
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN SOFTWARE
ENGINEERING

Mining and Generating Vulnerable Patterns for Security Testing

Ibragimov, Anton

Award date:
2018

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/dc127b66-60ac-4133-b997-cb2182547c89

UNIVERSITÉ DE NAMUR
Faculty of Computer Science

Academic Year 2017–2018

Mining and Generating Vulnerable Patterns for
Security Testing

Anton Ibragimov

Internship mentor: Mike Papadakis

Supervisor: (Signed for Release Approval - Study Rules art. 40)
Patrick Heymans

Co-supervisor: Gilles Perrouin

A thesis submitted in the partial fulfillment of the requirements
for the degree of Master of Computer Science at the Université of Namur

Abstract

ANTON, IBRAGIMOV. Mining and Generating Vulnerable Patterns for Secu-
rity Testing. (Under the direction of Patrick Heymans.)

Genetic programming is an evolutionary technique that improves individ-
uals from a population in order to better fit the user’s needs. In our case, we
apply this technique to create new vulnerabilities from an existing repository
mined from the Linux kernel. A first step was to create token sequences from
this repository. Then, our genetic algorithm derives new vulnerable patterns
according to a fitness function that rely on pattern frequency over the vulner-
able dataset. Our results indicate that genetic programming can indeed make
vulnerabilities more robust over generations. Our patterns fall into two cate-
gories: generic patterns applicable to a large number of files and ones that can
be used on a smaller set.

La programmation génétique est une technique évolutionniste qui opti-
mise les individus d’une population afin de mieux répondre aux besoins de
l’utilisateur. Dans notre cas, nous appliquons cette technique pour créer de
nouvelles vulnérabilités à partir d’un dépôt existant miné du noyau de Linux.
La première étape était de créer une séquence de tokens à partir de ce dépôt.
Ensuite, notre algorithme génétique forme de nouvelles vulnérabilités d’après
la fonction d’adaptation qui se repose sur la fréquence des patterns par rapport
à l’ensemble des données vulnérables. Nos résultats indiquent que la program-
mation génétique peut en effet rendre les vulnérabilités plus robustes au fil des
générations. Nos patterns se répartissent en deux catégories : des patterns
génériques applicables à un grand nombre de fichiers et ceux qui peuvent être
utilisés sur un ensemble plus petit.

Acknowledgements

The internship at the SnT in Luxembourg has allowed me to discover the world
of research and to gain real experience. It has helped me develop my analytical
and interpersonal skills. But more importantly, it provided the chance to work
with great people.

I would like to thank Professor Patrick Heymans and Gilles Perrouin from the
University of Namur for the opportunity they gave me to complete this intern-
ship and for their great assistance while writing this Master Thesis. I would
also like to thank members of the Serval team and especially my internship
promoter Mike Papadakis for his dedication.

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Context . 1
1.2 Research objectives . 2
1.3 Thesis structure . 2

2 Background 3
2.1 Representation of the code . 4

2.1.1 Abstract Syntax Tree . 4
2.1.2 Control Flow Graphs . 5
2.1.3 Program Dependence Graphs 6

2.2 Software vulnerability . 7
2.2.1 Terminology . 7
2.2.2 Vulnerability discovery 7

2.2.2.1 Static analysis 8
2.2.2.2 Fuzzing . 9
2.2.2.3 Penetration testing 9
2.2.2.4 Vulnerability discovery models 9

2.3 Evolutionary Computation . 10
2.3.1 Genetic terminology . 10
2.3.2 Basic idea . 10
2.3.3 Genetic algorithm example 11
2.3.4 Individual evaluation . 12
2.3.5 Mutation . 12
2.3.6 Crossover . 14
2.3.7 DEAP: a novel evolutionary computation framework . . 17

