
THESIS / THéSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit dÕauteur :

Biblioth•que Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

Parameter tuning of deep learning using evolutionary algorithm

Hendrix, Maxime

Award date:
2018

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Dec. 2021

https://researchportal.unamur.be/en/studentthesis/parameter-tuning-of-deep-learning-using-evolutionary-algorithm(78748fc1-d78c-4a85-83e9-0917a493ca81).html

Université de Namur
Faculty of Computer Science

Academic Year 2017–2018

Parameter tuning of deep learning using

evolutionary algorithm

Hendrix Maxime

Internship mentor: Divina Federico

Supervisor: (Signed for Release Approval - Study Rules art. 40)

Wim VANHOOF

A thesis submitted in the partial fulfillment of the requirements
for the degree of Master of Computer Science at the Université of Namur

Abstract

The deep learning is an algorithm based on machine learning that allows to forecast the
consumption of electricity in Spain. The deep learning algorithm receives input data
that represent the past consumption of electricity. After different computations, the
desired forecast is obtained as an output. However, the deep learning algorithm has
some parameters that need to be configured in order to predict with accuracy. A Genetic
algorithm is used to perform this parametrization and to find the optimal parameters.

The goal of this thesis is to optimize the parameters of deep learning algorithm in
order to forecast with more accuracy the consumption of electricity in Spain. The results
obtained by the deep learning algorithm with an optimization of the parameters are better
than without. There are other methods that allow to forecast the electricity consumption.
The comparison between our developed algorithm and the other techniques shows that
our algorithm is more efficient to forecast the consumption of electricity.

keywords: machine learning, genetic algorithm, deep learning algorithm, forecasting,
time series, optimization parameters

L’apprentissage profond est un algorithme basé sur l’apprentissage automatique qui
permet de prédire la consommation électrique en Espagne. L’algorithme d’apprentissage
profond reçoit des données en entrée qui représentent la consommation passée d’électricité.
Après différents calculs, la prédiction attendue est obtenue en sortie de l’algorithme.
Cependant, les paramètres de l’algorithme d’apprentissage profond doivent être con-
figurés afin de prédire avec plus d’efficacité. Un algorithme génétique est utilisé pour
effectuer cette paramétrisation et donc trouver les paramètres optimaux.

Le but de cette thèse est d’optimiser les paramètres d’un algorithme d’apprentissage
profond afin de prédire avec le plus de précision la consommation électrique future en
Espagne. Les résultats obtenus avec l’optimisation des paramètres sont meilleurs que
ceux obtenus sans optimisation. Il existe d’autres méthodes qui permettent de prédire la
consommation électrique. La comparaison entre notre algorithme développé et les autres
techniques montre que notre algorithme est plus efficace.

mots-clefs: apprentissage automatique, algorithme g�en�etique, algorithme d’apprentissage
profond, pr�ediction, s�eries temporelles, optimisation des param�etres

Preface

This paper is submitted for the Master’s Degree of Computer Sciences at the University
of Namur. This research was conducted under the supervision of Professor Vanhoof of
the university of Namur. The internship took place in the university of Pablo de Olavide
in Seville with the assistant professor, Mister Federico Divina.

First of all, I would like to say thank to Mister Vanhoof to offer me the possibility to
go away in Spain to do this study and for the different advices that he gave me during
the realization of my thesis. I am particularly grateful for the devoted time to the careful
reading of the thesis.

I would like to say thank to my internship mentor, Federico Divina. Every week, he
took the time to receive me, to discuss about the thesis and the research.

In my research, I needed to reuse and to modify one algorithm that was already
developed at the university. I would like to thank the people who helped me to understand
this code and this algorithm, J. F. Torres and F. Mart́ınez Álvarez.

I also thank the other people in the laboratory of Big Data in the university of Pablo
de Olavide for their welcome and help during these three months of internship.

I thank to the CICA that is the center of computer sciences of Andalousia for allowing
me to use their servers to execute my different experimentation during my research.

Finally, I thank my family and friends that helped me to realize this work and for
their encouragements throughout this project.

Maxime HENDRIX

June 2018

Contents

Abstract 3

Preface 5

Glossary 15

1 Introduction 17

2 State of the art 21

2.1 Deep learning algorithms . 21

2.1.1 History of deep learning algorithms 21

2.1.2 Research about deep learning algorithms 22

2.2 Evolutionary algorithms . 24

2.2.1 History of evolutionary algorithms 24

2.2.2 Research about evolutionary algorithms 25

2.3 Energy forecasting . 26

3 Deep Learning algorithms 29

3.1 Deep learning algorithms process . 29

3.1.1 Input layer . 30

3.1.2 Hidden layer . 30

3.1.2.1 Neurons . 30

3.1.2.2 Synapses . 31

3.1.3 Output layer . 31

3.1.4 Learning process . 31

3.2 Parameters to optimize . 32

3.2.1 Number of hidden layers . 32

8 CONTENTS

3.2.2 Number of neurons per hidden layer 33

3.2.3 Value of lambda . 33

3.2.4 Value of rho . 34

3.2.5 Value of epsilon . 34

3.2.6 Activation function . 35

3.2.7 Distribution function . 35

3.2.8 End metric . 36

3.3 Execution time of deep learning . 37

3.4 Parameter summary . 38

4 Genetic algorithms 39

4.1 The genetic algorithms’ process . 39

4.1.1 Initialisation . 40

4.1.2 Parent selection . 40

4.1.3 Genetic operators . 42

4.1.4 Survivor selection . 43

4.1.5 Termination . 43

4.2 Parameters of the genetic algorithm . 44

4.2.1 Type of genetic algorithm . 44

4.2.2 Population size . 44

4.2.3 Number of generations . 45

4.2.4 Limit of generations . 45

4.2.5 Percentage of crossover . 46

4.2.6 Percentage of elitism . 46

4.2.7 Percentage of mutation . 47

4.2.8 Local optimization . 47

4.2.9 Selection function . 47

4.2.10 Population function . 48

4.2.11 Crossover function . 48

4.2.12 Mutation function . 49

4.2.13 Parameter summary . 49

5 Results 51

5.1 Package’s versions . 51

CONTENTS 9

5.2 Used data . 52

5.3 Mean relative error . 53

5.4 Analysis of the results . 54

5.4.1 Results of deep learning without optimization 54

5.4.1.1 Parameters of the deep learning 54

5.4.1.2 Result of MRE for the 24 subproblems 54

5.4.2 Results of deep learning with a global optimization 56

5.4.2.1 Parameters of the deep learning 56

5.4.2.2 Result of MRE for the 24 subproblems 57

5.4.3 Results of deep learning with a specific optimization 58

5.4.3.1 Parameters of the deep learning 58

5.4.3.2 Result of MRE for the 24 subproblems 61

5.4.4 Comparison between the 3 techniques 62

5.5 Comparison with other techniques . 63

6 Conclusion 67

Bibliographie 73

Appendices 73

A Evolution of the genetic algorithm for the subproblems 75

List of Figures

3.1 The process of deep learning algorithms [13] 29

3.2 The representation of one neuron [7] . 31

4.1 The process of genetic algorithms [1] . 39

5.1 Explanation of the forecasting [41] . 53

5.2 Evolution of genetic algorithm for the subproblem 1 62

5.3 Evolution of the MRE in % according to the historical window for the different
techniques . 65

A.1 Evolution of genetic algorithm for the subproblem 1 75

A.2 Evolution of genetic algorithm for the subproblem 2 76

A.3 Evolution of genetic algorithm for the subproblem 3 76

A.4 Evolution of genetic algorithm for the subproblem 4 77

A.5 Evolution of genetic algorithm for the subproblem 5 77

A.6 Evolution of genetic algorithm for the subproblem 6 78

A.7 Evolution of genetic algorithm for the subproblem 7 78

A.8 Evolution of genetic algorithm for the subproblem 8 79

A.9 Evolution of genetic algorithm for the subproblem 9 79

A.10 Evolution of genetic algorithm for the subproblem 10 80

A.11 Evolution of genetic algorithm for the subproblem 11 80

A.12 Evolution of genetic algorithm for the subproblem 12 81

A.13 Evolution of genetic algorithm for the subproblem 13 81

A.14 Evolution of genetic algorithm for the subproblem 14 82

A.15 Evolution of genetic algorithm for the subproblem 15 82

A.16 Evolution of genetic algorithm for the subproblem 16 83

12 LIST OF FIGURES

A.17 Evolution of genetic algorithm for the subproblem 17 83

A.18 Evolution of genetic algorithm for the subproblem 18 84

A.19 Evolution of genetic algorithm for the subproblem 19 84

A.20 Evolution of genetic algorithm for the subproblem 20 85

A.21 Evolution of genetic algorithm for the subproblem 21 85

A.22 Evolution of genetic algorithm for the subproblem 22 86

A.23 Evolution of genetic algorithm for the subproblem 23 86

A.24 Evolution of genetic algorithm for the subproblem 24 87

List of Tables

2.1 Metaphor between evolution and problem solving 24

3.1 Execution time of deep learning algorithm (in seconds) 37

3.2 Different possible value for the numeric parameters 38

4.1 Results with different population size . 45

4.2 Results with different generations . 45

4.3 Results with different percentage of crossover 46

4.4 Results with different percentage of elitism . 46

4.5 Results with different percentage of mutation 47

4.6 Results with different selection functions . 48

4.7 Results with different crossover functions . 48

4.8 Results with different mutation functions . 49

4.9 Parameters used for the genetic algorithm . 49

5.1 The different versions of the used package . 52

5.2 Parameter used for the deep learning algorithm without optimization 54

5.3 Values of MRE in % without optimization for the 24 subproblems 55

5.4 Parameters found for the deep learning algorithm with a global optimization . . 56

5.5 Values of MRE in % with a global optimization for the 24 subproblems 57

5.6 Parameters found for the deep learning algorithm with a specific optimization . . 59

5.7 Values of MRE in % with a specific optimization for the 24 subproblems 61

5.8 MRE in % for the 3 different techniques of deep learning 63

5.9 MRE in % for different forecasting techniques 64

Glossary

The definitions were found on techopedia’s website [9]. The different definitions present
and introduce the different concepts that are discussed on this thesis.

Artificial Intelligence : artificial intelligence is an area of computer science that em-
phasizes the creation of intelligent machines that work and react like humans. Some
of the activities computers with artificial intelligence are designed for include: speech
recognition, learning, planning and problem solving.

Big Data : big data refers to a process that is used when traditional data mining and
handling techniques cannot uncover the insights and meaning of the underlying data.
Data that is unstructured or time sensitive or simply very large cannot be processed by
relational database engines. This type of data requires a different processing approach
called big data, which uses massive parallelism on readily-available hardware.

Machine Learning : machine learning is a type of artificial intelligence that allows
software applications to become more accurate in predicting outcomes without being
explicitly programmed. The basic premise of machine learning is to build algorithms
that can receive input data and use statistical analysis to predict an output value within
an acceptable range.

Deep Learning : deep learning is a collection of algorithms used in machine learning,
used to model high-level abstractions in data through the use of model architectures,
which are composed of multiple nonlinear transformations. It is part of a broad family of
methods used for machine learning that are based on learning representations of data;

Evolutionary algorithm : An evolutionary algorithm is considered a component of
evolutionary computation in artificial intelligence. An evolutionary algorithm functions
through the selection process in which the least fit members of the population set are
eliminated, whereas the fit members are allowed to survive and continue until better solu-
tions are determined. In other words, evolutionary algorithms are computer applications
which mimic biological processes in order to solve complex problems. Over time, the
successful members evolve to present the optimized solution to the problem;

Genetic algorithm : A genetic algorithm is a heuristic search method used in artificial
intelligence and computing. It is used for finding optimized solutions to search problems
based on the theory of natural selection and evolutionary biology. Genetic algorithms

16 Glossary

are excellent for searching through large and complex data sets. They are considered
capable of finding reasonable solutions to complex issues as they are highly capable of
solving unconstrained and constrained optimization issues;

Evolutionary Computation : Evolutionary computation is an artificial intelligence
sub-field and closely linked to computational intelligence, involving lots of combinatorial
optimization problems and continuous optimization. It is employed in problem-solving
systems that use computational models with evolutionary processes as the key design
elements. It is an abstraction from the evolutionary concept in biology since it deals with
methods and concepts that are continually and selectively evolving and optimizing.

Time series : A time series is a sequence of values used to show the evolution (growth
or decrease) of a quantity according to an elapsed time.

Chapter 1

Introduction

With evolution in computer performances, more and more data, also called big data, are
generated and stored, available for future use or analysis. Data are obtained in many
different ways, such as sensors, consumption surveys, polls and other techniques. The
problem with this kind of data is that there are too many of them to be addressed by usual
data mining tools. In most cases, it is ineffective or it takes too much time to process
the data. It is thus necessary to develop a certain number of techniques and algorithms
to be able to work with these data in order to manipulate them and to analyse them
efficiently [33].

