
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

Self-Prioritized Modular Adaptations using Bidirectional Transformations

Duchesne, Jérémy; Lombat, Quentin

Award date:
2018

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/2ef05413-30d8-4196-8244-2b2b24ccc6b5

Université de Namur

Faculty of Computer Science
Academic Year 2017�2018

Self-Prioritized Modular Adaptations using

Bidirectional Transformations

Jérémy Duchesne Quentin Lombat

Internship mentor: Zhenjiang Hu

Supervisor: (Signed for Release Approval - Study Rules art. 40)

Pierre-Yves Schobbens

A thesis submitted in the partial ful�llment of the requirements
for the degree of Master of Computer Science at the Université of Namur

Abstract

As self-adaptive software systems get complex, it is desirable to modularize the monitoring-
analysis-planning-execution (MAPE) feedback loop into ones that manage the changes re-
lated to individual goals. However, decomposing into modules requires resolving con�icts
when the shared information is updated simultaneously. To address the challenge, we pro-
pose self-prioritization on top of Kramer et al.'s three-layered architecture of self-managing
systems. A complex MAPE loop is �rst broken down into model-based Analysis-Planning
(AP) process pairs, formulating an M(AP)+E loop template while sharing the monitor and
execution interfaces to the managed system. Then, bidirectional transformations (BXs) are
used to propagate changes between the modularized AP views, using BiGUL, a well-behaved
put-based bidirectional language. Finally, con�icts between views are avoided by executing
the AP pairs sequentially in a certain ordering, giving the maximum priority to the last one,
and allowing it to overwrite the changes made by the previous ones. An important feature
of our approach is that it frees users from specifying the changing priorities by employing a
rule-based synchronizer that self-prioritizes the con�ict-free execution of AP modules with
respect to dynamic contexts. Our approach has been implemented and illustrated on an
Infrastructure as a Service (IaaS), the Amazon Web Services (AWS) API. Its evaluation
highlights the e�ciency of using BiGUL, and the usefulness of the self-prioritized modular
adaptation system.

Résumé

Au fur et à mesure que la complexité des logiciels auto-adaptifs augmente, il est intéressant
de modulariser la boucle monitoring-analysis-planning-execution (MAPE) en plusieurs, qui
gèrent les changements de façon individuelle. Cependant, la décomposition en modules
demande de résoudre les con�its apparaissant lorsque l'information partagée est mise à jour
simultanément. Pour résoudre ce problème, nous proposons d'ajouter le fait de donner de
la priorité automatique à l'architecture en trois couches de Kramer et al. sur les systèmes
qui s'auto-gèrent. Une boucle MAPE complexe est découpée en pairs d'analyse et de plan
(AP), devenant ainsi une boucle M(AP)+E, où les pairs d'AP partagent les mêmes étapes de
monitoring et d'exécution. Ensuite, les transformations bidirectionnelles sont utilisées pour
propager les changements entre les vues d'AP. Cette propagation est réalisée par BiGUL,
un langage bidirectionnel dit "basé put". En�n, les con�its entre les vues sont évitées par
l'exécution séquentielle des pairs dans un ordre précis. La priorité maximum est donnée
à la dernière vue exécutée, lui permettant de remplacer par son propre changement ceux
e�ectués par de précédentes vues. Une importante caractéristique de notre approche et
qu'elle libère l'utilisateur de spéci�er lui-même les priorités des vues, via l'utilisation d'un
synchroniseur basé sur des règles. Ce synchroniseur donne la priorité de façon automatique
lors de l'exécution sans con�it des modules d'AP, tout en respectant le contexte courant.
Notre approche a été implémentée et est illustrée sur l'API Amazon Web Services, un IaaS
(Infrastructure as a Service). Son évaluation souligne l'e�cacité de l'utilisation de BiGUL,
ainsi que l'utilité de notre système.

i

Acknowledgements

We would like to thank Prof. Pierre-Yves Schobbens, who sent us in Tokyo and without
whom we would have never been able to work at the National Institute of Informatics.
We also also owe a grateful thank to Prof. Zhenjiang Hu, who warmly welcomed us and
carefully followed our work all our internship long. Prof. Hu, his two secretaries, Zirun Zhu,
Hsiang-Shang Ko, Yongzhe Zhang and all the other members of the lab have always been
available when we needed help.

This work would never have existed without the previous work of Lionel Montrieux
on the modular adaptations using bidirectional transformations. Finally, we would like to
thank Prof. Yijun Yu, who gave us valuable advice during the GRACE Symposium held at
the NII.

iii

Contents

Acronyms vii

Introduction ix

1 State of the art 1

1.1 Bidirectional Transformations . 1
1.2 BiGUL . 3

1.2.1 A simple BiGUL signature . 3
1.2.2 Useful BiGUL patterns . 3

1.2.2.1 Rearrangement . 3
1.2.2.2 Case and Branches . 4
1.2.2.3 The align function . 6

2 Basic preliminary notions 11

2.1 The MAPE loop template . 11
2.2 The rule-based synchronizer . 11
2.3 Modular Hierarchical Self-Adaptation using Bidirectional Transformations . 12
2.4 From hierarchical to self-prioritized adaptation 12

3 First MAPE loop : Modular Adaptations using Bidirectional Transfor-

mations 17

3.1 Model of the �rst loop : M(AP)+E . 18
3.2 The Source . 20

3.2.1 The Source - Data structure . 20
3.3 The Auto-scaling View . 22

3.3.1 Auto-scaling View - Data structure 22
3.3.2 Auto-scaling View - Bidirectional transformation 23
3.3.3 Auto-scaling View - Analysis and Planning 25

3.4 The Redundancy View . 29
3.4.1 Redundancy View - Data structure 29
3.4.2 Redundancy View - Bidirectional transformation 30
3.4.3 Redundancy View - Analysis and Planning 32

3.5 The Firewall View . 35
3.5.1 Firewall View - Data structure . 35
3.5.2 Firewall View - Bidirectional transformation 37
3.5.3 Firewall View - Analysis and Planning 38

3.6 The Cost View . 40
3.6.1 Cost View - Data structure . 40
3.6.2 Cost View - Bidirectional transformation 42
3.6.3 Cost View - Analysis and Planning 43

3.7 The Amazon Web Services Application Programming Interface (API) 45
3.7.1 Amazon Web Service (AWS) API - Monitoring 45

iv

3.7.1.1 Communicate in JSON . 45
3.7.1.2 Retrieving data from AWS 47

3.7.2 AWS API - Execution . 53

4 Second MAPE loop : Self-Prioritized Views using Bidirectional Trans-

formations 57

4.1 Necessity of a Synchronizer . 57
4.1.1 Problem of subsystems con�icts . 58
4.1.2 Problem of subsystems' prioritization 60
4.1.3 Theoretical Solution of the Problems 62

4.1.3.1 Details about the execution 63
4.2 Development of the Haskell Solution . 69

4.2.1 Concepts and utilities . 69
4.2.1.1 The concerns . 69
4.2.1.2 The Context . 71
4.2.1.3 The Rules . 72
4.2.1.4 The Parser . 73
4.2.1.5 Priority Policy . 75

4.2.2 Monitoring . 76
4.2.3 Analysis and Planning . 77

4.2.3.1 Analysis: Determine the execution order 77
4.2.3.2 Planning: Ordering our concerns 81

4.2.4 Execution . 81

5 Experiments 85

5.1 Experimental setup . 86
5.2 Behavior evaluation . 88
5.3 E�ciency evaluation . 91

5.3.1 Validity of the results . 92

6 Conclusion and Future Works 93

6.1 A Modular System Using Bidirectional Transformations (BiGUL) 93
6.2 A Way to Orchestrate a Modular System . 94
6.3 Future Works . 95

6.3.1 Maintenance on the �y . 95
6.3.2 Automatically learn the rules . 95
6.3.3 Reverse the order of execution (from the highest priority to the smallest) 95
6.3.4 Merge rather than synchronize . 95
6.3.5 Concerns with same priority . 95
6.3.6 Improve the way to �nd a good situation 96

Bibliography 97

Appendices 101

A Example of Ansible �le 103

B Experiment 2 105

C Experiment 3 117

D Experiment 4 129

v

Acronyms

AMI Amazon Machine Image.

API Application Programming Interface.

Availability Probability of a system to be available when needed.

AWS Amazon Web Service.

CPU Central Processing Unit.

DSLs Domain-Speci�c Languages.

IaaS Infrastructure as a Service.

IP Internet Protocol.

Modi�ability The cost of a change in a system.

Performance Timing taken by the system to respond to an event.

RAM Random Access Memory.

Security Ability of the system to resist unauthorized usage.

Testability Easiness of the system to show its faults.

Usability Easiness of the user to accomplish a speci�c task in the system.

vii

Introduction

Software systems nowadays tend to grow bigger, and their supporting infrastructures are
also increasingly complex. Therefore, it is complicated to maintain and improve software
qualities (i.e., availability, performance, etc.) [6]. Separating those concerns into subsystems
is a good way to facilitate their individual treatment [13].

Consider the self-adaptive software systems [2, 11, 23], where a monitoring-analysis-
planning-execution (MAPE) loop [37] is often adopted to handle the system. The loop
makes decisions according to the evolving environment to reach a goal. However, as self-
adaptive software systems get more complex with bigger goals, a single MAPE loop becomes
too complicated to design and maintain. It is then ideal to re�ne the monitoring-analysis-
planning-execution (MAPE) feedback loop into one that can handle the modularization of
the system, by applying the Analysis-Planning pair on each module.

One natural idea for the above modularization is to re�ne the MAPE loop into a set of
subsystems with simpler MAPE loops, and coordination among them. Since the Monitor-
Execute pair is the same for all the MAPE loops, we could represent a subsystem in terms of
Analysis-Plan pairs, and use a new form for composing simpler MAPE loops, the M(AP)+E
loop form, which allows multiple Analysis and Planning pairs for one Monitoring and one
Execution.

However, adopting this approach to modularize the MAPE loop induces two new di�-
culties. The �rst one is the propagation of the changes applied in one subsystem towards
the other subsystems. Secondly, when subsystems are sharing information, if both of them
want to change a shared data at the same time, a con�ict may arise. Those two issues are
addressed in this thesis, thanks to bidirectional transformations (BX) [16, 10, 15] and a
rule-based synchronizer [33].

BX is a new technique for change propagation in a consistent manner, being able to (i)
properly divide a large system called the source, into smaller subsystems called the views,
and (ii) guarantee that any change in one of the subsystems is passed accurately in the rest
of a large system. To achieve that, each BX supports two transformations: the forward
transformation, known as the get function, and the backward transformation, known as the
put function. The �rst one, get, can return the view as output if the source was given as
input. The second one, put, can return an updated source as output if the original source
and the view were given as input. As we will see it in details in Section 1.1, this updated
source is the result of the changes made in the view, back in the source. If it possesses
several di�erent views (ie. if the main system has several subsystems), the changes made
inside one view are propagated to the source with the backward transformation. From that
point, the updated source can spread the modi�cations to the other views thanks to their
respective forward transformation, and the modularity of the system is then ensured.

The execution of the MAPE loop associated to the BXs can propagate the self-adaptive
changes, but it does not solve the potential con�icts between concurrent data modi�cations.
Con�ict resolution has already been studied in depth. In this thesis, we do not propose a way

ix

to resolve con�icts, but to avoid them. If the execution of the views was sequential, it could
avoid all the con�icts. Indeed, if View A is executed before View B and they share some data,
even if View A has updated the source, the planning of View B can overwrite the changes,
and the backward transformation of View B will update the source accordingly. Thus, the
views must be prioritized. Of course, executing the views always in the same sequential
order would lose �exibility and adaptability. To remedy this situation, we designed and
implemented a rule-based synchronizer that can automatically �nd, according to prede�ned
rules and at each iteration, the best order in which the views must be executed, transforming
the model from "prioritized" to "self-prioritized". The "best" ordering is de�ned as the order
in which the views should be executed according to the current context and the prede�ned
rules related to it, without breaking any of them.

To evaluate those ideas, they have been brought together into a practical example. The
purpose of the created system is to handle a collection of servers, which are available through
the cloud. The cloud is a paradigm that allows access to resources and services, over the
Internet. In this case, the cloud provides us resources, which are the servers our system
needs to manage. It means that those servers are not reachable physically, but the services
they provide are available thanks to the Internet. Compared to real servers lease, when the
physical structure is rented and the use is personal, servers providers like Amazon give their
servers to several people. Their clients are paying not for a physical server, but for a power
of calculus and a storage space. The use of those servers is then shared amongst all their
clients.

To manage those servers, our system requires as much information as possible about
them. Most of the time, resources on the cloud provide a way to access speci�c data.
In our case, the system uses the servers available on Amazon, thanks to Amazon Web
Services (AWS). AWS possess a complete API with which it is possible to communicate
information about the servers (an API is an interface supplying some tools to access the
resources). Once the system has all the needed data, we modularize it into four di�erent
subsystems. The purpose of each of them is related to a speci�c quality [12]: the security,
the modi�ability, the availability and the performance. The division of the system according
to qualities highlights the bene�ts of modularization, by restraining their access solely to
the information they need. A subsystem must change the data, following its own strategy,
to respect the constraints of the quality it represents. For example, the subsystem standing
for the availability has to ensure that the system is reachable all the time, whereas the
subsystem representing the security handles the access policies of the servers. Clearly, those
two subsystems do not need to access the data of the whole system. Actually, they do not
need to access the same data at all. This is where modularization shows all its usefulness.

The four modules are created, from the main system, thanks to bidirectional transfor-
mations (BXs). The changes they will apply on the data will also be propagated thanks to
BXs. To address the con�ict issue, when two (or more) subsystems are changing information
they share at the same time, we propose an implementation of the rule-based synchronizer.
Our example of implementation is quite simple. According to the current context (subsub-
section 4.2.1.2) and to prede�ned rules (subsubsection 4.2.1.3), our algorithm orders the
subsystems. The context represents internal information, like the number of servers cur-
rently running, and external information, like the hour of the day. The rules are based on
those elements, and give speci�c constraints on the order to be found by the algorithm.
Executed sequentially in the chosen order, the subsystems avoid con�icts between them
when they apply their respective changes.

Once all the modules have been executed, and the changes have been propagated with
the BXs on the main system, the updated data are sent back to the AWS API. Amazon is
con�gured to automatically adjust its servers according to those data. Thanks to the status

x

concept, if the status is requested by our system to shut a speci�c server down, Amazon
will shut it down. It works similarly when a server needs to be started.

As the implementation of our example is operable, experiments have been executed on
the architecture. A part of the results are detailed in the chapter related to experimenta-
tions, but the whole set of graphics and collected data are readable in the appendices.

The main technical contributions of this thesis are threefold. First, it provides a novel
way to propagate properly the changes inside a modular system with several subsystems.
Secondly, it gives a new approach to avoid the con�icts when shared data change inside
di�erent subsystems. Thirdly, it presents a framework able to respond accurately to un-
foreseen situations and giving the best answer to solve them. We have created a practical
model, using those three contributions. This thesis aims to prove the usefulness of the
model, and its performances with the used technologies. Moreover, it wants to demonstrate
the e�ciency of BiGUL while showing one of its practical uses. For the reader to concretely
see the model, the code is available (and runnable, following the ReadMe) at this address:
https://github.com/qlombat/Self-Prioritized-Modular-Adaptations.

The work is presented as follows: Chapter 1 introduces bidirectional transformations.
Chapter 2 details the other notions of the model, the MAPE loop template and the rule-
based synchronizer. Chapter 3 is devoted to the M(AP)+E loop, which solves the prop-
agation issue. Chapter 4 explains in details the synchronizer, which avoids the con�icts
between the modules. Finally, Chapter 5 tries to prove the e�ciency and the performances
of the model, thanks to several experimentations.

xi

https://github.com/qlombat/Self-Prioritized-Modular-Adaptations

Chapter 1

State of the art

Before presenting our work, we �rst introduce the concepts on which we base our work,
among which the language used throughout this thesis. The �rst section is thus a brief
explanation of bidirectional transformations (BXs). Then is presented BiGUL (pronounced
"Beagle") [24], the bidirectional programming language used in this thesis.

1.1 Bidirectional Transformations

BX is a new technique for change propagation in a consistent manner, being able to (i)
properly divide a large system called the source, into smaller subsystems called the views,
and (ii) guarantee that any change in one of the subsystems is passed accurately in the rest
of a large system without any unexpected side-e�ect. To achieve that, each BX supports two
transformations: the forward transformation, known as the get function, and the backward
transformation, known as the put function. The �rst one, get, can return the view as
output if the source was given as input. The second one, put, can return an updated source
as output if the original source and the view were given as input. This updated source is the
result of the changes made in the view, back in the source. If it possesses several di�erent
views (ie. if the main system has several subsystems), the changes made inside one view are
propagated to the source with the backward transformation. From that point, the updated
source can spread the modi�cations to the other views thanks to their respective forward
transformation, and the modularity of the system is then ensured.

Let us imagine, as a teacher, we have to manage information about a group of students.
However, we do not need all the available information about those students. Ideally, we
should access only the information we need. Thus, we have the source, which is the entire
information available, and a view, which is only the information we need. Both share
information, but the source has information that the view does not need. As a teacher, we
might change information about students. Those changes should not only change for our
view, but also in the source. BXs guarantee that if something has changed in the view, the
source is updated accordingly.

A lot of di�erent areas are interested in using BXs, and researchers are actively working
on combining their domain with BXs. Amongst those areas, we can mention:

� "Model-Driven Software Development: to compute and synchronize views of software
models";

� "Graphical User Interfaces: to maintain the consistency of a GUI and the underlying
application model in the model-view-controller paradigm";

1

1. State of the art

� "Visualization With Direct Manipulation: to visualize abstract data and animate
algorithms";

� "Relational Databases: to construct updatable views";

� "Data Transformation, Integration, and Exchange: to map data across paradigms,
merge it from multiple sources, and exchange it between sources";

� "Data Synchronizers: to bridge the gap between replicas in di�erent for- mats";

� "Macro Systems: to give feedback to the programmer (e.g., from a type checker or a
debugger) in terms of the original program elements prior to macro expansion";

� "Domain-Speci�c Languages (DSLs): to translate between run-time values of the
object language (the DSL) and the corresponding values of the host language in em-
bedded interpreters";

� "Structure Editors: to provide convenient interfaces for editing complicated data
sources";

� "Serializers: to mediate between external data (binary or sequential data representa-
tions on the wire or the �le system) and structured objects in memory" [10].

To support BXs, programming languages have already been developed. The most popu-
lar is Query/Views/Transformation (QVT). QVT is a standard that speci�es model trans-
formations, and is very popular since model transformations are used to manipulate models
[26]. Although it was not created for BXs, it can be used to de�ne BXs between models
[31]. Another language is the Janus Transformation Language (JTL). Unlike QVT, JTL has
speci�cally been created to support non-bijective transformations and change propagation
between models [8].

Like in many other �elds, BXs could be speci�ed in a wrong way, resulting in transfor-
mations that are not inverses of each other. Lenses solve this issue. A lens is a bidirectional
program that satis�es two properties [15] such a transformation is called "well-behaved".
Those properties are:

put s (get s) = s GetPut

get (put s v) = v PutGet

Here, the s is the source, and the v is its associated view. As a reminder, the get
transformation returns a view when a source is given; the put transformation returns an
updated source when a source and an updated view are given. If a program satis�es the
GetPut and PutGet properties, then it is "well-behaved", and thus called a lens. Let us
look more precisely on what those properties mean. The GetPut property enforces that
if the view (recovered with the forward transformation) was not changed, the backward
transformation will give exactly the same source as the original one. The PutGet property
imposes that any change in the view has to be correctly re�ected in the updated source.
It is then possible to recover exactly the same view by applying the get function on the
updated source [21].

As explained earlier, many programming languages already help the developer to write
well-behaved bidirectional transformations. However, all of them are get-based languages
[20]. It means that the developer writes the get function, and the put comes for free. It
is important to spotlight that for each get, many puts can be derived. The programmer

2

1.2. BiGUL

cannot choose which put is automatically created, and has to formally prove that the chosen
put satis�es the GetPut and PutGet properties.

The put-based languages are the exact opposite. The developer has to write the put
function, then the get comes for free. The main di�erence between those languages relies
on the automatic derivation: for each get function, many possible put functions could be
chosen, whereas at most one get function can be derived from a given put. A program that
implements only the put direction and that compiles in put-based languages can directly be
called a lens because it automatically satis�es the GetPut and PutGet properties. It
is also possible to implement both the put and the get in put-based languages. However,
it is a last resort: it forces to formally prove that the bidirectional transformation is well-
behaved, and removes the advantage of using a put-based language. In fact, it is exactly
what the programs coded with the get-based languages must do. To be called lenses, they
must formally demonstrate that the put, which has been derived from the get, is correct
and satis�es the properties. There is no way to control which put will be generated from
a given get. Using put-based bidirectional languages, yet more complicated to code, is a
much more reliable way to assure that the needed transformation is "well-behaved".

In this thesis, as the BXs aggregate the information contained in a large system into
smaller subsystems and update the large system with potential changes occurring in the
subsystems, the focus is upon the lenses. Moreover, the BXs are implemented using BiGUL,
the only existing put-based language [24], and illustrated in the next section.

1.2 BiGUL

As the following pages will contain pieces of code, an explanation of BiGUL's syntax is
mandatory. This section will �rst introduce a simple BiGUL signature, and then show some
patterns often used in other chapters.

1.2.1 A simple BiGUL signature

A BiGUL function typically has a signature like this:

simpleSignature :: BiGUL Source V iew (1.1)

Following 1.1, with the get, the input will be the Source, and the output will be the
View. But with the put function, the input will be the old Source and an updated View, and
the output will be the updated Source. Moreover, as BiGUL is a put-based language, the
function only de�nes the backward transformation. Regarding the forward transformation,
it is automatically derived by the language.

1.2.2 Useful BiGUL patterns

This section introduces three particular patterns frequently used in the code of this thesis.

1.2.2.1 Rearrangement

The �rst pattern is the rearrangement. It is very helpful when the structure of the source
and the view are di�erent. But �rst, here is an explanation of the Prod BX constructor,

3

1. State of the art

which is used in the example below. It is a good practice to use this BiGUL function when
both the source and the view are pairs. The signature of Prod is:

Prod :: BiGUL s1 v1 − > BiGUL s2 v2 − > BiGUL (s1, s2) (v1, v2) (1.2)

If the source is (s1, s2) and the view is (v1,v2), the corresponding BiGUL program is:
BiGULFunction1 `Prod` BiGULFunction2. The �rst argument of Prod will thus be applied
to s1 and v1, and its second argument will link s2 and v2.

Now for the rearrangement, let us imagine that the source contains three attributes of a
car (the name of the manufacturer, the number of doors and the color), but the view only
needs two of them (the name of the manufacturer and the color). In that case, a simple
BiGUL program could look like this:

1 simpleRearr :: BiGUL (String, (Int, String)) (String,String)
2 simpleRearr =
3 $(rearrV [| \(v1,v2) -> (v1,((),v2)) |])$
4 Replace ‘Prod‘ (Skip (const ()) ‘Prod‘ Replace)

Listing 1.1: Sample code for Rearrangement

In this example, the source contains three pieces of information and the view contains
only two. At the third line, the view is rearranged from a pair to another pair, where the
�rst element of the second part does not matter. If the source needed to be rearranged, the
same structure could be applied using rearrS. BiGUL imposes to have the same number of
arguments on each side of the rearrangement. As v1 and v2 were de�ned on the left side
of the anonymous function, both had to be on the right part as well. After making the
structure of the source and the view identical, it is easy to replace each element with its as-
sociated element. Line 4, the �rst element is replaced. Then, the �rst element of the second
part must be skipped because the view does not need it. Finally, the last element is replaced.

1.2.2.2 Case and Branches

The second pattern is the use of branches inside a Case. There are four di�erent kinds of
branches, represented in this example:

1 data Complete = Letter Char Complete | ComNull deriving Show
2

3 deriveBiGULGeneric ’’Complete
4

5 pTransform :: BiGUL Complete [Char]
6 pTransform = Case [
7 $(normalSV [p| ComNull |] [p| [] |] [p| ComNull |])
8 ==> $(update [p| ComNull |] [p| [] |] [d||]),
9 $(normalSV [p| Letter _ ComNull |] [p| [_] |] [p| Letter _ ComNull |])

10 ==> $(update
11 [p| Letter c ComNull |]
12 [p| [c] |]
13 [d| c = Replace |]),
14 $(normal [| \(Letter _ _) v -> length v > 1 |] [| \s -> True |])
15 ==> $(update
16 [p| Letter c cs |]
17 [p| (c:cs) |]
18 [d| c = Replace; cs = pTransform |]),

4

1.2. BiGUL

19 $(adaptiveSV [p| _ |] [p| _:_ |])
20 ==> _ v -> charToCompl v,
21 $(adaptive [| \s v -> length v == 0 |])
22 ==> _ _ -> ComNull]
23 where
24 charToCompl :: [Char] -> Complete
25 charToCompl [] = ComNull
26 charToCompl (v:vs) = Letter v (charToCompl vs)

Listing 1.2: Sample code for Case and Branches

A possible source of the program could be "Letter 'b' (Letter 'a' (Letter 'c' ComNull))",
and its corresponding view would be "bac". The third line, deriveBiGULGeneric, informs
BiGUL that a new Haskell data type has been created. The normal branches handle the
happy cases when everything goes well, whereas the adaptive ones take care of all the
others. Let us have a closer look at each branch.

The �rst one, line 7, is a normalSV. It means that the condition is made upon both the
source and the view by pattern matching, respectively the �rst and the second brackets.
The third brackets is the exit condition, generally the same condition as the source one. Its
major purpose is to optimize the put transformation [21]. If this case is matched, the source
and the view are empty, and so the update function does not have to do anything. In the
example, the source would be "ComNull" and the view " ".

The second branch is also a normalSV, and handles the basic case where the source and
the view contain only one element. In our example, it corresponds to "Letter 'c' ComNull"
and "c". Thus, the update has to create the bridge between these two elements. Once this
branch has been taken, the update function is called, and the pattern matching can be made
in both the source and the view. It is represented by the variable c (for character), used
inside the Replace BiGUL function.

The last normal case, line 14, is represented with a normal branch. Here, the condition
is again upon both the source and the view, but is de�ned with an anonymous function to
handle conditions more complicated than pattern matching. The second brackets represent
the exit condition. This case pattern matches when there is still at least one element in the
source, and more than one in the view. In such case, the �rst element is replaced, and the
pTransform function is applied recursively on the rest of the lists.

The last branches are adaptive ones. Their purpose is to adapt the source when the
source and the view have a di�erent number of elements.

The �rst adaptive branch is an adaptiveSV, and de�nes its condition with a pattern
matching on both the source and the view. If no match has been made before and the
program arrives here, it means that either the source is empty, but not the view, or the
view is empty, but not the source. This adaptive branch takes care of the empty source
case. The function charToCompl will thus convert the rest of the characters inside the view
into a Complete data type in the source.

Finally, the last branch, line 21, is an adaptive one. Just as the normal, it makes its
condition with an anonymous function. The last possibility is when the source is not
empty, but the view is. In other words, this case happens when one or more elements have
been deleted in the view. As the view must update the old source into an updated source,
if the view is empty, the source has to be empty as well. Thus, the program sends an empty
Complete data type.

5

1. State of the art

1.2.2.3 The align function

The third and last pattern explained in this thesis is align, a function provided by BiGUL.
This function is very often used in our code. It consists of the alignment of two lists,
the source and the view. To align those lists, the BXs have to synchronize each element
between them. It must be able to insert, delete or update elements when the synchronization
is applied. For example, the source could be a list of people, each element containing
information like the name, the national number ID, the number of children, etc. The view
could represent those people, but for a particular service which needs only a part of the
information. In that case, the align fonction is used to synchronize the two lists.

This alignment issue is already explained and detailed by Barbosa et al.'s matching lens
[4]. There are several alignment strategies but the following explanation will focus only on
the one already implemented in BiGUL.

To fully understand this function, the explanation is divided in three parts. Firstly,
the Haskell signature of align is explained to show the needs of the function. Secondly, the
entire implementation is illustrated. Thirdly, a little example using align is described.

1 align :: forall s v. (Show s, Show v)
2 => (s -> Bool) -- view condition
3 -> (s -> v -> Bool) -- matching condition
4 -> BiGUL s v -- update function
5 -> (v -> s) -- creation function
6 -> (s -> Maybe s) -- deletion function
7 -> BiGUL [s] [v]

Listing 1.3: Signature of align

The align function needs 5 arguments to work properly. The �rst one is the view
condition. This is the condition on a element of the source to determine if it must be
represented in the view. In the example of people, it could �lter all the people with less
than 1 child. In the view, only the people with children would be represented. It is logical
that the function needed for this argument takes s (ie. an element of the source) as input,
and returns a boolean as output.

The second argument is the matching condition. It is a one-to-one relation which links
the elements in the source and in the view. In our example, this condition could be the
national number ID. The function for this argument needs s, an element of the source, and
v, an element of the view, as input. It returns a boolean (true if those elements match).

The third argument is the BiGUL update function on elements. This function gives the
way to synchronize matched elements of the source and the view. As the explanation about
the implementation of the align function will show, the update function is called only on
the elements that satisfy the matching condition (ie. the second argument). In the example
of lists of people, the update function gives the information needed by the view, and tells
which information must be removed from the view.

The fourth argument is the creation function. It describes how to create an element in
the source when a complete new element is found in the view. That is why the function
takes an element of the view (v) and produces an element of the source (s). In our example,
if the view has created a new person, this person must be represented in the source as well.
The function describes how to derive a person in the source from the same person in the
view.

The last argument is the deletion. This function is triggered when an element is
found in the old source but is not in the view anymore. Returning a Maybe, it allows the

6

1.2. BiGUL

programmer to choose between the complete deletion from the source (the function returns
Nothing), or a soft deletion (the function returns an updated element that does no longer
satisfy the source condition (ie. �rst argument of the align function), and thus will not be
represented in the view anymore).

1 align p match b create conceal = Case [
2 $(normalSV [p| [] |] [p| [] |] [p| [] |])
3 ==> $(update [p| _ |] [p| [] |] [d| |]),
4 $(normal [| \(s:_) (v:_) -> p s && match s v |] [| \(s:_) -> p s |])
5 ==> $(update
6 [p| x:xs |]
7 [p| x:xs |]
8 [d| x = b; xs = align p match b create conceal |]),

Listing 1.4: Implementation of align - normalSV and normal

The align function uses the pattern Case and Branches already highlighted. It is divided
in six branches. The �rst is the classic one (line 2 in Listing 1.4). When the source and the
view are both empty, the function does nothing.

The second case is a little bit more complicated (line 4 in Listing 1.4). This case is
the one that handles the match between the source and the view. In the condition of this
branch, the p is the predicate to determine if the source element is not deleted and the
match function checks if the source and the view are linked. In English, this condition
can be translated as "if the element of the source is not deleted and both the elements
are linked". Note that the normal branch is used and not the normalSV, because we have
to make a condition on both the source and the view simultaneously. When this case is
triggered, the function makes a simple update where the current element is transformed,
with the function b given by the programmer, showing the way from the source to the view
and vice versa. The align function is called recursively with the remaining elements.

1 $(adaptive [| \(s:_) [] -> p s |])
2 ==> \ss _ ->
3 let (prefix, remaining) = span p ss
4 in catMaybes (map conceal prefix) ++ remaining,
5 $(normal [| \(s:_) _ -> not (p s) |] [| \(s:_) -> not (p s) |])
6 ==> $(update
7 [p| _:xs |]
8 [p| xs |]
9 [d| xs = align p match b create conceal |]),

Listing 1.5: Implementation of align - adaptive and normal

The third branch is an adaptive one (line 1 in Listing 1.5). It catches the situation when
the source contains non deleted elements and the view is empty. In this case the function
has to delete the remaining elements in the source. To make this deletion, the span function
is used to separate the non deleted elements (pre�x) and the others (remaining). Thereafter,
the elements in pre�x are deleted and concatenated with the remaining list.

The fourth branch (line 5 in Listing 1.5) is the normal case that handles the situation
where the current element is considered as deleted. The function simply skips this element
and calls recursively the align function with the remaining elements.

1 $(adaptive [| \ss (v:_) -> isJust (findFirstMatch v ss) |])
2 ==> \ss (v:_) -> uncurry (:) (fromJust (findFirstMatch v ss)),
3 $(adaptiveSV [p| _ |] [| \(v:_) -> p (create v) |])
4 ==> \ss (v:_) -> create v : ss

7

1. State of the art

5]
6 where
7 findFirstMatch :: v -> [s] -> Maybe (s, [s])
8 findFirstMatch v [] = Nothing
9 findFirstMatch v (s:ss) | p s && match s v = Just (s, ss)

10 | otherwise = do
11 (s’, ss’) <- findFirstMatch v ss
12 return (s’, s:ss’)

Listing 1.6: Implementation of align - adaptive and adaptiveSV

The �fth branch is the case when the view and the source are not linked (line 1 in
Listing 1.6). The function has to �nd the element in the source linked with the current
element in the view. To do this task, the align function uses the �ndFirstMatch function.
It retrieves a pair where the �rst part contains the �rst occurrence that match with the
current view, and the second part contains the remaining elements. Then, it transforms
this pair into a list with the �rst element linked to the view.

The sixth and last branch (line 3 in Listing 1.6) creates an element in the source from
the view if there is not any element in the source linked with the current element of the view.
Even if this case had not any condition, as the last case, it works like a Haskell otherwise.

To illustrate align, the implementation below shows an example using it.

1 type Identifier = Int
type Name = String
type Deleted = Bool

5 type Source = (Identifier, (Name, Deleted))
type View = (Identifier, Name)

myAlign :: BiGUL [Source] [View]
myAlign = align

10 -- the view condition
(\(_,(_, deleted)) -> not deleted)
-- the matching condition
(\(idS,(_, _)) (idV,_) -> idS == idV)
-- the update function

15 $(update
[p|(identifier, (name, _))|]
[p|(identifier, name)|]
[d|identifier = Replace; name = Replace|])

-- creates an item in the source from an item in the view
20 (\(identifier, name) -> (identifier, (name, False)))

-- how to delete an item from the source when it is not in the view
(\(identifier, (name, _)) -> Just (identifier, (name, True)))

Listing 1.7: Example using align

The source is a list of tuples containing an identi�er, a name and a status (deleted) and
the view is a list of pairs containing an identi�er and a name.

The function myAlign calls the align with some parameters. The �rst one is the
condition on the source to know which element must be considered in the view. In this
example, an element is considered if its status (deleted) is equals to False. The second
parameter is the matching condition. This condition is true when the identi�er in the
source is equal to the identi�er in the view. The third parameter is the update function,

8

1.2. BiGUL

that describes how to transform an element in the source into an element in the view and
inversely. In our example, the view aggregates the source by removing information (the
status). The two other elements, the identi�er and the name, must be replaced. The fourth
parameter gives the way to create a new element in the source from the current element in
the view. In this example, it keeps the identi�er and the name, and it assigns the status to
False by default. The last parameter describes how to delete an element. In the example,
the function puts the status (deleted) to False. Thus, it will not be represented in the view
anymore, because it will not match again the view condition (ie. the �rst argument of align).

Bidirectional transformations has been introduced. The next chapter highlights the
other notions used in our thesis: the MAPE loop template and the rule-based synchronizer.

