI(ω) Eq. (3.74) simplifies to

nI(ωSFG)ωSFG sin θSFG = nI(ωIR)ωIR sin θIR + nI(ωvis)ωvis sin θvis, (3.75)

showing that the two wave are copropagating (Fig. 1.8).

3.4.2 Electric fields and orientation factors

For most of interfacial studies, the goal is to determine the orientation of the molecules at inter-

faces. This information can be found by studying the behaviors of the components of the surface

susceptibility with respect to the polarization of the incoming electric fields. These components

of the surface susceptibility are related to the first hyperpolarizability of the molecules consti-

tuting the interfacial region. Since the output intensity is affected by the molecular orientation,

within the independent molecule approximation, the surface susceptibility is the orientation av-

erage of the molecular first hyperpolarizabilities. It is the orientation averaging constrained

by the symmetry of the surface that results in the vanishing of several elements of the surface

susceptibility tensor. Similarly, molecular symmetry often simplifies the molecular first hyperpo-

larizability tensor. Vibrational resonances (SFG) further limit the number of significant tensor

elements. The nonzero nonresonant tensor elements may be combined with the nonresonant

background from the substrate or from the solvent.
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~eZ
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~kIR

~kvis

τ

~kSFG
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θvis
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~Ep
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~Ep

~Es

~Ep

Figure 3.6: Geometry of a SFG experiment in the reflection configuration and representation
of the three-layer model. p (parallel) denotes a beam polarization in the plane of incidence,
while s (senkrecht) corresponds to a polarization perpendicular to the plane of incidence. For

the angles see Table 3.4

The orientation average consists of determining the projection of the product of the molecular

infrared and Raman transition moments onto the surface infrared and visible oscillating electric

fields, then averaging over all allowed molecular orientations. The infrared (Raman) transition

moment is described within the molecular coordinate system, so that projection onto the surface

coordinates system consists of projecting the molecular (x, y, x) axes onto the surface (X, Y,

Z) axes [23] and averaging over all molecular orientations (Fig. 3.7). This is the origin of the

3× 3× 3 orientation tensor.

Surface symmetry simplifies this tensor. For any surface with an X − Z and Y − Z reflection

plane, the surface susceptibility must be invariant to interchange of +Y and −Y (+X and −X,

respectively): χ(2)
IJ+Y

= χ
IJ−Y = −χ(2)

IJY (I,J 6=Y ). All tensor elements with one or three Y subscripts

are zero. This reduces the number of independent nonzero surface tensor elements to seven:

χ(2)
XXZ

, χ(2)
XZX

, χ(2)
ZXX

, χ(2)
Y Y Z

, χ(2)
Y ZY

, χ(2)
ZY Y

, and χ(2)
ZZZ

. For vibrationally resonant, visible nonresonant

SFG, the first two subscripts refer to the Raman transition moment and the last to the infrared

transition element. In addition, if the surface is isotropic, then X and Y are equivalent, so there

are four independent components: χ(2)
ZZZ

, χ(2)
XXZ

= χ(2)
Y Y Z

, χ(2)
XZX

= χ(2)
Y ZY

, χ(2)
ZXX

= χ(2)
ZY Y

.
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ξ

ξ
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y
z

Figure 3.7: Illustration of the relationships between the laboratory (X, Y, Z) and the molec-
ular (x, y, z) coordinates systems. For the definition of the angles see Table 3.4

Table 3.4: Angles defined with respect to the laboratory coordinates system

Angle Measures

θ Tilt angle between the laboratory Z and the molecular z axis

ξ Angle between the line of nodes ~N and the x axis.

φ Angle between the X axis and the line of nodes ~N (free rotation in isotropic surface)

θj Angle between the laboratory Z and beams propagation direction ~kj

τ Angle between visible and infrared propagation planes

These macroscopic surface susceptibility elements, χ(2)
IJK

, result from the first hyperpolarizability

elements βαβγ and are related via the average of the projection of the αβγ onto the IJK,

〈IJK|αβγ〉:

χ(2)
IJK
' Ns

∑
α,β,γ

〈IJK|αβγ〉βαβγ,

' Ns

∑
α,β,γ

〈TIα,Jβ,Kγ(φ, θ, ξ)βαβγ〉, (3.76)

where Ns is the surface density of molecules. A general formulation for 〈IJK|αβγ〉 has been

given in Appendix B and the final expressions are given below:
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2

Ns

× 〈χ(2)
ZZZ
〉φ(θ, ξ) = cos3(θ)[βzzz]

+ sin(θ) sin(ξ)[βzzy + βzyz + βyzz]

− sin(θ) cos(ξ)[βxzz + βzxz + βzzx]

+ sin2(θ) cos(θ) sin2(ξ)[βyyzβyzy + βzyy]

+ sin2(θ) cos(θ) cos2(ξ)[βxxz + βxzx + βzxx]

− sin2(θ) cos(θ) sin(ξ) cos(ξ)[βzyx + βyzx + βzxy + βxzy + βyxz + βxyz]

+ sin3(θ) sin(ξ)[βxxy + βxyx + βyxx − βyzz − βzyz − βzzy]
+ sin3(θ) cos(ξ)[βxzz + βzxz + βzzx − βxyy − βyxy − βyyx]
+ sin3(θ) sin3(ξ)[βyyy − βxxy − βxyx − βyxx]
+ sin3(θ) cos3(ξ)[−βxxx + βxyy + βyxy + βyyx] (3.77)

2
1

Ns

× 〈χ(2)
ZXX
〉φ(θ, ξ) = sin2(θ) cos(θ)[βzzz] + cos(θ)[βzxx + βzyy]

− sin2(θ) cos(θ) sin2(ξ)[βyyz + βyzy + βzyy]

− sin2(θ) cos(θ) cos2(ξ)[βxxz + βxzx + βzxx]

+ sin2(θ) cos(θ) sin(ξ) cos(ξ)[βzyx + βyzx + βzxy + βxzy + βyxz + βxyz]

+ sin(θ) sin(ξ)[βyyy + βyxx − βzyz − βzzy]
+ sin(θ) cos(ξ)[−βxxx − βxyy + βzxz + βzzx]

+ sin3(θ) sin(ξ)[−βxxy − βxyx − βyxx + βyzz + βzyz + βzzy]

+ sin3(θ) cos(ξ)[βxyy + βyxy + βyyx − βxzz − βzxz − βzzx]
+ sin3(θ) sin3(ξ)[−βyyy + βxxy + βxyx + βyxx]

+ sin3(θ) cos3(ξ)[βxxx − βxyy − βyxy − βyyx] (3.78)

2
1

Ns

× 〈χ(2)
XZX
〉φ(θ, ξ) = sin2(θ) cos(θ)[βzzz] + cos(θ)[βxzx + βyzy]

− sin2(θ) cos(θ) sin2(ξ)[βyyz + βyzy + βzyy]

− sin2(θ) cos(θ) cos2(ξ)[βxxz + βxzx + βzxx]

+ sin2(θ) cos(θ) sin(ξ) cos(ξ)[βzyx + βyzx + βzxy + βxzy + βyxz + βxyz]

+ sin(θ) sin(ξ)[βyyy + βxyx − βyzz − βzzy]
+ sin(θ) cos(ξ)[−βxxx − βyxy + βxzz + βzzx]

+ sin3(θ) sin(ξ)[−βxxy − βxyx − βyxx + βyzz + βzyz + βzzy]

+ sin3(θ) cos(ξ)[βxyy + βyxy + βyyx − βxzz − βzxz − βzzx]
+ sin3(θ) sin3(ξ)[−βyyy + βxxy + βxyx + βyxx]

+ sin3(θ) cos3(ξ)[βxxx − βxyy − βyxy − βyyx] (3.79)



Chapter 3. Vibrational Spectroscopy of Molecules on Surfaces 80

2
1

Ns

× 〈χ(2)
XXZ
〉φ(θ, ξ) = sin2(θ) cos(θ)[βzzz] + cos(θ)[βxxz + βyyz]

− sin2(θ) cos(θ) sin2(ξ)[βyyz + βyzy + βzyy]

− sin2(θ) cos(θ) cos2(ξ)[βxxz + βxzx + βzxx]

+ sin2(θ) cos(θ) sin(ξ) cos(ξ)[βzyx + βyzx + βzxy + βxzy + βyxz + βxyz]

+ sin(θ) sin(ξ)[βyyy + βxxy − βyzz − βzyz]
+ sin(θ) cos(ξ)[−βxxx − βyyx + βxzz + βzxz]

+ sin3(θ) sin(ξ)[−βxxy − βxyx − βyxx + βyzz + βzyz + βzzy]

+ sin3(θ) cos(ξ)[βxyy + βyxy + βyyx − βxzz − βzxz − βzzx]
+ sin3(θ) sin3(ξ)[−βyyy + βxxy + βxyx + βyxx]

+ sin3(θ) cos3(ξ)[βxxx − βxyy − βyxy − βyyx] (3.80)

3.4.3 Harmonic approximation in SFG

In this section, we treat the molecular vibrational contribution to the simply IR resonant IR-

visible Sum-Frequency Generation (SFG) process (Fig. 3.8). The vibrational first hyperpolariz-

ability is given by (see also Appendix A)

βαβγ(−ωSFG;ωIR, ωvis) =
1

2~
∑
vi,vf

〈vf |µγgg|vi〉(
ωvfvi − ωIR − iγvfvi

)
〈
vi

∣∣∣∣1~∑
e

µαgeµ
β
eg(

ωeg − ωSFG − iγeg
) +

µβgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣∣vf〉,

(3.81)

where we recognize the αβ component of the transition polarizability αvivf Eq. (3.51)

(
ααβ
)
vivf

=

〈
vi

∣∣∣∣1~∑
e

µαgeµ
β
eg(

ωeg − ωSFG − iγeg
) +

µβgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣∣vf〉. (3.82)

To simplify the calculations we assumed that
1

ωSFG
' 1

ωV is
, then Eq. (3.82) become

(
ααβ(ωV is)

)
vivf

=

〈
vi

∣∣∣∣1~∑
e

µαgeµ
β
eg(

ωeg − ωV is − iγeg
) +

µβgeµ
α
eg(

ωeg + ωV is + iγeg
)∣∣∣∣vf〉. (3.83)

The first hyperpolarizability can be written in term of the polarizability and the dipole moment

as
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βαβγ(−ωSFG;ωIR, ωvis) =
1

2~
1

2~
∑
vi,vf

〈vf |µγgg|vi〉(
ωvfvi − ωIR − iγvfvi

)(〈vi|ααβ(ωV is)|vf〉
)
. (3.84)

electronic ground level |g〉

virtual level |e〉

ω
IR

ω
VIS

ω
SFG

|vi〉 = |0〉

|vf 〉 = |1〉

Figure 3.8: Energy levels in SFG process

Following the same procedure as for the IR and Raman intensities, near equilibrium geometry,

the dipole moment and the polarizability are expanded along the vibrational normal coordinates:

µγ(Q) = (µγ)e +
∑
k

(
∂µγ

∂Qk

)
e

Qk +
1

2

∑
k,l

(
∂2µγ

∂Qk∂Ql

)
e

QkQl + · · · (3.85)

ααβ(Q) = (ααβ)e +
∑
k

(
∂ααβ

∂Qk

)
e

Qk +
1

2

∑
k,l

(
∂2ααβ

∂Qk∂Ql

)
e

QkQl + · · · (3.86)

Within the double harmonic approximation (Section 3.1.2.3), the expansion is truncated after

the first order and one obtains

〈vf |µγ(Q)|vi〉 = (µγ)e〈vf |vi〉︸ ︷︷ ︸
0

+
∑
k

(
∂µγ

∂Qk

)
e

〈vf |Qk|vi〉, (3.87)

〈vi|ααβ(Q)|vf〉 = (ααβ)0〈vi|vf〉︸ ︷︷ ︸
0

+
∑
k

(
∂ααβ

∂Qk

)
e

〈vi|Qk|vf〉 (3.88)

The first term is equal to zero. The second is non-zero only if vi and vf vibrational states differ

by one quantum number in only one mode of vibration (Eq. (3.28)).
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Now, assuming that vi is the ground vibrational state, i.e. vi = 0, while the final state is vf = 1p,

i.e. the pth oscillator is in its first excited state and all the others in their ground states:

〈1p|µγ(Q)|0〉 =

√
~

2ωp

(
∂µγ

∂Qp

)
e

, (3.89)

〈0|ααβ(Q)|1p〉 =

√
~

2ωp

(
∂ααβ

∂Qp

)
e

, (3.90)

βαβγ(−ωSFG;ωIR, ωvis) =
1

2~
∑
p

〈1p|µγ|0〉(
ωp − ωIR − iγp

)〈0|ααβ|1p〉,
=
∑
p

1

4ωp

(
∂µγ

∂Qp

)
e

(
∂ααβ

∂Qp

)
e(

ωp − ωIR − iγp
) ≡ [C3m3J−2]. (3.91)

3.4.4 SFG intensities

The observed intensity is related to the surface susceptibility and it is polarization dependent.

Three polarizations are required to describe the experiment: the polarizations of the SF beam, of

the visible input beam, and that of the infrared input. Thus, there are eight potential polarization

combinations. If the surface has an Z −X and Z − Y mirror planes, then those combinations

with an odd number of s-polarized beams have zero intensity. Like for the surface susceptibility,

the SF and visible terms represent a Raman process, so Isps and Ipss differ only by a Fresnel

factor, thus there are four unique configurations: ssp, sps, pss and ppp.

Heinz [24] showed that under the electric dipole approximation, the SFG signal ISFG generated

by the nonlinear polarization is proportional to the surface susceptibility tensor χ(2) as well as

to the amplitude of the electric field of the IR (EIR ) and visible (Evis) beams:

ISFG(−ωSFG;ωvis, ωIR) ∝
∣∣∣(FSFG · ~̂e⊥) · ˜̃̃χ(2) : Fvis ~E(ωvis)FIR ~E(ωIR)

∣∣∣2 (3.92)

where the F ’s are the Fresnel factors and ~̂e⊥ is a vector perpendicular to the SFG wave vector.

Then, by evaluating the tensor product and using the expression of the field reflected by the

interface at sum-frequency (for each polarization, Eq. (1.124)) the output intensity has been

derived for each set of polarizations as (see Appendix B for the complete development):
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Issp
IIRIvis︸ ︷︷ ︸
J−1sm2

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 θSFG︸ ︷︷ ︸
m−2C−1Vs

∣∣∣∣∣ sin θIRχ(2)
Y Y Z

F SFG
Y

F vis
Y
F IR
Z

∣∣∣∣∣
2

︸ ︷︷ ︸
|χ(2), eff
Y Y Z |2 ≡ m4V−2

, (3.93)

Ipss
IIRIvis

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 θSFG

∣∣∣∣∣ sin θSFGχ(2)
ZY Y

F SFG
Z

F vis
Y
F IR
Y

∣∣∣∣∣
2

, (3.94)

Isps
IIRIvis

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 θSFG

∣∣∣∣∣ sin θvisχ(2)
Y ZY

F SFG
Y

F vis
Z
F IR
Y

∣∣∣∣∣
2

, (3.95)

Ippp
IIRIvis

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 θSFG
×∣∣∣∣∣− cos θSFG cos θvis sin θIR χ

(2)
XXZ

F SFG
X

F vis
X
F IR
Z

− cos θSFG sin θvis cos θIR χ
(2)
XZX

F SFG
X

F vis
Z
F IR
X

+ sin θSFG cos θvis cos θIR χ
(2)
ZXX

F SFG
Z

F vis
X
F IR
X

+ sin θSFG sin θvis sin θIR χ
(2)
ZZZ

F SFG
Z

F vis
Z
F IR
Z

∣∣∣∣∣
2

. (3.96)

3.4.5 Nonlinear optical susceptibility

The interface second-order susceptibility contains a resonant (vibrational) and a non-resonant

(electronic) term:

χ(2) = χ(2),NR + χ(2),R. (3.97)

Considering that the non-resonant terms arise only from the substrate it should be similar for

all the vibrational normal modes and therefore can be taken as a constant multiplied by a phase

term

χ(2),NR
IJK

= CeiϕSFG , (3.98)

while the resonant terms reads

χ
(2),R
IJK =

Ns

ε0

∑
α,β,γ

〈ΦIφΦJθΦKξ〉βαβγ (3.99)
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=
Ns

ε0

∑
α,β,γ

〈TIα,Jβ,Kγ(φ, θ, ξ)〉βαβγ(−(ωq + ωr);ωq, ωr),

where βαβγ is given by Eq. (3.91). One can defines

Aαβγ =

(
∂µγ

∂Qp

)
e

(
∂ααβ

∂Qp

)
e︸ ︷︷ ︸

C3mJ−1Kg−1

, (3.100)

so that

χ(2),R
IJK︸ ︷︷ ︸

m2V−1

=
Ns

ε0︸︷︷︸
VC−1m−1

∑
p

1

4ωp

1(
ωp − ωIR − iγp

) ∑
α,β,γ

〈TIα,Jβ,Kγ(φ, θ, ξ)〉Aαβγ(ωvis)︸ ︷︷ ︸
C3m3J−2

. (3.101)

The interface second-order susceptibility therefore reads

χ(2)
IJK

=

[ non-resonant︷ ︸︸ ︷∣∣χ(2),NR
IJK

∣∣ eiϕSFG +

resonant︷ ︸︸ ︷
Ns

ε0︸︷︷︸
VC−1m−1

∑
p

AIJK
4ωp

1(
ωp − ωIR − iγp

) ]
︸ ︷︷ ︸

χ
(2),R
IJK ≡ [m2V−1]

. (3.102)

Considering that

eiϕSFG = (cosϕSFG + i sinϕSFG) , (3.103)

χ(2)
IJK

= +
∣∣χ(2),NR

IJK

∣∣ cosϕSFG +
Ns

ε0

∑
p

A
IJK

4ωp

(ωp − ωIR)

(ωp − ωIR)2 + γ2
p︸ ︷︷ ︸

χ
(2)real
IJK

+ i

[∣∣χ(2),NR
IJK

∣∣ sinϕSFG +
Ns

ε0

∑
p

A
IJK

4ωp

γp

(ωp − ωIR)2 + γ2
p

]
︸ ︷︷ ︸

χ
(2)imag
IJK

. (3.104)

In the applications, we focus on substrates without any electronic transition close to the visible

(incident) and/or SFG wavelengths, so that the non-resonant contribution to the second-order

nonlinear susceptibility will be assumed negligible [25, 26].
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Chapter 4

Quantum Chemistry Background

The description of a stationary system at the quantum level as well as of its molecular properties

are in principle determined by the wave function, denoted |ψ〉. This wave function must satisfy

the non-relativistic time-independent Schrödinger equation.

Ĥ|ψ〉 = E|ψ〉, (4.1)

where Ĥ is the Hamiltonian of the system and E the total energy.

However, this equation can be solved only for a system made by two particles such as hy-

drogenöıds. For systems with more than two particles, the existence of several interactions

between them makes the problem too complicated, and we must resort to approximate solu-

tions. General approximations concern the expression of the Hamiltonian itself, and the form

of the wave function. In order to solve this equation, we then have mathematical methods

(variational or perturbation methods) known as quantum chemical methods to obtain accurate

approximate functions. This general framework is presented in this chapter, which begins with

the study of the Schrödinger equation and the Hamiltonian operator. Then we briefly present

the approximation methods [1, 2].
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4.1 Schrödinger equation and the Born-Oppenheimer ap-

proximation

The Hamiltonian (in atomic units) of a system made by N electrons and M nuclei reads [2]:

Ĥ = −
N∑
i=1

1

2
∇2
i︸ ︷︷ ︸

T̂e

−
N∑
A=1

1

2MA

∇2
A︸ ︷︷ ︸

T̂N

−
N∑
i=1

M∑
A=1

ZA
riA︸ ︷︷ ︸

V̂eN

+
N∑
i=1

N∑
j>i

1

rij︸ ︷︷ ︸
V̂ee

+
M∑
A=1

M∑
B>A

ZAZB
RAB︸ ︷︷ ︸

V̂NN

. (4.2)

In the above equation, T̂e, T̂N , V̂eN , V̂ee, and V̂NN are the operators for the kinetic energy of

the electrons, the operator for the kinetic energy of the nuclei, the Coulomb attraction between

electrons and nuclei, the Coulomb repulsion between electrons, and between nuclei, respectively.

∇2
i and ∇2

A are the Laplacian operator acting on the coordinates of the ith electron and the Ath

nucleus. MA is the ratio of the mass of nucleus A to the mass of an electron, and ZA is the

atomic number of nucleus A. In order to solve Eq. (4.1) we should therefore know the correct

expression of each term of the Hamiltonian.

The first approximation is that of Born-Oppenheimer, which allows splitting up the motions of

the electrons from those of the nuclei. The approximation is put into practice by “clamping”

the nuclei of a molecule of interest. That means fixing their position coordinates to correspond

to some chosen arrangement or structure. Electrons are therefore considered as moving in a

fixed field created by the nuclei, and are thus subject to a constant nuclear potential. Within

this approximation, the terms T̂N can be neglected, whereas V̂NN is constant (Eq. (4.2)). The

electronic hamiltonian reads

Ĥelec = T̂e + V̂eN + V̂ee,

= −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
, (4.3)

and the electronic Schrödinger equation

Ĥelec|ψelec(RA, ri)〉 = Eelec|ψelec(RA, ri)〉, (4.4)

is solved to give the electronic energy Eelec = Eelec(RA) for this clamped structure (electronic

energy parametrically on the nuclear coordinates).

Then, the total wave function and the total energy read:

ψtotal(RA, ri) = ψelec(RA, ri)ψnucl(RA), (4.5)
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Etotal = Eelec +
M∑
A=1

M∑
B>A

ZAZB
RAB

. (4.6)

Despite the separation of the movements, the electronic repulsion term V̂ee appearing in the

electronic hamiltonian (Eq. (4.3)) makes Eq. (4.4) difficult to solve. To overcome this major

difficulty several methods have been developed.

4.2 Hartree-Fock method

One of the first attempts to overcome the problem of repulsion between electrons was that of

Hartree [3] and Fock [4] who first assumed that the electrons do not interact with each others

(i.e., that V̂ee = 0), and expressed the global wave function as a product (Hartree product ≡
HP) of monoelectronic wave functions.

ψHP (x1, x2, . . . xi, xj, . . . xN) = Φ1(x1)Φ2(x2) . . .Φi(xi)Φj(xj) . . .ΦN(xN), (4.7)

where Φ(x) = φ(r)α is a spin-orbital (just the product of a spatial orbital and either the α or

β spin function). However, these Hartree product wave functions (ψHP ) do not satisfy Pauli

exclusion principle (a consequence of the antisymmetry principle). In order to fulfill thE latter,

wavefunctions constructed on the basis of a Slater determinant [5] have been adopted:

ψ(x1, x2, . . . xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
Φ1(x1) Φ2(x1) . . . ΦN(x1)

Φ1(x2) Φ2(x2) . . . ΦN(x2)
...

...
. . .

...

Φ1(xN) Φ2(xN) . . . ΦN(xN)

∣∣∣∣∣∣∣∣∣∣
, (4.8)

One can write the electronic Hamiltonian (Eq. (4.4)) much more simply, as

Ĥelec =
N∑
i=1

(
−1

2
∇2
i −

M∑
A=1

ZA
riA

)
+

N∑
i<j

1

rij
,

=
N∑
i

hi(ri) +
N∑
i<j

vHFij (ri, rj), (4.9)

one thereby introduce hi and vHFij , the one-electron and two-electron operator, respectively.

Then, the best spin-orbitals are obtained by minimizing the energy using the variational method

(Rayleigh ratio).

Eelec =
〈ψ|Ĥelec|ψ〉
〈ψ|ψ〉 . (4.10)



Chapter 4. Theoretical background and Interpretation tools 90

For a system with N occupied spin-orbitals , it is straightforward to show that the electronic

energy is given by:

Eelec =
N∑
i

hii +
1

2

N∑
ij

[Jij −Kij] , (4.11)

where hii, Jij, and Kij are the energy contributions associated with the core Hamiltonian, the

Coulomb operator, and the exchange operator, respectively.

hii = 〈i|h|i〉 =

∫
dx1Φ∗i (x1)h(r1)Φi(x1), (4.12)

Jij = 〈ij|ij〉 =

∫
dx1dx2Φ∗i (x1)Φ∗j(x2)

1

r12

Φi(x1)Φj(x2), (4.13)

Kij = 〈ij|ji〉 =

∫
dx1dx2Φ∗i (x1)Φ∗j(x2)

1

r12

Φj(x1)Φi(x2). (4.14)

The Hartree-Fock equation reads:

{
h(r1)−

N∑
j=1

[Jj(r1)−Kj(r1)]

}
︸ ︷︷ ︸

f(r1)

Φi(x1) =
N∑
j=1

εijΦi(x1). (4.15)

We thus obtain N mono-electronic equations for the spin-orbital Φ1,Φ2, . . .Φn. The term in

square bracket is the Fock operator denoted f . Diagonalization of the energy term εij leads to

an eigenvalues problem known as the canonical Hartree-Fock equation:

fφi = εiφi (i = 1, 2, 3, . . .∞). (4.16)

The Fock operator whose eigenfunctions are φi is defined on the basis of the functions φi them-

selves. We must therefore use an iterative method to solve it. It is called the self-consistent field

(SCF) method.

Moreover in 1951 Roothaan [6] and Hall [7] proposed a method based on the linear combination

of atomic orbitals (LCAO) formalism of Mulliken:

φi =
∑
k

Cki|χk〉 (4.17)



Chapter 4. Theoretical background and Interpretation tools 91

where the χk are the atomic orbitals and the Cki are the coefficients that are the unknowns of

the problem. Introducing Eq. (4.17) in to Eq. (4.16) one obtains

f
∑
k

Cki|χk〉 = εi
∑
k

Cki|χk〉, (4.18)

then, the multiplication of Eq. (4.18) by 〈χl| gives

∑
k

Cki〈χl|f |χk〉 = εi
∑
k

Cki〈χl|χk〉,∑
k

Cki (flk − εiSlk) = 0. (4.19)

Eq. (4.19) can be written under the matrix form as:

FC = SCε. (4.20)

In Eq. (4.19), k and l refer to the atomic orbitals, while flk and Slk = 〈χl|χk〉 represent the

elements of the Fock matrix, and the overlap matrix, respectively.

However, a systematic error on the SCF energy is due to the orbital approximation, which

does not take into account the fact that the movements of the electrons are correlated. Indeed,

the Hartree-Fock wave function does not correctly describe the interactions between electrons

and therefore overestimates the probability of finding two electrons close to each other. These

short-range correlation effects are Coulomb holes [8]. The energy of Roothaan is equal to the

Hartree-Fock energy when the atomic basis set is infinite. In the Hartree-Fock theory the lowest

energy obtainable is EHF , the Hartree-Fock limit. According to Löwdin [9], the correlation

energy of a system corresponds to the difference between the exact non-relativistic energy and

the Hartree-Fock energy:

Ecorr = E − EHF . (4.21)

In order to recover this correlation energy, and therefore improve the quality of the wave function

variational methods (with Slater Determinants) such as Valence Bond method (VB), Configu-

ration Interaction method (CI), and Multiconfigurational Self-Consistent Field method (MC

SCF) and non-variational methods (with Slater Determinants) such as Coupled Cluster method

(CC), Many Body Perturbation Theory (MBPT), and Equation-of-motion method (EOM-CC)

are commonly used. Among these methods, we used of the Coupled Cluster techniques during

this thesis, so that it is briefly described in the following section.
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4.3 The Coupled Cluster method (CC)

4.3.1 The exponential ansatz

The essential idea in CC theory is to write the exact wave function for the ground state as an

exponential ansatz :

|ψCC〉 = eT̂ |Φ0〉,

=

(
1 + T̂ +

T̂ 2

2!
+
T̂ 3

3!
+ · · ·

)
|Φ0〉, (4.22)

where eT̂ is a wave operator, T̂ is the cluster operator, and |Φ0〉 the reference Slater determi-

nant (it can be the Hartree-Fock determinant). Moreover an intermediate normalization of the

function |ψCC〉 is assumed:

〈ψCC |Φ0〉 = 1 (4.23)

The cluster operator T̂ is defined by a sum of excitation operators:

T̂ = T̂1 + T̂2 + T̂3 + · · · , (4.24)

T̂1|Φ0〉 =
occ∑
i

unocc∑
a

taiΦ
a
i , (4.25)

T̂2|Φ0〉 =
occ∑
i<j

unocc∑
a<b

tabij Φab
ij , (4.26)

T̂3|Φ0〉 =
occ∑

i<j<k

unocc∑
a<b<c

tabcijkΦabc
ijk , (4.27)

where, T̂1 contains excitations involving one electron only, T̂2 contains excitations involving

two electrons only, and so on. The subscripts i, j, . . . refer to the spin-orbitals occupied in Φ0,

and a, b, . . . refer to unoccupied ones, and ta,b,...i,j,... represent amplitudes, i.e. the numbers whose

determination is the goal of the CC method. Moreover, the truncation of the operator T̂ defines

the coupled cluster method:

CCS : T̂1,

CCSD : T̂1 + T̂2,

CCSDT : T̂1 + T̂2 + T̂3,

CCSDTQ : T̂1 + T̂2 + T̂3 + T̂4.

...
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As example

|ψCCSD〉 = eT̂1+T̂2|Φ0〉,

=

[
1 + T̂1 +

(
T̂2 +

1

2
T̂ 2

1

)
+

(
T̂1T̂2 +

1

6
T̂ 3

1 + · · ·
)

+ · · ·
]
|Φ0〉, (4.28)

4.3.2 The Coupled Cluster energy and amplitudes

The exact wave function |ψCC〉 should satisfy the non-relativistic time-independent Schrödinger

equation:

Ĥ|ψCC〉 = E|ψCC〉,
〈ψCC |Ĥ|ψCC〉 = E〈ψCC |ψCC〉 (4.29)

The most natural way to calculate the coupled cluster states would seem to be by using the

variational method, i.e. minimizing the expectation value of the Hamiltonian with respect to the

amplitudes

Emin = min
t

〈ψCC |Ĥ|ψCC〉
〈ψCC |ψCC〉

(4.30)

However, the coupled cluster wave function includes all excited determinants up to N -fold excita-

tions which contribute to these expectation values, giving too complex equations to be efficiently

solved. A more convenient approach for obtaining the coupled cluster energy and amplitudes is

the projection method. In practice, it is often more convenient to first multiply the Schrödinger

equation from the left by the operator e−T̂

ĤeT̂ |Φ0〉 = EeT̂ |Φ0〉,
e−T̂ ĤeT̂ |Φ0〉 = Ee−T̂ eT̂ |Φ0〉,
e−T̂ ĤeT̂ |Φ0〉 = E|Φ0〉. (4.31)

then, to project on the reference and excited state determinants:

〈Φ0|e−T̂ ĤeT̂ |Φ0〉 = E, (4.32)

〈Φab...
ij... |e−T̂ ĤeT̂ |Φ0〉 = 0. (4.33)

Eqs. (4.32) and (4.33) give the coupled cluster energy and amplitude, respectively, and they are

known as the linked coupled cluster equations.
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4.4 Density Functional Theory (DFT)

The principle of the Density Functional Theory (DFT) consists on the reduction of number of

degrees of freedom of the system by expressing the total energy of the system in terms of the

electron density ρ(~r).

ρ(~r) = N
∑

σ1=− 1
2
, 1
2

∫
dx2dx3 . . . dxN |ψ(~r, σ1, ~r2, σ2, . . . , ~rN , σN)|2. (4.34)

According to this definition, ρ represents the density of the electron cloud carrying N electrons:∫
ρ(~r)dτ = N (4.35)

Let us go through the main steps and aspects of DFT by following first the seminal presentation

due to Parr and Yang [10]. In 1964, Hohenberg and Kohn proved two theorems [11]. The first

theorem may be stated as follows “ The external potential V (~r) is determined within a

trivial additive constant by the electron density ρ(~r)”. Since ρ(~r) determines the number

of electron, it follows that the ground-state electronic density ρ0 and the ground-state wave

function ψ0 can be used alternatively as full description of the ground state of the system.

The electronic Hamiltonian has the form:

Ĥ = T̂ + Û + V̂ , (4.36)

where T̂ , Û , V̂ represent the kinetic energy, the electron repulsion and the electron-nuclei at-

traction operators, respectively. Then the energy can be written under the following form:

Ev[ρ] = T [ρ] + U [ρ] + V [ρ],

=

∫
ρ(~r)v(~r)dτ + FHK [ρ], (4.37)

where ∫
ρ(~r)v(~r)dτ = 〈ψ|V̂ |ψ〉 = V [ρ],

FHK [ρ] = T [ρ] + U [ρ], (4.38)

and

U [ρ] = J [ρ] + nonclassical term. (4.39)

J [ρ] is the classical electron-electron Coulomb repulsion and the nonclassical term defines the

“exchange-correlation energy”, which is very difficult to catch.
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In the second theorem they establish an analogue of the variational principle : “ For a given

number of electrons and external potential v there exists a functional of the trial

density, ρ′(~r) > 0, denoted EHK
v [ρ′], for which the following variational principle is

satisfied: ”

EHK
v [ρ′] > Ev[ρ] = E0

(∫
ρ′(~r)dτ = N

)
, (4.40)

where E0 stands for the true ground state energy and EHK
v [ρ′] is the energy functional

E0 = min 〈ψ|Ĥ|ψ〉,
= min 〈ψ|T̂ + Û + V̂ |ψ〉,

= min

{∫
ρ′(~r)v(~r)dτ + 〈ψ|T̂ + Û |ψ〉

}
,

= min

{∫
ρ′(~r)v(~r)dτ + FHK [ρ′]

}
,

= min EHK
v [ρ′]. (4.41)

The ground state energy of a many electron system can be obtained by minimizing the energy

functional

δ

{
Ev[ρ]− µ

[∫
ρ(~r)dτ −N

]}
= 0 (4.42)

which gives the Euler-Langrange equation

µ =
δEv[ρ]

δρ(~r)
= v(~r) +

δFHK [ρ]

δρ(~r)
, (4.43)

where µ is the chemical potential.

4.4.1 The Kohn-Sham Approach

Pure (or “orbital-free”) DFT attempts to compute the energy of interacting electrons, as a

functional of the density, in practice it is not very accurate. This is due to the lack of accurate

approximations for the kinetic energy functional. In order to overcome this problem Kohn and

Sham [12] proposed an alternative approach which consist of working instead with a system of

non-interacting electrons, so that they reintroduce one-electron wavefunctions (orbitals) into the

formalism to treat the kinetic and the electron-electron interaction energy terms. In general, the

wavefunction of the non-interacting electrons is different from that of the interacting ones and

so is the density. Then, comparison between the exact ground-state kinetic energy and that of

Kohn-Sham is given in the table below.
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Exact Kohn-Sham

T =
∞∑
i

ni〈ψi|
−1

2
∇2|ψi〉 Ts[ρ] =

N∑
i

ni〈Φi|
−1

2
∇2|Φi〉

ρ(~r) =
∞∑
i

ni
∑
σ

|ψi(~r, σ)|2 ρ(~r) =
Nocc∑
i

∑
σ

|Φi(~r, σ)|2

∞ number of natural spin-orbitals with 0 ≤
ni ≤ 1

ni = 1 for N spin-orbitals, and 0 for the rest

The Hamiltonian of the corresponding non-interacting reference system reads

Ĥs =
N∑
i

(−1

2
∇2

)
+

N∑
i

vs(~r), (4.44)

in which there are no electron-electron repulsion terms, and for which the ground-state electron

density is exactly ρ. For this system there will be an exact one-determinant ground-state wave

function,

Ψs =
1√
N !

[Φ1(x1),Φ2(x2), . . . ,ΦN(xN)] . (4.45)

The spin-orbitals are obtained by solving a one-electron equation:

ĥsΦn(~r) =

[−1

2
∇2 + vs(~r)

]
Φn(~r) = εnΦn(~r), (4.46)

and the total energy functional is given by

E[ρ] =

∫
ρ(~r)v(~r)dτ + F [ρ] whith F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ]. (4.47)

Here Exc is called the exchange-correlation energy. Since the exact kinetic energy has been

replaced by Ts

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ]. (4.48)

This non-classical term now contains a contribution from the remaining part to the kinetic

energy. The Euler equation [Eq. (4.43)] now becomes

µ = veff (~r) +
δTs[ρ]

δρ(~r)
, (4.49)
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with

veff (~r) = v(~r) +

∫
ρ(~r′)

|~r − ~r′|
dτ ′ + vxc(~r) and vxc(~r) =

δExc[ρ]

δρ(~r)
. (4.50)

where, the first term is electron-nuclei interaction, the second term is the electron-electron elec-

trostatic interaction while the third is the non-classical exchange-correlation potential.

In the KS approach, evaluating the density does not proceed via the Euler equation, but by

solving the N one-electron equations:[−1

2
∇2 + veff (~r)

]
Φn(~r) = εnΦn(~r). (4.51)

In Eq. (4.50), the first two terms are well defined, whereas the third vxc(~r) (Exc[ρ]) is the one

to determine. So, if we knew the exact Exc[ρ] we could solve Eq. (4.51) for the exact ground

state energy and density. However the exact functional is unknown and we therefore make use

of approximations.

4.4.2 Exchange-correlation functional approximations

4.4.2.1 Local Density Approximation (LDA) and Local Spin Density Aproximation

(LSDA)

The general idea of LDA is to take the known result for a homogenous system and apply it

locally to a non-homogeneous one. So, the local exchange correlation energy per electron is

approximated as a simple function of the local charge density :

ELDA
xc [ρ] =

∫
ρ(~r)εxc(ρ(~r))dτ, (4.52)

The corresponding exchange-correlation potential reads

vLDAxc (~r) =
δExc[ρ]

δρ(~r)
= εxc(ρ(~r)) + ρ(~r)

δεxc(ρ(~r))

δρ(~r)
, (4.53)

and the KS orbital equations read[
−1

2
∇2 + v(~r) +

∫
ρ(~r′)

|~r − ~r′|
dτ ′ + vLDAxc (~r)

]
Φn(~r) = εnΦn(~r). (4.54)

The self-consistent solution of (Eq. (4.54)) defines de the Kohn-Sham local density approximation

(KS-LDA), which in the literature is usually simply called the LDA method. Within the LDA,

εxc(ρ) is a function of only the local value of the density. It can be separated into exchange and
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correlation contributions:

εxc(ρ) = εx(ρ) + εc(ρ). (4.55)

Dirac [13] derived that exchange energy reads εx(ρ) = −3

4

(
3

π
ρ

)1/3

. For εc, numerical values

have been determined and interpolated to get analytical form by Vosko, Wilk, and Nusair(VWN)

[14].

In the Local Spin Density Aproximation (LSDA), the electrons of opposite spin are placed in

different Kohn-Sham orbitals.

4.4.2.2 Generalized Gradient Approximation (GGA)

In the generalized gradient approximation a functional form is adopted, which ensures that the

exchange hole is negative definite [15]. This leads to an energy functional that depends on both

the density and its gradient but retains the analytic properties of the exchange correlation hole

inherent to the LDA:

EGGA
xc [ρ] =

∫
ρ(~r)εxc(ρ,∇ρ)dτ. (4.56)

For instance the exchange formula due to Becke [16] reads,

EBecke
x [ρ] = ELSDA

x [ρ]−
∑
σ

∫
FB(Sσ)ρ4/3(~r)dτ, (4.57)

where

FB(Sσ) =
βS2

σ

1 + 6βSσ sinh−1(Sσ)
, (4.58)

and

Sσ(~r) =
|∆ρ(~r)|
ρ4/3(~r)

, (4.59)

is the reduced density gradient. In Eq. (4.58), the coefficient β (0.0042) is an empirical factor.

Number of GGA functionals have been developed. The most popular ones are PBE (proposed

in 1996 by Perdew, Burke and Ernzerhof [17]) and BLYP (the combination of the exchange

functional by Becke and the correlation functional of Lee, Yang, and Parr [18], both in 1988).

GGA fuctionals give reliable results for chemical bonds, but mostly fail for describing van der

Waals or dispersion interactions.
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4.4.2.3 Hybrids GGA functionals

There is an exact connection between the non-interacting density functional system and the

fully interacting many-body system via the integration of the work done in gradually turning

on the electron-electron interactions. This adiabatic connection approach [19] allows the exact

functional to be formally written as:

Exc[ρ] =
1

2

∫
dτdτ ′

∫ 1

λ=0

dλ
λe2

|~r − ~r′|

[〈
ρ(~r)ρ(~r′)

〉
ρ,λ
− ρ(~r)δ(~r − ~r′)

]
, (4.60)

where the expectation value 〈· · · 〉ρ,λ is the density-density correlation functional that is computed

at density ρ(~r′) for a system described by the effective potential

veff = v +
1

2

∑
i 6=j

λe2

|~ri − ~rj|
. (4.61)

The adiabatic integration approach suggests a different approximation for the exchange-correlation

functional. At λ = 0 the non-interacting system corresponds exactly to the Hartree-Fock solu-

tion, while the LDA and GGA functionals are constructed to be excellent approximations for

the fully interacting homogeneous electron gas, that is, a system with λ = 1

Exc = aEHF + bEGGA
xc = aEλ=0

x + · · ·+ bEλ=1
c , (4.62)

As example, the B3LYP functional [20] uses a different mixing scheme involving three mixing

parameters:

EB3LY P
xc = aEλ=0

x + (1− a)ELSDA
x + bEB88

x + cELY P
c + (1− c)ELSDA

c , (4.63)

with a = 0.20, b = 0.72, c = 0.81. Then, a also defines the Hartree-Fock exchange rate, which in

this case is equal to 20%. The B3LYP functional has been shown to yield accurate results for

many molecular properties [21].