In this paper, time series data are used to carry out the different tasks and exper-
iments. A time series is a sequence of values used to show the evolution (growth or
decrease) of a quantity according to an elapsed time. For our work, the considered time
series is related to the electricity consumption in Spain, expressed in megawatt (MW),
from January 2007 to June 2016 which represents a large amount of data, around 500,000
stored measures available for processing and analysis. One measure is the consumption
of electricity in Spain at a specific time over the period under consideration with a high
sampling frequency (10 minutes). These data are saved in a CSV file of 23.9 MB. These
data are divided into 2 different parts, 70% of the data are used for training and the
rest is used for testing. In the 70% of the training data, 30% are also used for validation
purpose.

In this study, the objective is to predict the continuation of the temporal sequence,
in particular for the next 24 hours after a given historical window that represents a
series of successive measurements. The size of the historical window, represented by
w, is a parameter of the system. We define 24 subproblems, represented by Hi (for
1 � i � 24), where Hi represents the problem of estimating the electricity consumption
at the ith hour after the given historical window. For example, the seventh subproblem
H7 represents the estimation of the electricity consumption at the 7th hour after the
historical window. Together, the set of all 24 subproblems represents the problem of
forecasting the electricity consumption during a full day after the historical window.

18 Chapter 1. Introduction

The prediction of future data is something actually very important in some fields
such as economy and environment. For example, participants in the electricity sector
(demand and supply) are particularly interested in this area of research, which allows
them to forecast future revenues, inventory management or control of various power plans
[22] with a margin of error that may be more or less important depending on the use. As
another example, the electricity consumption of buildings in China in 2011 accounted for
28% of the country’s total electricity consumption. In the United States, the electricity
consumption of buildings represents around 39% of the total energy consumption [8]. In
view of these numbers, there are opportunities to reduce building electricity consumption.
Time series forecasting can be used to try to help the infrastructure manager to make
better decisions or to provide some relevant information (to control all kinds of equipment,
to know what consumes the most/least and other kinds of decisions/information).

The technique used to make the prediction is deep learning, a method based on
machine learning and on artificial intelligence. Deep learning takes an input X to return
a result output Y. In our context, we provide a time series as an input and we expect a
meaningful forecasting as an output. Deep learning involves the creation and the training
of neuronal networks that are based on multi-layers. Each layer has some neurons and
the number of neurons on each layer can be different. Neurons take as input the results
that have been calculated by the neurons of the previous layer. In the case of the first
layer, the input data will be used. The neurons in the neural network are connected
to each other with different connections that are called ’synapses’. One synapse has a
weight that is determined by the learning phase. The calculated result from a neuron on
a previous layer is multiplied by the synaptic weight. The result of the multiplication is
transmitted to a neuron on the next layer [28].

Deep learning is chosen because it is a technique that gives the best result in terms of
error rate when compared to other methods (decision trees, linear regression, gradient-
boosted and random forest)[8]. The problem of deep learning is that the execution is
slow. This is dependent on the number of layers and on the number of neurons per layer.
Indeed, a small network (few layers and few neurons per layer) has a fast execution, while
a large network (a lot of layers and a lot of neurons per layer) has a slow execution.

Another issue of deep learning algorithms is the necessity to take into account dif-
ferent functions such as activation, distribution and other functions that are used by
neurons to calculate the result. Indeed, deep learning algorithms are very sensitive to
the initialisation and much attention must be given to this stage because it is necessary
to correctly fix different parameters (number of neurons, number of layers, activation
function and other parameters) that are important in order to obtain a good forecasting
[41]. The parameters of deep learning algorithms can take different kind of values such
as string, integer and real values.

There are three main kinds of techniques for fixing most optimal parameters (in this
case, the deep learning parameters): exhaustive search [29], random search [3], or the use
of an evolutionary algorithm [1]. An evolutionary algorithm is preferred and is used to try
to optimize the various parameters to reach a forecast as close as possible to actuality.
This technique is chosen in our work because it is an algorithm that allows reaching

Chapter 1. Introduction 19

quickly a solution with a good result compared to exhaustive search or to random search.
Indeed, random search and exhaustive search must test a lot of possible combinations,
which will take a long time when dealing with a lot of different parameters [3, 29]. Another
reason is that the deep learning algorithm on its own takes already a lot of time to be
executed. However, it is important to remember that evolutionary algorithms allow to
approximate the best solution but does not guarantee to produce the best solution.

Evolutionary algorithms are based on the evolutionary principle: in a given popula-
tion, the best elements survive, and the weakest are eliminated. In this study, genetic
algorithms that are one subclass of evolutionary algorithms are preferred to optimize the
parameters of the deep learning algorithm. Genetic algorithms consist in taking a set
of initial values that are called the initial population. This population is evaluated by a
function called fitness function that allows measuring the quality of each element. After
the evaluation by the fitness function, the best values (the values that gave the best re-
sult by the evaluation by the fitness function) are retained to create another set of values
(another population)[1]. There are two kinds of techniques to create a new population
from retained values : mutation and crossover.

1. Mutation consists in alteration of one value to create another value in order to keep
a diversity between different populations.

2. Crossover consists in taking two values of the parent population to create a single
new value in the new population by combining characteristics of the two elements
into one.

After having computed a set of mutations and crossovers, a new population is ready to
be evaluated by the fitness function. These steps are repeated during a certain number of
generations that are also called iterations. At the end of the genetic algorithm execution,
the best set of value for the different parameters is obtained [38].

In this study, the population is one set of values for the different parameters of the
deep learning algorithm. The fitness function is the algorithm of deep learning itself. The
quality of each parameter value set is shown by the mean relative error (MRE) [41].

The MRE represents the error rate that was calculated between the forecasted and
the actual values. The forecasted values are the calculated values by the execution of
the deep learning algorithm. The actual values are the values that have actually been
observed so it is the values that are in the 30% of testing data. The calculated MRE is
also used to analyse the different results obtained in our study.

Analyses and comparisons of results have been divided into two distinct parts to
facilitate understanding and discussions. Firstly, the results are compared between three
different methods to see if it is actually interesting to mix the genetic algorithm and the
deep learning algorithm:

1. the first method consists in using the deep learning algorithm with the basic pa-
rameters defined in [41]. This method is also called the default case;

20 Chapter 1. Introduction

2. the second method consists in using the deep learning algorithm together with a
genetic algorithm in order to make a global optimization of the parameters. It
means that the parameters of the deep learning algorithm are the same for every
subproblem;

3. the third method consists in using the deep learning algorithm together with a
genetic algorithm in order to make a specific optimization of the parameters. It
means that the parameters of the deep learning algorithm can be different for every
subproblem.

Secondly, the results obtained by deep learning without optimization and deep learning
with genetic algorithm in order to make a specific optimization of the parameters are
compared with other methods used for the prediction (linear regression, decision tree,
gradient-boosted and random forest). The comparison indicates if the developed algo-
rithm in our work is more efficient than the other techniques that are already used to
forecast electricity consumption.

In summary, this work introduces an algorithm to forecast big data time series based
on deep learning architectures combined with a genetic algorithm to optimize parameters.
The goal is to reduce the error rate (MRE) as much as possible.

The remainder of this paper is structured as follows. The state of the art is reviewed
and discussed in chapter 2. The deep learning algorithm and the various parameters to
be optimized are introduced in chapter 3. The genetic algorithm is presented in chapter
4. Results and comparison with other techniques are reported and discussed in chapter
5. Finally, the drawn conclusions and the possible future works from this experiment are
summarized in chapter 6.

Chapter 2

State of the art

In this chapter, different studies about deep learning algorithms and evolutionary algo-
rithms are summarized. Moreover, different works in the field of energy forecasting are
discussed. This study uses data about electricity consumption so special attention is paid
to related work in this context.

2.1 Deep learning algorithms

This section is divided into two different parts. The first part is the history of deep
learning algorithms. The second part is about different articles where deep learning
algorithms are used and compared with other kinds of techniques.

2.1.1 History of deep learning algorithms

The history of deep learning algorithms is based on [37].

It is around 1950 that two neurologists developed the first neural network. This
neural network is called a standard neural network (NN). The neural network needs
input data to be computed. This network is composed of one input layer, one hidden
layer and one output layer. These layers have a sequence of connected processors called
neurons. These neurons can be activated or not. If they are activated, they sent the
calculated result based on the input data to the next neurons. This network allows to
transform input to output by following some rules. In 1965, the neural network can be
trained by itself. Moreover, the network can be composed with more than one hidden
layer. The connections between the neurons are called synapses and they are a weight
on each synapse. This weight can influence the calculated result by the neurons. The
neural network needs a training set to be trained by the use of a regression analysis. The
training allows to modify the weight of synapses. In a master thesis around 1970, this is
the first time where someone speaks about the backpropagation (BP). The BP is used

22 Chapter 2. State of the art

to minimize cost functions by adapting control parameters in order to produce better
output.

By the late 1980s, researchers did a significant progress in the field of neural networks.
At that time, it was observed that it is not necessary to have a lot of layers in a neural
network to be close of the expected result. Additional hidden layers often did not seem to
offer empirical benefits. It is in 2000s that the deep learning approach appears although
the term had already been used in 1986. This is due to the convergence of three factors:
the mass of data to be processed, the growing power of computers and the development
of neural networks. Indeed, basic neural networks are not powerful enough to process a
large amount of data. So, it is necessary for the researchers to develop new techniques to
process and to analyse larger amounts of data. The term deep learning regroups a set of
different algorithms based on machine learning. The most known kind of deep learning
algorithms is deep neural networks. Deep learning algorithms and neural networks have
led to great advances, for example in the field of facial recognition and speech recognition
[6].

The process of deep learning algorithms is detailed in Chapter 3.

2.1.2 Research about deep learning algorithms

Actually, deep learning algorithms can be used in different fields of research as presented
in the following papers.

Deep learning algorithms can be used in the field of medicine in order to determine if
a patient has Alzheimer’s disease. Indeed, [31] presents a new algorithm based on deep
learning approach in order to diagnose with more efficiency and accuracy a disease of
Alzheimer. The deep learning algorithm is composed of different layers and the final
prediction is based on a voting schema. The authors created two different deep learning
algorithms and four different voting schemas to compare them. The different results
show that the architecture of deep learning algorithm is based on deep belief networks
(DBN) and the voting schema is based on support vector machines (SVM). DBN is a
kind of deep learning algorithm that creates a graphical model. SVM techniques are
used to solve different problems of regression. The algorithm developed by the authors
based on the DBN architecture and SVM voter can diagnose an Alzheimer disease with
an accuracy of 90%. This article shows that the deep learning approach is effective to
classify different data in order to determine if a patient has Alzheimer’s disease.

Other articles in the field of medicine research are dealing with deep learning algo-
rithms. In [14], the authors develop a deep learning algorithm for automated detection of
diabetic retinopathy and diabetic macular edema in retinal fundus photographs. Another
article [18] presents deep learning algorithms has a way to analyse the medical images
with more efficiency.

Deep learning algorithms are also used in the field of environmental research. For
example, the authors of [43] have developed a new algorithm based on deep learning

Chapter 2. State of the art 23

algorithms able to determine the quality of air in a city. The algorithms that are actually
used to forecast the air quality are based on shallow models. It means neural networks
with only 3 layers (one input layer, one hidden layer and one output layer). The presented
algorithm in this paper is based on spatio-temporal deep learning (STDL) algorithm
able to create a correlation between spatial and temporal. The proposed algorithm is
compared with other techniques (STANN, ARMA and SVR models) to forecast the air
quality. The result of this study shows that the STDL is the most efficient to forecast
the air quality. The developed algorithm based on deep learning approach can predict
the air quality with a mean absolute error of 9%.

Still in the field of environmental research, in [11], the authors have used a deep learn-
ing algorithm in order to predict the status of pro-environmental consumption. Another
work [16] is about the creation of a neural network in order to predict an excavator’s
hourly energy consumption and CO2 emissions under different site conditions.

Another field where deep learning algorithms are used is the energy consumption. For
example, in [17], the authors have used the deep learning approach in order to reduce
the loss of energy by different buildings. The authors use three different kinds of deep
learning algorithms. The first one is based on a recurrent neural network called long
short-term memory (LSTM). The second one is based on a denoising autoencoders and
the last one is based on a network which regresses the start time, end time and averages
power demand of each appliance activation. The authors use seven different metrics
(recall, precision, F1, accuracy, relative error in total energy, mean absolute error and
proportion of total energy correctly assigned) in order to determine the performance of
each developed algorithm. The calculated results are based on different devices such
as: fridge, microwave and other devices. The three developed algorithms are compared
with two other techniques (combinatorial optimization and factorial HMM). The most
efficient technique is the LSTM. Indeed, LSTM has the best results in 5 metrics, but the
comparison is not actually fair because the different algorithms need to be parametrize
with more or less parameters. The chosen parametrization may influence the obtained
results. Finally, the LSTM can predict the loss of energy with an accuracy of 5%.

Other articles in the field of energy consumption are based on deep learning algo-
rithms. In [23], the authors have developed a deep learning approach in order to forecast
the electricity current intensity of the air conditioning equipment. Another article [41]
presents a deep learning algorithm in order to forecast the consumption of electricity in
Spain. This paper is more detailed in the part of energy forecasting.

24 Chapter 2. State of the art

2.2 Evolutionary algorithms

This section is divided into two different parts. The first part is the history of evolutionary
algorithms. The second part is about different articles where evolutionary algorithms are
used to solve complex problems.

2.2.1 History of evolutionary algorithms

The history of evolutionary algorithms is based on [10] and on [1].