9

Chapter 2

Basic preliminary notions

Here are presented two other notions: the MAPE loop template and the rule-based synchro-
nizer, which both work with the bidirectional transformations to form our model. Then,
the idea behind an unpublished paper called Modular Hierarchical Self-Adaptation using
Bidirectional Transformations [29] is highlighted. As a matter of fact, our thesis uses this
unpublished paper as foundations, but our model describes a much more complex and ex-
tensive system.

2.1 The MAPE loop template

The MAPE loop template is a well-known and often used concept, especially as a control
model for autonomic and self-adaptive systems [2, 11, 23, 35]. Its purpose is to allow a system
to independently make decisions and automatically adapt itself, according to a changing
environment. As a matter of fact, as time goes by, the complexity of the management
of the computing systems signi�cantly increases, and the manual control of those systems
becomes more and more complicated. This is where autonomic computing takes action [22],
and more precisely the MAPE loop template.

Divided into four steps, it facilitates the structure creation of adaptive systems.
Fanzhang Li speci�es those steps as follows:

1. "Monitor provides the mechanisms that collect, aggregate, �lter, manage, and report
details (for example, metrics and topologies etc) which are collected from a managed
resource to the Analyzer.";

2. "Analyzer takes charge of analyzing the information transmitted from Monitor and
correlating and modeling complex situation.";

3. "Planner provides the mechanisms to structure the action needed to control the be-
havior of the managed resource.";

4. "Executer executes the action structured by Planner to control the part of managed
resource" [37].

All together, those four steps are able to examine a system and make decisions according
to the evolving environment.

2.2 The rule-based synchronizer

As explained earlier, the rule-based synchronizer has the goal to �nd an execution order of
the views at each iteration of the system. There are a lot of possible representations for

11

2. Basic preliminary notions

a knowledge base (logical, philosophical, computational, etc) [30]. Thus, �nding a way to
put human knowledge into a program has been studied for a long time [7]. Amongst all the
existing techniques, the rule-based representation is an established approach [33] that o�ers
a clear and easy way for the user to de�ne accurately its expertise. The fact that a rule can
associate a boolean condition (the trigger of the action) with an expected result (the action
itself) is a renowned way to describe human knowledge. At a particular time, the boolean
conditions of all the rules are evaluated. Only the rules whose boolean condition is True
are taken into account in the knowledge base. The expected result of those rules can then
be used to apply what a human would have done in the same situation, but in a much more
e�cient way.

2.3 Modular Hierarchical Self-Adaptation using
Bidirectional Transformations

To let the reader understand this thesis, an explanation of another paper is required. The
base of our subject relies on an idea described on an unpublished paper called Modular
Hierarchical Self-Adaptation using Bidirectional Transformations [29]. The authors want
to solve a widespread issue: nowadays, most of the systems are very complex. To solve
this, the use of hierarchical modules, resulting from the decomposition of the big system,
is a time-honored strategy. The paper proposes an approach based on the bidirectional
transformations [24] and the MAPE loop, illustrated in Figure 2.1.

The monitoring generates the source from the AWS API. This is an Infrastructure
as a Service (IaaS), a model of cloud computing which lets the user choose an amount
of computing resources and automatically scales up or down those resources to meet the
demand. It allows to manage a set of servers (in this case, owned by Amazon). The clients
of those services can thus rent some servers and run their own computer applications [5].
Then, each view is created with a forward transformation (get) and runs its own analysis
and planning steps. Those steps apply changes, which are send back into the source with
their backward transformation (put). The execute step �nally sends the results back to the
API [29]. Our interest in this paper is the upper side, with the bidirectional transformations
and the analysis and planning steps. The exchanges (ie. the monitoring and execute steps)
between the AWS API and the cloud infrastructure con�guration model (ie. the main
source) are mostly present to test the performances of the upper part. This model contains
some substantial disadvantages, explained in the next section.

2.4 From hierarchical to self-prioritized adaptation

From the previous paper [29] and its drawbacks, some ideas came up to improve the
whole model and to transform it into an extensive and more signi�cant system. Two main
disadvantages are highlighted here.

Firstly, each view represents a speci�c quality attribute of the system. The purpose
of those qualities is to ensure that the system follows a number of policies, each of them
related to a speci�c quality. The main qualities of a system are usually the Availability,
the Modi�ability, the Performance, the Security, the Testability and the Usability [12]. In
the actual case, the goal of the views is to represent a quality attribute. In that respect,
the autoscaling view is related to the performance, the redundancy to the availability,
and the �rewall rules to the security. A set of three qualities is too light to represent a
concrete example. Our goal is to show the use of BXs in a realistic example, and one of
the most important concern of companies is the resulting cost of a system. To be more

12

2.4. From hierarchical to self-prioritized adaptation

Figure 2.1: M(AP)+E loop [29]

accurate with a real situation, the modi�ability concern, which allows the decrease (and
the increase) of the costs, has to be implemented. Besides, the modi�ability concern will
enter in con�ict with the redundancy and availability concerns, which will show in a more
e�cient way how our approach handles those con�icts, and why ordering them is a real asset.

Secondly, the order in which the views are executed is hard-coded and never changes.
The main interest in this order relies on the priority of a view amongst the others. It means
that the �rst view executed is the less important, because if it changes something in the
source, the second executed view can overwrite those changes, so can the third, and so on.
Thanks to this order, even if the views are sharing the same data, there will not be any
con�icts anymore. As each view can erase the changes made by the previous views, the
last one will always have the prerogative to enforce its own changes. However, it should
be possible to change the order of the views dynamically, according to the inner and outer
context of the system. The inner context covers all the data inside the source, such as
the number of running servers, whereas the outer context contains potentially every other
data, such as the actual hour of the day. Indeed, a concern could take the advantage in
one situation, but not in another one. For instance, the Availability concern could be more
important than the Cost during the day, but not during the night in order to save money.
Therefore, this thesis proposes a rule-based approach that can automatically change, at
each iteration of the system, the order in which the views are executed. This improvement
transforms the hierarchical adaptation model into a self-prioritized adaptation model:

The shape of Figure 2.2 is directly related to the Three Layer Architecture Model for Self-
Management described by Kramer and Magee [25], which is based itself on an architecture
de�ned by Gat for robotic systems [19]. Just as described in those two architectures, our
model is mainly divided into three layers: the infrastructure, the BXs, and the synchronizer.
Kramer and Magee named the layers as follow:

13

2. Basic preliminary notions

Figure 2.2: Self-Prioritized Modular Adaptations using BXs - Theoritical

1. Component Control : "It consists of sensors, actuators and control loops. The bottom
layer of a self-managed system consists of the set of interconnected components that
accomplish the application function of the system".

2. Change Management : "In a self-managed system, this layer is responsible for e�ecting
changes to the underlying component architecture in response to new states reported
by that layer or in response to new objectives required of the system introduced from
the layer above".

3. Goal Management : "This layer produces change management plans in response to
requests from the layer below and in response to the introduction of new goals" [25].

As a matter of fact, the infrastructure in �gure 2.2 is our Component Control: it contains
components that can be monitored in order to provide information for the next layer. Then,
our Change Management is the Source and its views. Each view can change the data
according to plans, and the BXs propagate those changes back in the Source. Finally, our
Goal Management is the synchronizer. Even though it is based on rules and not on goals,
its purpose is identical: it produces a change in the management of the previous layer (ie.
the source and its BXs), by applying a new execution order of the views when a new context
is met.

Thus, �gure 2.2 shows how the three notions explained, from Section 1.1 to Section
2.2, are brought together. The main idea is a combination of two MAPE loops. The �rst
one, in red in Figure 2.2 and re�ned as a M(AP)+E loop, must propagates the changes,
performed inside one view, to the others thanks to the analysis and planning steps located
on each view. The BXs are inside this loop as well, and have the aim of associating data
inside the source (ie. the large system) with the data inside the several views (ie. the
subsystems). The second loop is the synchronizer, that must �nd the best order in which
the views are executed. As a reminder, if the views are executed sequentially, the potential

14

2.4. From hierarchical to self-prioritized adaptation

Figure 2.3: Self-Prioritized Modular Adaptations using BXs - Practical

con�icts between them are avoided. Indeed, each view is then able to overwrite the changes
of previously executed views. To �nd the best execution order of the views, the second
loop, in blue in Figure 2.2, contains a rule-based knowledge base. The boolean conditions
of those rules reference the current context of the infrastructure.

Obviously, �gure 2.2 is not a concrete example. A real implementation of our model,
which is evaluated in this thesis, is the illustration of Figure 2.3. The next two chapters
explain in details how the two loops are working together to form the self-prioritized modular
adaptations system.

15

Chapter 3

First MAPE loop : Modular

Adaptations using Bidirectional

Transformations

The main idea behind this thesis is a combination of two MAPE loops. For a better clarity,
the combination of the loops is illustrated in a concrete example throughout this thesis.
The chosen example is illustrated in Figure 2.3, with each of the two loops represented with
a di�erent color.

The �rst one, quite similar to the one explained earlier in Montrieux's paper, willmonitor
the AWS API to create the source. This source represents the large and complex system that
must be handled and decomposed into four modules. Those modules can be synchronized
with the source thanks to the bidirectional transformations. For each one, the forward
transformation (ie. get) selects the data needed by the view (ie. the module) in the source.
With those data, each view can analyse them and plan to do some changes. Once the
changes have been made, the backward transformation (ie. the put) updates the source
with the data modi�ed by the view. When all the views have �nished their changes, the
system will execute the update to the AWS API. This �rst loop handles the modular part
of the thesis. The self-prioritized part, where the priority of each view is set, is located
in the second MAPE loop. The current chapter will focus on the �rst loop and how all
its mechanisms work, and the second loop will be detailed in the next chapter. Moreover,
the code of our system is runnable and can be downloaded here: https://github.com/
qlombat/Self-Prioritized-Modular-Adaptations. Before going into our solution, we
are �rst introducing what has already been done by other studies, and why it does not �t
our subject.

MAPE loops, serving as the basis for a lot of self-adaptive systems, turned up in a lot of
research and they have been applied in many di�erent shapes. Weyns et al. [35] listed diverse
types of MAPE loops for distributed systems, like the master/slave pattern (ie. M+APE+),
or the regional planner pattern (ie. MAP+E). Each described MAPE loop pattern has its
own favourable situation in which it is better to use it. However, the M(AP)+E pattern,
used in this paper, does not appear in them.

Barna et al. [5] implemented Hogna, a self-adaptive solution using MAPE-K loop, to
auto-scale web-applications on the cloud. Basically, Hogna is working like our model, but
without the BXs. Moreover, it only handles one concern, the auto-scaling. As there is only
one concern to handle, the need to divide the system into subsystems does not appear. In
doing so, as it is impossible to add other concerns, it removes the opportunity to entirely
and self-adaptively manage the servers taking all the concerns into account. Moreover, our

17

https://github.com/qlombat/Self-Prioritized-Modular-Adaptations
https://github.com/qlombat/Self-Prioritized-Modular-Adaptations

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

model is not closed to managing web-applications on the cloud. It can be adapted according
to what the user wants to administer.

Garlan et al. have developed an architecture-based infrastructure for self-adaptation,
called Rainbow. It provides "a framework which uses software architectures and a reusable
infrastructure to support self-adaptation of software systems. The use of external adaptation
mechanisms allows the explicit speci�cation of adaptation strategies for multiple system
concerns" [18]. This requires prede�ned strategies or architectural plans to work properly,
whereas our model only needs con�gurations parameters of an IaaS (such as AWS), which
is transparent to the users.

Although recent, the use of bidirectional programming in software engineering has been
the subject of some research [28, 38]. However, most of the studies use get-based languages
in contrast to a put-based language like BiGUL.

The decomposition of large systems into smaller ones has already been treated by several
studies. Finkelstein et al. [14] have introduced good software engineering practices by
treating multiple aspects as viewpoints. They highlighted the pro�t of modularization in
managing the inconsistency. The real added-value of modularization in software engineering,
Sullivan et al. [32] and Lopes et al. [27] demonstrate it mathematically. They based their
work on a theory of modular design by Baldwin and Clark [3], with their Net Options Value,
a quantitative approach to evaluate the bene�ts of modularization. Regarding the views
themselves, Fradet et al. [17] introduced a formal approach based on typed graphs to verify
the consistency of views, providing a simple yet powerful algorithm to check it. While all
of those papers praise the bene�ts of modularization, none of them is concerned with the
propagation issue, when multiple views are sharing the same data.

Obviously, a lot of work has already been done in the subjects studied in this thesis,
but the added-value of our work lies on the composition of those subjects, and the model
created when they are combined together.

3.1 Model of the �rst loop : M(AP)+E

As shown in Figure 3.1, all the data used here come from the AWS API. It is an IaaS,
which is a category of Cloud Computing. It means that Amazon takes care of the servers,
the network and the storage whereas the client just has to handle the application software.
This API provides a large range of data, and many of which are unnecessary in this study.
Therefore, the Monitoring step of the loop serves not only to recover the data but also
to select them. Then, each view may execute some computation inside the Analysis and
Planning steps. As several Analysis and Planning steps occur between only one Monitoring
and one Execute, the traditionalMAPE loop becomes aM(AP)+E loop. The behavior of the
Analysis and Planning steps will be explained in a much more precise way in the following
sections. Regarding the Execute step, it will simply transmit to the AWS API the changes
made by the di�erent views, thanks to Ansible1. Once the changes of the views have been
made, the set of data is parsed into a YAML format, and sent to Ansible. It will take charge
of updating the AWS API.

The following sections explains in details all the parts of the �rst loop, one by one.

1https://www.ansible.com

18

https://www.ansible.com

3.1. Model of the �rst loop : M(AP)+E

Figure 3.1: M(AP)+E loop

19

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

3.2 The Source

This portion of the thesis describes the data structure of the Source. This data structure
is a derivation of the data sent by the AWS API, but de�ned in Haskell. The structure is
shared by the source and its four views.

3.2.1 The Source - Data structure

The Monitor step recovers the data from the AWS API. Conceptually, the source looks like
this:

Figure 3.2: Example of a Source

A source possesses a set of Instances, which are the Amazon's virtual servers; a set of
Instance Types, which identify the features of the servers; and a set of Security Groups,
which specify the access policies of all the servers related to each security group. Moreover,
each Security Group contains a set of Firewall Rules, which list the allowed and denied
accesses. Together, these three sets can describe a concrete system, able to show how the
modular self-prioritized approach, described in this thesis, works.

Figure 3.2 shows our implemented source. This source is made up of ten Instances,
three Instance Types and two Security Groups, in which there are respectively two and one
Firewall Rules.

Now that the schema has been explained, let us see the code behind the model:

1 type Id = String
2 type Description = String
3 type Type = String
4 type Ami = String
5 type SecurityGroupRef = Id
6 type InstanceRefs = [Id]
7 type FromPort = Maybe Int
8 type ToPort = Maybe Int
9 type Ip = String -- Format: 0.0.0.0/0 for IPv4 or ::/0 for IPv6

10 type Protocol = String
11 type State = Int
12 type Status = Int

20

3.2. The Source

13 type TypeCPUs = Int
14 type FirewallStatus = Int
15 type Load = Double -- Unit: %
16 type TypeRAM = Double -- Unit: Gio
17 type TypeCost = Double -- Unit: $/hour
18 type Outbound = Bool
19

20 data Instance = Instance Id Type Ami State Status SecurityGroupRef Load
21 deriving (Show, Eq, Read)
22 deriving instance NFData Instance
23 deriveBiGULGeneric ’’Instance
24 deriveJSON defaultOptions ’’Instance
25

26 data FirewallRule = FirewallRule Outbound FromPort ToPort Ip Protocol
27 deriving (Show, Eq, Read)
28 deriving instance NFData FirewallRule
29 deriveBiGULGeneric ’’FirewallRule
30 deriveJSON defaultOptions ’’FirewallRule
31

32 data SecurityGroup = SecurityGroup Id Description InstanceRefs [FirewallRule]
33 deriving (Show, Read)
34 deriving instance NFData SecurityGroup
35 deriveBiGULGeneric ’’SecurityGroup
36 deriveJSON defaultOptions ’’SecurityGroup
37

38 data InstanceType = InstanceType Id TypeCPUs TypeRAM TypeCost
39 deriving (Show, Eq, Read)
40 deriving instance NFData InstanceType
41 deriveBiGULGeneric ’’InstanceType
42 deriveJSON defaultOptions ’’InstanceType
43

44 data Source = Source [Instance] [SecurityGroup] [InstanceType]
45 deriving (Show, Read)
46 deriving instance NFData Source
47 deriveBiGULGeneric ’’Source
48 deriveJSON defaultOptions ’’Source

Listing 3.1: Data structure of the Source

Each instance contains several values: an Id, a Type, an Ami, a State, a Status, a
SecurityGroupRef and a Load. The Id is just the Amazon's identi�er. The Type is a
reference to the instance type, to recover the features of the server. The Amazon Machine
Image (AMI) represents the virtual server in the cloud where the instance is launched2.
Regarding the State, it shows if the instance is running or not. The Status contains an
integer (0, 1 or 2), where 0 means that nothing has to be done with the instance, 1 that the
instance must be created, and 2 that the instance must be terminated. SecurityGroupRef
is a reference to a security group that de�nes the access policy of the server. Finally, the
Load is a value between 0 and 1, representing the percentage of use of the server.

An instance type is composed of an identi�er, the number of Central Processing Units
(CPUs)'s inside this type of instances, the amount of Random Access Memory (RAM) and
�nally its cost.

A security group contains an identi�er, a description (required by Amazon when the
data is sent back to the API), the references to all the instances that must follow the access

2http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html (Accessed on 04/22/2018)

21

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

policy described by the security group, and �nally a list of �rewall rules, which de�ne the
policy.

A �rewall rule possesses an "outbound" that shows if the current rule allows or denies
the access, the interval of ports a�ected by the rule, an Internet Protocol (IP) address and
a protocol (for example, http).

3.3 The Auto-scaling View

The aim of the auto-scaling view, representing the Performance concern, is to ensure that
the load of the servers is balanced amongst all of them, and that it stays below a prede�ned
limit. First we explain the data structure of this view, then the bidirectional transformation
between the source and the view, and �nally its analysis and planning steps.

3.3.1 Auto-scaling View - Data structure

This view is a subset of the Source:

Figure 3.3: Auto-scaling view

It is the same schema than the one for the source, but all the data not needed by
the view have been shaded. As a matter of fact, the purpose of the auto-scaling view is
to adjust the number of CPU's according to the load-balancing, thus it doesn't need any
information about the Security Groups. The main interest lies in the Load attribute of each
instance. Here is the code of the auto-scaling view structure, where the name convention
takes the �rst letter of the view before the name of the original list (here, auto-scaling
becomes AS):

1 data ASInstance = ASInstance Id Type State Status SecurityGroupRef Load
2 deriving (Show, Eq)
3 deriving instance NFData ASInstance
4 deriveBiGULGeneric ’’ASInstance
5 deriveJSON defaultOptions ’’ASInstance
6

7 data ASInstanceType = ASInstanceType Id TypeCPUs TypeRAM TypeCost
8 deriving (Show, Eq)

22

3.3. The Auto-scaling View

9 deriving instance NFData ASInstanceType
10 deriveBiGULGeneric ’’ASInstanceType
11 deriveJSON defaultOptions ’’ASInstanceType
12

13 data ASView = ASView [ASInstance] [ASInstanceType]
14 deriving (Show)
15 deriving instance NFData ASView
16 deriveBiGULGeneric ’’ASView
17 deriveJSON defaultOptions ’’ASView

Listing 3.2: Data structure of the Auto-scaling view

As showed above, the autoscaling needs all the information in the source, excepted the
list of security groups. Indeed, as the computation performed inside this view wants to
scale up or down the servers (according to a speci�c percentage that the view must reach),
it must possess all the information about the servers and their types (excluding the ami of
the instances, as it is a value handled solely by the AWS API). The Haskell data type are
not repeated in this document because of the space. However, in the code, all the types are
de�ned again in the view's data structure. To separate properly the source and its di�erent
subsystems, we create new Haskell data types for each view. Even if the information is the
same, the concern can evolve and change during the lifetime of the software. That is why
we duplicate the data types. Moreover, each concern will certainly be executed on a remote
and independently server. Finally, in our case we chose to implement the Analysis and Plan
of concerns in Haskell like the rest of the code, but we could use another language where we
should have to de�ne the data in this language. To summarize, we assume that all concerns
are completely independent from each other and from the source. The only links between
the main system and its subsystems have to be the bidirectional transformations.

3.3.2 Auto-scaling View - Bidirectional transformation

In the four sections about the bidirectional transformations, one for each view, will be
exposed the bidirectional transformations used to synchronize the changes made inside the
views, back to the source. Those transformations are one of the two main interests of this
thesis, with the self-prioritized execution of the views. They allow the propagation of the
information from one module to the whole system, and they ensure that these changes
will be properly propagated, thanks to BiGUL, which guarantees that the bidirectional
transformations are well-behaved.

The bidirectional transformation between the source and the auto-scaling view works
as follows:

1 autoScalingUpdate :: BiGUL S.Source AS.ASView
2 autoScalingUpdate =
3 $(rearrS [| \(Source insts sgs instTypes) -> (insts, instTypes, sgs)|])$
4 $(rearrV [| \(ASView insts instTypes) -> (insts,instTypes,())|])$
5 $(update
6 [p|(insts,instTypes,sgs)|]
7 [p|(insts,instTypes,sgs)|]
8 [d| insts = alignInstances;
9 instTypes = alignInstanceTypes;

10 sgs = Skip (const ())|])

Listing 3.3: autoScalingUpdate

As shown in the data structure of the auto-scaling view, it needs the list of instances,
the list of instance types, but not the list of security groups. Moreover, regarding the

23

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

instances and instance types, it does not need the ami (To remember the data structure of
the model, please refer to section 3.2.1).Thus, the autoScalingUpdate function rearranges
the source and the view into tuples, where x is the list of instances, y is the list of instance
types, and z is the list of security groups. Once both of them have the same structure, it
is simple to call BiGUL's functions to synchronize the instances and the instance types.
The third part of the function, update, takes the source as �rst argument, the view as
second, and applies the synchronization in the third argument. Indeed, the x calls the
alignInstances function to align the instances, the y calls the alignInstanceTypes to align
the instance types, and the z calls BiGUL's Skip function to warn that the list of security
groups in the source does not have any correspondance in the view.

1 alignInstances :: BiGUL [Instance] [ASInstance]
2 alignInstances = align
3 (_ -> True)
4 (\(Instance s _ _ _ _ _ _) (ASInstance v _ _ _ _ _) -> s == v)
5 $(update
6 [p|Instance identifier instType _ state status sg load|]
7 [p|ASInstance identifier instType state status sg load|]
8 [d|identifier = Replace; instType = Replace; state = Replace; status=

Replace; sg= Replace; load= Replace|])
9 (\(ASInstance vId vType _ _ vSG vLoad) -> Instance vId vType "" 0 1 vSG vLoad)

10 (\(Instance sId sType sAmi sState _ sSecurityGroupRef sLoad) -> Just (Instance
sId sType sAmi sState 2 sSecurityGroupRef sLoad))

Listing 3.4: Auto-scaling - alignInstances

The above BiGUL's function possesses a list of Instances as source, and a list of
ASIstances as view. It corresponds to the data structure in section 3.2.1. The body of
the function simply calls the BiGUL's align function explained in section 1.2.2. The �rst
argument of align, line 3, represents the elements in the source that do not have to be in
the view, but still remain in the source. Here, we need all the instances in the system, so
the function has to return True all the time. The second argument, line 4, makes the match
between the elements of the source and the elements of the view (ie. those which possess
the same identi�er). The third argument, lines 5 to 8, shows how to update the data of
each element. The fourth argument, line 9, explains how to create a new instance in the
source with an instance in the view. We drop the state and the status, because the values
of those �elds in the view does not matter: the new instance in the source must have its
state to 0, and its status to 1. Finally, the last argument, line 10, describes how an instance
in the source but not in the view has to be handled (ie. totally removed or particularly
treated). Here, we set its status to 2, saying that the instance must be terminated.

1 alignInstanceTypes :: BiGUL [InstanceType] [ASInstanceType]
2 alignInstanceTypes = align
3 (_ -> True)
4 (\(InstanceType s _ _ _) (ASInstanceType v _ _ _) -> s == v)
5 $(update
6 [p|InstanceType identifier typeCPUs typeRAM typeCost|]
7 [p|ASInstanceType identifier typeCPUs typeRAM typeCost|]
8 [d|identifier = Replace; typeCPUs = Replace; typeRAM= Replace; typeCost=

Replace|])
9 (\(ASInstanceType vId vTypeCPUs vTypeRAM vTypeCost) -> InstanceType vId

vTypeCPUs vTypeRAM vTypeCost)
10 (_ -> Nothing)

Listing 3.5: Auto-scaling - alignInstanceTypes

24

3.3. The Auto-scaling View

In the same way, the code above describes the alignement between the instance types
of the source and the view. The �rst argument accepts all the instance types, because the
views needs all of them. The second matches the elements in the source with those in the
view, with their identi�er. The third argument synchronizes the possible changes in the
data. The fourth shows how to create a new instance in the source with a new instance
type in the view. Finally, the last argument sends always Nothing, but this will never occur
because it is not allowed to delete an instance type, even in the view.

3.3.3 Auto-scaling View - Analysis and Planning

The aim of the four analysis and planning steps sections, one for each view, is to explain
in details the strategies used inside each step of Analysis and Planning. As a reminder, the
Analysis step goes over the view and provides some information to the Planning step, which
may change the view attributes. Those changes will then update the main Source, thanks
to the put transformation.

The analysis step of the auto-scaling is quite simple. Its purpose is to determine whether
the planning must increase or decrease the number of instances to keep a prede�ned load
level. This concern is applied on each security group independently because for our example
system we use those groups to separate the type of instance (Web and database). Before
getting into the explanation, it's important to de�ne some useful functions.

1 groupBySecurityGroup :: [ASInstance] -> [(String, [ASInstance])]
2 groupBySecurityGroup [] = []
3 groupBySecurityGroup (x:xs) = (findSecurityGroups x, filter
4 (\y -> findSecurityGroups x == findSecurityGroups y)
5 (x:xs)):(groupBySecurityGroup (filter (\y-> findSecurityGroups x /=

findSecurityGroups y) xs))
6

7 findSecurityGroups :: ASInstance -> String
8 findSecurityGroups (ASInstance _ _ _ _ sg _) = sg

Listing 3.6: Analyse and plan : groupBySecurityGroup

The groupBySecurityGroup function returns a list of pairs, where the �rst element is
the name of a security group and the second element is the list of instances in this security
group. As explained earlier, this function is important because the auto-scaling concern is
applied on each security group, one by one.

1 findNumberOfCPU :: [ASInstanceType] -> ASInstance -> Int
2 findNumberOfCPU instTypes (ASInstance _ instType _ _ _ _) =
3 foldl
4 (\acc (ASInstanceType iden cpu _ _) -> if iden == instType then cpu else

acc)
5 0 instTypes
6

7 nbrCPU :: [ASInstanceType] -> [ASInstance] -> Int
8 nbrCPU instTypes = foldl (\acc inst -> (findNumberOfCPU instTypes inst) + acc) 0

Listing 3.7: Analyse and plan : �ndNumberOfCPU

The �rst function determines the number of CPU's owned by an instance. It is quite
simple: the function �nds the linked instance type and retrieves the number of CPUs.
Regarding the nbrCPU function, it is an extension of �ndNumberOfCPU but applied to a

25

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

list of instances.

1 findLoadOfInstance :: [ASInstanceType] -> ASInstance -> Double
2 findLoadOfInstance instTypes (ASInstance iden instType state status sg l) = l * (

fromIntegral (findNumberOfCPU instTypes (ASInstance iden instType state status
sg l)))

Listing 3.8: Analyse and plan : �ndLoadOfInstance

The above function is used to know the exact load of an instance. Indeed, the load
value represents the load of each CPU, but an instance can possess several CPU's. Thus,
the function computes the total load of an instance.

1 runInstance :: ASInstance -> ASInstance
2 runInstance (ASInstance iden instType state _ sg l)
3 | (state == 16) = (ASInstance iden instType state 0 sg l)
4 | otherwise = (ASInstance iden instType state 1 sg l)

Listing 3.9: Analyse and plan : runInstance

The runInstance function is used to start an instance. Two cases are possible. The �rst
one is when the instance is really started. In this case, the previous status does not matter
and the function reset it to 0. The second one is when the instance has another state
than started (it could be pending, shutting-down, stopping, stopped, ...). In this case, the
function puts the status at 1 to notify that the system has to restart the instance.

1 instancesRunning :: [ASInstance] -> [ASInstance]
2 instancesRunning = filter (\(ASInstance _ _ state status _ _) -> (state == 16 &&

status /= 2) || (state /= 16 && status == 1))
3

4 instancesStopped :: [ASInstance] -> [ASInstance]
5 instancesStopped = filter (\(ASInstance _ _ state status _ _) -> (status == 0 &&

state == 80) || (state == 16 && status == 2))

Listing 3.10: Analyse and plan : instancesRunning and instancesStopped

These two functions are used to �lter a list of instances. The �rst one retrieves the
running instances. It means those that are started in the system and not stopped by
another concern, or those stopped in the system but started by another concern. The
second function retrieves the stopped instances. It means those that are stopped in the
system and not started by another concern, or those started in the system but stopped by
another concern. Note that both ignore all instances with an intermediate state to simplify
the analysis and plannnig steps.

After having reviewed all those useful functions, the strategy used for the analysis can
be explained. This step calculates, for each Security Group, the number of CPU's needed
to reach a certain level of load, assuming a perfect distribution of the load. The calculation
does not take into account the instances which must be stopped (as asked by a previous
view), because the charge they are currently absorbing will not absorb anything after
stopping them.

1 autoScalingAnalysis :: Double -> AS.ASView -> [(String, Int)]
2 autoScalingAnalysis avrLoadExpected (ASView instances instTypes) =

26

3.3. The Auto-scaling View

3 map
4 (\(a,b) -> (a, ceiling (
5 (foldl
6 (\acc inst -> (findLoadOfInstance instTypes inst) + acc)
7 0.0 (instancesRunning b)
8) / avrLoadExpected))
9)

10 (groupBySecurityGroup instances)

Listing 3.11: Analyse of the auto-scaling view : autoScalingAnalysis

The �rst step splits the list of instances with the groupBySecurityGroup function. After
that, for each Security Group, it computes the number of CPU's required to reach the
average load expected. The result of this function looks like a list of pairs, where each of
them links a Security Group with its expected number of CPU's. The analysis is over. The
next step is the planner.

1 autoScalingPlan :: [(String, Int)] -> AS.ASView -> AS.ASView
2 autoScalingPlan analyses (ASView instances instanceTypes) =
3 ASView (foldl (\acc (sg, insts) -> case find (\(sg2, i) -> sg == sg2) analyses of
4 Just (_,cpuExpected) ->
5 if (cpuExpected - (nbrCPU instanceTypes (instancesRunning insts))) >= 0
6 then
7 acc ++ (increaseWithNewInstances cpuExpected sg instanceTypes (

increaseWithOffInstances cpuExpected instanceTypes insts))
8 else
9 acc ++ (decrease cpuExpected instanceTypes insts)

10 Nothing -> error "Analyse is inconsistent with the planner data"
11) [] (groupBySecurityGroup instances)) instanceTypes

Listing 3.12: Planning of the auto-scaling view : autoScalingPlan

It uses the result of the analysis to add or remove some instances. As a reminder, the
main purpose of the auto-scaling view is to absorb peak loads and making sure that the
system is working properly. The strategy is divided in two parts. Firstly, it groups all
the instances by their Security Group. Secondly, it checks if it is needed to add or remove
instances, according to the number of CPUs calculated by the analysis step. The �rst part
uses the groupBySecurityGroup function in the same way as before and the second part
uses increaseWithNewInstances and increaseWithO�Instances depending on the number of
CPUs requested:

1 increaseWithOffInstances :: Int -> [ASInstanceType] -> [ASInstance] -> [ASInstance]
2 increaseWithOffInstances cpu instTypes instances =
3 if (nbrCPU instTypes ((instancesStopped instances) ++ (instancesRunning

instances))) < cpu
4 then (instancesRunning instances) ++ map runInstance (instancesStopped

instances)
5 else snd (foldl (\(acc1, acc2) inst -> if acc1 < cpu
6 then (acc1 + (findNumberOfCPU instTypes inst) ,(runInstance inst):acc2

)
7 else (acc1, inst:acc2)) ((nbrCPU instTypes (instancesRunning instances)

),(instancesRunning instances)) (instancesStopped instances))

Listing 3.13: Planning of the auto-scaling view : increaseWithO�Instances

27

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

1 increaseWithNewInstances :: Int -> String -> [ASInstanceType] -> [ASInstance] -> [
ASInstance]

2 increaseWithNewInstances cpu currentSG instTypes instances
3 | cpu > (nbrCPU instTypes (instancesRunning instances)) =
4 increaseWithNewInstances cpu currentSG instTypes (((\(ASInstanceType iden _

_ _) -> (ASInstance "" iden 0 1 currentSG 0)) bestInstanceType):
instances)

5 | otherwise = instances
6 where
7 bestInstanceType =
8 foldl (\(ASInstanceType iden1 tCPU1 tRam1 tCost1) (ASInstanceType iden2

tCPU2 tRam2 tCost2) ->
9 if (cpu - tCPU2) > 0 && (cpu - tCPU1) > (cpu - tCPU2)

10 then (ASInstanceType iden2 tCPU2 tRam2 tCost2)
11 else (ASInstanceType iden1 tCPU1 tRam1 tCost1))
12 (head instTypes) instTypes

Listing 3.14: Planning of the auto-scaling view : increaseWithNewInstances

If the system needs to increase the number of CPU's, the strategy works as follows:
The increaseWithO�Instances function starts the stopped instances linked to the same
Security Group, trying to reach the right number of CPU's. Then, if it is not enough,
the increaseWithNewInstances function creates new instances based on the instances types
available.

1 compareWeightOfSubSeq :: ([ASInstance], (Int, Int)) -> ([ASInstance], (Int, Int))
-> Ordering

2 compareWeightOfSubSeq (_,(cpu1, runningInsts1)) (_, (cpu2, runningInsts2))
3 | cpu1 < cpu2 = LT
4 | cpu1 == cpu2 && runningInsts1 < runningInsts2 = LT
5 | otherwise = GT
6

7 decrease :: Int -> [ASInstanceType] -> [ASInstance] -> [ASInstance]
8 decrease cpu instTypes instances =
9 (removeInstances ((nbrCPU instTypes instances) - cpu) instTypes (

instancesRunning instances)) ++ (instancesStopped instances)
10 where
11 removeInstances :: Int -> [ASInstanceType] -> [ASInstance] -> [ASInstance]
12 removeInstances nbToRemove instTypes [] = []
13 removeInstances nbToRemove instTypes (x:xs)
14 | (findNumberOfCPU instTypes x) <= nbToRemove =
15 (stopInstance x):(removeInstances (nbToRemove - (findNumberOfCPU

instTypes x)) instTypes xs)
16 | otherwise = x:(removeInstances nbToRemove instTypes xs)

Listing 3.15: Planning of the auto-scaling view : decrease

If the system needs to decrease the number of CPU's, the strategy is to stop some
instances. The decrease function generates all the possible subsequences of instances. For
example, if the list of instances contains two items (a and b), the list of all subsequences
will be [[],["a"],["b"],["a","b"]]. After that, the strategy is to determine the weight of each
subsequence. In those functions, the weight represents the di�erence between the number
of CPU's expected and the number of CPU's contained inside this subsequence. Only those
with a weight higher than 0 will be kept, to get those which possess at least the number of
CPU's required. Thereafter, the subsequences are sorted following a bottom-up approach

28

3.4. The Redundancy View

(and according to their weight). Finally, it takes the head of the list which is the best
composition of instances with the expected number of CPU's.