4.4.2.4 Meta-GGA and hybrids meta-GGA functionals

These functionals depend, in addition to the density and its first-order derivative, also on the

Kohn-Sham kinetic-energy density η(~r) . The form of the functional is typically.

EmGGA
xc [ρ] =

∫
ρ(~r)εxc(ρ,∇ρ, η)dτ, (4.64)
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where τ the kinetic energy density of the occupied Kohn-Sham orbitals reads

ησ(~r) =
1

2

occ∑
i

|∇Φiσ(~r)|2. (4.65)

The additional degree of freedom is then used to satisfy additional constraints on Exc, such as a

self-interaction correlation functional. A number of functionals within the mGGA and hybrids

mGGA family have been developed [22–24].

4.4.2.5 Long-range corrected functionals

Usual approximations for the exchange-correlation functional Exc[ρ] (LDA, GGA,...) fail in

describing long-range effects such those appearing when applying an external electrical field or

those related to charge transfer excitations. Savin suggested formulating the LC scheme [25],

which is now called the “range-separation hybrid (RSH) exchange functional,” by combining

the long-range corrected exchange functionals with short-range correlation functionals. Within

these LC schemes, the two-electron operator is divided into short- and long-range parts by using

the error function erf(r):

1

r12

=
erf(ωr12)

r12

+
1− erf(ωr12)

r12

, (4.66)

where the parameter ω defines the range of these operators. The first term is long ranged (LR),

while the second term is short ranged (SR). The ω parameter, depends on the corrected exchange

functional. Various LDA range-separated functionals (RSHX- LDA) have been developed [26–28]

(LC-BLYP, LC-ωPBE ...), with the functional in the form:

ERSHXLDA
xc = ELR−HF

x + ESR−LSDA
x + ELSDA

c . (4.67)

The optimal ω values for RSHXLDA were found to be 0.5 bohr−1 for molecular systems, and

0.4 bohr−1 for solid-state systems [29].

In 2004, Yanai et al. [30] developed a new hybrid exchange–correlation functional using the

Coulomb-attenuating method (CAM-B3LYP). The CAM-B3LYP functional comprises of 19%

Hartree-Fock (HF) and 81% Becke 1988 (B88) exchange at short-range while 65% HF and 35%

B88 at long-range. The intermediate region is smoothly described through the standard error

function with parameter ω = 0.33 bohr−1.

Long-range correction is also applied to a semiempirical functional. In 2008, Chai and Head-

Gordon [31] proposed the following expression for the LC hybrid functionals:

ELC−DFT
xc = ELR−HF

x + cxE
SR−HF
x + ESR−DFT

x + EDFT
c , (4.68)
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where cx is a fractional number to be determined. The first long-range corrected semiempirical

functional is the ωB97X functional, where B97 indicates the B97 functional. For cx = 0 , it is

simply called the ωB97 functional.

4.4.2.6 Empirical atom-atom dispersion corrections

Further improvements to the XC-functional in view of describing London dispersion forces are

done by incorporating empirical atom-atom dispersion corrections following the general strategy

of the DFT-D scheme [32]. So, the total energy reads

EDFT = EKS−DFT + Edisp, (4.69)

where EKS−DFT is the usual self-consistent Kohn-Sham energy as obtained from the chosen

density functional and Edisp is an empirical dispersion correction given by

Edisp = −S6

Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij

fdamp(Rij), (4.70)

where Nat is the number of atoms in the system, Cij
6 denotes the dispersion coefficient for the

atom pair ij, Rij is an interatomic distance, and fdamp(Rij) is a damping factor:

fdamp(Rij) =
1

1 + e−d(Rij/Rr−1)
. (4.71)

Chai and Head-Gordon [33] re-optimized the ωB97X functional to include empirical atom–atom

dispersion corrections and the resulting functional is ωB97X-D (ω = 0.2 Bohr−1, cx = 0.22,

a = 6). They used an unscaled dispersion correction given by

Edisp = −
Nat−1∑
i=1

Nat∑
j=i+1

Cij
6

R6
ij

fdamp(Rij), (4.72)

and introduced a damping function in the form

fdamp(Rij) =
1

1 + a(Rij/Rr)−12
, (4.73)

where a is the nonlinear parameter that controls the strength of dispersion corrections.

EωB97X-D
xc = ELR−HF

x + 0.22ESR−HF
x + ESR−B97

x + EB97
c + Edisp

c . (4.74)
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4.5 Summary of quantum chemistry methods

In the previous section, we briefly presented the Hartree-Fock (HF), the Coupled Cluster (CC),

and the Density Functional Theory (DFT) methods. Table 4.1 therefore summarizes some key

characteristics of these methods. CCSD is considered as the reference method. The

scaling of the computational methods - as determined for the “original” implementation without

linear scaling algorithms - is given as power of N, which describes the size of the system (number

of electrons, number of atomic orbitals). The CPU time is illustrated for IR and Raman activities

calculations on Butane molecule (with the aug-cc-pVDZ basis set, vide supra Section 4.7.5), and

using the Gaussian09 package [37].

Table 4.1: Summary of quantum chemistry methods

Theory Wave

function

Electron

correlation

Variational Size-

consistent

Scaling Max size CPU

time†

HF Yes No Yes Yes N2-N3 103 atoms 1×103 sec

CCSD Yes Yes No Yes N6 101atoms 6×105 sec

DFT No/Yes Yes Yes Yes N2-N3 103 atoms 2×103 sec

†Calculations were performed using 2 processors and 4 GB of memory on Westmere CPUs (2.66 GHz)

4.6 The ONIOM Method

The Own N-layered Integrated Molecular Orbital and Molecular Mechanics (ONIOM) method

is a hybrid computational approach developed by Morokuma and co-workers [34, 35] that en-

ables different methods (e.g., QM, SE, MM, coarse-grained (CG), and continuum model (CM)

methods) to be applied to different parts of a molecule/system and combined to produce reli-

able results at reduced computational time. The method has been developed for the purpose

of accurate ab initio modeling of chemical systems containing a large number of atoms. Within

the method, the system is partitioned into two or more parts or layers, where the interesting or

difficult part of the system (the inner layer) is treated at a “high” level of theory and the rest of

the system (the outer layer) is described by a computationally less demanding method.

In a two-layered ONIOM (ONIOM2) approach (Fig. 4.1), a model system is cut out from the

real system, and the ONIOM2 energy reads

EONIOM2 = Elow
real − Elow

model + Ehigh
model (4.75)

In addition the gradient (G) and the Hessian (H) are respectively given by
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GONIOM2 = Glow
real −Glow

model × J +Ghigh
model × J (4.76)

HONIOM2 = H low
real − JT ×H low

model × J + JT ×Hhigh
model × J (4.77)

where J (its transposed JT ) is the Jacobian matrix that projects the forces of the model system

(link) atoms onto the coordinate space of the full system. J is a function of the atomic coordinates

of the model system and of the link atoms.

Moreover, the ONIOM method has been used for the simulation of different properties [36]

and systems including energy, gradient, Hessian, geometry optimization, excited states, explicit

solvation, transition states. We used the two-layered ONIOM schemes as implemented

in the Gaussian09 package [37] for the SFG spectra of alkylsilanes functionalizing

amorphous silica (Chapter 8).

Real (Low)

boundary

Model (Low)

+
boundary

Model (High) −

ONIOM2=

Figure 4.1: Schematic representation of two-layered ONIOM

4.7 Basis sets

As already introduced and discussed in Sections 4.2 and 4.4.1, calculations are performed within

the LCAO scheme, so that the atomic orbitals (basis set) have first to be selected to describe

the chemical or physical properties of the system. Larger basis sets give better approximations

to the molecular orbitals (MO) and better description of the wavefunction, but they require

higher computational costs. Basis sets should therefore be carefully designed to give the best

description at the lowest computational cost. A basis set refers to a set of atom-centered functions

used to describe the atomic orbitals, known as basis functions. These basis functions could be

represented by Eqs. (4.78) and (4.79),

Slater-type Orbital : χSTOabc (x, y, z) = Nxaybzce−ζr, (4.78)

Gaussian-type Orbital : χGTOabc (x, y, z) = Nxaybzc
K∑
i=1

cie
−ζir2

, (4.79)
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in which, N is a normalization factor, a + b + c is the angular momentum, ζi and ζ are the

exponents of χ (it controls the width of the orbital), K is the degree of contraction of χ, and ci

are the contraction coefficients of χ. The Slater orbitals (from the hydrogenic wave functions) are

more accurate, but they take much longer to compute the corresponding two-electron integrals.

Hehre, Stewart, and Pople [38] proposed to use linear combinations of Gaussian functions to

mimic the Slater functions.

4.7.1 Minimal basis sets

The simplest possible atomic orbital representation is called a minimal basis set. Minimal basis

sets contain the minimum number of basis functions to accommodate all the electrons in the

atom [1st row : a single function (1s), 2nd row : 5 functions (1s, 2s, 2px, 2py, 2pz), ... ]. The most

common minimal basis set is “STO-nG” basis sets (the combination of n Gaussian functions

mimicking the Slater functions). The STO-3G basis set is a minimal basis set. This latter was

used in Chapter 8 for calculations on the bulk-like part of the SiO2 substrate.

4.7.2 Split-Valence basis sets

Minimal basis sets are not well suited to model the bonding effects because the exponents

do not vary. So, the orbitals have a fixed size and therefore cannot expand or contract as a

function of the chemical environment. To improve these latter, split-valence basis sets model

each valence orbital by two or more basis functions that have different exponents. They allow

for size variations that occur in bonding. For electrons near the nucleus the potential is spherical

and one function is suitable but since the energy is sensitive to the position of the electron, it

is preferable to take a large contraction of Gaussians. On the other hand, in the valence region

the electron density is delocalized over several atoms, far from the spherical symmetry. For a

better description each orbital is “split” into several contractions and this leads to the so-called

multiple zeta basis sets.

4.7.3 Additional basis functions

4.7.3.1 Polarization functions

Polarization functions have higher angular momentum. They allow for anisotropic variations

that occur in bonding. They consist in adding p, d ... functions to the H atoms and d, f, g ...

functions to heavy (non-hydrogen) atoms.
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4.7.3.2 Diffuse functions

Diffuse basis functions are additional functions with small exponents, and are therefore spatially

delocalized. They allow for accurate modelling of systems with weakly bound electrons, such as

anions, neutral molecules with unshared pairs, and excited states.

4.7.4 Pople’s basis sets

The notation for the split-valence basis sets arising from Ditchfield, Hehre, and Pople [39] is

typically X-YZG. As examples, 3-21G and 6-31G are double split valence basis sets, and 6-311G

is a triple split valence basis set. The 3-21G and 6-31G basis sets were used in the

Chapter 8 for calculations on the bulk-like part of the SiO2 substrate.

The presence of the polarization functions is indicated in the Pople notation by appending an

asterisk. As example 6-31G* or 6-31G(d) includes d functions on the heavy atoms, while 6-31G**

or 6-31G(d,p) includes d functions on heavy atoms and p functions on hydrogen atoms. The

6-311G* basis set was used in Chapters 6 to 8 for the calculations on the thiophenol,

the decyl chain, and the alkylsilane.

The presence of the diffuse functions is symbolized by the addition of a plus sign (+), like in

6-31+G. A second + implies that diffuse functions are added to the hydrogen atoms.

4.7.5 Dunning’s Correlation-Consistent basis sets

Another type of most widely-used basis sets are those developed by Dunning [40], designed for

converging post-Hartree–Fock calculations systematically to the complete basis set limit using

empirical extrapolation techniques. The notation is typically cc-pVNZ where N = D, T, Q,

5, 6 ... (D=double, T=triple, etc.). The “cc-p”, stands for “correlation-consistent polarized”.

They include successively additional shells of polarization (correlation) functions (d, f, g, etc.).

Examples of these are cc-pVDZ (Double-zeta) and cc-pVTZ (Triple-zeta). A prefix “aug” means

that one set of diffuse functions is added for every angular momentum present in the basis, so

that aug-cc-pVDZ (for C atom has diffuse s,p,d) and aug-cc-pVTZ are the augmented versions of

the preceding basis sets. The aug-cc-pVDZ basis set was used in Chapter 9 to perform

calculations on butane molecule.

4.7.6 Effective Core Potentials (ECPs)

For larger atoms Effective Core Potentials (ECPs) are often used [41]. These replace the core

electrons with an effective potential and have two main advantages:
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• They reduce the number of electrons (cheaper)

• They can be parameterized to take into account relativistic effects [42]

The valence electrons are still modelled using GTOs. Example of these is the cc-pVDZ-PP

basis set employed to perform the calculations on the gold substrates in Chapter 6.

The “PP” stands for “pseudopotential” [or, synonymously, effective core potentials (ECPs)].
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Chapter 5

Methods of Simulation and

Interpretation Tools

5.1 Methods of simulation of the SFG signatures

5.1.1 Road map

The theoretical formalism has been carried out in close collaboration with the experimentalists.

These efforts led to the elaboration of powerful tools for simulating and interpreting SFG spectra

that can therefore be used in the areas of functionalized surface design. Our approach presents

the following particularities i) the substrate is included in the system during the calculations; ii)

all the simulations are based on first-principles calculations. This approach encompasses several

steps (Fig. 5.1):

1. The molecular properties (vibrational frequencies, IR and Raman quantities) are calculated

using first principle approaches implemented in standard quantum chemistry programs.

2. Using the homemade Python code, molecular properties are extracted from QM programs

output files, then macroscopic optical responses are evaluated. This step includes different

sub-calculations:

• Evaluation of the SFG angle θSFG(θIR, θvis, n1) (Eq. (3.75)).

• Evaluation of the Fresnel factors FIJK [θi, ε1, ε2(ωi), εl] (Eq. (1.112), i ≡ SFG, vis, and

IR).

• Evaluation of the molecular vibrational first hyperpolarizability elements βαβγ( Eq. (3.91)).

• Evaluation of the surface susceptibility elements, χ
(2)
IJK (Eq. (3.104)), via the average

orientation tensor.

109
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3. The SFG intensities are evaluated for different configuration setups: ssp, pss, sps, and ppp

(Eqs. (3.93) to (3.96)).

4. The SFG spectrum of each configuration (ppp, ssp, sps, and pss) is generated for the

defined IR wavenumber region.

The originality of our approach is the ease with which the orientation of the molecules at the

surface can be determined, as well as the identification of the vibrational normal modes cor-

responding to each peak of the spectra so that the analysis and the interpretation of the ex-

perimental spectra are clearly improved, and the prediction of new systems of interest become

possible.

SFG-from-QMQC

Ippp Issp
Isps Ipss

FIJK

λIR,
λvis

θIR,
θvis

λSFG,
θSFG

ε1, ε2, εl

spectrum

χ
(2)
IJK

TIαJβKγ

βαβγ

Γp

∂µγ

∂Qp

ωp

∂ααβ

∂Qp

Ns, ε0

θIR, θvis

θSFG, ωSFG

1

2 2

2

3

4

Figure 5.1: Road map of the computational procedure. Step 1: Evaluation of molecular
vibrational properties with quantum chemistry programs (QC). Step 2: Evaluation of the
molecular (βαβγ) and the macroscopic NLO responses with the homemade Program. The

FIJK and χ
(2),R
IJK are the Fresnel factors and the nonlinear susceptibility components, respec-

tively. TIαJβKγ is the transformation matrix between the molecular and laboratory coordinates
systems. ε1, ε2, and εl are the dielectric constants of the incident medium, the substrate, and
the interface, respectively. Step 3: Calculation of the intensities for the different configuration

setups. Step 4: Simulation of the spectrum.
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5.1.2 Description of the program

To automate our approach a homemade Python program named “SFG-from-QM” has been imple-

mented to simulate and interpret the SFG spectra of molecules adsorbed on different substrates.

This program is a part of larger project1 on vibrational spectroscopies (IR, Raman, VROA ...)

developed in our lab. Indeed, it takes advantage of different sub-programs available in the project

to read or evaluate derivatives of molecular properties with respect to normal modes, from out-

put files of quantum chemistry programs. Moreover, it can be installed on different operating

systems (Mac OS X, Unix, Linux, Windows) so that the script called “SFG-from-QM.py” can

take the input and output data files as command-line arguments. The usage is hence as follows:

SFG-from-QM.py [options]

where the options are

-i INPUTFILE , --inputfile=INPUTFILE

#Input QM file. Default:None

--IR_angle=IR_ANGLE

#Angle of incidence of the IR beam in degrees.

#Default :65.0

--vis_angle=VIS_ANGLE

#Angle of incidence of the visible beam in degrees.

#Default :55.0

--substrate=SUBSTRATE

#Type of substrate :{Au, Si, Pt , Ag , SiO2 , TiO2}

--n_substrate=N_SUBSTRATE

#Refractive index of the substrate at

#SFG:Vis:IR frequencies eg 3+0.5j:4+0.4j:3+0j

--plane1=PLANE1 #Three atoms defining the interface plane. eg 1,2,3

--atom=ATOM #One atom of the adsorbed molecule to define

# the direction of laboratory Z-axis. eg 1

--Tilt_angle=TILT_ANGLE

#Euler tilt angle (theta) in degrees. eg 60.0

--Rot_angle=ROT_ANGLE

#Euler rotation angle (xi) in degrees. eg 60.0

--chi_NR=CHI_NR #Amplitude of the non -resonant susceptibility

# in m^2/V, default: None , eg 0.12

1The Vibrational Spectroscopies project was initiated in the LCT of UNamur by Vincent Liégeois

https://directory.unamur.be/staff/vliegeoi
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--phase_angle=PHASE_ANGLE

#Dephasing angle between the non -resonant and the

#resonnant terms of the susceptibility in degrees.

#Default:None , eg 180

-x XSCALE , --xscale=XSCALE

#Abscisse scale:xmin:xmax:unit.

#Default: 200.0:1800.0:cm -1

-s STEP , --step=STEP

#Step in cm -1 for the abscisse. Default :1.0

--n_film=N_FILM #Refractive index of the thin film. Default :1.0

--n_1=N_1 #Refractive index of the incident medium.

#Default :1.0

--symm=SYMM #Symmetry for susceptibility tensor. Default:C1

#Available :{ C1, C3V , C2V}

-f SCALINGFACTOR , --xscalingfactor=SCALINGFACTOR

#Scaling factor on the frequencies. Default :1.0

-o OUTPUTFILE , --outputfile=OUTPUTFILE

#Generic name for the outputfiles.

#Default: inputfilename_

-t TITLE , --title=TITLE

#Title name for the pdf file

--Damping=DAMPING

#Damping factor in cm -1. Default :4.0

--nb_extrema=NB_EXTREMA

#Number of extrema on the spectrum.

#Ask 0 for no extrema and none for all of them.

#Default:None

-w PULSATION , --pulsation=PULSATION

#Pulsation of the incident laser light to use

As example, using the command-line

SFG-from-QM.py -i gaussian.fchk --substrate Pt -x 2800.0:3050.0:cm-1 -f 0.96 \

--n_film=1.4 --Damping=4.0 --Tilt_angle=37 --Rot_angle=54 \

--nb_extrema=5 --IR_angle=65.0 --vis_angle=55.0

generates five files reported in Table 5.1.
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Table 5.1: List of files generated by SFG-from-QM

files description

sfg ppp.pdf spectrum for ppp polarization combination (see Fig. 5.2)

sfg pss.pdf spectrum for pss polarization combination

sfg sps.pdf spectrum for sps polarization combination

sfg ssp.pdf spectrum for ssp polarization combination

sfg.dat output data file that contains all the calculated physical quantities

as well as the data to plot each spectrum

2800 2850 2900 2950 3000 3050
Wavenumber [cm−1]

 5.00e-15

 1.00e-14

 1.50e-14
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1
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Figure 5.2: Examples of sfg ppp.pdf file generated by SFG-from-QM

5.1.3 DrawVib and DrawSpectrum

In addition to SFG-from-QM.py, our approach is now a part of DrawVib [1] and DrawSpec-

trum [2] programs available on the Apple App Store for the Mac OS operating systems.

DrawVib has similar interface to DrawSpectrum, and allows visualizing simultaneously the

spectrum and the system or normal modes in 3-D. Fig. 5.3 displays a screen capture of DrawVib

in which we can see a spectrum similar to that of Fig. 5.2 as well as different parameters. Indeed

with DrawVib and DrawSpectrum it is easy to vary some parameters and directly observe

the impact on the spectrum.

https://itunes.apple.com/us/app/drawspectrum/id1112564574?mt=12
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Figure 5.3: Screen capture of DrawVib

5.1.4 Alternative methods for SFG simulations

Several other groups are also tackling the simulation of SFG spectra. Each group has its specifici-

ties, which depend on the nature of the interface (gas/solid, gas/liquid, liquid/solid, liquid/liquid,

and solid/solid), on the computational method (QM, MM, QM/MM, MD, ab initio MD, ...), and

on the levels of approximation to describe or not anharmonicity effects or contributions beyond

the electric dipole approximation. Generally, based on the available computational resources,

choices have to be made: for instance, to favor the level of calculation (ab initio calculations)

in spite of reduced system sizes or to sacrifice the level of approximation to account for the

dynamics of the system.

Among the groups active in the field, we would like to highlight the following ones: 1) Morita and

co-workers (Tohoku University, Japan) are known to use MD simulations approaches. In some of

their works, they described the Fermi resonance effects on the SFG signature of C−H vibrations

[3]. They also addressed the electric quadrupole contribution to the nonresonant background

of SFG [4]. 2) In Université Paris-Sud 11 (France), Busson and co-workers have addressed the

effects of electric field gradients and quadrupole contributions on the SFG spectra [5]. 3) At

the University of Victoria (Canada), Hore and co-workers have developed an approach relying

on MD simulations to provide SFG spectra of biomolecular structures [6]. Indeed, for even

larger molecules, such as peptides and proteins resonances spaced so closely together that the

SFG spectrum appears as if it contains only a few bands. Highly overlapping vibrational modes

cannot be resolved in an experiment. 4) Bonn, Nagata and co-workers (Max Planck Institute
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for Polymer Research, Germany) [7] have employed approaches accounting for Fermi resonances

and combination bands such as the Vibrational Self-Consistent Field (VSCF) method [8]. They

also reviewed the current state-of-the-art of three levels MD simulations (ab initio, Force Field

and Coarse-Grained). They discussed the advantages, the potential, and the limitations of each

method for studying aqueous interfaces, by assessing computations of the SFG spectra and

surface tension [9]. 5) Geiger (Northwestern University, United States), Bastista and co-workers

(Yale University, United States) also used the VSCF method, together with ONIOM approach

[10]. In addition, they have assessed the performance of the DFT for computing the SFG

spectra. They reported that hybrid functionals such as B3LYP, ωB97X-D, PBE0, and B97-1

in combination with a modest basis sets, such as 6-311G(d,p), provides good agreement with

experimental data and much better performance than pure functionals such as PBE and BP86

[11]. 6) Richmond and co-worker (University of Oregon, United States) have relied on classical

MD and QM (DFT) calculations to investigate the structure of atmospherically relevant organic

molecules at the air/water interface using SFG [12].

All these groups combine both experimental and theoretical approaches and most of the calcu-

lations rely on ab initio, Force Field and Coarse-Grained MD, or periodic boundary conditions

methods (plane-wave basis sets). Only few calculations are based on first principles methods

(particularly DFT), and in those cases only a single molecule is included in the calculations.

5.2 Interpretation tools

5.2.1 Normal mode overlaps

The normal coordinates constitute a basis in which the corresponding Hessian matrix is diagonal

(see Section 3.1):

QTHmQ = Hq, (5.1)

where Hq
pp = ω2

p = 4π2ν2
p , with νp being the p-th vibrational frequency. The columns of the

matrix Q, Qp, are the normal coordinates in terms of mass-weighted Cartesian displacements.

The components of the p-th normal mode in terms of Cartesian coordinates Qc
p then read:

Qc
iα,p = (1/

√
mi)Qiα,p. (5.2)

These normal modes are normalized such as:

1 =
∑
iα

Q2
iα,p =

∑
iα

(Qc
iα,p)

2mi (5.3)
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The normal coordinates constitute a complete basis set. One can therefore express the normal

coordinates of a given molecule as a function of the normal coordinates of a reference molecule

providing that they have the same number of atoms (normal modes coordinates):

|QB
p 〉 =

A∑
l

|QA
l 〉〈QA

l |QB
p 〉,

=
A∑
l

UAB
lp |QA

l 〉, (5.4)

where UAB
lp is the transformation matrix from one set to the other and is unitary. From the

orthogonality of the two sets of normal coordinates (QA
l , QB

p ), one can define the overlap [13]

between modes l and p, of molecules A and B, respectively:

〈QB
p |QB

p 〉 = 1,

=
A∑
l

〈QB
p |QA

l 〉〈QA
l |QB

p 〉,

=
A∑
l

(
UBA
pl

)†
UAB
lp ,

=
A∑
l

OAB
l,p . (5.5)

The overlap is therefore defined as:

OAB
l,p = 〈QA

l |QB
p 〉2 = (UAB

lp )2,

=

(∑
iα

QA
iα,lQ

B
iα,p

)2

. (5.6)

Each set of normal coordinates is given in its own mass-weighted Cartesian displacements. It is

therefore necessary to first align the molecules.

By extension, one can define the transformation matrix between the normal modes of a common

fragment F of two molecules having different numbers of atoms:

|QB,F
p 〉 =

A∑
l,m

|QA,F
l 〉〈QA,F

l |QA,F
m 〉−1〈QA,F

m |QB,F
p 〉,

=
A∑
l,m

(SA,Flm )−1TAB,Fmp |QA,F
l 〉,

≈
A∑
l

TAB,Flp |QA,F
l 〉, (5.7)
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where the transformation matrix and the overlap between modes l and p, of molecules A and B

(with different number of atoms), respectively, by specifying a fragment F read:

TAB,Flp = 〈QA,F
l |QB,F

p 〉,

=
F∑
iα

QA
iα,lQ

B
iα,p, (5.8)

OAB,F
l,p = 〈QA,F

l |QB,F
p 〉2 = (TAB,Flp )2,

=

(
F∑
iα

QA
iα,lQ

B
iα,p

)2

. (5.9)

A normal node in a fragment corresponds to a truncation of the displacements of atoms to

keep only those which involve the atoms of the fragment. In this case, the two sets of normal

coordinates are not orthonormal:

〈QA,F
l |QA,F

l 〉 = SA,Fll =
F∑
iα

QA
iα,lQ

A
iα,l < 1, (5.10)

〈QB,F
p |QB,F

p 〉 = SB,Fpp =
F∑
iα

QB
iα,pQ

B
iα,p < 1. (5.11)

This means that:

A∑
l

OAB,F
l,p < 1 and

B∑
p

OAB,F
l,p < 1. (5.12)

If two modes have the same shape within a given fragment, they will have a large value of overlap

but it can only be equal to 1 if the fragment F consists of the whole molecules. In order to better

analyze the similarity between the shape of two normal modes, we define a new quantity called

similarity:

SAB,Fl,p =
OAB,F
l,p

〈QA,F
l |QA,F

l 〉〈QB,F
p |QB,F

p 〉
,

=
〈QA,F

l |QB,F
p 〉〈QA,F

l |QB,F
p 〉

〈QA,F
l |QA,F

l 〉〈QB,F
p |QB,F

p 〉
. (5.13)

As example Fig. 5.4, displays the normal modes overlaps between the acetonitrile (CH3−CN)

and choloromethane (CH3−Cl) in the 2300-3200 cm−1 region. Mode 12 of CH3−CN matches

mode 8 of CH3−Cl, while mode 11 of CH3−CN matches mode 9 of CH3−Cl.
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Figure 5.4: Overlaps between normal modes of acetonitrile (CH3−CN) and choloromethane
(CH3−Cl) in the 2300-3200 cm−1 region. The match has been done on the −CH3 fragment of
each molecule. The red circle represent the similarities SAB,Fl,p , and the values are given inside.

The normal modes are sketched by sphere with hemispheres of different colors.

5.2.2 Group Coupling Matrices (GCM) and Atomic Contribution

Pattern (ACP)

The infrared and Raman intensities [Eqs. (3.48) and (3.71)] can also be expressed in term of the

Cartesian derivatives of the dipole moment and the polarizability tensor:

Ip = Kp

N∑
i,j

3∑
αβ

Qc
iα,pViα,jβQ

c
jβ,p =

N∑
i,j

Iij,p, (5.14)

where Viα,jβ is defined as

V IR
iα,jβ =

∑
ξ

(
∂µξ
∂Riα

)
e

(
∂µξ
∂Rjβ

)
e

, (5.15)

V Raman
iα,jβ =[90V (a2)iα,jβ + 14V (β2)iα,jβ] with, (5.16)

V (a2)iα,jβ =
∑
ξη

1

9

(
∂αξξ
∂Riα

)
e

(
∂αηη
∂Rjβ

)
e

, (5.17)

V (β2)iα,jβ =
∑
ξη

1

2

[
3

(
∂αξη
∂Riα

)
e

(
∂αξη
∂Rjβ

)
e

−
(
∂αξξ
∂Riα

)
e

(
∂αηη
∂Rjβ

)
e

]
. (5.18)

The IR or Raman intensity can therefore be decomposed into mono-nuclear (Iii,p, diagonal)

and di-nuclear (Iij,p, off-diagonal) contributions: this is known as the Group Coupling Matrix

(GCM) scheme of Hug [14]
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To visualize atomic contributions of individual atoms, one therefore needs to split the di-nuclear

contributions denoted as Atomic Pattern Contribution (ACP):

Ii,p =
∑
j

Iij,pr
1
ij,p + Iji,pr

2
ji,p. (5.19)

where r1
ij,p and r2

ji,p are weighting coefficients for the di-nuclear terms.

Fig. 5.5 displays an example of the IR intensity GCM and ACP for the modes 10 and 12 (Fig. 5.4)

of CH3CN molecule. Since only the symmetric part contributes to the total intensity of the

vibrational modes, GCM are best represented by upper triangular matrices, with off-diagonal

elements equal to the sum of the two off-diagonal halves of the full matrix.

These advanced tools are now implemented into the pyvib2 [15, 16] and DrawMol programs

[17].

A H atoms

B C atoms

C N atom

GCM ACP NM

10

12
Groups definition for GCM

(a)
(b) (c) (d)

Figure 5.5: (a) Groups definition for the GCM analysis. (b) Illustration of IR GCM within
modes 10 and 12 of CH3CN, using groups defined in (a). The areas of the circles are directly
proportional to the coupling contributions Eq. (5.14). (c) Illustration of IR ACP within modes
10 and 12 of CH3CN. Sphere surfaces are proportional to the atomic contributions to the IR
intensity. For both GCM and ACP the color reflects the sign: red for positive and yellow for

negative.

5.2.3 Enhancement factor for SERS

The intensity coupling matrix (from which the intensities are the diagonal elements) associated

to any vibrational spectroscopy reads:

IAll′ =
∑
iα

∑
jβ

QAc
iα,lV

A
iα,jβQ

Ac
jβ,l′ , (5.20)
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IBpp′ =
∑
iα

∑
jβ

QBc
iα,pV

B
iα,jβQ

Bc
jβ,p′ . (5.21)

Now, we want to express the intensity of molecule B (IBpp) with respect to the intensity coupling

matrix of A (IAll′). From Eqs. (5.7) and (5.8), we can express the intensity (and more generally

the intensity coupling matrix) of molecule B in terms of the normal modes of molecule A, both

molecules having a common fragment F:

IB,Fp =
F∑
iα

F∑
jβ

QBc
iα,pV

B
iα,jβQ

Bc
jβ,p, (5.22)

=
∑
l,l′

F∑
iα

F∑
jβ

TAB,Flp QAc
iα,lV

B
iα,jβQ

Ac
jβ,l′T

AB,F
l′p ,

=
∑
l,l′

TAB,Flp TAB,Fl′p

F∑
iα

F∑
jβ

QAc
iα,lV

B
iα,jβQ

Ac
jβ,l′ , (5.23)

=
∑
l,l′

IA,B,Fll′,p =
∑
l

IA,B,Fl,p . (5.24)

IA,Bll′,p , gives the intensity for the p normal mode of molecule B in terms of coupling between the

normal modes of molecule A, while IA,Bl,p gives the intensity for the p normal mode of molecule

B in terms of the normal modes of molecule A, where the coupling terms have been separated

into two equal parts.

We would like to define an enhancement factor as the ratio between the intensity of molecule B

over the intensity of molecule A:

EnA,Bl,p =
IBp
IAl
,

=

∑
iα

∑
jβ Q

Bc
iα,pV

B
iα,jβQ

Bc
jβ,p∑

iα

∑
jβ Q

Ac
iα,lV

A
iα,jβQ

Ac
jβ,l

. (5.25)

The problem is that the enhancement should reflect the changes in the Cartesian derivatives of

the properties between the two molecules (V A
iα,jβ 6= V B

iα,jβ) and should not depend on the changes

of normal modes between the two molecules. The previous definition is therefore only valid if

〈QA
l |QB

p 〉2 ≈ 1. A more general definition would be:

EnA,B,Fband =

∑band
p IB,Fp∑band
l IA,Fl

,

=

∑band
p

∑F
iα

∑F
jβ Q

Bc
iα,pV

B
iα,jβQ

Bc
jβ,p∑band

l

∑F
iα

∑F
jβ Q

Ac
iα,lV

A
iα,jβQ

Ac
jβ,l

. (5.26)

Indeed, the transformation matrix T AB,F is, in general, not a unitary matrix. However, it is

most of the time constituted by blocks (defining a band) that are quasi unitary. We can therefore
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show that the sum of the intensities of the modes of molecule B for one band is related to the

sum of the intensities of the modes of the same band in molecule A:

band∑
p

IB,Fp =
band∑
p

F∑
iα

F∑
jβ

QBc
iα,pV

B
iα,jβQ

Bc
jβ,p, (5.27)

=
band∑
p

∑
l,l′

TAB,Flp TAB,Fl′p

F∑
iα

F∑
jβ

QAc
iα,lV

B
iα,jβQ

Ac
jβ,l′ ,

=
∑
l,l′

[
band∑
p

TAB,Flp TAB,Fl′p

]
F∑
iα

F∑
jβ

QAc
iα,lV

B
iα,jβQ

Ac
jβ,l′ , (5.28)

=
band∑
l

F∑
iα

F∑
jβ

QAc
iα,lV

B
iα,jβQ

Ac
jβ,l. (5.29)

Inserting this relationship into the definition of the enhancement factor (Eq. (5.26)) gives:

EnA,B,Fband =

∑band
p

∑F
iα

∑F
jβ Q

Bc
iα,pV

B
iα,jβQ

Bc
jβ,p∑band

l

∑F
iα

∑F
jβ Q

Ac
iα,lV

A
iα,jβQ

Ac
jβ,l

,

=

∑band
l

∑F
iα

∑F
jβ Q

Ac
iα,lV

B
iα,jβQ

Ac
jβ,l∑band

l

∑F
iα

∑F
jβ Q

Ac
iα,lV

A
iα,jβQ

Ac
jβ,l

. (5.30)

As we can see from Eq. (5.30), the enhancement factor does not depend anymore the difference

of normal modes between molecules A and B. The equality between Eq. (5.28) and Eq. (5.29) is

only fulfilled if:

band∑
p

TAB,Flp TAB,Fl′p = δll′δlband. (5.31)

This enhancements factor was used in Chapter 6 (Section 6.3.4) to calculate the

Raman relative enhancements of Thiophenol adsorbed on gold surfaces.
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[17] Liégeois, V. DrawMol. http://www.unamur.be/sciences/chimie/drawmol.

http://www.unamur.be/sciences/chimie/drawvib
http://www.unamur.be/sciences/chimie/drawspectrum
http://pyvib2.sourceforge.net
http://www.unamur.be/sciences/chimie/drawmol


Part III

Results and Discussions

123





Tetsassi Feugmo, C. G.; Liégeois, V.
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Chapter 6

Analyzing the Vibrational Signatures of

Thiophenol Adsorbed on Small Gold

Clusters from DFT Calculations.

In this chapter, using Density Functional Theory (DFT), we calculate the Infrared (IR) and Ra-

man signatures of the thiophenol (TP) molecule adsorbed on gold clusters mimicking the different

types of adsorption sites and we analyze these signatures using advanced tools implemented into

the pyvib2 program. First, we follow the evolution of the vibrational normal modes from the iso-

lated TP molecule to those of TP adsorbed on different clusters in order to highlight the influence

of the site of adsorption on the vibrational motions. The use of the overlap matrix between the

modes enables to highlight mode permutations, mode mixings, and mode splittings, which de-

pend not only on the adsorption but also on the type of cluster and of its symmetry. Second, the

IR and Raman signatures have been analyzed using the group coupling matrices (GCM) and the

atomic contribution patterns (ACP) based on Hug decomposition scheme. Key results encom-

pass i) the better sensitivity of Raman than IR with respect to the nature of the coordination

site, ii) an IR criterion distinguishing on-top coordination (onefold-coordinated) with respect

to bridge (twofold-coordinated) and hcp-hollow site coordinations (threefold-coordinated), and

iii) the best agreement to the experimental Raman spectrum obtained for a bridge two-fold

coordination owing to signatures from 500 to 1200 cm−1 region.

6.1 Motivations

Surfaces and interfaces play a prominent role for numbers of applications in life and materials

science due to their structures and composition, which differ from those of bulk materials. Under

these conditions, surfaces characterization and determination of their properties are essential

to understand the fundamental physico-chemical phenomena that can occur at the interfaces.
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From this knowledge, the interface can then be tuned in order to exhibit specific properties for

applications in molecular electronics, catalysis, sensing devices, etc [1].

The vibrational responses of an interface are distinctive signatures of its chemical composition, as

well as of its structure and organization. Indeed, the vibrations are fingerprints of the chemical

bonds, and are very sensitive to the environment. Hence, the normal modes of vibration are spe-

cific to the nature of the chemical terminations of the surface and of the adsorbates present on the

surface [2], which allows to identify the adsorption binding sites or to determine the orientation of

the vibrational active groups [3–5]. Therefore, various vibrational spectroscopic techniques such

as Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS), Surface Enhanced Raman

Spectroscopy (SERS), and Sum Frequency Generation (SFG) Spectroscopy have been developed

for probing molecules adsorbed on metal nanostructures or substrates with nanoscale roughness

[6–8]. Among these molecules, thiols on gold surfaces are extensively studied. Indeed, substantial

amount of work has been carried out on the electromagnetic and chemical contributions to the

SERS spectra [9], on molecular orientations at interfaces [10], and on the chemical interactions

between thiol and gold surface [11]. However, the exact nature of the chemisorption site for thiols

on Au surfaces is still unclear since details of individual molecules chemisorbed on a surface are

quite complicated to obtain experimentally. On the other hand, selective enhancements of the

Raman cross sections, as well as its dependence on the binding site have not yet been clarified.

This chapter report on Density Functional Theory (DFT) simulations of the IR and Raman

spectra of the thiophenol (TP) molecule, a prototypical aromatic thiol, bound to small gold

clusters, built from 7 to 15 atoms and mimicking different chemisorption sites. A key point of

the present work is therefore to point out the IR and Raman spectral fingerprints specific to the

nature of the binding site. In fact, on an unreconstructed face-centered-cubic Au(111) surface,

several sites are available for bonding: i) the “hollow” (fcc and hcp) sites, threefold-coordinated,

implying three Au atoms linked to the S atom; ii) the “bridge” site (twofold-coordinated), lying

on top of a Au-Au bond, where a pair of Au atoms share the S atom; and iii) the “top”site

(onefold-coordinated) where the S atom is linked to a single Au atom. Interpretations of SERS

data [12] indicate a preference for the occupation of either the top or bridge sites, while the

bridge occupation is substantiated by high-resolution electron energy loss spectroscopy [13].

On the other hand, several theoretical calculations support the bridge site occupation [14–16]

but others point out a preference for the hollow site [17]. This work describes the spectroscopic

signatures associated to the three different kinds of binding site using first principles calculations.