Evolutionary algorithms have been developed to solve different problems of optimiza-
tion. This kind of algorithms is based on the biological evolution. Indeed, in a given
population, the weakest individuals are eliminated and the best individuals are kept. In
the case of evolutionary algorithms, it is the quality of an element (the capacity of the
element to solve the problem) that determines the chance of the element to be kept.
The following table shows the link between the biologic evolution and the evolutionary
algorithms :

Evolution Problem solving

Environment Problem
Individual Candidate solutions

Fitness Quality

Table 2.1: Metaphor between evolution and problem solving

The first description of an evolutionary algorithm appears in 1958. The evolutionary
algorithm was used to find a program that calculates a given input–output function. In
the early 1960s, this is the first time when someone speaks about genetic algorithms in
a paper. Genetic algorithms are one kind of evolutionary algorithms that are one sort
of evolutionary computation. Genetic algorithms are the most used form of evolutionary
algorithms. The evolutionary algorithms and genetic algorithms have continued to be de-
veloped and improved to solve more complex problems. The period from 1990 until 1997
is characterized by a lot of conferences and development about genetic algorithms. In
the 2000s, evolutionary algorithms were strongly developed because the computer power
was strongly increased and so, problems became more complex. Nowadays, some math-
ematical problems and optimization problems require the use of evolutionary algorithms
in order to find quickly a good solution.

The process of genetic algorithms is detailed in Chapter 4.

Chapter 2. State of the art 25

2.2.2 Research about evolutionary algorithms

Actually, evolutionary algorithms are used in complex optimization problems.

In [26], the authors present a new kind of genetic algorithm called ’Breeder genetic
algorithm’ (BGA). The BGA is based on an artificial selection. The different compo-
nents of this algorithm are based on the genetic algorithm. The performance of BGA is
calculated on the execution of different multimodal functions. The authors present their
implementation of mutation, crossover and the different selection function. In most of the
test functions presented in this work, the search time can be represented by a function
such as: n * ln(n) where n is the number of parameters. BGA is already applied to solve
different problems in actual applications. The largest application is in the field of facial
recognition where there are around 560 different parameters and the BGA can solve this
problem easily.

The author of [19] uses genetic algorithms in order to solve complex problems in the
field of chemistry. Indeed, some complex experiments need to define some parameters to
be efficiency because the search space can be too large. The author defines a complex
system like four different causes such as: high number of independent variables, very
complex or irregular response surface, presence of discontinuities in the experimental
domain and response to be optimised function of several ’subresponses’. In this article,
the author has developed a genetic algorithm to find the most optimal parameters for
a complex chemistry experiment. The benefit of this kind of algorithm according to
the author is that genetic algorithms allow finding a good result quickly. Moreover,
genetic algorithms can find a good result even when a maximum or a minimum cannot
be detected. In this article, the developed genetic algorithm finds the best temperature
in order to realize an experiment in the best conditions.

[4] presents different applications of evolutionary algorithm in different fields. The
different advantages and disadvantages of multi objective evolutionary algorithms are dis-
cussed. The evolutionary algorithms are divided into two different groups. The first group
is the non-elitist multi-objective evolutionary algorithms (MOEA) where the best results
are not kept between different generations. The second group is elitist multi-objective
evolutionary algorithms where the best results are kept between different generations.
Genetic algorithms can be found within both groups, depending on how the genetic algo-
rithm is defined. These algorithms are used to find patterns in a financial time series, to
forecast the stock prices, to make data mining and other kinds of applications described
in this paper. This article presents the evolutionary algorithms as a solution to make one
task with more efficiency and accuracy.

In the last presented article [2], the author creates a radial basis function neural
network (RBFNNs) to predict the output of a given model inputs. There are some
parameters that need to be chosen carefully in order to obtain a good forecasting. The
author uses a genetic algorithm (GA) to optimize these parameters. He writes that
the initialisation in RBFNNs is actually important in order to make a good prediction.
The created algorithm by the combination of RBFNNs and GA allow to obtain a better
forecasting compared to the execution of RBFNNs without GA. Indeed, the normalized

26 Chapter 2. State of the art

root mean squared error (NRMSE) is 0.22 for the RBFNNs and GA and the execution
time is 178 seconds; while NRMSE for the RBFNNs without GA is 0.27 and the execution
time is 192 seconds. The performance and the computation time are improved when using
GA.

Evolutionary algorithms can also be used to solve complex mathematics problems
such as travelling salesperson problem [38]. This problem is hard to solve without the
use of evolutionary algorithm when the number of city is large.

2.3 Energy forecasting

This section presents different articles that discuss the forecasting of energy data.

The article: ’A novel Spark-based multi-step forecasting algorithm for big data time
series’ [12] presents different kinds of techniques in order to forecast the consumption
of electricity. The techniques are decision trees, two tree-based ensemble techniques
(Gradient-Boosted and Random Forest) and a linear regression method. There are two
different parameters that are taken into account to do the forecasting: the past values
named W and the prediction problems named H. The data used are the consumption of
electricity in Spain. This study compares the execution time and the mean relative error
between the four different techniques. The random forest is the most efficient about the
error rate (2.1863%) and the decision tree has the fastest execution (72 seconds).

Recently, the authors of [8] try to develop an algorithm to make the forecasting of
electricity consumption of buildings to help the manager to reduce the consumption.
The algorithm combines stacked autoencoders (SAE) with an extreme machine learning
(ELM) approach. The SAE allows to obtain the energy building consumption and the
ELM is used to forecast the future consumption of energy. The obtained results with
this technique are compared with other techniques such as: backward propagation neu-
ral network (BPNN), support vector regression (SVR), generalized radial basis function
neural network (GRBFNN) and multiple linear regression (MLR). The different results
show that the technique developed in this paper is more efficient to predict the energy
consumption of building compared to the other methods (BPNN, SVR, GRBFNN and
MLR).

Research [27] of Ghulam Mohi Ud Din uses the electricity dataset collected from ISO
New England for the period 2007 to 2012 around 52.600 measures to make a short-term
forecasting. There are two kinds of deep learning algorithms that are used in this article:
Feed-forward Deep Neural Networks (FFDNN) and Recurrent Deep Neural Networks (R-
DNN). Different parameters are taken into account to do the forecasting such as: working
and non-working days effects, time effect, temperature effects and other parameters. The
result of this study shows that weather, time, holidays, lagged load and data distribution
over the consumption period are parameters that influence the electricity consumption.

Another work is about deep learning algorithms for big data time series forecasting
[41]. Indeed, this article introduces the use of this kind of algorithms to forecast Spain’s

Chapter 2. State of the art 27

electricity consumption. This algorithm is based on the machine learning paradigm
because the authors use a deep feed forward neural network. Exhaustive search is used
in order to find the most optimal parameters of the deep learning algorithms. The authors
compare this technique with other methods to predict the time series (linear regression,
decision tree and other techniques) on the basis of the efficiency and the performance of
the execution. The results show that the deep learning algorithm is the most efficient to
forecast the consumption and the decision tree is the fastest to do the forecasting.

Our work represents the continuity of [41]. Indeed, the same data are used for both
works as well as the basis of the used deep learning algorithm. But the difference in our
work is the use of a genetic algorithm to optimize the parameters of the deep learning
algorithm.

There is growing interest for energy forecasting because the energetic demand is
increasing. So, the necessity to manage the energy consumption is emerging. Therefore,
other techniques can be found to predict the energy data [39, 42].

Chapter 3

Deep Learning algorithms

In this chapter, the concept and the functioning of deep learning algorithms are intro-
duced. In the second part, the different parameters to optimize are explained and their
different possible values are mentioned. The execution time of deep learning is also
discussed in this chapter.

3.1 Deep learning algorithms process

The figure below shows a schematically neural network as it is generated by the execution
of deep learning algorithms.

Fig. 3.1 : The process of deep learning algorithms [13]

30 Chapter 3. Deep Learning algorithms

The first layer is the input layer. The next layers are the hidden layers. The last
layer is the output layer. All of these layers are composed with neurons and synapses.

3.1.1 Input layer

The input layer is the first layer of the neural network. This layer is composed of a
number of nodes equal to the number of inputs. This layer allows to duplicate the data
for each node also called neurons of the next layer. There are no operations at this stage
so they are passive nodes. The neural network is called a fully interconnected structure
because each neuron on one layer is connected with each neuron on the next layer. The
data are sent through synapses that allow the connection between neurons of different
layers [15].

In this study, there is only one kind of input which is a time series about the con-
sumption of electricity in Spain. In addition, in our case, the number of neurons of the
input layer is equal to the historical window size (for more information, cfr section 5.2).

3.1.2 Hidden layer

The hidden layers are the layers between the input and the output layers. Deep learning
algorithms can have any number of hidden layers, and any number of neurons per hidden
layer. The number of neurons per hidden layer and the number of hidden layers are
usually defined by the user when the neural network is created.

3.1.2.1 Neurons

Neurons are the elements that allow to calculate the result. At this stage, the activation
function can be applied to compute the sum of the received signals. The activation
function is important in a neural network because this function decides whether a neuron
is activated or not. A neuron is activated when the calculated result is higher than a
threshold defined by an activation function. On the figure below, there is one value
+1 that represents the bias term. This value is a neuron without connection with the
previous layer. The bias term is always activated because it enables the regularization of
the neural network’s flexibility [6].

Chapter 3. Deep Learning algorithms 31

Fig. 3.2 : The representation of one neuron [7]

In figure 3.2, x i represents the neuron i on the previous layer, w i represents the
signal that is sent to the neuron by the synapse i, the function f represents the nonlinear
activation function and b represents the bias term for the neuron’s activation threshold.

3.1.2.2 Synapses

Synapses connect neurons that are in different layers of deep learning algorithms. When
the synapses receive information from the neurons, this information is multiplied by a
synaptic weight that is associated to this synapse. The synaptic weight is defined during
the training phase of the neural network (cfr section 3.1.4) [6].

wi = xi � si (3.1)

x i represents the signal sent by a neuron i on the previous layer and s i represents synaptic
weight for the synapse i.

3.1.3 Output layer

This is the last layer of deep learning algorithms. When the propagated information
arrives at this layer, the execution is finished and the final calculated result by the deep
learning algorithm can be retrieved.

In the case of our study, there is only one output unit because the deep learning
algorithm calculates only the consumption of electricity of Spain for one hour.

3.1.4 Learning process

A deep learning algorithm has a learning process in order to modify the different pa-
rameters (weights of synapses and thresholds for the activation of neurons) in order to

32 Chapter 3. Deep Learning algorithms

produce a better output [6]. At the end of this process, the weights of synapses and the
thresholds for the neurons activation of the neural network are the most efficient.

It is necessary to give data to the deep learning algorithm to do the learning phase.
Data are generally divided into three different parts: the first part (training data) is
used to train the neural network, the second part is used to validate the neural network
(validation data) and the last part is used to test the neural network.

In our work, the data are divided into two different parts: 70% are used for the
training of the neural network and 30% are used for the testing of the neural network.
In the training data, 30% are also used to make the validation of the network.

In some case, the neural network is adapted only to respond to the training data.
This is called the over-learning also known as overfitting. The opposite of overfitting is
underfitting, it occurs when the neuronal network is not enough trained. The validation
data are used to prevent overfitting. Indeed, the learning phase is finished when the
generated error on the validation data by the neural network increases and not decreases
[6]. After validation, the testing data are used to assess the accuracy of the neural
network.

3.2 Parameters to optimize

The problem with deep learning algorithms is that some parameters need to be configured.
The package H2O is used to create the deep learning algorithm [15, 7]. This package needs
8 different parameters to work correctly: number of layers, neurons per hidden layers, L1,
rho, epsilon, activation function, distribution function and end metric. In the remainder
of this paper, the L1 is denoted by lambda.

There are a lot of possible values for the different functions in deep learning algorithms
(activation and distribution). The developed functions in the following sections are the
functions that are implemented in the H2O package.

In this section, each parameter is explained (usefulness and interest) and the different
possible values that it can take are expressed.

3.2.1 Number of hidden layers

This parameter defines the number of hidden layers in the deep learning algorithm.

The number of hidden layers depends on the complexity of the problem that the
neural network must solve. Moreover, in [37], the authors said that the researchers have
proven that having a large number of layers in a neural network does not improve a lot
the obtained result.

Indeed, in [20], the authors showed that good results can be already obtained with

Chapter 3. Deep Learning algorithms 33

a neural network composed with 4 hidden layers. This neural network was applied on a
problem of medium complexity. Moreover, if the number of hidden layers is too large,
the execution time is larger.

In our work, the number of hidden layers is between 1 and 100.

3.2.2 Number of neurons per hidden layer

This parameter allows to define the number of neurons per hidden layer in the deep
learning algorithm.

It is necessary to be careful when the number of neurons per hidden layer is chosen.
Indeed, the number of neurons per hidden layer depends on the complexity of the problem.
If there are too many neurons compared to the complexity of the problem to be solved,
this can lead to overfitting. If there are not enough neurons compared to the complexity
of the problem, this can lead to underfitting [32]. Both over and underfitting cases prevent
a good functioning of the neural network.