This ends the explanations of the auto-scaling view. The next one is the redundancy
view.

3.4 The Redundancy View

Related to the Availability concern, the redundancy view must keep the system available at
any time. Thus, it has to keep at least two running instances inside each security group. If
one goes down, the other one guarantees the access and keeps the security group available.
The further sections show the data structure of the view, followed by the bidirectional
transformation between the source and the redundancy view, to �nish with the analysis
and planning steps.

3.4.1 Redundancy View - Data structure

Following the structure of the source (Section 3.2.1) the schema for the redundancy view
looks like:

Figure 3.4: Redundancy view

The only thing that matters to the redundancy view is to be sure that, every time
a user needs the system, it is operational and functional. Therefore, this view simply
requires the number of CPUs (ie. running instances) available in each Security Group, to
be able to guarantee the Availability at all times. The name convention is the same than
the auto-scaling view, and will be the same for the two last views. The code related to this
schema is as follows:

1 data RInstance = RInstance Id Type State Status SecurityGroupRef
deriving (Show, Eq)

deriving instance NFData RInstance
deriveBiGULGeneric ’’RInstance

5 deriveJSON defaultOptions ’’RInstance

data RSecurityGroup = RSecurityGroup Id InstanceRefs

29

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

deriving (Show)
deriving instance NFData RSecurityGroup

10 deriveBiGULGeneric ’’RSecurityGroup
deriveJSON defaultOptions ’’RSecurityGroup

data RInstanceType = RInstanceType Id
deriving (Show, Eq)

15 deriving instance NFData RInstanceType
deriveBiGULGeneric ’’RInstanceType
deriveJSON defaultOptions ’’RInstanceType

data RView = RView [RInstance] [RSecurityGroup] [RInstanceType]
20 deriving (Show)

deriving instance NFData RView
deriveBiGULGeneric ’’RView
deriveJSON defaultOptions ’’RView

Listing 3.16: Data structure of the Redundancy view

Obviously, the AMI is not relevant for this view, as well as the �rewall rules inside each
security groups. It only needs the type of the instance, its state and status (to know if it is
already running), and its security group. The list of security groups is needed to take into
account those which are not related to any instances. Regarding the list of instance types,
we need them in the planning strategy, explained later.

3.4.2 Redundancy View - Bidirectional transformation

The code for the bidirectional transformation between the redundancy view and the source is:

1 redundancyUpdate :: BiGUL S.Source R.RView
redundancyUpdate =

$(rearrS [| \(Source insts sgs instTypes) -> (insts,sgs,instTypes)|])$
$(rearrV [| \(RView insts sgs instTypes) -> (insts,sgs,instTypes)|])$

5 $(update
[p|(insts,sgs,instTypes)|]
[p|(insts,sgs,instTypes)|]
[d|insts = alignInstances; sgs = alignSecurityGroups; instTypes =

alignInstanceTypes|])

Listing 3.17: redundancyUpdate

As the view needs the three lists (ie. the instances, the instance types and the security
groups), the rearrangement only converts the data structure of the source and the view into
tuples, to be able to associate the instances in the source with the instances in the view,
and the same for the instances type and the security groups. These conversions are handled
by three BiGUL's functions: alignInstances, alignSecurityGroups and alignInstanceTypes.

1 alignInstances :: BiGUL [Instance] [RInstance]
2 alignInstances = align
3 (\(Instance _ _ _ state status _ _) -> (state /= 48))
4 (\(Instance s _ _ _ _ _ _) (RInstance v _ _ _ _) -> s == v)
5 $(update
6 [p|Instance identifier instType _ instState instStatus instGroupRef _|]
7 [p|RInstance identifier instType instState instStatus instGroupRef |]
8 [d|identifier = Replace; instType = Replace; instState = Replace;

instStatus = Replace; instGroupRef = Replace|])

30

3.4. The Redundancy View

9 (\(RInstance vId vType vState vStatus vGroupRef) ->
10 Instance vId vType "" vState vStatus vGroupRef 0)
11 (\(Instance sId sType sAmi sState _ sSecurityGroupRef sLoad) ->
12 Just (Instance sId sType sAmi sState 2 sSecurityGroupRef sLoad))

Listing 3.18: Redundancy - alignInstances

The alignInstances function calls the align function already implemented inside BiGUL.
The align function requires �ve arguments. The �rst one describes the elements that
must not be taken into account in the view. In this case, the redundancy concern needs
all the instances of the system, except the terminated ones (state equals 48) because we
cannot restart them. Indeed, it needs the running instances to know which security group
does not satisfy the redundancy, and the stopped ones to restart them if needed. The
second argument of the function matches the elements in the source with their associated
element in the source, thanks to their identi�er. The third argument, line 5, characterizes
the update function. Clearly, it only needs to replace each information to propagate the
potential changes in both directions, and according to the data structure of Section 3.2.1.
The fourth argument of the align function describes how to produce in the source a new
element created in the view. The function reuses the information contained in the view,
and put basic values for all the other attributes. The last argument shows how to delete
an element in the source when the view asked for it. The strategy of this thesis is to pass
the Status attribute to 2 when the element must be deleted. As a reminder, a status of
0 means that no change has to be made on the instance, and a status of 1 says that the
instance must be restarted if it exists, or created if not. The deletion will not violate the
GetPut property, as it will delete it only if the view requested it.

1 alignSecurityGroups :: BiGUL [SecurityGroup] [RSecurityGroup]
2 alignSecurityGroups = align
3 (_ -> True)
4 (\(SecurityGroup s _ _ _) (RSecurityGroup v _) -> s == v)
5 $(update
6 [p|SecurityGroup identifier _ instanceRefs _|]
7 [p|RSecurityGroup identifier instanceRefs|]
8 [d|identifier = Replace; instanceRefs = Replace|])
9 (\(RSecurityGroup vId vRefs) -> SecurityGroup vId "" vRefs [])

10 (_ -> Nothing)

Listing 3.19: Redundancy - alignSecurityGroups

Once again, the align function of BiGUL is used. Its �ve arguments are very comparable
to those depicted above for the alignInstances function. As all the security groups must
be taken into account by the concern, the �rst argument sends always True. Indeed,
the redundancy has to be sure that all the security groups possess at least two running
instances. Thus, all of them must be represented in the view. The second argument,
as usual, matches the elements in the source with their associated element in the view.
The update function, line 5, follows the data structure in Section 3.2.1 to link accurately
the information with the Replace function. The fourth argument still describes how to
create in the source a possibly new security group in the view. The list of �rewall rules
is empty, because it is AWS that knows the speci�c ID of the instances. As we want to
create it, this security group does not currently exist on AWS. Thus, it is AWS that will
link automatically the security group with its instances at its creation. Finally, the �fth
argument, which is supposed to show how to delete a security group in the source, sends
back Nothing. As a matter of fact, the redundancy concern creates or restarts instances in

31

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

the security groups, but can not in any circumstances remove one of them.

1 alignInstanceTypes :: BiGUL [InstanceType] [RInstanceType]
2 alignInstanceTypes = align
3 (_ -> True)
4 (\(InstanceType s _ _ _) (RInstanceType v) -> s == v)
5 $(update
6 [p|InstanceType identifier _ _ _|]
7 [p|RInstanceType identifier|]
8 [d|identifier = Replace|])
9 (\(RInstanceType vId) -> InstanceType vId 0 0 0)

10 (_ -> Nothing)

Listing 3.20: Redundancy - alignInstanceTypes

Still with the align function, its arguments for the alignInstanceTypes function are as
follows. The �rst one allows all the instance types to be taken into the view. As the
redundancy concern needs to know the types to restart (or create) the instances, all of them
are mandatory. The second argument matches the types in the source with the types in the
view. The third one, the update function, easily binds the information of related elements,
invariably thanks to the Replace and according to Section 3.2.1. The penultimate argument
shows how to create a new instance type in the source from the view. As the information
represented in the view is minimal, there are a lot of basic values used to create the type in
the source. The last argument depicts eventually how to delete an instance type, and sends
Nothing all the time because it is forbidden for the view to delete a type.

Thanks to those functions, the redundancy view can be properly created with the right
data from the source, and the potential changes in this view can be correctly propagated
back to the source.

3.4.3 Redundancy View - Analysis and Planning

The chosen strategy for this analysis is the following one. It has to return a list of pairs,
whose �rst element is the id of a Security Group which does not satisfy our redundancy
contraint, and the second one is the number of running RInstances within this group (ie.
either 0 or 1). The �rst part of the redundancyAnalysis function, (ie. before the "++"
operator), returns all the security groups with several instances but none, or only one,
is currently running. The second part handles the security groups without any related
instances:

1 redundancyAnalysis :: [RInstance] -> [RSecurityGroup] -> [(RSecurityGroup, Int)]
2 redundancyAnalysis instances securityGroups =
3 (
4 map (\(groupName, occurrence) -> case find (\(RSecurityGroup i _) ->

groupName == i) securityGroups of
5 Just s -> (s, occurrence)
6 Nothing -> error ("Source inconsistent"))
7 (findSecurityGroups instances)
8)
9 ++ (map (\securityGroup -> (securityGroup, 0)) (filter (\(RSecurityGroup _ ref)

-> (length ref == 0)) securityGroups))

Listing 3.21: Analyse of the Redundancy view : redundancyAnalysis

32

3.4. The Redundancy View

To achieve the �rst part, the program applies the countRunningInstances function on
each instance of the list. This function returns a pair whose �rst element is the id of the
security group of the current instance, and the second is the number of running instances
related to this security group. To increment this counter, an instance must have either its
state to 16 and its status not equal to 2 (meaning that it is running (ie. state equals 16)
but none of the previous views requested to stop it (ie. status not equal to 2)), either its
status to 1 (meaning that a previous view requested to restart the instance). With the
result of the countRunningInstances function, the program �lters the pairs to keep only
those with their second element below 2, thus those which do not respect the redundancy
constraint.

1 findSecurityGroups :: [RInstance] -> [(String, Int)]
2 findSecurityGroups instances = nub (filter
3 (\(_,occ) -> occ < 2)
4 (map
5 (\(RInstance _ _ _ _ ref) -> (countRunningInstances (filter
6 (\(RInstance _ _ _ _ ref1) -> ref == ref1)
7 instances)))
8 instances))

Listing 3.22: Analyse of the Redundancy view : �ndSecurityGroups

1 countRunningInstances :: [RInstance] -> (String, Int)
2 countRunningInstances (inst@(RInstance i t state status ref):instances) =
3 (
4 ref,
5 length (L.filter (\(RInstance _ _ state status _) ->
6 (state == 16 && status /= 2) || (status == 1)) (inst:instances))
7)

Listing 3.23: Analyse of the Redundancy view : countRunningInstances

1 frequency :: (Ord a) => [a] -> [(a, Int)]
2 frequency xs = toList (fromListWith (+) [(x, 1) | x <- xs])

Listing 3.24: Analyse of the Redundancy view : frequency

The second part (ie. after the "++" operator, line 9 in Listing 3.21) returns all the
Security Groups without any reference to instances.

Thanks to the pairs returned by the analysis, the Planning knows exactly on
which Security Groups it has to work. This step is divided in three parts. First,
inside the redundancyPlan function, the analysis is performed on the view. Then, in
the completeInstances function, each pair returned by the analysis is send separately to
update the list of RInstances in the handleCompleteness function, which forms the last part.

1 redundancyPlan :: RView -> RView
2 redundancyPlan inst@(RView instances securityGroups instanceTypes) =
3 completeInstances
4 inst
5 (redundancyAnalysis instances securityGroups)

Listing 3.25: Planning of the Redundancy view : redundancyPlan

33

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

1 completeInstances :: RView -> [(RSecurityGroup, Int)] -> RView
2 completeInstances view [] = view
3 completeInstances (RView instances securityGroups instanceTypes) (incompleteSG:ss)

=
4 completeInstances
5 (RView (handleCompleteness instances instanceTypes incompleteSG)

securityGroups instanceTypes)
6 ss

Listing 3.26: Planning of the Redundancy view : completeInstancesPlan

The handleCompleteness function works di�erently depending on the number of running
RInstances inside the security group (ie. either 0 or 1). If there is already one running
instance, the strategy is to launch another instance of the same type. Indeed, two instances
with di�erent types (and so di�erent computing capacity) could lead to a problem if the
strongest one falls. In order to start such an instance, the program has to verify if there
is a stopped instance with the same type and in the same security group already in the
system before deciding to start a new one. It is the purpose of the second �nd function,
line 4. If it does not �nd such an instance, it launches a brand new instance of the correct
type. Otherwise, it restarts it by either setting its status to 0 (if the previous status was 2,
another view planned to stop the instance but it is still running, and so the plan does not
have to do anything) or to 1 to really restart it. Regarding the �rst �nd function, line 3,
retrieves the sole running instance of the security group.

If there is no running instance, the goal is still to possess in the end two instances of
the same type. To do so, it tries to �nd the most present instance type inside the stopped
instances related to the security group, line 8. From there, three possibilities can occur.

Firstly, the security group is not related to any instance, and so the list of instances is
empty. Thus, it checks among all the instances of all the security groups to �nd the most
used in the system. If it comes across one, it launches a new instance of that type. If it does
not identify any type, it means that there is not any instance in the whole system, and so
launches the �rst proposed type inside the instance types list. It is decided by our strategy
to take the �rst one by default, because the �rst one is the smallest. As there is currently
zero running instance, it means that the charge is null. The smallest instance type is then
enough.

Secondly, there is only one instance of that type in the security group. In that case, the
program restarts the instance and creates a new instance of the same type.

Finally, when at least two instances have been found, the program simply restarts them.

1 handleCompleteness :: [RInstance] -> [RInstanceType] -> (RSecurityGroup, Int) -> [
RInstance]

2 handleCompleteness instances ((RInstanceType typeId _ _ _):_) ((RSecurityGroup
secId refs), occurrence) = case occurrence of

3 1 -> case find (\(RInstance instId _ state status _) -> (state == 16 || status
== 1) && (elem instId refs)) instances of

4 Just (RInstance instId1 instType1 _ _ _) -> case find (\(RInstance instId2
instType2 _ _ _) -> (instId1 /= instId2) && (instType1 == instType2) &&
(elem instId2 refs)) instances of

5 Just (RInstance i t ste stus sRef) -> (delete (RInstance i t ste stus
sRef) instances) ++ [(RInstance i t ste (if (stus == 2) then 0 else
1) sRef)]

6 Nothing -> instances ++ [(RInstance "" instType1 0 1 secId)]
7 Nothing -> error ("Source inconsistent")

34

3.5. The Firewall View

8 0 -> case filter (\(RInstance _ instType _ _ _) -> instType == findMostUsedType
(filter (\(RInstance _ _ _ _ sgRef) -> sgRef == secId) instances))
instances of

9 [] -> case filter (\(RInstance _ t _ _ _) -> t == findMostUsedType
instances) instances of

10 ((RInstance _ mostUsedType _ _ _):[]) -> instances ++ [(RInstance ""
mostUsedType 0 1 secId), (RInstance "" mostUsedType 0 1 secId)]

11 otherwise -> instances ++ [(RInstance "" typeId 0 1 secId), (RInstance
"" typeId 0 1 secId)]

12 ((RInstance i t ste stus sRef):[]) -> (delete (RInstance i t ste stus sRef)
instances) ++ [(RInstance i t ste (if (stus == 2) then 0 else 1) sRef)
, (RInstance "" t 0 1 sRef)]

13 ((RInstance i1 t1 ste1 stus1 sRef1):(RInstance i2 t2 ste2 stus2 sRef2):_)
->

14 (delete (RInstance i2 t2 ste2 stus2 sRef2) (delete (RInstance i1 t1
ste1 stus1 sRef1) instances)) ++ [(RInstance i1 t1 ste1 (if (stus1
== 2) then 0 else 1) sRef1), (RInstance i2 t2 ste2 (if (stus2 == 2)
then 0 else 1) sRef2)]

Listing 3.27: Planning of the Redundancy view : handleCompleteness

1 findMostUsedType :: [RInstance] -> String
2 findMostUsedType [] = ""
3 findMostUsedType instances = fst (maximumBy (comparing snd) (frequency (map (\(

RInstance _ instType _ _ _) -> instType) instances)))

Listing 3.28: Planning of the Redundancy view : �ndMostUsedType

These explanations �nish the redundancy view section. The next one is devoted to the
�rewall view.

3.5 The Firewall View

The goal of the view, standing for the Security concern, is to ensure that all security groups
follow the basic access policies according to their respective function, so that the security of
each instance inside the security groups is relevant. As usual, �rst comes the data structure,
then the bidirectional transformation associated to this view, to end with the analysis and
planning steps.

3.5.1 Firewall View - Data structure

As you can see in Figure 3.5, the structure of the view is the same as the source. All along
this section, you will see some data already explained in the source but with a di�erent
name due to our naming convention.

35

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

Figure 3.5: Firewall view

As shown above, in contrast with the three other views, the �rewall view does not need
the instances neither the instance types, but only the security groups and their associated
�rewall rules. Indeed, this view is just concerned by the access policies, and thus does
not care about what is inside the instances or the instance types. Before continuing, let's
explain the concept of �rewall rules and how these rules are composed. By default, all the
tra�c is closed in a security group. The rule let the user specify explicitly the tra�c that
the security group allows. As you saw in Figure 3.5, the �rewall rule starts with a key word
(inbound or outbound) to signify the type of rule. If it is inbound, the rule will be applied
to the tra�c coming from the external. If it is outbound, the rule will be applied to the
outgoing tra�c. The second part of the rule is the port range. In other words, there are two
values that specify the ports handled by this rule. For example, to manage the HTTP port
(80), you have to specify 80 for the �rst value and also 80 for the second value.To manage
all the ports from 8080 to 8082, you have to specify 8080 for the �rst value and also 8082
for the second value. Then, the next parameter is the IP address handled by this rule. It is
a formatted string containing the IP and the mask like 0.0.0.0/0 for IPv4 and like ::/0 for
IPv6. Thus, if it is an inbound rule, the IP is the source of the tra�c. If it is an outbound
rule, the IP is the destination of the tra�c. Finally, the last value is the name of the protocol
handled by the rule. Basically, this �eld is �lled with TCP or UDP. The summarize, the
rule outbound 80 80 0.0.0.0/0 TCP means in english that all the outgoing HTTP tra�c
is allowed and the rule inbound 22 22 192.168.1.0/24 TCP means that all the incoming
SSH tra�c is allowed for the IPs from 192.168.1.0 to 192.168.1.255. The code looks like this:

1 data FRule = FRule Outbound FromPort ToPort Ip Protocol
deriving (Show, Eq)

deriving instance NFData FRule
deriveBiGULGeneric ’’FRule

5 deriveJSON defaultOptions ’’FRule

data FSecurityGroup = FSecurityGroup Id [FRule]
deriving (Show)

deriving instance NFData FSecurityGroup
10 deriveBiGULGeneric ’’FSecurityGroup

deriveJSON defaultOptions ’’FSecurityGroup

36

3.5. The Firewall View

data FView = FView [FSecurityGroup]
deriving (Show)

15 deriving instance NFData FView
deriveBiGULGeneric ’’FView
deriveJSON defaultOptions ’’FView

Listing 3.29: Data structure of the Firewall view

As mentioned above, only the security groups and their associated �rewall rules are
worth it in this view and so they are the only data kept by the view from the source. Also,
the data are the same as the source but, as already explained, to properly separate the view
and the source we chose to rede�ne them for the subsystem.

3.5.2 Firewall View - Bidirectional transformation

The bidirectional transformation implemented for this view is:

1 firewallUpdate :: BiGUL Source FView
2 firewallUpdate =
3 $(rearrS [| \(Source insts sgs instTypes) -> (sgs, (insts, instTypes)) |])$
4 $(rearrV [| \(FView sgs) -> (sgs,()) |])$
5 alignSecurityGroups ‘Prod‘ (Skip (const ()))

Listing 3.30: �rewallUpdate

As the only list that matters for the Firewall view is the list of security groups, the
rearrangement puts it as the �rst element of the pair for the source, and set the two other
lists in the second element. For the view, the rearrangement places the associated list as the
�rst element, and nothing as the second. With those structures, the alignSecurityGroups
function can synchronize properly the lists of security groups in the source and in the view,
while skipping the two other lists of the source.

1 alignSecurityGroups :: BiGUL [SecurityGroup] [FSecurityGroup]
2 alignSecurityGroups = align
3 (_ -> True)
4 (\(SecurityGroup s _ _ _) (FSecurityGroup v _) -> s == v)
5 $(update
6 [p| SecurityGroup identifier _ _ rules |]
7 [p| FSecurityGroup identifier rules |]
8 [d| identifier = Replace; rules = alignRules |])
9 (\(FSecurityGroup vId _) -> SecurityGroup vId "" [] [])

10 (_ -> Nothing)

Listing 3.31: Firewall - alignSecurityGroups

The align function associates the security groups in the source and the view accurately.
The �rst argument, which �lters the security groups from the source to the view, allows
all of them to be represented in the view. The second matches the correct security groups
between them with their id. The third argument synchronizes the data of the related
security groups, thanks to the update function. To handle the list of rules inside each
security group, the alignRules function is used. The fourth argument shows how to create
a new security group, create in the view, in the source. Finally, the last should describe
how to delete a security group in the source when it is not present anymore in the view.
As the deletion of a security group is not allowed in the view, this argument is empty.

37

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

1 alignRules :: BiGUL [FirewallRule] [FRule]
2 alignRules = align
3 (_ -> True)
4 (\(FirewallRule sOutBound sFrom sTo sIp sProtoc) (FRule vOutBound vFrom vTo vIp

vProtoc) -> (sOutBound == vOutBound) && (sFrom == vFrom) && (sTo == vTo)
&& (sIp == vIp) && (sProtoc == vProtoc))

5 $(update
6 [p| FirewallRule outbound from to ip protoc |]
7 [p| FRule outbound from to ip protoc |]
8 [d| outbound = Replace; from = Replace; to = Replace; ip = Replace; protoc

= Replace |])
9 (\(FRule outbound from to ip protoc) -> FirewallRule outbound from to ip protoc

)
10 (_ -> Nothing)

Listing 3.32: Firewall - alignRules

The rules are synchronized thanks to the alignRules function and its �ve arguments.
The �rst argument sends always True because all the rules must be taken into account. The
second matches the rules. As a rule does not possess an id, the rules are matched with all
their data. The third argument synchronizes the data of associated rules with the BiGUL's
Replace function. The fourth explains the creation in the source of a rule created in the
view. The last argument returns always Nothing because it not allowed to delete a rule in
the �rewall view.

3.5.3 Firewall View - Analysis and Planning

As basic example for the Firewall view, the strategy implemented consists of assuring that
the security groups with "web" and "database" in their name obey to the elementary rules
for web and database groups. Thus, the security groups related to the web must be opened
on port 80, and the security groups related to the databases must close the port 3306.
Moreover, all of the security groups must be always accessible with SSH, and so their port
22 must stay open. The analysis scans the rules of each security groups and sends to the
planning all of those which does not satisfy the basics explained above. This view is a
simple example of a �rewall analysis that checks only a few rules. It is thus hard-coded.
Obviously, this implementation is simple and can be greatly improved by giving the ability
to add �rewall rules on the �y, using a con�guration �le. Keep in mind that the purpose
of this work is to demonstrate the feasibility of a modular system using BiGUL. Then, we
will not dwell on safety rules.

1 firewallAnalysis :: FView -> [(FSecurityGroup, Int, Int)]
2 firewallAnalysis (FView ls) = map handleSecurityGroup ls

Listing 3.33: Analyse of the Firewall view : �rewallAnalysis

1 handleSecurityGroup :: FSecurityGroup -> (FSecurityGroup, Int, Int)
2 handleSecurityGroup (FSecurityGroup name rs) =
3 if (isInfixOf "web" name) then
4 case checkPort22 of
5 0 -> case checkPort80 of
6 0 -> (FSecurityGroup name rs, 0, 0)
7 otherwise -> (FSecurityGroup name rs, 0, 1)
8 1 -> case checkPort80 of
9 0 -> (FSecurityGroup name rs, 1, 0)

10 otherwise -> (FSecurityGroup name rs, 1, 1)

38

3.5. The Firewall View

11 otherwise -> case checkPort80 of
12 0 -> (FSecurityGroup name rs, 2, 0)
13 otherwise -> (FSecurityGroup name rs, 2, 1)
14 else
15 if (isInfixOf "database" name) then
16 case checkPort22 of
17 0 -> case checkPort3306 of
18 0 -> (FSecurityGroup name rs, 0, 2)
19 otherwise -> (FSecurityGroup name rs, 0, 3)
20 1 -> case checkPort3306 of
21 0 -> (FSecurityGroup name rs, 1, 2)
22 otherwise -> (FSecurityGroup name rs, 1, 3)
23 otherwise -> case checkPort3306 of
24 0 -> (FSecurityGroup name rs, 2, 2)
25 otherwise -> (FSecurityGroup name rs, 2, 3)
26 else case checkPort22 of
27 0 -> (FSecurityGroup name rs, 0, 4)
28 1 -> (FSecurityGroup name rs, 1, 4)
29 otherwise -> (FSecurityGroup name rs, 2, 4)
30

31 where
32 checkPort22 = (length (filter (\(FRule _ from to _ _) -> ((from <= Just 22)

&& (to >= Just 22))) rs))
33 checkPort80 = (length (filter (\(FRule o from to _ _) -> ((not o) && (from

<= Just 80) && (to >= Just 80))) rs))
34 checkPort3306 = (length (filter (\(FRule o from to _ _) -> ((not o) && (

from <= Just 3306) && (to >= Just 3306))) rs))

Listing 3.34: Analyse of the Firewall view : handleSecurityGroup

The response of the analysis is a list of triplet, whose �rst element is the name of the
security group and the second and third are respectively a number that will de�ne the
behavior of the planning with the SSH access, and the web/database access. With this re-
sult, the planning can apply the right strategy to end up with the appropriate access policies.

1 firewallPlan :: FView -> FView
2 firewallPlan fv = FView (addSSH (firewallAnalysis fv))

Listing 3.35: Analyse of the Firewall view : �rewallPlan

1 addSSH :: [(FSecurityGroup, Int, Int)] -> [FSecurityGroup]
2 addSSH ls =
3 map (\(FSecurityGroup i rs, port22, webOrDB) -> case (port22, webOrDB) of
4 (0, 0) -> (FSecurityGroup i (addSSHRules (addWebRule rs)))
5 (0, 1) -> (FSecurityGroup i (addSSHRules rs))
6 (0, 2) -> (FSecurityGroup i (addSSHRules rs))
7 (0, 3) -> (FSecurityGroup i (addSSHRules (removeDBAccess rs)))
8 (0, 4) -> (FSecurityGroup i (addSSHRules rs))
9 (1, 0) -> (FSecurityGroup i (addWebRule (addSSHRules (removeSSHRule rs))))

10 (1, 1) -> (FSecurityGroup i (addSSHRules (removeSSHRule rs)))
11 (1, 2) -> (FSecurityGroup i (addSSHRules (removeSSHRule rs)))
12 (1, 3) -> (FSecurityGroup i (removeDBAccess (addSSHRules (removeSSHRule rs)

)))
13 (1, 4) -> (FSecurityGroup i (addSSHRules (removeSSHRule rs)))
14 (2, 0) -> (FSecurityGroup i (addWebRule rs))
15 (2, 1) -> (FSecurityGroup i rs)
16 (2, 2) -> (FSecurityGroup i rs)
17 (2, 3) -> (FSecurityGroup i (removeDBAccess rs))

39

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

18 (2, 4) -> (FSecurityGroup i rs))
19 ls
20 where
21 addSSHRules ls = ls ++ [FRule True (Just 22) (Just 22) "0.0.0.0/0" "TCP",

FRule False (Just 22) (Just 22) "0.0.0.0/0" "TCP"]
22 removeSSHRule ls = filter (\(FRule _ from to _ _) -> not ((from == Just 22)

&& (to == Just 22))) ls
23 addWebRule ls = ls ++ [FRule False (Just 80) (Just 80) "0.0.0.0/0" "TCP"]
24 removeDBAccess ls = concat (map (\(FRule o from to ip pr) -> if ((from <=

Just 3306) && (to >= Just 3306)) then [FRule o from (Just 3305) ip pr,
FRule o (Just 3307) to ip pr] else [(FRule o from to ip pr)]) (filter
(\(FRule _ from to _ _) -> not ((from == Just 3306) && (to == Just
3306))) ls))

Listing 3.36: Analyse of the Firewall view : addSSH

According to the integers sent by the analysis, the �rewall rules of the currently treated
security group are handled. This is a very simple strategy, but it is a basis for a rudimen-
tary security. Of course, it is easy to add more policies depending on the user. In this
implementation and for our evaluation of the model, this elementary plan is enough.

3.6 The Cost View

The cost view, related to the Modi�ability concern, did not exist in the original hierarchical
self-adaptations model [29]. On the top of the fact that the cost is one of the most important
concern for compagnies, it is particularly interesting to add it to our model because the view
shares a lot of data with the redundancy view and the auto-scaling view. Considering that
the purpose of this thesis is to suggest a multi-viewing data sharing system, it is worth
to possess at least three views that will enter into con�ict, to show the real added-value
of our approach. The order in which the views are executed will de�ne which one takes
the precedence over the others. The most important will be the last, that overwrites the
changes of the other views. As usual, after explaining the data structure, the bidirectional
transformation between the source and the cost view is explained. The analysis and planning
steps end this section.

3.6.1 Cost View - Data structure

Here is the schema of the cost view, still following the same structure as the source in Section
3.2.1:

40

3.6. The Cost View

Figure 3.6: Cost view

Clearly, the only attribute taken into account is the cost of each instance. Based on
this sole element, the view will start or shut down some instances. The code of this view is:

1 data CInstance = CInstance Id Type Load
deriving (Show, Eq)

deriving instance NFData CInstance
deriveBiGULGeneric ’’CInstance

5 deriveJSON defaultOptions ’’CInstance

data CInstanceType = CInstanceType Id TypeCost
deriving (Show, Eq)

deriving instance NFData CInstanceType
10 deriveBiGULGeneric ’’CInstanceType

deriveJSON defaultOptions ’’CInstanceType

data CView = CView [CInstance] [CInstanceType]
deriving (Show)

15 deriving instance NFData CView
deriveBiGULGeneric ’’CView
deriveJSON defaultOptions ’’CView

Listing 3.37: Data structure of the Cost view

In addition to the type attribute, the load has also been kept. This attribute is taken
into account in the analysis and planning steps of the cost view when servers of the same
price are compared.

The attentive reader may have noticed that the State and Status attributes, located in
the instances de�nitions, are present in every view, except the cost view. As the views are
going to launch (or create) and to shut down (or delete) instances, it is mandatory to know
if the instance is running or not. While the cost view is going to shut down instances as
well, it does not need those attributes because only the running instances will be picked
up from the source to this view, all the others will not appear. The state and the status
attributes are thus useless for this speci�c view.

41

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

3.6.2 Cost View - Bidirectional transformation

The bidirectional transformation between the cost view and the source is implemented like
this:

1 costUpdate :: BiGUL Source CView
2 costUpdate =
3 $(rearrS [| \(Source insts sgs instTypes) -> (insts,instTypes,sgs) |])$
4 $(rearrV [| \(CView insts instTypes) -> (insts,instTypes,()) |])$
5 $(update
6 [p| (insts,instTypes,sgs) |]
7 [p| (insts,instTypes,sgs) |]
8 [d| insts = alignInstances; instTypes = alignInstanceTypes; sgs = Skip (

const ()) |])

Listing 3.38: costUpdate

Once again, the list of security groups is not required for this view. As a matter of
fact, the only interesting attributes for the view to calculate the total cost of the system
are the type of each instance, and the cost associated to each type. Thus, this BiGUL
function reorganizes the source and the view so that the list of instances and the list of
instance types can be at the same position in the tuple. After that, the alignInstances and
alignInstanceTypes functions handle the synchronization between the lists of instances and
the lists of instance types respectively.

1 alignInstances :: BiGUL [Instance] [CInstance]
2 alignInstances = align
3 (\(Instance _ _ _ state status _ _) ->
4 (state == 16 && status /= 2) ||
5 (state /= 16 && status == 1))
6 (\(Instance s _ _ _ _ _ _) (CInstance v _ _) -> s == v)
7 $(update
8 [p| Instance identifier instType _ _ _ _ instLoad |]
9 [p| CInstance identifier instType instLoad |]

10 [d| identifier = Replace; instType = Replace; instLoad = Replace |])
11 (\(CInstance vId vType vLoad) -> Instance vId vType "" 0 1 "" vLoad)
12 (\(Instance sId sType sAmi sState _ sSecurityGroupRef sLoad) -> Just (Instance

sId sType sAmi sState 2 sSecurityGroupRef sLoad))

Listing 3.39: Cost - alignInstances

As usual, the basic align function of BiGUL is used. The �rst argument �lters the
element in the source and sends to the view only those which satisfy the condition. The
aim of the cost view is to calculate the whole cost of the system. There are two categories
of instances that cost money. Either the instances are currently running (i.e. state equals
to 16) and previous concerns did not extinguish them (i.e. status not equals to 2) or they
are currently not running (i.e. state not equals to 16) but previous concerns ask to start
them (i.e. status equals to 1). Indeed, if a previously executed view wants to shut down
an instance, it must be taken into account by the cost view, and the associated cost of this
instance must not be into the whole future cost. However, an instance with a status of
1 means that a previous view (and so, with a smaller priority) wants to start a stopped
instance. Even if the instance is not currently running, its cost must be calculated because
it will be launched by the AWS API at the execute step.

The second argument of the align function matches the element in the source with the
element in the view, thanks to their identi�er. The third argument is the update function.

42

3.6. The Cost View

As the other update functions, it only uses the BiGUL's Replace function to synchronize
the attributes on both sides. The fourth argument describes how to create an existing
instance in the view, but not in the source, by giving basic values to the constructor.
Finally, the last argument shows how to delete an instance in the source when it is not
existing in the view, just by putting its status to 2.

1 alignInstanceTypes :: BiGUL [InstanceType] [CInstanceType]
2 alignInstanceTypes = align
3 (_ -> True)
4 (\(InstanceType s _ _ _) (CInstanceType v _) -> s == v)
5 $(update
6 [p| InstanceType identifier _ _ typeCost |]
7 [p| CInstanceType identifier typeCost |]
8 [d| identifier = Replace; typeCost = Replace |])
9 (\(CInstanceType vId vTypeCost) -> InstanceType vId 0 0 vTypeCost)

10 (_ -> Nothing)

Listing 3.40: Cost - alignInstanceTypes

For the last time, the align function is employed. The �rst argument always returns
true, because all the instance types must exist in the view, in order to �nd the cost of the
running instances. The second argument links the element in the source with those in the
view. The third is the common update function, which synchronizes the attributes on each
side. The fourth argument shows how to create an instance present in the view but not in
the source. Ultimately, the last argument returns Nothing because it is not permitted to
delete any instance types in the view. Basically, both last parameters are not used because
the instance type is provided by AWS and it is not possible to create or delete one of them.
However, to have a lens, the transformation must be well-behaved. We thus have to handle
the cases where we remove or create an instance type, even if �nally during the execute step
of the system those changes are not taken into account.