In particular, we employ new tools to interpret these spectra and to unravel the impact of the

adsorption on the vibrational normal modes as well as on the IR and Raman intensities. These

include similarity analysis, group coupling matrices (GCM), and atomic contribution patterns

(ACP). These results and their discussions on the IR and then Raman spectra will be presented

after a brief introduction on the theoretical and computational aspects.
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6.2 Theoretical and computational aspects

All calculations were performed with DFT using the B3LYP exchange-correlation [18] functional

as implemented in the Gaussian09 program [19]. The 6-311G* basis set was adopted for the C,

H, and S atoms, while the cc-pVDZ basis set was chosen for the Au atoms. For the latter, the 60

core electrons are treated by a small-core relativistic pseudopotentials [20], while the remaining

19 valence electrons are explicitly treated using a double-zeta polarized basis set [21]. The

ground-state geometry of the isolated TP molecule and of the TP-Aun complexes were optimized

(without considering any external dielectrics) under the condition that the residual forces are

smaller than 10−5 au. The vibrational normal modes and wavenumbers were calculated under

the harmonic approximation using the same level of theory. To correct for the anharmonicity

effects, the wavenumbers were scaled by a factor of 0.96 [22].

The IR intensity of the pth normal mode was calculated as the integrated absorption [23], which,

in the double harmonic approximation reads:

Ap =

∫
band

εp(ν̄) dν̄ =
NA

12ε0c2

3∑
α

(
∂µα
∂Qp

)
0

(
∂µα
∂Qp

)
0

[m mol−1], (6.1)

in which ε0, c, and NA are the vacuum permittivity, the speed of the light in vacuo, the Avogadro

number.
(
∂µα
∂Qp

)
0

is the derivatives of the α-component of the dipole moment with respect to the

Qp normal coordinate evaluated at equilibrium geometry.

The Raman intensity of the pth normal mode was estimated as the differential Raman scattering

cross-sections
ndσ(θ)p

dΩ
[24], which, in the double harmonic approximation reads:

ndσ(π)p
dΩ

=
π2(ν̄0 − ν̄p)3ν̄0

ε2
0

[
h

8π2cν̄p

90a2
p + 14β2

p

90

]
1

1− e
(
−hcν̃p

kT

) [m2 sr−1], (6.2)

in which ν̄0, ν̄p, h and k are the exciting wavenumber, the vibrational wavenumber of the pth nor-

mal mode, the Planck and Boltzmann constants; a2
p and β2

p are the Raman invariants, which are

evaluated from the first-order derivatives of the polarizability tensor components with respect to

the Qp normal coordinate at equilibrium geometry. Eq. (6.2) assumes a particular experimental

setup: observation of the total scattered beam perpendicular to an incoming laser beam (θ = π)

having natural polarization. For both Eqs. (6.1) and (6.2), the first-order derivatives are evalu-

ated using the Gaussian09 package. IR and Raman spectra were simulated (with a homemade

program) from these molecular properties. Each peak is described by a Lorentzian function with

a FWHM of 10 cm−1. An incident light wavelength of 633 nm is adopted (in agreement with the

experimental spectra we referred to in this work) in all the Raman scattering tensor calculations.

To analyze the vibrational normal modes, the pyvib2 program [25] was used. Our analysis aims

at pointing out the changes of normal modes when the molecule is adsorbed on the different
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sites. The comparison of the normal modes of vibration is based on the overlaps between the

modes of pairs of molecules or of molecular fragments. First of all, the normal modes are defined

as the eigenvectors of the mass-weighted Hessian matrix Hm, which contains the second order

derivative of the total electronic energy E with respect to the Cartesian atomic displacements

Riα evaluated at equilibrium geometry:

H
(m)
iα,jβ =

1
√
mimj

(
∂2E

∂Riα∂Rjβ

)
0

. (6.3)

In the above expression, i and j refer to nuclei while α and β are the x, y, z Cartesian directions.

mi is the atomic mass of nucleus i. The eigenvalue problem is therefore the following:

Hq = QTHmQ, (6.4)

in which Hq is a diagonal matrix containing the squares of the angular frequencies, Hq
pp =

4π2c2ν̄2
p (i.e. the eigenvalues of Hm) with ν̄p the vibrational wavenumber of mode p. The pth

column of the unitary matrix Q, denoted Qp, is the pth normal modes in terms of the mass-

weighted Cartesian displacements. The individual elements of this matrix are denoted Qiα,p

with |Qp|2 =
∑3N

iα (Qiα,p)
2 = 1. The components of the pth normal mode in terms of Cartesian

displacements is expressed as Qc
iα,p = (1/

√
mi)Qiα,p.

Given the normal modes Qp are eigenvectors, they constitute a complete orthonormal basis

set. One can therefore express the normal coordinates of one molecule as a function of those of

another molecule, providing that they have the same numbers of atoms [26]:

|QB
l 〉 =

A∑
p

|QA
p 〉〈QA

p |QB
l 〉 =

A∑
p

UAB
p,l |QA

p 〉, (6.5)

in which UAB
p,l is the transformation matrix from one set to the other and is unitary. From the

orthogonality of the two sets of normal coordinates (QA
p , Q

B
l ), the overlap between the modes

p and l of the molecules A and B is defined as the square of the scalar product between two

normal modes [26]:

OA,B
p,l = 〈QA

p |QB
l 〉2 = (UAB

p,l )2, (6.6)

in which
∑A

p O
A,B
p,l =

∑B
l O

A,B
p,l = 1. If QA

p and QB
l are identical, the overlap is equal to 1, whereas

it goes to zero if they are completely different, i.e. orthogonal. By extension, for molecules A

and B having different numbers of atoms, but common fragment F:

|QB,F
l 〉 ≈

A∑
p

TAB,Fp,l |QA,F
p 〉, (6.7)
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in which [Eq. (6.8)]

TAB,Fp,l = 〈QA
p |QB

l 〉 =
F∑
iα

QA
iα,pQ

B
iα,l (6.8)

is the transformation matrix. The overlap between the modes p and l can be defined as:

OAB,F
p,l = 〈QA,F

p |QB,F
l 〉2 = (TAB,Fp,l )2

=

(
F∑
iα

QA
iα,pQ

B
iα,l

)2

. (6.9)

For their analysis, the IR and Raman intensities are decomposed into mononuclear and het-

eronuclear contributions following the scheme introduced by Hug [27][ Eq. (6.10)]:

Ip = Kp

N∑
i,j

3∑
α,β

Qc
iα,pViα,jβQ

c
jβ,p =

N∑
i,j

Iij,p , (6.10)

In which Viα,jβ is defined as [Eqs. (6.11) and (6.12)]:

V IR
iα,jβ =

∑
ξ

(
∂µξ
∂Riα

)
0

(
∂µξ
∂Rjβ

)
0

, (6.11)

V Raman
iα,jβ =[90V (a2)iα,jβ + 14V (β2)iα,jβ], (6.12)

with [ Eqs. (6.13) and (6.14)]

V (a2)iα,jβ =
∑
ξ,η

1

9

(
∂αξξ
∂Riα

)
0

(
∂αηη
∂Rjβ

)
0

, (6.13)

V (β2)iα,jβ =
∑
ξ,η

1

2

[
3

(
∂αξη
∂Riα

)
0

(
∂αξη
∂Rjβ

)
0

−
(
∂αξξ
∂Riα

)
0

(
∂αηη
∂Rjβ

)
0

]
; (6.14)

(
∂µξ
∂Riα

)
0

and
(
∂αξη
∂Riα

)
0

are the derivatives of the ξ-component of the dipole moment and of the

ξη-component of the polarizability tensor with respect to the Cartesian atomic displacement

Riα evaluated at equilibrium geometry, respectively. Then, using straightforward summation,

Eq. (6.10) can be generalized to groups of atoms. The diagonal terms (Iii,p) are mononuclear or

intra-group while the off-diagonal terms (Iij,p) are di-nuclear or inter-group, respectively. Since

only the symmetric part contributes to the total intensity of the vibrational modes, they are

best represented by upper triangular matrices, with off-diagonal elements equal to the sum of

the two off-diagonal halves of the full matrix. In the GCM scheme of Hug [27], the matrix

elements are visualized as circles, with an area proportional to the (Iij,p) values, whereas their

color is related to their sign. In our analysis i) the factor of proportionality is chosen such as an

inscribed circle contains a defined percentage of the sum of the intensities over all the normal



Chapter 6. IR and Raman signatures of thiophenol adsorbed on small gold clusters 130

modes and ii) this percentage is tunable but fixed for each spectroscopy. The ACP represent

the atomic contributions of each atom to the IR or Raman intensities of a given normal mode

p. They are obtained by taking the self-contribution of the atom (Iii,p) and then splitting the

di-nuclear terms (Iij,p) between the corresponding atoms. Spheres are then drawn on each atom

with their surface area proportional to the value of the contribution (Iii,p). Their color reflects

the sign: red for positive and yellow for negative.

Complementary to the overlap between the normal mode of molecules A and B, we defined an

enhancement factor (EF) as the ratio between the intensity of molecule B over the intensity

of molecule A. Considering that the enhancement should reflect the changes in the Cartesian

derivatives of the properties between the two molecules (V A
iα,jβ 6= V B

iα,jβ) and should not depend

on the changes of normal modes between the two molecules, the EF is calculated as the ratio of

the sum of the intensities under a given band for both molecules A and B:

EFA,B,Fband =

∑band
l

∑F
iα

∑F
jβ Q

B,c
iα,lV

B
iα,jβQ

B,c
jβ,l∑band

p

∑F
iα

∑F
jβ Q

A,c
iα,pV

A
iα,jβQ

A,c
jβ,p

=

∑band
p

∑F
iα

∑F
jβ Q

A,c
iα,pV

B
iα,jβQ

A,c
jβ,p∑band

p

∑F
iα

∑F
jβ Q

A,c
iα,pV

A
iα,jβQ

A,c
jβ,p

(6.15)

in which F is the common fragment, and where a band is defined as a block of coupled modes

in the transformation between modes of molecules A and B (TAB,Fp,l ). Indeed the two equations

are identical if the transformation is unitary.

6.3 Results and discussion

6.3.1 Optimized structures and binding energy

Fig. 6.1 presents the optimized structures of the complexes and Table 6.1 reports characteristic

bond distances. It is first important to note that from our calculation, the isolated TP molecule

has a planar structure, which is consistent with previous results [28]. Furthermore, the C-S and

S-H bond lengths, and the C-S-H angle amount to 1.789 Å, 1.350 Å, and 96.7 ◦, respectively.

These values are in good agreement with the microwave spectroscopy values [5, 28] of 1.770 Å,

1.330 Å, and 96 ◦, respectively. For the complexes, the Au-S bond distance increases with the

coordination number of the S atom, typically by 0.1 Å for each increase of the coordination

number by one unit.
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Figure 6.1: Optimized structures of TP-Aun complexes. a) Ph-S-Au7 (onefold-
coordinated≡on-top); b) Ph-S-Au9 (onefold-coordinated≡on-top); c) Ph-S-Au9 (twofold-
coordinated≡bridge); d) Ph-S-Au13 (twofold-coordinated≡bridge); e) Ph-S-Au13 (threefold-
coordinated≡hcp-hollow); f) Ph-S-Au15 (twofold-coordinated≡bridge). The names onefold-,
twofold- and threefold-coordinated are directly related to the number of Au atom linked to the

S atom.

The adsorption energy was evaluated considering the adsorption reaction of the TP accompanied

by the liberation of 1
2

H2 molecule [29]

EB =

[(
1

2
EH2 + EPhS−Aun

)
− (EPhS−H + EAun)

]
(6.16)

in which the Ex are the electronic energies for the optimized structures, except for the bare

clusters for which the same geometries as in the complexes were used. These values are reported

in Table 6.1. It is also common to find in the literature an alternative expression for EB, which

corresponds to the adsorption of the C6H5S radical [15, 29]. In such a case, the EB values

are simply shifted by the energy of the homolytic dissociation of the thiophenol S-H bond,

EPhS−H − (EPhS• + 1
2
EH2), which amounts to -38.9 kcal/mol at the current level of calculation.

In general, the ordering of the binding energy amplitude is onefold-coordinated < threefold-

coordinated ∼ twofold-coordinated, while the Au-S bond length trend is onefold-coordinated <

twofold-coordinated < threefold-coordinated (see Table 6.1). Then, for a given coordination

number, the amplitude of the binding energy decreases with the cluster size.

For example, for the twofold-coordinated, EB amounts to -42.0, -33.4, and -31.1 kcal/mol for

clusters containing 9 (C3), 13 (C4), and 15 (C6) Au atoms, respectively. The position of the

phenyl ring with respect to the cluster also appears to be correlated with the EB amplitude: i)
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in the onefold-coordinated complexes (C1, C2), the phenyl ring is almost parallel to the cluster;

ii) in the threefold-coordinated complex (C5), it is perpendicular to the plane containing the 3

Au atoms directly bonded to the S atom, whereas iii) in the twofold-coordinated complexes (C3,

C4, C6), it is tilted. Therefore, the binding energy does not depend solely on the S-Au bond

distance and on the coordination of the S atom, but also on the cluster-adsorbate geometry and

on the size of the cluster.

Table 6.1: Selected optimized bond distances (Å) for TP and its complexes with Au clus-
ters calculated at the B3LYP/6-311G*(C, S, H)/cc-pVDZ (Au) level of calculation. Binding

energies (EB) (kcal/mol) are also given.

TP C1 C2 C3 C4 C5 C6

onefold onefold twofold twofold threefold twofold

d(C1-S) 1.798 1.795 1.789 1.808 1.804 1.802 1.806

d(Au1-S) 2.321 2.328 2.393 2.456 2.522 2.412

d(Au2-S) - - 2.393 2.429 2.517 2.411

d(Au3-S) - - - - 2.544 -

EB (Eq. (6.16)) -21.2 -19.5 -42.0 -33.4 -32.5 -31.1

6.3.2 Vibrational normal modes

As shown in previous works (simulation and experiment) [5, 9, 16, 30], the adsorption of TP

leads to variations of the vibrational wavenumbers ranging typically from 1 to 30 cm−1, in either

direction (Fig. 6.2). In general the wavenumber under 600 cm−1 (c, e) are blue shifted, while

the others are red shifted. In addition to these shifts that result from the perturbation by the

Au environment of the TP electronic structure and force constants, the adsorption process is at

the origin of new modes, like modes a1 and a2 (Table 6.2), characterized by the motion of the S

atom in the Au atom environment, or like the modes intrinsic to the Au clusters spanning the

very low wavenumber region (from 4 to 160 cm−1).

To highlight the changes in the vibrational normal modes upon adsorption, Fig. 6.3 displays the

overlaps between the vibrational normal modes of the isolated TP molecule and of its complexes.

In the Supporting Informations, Table D.1 provides a complete list of matching modes between

the isolated TP and its complexes. Table 6.2 lists the mode assignments and the wavenumbers

for the isolated TP and its complexes, while Fig. 6.4 sketches the atomic displacements of key

normal modes. Note that in Table 6.2, we concentrate on three different types of clusters, C1,

C3, and C5 but that the whole set of wavenumbers for the 6 adsorption sites are given in the

Supporting Informations (Table D.2).
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Figure 6.2: Wavenumber shift of the principal Raman-active modes (located between 400
cm−1 and 1600 cm−1) of the six complexes. Modes are labeled in Table 6.2.

Deviations of the overlap matrix from the diagonal form mean that upon adsorption, modes are

split, permuted, or mixed. As shown in Fig. 6.3, these effects occur for several types of modes,

showing also an impact of the coordination number on these mixing patterns. For instance,

mode 2 of TP splits into two (C2, C3, and C6) or three (C1, C4) modes. Looking at the atomic

displacements, the pairs of modes resulting from the TP mode 2 (label b) splitting, i.e. modes

21 and 23 for C1 while modes 26 and 28 for C3, differ by the amplitudes of the motion of the

S atom and of the C atom attached to it (Fig. 6.4). One can therefore conclude that modes 23

(C1) and 28 (C3) are signatures of the adsorption but that they borrow some character from

the ring out-of-plane distortion at 176 cm−1. Interestingly, this splitting is not observed for the

hollow (threefold-coordinated) site.

The adsorption can also permute the wavenumbers ordering of modes, like modes 4 and 5 of

TP (labels c and d), occurring at almost the same frequency, which become modes 43 and 42 in

the C5 cluster with a wavenumber difference of 20 cm−1. The same permutation appears for C3

whereas for C1, the characters of modes 4 and 5 of TP are mixed in modes 24 and 25.

Modes 8 and 9 of TP (labels g and h) are slightly mixed to build modes 28 and 29 (or 34 and 35)

of the on-top C1 (C2) cluster. This mixing is stronger for the bridge (twofold-coordinated) sites

while it is absent for the hollow (threefold-coordinated) site. These couplings nicely illustrate

the impact of the lift of planar symmetry that occurs upon adsorption. Indeed, in the planar

TP molecule, mode 8 corresponds to an out-of plane deformation whereas mode 9 is a typical

in-plane ring breathing mode (Fig. 6.4). When the molecule is adsorbed, the system is no more

planar and therefore this pair of modes belongs now to the same symmetry representation, which

allows their mixing (modes 28 and 29 in C1 as well as modes 34 and 35 in C3).
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Figure 6.3: Vibrational normal modes overlaps OA,B,Fp,l between the isolated TP and its
complexes. The fragment is constituted of all the atoms except the Au atoms and the terminal
H atom (bonded to the S atom) of the TP molecule. Dark blue, green, blue, and red circles
highlight different splitting, permutation or mixing of modes. The surface of the each circle is

proportional to the overlap.
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Figure 6.4: Sketch of selected vibrational normal modes of the isolated TP and its complexes.
The direction of the atomic displacements is perpendicular to the junction plane between the
two hemispheres of distinct color while their amplitudes are proportional to the sphere radius.
The wavenumber, wavenumber ordering, and the normal mode label are given for each mode.

In-plane displacements of modes 18 and 19 (labels p and g) of TP also mix in the presence of

the metallic cluster. The overlap patterns show that their characters almost interchange: mode

18 (1064 cm−1) is more similar to the high wavenumber modes (modes 38 and 44 for C1 and C3,

respectively) whereas mode 19 (1070 cm−1) has the largest overlaps with the low wavenumber

modes (modes 37 and 43 for C1 and C3). This mixing is also influenced by the symmetry of the

clusters and by the anchoring type in C3 and C5, contrary to the asymmetric structures of TP

and C1 ( Fig. 6.4).

6.3.3 IR spectra

Fig. 6.6 depicts the simulated IR spectra of the isolated and adsorbed TP, whereas the whole

list of IR intensities is given in Table D.3. First, a huge band at around 3000 cm−1 dominates all

the calculated spectra. This band corresponds to the C-H stretching modes (Table 6.2, modes

α, β, ε, σ, and η). Moreover, well defined peaks are observed i) for the [ν(CC)] at around 1550

cm−1 (peak y), ii) for the [δ(CH) + ν(CC)] close to 1450 cm−1 (peak w), iii) for the [ν(CS) +

δ(CH) + ν(CC)] and [ν(CC) + δ(CH)] modes at around 1050 cm−1 (particularly the peaks q
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Table 6.2: B3LYP versus experimental wavenumbers (cm−1) for the isolated TP and its
complexes with Au clusters. Calculated wavenumbers were scaled by a factor of 0.96.

labela assignmentsb TP C1c C3 C5 Exp1d Exp2 Exp3

onefold twofold threefold

a1 r-o-d + γ(CS) 176 177(+1) 175(−1) 185 189
a2 331(+154) 282(+106) 238(+62)
b δ(CS)+ν(AuS) 267 259(−8) 343(+76) 321(+54) 278 275
c ν(CS)+ν(AuS) 393 401(+8) 397(+4) 414(+21) 412 420
d(16b) γ(CH) 394 397(+3) 395(+1) 394(0)
e(16a) ω(CH) + γ(SH) 457 472(+16) 468(+12) 459(+2) 462 470e

f(6a) r-i-d 608 607(−1) 606(−2) 605(−3) 615
g(4) ω(CH) + r-o-d 672 674(+2) 668(−4) 670(−2) 689
h(6b) δ(CCC) + r-i-d 678 679(+1) 674(−4) 671(−7) 697 692
i(11) ω(CH) 710 723(+14) 721(+11) 719(+9) 737
j(10b) ω(CH) 799 811(+13) 807(+8) 807(+8) 836
k(10a) γ(CH) +δ(SH) 853 877(+24) 877(+24) 879(+25) 904
Ω1 δ(SH) 901 - - - 914
l(17b) γ(CH) + r-o-d 913 924(+12) 926(+13) 926(+13) 958
m(5) γ(CH) 942 945(+3) 950(+8) 952(+10) 991
n(12) r-i-d + ν(CC) 976 976(0) 975(−1) 974(−2) 1000 1000 999
o(18a) ν(CC) + δ(CH) 1006 1003(−3) 1002(−4) 1000(−6) 1024 1026 1022
p(18b) ν(CC) + δ(CH) 1064 1054(−10) 1059(−4) 1058(−5) 1070 1068 1078
q ν(CS) + δ(CH)+ν(CC) 1070 1051(−19) 1049(−21) 1042(−28) 1092
r(14) δ(CH) 1140 1137(−3) 1140(0) 1140(01) 1118e 1181
s(9a) δ(CH) 1165 1157(−8) 1161(−4) 1159(−6) 1157
t(9b) ν(CC) 1267 1255(−12) 1261(−6) 1262(−5) 1272
u(3) δ(CH) + ν(CC) 1307 1296(−11) 1300(−8) 1298(−9) 1328
v(19a) δ(CH) + ν(CC) 1424 1415(−9) 1418(−6) 1418(−6) 1441
w(19b) δ(CH) + ν(CC) 1459 1450(−9) 1453(−7) 1450(−9) 1481 1472 1473
x(8b) ν(CC) 1559 1550(−8) 1556(−3) 1555(−3) 1576
y(8a) ν(CC) 1570 1560(−10) 1562(−9) 1559(−12) 1581 1574 1584
Ω2 ν(SH) 2486 - - - 2566
α(13) ν(CH) 3035 3032(−3) 3040(+5) 3041(+7) 3037
β(7b) ν(CH) 3039 3041(+2) 3047(+8) 3048(+9) 3048
ε(3) ν(CH) 3049 3055(+6) 3058(+9) 3057(+9) 3056
η(20b) ν(CH) 3054 3063(+9) 3063(+9) 3063(+8) 3086
σ(2) ν(CH) 3066 3067(+1) 3069(+3) 3069(+3) 3150 3060

a The assignments in parentheses refer to Wilson notation [31] of the benzene molecule.
b δ = in-plane bending, γ = out-of-plane bending, ν = stretching, ω = wagging, r-i-d = ring in-plane deformation,

r-o-d = ring out-of-plane deformation.
c The values in parentheses are the wavenumber differences with respect to the isolated TP molecule.
d Exp1= from neat TP (Ref [30]), Exp2= from IR spectra of TP on Au(111) gold surface (Ref. [5]), and Exp3=

from SERS of TP onto a roughened SiGe surface coated with 30 nm of Au (Ref. [30]).
e Values from Ref [32]
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and p), and iv) for the [ν(CC) + δ(CH)] and [r-i-d + ν(CC)] at around 1000 cm−1 (peaks o and

n). Furthermore, the presence of the Au substrate hardly alters the IR intensities. From the

ACP and GCM (Fig. 6.7), we see that among the systems, the contributions to the IR intensities

have generally similar patterns but with different amplitudes. However, there are also modes

for which the variations are stronger. For instance, mode q has an intensity of 27.1 km.mol−1

in the isolated TP molecule but smaller intensities of 1.7, 0.6, and 4.7 km.mol−1 for the C1,

C3, and C5 systems, respectively. The ACP sketches, which show a smaller or even a negative

contribution of the C atom directly bonded to the S atom account for this intensity reduction.

Moreover, considering the GCM, this reduction is shown to originate from the smaller positive

contribution of the C-S group and the larger negative contributions from the coupling between

the C-S group and the C-H groups in ortho. On the opposite, the intensity of mode n increases

with the adsorption and with the coordination number (from 0.8 km.mol−1 in TP to 4.3, 7.3, and

14.0 km.mol−1 for C1, C3, and C5, respectively). From the ACP and GCM, one observes that

the contribution from the C-H groups in ortho (of the S atom) and the coupling between these

C-H groups and the C-S group are indeed more positive when the coordination number of the

S atom increases. The simulated spectral profiles are in close agreement with the experimental

IR spectrum of neat TP and Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS)

spectrum of TP on Au (111) surface displayed in Fig. 6.6a and Fig. 6.6b. In particular, the

bands y, w, p+ q, o, and n are in accordance with those of the experimental SEIRAS spectrum,

with the relative increase of mode n intensity upon adsorption also reproduced by our simulation.

However, for both the neat and adsorbed TP, one observes that the broad band around 3000

cm−1 (C-H stretching region) has a huge intensity in our simulation compared to experiment.

Note that in the experimental SEIRAS spectrum, peak v has not been pointed out, though it

might be present in the spectral noise. On the basis of both the experimental and theoretical

spectra and their consistency, the signatures of the TP coordination are i) the disappearance of

the peaks Ω1 and Ω2 as well as of peak t and ii) the relative intensity of the o peak that increases

with respect to the sum of the intensities of peaks p and q. Our simulations also point out that

the intensity of the peak s relative to that of peak u is much larger in the case of on-top mono-

coordination while they are similar for the twofold and threefold coordinations. Unfortunately,

the experimental spectrum has not been recorded in the corresponding wavenumber region.

6.3.4 Raman spectra

Unlike the intensities observed in the IR spectra, the presence of the Au substrate enhances

globally the Raman cross-sections and also leads to specific variations in the relative intensities.

From Eq. (6.15), one can calculate the EF of each band due to adsorption. To compare with

experiment, we normalize all the EFs by that of mode n . Assuming that the electromagnetic

enhancement is the same for all modes [33–35], this relative enhancement will reflect only the

chemical enhancement. Fig. 6.8 displays the comparison between the calculated and experimen-

tal relative enhancements [9, 16]. Remarkably, the calculations show consistent agreement with



Chapter 6. IR and Raman signatures of thiophenol adsorbed on small gold clusters 138

Figure 6.5: a) Groups definition for the GCM analysis. In the complexes, the group
E is defined by the Au atoms. b) Illustration of GCM with groups defined by a).
The areas of the circles are directly proportional to the coupling contributions Eq. (6.10)
(
∑

i∈ group1

∑
j ∈ group2 Iij,p, where the groups 1 and 2 can be the same or different). Red and

yellow color spheres represent positive and negative contributions, respectively. Each box in
the additional column (only for the Raman intensity) corresponds to the sum of the atomic

contributions (ACP) over the atoms within a group.

experiment. Moreover, one also observes when comparing this latter to Fig. 6.2 that the most

enhanced modes are those with a large wavenumber shift (c, q, y), and that the C5 complex

leads to the best reproduction of the experimental relative enhancements.

The simulated Raman spectra of the isolated and adsorbed TP are depicted in Fig. 6.9c to

Fig. 6.9i, whereas the whole list of Raman intensities is given in Table D.4. In general, the spec-

tral profiles of the onefold-coordinated complexes differ largely from those of the twofold- and

threefold-coordinated complexes. Indeed, the peaks c [ν(CS)+ν(AuS)], q [ν(CS) + δ(CH)+ν(CC)],

and y [ν(CC)], and sometimes a2 [r-o-d + γ(CS)] dominate the spectra of the twofold-coordinated

and threefold-coordinated species, while the peaks c [ν(CS)+ν(AuS)], b [δ(CS)+ν(AuS)], and

a2 [r-o-d + γ(CS)] located in the 200-400 cm−1 region (Fig. 6.9d to Fig. 6.9e ) dominate the

spectrum in the case of the onefold coordination. As shown in Table 6.2 , those modes involve

the displacement of the S atom, with the exception of mode y [ν(CC)]. The c, q, and y peaks

are located in three spectral regions, on which our analysis successively focuses.

The first region located between 200 and 400 cm−1 is characterized by the peaks a2, b, and

c (Fig. 6.9). As shown in Figs. 6.10 and 6.11, the Raman intensities of these modes globally

decrease when the coordination number of the binding site increases. From the ACP and the

GCM, we see that a large part of the intensity of those modes come from the S atom contribution.

For the C1, C3, and C5 complexes, mode c has a higher intensity than modes a2 and b. This can

be related by the positive contributions of the groups B and C for mode c, compared to their

small values for the two other modes. Moreover, when comparing the intensities of the C1 and

C2 complexes on the one hand, and those of the C3, C4 and C6 complexes on the other hand,

one observes that the intensities of the peaks a2, b, and c vary with the size and geometry of

the cluster (i.e. the orientation of the phenyl ring with respect to the gold cluster). Indeed, in

C2 (onefold-coordinated) and C6 (twofold-coordinated) complexes were the phenyl ring points

out from the cluster surface (Fig. 6.1), the peak a2 dominates the spectrum; and this can be
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Figure 6.6: Comparison between the experimental and simulated IR spectra. a) Experimental
IR spectrum of neat TP [5]; b) Experimental IR spectrum of TP adsorbed on an Au (111)
surface [5]; c) Simulated spectrum of isolated TP; (d-h) Simulated spectra of TP adsorbed on

Au surface.
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Figure 6.7: Sketch of the IR Atomic Contribution Patterns (left), and Group Coupling
Matrices (right) for the main peaks. The ACP sphere surfaces are proportional to the atomic
contribution to the IR intensities. Red and yellow color spheres represent positive and negative
contributions, respectively. The GCM representation is detailed in Fig. 6.5. The numbers
in red color below each column specify the total intensities, which are the sums of all the
normal mode intensities. The inscribed circle is defined to contain 4% of the total intensity.

IR intensities are given in km.mol−1.
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Figure 6.8: Calculated Raman relative enhancements for the C3 and C5 complexes together
with the experimental ones taken from Refs [9] and [16].

explained by the contributions of the S atom (Fig. 6.11), which are larger compared to those of

the other complexes (Fig. 6.10).

In the second region around 1000 cm−1, the peaks n [r-i-d + ν(CC)], o [ν(CC) + δ(CH)], and q

[ν(CS) + δ(CH)+ν(CC)] are dominant and their relative intensities are similar for the twofold-

and threefold-coordinated complexes, whereas in the case of on-top coordination, peak o has

much a smaller intensity than the other two modes. These 3 vibrational modes involve in-plane

motions of the atoms. As shown in the ACP and GCM, most of the intensity of those peaks

originate from the groups C and D, which are close to the surface. Among these modes, mode

q is the most intense by about a factor of 2. This can be explained by the positive coupling

between the groups C and D, which is negative in modes n and o.

Finally, the last region located between 1400 cm−1 and 1600 cm−1 is characterized by the peaks

y [ν(CC)] and w [ δ(CH) + ν(CC)]. In all the spectra, mode y has the highest intensity, which

is comparable to that of mode q. The GCM pattern explains the difference between modes

y and w: in the former, groups A, B, C, and D display positive intra-group and inter-group

contributions, while in the mode w, the intensity also originates from the same groups, but some

coupling terms are negative.

The experimental Raman spectrum of neat TP and Surface Enhanced Raman Spectroscopy

(SERS) spectrum of TP adsorbed on a roughened SiGe surface coated with 30 nm of Au [16] are

also displayed in Fig. 6.9a and Fig. 6.9b. The calculated spectral profiles are in close agreement

with experiment, even better than for the IR spectra. In the case of neat TP, the simulated

spectrum on the isolated molecule displays all the important peaks. The major deviations

include the underestimation of the relative scattering intensity of mode n but the overestimation
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Figure 6.9: Comparison between the experimental and simulated Raman spectra. a) Experi-
mental Raman spectrum of neat TP [16] (Copyright (2011) by The American Physical Society);
b) Experimental SERS spectrum of TP adsorbed on a roughened SiGe surface coated with 30
nm of Au [16] (Copyright (2011) by The American Physical Society); c) Simulated Raman

spectrum of isolated TP; (d-i) Simulated Raman spectra of TP adsorbed on Au clusters.
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Figure 6.10: Sketch of the Raman Atomic Contribution Patterns (left), and Group Cou-
pling Matrices (right) for the main peaks discussed in the text. The ACP sphere surfaces are
proportional to the atomic contributions to the Raman cross sections. Red and yellow color
spheres represent positive and negative contributions, respectively. The GCM representation is
detailed in Fig. 6.5. The numbers in red color below each column specify the total intensities,
which are the sums of all the normal mode Raman intensities. The inscribed circle is defined

to contain 3% of the total intensity. Raman intensities are given in 10−15Å2sr−1.
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Figure 6.11: Sketch of the Raman Atomic Contribution Patterns (left), and Group Coupling
Matrices (right) for the modes a2, b , and c in the C2 ,C4, and C6 complexes. See caption of

Fig. 6.10 for more details.

for mode y. We make the hypothesis that this comes from the neglect of the solvent effects.

More importantly, for the clusters, the best agreement with experiment is obtained for the

complexes with a twofold-coordinated binding site of the S atom, and especially for the C3

complex (Fig. 6.9f). Upon adsorption, the experimental SERS spectrum keeps the c and y peaks

but with a relative increase of intensity. Then, the dominant peak n is replaced by a triplet of

peaks of similar intensities (n, o, q). The simulated spectra for the mono-coordinated species

do not reproduce this later feature. In the case of the threefold-coordinated site, the e peak is

missing, like in the C4 and C6 spectra. On the other hand, in C3, the bands c [ν(CS)+ν(AuS)],

e [γ(CH) + γ(SH)], h [δ(CCC) + r-i-d], o [ν(CC)s + δ(CH)], q [ν(CS) + δ(CH)+ν(CC)], and y

[ν(CC)] are in accordance with those of the experimental SERS spectrum. Nevertheless, some

well defined peaks of the simulated C3 spectrum like i [ω(CH)], s [δ(CH)] and w [δ(CH) + ν(CC)]

(Fig. 6.9f) have not been highlighted by the authors of the experimental SERS spectrum, though

analysis of Fig. 6.9b shows the possible presence of peaks of low intensity in the background.

In addition, it is worth noting that the peak b in the experimental SERS spectrum (Fig. 6.9b)

attributed in the literature to the [δ(CS)+ν(AuS), Table 6.2, TP] might be the a2 [r-o-d + γ(CS),

Table 6.2,TP], while this latter could appear further away, as shown in Fig. 6.9f (a2 and b).

6.4 Conclusions

By employing DFT, we have calculated the IR and Raman signatures of the TP molecule ad-

sorbed on gold clusters mimicking the different types of adsorption sites and we have brought
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out the effects of the adsorption and of the coordination site using the normal mode overlaps, the

group coupling matrices (GCM), and atomic contribution patterns (ACP) based on the decom-

position scheme introduced by Hug [27] and implemented into the pyvib2 program [25]. First,

we have followed the evolution of the vibrational normal modes from the isolated TP molecule

to those of TP adsorbed on the different clusters; by relying on the overlap matrix between the

modes to highlight mode permutations, mode mixings, and mode splittings, which depend not

only on the adsorption but also on the type of cluster and on its symmetry. For the Raman

spectra, one observes a larger impact of the adsorption site on the relative intensities than in the

case of IR, in particular for the signatures of the vibrational modes located between 200 cm−1

and 400 cm−1
(
a2 [r-o-d + γ(CS)], b [δ(CS)+ν(AuS)], and c [ν(CS)+ν(AuS)]

)
, which greatly

depend on the contribution of the S atom.

Second, using the GCM and the ACP, we have shown how the contributions of an atom or

of a group of atoms to the Raman intensities vary with the adsorption site. Thus, for the

low frequencies vibrational modes, the intensity increases with the contribution of the S atom,

which vary with its coordination site. This enables to explain selective enhancements of the

vibrational modes, and therefore changes in the spectral profiles. Moreover, this contribution

varies both with the coordination and with the orientation of the phenyl with respect to the

cluster. Indeed, we see for example that the peak a2 always dominates the spectrum when the

phenyl ring points out from the cluster surface (Fig. 6.1b to Fig. 6.1f). On the basis of these

features, the best agreement with the experimental spectrum of Ref. [16] was found for the C3

complex corresponding to a twofold-coordinated site, while when considering only the strongest

peaks (c, h, n, o, q, y), the C5 complex (threefold-coordinated) shows also a consistent agreement

with experimental relative enhancements.

Although there is a general good agreement between the experimental and simulated spectra,

there remain some deviations (particularly located at around 3000 cm−1 in IR spectra, and

around 1000 cm−1 in Raman spectra), which can partly be related to the effects of the TP

orientation on the surface and the geometry of the experimental setup (the angle of incidence and

the polarizations of the beams). Indeed, experimentally, the SEIRAS and the SERS intensities

depend on the latter, while our simulations account for an average of components of the ∂µ/∂Q

vector and of the ∂α/∂Q tensor. Furthermore the optimized structures were calculated in gas

phase for a single isolated molecule. Future work will address those effects as well as the impact

of the anharmonicity and of the exchange-correlation functional.
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Estève, A.; Chabal, Y. J. Nat. Mat. 2010, 9, 1–6; (c) Lis, D.; Guthmuller, J.; Champagne, B.;

Humbert, C.; Busson, B.; Tadjeddine, A.; Peremans, A.; Cecchet, F. Chem. Phys. Lett. 2010,

489, 12 – 15; (d) Seitz, O.; Fernandes, P. G.; Mahmud, G. A.; Wen, H.-C.; Stiegler, H. J.;

Chapman, R. A.; Vogel, E. M.; Chabal, Y. J. Langmuir 2011, 27, 7337–7340; (e) Hum-

bert, C.; Pluchery, O.; Lacaze, E.; Tadjeddine, A.; Busson, B. Phys. Chem. Chem. Phys.

2012, 14, 280–289.

[3] Tetsassi Feugmo, C. G.; Champagne, B.; Caudano, Y.; Cecchet, F.; Chabal, Y. J.; Liégeois, V.
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Chapter 7

Theoretical Investigation of Vibrational

Sum-Frequency Generation Signatures

of Functionalized H-Si(111)

In this chapter, developments towards a general approach for simulating and interpreting the

sum-frequency generation signatures of functionalized surfaces are reported. This approach

encompasses two steps, (1) the molecular properties (vibrational frequencies, IR and Raman

quantities) are evaluated using first principles approaches implemented in standard quantum

chemistry programs and (2) the macroscopic optical responses (the second-order nonlinear opti-

cal susceptibility tensor) of the adsorbate on its substrate are determined within the three-layer

model of the interface. A homemade code has been written to carry out this second step, includ-

ing (1) the evaluation of the Fresnel factor and (2) the molecular orientation in the laboratory

frame. These approach and program allow generating the SFG spectra for different combinations

of molecular orientations and experimental set-ups, as well as identifying the vibrational modes

in order to facilitate their analysis. Then, the approach is illustrated in the case of a decyl

chain covalently bonded to hydrogen-terminated Si(111)
[
≡ Si−(CH2)9CH3

]
. The simulated

ppp spectrum agrees closely with experiment, whereas the agreement gets worse upon freezing

parts of the chain, demonstrating that the SFG signature originates from a large part of the

decyl chain. Calculations have also been performed for the other sets of polarizations (sps, ssp,

and pss), highlighting that the spectral profile is shown to vary considerably from ppp to ssp,

sps, and pss, which has been attributed to the combined effect of the Fresnel factors and the

structure of the χ(2), R tensor. The impact of the orientation of the alkyl chain (tilt and rotation

angles) on the ppp SFG intensity has then been monitored by reducing the system to an isolated

decane molecule and the changes in the SFG spectral pattern related to the orientation of the

IR dipole moment.

149
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7.1 Motivations

The formation of organic monolayers covalently-bonded to inorganic surfaces is a topic of in-

tense research activity since two decades [1]. The main advantage of organic monolayers is to

add functionality to the inorganic surface via suitable adaptation of their surface properties.

Indeed, these functionalized materials keep the characteristics of the bulk material (electrical,

magnetic, optical, mechanical and structural), while their surface properties (wetting, passi-

vation, biochemical affinity, etc. ..) are tuned through a nanosized grafting [2, 3]. Further-

more, the monolayer-modified system is suitable as template for the controlled immobilization

of biomolecules, for instance to build highly sensitive biosensing devices, including electrodes for

molecular recognition [4]. The covalent attachment can be performed via coupling reactions be-

tween the chemically activated surfaces and molecules. Among these, silicon is one of the most

widely used semiconductors in modern technology and organic monolayers covalently bonded

to silicon surfaces have gained much attention since their introduction [5], owing to their well-

defined structure and the possibility to introduce diverse electrical and optical functionalities to

the system [1, 6–8]. Nevertheless, the lack of control of those processes at the molecular level

might result in the formation of multilayers where the molecules have lost active conformation

or orientation [9–11].

During the past decade, infrared-visible Sum Frequency Generation (SFG) spectroscopy has been

adopted to monitor the interface formation, to determine its structure and therefore to help im-

proving the efficiency of the immobilization of biomolecules [12–14]. Indeed, SFG presents the

advantage of being sensitive only to the regions of the material where the inversion symmetry

is broken [15, 16]. Moreover, theoretical approaches promote an increased understanding of

molecular interactions at interface via the elucidation of its structure, through spectral assign-

ment of the vibrational signatures [17–32].Therefore the complexity of the spectra calls for the

development of simulation and interpretation tools [22, 23, 26, 29, 31, 33–49].