According to the rule of thumb [32], the number of neurons per hidden layer is:

1. between the number of neurons in the input layer and in the output layer;

2. 2/3 of the number of neurons in the input layer plus the number of neurons in the
output layer;

3. less than twice the number of neurons in the input layer.

In our study, it is not possible to follow this rule because the number of neurons per
hidden layer would be too low. Indeed, for a historical window of 168, the number of
neurons per hidden layer is between 1 and 335.

So, for our work, we have chosen to fix the number of neurons per hidden layer between
10 and 1000. Note that the number of neurons per hidden layer strongly influences the
execution time (cfr section 3.3).

3.2.3 Value of lambda

Lambda is the parameter that will control the regularization of the model. Model reg-
ularization means the insertion of penalties in the model creation process in order to
adjust as much as possible the values predicted with the actual values. The penalty is
the sum of the absolute values of the weights received by the neuron [25]:

E = � �
nX
i=0

jwij (3.2)

E represents the penalty that is applied, n is the number of weights received by the
neurons, w represents the weight for the neuron i.

34 Chapter 3. Deep Learning algorithms

Lambda can take a value between 0 and 1. If the value is 0, the adjustment is ignored.
If the value is close to 0, the regularization applied is smaller because the value of lambda
is small.

In this study, the regularization does not need to be huge. For this reason, the value
of lambda is between 0 and 1�9. Furthermore, in [41], it is shown that the deep learning
algorithm to forecast the consumption of electricity is most effective with a value of
lambda close to 0.

3.2.4 Value of rho

Rho allows to manage the updating of different weight of synapses (cfr section 3.1.2.2)
with previous results.

During the training of the neural network, the different weights are adjusted. Rho
is used to maintain some consistency between the different updates of previous weights.
It is better to modify slowly the weight between the updates because if it is too fast, it
can lead to instabilities [15]. The formulas below show how the weights of synapses are
updated during the training phase:

vt+1 = � � vt � �rL(�t) (3.3)

�t+1 = �t + vt+1 (3.4)

v is a velocity vector used to modify the weight, � represents a matrix of the weights, �
is the coefficient of weight update and � is the learning rate [7].

The rho value is included between 0 and 1. If the value is close to 1, a strong
consistency is kept between the weight updates. Otherwise, if the value is close to 0,
there is not cohesiveness between the updates.

In our case, the rho value is between 0.99 and 1. This interval is chosen because it is
recommended by the following document [7]. This is the reference document for the H2O
package in which the best values are specified for each parameter of the neural network.

3.2.5 Value of epsilon

Epsilon prevents the deep learning algorithm from being stuck in local optimums or to
skip a global optimum.

Indeed, in some cases, the neural network can find a good result and each following
produced model is very sensitive to the precedent or the produced model can skip an
optimum because the modification of the other parameters is always too important [7,
15].

The value of epsilon is between 0 and 1. This value allows to divide the learning rate
by half. The chosen value determines the number of samples that are needed to divide
by half the learning rate.

Chapter 3. Deep Learning algorithms 35

In our case, the epsilon value is between 0 and 1�9. This interval is chosen because
it is recommended by the following document [7]. This is the reference document for
the H2O package in which the best values are specified for each parameter of the neural
network.

3.2.6 Activation function

This parameter allows to define the activation function that is executed on the different
signals entering a neuron. It allows to calculate a new signal to send to the nodes on the
next layer.

In our study, the activation function can take 3 different values:

1. Tanh is the hyperbolic tangent defined by the following formula [7]:

f(�) =
e� � e��

e� + e�� withf(:) 2 [�1;1] (3.5)

2. Rectifier is, also known as ramp function, defined by the following formula [7]:

f(�) = max(0;�)withf(:) 2 R+ (3.6)

3. Maxout is an activation function defined by the following formula [7]:

f(�1; �2) = max(�1; �2)withf(:) 2 R (3.7)

� is the weight that is calculated by the neuron with its different inputs (cfr Figure
3.2).

3.2.7 Distribution function

This parameter allows to define the distribution function that is used by the deep learning
algorithm to determine if the different values that are calculated can be taken into account
by the loss function. Furthermore, there is a link between the distribution that the user
chooses and the loss function that the neural network selects.

When the distribution function is specified, the loss function is automatically selected
by the neural network. The loss function is used to guide the training process of a
neural network. The loss function calculates the difference between the produced and
the expected value in order to guide the modifications of the different synaptic weights.
It is an internal parameter of the model. For more information, we refer to [7, 15].

The distribution determines the different values that can be taken into account by
the loss function. Indeed, in some case, one bad result can influence a lot the result of
the loss function.

36 Chapter 3. Deep Learning algorithms

In our study, the distribution function can take 7 different values [35]: Gaussian,
Poisson, Laplace, Tweedie, Huber, Gamma and Quantile.

3.2.8 End metric

This parameter allows to define the kind of metric that is used to stop early the training
phase of the deep learning algorithm.

The end metric is linked with 2 other parameters: stopping rounds and stopping tolerance.
The stopping tolerance is the value by which a model must improve in order to continue
the training phase. The default value for the tolerance is 0.001. The stopping rounds
is the number of rounds that the deep learning algorithm has in order to improve the
chosen metric by the specified number defining by the stopping tolerance. The default
value for the number of rounds is 5 [15, 7].

For example, if the end metric is MSE, the tolerance is 0.001, the number of rounds
is 5. It means that the deep learning will stop the training after reaching 5 rounds in a
row in which the MSE value is not improved by 0.001.

In our case, the end metric can take 7 different values:

1. MSE is the mean square error value defined by the following formula [15]:

MSE =
1

n

nX
i=1

(ai � pi)2 (3.8)

a represents the current value for index i in the training data, p represents the
predicted value for index i, n represents the total number of values;

2. Deviance is the difference between an expected value and an observed value defined
by the following formula [15]:

Deviance(a;p) =
nX
i=1

(ai; pi) (3.9)

a represents the current value for index i in the training data, p represents the
predicted value for index i, n represents the total number of values;

3. RMSE is the root mean squared error value defined by the following formula [15]:

RMSE =

sPn
i=1(pi � ai)2

n
(3.10)

a represents the current value for index i in the training data, p represents the
predicted value for index i, n represents the total number of values;

4. MAE is the mean absolute error defined by the following formula [15]:

MAE =

Pn
i=1 jpi � aij

n
(3.11)

Chapter 3. Deep Learning algorithms 37

a represents the current value for index i in the training data, p represents the
predicted value for index i, n represents the total number of values.

5. RMSLE is the root mean squared log error defined by the following formula [15]:

RMSLE =

sPn
i=1(log(pi + 1)� log(ai + 1))2

n
(3.12)

a represents the current value for index i in the training data, p represents the
predicted value for index i, n represents the total number of values;

6. Mean per class error is the mean per class error. This metric allows to determine
the mean error for each different class. If there are different groups of data, it
calculates the error individually [7];

7. Lift top group is a measure of the relative performance. The data are divided by
groups, the default size is 20. For each group, the lift is calculated as the proportion
of observations that are events in the group compared to the overall proportion of
events [15].

3.3 Execution time of deep learning

This section shows how the number of neurons and the number of hidden layers can
influence the execution time. The execution time is divided into two parts: the time to
generate and to train the neural network and the time to forecast the consumption of
electricity in Spain. The results shown in this part are the results of the experimentation
led in the case of this study.

The other parameters of the deep learning algorithm are fixed as in the following.
The value of Lambda is 1�9. The value of Rho is 0.99. The value of Epsilon is 0. The
activation function is Tanh. The distribution function is Gaussian and the end metric is
MSE.

The table below shows the influence of the number of hidden layers and the number
of neurons on the time needed to generate and to train the neural network but also to
forecast the time series, the time is expressed in seconds for one subproblem :

‘‘‘‘‘‘‘‘‘‘‘‘‘‘neurons
hidden layers

2 5 10 50 100

10 7.36 5.44 5.96 6.29 6.88
50 21.31 18.85 22.58 18.84 19.05
100 35.75 43.91 42.9 36.86 34.92
500 132.09 135.08 138.81 125.1 121.22
1000 257.74 251.05 250.18 253.23 249.10

Table 3.1: Execution time of deep learning algorithm (in seconds)

38 Chapter 3. Deep Learning algorithms

The mean time of the different results that are obtained by the execution of the deep
learning algorithm is 89.42 seconds.

For instance, the deep learning algorithm with 100 neurons and 10 hidden layers takes
42.9 seconds. This time includes the time to generate and to train the neural network
and to forecast the consumption of electricity in Spain.

The results show that the number of hidden layers has no influence on the execution
time. The assumption can be made that the number of hidden layers is not large enough.
It is the number of neurons per hidden layers that influences the execution time of
the deep learning algorithm. Number of neurons influences the execution time because
neurons are the processes where calculations are performed. Indeed, the time taken by
the deep learning for 1000 neurons is around 35 times bigger than for 10 neurons with 2
hidden layers.

3.4 Parameter summary

The possible values for each numeric parameter of the deep learning algorithm are sum-
marized in the next table:

Parameter Minimum Maximum

Number of hidden layer 2 100
Number of neurons per hidden layer 10 1000

lambda 0 1�9

rho 0.99 1
epsilon 0 1�9

Table 3.2: Different possible value for the numeric parameters

Chapter 4

Genetic algorithms

In this chapter, genetic algorithms are explained in detail. Each step in the operation
of this type of algorithm is detailed. Furthermore, the parametrization of a genetic
algorithm is explained and the different possible values for the parameters are listed.
The package GA [38] is used to implement the genetic algorithm. When there are a lot
of different choices (selection function, mutation and crossover), the developed ones are
the different possibilities offered by the packge GA.

4.1 The genetic algorithms’ process

The figure below shows the process flow of genetic algorithms. There are five different
steps : initialisation, parent selection, application of the genetic operators (mutation and
crossover), survivor selection and termination.

Fig. 4.1 : The process of genetic algorithms [1]

40 Chapter 4. Genetic algorithms

The explanations below of the different steps are based on [1].

4.1.1 Initialisation

The first step in genetic algorithms is to create the initial population. A population is a
set of values that are possible solutions to the problem. In our case, the problem is to
find the best set of parameters for the deep learning algorithm. So the population is a
set that contains sets of potential values for the parameters.

This population is also called ’first population’. Indeed, it is the first one that is
evaluated by the fitness function (cfr section 4.1.2). There are different ways to create
the initial population, it can be generated randomly or it can be generated on the basis
of a matrix, a vector or another set of values that is given by the user.

At the beginning of the genetic algorithms execution, it is necessary to define a size
for the population and a number of generations. During the evolution, the defined size
is kept for each iteration. If the size of the population is large, the chance to find a good
solution is bigger because the diversity is potentially huge. However, the execution takes
more time so it is necessary to find a compromise.

4.1.2 Parent selection

The second step in genetic algorithms is to select the values that must be kept to continue
the execution. A fitness function is used to evaluate each value in the population and
a selection function is used to determine how the selection is made. At the start of the
genetic algorithm, it is necessary to define a percentage representing how many members
of the population must be kept.

The fitness function allows to assign a quality measure to a value in the population.
In this study, the fitness function is the deep learning algorithm that allows to calculate
the mean relative error (cfr section 5.2). This value represents the quality of an element
in the population. If the result is close to zero, it shows that the chosen parameters are
effective.

The selection function allows to determine a way to select the values kept to generate
the next population. There are different possibilities [38] :

1. linear-rank selection allows to attribute a value to each member of the population
based on the result of the fitness function. The value 1 is for the worst and the
value N that is the population size is for the best. This order is called the ranking.
The normalized fitness values are a transformation of the fitness value in order to
select with more efficiency the good solutions. They are calculated as follows:

FNitemp
= 2� SP +

2 � (SP � 1) � (itemp � 1)

N � 1
(4.1)

Chapter 4. Genetic algorithms 41

N is the population size, SP is the selection pressure that is between [1.0,2.0] and
itemp is the position of the element in the ranking;

2. nonlinear-rank selection has the same ranking than the linear rank with the attri-
bution value between 1 and N. The difference is the calculation of the normalized
fitness values. It is defined as follows:

FNitemp
= N � Xitemp�1PN

j=1X
j�1

(4.2)

N is the population size, itemp is the position of the element in the ranking and X
is calculated by the following formula :

0 =
NX
j=1

Xj�1 � N

SP
(4.3)

N is the population size and SP is the selection pressure selected between [1.0, N
- 2.0]. This ranking selection permits a higher selective pressures than the linear
ranking method because the solution of the polynomial equation has a bigger result
for the high efficient element compared to the less efficient;

3. proportional selection, also known as roulette wheel selection, is a selection schema
where a probability is associated to each value in the population. The probability
associated is expressed by the following formula:

pi =
fiPN
j=0

fi (4.4)

i is the individual in the population, f is the fitness value and N is the population
size;

4. tournament selection chooses X individuals from the population and takes the best
individual from this group into the intermediate population and the process is
repeated N times;

5. fitness proportional selection with fitness linear scaling is based on the same prin-
ciples as the proportional method but with a fitness linear scaling;

6. fitness proportional selection with Goldberg’s sigma truncation scaling is based
on the same principles as the proportional method but with a Goldberg’s sigma
truncation.