3.6.3 Cost View - Analysis and Planning

The code which analyses the Cost View is quite simple:

1 costAnalysis :: CView -> Double
2 costAnalysis (CView instances instanceTypes) =
3 sum (map (\(CInstanceType ident cost) -> calculateCost instances ident cost)

instanceTypes)
4

5 calculateCost :: [CInstance] -> String -> Double -> Double
6 calculateCost instances typeName cost =
7 (fromIntegral (length (filter (\(CInstance _ typeInstance _) -> typeName ==

typeInstance) instances))) * cost

Listing 3.41: Analyse of the Cost view

The idea behind this code is as follows. First, we want to transform each CInstanceType
into an integer, which represents the cost of the CInstances of this type, in order to sum
this new list to obtain the total cost of the system. To do so, the map is used to apply the
calculateCost function to every CInstanceType.

The calculateCost function �lters all the CInstances of the system, and keeps only the
one whose type are the same as the type currently examined. Once the list only contains

43

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

the right CInstances, the last thing to do is taking its length, and multiply it with the right
cost.

Now that the analysis has returned the cost of the system, the Planning can adjust the
number of instances, to remain below a limited price de�ned by the user.

1 costPlan :: Double -> CView -> CView
2 costPlan limitCost cView = handlePlan (costAnalysis cView) limitCost cView
3

4 handlePlan :: Double -> Double -> CView -> CView
5 handlePlan currentCost limitCost (CView instances instanceTypes)
6 | currentCost > limitCost = handlePlan (costAnalysis newIntermediateSource)

limitCost newIntermediateSource
7 | otherwise = CView instances instanceTypes
8 where
9 newIntermediateSource = CView sortedList instanceTypes

10

11 sortedList = tail (sortBy sortByCost instances)
12

13 sortByCost :: CInstance -> CInstance -> Ordering
14 sortByCost (CInstance _ type1 load1) (CInstance _ type2 load2)
15 | load1 < load2 = LT
16 | load1 == load2 = case
17 ((find (\(CInstanceType typeName1 _) -> typeName1 == type1)

instanceTypes),
18 (find (\(CInstanceType typeName2 _) -> typeName2 == type2)

instanceTypes))
19 of
20 (Just (CInstanceType _ cost1), Just (CInstanceType _ cost2)

) -> if cost1 > cost2 then LT else GT
21 (Nothing,_) -> error ("Source inconsistent")
22 (_,Nothing) -> error ("Source inconsistent")
23 | otherwise = GT

Listing 3.42: Planning of the Cost view

Obviously, the Planning only has to change something if the cost calculated by the
analysis is above the limit. Otherwise, it simply returns the unchanged view. In case of
high cost, the list of CInstances in the view must be reduced. The strategy is to remove the
head of the list, after having sorted it. The sortByCost function ensures that its output will
follow the rules describe within. The �rst rule puts �rst the little used, because removing
one whose load is high could be problematic for the system. Then, if the load attribute
is the same, it puts the most expensive before. The function which removes the head is
applied recursively until the current price is below the limit. This strategy assures that the
most used instances run as long as possible, and if they have to be shut down, the most
expensive is �rst removed. This view does not care about the number of CPU's, because
it is the main purpose of the auto-scaling view, and it is the whole point of separating the
concerns in di�erent views.

This ends the explanations of the propagation of the changes, made inside one view,
into the source and propagated to the other views thanks to the four bidirectional trans-
formations. It is now possible to make a change in one of the modules, sends this change
back to the source with a backward transformation, and the source eventually propagates
the change to the other modules with the forward transformations.

44

3.7. The Amazon Web Services API

3.7 The Amazon Web Services API

We have presented all the modular systems, each in charge of its analysis and planning (AP).
Let us introduce the monitor (M) and execute (E) steps, which will end the explanation of
the �rst MAPE loop. As a reminder, our use case manages a cloud infrastructure and we
chose to work with Amazon Web Services (AWS) because it is one of the most used IaaS
around the world. AWS is an Infrastructure as a Service (IaaS) o�ering cloud computing.
Basically, it allows the user to rent servers and plenty of services that we could need to
manage a cloud infrastructure. The other reason why we chose to use AWS is the fact that
a lot of other works use it. That makes the comparison easier. Typically, they are two ways
to manage our infrastructure with AWS: either we use the web interface to run, stop or buy
something; or we can use the AWS API 3, that allows us to make requests when we want
to do something in our infrastructure. For our automatic system, the API is better suited.
Thus, we use the AWS API to monitor and execute. As shown all along this section, we
use tools to facilitate the communication of our system with AWS API.

3.7.1 AWS API - Monitoring

The monitoring step consists of retrieving all the information about our infrastructure.
In other words, the monitor creates the source (explained in section 3.2). Because there
is no fairly complete Haskell API available, to handle this task, our system requires to
be run on a machine with the AWS API CLI4 installed, which is a tool to manage your
AWS services. Thanks to it, we can run simple console commands to interact with the
AWS API. We will not highlight the installation of those tools here but you can �nd our
working system with some documentation on the github. Moreover, you also can �nd some
installation instructions according to your operating system in the o�cial AWS API CLI
documentation. We will not detail how to obtain Amazon API credentials information.
Therefore, we assume that the system in which our system is running has AWS API CLI
installed and that you have all the information in order to be connected to Amazon Web
Services.

3.7.1.1 Communicate in JSON

As you will see during the con�guration of AWS Cli, we want it to communicate in JSON.
When we query AWS for the information about our infrastructure, it retrieves this informa-
tion in this format. We need to translate this data in Haskell to work on it. To do that, we
use a Haskell library called Aeson5. To make it easy, this library allows us to create Haskell
data and making a simple Haskell derivation or instantiation to work with JSON. Typically,
there are two Haskell instances for a Data type. One instance to specify how we can go from
Haskell data to JSON string and another to go from JSON string to Haskell data. These
two instances are respectively called ToJson and FromJson. In their basic use, both are
simple to understand. A little example using a Haskell derivation will explain each of them.
Obviously, we can override the default behavior to handle speci�c cases. In this thesis, we
only explain what we have done with this library. The rest of the library is irrelevant for
our use.

The translation of Haskell data into JSON is the �rst illustrated. Here is a simple
example, with the data of a person.

1 {-# LANGUAGE DeriveGeneric, DeriveAnyClass #-}
2 import GHC.Generics

3http://docs.aws.amazon.com/cli/latest/index.html (Accessed on 04/22/2018)
4https://aws.amazon.com/cli/ (Accessed on 04/22/2018)
5https://hackage.haskell.org/package/aeson (Accessed on 04/22/2018)

45

http://docs.aws.amazon.com/cli/latest/index.html
https://aws.amazon.com/cli/
https://hackage.haskell.org/package/aeson

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

3 import Data.Aeson
4

5 data Person = Person {
6 name :: String,
7 age :: Int }
8 deriving (Generic, ToJSON, FromJSON)
9

10 me :: Person
11 me = Person {name="Quentin", age="24"}
12

13 main = encode me // return this string : {"name":"Quentin","age":24}

Listing 3.43: Simple Example of JSON encode using Aeson

Thanks to Aeson, we just had to declare a Haskell data deriving ToJSON to be ready to
encode data in JSON. That is what the main function shows. Note that we had to specify
some directives to let the compiler derive any class in Generic, ToJSON and FromJSON. It
is quite easy to transform Haskell data in JSON using a simple derivation.

However, we do not need that in this chapter but in the following one. In this chapter,
we only need the other way, from JSON to Haskell. Translating data in JSON is as easy as
in Haskell data. The trick is having a Haskell data with the same structure as the JSON.
It means that the names of JSON labels have to be the same as in the Haskell data type.
The type of each JSON data must also be consistent with the Haskell data type. In our
example, the generated JSON has exactly the same structure. We can then directly use the
decode function to get Haskell data. The following code shows this situation:

1 {-# LANGUAGE DeriveGeneric, DeriveAnyClass #-}
2 import GHC.Generics
3 import Data.Aeson
4

5 data Person = Person {
6 name :: String,
7 age :: Int }
8 deriving (Generic, ToJSON, FromJSON)
9

10 json :: String
11 json = "{\"name\":\"Quentin\",\"age\":24}"
12

13 main = decode $ json :: Maybe Person // return : Just Person {name="Quentin", age="
24"}

Listing 3.44: Simple Example of JSON decode using Aeson

The example above uses the same data as the �rst one, but in the opposite way. We
just have to use the decode function on a JSON string to transform it in a Haskell data.
The function returns a Maybe to handle errors and returns Nothing when something bad
happened (for example, a wrong JSON format). Of course, more complete data can be
handled with the API. That is why it is possible to override the default behavior of FromJson.
With AWS, we had to do this because the API retrieves data with the identi�er in CamelCase
(capitalizing the �rst letter of each word), whereas our naming convention is lowerCamelCase
(capitalizing the �rst letter of each word except the �rst one). In our example, instead of
our JSON in lower case, we would have "Name":"Quentin","Age":24. Our data declaration
to handle this speci�c problem would be the following one:

1 capitalized :: String -> String
2 capitalized (x:xs) = Char.toUpper x : xs

46

3.7. The Amazon Web Services API

3 capitalized [] = []
4

5 data Person = Person {
6 name :: String,
7 age :: Int }
8 deriving (Generic, ToJSON)
9 instance FromJSON AWSInstance where

10 parseJSON = genericParseJSON defaultOptions {
11 fieldLabelModifier = capitalized }

Listing 3.45: Example of JSON decode using Aeson

In this way, before trying to match the JSON with our data, Aeson modi�es the label
of our data with the capitalized function that capitalizes the �rst letter. The last things
to highlight before explaining the monitoring is that the translation between JSON and
Haskell is recursive. It means that if we have data containing other data, Aeson will parse
those data recursively. Moreover, it is not required to specify all the data of the JSON. If
a part of the data is not needed, a �eld that can be matched can be skipped. For example,
the JSON "Name":"Quentin","Age":24, "sex":"male" will give exactly the same result as
the Listing 3.44.

3.7.1.2 Retrieving data from AWS

Let's explain the monitor step. To communicate with the AWS API, some credentials must
be speci�ed. Thus, the monitor function takes three arguments. The �rst two are respec-
tively the AWS access key part and the AWS secret access key of the credentials. The last
one is the AWS region where the system is executed. Then the call of the monitor function
with those three arguments retrieves a source representing our current AWS infrastructure.
Before explaining, line by line, the code created to monitor, it is important to reinforce that
when this thesis was written, AWS did not provide a way to get the information about the
type of available instances in a speci�c region. For that reason, we had to hard-code a list
of available instance types in the region where we ran the system, during our internship in
Tokyo. It is not a complete list, but only the list of instance types that we use.

1 instanceTypes :: [InstanceType]
2 instanceTypes = [
3 InstanceType "t2.nano" 1 0.5 0.0058,
4 InstanceType "t2.micro" 1 1 0.0116,
5 InstanceType "t2.small" 1 2 0.023,
6 InstanceType "t2.medium" 2 4 0.0464,
7 InstanceType "t2.large" 2 8 0.0928,
8 InstanceType "t2.xlarge" 4 16 0.1856,
9 InstanceType "t2.2xlarge" 8 32 0.3712]

Listing 3.46: List of instance types used

1 monitor :: String -> String -> String -> IO Source
2 monitor access secret region = do
3 -- configure AWS
4 _ <- readProcess "aws" ["configure"] (access ++ "\n" ++ secret ++ "\n" ++

region ++ "\n" ++ "json\n")
5

6 -- retrieve instances
7 resInstances <- readProcess "aws" ["ec2", "describe-instances", "--filter", "

Name=tag:BiGUL,Values=CloudBx"] []
8 jsonInstances <- return $ fromJust (decode (Char8.pack resInstances) :: Maybe

AWSDescribeInstancesResponse)

47

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

9 instances <- updateLoadOfInstances (fromAWSToSourceInstances jsonInstances)
10

11 --retrieve security Groups
12 resSG <- readProcess "aws" ["ec2", "describe-security-groups", "--filter", "

Name=tag:BiGUL,Values=CloudBx"] []
13 jsonSG <- return $ fromJust (decode (Char8.pack resSG) :: Maybe

AWSDescribeSecurityGroupsResponse)
14 securityGroups <- return (linkInstancesToSecurityGroup instances (

fromAWSToSourceSecurityGroups jsonSG))
15

16 return $ Source instances securityGroups instanceTypes

Listing 3.47: Function of monitoring

The heart of the algorithm is now explained. As already said, the �rst thing to do is
to specify the credentials information to the AWS API Cli. The �rst line of code (line 4)
accomplishes that. We use the function readProcess provided by the system.Process library
of Haskell 6. This function allows the developer to execute a command just like inside a
terminal. It takes three parameters. The �rst one is the �le path of the executable, in
our case the executable can be called directly as "aws". The second parameter is an array
of Strings, corresponding to the arguments given to the executable. The last parameter is
the standard input corresponding to the information that the developer would have written
with the keyboard, if this command was executed in the terminal. This listing represents
this command, executed by the function readProcess.

1 $ aws configure
2 AWS Access Key ID [None]: <access>
3 AWS Secret Access Key [None]: <secret>
4 Default region name [None]: <region>
5 Default output format [None]: json

This command returns nothing relevant. Thus, we do not keep the result of the read-
Process function. The new line (line 7) runs a command like the previous one. The program
remains the same, but the parameters di�ers. It uses the EC2 part of the AWS API Cli.
EC2 is the name given by AWS to their cloud computing service. The command asks then
to describe the instances of the AWS infrastructure. However, to avoid any side e�ect on the
infrastructure, we �lter the instances to those with the tag BiGUL=CloudBx. In this way,
only these will be managed by the system. It gives to the user the possibility to manage
only a part of the infrastructure, without any e�ect on the other resources. In our system,
the instances without this tag are hidden. The line can be translated in bash as follows:

1 $ aws ec2 describe-instances --filter "Name=tag:BiGUL,Values=CloudBx"
2 [JSON]

As shown in the o�cial documentation7, the response to this command is a JSON
(because during the con�guration step, line 4 of Listing 3.47, we asked to communicate in
this format) containing a lot of information about the current situation of our instances.
We had created speci�c Haskell data matching with the JSON retrieved, to manipulate that
information. To clarify the code here, we removed the implementation of FromJSON for all
the data. It is signi�cantly the same as in the Listing 3.45, because we have to capitalize
the �rst letter of the �eld to be consistent with our naming convention.

6https://hackage.haskell.org/package/process-1.6.3.0/docs/System-Process.html (Accessed on
04/22/2018)

7https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instances.html (Accessed on
04/22/2018)

48

https://hackage.haskell.org/package/process-1.6.3.0/docs/System-Process.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instances.html

3.7. The Amazon Web Services API

1 data AWSDescribeInstancesResponse = AWSDescribeInstancesResponse
2 { reservations :: [AWSReservation]
3 } deriving (Show, Generic)
4 instance FromJSON AWSDescribeInstancesResponse where [...]
5

6 data AWSReservation = AWSReservation
7 { instances :: [AWSInstance]
8 } deriving (Show, Generic)
9 instance FromJSON AWSReservation where [...]

10

11 data AWSInstance = AWSInstance
12 { instanceId :: String,
13 instanceType :: String,
14 state :: AWSState,
15 securityGroups :: [AWSInstanceSecurityGroup],
16 imageId :: String
17 } deriving (Show, Generic)
18 instance FromJSON AWSInstance where [...]
19

20 data AWSState = AWSState
21 { code :: Int,
22 name :: String
23 } deriving (Show, Generic)
24 instance FromJSON AWSState where [...]
25

26 data AWSInstanceSecurityGroup = AWSInstanceSecurityGroup
27 { groupName :: String,
28 groupId :: String
29 } deriving (Show, Generic)
30 instance FromJSON AWSInstanceSecurityGroup where [...]

Listing 3.48: Data of instances - AWS API

The code above is explained here. Where we ask the description of instances, AWS API
returns a list of reservations (line 1). A reservation is composed by instances reserved at the
same time. Then, those reservations contain a list of instances (line 6) with several useful
properties (line 11). An instance has two sub data type, corresponding to the state of the
instance (line 20) and the information about the security groups (line 26).

We have the data corresponding to the JSON retrieved by AWS API, the line 8 of the
Listing 3.47 decodes it in the Haskell type AWSReservation. In addition to the decode func-
tion, we use the pack function to properly handle the UTF-8 encoding. The next line uses
two functions: the �rst one, called fromAWSToSourceInstances, translates the AWS Data
into our source data (section 3.2). The second one is the function called updateLoadOfIn-
stances that retrieves the load of each instance. Indeed, this information is not provided
when we ask the details about instances. The code below explains both functions:

49

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

1 fromAWSToSourceInstances :: AWSDescribeInstancesResponse -> [Instance]
2 fromAWSToSourceInstances d = Prelude.foldl (\acc o -> acc ++ (createInstance o))

[] (reservations d)
3 where
4 createInstance :: AWSReservation -> [Instance]
5 createInstance o = L.map (\inst -> Instance (instanceId inst) (instanceType

inst) (imageId inst) (code (state inst)) 0 (instSg inst) 0) (instances
o)

6 instSg :: AWSInstance -> String
7 instSg o | L.length (securityGroups (o)) > 0 = (groupName (L.head (

securityGroups (o))))
8 | otherwise = ""

Listing 3.49: Translate AWS data into a Source

Thus, fromAWSToSourceInstances goes through all the AWS reservations with a foldl
(line 2). It merges the current accumulator, initialized as an empty list of instances, with
the results of the sub function createInstance, which is a list of instances contained in the
reservation. This latter uses a map to generate this list of instances, based on the AWS
data.

1

2 data AWSGetMetricsResponse = AWSGetMetricsResponse
3 { datapoints :: [AWSDatapoint]
4 } deriving (Show, Generic)
5 instance FromJSON AWSGetMetricsResponse where [...]
6

7 data AWSDatapoint = AWSDatapoint
8 { timestamp :: String,
9 average :: Double,

10 unit :: String
11 } deriving (Show, Generic, Eq)
12 instance FromJSON AWSDatapoint where [...]
13

14 updateLoadOfInstances :: [Instance] -> IO [Instance]
15 updateLoadOfInstances instances = do
16 res <- foldM fn [] instances
17 return res
18 where
19 fn :: [Instance] -> Instance -> IO [Instance]
20 fn acc (Instance identifier insttype ami state status sg _)
21 | state == 16 = do
22 currentTime <- getCurrentTime
23 timeEnd <- getCurrentTime
24 timeStart <- return (addUTCTime (-3600) currentTime)
25 r <- readProcess "aws" ["cloudwatch","get-metric-statistics", "--

namespace", "aws/EC2", "--metric-name","CPUUtilization", "--
statistics","Average", "--dimensions", "Name=InstanceId,Value="
++ identifier, "--start-time", (iso8601 timeStart), "--end-
time", (iso8601 timeEnd), "--period","300"] []

26 son <- return $ fromJust (decode (Char8.pack r) :: Maybe
AWSGetMetricsResponse)

27 mostRecent <- return (getMostRecent (datapoints json))
28 return (case mostRecent of
29 Just x -> (acc ++ [Instance identifier insttype ami state

status sg ((average x)/100)])
30 Nothing -> (acc ++ [Instance identifier insttype ami state

status sg 0]))

50

3.7. The Amazon Web Services API

31 | otherwise = do
32 return (acc ++ [Instance identifier insttype ami state status sg

0])
33 getMostRecent :: [AWSDatapoint] -> Maybe AWSDatapoint
34 getMostRecent x = L.foldl (\acc o -> if acc == Nothing then Just o else if

(parseISO8601 (timestamp o)) > (parseISO8601 (timestamp (fromJust acc))
) then Just o else acc) Nothing x

35

36 iso8601 :: UTCTime -> String
37 iso8601 = formatTime defaultTimeLocale "%FT%T%QZ"
38

39 parseISO8601 :: String -> Maybe UTCTime
40 parseISO8601 t = parseTimeM True defaultTimeLocale "%FT%T%QZ" t

Listing 3.50: updateLoadOfInstances

The updateLoadOfInstances function is quite long and we will not explain it line by line.
Its role is to get the load of each instance. To do so, it goes through the list of instances
and calls the cloudwatch part of the AWS Cli program (line 25). It then retrieves a list of
loads (CPUUtilization) by period of 5 minutes (300 seconds) between the start time and
the end time. As you can see at the line 24, the start time begins 1 hour earlier than the
current time. Normally, we should have a list of 12 measuring points of the load (every
5 minutes). However, sometimes AWS does not start to watch the instance immediately.
Moreover, after some experiments, we saw that if we put a smaller time interval than 1 hour
AWS, AWS no longer gives any measurement points. Finally, we only keep the most recent
data and update the current instance to generate a list of updated instances.

The list of instances and the list of instance types are now available. The last part to
retrieve is the last part of the source: the list of security groups. The lines 12 and 13 of the
monitor function (Listing 3.47) are respectively similar to the lines 7 and 8 previously ex-
plained, except that we ask to describe the security groups 8 tagged with BiGUL=CloudBx.
Therefore, like the previous explanation, we use other Haskell data to handle the new JSON:

1 data AWSDescribeSecurityGroupsResponse = AWSDescribeSecurityGroupsResponse
2 { securityGroups :: [AWSSecurityGroup]
3 } deriving (Show, Generic)
4 instance FromJSON AWSDescribeSecurityGroupsResponse where [...]
5

6 data AWSSecurityGroup = AWSSecurityGroup{
7 groupName :: String,
8 description :: String,
9 ipPermissions :: [AWSRule],

10 ipPermissionsEgress :: [AWSRule]
11 } deriving (Show, Generic)
12 instance FromJSON AWSSecurityGroup where [...]
13

14 data AWSRule = AWSRule{
15 fromPort :: Maybe Int,
16 toPort :: Maybe Int,
17 ipRanges :: [AWSIpRange],
18 ipProtocol :: String
19 } deriving (Show, Generic)
20 instance FromJSON AWSRule where [...]
21

22 data AWSIpRange = AWSIpRange

8https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-security-groups.html (Ac-
cessed on 04/22/2018)

51

https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-security-groups.html

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

23 { cidrIp :: String
24 } deriving (Show, Generic)
25 instance FromJSON AWSIpRange where [...]

Listing 3.51: Data of security groups - AWS API

The next line of the Listing 3.47 uses the fromAWSToSourceSecurityGroups function
that translates the AWS Data into our source data (section 3.2). It also uses the function
called linkInstancesToSecurityGroup that links each instance with its securityGroup. Indeed,
every instance knows which security is linked to it, but the security group does not have
this information. Let us describe a little bit those both functions.

1 fromAWSToSourceSecurityGroups :: AWSDescribeSecurityGroupsResponse -> [
SecurityGroup]

2 fromAWSToSourceSecurityGroups d = Prelude.foldl (\acc o -> acc ++ [SecurityGroup (
groupName o) (description o) [] (rules o)]) [] (securityGroups d)

3 where
4 rules :: AWSSecurityGroup -> [FirewallRule]
5 rules o = L.map (fromAWSRuleToRules False) (ipPermissions o) ++ L.map (

fromAWSRuleToRules True) (ipPermissionsEgress o)
6 fromAWSRuleToRules :: Outbound -> AWSRule -> FirewallRule
7 fromAWSRuleToRules outbound o = FirewallRule outbound (fromPort o) (toPort

o) (cidrIp (L.head (ipRanges o))) (ipProtocol o)

Listing 3.52: Translate AWS security group data into a Source

The function above has the same purpose that the one described in Listing 3.49. It
must transform the types (used to parse the AWS JSON) into a security group list, in order
to complete the source of the system. Then, the function goes through the securityGroup
given by AWS, with a foldl, and it extracts some information (group name, description and
rules) to create a new list of SecurityGroup, compliant with our source. The sub-function
rules generates a list of �rewall rules used by the current securityGroup. Clearly, when
the function creates the new securityGroup, it puts the list of instances as empty (third
parameter of the data SecurityGroup). Indeed, the data retrieve by AWS do not contain
any information about the instances linked with the securityGroup. That is why we need
to use another function, called linkInstancesToSecurityGroup, and described below:

1 linkInstancesToSecurityGroup :: [Instance] -> [SecurityGroup] -> [SecurityGroup]
2 linkInstancesToSecurityGroup [] sgs = sgs
3 linkInstancesToSecurityGroup ((Instance identifier _ _ _ _ sgIden _):xs) sgs = case

L.find (\(SecurityGroup iden _ _ _) -> iden == sgIden) sgs of
4 Just sg@(SecurityGroup iden desc insts rules) -> linkInstancesToSecurityGroup

xs ((SecurityGroup iden desc (identifier:insts) rules):(L.filter (\(
SecurityGroup iden _ _ _) -> iden /= sgIden) sgs))

5 Nothing -> linkInstancesToSecurityGroup xs sgs

Listing 3.53: Translate AWS security group data into a Source

The linkInstancesToSecurityGroup function is used to go through all the instances and
checks what security group is linked to it. When this security group is found, the function
updates it by adding the current instance in its list of instances.

Now that each part of the source is computed, the function has to create a complete
Source. The last line of the monitor function (Listing 3.47) does that, by returning a Source
containing the information received.

52

3.7. The Amazon Web Services API

3.7.2 AWS API - Execution

The execution step of the MAPE loop consists of executing something to update the handled
system, according to the changes made by the analysis and planning steps. In our case,
after running our multiple subsystems, we had to communicate with AWS to create, stop,
remove or update instances or security groups. To achieve this task, two choices are possible:
using the API of AWS, or using a tool that makes the execution easier. We chose to use a
tool called Ansible 9. It is a software that automates software provisioning, con�guration
management, and application deployment [1]. To simplify and summarize, it saves us from
making calls to the API manually. Its con�guration �les used to deploy the infrastructure
are in YAML (Yet Another Markup Language) format, much more readable than XML,
CSV or JSON. The use of Ansible greatly facilitates the deployment of the changes. The
execute step simply generates, from the updated source, the YAML �les which are run by
Ansible, to adapt the information on AWS. You can �nd an example of YAML con�guration
�le in Appendix A

The thesis is not intended to explain the installation of tools such as Ansible. Thus, we
suppose that, all along this section, Ansible is correctly installed and con�gured. You can
easily �nd the installation and con�guration instructions on the o�cial documentation of
the tool10. Let us detail how the execute function works in our system.

1 executeAWS :: String -> String -> String -> String -> String -> String -> Source ->
IO ()

2 executeAWS access secret region key pair image lb src = do
3 template <- return (generateMainTask access secret region key pair image lb)
4 tmpFilePath <- writeSystemTempFile "ansible.yaml" (template ++ (

sourceToAnsibleTasks src))
5 _ <- readProcess "ansible-playbook" [tmpFilePath] []
6 return ()

Listing 3.54: Execution function

Remember that the goal of this function is to create a con�guration �le readable for
Ansible, and to execute it on our infrastructure. The executeAWS function takes 6 parame-
ters. The �rst two are respectively the AWS access key part and the AWS secret access key
of your credentials, just like the monitor function. The third parameter is about the region
of the infrastructure. The fourth one is the name of the key pair used to accomplish some
tasks. This key pair must be con�gured on AWS, during the con�guration of Ansible. It
is used while an instance is created. The �fth parameter is the OS image name, also used
when a new instance is created. The sixth one is the identi�er of the load balancer, used
for new instances. Finally, the last one is the updated source. Obviously, this function as
the monitor function is just an example. Of course, we can create a much more complicated
function to handle di�erent situations.

1 generateMainTask :: String -> String -> String -> String -> String -> String ->
String

2 generateMainTask access secret region key pair image lb = "- name: Main task\n" ++
3 indent ("gather_facts: False\nhosts: localhost\nvars:\n" ++
4 indent ("key pair: "++ key pair ++
5 "\nimage: "++ image ++
6 "\nregion: "++ region ++
7 "\naws_access_key: "++ access ++
8 "\naws_secret_key: "++ secret ++

9https://www.ansible.com/ (Accessed on 04/22/2018)
10http://docs.ansible.com/ansible/latest/scenario_guides/guide_aws.html#introduction (Ac-

cessed on 04/22/2018)

53

https://www.ansible.com/
http://docs.ansible.com/ansible/latest/scenario_guides/guide_aws.html#introduction

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

9 "\naws_load_balancer: "++ lb ++
10 "\naws_tags: {\"BiGUL\":\"CloudBx\"}\n") ++
11 "tasks:\n")

Listing 3.55: Execution function

The �rst line of the executeAWS function creates a basic template of the Ansible �le, by
calling the generateMainTask function already described above. This function is not really
complicated. It creates a correctly indented string, corresponding to variables used all along
the �le. Those variables represent the parameters of the execute function.

1 - name: Main task
2 gather_facts: False
3 hosts: localhost
4 vars:
5 key pair: <key pair>
6 image: <image>
7 region: <region>
8 aws_access_key: <access>
9 aws_secret_key: <secret>

10 aws_load_balancer: <lb>
11 aws_tags: {"BiGUL":"CloudBx"}
12 tasks:

Listing 3.56: "Ansible �le generated (Part 1)"

This default template is generated. The execution part has to create Ansible tasks
depending on the updated source. The second line of code achieves that goal. First, this
line calls sourceToAnsibleTasks, explained below. Then, it merges the result with the default
template to generate the content of the Ansible �le. Finally, it creates a temporary �le with
the Haskell writeSystemTempFile. The sourceToAnsibleTasks function is now explained.
Because this function is quite long, it will not be fully described, but we will explain the
outlines with only a part of the code.

1 sourceToAnsibleTasks :: Source -> String
2 sourceToAnsibleTasks (Source instances sgs _) =
3 securityGroupsStr ++
4 instancesToRunStr ++
5 newWebInstancesStr ++
6 newOtherInstancesStr ++
7 idsInstancesToStopStr
8 where
9 [...]

10 securityGroupsStr = L.concat (
11 L.map (\sg ->
12 (indentN 2 ("- name: Security group\n" ++
13 (indent ("ec2_group:\n" ++
14 (indent (securityGroupToAnsibleTask sg))))))) sgs)
15 [...]

Listing 3.57: sourceToAnsibleTasks

This function is composed of several sub-functions, that create the Ansible tasks useful
to update the infrastructure according to the source. As their names suggest it, the �rst
function creates the tasks relative to the securityGroup. Then, it creates the tasks to run the
existing instances. After, the new instances are created and �nally, the instances to delete
are shut down. Pay attention, there are two functions to create new instances. Indeed, as you
will see during the experimentation (chapter 5), the use case has two security groups : one for
the databases and another one for the web workers. the newWebInstancesStr function creates
instances related to the web by linking them to a load balancer. The newOtherInstancesStr

54

3.7. The Amazon Web Services API

function creates other instances. To summarize, typically the infrastructure has several
web workers and one or two �xed instances of the database. To distribute the requests
between all the web workers, we use a load balancer. Each of these functions returns an
indented string to complete the Ansible �le. For our explanation, the generation of the
tasks related to the security group will be shown. The other function works quite in the
same way. We create a new task called "Security group" with "ec2 group" as type and
for each securityGroup. Then, we call the securityGroupToAnsibleTask function to generate
this task.

1 securityGroupToAnsibleTask :: SecurityGroup -> String
2 securityGroupToAnsibleTask (SecurityGroup name description instsRef fwRules) =
3 "name: " ++ name ++ "\n" ++
4 "description: "++ description ++"\n" ++
5 "tags: \"{{aws_tags}}\"\n" ++
6 "aws_access_key: \"{{aws_access_key}}\"\n" ++
7 "aws_secret_key: \"{{aws_secret_key}}\"\n" ++
8 "region: \"{{region}}\"\n" ++
9 "rules: \n" ++

10 indent(L.concat (L.map rulesToAnsibleTask (fst (rules fwRules)))) ++
11 "rules_egress: \n" ++
12 indent(L.concat (L.map rulesToAnsibleTask (snd (rules fwRules))))
13 where
14 rules :: [FirewallRule] -> ([FirewallRule],[FirewallRule])
15 rules = L.foldl (\(inbound, outbound) rule@(FirewallRule x _ _ _ _) -> if x

then (inbound, rule:outbound) else (rule:inbound, outbound)) ([],[])
16 rulesToAnsibleTask ::FirewallRule -> String
17 rulesToAnsibleTask (FirewallRule _ fromPort toPort ip protocol) =
18 "- proto: " ++ protocol ++"\n" ++
19 case fromPort of
20 Just p -> " from_port: "++ show p ++"\n"
21 Nothing -> ""
22 ++
23 case toPort of
24 Just p -> " to_port: "++ show p ++"\n"
25 Nothing -> ""
26 ++
27 " cidr_ip: "++ ip ++"\n"

Listing 3.58: securityGroupToAnsibleTask

55

3. First MAPE loop : Modular Adaptations using Bidirectional

Transformations

The function to create a securityGroup task is a little bit long, but not really complicated.
First, we put the basic information about the current security group. Then, we add the
�rewall rule thanks to the rulesToAnsibleTask function. The inbounds have the prerogative
over the outbounds. Finally, we obtain:

1 [...]
2 - name: Security group
3 ec2_group:
4 name: <name>
5 description: <description>
6 tags: "{{aws_tags}}"
7 aws_access_key: "{{aws_access_key}}"
8 aws_secret_key: "{{aws_secret_key}}"
9 region: "{{region}}"

10 rules:
11 - proto: <protocol>
12 from_port: <port>
13 to_port: <port>
14 cidr_ip: <ip>
15 rules_egress:
16 - proto: <protocol>
17 from_port: <port>
18 to_port: <port>
19 cidr_ip: <ip>

Listing 3.59: "Ansible �le generated (Part 2)"

The rest of the code of sourceToAnsibleTasks works almost in the same way. The entire
implementation can be found on GitHub. When the sourceToAnsibleTasks function has
generated all the tasks, we merge it with the basic template already generated. Then, we
store it into a temporary �le. Finally, we call ansible-playbook, installed on our system,
to run the newly generated �le. In the end, our system has updated all the infrastructure
according to the updated source.

56

Chapter 4

Second MAPE loop : Self-Prioritized

Views using Bidirectional

Transformations

This chapter is devoted to the secondMAPE loop. Before explaining how this loop works, it's
important to understand clearly why we need it. Thus, we begin with an explanation of the
problem we want to solve in this part of our work. To do so, we use simple examples. After
that, we explain the implementation of our solution and we illustrate this implementation
with our main study case as we did during the chapter 3.

4.1 Necessity of a Synchronizer

As you already know, the aim of this work is to see whether the bidirectional transformations
can be used to simplify a big system into several smaller ones. This modularization comes
with several issues: how can we solve the con�icts between those subsystems? How can we
give importance to a subsystem over the others? In a more general way, the main question
is : how can we synchronize several subsystems avoiding con�icts?
All along this section, we will try to explain, step by step, the solutions we found to solve
the above questions. In order to be as general as possible, let us forget for a moment the
example system we have been using since the beginning of this thesis. Keep in mind what a
typical modular system is (Figure 4.1). It contains a big system, working on a set of data,
and a collection of smaller systems working on a subset of those data. Trivial examples are
used to illustrate the issues of this section. It allows us to simply and intuitively show the
problems we are trying to resolve with our synchronizer.