Infrared-visible SFG is a second-order nonlinear optical process in which a tunable infrared ωIR

laser beam is mixed with a visible ωvis laser beam to generate an output beam at the sum

frequency ωSFG = ωIR + ωvis (see Fig. 7.1). The generated SFG signal ωSFG is reflected from

the substrate, according to the phase-matching condition,

ωSFG sin ΨSFG = ωvis sin Ψvis + ωIR sin ΨIR . (7.1)

Under the electric dipole approximation, the SFG signal ISFG(ωIR) generated by the nonlinear

polarization is proportional to the effective surface susceptibility tensor χ(2), eff as well as to the

amplitude of the electric field of the IR and visible beams:

I(−ωSFG;ωvis, ωIR) ∝
∣∣χ(2), eff : EvisEIR

∣∣2 , (7.2)
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where Evis and EIR are the corresponding electric field vectors. This interface second-order

susceptibility containing a resonant (vibrational) and a non-resonant (electronic) term, reads :

χ(2), eff
IJK

∝ F SFG
I F vis

J F IR
K

[ non−resonant︷ ︸︸ ︷∣∣χ(2), NR
IJK

∣∣ eiΦSFG +

resonant︷ ︸︸ ︷
Ns

ε0︸︷︷︸
VC−1m−1

∑
α,β,γ

〈TIαJβKγ(φ, θ, ξ)〉βαβγ(−ωSFG;ωvis, ωIR)

]
︸ ︷︷ ︸

χ
(2), R
IJK ≡ [m2V−1]

,

(7.3)

with

βαβγ(−ωSFG;ωvis, ωIR) =
∑
p

1

4ωp

(
∂ααβ(ωvis)

∂Qp

)
e

(
∂µγ
∂Qp

)
e(

ωp − ωIR − iΓp
)︸ ︷︷ ︸

C3m3J−2

=
∑
p

1

4ωp

Aαβγ(
ωp − ωIR − iΓp

) . (7.4)

ΦSFG is the phase angle between the resonant and non-resonant terms, NS is the surface density,

the FI terms are the Fresnel factors, T is the transformation matrix between the laboratory

and molecular coordinate systems (connected by the Euler angles φ, θ, and ξ), and βαβγ is the

αβγ element of the molecular vibrational first hyperpolarizability tensor. In Eq. (7.4), Γp is

the damping coefficient, ωp is the vibrational frequency of the pth vibrational mode, and ωIR is

the incident IR frequency.

(
∂µγ
∂Qp

)
e

and

(
∂ααβ(ωvis)

∂Qp

)
e

are the derivatives of the γ and the αβ

components of the dipole moment and dynamic (at pulsation ωvis) polarizability with respect

to the normal coordinate Qp, evaluated at the equilibrium. As shown in Eq. (7.4), the signal

is enhanced when ωIR is resonant with ωp, and, to be SFG detectable, a vibrational mode

must be both Raman- and IR-active. The χ(2), R
IJK

[Eq. (7.3)] elements are calculated using the

Euler transformations, where α, β, γ define the molecular coordinates system (x, y, z) and I, J,K

the laboratory coordinates (X, Y, Z). For an achiral and isotropic surface (X-Z mirror plane,

Fig. 7.1) only seven (but four independent) non-zero χ(2)
IJK

elements remain: χ(2)
ZZZ

; χ(2)
ZXX

= χ(2)
ZY Y

;

χ(2)
XZX

= χ(2)
Y ZY

; χ(2)
XXZ

= χ(2)
Y Y Z

, and the intensity of the generated SFG signal is given by linear

combinations of these effective second-order susceptibility (χ(2), eff ) tensor elements. These linear

combinations can be probed with four sets of polarization of the incident and generated beams

denoted ssp, sps, pss and ppp. Considering for example the ssp polarization set, both s-polarized

SFG and visible light have the electric field polarized along the Y direction (first, I, and second,

J , indices), while the IR p-polarized light has the electric field in the XZ plane (third index,

K). Thus, the ssp combination is assessed by using the χ(2)
Y Y Z

element, and it therefore probes

vibrational modes with a IR dipole moment

(
∂µγ
∂Qp

)
e

perpendicular to the interface. Using the

same arguments, the sps configuration (χ(2)
Y ZY

) detects vibrational modes with a dipole moment

parallel to the surface, while in ppp configuration (χ(2)
ZZZ

, χ(2)
XXZ

, χ(2)
XZX

, and χ(2)
ZXX

) vibrational

modes with both perpendicular and parallel dipole components are probed. The corresponding

SFG intensities for each polarization set are given by:
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Issp
IIRIvis︸ ︷︷ ︸
J−1sm2

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 ψSFG︸ ︷︷ ︸
m−2C−1Vs

∣∣∣∣∣ sinψIRχ(2)
Y Y Z

F SFG
Y F vis

Y F IR
Z

∣∣∣∣∣
2

︸ ︷︷ ︸
|χ(2), eff
Y Y Z |2 ≡ m4V−2

(7.5)

Ipss
IIRIvis

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 ψSFG

∣∣∣∣∣ sinψSFGχ(2)
ZY Y

F SFG
Z F vis

Y F IR
Y

∣∣∣∣∣
2

(7.6)

Isps
IIRIvis

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 ψSFG

∣∣∣∣∣ sinψvisχ(2)
Y ZY

F SFG
Y F vis

Z F IR
Y

∣∣∣∣∣
2

(7.7)

Ippp
IIRIvis

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 ψSFG
×∣∣∣∣∣− cosψSFG cosψvis sinψIR χ

(2)
XXZ

F SFG
X F vis

X F IR
Z

− cosψSFG sinψvis cosψIR χ
(2)
XZX

F SFG
X F vis

Z F IR
X

+ sinψSFG cosψvis cosψIR χ
(2)
ZXX

F SFG
Z F vis

X F IR
X

+ sinψSFG sinψvis sinψIR χ
(2)
ZZZ

F SFG
Z F vis

Z F IR
Z

∣∣∣∣∣
2

(7.8)

Moreover, to improve the spectral analysis and therefore to better assign the peaks, the intensities

at the frequency of each mode can be calculated.

ISFG(ωq) ∝
∣∣∣∣∣∑χ

(2)
IJK(ωq)F

SFG
I F vis

J F IR
K

∣∣∣∣∣
2

(7.9)

In this equation, the resonant contribution of mode q to the susceptibility is given by :

χ
(2),R
IJK (ωq) =

Ns

ε0

∑
α,β,γ

〈
TIαJβKγ(φ, θ, ξ)

∑
p

1

4ωp

(
∂ααβ(ωvis)

∂Qp

)
e

(
∂µγ
∂Qp

)
e(

ωp − ωq − iΓp
) 〉

(7.10)

In this article we report on recent developments of a program for the simulation and the inter-

pretation of the SFG signatures and on its application to probe the structure of organic layers
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Figure 7.1: Geometry of a SFG experiment in the reflection configuration and representation
of the three-layer model. p (parallel) denotes a beam polarization in the plane of incidence
(XZ), while s (senkrecht) corresponds to a polarization perpendicular to the plane of incidence

(Y).

at silicon interfaces. The general method that has been developed combines Density Functional

Theory (DFT) calculations to evaluate the molecular properties with a three-layer approach to

determine the macroscopic response of the interface. The latter step, which accounts explicitly

for the nature of the surface, has been implemented in a homemade code.

7.2 Models of the functionalized H-Si(111) surface

Experimentally [50], n-alkyl monolayers convalently bonded to H-Si(111) surface are prepared by

heat induced addition of 1-alkenes on ≡Si-H samples via Si-C linkages (≡ Si−CnH2n+1). Thus,

to highlight the impact of the silicon surface, two types of structure were employed (Fig. 7.2).

First, the surface is explicitly taken into account (Fig. 7.2a). To model the H-Si(111) surface,

a cluster was build with four silicon layers where hydrogen atoms saturate the dangling bonds.

The surface orientation is defined by its normal corresponding to the laboratory Z-axis, chosen

to be perpendicular to the plane passing through the six H atoms of the surface. The molecular

z-axis is fitted using the least squares approach, as the best vector through the C atoms of the

alkyl chain, and pointing away from the anchoring site. The y-axis is in the carbon backbone

plane, pointing away from the surface, while the x-axis defines the normal of the backbone plane.

The orientation of molecule (and the molecular frame) at the surface is completely defined by

two angles: the tilt angle (θ) and the rotation angle (ξ). Thus, θ is defined as the angle between

the alkyl chain long axis (z) and the normal to the surface (Z) :

θ = arccos(~eZ · ~ez) (7.11)
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Figure 7.2: Geometry of the interface and definition of the Euler angles (θ, ξ) connecting
the laboratory coordinate system (X, Y, Z) to the molecular coordinate system (x, y, z). (a)
Optimized structure of the ≡ Si−(CH2)9CH3 system: θ and α are the alkyl chain and methyl
tilt angles, respectively. ξ is the Euler rotation angle. d is the monolayer thickness. Hydrogen
atoms marked by * are the real atoms of the surface, while the other H atoms are used to
saturate the dangling bonds. (b) and (c) all-trans decane optimized structure adopting two

orientations. See the text for more details.

while ξ gives the orientation of the molecule around the z-axis and is calculated as:

ξ = arctan

(
~eZ · ~ey
−~eZ · ~ex

)
, (7.12)

and therefore ξ = 0.0 (or π) when ~ey and ~eZ are perpendicular. One should note that when

θ = 0.0, ξ does not have meaning anymore. The monolayer was modeled with one decyl chain

covalently bonded to the Si cluster
[
≡ Si−(CH2)9CH3

]
. Second, an isolated decane molecule

was considered (Fig. 7.2b and (Fig. 7.2c). In both approaches the molecule can adopt the same

orientation, which in the former is fixed by the optimized geometry, while in the latter it can be

further modulated to our convenience by setting θ and ξ in order to probe their impact on the

SFG signatures.
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7.3 Methods of calculation and overview of the program

The calculations on the isolated molecule and on the molecule adsorbed on H-Si(111) surface

were carried out with the Gaussian09 package [51], using the ωB97X-D exchange-correlation

functional [52], which includes empirical atom-atom dispersion corrections. It also includes

long-range (with a range-separating parameter, µ = 0.20) and short-range exact exchange. The

6-311G(d) basis set was found to be a good compromise between accuracy and computational

needs [22]. In a first step, full geometry optimizations of the two model systems were performed

under the constraint that the residual forces are smaller than 10−5 au.

Then, harmonic vibrational frequencies and normal modes were calculated analytically at the

same level of approximation, by setting large atomic masses (1000 amu) for those H atoms

saturating the Si dangling bonds, i.e. those that do not belong to the top area, to mimic larger

and thicker silicon layers. To account for missing anharmonic effects as well as for the limitations

of the XC functional, the harmonic vibrational frequencies were scaled by a factor of 0.95 [53].

To trace back the part of the chain from where the SFG signal originates, the models were refined

by freezing some portions of the alkyl chain. The motions of these molecular moieties are frozen

by setting large atomic masses (1000 amu) to the hydrogen and/or carbon atoms (Fig. 7.3) in the

vibrational frequency calculations: (i) Free chain: the whole alkyl chain is set free (Fig. 7.3c);

(ii) Free ethyl : all the atoms of the alkyl chain are frozen except those of the terminal ethyl

group (Figs. 7.3b and 7.3d); (iii) Free methyl : all the atoms of the alkyl chain are frozen except

those of the terminal methyl group (Fig. 7.3e); (iv) Frozen methyl : one terminal methyl group

is frozen (Fig. 7.3a).

Frozen methyl 

(a)
Free ethyl 1 

(b)

Si(111)-H 

Free chain 

(c)

Si(111)-H 

Free ethyl 2 

(d)

Si(111)-H 

Free methyl 

(e)

Figure 7.3: Schematic representation of the models. (a) Frozen methyl ; (b) Free ethyl 1 ;
(c) Free chain; (d) Free ethyl 2 ; and (e) Free methyl. The motions of the H and C atoms in

the colored box are hampered by setting large atomic masses (1000 amu).

Then, the SFG spectra were simulated with a homemade program according to the maproad

displayed in Fig. 7.4. It makes use of the Raman tensors [∂ααβ(ωvis)/∂Qp]e and IR vectors

(∂µγ/∂Qp)e of each vibrational normal mode and of the Fresnel factors of the Si/monolayer/air

interface to determine the components of the χ(2), eff tensor and finally the SFG intensity for

each polarizations combination, by taking into account the experimental geometry (Fig. 7.1).

The non-resonant term of χ(2), eff
[
Eq. (7.3)

]
is assumed to be zero for the present application,

while the surface density Ns, the damping coefficient Γp, and the dielectric constant of the thin

film ε2 were set here to 1010 molecules/m2, 4.0 cm−1, and 1.0, respectively. The simulations were
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carried out with the IR and visible incident beams at 50◦ and 70◦ with respect to the sample

surface normal [50]. The visible wavelength was kept constant at 532 nm, while the IR frequency

was swept in the C-H stretching region (2800 - 3100 cm−1), as well as the Si-H stretching region

(2000− 2200 cm−1).

χ IJK
(2),R (−ω SFG;ω vis ,ω IR )

Homemade program 

Rotation matrix 

Fresnel 
Factors  

∂µγ

Qp

⎛

⎝⎜
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Figure 7.4: Road Map of the computational procedure.

7.4 Geometrical structures

Selected geometrical parameters of the functionalized surface are given in Table 7.1 while the

fully optimized geometry is sketched in ??. The tilt angle of the decyl chain θ (with respect to

the surface normal) amounts to 43◦ , while the CH3 tilt angle α to 67◦. In the literature, the

average tilt angle of decyl chain in decyl monolayers on silicon has been reported to be 35◦ ± 5

[5, 17, 54] (corresponding to a CH3 tilt angle of ∼ 70◦). Moreover, the thickness d calculated as

the distance between the projection on the laboratory Z-axis of one of the terminal H atoms of

the alkyl chain and the plane passing through the Si atoms of the first layer amounts to 12.6 Å,

which agrees with the experimental value

7.5 Vibrational frequencies

Harmonic vibrational frequencies were calculated for the five models sketched in Fig. 7.2. The

vibrational frequencies of key modes located in the Si-H and C-H stretching regions are compared

to experiment [17] in Table 7.2 whereas their atomic displacements are sketched in Fig. 7.5. The

agreement with experiment is good, showing in the case of the Si-H stretching vibrations, that
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Table 7.1: Selected optimized geometrical parameters determined at the ωB97X-D/6-311G(d)
level of approximation and comparison with experiment.

parameter ωB97X-D Experiment

Si-H (Å) 1.492 1.480a

Si-Si (Å) 2.366 2.330a

Si-C (Å) 1.897 1.850a

d (Å) 12.639 12.8±1
θ(◦) 43 35± 5
ξ(◦) 90 -
α(◦) 67 70

a Formal bond length values [55].

Table 7.2: Selected vibrational frequencies (cm−1) of the alkyl chain and the Si(111) surface
determined at the ωB97X-D/6-311G(d) level.

modesa label Frozen methyl Free chain Free ethyl 2 Free methyl Exp1b Exp2

(a) (c) (d) (e)

νsym(Si−H) g1
+ - 2080 2080 2080 2070c

νsym(Si−H) g2
+ - 2090 2087 2090 2083c

νsym(CH2) d1
+ 2878 2881

νsym(CH2) d2
+ 2884 2886 2883 2850 2850d

νsym(CH3) r+ 2888 2888 2888 2888 2876 2878d

νas(CH2) d1
− 2889 2891

νas(CH2) d2
− 2890 2893

νas(CH2) d3
− 2895 2894

νas(CH2) d4
− 2911 2913

νas(CH2) d5
− 2920 2925 2914 2905 2920d

νas(CH2) d6
− 2934 2933 2932 2940d

νas(CH3) r− 2960 2962 2962 2961 2960 2962d

a ν symbols indicate the nature of the stretching mode;b Experimental values for n-decane in
liquid phase [56]; c Experimental values obtained from ATR-FTIR of undecanoic

acid-terminated silicon surface [6]; d Experimental values for decyl chain covalently bonded to
H-Si(111) [50].

small Si clusters are reliable for describing the surface. So, one observes that upon adsorption

the symmetric Si-H stretching mode splits into two modes, labeled herein g1
+ and g2

+, distant

by 10 cm−1. The vibrational frequencies of the C-H stretching modes of the alkyl chain vary by

a maximum of 5 cm−1 upon adsorption
[
Table 7.2, from (a) to (c)

]
.
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Figure 7.5: Sketch of selected vibrational normal modes of the ≡ Si−(CH2)9CH3 system
[model (c)]. Modes are visualized with Pyvib2 [57].The direction of the atomic displacements
is perpendicular to the junction plane between the two hemispheres of distinct color, whereas
their amplitudes are proportional to the sphere radius. The IR vectors are shown in the
molecular frame axes (red, green, and blue arrows) as black arrows. The normal modes labels

and frequencies are given for each mode.

7.6 SFG signatures

7.6.1 By taking explicitly into account the surface

Figure 7.6 depicts the simulated ppp SFG spectra for the different models of the decyl monolayer

on hydrogen-terminated Si(111) surface (Fig. 7.3) in comparison to experiment. The red lines

under the peaks correspond to the SFG intensities calculated at the frequency of each mode

[Eq. (7.9)]. Globally, the calculated spectral profiles in the C-H stretching region are in good

agreement with experiment (Fig. 7.6a). The spectra are composed of three major peaks, 2888

cm−1 (r+), 2915− 2920 cm−1 (d5
−) or 2933− 2935 cm−1 (d6

−), and 2960–2961 cm−1 (r−). The

peaks due to the CH3 group (r+ and r−) are very strong compared to those of the CH2 group.

This aspect originates from the all-trans conformation of the alkyl chain. In that conformation,

only the terminal CH3 group is non centrosymmetric, and therefore contributes to the SFG

spectrum whereas the CH2 groups exhibit approximately inversion symmetry (except the one

directly bonded to the CH3 group) and are therefore weakly SFG active. This observation is

corroborated by analyzing their IR and Raman intensities (Table 7.3). Indeed, for several CH2

vibrations, when they are IR active, they are almost Raman inactive and vice versa (except d2
+
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located on the CH2 directly bonded to the CH3, Fig. 7.5) whereas the CH3 vibrations display

both intense IR and Raman activities. However, for the Free chain (Fig. 7.6b), many CH2

vibrations contribute weakly as shown by the number of red lines under the r+ peak.

Detailed analysis reveals that freezing some portions of the alkyl chain affects the spectral profile.

First, going from Free chain (Fig. 7.6b) to Free ethyl 2 (Fig. 7.6c), mode d6
− disappears and is

replaced by d5
−. The latter is located on the remaining free CH2 group, and therefore is shifted

because some portions of the chain are frozen. Indeed, most of the CH2 stretching mode are

hampered and therefore no longer contribute to r+ peak, leading to the decline of its intensity.

Second, from Free ethyl 2 (Fig. 7.6c) to Free methyl (Fig. 7.6d), the peak d5
− vanishes. Indeed,

in the latter all the CH2 groups are frozen (Fig. 7.3e). Then, by comparing the simulated spectra

to experiment (Fig. 7.6a), it appears that the Free chain model better correlates with it, owing to

the peak around 2940 cm−1 assigned to the d6
− CH2 asymmetric stretching1. Experimentally, the

peak located in that region is assigned to the Fermi resonance between r+ and the C-H bending

overtone. The underestimation of the intensity of the 2940 cm−1 peak is therefore attributed to

the anharmonicity effects, missing in the simulations but needed to account for Fermi resonance

effects. However Fig. 7.6a also reveals the presence of a weak peak around 2910 cm−1 that could

be assigned from the simulations to CH2 asymmetric stretching. This very weak intensity can be

attributed to little disorder in the monolayer where gauche defects break centrosymmetry [58].

Table 7.3: ωB97X-D/6-311G(d) IR, Raman, and SFG vibrational signatures for the ≡
Si−(CH2)9CH3 system (calculated with the Free chain).

label IRa Ramana χ(2),R
ZZZ

b χ(2),R
XXZ

b χ(2),R
XZX

b χ(2),R
ZXX

b χ(2),R
Y Y Z

b χ(2),R
Y ZY

b χ(2),R
ZY Y

b

g1
+ 275.00 630.00 2947 577 20 338 577 20 338

g2
+ 150.00 432.00 2309 409 8 233 409 8 233

d1
+ 45.10 3.95 107 76 41 33 76 41 33

d2
+ 123.00 57.10 160 131 31 46 131 31 46

r+ 44.00 184.00 188 134 18 43 134 18 43

d1
− 0.02 206.00 156 109 15 32 109 15 32

d2
− 17.80 11.40 109 86 15 27 86 15 27

d3
− 36.00 13.90 93 78 9 25 78 9 25

d4
− 1.17 44.40 20 25 2 7 25 2 7

d5
− 0.90 11.10 22 25 13 5 25 13 5

d6
− 98.50 7.61 50 26 10 19 26 10 19

r− 51.30 149.00 324 19 14 86 19 14 86

a IR Intensities (km/mol) and Raman Intensities (Å4/amu); b Moduli of χ(2),R
IJK

(ωq) tensor

elements ≡ ×10−7[m2V−1]

1However, the experimental spectrum shows a weak peak around 2915 cm−1 . This peak does not exist on the
Free chain simulation, but it is well reproduced on the Free methyl simulation (d5

−). From this point of view,
this latter better correlates the experiment.
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Figure 7.6: Comparison between the experimental and simulated SFG (ppp) spectra. (a) Ex-
perimental [50] ppp SFG spectra of ≡ Si−(CH2)9CH3; ”adapted with permission from H.
Asanuma, H. Noguchi, Y. Huang, K. Uosaki, and H.Z. Yu, J. Phys. Chem. C 2009
113, 21139-21146. Copyright 2014 ACS.”; the solid lines (in black) show the best fits to
the experimental data (open circles) based on Eqs 1 and 2 in Ref [50]; the deconvoluted peaks
are shown in red at the bottom. (b) – (d) simulated SFG spectra (ppp) of ≡ Si−(CH2)9CH3.
SFG intensities were calculated according to Eq. (7.8) assuming a damping factor of 4 cm−1.
Red lines under the peaks correspond to the SFG intensities calculated at the frequency of each

mode [Eq. (7.9)] (see main text for details).

Calculations were then performed for the other sets of polarizations (sps, ssp, and pss: Fig. 7.7).

In the left column (Free chain), from bottom (ppp) to top, the spectral profile varies consid-

erably for the ssp, and sps sets of polarizations, while it remains almost similar for pss set of

polarizations. This is accompanied by a decrease in the SFG intensity by about a magnitude of

104 (potentially explaining why, in the literature, measurements are reported only for the ppp

set of polarizations). For the ssp, and sps sets, the peak associated to the stretching of the CH2

bonded to CH3 becomes stronger than those of the CH3 group, and the spectra are dominated

by d2
+ (Free chain and Free ethyl 2 ). These behaviors are related, on the one hand, to the

variation of the Fresnel factors, and on the other hand, to that of the χ(2) components contribut-

ing to the SFG intensities [Eqs. (7.5) to (7.8)]. By analyzing Table 7.4, listing the calculated

square moduli of the Fresnel factors, one observes that the ssp, sps, and pss configurations are

associated with similar amplitudes of F SFG
i F vis

j F IR
k , which are about 1000 times smaller than

with the ppp configuration. This comes mostly from the χ
ZZZ

set. Note that, for this Si surface,
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Table 7.4: Square Moduli of the Fresnel Factors computed for the three layers model. λvis=
532.0 nm (ψvis = 70◦)a ; ωIR = 2000-3000 cm−1 (ψIR = 50◦)a ; λSFG = 480.8 − 458.8 nm

(ψSFG = 66− 68◦)a .

|F SFG
i F vis

j F IR
k |2 polarization sets

F SFG
Z F vis

Z F IR
Z 2.0× 100 ppp

F SFG
X F vis

X F IR
Z 6.8× 10−3 ppp

F SFG
X F vis

Z F IR
X 1.5× 10−2 ppp

F SFG
Z F vis

X F IR
X 1.7× 10−2 ppp

F SFG
Y F vis

Y F IR
Z 7.4× 10−4 ssp

F SFG
Y F vis

Z F IR
Y 3.5× 10−3 sps

F SFG
Z F vis

Y F IR
Y 3.6× 10−3 pss

a Refractive index n and extinction coefficient k of Si have been interpolated from the values of
Ref [59] for λvis, λSFG, and each value of ωIR. nSAM = 1.0

the ssp case presents a smaller Fresnel coefficient than the sps one whereas for metallic surfaces

the sps polarizations set possesses usually smaller Fresnel factors owing to the damped IR elec-

tric field oriented parallel to the surface. Hence, the larger intensities of the ppp polarizations

configuration result from the fact that both the IR and UV electric fields possess components

normal to the surface. Moreover, the change of spectral profile as well as the change in intensity

as a function of the polarizations is also related to the relative amplitude of the χ(2),R tensor

elements (Table 7.3). One observes that modes clearly appearing on the spectra (Fig. 7.7) are

those with large values of the IR and/or Raman intensities (d2
+,r+, and r−), as well as the tensor

components. Indeed, as shown is Eqs. (7.5) to (7.8), for each set of polarizations, the intensity is

directly proportional to the corresponding χ(2) tensor components. Globally, the χ
ZZZ

and χ
XXZ

(or χ
Y Y Z

) terms (the IR electric field is normal to the surface) dominate over the χ
XZX

(or χ
Y ZY

)

and χ
ZXX

(or χ
ZY Y

) terms (the IR electric field is parallel to the surface). When considering the

modes individually, one observes that the χ
ZZZ

(ppp) and χ
ZY Y

(pss) components of the r− mode

are larger than that of d2
+ and r+, and the former therefore dominates the corresponding spectra

(Fig. 7.7). For the other components (χ
Y Y Z

and χ
Y ZY

), the observation is opposite. Indeed, r+

intensities are weak compared to those of d2
+ and r+, and the latter therefore dominate the ssp

(χ
Y Y Z

) and sps (χ
Y ZY

) spectra.

The SFG spectrum was then simulated for the Si-H stretching region (2000−2200 cm−1) and the

ppp, sps, ssp, and pss sets of polarizations (Fig. 7.8). The ppp spectrum (bottom) is composed

of two peaks. The one at low frequency originates from several Si-H stretching modes (see

the red lines under the peak) and therefore exhibit the strongest intensity, while that at high

frequency comes from only one mode (g2
+, 2090 cm−1). Thus, the former is dominated by

the g1
+ mode (2080 cm−1), which involves Si-H symmetric stretching of a larger number of H

atoms (Fig. 7.5). Going from ppp to ssp, sps and pss leads to a decrease in intensities, whereas

the spectral profiles are quasi identical. Indeed, all the H atoms stretch in the same direction

and are therefore affected in the same way when changing the orientation of the electric fields.

Moreover, the intensities of the Si-H stretching modes are even larger than those of the C-H
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Figure 7.7: Simulated SFG spectra for the four sets of polarizations (ppp, ssp, sps, and pss)
and the three models, in the C-H stretching region.

stretching modes (2800 - 3100 cm−1). This larger intensity is explained by the derivatives of

the dipole moment with respect to the normal coordinates, which are almost perpendicular to

the surface (Fig. 7.5) and have a larger amplitude because of the larger polarity of the Si-H

bond. Besides leading to large IR and Raman intensities they lead to dominant χ(2)
ZZZ

tensor

components for the g1
+ and g2

+ modes.
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in the Si-H stretching region. Spectra were simulated with the Free chain model.
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7.6.2 Without the surface: dependence on the rotation angle ξ

The impact of the orientation of the alkyl chain on the ppp SFG intensity was then studied by

simulating spectra with specific values of ξ (θ was kept constant at 43◦), for the isolated decane

molecule models (Figure 7.10). The spectral profile strongly depends on the sign of ξ and in

particular the relative intensities of the r+ and r− peaks vary considerably. From negative to

positive values of ξ, the intensity of the peak r+ decreases while that of the peak r− increases.

By analyzing Table 7.5, one observes that due to symmetry reasons, the x component of their IR

vectors as well as the xy and xz components of the Raman tensors are almost equal to zero. This

observation is consistent with the fact that the IR vectors are in the yz plane. Then, one observes

on Fig. 7.11 that for the r+ mode, going from negative (Fig. 7.11b) to positive (Fig. 7.11a) values

of ξ, the IR vector switches from normal to tilted with respect to the surface, explaining the

decrease of its intensity. on the contrary, for the r− mode ( Fig. 7.11d to Fig. 7.11c), the IR

vector switches from parallel to almost normal with respect to the surface, leading to an increase

of the intensity.

A global picture of these trends was highlighted by means of a scan on the rotation angle ξ (from

-180◦ to 180◦) for two given tilt angles θ (43◦ and 35◦), corresponding to the values obtained

from ωB97X-D calculations and experiment, respectively (Table 7.1). The results are depicted in

Fig. 7.9. First, for θ = 43◦ (Fig. 7.9b, Frozen methyl), one observes two red spots corresponding

to the large values of ppp intensity: around 2888 cm−1 (-140◦< ξ <-40◦) related to r+ and

around 2960 cm −1 (40◦< ξ <160◦) associated to r−, in agreement with the above observation

(Figure 7.10). Moving to Free ethyl 1 (Figs. 7.9c and 7.9d) the spot around -140◦< ξ <-40◦

becomes less intense, while a small white spot appears around 40◦< ξ <160◦, which is also

consistent with the above observation (Figure 7.10). Second, from bottom (θ = 43◦, Figs. 7.9b

and 7.9d) to top (θ = 35◦, Figs. 7.9a and 7.9c), the spots located around 2888 cm−1 becomes

less intense. Thus, the r+ peak is expected to be less intense and sharp.

Table 7.5: ωB97X-D/6-311G(d) components of the IR Vectors (a.u.) and Raman tensors
(a.u.) of r+ and r− decane vibrational normal modes in the molecular coordinates system

(Fig. 7.11)

∂µx/Qp ∂µy/Qp ∂µz/Qp ∂αxx/Qp ∂αyy/Qp ∂αzz/Qp ∂αxy/Qp ∂αxz/Qp ∂αyz/Qp

r+ 0.000 -0.122 0.172 -7.940 -6.734 -7.367 0.001 0.001 -0.590

r− 0.001 -0.178 -0.138 -3.185 0.076 8.452 0.010 -0.006 5.120
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Figure 7.9: Map of ppp intensity as a function of the rotation angle ξ for two values of the
tilt angle: θ = 35◦ (top) and θ = 43◦ (bottom).

7.7 Conclusions

This work has reported on developments towards simulating and interpreting the sum-frequency

generation signatures of functionalized surfaces. The elaborated approach encompasses two

steps. First, the molecular properties (vibrational frequencies, IR and Raman quantities) are

evaluated using first principles approaches implemented in standard quantum chemistry pro-

grams. Second, the macroscopic optical responses (the second-order nonlinear optical suscep-

tibility tensor) of the adsorbate on its substrate are determined within the three-layer model

of the interface. This latter step relies on a newly-developed homemade program, which cal-

culates the Fresnel factor and accounts for the molecular orientation in the lab frame. This

program allows generating the SFG spectra for different combinations of molecular orientations

and experimental set-ups, as well as identifying the vibrational modes in order to facilitate their

analysis.

The approach has been illustrated in the case of a decyl chain covalently bonded to hydrogen-

terminated Si(111)
[≡ Si−(CH2)9CH3

]
. The system is modeled with or without explicitly taking

into account the nature of the surface while different moieties of the chain can be frozen to

trace back the part of the chain from where the SFG signal originates. The molecular property

calculations are performed at the DFT level with the ωB97X-D XC-functional. When considering

the whole system, the simulated ppp spectrum agrees closely with experiment, whereas the

agreement gets worse upon freezing parts of the chain. Calculations have also been performed
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for the other sets of polarizations (sps, ssp, and pss), highlighting that the spectral profile varies

considerably from ppp to ssp, sps, and pss. First, the SFG intensity decreases by about 4 orders

of magnitude. Second, the peaks associated to the vibrational modes located on the CH2 group

bonded to the CH3 become stronger than those of the CH3 group, owing to the χ(2), R tensor

elements.

When reducing the system to an isolated decane molecule, the impact of the orientation of the

alkyl chain (tilt and rotation angles) on the ppp SFG intensity can be monitored, highlighting

the IR wavelength region where the SFG intensities are strong. For instance, upon going from

negative to positive values of the ξ rotation angle, the intensity of the CH3 symmetric stretching

decreases while that of the asymmetric one increases, which has been related to the orientation

of the IR dipole moment.

In the future, similar approach will be applied to investigate structural and SFG signatures of

monolayer on metallic (such as gold) or insulating (such as silica) surfaces. In addition, the

model will be improved by addressing the non resonant part of the susceptibility, as well as the

anharmonicity effects.
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Pradier, C. M.; Thiry, P. A.; Peremans, A. Thin Solid Films 2004, 464-465, 373–378.

[13] Asanuma, H.; Noguchi, H.; Uosaki, K.; Yu, H.-Z. J. Am. Chem. Soc. 2008, 130, 8016–8022.

[14] Rogero, C.; Chaffey, B. T.; Mateo-Mart́ı, E.; Sobrado, J. M.; Horrocks, B. R.; Houlton, A.;

Lakey, J. H.; Briones, C.; Mart́ın-Gago, J. A. J. Phys. Chem. C 2008, 112, 9308–9314.

[15] Armstrong, J. A.; Bloembergen, N.; Ducuing, J.; Pershan, P. S. Phys. Rev. 1962, 127,

1918–1939.

[16] Bloembergen, N.; Pershan, P. S. Phys. Rev. 1962, 128, 606–622.

[17] Nihonyanagi, S.; Miyamoto, D.; Idojiri, S.; Uosaki, K. J. Am. Chem. Soc. 2004, 126, 7034–

7040.



Chapter 7. SFG signatures of functionalized H-Si(111) 169

[18] Lu, R.; Gan, W.; Wu, B.-h.; Zhang, Z.; Guo, Y.; Wang, H.-f. J. Phys. Chem. B 2005, 109,

14118–14129.

[19] Romero, C.; Baldelli, S. J. Phys. Chem. B 2006, 110, 6213–6223.

[20] Ishiyama, T.; Sokolov, V. V.; Morita, A. J. Chem. Phys. 2011, 134, 024510.

[21] Cecchet, F.; Lis, D.; Caudano, Y.; Mani, A. A.; Peremans, A.; Champagne, B.; Guth-

muller, J. J. Phys.: Condens. Matter 2012, 24, 124110.

[22] Tetsassi Feugmo, C. G.; Champagne, B.; Caudano, Y.; Cecchet, F.; Chabal, Y. J.;

Liégeois, V. J. Phys.: Condens. Matter. 2012, 24, 124111.

[23] Kett, P.; Casford, M.; Davies, P. B. J. Phys. Chem. Lett. 2012, 3, 3276–3280.

[24] Jacob, J. D. C.; Rittikulsittichai, S.; Lee, T. R.; Baldelli, S. J. Phys. Chem. C 2013, 117,

9355–9365.
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Chapter 8

Probing Alkylsilane Molecular

Structure on Amorphous Silica Surfaces

by Vibrational Sum-Frequency

Generation Spectroscopy: First

Principles Calculations

In this chapter, the SFG signatures of octadecyl-trichlorosilane (OTS) and dodecyl-dimethyl-

chlorosilane (DDCS) monolayers on silica were simulated in the C−H stretching region for three

polarization combinations (ppp, sps, and ssp), showing the impact of the additional Si-linked

methyl groups of DDCS on its SFG signatures. These simulations are based on a two-step

procedure where i) the molecular properties (vibrational frequencies, IR and Raman intensities)

are evaluated using first principles methods and ii) the three-layer model is employed to calculate

the macroscopic responses from these molecular responses, the geometry of the experimental

set-up, and the optical properties of the layers. These first principles calculations adopt the

ONIOM approach, which describes the successive layers of the system at different levels of

approximation. Here, the same ωB97X-D exchange-correlation functional is used but the lower

layer is described with a smaller atomic basis set (STO-3G, 3-21G, or 6-31G) than the higher

one (6-311G*). Calculations show that for describing the low layer the minimal STO-3G basis

set already provides reliable spectral profiles. For OTS, the results are compared to experiment,

demonstrating a good agreement for ppp and sps configurations, provided the refractive index

of the layer nl is set to 1.1. To highlight the origin of the SFG signatures, two chemical models

were used, one includes explicitly the SiO2 surface in the first principles calculations (adsorbed-

model) and the other only considers the silane chain (isolated-model). Simulations show that

OTS and DDCS display similar spectral patterns where, for ppp and sps configurations, the

r− CH3 stretching vibrations are dominant in comparison to the r+ stretching ones. Still, in
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the case of DDCS, the r− peak presents a shoulder, which is assigned to the vibrations of the

Si-linked methyl groups. This shoulder vanishes when these CH3 groups are frozen. Then, using

the isolated-model, the rotation angle (ξ) was gradually changed, showing that in the ppp SFG

spectrum the r−/r+ intensity ratio decreases from 73.4 at 0◦ to 1.7 at 180◦.

8.1 Motivations

Since many decades a great interest has been dedicated to the study of silane monolayers on silica

due to their particular tribological properties, [1–4] their adhesion [5–7] and adsorption [8–10]

characteristics, as well as their thermal and mechanical stabilities [11–15]. These properties have

led to versatile applications, including in coatings,[16, 17] in optoelectronics, [18–21] and in bio-

sensors. [5, 10, 22] For instance, among silane derivatives, alkylsilanes are especially interesting

because they can be used as SiO2-based micro- and nano-electromechanical systems (MEMS

and NEMS) [23–25]. Depending on the nature of the end group, hydrophobic or hydrophilic

surfaces can be achieved [5, 9, 10, 15], while the orientation and the conformation of the silanes

plays a crucial role in their function. Therefore, knowing and controlling the relative location

and orientation of the silanes layer is required to obtain the targeted properties. In order to

understand the relationships between the chemical composition and the layer properties, many

investigations have been carried out where the size of the silane and its chemical functionalization

have been varied and where the characterizations are performed using Atomic Force Microscopy

(AFM) [12, 22, 26], X-ray Photoelectron Spectroscopy (XPS) [1, 27] Infrared Spectroscopy,

(FTIR, ATR) [22, 26, 28, 29], and, from time to time, infrared-visible Sum Frequency Generation

(SFG) vibrational spectroscopy [10, 30–32].

SFG [33] is a powerful and versatile method for in situ investigations of surfaces and interfaces.

In SFG experiment a tunable infrared laser beam of angular frequency ωIR is mixed with a

visible beam of angular frequency ωV is to produce an output beam at the sum frequency, ωSFG =

ωIR+ωV is. SFG is a second-order nonlinear optical process, which is dipole-allowed only in media

lacking inversion symmetry. At surfaces and interfaces, the inversion symmetry is intrinsically

broken, making SFG highly surface specific. When scanning the IR frequency, active vibrational

modes of the molecules at the interface give resonant contributions to the SFG signal, which are

signatures of their nature and spatial organization.

To our knowledge, the first SFG experiment on silanes monolayers adsorbed onto a silica surface

was carried out by Guyot-Sionnest et al. [30] They reported that n-octadecyl-trichlorosilane

(OTS) monolayers on silica are oriented almost normal to the surfaces (θ < 15◦), while the

tilt angle (α) of the terminal methyl groups was estimated to range between 40◦ and 50◦. Few

years later, Löbau et al. [31] performed in situ SFG monitoring of surface contaminations under

normal atmospheric conditions to assess the effectiveness of cleaning and activation of alkyl-

trichlorosilanes [propyl-trichlorosilane (PTS) and OTS] on glass and silicon, and they reported
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tilt angle values for the terminal methyl groups of 23 ± 2◦ and 25 ± 2◦ for PTS and OTS,

respectively. In 2001, the conformational changes occuring during the adsorption process of OTS

self-assembled monolayers on fused silica surfaces were monitored by SFG.[34] Later on, Yang

et al. [32] used SFG to study self-assembled triethoxysilane thin films adsorbed onto hydrophilic

SiOx/Si substrates. They showed that SAMs made of silanes with short (propyl) or branched

(2-(diphenylphosphino)ethyl) alkyl chains exhibit poor ordering, whereas longer alkyl chains

(octadecyl and decyl) lead to more ordered monolayers.