3 Research Method and Contributions 21
3.1 Vulnerable dataset . 21

3.1.1 Origin of the dataset . 21
3.1.2 Building the dataset . 22
3.1.3 Usage of the dataset . 23

i

3.1.4 Dataset technical management 24
3.2 Lexical analysis . 25

3.2.1 Motivation . 25
3.2.2 Tokenization . 25

3.2.2.1 C-tokenizer : the external tool 26
3.2.2.2 C-tokenizer : the internal modifications 27

3.2.3 Token application . 28
3.2.4 Pattern structure representation 28
3.2.5 Data cleaning . 29

3.3 Evaluation strategy . 30
3.3.1 Fitness function . 30
3.3.2 Training data sensitivity 32

3.3.2.1 Overfitting . 34
3.3.2.2 Underfitting . 34

4 Analysis and Results 35
4.1 Vulnerable dataset analysis . 35

4.1.1 Operator and identifier specialisation 36
4.1.2 Vulnerable pattern size . 38

4.2 The technical environment . 39
4.3 The experiment . 40

4.3.1 Data pre-processing . 40
4.3.2 Main process . 41

4.4 Vulnerable pattern selection . 42
4.5 Mutation and crossover used techniques 43

4.5.1 Data validity . 44
4.5.2 Mutation operators application 44
4.5.3 Crossover operators application 45

4.6 Results . 46
4.6.1 Variable parameters . 46

4.6.1.1 First vulnerable pattern 46
4.6.1.2 Fitness process 47
4.6.1.3 Number of jokers 47
4.6.1.4 Number of iterations 47
4.6.1.5 Top individuals scope 48
4.6.1.6 Number of generated individuals 48
4.6.1.7 Fitness mean evolution 49

4.6.2 Visualisation . 50
4.6.3 Coverage investigation . 54

5 Related work 59
5.1 Problem statement . 59
5.2 The Care and Feeding of Wild-Caught Mutants 59

5.2.1 Wild-Caught Mutants toolchain 60
5.2.2 Vulnerable dataset association 62

5.3 Bugram: Bug Detection with N-gram Language Models 63

ii

5.3.1 Bugram presentation . 63
5.3.2 Bugram tokenization . 63

6 Future Works 65

7 Conclusion 67

iii

iv

List of Figures

2.1 The abstract syntax tree . 5
2.2 The control flow graph . 6
2.3 The program dependence graph 7
2.4 Operation of the genetic algorithm 11
2.5 Displacement mutation . 13
2.6 Exchange mutation . 13
2.7 Insertion mutation . 13
2.8 Simple inversion mutation . 14
2.9 Inversion mutation . 14
2.10 Scramble mutation . 14
2.11 Partially mapped crossover . 15
2.12 Cycle crossover . 15
2.13 Modified crossover . 16
2.14 Order crossover . 16
2.15 Order based crossover . 17
2.16 Position based crossover . 17
2.17 DEAP architecture . 18

3.1 Git object diagram . 25
3.2 Pattern structure object diagram 29
3.3 Fitness calculation variables . 31
3.4 Bias and variance . 33
3.5 Case of underfitting and overfitting 33

4.1 Number of patterns per size . 38
4.2 The Poisson distribution . 43
4.3 One-point crossover . 45
4.4 Two-points crossover . 45
4.5 Uniform crossover . 46
4.6 Results with different numbers of generations 53

5.1 The mutgen / mutins toolchain 60
5.2 Tokenization in Bugram . 63

v

vi

List of Tables

2.1 Static analysis: advantages and disadvantages 8
2.2 Fuzzing: advantages and disadvantages 9
2.3 Penetration testing: advantages and disadvantages 9
2.4 Vulnerability discovery models: advantages and disadvantages 10

3.1 C-Tokenizer output . 26
3.2 Basic token output . 27
3.3 The Joker . 28
3.4 A pattern structure example . 29
3.5 The confusion matrix . 31

4.1 Initial vulnerable dataset statistics 36
4.2 Operator and identifier types : top 10 37
4.3 Pattern probability selection . 43
4.4 Different parameters depending on the figure 51
4.5 File coverage for 100 iterations 55
4.6 File coverage for 200 iterations 56
4.7 File coverage for 500 iterations 56
4.8 File coverage for 1000 iterations 57
4.9 Average results . 58

vii

viii

Chapter 1

Introduction

1.1 Context

Modern software is complex, adaptive and pervades nearly every aspect
of everyday lives. This implies that the aftermath of errors introduced dur-
ing development [1] can lead to serious consequences, such as critical services
disruption or security issues.