57

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

Figure 4.1: A typical modular system

As you will see, the solutions provided in this thesis to synchronize subsystems are
relatively basics. Indeed, this research does not �t properly in a very speci�c �eld of research:
it is complicated to �nd referencing articles or paper talking about how to avoid con�icts as
we would like to do. Even when a paper uses a con�ict resolution technique in a modular
system, the explanation usually comes down to only a few sentences. This is di�cult to
use in our work and it is even rarer when it comes to using a synchronizer to avoid these
con�icts. Moreover, most of the time, human intervention is needed to resolve the most
delicate con�icts. That's why we decided to develop a solution that can serve as a basis for
future works. Therefore, this part is based on basic intuitions and tries to �nd an intuitive
solution to the problems that state, not the best one. Note also that, because of a lack of
time, we could not continue our research on this subject. The section 6.3 lists the works
which we thought relevant during the development session. Thus, this part of the work is
essentially used to prune the elementary problems that a synchronizer produces.

However, even if we do not really use these works, it is important to note that basics
notions exist about the con�ict resolution. Indeed, these notions come from other �elds of
research, like the multithreading programmation. We can cite some notions like the mutual
exclusion, deadlock and also a modular system which requires some kind of coordination
between all submodules or a human intervention [36]. We can also think about version
control systems to avoid con�icts but it is not really relevant in our situation because it
requires merging potential con�icts and does not really provides a solution for the automatic
resolution of those ones. It must be kept in mind that we do not want human intervention
during the execution. We have to abandon the idea of merging models based on instructions
given by the user. As explained in the future works, we could have tried to replace the
human intervention by arti�cial intelligence techniques, but this was not our �eld of research.
Instead, we decided to avoid con�icts by running the di�erent subsystems one by one. This
way of doing things allows subsystems to know the modi�cations made by the previous
ones and therefore to react to a partially updated situation, contrary to the classical model
merging which does not allow to know, even partially, the modi�cations of the other models.

4.1.1 Problem of subsystems con�icts

At this point of the research, we know how we can generate the subset of data and how to put
them into the big system, thanks to BiGUL and its BXs. However, with multiple subsystems,
everyone can work on one shared part of data. Thus, if several subsystems change a shared
part, con�icts can appear. Let us imagine a simple situation where we manage printers
of a company. We have two subsystems: the �rst one called EnergySaverSystem tries to
save energy and stop each useless printer (ie. printers that did not print in the last hour

58

4.1. Necessity of a Synchronizer

anymore); the second subsystem called KeepAliveSystem starts printers when a job is in the
queue. We thus have the following information about printers:

1 {"printers" : [
{

"name" : "PrinterOne",
"available_sheets" : 200,

5 "state" : "stopped",
"queued_printing" : 2,
"number_printing_last_hour" : 5

},{
"name" : "PrinterTwo",

10 "available_sheets" : 156,
"state" : "stopped",
"queued_printing" : 0,
"number_printing_last_hour" : 6

},{
15 "name" : "PrinterThree",

"available_sheets" : 563,
"state" : "started",
"queued_printing" : 1,
"number_printing_last_hour" : 0

20 }
]}

Listing 4.1: Data structure of the Source

The code above describes three printers. We have �ve attributes for each printer: the
name, the number of sheets available, the state (started or stopped), the number of jobs
in the queue and �nally, the number of printings during the last hour. All of those are
available for subsystems. The main source must be updated depending on the subsystems'
results. For the EnergySaverSystem, we need information about the state and the number
of printings during the last hour. The subset of data for this system is the following one:

{"printers" : [
{"state" : "stopped","number_printing_last_hour" : 5},
{"state" : "stopped", "number_printing_last_hour" : 6},
{"state" : "started", "number_printing_last_hour" : 0}

]}

Listing 4.2: View of the �rst subsystem (EnergySaverSystem)

After its execution, the subsystem must stop the last printer and keep the �rst two in
the same state. We have underlined the change. Now, we have the following data about
printers:

{"printers" : [
{"state" : "stopped", "number_printing_last_hour" : 5},
{"state" : "stopped", "number_printing_last_hour" : 6},
{"state" : "stopped", "number_printing_last_hour" : 0}

]}

Listing 4.3: Updated view of the �rst subsystem (EnergySaverSystem)

For the second subsystem (KeepAliveSystem), we also need the state but we need the
number of jobs in the queue. The subset of data for this system is the following one:

{"printers" : [
{"state" : "stopped", "queued_printing" : 2},
{"state" : "stopped", "queued_printing" : 0},
{"state" : "started", "queued_printing" : 1}

]}

Listing 4.4: View of the second subsystem (KeepAliveSystem)

After its execution, the subsystem must start the �rst printer and keep the last one
running. Thus, we have the following data:

59

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

{"printers" : [
{"state" : "started"], "queued_printing" : 2},
{"state" : "stopped", "queued_printing" : 0},
{"state" : "started", "queued_printing" : 1}

]}

Listing 4.5: Updated view of the second subsystem (KeepAliveSystem)

We now have to merge both the subsystems to update the shared source. How can
we do that? The solution that we found is to associate a priority to each subsystem. In
our example, the most important thing is to keep the printers started when a job is in the
queue. The second subsystem (KeepAliveSystem) is more important than the other and
when a con�ict occurs, the result of the second subsystem (KeepAliveSystem) gets a higher
priority. The updated source will be the following one, where we start the �rst and last
printers and keep the second one stopped:

{
"printers" : [

{
"name" : "PrinterOne",
"available_sheets" : 200,
"state" : "started",
"queued_printing" : 2,
"number_printing_last_hour" : 5

},
{

"name" : "PrinterTwo",
"available_sheets" : 156,
"state" : "stopped",
"queued_printing" : 0,
"number_printing_last_hour" : 6

},
{

"name" : "PrinterThree",
"available_sheets" : 563,
"state" : "started",
"queued_printing" : 1,
"number_printing_last_hour" : 0

}
]

}

Listing 4.6: Printers data (Source updated)

4.1.2 Problem of subsystems' prioritization

Priority between subsystems is a way to solve con�icts. In section section 4.1 we saw that it is
di�cult to �nd lot of other works about synchronizer and there are unanswered questions,
like the implementation of the prioritization in BiGUL. One solution of this question is
quite easy and was already addressed in part at the end of the subsection 4.1.1. As we have
seen in this section, the execution order of each subsystem is important because the last
executed subsystem can modify the changes of the previous subsystems. Note as the system
is modular, a subsystem may not be aware of the changes made by previous ones. Thus,
the order of execution is even more important that the result of a subsystem can override
previous ones without knowing. If we come back to the example of printers, we saw that
the priority needed can be implemented by the execution order. Indeed, if we execute �rstly
the subsystem that stops all useless printers and update the source with the result and after
that, we execute the second subsystem that starts printers with at least one job in its queue
on the updated source, this second subsystem will overwrite the result of the previous one
and have the priority.

60

4.1. Necessity of a Synchronizer

Finally, the last question we have to answer is how to determine the priority of the
subsystems. There are many ways to do this. The simplest is to �x an order and never
change it. It is equivalent to hard-coding the sequence of execution of each subsystem.
Even if this approach can be used, its in�exibility is a drawback. Indeed, there is lot of
modular systems where the �exibility of the executions order is important. Let's show it
on a simpli�ed example. Suppose a system managing a hydraulic dam. The retention pond
can not be drained because it also serves the reserve in case of drought. The hydraulic dam
has at least 2 subsystems: one to manage the amount of electricity produced according to
the demand, and another to manage the water level in the retention pond to stay above the
limit. Even if the real system is more complexe and has more subsystems, we can imagine
few cases to show why the �exibility is important in a modular system. First example, in
case of a very dry summer, suppose that the needs of electricity is low. The system of water
level management is more important than the quantity of electricity produced. In fact, we
can suppose that it is more important to keep the level of the retention pond as high as
possible to overcome a lack of water, and producing just the needed electricity. In the worst
case, not enough electricity is �ne, but water is vital. Second example, suppose that we
are in winter and the needs of electricity is high because people needs to heat their homes.
Generally during this season, it is often raining and there is no problem of water supply.
Thus, the system of electricity management si more important than the level of water in
the retention pond. Clearly, this kind of systems is more complexe but even with only two
subsystems, the both previous examples show us the need of �exibility in the execution
order.

Our idea is to make a self-adaptive system that changes the priority at runtime, de-
pending on external and internal variables. Thus, we have chosen to name these variables
a context and react according to it. Basically, the context is a list of key/value pairs that
describe the real context in which the system is. It can contain what the users want. We
can imagine an IOT system where the context contains the value of multiple sensors like the
temperature, humidity and so on. Now that the context is de�ned, we have to determine
the priority. There a two main approaches: one called rule-based and the second called
goal-based.

The �rst one is quite simple. It is a list of rules that determines the priority. In English,
we could have for example:

� If temperature is less than 20C°, then the �rst subsystem is more important then the
others. In other words, it can override the change made by others.

� If temperature is less than 20C° and the humidity is more than 70%, then the second
subsystem has the priority.

� If the time is between 7:00pm and 6:00am then the third subsystem is less important
than others.

The second one is a bit more complicated. In this case, the goal is important and the
order of the execution will depend on the context that we would like to have. For example,
a robot that has to catch something on a table will generate the sequence of operations to
accomplish this goal. Because we do not use this approach, we will not detail it more at
this point.

Note that for our study, we have implemented a rule-based approach and a good future
work could be the implementation of the goal-based approach. The reason why we choose
this approach is simply the fact that, when we had to implement this part, the rule-based
approach seems to be the best solution with the time we had left. This list of rules can be

61

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

viewed as a knowledge base where we can �nd the knowledge to prioritize the subsystems.
However, the rules could be contradictory. For example, a rule that say :"if the temperature
is above 20C° then the �rst subsystem is more important than others" and another rules say
: "if the time is between 7:00pm and 6:00am then the third subsystem is more important
than others" we have a contradictory. In fact, we did not investigate this point in detail and
chose a simple solution. Indeed, as you will see deeper in subsubsection 4.2.1.5 we avoid this
by de�ning three simple strategies. The �rst one assumes that the list of rules contains no
contradiction. The second one removes contradictory rules by removing the oldest one when
one con�ict happens. The third one removes contradictory rules by removing the newest
one.

4.1.3 Theoretical Solution of the Problems

At this point of the thesis, we would like to generalize the use of all previous concepts to
create a system that works in as many situations as possible. Here is what we have in a
typical modular system. As we already said, the main system is composed of data and
each subsystem can read and/or write a part of these data. To go from the main system
to the subsystems we have a Lens, and more precisely, we have one BiGUL bidirectional
transformation per subsystem. In addition to that, we have the list of rules and the context
to determine the priority of the subsystems. We can represent schematically the system like
this:

Figure 4.2: Modular system, rules and context

With this schema, we have to think about the most e�cient way to synchronize the
subsystems. Even if BiGUL already solves the synchronization of subsystems independently,
we have to �nd a way to create a framework, making our system self-adaptive. Theoretically,
we have chosen to use the same pattern as the �rst loop, namely a MAPE loop. In this
kind of loop we have four steps:

� Monitor : Its goal is to retrieves (monitor) the information about the context

� Analysis : This step has to determine the rules that will be used to determine the
subsystem order

� Planning : It determines according to the context and the chosen rules the order of
subsystems.

� Execute : Its role is to execute the subsystems in the order chosen to update the data
of the main system.

62

4.1. Necessity of a Synchronizer

Figure 4.3: Sequential execution of concerns

4.1.3.1 Details about the execution

Those steps will be explained later when we describe the implementation (section 4.2). Here,
we emphasize the execution step. Suppose that we have the priority of each subsystem and
we just have to run each of them. There are two main ways to execute a system like
this. In software engineering, we can do either sequential executions or parallel executions.
Even if we have implemented the second one, we think it's important to analyze both and
determines the bene�ts and drawbacks. With a sequential execution, it involves executing
each subsystem one by one. The execution steps are described in Figure 4.3. As we can
see, we execute the get of the �rst subsystem to obtain its data, called V1. After some work
on those data (ie. the analysis and planning steps) we obtain this updated data, called
V ′1 . Then, we execute the put to update the source and obtain Source′. After that, we
reiterate for the next subsystem but we use the updated source (Source′) for the get and
we obtain an updated source again (Source′′), after the put. We apply this strategy for
all the subsystems from the less important to the most important and �nally, we obtain
the completely updated source. Using this approach allows us to make the calculation of
each subsystem only once but, in some cases, we are wasting time because two (or more)
independent subsystems could work simultaneously. Indeed, if two systems do not share
any common data, they can work simultaneously without any con�ict and could optimize
the CPU usage.

The second way to execute our subsystems is in parallel. As we said before, when two
subsystems do not share any common data we can execute them simultaneously. The hard
work here is to determine if two subsystems share data. We thought about a solution to
optimize the time of the whole execution by using parallelism. All the steps to explain

63

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

Figure 4.4: Parallel execution of concerns

that are shown in Figure 4.4. To summarize, we start with our system. In the schema, it
possesses four subsystems and a pair of functions for each of them. The �rst step applies
all get functions to obtain all subsets of data, called Vx. In this way, all concerns can
work in parallel (independently) to update their own data to V ′x. The second step consists
of applying the put of the �rst subsystem to obtain the updated source (Source′). After
that, we reapply all gets of the remaining subsystems, but there is a di�erence with step
1. When we have the result of the get Vx, we compare it to the results already obtained
when we call the previous (V t−1

x). Thus, if the data needed by a subsystem is the same
(Vx = V t−1

x), it means that the change made by the previous subsystem has no e�ect on
the current subsystem, and a new calculation to update its own data is useless. However,
if Vx is di�erent from V t−1

x , we have to apply the calculation again and generate a new V ′x.
In both cases, we have to run the put to obtain the updated source again (Source′′). Now,
we have the source updated by the two �rst subsystems. The next steps follow the same
pattern, we called all remaining gets (Subsystem 3 and 4), we check if we need to make the
calculation again (if V3,4 is not equals to V t−1

3,4) and we call the put of the next subsystem
to update the source with the updated view (V ′3), and so on.

As you can see in Figure 4.4, the step 4a describes a situation where the changes made
by the �rst branch require a new calculation. In other words, the �rst branch and the others
share the same data and they have been updated by the �rst branch. The step 4b describes
the situation where some other subsystems are not impacted by the changes made by the
�rst branch. In this case, the calculation is not necessary. Of course, it might be impacted
by another branch. This is why we apply the get in a parallel way, but each put is executed
sequentially.

64

4.1. Necessity of a Synchronizer

We thought about these two strategies but, as you will see, we only implemented the �rst
one. There are multiple reasons why we did that. The �rst one is a reason of programming
time. Indeed, during our intership we only had the time to implement one of them. The
second reason is a question of e�ciency. Thus the question is, why did we choose to
implement this one. Here is, mathematically, what these two approaches mean:

Assume the function t(x) gives us the time required to execute x. For the sequential
approach, we have:

Wall − clock timesequential =

t(get1) + t(C1) + t(put1)+

t(get2) + t(C2) + t(put2)+

t(get3) + t(C3) + t(put3)+

t(get4) + t(C4) + t(put4)

Total calculation loadsequential =

get1 + C1 + put1+

get2 + C2 + put2+

get3 + C3 + put3+

get4 + C4 + put4

The generalization of those formulas for n subsystems is:

Wall − clock timesequential =

n∑
i=1

t(geti) + t(Ci) + t(puti)

Total calculation loadsequential =

n∑
i=1

geti + Ci + puti

For the parallel execution, the development is more complicated. The result changes if
the subsets of data are strongly overlapping. The best and the worst cases are calculated
here. The best situation is when the changes made by previous subsystems have no impact
on the data of the others (Figure 4.6), and the worst situation is when a change in the
previous subsystem has an impact on all the others (Figure 4.5). The calculation for the
time in the best and the worst case is:

Best wall − clock timeparallel =

max[t(get1) + t(equality check1) + t(C1) + t(put1),

t(get2) + t(equality check2) + t(C2),

t(get3) + t(equality check3) + t(C3),

t(get4) + t(equality check4) + t(C4)]+

max[t(get2) + t(equality check2) + t(put2),

t(get3) + t(equality check3),

t(get4) + t(equality check4)]+

max[t(get3) + t(equality check3) + t(put3),

t(get4) + t(equality check4)]+

t(get4) + t(equality check4) + t(put4)

The �rst max is to wait the �rst execution of each concern. This way, we run gets,
equality checks and calculations all together in the same time and we execute the put of

65

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

the �rst concern. At that point, there are 3 concerns left. The second max is the execution
of those three concerns but, in the best case, we do not need to do the calculation again
because concerns are totally independent. The last max is the step with 2 concerns left.
And �nally, the last line of the equation is the application of the last concern. Now, let's
see what is happening when the concerns strongly share the same parts of data.

worst wall − clock timeparallel =

max[t(get1) + t(equality check1) + t(C1) + t(put1),

t(get2) + t(equality check2) + t(C2),

t(get3) + t(equality check3) + t(C3),

t(get4) + t(equality check4) + t(C4)]+

max[t(get2) + t(equality check2) + t(C2) + t(put2),

t(get3) + t(equality check3) + t(C3),

t(get4) + t(equality check4) + t(C4)]+

max[t(get3) + t(equality check3) + t(C3) + t(put3),

t(get4) + t(equality check4) + t(C4)]+

t(get4) + t(equality check4) + t(C4) + t(put4)

The worst wall-clock time has the same pattern than the best wall-clock time but we
have to calculate again the new data of each subsystem (Cn). Now we have the calculation
for 4 concerns. Let's generalize for n subsystems:

Best wall − clock timeparallel =

max[t(get1) + t(equality check1) + t(C1) + t(put1),

t(get2) + t(equality check2) + t(C2),

...

t(getn) + t(equality checkn) + t(Cn)]+
n∑

i=2

(max[t(geti) + t(equality checki) + t(puti),

t(geti+1) + t(equality checki+1),

t(getn) + t(equality checkn)])

Worst wall − clock timeparallel =

max[t(get1) + t(equality check1) + t(C1) + t(put1),

t(get2) + t(equality check2) + t(C2),

...

t(getn) + t(equality checkn) + t(Cn)]+
n∑

i=2

(max[t(geti) + t(equality checki) + t(Ci) + t(puti),

t(geti+1) + t(equality checki+1) + t(Ci+1),

t(getn) + t(equality checkn) + t(Cn)])

The best and worst calculation time is easier to calculate. We have to sum all the
components of each branch.

66

4.1. Necessity of a Synchronizer

Best total calculation loadparallel =
n∑

i=1

(
n∑

j=i

(getj + equality checkj) + Ci + puti)

Worst total calculation loadparallel =
n∑

i=1

(
n∑

j=i

(getj + equality checkj + Ci) + puti)

To make the equations simpler, we can assume that both put and get transformations
and the equality checks are constant, and that those values are negligible. Thus, we can
remove them from the equations:

Total timesequential =
n∑

i=1

t(Ci)

Total calculation loadsequential =
n∑

i=1

Ci

Best wall − clock timeparallel = max[t(C1), ..., t(Cn)]

Worst wall − clock timeparallel = max[t(C1), ..., t(Cn)] +
n∑

i=2

(max[t(Ci), ..., t(Cn)])

Best total calculation loadparallel =
n∑

i=1

Ci

Worst total calculation loadparallel =
n∑

i=1

(
n∑

j=i

Ci)

The choice of the sequential approach is pretty obvious. Even if, in some cases, the par-
allel approach is more rapid, the worst case also needs to be avoided. The parallel approach
could be useful for problems with limited interference but it requires more investigation and
analysis of the system. Remember that the goal of our synchronizer is to provide an e�cient
way to execute a modular system and this synchronizer must be a library.

67

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

Figure 4.5: Parallel execution : worst case Figure 4.6: Parallel execution : best case

68

4.2. Development of the Haskell Solution

4.2 Development of the Haskell Solution

The integration of our idea in Haskell is explained in this section. To put together the whole
model, we use the modular system explained in chapter 3. As explained in this chapter,
the model contains views. From now on, we will use the word "view" to speak about the
data on which the subsystem works, and the word "concern" (subsubsection 4.2.1.1) to
speak about the subsystems themselves. Remember, we wanted the prioritizing MAPE loop
to be implemented like a library that can be used independently of the system handled
by the �rst MAPE loop. It provides to the programmer several functions to synchronize
di�erent submodules. As a reminder, here is the schema focusing on the second loop which
we had already brie�y mentioned in chapter 2 (Figure 2.2 and Figure 2.3), also called the
synchronizer. As you can see, it is an evolution of the Figure 4.2 :

Figure 4.7: Synchronizer

First are explained concepts needed to be created in Haskell in order to develop our
library. These concepts are used all along our synchronizer and must be clearly de�ned.
After that, we describe how we have adapted the theoretical solutions using a MAPE loop
in Haskell.

4.2.1 Concepts and utilities

4.2.1.1 The concerns

The synchronizer needs to know information about the modular system it is currently man-
aging. First, it needs the source of data already explained in section 3.2, but it also needs to
know some information about each subsystem. We have created the concept of "concern"
to handle this information.

Concretely, a concern is one of the four branches of our �rst MAPE loop (chapter 3).
In our case, those concerns are: Performance (AutoScaling view), Security (Firewall view),
Availability (Redundancy view) and Modi�ability (Cost view). As you can see in the Fig-
ure 3.1, each branch is made up of a BiGUL function and an analyser and planner. In order
to make our system as adaptable as possible, we decided to create a Haskell type called Con-
cern. Basically, a concern is represented by a identi�er name (for example: Performance,
Availability, Security, ...) 1, a BiGUL function to switch from the source to the view and

1Note that sometimes in the code we use the name of the view instead of the name of the concern. In
fact, the name does not matter as long as it clearly identi�es what it is.

69

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

vice versa, and �nally, a way to execute the analysis and planning steps. Concretely, our
implementation handles two types of situations.

The �rst situation is when the analysis and planning steps of the concern are executed
in Haskell on the same machine as the synchronizer. In this case, we have to de�ne which
BX to use, but also the function of analysis and planning. You can see the implementation
of this type of concern in the Listing 4.7 from lines 8 to 11.

The second situation is when the analysis and planning steps are implemented as a web
service available though the Internet. To handle this situation, we have created a Haskell
data called ConcernRemote in the Listing 4.7, from lines from lines 13 to 18. In this case, we
need more information. Indeed, we chose to communicate with servers through the HTTP
Protocol. Thus, we must specify the information about the server (URL, port and secured
value). Moreover, we have to communicate with these servers. Then, we provide a way for
the programmer to write two functions to specify how the view of the concern has to be
sent to the server (line 17) and how the response of the server has to be transformed in a
view (line 18).

1 type ConcernName = String
2 type Url = String
3 type Port = Int
4 type Secured = Bool
5 type Serializer v = (v -> String)
6 type Deserializer v = (String -> v)
7 data Concern s = forall v. (ToJSON v, Show v, NFData v) =>
8 Concern
9 ConcernName

10 (BiGUL s v)
11 (v -> v)
12 | forall v. (ToJSON v, Show v, NFData v) =>
13 ConcernRemote
14 ConcernName
15 (BiGUL s v)
16 Url Port Secured
17 (Serializer v)
18 (Deserializer v)

Listing 4.7: Haskell data to represent a Concern

The Concern data takes one argument. As all the other concerns, it must be based on
the same source, whereas the view is generally di�erent. Each type of Concern has a name
to identify it and a BiGUL BX to make the link between the source and its view. The
specify data about the two types of concern comes after the BiGUL function. Note that we
use the existential quanti�cation to allow all kind of views.

The data structure is speci�ed. The explanation of the branches in terms of Concerns
remains. The following code is an example to de�ne the list of concerns for our use case.
Therefore we just give you the signature of the function used. Notice that all serialize
and unserialize functions transform views to JSON and vice versa and are automatically
generated by an Haskell library called Aeson already used in Section 3.7.1.1. Thus, showing
the implementation is not necessary. However, you can see the de�nition of the four BiGUL
functions (lines 7 to 10) in the chapter 3. If you want to see a complete example, you can
go to chapter 5, about experimentation, or in the github where the code of our system is
runnable (https://github.com/qlombat/Self-Prioritized-Modular-Adaptations).

1 serialize :: ToJSON a => a -> String
2 unseralizeC :: String -> CView

70

https://github.com/qlombat/Self-Prioritized-Modular-Adaptations

4.2. Development of the Haskell Solution

3 unseralizeAS :: String -> ASView
4 unseralizeF :: String -> FView
5 unseralizeR :: String -> RView
6 autoScalingUpdate :: BiGUL S.Source AS.ASView
7 costUpdate :: BiGUL Source CView
8 firewallUpdate :: BiGUL Source FView
9 redundancyUpdate :: BiGUL S.Source R.RView

10 [
11 (ConcernRemote "Cost" costUpdate
12 "http://mywebsite.tld/myscript" 80 False serialize unseralizeC),
13 (ConcernRemote "Firewall" firewallUpdate
14 "http://mywebsite.tld/myscript" 80 False serialize unseralizeF),
15 (ConcernRemote "Redundancy" redundancyUpdate
16 "http://mywebsite.tld/myscript" 80 False serialize unseralizeR),
17 (ConcernRemote "AutoScaling" autoScalingUpdate
18 "http://mywebsite.tld/myscript" 80 False serialize unseralizeAS)
19]

Listing 4.8: Haskell data to represent a Concern

4.2.1.2 The Context

The context describes the current situation in which the system is. It is given by the
programmer and it contains all the information judged useful to establish a priority order
for the system. For example, a context can contain some simple values like the date or the
time stamps. It can also contain more complex values like the advertising revenue, or an
aggregation of data to determine if the system is in an emergency situation or not.

The context has a prede�ned structure that the programmer has to follow. As we already
said in subsection 4.1.2, a context is theoretically a list of key/value pairs. The translation
of this requirement in Haskell is a map of two types. The �rst is the key, a String. The
second is the value related to the key. For our experiments, we only need 4 types of values,
which are integers, doubles, strings and booleans.

1 data CtxValue = I Int | D Double | S String | B Bool deriving (Eq, Ord, Generic)
2 type CtxKey = String
3 type Context = Map CtxKey CtxValue

Listing 4.9: Data structure of the context

Usually, the context is just a Haskell �le with a function that returns a Context value.
By convention, this �le provides a function called makeContext that retrieves a IO Context.
It returns an IO because the context is mainly based on external data.

1 getHourOfDay :: IO Int
2 getHourOfDay = do
3 now <- getCurrentTime
4 timezone <- getCurrentTimeZone
5 let (TimeOfDay hour minute second) = localTimeOfDay $ utcToLocalTime timezone

now
6 return hour
7 getTimestamp :: IO Int
8 getTimestamp = (read <$> formatTime defaultTimeLocale "%s" <$> getCurrentTime) ::

IO Int
9 makeContext :: IO Context

10 makeContext = do
11 hour <- getHourOfDay
12 timestamp <- getTimestamp

71

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

13 emergency <- return True
14 return (fromList [
15 ("Emergency", B emergency),
16 ("HourOfDay", I hour),
17 ("Timestamp", I timestamp)])

Listing 4.10: Example of context

The simple example above shows a context with 3 di�erent data items. The �rst value
describes if the system is in emergency mode. It can be produced by sensors or information
about a security breach, but here we just put a placeholder. The next values represent the
current information about the time.

As you will see in the following sections, the rules are based on the context. We can
see the context as a snapshot of the situation in which the system is and the rules as the
behavior to adopt.

4.2.1.3 The Rules

The rules are described by the user, so that the system can know, according to changing
elements, in which order it is better to execute the views at that precise time. First is
detailed the data structure. Then is explained the parser used to transform the content of
a .txt �le into the data structure.

As the rest of the model, the rules have got their own Haskell data structure:

1 type Rules = [Rule]
type Rule = (RuleOperator, [RuleView])
data RuleOperator =

Equals CtxKey CtxValue |
5 LessThan CtxKey CtxValue |

LessOrEqualsThan CtxKey CtxValue |
MoreThan CtxKey CtxValue |
MoreOrEqualsThan CtxKey CtxValue |
Not RuleOperator |

10 And RuleOperator RuleOperator |
Or RuleOperator RuleOperator |
T | F

data RuleView = Anything | V String

Listing 4.11: Data structure of the rules

As shown above, the Rules of the system are a list of Rule. A Rule is a pair, whose �rst
element is a RuleOperator, and the second is a list of RuleView. A RuleOperator is equivalent
to a boolean condition. If the computation of the RuleOperator returns true, the order of the
views describes in the associated list of RuleView must be taken into account. If it returns
false, the associated list is ignored. Obviously, RuleOperator contains all the operators
needed for a boolean condition to be exhaustive. Regarding RuleView, it is either V String,
where the string is the name of a view, or Anything, which represents any other list of views.
It means that, every time Anything appears between two names in a list, it does not matter
if the second name is not right behind the �rst one in the �nal execution order, as long as
it stays behind it. To facilitate the display of the data structure, we have also implemented
a way to show them:

72

4.2. Development of the Haskell Solution

1 instance Show RuleOperator where
show (Equals k v) = k ++ " == " ++ show v
show (LessThen k v) = k ++ " < " ++ show v
show (LessOrEqualsThen k v) = k ++ " <= " ++ show v

5 show (MoreThen k v) = k ++ " > " ++ show v
show (MoreOrEqualsThen k v) = k ++ " >= " ++ show v
show (Not x) = "not(" ++ show x ++ ")"
show (And r1 r2) = "(" ++ show r1 ++ ") and (" ++ show r2 ++ ")"
show (Or r1 r2) = "(" ++ show r1 ++ ") or (" ++ show r2 ++ ")"

10 show (T) = "true"
show (F) = "False"

Listing 4.12: Display function of RuleOperator

1 data RuleView = Anything | V String
2 instance Show RuleView where
3 show (Anything) = "*"
4 show (V v) = show v

Listing 4.13: Display function of RuleView

With those functions, a basic rule in the system, which looks like: (And (LessThen
"HourOfDay" I 22) (MoreThan "HourOfDay" I 6), [V Auto-scaling, V Cost, Anything, V
Redundancy]) then becomes for the user: ("HourOfDay" < 22) and ("HourOfDay" > 6) :
Auto-scaling, Cost, *, Redundancy. The data structure of the rules allows us to manipulate
them in the program, but does not tell how to stock them. All the rules are de�ned inside
a .txt �le, and written for the user to read it easily if he wants to add a rule at a special
position. To convert the rules in the .txt �le into the Haskell data format, we use a parser.
BiYacc [39] could have been used here. But it as been designed by the same team as BiGUL.
Its creators told as that BiYacc was not supported anymore and did not work at all. Thus,
we created our own parser.

4.2.1.4 The Parser

The parser uses the syntax as described by Shown. Its code looks like this:

1 ruleParser :: String -> IO [Rule]
2 ruleParser fileName = do
3 listOfString <- fileIntoList fileName
4 return (parseListStringToListRules listOfString)

Listing 4.14: ruleParser

The function takes the name of the .txt �le as input, and returns all the rules inside as a
list. ruleParser is composed of two functions. The �rst one, �leIntoList, reads the rules line
by line and returns them as a list of strings. The other function, parseListStringToListRules,
transforms the list of strings into a list of Rules, the correct Haskell data type.

1 fileIntoList :: String -> IO [String]
2 fileIntoList fileName = fmap lines (readFile fileName)

Listing 4.15: �leIntoList

As mentioned before, �leIntoList returns the list of rules in the .txt �le as a list of
strings. To do so, it simply calls 3 functions already de�ned in Haskell. readFile takes the

73

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

path to a �le, and returns the content of the �le as a single String. From this result, the
combination of fmap and lines cuts the single string at each new line character, to send
the list of strings. As a matter of fact, we ask the user to write one rule by line in the .txt �le.

1 parseListStringToListRules :: [String] -> [Rule]
2 parseListStringToListRules ls = map (\s -> parseStringToRule s) ls

Listing 4.16: parseListStringToListRules

Obviously, the parseStringToRule function is applied at each string of the list, thanks
to the map Haskell function, to transform it into a list of rules.

1 parseStringToRule :: String -> Rule
2 parseStringToRule line = (parseCondition (unpack (res !! 0)), parseRulesOrder (

unpack (res !! 1)))
3 where
4 res = splitOn ":" (removeWhiteSpaces line)

Listing 4.17: parseStringToRule

1 removeWhiteSpaces :: String -> Text
2 removeWhiteSpaces s = strip (pack (filter (\c -> c /= ’ ’) s))

Listing 4.18: removeWhiteSpaces

A Rule is just a pair, where the �rst element is a RuleOperator, and the second is a list of
RuleView. Thus, for each line of the list, parseStringToRule returns a pair with the correct
types. As a reminder, a basic rule looks like: ("HourOfDay" < 22) and ("HourOfDay"
> 6) : Auto-scaling, Cost, *, Redundancy. The line, from which the white spaces are
removed, is split into two parts at the suspension points. The �rst part represents the
boolean condition of the rule, while the second part is the order in which the views must be
executed. parseCondition and parseRulesOrder handle those parts respectively. All along
the code of the parser, there will be the pack and unpack functions. Those two functions are
used to transform a String into a Text, and the reverse. The Text Haskell type is demanded
for a lot of functions, like splitOn. Here is the code for parseRulesOrder:

1 parseRulesOrder :: String -> [RuleView]
2 parseRulesOrder rules = map (\name -> replaceViewNames name) (map unpack (splitOn "

," (pack rules)))
3 where
4 replaceViewNames [] = error ("Inconsistent rules")
5 replaceViewNames "*" = Anything
6 replaceViewNames n = V n

Listing 4.19: parseRulesOrder

From a string like Auto-scaling, Cost, *, Redundancy, the splitOn function returns a list
of strings by cutting at each coma. Then, replaceViewNames actually transforms a string
(the name of each view), into the correct Haskell data type.