Due to their complementarity, numerical simulations based on classical or quantum mechanics

were performed to assist experimental studies on the characterization of the structure of alkyl-

silane monolayers. Most of these calculations relied on molecular dynamics (MD), [1, 24, 35–37]

because the lower computational costs allowed studying systems containing several adsorbed

molecules. These studies highlighted the dependence of the average tilt angle on the monolayer

density and on the chain length. For OTS on silica, the calculated tilt angle value was reported

to range from 16◦ to 23◦ [37–39] at high coverage (4.3− 5.0 molecule/nm2). On the other hand,

to access detailed information on the structure of the surface anchoring point as well as on the

vibrational signatures, first principles calculations are more accurate. So far, first principles cal-

culations were used to study silane-functionalized surfaces, but they reported on surface reaction

mechanisms, [26, 40–42] not on the vibrational signatures.

Herein, we carry out first principles calculations to simulate and interpret the SFG signatures of

alkylsilanes adsorbed onto amorphous silica surfaces. Considering the availability of experimental

data, we first study the OTS system. Then, we predict the SFG signatures of dodecyl-dimethyl-

chlorosilane (DDCS) molecule on silica surfaces, to highlight the impact of the additional Si-

linked methyl groups closed to the silica surface. By adopting the procedure presented in Ref.

[43], SFG spectra are simulated by a two-step procedure that combines i) the calculation of the

molecular properties (vibrational frequencies, IR and Raman intensities) using first principles

methods and ii) the three-layer model to calculate the macroscopic responses from the above

molecular responses, the geometry of the experimental set-up, and the optical properties of

the layers. In particular, the first principles calculations adopt the ONIOM approach, which

describes each part (successive layers) of the system at different levels of approximation (different

basis sets). These calculations provide direct information on the anchoring point as well as on

the structure of the CH2 and CH3 groups of the silanes alkyl chain, whose stretching modes are

the main signatures of the SFG spectra in the probed region (between 2800 and 3000 cm−1).

The work is organized as follows: i) the simulation method is described in the next Section,

then ii) the results are presented and discussed in Section III before iii) conclusions are drawn

in Section IV.
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8.2 Main SFG equations and computational approach

For a surface with X-Z and Y-Z mirror planes there are four optically active polarization com-

binations, denoted as ppp, ssp, sps, and pss (by convention, given in the SFG, Vis, IR order).

Still, note that the sps and pss combinations differ only by the Fresnel and trigonometric factors

(since χ
(2)
Y ZY = χ

(2)
ZY Y ). The corresponding intensities read:

Issp
IIRIV is︸ ︷︷ ︸
m2w−1

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωV is) cos2 θSFG︸ ︷︷ ︸
m−2C−1Vs

×
∣∣∣ sin θIRχ(2)

Y Y ZF
SFG
Y F V is

Y F IR
Z

∣∣∣2,︸ ︷︷ ︸
m4V−2

(8.1)

Isps
IIRIV is

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωV is) cos2 θSFG
×
∣∣∣ sin θV isχ(2)

Y ZY F
SFG
Y F V is

Z F IR
Y

∣∣∣2, (8.2)

Ippp
IIRIV is

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωV is) cos2 θSFG
×∣∣∣− cos θSFG cos θV is sin θIR χ

(2)
XXZ F

SFG
X F V is

X F IR
Z

− cos θSFG sin θV is cos θIR χ
(2)
XZX F SFG

X F V is
Z F IR

X

+ sin θSFG cos θV is cos θIR χ
(2)
ZXX F SFG

Z F V is
X F IR

X

+ sin θSFG sin θV is sin θIR χ
(2)
ZZZ F

SFG
Z F V is

Z F IR
Z

∣∣∣2, (8.3)

where θV is and θIR are the angles of incidence of the IR (ωIR) and visible (ωV is) beams (with

respect to the normal to the surface), while θSFG is the angle between the light reflected at

ωSFG and the normal to the surface. n1(ω) is the refractive index of the incident medium at

frequency ω, ε0 is the vacuum permittivity, and c is the speed of light in vacuum. The FI

quantities are the Fresnel factors (vide supra Eq. (8.6)) and the χ(2)
IJK

are the components of the

surface second-order nonlinear susceptibility tensor, containing a resonant (vibrational) and a

non-resonant (electronic) term.

χ(2)
IJK

=

non−resonant︷ ︸︸ ︷∣∣χ(2), NR
IJK

∣∣ eiϕSFG +

resonant︷ ︸︸ ︷
Ns

ε0︸︷︷︸
VC−1m−1

∑
α,β,γ

〈TIαJβKγ(φ, θ, ξ)βαβγ(−ωSFG;ωV is, ωIR)〉

︸ ︷︷ ︸
χ

(2), R
IJK ≡ [m2V−1]

, (8.4)

where the αβγ element of the molecular vibrational first hyperpolarizability tensor reads

βαβγ(−ωSFG;ωV is, ωIR) =
∑
p

1

4ωp

(
∂ααβ(ωV is)

∂Qp

)
e

(
∂µγ
∂Qp

)
e(

ωp − ωIR − iΓp
)︸ ︷︷ ︸

C3m3J−2

(8.5)
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In Eq. (8.4), ϕSFG is the phase shift angle between the resonant and non-resonant terms, NS

is the molecular surface density, T is the transformation matrix between the laboratory and

molecular coordinates systems (related through the Euler angles φ, θ, and ξ). In Eq. (8.5), Γp

is the damping coefficient, ωp is the frequency of the pth vibrational normal mode, ωIR is the

frequency of the incident IR light, and

(
∂µγ
∂Qp

)
e

and

(
∂ααβ(ωV is)

∂Qp

)
e

are the derivatives of the γ

and the αβ components of the dipole moment and dynamic polarizability (at ωV is) with respect

to the normal coordinate Qp evaluated at the equilibrium geometry, respectively. Within the

three layers approach, the Fresnel factors for non-magnetic media read

FI =



FX(ε1, ε2, θ) =
2ε1

√
ε2 − ε1 sin2 θ

ε2
√
ε1 cos θ + ε1

√
ε2 − ε1 sin2 θ

,

FY(ε1, ε2, θ) =
2
√
ε1 cos θ

√
ε1 cos θ +

√
ε2 − ε1 sin2 θ

,

FZ(ε1, εl, ε2, θ) =
ε1

εl

2ε2
√
ε1 cos θ

ε2
√
ε1 cos θ + ε1

√
ε2 − ε1 sin2 θ

.

(8.6)

where ε1, εl, ε2, are the relative electric permittivity of the incident medium, of the thin layer, and

of the substrate, respectively, which depend on the refractive index n and extinction coefficient

k of that medium [ε = (n+ ik)2 is real for a transparent medium]. θ is either the IR or visible

incident angle, or the SFG reflected angle. The refractive indices and extinction coefficients of

SiO2 were interpolated from the values in Ref [44] for visible, SFG, and IR wavelengths. In

the previous equations, all the molecular properties [(∂µ/∂Q) and (∂α/∂Q)] are evaluated at ab

initio quantum chemistry levels.

Calculations of the molecular property were performed at the density functional theory (DFT)

level of approximation and using the ”Own N-layered Integrated Orbital Molecular Mechanics”

(ONIOM) method. [45] It is a hybrid computational approach that enables different levels of

approximation [e.g. Quantum Mechanics (QM) , Semi-Empirical (SE), Molecular Mechanics

(MM), Coarse-Grained (CG), and Continuum Model (CM) methods] to be applied to different

parts of a molecule/system, and to be combined to produce reliable results at reduced computa-

tional costs. In this work, we use the two-layered ONIOM scheme implemented in the Gaussian

package. [46] We described both layers at the QM level using DFT and the ωB97X-D exchange-

correlation functional, [47] but different atomic basis sets. We found the 6-311G* basis set

adequate to describe the high-layer, whereas we used three different basis sets for the low-layer:

STO-3G, 3-21G, and 6-31G.

To model the silane monolayer on silica and its SFG signatures, two approaches used: the

isolated-model and the adsorbed-model. The former applies the QM calculation to the silane
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molecule. To mimic adsorption, the chlorine atoms of OTS and DDCS were replaced by hydroxyl

groups (−OH). This model has been used in several previous works to deduce the molecular

orientation of adsorbed species from experimental data. [48–51] The latter model carries out

first principles calculations on both the silane molecule and the fragment of SiO2 to which it is

attached. Here, the SiO2 cluster was made from a (111) β-cristobalite surface. Indeed, previous

theoretical calculations showed that the SiO2/Si surface (SAMs on oxidized Si wafer surfaces)

was well represented by a (111) surface of β-cristobalite. [1, 24, 52–54] Then, the oxygen atoms

were saturated by hydrogens, and finally one hydrogen atom was replaced by the hydroxyl form

of an alkylsilane (OTS or DDCS) molecule. In both cases, the (remaining) surrounding effects

were taken into account via the three-layer model and the electric permitivity of the surface,

introduced in the Fresnel factors. Then, using the molecular properties as well as the geometry

of the experimental set-up and the optical properties of the layers, the surface second-order

nonlinear optical susceptibility, the Fresnel factors, and the SFG intensities were calculated

within the three-layer model. Finally, the SFG spectra were simulated. More details can be

found in Ref [43]. These simulations are carried out using a homemade Python program.

8.3 Results and discussions

8.3.1 Geometrical parameters

The geometries were optimized under the constraint that the residual forces must be smaller

than 10−5au. Fig. 8.1 presents the optimized geometries of the OTS and DDCS models. In the

adsorbed-model, the high-layer consists of the alkylsilane molecule and the top SiO2 layer, while

the low-layer consists of the remaining SiO2 layers (bulk-like). The molecular system coordinates

are defined with the red (x), green (y) and blue (z) arrows, whereas the laboratory Z-axis is

represented by the cyan arrow. This latter is calculated using the least-squares approach as

the normal to the best plane through the Si atoms highlighted with blue dots in Fig. 8.1, while

the molecular z-axis is fitted using the least-squares approach as the best vector through the Si

atom and the C atoms of the silane molecule. The tilt angle of the alkyl chain θ is therefore

defined as the angle between that z-axis and the laboratory Z-axis, while α is the tilt angle of

the terminal (CH2−CH3) bond with respect to the Z-axis. ξ defines the rotation of the plane of

the alkyl chain (the plane containing the zig-zag carbon backbone) around the molecular z-axis,

with respect to the situation where the backbone plane coincides with the plane defined by the

z− and Z-axes.

Using the adsorbed-model, the angles describing the orientation of the alkyl chain as determined

from ONIOM geometry optimizations are reported in Table 8.1 as a function of the basis sets

employed to describe the low-layer. In the case of OTS, upon enlarging this basis set, the θ

and ξ angles remain constant at 12◦ and 80◦, respectively, whereas α decreases by 5◦. These

calculated values for θ are close to the θ < 15◦ result, deduced analytically [55] from the ratio of
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the symmetric CH3 stretching intensities measured in the ssp and sps polarization combinations,

[30] while they are smaller than those calculated with MD simulations (16◦ ≤ θ ≤ 23◦). [37–39]

Moreover, the α values (33◦ ≤ α ≤ 38◦) are in close agreement with those reported by Guyot-

Sionnest et al. [30] (40◦ < α < 50◦). For DDCS, when extending the low-layer basis set, θ and

α values slightly vary: 12◦ ≤ θ ≤ 22◦ and 18◦ ≤ α ≤ 25◦, whereas ξ remains almost constant

(ξ ∼ 59◦). However, in comparison to OTS it appears that the θ angle increases by 7◦ while the

α and ξ values decrease by 13 to 19◦. This behavior may be explained by the presence of two

additional CH3 groups in the DDCS, which leads to an increased tilting of the chain.

Adsorbed-OTS

Adsorbed-DDCS

Isolated-OTS

Isolated-DDCS

x

y

Zz

θ

α

xy

Zz

θ

α

Figure 8.1: Optimized geometries determined at the ONIOM(ωB97X-D/6-311G*:ωB97X-
D/STO-3G) (adsorbed-model) or ωB97X-D/6-311G* (isolated-model) levels of approximation.
Left) OTS, Right) DDCS. The atoms of the ONIOM low-layer are represented with sticks and
those of the high-layer with balls and sticks. See the text for more details on the coordinates

axes. Models are illustrated using DrawMol [56].
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Table 8.1: Orientation angles of the alkyl chain of OTS and DDCS on the SiO2 cluster as
determined at the ONIOM(ωB97X-D/6-311G*:ωB97X-D/basis) level of approximation (basis

≡ STO-3G, 3-21G, and 6-31G).

OTS DDCS

θ [◦] ξ [◦] α [◦] θ [◦] ξ [◦] α [◦]

STO-3G 12 80 38 12 58 25

3-21G 12 80 33 22 59 18

6-31G 12 79 33 19 60 20

8.3.2 Vibrational frequencies, IR and Raman activities

For the optimized geometries, the vibrational frequencies, IR and Raman activities were calcu-

lated for both OTS and DDCS systems, at the same level of approximation. During that step,

all the atoms of the low-layer (Fig. 8.1) were kept fixed. Harmonic vibrational frequencies and

normal modes were calculated analytically at the same level of approximation, by setting atomic

masses of 1000 amu for the atoms of the low-layer (freezing procedure [43, 57]), as well as for the

H atoms saturating the oxygen dangling bonds (i.e. those that do not belong to the top area),

to mimic larger and thicker SiO2 layers. To account for missing anharmonic effects as well as

for the limitations of the XC functional, the harmonic vibrational frequencies were scaled by a

factor of 0.95. [58, 59] Frequencies of selected C−H stretching normal modes as well as their

IR and Raman intensities are summarized in Table 8.2 for OTS and Table 8.3 for DDCS, while

they are represented in Fig. 8.2 for OTS and Fig. 8.3 for DDCS. For OTS, upon adsorption, the

vibrational frequencies remain almost constant. It is also the case when enlarging the basis set

of the low-layer. The same behavior is observed for the IR and Raman intensities. Nevertheless,

contrary to what might be expected for the CH2 groups in a all-trans conformation, the d+

[(CH2)sym] mode (localized on the CH2 adjacent to the CH3, Fig. 8.2) is both IR and Raman

active, and therefore expected to be SFG active (However, it is worth noting that in addition

to the symmetry selection rules, SFG activity of the CH2 groups is also killed by the rotational

average at the surface).

For the DDCS system, knowing that the molecule possesses two additional CH3 groups, the

vibrations of those CH3 groups (bottom groups) were controlled, i.e. in some cases they were

frozen (their vibrations were hampered by setting large masses on atoms) on purpose during the

calculations in order to highlight vibrational signatures of the top CH3 group. These cases are

distinguished by the use of the ”two frozen methyl or 2FM” suffix. Only the results obtained

with the STO-3G low-layer basis set are presented here. Indeed, in spite of the change in the

geometric parameters (θ and ξ, Table 8.1) observed with the different basis sets of the low-

layer, the SFG spectral profiles are almost similar (Fig. E.2 in Appendix E). Like for OTS,

the vibrational frequencies remain almost constant upon adsorption (Table 8.3, from Isolated

to Adsorbed). Then by freezing the two CH3 groups (Isolated to Isolated-2FM or Adsorbed to
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Adsorbed-2FM), vibrational frequencies also remain similar, besides the obvious consequence

that the corresponding vibrations disappeared. Again, the same behavior is observed for the IR

and Raman intensities. Moreover, for each CH3 group there are three C−H stretching modes

[r+ ≡ (CH3)sym, r−a ≡ (CH3)asym, and r−b ≡ (CH3)asym] and each of them appear at separate

frequencies leading to several spectral SFG signatures.

Table 8.2: Vibrational frequencies (cm−1), IR [L mol−1cm−1] and Raman [Å2sr−1×1016]
intensities of the OTS system determined at the ωB97X-D/6-311G* and the ONIOM[ωB97X-
D/6-311g*:ωB97X-D/basis] levels of approximation (basis ≡ STO-3G, 3-21G, and 6-31G), for

the isolated- and adsorbed-models, respectively

Isolated Adsorbed/STO-3G Adsorbed/3-21G Adsorbed/6-31G

Label Freq IR Raman Freq IR Raman Freq IR Raman Freq IR Raman

d+ 2884 257 69 2884 271 51 2886 266 53 2886 286 49

r+ 2888 44 266 2888 45 287 2888 44 277 2889 45 297

r−a 2955 87 48 2955 87 52 2956 88 47 2956 87 51

r−b 2961 50 162 2961 50 180 2961 50 165 2961 50 179

d+ [(CH2)sym] r+[(CH3)sym] r−a [(CH3)asym] r−b [(CH3)asym]

Figure 8.2: Sketches of selected vibrational stretching modes of OTS adsorbed-model (both
IR and Raman active) determined at the ONIOM(ωB97X-D/6-311g*:ωB97X-D/STO-3G) level
of approximation. The direction of the atomic displacements is perpendicular to the junction
plane between the two hemispheres of distinct color, whereas their amplitudes are proportional
to the sphere radius. Mode labels are given on top. Normal modes are illustrated using

DrawMol [56].
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Table 8.3: Vibrational frequencies (cm−1), IR [Lmol−1cm−1] and Raman [Å2sr−1×1016] in-
tensities of the DDCS system, determined at the ωB97X-D/6-311G* and the ONIOM[ωB97X-
D/6-311G*:ωB97X-D/STO-3G] levels of approximation, for isolated- and adsorbed-model, re-
spectively. 1r refers to the top CH3 group, while 2r and 3r refer to the bottom groups (Fig. 8.3).

Isolated Isolated-2FM Adsorbed Adsorbed-2FM

Label Freq IR Raman Freq IR Raman Freq IR Raman Freq IR Raman

d+ 2886 184 6 2886 182 8 2885 208 2 2885 223 7

to
p

1r+ 2889 43 27 2889 43 27 2888 45 26 2888 45 26

1r−a 2956 79 5 2956 89 5 2956 85 5 2956 85 5

1r−b 2961 50 16 2961 50 16 2961 49 17 2961 49 17

b
o
tt

o
m

2r+ 2886 5 19 - - - 2885 21 22 - - -

2r−a 2956 27 9 - - - 2961 12 7 - - -

2r−b 2964 8 8 - - - 2978 3 9 - - -

3r+ 2893 5 22 - - - 2895 7 17 - - -

3r−a 2973 15 16 - - - 2985 7 13 - - -

3r−b 2968 28 16 - - - 2969 13 11 - - -
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8.3.3 SFG signatures of the silica-OTS-air interface

8.3.3.1 General considerations

The SFG spectra were simulated for three polarization combinations (ppp, sps and ssp) and com-

pared to experiments (Fig. 8.4). The main features of the SFG spectra are the stretching modes

of the CH3 group (r+ and r−). Indeed, within an all-trans conformation of the alkyl chain, only

the terminal CH3 group lacks inversion symmetry, while the CH2 groups are arranged in zig-zag

conformation, which owns an inversion point in each C-C bond. Therefore, the absence of CH2

stretching signatures indicates that the molecules are straight, whereas their presence indicates

the formation of defects in the chains [50, 51, 60]. In general, the simulation of SFG spectra of

molecular films at interfaces takes into account different key parameters: the Euler angles [φ, θ,

and ξ, Eq. (8.4)], the relative electric permitivity of the thin film εl [Eq. (8.6)], the damping coef-

ficient Γp [Eq. (8.5)] of each normal mode, the non resonant term of the susceptibility (χ(2), NR
IJK

),

and the phase shift angle [ ϕ, Eq. (8.4)]. The following assumptions and properties simplify the

variable parameters to θ, ξ, εl, and Γp: φ vanishes with the average rotation at the surface and

χ(2), NR
IJK

is set to 0. We also assume the same value of Γp for all normal modes, so that its impact

is expected to be similar for all peaks. In addition, when adopting the adsorbed-model, the θ and

ξ angles are determined by the geometry optimization. Therefore, the only remaining parameter

to investigate is εl.

8.3.3.2 Effect of εl, the electric permitivity of the thin film

So, by using the STO-3G basis set (see Fig. E.1 in Appendix E for the other basis sets and

the isolated-model) for the low-layer (θ = 12◦ and ξ = 80◦), simulations were performed for

four values of nl (1.0, 1.1, 1.2, and 1.3) and Γp = 6 cm−1 (according to the work of Guyot-

Sionnest et al. [30]) and the spectra are displayed in Fig. 8.4 (first column). We observe that by

increasing nl (nl =
√
εl), the intensities of both peaks (r+ and r−) decrease, while the relative

intensities change, since the r− intensity decreases much more. These variations originate from

the FZ [Eq. (8.6)] quantity that modifies the SFG intensities depending on the polarization

combination and the normal mode. Indeed, when increasing nl (so εl), FZ decreases, and the

SFG intensity is affected proportionally to the amplitude of this latter. Moreover, for the ppp

configuration, which depends on four susceptibility components (χ
(2)
XXZ , χ

(2)
XZX , χ

(2)
ZXX , and χ

(2)
ZZZ)

the impact on a normal mode will also vary with the weight of each component (χ
(2)
IJKFIFJFK).

In the ppp configuration, the calculated r−/r+ ratio amounts to 3.7, 7.2, 20.0, and 60.6 for εl

equal to 1.0, 1.1, 1.2, and 1.3, respectively, whereas in the ssp combination it remains constant

and equal to 8.7. By comparison with the experimental values [30], that is 10.7 for ppp and

5.0 for sps, it turns out that an appropriate value for nl is 1.1. Then, by taking nl = 1.1, the

simulations were performed with the two models.
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8.3.3.3 The isolated-model

We calculated SFG spectra of the isolated-model (third column of Fig. 8.4) using the angles

obtained from the adsorbed-model (Table 8.1): θ = 12◦ and ξ = 80◦. As in the experiment, the

ppp spectrum was dominated by two peaks associated to r− (2960 cm−1) and r+ (2890 cm−1).

However, the intensity of the latter was overestimated; in addition, it presented a shoulder

that did not exist in the experiment (second column). On the contrary in the sps spectrum

the intensity of the r+ was underestimated. Finally, for the ssp configuration discrepancy with

experiment is more important. Indeed, in the experiment the intensities of both peaks are quite

similar, whereas in our simulation that of the peak around 2960 cm−1 (r−) is almost zero. This

observation can be related to the lack of anharmonicity in our simulations.

8.3.3.4 The adsorbed-model

For the adsorbed-model the impact of the low-layer basis set was first addressed (third column

of Fig. 8.4), evidencing that the r− intensity is overestimated (ppp) or underestimated (sps)

with respect to the calculations performed with the split-valence basis sets. Still, the global

pattern of the spectrum remained similar and, like in the experimental spectrum, two peaks are

present. For the ppp and sps combinations, the agreement with experiment was rather good.

Indeed, for both polarization combinations the spectrum was dominated by the r−, with a much

smaller r+ peak. However, for the ssp combination, the relative intensity of the peak around

2950 cm−1 (r−) was not reproduced: in the experiment both peaks have similar intensities

whereas in the simulations that of r− was much smaller. This discrepancy originates from the

lack of anharmonicity contributions, necessary to describe the Fermi resonance between r+ and

the overtone of the C−H bending mode which corresponds to the peak at around 2945 cm−1 in

the experimental spectrum.

8.3.4 SFG signatures of the silica-DDCS-air interface

8.3.4.1 Impact of the ξ angle

Using the DDCS isolated-model, the impact of the ξ angle was scrutinized by simulating the ppp

spectrum for −180◦ < ξ < 180◦ (Fig. 8.5, top). First, one noticed a quasi symmetric distribution

with respect to ξ = 0◦, which allowed focusing only on positive ξ values. When ξ increases, the

intensity of the r− peak (2950 − 2975 cm−1) decreases (red to green), whereas that of r+ peak

(2875 − 2900 cm−1) increases (blue to green). Indeed, the maximum intensity for r− is around

ξ = 0◦, whereas that of r+ is near to ξ = 180◦. In order to illustrate these observations, spectra

for specific values of ξ (0◦, 60◦, 120◦, and 180◦) were simulated (Fig. 8.5, bottom). These showed

that the spectral profile strongly depends on the value of ξ. In particular, the relative intensities
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Figure 8.4: Comparison between experimental and simulated SFG spectra of OTS. Left)
SFG spectra of OTS adsorbed-model determined at the ONIOM[ωB97X-D/6-311G*: ωB97X-
D/STO-3G] level of approximation for different values of the relative electric permittivity of
the OTS thin film. Middle) Experimental SFG spectra at the silica-OTS-air interface for
various polarization combinations: (1) ppp; (2) sps; (3) ssp (adapted with permission from
Guyot-Sionnest et al. [30]). The solid lines are guides for the eye. Right) SFG spectra of
OTS adsorbed-model determined for different basis sets of the low-layer (STO-3G, 3-21G, and

6-31G).

of the r+ and r−peaks changes considerably: when ξ increases, the intensity of the peak r−

decreases while that of the peak r+ increases till becoming slightly higher at ξ = 180◦.

8.3.4.2 SFG spectra of DDCS models

The SFG spectra at the silica-DDCS-air interface were simulated for the three polarization

combinations (ppp, sps, and ssp), with nl = 1.1 and Γp = 4 cm−1 (Fig. 8.6). The values of the

θ and ξ angles are taken from the optimized adsorbed-model of DDCS (Table 8.1). Using the

ONIOM(ωB97X-D/6-311G*:ωB97X-D/STO-3G level of approximation, like for OTS, the SFG

spectra were dominated by two peaks. The stronger at 2960 cm−1 assigned to r− and the weaker

at 2890 cm−1 being assigned to r+. The former presents a shoulder, which disappears when

freezing the methyl groups bonded to the Si atom (bottom groups) as well as when considering

the isolated-model. This shoulder at 2970 cm−1 is assigned to 2r−a,b and 3r−a,b (the asymmetric
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Figure 8.6: SFG spectra of DDCS models determined at the ONIOM(ωB97X-D/6-
311G*:ωB97X-D/STO-3G) level of approximation.

stretching vibrations of these methyl groups). In the sps spectrum, the shoulder also disappears

when freezing these bottom methyl groups and the overall intensity decreases. Finally for the ssp

spectrum, the intensity of the r− peak becomes negligible with respect to that of r+ as observed

for OTS. Indeed, for both models and for both molecules, the r−/r+ ratio is equal to 0.1.

8.4 Conclusions

In this work, the SFG signatures of octadecyl-trichlorosilane (OTS) and dodecyl-dimethyl-

chlorosilane (DDCS) monolayers on silica were simulated in the C−H stretching region for three

polarization combinations (ppp, sps, and ssp), showing the impact of the additional Si-linked

methyl groups of DDCS on the SFG signatures. For OTS, the results were compared to the

experiment, demonstrating a good agreement for ppp and sps polarization configurations when

the refractive index of the layer nl was set to 1.1. These simulations are based on a two-step

procedure: i) the molecular properties were evaluated using first principles methods, i.e. DFT

with the ωB97X-D exchange-correlation functional, and ii) the three-layer model was employed
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to calculate the macroscopic responses from the molecular ones, and considering the geometry

of the experimental set-up and the optical properties of the layers. In this investigation, for

the first time, the first principles calculations adopted the ONIOM approach, which describes

the successive layers of the system at different levels of approximation. Here, we used the same

exchange-correlation functional, while the lower layer was described with a smaller atomic ba-

sis set (STO-3G, 3-21G, or 6-31G) than the higher layer (6-311G*). Calculations showed that

describing the low layer with the minimal STO-3G basis set provides the same spectral profiles

as with the split-valence basis sets. To highlight the origin of the SFG signatures, we used two

chemical models, one including explicitly the SiO2 surface in the first principles calculations

(adsorbed-model) and the other only considering the silane chain (isolated-model). Simulations

showed that OTS and DDCS have similar spectral patterns where, for ppp and sps configura-

tions, the r− CH3 stretching vibrations were dominant in comparison to the r+ stretching ones.

Still, in the case of DDCS, the r− peak presented a shoulder, which was assigned to the vibra-

tions of the Si-linked methyl groups. This shoulder vanished when the bottom CH3 groups were

frozen. With the isolated-model, the effect of the rotation angle (ξ) on the SFG profiles was as-

sessed. This work illustrated the strength of the two-step procedure to simulate the SFG spectra

of functionalized surfaces, to assign the origin of the SFG resonances, as well as to investigate

the effects of the beams polarization, of the interface refractive index, and of the orientation of

the adsorbed chain.
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Chapter 9

Coupled-cluster SFG Signatures of

Methyl CH3 and Methylene CH2

Groups

In this chapter, the first vibrational Sum Frequency Generation (SFG) spectra based on molecu-

lar properties calculated at the coupled cluster singles and doubles (CCSD) level of approximation

have been simulated for interfacial model alkyl chains, providing benchmarks data for compar-

isons with approximate methods, including density functional theory (DFT). The approach pro-

ceeds in three steps. In the two first steps, the molecular spectral properties are determined: the

vibrational normal modes and frequencies and then the derivatives of the dipole moment
(
∂µ
∂Q

)
and of the polarizability

(
∂α
∂Q

)
with respect to the normal coordinates. These derivatives are

evaluated with a numerical differentiation approach, of which the accuracy was monitored using

Romberg’s procedure. Then, in the last step, the three-layer model is employed to evaluate the

macroscopic second-order nonlinear optical responses and thereof the simulated SFG spectra of

the alkyl interface. Results emphasize that i) the dipole and polarizability derivatives calculated

at the DFT level with the B3LYP exchange-correlation functional can differ, with respect to

CCSD, by as much as ±10-20% and ±20-50% for the CH3 and CH2 vibrations, respectively,

that ii) these differences are enhanced when considering the SFG intensities as well as their

variations as a function of the experimental configuration (ppp versus ssp) and as a function of

the tilt and rotation angles, defining the orientation of the alkyl chain at the interface, that iii)

these differences originate from both the vibrational normal coordinates and from the Cartesian

derivatives of the dipole moment and polarizability, that iv) freezing successive fragments of

the alkyl chain modifies strongly the SFG spectrum and enables to highlight the delocalization

effects between the terminal CH3 group and its neighboring CH2 units, and finally that v) going

from the free chain to the free methyl model, and further to C3v constraints on
(
∂α
∂Q

)
leads to

large variations of two ratios that are frequently used to probe the molecular orientation at the

191
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interface, the (r−a + r−b )/r+ ratio for both antisymmetric and symmetric CH3 vibrations and the

Ippp/Issp ratio.

9.1 Motivations

Since its first demonstration in 1989 by Shen [1], vibrational Sum-Frequency Generation (SFG)

has been developed to become a powerful spectroscopic technique, currently employed in a

broad range of multidisciplinary research fields, including surface science, materials chemistry,

biophysics, and electrochemistry. Indeed, its intrinsic surface specificity and extreme sensitivity

makes SFG a technique of choice to probe systems at their molecular scale. So, SFG has been

used to analyze interfacial structures, providing qualitative and quantitative insights into surface

coverage [2–4], composition and environment [5, 6], as well as molecular order and orientation

[4, 7–9].

In SFG [10] two input beams at frequencies ω1 and ω2 interact in a medium and generate an

output beam at the sum frequency ω3 = ω1 + ω2. Being a second-order nonlinear optical pro-

cess, within the electric-dipole approximation, SFG is only allowed in media without inversion

symmetry. In traditional SFG set-up, one of the frequencies is fixed in the visible (ωvis) and the

other is scanned in the infrared region (ωIR), which generates a vibrational spectrum. Indeed,

when ωIR is equal to one of the SFG-allowed vibrational transitions of the material, the vibra-

tional first hyperpolarizabilty (β) of the constitutive molecular components is enhanced and so

are the macroscopic second-order nonlinear susceptibility (χ(2)) of the material and the SFG

signal. This non-zero vibrational β results, in the harmonic approximation, from a vibrational

normal mode that is both IR
(
∂µ
∂Q
6= 0
)

and Raman
(
∂α
∂Q
6= 0
)

active (µ, α, and Q are the dipole

moment, the polarizability, and the vibrational normal mode coordinate, respectively).

Revealing molecular and material properties from experimental spectra is a challenge and often

the extracted information remains very cursory in comparison to the complexity and richness of

the signal. Thorough interpretation is therefore a challenge to which theoretical simulations and

more particularly those derived from quantum chemistry and physics can contribute. Still, as is

the case of any property, the quality of the simulated spectra and its ability to unravel molecular

and material signatures is determined by the level of the computational method. Up to now, most

of the SFG simulations are based on molecular properties evaluated using Density Functional

Theory (DFT) [11–13], with few analyses of the performance of various exchange-correlation

(XC) functionals. Among these assessments of XC functionals, Cecchet et al. [12] have shown

little differences in the SFG signatures of a terminal methyl group when using the B3LYP, B97-1,

M06, M06-2X, and CAM-B3LYP XC functionals. On the other hand, to our knowledge, highly-

correlated methods such as Coupled-Cluster Singles and Doubles (CCSD) have not yet been

employed whereas they have already been used to simulate many molecular properties [14–16]

(dipole moment, polarizability and hyperpolarizability), and other types of vibrational spectra,
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including IR and Raman signatures [17]. In this paper, the vibrational SFG signatures of the

methyl (CH3) and methylene (CH2) groups of alkyl chains are investigated at this CCSD level in

order to provide, within the harmonic approximation, very accurate results. Numerical aspects

related to calculating
(
∂µ
∂Q

)
and

(
∂α
∂Q

)
quantities are also addressed as well as the impact of

the chemical model on the SFG responses. The choice of the C−H vibrational signatures comes

from their fingerprint and from their omnipresence in many fields where the interface structure

is of interest, e.g. electronics, catalysis, and biosensors [6, 7, 18]. Moreover, several works have

already been carried out on their SFG signatures but at the DFT level [6, 19, 20], which will

allow for comparisons. Hence, another purpose of this study is the analysis of the accuracy of

density functional IR vectors and Raman tensors in comparison to those evaluated from highly

correlated ab initio methods in order to assess the validity of density functional theory for the

calculation of SFG spectra for large molecules.

9.2 Theory and computational procedure

9.2.1 SFG expressions

The generated SFG signal at the frequency ωSFG is reflected from the substrate, according to

the phase-matching condition,

ωSFG sin θSFG = ωvis sin θvis + ωIR sin θIR . (9.1)

where θvis and θIR are the angles of incidence of the IR (ωIR) and visible (ωvis) lights (with

respect to the normal to the surface), while θSFG is the angle between the light reflected at

ωSFG and the normal to the surface. Different polarizations can be used for the visible and

the IR electric fields and therefore for the recorded SFG electric field. For an achiral surface

with mirror plane there are four allowed polarization combinations denoted as ppp, ssp, sps, pss

(given, by convention, in the SFG, vis, and IR order). The intensities of the ssp and ppp sets of

polarizations are given by

Issp
IIRIvis︸ ︷︷ ︸
J−1sm2

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 θSFG︸ ︷︷ ︸
m−2C−1Vs

∣∣∣ sin θIRχ(2)
Y Y ZF

SFG
Y F vis

Y F IR
Z

∣∣∣2︸ ︷︷ ︸
|χ(2), eff
Y Y Z |2 ≡ m4V−2

(9.2)

Ippp
IIRIvis

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 θSFG
×∣∣∣− cos θSFG cos θvis sin θIR χ

(2)
XXZ F

SFG
X F vis

X F IR
Z − cos θSFG sin θvis cos θIR χ

(2)
XZX F SFG

X F vis
Z F IR

X

+ sin θSFG cos θvis cos θIR χ
(2)
ZXX F SFG

Z F vis
X F IR

X + sin θSFG sin θvis sin θIR χ
(2)
ZZZ F

SFG
Z F vis

Z F IR
Z

∣∣∣2
(9.3)
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In Eqs. (9.2) and (9.3), each component of the effective surface second-order nonlinear suscepti-

bility tensor, containing a resonant (vibrational) and a non-resonant (electronic) term, reads

χ
(2), eff
IJK ∝ F SFG

I F vis
J F IR

K

[ non−resonant︷ ︸︸ ︷∣∣∣χ(2), NR
IJK

∣∣∣ eiΦSFG +

resonant︷ ︸︸ ︷
Ns

ε0︸︷︷︸
VC−1m−1

∑
α,β,γ

〈TIαJβKγ(φ, θ, ξ)〉βαβγ(−ωSFG;ωvis, ωIR)

]
︸ ︷︷ ︸

χ
(2), R
IJK ≡ [m2V−1]

,

(9.4)

with

βαβγ(−ωSFG;ωvis, ωIR) =
∑
p

1

4ωp

(
∂ααβ(ωvis)

∂Qp

)
e

(
∂µγ
∂Qp

)
e(

ωp − ωIR − iΓp
)︸ ︷︷ ︸

C3m3J−2

(9.5)

ΦSFG is the phase angle between the resonant and non-resonant terms, NS is the surface density,

the FI terms are the Fresnel factors, which depend on the refractive index and extinction coef-

ficient of the substrate, T is the transformation matrix between the laboratory and molecular

coordinate systems (connected by the Euler angles φ, θ, and ξ), and βαβγ is the αβγ element

of the molecular vibrational first hyperpolarizability tensor. In Eq. (9.5), Γp is the damping

coefficient, ωp is the vibrational frequency of the pth vibrational mode, and ωIR is the frequency

of the incident IR light.

(
∂µγ
∂Qp

)
e

and

(
∂ααβ(ωvis)

∂Qp

)
e

are the derivatives of the γ and the αβ com-

ponents of the dipole moment and dynamic polarizability (at ωvis) with respect to the normal

coordinate Qp evaluated at the equilibrium geometry, respectively. As discussed below, these

property derivatives and the vibrational frequencies can be obtained from quantum chemical

calculations.

9.2.2 Quantum chemical calculations

The calculations were performed at two levels of approximation, at the CCSD level as well as

within DFT with the B3LYP XC functional, both with the aug-cc-pVDZ basis set [21]. First, the

ground state equilibrium structures were optimized with a threshold on the forces of 10−5 a.u..

Then, the force constants (Hessian) matrix was evaluated and used to determine the vibrational

normal modes and frequencies. This Hessian matrix, which is a second-order derivative of the

energy with respect to the atomic Cartesian coordinates, was evaluated analytically at the DFT

level, using the coupled-perturbed Kohn-Sham method. On the other hand, at the CCSD level,

it was calculated numerically from the gradients. Finally, the derivatives of the dipole moment



Chapter 9. Coupled-cluster SFG signatures of CH3 and CH2 groups 195

and the polarizability with respect to the atomic Cartesian coordinates were determined and

projected on the normal modes to obtain the derivatives of the dipole moment and of the polar-

izability with respect to the vibrational normal coordinates, needed in Eq. (9.5). Again, at the

DFT level, these (atomic Cartesian coordinates) derivatives were evaluated analytically whereas

a numerical procedure was employed at the CCSD level. Note that selected DFT derivatives

were also carried out using the numerical approach in order to test its numerical accuracy. The

polarizability derivatives were evaluated at a wavelength of 532 nm, corresponding to the visible

light wavelength. In the case of the α component of the dipole moment (the generalization to

any component of the polarizability tensor is straightforward), the finite difference expression

reads: (
∂µα
∂riβ

)
e

=
µα ((riβ)e + ∆riβ)− µα ((riβ)e −∆riβ)

2∆riβ
(9.6)

where (riβ)e is the β-Cartesian coordinate of atom i at equilibrium geometry and ∆riβ the

amplitude of its variation. So, a first estimate of these atomic Cartesian coordinates derivatives

is obtained from combining dipole moment values evaluated at a pair of distorted geometries.

Then, to remove the higher-order contaminations to these numerical derivatives as well as to

control its accuracy, the automatic Romberg’s method described in de Wergifosse et al. [22] has

been employed. The numerical accuracy of this approach is assessed in Section 9.3.1

Gaussian-09 [23] was used to optimize the geometries and to calculate the Hessian at both the

B3LYP and CCSD levels as well as to evaluate the property derivatives at the DFT level. DFT

calculations were carried out using the UltraFine and SuperFine integration grids. The first

grid consists of 99 radial shells and 590 angular points per shell whereas the second is more

dense, 175 (first-row atoms) or 250 (second-row atoms and further) shells of 974 angular points.

DALTON [24] was employed to calculate the CCSD dipole moments and frequency-dependent

polarizabilities. The latter were evaluated using the coupled-cluster linear response theory (CC-

LRT) [25] method. The numerical differentiations were carried out using using a homemade

program.

First, this approach was employed in a consistent way, i .e. the molecular properties are evaluated

at the same level as the corresponding equilibrium geometry and Hessian. Then, in order to

disentangle both effects and to assess the influence of the method to determine the Hessian

on the SFG signatures, hybrid calculations were also carried out. In these calculations, a first

method was used to optimize the geometry as well as to calculate the vibrational normal modes

and frequencies. Subsequently, a second method was used to evaluate the Cartesian derivatives

of the dipole moment and polarizability, using the geometry and vibrational coordinates obtained

with the first method. The influence of two parameters were investigated, i) the impact of the

CCSD force field was evaluated by projecting the B3LYP/aug-cc-pVDZ Cartesian derivatives

onto the CCSD/aug-cc-pVDZ normal modes and by comparing those results with the SFG

signatures obtained with the full B3LYP/aug-cc-pVDZ and CCSD/aug-cc-pVDZ calculations,
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and ii) the impact of the basis set on the normal modes was assessed by projecting the aug-cc-

pVDZ Cartesian derivatives onto the normal modes obtained with the cc-pVTZ basis set [21],

using both CCSD and B3LYP methods and by comparing these with the results obtained in a

consistent way with the aug-cc-pVDZ basis set.