Software vulnerabilities are the source cause of computer security prob-
lems. The protection of computer systems depends on the identification of
vulnerabilities in software and thus, the security became a growing concern.
To provide a security layer, algorithms must meet certain criteria in implemen-
tations and unfortunately, this is not always the case.

The Heartbleed1 vulnerability is the perfect example concerning crypto-
graphic algorithms. Heartbleed is a vulnerability that affects OpenSSL, an open
source implementation of the Secure Socket Layer (SSL) protocol used to pro-
vide cryptographic services. Under normal conditions, this weakness permits
stealing protected data by the SSL/TLS encryption used to secure the Internet.
In fact, a single missing sanity check in its code source turned it into a huge
security hole. Actually, attackers could read sensitive information from an es-
timated 24-55% of the most popular one million websites [2]. This memorable
flaw emphasised the fundamental role of the security inside the source code.

Nowadays, most of critical vulnerabilities are found by manual analysis
of the code by experts. Therefore, the security analyst is manually reviewing
code - a laborious work requiring an advanced knowledge of the system. The
difficulty of this complex task creates a demand for tools to help analysts in
their daily work. Hence, these tools could potentially prevent human error.

1Source: http://heartbleed.com

1

1.2 Research objectives

Complexity of software systems is not ready to stop increasing. From this
assessment, testing and maintenance of software became really important. These
two aspects can take up to 80% of the development cost [3]. Subsequently, there
is an urgent need to automate these activities.

The objective of this master thesis is to set an automatic technique to iden-
tify vulnerable code parts, similar to what vulnerability prediction models do.
The technique mines patterns from past defects and based on them, it predicts
likely vulnerable code parts on the code under analysis. In short, mined pat-
terns can be used to guide security inspections by pointing out what and where
to check, such as code reviews and testing.

1.3 Thesis structure

This thesis is structured as follows. Chapter 2 presents the key concepts
of the thesis such as static analysis and evolutionary computation. Chapter 3
presents my research methods and contributions, that is how from a vulnera-
ble dataset of files, it is possible to create vulnerable mutants. Following all the
turnkey concepts, chapter 4 talks about results. At first, this part shows all the
parameters for the experiment and then, the results in graphic visualisations.
Then, chapter 5 gives a quick review on some existing work that can be related
directly. It explains briefly alternative ways of analysing the subject and the
connection that can be made with this master thesis. At the end, chapter 6 con-
cern directions for further research in this context. The last chapter 7 resumes
the work and the significant conclusions to be drawn.

2

Chapter 2

Background

This chapter presents the general knowledge concerning the main subject
and its content is based on Yamaguchi’s thesis “Pattern-based vulnerability
discovery” [4]. At this stage, it is essential to develop key concepts in order to
be able to understand the general view. There are three important concepts to
define: code representation, vulnerability and genetic programming.

It is necessary to be able to manipulate a source code automatically. The
solution for this requirement consists of manipulating a representation of the
code. There are different ways to represent a code and they are presented in
the first section. The aim is to show how a source code can be illustrated and
processed.

Another imperative definition concerns the concept of vulnerability in soft-
ware. It is the starting point for this work and therefore, its terminology must
be defined. Plus, it is interesting to explain how a software vulnerability is
discovered because all work conducted here rely on this concept.

The last developed concept is the genetic programming. The third section
introduces the basic idea with examples in order to understand the way it
works in broad terms. Moreover, DEAP, the tool that delivers results is pre-
sented with an architectural view.

3

2.1 Representation of the code

Depending on the purpose and the field, there are different kinds of rep-
resentations of the code. They have been designed in order to analyse and
optimise a specific code. This section is based on Yamaguchi’s work [5] with
the aim of explaining code representation. Here is the classic representations
list :

• Abstract syntax tree;
• Control flow graphs;
• Program dependence graphs.

The following sections are based on a simple source code as seen on list-
ing 2.1.