1 parseCondition :: String -> RuleOperator
2 parseCondition (’(’:ss) = case handleParenthesis "" ss 1 of
3 (cond, (’a’:’n’:d’:ss)) -> And (parseCondition cond) (parseCondition ss)
4 (cond, (’o’:’r’:ss)) -> Or (parseCondition cond) (parseCondition ss)

74

4.2. Development of the Haskell Solution

5 (cond, "") -> parseCondition cond
6 (_, _) -> error ("Inconsistent rules")
7 parseCondition (’n’:’o’:’t’:’(’:ss) = Not (parseCondition (’(’:ss))
8 parseCondition condition = case handleCondition "" condition of
9 (key, (’<’:’=’:value)) -> LessOrEqualsThen key (handleValue value)

10 (key, (’<’:value)) -> LessThen key (handleValue value)
11 (key, (’>’:’=’:value)) -> MoreOrEqualsThen key (handleValue value)
12 (key, (’>’:value)) -> MoreThen key (handleValue value)
13 (key, (’=’:’=’:value)) -> Equals key (handleValue value)
14 handleParenthesis :: String -> String -> Int -> (String,String)
15 handleParenthesis treated rest 0 = (init treated, rest)
16 handleParenthesis treated (’(’:ss) int = handleParenthesis (treated ++ "(") ss (int

+ 1)
17 handleParenthesis treated (’)’:ss) int = handleParenthesis (treated ++ ")") ss (int

- 1)
18 handleParenthesis treated (s:ss) int = handleParenthesis (treated ++ [s]) ss int
19 handleParenthesis _ _ int = error ("Inconsistent rules")
20 handleCondition :: String -> String -> (String,String)
21 handleCondition treated (’<’:’=’:ss) = (treated, ’<’:’=’:ss)
22 handleCondition treated (’<’:ss) = (treated, ’<’:ss)
23 handleCondition treated (’>’:’=’:ss) = (treated, ’>’:’=’:ss)
24 handleCondition treated (’>’:ss) = (treated, ’>’:ss)
25 handleCondition treated (’=’:ss) = (treated, ’=’:ss)
26 handleCondition treated (s:ss) = handleCondition (treated ++ [s]) ss
27 handleCondition _ _ = error ("Inconsistent rules")
28 handleValue :: String -> CtxValue
29 handleValue value
30 | (isDigit (head value)) = intOrDouble value
31 | (value == "True") = B True
32 | (value == "False") = B False
33 | otherwise = S value
34 intOrDouble :: String -> CtxValue
35 intOrDouble value = if (elem ’.’ value) then D (read value) else I (read value)

Listing 4.20: parseCondition and its inner functions

From a string like ("HourOfDay" < 22) and ("HourOfDay" > 6) (the parenthesis
are mandatory), the parseCondition function returns And LessThan "HourOfDay" I 22
MoreThan "HourOfDay" I 6. To do so, it works like a tree. Firstly, it handles the paren-
thesis, by reading one by one each character and applying the "+1/-1" strategy to �nd out
which closing parenthesis belongs to which opening parenthesis. If the result, at a point,
equals 0, it means that a pair of matching parenthesis has been identi�ed. Once the content
of the correct parenthesis has been found, handleCondition detects which operator is used
in this boolean condition, so that the program can properly create the right constructors,
from line 9 to 13. Finally, the last thing to parse are the values. handleValue checks if there
is a digit inside the treated string. If it does, it is either an Integer or a Double. If it does
not, it is either one of the two booleans, or a string.

4.2.1.5 Priority Policy

Clarifying the rules was mandatory before explaining what a priority policy is. As explained
earlier, the user de�nes the rules in a text �le. By de�nition, a rule can be true or false.
As showed above, two rules that have opposite demands cannot be true at the same time.
If it was the case, the set of rules would be inconsistent. We decided to de�ne the list of
rules as follows: "A list of rules is consistent when, no matter the context, two or more rules

75

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

cannot be true together if they are contradictory in terms of the execution order". To avoid
inconsistency, we put in place several policies. They are threefold:

1 data PriorityPolicy = Neutral | Safety | Last deriving Generic

Listing 4.21: PriorityPolicy

� Neutral : this strategy assumes that the user is expert in his domain and all rules are
consistent. The case where one rule contradicts another cannot happen or the system
is not able to make a choice. If we take two con�icting rules, with this strategy, the
rule that asks to put A before B cannot be true at the same time that the rule asking
to put B before A. If this situation occurs, the system will not be able to work properly
and an error will be triggered.

� Safety : this strategy gives the advantage to the earliest rules. If a con�ict occurs, it
takes the �rst rule that appears in the �le. With our example, this strategy choose to
keep the �rst rule and the correct order returned by the function will be A before B.

� Last : this strategy is the complete opposite of the previous one. As the user just
added the rule, it assumes that it is more reliable. In this case, the system does not
take into account the oldest rules if a con�ict occurs. Thus, the result obtained will
be B before A because the rule kept is the last one.

the use and implementation of di�erent policies will be seen later in Listing 4.28.

4.2.2 Monitoring

The Monitoring is the �rst step of our second MAPE loop and gets information from the
main source and from the context. To idea behind the monitoring of these two elements is
to separate the things related to the modular system (source) (like the number of instances
in our case) and the things related to the outside system (context) (like the current time,
the weather or the time stamp). As you already know, the second part of our system is
theoretically a MAPE loop. To make our library easier to use, we created an interface
as simple as possible. It is the reason why we chose to create a unique function called
executionSeq (the name means that the execution is sequential) that handles the monitoring
and execution steps. Our model is conceptually the same but during the implementation
we use the parameters as the monitor and the result of the function as execution. To
understand clearly how our synchronizer works, here is the signature of the function.

1 executeSeq :: Context -> Rules -> PriorityPolicy -> s -> [Concern s] -> IO (s, [
MasterView])

Listing 4.22: Signature of the function used for the monitoring

As explained above, the monitoring step is a part of the execution function. To be more
speci�c, the monitoring is represented by the parameters of the function Context -> Rules ->
PriorityPolicy -> s -> [Concern s]). Remember, the conceptual schema (Figure 4.7) shows
that our synchronizer monitors the context and our �rst MAPE loop. The context is then
represented in the signature by the �rst parameter, typed Context (subsubsection 4.2.1.2).
The �rst MAPE loop is represented by the fourth and �fth parameters. The �rst one is
the source used by our �rst loop and the second is the list of concerns that we could see
in subsubsection 4.2.1.1. The other parameters are about the rules used in our system
(subsubsection 4.2.1.3) (the second argument) and the strategy used to determine the order
of the rules (subsection 4.2.3) (the third argument).

76

4.2. Development of the Haskell Solution

4.2.3 Analysis and Planning

The goal of the analysis and planning steps is to determine the rules to use (Analysis) and
�nd a compatible order for the execution of the concerns (Planning). We have a function
called executeSeq, which is called with the information to monitor as input. Its output
should be the execution step. The analysis-planning pair is located inside the function.
Here are the explanations, line by line, of the function. Analysis and planning steps go from
line 6 to line 8.

1 executeSeq :: Context ->
2 Rules -> PriorityPolicy ->
3 s -> [Concern s] ->
4 IO (s, [MasterView])
5 executeSeq ctx rules priorityPolicy source concerns = do
6 let concernNames = map getConcernName concerns
7 let order = determineOrder ctx rules concernNames priorityPolicy
8 let concernsOrdered = reverse (orderConcern order concerns)
9 res <- foldM fn (source, []) concernsOrdered

10 return res
11 where
12 fn (accS, accV) concern = do
13 branchResult <- execBranch accS concern
14 return (fst branchResult, accV ++ [(snd branchResult)])

Listing 4.23: Implementation of function executeSeq

4.2.3.1 Analysis: Determine the execution order

Firstly, we need to know all the names of the concerns. Line 6 of Listing 4.23 handles that
point. It is a map applying the function getConcernName to the concerns. As shown in the
code below, the function returns a string corresponding to the name of the concern. In the
end, we have a list of string (list of concerns' names), called ConcernNames. This list is
mandatory because later we only use the name of the concern to determine the order of the
executions. It allows us to work on less heavy data.

1 getConcernName :: Concern s -> String
2 getConcernName (Concern name _ _) = name
3 getConcernName (ConcernRemote name _ _ _ _ _ _) = name

Listing 4.24: Implementation of function getConcernName

Secondly, we need to determine the execution order and store it into order. To accomplish
this task we use the function determineOrder, that needs the context, the list of rules, the
list of concerns' names and the priority policy. As shown below, we have the lstViews, which
is the list of concerns' names transformed into a view type. Then, we have lstRulesView
(that calls the function evalRules to determine the rules to keep) and after that, with a
map, we extract the rule views from the rules with a true condition.

1 determineOrder :: Context -> Rules -> [String] -> PriorityPolicy -> [String]
2 determineOrder ctx rules lstConcern priorityPolicy = map (\(V a) -> a) (

determineViewPriority priorityPolicy lstViews lstRulesView)
3 where
4 lstViews = map (\a -> V a) lstConcern
5 lstRulesView = map (\(_, a) -> a) (evalRules ctx rules)

Listing 4.25: determineOrder function

77

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

The function evalRules is a �lter on the boolean condition of the rule. Then, evalBoolean-
Condition returns true when the rule is true in the current context and false otherwise. The
function seems to be a little bit heavy but in fact, this feeling is caused by the number of
pattern matching we have to make.

1 -- Describe how to evaluate a rule
2 evalRules :: Context -> Rules -> Rules
3 evalRules ctx = filter (\(a,b) -> evalBooleanCondition ctx a)
4 -- Return true when the boolean conditions are true according to the context, false

otherwise
5 evalBooleanCondition :: Context -> RuleOperator -> Bool
6 evalBooleanCondition ctx (Equals k val) =
7 case (Map.lookup k ctx) of
8 Just v -> val == v
9 Nothing -> False

10 evalBooleanCondition ctx (LessThen k val) =
11 case (Map.lookup k ctx) of
12 Just v -> v < val
13 Nothing -> False
14 evalBooleanCondition ctx (LessOrEqualsThen k val) =
15 case (Map.lookup k ctx) of
16 Just v -> v <= val
17 Nothing -> False
18 evalBooleanCondition ctx (MoreThen k val) =
19 case (Map.lookup k ctx) of
20 Just v -> v > val
21 Nothing -> False
22 evalBooleanCondition ctx (MoreOrEqualsThen k val) =
23 case (Map.lookup k ctx) of
24 Just v -> v >= val
25 Nothing -> False
26 evalBooleanCondition ctx (Not r) = not (evalBooleanCondition ctx r)
27 evalBooleanCondition ctx (And r1 r2) = (evalBooleanCondition ctx r1) &&
28 (evalBooleanCondition ctx r2)
29 evalBooleanCondition ctx (Or r1 r2) = (evalBooleanCondition ctx r1) ||
30 (evalBooleanCondition ctx r2)
31 evalBooleanCondition ctx T = True
32 evalBooleanCondition ctx F = False

Listing 4.26: evalRules function

The list of rules is �ltered and has kept only those with a true condition. lstRulesView
is generated and contains a list of all the potential execution orders asked by the true rules.
Actually we have this type of list:

1 lstRulesView = [
2 [Anything, V "AutoScaling", Anything, V "Redundancy", Anything],
3 [V "Cost", V "Redundancy", Anything],
4 [Anything, V "AutoScaling", V "Redundancy", Anything],
5]

Listing 4.27: Example of lstRulesView

The remaining part of determineOrder is now explained. The function calls another
function called determineViewPriority and applies a map on the result to retrieve only the
name of the views returned by the function. The function below tries to determine the order
of the concerns based on the true rules and according to the PriorityPolicy. At that point,
we have the list of all views handled by the system (as a reminder, the listView parameter

78

4.2. Development of the Haskell Solution

contains the name of all the concerns transformed in view type) and a list of the orders
asked by the true rules. The output of the function must return a simple list of RuleView.

1 determineViewPriority :: PriorityPolicy -> [RuleView] -> [[RuleView]] -> [RuleView]
2 determineViewPriority Neutral listView lstRuleView =
3 head (findCorrectSituations listView lstRuleView)
4 determineViewPriority Safety listView lstRuleView =
5 head (determineViewPrioritySafety listView lstRuleView)
6 determineViewPriority Last listView lstRuleView =
7 head (determineViewPrioritySafety listView (reverse lstRuleView))

Listing 4.28: determineViewPriority function

In the case of the Neutral policy, the function �ndCorrectSituations takes directly lstRule-
View without any �lter, where the two others (Safety and Last) apply determineViewPrior-
itySafety. In the following explanation, we explain those two functions to understand clearly
the usefulness of our strategy. But before, we need a function which compares two lists of
RuleView and knows if those lists are consistent:

1 goodSituation :: [RuleView] -> [RuleView] -> Bool
2 goodSituation [] [] = True
3 goodSituation _ [Anything] = True
4 goodSituation [] (Anything:ys) = goodSituation [] ys
5 goodSituation [] _ = False
6 goodSituation _ [] = False
7 goodSituation x (Anything:Anything:ys) = goodSituation x (Anything:ys)
8 goodSituation (x:xs) (Anything:y:ys)
9 | (x == y) = (goodSituation xs ys)

10 | otherwise = (goodSituation xs (Anything:y:ys))
11 goodSituation (x:xs) (y:ys) = (x == y) && (goodSituation xs ys)

Listing 4.29: goodSituation function

The function goodSituation takes as �rst argument a concrete situation and as second
parameter a pattern. It returns true if the situation �ts to the pattern and false otherwise.
A situation and a pattern are almost the same, except that a situation does not contain the
Anything value and contains all concerns exactly once. For example, with this pattern [V
"A", Anything, V "B", Anything] the following situations return:

� [V "A", V "B"] : True

� [V "B", V "A"] : False, because the order is not good

� [V "A", V "C", V "B", V "D"] : True

� [V "C", V "A", V "B", V "D"] : False, because the situation does not start by A

After those explanations, the function determineViewPriority described in Listing 4.28
can be fully explained. As detailed before, the neutral case tries to �nd a situation with
the given rules, the safety case �lters the rules and also tries to �nd a situation with
determineViewPrioritySafety. The newest case works as the previous one but the list of
rules is reverted because the function determineViewPrioritySafety applies the rules from
the �rst one. The �rst strategy uses a function called �ndCorrectSituations. As we can
see below, this function takes a list of views and a list of consistent rule views. With
those parameters, it tries to generate a situation in which the views can be executed. The
implementation of this function is:

79

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

1 findCorrectSituations :: [RuleView] -> [[RuleView]] -> [[RuleView]]
2 findCorrectSituations listView lstRuleView = do
3 x <- (perms (nub [x | x <- listView, x /= Anything]))
4 guard $ isNothing (find (\y -> not (goodSituation x y)) lstRuleView)
5 return x
6 where
7 perms :: Eq a => [a] -> [[a]]
8 perms [] = [[]]
9 perms xs = [i:j | i <- xs, j <- perms $ delete i xs]

Listing 4.30: �ndCorrectSituations function

To �nd a correct situation, it uses a mechanism called backtracking. It is an algorithm
trying to satisfy some goals by �nding alternative paths [9, 34]. Our goal is to �nd a situation
that can �t all the rules. Here is a small example: we have �ve views respectively called A,
B, C, D and E. We also have three constraints given by the rules:

� [Anything, V "A", Anything, V "B", Anything] : The view A must be before the view
B.

� [V "C", Anything] : The view C must be the �rst

� [Anything , V "B", V "E", Anything] : The views B and E must immediately follow
each other in this order.

With those three constraints, 4 situations could �t the rules. For example, we could
have those following orders : ["C","A","B","E","D"], ["C","A","D","B","E"], etc. The
goal of �ndCorrectSituations is to �nd these solutions. To do so, the �rst step is cleaning
the list of views. It removes all the "Anything", and the nub function removes all duplicate
elements. After that, the perms function generates all the permutations of the views. For
our example, the function perms will generate 120 lists that contains �ve views. Thanks to
the lazy evaluation of Haskell, the solutions of perms are not computed if they are not used.
In the function �ndCorrectSituations, x will take each one of the generated values. Then, if
this x passes the guard, it means that the situation �ts the constraints and this value of x
is returned. This implementation constructs the list of the situations that pass the guard.

1 determineViewPrioritySafety :: [RuleView] -> [[RuleView]] -> [[RuleView]]
2 determineViewPrioritySafety listView [] =
3 perms (nub [x | x <- listView, x /= Anything])
4 determineViewPrioritySafety listView (x:xs) =
5 findMaxModel (perms (nub [x | x <- listView, x /= Anything])) x xs
6 where
7 findMaxModel sol [] [] = sol
8 findMaxModel sol currentRule [] =
9 case filter (\s -> (goodSituation s currentRule)) sol of

10 [] -> sol
11 res -> res
12 findMaxModel sol currentRule (x:xs) =
13 case filter (\s -> (goodSituation s currentRule)) sol of
14 [] -> findMaxModel sol x xs
15 res -> findMaxModel res x xs

Listing 4.31: determineViewPrioritySafety function

80

4.2. Development of the Haskell Solution

DetermineViewPrioritySafety uses another function called �ndMaxModel. First, the
function determineViewPrioritySafety generates all the possibilities, just like in the �nd-
CorrectSituations function (Listing 4.30). Then, if the list of rules is empty, it means that
the list must not be �ltered, because all possibilities are corrects. If the list of rules is not
empty, it calls the function �ndMaxModel with the list of all possibilities, the �rst rules et
the remaining rules. FindMaxModel is a recursive function where the basic case is when no
more rule has to be managed. In this case, it returns the remaining solutions. The recursive
�lters the list of solutions with the current rule. If there is no solution, it means that the
rules are too strong and/or not consistent with the previous ones. Thus, we skip this rule
(by keeping the previous list of solutions) and apply the following rules. If the �lter gives
a sublist of non-empty solutions, we apply the following rules to this sublist. Intuitively, it
reduces the list of solutions by applying the rules one by one and skipping the ones that are
not consistent with previous ones.

Let us come back to the function determineViewPriority, described in Listing 4.28. The
Haskell head function is used to keep the �rst situation that �ts the guard. Thanks to the
lazy evaluation, it stops the generation of situations.

4.2.3.2 Planning: Ordering our concerns

The analysis has generated an execution order. executeSeq must now sort the concerns
according to the order asked by the rules and it is the purpose of the planning step. It
consists of a call to the function orderConcern that takes in parameters the order we want
(a list of concerns' name) and the list of the concerns. This function will just retrieve the
list of concerns, ordered according to the list of concerns' name.

1 orderConcern :: [String] -> [Concern s] -> [Concern s]
2 orderConcern [] [] = []
3 orderConcern (x:xs) (concern:ys) | x == (getConcernName concern) =
4 concern:(orderConcern xs ys)
5 | otherwise = case find (\c -> (getConcernName c)

== x) ys of
6 Just x -> x:(orderConcern xs (concern:(delete

x ys)))
7 Nothing -> error ("The concern " ++ (

getConcernName concern) ++ " is not
implemented")

8 orderConcern x y = error ("orderConcern x y : impossible case " ++ show x ++ " " ++
show (map getConcernName y))

Listing 4.32: orderConcern function

Three cases are possible: there is no concern at all, in that case the list of concern names
is empty, like the list of concerns. The second case is when the list must be ordered. Either
the current concern is already in the right place, then we can keep it and call the function
recursively with the remaining list, or the current concern is not at its correct place. Than,
we have to �nd the correct concern and place it accurately. The last case is when the
two other cases are not triggered. It means that the list of concerns' names and the list
of concerns are not linked. This can happen when a rule asks a concern not given by the
programmer, for example. In that case, it sends an error.

4.2.4 Execution

As explained at the beginning of this section, the function executeSeq represents the mon-
itoring part and the execution part. The monitoring has already been explained. This

81

4. Second MAPE loop : Self-Prioritized Views using Bidirectional

Transformations

section is devoted to the execution step. executeSeq must return a pair, containing the
updated source and a list of updated views. The attentive reader noticed that the type of
the returned view list is a bit special. Indeed, in Haskell, a list has to be homogenous. It
means that each element of a list must be of the same type. Basically, a list containing a
string, an integer and a boolean is not possible in Haskell. It is a problem for us, because
we would like to retrieve a list of updated views but each concern has its own view type.

After a lot of research, we found a way to bypass this problem (https://wiki.haskell.
org/Heterogenous_collections). The trick consists of creating a master type and use the
existential types of Haskell. This way, we hide to the Haskell compiler the real type of the
list. Thus, the MasterView data says: no matter the type of v, as long as it respects some
properties (showable, ...). That is why v is embedded in a data called MasterView. For the
compiler, the list is homogenous: all items are typed as MasterView. However, it is not the
case because each master view can contain any view thanks to existential quanti�cation. We
need to add an instruction for the compiler to notify the use of ExistentialQuanti�cation.

1 {-# LANGUAGE ... , ExistentialQuantification, ... #-}
2 ...
3 data MasterView = forall v. (ToJSON v, Show v, NFData v) => MasterView v
4 deriving instance Show MasterView
5 ...

Listing 4.33: �ndCorrectSituations function

Now we have an ordered list of concerns (concernsOrdered) and we can really execute
our modular system. In the Listing 4.23, the execution part goes from line 9 to line 14. The
foldM function is used. It works like a basic fold but with monads. As a reminder, we work
with an IO monad. This fold starts with a pair composed by the source and an empty list of
views as accumulator. It applies the function fn to each concern of the list concernsOrdered
(line 9). The function fn takes the current state of the accumulator and the current concern.
Then, it calls the function execBranch with the current source (�rst part of the accumulator)
and the current concern as parameters (line 13). The function execBranch retrieves a pair
where the �rst part is the updated source and the second part is the updated view of this
concern. To complete the function fn, the source of the accumulator must be updated and
the view of the current concern must be added to the list of views in the accumulator (line
14). Here is the implementation of execBranch:

1 execBranch :: s -> Concern s -> IO (s,MasterView)
2 execBranch source (Concern _ bx analysisAndPlan) = do
3 let view = get bx source
4 viewUpdated <- return (case view of
5 Just x -> analysisAndPlan x
6 otherwise -> error "Impossible to generate the view with the

bidirectional tranformation given")
7 sourceUpdated <- return (case put bx source viewUpdated of
8 Just x -> x
9 otherwise -> error "Impossible to generate the updated source with the

bidirectional tranformation given")
10 return (sourceUpdated, MasterView viewUpdated)
11 execBranch source (ConcernRemote _ bx url port secured serialize unserialize) = do
12 let view = get bx source
13 viewUpdatedStr <- case view of
14 Just x -> postRequest url port secured (serialize x)
15 otherwise -> error "Impossible to generate the view with the

bidirectional tranformation given"
16 viewUpdated <- return (unserialize viewUpdatedStr)
17 sourceUpdated <- return (case put bx source viewUpdated of

82

https://wiki.haskell.org/Heterogenous_collections
https://wiki.haskell.org/Heterogenous_collections

4.2. Development of the Haskell Solution

18 Just x -> x
19 otherwise -> error "Impossible to generate the updated source with the

bidirectional tranformation given")
20 return (sourceUpdated, MasterView viewUpdated)

Listing 4.34: execBranch function

The execBranch function takes the source and the current concern as input. Two pos-
sibilities can occur, according to the type of concern. Indeed the behavior of the function
changes if the concern is remote or not.
The �rst case is when the concern is local. The BiGUL function with get is called to obtain
the view of the concern. When it is done, the analysis and planning steps obtain an updated
updated view. Finally, the BiGUL function is called with put and retrieves pair containing
the updated source and the updated view.
The second case is when the concern is remote. The �rst step is the same: the BiGUL
get function obtains the view. But to recover the updated view, we have to send a HTTP
POST request. To make this server request, we use the function postRequest that takes the
information about the server and the content of the request. In our case, the content of the
POST is the serialized view (serialize x). This function retrieves a string to unserialize. It
is the updated view sent by the server. It replaces the analysis and planning steps of the
�rst case. The last step is the same as before: the BiGUL put function is called to obtain
the updated source and retrieves the pair.

1 postRequest :: String -> Int -> Bool -> String -> IO String
2 postRequest url port secured body = do
3 request’ <- parseRequest ("POST " ++ url)
4 let request
5 = setRequestMethod "POST"
6 $ setRequestBody (RequestBodyLBS (Char8.pack body))
7 $ setRequestSecure secured
8 $ setRequestPort port
9 $ request’

10 mgr <- newManager tlsManagerSettings
11 let req = request { responseTimeout = responseTimeoutNone }
12 response <- Network.HTTP.Conduit.httpLbs req mgr
13 return $ Char8.unpack (getResponseBody response)

Listing 4.35: postRequest function

The function to create a post request uses two well-known libraries called Net-
work.HTTP.Simple (https://hackage.haskell.org/package/http-conduit/docs/
Network-HTTP-Simple.html) and Network.HTTP.Conduit (https://hackage.haskell.
org/package/http-conduit/docs/Network-HTTP-Conduit.html). From lines 3 to 9, it
creates the request with its properties. Line 11 created a request manager to handle a
secured server. Line 12 removed the timeout of the request (this line has to be replaced
in production to avoid in�nite requests). Line 13 executes the request and the last line
retrieves the content of the response.

83

https://hackage.haskell.org/package/http-conduit/docs/Network-HTTP-Simple.html
https://hackage.haskell.org/package/http-conduit/docs/Network-HTTP-Simple.html
https://hackage.haskell.org/package/http-conduit/docs/Network-HTTP-Conduit.html
https://hackage.haskell.org/package/http-conduit/docs/Network-HTTP-Conduit.html

Chapter 5

Experiments

This chapter is about the experimentation and evaluation of the whole system described
during the previous chapters. Where our implementation attempts to answer some research
questions, the evaluation part attempts to determine whether the answers provided actually
solve the problems. Let's remember the question we tried to solve in this thesis. The
�rst issue is how to propagate properly the changes inside a modular system with several
subsystems. The second issue is about the resolution of the con�icts in a modular system.
Finally, we wanted to create a framework able to respond accurately to unforeseen situations
and to give the best answer to solve them.

The �rst issue is quickly solved by using BXs. Indeed, by the mathematical de�nition
of BiGUL, if a function is correctly implemented and if it is a lens (see section GetPut

and section PutGet) then the transformation between the source (Main System) and the
view (Sub Systems) do not produce any side e�ect (pay attention, we suppose that the put
is correctly implemented by the programmer to ensure the correctness of the BX). In other
words, the get always produces the same view with a given source and the put produces the
same source if there is no change in the view [21]. Based on this observation, we did not
create experiments to prove the �rst issue.

The second issue is more complicated to analyze. Indeed, the evaluation requires to
run our system without any con�ict avoidance mechanisms, and then count the number of
con�icts that occur during the tests. After that, running the system again with con�ict
avoidance mechanisms, and compare the results. However, during the explanation of our
solution, we changed a little bit the problem. To avoid the con�icts, the system executes
each subsystem sequentially where the last one overrides the previous ones. Thus, it is
easy to understand that all con�icts are avoided with this solution. Although the provided
solution avoids con�icts, it is not sure that the behavior of the system is still coherent and
provides a correct solution. To evaluate this point, we chose to run the system on a real
case (explained later) and see if the behavior seems to be coherent and correct. Clearly, this
experiment does not prove anything, but shows if the system reacts in a way that we can
justify. Moreover, this experiment depends on the chosen use case, and the implementation
of each subsystem. As shown in section 5.2, we suppose that the entire system is correctly
implemented and that each subsystem has a coherent behavior.

The last issue is to provide an e�cient framework which reacts to unforeseen situa-
tions. We provide a framework called the synchronizer that avoids con�ict by reordering
the concerns, according to a base of rules and the current context. Thus, in a certain way,
our system can handle unforeseen con�icts between subsystems by reordering the concerns.
The result of each concern does not matter for the synchronizer. In other words, the system
can also respond to unforeseen situation about the context in which the system is. No mat-
ter the context, the synchronizer is able to reorder and execute the system according to the

85

5. Experiments

rules. However, a good improvement would be to enrich the base of rules by some kind of
machine learning algorithms, to increase the number of rules automatically (see section 6.3).
To evaluate this point, we have to check if the behavior of the system is correct no matter
the situation (even with unforeseen situations). Unfortunately, we did not have enough
time to expand the experimentation and validate this point. However, we have made an
evaluation of the performance to show the e�ectiveness of this system to react to a given
situation (section 5.3).

The following sections will provide an experimental setup and describe in a more detailed
way the evaluation already addressed.

5.1 Experimental setup

Firstly, all the experimentations are run on AWS, in the region of Tokyo. The backend
architecture where our system runs is made up of six server instances of type t2.micro. One
for the controller/synchronizer, another to simulate the load, and each of the four others
dedicated to one of the concerns. All of the instances are inside the same security group,
to allow the communication with each other. As you can see, our system runs only on �ve
servers and we use a sixth to simulate the load. Thus, each of the �ve servers contains
our system, but the controller/synchronizer has the AWS CLI and Ansible installed and
con�gured, to communicate with AWS. To let the reader easily understand, we named each
server as follow :

� ServerController for the server that executes the monitor and executes parts of the �rst
MAPE loop and also runs the synchronizer.

� ServerLoad for the server that simulates the load of the test infrastructure.

� ServerAutoScaling for the server that executes the auto scaling analysis and planning
steps (subsection 3.3.3).

� ServerRedundancy for the server that executes the redundancy analysis and planning
steps (subsection 3.4.3).

� ServerFirewall for the server that executes the �rewall analysis and planning steps
(subsection 3.5.3).

� ServerCost for the server that executes the cost analysis and planning steps (subsec-
tion 3.6.3).

The communication between the servers works as follows: the ServerController monitors
the AWS API to recover the data in JSON. Then, they are parsed to obtain the source,
and the synchronizer (always ServerController) can �nd the best order in which the views
must be executed, thanks to the rules and the context. Once the synchronizer has �nished,
the ServerController parses the views in JSON and sends them to their respective server
(Server(AutoScaling,Redundancy,F irewall,Cost)) in the correct order. Each concern can now make
its analysis and planning steps (which may or may not change the view), and transfer it to
the ServerController, to �nally update the whole source. Finally, Ansible is used to submit
all the changes of the concerns to Amazon. All the communication are made by HTTP. For
example, when the ServerController sends the view to ServerAutoScaling, in fact the �rst one
makes a simple HTTP GET request to the ServerAutoScaling that analyzes and plans some
changes and returns the updated view as HTTP response.

86

5.1. Experimental setup

Now that the installation of our system is explained, let's describe the infrastructure
that the system manages. The front-end architecture is composed of two security groups:
database-securitygroup, for the database, and web-securitygroup, for the web workers. Usu-
ally, both allow SSH. The �rst one allows also MySQL, and the second one allows HTTP.
The �rst one is always composed of a single server of type t2.micro, while the composition
of the second varies between the di�erent experiments. However, all the web workers (in-
stances of the web-securitygroup) contain the last version of Apache1 by default, and run
the default Wordpress2 website con�gured to communicate with the database. In addition
to all this, we use a load balancer provided by AWS' Elastic Load Balancer Classic, to
distribute the incoming tra�c to the running web workers.

The four concerns are applied to the web-securitygroup, whereas only the security con-
cern (ie. Firewall view) is applied to the database-securitygroup. If we had to run every
concern on this last security group, we would have been obliged to synchronize every MySQL
databases and recon�gure the MySQL server dynamically when a change is made. We have
decided to simplify it by having only one instance in the database-securitygroup that is
why concerns, that could decrease or increase the number of instances, are not run on this
security group.

The ServerLoad has jMeter3 installed to simulate a real use of the system. This software
creates fake requests on the infrastructure. The number of requests per second is changed
manually. It has the e�ect to change the load of the servers over time. Note that even if
the number of requests is changed manually, we can determine the exact number of requests
made by minute thanks to AWS Load Balancer Monitoring. This way, we can reproduce
the same number of requests over time for a future experimentation.

Finally, we use the safety strategy, de�ned in subsubsection 4.2.1.5 to �nd the execution
order of the views. The experimentation is also executed with the following base of rules:

� AdvertisingRevenue == 0 : Cost, Redundancy, AutoScaling, , Firewall

� FireEmergency == True : Redundancy, Firewall, *

� SecurityEmergency == True : Firewall, *

� ((DayOfWeek == 6) and (HourOfDay > 18)) or ((DayOfWeek == 6) or (DayOfWeek
== 7)) : Redundancy, AutoScaling, *

� (WeekOfYear >= 50) or (WeekOfYear == 1) : Redundancy, AutoScaling, *, Cost

� (Month == 1) or (Month == 7): Redundancy, AutoScaling, *, Cost

� ((HourOfDay > 6) and (HourOfDay < 10)) or ((HourOfDay > 17) and (HourOfDay
< 22)) : AutoScaling, Redundancy, Firewall, *

� AdvertisingRevenue <= 200 : Cost, *

� PeriodOfReduction == True : Redundancy, AutoScaling, *, Cost

� (HourOfDay > 6) and (HourOfDay < 20) : AutoScaling, *, Cost

� (HourOfDay <= 6) and (HourOfDay >= 20) : Redundancy, Cost, Firewall, *

1https://httpd.apache.org
2https://wordpress.com
3http://jmeter.apache.org

87

5. Experiments

The analysis and planning steps of each concern for this evaluation are set up with
speci�c strategies already explained in chapter 3. As a reminder :

� The autoscaling needs one argument to work properly: the average load that each
security group has to impose to its associated instances. In our case, this expected
value is 40%. Of course, this is con�gurable and entirely depends on the user. The
planning step thus adds instances when the calculated average is higher than the
expected value, and shuts down instances when the calculated average is lower.

� The analysis of the redundancy is simpler and goes through each security group in-
dependently to �nd those which do not possess at least two running instances. The
planning then starts servers on those groups, while paying attention to have always
two instances of the same type. Indeed, if it starts a very weak instance next to a big
one. If the big one fails, the small will not be able to handle the charge of requests.

� The analysis and planning steps of the �rewall ensures that all the instances are
reachable with a SSH access, that the tra�c from the Internet to the web-securitygroup
must be allowed on port 80 (http), and �nally that the tra�c from the Internet to the
database-securitygroup must not be allowed on port 3306 (MySQL).

� The analysis of the cost reviews the whole system to compute the total cost. The
associated planning step then shuts down some servers, to go under a prede�ned
limit, and following this strategy: �rst will be shut down the instances with the lowest
load. If the load is equal between instances, the most expensive is ended �rst. It
allows us to handle the servers that a previous view wants to start, whose load is
null, and prevent them to be launched before trying to concretely shut down instances
that already run. This implementation strategy is quite simple and could be widely
improved by allowing the cost to not only shut down instances but also trying to meet
the demands of previous views. For example, if the autoscaling demands to start a
big server, judged too expensive by the cost, it could try to launch a smaller server
instead of completely preventing the big instance to be started.

To complete the experimental setup, you can also go to the GitHub of the project to see
exactly and precisely all the con�gurations of each submodules.

5.2 Behavior evaluation

As already explained, the behavior evaluation tries to analyse the behavior of a running
infrastructure when some stimulus are made. In our case, those stimulus are the change of
the number of requests. The goal of this section is to see how the system reacts according
to di�erent contexts that begets a di�erent execution order of the concerns. To accomplish
this evaluation, we will change the context manually and see if what we expected is what
the system does.

At the beginning, we have two webworkers typed t2.nano inside the web-securitygroup.
Moreover, we have the following context on which the rules described above can apply: ("Se-
curityEmergency", B False), ("FireEmergency", B False), ("HourOfDay", I 14), ("Day-
OfWeek", I 3), ("WeekOfYear", I 20), ("Month", I 5), ("AdvertisingRevenue", I 250),
("PeriodOfReduction", B True). With this context and the rules described in section 5.1,
the order in which the concerns are executed is: Cost, Firewall, Autoscaling, Redundancy.
As a reminder, it means that the Redundancy concern is the most important. The auto-
scaling concern is con�gured to keep the average load at 40%, and the cost concern ensures
that the cost stays under $0.5 per hour. Finally, our system is launched every 15 minutes.

88

5.2. Behavior evaluation

Figure 5.1: Behavior experiment - Autoscaling advantage

Figure 5.2: Behavior experiment - Cost advantage

Figure 5.1 shows the results obtained with all those data. The left axe represents the
load in percentage; the bottom one is the time in minutes, and the right axe is the number
of requests. The lines, which illustrate the instances, refer to the left, whereas the shaded
shape refers to the right.

The expected behavior of this experiment is that the system keeps the load close to
40 percents because the AutoScaling is the most important concern after the Redundancy.
That is why, even if the load is under 40 percent, the system will have to keep 2 running
instances. Now, let's describe step by step how the system reacts.

� Minute 1 to 11 represent the launch of the system, without any load.

� At t-11, our system is launched and the situation does not need any changes.

� At t-13, the �rst requests arrive until t-26, where our system is launched and does
nothing, because even if the load is higher than before, it is still below the threshold.

� T-30 sees a jump in the number of requests and the average load of the two servers is
around 50%.