9.2.3 Butane as model compound to describe the CH2 and CH3 SFG

signatures

The butane molecule has been chosen to describe the CH2 and CH3 SFG signatures. To model

the experimental conditions where, for instance, a functionalized alkane molecule is anchored

on a substrate, the atomic displacements of a fragment of the butane molecule were frozen.

Three cases have been considered (Fig. 9.1), where the CH3−CH2−CH2, CH3−CH2, and CH3

fragments are successively frozen by setting the masses of their atoms to 1000 amu when evalu-

ating the vibrational normal modes. The substrate is considered to be platinum and its optical

characteristics (electric permittivity) are taken into account to evaluate the Fresnel factors in

Eq. (9.4). The refractive indices and extinction coefficients of Pt were interpolated from the

values in ref [26] for visible, SFG, and IR wavelengths. Moreover it is worth noting that Pt

does not possess any electronic transition close to the visible and/or SFG wavelengths, [27] so

that the non-resonant contribution to the second-order nonlinear susceptibility can be assumed

negligible.

Then, owing to the local C3v point group symmetry of the CH3 group [28], the z axis of the

molecular frame has been aligned on the terminal C−C bond to coincide with the C3 axis

(Fig. 9.2). Assuming the C3v symmetry, the CH3 group possesses three stretching modes, which

are all IR and Raman-active (Table 9.1), i) one symmetric mode (A1), denoted herein as r+,

and a pair of doubly-degenerate asymmetric modes (E), denoted herein as r−a and r−b (Fig. 9.3).

Similarly, a C2v point group symmetry is usually attributed to the CH2 groups [28]. They

are characterized by symmetric (d+(d+
1 , d

+
2 )) and asymmetric (d−(d−1 , d

−
2 )) stretching modes

(Fig. 9.3).

In several works [3, 20, 29–31], the empirical bond additivity model (BAM) derived by Hirose

et al. [28] and reviewed by Wu et al. [32] has been used for calculating the first hyperpolarizability

tensor elements of the CH3 and CH2 groups. In general, for the C3v point group, combining the

non-zero components of the derivatives of the dipole moment and of the polarizability leads to 11

non-zero components of the third-rank first hyperpolarizability tensor (Table 9.1), of which only

four are independent. Within BAM, to simplify the expressions, the following hyperpolarizability

ratio, R = βxxz/βzzz = (∂αxx
∂Q

)/(∂αzz
∂Q

) has been defined. It can be determined experimentally

from the Raman depolarization ratio [3, 28, 32]. It was found that 1 < R ≤ 4 [29] and that

it is non transferable from one molecule to another [3]. On the other hand, in our simulations,

all components of the dipole and polarizability derivatives are taken into account, which allows

highlighting the symmetry effects as well as the deviations with respect to BAM.
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Figure 9.1: Schematic representation of the molecular models.

ξ

θ

x

X

y,Y

Z

z,C3

x X

Y

y

z,C3, ξ = 0.0

Front view Top view

Figure 9.2: Definition of the laboratory (X,Y, Z) and molecular (x, y, z) frames. θ and ξ are
the Euler tilt and azimuthal angles, respectively.

Table 9.1: Dipole and polarizability components for C3v point group. (The “ ′ ” indicates
the derivative with respect to the normal coordinate, R=α′xx/α

′
zz).

A1 E†

∂µ/∂Q µ′z (µ′x)1 =
(
µ′y
)

2

∂α/∂Q α′xx = α′yy = Rα′zz (α′xx)1 = −
(
α′yy
)

1
= ±

(
α′xy
)

2

(α′xx)2 = −
(
α′yy
)

2
= ±

(
α′xy
)

1

(α′xz)1 = ±
(
α′yz
)

2
;
(
α′yz
)

1
= ± (α′xz)2

β βxxz = βyyz = Rβzzz βxzx = βyzy = βzxx = βzyy
βxxx = −βyyx = −βxyy = βyxy

† The subscripts 1 and 2 correspond to the doubly-degenerate modes.



Chapter 9. Coupled-cluster SFG signatures of CH3 and CH2 groups 198

Free Methyl

x

y

x
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Top view

x

z

y

(∂µ/∂Q)

x

z

(∂µ/∂Q)
x

z

(∂µ/∂Q)

Front view

r+ r−a r−b

Free Ethyl

x

z

y

(∂µ/∂Q)

x

z

(∂µ/∂Q)

d+

d−

Free Chain

(∂µ/∂Q) ∼ 0.0

(∂µ/∂Q)

d+1 d+2

d−1 d−2
(∂µ/∂Q) ∼ 0.0

(∂µ/∂Q)

Figure 9.3: Sketch of selected C−H stretching modes. Modes were visualized with DrawMol
[33]. The direction of the atomic displacements is perpendicular to the junction plane between
the two hemispheres with distinct colors, and their amplitudes are proportional to the sphere
radius. The IR vectors (∂µ/∂Q) along the molecular frame axes (x, y, z) are shown as purple

arrows
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9.3 Results and discussion

9.3.1 Accuracy of the numerical differentiation procedure

Selected derivatives of the dipole moment and dynamic polarizability were evaluated (at the

DFT level) using Eq. (9.6) together with seven amplitudes for the geometrical distortions (∆r =

0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32 Å). These are listed in the columns n = 0 of Table 9.2

(for both integration grids) as well as in Table F.1 for additional derivatives. The derivative

values obtained with the smallest distortion amplitude are in good agreement with the reference

analytical results but when the distortion amplitude increases, the deviation grows and becomes

non negligible (from a few percents to a factor of 5). Then, successive Romberg’s iterations were

performed to remove higher-order contaminations. Most of these contaminations are eliminated

after the first iteration (n = 1). Analysis of these tables allows to conclude that the numerical

differentiation procedure is accurate within about 10−4 and 10−3 a.u. for the dipole moment

and the polarizability derivatives, respectively. In addition, this accuracy can be achieved by

using only two distortion amplitudes, ∆r = 0.01 and 0.02 Å, together with a single Romberg’s

iteration. Moreover, as expected, the derivatives obtained with the numerical SuperFine grid

are more accurate than those obtained with the UltraFine grid. The difference amounts roughly

to one order of magnitude for both properties. On this basis this ”two distortion amplitudes”

procedure was adopted for evaluating the derivatives of the CCSD properties.

9.3.2 IR vector and Raman tensors

The CCSD results for the characteristics C−H stretching modes (vibrational frequencies, dipole

and polarizability derivatives) are summarized in Table 9.3 for the three model systems (B3LYP

results in table SI-2). Knowing that the normal modes are defined up to a phase, the absolute

values of the derivatives are given. In the case of the CH3 stretching modes (r+, r−a , and r−b )

one observes that freezing a part of the chain has little impact on the vibrational frequencies

(differences of 1 to 4 cm−1) but that it has larger effects on the dipole moment and polarizability

derivatives. This is particularly visible for situations where the CH2 next to the CH3 head is

frozen. Indeed, the larger the frozen moiety, the smaller the derivative (with very few exceptions),

especially for the dipole moment as well as for the polarizability of the r+ mode. These are

expected to modify accordingly the SFG spectra.
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As shown in Table 9.1, for perfect C3v symmetry, the IR vectors of the three CH3 vibrations

should be oriented along the three directions of the molecular coordinates system (z for r+, y for

r−a , and x for r−b ). However, owing to their chemical bonding with the neighboring units and their

apparent symmetry, one observes that there are slight deviations (especially for the x-component

of r+ and the z-component of r−b , which should tend to zero). Of course, these deviations are

strongly reduced when freezing the neighboring CH2 groups. Then, these deviations grow in the

case of the polarizability derivatives, especially the xz-component of r+ and the zz-component

of r−b , which should also tend to zero. Furthermore, the α′zz of r+ is close to α′xx and α′yy (the

latter two are supposed to be equal for the perfect C3v symmetry). So the R parameter evaluated

herein as R = [(α′xx + α′yy)/2]/α′zz amounts to 1.2, 1.2, and 1.1 for the Free Chain, Free Ethyl

, and Free Methyl model, respectively. On the basis of the amplitude of the deviations with

respect to the ideal symmetry, one confirms that the local C3v symmetry is best reproduced

with the Free Methyl model, which is mechanically and structurally obvious since the rest of

the chain is frozen while the electronic effects remain non negligible. Finally, as expected, one

observes that the three modes are both IR and Raman active, therefore SFG active also.

Second, when analyzing the IR vectors and the normal modes displacements of the CH2 units

(Fig. 9.3) it appears that d+,−
2 (Free Chain) intensities match mostly the d+,−(Free Ethyl) inten-

sities, though with larger amplitudes. This originates from the fact that the d+
1,2 and d−1,2 modes

consist in the in-phase and out-of-phase combinations of d+ and d− vibrations on neighboring

methylene units, respectively and that of the out-of-phase combination is odd, i.e. IR-active.

Conversely, the Raman tensors of the d+ and d− vibrations determine the amplitude of the d+
1

and d−1 modes whereas the other phase combination gives negligible amplitudes. In summary,

d+,− are both IR and Raman active, the d+,−
2 modes are mostly IR active, and the d+,−

1 ones

Raman active. Finally, in general, all these values related to the CH2 groups are smaller than

those of the CH3 group, and are therefore expected to contribute to a lesser extent to the SFG

signatures. This is consistent with the fact that in the Free Chain model the two CH2 groups

display locally an inversion center, detrimental to the SFG signal.

Finally the CCSD results were compared to the B3LYP values (Table F.2 in Appendix F). Be-

sides the fact that the wavenumbers are smaller with B3LYP than CCSD, the dipole and/or

polarizability derivatives calculated at the B3LYP level can differ, with respect to CCSD, by as

much as ±10-20% and ±20-50% for the CH3 and CH2 vibrations, respectively. This is partic-

ularly the case of the diagonal components of the α′ tensor of the d+
2 mode. These differences

will therefore impact the profiles of the SFG spectra.
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Table 9.3: Vibrational frequencies∗ (cm−1) and (absolute values of the) derivatives of the
dipole moment (∂µα/∂Q) and polarizability (∂ααβ/∂Q),‡ computed at the CCSD/aug-cc-
pVDZ level.† The vibrational normal modes are sketched in Fig. 9.3. The “ ′ ” indicates

the derivative with respect to the corresponding normal coordinate.

r+ r−a r−b d+(d+
1 /d

+
2 )§ d−(d−1 /d

−
2 )§

2909 2978 2984 2898/2904 2926/2948
Freq 2908 2977 2984 2901 2936

2908 2974 2984
0.031 0.000 0.205 0.003/0.003 0.000/0.000

µ′x 0.019 0.000 0.202 0.144 0.000
0.006 0.000 0.190

0.000 0.258 0.000 0.000/0.000 0.012/0.205
µ′y 0.000 0.230 0.000 0.000 0.136

0.000 0.185 0.000

0.190 0.000 0.021 0.043/0.143 0.000/0.000
µ′z 0.155 0.000 0.023 0.146 0.000

0.178 0.000 0.032

8.703 0.000 5.953 6.175/0.451 0.000/0.000
α′xx 7.971 0.000 6.062 3.992 0.000

7.161 0.000 5.615

9.605 0.000 2.807 9.099/1.110 0.000/0.000
α′yy 8.739 0.000 2.672 6.478 0.000

7.480 0.000 3.298

7.555 0.000 1.336 3.373/0.687 0.000/0.000
α′zz 7.170 0.000 1.401 2.202 0.000

6.698 0.000 1.123

0.000 2.448 0.000 0.000/0.000 7.977/0.360
α′xy 0.000 1.974 0.000 0.000 6.111

0.000 3.553 0.000

0.118 0.000 5.021 3.170/0.304 0.000/0.000
α′xz 0.100 0.000 4.989 2.504 0.000

0.000 0.000 5.171

0.000 3.728 0.000 0.000/0.000 5.145/0.910
α′yz 0.000 3.488 0.000 0.000 4.318

0.000 4.530 0.000

∗The harmonic vibrational frequencies have been scaled by a factor of 0.96.
†For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl,
and Free Methyl models, respectively.
‡ α′xy = α′yx; α

′
xz = α′zx; α

′
yz = α′zy.

§ d+
1 , d

+
2 , d

−
1 , d

−
2 ≡ Free Chain; d+, d− ≡ Free Ethyl.



Chapter 9. Coupled-cluster SFG signatures of CH3 and CH2 groups 203

9.3.3 SFG spectra

9.3.3.1 CCSD results and comparison with B3LYP

After the analysis of the IR vectors and Raman tensors, SFG spectra were simulated (with the

Free Chain model) at the CCSD level and then compared to B3LYP (Fig. 9.4). This is illustrated

using θ = 60◦ and ξ = 150◦. In the ppp configuration, using the CCSD level the (r−a + r−b )/r+

ratio amounts to 2.3 whereas it is larger (3.6) at the B3LYP level. This is also observed for the

ssp configuration [(r−a + r−b )/r+ = 0.11 at the CCSD level versus 0.14 using DFT and B3LYP],

though in this case the intensity of the asymmetric modes is much larger. Moreover, with both

levels of calculations there are additional weak-intensity peaks near the r+ peak, which are more

intense at the B3LYP level, consistent with the discussion at the end of the previous paragraph.

These peaks appear in the region of the d+
1,2 vibrational frequencies and are associated to the

methylene vibrations.

In order to highlight the influence of the method for determining the Hessian in the SFG sig-

natures, the B3LYP/aug-cc-pVDZ Cartesian derivatives were projected onto the CCSD/aug-cc-

pVDZ normal modes (Fig. F.1 and Table F.3) and the resulting simulated SFG spectra were

compared to the results obtained with the full B3LYP/aug-cc-pVDZ and CCSD/aug-cc-pVDZ

(Fig. F.1 and Tables 9.3 and F.2). The mixed approach shows an increase of the intensities of

r+ , r−a and r−b modes compared to CCSD but the (r−a + r−b )/r+ ratios (Table F.7) remain the

same and amount to 2.3 and 0.12 for the ppp and ssp configurations, respectively. Therefore, the

change of signatures between the CCSD and B3LYP spectra not only comes from the description

of the normal modes (ratios) but also from electronic responses (absolute intensities).

Second, the impact of the basis set on the normal modes was assessed by projecting the aug-

cc-pVDZ Cartesian derivatives onto the normal modes obtained with the cc-pVTZ basis set

using both CCSD (Table F.4) and B3LYP (Table F.5) methods. The spectra are shown in

Fig. F.2. The vibrational frequencies obtained by using B3LYP/cc-pVTZ are almost identical to

those obtained by B3LYP/aug-cc-pVDZ while they increase by about 15–18 cm−1 when going

from CCSD/aug-cc-pVDZ to CCSD/cc-pVTZ1. Concomitantly, the SFG intensities changes: the

r−a + r−b intensity increases with B3LYP for the ppp polarization while the r+ intensity decreases

with CCSD, which leads to an increase of the (r−a +r−b )/r+ ratio in both cases. At last, Cartesian

derivatives of the properties calculated at B3LYP/aug-cc-pVDZ level have been projected on the

normal modes calculated at the CCSD/cc-pVTZ level (Table F.6). Once again, when B3LYP

properties are projected onto CCSD normal modes, there is an increase in the intensities of r+,

r−a +r−b modes compared to CCSD. However, the (r−a +r−b )/r+ ratio is similar to the one obtained

with CCSD (3.6), which is lower than the B3LYP ratio (4.0).

1Note that here the focus is not set on comparison with experiment but rather on the difference between
B3LYP and CCSD response properties. As a matter of fact, the same scaling factor of 0.96 has been employed.
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Figure 9.4: Comparison of the SFG spectra calculated at the CCSD/aug-cc-pVDZ and
B3LYP/aug-cc-pVDZ (with the SuperFine integration grids) levels. NM ≡ Normal Modes,
Prop ≡ Cartesian derivatives of the properties (∂µα/∂riγ and ∂ααβ/∂riγ). The spectra have
been simulated for the Free Chain model, at θ = 60◦ and ξ = 150◦, and for ppp and ssp sets of

polarizations. Γ = 1 cm−1.

9.3.3.2 Approximate CCSD schemes

For both sets of polarizations the SFG spectra were plotted by starting from the Free Chain

Model and freezing gradually one and two methylene groups (Fig. 9.5). Then, within the Free

Methyl Model additional approximations were made to get closer and closer to the BAM ap-

proach i) α′xz(r
+) = 0.0 and ii) for r+, α′xx = α′yy = (α′xx + α′yy)/2 and α′xz = 0.0 together with

R = 2 and 4 (α′zz = α′xx/R = α′yy/R). The vibrational normal modes and response properties

were all evaluated at the CCSD/aug-cc-pVDZ level of approximation. First, comparison between

the three molecular models shows that for both sets of polarizations, the Free Ethyl displays

the largest intensities, especially for r+ with ssp configuration. This results from the molecular

structure, which does not display local inversion symmetry for the CH2 groups (since only one

is present) leading to simultaneous IR and Raman activities of these modes whereas centrosym-

metry leads to mutually-excluding intensities. In the ppp configuration the (r−a + r−b )/r+ ratio

attains 2.3, 1.4, and 1.6 for the FC, FE, and FM molecular models, highlighting the expected

slightly improved similarity between FC and FM. Then, within FM, setting α′xz = 0, the ratio

increases little (=1.8) whereas further simplifications with R = 2 and 4 give values of 2.0 and

2.4, respectively. For ssp configuration the (r−a + r−b )/r+ ratio is much smaller but, on a relative

basis, it changes substantially from one model to another. From 0.11 for FC, it decreases by a

factor of 2 (0.06) for FE, and then increases by a factor of 3 (0.17). Setting α′xz = 0 slightly

reduces this ratio (0.16). Eventually, with R = 2 and R = 4, the ratio amounts to 0.21 and

0.27, which is about 100% and 150% larger than with the most complete model. This contrasts
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Figure 9.5: Comparison of different molecular models and approximation schemes. All spec-
tra were simulated starting from CCSD response properties. θ = 60◦, ξ = 150◦, and Γ = 1 cm−1

with the BAM results obtained for the ppp (r−a + r−b )/r+ ratio. Note that within FC and FE

models there is again a small peak near r+, which is absent in the FM case, confirming that it

is associated to the CH2 group(s).

9.3.3.3 Impact of the tilt (θ) and rotation (ξ) angles

In order to determine the tilt angle of the chain (θ) it is customary to plot the dependence of the

ppp/ssp intensity ratio of the r+ peak as a function of θ [7, 20]. The SFG spectra were plotted

for two values of the rotation angle (0 and 60◦), two values of the damping factor [Eq. (9.4)],

and for the three molecular models (Fig. 9.6). The two values of the damping factor [Eq. (9.4)],

Γ = 1 cm−1 and Γ = 10 cm−1, are justified by the interval between the r−a and r−b wavenumbers.

Since for a perfect C3v symmetry the ξ = 0 and 60◦ intensities should be identical, the observed

difference demonstrates a clear deviation, but to a lower extent for the FM case. Then, the
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comparisons between the different spectra show that both the level of approximation and the

molecular model have drastic impacts on this intensity ratio and that increasing the damping

factor enhances these differences.

Finally, as shown in Fig. 9.7 for the FM model, the variations of the Ippp/Issp ratios versus θ are

also strongly impacted by the approximate scheme to describe the α′ tensor. These results also

highlight that the differences between the Ippp/Issp ratios obtained with the 0 and 60◦ rotation

angles decrease when imposing symmetry constraints to the α′ tensor, at least as far as the tilt

angle does not approach 90◦.

For the CH3 stretching modes, further comparisons between the different models were carried

out for θ = 60◦ as a function of the rotation angle (Fig. 9.8). For ξ = 0, the different models give

similar and small ((r−a + r−b )/r+) values but large differences appear when increasing ξ. These

differences are exalted when going from Γ = 1 cm−1 to Γ = 10 cm−1.

9.4 Conclusions

Vibrational SFG spectra of interfacial alkyl chains have been simulated using molecular prop-

erties calculated at the CCSD level of approximation, providing therefore benchmark data for

comparisons with lower levels of approximation, including the broadly used density functional

theory methods. Our approach combines three steps, of which the first two concern the spectral

molecular properties: i) first the calculation of the vibrational normal modes and frequencies, ii)

then the evaluation of the derivatives of the dipole moment
(
∂µ
∂Q

)
and of the polarizability

(
∂α
∂Q

)
with respect to the normal coordinates, performed with a numerical differentiation approach,

of which the accuracy was improved and monitored using Romberg’s procedure, and iii) the

three-layer model to evaluate the macroscopic nonlinear optical responses of the interface and

simulate the SFG spectra

The work has concentrated on a model system, a terminal alkyl chain, represented by a butane

molecule, of which successive segments are frozen to highlight the effects of the model and to

show ”delocalization” effects between the terminal CH3 group and the neighboring CH2 units.

Comparisons are also made with the Bond Additivity Model, frequently used to describe the

SFG signal of the CH3 group. Results emphasize that the dipole and polarizability derivatives

calculated at the B3LYP level can differ, with respect to CCSD, by as much as±10-20% and±20-

50% for the CH3 and CH2 vibrations, respectively. Furthermore, these differences are enhanced

when considering the SFG intensities as well as the variation of the latter as a function of the

experimental configuration (ppp versus ssp) and as a function of the tilt and rotation angles. Our

results also demonstrate that going from the free chain to the free methyl model, and further to

C3v constraints on
(
∂α
∂Q

)
leads to large variations of two ratios that are frequently used to probe

the molecular orientation (tilt and rotation angles) at the interface, the (r−a + r−b )/r+ ratio for

both antisymmetric and symmetric methyl vibrations and the Ippp/Issp ratio.



Chapter 9. Coupled-cluster SFG signatures of CH3 and CH2 groups 207

25

50

75

0 15 30 45 60 75 90

I p
pp
/I

ss
p
(r

+
)

Tilt angle (θ) [◦]

CCSD: Γ = 1 cm−1

ξ = 0◦ FC
ξ = 60◦ FC
ξ = 0◦ FE
ξ = 60◦ FE
ξ = 0◦ FM
ξ = 60◦ FM

0

25

50

75

100

125

150

175

0 15 30 45 60 75 90

I p
pp
/I

ss
p
(r

+
)

Tilt angle (θ) [◦]

CCSD: Γ = 10 cm−1

ξ = 0◦ FC
ξ = 60◦ FC
ξ = 0◦ FE
ξ = 60◦ FE
ξ = 0◦ FM
ξ = 60◦ FM

25

50

75

0 15 30 45 60 75 90

I p
pp
/I

ss
p
(r

+
)

Tilt angle (θ) [◦]

B3LYP: Γ = 1 cm−1

ξ = 0◦ FC
ξ = 60◦ FC
ξ = 0◦ FE
ξ = 60◦ FE
ξ = 0◦ FM
ξ = 60◦ FM

0

25

50

75

100

125

0 15 30 45 60 75 90

I p
pp
/I

ss
p
(r

+
)

Tilt angle (θ) [◦]

B3LYP: Γ = 10 cm−1

ξ = 0◦ FC
ξ = 60◦ FC
ξ = 0◦ FE
ξ = 60◦ FE
ξ = 0◦ FM
ξ = 60◦ FM

Figure 9.6: Dependence of the ppp/ssp intensity ratios of r+ mode as a function of the tilt
angle θ. CCSD (top) compared to B3LYP (bottom) for two values of the damping factor, 1

cm−1 (left) and 10 cm−1 (right).
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Summary, General Conclusion, and

Outlooks

My work aimed at developing new tools for the simulations and the interpretation of sum-

frequency generation (SFG) signatures of functionalized surfaces. Indeed, SFG is a powerful and

versatile method for in situ investigation of surfaces and interfaces. In SFG experiments a pulsed

tunable infrared (ωIR) laser beam is mixed with a visible (ωV IS) beam to produce an output at

the sum frequency (ωSFG = ωIR+ωV IS). SFG is a second-order nonlinear optical process, which

is allowed only in media lacking inversion symmetry. At surfaces or interfaces, the inversion

symmetry is necessarily broken: it makes SFG highly surface specific. As the IR wavelength is

scanned, active vibrational modes of molecules at the interface give a resonant contribution to

the SFG signal. In fact, a vibrational mode is active in SFG if it is simultaneously active in

IR and Raman. The resonant enhancement provides therefore spectral information on surface

characteristic vibrational transitions.

So, I developed an approach for simulating and interpreting SFG signatures of molecules ad-

sorbed on different substrates. This approach encompasses two steps. First, the molecular prop-

erties (vibrational frequencies, IR and Raman quantities) are evaluated using first principles

approaches implemented in standard quantum chemistry programs. Second, the macroscopic

optical responses (the second-order nonlinear optical susceptibility tensor) of the adsorbate on

its substrate are determined within the three-layer model of the interface. For this latter step,

I have designed and worked out a Python program (software package) named “SFG-from-QM”,

that can be installed on different operating systems (Mac OS X, Unix, Linux, Windows) so that

the script called “SFG-from-QM.py” can take the input and output data files as command-line

arguments. The program reads the molecular properties (vibrational frequencies, IR and Ra-

man quantities) evaluated using first-principles approaches implemented in standard quantum

chemistry programs, calculates the Fresnel factor and accounts for the molecular orientation

in the lab frame, and then generates the SFG spectra for different combinations of molecular

orientations and experimental set-ups. The particularities of the approach are i) the substrate is

included in the system during the calculations; ii) all the simulations are based on first-principles

calculations. Combining these two aspects is a sophisticated task, and it greatly improves the

analysis of experimental spectra, and the determination of molecular orientation. In addition

to SFG-from-QM.py, our approach is now a part of DrawVib (www.unamur.be/drawvib) and
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DrawSpectrum (www.unamur.be/drawspectrum) programs available on the Apple App Store

for the Mac OS operating systems. DrawVib has similar interface to DrawSpectrum, and

allows visualizing simultaneously the spectrum and the molecule or its normal modes in 3-D

leading to an easier assignment of peaks and analysis of spectra.

In practice, my approach consists of two models, one with the surface (adsorbed-model : where a

fragment of the surface is included in the quantum chemistry calculations and the rest is char-

acterized by its electric permittivity) and the other (isolated-model) with only implicit surface

(electric permittivity). The first has the advantage of defining directly the orientation of the

molecule with respect to the surface, while the second allows to study the impact of that orienta-

tion on the SFG intensities. Indeed, with the adsorbed-model, the parameters such as the tilt and

rotation angles between the molecular and laboratory framework are defined by the optimized

geometry. On the other hand, in the isolated-model these parameters can be tuned, highlighting

the IR wavelength region where the SFG intensities are strong. Moreover, for each model, I also

used sub-models in which vibrations of parts of the system can be frozen independently in order

to highlight selectively SFG signatures or different groups of chemical functions.

My approach has been applied to a variety of systems including organic monolayers covalently

bonded to inorganic surfaces. These results are important for the scientific community using

nonlinear vibrational SFG spectroscopy because they address questions related to the quantifi-

cation of the SFG signal, a tricky task in this domain, and because functionalized semiconductor

surfaces are extensively used in the manufacturing of biosensors and in optoelectronics. Given

that the SFG intensity is directly related to the IR and Raman activity, I started our investi-

gations with the simulation of the IR and Raman signatures of aromatics thiols adsorbed on

small gold clusters mimicking the different types of adsorption site. Using analysis tools such as

normal mode overlaps (Section 5.2.1), the group coupling matrices, and the atomic contribution

patterns (decomposition of IR and Raman intensities into atomic or group of atoms contribu-

tions, Section 5.2.2), I bring out the effects of the adsorption and of the coordination site on the

IR and Raman signatures, and therefore I show the reliability of small clusters for mimicking

surfaces. Moreover, formula for evaluating enhancement factors in SERS spectroscopy have been

derived and applied.

Then, I carried out SFG simulations on alkyl chains covalently bonded to hydrogen-terminated

Si(111) substrates and alkylsilanes adsorbed onto amorphous silica surfaces for three polarization

combinations (ppp, sps and ssp). Different models have been considered so that again normal

modes overlaps have been used to analyze their vibrational signatures. In addition to reproducing

the spectral profiles, I also provided a detailed analysis of the experiment showing that our

approach is reliable. Indeed, including surface in the simulation improves its quality, while tuning

the rotation angle of the alkyl chain in the isolated-model shows its strong impact of the spectral

profile. Considering these observations, I predicted SFG signatures for other systems of interest

whose experimental data are not yet available. Finally, since all the previous calculations were

carried out at DFT level of approximation, I reported for the first time simulation of SFG spectra

http://www.unamur.be/sciences/chimie/drawspectrum
https://itunes.apple.com/us/app/drawspectrum/id1112564574?mt=12
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for interfacial model alkyl chains based on molecular properties calculated with high-level wave

function methods, at the coupled cluster singles and doubles (CCSD) level of approximation.

I provided a detailed analysis of the signature of terminal alkyl chains and I assessed several,

electronic and mechanical, approximate schemes, providing benchmark data for comparisons

with approximate methods, including density functional theory (DFT)

However, my work can be viewed as a first but necessary step towards improved simulations

and interpretations. Indeed, all the calculations were performed under the double harmonic

approximation [Eqs. (3.87) and (3.88)] and the non-resonant contribution of the susceptibility

[Eq. (3.104)] was always set to zero. On the one hand, going beyond the harmonic approximation

will allow us to describe effects such as Fermi resonances. Indeed, in the double harmonic

approximation, in addition to the Hamiltonian truncated at the quadratic term (blue terms, i.e.

the vibrational wavefunctions are limited to the harmonic contribution), the Taylor expansions

of the molecular properties (dipole moment and polarizability) are also limited, at the first-order

derivatives with respect to the normal modes (green terms).
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So, anharmonicity can be introduced by considering higher-order terms, either on the nuclear

Hamiltonian or on the molecular properties (that will change the expression of the first hyper-

polarizability, see equation below), or on both. Note that, some groups have already employed

approaches that include the Fermi resonances and combination bands in SFG spectra [1–3]. On

the other hand, including the non-resonant part of the susceptibility will allow working with

substrates with electronic transitions close to the visible (incident) and/or SFG wavelengths

such as gold and silver.

βαβγ(−ωSFG;ωvis, ωIR) =
∑
p

1

4ωp

(
∂ααβ(ωvis)

∂Qp

)
e

(
∂µγ
∂Qp

)
e(

ωp − ωIR − iΓp
)

Different schemes to include the electric field gradients effects and quadrupole contributions to

SFG spectra have been proposed and would constitute an interesting extension of this work [4–7].

Other extensions encompass the used of quantum mechanical/molecular mechanical (QM/MM)

approaches to investigate several molecules at the surface (figure below) and thus to better re-

flect real systems. Indeed, due to the very demanding computational cost, the application of

QM is still limited to relatively small systems consisting of up to few hundreds of atoms, or even

smaller systems when the highest levels of theory are employed (CCSD for example). Algorithms
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that combine quantum mechanics and molecular mechanics provide a solution to this problem.

These algorithms in principle combine the accuracy of a quantum mechanical description with

the low computational cost of molecular mechanics. The incorporation of quantum mechanics

into molecular mechanics can be accomplished in various ways, and one of them, the so-called

“ONIOM” method, was briefly presented in Section 4.6 and applied in Chapter 8. This ap-

proach makes possible the study of the interactions between molecules adsorbed at the surface

and their dynamics. Moreover, periodic first principles calculations constitute another way to

consider many molecules and taking into account the interactions between them. However, to

our knowledge these approaches still present practical limitations to calculate the IR and Raman

quantities of systems with large unit cells.

Model of functionalized H−Si(111) surfaces. Eighteen decyl molecules are grafted on the surface
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Appendix A

Vibrational First Hyperpolarizability

In this section, we rely on the Symmetry relations to develop the full expression of the first

hyperpolarizability given in Eq. (2.61). Then, we derive an expression for the molecular vi-

brational contribution to the simply IR resonant IR-visible Sum-Frequency Generation (SFG)

process (Fig. A.1). Finally, from that vibrational first hyperpolarizability we also extract the

expression of the transition polarizability and present the case of the Raman spectroscopy.

A.1 Symmetry relations for the first hyperpolarizability

According to Eq. (2.61) the first hyperpolarizability reads

βαβγ(−ωq − ωr;ωq, ωr) =
1

~2

∑
l,m,n

[(
ρ(0)
mm − ρ(0)

ll

) µαmnµ
γ
lmµ

β
nl(

ωlm − ωq − iγlm
)(
ωnm − ωq − ωr − iγnm

)
(A.1a)

−
(
ρ

(0)
ll − ρ(0)

nn

) µαmnµ
γ
nlµ

β
lm(

ωnl − ωq − iγnl
)(
ωnm − ωq − ωr − iγnm

)]
(A.1b)

We have labeled the two terms that appear in this expression (A.1a) and (A.1b) so that we can

keep track of how these terms contribute to our final expression. Eq. (A.1) does not possess

intrinsic permutation symmetry, which we require the susceptibility to possess.

βαβγ(−ωq − ωr;ωq, ωr) 6= βαβγ(−ωq − ωr;ωr, ωq) (A.2)

We therefore define the first hyperpolarizability to be one-half the sum of the right-hand side of

Eq. (A.1) with an analogous expression obtained by simultaneously interchanging ωq with ωr
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βαβγ(−ωq − ωr;ωq, ωr) =
1

2

[
βαβγ(−ωq − ωr;ωq, ωr) + βαβγ(−ωq − ωr;ωr, ωq)

]
(A.3)

We thereby obtain the result

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

{(
ρ(0)
mm − ρ(0)

ll

)[ µαmnµ
γ
lmµ

β
nl(

ωlm − ωq − iγlm
)(
ωnm − ωq − ωr − iγnm

)
(A.4a)

+
µαmnµ

β
lmµ

γ
nl(

ωlm − ωr − iγlm
)(
ωnm − ωq − ωr − iγnm

)]
(A.4b)

−
(
ρ

(0)
ll − ρ(0)

nn

)[ µαmnµ
γ
nlµ

β
lm(

ωnl − ωq − iγnl
)(
ωnm − ωq − ωr − iγnm

)
(A.4c)

+
µαmnµ

β
nlµ

γ
lm(

ωnl − ωr − iγnl
)(
ωnm − ωq − ωr − iγnm

)]}
(A.4d)

This expression displays intrinsic permutation symmetry Since the indices m, n, and l are

summed over, they constitute dummy indices. We can therefore replace the indices l, n, and m

in the last two terms (A.15) and (A.16) by m, l, and n, respectively, so that the population differ-

ence term is the same as that of the first two terms. We thereby recast first hyperpolarizability

into the form

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

{(
ρ(0)
mm − ρ(0)

ll

)[ µαmnµ
γ
lmµ

β
nl(

ωlm − ωq − iγlm
)(
ωnm − ωq − ωr − iγnm

)
(A.5a)

+
µαmnµ

β
lmµ

γ
nl(

ωlm − ωr − iγlm
)(
ωnm − ωq − ωr − iγnm

)]
(A.5b)

−
(
ρll

(0) − ρnn(0)
)[ µαmnµ

γ
nlµ

β
lm(

ωnl − ωq − iγnl
)(
ωnm − ωq − ωr − iγnm

)
(A.5c)

+
~µαmnµ

β
nlµ

γ
lm(

ωnl − ωr − iγnl
)(
ωnm − ωq − ωr − iγnm

)]}
(A.5d)

The dummy indexes of the terms (A.5c) and (A.5d) are permuted

l→ m→ n→ l
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βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

{(
ρ(0)
mm − ρ(0)

ll

)[ µαmnµ
γ
lmµ

β
nl(

ωlm − ωq − iγlm
)(
ωnm − ωq − ωr − iγnm

)
+

µαmnµ
β
lmµ

γ
nl(

ωlm − ωr − iγlm
)(
ωnm − ωq − ωr − iγnm

)]
−
(
ρmm

(0) − ρll(0)
)[ µαnlµ

γ
lmµ

β
mn(

ωlm − ωq − iγlm
)(
ωln − ωq − ωr − iγln

)
+

µαnlµ
β
lmµ

γ
mn(

ωlm − ωr − iγlm
)(
ωln − ωq − ωr − iγln

)]}
=

1

2~2

∑
l,m,n

(
ρmm

(0) − ρll(0)
)

{
µαmnµ

γ
lmµ

β
nl(

ωlm − ωq − iγlm
)(
ωnm − ωq − ωr − iγnm

) (A.6a)

+
µαmnµ

β
lmµ

γ
nl(

ωlm − ωr − iγlm
)(
ωnm − ωq − ωr − iγnm

) (A.6b)

− µαnlµ
γ
lmµ

β
mn(

ωlm − ωq − iγlm
)(
ωln − ωq − ωr − iγln

) (A.6c)

+
µαnlµ

β
lmµ

γ
mn(

ωlm − ωr − iγlm
)(
ωln − ωq − ωr − iγln

)} (A.6d)

The dummy indexes l and m are switched

l↔ m

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

(
ρll

(0) − ρmm(0)
)

{
µαlnµ

γ
mlµ

β
nm(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.7a)

+
µαlnµ

β
mlµ

γ
nm(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.7b)

− µαnmµ
γ
mlµ

β
ln(

ωml − ωq − iγml
)(
ωmn − ωq − ωr − iγmn

) (A.7c)

− µαnmµ
β
mlµ

γ
ln(

ωml − ωr − iγml
)(
ωmn − ωq − ωr − iγmn

)} (A.7d)

We reorder the product of matrix elements in the numerator so that the subscripts n, m, and l

are “chained” in the sense shown and thereby obtain the result
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βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

(
ρ

(0)
ll − ρ(0)

mm

)
{

µαlnµ
γ
mlµ

β
nm(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.8a)

+
µαlnµ

β
mlµ

γ
nm(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.8b)

− µαnmµ
γ
mlµ

β
ln(

ωml − ωq − iγml
)(
ωmn − ωq − ωr − iγmn

) (A.8c)

− µαnmµ
β
mlµ

γ
ln(

ωml − ωr − iγml
)(
ωmn − ωq − ωr − iγmn

)} (A.8d)

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

(
ρ

(0)
ll − ρ(0)

mm

)
{

µαlnµ
β
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.9a)

+
µαlnµ

γ
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.9b)

− µβlnµ
α
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωmn − ωq − ωr − iγmn

) (A.9c)

− µγlnµ
α
nmµ

β
ml(

ωml − ωr − iγml
)(
ωmn − ωq − ωr − iγmn

)} (A.9d)

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

(
ρ

(0)
ll − ρ(0)

mm

)
{

µαlnµ
β
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.10a)

+
µαlnµ

γ
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.10b)

+
µβlnµ

α
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnm + ωq + ωr + iγnm

) (A.10c)

+
µγlnµ

α
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnm + ωq + ωr + iγnm

)} (A.10d)

The first hyperpolarizability can be expressed in terms of a single level population
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βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

ρ
(0)
ll

{
µαlnµ

β
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.11a)

+
µαlnµ

γ
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.11b)

+
µβlnµ

α
nm(

ωml − ωq − iγml
)(
ωnm + ωq + ωr + iγnm

) (A.11c)

+
µγlnµ

α
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnm + ωq + ωr + iγnm

)} (A.11d)

− 1

2~2

∑
l,m,n

ρ(0)
mm

{
µαlnµ

β
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.11e)

− µαlnµ
γ
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.11f)

− µβlnµ
α
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnm + ωq + ωr + iγnm

) (A.11g)

− µγlnµ
α
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnm + ωq + ωr + iγnm

)} (A.11h)

We reorder the product of matrix elements in the numerator so that the subscripts n, m, and l

are“chained” in the sense shown and thereby obtain the result

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µαlnµ

β
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.12a)

+
µαlnµ

γ
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.12b)

+
µβlnµ

α
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnm + ωq + ωr + iγnm

) (A.12c)

+
µγlnµ

α
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnm + ωq + ωr + iγnm

)] (A.12d)

− 1

2~2

∑
l,m,n

ρ(0)
mm

[
µαlnµ

β
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.12e)

− µαlnµ
γ
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.12f)

− µβlnµ
α
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnm + ωq + ωr + iγnm

) (A.12g)

− µγlnµ
α
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnm + ωq + ωr + iγnm

)] (A.12h)
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l→ n→ m→ l

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µαlnµ

β
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.13a)

+
µαlnµ

γ
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.13b)

+
muβlnµ

α
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnm + ωq + ωr + iγnm

) (A.13c)

+
µγlnµ

α
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnm + ωq + ωr + iγnm

)] (A.13d)

− 1

2~2

∑
l,m,n

ρll
(0)

[
µαnmµ

β
mlµ

γ
ln(

ωln − ωq − iγln
)(
ωmn − ωq − ωr − iγmn

) (A.13e)

− µαnmµ
γ
mlµ

β
ln(

ωln − ωr − iγln
)(
ωmn − ωq − ωr − iγmn

) (A.13f)

− µβnmµ
α
mlµ

γ
ln(

ωln − ωq − iγln
)(
ωml + ωq + ωr + iγml

) (A.13g)

− µγnmµ
α
mlµ

β
ln(

ωln − ωr − iγln
)(
ωml + ωq + ωr + iγml

)] (A.13h)

Dipoles moment are moved to present the same transition order.