More information can be found about these selection techniques in the article of Adam
Lipowski1and about roulette selection and in the article of Tobias Blickle about selection
schemes [5, 21, 24].

For each member of the population, the result of the fitness function is calculated.
After the evaluation, the chosen selection function is applied to determine which members
of the population must be kept to create the next generation.

42 Chapter 4. Genetic algorithms

4.1.3 Genetic operators

The third step consists in the creation of the new population when the best values of the
parent population are known. To create a new population from the selected values, there
are two different methods that are used together: mutation and crossover.

Mutation

A mutation is a random alteration of the characteristics of an individual. It means that
the different parts that constitute an element can be altered. For example, the value of
one bit can be changed from 0 to 1.

The rate of mutation is low to keep an efficiency in the evolution of the population
and not to fall into a random search. Mutation is nevertheless important because it
allows to create a diversity between the population and it is able to avoid premature
convergence.

There are different kinds of mutations that are studied:

1. uniform mutation changes the value of the element by another random selected
value taking into account defined upper and lower bounds for this element;

2. nonuniform mutation allows to reduce the percentage of mutation through the
different generations. At the end, the probability of mutation is closed to 0;

3. random mutation around the solution allows to change one value of an element
by another value. By comparing results of random mutation, best mutation is
identified and will be repeated later.

It is possible to find more information about the mutation allowed by GA and other kinds
of mutations in the article of Soni Nitasha [30].

Crossover

Crossovers allow to create new offspring from the parent generation. It means that more
than one parent is selected in order to use their genetic material to create one or more
offspring in the new population.

The rate of crossover is expressed by a probability between 0 and 1. If the proba-
bility of crossover is high, there are more crossovers between parent populations. If the
probability of crossover is low, there are less crossovers between parent populations.

There are different possibilities to execute one crossover:

1. single-point crossover divides two parents in two different parts. Afterwards, each
part of each parent is combined to create two new elements in the population;

Chapter 4. Genetic algorithms 43

2. uniform crossover sets 0 or 1 for each part in the two new elements. The zero means
that the part comes from the first parent and the one means that the part comes
from the second parent;

3. whole arithmetic crossover works by taking the weighted sum with the same alpha
of two parental parts for each parent. The alpha determines a coefficient of distri-
bution. The value of alpha is between 0 and 1. If the alpha is equal to 0.5, it is the
same computation than the single-point crossover. If the alpha is equal to 0 and 1,
there is no effect. The following formula defines the mutation that is applied:

child1 = � �X + (1� �) � Y (4.5)

child2 = � � Y + (1� �) �X (4.6)

X and Y are the different parts from the parents;

4. local arithmetic crossover is the same as whole arithmetic crossover, except that
the alpha is randomly selected for each part location;

5. blend crossover combines two parents to generate offspring by sampling a new value
in a define range with the maximum and the minimum of the parents.

More information about the crossover can be found in the article of Felipe Teodoro and
in the article of Stjepan Picek [40, 34].

4.1.4 Survivor selection

The fourth step is also called the replacement. As mentioned in Section 3.1.1, the popu-
lation size is always the same for each iteration. When the offspring is created with the
different genetic operators, it is important to determine which individuals will be allowed
into the next generation.

Survivor selection is performed after the creation of the offspring. This selection is
normally based on the quality. So, the choice is made according to the fitness value
although the concept of age can also be used for the parents, in order to replace some
parents that have been generated too long ago.

For instance, suppose the population size is 100 and say that 200 children are created.
The genetic algorithm must than select a new population of 100 members chosen from
among the parents and the children.

4.1.5 Termination

The termination is the fifth and last step of genetic algorithm. There are different ways
to stop a genetic algorithm: when an optimal fitness level is met or when the number of
generation defined by the user is reached.

44 Chapter 4. Genetic algorithms

In some cases, a problem can have an optimal level. It means that the solution
can not any more be more improved. When this level is reached, it is not necessary to
continue the execution of the algorithm. In such a case, the algorithm is stopped before
the number of generations defined by the user is reached.

In Section 4.1.1, a number of generations is defined. The genetic algorithm is stopped
when this number of generation has been produced.

4.2 Parameters of the genetic algorithm

In our work, the package GA [38] for the language R is used. It allows to create genetic
algorithms with some choices at the level of functions of selection, mutations, crossovers
and others. The choice of each parameter and the different possible values are explained
in what follows.

For some parameters, an experiment was conducted during this study in order to
determine which value is the most efficient. The different tables in the following sections
show the results that are obtained by the execution of the genetic algorithm with the
deep learning algorithm as a fitness function. In this section, the deep learning algorithm
is configured as shown in [41].

4.2.1 Type of genetic algorithm

This parameter is used to determine the type of genetic algorithm. It means the type of
data that are generated by the genetic algorithm in order to solve optimization problems.
The kind of genetic algorithm can only take three different values: ’binary’, ’real-valued’
and ’permutation’.

1. Binary optimizes the binary parameters. Normally, it is the optimization that is
used for integer parameters.

2. Real-valued optimizes the real parameters. It uses real values to solve problems.

3. permutation classifies the different data. It is generally used for image recognition.

In this case, the parameters can take different kind of values such as string, integer or
real. The easy way to solve this problem is to choose real-valued as a type of genetic
algorithm.

4.2.2 Population size

This parameter allows to define the population size. This size is kept between the different
generations. It is necessary to choose a number big enough in order to have a significant

Chapter 4. Genetic algorithms 45

diversity in the population. If the size is large, the execution takes more time. Normally,
a population size of a genetic algorithm is between 75 and 150 [36].

In the following table, the results with different population sizes are showed. The
other parameters are the same in all cases. The results have been put in the following
table:

population size Values of MRE (in %)

50 1.54501
100 1.50478
150 1.48975

Table 4.1: Results with different population size

The best results are obtained with a population size of 100 and 150. The problem of
these sizes is the quite high execution time. To reduce it, the value 50 is chosen.

4.2.3 Number of generations

This parameter is the number of generations that are going to be created by the genetic
algorithms. A large number allows to generate more results and to obtain potentially
better results.

It is better to have more generations than to have a large population because there
are more possible mutations and crossovers. However, in this study, it was not possible
to use so many generations because the execution would have been too long.

Two different possibilities were tested: 50 generations and 100 generations. The other
parameters are the same in all cases. The results have been put in the following table:

number of generations Values of MRE (in %)

50 1.54501
100 1.50977

Table 4.2: Results with different generations

This table shows that the obtained result with more generations is better. So, the
number of generations is fixed to 100.

4.2.4 Limit of generations

This parameter allows to fix a limit of generations. If the result is not enhanced after
a number of generations, the execution of a genetic algorithm is stopped. This method
allows to win time if the best result is already obtained.

46 Chapter 4. Genetic algorithms

In general, this number is close to the half of the number of generations only if the
number of generations is large. In the other case, this number can be the same as the
number of generations. Indeed, it is necessary to be careful because this parameter can
stop the algorithm execution while the best possible result has not been reached yet. In
this study, this parameter is fixed to 50.

4.2.5 Percentage of crossover

This parameter defines the probability of crossover between different parents in order to
create new individuals in the population. This probability can be large because it allows
to create different elements with more diversity.

Different possibilities were tested with different values for the percentage of crossover.
The other parameters are the same in all cases. The results have been put in the following
table:

percentage of crossover Values of MRE (in %)

0.1 1.63578
0.5 1.59754
0.8 1.54501
0.9 1.56788

Table 4.3: Results with different percentage of crossover

This probability is between 0 and 1. The most appropriate value is 0.8 which is the
default value for this parameter.

4.2.6 Percentage of elitism

This parameter defines the percentage of the population that must be kept from our
generation to the next. Indeed, the best results that are obtained with the evaluation of
the fitness function are kept during the different generations. If the percentage is large,
the chances to obtain a better result are reduced.

Different possibilities were tested with different values of elitism. The other parame-
ters are the same in all cases. The results have been put in the following table:

percentage of elitism Values of MRE (in %)

0.05 1.54501
0.2 1.59712
0.6 1.65897
0.8 1.72478

Table 4.4: Results with different percentage of elitism

Chapter 4. Genetic algorithms 47

Results show that it is necessary to keep the best elements of the population to have a
higher chance to obtain better elements thanks to mutations and crossovers. The chosen
value is therefore 0.05 which is the default value for this parameter.

4.2.7 Percentage of mutation

This parameter defines the rate of mutations in the parent population. The rate of
mutation is low to keep an efficiency in the evolution of the population and not to fall
into a random search (cfr section 4.1.3).

Different possibilities were tested with different values. The other parameters are the
same in all cases. The results have been put in the following table:

percentage of mutation Values of MRE (in %)

0.1 1.54501
0.3 1.61578
0.5 1.7792
0.8 1.8579

Table 4.5: Results with different percentage of mutation

The default value is 0.1. This value is used because it is a low value for the percentage
of mutations and it allows to obtain the best result.

4.2.8 Local optimization

This parameter is used to enable the optimization of results. This consists in modifying
the generated population in order to try to reach a local optimum. It means modifying the
different values to improve the obtained result from the initially generated population.

The value of this parameter is false because the optimization of the results leads to a
greater execution time.

4.2.9 Selection function

There are 6 different possibilities of selection functions for real values : linear-rank se-
lection, nonlinear-rank selection, proportional selection, tournament selection, fitness
proportional selection with fitness linear scaling and fitness proportional selection with
Goldberg’s sigma truncation scaling (for explanation of each selection function cfr section
4.1.2).

The different possibilities were tested. The other parameters are the same in all cases.
The results have been put in the following table:

48 Chapter 4. Genetic algorithms

function selection Values of MRE (in %)

linear-rank selection 1.681
nonlinear-rank selection 1.8791
proportional selection /
tournament selection 1.54501

fitness proportional selection with fitness linear scaling /
fitness proportional selection with Goldberg’s sigma truncation scaling /

Table 4.6: Results with different selection functions

The different functions about proportional selection cannot be used because the fitness
value is negative. This kind of function cannot work with negative value.

The best result is obtained with the tournament selection so it is this function that
is used by the genetic algorithm.

4.2.10 Population function

This parameter is used to define a generation function for the initial population. The
initial population is composed only of real values. The default function to generate real
values is used.

4.2.11 Crossover function

The package GA defines different crossover functions such as : single-point crossover, uni-
form crossover, whole arithmetic crossover, local arithmetic crossover and blend crossover
(for explanation of each crossover function cfr section 4.1.3).

The different possibilities were tested. The other parameters are the same in all cases.
The results have been put in the following table:

crossover selection Values of MRE (in %)

single-point crossover 1.6247
uniform crossover 1.59218

whole arithmetic crossover 1.55479
local arithmetic crossover 1.6247

blend crossover 1.54501

Table 4.7: Results with different crossover functions

The best result is obtained with the blend crossover. It is this function that is used
for the genetic algorithm in this case.

Chapter 4. Genetic algorithms 49

4.2.12 Mutation function

The package GA allows to use different mutation functions such as : uniform random
mutation, nonuniform random mutation and random mutation around the solution (for
explanation of each selection function cfr section 4.1.3).

The different possibilities were tested. The other parameters are the same in all cases.
The results have been put in the following table:

mutation selection Values of MRE (in %)

uniform random mutation 1.57158
nonuniform random mutation 1.60477

random mutation around the solution 1.54501

Table 4.8: Results with different mutation functions

The best result is obtained with the random mutation around the solution. It is this
function that is used for the genetic algorithm in this case.

4.2.13 Parameter summary

The values for each parameter of the genetic algorithm are summarized in the following
table:

Parameters Values

type real valued
population size 50

number of generations 100
limit of generations 50

percentage of crossover 0.8%
percentage of elitism 0.05%

percentage of mutation 0.1%
local optimization FALSE
selection function tournament selection

population function gareal Population
crossover function blend crossover
mutation function random mutation around the solution

Table 4.9: Parameters used for the genetic algorithm

The parameters listed in the table above obtained the best results. The parameter of
population size is not the best because it is better to have more generations than a large
population. There are more mutations and crossovers if there are more generations so
the possibilities to have a large diversity is bigger.

In the section 3.3, the execution time for the deep learning is calculated. On average,

50 Chapter 4. Genetic algorithms

one execution of the deep learning algorithm takes around 89.42 seconds for a number of
layers between 2 and 100 and for a number of neurons between 10 and 1000.

The execution of the genetic algorithm with the deep learning algorithm as a fitness
function and with the parameters defined in the table 4.9 takes already around 5 days so
if the population is doubled, the execution can take more than one week. It is necessary
to enhance one of the parameters (population size or number of generations) but not
both.

Chapter 5

Results

In this chapter, the data used for the experimentation are discussed and the obtained
results are analysed. There are 3 kinds of results: results obtained with the deep learning,
results obtained with a global optimization of the parameters (same parameters for the
forecasted of next 24 hours) and finally results obtained with a specific optimization of
the parameters (different parameters for the forecasted of next 24 hours).

The experimentation is executed only once for each following algorithm (deep learning
without optimization, deep learning with a global optimization and deep learning with
a specific optimization) because the execution of the deep learning combined with the
genetic algorithm is time consuming.

At the end, the deep learning algorithm with and without parameters optimization
using a genetic algorithm is compared with other techniques of forecasting.