� At t-41, our system is executed and decides to create a new instance of type t2.medium.
It is ready and started at t-45, which leads to a fall in the load of the two old instances.

� Between t-45 and t-59, the number of requests is constant, and despite the fact that
our model is run at t-56, it does not do anything because the 3 running instances can
handle the current charge and keep the load close to the expected one.

� From t-59 to t-64, there is a peak of requests absorbed by the three instances, with
very high loads.

89

5. Experiments

� As the system has been launched at t-71, during a sequence of peaks from t-65 to t-77,
it starts a new t2.xlarge instance to handle this amount of queries.

� From that point, the load decreases drastically, because of two factors: the �rst one is
the drop of the number of requests, and the second is the fact that the new big server
takes over a lot of work.

� Thereafter, and until t-83, the number of requests is so low that the load is almost
null.

� From t-83 to t-96, the load increases again due to a new peak of queries.

� Our system is launched at t-86 and decides to shut down the three smallest instances
(2 t2.nano and 1 t2.medium), and to start a new t2.xlarge. It leads to a situation
where we have only two running t2.xlarge instances. What is interesting is that it
detects the large gap between the load of the instances, and smartly resolved the issue
to obtain a situation where the instances possess the same expected load.

� In the end, despite the stop of the requests, the instances stay activated because the
Redundancy concern requires always at least two running instances.

As you can see, the system follows the expected behavior by keeping the load close to 40
percents and also keeping at least 2 instances. The Cost is overwritten by the AutoScaling
and Redundancy, because this result is obtained with the order mentioned earlier. However,
changing this order can widely impact the behavior of the system. For example, if the
context evolves and the AdvertisingRevenue is now null, the new calculated order becomes
Firewall, Autoscaling, Redundancy, Cost (according to the rules described in section 5.1).
The expected behavior of the experiment changes a little bit. Indeed, the system will work
similarly but the total cost has to be under $0.5. In other words, even if the redundancy or
the AutoScaling request a new server, if the total cost with this change is above the $0.5,
the cost concern will erase this change.

Let's see the behavior of our system. The Figure 5.2 shows a similar situation but
with that new order (ie. Firewall, Autoscaling, Redundancy, Cost). The beginning is
the same and the reaction of the system works as expected. However, at t-65, the model
is run and decides to shut down the two t2.nano instances. Once shut down, we have
decided to manually remove them from AWS. With a user intervention, it highlights a
real-case situation where the administrator removes completely some servers or where a
server completely crashes. From t-75, the system notices an increase of the requests, and
so an increase of the load. The system is executed again at t-80. Despite the fact that the
autoscaling wants to start a new t2.2xlarge instance to handle the charge, the cost overwrites
this decision and cancel the launch of this server, because the current system already runs
two instances whose cost is $0.232 per hour. If the system had launched a t2.2xlarge server,
whose cost is $0.3712 per hour, the total amount would have been $0.6032, and that exceeds
the limit prede�ned by the user.

We can see that the system works and follows what we expected. However, we also see
that the cost concern could be improved. Indeed, the cost just shuts down instances already
in our infrastructure, but it could use some new instances to approach the limit cost. In
our experiment, the kept cost is $0.232 per hour. There is a gap between this cost and $0.5,
that could be �lled by running some new instances that keep the cost of the infrastructure
under the limit. Unfortunately, the cost concern cannot run any instance but just shutting
them down. Thus, the experiment shows that the behavior is correct (ie. follows the de�ned
strategies) but is not really e�cient.

90

5.3. E�ciency evaluation

Table 5.1: E�ciency experiment (in ms)

Instances Controller/Synchronizer Cost AutoScaling Redundancy Firewall Total
Parsing Ordering Get A&P Put Get A&P Put Get A&P Put Get A&P Put

100 Stopped 0.296 0.040 1.080 16.500 1.640 0.431 32.500 0.459 0.420 23.200 0.363 0.029 13.300 0.158 90.416
50 Stopped 0.298 0.040 1.110 14.900 0.164 0.428 25.200 1.750 0.250 19.000 0.927 0.030 12.800 0.139 77.036
50 Running 0.297 0.040 0.237 19.600 1.100 0.429 26.400 1.580 0.256 19.000 0.699 0.029 13.600 0.139 83.406

Let us change once again, without graphs, the context to see what happens when the
Redundancy concern is less important. The day was productive, the AdvertisingRevenue
is higher than zero. It is now 18 o'clock. The new calculated order is Cost, Firewall,
Redundancy, Autoscaling. The di�erence with the other order is that when there is no
more request, and the autoscaling is more important than the redundancy, all the servers
are shut down. The decisive importance of the execution order of the views can be seen in
this circumstances, where the �nal situation of the servers can completely change, depending
on which view has the priority. Indeed, if the rules de�ne an order without being very careful,
it can lead to issues in the system. However, those problems come from the de�nition of
the rules by the user, not from our model.

Note that the setup and the results of this experiment are available in our public
GitHub https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/tree/
master/Experiments/Exp1

5.3 E�ciency evaluation

The e�ciency evaluation aims to analyze the system performances in some situation. To
accomplish this purpose, we executed benchmarks to measure each part of our system. Even
if this evolution depends exclusively on the machines where it is executed, we tried to reduce
this trouble by using AWS. This way, the machine is well-known and the evaluation can be
reproduced by anyone who wants it. Moreover, we use a Haskell library (called criterion)
that allows us to get some statistics about our system. Because our work is not about
the performances and statistics of a system ,we will limit ourselves to show and explain
the mean execution time of each part of the software. Of course, criterion gives us lots of
information and statistics. Thus, all the reports are available in the appendices, and all
along this section we will reference speci�c ones.

Let's identify the most interesting parts of the system to benchmark. We chose to avoid
the part of monitoring and execute of the �rst MAPE loop, because it is closely linked to
the used Cloud services and it is not the real added value of our solution. Thus, we decided
to focus on the four concerns, by the measuring of the Get, Put and analysis/planning
steps. Moreover, we also evaluate the controller/Synchronizer by measuring the parsing of
the rules and the ordering of the concerns (called "Synchronizer/Determine Order Last"
and "Synchronizer/Determine Order Safety" in the report of criterion).

Clearly, table 5.1 represents the total time taken by each major step of the model,
in milliseconds. Regarding the names of the columns, the Parsing is the parsing of the
rules (taken from a .txt �le) into their Haskell format. The Ordering is the whole process
of choosing the best order in which the views will be executed. Finally, the A&P is the
Analysis and Planning process.

The experiments are composed by three benchmark sets. The �rst situation4 that we

4Setup, data and results : https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/
tree/master/Experiments/Exp2

91

https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/tree/master/Experiments/Exp1
https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/tree/master/Experiments/Exp1
https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/tree/master/Experiments/Exp2
https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/tree/master/Experiments/Exp2

5. Experiments

analyze is when the web security group contains 100 stopped instances (T2.Nano) (report
in Appendix B). The database security group contains 1 instance (T2.micro). The con�gu-
ration of the context is made to obtain the execution order of the concerns as follows (from
less important to more important) : Cost (max 1,5/h), Firewall, Redundancy, Autoscaling
(avr load 40%). The rest of the setup is exactly the same as the one explained during
the section 5.1. The second situation5 is the same then the previous one except that the
number of stopped instances is 50 (report in Appendix C). Finally, the last situation6 is
the same then both previous ones except that all instances are in a running state (report in
Appendix D). This way, we see if the state of the instances has any kind of impact on the
performance of the system (and thus, if launch or shut them down has an impact).

Here are the explanations of the results. The reordering step of the views, while capital
in the model, is extremely fast and does not impact the total time of the execution no
matter the situation. As expected using the BiGUL programming language, the time taken
by the bidirectional transformations is minimal: together, the forward and the backward
transformations never last longer than 3 milliseconds. Even more: the put of the Autoscaling
and the Cost are the only one exceeding 1.5 milliseconds. Obviously, most of the time is
taken by the analysis and planning steps, which is pretty normal knowing that it is where
the intelligence of the system is, and where the decisions must be made. Finally, the total
time for the model to determine what to do with the servers is, in general, only a little
bit less than 100 milliseconds, which can be interpreted as very e�cient for a self-managed
model that handles 100 servers. Moreover, it's easy to see that the state of the instances
has no signi�cative impact on the performance, even if we notice a tiny increase of the total
time. Indeed, this little gap could be produced by other processes on the instances, that
may have impacts on the performances of the instances. It is also important to notice that
even if the number of instances doubles, the increasing of the total time is minor. It means
that we could increase the number of instances without increasing much more the time of
the execution.

5.3.1 Validity of the results

A particular attention must be paid to those results. Indeed, they can be a�ected by several
internal and external factors. Firstly, this evaluation depends on the IaaS on which it is
executed. Even if AWS is used again, the results may di�er depending on the region chosen
by the user (this evaluation is made with the Asia Paci�c (Tokyo) region), but also on the
potential updates of the Amazon infrastructure and, of course, on the use of the Amazon
servers by other clients. Generally speaking, the results can change every time a version
of one of the tools used is upgraded. Using those tools is also a proof to have faith in our
evaluation. AWS is a worldwide service, employed by hundreds of companies, as well as
Ansible.

5Setup, data and results : https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/
tree/master/Experiments/Exp3

6Setup, data and results : https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/
tree/master/Experiments/Exp4

92

https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/tree/master/Experiments/Exp3
https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/tree/master/Experiments/Exp3
https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/tree/master/Experiments/Exp4
https://github.com/qlombat/Self-Prioritized-Modular-Adaptations/tree/master/Experiments/Exp4

Chapter 6

Conclusion and Future Works

This chapter ends the thesis. It summarizes the essential results and the lessons to be learned
from our work. We will also discuss new issues that our work has raised and possible future
works.

6.1 A Modular System Using Bidirectional Transformations
(BiGUL)

As we saw, the modularization is a common strategy for self-adaptive systems. This work
has presented a system using bidirectional transformations to synchronize the subsystems.
We introduced some useful bidirectional patterns suppose to help us during the develop-
ment. We also explained what is a lense and how the BXs work. Then, we detailled some
previous work about modular systems to situate the thesis in the domain of modular self-
adaptive systems. The main issue of this part of the thesis is on the utility of bidirectional
transformations in a modular system. Our work consisted initially to develop a modular sys-
tem using a put-based bidirectional language. Because we did an internship at the National
Institute Informatics in Tokyo, we chose to use BiGUL, the language developed by the team
we were working with. Although it was not too di�cult for us to develop our example, we
encountered di�culties with the language. Indeed, apart from the fact that bidirectional
programming can be di�cult to grasp, the syntax of BiGUL is sometimes problematic and
does not allow a quick understanding of the problem. Moreover, developing bidirectionally
takes time and it is sometimes super�uous. Indeed, on a very large system where we need to
be sure that the synchronization is done correctly, the use of languages such as BiGUL can
be a real advantage for the maintenance of the software. However, on a smaller system, the
use of this type of language can be more complicated since the principle is to encode only
one of the two transformations, the analysis of the problem is generally more complicated
and the debugging is sometimes complicated and long.

As for our example strictly speaking, the solution we provided to manage a cloud infras-
tructure is sometimes too simple. Indeed, due to the lack of time during the development,
some concerns are limited and not totally realistic. For example, the concern about the
security is largely hard coded with only a few rules. However, even with those limited
concerns, the example system that we created is enough to illustrate the usefulness of the
bidirectional programming. Moreover, it runs on AWS, which is one of the most used cloud
platforms.

All along this work, we have personally seen the interest of BiGUL. The use of bidirec-
tional programming, and especially BiGUL, has been a real advantage. As you already saw,
it provides useful tools like align, rearrS or rearrV to synchronize data. During the devel-

93

6. Conclusion and Future Works

opment step, the language is very constraining in order to obtain a correct synchronization,
but when the system is developed the maintenance time is greatly reduced.

6.2 A Way to Orchestrate a Modular System

In a second step and once the modular system was done, our job was to improve it to make
it self-adaptive. After a small review of other �elds of research, we tried to elaborate our
own system based on context and rules. The �rst one is a snapshot of the situation in which
the system is, and the second one is the knowledge of our system, based on rules choosing
the way to order each subsystem. As already explained, we chose a rule-based approach,
and the main issues of this second part of the thesis was:

� Is it possible to make a modular self-adaptive system using BiGUL (1)?

� How to avoid con�icts between di�erent views (2)?

� How to execute di�erent subsystems in di�erent orders (3)?

The answers to these three questions were seen in details during chapter 4. Indeed,
all along this thesis we have worked on an example system, and at the end of this work
(1) we managed to run a system that adapts to the environment through a context and
a knowledge base. Even if the knowledge base and the context was simple, we were able
to show a concrete example of a self-adaptive system managing a modular system using
BiGUL. During this work, to make our system self-adaptive we faced a problem when data
is shared between di�erent submodules. To solve it, we were inspired by non-self-adaptive
systems, in which the static execution order of the subsystems simulates a priority among
the modules. As explained earlier, we have chosen to change dynamically the execution
order of subsystems such that the last executed subsystem can override the changes made
by previous ones. In this way, each subsystem has a priority and con�icts are avoided (2).
Finally, we thought about how to execute subsystems and explained the sequential approach
and the parallel approach (3). We then have been able to show that the parallel approach
strongly relies on the interdependence of the subsystems. Thus, it can sometimes be very
bene�cial in terms of time for a quantity of calculus compared to the sequential approach,
but it can also be catastrophic if the data are strongly shared.

Even if we found a solution to those questions, the answers are not necessarily the best.
Indeed, we showed that it is possible to have a modular self-adaptive system using BiGUL
avoiding con�icts but some of our algorithms are not optimized and can be improved.
For example, the way we determine the order of execution of concerns uses backtracking
and could be widely optimized. Moreover, we �ew over the parallel approach and further
investigation might be interesting. As for the evaluation of our solution, due to the lack
of time, we could not be more speci�c about some essential measures. For example, it
might have been interesting to determine the performance of our solution if the number of
rules, the number of subsystems or the number of variables in the context increased. Also,
the proposed implementation can be simpli�ed and improved to avoid recalculations or to
choose other methods, more e�cient.

In spite of this, all the questions we wanted to answer at the beginning of the internship
have found their own answer. Our system, publicly available on GitHub, is running and has
demonstrated its results in an e�cient manner.

94

6.3. Future Works

6.3 Future Works

Here are presented ways of enhancements. We had those ideas during the internship, but
they were unrealistic to implement according to the time we had.

6.3.1 Maintenance on the �y

One of the goals of a modular system is to make maintenance easier. One interesting
future work could focus on changes in sub-modules done on the �y. Indeed, what would
be the impact of a modular system if one of its subsystems is in maintenance or change of
behavior. How to avoid side e�ects and what exactly are the e�ects that this could produce.
By extension, how to integrate a new sub-module into an executing system.

These questions are interesting due to the nature of a modular system whose purpose
is to breaking up the complexity of the system and make it easier to maintain and more
scalable.

6.3.2 Automatically learn the rules

Another interesting area of research is how to build the knowledge base. In fact, during
this work we added manually the rules that seemed to us relevant. However, systems of
this kind already exist and it may be interesting to learn from previous experiences using
for example machine learning. Thus, the system could, on one hand, increase its knowledge
base with rules that humans were not aware of, and on the other hand, it would make our
system more self-adaptive by allowing it to learn from its own experiences. Thus, to react
better to new situations. This improvement could completely remove the human from the
process, and making the system completely autonomic.

6.3.3 Reverse the order of execution (from the highest priority to the
smallest)

A bias of this work was the fact that each submodule can rewrite on the changes made by
the previous ones, which gives it a higher priority. A possible future work would be to think
the other way around, namely that the highest priority submodule is executed �rst. Then
the following modules adapt according to the results of the previous ones in order to respect
what they asked, while applying the changes of the current subsystem.

6.3.4 Merge rather than synchronize

We choose to synchronize the subsystems. In other words, we had to give a priority to
the subsystems and execute the whole system according to those priorities. However, an
interesting future work would be to no longer use priority but to try to merge the results
obtained by the subsystems, thanks to arti�cial intelligence techniques for example. In this
way, we could try to �nd a way to react to a con�ict only a human could have solved, but
totally automated.

6.3.5 Concerns with same priority

All along this thesis, we assumed that each concern has di�erent priorities. In the real
world, several subsystems can have the same priority. In this case, we must think of �nding
a way to merge and resolve con�icts. We could also improve the rules notations to specify
which subsystems have the same priority. A simple solution to this problem would be to
say that the execution order of subsystems does not matter, and that if such a case arises

95

6. Conclusion and Future Works

we can choose any order of execution. However, this solution is not good because it is not
deterministic: it could give di�erent results with the same input data.

6.3.6 Improve the way to �nd a good situation

As you have seen, to �nd a situation that suits a given context, we generate the possible
solutions and test if they are compatibles with the rules. Work could be done on how
to determine this situation. Indeed, instead of starting from a set of situations, we could
deduce a situation directly from the rules. Or, we could also simplify the rules thanks to
simplifying patterns. For example, we intuitively know that if we have the rule ∗, A, ∗, B, ∗
and the rule ∗, B, ∗, C, ∗, it could be reduce by the rule ∗, A, ∗, B, ∗, C, ∗ that has the same
meaning, but reduces the number of rules to check when we have a situation.

96

Bibliography

[1] Ansible. How ansible works | ansible.com. https://www.ansible.com/overview/
how-ansible-works. (Accessed on 04/22/2018).

[2] Arcaini, P., Riccobene, E., and Scandurra, P. Modeling and analyzing mape-k
feedback loops for self-adaptation. In Proceedings of the 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (Piscataway, NJ,
USA, 2015), SEAMS '15, IEEE Press, pp. 13�23.

[3] Baldwin, C. Y., and Clark, K. B. Design Rules, Vol. 1: The Power of Modularity,
vol. 1. The MIT Press, March 2000.

[4] Barbosa, D. M. J., Cretin, J., Foster, N., Greenberg, M., and Pierce,

B. C. Matching lenses: alignment and view update. University of Pennsylvania, École
Polytechnique, 2010.

[5] Barna, C., Ghanbari, H., Litoiu, M., and Shtern, M. Hogna: A platform for
self-adaptive applications in cloud environments. In Proceedings of the 10th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems
(Piscataway, NJ, USA, 2015), SEAMS '15, IEEE Press, pp. 83�87.

[6] Boehm, B. Improving and balancing software qualities. In Proceedings of the 38th
International Conference on Software Engineering Companion (New York, NY, USA,
2016), ICSE '16, ACM, pp. 890�891.

[7] Chandrasekaran, B. Generic tasks in knowledge-based reasoning: High-level build-
ing blocks for expert system design.

[8] Cicchetti, A., Di Ruscio, D., Eramo, R., and Pierantonio, A. Jtl: A bidi-
rectional and change propagating transformation language. In Software Language En-
gineering (2011), B. Malloy, S. Staab, and M. van den Brand, Eds., Springer Berlin
Heidelberg, pp. 183�202.

[9] Clocksin, W. F., and Mellish, C. S. Programming in Prolog, Fifth Edition.
Springer, 2012.

[10] Czarnecki, K., Foster, J. N., Hu, Z., Lämmel, R., Schürr, A., and Ter-

williger, J. F. Bidirectional transformations: A cross-discipline perspective. In
Theory and Practice of Model Transformations (Berlin, Heidelberg, 2009), R. F. Paige,
Ed., Springer Berlin Heidelberg, pp. 260�283.

[11] de Lemos, R., Giese, H., Muller, H. A., and Shaw, M. Software engineering for
self-adaptive systems: A second research roadmap.

[12] Englebert, V. Software architectures engineering : Technologies and methods. Aca-
demic lesson, University of Namur, Namur, Belgium, 2016.

97

https://www.ansible.com/overview/how-ansible-works
https://www.ansible.com/overview/how-ansible-works

Bibliography

[13] Filman, R., Elrad, T., Clarke, S., Aksit, M., and Unknown, U. Aspect-
Oriented Software Development. Addison Wesley, 2004.

[14] Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., and Goedicke,

M. Viewpoints: A framework for integrating multiple perspectives in system develop-
ment. International Journal of Software Engineering and Knowledge Engineering.

[15] Fischer, S., Hu, Z., and Pacheco, H. The essence of bidirectional programming.

[16] Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., and Schmitt,

A. Combinators for bidirectional tree transformations: a linguistic approach to the
view-update problem. ACM Transactions on Programming Languages and Systems 29,
3 (2007), 17.

[17] Fradet, P., Le Métayer, D., and Périn, M. Consistency checking for multi-
ple view software architectures. In Proceedings of the 7th European Software Engi-
neering Conference Held Jointly with the 7th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (London, UK, UK, 1999), ESEC/FSE-7,
Springer-Verlag, pp. 410�428.

[18] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P.

Rainbow: Architecture-based self adaptation with reusable infrastructure.

[19] Gat, E. Arti�cial intelligence and mobile robots. MIT Press, Cambridge, MA, USA,
1998, ch. Three-layer Architectures, pp. 195�210.

[20] Hidaka, S., Hu, Z., Inaba, K., Kato, H., and Nakano, K. Groundtram: An
integrated framework for developing well-behaved bidirectional model transformations.
In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (Washington, DC, USA, 2011), ASE '11, IEEE Computer Society,
pp. 480�483.

[21] Hu, Z., and Ko, H.-S. Principles and Practice of Bidirectional Programming in
BiGUL. Springer International Publishing, Cham, 2018, pp. 100�150.

[22] Huebscher, M. C., and McCann, J. A. A survey of autonomic computing �
degrees, models, and applications. ACM Comput. Surv. 40, 3 (Aug. 2008), 7:1�7:28.

[23] Iglesia, D. G. D. L., and Weyns, D. Mape-k formal templates to rigorously design
behaviors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 10, 3 (Sept.
2015), 15:1�15:31.

[24] Ko, H.-S., Zan, T., and Hu, Z. Bigul: A formally veri�ed core language for putback-
based bidirectional programming. In Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation (New York, NY, USA, 2016), PEPM
'16, ACM, pp. 61�72.

[25] Kramer, J., and Magee, J. Self-managed systems: An architectural challenge. In
2007 Future of Software Engineering (Washington, DC, USA, 2007), FOSE '07, IEEE
Computer Society, pp. 259�268.

[26] Kurtev, I. State of the art of qvt: A model transformation language standard. In
Applications of Graph Transformations with Industrial Relevance (Berlin, Heidelberg,
2008), A. Schürr, M. Nagl, and A. Zündorf, Eds., Springer Berlin Heidelberg, pp. 377�
393.

98

Bibliography

[27] Lopes, C. V., and Bajracharya, S. K. An analysis of modularity in aspect oriented
design. In Proceedings of the 4th International Conference on Aspect-oriented Software
Development (New York, NY, USA, 2005), AOSD '05, ACM, pp. 15�26.

[28] Mazaneka, S., and Hanus, M. Constructing a bidirectional transformation between
bpmn and BPEL with a functional logic programming language.

[29] Montrieux, L., Yu, Y., Wermelinger, M., and Hu, Z. Modular hierarchical
self-adaptation using bidirectional transformation. Unpublished, 2016.

[30] Sowa, J. F. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole, 2000.

[31] Stevens, P. Bidirectional model transformations in qvt: semantic issues and open
questions. Software & Systems Modeling 9, 1 (Dec 2008), 7.

[32] Sullivan, K. J., Griswold, W. G., Cai, Y., and Hallen, B. The structure and
value of modularity in software design. In Proceedings of the 8th European Software En-
gineering Conference Held Jointly with 9th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (New York, NY, USA, 2001), ESEC/FSE-9,
ACM, pp. 99�108.

[33] Suwa, M., Scott, A. C., and Shortliffe, E. H. An Approach to Verifying Com-
pleteness and Consistency in a Rule-Based Expert System, vol. 3. AI Magazine, Stan-
ford, California, 1982.

[34] Vanhoof, W. Functional and logical programming. Academic lesson, University of
Namur, Namur, Belgium, 2014.

[35] Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer,

C., Wuttke, J., Andersson, J., Giese, H., and Goschka, K. M. On patterns
for decentralized control in self-adaptive systems.

[36] William D., HurleyKyle D., H. Collaborative model for software systems with
synchronization submodel with merge feature, automatic con�ict resolution and isola-
tion of potential changes for reuse, 01 2004.

[37] Yan, S. Review of dynamic fuzzy logic and its applications by fanzhang. SIGACT
News 42, 4 (Dec. 2011), 48�49.

[38] Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Kato, H., and Montrieux, L. Maintaining
invariant traceability through bidirectional transformations. In Proceedings of the 34th
International Conference on Software Engineering (Piscataway, NJ, USA, 2012), ICSE
'12, IEEE Press, pp. 540�550.

[39] Zhu, Z., Ko, H.-S., Martins, P. M. R., Saraiva, J. A., and Hu, Z. Biyacc: Roll
your parser and re�ective printer into one. CEUR-Ws, Ed., 4th International Workshop
on Bidirectional Transformations co-located with Software Technologies: Applications
and Foundations, pp. 43�50.

99

Appendices

101

Appendix A

Example of Ansible �le

1 - name: Main task
2 gather_facts: False
3 hosts: localhost
4 # Variables of the ansible file that can be used later in the file
5 vars:
6 keypair: Quentin
7 image: ami-1955cc7f
8 region: ap-northeast-1
9 aws_access_key: AKIAJ5VAHO5CNO77AABA

10 aws_secret_key: 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
11 aws_load_balancer: BiGUL-CloudBx
12 aws_tags : {"BiGUL":"CloudBx"}
13 # Tasks that ansible will permform
14 tasks:
15 # Task to update the web security group
16 - name: Security group
17 ec2_group:
18 name: web-securitygroup
19 description: web-securitygroup
20 tags: {{aws_tags}}
21 aws_access_key: "{{aws_access_key}}"
22 aws_secret_key: "{{aws_secret_key}}"
23 region: "{{region}}"
24 # Inbound rules (allow port 22 and 80 for webworkers)
25 rules:
26 - proto: TCP
27 from_port: 22
28 to_port: 22
29 cidr_ip: 0.0.0.0/0
30 - proto: TCP
31 from_port: 80
32 to_port: 80
33 cidr_ip: 0.0.0.0/0
34 # Outbound rules (allow port 22 for webworkers)
35 rules_egress:
36 - proto: TCP
37 from_port: 22
38 to_port: 22
39 cidr_ip: 0.0.0.0/0
40 - proto: -1
41 cidr_ip: 0.0.0.0/0
42 # Task to update the database security group
43 - name: Security group
44 ec2_group:
45 name: database-securitygroup
46 description: database-securitygroup
47 tags: {{aws_tags}}
48 aws_access_key: "{{aws_access_key}}"
49 aws_secret_key: "{{aws_secret_key}}"
50 region: "{{region}}"
51 # Inbound rules (allow port 22 and 3306 for databases)
52 rules:
53 - proto: TCP
54 from_port: 22
55 to_port: 22

103

A. Example of Ansible file

56 cidr_ip: 0.0.0.0/0
57 - proto: TCP
58 from_port: 3306
59 to_port: 3306
60 cidr_ip: 0.0.0.0/0
61 # Outbound rules (allow port 22 for databases)
62 rules_egress:
63 - proto: TCP
64 from_port: 22
65 to_port: 22
66 cidr_ip: 0.0.0.0/0
67 - proto: -1
68 cidr_ip: 0.0.0.0/0
69 # Task to stop instances
70 - name: stop instances
71 ec2:
72 aws_access_key: "{{aws_access_key}}"
73 aws_secret_key: "{{aws_secret_key}}"
74 region: "{{region}}"
75 instance_ids: [i-041c273779852aff6,i-05b13366fb09a86d3,i-0db0dbe01fce299ff]
76 state: stopped
77 wait: yes
78 monitoring: yes

104

Appendix B

Experiment 2

105

criterion performance measurements

overview
want to understand this report?

Monitor/Parsing rules

OLS regression 304 μs
R² goodness-of-fit 1.000
Mean execution time 296 μs
Standard deviation 4.75 μs

Outlying measurements have slight (8.1%) effect on estimated standard deviation.

get/cost

0 10 20 30 40 50 60 70 80

Monitor/Parsing rules

get/cost

get/auto-scaling

get/redundancy

get/firewall

Synchronizer/Determine order Safety

Synchronizer/Determine order Last

Synchronizer/Order Safety

Synchronizer/Order Last

Analysis and Planning http/All (determine order, ordering and analysis & plan)

Analysis and Planning http/Cost

Analysis and Planning http/Firewall

Analysis and Planning http/Redundancy

Analysis and Planning http/AutoScaling

Analysis and Planning local/All (determine order, ordering and analysis & plan)

Analysis and Planning local/Cost

Analysis and Planning local/Firewall

Analysis and Planning local/Redundancy

Analysis and Planning local/AutoScaling

put/cost

put/auto-scaling

put/redundancy

put/firewall

Monitor
get
Synchronizer
Analysis and Planning http
Analysis and Planning local
put

275 280 285 290 295 300 305

Monitor/Parsing rules time densities

mean

200 300 400 500 600 700100 iters

100

150

200

250

0 s

50 ms

regression
Monitor/Parsing rules times

lower bound estimate upper bound
302 μs 306 μs
1.000 1.000
295 μs 297 μs
3.33 μs 8.17 μs

250

OLS regression 1.11 ms
R² goodness-of-fit 1.000
Mean execution time 1.08 ms
Standard deviation 19.1 μs

Outlying measurements have slight (8.3%) effect on estimated standard deviation.

get/auto-scaling

OLS regression 449 μs
R² goodness-of-fit 1.000
Mean execution time 431 μs
Standard deviation 11.9 μs

Outlying measurements have moderate (19.9%) effect on estimated standard deviation.

get/redundancy

OLS regression 431 μs
R² goodness-of-fit 1.000
Mean execution time 420 μs
Standard deviation 6.01 μs

Outlying measurements have slight (6.5%) effect on estimated standard deviation.

1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11

get/cost time densities

mean

100 150 20050 iters

100

150

200

0 s

50 ms

regression
get/cost times

lower bound estimate upper bound
1.11 ms 1.12 ms
1.000 1.000
1.07 ms 1.08 ms
16.4 μs 22.8 μs

410 415 420 425 430 435 440 445 450

get/auto-scaling time densities

mean

200 300 400 500100 iters

100

150

200

250

0 s

50 ms

regression
get/auto-scaling times

lower bound estimate upper bound
446 μs 450 μs
1.000 1.000
427 μs 434 μs
10.8 μs 13.6 μs

410 415 420 425 430

get/redundancy time densities

mean

200 300 400 500100 iters

100

150

200

250

0 s

50 ms

regression
get/redundancy times

lower bound estimate upper bound
428 μs 433 μs
1.000 1.000
418 μs 422 μs
4.93 μs 7.14 μs

get/firewall

OLS regression 30.0 μs
R² goodness-of-fit 1.000
Mean execution time 29.3 μs
Standard deviation 351 ns

Outlying measurements have slight (6.8%) effect on estimated standard deviation.

Synchronizer/Determine order Safety

OLS regression 40.8 μs
R² goodness-of-fit 1.000
Mean execution time 39.7 μs
Standard deviation 582 ns

Outlying measurements have slight (9.3%) effect on estimated standard deviation.

Synchronizer/Determine order Last

OLS regression 41.0 μs
R² goodness-of-fit 1.000
Mean execution time 40.0 μs
Standard deviation 574 ns

29 3028.5 28.8 29.3 29.5 29.8

get/firewall time densities

mean

2 3 4 5 61×10³ iters

100

150

200

250

0 s

50 ms

regression
get/firewall times

lower bound estimate upper bound
29.9 μs 30.0 μs
1.000 1.000
29.2 μs 29.4 μs
295 ns 431 ns

39 4038.5 39.5 40.5

Synchronizer/Determine order Safety time densities

mean

2 3 4 51×10³ iters

100

150

200

250

0 s

50 ms

regression
Synchronizer/Determine order Safety times

lower bound estimate upper bound
40.7 μs 40.8 μs
1.000 1.000
39.5 μs 39.9 μs
488 ns 718 ns

39 40 4139.5 40.5

Synchronizer/Determine order Last time densities

mean

2 3 4 51×10³ iters

100

150

200

250

0 s

50 ms

regression
Synchronizer/Determine order Last times

lower bound estimate upper bound
40.9 μs 41.1 μs
1.000 1.000
39.8 μs 40.2 μs
480 ns 690 ns

Outlying measurements have slight (9.2%) effect on estimated standard deviation.

Synchronizer/Order Safety

OLS regression 348 ns
R² goodness-of-fit 1.000
Mean execution time 340 ns
Standard deviation 4.54 ns

Outlying measurements have moderate (12.8%) effect on estimated standard deviation.

Synchronizer/Order Last

OLS regression 349 ns
R² goodness-of-fit 1.000
Mean execution time 340 ns
Standard deviation 5.15 ns

Outlying measurements have moderate (16.2%) effect on estimated standard deviation.

Analysis and Planning http/All (determine order, ordering and analysis & plan)

OLS regression 81.7 ms
R² goodness-of-fit 0.998

330 335 340 345

Synchronizer/Order Safety time densities

mean

200 300 400 500100×10³ iters

100

150

200

0 s

50 ms

regression
Synchronizer/Order Safety times

lower bound estimate upper bound
348 ns 349 ns
1.000 1.000
338 ns 341 ns
3.76 ns 5.43 ns

330 335 340 345

Synchronizer/Order Last time densities

mean

200 300 400 500100×10³ iters

100

150

200

0 s

50 ms

regression
Synchronizer/Order Last times

lower bound estimate upper bound
348 ns 350 ns
1.000 1.000
338 ns 342 ns
4.28 ns 6.35 ns

81 82 83 84 85 86 87

Analysis and Planning http/All (determine order, ordering and analysis & plan) time
densities

mean

4 6 8 102 iters

400

600

800

0 s

200 ms

1 s
regression
Analysis and Planning http/All (determine order, ordering and analysis & plan) times

lower bound estimate upper bound
79.4 ms 85.4 ms
0.995 1.000

Mean execution time 83.3 ms
Standard deviation 1.83 ms

Outlying measurements have slight (9.0%) effect on estimated standard deviation.

Analysis and Planning http/Cost

OLS regression 16.8 ms
R² goodness-of-fit 0.998
Mean execution time 16.5 ms
Standard deviation 462 μs

Outlying measurements have slight (8.0%) effect on estimated standard deviation.

Analysis and Planning http/Firewall

OLS regression 13.4 ms
R² goodness-of-fit 0.996
Mean execution time 13.3 ms
Standard deviation 623 μs

Outlying measurements have moderate (18.2%) effect on estimated standard deviation.

Analysis and Planning http/Redundancy

82.4 ms 84.7 ms
1.31 ms 2.58 ms

15 16 1715.5 16.5 17.5

Analysis and Planning http/Cost time densities

mean

10 15 205 iters

200

300

400

0 s

100 ms

regression
Analysis and Planning http/Cost times

lower bound estimate upper bound
16.5 ms 17.2 ms
0.997 1.000
16.2 ms 16.6 ms
300 μs 757 μs

13 14 15 1612.5 13.5 14.5 15.5

Analysis and Planning http/Firewall time densities

mean

10 15 20 255 iters

100

150

200

250

300

350

400

0 s

50 ms

regression
Analysis and Planning http/Firewall times

lower bound estimate upper bound
13.2 ms 13.6 ms
0.986 1.000
13.2 ms 13.8 ms
273 μs 1.18 ms

Analysis and Planning http/Redundancy time densities

mean

200

300

400

500

0 s

100 ms

regression
Analysis and Planning http/Redundancy times

OLS regression 23.2 ms
R² goodness-of-fit 1.000
Mean execution time 23.2 ms
Standard deviation 286 μs

Outlying measurements have slight (4.8%) effect on estimated standard deviation.