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µαlnµ

β
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.14a)

+
µαlnµ

γ
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.14b)

+
µβlnµ

α
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnm + ωq + ωr + iγnm

) (A.14c)

+
µγlnµ

α
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnm + ωq + ωr + iγnm

)] (A.14d)

− 1

2~2

∑
l,m,n

ρll
(0)

[
µγlnµ

α
nmµ

β
ml(

ωln − ωq − iγln
)(
ωmn − ωq − ωr − iγmn

) (A.14e)

− µβlnµ
α
nmµ

γ
ml(

ωln − ωr − iγln
)(
ωmn − ωq − ωr − iγmn

) (A.14f)

− µγlnµ
β
nmµ

α
ml(

ωln − ωq − iγln
)(
ωml + ωq + ωr + iγml

) (A.14g)

− µβlnµ
γ
nmµ

α
ml(

ωln − ωr − iγln
)(
ωml + ωq + ωr + iγml

)] (A.14h)
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The frequencies and the damping are modified to give a positive expression.

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µαlnµ

β
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.15a)

+
µαlnµ

γ
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnl − ωq − ωr − iγnl

) (A.15b)

+
µβlnµ

α
nmµ

γ
ml(

ωml − ωq − iγml
)(
ωnm + ωq + ωr + iγnm

) (A.15c)

+
µγlnµ

α
nmµ

β
ml(

ωml − ωr − iγml
)(
ωnm + ωq + ωr + iγnm

)] (A.15d)

+
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µγlnµ

α
nmµ

β
ml(

ωnl+ωq+iγnl
)(
ωmn − ωq − ωr − iγmn

) (A.15e)

+
µβlnµ

α
nmµ

γ
ml(

ωnl+ωr+iγnl
)(
ωmn − ωq − ωr − iγmn

) (A.15f)

+
µγlnµ

R
nmµ

α
ml(

ωnl+ωq+iγnl
)(
ωml + ωq + ωr + iγml

) (A.15g)

+
µβlnµ

γ
nmµ

α
ml(

ωnl+ωr+iγnl
)(
ωml + ωq + ωr + iγml

)] (A.15h)

We obtain a sum of 8 resonant and non-resonant terms .

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µαlnµ

β
nmµ

γ
ml(

ωml−ωq − iγml
)(
ωnl−ωq−ωr − iγnl

) (A.16a)

+
µαlnµ

γ
nmµ

β
ml(

ωml−ωr − iγml
)(
ωnl−ωq−ωr − iγnl

) (A.16b)

+
µβlnµ

α
nmµ

γ
ml(

ωml−ωq − iγml
)(
ωnm+ωq+ωr + iγnm

) (A.16c)

+
µγlnµ

α
nmµ

β
ml(

ωml−ωr − iγml
)(
ωnm+ωq+ωr + iγnm

) (A.16d)

+
µγlnµ

α
nmµ

β
ml(

ωnl+ωq + iγnl
)(
ωmn−ωq−ωr − iγmn

) (A.16e)

+
µβlnµ

α
nmµ

γ
ml(

ωnl+ωr + iγnl
)(
ωmn−ωq−ωr − iγmn

) (A.16f)

+
µγlnµ

β
nmµ

α
ml(

ωnl+ωq + iγnl
)(
ωml+ωq+ωr + iγml

) (A.16g)

+
µβlnµ

γ
nmµ

α
ml(

ωnl+ωr + iγnl
)(
ωml+ωq+ωr + iγml

)] (A.16h)
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A.2 Vibrational first hyperpolarizability for SFG

In this section, we treat the molecular vibrational contribution to the simply IR resonant IR-

visible Sum-Frequency Generation (SFG) process (Fig. A.1).

electronic ground level |g〉

virtual level |e〉

ω
IR

ω
VIS

ω
SFG

ug = 0

vg = 1

Figure A.1: Energy levels in SFG process

The first hyperpolarizability can be expressed in terms of a single level population as

βαβγ(−ωq − ωr;ωq, ωr) =
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µαlnµ

β
nmµ

γ
ml(

ωml−ωq − iγml
)(
ωnl−ωq−ωr − iγnl

) (A.17a)

+
µαlnµ

γ
nmµ

β
ml(

ωml−ωr − iγml
)(
ωnl−ωq−ωr − iγnl

) (A.17b)

+
µβlnµ

α
nmµ

γ
ml(

ωml−ωq − iγml
)(
ωnm+ωq+ωr + iγnm

) (A.17c)

+
µγlnµ

α
nmµ

β
ml(

ωml−ωr − iγml
)(
ωnm+ωq+ωr + iγnm

) (A.17d)

+
µγlnµ

α
nmµ

β
ml(

ωnl+ωq + iγnl
)(
ωmn−ωq−ωr − iγmn

) (A.17e)

+
µβlnµ

α
nmµ

γ
ml(

ωnl+ωr + iγnl
)(
ωmn−ωq−ωr − iγmn

) (A.17f)

+
µγlnµ

β
nmµ

α
ml(

ωnl+ωq + iγnl
)(
ωml+ωq+ωr + iγml

) (A.17g)

+
µβlnµ

γ
nmµ

α
ml(

ωnl+ωr + iγnl
)(
ωml+ωq+ωr + iγml

)] (A.17h)

In the case of the SFG the first hyperpolarizability can be therefore rewritten as
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βαβγ(−ωSFG;ωIR, ωvis) =
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µαlnµ

β
nmµ

γ
ml(

ωml − ωIR − iγml
)(
ωnl − ωSFG − iγnl

)
+

µαlnµ
γ
nmµ

β
ml(

ωml − ωvis − iγml
)(
ωnl − ωSFG − iγnl

)
+

µβlnµ
α
nmµ

γ
ml(

ωml − ωIR − iγml
)(
ωnm + ωSFG + iγnm

)
+

µγlnµ
α
nmµ

β
ml(

ωml − ωvis − iγml
)(
ωnm + ωSFG + iγnm

)
+

µγlnµ
α
nmµ

β
ml(

ωnl + ωIR + iγnl
)(
ωmn − ωSFG − iγmn

)
+

µβlnµ
α
nmµ

γ
ml(

ωnl + ωvis + iγnl
)(
ωmn − ωSFG − iγmn

)
+

µγlnµ
β
nmµ

α
ml(

ωnl + ωIR + iγnl
)(
ωml + ωSFG + iγml

)
+

µβlnµ
γ
nmµ

α
ml(

ωnl + ωvis + iγnl
)(
ωml + ωSFG + iγml

)] (A.18)

The terms are reorganized according to resonant factor of the pump beams

βαβγ(−ωSFG;ωIR, ωvis) =
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µγml(

ωml − ωIR − iγml
) µαlnµ

β
nm(

ωnl − ωSFG − iγnl
)

+
µγml(

ωml − ωIR − iγml
) µβlnµ

α
nm(

ωnm + ωSFG + iγnm
)

+
µγln(

ωnl + ωIR + iγnl
) µαnmµ

β
ml(

ωmn − ωSFG − iγmn
)

+
µγln(

ωnl + ωIR + iγnl
) µβnmµ

α
ml(

ωml + ωSFG + iγml
)

+
µβml(

ωml − ωvis − iγml
) µαlnµ

γ
nm(

ωnl − ωSFG − iγnl
)

+
µβml(

ωml − ωvis − iγml
) µγlnµ

α
nm(

ωnm + ωSFG + iγnm
)

+
µβln(

ωnl + ωvis + iγnl
) µαnmµ

γ
ml(

ωmn − ωSFG − iγmn
)

+
µβln(

ωnl + ωvis + iγnl
) µγnmµ

α
ml(

ωml + ωSFG + iγml
)] (A.19)
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The dummy indexes are switched in the third, fourth, seventh, and eighth terms.

n⇔ m

βαβγ(−ωSFG;ωIR, ωvis) =
1

2~2

∑
l,m,n

ρ
(0)
ll

[
µγml(

ωml − ωIR − iγml
) µαlnµ

β
nm(

ωnl − ωSFG − iγnl
)

+
µγml(

ωml − ωIR − iγml
) µβlnµ

α
nm(

ωnm + ωSFG + iγnm
)

+
µγlm(

ωml + ωIR + iγml
) µmnαµ

β
nl(

ωnm − ωSFG − iγnm
)

+
µγlm(

ωml + ωIR + iγml
) µmnβµ

α
nl(

ωnl + ωSFG + iγnl
)

+
µβml(

ωml − ωvis − iγml
) µαlnµ

γ
nm(

ωnl − ωSFG − iγnl
)

+
µβml(

ωml − ωvis − iγml
) µγlnµ

α
nm(

ωnm + ωSFG + iγnm
)

+
µβlm(

ωml + ωvis + iγml
) µαmnµ

γ
nl(

ωnm − ωSFG − iγnm
)

+
µβlm(

ωml + ωvis + iγml
) µγmnµ

α
nl(

ωnl + ωSFG + iγnl
)] (A.20)

At low temperature, only the vibrational states of the fundamental electronic state is occupied.

We distinguish the electronic states (g,e,f ) from the vibrational states (u,v,w). ρ
(0)
ll = |gu〉 and

ωIR = |ωml| (→ gu, m→ gv, and n→ ew)

βαβγ(−ωSFG;ωIR, ωvis) =
1

2~2

∑
u,v

[
µγgv,gu(

ωgv,gu − ωIR − iγgv,gu
)∑

ew

µαgu,ewµ
β
ew,gv(

ωew,gu − ωSFG − iγew,gu
)

+
µγgv,gu(

ωgv,gu − ωIR − iγgv,gu
)∑

ew

µβgu,ewµ
α
ew,gv(

ωew,gv + ωSFG + iγew,gv
)

+
µγgu,gv(

ωgv,gu + ωIR + iγgv,gu
)∑

ew

µαgv,ewµ
β
ew,gu(

ωew,gv − ωSFG − iγew,gv
)

+
µγgu,gv(

ωgv,gu + ωIR + iγgv,gu
)∑

ew

µβgv,ewµ
α
ew,gu(

ωew,gu + ωSFG + iγew,gu
)

+
µβgv,gu(

ωgv,gu − ωvis − iγgv,gu
)∑

ew

µαgu,ewµ
γ
ew,gv(

ωew,gu − ωSFG − iγew,gu
)

+
µβgv,gu(

ωgv,gu − ωvis − iγgv,gu
)∑

ew

µγgu,ewµ
α
ew,gv(

ωew,gv + ωSFG + iγew,gv
)

+
µβgu,gv(

ωgv,gu + ωvis + iγgv,gu
)∑

ew

µαgv,ewµ
γ
ew,gu(

ωew,gv − ωSFG − iγew,gv
)
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+
µβgu,gv(

ωgv,gu + ωvis + iγgv,gu
)∑

ew

µγgv,ewµ
α
ew,gu(

ωew,gu + ωSFG + iγew,gu
)]

(A.21)

Only the fundamental electronic state is thermally occupied.

µgv,gu = 〈vg|〈g|µ|g〉|ug〉
= 〈vg|µgg|ug〉 (A.22)

ωgv,gu = ωvu (A.23)

Under the Placzek’s polarizability approximation,

ωew,gu ' ωew,gv ' ωeg (A.24)

∑
ew

µgu,ewµew,gv =
∑
ew

〈ug|〈g|µ|e〉|w〉〈w|〈e|µ|g〉|vg〉

=
∑
e

〈ug|µgeµeg|vg〉 (A.25)

βαβγ(−ωSFG;ωIR, ωvis) =
1

2~
∑
u,v

[
〈vg|µγgg|ug〉(

ωvu − ωIR − iγvu
)〈ug∣∣∣1~∑

e

µαgeµ
β
eg(

ωeg − ωSFG − iγeg
)∣∣∣vg〉

+
〈vg|µγgg|ug〉(

ωvu − ωIR − iγvu
)〈ug∣∣∣1~∑

e

µβgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣vg〉

+
〈ug|µγgg|vg〉(

ωvu + ωIR + iγvu
)〈vg∣∣∣1~∑

e

µαgeµ
β
eg(

ωeg − ωSFG − iγeg
)∣∣∣ug〉

+
〈ug|µγgg|vg〉(

ωvu + ωIR + iγvu
)〈vg∣∣∣1~∑

e

µβgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣ug〉

+
〈vg|µβgg|ug〉(

ωvu − ωvis − iγvu
)〈ug∣∣∣1~∑

e

µαgeµ
γ
eg(

ωeg − ωSFG − iγeg
)∣∣∣vg〉

+
〈vg|µβgg|ug〉(

ωvu − ωvis − iγvu
)〈ug∣∣∣1~∑

e

µγgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣vg〉

+
〈ug|µβgg|vg〉(

ωvu + ωvis + iγvu
)〈vg∣∣∣1~∑

e

µαgeµ
γ
eg(

ωeg − ωSFG − iγeg
)∣∣∣ug〉

+
〈ug|µβgg|vg〉(

ωvu + ωvis + iγvu
)〈vg∣∣∣1~∑

e

µγgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣ug〉]

(A.26)

Knowing that ωvis � ωIR, the last four terms can be neglected, one therefore obtain
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βαβγ(−ωSFG;ωIR, ωvis) =
1

2~
∑
u,v

[
〈vg|µγgg|ug〉(

ωvu − ωIR − iγvu
)〈ug∣∣∣1~∑

e

µαgeµ
β
eg(

ωeg − ωSFG − iγeg
)∣∣∣vg〉

+
〈vg|µγgg|ug〉(

ωvu − ωIR − iγvu
)〈ug∣∣∣1~∑

e

µβgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣vg〉

+
〈ug|µγgg|vg〉(

ωvu + ωIR + iγvu
)〈vg∣∣∣1~∑

e

µαgeµ
β
eg(

ωeg − ωSFG − iγeg
)∣∣∣ug〉

+
〈ug|µγgg|vg〉(

ωvu + ωIR + iγvu
)〈vg∣∣∣1~∑

e

µβgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣ug〉]

(A.27)

βαβγ(−ωSFG;ωIR, ωvis) =
1

2~
∑
u,v

[
〈vg|µγgg|ug〉(

ωvu − ωIR − iγvu
)

〈
ug

∣∣∣∣1~∑
e

µαgeµ
β
eg(

ωeg − ωSFG − iγeg
) +

µβgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣∣vg〉

+
〈ug|µγgg|vg〉(

ωvu + ωIR + iγvu
)〈

ug

∣∣∣∣1~∑
e

µαgeµ
β
eg(

ωeg − ωSFG − iγeg
) +

µβgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣∣vg〉

]
(A.28)

For positive frequencies (i.e., for ωIR > 0), only the first term can become resonant. The second

term is known as the antiresonant term. We can often drop the second term, especially when

ωIR is close to one of the vibrational resonance frequencies of the molecule.

βαβγ(−ωSFG;ωIR, ωvis) =
1

2~
∑
u,v

〈vg|µγgg|ug〉(
ωvu − ωIR − iγvu

)
〈
ug

∣∣∣∣1~∑
e

µαgeµ
β
eg(

ωeg − ωSFG − iγeg
) +

µβgeµ
α
eg(

ωeg + ωSFG + iγeg
)∣∣∣∣vg〉

(A.29)
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A.3 Transition polarizability for Raman spectroscopy

In Eq. (A.29) we recognize the αβ component of the transition polarizability (α)uv

(
ααβ
)
uv

=

〈
ug

∣∣∣∣1~∑
e

µαgeµ
β
eg(

ωeg − ω0 − iγeg
) +

µβgeµ
α
eg(

ωeg + ω0 + iγeg
)∣∣∣∣vg〉 (A.30)

Since electronic wavefunction are real,

〈ug|µαgeµβeg |vg〉 = 〈ug|µβgeµαeg|vg〉 (A.31)

ααβ =
1

~
∑
e

µαgeµ
β
eg

[
1(

ωeg − ω0 − iγeg
) +

1(
ωeg + ω0 + iγeg

)] (A.32)

A =
1(

ωeg − ω0 − iγeg
) +

1(
ωeg + +iγeg

)
=

2ωeg

ω2
eg −

(
ω0 + iγeg

)2

=
2ωeg

ω2
eg − ω2

0 − i2γegωeg + γ2
eg

where γ2
eg ≈ 0

≈ 2ωeg
(ω2

eg − ω2
0)− i2γegωeg

≈ 2ωeg
(ω2

eg − ω2
0) + i2γegωeg

(ω2
eg − ω2

0)2 + 4γ2
egω

2
eg

(A.33)

It is convenient to introduce dispersion and absorption lineshape functions f and g, where

f =
ω2
eg − ω2

0

(ω2
eg − ω2

0)2 + 4γ2
egω

2
eg

(A.34a)

g =
2γegωeg

(ω2
eg − ω2

0)2 + 4γ2
egω

2
eg

(A.34b)

It results that

A = 2ωeg(f + ig) (A.35)

Far from resonance γeg ≈ 0 then,

ααβuv =

〈
ug

∣∣∣∣∣1~∑
e

µαgeµ
β
eg

[
1(

ωeg − ω0

) +
1(

ωeg + ω0

)]∣∣∣∣∣ vg
〉

=
1

~
∑
e

2ωeg(
ω2
eg − ω2

0

) 〈ug ∣∣µαgeµβeg∣∣ vg〉 (A.36)
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Polarization and Orientation Factors

In this section, we address the relationships between the directions of the electric fields of the

incoming beams, ~E1i and ~E2i and the intensity reflected by the interface at sum-frequency. The

incoming electric fields are related to the polarization ~P (2)by

~P (2) ' ˜̃̃χ(2) : F1
~E1iF2

~E2i (B.1)

' ˜̃̃χ(2) : Fvis ~E(ωvis)FIR ~E(ωIR)

where the tilde notation indicates the dimensionality of the tensors. ~E is a first rank tensor

(vector: 3× 1), whereas ˜̃̃χ(2) is a third rank tensor (3× 3× 3 array)

Heinz [1] expressed this relationships as

ISFG ∝
∣∣∣(FSFG · ~̂e⊥) · ˜̃̃χ(2) : Fvis ~E(ωvis)FIR ~E(ωIR)

∣∣∣2 . (B.2)

The FI are the Fresnel factors and ~̂e⊥ is a vector perpendicular to the SFG wave vector (~k3r).

In this thesis, Caudano [2] has derived the field reflected by the interface at sum-frequency for

each polarization in the form (see Eq. (1.124) for details)

E3r,s = i
ω3

c

1

2
√
ε3r cos θ3r

[
2k3r,Z

k3r,Z + k3t,Z

]
p̂Y
P (2)(Z0)

ε0

eik3r,Z Z0 , (B.3a)

E3r,p = i
ω3

c

1

2
√
ε3r cos θ3r

[
2ε3rk3t,Z

ε3tk3r,Z + ε3rk3t,Z

]
p̂X(− cos θ3r)

P (2)(Z0)

ε0

eik3r,Z Z0

+ i
ω3

c

1

2
√
ε3r cos θ3r

[
2ε3tk3r

ε3tk3r,Z + ε3rk3t,Z

ε3r

εNL

]
p̂Z sin θ3r

P (2)(Z0)

ε0

eik3r,Z Z0 , (B.3b)

The developments found below are similar to that proposed by Lin et al. [3].

237
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~P (2) ≡



[χ(2)
XXX

EIR
X + χ(2)

XXY
EIR
Y + χ(2)

XXZ
EIR
Z ]Evis

X

+[χ(2)
XYX

EIR
X + χ(2)

XY Y
EIR
Y + χ(2)

XY Z
EIR
Z ]Evis

Y

+[χ(2)
XZX

EIR
X + χ(2)

XZY
EIR
Y + χ(2)

XZZ
EIR
Z ]Evis

Z

[χ(2)
YXX

EIR
X + χ(2)

YXY
EIR
Y + χ(2)

YXZ
EIR
Z ]Evis

X

+[χ(2)
Y YX

EIR
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Y Y Y
EIR
Y + χ(2)

Y Y Z
EIR
Z ]Evis

Y

+[χ(2)
Y ZX

EIR
X + χ(2)

Y ZY
EIR
Y + χ(2)

Y ZZ
EIR
Z ]Evis

Z

[χ(2)
ZXX

EIR
X + χ(2)

ZXY
EIR
Y + χ(2)

ZXZ
EIR
Z ]Evis

X

+[χ(2)
ZYX

EIR
X + χ(2)

ZY Y
EIR
Y + χ(2)

ZY Z
EIR
Z ]Evis

Y

+[χ(2)
ZZX

EIR
X + χ(2)

ZZY
EIR
Y + χ(2)

ZZZ
EIR
Z ]Evis

Z



, (B.7)

The vector in Eq. (B.7) is the generated polarization, and each component reads (cf Eq. (2.66)).

P
(2)
I (ωvis, ωIR) = ε0

∑
J,K

χ(2)
IJK

(−ωvis − ωIR;ωvis, ωIR)Evis
J EIR

K . (B.8)

The generated polarization can be projected onto the output field direction (Fig. 1.10). This

direction can be defined for both polarizations of the field by

~̂e⊥ = cos Θ~̂ep + eiϕ sin Θ~̂es, (B.9)

= cos Θ[− cos θi︸ ︷︷ ︸
ê⊥X

~eX ] + sin Θ ~eY e
iϕ + cos Θ[sin θi︸ ︷︷ ︸

ê⊥Z

~eZ ],

where θi is the incidence angle, Θ is the angle between generated light electric field, ~ESFG, and

the output plane, and eiϕ defines the phase between the two polarizations. We can therefore

write

ESFG ∝ ~P (2)(F SFG~̂e⊥) ∝

 P
(2)
X (F SFG

X ê⊥X) cos Θ

P
(2)
Y (F SFG

Y ê⊥Y ) sin Θ eiϕ

P
(2)
Z (F SFG

Z ê⊥Z) cos Θ

 , (B.10)

where

~̂e⊥ =

ê⊥X cos Θ

eiϕ sin Θ

ê⊥Z cos Θ

 , (B.11)

and

~P (2) = P (2)(p̂X~eX + p̂Y ~eY + p̂Z~eZ)

= P
(2)
X ~eX + P

(2)
Y ~eY + P

(2)
Z ~eZ . (B.12)
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The output intensity is proportional to the square of

ISFG ∝

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Z ]Evis

X

+[χ(2)
XYX

EIR
X + χ(2)

XY Y
EIR
Y + χ(2)

XY Z
EIR
Z ]Evis

Y

+[χ(2)
XZX

EIR
X + χ(2)

XZY
EIR
Y + χ(2)

XZZ
EIR
Z ]Evis

Z

}
·
(
F SFG
X ê⊥X

)
cos Θ

+

F SFG
Y

{
[χ(2)

YXX
EIR
X + χ(2)

YXY
EIR
Y + χ(2)

YXZ
EIR
Z ]Evis

X

+[χ(2)
Y YX

EIR
X + χ(2)

Y Y Y
EIR
Y + χ(2)

Y Y Z
EIR
Z ]Evis

Y

+[χ(2)
Y ZX

EIR
X + χ(2)

Y ZY
EIR
Y + χ(2)

Y ZZ
EIR
Z ]Evis

Z

}
·
(
F SFG
Y ê⊥Y

)
sin Θ eiϕ

+

sin θSFGF
SFG
Z

{
[χ(2)

ZXX
EIR
X + χ(2)

ZXY
EIR
Y + χ(2)

ZXZ
EIR
Z ]Evis

X

+[χ(2)
ZYX

EIR
X + χ(2)

ZY Y
EIR
Y + χ(2)

ZY Z
e3(ωIR]Evis

Y

+[χ(2)
ZZX

EIR
X + χ(2)

ZZY
EIR
Y + χ(2)

ZZZ
EIR
Z ]Evis

Z

}
·
(
F SFG
Z ê⊥Z

)
cos Θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(B.13)

For a surface with both X −Z and Y −Z mirror planes and non-chiral the non-zero component

of the second order non-linear susceptibility are those in blue:

ISFG ∝

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{
[χ(2)

XXX
EIR
X + χ(2)

XXY
EIR
Y + χ(2)

XXZ
EIR
Z ]Evis

X

+[χ(2)
XYX

EIR
X + χ(2)

XY Y
EIR
Y + χ(2)

XY Z
EIR
Z ]Evis

Y

+[χ(2)
XZX

EIR
X + χ(2)

XZY
EIR
Y + χ(2)

XZZ
EIR
Z ]Evis

Z

}
·
(
F SFG
X ê⊥X

)
cos Θ

+{
[χ(2)

YXX
EIR
X + χ(2)

YXY
EIR
Y + χ(2)

YXZ
EIR
Z ]Evis

X

+[χ(2)
Y YX

EIR
X + χ(2)

Y Y Y
EIR
Y + χ(2)

Y Y Z
EIR
Z ]Evis

Y

+[χ(2)
Y ZX

EIR
X + χ(2)

Y ZY
EIR
Y + χ(2)

Y ZZ
EIR
Z ]Evis

Z

}
·
(
F SFG
Y ê⊥Y

)
sin Θ eiϕ

+{
[χ(2)

ZXX
EIR
X + χ(2)

ZXY
EIR
Y + χ(2)

ZXZ
EIR
Z ]Evis

X

+[χ(2)
ZYX

EIR
X + χ(2)

ZY Y
EIR
Y + χ(2)

ZY Z
EIR
Z ]Evis

Y

+[χ(2)
ZZX

EIR
X + χ(2)

ZZY
EIR
Y + χ(2)

ZZZ
EIR
Z ]Evis

Z

}
·
(
F SFG
Z ê⊥Z

)
ê⊥Z cos Θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(B.14)
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The output electric field is simplified by eliminating all elements of the second order non-linear

susceptibility that are zero:

ISFG ∝

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{
χ(2)
XXZ

EIR
Z Evis

X + χ(2)
XZX

EIR
X Evis

Z

}
·
(
F SFG
X ê⊥X

)
cos Θ

+{
χ(2)
Y Y Z

EIR
Z Evis

Y + χ(2)
Y ZY

EIR
Y Evis

Z

}
·
(
F SFG
Y ê⊥Y

)
sin Θ eiϕ

+{
χ(2)
ZXX

EIR
X Evis

X + χ(2)
ZY Y

EIR
Y Evis

Y + χ(2)
ZZZ

EIR
Z Evis

Z

}
·
(
F SFG
Z ê⊥Z

)
cos Θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(B.15)

Case I: Θ = 0 (sin Θ = 0 and cos Θ = 1). The output becomes

ISFG ∝

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{
χ(2)
XXZ

EIR
Z Evis

X + χ(2)
XZX

EIR
X Evis

Z

}
·
(
F SFG
X ê⊥X

)
cos Θ

+

0

+

{
χ(2)
ZXX

EIR
X Evis

X + χ(2)
ZY Y

EIR
Y Evis

Y + χ(2)
ZZZ

EIR
Z Evis

Z

}
·
(
F SFG
Z ê⊥Z

)
cos Θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(B.16)

Only the p-polarized sum frequency survives.

• If the visible and infrared are both p-polarized : ppp

ISFG ∝

∣∣∣∣∣∣∣∣∣∣

{
χ(2)
XXZ

EIR
Z Evis

X + χ(2)
XZX

EIR
X Evis

Z

}
·
(
F SFG
X ê⊥X

)
+{

χ(2)
ZXX

EIR
X Evis

X + χ(2)
ZZZ

EIR
Z Evis

Z

}
·
(
F SFG
Z ê⊥Z

)
∣∣∣∣∣∣∣∣∣∣

2

(B.17)

• If the visible and infrared are both s-polarized :pss

| {χ(2)
ZY Y

EIR
Y Evis

Y } ·
(
F SFG
Z ê⊥Z

)
| (B.18)

Case II: Θ = π
2

(sin Θ = 1 and cos Θ = 0) The output becomes
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ISFG ∝

∣∣∣∣∣∣∣∣∣∣∣∣

0

+{
χ(2)
Y Y Z

EIR
Z Evis

Y + χ(2)
Y ZY

EIR
Y Evis

Z

}
·
(
F SFG
Y ê⊥Y

)
+

0

∣∣∣∣∣∣∣∣∣∣∣∣

2

(B.19)

Only the s term survives for sum frequency , this is ssp or sps.

• if the visible is s-polarized and IR is p-polarized: ssp

ISFG ∝
∣∣χ(2)

Y Y Z
EIR
Z Evis

Y ·
(
F SFG
Y ê⊥Y

)∣∣2 (B.20)

• if the visible is p-polarized and IR is s-polarized: sps

ISFG ∝
∣∣χ(2)

Y ZY
EIR
Y Evis

Z ·
(
F SFG
Y ê⊥Y

)∣∣2 (B.21)

B.2 Expression of SFG intensities

Let us first introduce the Fresnel and field orientation factors

EI = FE(0)êI (B.22)

IR, V is


êX → cos θ

êY → 1

êZ → sin θ

SFG = ê⊥


êX → − cos θ

êY → 1

êZ → sin θ

(B.23)
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B.2.1 ppp Configuration

According to Eq. (B.17)

Ippp ∝

∣∣∣∣∣∣∣∣∣
− cos θSFG cos θvis sin θIR F

SFG
X F vis

X F IR
Z χ

(2)
XXZ E

(0),vis
p E

(0),IR
p

− cos θSFG sin θvis cos θIR F
SFG
X F vis

Z F IR
X χ

(2)
XZX E

(0),vis
p E

(0),IR
p

+ sin θSFG cos θvis cos θIR F
SFG
Z F vis

X F IR
X χ

(2)
ZXX E

(0),vis
p E

(0),IR
p

+ sin θSFG sin θvis sin θIR F
SFG
Z F vis

Z F IR
Z χ

(2)
ZZZ E

(0),vis
p E

(0),IR
p

∣∣∣∣∣∣∣∣∣

2

(B.24)

|E3r,p|2 =

∣∣∣∣∣i ω3

c

1

2
√
ε3r cos θ3r︸ ︷︷ ︸
LSFG

[
2ε3rk3t,Z

ε3tk3r,Z + ε3rk3t,Z

]
︸ ︷︷ ︸

FSFGX

p̂X(− cos θ3r)
P (2)(Z0)

ε0
eik3r,Z Z0

+ i
ω3

c

1

2
√
ε3r cos θ3r︸ ︷︷ ︸
LSFG

[
2ε3tk3r

ε3tk3r,Z + ε3rk3t,Z

ε3r

εNL

]
︸ ︷︷ ︸

FSFGZ

p̂Z sin θ3r
P (2)(Z0)

ε0
eik3r,Z Z0

∣∣∣∣∣
2

(B.25)

considering that Z0 = 0⇐⇒ eik3r,Z Z0 = 1

− cos θ3r p̂X
P (2)(Z0)

ε0

=− cos θSFG cos θvis sin θIR χ
(2)
XXZ

F SFG
X F vis

X F IR
Z E(0),vis

p E(0),IR
p

− cos θSFG sin θvis cos θIR χ
(2)
XZX

F SFG
X F vis

Z F IR
X E(0),vis

p E(0),IR
p (B.26)

sin θ3r p̂Z
P (2)(Z0)

ε0

= sin θSFG cos θvis cos θIR χ
(2)
ZXX

F SFG
Z F vis

X F IR
X E(0),vis

p E(0),IR
p

+ sin θSFG sin θvis sin θIR χ
(2)
ZZZ

F SFG
Z F vis

Z F IR
Z E(0),vis

p E(0),IR
p (B.27)

|E3r,p|2 =

∣∣∣∣∣− cos θSFG cos θvis sin θIR χ
(2)
XXZ

LSFGF SFG
X F vis

X F IR
Z E(0),vis

p E(0),IR
p

− cos θSFG sin θvis cos θIR χ
(2)
XZX

LSFGF SFG
X F vis

Z F IR
X E(0),vis

p E(0),IR
p

+ sin θSFG cos θvis cos θIR χ
(2)
ZXX

LSFGF SFG
Z F vis

X F IR
X E(0),vis

p E(0),IR
p

+ sin θSFG sin θvis sin θIR χ
(2)
ZZZ

LSFGF SFG
Z F vis

Z F IR
Z E(0),vis

p E(0),IR
p

∣∣∣∣∣
2

(B.28)



Appendix B. Polarization and Orientation Factors 244

|E3r,p|2 =

∣∣∣∣∣− cos θSFG cos θvis sin θIR χ
(2)
XXZ

LSFGF SFG
X F vis

X F IR
Z

− cos θSFG sin θvis cos θIR χ
(2)
XZX

LSFGF SFG
X F vis

Z F IR
X

+ sin θSFG cos θvis cos θIR χ
(2)
ZXX

LSFGF SFG
Z F vis

X F IR
X

+ sin θSFG sin θvis sin θIR χ
(2)
ZZZ

LSFGF SFG
Z F vis

Z F IR
Z

∣∣∣∣∣
2 ∣∣E(0),vis

p

∣∣2 ∣∣E(0),IR
p

∣∣2 (B.29)

For a non-magnetic material

I =
1

2
cnε0

∣∣E(0)
∣∣2 , (B.30)

2Ippp
cn1(ωSFG)ε0

=

∣∣∣∣∣− cos θSFG cos θvis sin θIR χ
(2)
XXZ

LSFGF SFG
X F vis

X F IR
Z

− cos θSFG sin θvis cos θIR χ
(2)
XZX

LSFGF SFG
X F vis

Z F IR
X

+ sin θSFG cos θvis cos θIR χ
(2)
ZXX

LSFGF SFG
Z F vis

X F IR
X

+ sin θSFG sin θvis sin θIR χ
(2)
ZZZ

LSFGF SFG
Z F vis

Z F IR
Z

∣∣∣∣∣
2

2IIR
cn1(ωIR)ε0

2Ivis
cn1(ωvis)ε0

(B.31)

Ippp =
2n1(ωSFG)

cε0n1(ωIR)n1(ωvis)

∣∣∣∣∣− cos θSFG cos θvis sin θIR χ
(2)
XXZ

LSFGF SFG
X F vis

X F IR
Z

− cos θSFG sin θvis cos θIR χ
(2)
XZX

LSFGF SFG
X F vis

Z F IR
X

+ sin θSFG cos θvis cos θIR χ
(2)
ZXX

LSFGF SFG
Z F vis

X F IR
X

+ sin θSFG sin θvis sin θIR χ
(2)
ZZZ

LSFGF SFG
Z F vis

Z F IR
Z

∣∣∣∣∣
2

IIRIvis (B.32)

LSFG =
ωSFG
c

1

2
√
ε3r cos θSFG

(LSFG)2 =
ω2
SFG

c2

1

4n2
1(ωSFG) cos2 θSFG
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Ippp
IIRIvis

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 θSFG
×∣∣∣∣∣− cosψSFG cos θvis sin θIR χ

(2)
XXZ

F SFG
X F vis

X F IR
Z

− cosψSFG sin θvis cos θIR χ
(2)
XZX

F SFG
X F vis

Z F IR
X

+ sinψSFG cos θvis cos θIR χ
(2)
ZXX

F SFG
Z F vis

X F IR
X

+ sinψSFG sin θvis sin θIR χ
(2)
ZZZ

F SFG
Z F vis

Z F IR
Z

∣∣∣∣∣
2

(B.33)

B.2.2 pss Configuration

According to Eq. (B.18)

Ipss ∝
∣∣∣sin θSFG F SFG

Z χ
(2)
ZY Y F

vis
Y F IR

Y E
(0),vis
s E

(0),IR
s

∣∣∣2 (B.34)

then, equating to Eq. (B.3b):

− cos θ3r p̂X
P (2)(z0)

ε0

= 0

sin θ3r p̂Z
P (2)(z0)

ε0

= sin θSFG χ
(2)
ZY Y

F SFG
Z F vis

Y F IR
Y E(0),vis

s E(0),IR
s (B.35)

Therefore, using the same transformations from Eq. (B.28) to Eq. (B.33) one obtains:

Ipss
IIRIvis

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 θSFG

∣∣∣∣∣ sin θSFGχ(2)
ZY Y

F SFG
Z F vis

Y F IR
Y

∣∣∣∣∣
2

(B.36)

B.2.3 ssp Configuration

According to Eq. (B.20)

Issp ∝
∣∣∣sin θIR χ(2)

Y Y Z
F SFG
Y F vis

Y F IR
Z E

(0),vis
s E

(0),IR
p

∣∣∣2 (B.37)

When considering that Z0 = 0 ↔ eikSFG,R,Z Z0 = 1, Eq. (B.3a) reads
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|E3r,s|2 =

∣∣∣∣∣∣∣∣∣i
ω3

c

1

2
√
ε3r cos θ3r︸ ︷︷ ︸
LSFG

[
2k3r,Z

k3r,Z + k3t,Z

]
︸ ︷︷ ︸

FSFGY

p̂Y
P (2)(Z0)

ε0

∣∣∣∣∣∣∣∣∣
2

(B.38)

p̂Y
P (2)(Z0)

ε0

= sin θIRχ
(2)
Y Y Z

F SFG
Y F vis

Y F IR
Z E(0),vis

s E(0),IR
p (B.39)

|E3r,s|2 =

∣∣∣∣∣ sin θIRLSFGχ(2)
Y Y Z

F SFG
Y F vis

Y F IR
Z E(0),vis

s E(0),IR
p

∣∣∣∣∣
2

=

∣∣∣∣∣ sin θIRχ(2)
Y Y Z

LSFGF SFG
Y F vis

Y F IR
Z

∣∣∣∣∣
2 ∣∣E(0),vis

s

∣∣2 ∣∣E(0),IR
p

∣∣2 (B.40)

The intensity is related to the field by Eq. (B.30)

2Issp
cn1(ωSFG)ε0

=

∣∣∣∣∣ sin θIRχ(2)
Y Y Z

LSFGF SFG
Y F vis

Y F IR
Z

∣∣∣∣∣
2

2IIR
cn1(ωIR)ε0

2Ivis
cn1(ωvis)ε0

(B.41)

Issp =
2n1(ωSFG)

cε0n1(ωIR)n1(ωvis)

∣∣∣∣∣ sin θIRχ(2)
Y Y Z

LSFGF SFG
Y F vis

Y F IR
Z

∣∣∣∣∣
2

IIRIvis (B.42)

Issp =
2n1(ωSFG)

cε0n1(ωIR)n1(ωvis)

∣∣∣∣∣ sin θIRχ(2)
Y Y Z

LSFGF SFG
Y F vis

Y F IR
Z

∣∣∣∣∣
2

IIRIvis (B.43)

Issp
IIRIvis︸ ︷︷ ︸
J−1sm2

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 θSFG︸ ︷︷ ︸
m−2C−1Vs

∣∣∣∣∣ sin θIRχ(2)
Y Y ZF

SFG
Y F vis

Y F IR
Z

∣∣∣∣∣
2

︸ ︷︷ ︸
|χ(2), eff
Y Y Z |2 ≡ m4V−2

(B.44)
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B.2.4 sps Configuration

According to Eq. (B.21)

Isps ∝
∣∣∣sin θvis χ(2)

Y ZY
F SFG
Y F vis

Z F IR
Y E

(0),vis
p E

(0),IR
s

∣∣∣2 (B.45)

then, equating to Eq. (B.3a):

p̂Y
P (2)(Z0)

ε0

= sin θvis χ
(2)
Y ZY

F SFG
Y F vis

Z F IR
Y E(0),vis

p E(0),IR
s (B.46)

Therefore, using the same transformations from Eq. (B.39) to Eq. (B.44) one obtains:

Isps
IIRIvis

=
ω2
SFG

2c3ε0n1(ωSFG)n1(ωIR)n1(ωvis) cos2 θSFG

∣∣∣∣∣ sin θvisχ(2)
Y ZY

F SFG
Y F vis

Z F IR
Y

∣∣∣∣∣
2

(B.47)
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Appendix C

Relationships Between the

Second-Order Susceptibility and First

Hyperpolarizability Tensors in the Case

of SFG

The macroscopic surface second-order surface susceptibility elements, χ(2)
IJK

, result from the first

hyperpolarizability elements βαβγ and are related via the average of the projection of the αβγ

onto the IJK (Eq. (3.76)):

χ(2)
IJK
' Ns

∑
α,β,γ

〈IJK|αβγ〉βαβγ,

' Ns

∑
α,β,γ

〈TIα,Jβ,Kγ(φ, θ, ξ)〉βαβγ, (C.1)

In this equation both χ(2)
IJK

is defined in the laboratory system coordinates (X, Y, Z), whereas

βαβγ is a molecular quantity i.e. calculated in the molecular system coordinates (x, y, z). One

therefore needs to transform it into the laboratory system coordinates. In the following para-

graphs, a derivation of the relationships between second-order surface susceptibility and first

hyperpolarizability tensors is presented for the case of SFG.

C.1 The rotation matrix

We consider transforming between two coordinate systems labeled X, Y, Z and x, y, z. Typically

we are concerned with the molecular (x, y, z) and the laboratory (X, Y, Z) systems coordinates.