5.1 Package’s versions

In our work, different packages in R language are used to develop the deep learning
algorithm and the genetic algorithm. However, some used packages require a specific
version to work properly with the others.

The following table shows the different versions that are used for the different pack-
ages:

52 Chapter 5. Results

Package Version

R 3.3.2
H2O 3.10.0.10

sparklyr 0.7.0 - 9035
rsparkling 0.1.1

dplyr 0.7.4

Table 5.1: The different versions of the used package

Sparklyr is a package in R language that allows to use spark for the language R. The
spark language provides a way to manage big data as well as to perform some operations
on it. The back-end is compatible with the package ’dplyr’ and it provides an interface
to Spark to build machine learning algorithms.

Rsparkling is a package in R language that is an extension to the ’sparklyr’ package, it
provides an interface for the language R for a cluster which is based on the H2O package.

Dplyr is a package in R language that provides a grammar for big data exploration
and some operations that can be performed on it. It is a fast way to manage data like a
frame in and out of the memory.

5.2 Used data

In this paper, time series data are used to carry out the different tasks and experiments.
The concrete considered time series is related to the electricity consumption in Spain,
expressed in megawatt (MW), from January 2007 to June 2016 which represents a large
amount of data, around 500,000 stored measures available for processing and analysis.
One measure is the consumption of electricity in Spain at a specific time over the period
under consideration with a high sampling frequency (10 minutes).

The 500,000 measures are stored in a CSV file. These measures are divided into two
different groups. The training set covers the period from January 1, 2007 at 00:00 to
August 20, 2013 at 02:40 and the test set comprises the period from August 20, 2013 at
02:50 to June 21, 2016 at 23:40. This distribution of the data follows the rule of 70% for
the training data and 30% for the testing data. In the 70% of the training data, 30% are
also used to make the validation of the neural network.

The goal is the forecasting of electricity consumption for the next 24 hours based on
the various readings that have been taken.

Chapter 5. Results 53

Fig. 5.1 : Explanation of the forecasting [41]

In the figure 6.1, the W represents the past values also called historical window. The
historical window can be initialized to different values such as: 24, 48, 72, 96, 120, 144
and 168. These values of historical window correspond to 4, 8, 12, 16, 20, 24 and 28
past hours, respectively. The historical window represents the value that the user gives
to the deep learning algorithm in order to forecast data. In [41], the author proves that
the historical window is the most efficient when the window is equal to 168.

In the figure 6.1, the H represents the forecasted values. The forecasted values are
the next 24 hours. In the remainder of this paper, the predicted hours are represented
like subproblems. For example, subproblem 10 corresponds to the forecast for the tenth
hour as specified in the introduction of this work.

5.3 Mean relative error

The data are divided into 2 different parts, 70% of the data are used for training and the
last 30% are used for testing of the deep learning algorithm. The difference between the
actual values corresponding to the testing data and the forecasted values is calculated
with the mean relative error (MRE) expressed in percentage.

RME = 100 � 1

n

nX
i=1

jai � pij
ai

(5.1)

a represents the actual value for index i in the testing data, p represents the forecasted
value for index i, n represents the total number of values in the testing data [41].

The goal of the genetic algorithm is to find the best parameters for the deep learning
in order to reduce the difference between predicted and actual values. If the MRE value
is close to 0, the chosen parameters are efficient.

54 Chapter 5. Results

5.4 Analysis of the results

In this section, the different results obtained by the different algorithms are discussed and
analysed. The first result corresponds to deep learning algorithm without optimization,
the second one to deep learning algorithm with a global optimization of parameters and
the last one to deep learning algorithm with a specific optimization of parameters. The
historical window for these results is set to 168 (w = 168).

5.4.1 Results of deep learning without optimization

In this section, the used parameters and the obtained results without optimization of the
parameters are summarized.

5.4.1.1 Parameters of the deep learning

The following table shows the different parameters that have been set for the execution
of the deep learning algorithm:

Parameters Values

Number of layer 5
Number of neurons per layer 100

lambda 0
Rho 0.99

Epsilon 1�9

Activation function Tanh
Distribution function Gaussian

End metric MSE

Table 5.2: Parameter used for the deep learning algorithm without optimization

This case is called the default case because it is based on deep learning with the
default parameter of the algorithm as defined in [41]. These parameters are the basis
parameters that are called also ’default parameters’ in the remainder of this study.

5.4.1.2 Result of MRE for the 24 subproblems

The following table summarizes the results obtained by the execution of the deep learning
algorithm without optimization of parameters:

Chapter 5. Results 55

Subproblem MRE (in %)

1 0.977321
2 1.162216
3 1.181268
4 1.30299
5 1.458626
6 1.524349
7 1.492074
8 1.833509
9 1.864269
10 1.871364
11 1.791695
12 2.062735
13 2.404409
14 2.057679
15 2.1304
16 2.162826
17 2.238509
18 2.364257
19 2.303624
20 2.620436
21 2.551586
22 2.598092
23 2.588869
24 2.604855

Table 5.3: Values of MRE in % without optimization for the 24 subproblems

The mean of MRE for the 24 subproblems is 1.964498%. It is possible to forecast the
consumption of electricity in Spain for one day with an error rate close to 2%.

For the first subproblem the MRE is under 1% and this is a good result because the
prediction is almost correct. Furthermore, it is at the 12th subproblem that the MRE
rises above 2%. It can be explained because it is easier to predict the first value than
the twelfth. Indeed, it is harder to make a good forecasting of data when the prediction
horizon is large.

The obtained results by the deep learning algorithm without modification is rather
good because the error rate is low, but the error increases when the prediction horizon
is extended.

56 Chapter 5. Results

5.4.2 Results of deep learning with a global optimization

This section summarizes the parameters found and the results obtained with a global
optimization of the parameters with the genetic algorithm. A global optimization means
that the same parameters for the deep learning algorithm are used for every subproblem.

5.4.2.1 Parameters of the deep learning

The following table shows the different parameters that have been found for the execution
of the deep learning algorithm. These parameters are found by the execution of the
genetic algorithm:

Parameters Values

Number of layer 58
Number of neurons per layer 749

lambda 0
Rho 0.9962764

Epsilon 0
Activation function Maxout

Distribution function huber
End metric mae

Table 5.4: Parameters found for the deep learning algorithm with a global optimization

These parameters are used for every subproblem without modification. They change
only when a new population is generated by the genetic algorithm.

Chapter 5. Results 57

5.4.2.2 Result of MRE for the 24 subproblems

The following table gives the results obtained by the execution of the deep learning
algorithm with a global optimization of parameters:

Subproblem MRE (in %)

1 0.57894
2 0.658781
3 0.89785
4 0.925789
5 1.124147
6 1.097782
7 1.212547
8 1.347214
9 1.427898
10 1.435147
11 1.45797
12 1.493659
13 1.517423
14 1.524831
15 1.621479
16 1.669751
17 1.698959
18 1.74681
19 1.835104
20 1.927412
21 2.024793
22 2.081479
23 2.109712
24 2.148793

Table 5.5: Values of MRE in % with a global optimization for the 24 subproblems

The mean of MRE for the 24 subproblems is 1.48184458%. It is possible to forecast
the consumption of electricity in Spain for one day with an error rate close to 1.5%.

In this case, the MRE is under 1% until the 4th subproblem. It is only at the 21st

subproblem that the result is over 2%.

The obtained results with a global optimization are good because it is possible to
predict the consumption of electricity in Spain with an error rate under 1.5% for the first
half of the subproblems.

58 Chapter 5. Results

5.4.3 Results of deep learning with a specific optimization

In this section, the found parameters and the obtained results are related to specific
optimization of the parameters with the genetic algorithm. A specific optimization means
searching the most efficient parameters for each subproblem. The parameters can change
between each subproblem.

5.4.3.1 Parameters of the deep learning

The following table shows the different parameters that have been found for the execution
of the deep learning algorithm. These parameters are found by the execution of the
genetic algorithm:

Chapter 5. Results 59

S
u

b
p

ro
b
le

m
la

ye
rs

N
eu

ro
n

s
L

am
b

d
a

R
h
o

E
p

si
lo

n
ac

ti
va

ti
on

d
is

tr
ib

u
ti

on
E

n
d

m
et

ri
c

1
52

94
2

4
:0

90
45

4�
1
0

0.
99

52
96

3
6:

43
43

23
�

1
2

T
an

h
ga

u
ss

ia
n

d
ev

ia
n

ce
2

68
92

1
0

0.
99

76
88

8
0

M
ax

ou
t

h
u

b
er

M
S

E
3

75
88

0
0

0.
99

56
80

8
0

M
ax

ou
t

h
u

b
er

d
ev

ia
n

ce
4

68
92

1
0

0.
99

83
26

8
0

M
ax

ou
t

h
u

b
er

M
S

E
5

88
50

4
0

0.
99

83
33

1
0

M
ax

ou
t

h
u

b
er

d
ev

ia
n

ce
6

80
78

9
0

0.
99

74
68

7
0

M
ax

ou
t

h
u

b
er

M
S

E
7

74
89

2
0

0.
99

95
47

7
0

M
ax

ou
t

h
u

b
er

rm
sl

e
8

46
30

0
0

0.
99

71
74

9
0

M
ax

ou
t

h
u

b
er

m
a
e

9
75

88
9

5
:5

70
32

7�
1
0

0.
99

04
75

9
6:

74
39

84
�

1
0

T
an

h
ga

u
ss

ia
n

m
ea

n
p

er
cl

a
ss

er
ro

r
10

25
85

2
0

0.
99

77
59

3
0

M
ax

ou
t

h
u

b
er

rm
sl

e
11

58
84

3
3
:6

91
57

9�
1
0

0.
99

92
60

2
2:

45
15

09
�

1
0

T
an

h
ga

u
ss

ia
n

rm
se

12
41

49
1

0
0.

99
66

29
7

0
M

ax
ou

t
h
u

b
er

rm
sl

e
13

17
55

2
0

0.
99

30
41

5
0

M
ax

ou
t

h
u

b
er

M
S

E
14

26
66

1
0

0.
99

22
65

0
M

ax
ou

t
h
u

b
er

m
a
e

15
89

81
1

5
:6

06
93

1�
1
0

0.
99

29
69

3
4:

22
97

28
�

1
0

T
an

h
ga

u
ss

ia
n

rm
se

16
98

69
7

0
0.

99
78

71
5

0
M

ax
ou

t
h
u

b
er

m
a
e

17
74

47
8

1
:4

59
97

1�
1
0

0.
99

87
11

5
3:

58
48

87
�

1
0

T
an

h
ga

u
ss

ia
n

d
ev

ia
n

ce
18

62
70

5
2
:7

40
63

7�
1
0

0.
99

49
34

4
6:

63
56

05
�

1
0

T
an

h
ga

u
ss

ia
n

m
a
e

19
65

87
9

0
0.

99
07

15
2

0
M

ax
ou

t
h
u

b
er

m
a
e

20
81

78
0

7
:6

20
90

6�
1
0

0.
99

07
15

2
5:

20
79

76
�

1
0

T
an

h
ga

u
ss

ia
n

M
S

E
21

27
93

1
0

0.
99

76
67

0
M

ax
ou

t
h
u

b
er

m
a
e

22
95

74
5

0
0.

99
74

68
1

0
M

ax
ou

t
h
u

b
er

d
ev

ia
n

ce
23

41
92

3
0

0.
99

51
05

7
0

M
ax

ou
t

h
u

b
er

M
S

E
24

80
75

4
0

0.
99

63
05

8
0

M
ax

ou
t

h
u

b
er

m
a
e

T
ab

le
5.

6:
P

ar
am

et
er

s
fo

u
n

d
fo

r
th

e
d
ee

p
le

a
rn

in
g

a
lg

o
ri

th
m

w
it

h
a

sp
ec

ifi
c

o
p
ti

m
iz

a
ti

o
n

60 Chapter 5. Results

In the default case, the number of layer is 5. The optimization shows that the number
of layers need to be larger than 50 for most of the subproblems. However, there are some
subproblems where less than 50 layers seem to be optimal.

The number of neurons required is above 700 for the majority of the subproblems.
There are some subproblems that have more than 900 neurons. This is in most cases
more than the default case with only 100 neurons. The number of neurons needs to be
huge to forecast with precision the consumption of electricity in Spain.

The value of lambda and epsilon are close to 0 or equal to 0; very similar to the
default values for these parameters (0 and 1�9). Furthermore, when the value of lambda
is equal to 0, the value of rho is equal to 0 too.

Rho values are close to 1. The default value for this parameter is 0.99 and the value
found by the evolutionary algorithm is bigger than the default.

The activation function is almost the same for the 24 different subproblems namely
Maxout. In the other cases, the Tanh is chosen like in the default case. So, we can suppose
that Maxout function is the most effective to forecast the data about the consumption
of electricity in Spain.

It is the same for the distribution function. In most cases, it is the Huber function
that is the more effective. In the other cases, it is the Gaussian function that is chosen.

There is one link between the activation and the distribution function. When the
activation function is Maxout, the distribution function is always Huber, while the dis-
tribution function is always Gaussian when activation function is Tanh.