Analysis and Planning http/AutoScaling

OLS regression 33.2 ms
R² goodness-of-fit 0.998
Mean execution time 32.5 ms
Standard deviation 776 μs

Outlying measurements have slight (5.9%) effect on estimated standard deviation.

Analysis and Planning local/All (determine order, ordering and analysis &
plan)

OLS regression 14.7 ms
R² goodness-of-fit 1.000
Mean execution time 14.3 ms
Standard deviation 288 μs

Outlying measurements have slight (3.8%) effect on estimated standard deviation.

Analysis and Planning local/Cost

2322.8 23.2 23.4 23.6 23.8 10 15 205 iters
lower bound estimate upper bound
23.0 ms 23.4 ms
0.999 1.000
23.1 ms 23.3 ms
220 μs 371 μs

32 33 3431.5 32.5 33.5 34.5

Analysis and Planning http/AutoScaling time densities

mean

5 8 10 13 152.5 iters

200

300

400

500

600

0 s

100 ms

regression
Analysis and Planning http/AutoScaling times

lower bound estimate upper bound
32.6 ms 33.7 ms
0.995 1.000
32.1 ms 32.9 ms
569 μs 1.15 ms

1413.6 13.8 14.2 14.4 14.6

Analysis and Planning local/All (determine order, ordering and analysis & plan) time
densities

mean

10 15 20 255 iters

200

300

400

0 s

100 ms

regression
Analysis and Planning local/All (determine order, ordering and analysis & plan) times

lower bound estimate upper bound
14.6 ms 14.7 ms
1.000 1.000
14.2 ms 14.4 ms
184 μs 403 μs

Analysis and Planning local/Cost time densities

mean

100

150

200

250

300
regression
Analysis and Planning local/Cost times

OLS regression 3.47 ms
R² goodness-of-fit 1.000
Mean execution time 3.39 ms
Standard deviation 74.0 μs

Outlying measurements have slight (8.0%) effect on estimated standard deviation.

Analysis and Planning local/Firewall

OLS regression 162 μs
R² goodness-of-fit 1.000
Mean execution time 159 μs
Standard deviation 2.36 μs

Outlying measurements have slight (8.1%) effect on estimated standard deviation.

Analysis and Planning local/Redundancy

OLS regression 3.01 ms
R² goodness-of-fit 1.000
Mean execution time 2.92 ms
Standard deviation 58.5 μs

Outlying measurements have slight (7.6%) effect on estimated standard deviation.

Analysis and Planning local/AutoScaling

3.15 3.2 3.25 3.30 3.35 3.40 3.45 20 30 40 50 60 7010 iters
0 s

50 ms

lower bound estimate upper bound
3.46 ms 3.49 ms
1.000 1.000
3.36 ms 3.40 ms
51.7 μs 101 μs

154 156 158 160 162 164

Analysis and Planning local/Firewall time densities

mean

400 600 800 1000 1200200 iters

100

150

200

250

0 s

50 ms

regression
Analysis and Planning local/Firewall times

lower bound estimate upper bound
161 μs 163 μs
1.000 1.000
158 μs 159 μs
1.98 μs 2.82 μs

32.8 2.85 2.9 2.95

Analysis and Planning local/Redundancy time densities

mean

20 30 40 50 60 70 8010 iters

100

150

200

250

300

0 s

50 ms

regression
Analysis and Planning local/Redundancy times

lower bound estimate upper bound
3.00 ms 3.02 ms
1.000 1.000
2.90 ms 2.94 ms
48.1 μs 73.5 μs

Analysis and Planning local/AutoScaling time densities

mean

250

300

350

400
regression
Analysis and Planning local/AutoScaling times

OLS regression 13.5 ms
R² goodness-of-fit 1.000
Mean execution time 13.5 ms
Standard deviation 163 μs

Outlying measurements have slight (3.7%) effect on estimated standard deviation.

put/cost

OLS regression 1.69 ms
R² goodness-of-fit 1.000
Mean execution time 1.64 ms
Standard deviation 35.3 μs

Outlying measurements have slight (9.4%) effect on estimated standard deviation.

put/auto-scaling

OLS regression 474 μs
R² goodness-of-fit 1.000
Mean execution time 459 μs
Standard deviation 8.93 μs

Outlying measurements have moderate (11.1%) effect on estimated standard deviation.

put/redundancy

1312.9 13.1 13.2 13.3 13.4 13.5 13.6 13.7

mean

10 15 20 255 iters

100

150

200

0 s

50 ms

lower bound estimate upper bound
13.4 ms 13.6 ms
1.000 1.000
13.4 ms 13.5 ms
106 μs 243 μs

1.58 1.6 1.62 1.64 1.66 1.68 1.70

put/cost time densities

mean

50 75 100 12525 iters

100

150

200

250

0 s

50 ms

regression
put/cost times

lower bound estimate upper bound
1.69 ms 1.70 ms
1.000 1.000
1.63 ms 1.66 ms
30.7 μs 40.9 μs

440 445 450 455 460 465 470 475

put/auto-scaling time densities

mean

200 300 400100 iters

100

150

200

250

0 s

50 ms

regression
put/auto-scaling times

lower bound estimate upper bound
472 μs 476 μs
1.000 1.000
456 μs 461 μs
7.37 μs 10.8 μs

put/redundancy time densities

200

250
regression
put/redundancy times

OLS regression 375 μs
R² goodness-of-fit 1.000
Mean execution time 363 μs
Standard deviation 8.05 μs

Outlying measurements have moderate (13.7%) effect on estimated standard deviation.

put/firewall

OLS regression 162 μs
R² goodness-of-fit 1.000
Mean execution time 158 μs
Standard deviation 2.66 μs

Outlying measurements have moderate (10.6%) effect on estimated standard deviation.

understanding this report
In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and
annotations, you will see more details.

The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement
occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows
measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number
of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the
mean estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie
between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see
how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary
effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

345 350 355 360 365 370 375

mean

200 300 400 500 600100 iters

100

150

0 s

50 ms

lower bound estimate upper bound
373 μs 376 μs
1.000 1.000
360 μs 365 μs
6.85 μs 9.70 μs

154 156 158 160 162

put/firewall time densities

mean

500 750 1000 1250250 iters

100

150

200

250

0 s

50 ms

regression
put/firewall times

lower bound estimate upper bound
161 μs 162 μs
1.000 1.000
157 μs 158 μs
2.29 μs 3.10 μs

colophon
This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.

Appendix C

Experiment 3

117

criterion performance measurements

overview
want to understand this report?

Monitor/Parsing rules

OLS regression 305 μs
R² goodness-of-fit 1.000
Mean execution time 298 μs
Standard deviation 5.62 μs

Outlying measurements have moderate (11.2%) effect on estimated standard deviation.

get/cost

0 10 20 30 40 50 60 70

Monitor/Parsing rules

get/cost

get/auto-scaling

get/redundancy

get/firewall

Synchronizer/Determine order Safety

Synchronizer/Determine order Last

Synchronizer/Order Safety

Synchronizer/Order Last

Analysis and Planning http/All (determine order, ordering and analysis & plan)

Analysis and Planning http/Cost

Analysis and Planning http/Firewall

Analysis and Planning http/Redundancy

Analysis and Planning http/AutoScaling

Analysis and Planning local/All (determine order, ordering and analysis & plan)

Analysis and Planning local/Cost

Analysis and Planning local/Firewall

Analysis and Planning local/Redundancy

Analysis and Planning local/AutoScaling

put/cost

put/auto-scaling

put/redundancy

put/firewall

Monitor
get
Synchronizer
Analysis and Planning http
Analysis and Planning local
put

285 290 295 300 305

Monitor/Parsing rules time densities

mean

200 300 400 500 600 700100 iters

100

150

200

250

0 s

50 ms

regression
Monitor/Parsing rules times

lower bound estimate upper bound
304 μs 306 μs
1.000 1.000
296 μs 299 μs
4.77 μs 6.64 μs

250

OLS regression 1.14 ms
R² goodness-of-fit 1.000
Mean execution time 1.11 ms
Standard deviation 21.3 μs

Outlying measurements have slight (8.4%) effect on estimated standard deviation.

get/auto-scaling

OLS regression 440 μs
R² goodness-of-fit 1.000
Mean execution time 428 μs
Standard deviation 8.63 μs

Outlying measurements have moderate (12.1%) effect on estimated standard deviation.

get/redundancy

OLS regression 255 μs
R² goodness-of-fit 1.000
Mean execution time 250 μs
Standard deviation 4.14 μs

Outlying measurements have slight (8.8%) effect on estimated standard deviation.

1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14

get/cost time densities

mean

100 150 20050 iters

100

150

200

0 s

50 ms

regression
get/cost times

lower bound estimate upper bound
1.13 ms 1.14 ms
1.000 1.000
1.10 ms 1.11 ms
18.7 μs 24.6 μs

410 415 420 425 430 435 440 445

get/auto-scaling time densities

mean

200 300 400 500100 iters

100

150

200

250

0 s

50 ms

regression
get/auto-scaling times

lower bound estimate upper bound
438 μs 441 μs
1.000 1.000
425 μs 431 μs
7.58 μs 10.1 μs

245 250 255

get/redundancy time densities

mean

200 300 400 500 600 700 800100 iters

100

150

200

250

0 s

50 ms

regression
get/redundancy times

lower bound estimate upper bound
254 μs 257 μs
1.000 1.000
249 μs 251 μs
3.45 μs 4.88 μs

get/firewall

OLS regression 30.1 μs
R² goodness-of-fit 1.000
Mean execution time 29.5 μs
Standard deviation 377 ns

Outlying measurements have slight (7.5%) effect on estimated standard deviation.

Synchronizer/Determine order Safety

OLS regression 40.7 μs
R² goodness-of-fit 1.000
Mean execution time 40.0 μs
Standard deviation 497 ns

Outlying measurements have slight (7.1%) effect on estimated standard deviation.

Synchronizer/Determine order Last

OLS regression 41.1 μs
R² goodness-of-fit 1.000
Mean execution time 40.2 μs
Standard deviation 580 ns

29 3028.8 29.3 29.5 29.8

get/firewall time densities

mean

2 3 4 5 61×10³ iters

100

150

200

250

0 s

50 ms

regression
get/firewall times

lower bound estimate upper bound
30.1 μs 30.2 μs
1.000 1.000
29.4 μs 29.6 μs
314 ns 458 ns

39 40 4139.5 40.5

Synchronizer/Determine order Safety time densities

mean

2 3 4 51×10³ iters

100

150

200

250

0 s

50 ms

regression
Synchronizer/Determine order Safety times

lower bound estimate upper bound
40.6 μs 40.9 μs
1.000 1.000
39.8 μs 40.1 μs
389 ns 604 ns

39 40 4138.5 39.5 40.5

Synchronizer/Determine order Last time densities

mean

2 3 4 51×10³ iters

100

150

200

250

0 s

50 ms

regression
Synchronizer/Determine order Last times

lower bound estimate upper bound
41.0 μs 41.1 μs
1.000 1.000
40.0 μs 40.4 μs
478 ns 753 ns

Outlying measurements have slight (9.2%) effect on estimated standard deviation.

Synchronizer/Order Safety

OLS regression 348 ns
R² goodness-of-fit 1.000
Mean execution time 340 ns
Standard deviation 4.06 ns

Outlying measurements have moderate (10.7%) effect on estimated standard deviation.

Synchronizer/Order Last

OLS regression 347 ns
R² goodness-of-fit 1.000
Mean execution time 339 ns
Standard deviation 3.67 ns

Outlying measurements have slight (9.1%) effect on estimated standard deviation.

Analysis and Planning http/All (determine order, ordering and analysis & plan)

OLS regression 74.7 ms
R² goodness-of-fit 0.999

330 335 340 345

Synchronizer/Order Safety time densities

mean

200 300 400 500100×10³ iters

100

150

200

0 s

50 ms

regression
Synchronizer/Order Safety times

lower bound estimate upper bound
347 ns 348 ns
1.000 1.000
339 ns 341 ns
3.39 ns 5.04 ns

330 333 335 338 340 343 345

Synchronizer/Order Last time densities

mean

200 300 400 500100×10³ iters

100

150

200

0 s

50 ms

regression
Synchronizer/Order Last times

lower bound estimate upper bound
346 ns 347 ns
1.000 1.000
338 ns 341 ns
3.02 ns 4.61 ns

75 76 77 78 79

Analysis and Planning http/All (determine order, ordering and analysis & plan) time
densities

mean

4 6 8 102 iters

400

600

800

0 s

200 ms

regression
Analysis and Planning http/All (determine order, ordering and analysis & plan) times

lower bound estimate upper bound
72.8 ms 77.4 ms
0.998 1.000

Mean execution time 76.6 ms
Standard deviation 1.44 ms

Outlying measurements have slight (9.0%) effect on estimated standard deviation.

Analysis and Planning http/Cost

OLS regression 15.2 ms
R² goodness-of-fit 0.998
Mean execution time 14.9 ms
Standard deviation 381 μs

Outlying measurements have slight (4.8%) effect on estimated standard deviation.

Analysis and Planning http/Firewall

OLS regression 12.9 ms
R² goodness-of-fit 0.994
Mean execution time 12.8 ms
Standard deviation 551 μs

Outlying measurements have moderate (18.0%) effect on estimated standard deviation.

Analysis and Planning http/Redundancy

75.8 ms 77.6 ms
1.08 ms 2.04 ms

1514.3 14.5 14.8 15.3 15.5

Analysis and Planning http/Cost time densities

mean

10 15 20 255 iters

200

300

400

0 s

100 ms

regression
Analysis and Planning http/Cost times

lower bound estimate upper bound
14.9 ms 15.6 ms
0.997 0.999
14.7 ms 15.0 ms
331 μs 462 μs

12 13 14 1512.5 13.5 14.5

Analysis and Planning http/Firewall time densities

mean

10 15 20 255 iters

100

150

200

250

300

350

400

0 s

50 ms

regression
Analysis and Planning http/Firewall times

lower bound estimate upper bound
12.7 ms 13.3 ms
0.982 0.999
12.6 ms 13.1 ms
288 μs 991 μs

Analysis and Planning http/Redundancy time densities

mean

200

300

400

500

0 s

100 ms

regression
Analysis and Planning http/Redundancy times

OLS regression 18.8 ms
R² goodness-of-fit 1.000
Mean execution time 19.0 ms
Standard deviation 305 μs

Outlying measurements have slight (4.3%) effect on estimated standard deviation.

Analysis and Planning http/AutoScaling

OLS regression 25.2 ms
R² goodness-of-fit 0.997
Mean execution time 25.2 ms
Standard deviation 578 μs

Outlying measurements have slight (5.0%) effect on estimated standard deviation.

Analysis and Planning local/All (determine order, ordering and analysis &
plan)

OLS regression 10.8 ms
R² goodness-of-fit 1.000
Mean execution time 10.6 ms
Standard deviation 201 μs

Outlying measurements have slight (3.3%) effect on estimated standard deviation.

Analysis and Planning local/Cost

1918.5 18.8 19.3 19.5 19.8 10 15 205 iters
lower bound estimate upper bound
18.6 ms 19.0 ms
0.999 1.000
18.9 ms 19.2 ms
219 μs 471 μs

25 26 2724.5 25.5 26.5

Analysis and Planning http/AutoScaling time densities

mean

5 8 10 13 15 182.5 iters

200

300

400

500

0 s

100 ms

regression
Analysis and Planning http/AutoScaling times

lower bound estimate upper bound
24.7 ms 25.9 ms
0.993 1.000
25.0 ms 25.6 ms
348 μs 1.02 ms

10 10.2 10.4 10.6 10.8

Analysis and Planning local/All (determine order, ordering and analysis & plan) time
densities

mean

10 15 20 25 305 iters

100

150

200

250

300

350

0 s

50 ms

regression
Analysis and Planning local/All (determine order, ordering and analysis & plan) times

lower bound estimate upper bound
10.8 ms 10.9 ms
1.000 1.000
10.5 ms 10.6 ms
134 μs 316 μs

Analysis and Planning local/Cost time densities

mean

100

150

200

250
regression
Analysis and Planning local/Cost times

OLS regression 1.31 ms
R² goodness-of-fit 1.000
Mean execution time 1.27 ms
Standard deviation 28.3 μs

Outlying measurements have moderate (11.6%) effect on estimated standard deviation.

Analysis and Planning local/Firewall

OLS regression 149 μs
R² goodness-of-fit 1.000
Mean execution time 146 μs
Standard deviation 2.04 μs

Outlying measurements have slight (7.1%) effect on estimated standard deviation.

Analysis and Planning local/Redundancy

OLS regression 3.16 ms
R² goodness-of-fit 1.000
Mean execution time 3.04 ms
Standard deviation 77.0 μs

Outlying measurements have moderate (11.5%) effect on estimated standard deviation.

Analysis and Planning local/AutoScaling

1.2 1.22 1.24 1.26 1.28 1.30 1.32 50 75 100 125 150 17525 iters
0 s

50 ms

lower bound estimate upper bound
1.31 ms 1.32 ms
1.000 1.000
1.26 ms 1.28 ms
23.6 μs 33.8 μs

140 142 144 146 148 150

Analysis and Planning local/Firewall time densities

mean

500 750 1000 1250250 iters

100

150

200

250

0 s

50 ms

regression
Analysis and Planning local/Firewall times

lower bound estimate upper bound
148 μs 150 μs
1.000 1.000
145 μs 146 μs
1.66 μs 2.63 μs

2.85 2.90 2.95 3.00 3.05 3.10 3.15

Analysis and Planning local/Redundancy time densities

mean

20 30 40 50 60 70 8010 iters

100

150

200

250

300

0 s

50 ms

regression
Analysis and Planning local/Redundancy times

lower bound estimate upper bound
3.14 ms 3.17 ms
1.000 1.000
3.01 ms 3.06 ms
66.4 μs 94.7 μs

Analysis and Planning local/AutoScaling time densities

mean
200

250

300

350
regression
Analysis and Planning local/AutoScaling times

OLS regression 6.27 ms
R² goodness-of-fit 1.000
Mean execution time 6.13 ms
Standard deviation 89.5 μs

Outlying measurements have slight (2.6%) effect on estimated standard deviation.

put/cost

OLS regression 167 μs
R² goodness-of-fit 1.000
Mean execution time 164 μs
Standard deviation 2.35 μs

Outlying measurements have slight (7.2%) effect on estimated standard deviation.

put/auto-scaling

OLS regression 1.78 ms
R² goodness-of-fit 1.000
Mean execution time 1.75 ms
Standard deviation 25.7 μs

Outlying measurements have slight (1.7%) effect on estimated standard deviation.

put/redundancy

5.9 5.95 6.00 6.05 6.10 6.15 6.2 6.25 6.30

mean

10 15 20 25 30 35 40 455 iters

100

150

0 s

50 ms

lower bound estimate upper bound
6.23 ms 6.32 ms
1.000 1.000
6.10 ms 6.16 ms
69.1 μs 115 μs

160 162 164 166

put/cost time densities

mean

400 600 800 1000 1200200 iters

100

150

200

250

0 s

50 ms

regression
put/cost times

lower bound estimate upper bound
166 μs 167 μs
1.000 1.000
163 μs 165 μs
2.03 μs 2.77 μs

1.7 1.72 1.74 1.76 1.78

put/auto-scaling time densities

mean

40 60 80 100 12020 iters

100

150

200

250

300

0 s

50 ms

regression
put/auto-scaling times

lower bound estimate upper bound
1.78 ms 1.79 ms
1.000 1.000
1.74 ms 1.75 ms
21.3 μs 30.5 μs

put/redundancy time densities

200

250
regression
put/redundancy times

OLS regression 945 μs
R² goodness-of-fit 1.000
Mean execution time 927 μs
Standard deviation 12.0 μs

Outlying measurements have slight (1.4%) effect on estimated standard deviation.

put/firewall

OLS regression 141 μs
R² goodness-of-fit 1.000
Mean execution time 139 μs
Standard deviation 1.75 μs

Outlying measurements have slight (6.1%) effect on estimated standard deviation.

understanding this report
In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and
annotations, you will see more details.

The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement
occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows
measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number
of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the
mean estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie
between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see
how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary
effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

890 900 910 920 930 940

mean

100 150 20050 iters

100

150

0 s

50 ms

lower bound estimate upper bound
943 μs 949 μs
1.000 1.000
923 μs 930 μs
9.85 μs 16.5 μs

134 135 136 137 138 139 140 141 142

put/firewall time densities

mean

500 750 1000 1250 1500250 iters

100

150

200

250

0 s

50 ms

regression
put/firewall times

lower bound estimate upper bound
141 μs 142 μs
1.000 1.000
138 μs 139 μs
1.32 μs 2.30 μs

colophon
This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.

Appendix D

Experiment 4

129

criterion performance measurements

overview
want to understand this report?

Monitor/Parsing rules

OLS regression 307 μs
R² goodness-of-fit 1.000
Mean execution time 297 μs
Standard deviation 7.76 μs

Outlying measurements have moderate (19.4%) effect on estimated standard deviation.

get/cost

0 10 20 30 40 50 60 70 80

Monitor/Parsing rules

get/cost

get/auto-scaling

get/redundancy

get/firewall

Synchronizer/Determine order Safety

Synchronizer/Determine order Last

Synchronizer/Order Safety

Synchronizer/Order Last

Analysis and Planning http/All (determine order, ordering and analysis & plan)

Analysis and Planning http/Cost

Analysis and Planning http/Firewall

Analysis and Planning http/Redundancy

Analysis and Planning http/AutoScaling

Analysis and Planning local/All (determine order, ordering and analysis & plan)

Analysis and Planning local/Cost

Analysis and Planning local/Firewall

Analysis and Planning local/Redundancy

Analysis and Planning local/AutoScaling

put/cost

put/auto-scaling

put/redundancy

put/firewall

Monitor
get
Synchronizer
Analysis and Planning http
Analysis and Planning local
put

275 280 285 290 295 300 305 310

Monitor/Parsing rules time densities

mean

200 300 400 500 600 700100 iters

100

150

200

250

0 s

50 ms

regression
Monitor/Parsing rules times

lower bound estimate upper bound
306 μs 309 μs
1.000 1.000
295 μs 299 μs
6.47 μs 9.98 μs

250

OLS regression 244 μs
R² goodness-of-fit 1.000
Mean execution time 237 μs
Standard deviation 3.78 μs

Outlying measurements have slight (8.7%) effect on estimated standard deviation.

get/auto-scaling

OLS regression 445 μs
R² goodness-of-fit 1.000
Mean execution time 429 μs
Standard deviation 11.0 μs

Outlying measurements have moderate (17.6%) effect on estimated standard deviation.

get/redundancy

OLS regression 263 μs
R² goodness-of-fit 1.000
Mean execution time 256 μs
Standard deviation 6.14 μs

Outlying measurements have moderate (16.8%) effect on estimated standard deviation.

230 233 235 238 240 243 245

get/cost time densities

mean

200 300 400 500 600 700 800100 iters

100

150

200

0 s

50 ms

regression
get/cost times

lower bound estimate upper bound
243 μs 244 μs
1.000 1.000
236 μs 239 μs
3.21 μs 4.49 μs

410 420 430 440 450

get/auto-scaling time densities

mean

200 300 400 500100 iters

100

150

200

250

0 s

50 ms

regression
get/auto-scaling times

lower bound estimate upper bound
443 μs 448 μs
0.999 1.000
426 μs 433 μs
9.72 μs 13.3 μs

240 245 250 255 260 265

get/redundancy time densities

mean

200 300 400 500 600 700 800100 iters

100

150

200

250

0 s

50 ms

regression
get/redundancy times

lower bound estimate upper bound
262 μs 264 μs
1.000 1.000
254 μs 257 μs
4.95 μs 7.66 μs

get/firewall

OLS regression 29.9 μs
R² goodness-of-fit 1.000
Mean execution time 29.3 μs
Standard deviation 331 ns

Outlying measurements have slight (6.1%) effect on estimated standard deviation.

Synchronizer/Determine order Safety

OLS regression 40.6 μs
R² goodness-of-fit 1.000
Mean execution time 39.7 μs
Standard deviation 680 ns

Outlying measurements have moderate (12.8%) effect on estimated standard deviation.

Synchronizer/Determine order Last

OLS regression 41.0 μs
R² goodness-of-fit 1.000
Mean execution time 40.0 μs
Standard deviation 553 ns

2928.5 28.8 29.3 29.5 29.8

get/firewall time densities

mean

2 3 4 5 61×10³ iters

100

150

200

250

0 s

50 ms

regression
get/firewall times

lower bound estimate upper bound
29.8 μs 29.9 μs
1.000 1.000
29.2 μs 29.4 μs
261 ns 425 ns

39 40 41 4238.5 39.5 40.5 41.5

Synchronizer/Determine order Safety time densities

mean

2 3 4 51×10³ iters

100

150

200

250

0 s

50 ms

regression
Synchronizer/Determine order Safety times

lower bound estimate upper bound
40.5 μs 40.8 μs
1.000 1.000
39.4 μs 39.9 μs
534 ns 993 ns

39 40 4139.5 40.5

Synchronizer/Determine order Last time densities

mean

2 3 4 51×10³ iters

100

150

200

250

0 s

50 ms

regression
Synchronizer/Determine order Last times

lower bound estimate upper bound
41.0 μs 41.1 μs
1.000 1.000
39.9 μs 40.2 μs
436 ns 663 ns

Outlying measurements have slight (8.5%) effect on estimated standard deviation.

Synchronizer/Order Safety

OLS regression 349 ns
R² goodness-of-fit 1.000
Mean execution time 340 ns
Standard deviation 4.73 ns

Outlying measurements have moderate (13.7%) effect on estimated standard deviation.

Synchronizer/Order Last

OLS regression 349 ns
R² goodness-of-fit 1.000
Mean execution time 340 ns
Standard deviation 5.91 ns

Outlying measurements have moderate (20.0%) effect on estimated standard deviation.

Analysis and Planning http/All (determine order, ordering and analysis & plan)

OLS regression 81.8 ms
R² goodness-of-fit 1.000

330 333 335 338 340 343 345 348

Synchronizer/Order Safety time densities

mean

200 300 400 500100×10³ iters

100

150

200

0 s

50 ms

regression
Synchronizer/Order Safety times

lower bound estimate upper bound
348 ns 349 ns
1.000 1.000
338 ns 341 ns
4.02 ns 5.58 ns

330 335 340 345 350 355

Synchronizer/Order Last time densities

mean

200 300 400 500100×10³ iters

100

150

200

0 s

50 ms

regression
Synchronizer/Order Last times

lower bound estimate upper bound
348 ns 351 ns
1.000 1.000
338 ns 342 ns
4.82 ns 8.12 ns

79 80 81 8279.5 80.5 81.5

Analysis and Planning http/All (determine order, ordering and analysis & plan) time
densities

mean

4 6 8 102 iters

400

600

800

0 s

200 ms

1 s
regression
Analysis and Planning http/All (determine order, ordering and analysis & plan) times

lower bound estimate upper bound
80.6 ms 83.3 ms
0.999 1.000

Mean execution time 80.6 ms
Standard deviation 1.03 ms

Outlying measurements have slight (9.0%) effect on estimated standard deviation.

Analysis and Planning http/Cost

OLS regression 19.6 ms
R² goodness-of-fit 0.999
Mean execution time 19.6 ms
Standard deviation 840 μs

Outlying measurements have moderate (13.5%) effect on estimated standard deviation.

Analysis and Planning http/Firewall

OLS regression 13.4 ms
R² goodness-of-fit 0.989
Mean execution time 13.6 ms
Standard deviation 978 μs

Outlying measurements have moderate (33.2%) effect on estimated standard deviation.

Analysis and Planning http/Redundancy

79.9 ms 81.2 ms
730 μs 1.43 ms

19 20 21 22 23

Analysis and Planning http/Cost time densities

mean

10 15 205 iters

200

300

400

500

0 s

100 ms

regression
Analysis and Planning http/Cost times

lower bound estimate upper bound
19.3 ms 19.9 ms
0.998 1.000
19.4 ms 20.2 ms
261 μs 1.55 ms

13 14 15 16 17 18

Analysis and Planning http/Firewall time densities

mean

10 15 20 255 iters

200

300

400

0 s

100 ms

regression
Analysis and Planning http/Firewall times

lower bound estimate upper bound
13.1 ms 13.6 ms
0.962 0.999
13.4 ms 14.6 ms
355 μs 1.86 ms

Analysis and Planning http/Redundancy time densities

mean

200

300

400

500

0 s

100 ms

regression
Analysis and Planning http/Redundancy times

OLS regression 18.6 ms
R² goodness-of-fit 0.964
Mean execution time 19.0 ms
Standard deviation 3.81 ms

Outlying measurements have severe (80.6%) effect on estimated standard deviation.

Analysis and Planning http/AutoScaling

OLS regression 26.9 ms
R² goodness-of-fit 0.986
Mean execution time 26.4 ms
Standard deviation 1.33 ms

Outlying measurements have moderate (15.7%) effect on estimated standard deviation.

Analysis and Planning local/All (determine order, ordering and analysis &
plan)

OLS regression 11.3 ms
R² goodness-of-fit 1.000
Mean execution time 11.0 ms
Standard deviation 277 μs

Outlying measurements have slight (6.7%) effect on estimated standard deviation.

Analysis and Planning local/Cost

15 20 25 30 35 10 15 205 iters
lower bound estimate upper bound
16.7 ms 20.5 ms
0.932 0.999
18.0 ms 22.2 ms
956 μs 7.47 ms

25 26 27 28 29 30 31

Analysis and Planning http/AutoScaling time densities

mean

5 8 10 13 15 182.5 iters

200

300

400

500

0 s

100 ms

regression
Analysis and Planning http/AutoScaling times

lower bound estimate upper bound
26.0 ms 28.9 ms
0.962 1.000
26.0 ms 27.6 ms
295 μs 2.54 ms

10 1110.2 10.4 10.6 10.8 11.2

Analysis and Planning local/All (determine order, ordering and analysis & plan) time
densities

mean

10 15 20 25 305 iters

100

150

200

250

300

350

0 s

50 ms

regression
Analysis and Planning local/All (determine order, ordering and analysis & plan) times

lower bound estimate upper bound
11.2 ms 11.3 ms
1.000 1.000
10.8 ms 11.0 ms
179 μs 406 μs

Analysis and Planning local/Cost time densities

mean

100

150

200

250

300
regression
Analysis and Planning local/Cost times

OLS regression 4.24 ms
R² goodness-of-fit 1.000
Mean execution time 4.11 ms
Standard deviation 86.5 μs

Outlying measurements have slight (6.6%) effect on estimated standard deviation.

Analysis and Planning local/Firewall

OLS regression 150 μs
R² goodness-of-fit 0.998
Mean execution time 147 μs
Standard deviation 5.52 μs

Outlying measurements have moderate (35.9%) effect on estimated standard deviation.

Analysis and Planning local/Redundancy

OLS regression 1.87 ms
R² goodness-of-fit 1.000
Mean execution time 1.80 ms
Standard deviation 45.1 μs

Outlying measurements have moderate (13.0%) effect on estimated standard deviation.

Analysis and Planning local/AutoScaling

43.9 3.95 4.05 4.1 4.15 4.2 4.25 20 30 40 50 6010 iters
0 s

50 ms

lower bound estimate upper bound
4.22 ms 4.25 ms
1.000 1.000
4.08 ms 4.14 ms
65.8 μs 115 μs

140 145 150 155 160 165 170

Analysis and Planning local/Firewall time densities

mean

500 750 1000 1250250 iters

100

150

200

250

0 s

50 ms

regression
Analysis and Planning local/Firewall times

lower bound estimate upper bound
148 μs 152 μs
0.997 0.999
146 μs 150 μs
3.74 μs 9.31 μs

1.75 1.80 1.85 1.90

Analysis and Planning local/Redundancy time densities

mean

40 60 80 100 12020 iters

100

150

200

250

300

0 s

50 ms

regression
Analysis and Planning local/Redundancy times

lower bound estimate upper bound
1.86 ms 1.88 ms
0.999 1.000
1.79 ms 1.82 ms
39.5 μs 54.0 μs

Analysis and Planning local/AutoScaling time densities

mean
200

250

300

350
regression
Analysis and Planning local/AutoScaling times

OLS regression 6.27 ms
R² goodness-of-fit 1.000
Mean execution time 6.11 ms
Standard deviation 115 μs

Outlying measurements have slight (2.6%) effect on estimated standard deviation.

put/cost

OLS regression 1.14 ms
R² goodness-of-fit 1.000
Mean execution time 1.10 ms
Standard deviation 22.7 μs

Outlying measurements have slight (9.7%) effect on estimated standard deviation.

put/auto-scaling

OLS regression 1.65 ms
R² goodness-of-fit 1.000
Mean execution time 1.58 ms
Standard deviation 46.4 μs

Outlying measurements have moderate (17.1%) effect on estimated standard deviation.

put/redundancy

65.8 5.9 6.10 6.2 6.30

mean

10 15 20 25 30 35 40 455 iters

100

150

0 s

50 ms

lower bound estimate upper bound
6.25 ms 6.30 ms
1.000 1.000
6.06 ms 6.14 ms
97.9 μs 139 μs

1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14

put/cost time densities

mean

100 150 20050 iters

100

150

200

250

0 s

50 ms

regression
put/cost times

lower bound estimate upper bound
1.14 ms 1.14 ms
1.000 1.000
1.09 ms 1.11 ms
20.2 μs 25.9 μs

1.50 1.55 1.6 1.65

put/auto-scaling time densities

mean

50 75 100 125 15025 iters

100

150

200

250

300

0 s

50 ms

regression
put/auto-scaling times

lower bound estimate upper bound
1.64 ms 1.66 ms
1.000 1.000
1.56 ms 1.59 ms
39.8 μs 55.1 μs

put/redundancy time densities

200

250
regression
put/redundancy times

OLS regression 720 μs
R² goodness-of-fit 1.000
Mean execution time 699 μs
Standard deviation 13.2 μs

Outlying measurements have slight (9.8%) effect on estimated standard deviation.

put/firewall

OLS regression 142 μs
R² goodness-of-fit 1.000
Mean execution time 139 μs
Standard deviation 1.88 μs

Outlying measurements have slight (6.9%) effect on estimated standard deviation.

understanding this report
In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and
annotations, you will see more details.

The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any given time measurement
occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how often that measurement was repeated.
The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows
measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number
of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the
mean estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie
between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see
how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary
effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

670 680 690 700 710 720

mean

100 150 200 250 30050 iters

100

150

0 s

50 ms

lower bound estimate upper bound
718 μs 722 μs
1.000 1.000
695 μs 703 μs
11.3 μs 15.5 μs

134 135 136 137 138 139 140 141 142

put/firewall time densities

mean

500 750 1000 1250 1500250 iters

100

150

200

250

0 s

50 ms

regression
put/firewall times

lower bound estimate upper bound
141 μs 142 μs
1.000 1.000
139 μs 140 μs
1.43 μs 2.35 μs

colophon
This report was created using the criterion benchmark execution and performance analysis tool.

Criterion is developed and maintained by Bryan O'Sullivan.