The three Euler angles φ, θ, and ξ shown in Fig. C.1 are used to make the transformation

between the two coordinate systems.

249
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X

Y

Z

θ

θ

φ

φ
N

N

ξ

ξ x
y

z

Figure C.1: Euler angles (φ, θ, ξ) relating the molecular (x, y, z) and the laboratory (X,Y, Z)
system coordinates.

The angles φ and θ are spherical polar coordinates where θ measures the angle from the Z axis

to the z axis and φ measures the angle from the X axis to the line of nodes (projection of the Z

axis on the XY plane). The angle θ measures the angle from the line of nodes N and the x axis.

Thus ξ is an azimuthal angles about the z axis just as φ is an azimuthal angle about the Z axis.

Note that the line of nodes ON is perpendicular to both the z and Z axes. The Euler angles φ,

θ, and ξ should be regarded as defining a prescription whereby the XYZ frame (the space-fixed

frame) may be made to coincide with the xyz frame (the body-fixed frame) by three successive

rotations:

At last, the angles are defined in such a way that they are positive when they rotate counter-

clockwise along the positive axis of rotation. φ and ξ range are defined modulo 2π. A valid

range could be [−π, π] or [0, 2π]. θ covers π radians and its range is [0, π].

The matrix representation of the rotation is the product of the three relative rotation matrices.

The three matrices are multiplied in the order of the operation when we think about intrinsic

rotation and in the opposite order when we think about extrinsic rotation.

The unitary transformation R is conveniently expressed as three Euler angle rotations:

R (φ, θ, ξ) = Rz(φ)Ry(θ)Rz(ξ) (C.2)
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where φ is a rotation about the original Z axis, θ is a rotation about the new y axis that

coincides with the line of nodes N, and ξ is a rotation about the final z axis. These rotations of

the coordinate system axes are shown below.

First, we consider the rotation of φ about the laboratory Z axis (Fig. C.2).

X

Y

Z

x

y

z

X

Y

Z

φ

φ

z

Nxy

Figure C.2: Rotation of φ about the Z axis

This is followed by a rotation of θ about the new y axis which coincides with the line of nodes

(Fig. C.3).

X

Y

Z

φ

φ

z

Nxy

X

Y

Z

θ

θ

φ

φ
N

N

x

y

z

Figure C.3: Rotation of θ about the y axis

Finally, a rotation of ξ about the new z axis completes the transformation (Fig. C.4).

The direction cosine matrix is obtained from the product of these transformations. That is

R = Rz(φ)RN(θ)Rz(ξ) (C.3)
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Figure C.4: Rotation of ξ about the z axis

This can be written explicitly as

R =

cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1


 cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)


cos(ξ) − sin(ξ) 0

sin(ξ) cos(ξ) 0

0 0 1

 (C.4)

=

c(φ) c(θ) c(ξ)− s(φ) s(ξ) −c(φ) c(θ) s(ξ)− c(ξ) s(φ) c(φ) s(θ)

c(φ) s(ξ) + c(θ) c(ξ) s(φ) c(φ) c(ξ)− c(θ) s(φ) s(ξ) s(φ) s(θ)

−c(ξ) s(θ) s(θ) s(ξ) c(θ)

 (C.5)

=

RX,x RX,y RX,z

RY,x RY,y RY,z

RZ,x RZ,y RZ,z

 = Rlab,mol (C.6)

where c and s represent cosine and sine, respectively. Because R is a unitary transformation and

the elements are real we have that R−1
ab = Rba. Thus,

Rmol,lab =

 c(φ) c(θ) c(ξ)− s(φ) s(ξ) c(φ) s(ξ) + c(θ) c(ξ) s(φ) −c(ξ) s(θ)
−c(φ) c(θ) s(ξ)− c(ξ) s(φ) c(φ) c(ξ)− c(θ) s(φ) s(ξ) s(θ) s(ξ)

c(φ) s(θ) s(φ) s(θ) c(θ)

 (C.7)

=

Rx,X Rx,Y Rx,Z

Ry,X Ry,Y Ry,Z

Rz,X Rz,Y Rz,Z

 (C.8)
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C.2 Applying rotation matrices on the second-order sus-

ceptibility

A′ijk =
∑
l

∑
m

∑
n

Ri,lRj,mRk,nA
′
lmn (C.9)

where, i, j, k = {X, Y, Z} and l,m, n = {x, y, z}.

Thus

A′Xjk =
∑
l

∑
m

∑
n

RX,lRj,mRk,nA
′
lmn

=
∑
m

∑
n

RX,xRj,mRk,nA
′
xmn

+
∑
m

∑
n

RX,yRj,mRk,nA
′
ymn

+
∑
m

∑
n

RX,zRj,mRk,nA
′
zmn (C.10)

A′Xjk =RX,x

∑
m

∑
n

Rj,mRk,nA
′
xmn

+RX,y

∑
m

∑
n

Rj,mRk,nA
′
ymn

+RX,z

∑
m

∑
n

Rj,mRk,nA
′
zmn (C.11)

A′Xjk =RX,x

∑
m

∑
n

Rj,mRk,nA
′
xmn︸ ︷︷ ︸

(RA′xRT )

+RX,y

∑
m

∑
n

Rj,mRk,nA
′
ymn︸ ︷︷ ︸

(RA′yRT )

+RX,z

∑
m

∑
n

Rj,mRk,nA
′
zmn︸ ︷︷ ︸

(RA′zRT )

(C.12)

A′Xjk = RX,x[RA
′
xR

T ] +RX,y[RA
′
yR

T ] +RX,z[RA
′
zR

T ] (C.13)
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One therefore obtains
A′Xjk = RX,x[RA

′
xR

T ] +RX,y[RA
′
yR

T ] +RX,z[RA
′
zR

T ]

A′Y jk = RY,x[RA
′
xR

T ] +RY,y[RA
′
yR

T ] +RY,z[RA
′
zR]T

A′Zjk = RZ,x[RA
′
xR

T ] +RZ,y[RA
′
yR

T ] +RZ,z[RA
′
zR

T ]

(C.14)

C.3 Average over φ angle for the second-order suscepti-

bility

Considering that the interface is invariant for arbitrary rotations around the surface plane (i.e.,

for a uniaxial film).

If we want to integrate over φ, any function f(φ, θ, ξ) becomes an expected value 〈f(φ, θ, ξ)〉:

〈f(φ, θ, ξ)〉 =
1

2π

∫ π

−π
f(φ, θ, ξ) dφ (C.15)

The values of the following integrals are therefore needed:∫ π
−π sin(x) dx = 0

∫ π
−π cos(x) dx = 0

∫ π
−π sin(x) cos(x) dx = 0∫ π

−π sin2(x) dx = π
∫ π
−π cos2(x) dx = π

∫ π
−π sin2(x) cos(x) dx = 0∫ π

−π sin3(x) dx = 0
∫ π
−π cos3(x) dx = 0

∫ π
−π sin(x) cos2(x) dx = 0

〈χ(2)
XXX〉φ/N =

{x,y,z}∑
αβγ

〈TXαTXβTXγ〉φβαβγ

= 0 (C.16)

〈χ(2)
Y Y Y 〉φ/N =

{x,y,z}∑
αβγ

〈TY αTY βTY γ〉φβαβγ

= 0 (C.17)

〈χ(2)
ZZZ〉φ/N =

{x,y,z}∑
αβγ

〈TZαTZβTZγ〉φβαβγ

= − sin3(θ) cos3(ξ)βxxx + sin3(θ) sin3(ξ)βyyy + cos3(θ)βzzz

+ sin3(θ) cos2(ξ) sin(ξ)
[
βxxy + βxyx + βyxx

]
+ sin3(θ) cos(ξ) sin2(ξ)

[
− βxyy − βyxy − βyyx

]
+ cos(θ) sin2(θ) cos2(ξ)

[
βxxz + βxzx + βzxx

]
+ cos(θ) sin2(θ) sin2(ξ)

[
βyyz + βyzy + βzyy

]
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+ cos2(θ) sin(θ) cos(ξ)
[
− βxzz − βzxz − βzzx

]
+ cos2(θ) sin(θ) sin(ξ)

[
βyzz + βzyz + βzzy

]
+ cos(θ) sin2(θ) cos(ξ) sin(ξ)

[
− βxyz − βyxz − βxzy − βzxy − βyzx − βzyx

]
(C.18)

〈χ(2)
XXY 〉φ/N =

{x,y,z}∑
αβγ

〈TXαTXβTY γ〉φβαβγ

= 0 (C.19)

〈χ(2)
XYX〉φ/N =

{x,y,z}∑
αβγ

〈TXαTXβTY γ〉φβαγβ

= 0 (C.20)

〈χ(2)
Y XX〉φ/N =

{x,y,z}∑
αβγ

〈TXαTXβTY γ〉φβγβα

= 0 (C.21)

〈χ(2)
XY Y 〉φ/N =

{x,y,z}∑
αβγ

〈TXαTY βTY γ〉φβαβγ

= 0 (C.22)

〈χ(2)
Y XY 〉φ/N =

{x,y,z}∑
αβγ

〈TXαTY βTY γ〉φββαγ

= 0 (C.23)

〈χ(2)
Y Y X〉φ/N =

{x,y,z}∑
αβγ

〈TXαTY βTY γ〉φβγβα

= 0 (C.24)

〈χ(2)
XXZ〉φ/N =

1

2
cos(θ) sin2(θ)βzzz +

1

2
cos(θ)

[
βxxz + βyyz

]
+

1

2
sin3(θ) cos3(ξ)

[
βxxx − βxyy − βyxy − βyyx

]
+

1

2
sin3(θ) sin3(ξ)

[
− βyyy + βxxy + βxyx + βyxx

]
+

1

2
sin(θ) cos(ξ)

[
− βxxx − βyyx + βxzz + βzxz

]
+

1

2
sin(θ) sin(ξ)

[
βyyy + βxxy − βyzz − βzyz

]
+

1

2
sin3(θ) sin(ξ)

[
− βxxy − βxyx − βyxx + βyzz + βzyz + βzzy

]
+

1

2
sin3(θ) cos(ξ)

[
βxyy + βyxy + βyyx − βxzz − βzxz − βzzx

]
− 1

2
cos(θ) sin2(θ) cos2(ξ)

[
βxxz + βxzx + βzxx

]
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− 1

2
cos(θ) sin2(θ) sin2(ξ)

[
βyyz + βyzy + βzyy

]
+

1

2
cos(θ) sin2(θ) cos(ξ) sin(ξ)

[
βxyz + βyxz + βxzy + βzxy + βyzx + βzyx

]
(C.25)

〈χ(2)
XZX〉φ/N =

{x,y,z}∑
αβγ

〈TXαTXβTZγ〉φβαγβ

=
1

2
cos(θ) sin2(θ)βzzz +

1

2
cos(θ)

[
βxzx + βyzy

]
+

1

2
sin3(θ) cos3(ξ)

[
βxxx − βxyy − βyxy − βyyx

]
+

1

2
sin3(θ) sin3(ξ)

[
− βyyy + βxxy + βxyx + βyxx

]
+

1

2
sin(θ) cos(ξ)

[
− βxxx − βyxy + βxzz + βzzx

]
+

1

2
sin(θ) sin(ξ)

[
βyyy + βxyx − βyzz − βzzy

]
+

1

2
sin3(θ) sin(ξ)

[
− βxxy − βxyx − βyxx + βyzz + βzyz + βzzy

]
+

1

2
sin3(θ) cos(ξ)

[
βxyy + βyxy + βyyx − βxzz − βzxz − βzzx

]
− 1

2
cos(θ) sin2(θ) cos2(ξ)

[
βxxz + βxzx + βzxx

]
− 1

2
cos(θ) sin2(θ) sin2(ξ)

[
βyyz + βyzy + βzyy

]
+

1

2
cos(θ) sin2(θ) cos(ξ) sin(ξ)

[
βxyz + βyxz + βxzy + βzxy + βyzx + βzyx

]
(C.26)

〈χ(2)
ZXX〉φ/N =

{x,y,z}∑
αβγ

〈TXαTXβTZγ〉φβγβα

=
1

2
cos(θ) sin2(θ)βzzz +

1

2
cos(θ)

[
βzxx + βzyy

]
+

1

2
sin3(θ) cos3(ξ)

[
βxxx − βxyy − βyxy − βyyx

]
+

1

2
sin3(θ) sin3(ξ)

[
− βyyy + βxxy + βxyx + βyxx

]
+

1

2
sin(θ) cos(ξ)

[
− βxxx − βxyy + βzxz + βzzx

]
+

1

2
sin(θ) sin(ξ)

[
βyyy + βyxx − βzyz − βzzy

]
+

1

2
sin3(θ) sin(ξ)

[
− βxxy − βxyx − βyxx + βyzz + βzyz + βzzy

]
+

1

2
sin3(θ) cos(ξ)

[
βxyy + βyxy + βyyx − βxzz − βzxz − βzzx

]
− 1

2
cos(θ) sin2(θ) cos2(ξ)

[
βxxz + βxzx + βzxx

]
− 1

2
cos(θ) sin2(θ) sin2(ξ)

[
βyyz + βyzy + βzyy

]
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+
1

2
cos(θ) sin2(θ) cos(ξ) sin(ξ)

[
βxyz + βyxz + βxzy + βzxy + βyzx + βzyx

]
(C.27)

〈χ(2)
XZZ〉φ/N =

{x,y,z}∑
αβγ

〈TXαTZβTZγ〉φβαβγ

= 0 (C.28)

〈χ(2)
ZXZ〉φ/N =

{x,y,z}∑
αβγ

〈TXαTZβTZγ〉φββαγ

= 0 (C.29)

〈χ(2)
ZZX〉φ/N =

{x,y,z}∑
αβγ

〈TXαTZβTZγ〉φβγβα

= 0 (C.30)

〈χ(2)
Y Y Z〉φ/N = sin2(θ) cos(θ)[βzzz] + cos(θ)[βxxz + βyyz]

− sin2(θ) cos(θ) sin2(ξ)[βyyz + βyzy + βzyy]

− sin2(θ) cos(θ) cos2(ξ)[βxxz + βxzx + βzxx]

+ sin2(θ) cos(θ) sin(ξ) cos(ξ)[βzyx + βyzx + βzxy + βxzy + βyxz + βxyz]

+ sin(θ) sin(ξ)[βyyy + βxxy − βyzz − βzyz]
+ sin(θ) cos(ξ)[−βxxx − βyyx + βxzz + βzxz]

+ sin3(θ) sin(ξ)[−βxxy − βxyx − βyxx + βyzz + βzyz + βzzy]

+ sin3(θ) cos(ξ)[βxyy + βyxy + βyyx − βxzz − βzxz − βzzx]
+ sin3(θ) sin3(ξ)[−βyyy + βxxy + βxyx + βyxx]

+ sin3(θ) cos3(ξ)[βxxx − βxyy − βyxy − βyyx]
= 〈χ(2)

XXZ〉φ/N (C.31)

〈χ(2)
Y ZY 〉φ/N =

{x,y,z}∑
αβγ

〈TY αTY βTZγ〉φβαγβ

= 〈χ(2)
XZX〉φ/N (C.32)

〈χ(2)
ZY Y 〉φ/N =

{x,y,z}∑
αβγ

〈TY αTY βTZγ〉φβγβα

= 〈χ(2)
ZXX〉φ/N (C.33)

〈χ(2)
Y ZZ〉φ/N =

{x,y,z}∑
αβγ

〈TY αTZβTZγ〉φβαβγ

= 0 (C.34)

〈χ(2)
ZY Z〉φ/N =

{x,y,z}∑
αβγ

〈TY αTZβTZγ〉φβγαβ

= 0 (C.35)
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〈χ(2)
ZZY 〉φ/N =

{x,y,z}∑
αβγ

〈TY αTZβTZγ〉φβγβα

= 0 (C.36)

〈χ(2)
XY Z〉φ/N =

1

2
cos(θ) sin(θ) cos(ξ)

[
βyxx − βxyx − βyzz + βzyz

]
+

1

2
cos(θ) sin(θ) sin(ξ)

[
βxyy − βyxy − βxzz + βzxz

]
+

1

2
sin2(θ) cos(ξ) sin(ξ)

[
βxzx − βzxx − βyzy + βzyy

]
+

1

2
sin2(θ) sin2(ξ)

[
βzxy − βxzy

]
+

1

2
sin2(θ) cos2(ξ)

[
βyzx − βzyx

]
+

1

2
cos2(θ)

[
βxyz − βyxz

]
(C.37)

〈χ(2)
XZY 〉φ/N =

{x,y,z}∑
αβγ

〈TXαTY βTZγ〉φβαγβ

=
1

2
cos(θ) sin(θ) cos(ξ)

[
βyxx − βxxy − βyzz + βzzy

]
+

1

2
cos(θ) sin(θ) sin(ξ)

[
βxyy − βyyx − βxzz + βzzx

]
+

1

2
sin2(θ) cos(ξ) sin(ξ)

[
βxxz − βzxx − βyyz + βzyy

]
+

1

2
sin2(θ) sin2(ξ)

[
βzyx − βxyz

]
+

1

2
sin2(θ) cos2(ξ)

[
βyxz − βzxy

]
+

1

2
cos2(θ)

[
βxzy − βyzx

]
(C.38)

〈χ(2)
Y XZ〉φ/N =

{x,y,z}∑
αβγ

〈TXαTY βTZγ〉φββαγ

= −〈χ(2)
XY Z〉φ/N (C.39)

〈χ(2)
Y ZX〉φ/N =

{x,y,z}∑
αβγ

〈TXαTY βTZγ〉φββγα

= −〈χ(2)
XZY 〉φ/N (C.40)

〈χ(2)
ZXY 〉φ/N =

{x,y,z}∑
αβγ

〈TXαTY βTZγ〉φβγαβ

=
1

2
cos(θ) sin(θ) cos(ξ)

[
βxyx − βxxy − βzyz + βzzy

]
+

1

2
cos(θ) sin(θ) sin(ξ)

[
βyxy − βyyx − βzxz + βzzx

]
+

1

2
sin2(θ) cos(ξ) sin(ξ)

[
βxxz − βxzx − βyyz + βyzy

]
+

1

2
sin2(θ) sin2(ξ)

[
βyzx − βyxz

]
+

1

2
sin2(θ) cos2(ξ)

[
βxyz − βxzy

]
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+
1

2
cos2(θ)

[
βzxy − βzyx

]
(C.41)

〈χ(2)
ZY X〉φ/N =

{x,y,z}∑
αβγ

〈TXαTY βTZγ〉φβγβα

= −〈χ(2)
ZXY 〉φ/N (C.42)
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Table D.1: Best matching between the normal modes of the TP molecule and of its complexes
with Au clusters calculated at the B3LYP/6-311G*(C, S, H)/cc-pVDZ (Au). Each line gives
the normal mode number for the different clusters that gives the largest overlap with a given

mode in the TP molecule, and is associated to a label for simplifications.

Label TP C1 C2 C3 C4 C5 C6

Onefold Onefold Twofold Twofold Threefold Twofold

b 3 22 28 29 41 41 47
c 4 25 31 31 43 43 49
d 5 24 30 30 42 42 48
e 6 26 32 32 44 44 50
f 7 27 33 33 45 45 51
g 8 28 34 34 46 46 52
h 9 29 35 35 47 47 53
i 10 30 36 36 48 48 54
j 11 31 37 37 49 49 55
k 12 32 38 38 50 50 56
l 14 33 39 39 51 51 57
m 15 34 40 40 52 52 58
n 16 35 41 41 53 53 59
o 17 36 42 42 54 54 60
p 18 38 43 44 56 56 62
q 19 37 44 43 55 55 61
r 20 39 45 45 57 57 63
s 21 40 46 46 58 58 64
t 22 41 47 47 59 59 65
u 23 42 48 48 60 60 66
v 24 43 49 49 61 61 67
w 25 44 50 50 62 62 68
x 26 45 51 51 63 63 69
y 27 46 52 52 64 64 70
α 29 47 53 53 65 65 71
β 30 48 54 54 66 66 72
ε 31 49 55 55 67 67 73
η 32 50 56 56 68 68 74
σ 33 51 57 57 69 69 75

261
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Table D.2: Wavenumbers (cm−1) of the normal modes of the isolated TP and its complexes
with Au clusters calculated at the B3LYP/6-311G*(C, S, H)/cc-pVDZ (Au) level (scaled by a

factor of 0.96).

Label TP C1 C2 C3 C4 C5 C6

Onefold Onefold Twofold Twofold Threefold Twofold

a 176 177 177 175 162 171
168

331 313 282 261 238 275
b 267 259 275 343 329 321 335
c 393 401 399 397 400 414 397
d 394 397 398 395 395 394 394
e 457 472 473 468 465 459 466
f 608 607 607 606 606 605 606
g 672 674 674 668 670 670 669
h 678 679 679 674 674 671 674
i 710 723 722 721 719 719 720
j 799 811 810 807 807 807 807
k 853 877 874 877 875 879 878
Ω1 901
l 913 924 922 926 925 926 927
m 942 945 942 950 950 952 952
n 976 976 976 975 975 974 975
o 1006 1003 1003 1002 1002 1000 1002
p 1064 1054 1052 1059 1059 1058 1060
q 1070 1051 1053 1049 1050 1042 1048
r 1140 1137 1136 1140 1140 1140 1140
s 1165 1157 1155 1161 1160 1159 1162
t 1267 1255 1254 1261 1260 1262 1261
u 1307 1296 1295 1300 1298 1298 1300
v 1424 1415 1416 1418 1418 1418 1418
w 1459 1450 1450 1453 1452 1450 1452
x 1559 1550 1551 1556 1555 1555 1555
y 1570 1560 1561 1562 1562 1559 1561
Ω2 2486
α 3035 3032 3030 3040 3039 3041 3042
β 3039 3041 3038 3047 3046 3048 3049
ε 3049 3055 3053 3058 3055 3057 3059
η 3054 3063 3061 3063 3061 3063 3064
σ 3066 3067 3065 3069 3068 3069 3070
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Table D.3: IR intensities (km/mol) of the vibrational normal modes of the isolated TP and
its complexes with Au clusters calculated at the B3LYP/6-311G*(C, S, H)/cc-pVDZ (Au) level

.

Label TP C1 C2 C3 C4 C5 C6

Onefold Onefold Twofold Twofold Threefold Twofold

a 20 2 3 3 2 6
7

18 52 2 10 0 6
b 1 4 0 1 1 0 0
c 1 1 0 1 0 0 1
d 0 0 0 0 0 0 0
e 11 5 5 10 8 6 9
f 0 0 0 0 0 0 0
g 24 16 13 7 10 19 9
h 15 26 40 36 37 23 38
i 59 41 35 41 39 44 42
j 0 1 0 1 0 0 1
k 1 2 1 2 1 0 2
Ω1 12
l 0 0 0 0 0 0 0
m 0 0 0 0 0 0 0
n 1 4 6 7 8 14 11
o 12 8 21 11 19 22 15
p 8 2 4 5 5 7 6
q 27 4 11 1 7 5 1
r 1 0 0 0 0 0 0
s 3 4 7 5 5 6 8
t 3 0 0 0 0 0 0
u 1 2 1 4 4 4 4
v 9 8 6 9 10 9 8
w 37 17 33 26 40 40 35
x 2 2 2 3 4 3 4
y 35 7 30 14 28 31 18
Ω2 7
α 5 2 5 2 4 3 3
β 0 14 17 8 5 5 7
ε 10 32 44 20 17 12 24
η 40 18 22 12 17 15 12
σ 19 16 25 22 32 36 27
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Table D.4: Raman intensities (at 633 nm, in Å4/amu) of the vibrational normal modes
of the isolated TP and its complexes with Au clusters calculated at B3LYP/6-311G*(C, S,

H)/cc-pVDZ (Au) level.

Label TP C1 C2 C3 C4 C5 C6

Onefold Onefold Twofold Twofold Threefold Twofold

a 2 4770 302 313 53500 405
1340

46000 33400 93 20700 2 8910
b 1 197000 281 18 303 2 168
c 5 76500 23700 637 98000 226 9770
d 0 460000 1220 12 2960 1 8
e 0 5130 73 131 142 1 80
f 5 793 31 3 455 7 3
g 0 339 11 106 2000 3 125
h 5 6260 703 97 8830 100 2960
i 0 1180 6 97 424 5 54
j 1 6280 33 12 2440 1 3
k 0 26 8 20 2240 3 121
Ω1 939
l 0 937 3 3 2350 0 11
m 0 806 8 2 2680 2 268
n 48 103000 8330 252 13400 303 1400
o 25 9120 3830 944 54300 642 9830
p 9 40100 21 2 34 0 23
q 21 144000 730 2830 234000 1550 29900
r 6 756 32 5 1410 14 14
s 6 212000 7130 434 44600 262 3590
t 3 23300 132 16 1400 4 21
u 2 3170 4 2 2360 12 21
v 2 16700 7 12 519 22 96
w 1 23400 1660 854 92600 403 10800
x 3 4640 3 5 2000 2 53
y 64 129000 10900 4130 266000 2490 39800
Ω2 122
α 15 4530 126 38 981 38 29
β 114 372 343 134 197 193 170
ε 134 17600 624 251 3310 264 546
η 25 89 82 43 182 95 139
σ 319 51700 349 126 25900 503 353
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Figure E.1: Effect of εl the electric permitivity of the OTS thin film (εl = n2
l ) on the SFG

spectra. Spectra are calculated for three polarization combinations (ppp, sps, and ppp) and
using the Isolated-model (left column) and the Adsorbed-model (central and right columns).

For this latter two basis sets of the low-layer are presented (3-21G and 6-31G).
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Figure E.2: Effect of the low-layer basis set on the DDCS SFG spectra. Spectra are calculated
for three polarization combinations (ppp, sps, and ppp), and the refractive index is set to 1.1
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Figure F.1: Comparison of the SFG spectra calculated at the CCSD and B3LYP (with the
SuperFine integration grids) levels. NM ≡ Normal Modes (aug-cc-pVDZ), Prop ≡ Carte-
sian derivatives of the properties : ∂µα/∂riγ and ∂ααβ/∂riγ (aug-cc-pVDZ). In the hybrid
results (dashed-red curves), the Cartesian derivatives of the properties calculated using the
B3LYP/aug-cc-pVDZ method were projected onto the CCSD/aug-cc-pVDZ normal modes.
The spectra are reported for the Free Chain model, at θ = 60◦ and ξ = 150◦, and for ppp and

ssp sets of polarizations. Γ = 1 cm−1.
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Figure F.2: Comparison of the SFG spectra calculated at the CCSD and B3LYP (with
the SuperFine integration grids) levels. NM ≡ Normal Modes (cc-pVTZ), Prop ≡ Cartesian
derivatives of the properties : ∂µα/∂riγ and ∂ααβ/∂riγ (aug-cc-pVDZ). The six spectra combine
Cartesian derivatives calculated using the aug-cc-pVDZ basis set with cc-pVTZ normal modes.
Thes spectra are reported for the Free Chain model, at θ = 60◦ and ξ = 150◦, and for ppp and

ssp sets of polarizations. Γ = 1 cm−1.



Appendix F. Coupled-cluster SFG signatures of CH3 and CH2 groups 269
T

a
b
l
e

F
.1

:
R

o
m

b
er

g
’s

tr
ia

n
gl

es
fo

r
th

e
d

ip
ol

e
m

om
en

t
an

d
th

e
p

ol
ar

iz
ab

il
it

y
d

er
iv

at
iv

es
w

it
h

re
sp

ec
t

to
th

e
x

-a
to

m
ic

C
a
rt

es
ia

n
co

o
rd

in
a
te

o
f

H
2

(i
n

a
.u

.)
.

C
a
lc

u
la

ti
on

s
w

er
e

p
er

fo
rm

ed
a
t

th
e

B
3L

Y
P

/a
u

g-
cc

-p
V

D
Z

le
ve

l,
fo

r
se

ve
n

am
p

li
tu

d
es

o
f

g
eo

m
et

ri
ca

l
d

is
to

rt
io

n
(∆
r

=
0
.0

0
5
,

0.
01

,
0
.0

2,
0
.0

4
,

0
.0

8,
0
.1

6
,

a
n

d
0
.3

2
Å
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Table F.7: Ratio between the intensity (maximum) of the peaks r−a + r−b and r+ calculated
within the Free Chain model ( see Figs. F.1 and F.2 )

ppp ssp

NM: aug-cc-pVDZ Properties: aug-cc-pVDZ

NM:CCSD Properties:CCSD 2.3 0.1

NM:B3LYP Properties:B3LYP 3.6 0.2

NM:CCSD Properties:B3LYP 2.3 0.2

NM: cc-pVTZ Properties: aug-cc-pVDZ

NM:CCSD Properties:CCSD 3.6 0.2

NM:B3LYP Properties:B3LYP 4.0 0.1

NM:CCSD Properties:B3LYP 3.6 0.2
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Table F.2: Vibrational frequencies∗ (cm−1) and derivatives of the dipole moment (∂µα/∂Q)
and of the polarizability (∂ααβ/∂Q),‡ computed at the B3LYP/aug-cc-pVDZ (with the
SuperFine grid) level.†.The “ ′ ” indicates the derivative with respect to the corresponding

normal coordinate.

r+ r−a r−b d+(d+
1 /d

+
2 )§ d−(d−1 /d

−
2 )§

2902 2965 2971 2889/2896 2911/2934
Freq 2902 2965 2972 2893 2922

2901 2961 2971
0.075 0.000 0.205 0.006/0.208 0.000/0.000

µ′x 0.006 0.000 0.202 0.150 0.000
0.008 0.000 0.188

0.000 0.263 0.000 0.000/0.000 0.013/0.203
µ′y 0.000 0.233 0.000 0.000 0.135

0.000 0.186 0.000

0.225 0.000 0.019 0.029/0.104 0.000/0.000
µ′z 0.183 0.000 0.021 0.122 0.000

0.185 0.000 0.031

8.203 0.000 6.486 7.402/2.022 0.000/0.000
α′xx 7.379 0.000 6.618 5.581 0.000

7.303 0.000 6.091

8.799 0.000 2.926 10.248/2.943 0.000/0.000
α′yy 7.865 0.000 2.770 8.153 0.000

7.753 0.000 3.486

7.562 0.000 1.489 4.172/2.243 0.000/0.000
α′zz 7.273 0.000 1.568 3.523 0.000

7.233 0.000 1.246

0.000 2.505 0.000 0.000/0.000 8.771/0.346
α′xy 0.000 1.961 0.000 0.000 6.708

0.000 3.775 0.000

0.198 0.000 5.475 3.374/0.346 0.000/0.000
α′xz 0.515 0.000 5.439 2.653 0.000

0.556 0.000 5.655

0.000 4.053 0.000 0.000/0.000 5.607/1.040
α′yz 0.000 3.791 0.000 0.000 4.738

0.000 4.978 0.000

∗The harmonic vibrational frequencies have been scaled by a factor of 0.96.
†For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl,
and Free Methyl models, respectively.
‡ α′xy = α′yx; α

′
xz = α′zx; α

′
yz = α′zy.

§ d+
1 , d

+
2 , d

−
1 , d

−
2 ≡ Free Chain; d+, d− ≡ Free Ethyl.
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Table F.3: Vibrational frequencies∗ (cm−1), and derivatives of the dipole moment (∂µα/∂Q)
and of the polarizability (∂ααβ/∂Q),‡. Cartesian dipole moment and polarizability derivatives
have been calculated at B3LYP/aug-cc-pVDZ (with the SuperFine grid) level and projected
onto the CCSD/aug-cc-pVDZ normal modes.†.The “ ′ ” indicates the derivative with respect

to the corresponding normal coordinate.

r+ r−a r−b d+(d+
1 /d

+
2 )§ d−(d−1 /d

−
2 )§

2909 2978 2984 2898/2904 2926/2948
Freq 2908 2977 2984 2901 2936

2908 2974 2984
0.032 0.000 0.205 0.003/0.219 0.000/0.000

µ′x 0.021 0.000 0.202 0.149 0.000
0.005 0.000 0.190

0.000 0.260 0.000 0.000/0.000 0.013/0.207
µ′y 0.000 0.232 0.000 0.000 0.137

0.000 0.186 0.000

0.197 0.000 0.021 0.045/0.147 0.000/0.000
µ′z 0.161 0.000 0.023 0.151 0.000

0.185 0.000 0.032

9.089 0.000 6.466 6.712/0.449 0.000/0.000
α′xx 8.296 0.000 6.583 4.346 0.000

7.420 0.000 6.102

10.013 0.000 3.060 9.576/1.165 0.000/0.000
α′yy 9.104 0.000 2.919 6.825 0.000

7.779 0.000 3.577

8.151 0.000 1.490 3.569/0.740 0.000/0.000
α′zz 7.741 0.000 1.559 2.324 0.000

7.240 0.000 1.264

0.000 2.594 0.000 0.000/0.000 8.776/0.364
α′xy 0.000 2.070 0.000 0.000 6.705

0.000 3.806 0.000

0.070 0.000 5.556 3.419/0.331 0.000/0.000
α′xz 0.162 0.000 5.522 2.709 0.000

0.643 0.000 5.718

0.000 4.096 0.000 0.000/0.000 5.639/1.002
α′yz 0.000 3.834 0.000 0.000 4.736

0.000 4.976 0.000

∗The harmonic vibrational frequencies have been scaled by a factor of 0.96.
†For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl,
and Free Methyl models, respectively.
‡ α′xy = α′yx; α

′
xz = α′zx; α

′
yz = α′zy.

§ d+
1 , d

+
2 , d

−
1 , d

−
2 ≡ Free Chain; d+, d− ≡ Free Ethyl.
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Table F.4: Vibrational frequencies∗ (cm−1), and derivatives of the dipole moment (∂µα/∂Q)
and of the polarizability (∂ααβ/∂Q),‡. Cartesian dipole moment and polarizability derivatives
have been calculated at the CCSD/aug-cc-pVDZ level and projected onto CCSD/cc-pVTZ
normal modes.†.The “ ′ ” indicates the derivative with respect to the corresponding normal

coordinate.

r+ r−a r−b d+(d+
1 /d

+
2 )§ d−(d−1 /d

−
2 )§

2927 2993 2999 2917/2924 2941/2963
Freq 2926 2992 2999 2921 2951

2926 2989 2998
0.074 0.003 0.202 0.004/0.198 0.000/0.003

µ′x 0.007 0.003 0.200 0.142 0.002
0.006 0.002 0.186

0.001 0.258 0.003 0.000/0.003 0.012/0.197
µ′y 0.000 0.229 0.003 0.002 0.131

0.000 0.182 0.003

0.216 0.000 0.020 0.035/0.100 0.000/0.000
µ′z 0.165 0.000 0.022 0.133 0.000

0.176 0.000 0.032

7.978 0.069 5.828 6.440/2.044 0.208/0.015
α′xx 7.459 0.056 5.926 4.509 0.168

7.015 0.100 5.439

8.551 0.066 2.646 9.364/2.843 0.227/0.003
α′yy 7.994 0.052 2.526 7.039 0.165

7.315 0.097 3.208

6.983 0.001 1.352 3.707/2.123 0.005/0.004
α′zz 6.853 0.002 1.410 2.758 0.001

6.585 0.001 1.105

0.013 2.331 0.119 0.048/0.001 7.806/0.348
α′xy 0.006 1.831 0.119 0.035 5.997

0.004 3.467 0.122

0.100 0.046 4.872 3.145/0.280 0.068/0.014
α′xz 0.306 0.043 4.844 2.481 0.059

0.538 0.059 5.046

0.004 3.574 0.065 0.039− 0.010 5.069/0.928
α′yz 0.003 3.325 0.065 0.035 4.278

0.007 4.413 0.068

∗The harmonic vibrational frequencies have been scaled by a factor of 0.96.
†For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl,
and Free Methyl models, respectively.
‡ α′xy = α′yx; α

′
xz = α′zx; α

′
yz = α′zy.

§ d+
1 , d

+
2 , d

−
1 , d

−
2 ≡ Free Chain; d+, d− ≡ Free Ethyl.
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Table F.5: Vibrational frequencies∗ (cm−1), and derivatives of the dipole moment (∂µα/∂Q)
and of the polarizability (∂ααβ/∂Q),‡. Cartesian dipole moment and polarizability derivatives
have been calculated at the B3LYP/aug-cc-pVDZ (with the SuperFine grid) level and pro-
jected onto B3LYP/cc-pVTZ (with the SuperFine grid) normal modes.†.The “ ′ ” indicates

the derivative with respect to the corresponding normal coordinate.

r+ r−a r−b d+(d+
1 /d

+
2 )§ d−(d−1 /d

−
2 )§

2900 2955 2960 2881/2889 2897/2921
Freq 2899 2954 2960 2885 2907

2899 2951 2959
0.052 0.002 0.204 0.004/0.212 0.000/0.001

µ′x 0.016 0.001 0.201 0.146 0.001
0.008 0.001 0.185

0.000 0.257 0.001 0.000/0.001 0.012/0.205
µ′y 0.000 0.229 0.001 0.001 0.135

0.000 0.184 0.001

0.212 0.000 0.017 0.016/0.126 0.000/0.000
µ′z 0.189 0.000 0.020 0.110 0.000

0.183 0.000 0.032

7.601 0.020 6.463 7.975/0.778 0.096/0.002
α′xx 6.902 0.015 6.584 5.891 0.069

7.178 0.035 6.006

8.051 0.026 2.744 10.910/1.594 0.088/0.004
α′yy 7.236 0.020 2.598 8.541 0.071

7.659 0.039 3.393

7.301 0.002 1.548 4.811/1.231 0.003/0.001
α′zz 6.961 0.002 1.620 3.923 0.002

7.151 0.002 1.268

0.000 2.499 0.047 0.014/0.005 8.627/0.324
α′xy 0.004 1.981 0.047 0.013 6.591

0.003 3.714 0.048

0.435 0.026 5.360 3.355/0.283 0.030/0.006
α′xz 0.666 0.024 5.325 2.639 0.025

0.559 0.029 5.572

0.001 4.020 0.032 0.019/0.001 5.504/0.981
α′yz 0.005 3.766 0.031 0.014 4.633

0.004 4.899 0.032

∗The harmonic vibrational frequencies have been scaled by a factor of 0.96.
†For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl,
and Free Methyl models, respectively.
‡ α′xy = α′yx; α

′
xz = α′zx; α

′
yz = α′zy.

§ d+
1 , d

+
2 , d

−
1 , d

−
2 ≡ Free Chain; d+, d− ≡ Free Ethyl.
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Table F.6: Vibrational frequencies∗ (cm−1), and derivatives of the dipole moment (∂µα/∂Q)
and of the polarizability (∂ααβ/∂Q),‡. Cartesian dipole moment and polarizability derivatives
have been calculated at the B3LYP/aug-cc-pVDZ (with the SuperFine grid) level and projected
onto CCSD/cc-pVTZ normal modes.†.The “ ′ ” indicates the derivative with respect to the

corresponding normal coordinate.

r+ r−a r−b d+(d+
1 /d

+
2 )§ d−(d−1 /d

−
2 )§

2927 2993 2999 2917/2924 2941/2963
Freq 2926 2992 2999 2921 2951

2926 2989 2998
0.076 0.003 0.202 0.004/0.204 0.000/0.003

µ′x 0.008 0.003 0.200 0.147 0.002
0.006 0.002 0.186

0.001 0.260 0.003 0.000/0.003 0.012/0.199
µ′y 0.000 0.230 0.003 0.002 0.132

0.000 0.183 0.002

0.223 0.000 0.019 0.036/0.103 0.000/0.000
µ′z 0.171 0.000 0.021 0.137 0.000

0.183 0.000 0.032

8.314 0.073 6.323 6.975/2.105 0.229/0.016
α′xx 7.737 0.058 6.427 4.873 0.184

7.259 0.107 5.903

8.897 0.070 2.885 9.838/2.966 0.249/0.003
α′yy 8.311 0.054 2.760 7.399 0.181

7.598 0.104 3.476

7.522 0.002 1.502 3.927/2.285 0.006/0.004
α′zz 7.387 0.002 1.564 2.923 0.001

7.102 0.002 1.239

0.014 2.466 0.130 0.048/0.001 8.581/0.349
α′xy 0.007 1.913 0.129 0.035 6.574

0.004 3.711 0.132

0.162 0.050 5.384 3.387/0.295 0.074/0.015
α′xz 0.381 0.047 5.354 2.677 0.065

0.633 0.065 5.571

0.005 3.922 0.072 0.042/0.011 5.552/1.020
α′yz 0.004 3.650 0.072 0.037 4.688

0.008 4.841 0.075

∗The harmonic vibrational frequencies have been scaled by a factor of 0.96.
†For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl,
and Free Methyl models, respectively.
‡ α′xy = α′yx; α

′
xz = α′zx; α

′
yz = α′zy.

§ d+
1 , d

+
2 , d

−
1 , d

−
2 ≡ Free Chain; d+, d− ≡ Free Ethyl.