Furthermore, the assumption can be made that there is a link between these functions
(activation and distribution) and the values of rho and lambda. Indeed, when the acti-
vation function is Maxout and the distribution function is Huber, the values of lambda
and rho are equal to 0. And when the activation function is Tanh and the distribution
function is Gaussian, the values of lambda and rho are close to 0 but not equal.

The last parameter is the end metric and there is no pattern for this one. There
are 6 different values out of the 7 possibilities. The only one that is not used is the
lift top group.

The specific optimization is interesting because it shows that the parameters can be
different for each subproblem. Moreover, the parameters chosen in the default case are
not the most effective to forecast data.

Chapter 5. Results 61

5.4.3.2 Result of MRE for the 24 subproblems

The following table resumes the obtained results by the execution of the deep learning
algorithm with a global optimization of parameters:

Subproblem MRE (in %)

1 0.55915
2 0.725149
3 0.859665
4 0.913307
5 1.017884
6 1.13408
7 1.288955
8 1.23177
9 1.414811
10 1.396267
11 1.435687
12 1.487978
13 1.508399
14 1.539579
15 1.510583
16 1.616487
17 1.71281
18 1.735445
19 1.857298
20 1.760722
21 2.015574
22 2.049844
23 2.066408
24 2.071107

Table 5.7: Values of MRE in % with a specific optimization for the 24 subproblems

The mean of MRE for the 24 subproblems is 1.45454%. It is possible to forecast the
consumption of electricity in Spain for one day with an error rate close to 1.45%.

In this case, the MRE is under 1% until the 4th subproblem. It is only at the 21st

subproblem that the result is over 2%. This observation is the same as the deep learning
algorithm with a global optimization.

The obtained results with a specific optimization are good because it is possible to
predict the consumption of electricity in Spain with an error rate under 1.5% for half of
the subproblems.

The following graphic shows the evolution of the genetic algorithm for the subproblem
1 during the 100 generations:

62 Chapter 5. Results

0 20 40 60 80 100

-4
.0

-3
.5

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

Generation

F
itn

es
s

va
lu

e
●●

●●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●

Best
Mean
Median

Fig. 5.2 : Evolution of genetic algorithm for the subproblem 1

The other charts for every subproblem are in the appendix A.

On this graph, the evolution of the best result is shown with the green curve. It starts
around 0.7% to finish at 0.55915% (the absolute values are considered). During the 100
generations, the best result is enhanced 6 times. Most of these improvements are at the
beginning because it is easier to enhance the result at the start than at the end.

The blue curve shows the mean of the MRE for all results of the same generation.
The last color is the median of this graphic.

5.4.4 Comparison between the 3 techniques

The following table summarizes the results obtained by the execution of the deep learning
algorithm with and without optimization :

Chapter 5. Results 63

Techniques MRE (in %)

Deep learning without optimization 1.964498
Deep learning with a global optimization 1.48184458
Deep learning with a specific optimization 1.45454

Table 5.8: MRE in % for the 3 different techniques of deep learning

The best result is obtained by the deep learning with a specific optimization of the
parameters. The worst is the deep learning without optimization. These results show
that the deep learning needs to be parametrize carefully.

Indeed, the result of deep learning without optimization is 1.96% and the result of
deep learning with a specific optimization is around 1.45% so the result is improved
by 0.5% by choosing the right parameters. It is not a minor improvement. It can be
explained because the deep learning is very sensitive to the initialization. The activation
function, the distribution function and the other parameters influence a lot the result
obtained by the execution of the deep learning algorithm. So, it is worthy to chose them
carefully.

The results between the specific and the global parameters are really close. There is
not a big difference. The deep learning with a specific optimization is chosen because
this technique allows to obtain the best result.

5.5 Comparison with other techniques

In this section, the results obtained by the deep learning algorithm and by the deep
learning algorithms with a specific optimization are compared with other techniques to
forecast the data. Compared techniques are: linear regression (LR), decision tree (DT),
gradient-boosted trees (GBT), random forest (RF), deep learning without optimization
(DP) and deep learning with a specific optimization (DP + EA). More information about
these techniques can be found in the following article [12]. In this part, the deep learning
with a global optimization is not taken into account because the experiments of this
technique were not executed for each historical window.

The following table summarizes the MRE results in % obtained by the execution of
the different techniques to forecast the data for different historical windows:

64 Chapter 5. Results

W LR DT GBT RF DP DP + EA

168 10.0876 2.8958 2.7431 2.0831 1.964498 1.45454
144 7.3397 2.9271 2.7520 2.1863 2.180803 1.506478
120 10.4554 3.1801 3.0165 2.4160 2.487146 1.604587
96 13.5324 3.3032 3.1334 2.7045 2.635448 1.847836
72 14.0328 3.4386 3.2383 2.8912 2.835173 2.084307
48 13.9949 4.0322 3.7019 3.5969 2.993675 2.383614
24 10.8781 4.7625 4.4633 4.4846 4.003731 3.0036

Table 5.9: MRE in % for different forecasting techniques

Experimentation results of LR, DT, GBT, RF are drawn from the following research
[12]. The nature of the techniques that are compared is different. The linear regression
is a linear approach. The decision tree is a decision support. GBT and RF are two other
tree approaches. DP and DP + EA are based on the deep learning approach.

The first observation is that in general the obtained results with a large historical
window are better than with a smaller size. It can be explained because it is easier to
forecast the data when more time is taken into account.

Secondly, the results obtained by the linear regression are the worst compared to all
other techniques. Best results are obtained by DP + EA. It can be explained because
the deep learning creates a neural network that is trained in order to predict with more
efficiency.

Thirdly, the different results show a MRE improvement when the size of w grows. It
can be explained because it is easier to forecast the data with more past values. Indeed,
the best result is obtained when the historical window is 168 (w = 168) except for LR
that is a better MRE with the historical window 144. For all tree-based methods and
the deep learning methods, the improvement of MRE between the historical window 144
and 168 is not big.

Fourthly, results obtained by DP are better than results obtained by RF which is
the best method between LR, GBT and DT. RF results are only better in the historical
window 120. The difference for 144, 120, 96 and 72 is small but for other sizes the
difference is bigger.

Fifthly, results obtained by DP + EA are better for every historical window. More-
over, DP + EA is just an optimization of DP so the obtained results are better than DP.
However, it is interesting to observe that results obtained by all methods are really close.
Only LR method produces systematically weaker results.

Chapter 5. Results 65

Fig. 5.3 : Evolution of the MRE in % according to the historical window for the different
techniques

Figure 5.3 shows the data in the table 5.9 as a graph. This figure highlights that the
results obtained by the different techniques are close excepted for the linear regression
technique that has the worst results.

Finally, these results show that the deep learning is the most effective technique to
forecast the consumption of electricity in Spain. Furthermore, the parameters for this
technique are really important because they can influence a lot the results obtained by
deep learning algorithms. Indeed, deep learning algorithm with a specific optimization
of the parameters has better results than without optimization.

Chapter 6

Conclusion

The aim of this work is to use an evolutionary algorithm to efficiently parametrize a deep
learning algorithm in order to forecast electricity consumption of Spain. The developed
algorithm in this work is based on two principles: deep learning algorithms and genetic
algorithms.

The deep learning algorithm allows to forecast the consumption of electricity through
the creation of a neural network. The difficulty is the parametrization of this neural net-
work because it is necessary to make some choices (e.g. activation function, distribution
function and other choices) (cfr chapter 3).

The genetic algorithm is used to parametrize the different parameters of the neural
network through an evolution principle. Indeed, the genetic algorithm allows to evaluate
different possible solutions and to determine which are the most efficient in order to solve
the problem (cfr chapter 4).

The developed algorithm in this study is compared to other methods to forecast
data such as: linear regression (LR), decision tree (DT), gradient-boosted trees (GBT),
random forest (RF) and deep learning without optimization (DP). The objective is to
analyse if the developed algorithm is more efficient than the other methods that is to say
it predicts the data with more accuracy.

The comparison between the different techniques shows that the deep learning algo-
rithm is the most efficient way to forecast the consumption of electricity of Spain. Indeed,
the mean relative error (MRE) is the weakest with this kind of algorithm (cfr Table 5.8).

Moreover, this study shows that the deep learning algorithm is really sensitive to
the initialization. Indeed, the chosen parameters for the deep learning algorithm by the
evolutionary algorithm decreases the MRE obtained by the deep learning algorithm by
0.5%. Compared to the MRE of 2% obtained by the default case, this is a significant
improvement.

In addition, the developed algorithm, namely a deep learning algorithm combined
with an evolutionary algorithm, is the most efficient method in order to forecast the

68 Chapter 6. Conclusion

consumption of electricity in Spain. Indeed, the consumption of electricity for one day
can be predicted with an accuracy of 1.45454%.

The research presented in our work can be improved. Indeed, it is possible to identify
multiple future improvements to this work for example: managing different input types
for the deep learning algorithm and relaxing the chosen constraints for some parameters
of the deep learning algorithms.

For the moment, the only input of the deep learning algorithm is the different mea-
sures of the consumption of electricity in Spain (cfr section 5.2). It is possible to modify
the deep learning algorithm in order to take into account other inputs such as weather,
period of the year, bank holidays and other kinds of data. These different inputs can be
useful to predict with more accuracy the consumption of electricity. For instance, the
weather can be another parameter of the deep learning algorithm because if there is sun,
people typically use less electricity or people can use more electricity in the summer for
air-conditioning.

Some parameters of the deep learning algorithm had a constrained interval of values
(number of neurons, number of layers, lambda, rho and epsilon). An interesting study
would be to increase the interval of values for these parameters in order to see if the
MRE obtained by the execution of the deep learning algorithm can still be improved.

Bibliography

[1] Eiben A.E. and Smith J.E. Introduction to Evolutionary Computing. Spring, 2003.

[2] Mohammed Awad. Optimization rbfnns parameters using genetic algorithms: Ap-
plied on function approximation. International Journal of Computer Science and
Security (IJCSS), 4:295–307, June 2010.

[3] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research, 13:281–305, February 2012.

[4] Shifali Bhargava. A note on evolutionary algorithms and its applications. Adults
Learning Mathematics, 8:31–45, April 2013.

[5] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in genetic
algorithms. Evolutionary Computation, 4:361–394, December 1996.

[6] Nikhil Buduma and Nicholas Locascio. Fundamentals of deep learning. O’Reilly
Media, June 2017.

[7] Arno Candel and Erin Ledell. Deep learning with h2o. April 2018.

[8] Li Chengdong, Ding Zixiang, Zhao Dongbin, Yi Jianqiang, and Zhang Guiqing.
Building energy consumption prediction: An extreme deep learning approach. En-
ergies, pages 1–20, October 2017.

[9] Janssen Dale and Janssen Cory. techopedia. https://www.techopedia.com/, 2018.

[10] Kenneth De JongDavid, David B. Fogel, and Hans-Paul Schwefel. A history of evolu-
tionary computation. Handbook of Evolutionary Computation, pages 3–17, January
1997.

[11] Lee Donghyun, Suna Kang, and Jungwoo Shin. Using deep learning techniques to
forecast environmental consumption level. Understanding User satisfaction Evalua-
tion in low occupancy Sustainable Workplaces, 9, October 2016.

[12] A. Galicia, J. F. , F. Martinez-Alvarez, and A. Troncoso. A novel spark-based
multi-step forecasting algorithm for big data time series. August 2017.

[13] Anna Gomez. Deep learning in digital pathology. http://www.global-
engage.com/life-science/deep-learning-in-digital-pathology/, February 2018.

70 BIBLIOGRAPHY

[14] Varun Gulshan, Lily Peng, and Marc Coram. Development and validation of a
deep learning algorithm for detection of diabetic retinopathy in retinal fundus pho-
tographs. Jama, Innovations in health care delivery, December 2016.

[15] H2O.ai. H2o documentation. http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-
science/deep-learning.html, 2016-2017.

[16] Jassim Hassanean S. H., Lu Weizhuo, and Thomas Olofsson. Predicting energy
consumption and co2 emissions of excavators in earthwork operations: An artificial
neural network model. Fostering sustainable urban-rural linkages through local food
supply : A transfnational analysis of collaborative food alliances, 9, July 2017.

[17] Jack Kelly and William Knottenbelt. Neural nilm : Deep neural networks applied
to energy disaggregation. ACM International Conference on Embedded Systems For
Energy-E�cient Built Environments, November 2015.

[18] Justin Ker, Lipo Wang, Jai Rao, and Tchoyoson Lim. Deep learning applications in
medical image analysis. In IEEE Access, pages 9375–9389. IEEE, December 2017.

[19] Riccardo Leardi. Genetic algorithms in chemistry. Journal of Chromatography A,
22:226–233, July 2007.

[20] Thomas Likewin, Kumar M. V. Manoj, and B. Annappa. Discovery of optimal
neurons and hidden layers in feed-forward neural network. In IEEE International
Conference on Emerging Technologies and Innovative Business Practices for the
Transformation of Societies (EmergiTech), pages 286–291. IEEE, August 2016.

[21] Adam Lipowski1and and Dorota Lipowska. Roulette-wheel selection via stochastic
acceptance. Physica A: Statistical Mechanics and its Applications, 391:2193–2196,
March 2012.

[22] F. Mart́ınez-Álvarez, A. Troncoso, G. Asencio-Cortés, and J. C. Riquelme. A sur-
vey on data mining techniques applied to energy time series forecasting. Energies,
8:13162–13193, November 2015.

[23] Antonino Marvuglia and Antonio Messineo. Using recurrent artificial neural net-
works to forecast household electricity consumption. Energy procedia, 14:45–55,
2011.

[24] Mohamed Marzouk and Osama Moselhi. Constraint-based genetic algorithm for
earthmoving fleet selection. Canadian Journal of Civil Engineering, 30:673–683,
2003.

[25] James D. McCaffrey. Implementing neural network l1 regularization.
https://jamesmccaffrey.wordpress.com/2017/06/27/implementing-neural-network-
l1-regularization/, June 2017.

[26] Heinz Mühlenbein and Dirk Schlierkamp-Voosen. Predictive models for the breeder
genetic algorithm i. continuous parameter optimization. In Evolutionary Computa-
tion, volume 1, pages 25–49. IEEE, March 1993.

BIBLIOGRAPHY 71

[27] Ghulam Mohi Ud Din and Angelos K. Marnerides. Short term power load forecast-
ing using deep neural networks. In Computing, Networking and Communications
(ICNC), 2017 International Conference on, pages 594–598. IEEE, January 2017.

[28] Michael Nielsen. Neural networks and deep learning.
http://neuralnetworksanddeeplearning.com/index.html, December 2017.

[29] Jürg Nievergelt. Exhaustive search, combinatorial optimization and enumeration:
Exploring the potential of raw computing power. SOFSEM 2000: Theory and Prac-
tice of Informatics, 1963:18–35, January 2002.

[30] Soni Nitasha and Tapas Dr Kumar. Study of various mutation operators in genetic
algorithms. International Journal of Computer Science and Information Technolo-
gies, 5:4519–4521, 2014.

[31] A. Ortiz, J. Munilla, J.M. Gorriz, and J. Ramirez. Ensembles of deep learning
architectures for the early diagnosis of the alzheimer’s disease. International Journal
of Neural Systems, 23, November 2016.

[32] Foram S. Panchall and Mahesh Panchal. Review on methods of selecting number of
hidden nodes in artificial neural network. International Journal of Computer Science
and Mobile Computing, page 455–464, November 2014.

[33] Daniel Peralta, Sara del Ŕıo, Sergio Ramı́rez-Gallego, Isaac Triguero, Jose M. Ben-
itez, and Francisco Herrera1. Evolutionary feature selection for big data classifica-
tion: A mapreduce approach. Mathematical Problems in Engineering, 2015, June
2015.

[34] Stjepan Picek, Domagoj Jakobovic, and Marin Golub. On the recombination op-
erator in the real-coded genetic algorithms. In IEEE Congress on Evolutionary
Computation, pages 3103–3110. IEEE, June 2013.

[35] Greg Ridgeway. Generalized boosted models: A guide to the gbm package. research-
gate, April 2006.

[36] Olympia Roeva, Stefka Fidanova, and Marcin Paprzycki. Influence of the population
size on the genetic algorithm performance in case of cultivation process modelling.
pages 371–376. IEEE, September 2013.

[37] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Net-
works, 61:85–117, January 2015.

[38] Luca Scrucca. Ga: A package for genetic algorithms in r. Journal of Statistical
Software, 53, April 2013.

[39] L. Suganthi and A. Samuel Anand. Energy models for demand forecasting — a
review. Renewable and Sustainable Energy Reviews, 16:1223–1240, February 2012.

[40] Felipe Teodoro, A. M. Lima Clodoaldo, and Marques Peres Sarajane. Supply chain
management and genetic algorithm: introducing a new hybrid genetic crossover op-
erator. In X Encontro Nacional de Inteligência Arti�cial e Computacional, October
2013.

72 BIBLIOGRAPHY

[41] J. F. Torres, A. Galicia, A. Troncoso, and F. Mart́ınez-Álvarez. A novel scalable
approach based on deep learning for big data time series forecasting. 2017.

[42] Jyothi Varanasi and M. M. Tripathi. A comparative study of wind power forecasting
techniques — a review article. In 3rd International Conference on Computing for
Sustainable Global Development), pages 3649–3655. IEEE, March 2016.

[43] Li Xiang, Peng Ling, Hu Yuan, Chi Tianhe, and Shao Jing. Deep learning archi-
tecture for air quality predictions. Environmental Science and Pollution Research,
23:22408–22417, November 2016.

Appendices

Appendix A

Evolution of the genetic algorithm
for the subproblems

0 20 40 60 80 100

-4
.0

-3
.5

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

-0
.5

Generation

F
itn

es
s

va
lu

e

●●
●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●

Best
Mean
Median

Fig. A.1 : Evolution of genetic algorithm for the subproblem 1

76 Chapter A. Evolution of the genetic algorithm for the subproblems

Fig. A.2 : Evolution of genetic algorithm for the subproblem 2

0 20 40 60 80 100

-1
.6

-1
.4

-1
.2

-1
.0

Generation

F
itn

es
s

va
lu

e

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

Best
Mean
Median

Fig. A.3 : Evolution of genetic algorithm for the subproblem 3

Chapter A. Evolution of the genetic algorithm for the subproblems 77

0 20 40 60 80 100

-1
.6

-1
.4

-1
.2

-1
.0

Generation

F
itn

es
s

va
lu

e

●●●●●●●
●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

Best
Mean
Median

Fig. A.4 : Evolution of genetic algorithm for the subproblem 4

0 20 40 60 80 100

-1
.7

-1
.6

-1
.5

-1
.4

-1
.3

-1
.2

-1
.1

-1
.0

Generation

F
itn

es
s

va
lu

e

●

●●●●●

●●●●

●●●●●
●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Best
Mean
Median

Fig. A.5 : Evolution of genetic algorithm for the subproblem 5

78 Chapter A. Evolution of the genetic algorithm for the subproblems

0 20 40 60 80 100

-1
.8

-1
.7

-1
.6

-1
.5

-1
.4

-1
.3

-1
.2

Generation

F
itn

es
s

va
lu

e

●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

Best
Mean
Median

Fig. A.6 : Evolution of genetic algorithm for the subproblem 6

0 20 40 60 80 100

-1
.8

-1
.7

-1
.6

-1
.5

-1
.4

-1
.3

Generation

F
itn

es
s

va
lu

e

●

●

●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Best
Mean
Median

Fig. A.7 : Evolution of genetic algorithm for the subproblem 7

Chapter A. Evolution of the genetic algorithm for the subproblems 79

0 20 40 60 80 100

-2
.0

-1
.8

-1
.6

-1
.4

-1
.2

Generation

F
itn

es
s

va
lu

e
●

●●

●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Best
Mean
Median

Fig. A.8 : Evolution of genetic algorithm for the subproblem 8

0 20 40 60 80 100

-2
.2

-2
.0

-1
.8

-1
.6

-1
.4

Generation

F
itn

es
s

va
lu

e

●●

●

●

●

●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Best
Mean
Median

Fig. A.9 : Evolution of genetic algorithm for the subproblem 9

80 Chapter A. Evolution of the genetic algorithm for the subproblems

0 20 40 60 80 100

-3
.0

-2
.5

-2
.0

-1
.5

Generation

F
itn

es
s

va
lu

e

●

●●●●●●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

Best
Mean
Median

Fig. A.10 : Evolution of genetic algorithm for the subproblem 10

0 20 40 60 80 100

-2
.4

-2
.2

-2
.0

-1
.8

-1
.6

-1
.4

Generation

F
itn

es
s

va
lu

e

l l

l l l l l l l l l l

l l l l l l l l l l l l

l l l l l l l l l

l l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

Best
Mean
Median

Fig. A.11 : Evolution of genetic algorithm for the subproblem 11

Chapter A. Evolution of the genetic algorithm for the subproblems 81

0 20 40 60 80 100

-2
.8

-2
.6

-2
.4

-2
.2

-2
.0

-1
.8

-1
.6

Generation

F
itn

es
s

va
lu

e

l l l

l l l l l l l l l l l

l

l l l
l l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Best
Mean
Median

Fig. A.12 : Evolution of genetic algorithm for the subproblem 12

0 20 40 60 80 100

-7
-6

-5
-4

-3
-2

Generation

F
itn

es
s

va
lu

e

l l

l l
l l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l l l l l l

l

l

l

l
l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l
l

l

l

l

l l
l

l

l

Best
Mean
Median

Fig. A.13 : Evolution of genetic algorithm for the subproblem 13

82 Chapter A. Evolution of the genetic algorithm for the subproblems

0 20 40 60 80 100

-3
.0

-2
.5

-2
.0

-1
.5

Generation

F
itn

es
s

va
lu

e
l

l l l l l l l

l

l l l l l l l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l l

l
l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

Best
Mean
Median

Fig. A.14 : Evolution of genetic algorithm for the subproblem 14

0 20 40 60 80 100

-2
.8

-2
.6

-2
.4

-2
.2

-2
.0

-1
.8

-1
.6

Generation

F
itn

es
s

va
lu

e

l l l l
l l l l

l l l l

l l l l l l l l l l l l l l l l l l l

l l l l l l l l l l l
l l

l l l l l l l l l l

l

l

l

l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

Best
Mean
Median

Fig. A.15 : Evolution of genetic algorithm for the subproblem 15

Chapter A. Evolution of the genetic algorithm for the subproblems 83

0 20 40 60 80 100

-2
.4

-2
.2

-2
.0

-1
.8

-1
.6

Generation

F
itn

es
s

va
lu

e l
l

l l

l

l l l l l l l l l l l l

l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l
l

l

l
l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

Best
Mean
Median

Fig. A.16 : Evolution of genetic algorithm for the subproblem 16

0 20 40 60 80 100

-2
.6

-2
.4

-2
.2

-2
.0

-1
.8

Generation

F
itn

es
s

va
lu

e

l

l l

l l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l l

l

l

l l

l
l

l

l

l

l

l

Best
Mean
Median

Fig. A.17 : Evolution of genetic algorithm for the subproblem 17

84 Chapter A. Evolution of the genetic algorithm for the subproblems

0 20 40 60 80 100

-2
.8

-2
.6

-2
.4

-2
.2

-2
.0

-1
.8

Generation

F
itn

es
s

va
lu

e

l l l

l l l l l l l l l l l
l l l l l l l l l l l

l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Best
Mean
Median

Fig. A.18 : Evolution of genetic algorithm for the subproblem 18

0 20 40 60 80 100

-8
-6

-4
-2

Generation

F
itn

es
s

va
lu

e

l
l l

l

l

l

l l
l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l l

l

l
l

l

l

l

l l

l

l

l

l

l
l

l l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l l
l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l
l l l l

l l

l

l

l

Best
Mean
Median

Fig. A.19 : Evolution of genetic algorithm for the subproblem 19

Chapter A. Evolution of the genetic algorithm for the subproblems 85

0 20 40 60 80 100

-3
.0

-2
.8

-2
.6

-2
.4

-2
.2

-2
.0

-1
.8

Generation

F
itn

es
s

va
lu

e

l l l l l l l
l l

l l l l l l l l l

l l l l
l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l l

l

l
l l l

l

l

l

Best
Mean
Median

Fig. A.20 : Evolution of genetic algorithm for the subproblem 20

0 20 40 60 80 100

-8
-7

-6
-5

-4
-3

-2

Generation

F
itn

es
s

va
lu

e

l l l l l l l l l
l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

Best
Mean
Median

Fig. A.21 : Evolution of genetic algorithm for the subproblem 21

86 Chapter A. Evolution of the genetic algorithm for the subproblems

0 20 40 60 80 100

-1
0

-8
-6

-4
-2

Generation

F
itn

es
s

va
lu

e

l l l l l l
l l

l

l

l
l

l

l

l

l

l
l l

l

l l

l

l

l

l

l
l l

l l l

l

l

l

l

l

l

l

l

l
l l l

l l
l

l
l

l

l

l

l

l l l

l
l

l

l
l l

l
l

l
l l l l l l l l l

l l

l

l

l

l

l

l

l

l

l l

l

l

l l

l

l

l

l

l

l l
l

l
l l l l l

l

l

Best
Mean
Median

Fig. A.22 : Evolution of genetic algorithm for the subproblem 22

0 20 40 60 80 100

-6
-5

-4
-3

-2

Generation

F
itn

es
s

va
lu

e

l

l l

l l
l l l l l l l l l l l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l
l

l

l
l

l

l

l

l

l
l

l

l

l

Best
Mean
Median

Fig. A.23 : Evolution of genetic algorithm for the subproblem 23

Chapter A. Evolution of the genetic algorithm for the subproblems 87

0 20 40 60 80 100

-3
.4

-3
.2

-3
.0

-2
.8

-2
.6

-2
.4

-2
.2

Generation

F
itn

es
s

va
lu

e

l l l

l
l l l l l l l l l l l l l l l l l l

l l l l l l l l l

l l l l l l l l l l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Best
Mean
Median

Fig. A.24 : Evolution of genetic algorithm for the subproblem 24

	Abstract
	Preface
	Glossary
	Introduction
	State of the art
	Deep learning algorithms

	Deep Learning algorithms
	Genetic algorithms
	Results
	Package's versions

	Conclusion
	Bibliographie
	Appendices
	Evolution of the genetic algorithm for the subproblems