1 void foo () {
2 i n t x = source () ;
3 i f (x < MAX) {
4 i n t y = 2 ∗ x ;
5 s ink (y) ;
6 }
7 }

Listing 2.1: A source code

2.1.1 Abstract Syntax Tree

The abstract syntax tree is a classic structure used in program analysis and
it is the basis for the generation of many other code representations. The tree
encodes how statements and expressions are nested to produce programs. In
addition, the abstract syntax tree does not represent the concrete syntax chosen
to express the program contrarily to the parse tree. It ignores details of program
formulation that does not add information on the semantics and plus, the ab-
stract syntax does not contain punctuation symbols because they are already
encoded implicitly in the tree structure.

Generally speaking, abstract syntax trees are convenient for simple code
transformations and can be useful to identify semantically similar codes. How-
ever, the problem in our case is that AST can hardly work based on code snip-
pets and therefore, it is not flexible enough in our context.

Figure 2.1 shows the abstract source tree for listing 2.1. Regarding to its rep-
resentation, the abstract tree is an ordered tree where inner nodes are operators
and leaf nodes are operands.

4

Figure 2.1: The abstract syntax tree

2.1.2 Control Flow Graphs

A control flow graph is an abstract representation of an algorithm where
each node represents a basic block of code (a sequence of instructions). The
edges in the graph represent possible transfers of control between basic blocks
[6]. In other words, a control flow graph describes the code statements order
and conditions that need to be respected for a particular path of execution. It is
also important to know that edges need to be ordered and labelled (true, false
or ε). When a block has no outgoing, the edge is labelled with ε. Figure 2.2
shows the control flow graph for the listing 2.1.

For example, in the security context, control flow graphs have been chosen
to detect malicious applications in Android. As a matter of fact, it should be
pointed out that most methods for detection of Android malware are based
on permission or on the identification of expert features - unfortunately, these
approaches are susceptible to obfuscation techniques. In this case, a method
was proposed for malware detection based on control flow graph [7].

Also, control flow graphs have become a standard code representation in
reverse engineering to assist in the program understanding. However, even if
a control graph flow displays the control flow of a given application, it fails to
provide data flow information. To be precise, it means that this kind of graph
cannot be efficiently used to pinpoint statements [5].

5

Figure 2.2: The control flow graph

2.1.3 Program Dependence Graphs

The program dependence graph helps to determine all statements and pred-
icates that affect the value of a variable at a specified statement. It represents
dependencies among statements and predicates. It has two types of edges that
can be seen on figure 2.3.

Data dependency: an edge expressing the influence of one variable on an-
other;

Control dependency: an edge corresponding to the influence of predicates on
the values of variables.

The program dependence graph represents the essential data relationships
and the essential control relationships without the unnecessary sequencing
present in the control flow graph. These dependence relationships determine
the required sequencing between operations, showing possible parallelism [8].

In general, an in-depth analysis of the program dependence graph can po-
tentially bring many optimisations. This is firstly due to connections between
relevant parts of the program - therefore, many code improvements can be per-
formed thanks to the representation. Plus, the hierarchical part of the program
dependence graph allows an effective summarisation of the program.

6

Figure 2.3: The program dependence graph

2.2 Software vulnerability

2.2.1 Terminology

A software vulnerability has one of these three forms [9]:

Access control vulnerability: The operating system performs operations that
do not respect the security policy as described by the access control. In
other words, there is a need to determine what operations are allowed on
system objects for every subject and object in the system.

State-space vulnerability: It is a characterisation of a vulnerable state which
tells the difference from all non-vulnerable states [10]. The definition of
states dependent on the functionality of the system and thus, each safe
and unsafe state must take into consideration the environment of the
system. Also, this kind of vulnerability can be defined as unfortunate
characteristic that grants a threat to potentially happen [11].

Fuzzy vulnerability: It is a violation of the expectations of users and espe-
cially, when the violation is provoked by an external object.

A specification, a development or a configuration error can make software
vulnerable. This means that a software vulnerability is an instance of an error.

2.2.2 Vulnerability discovery

This section describes how a vulnerability can be detected and its content
is based on Liu’s work [12].

7

To begin with, a software vulnerability can be organised into three different
activities :

• Vulnerability discovery;
• Vulnerability analysis;
• Vulnerability exploitation.

The first activity concern software vulnerability discovery that tries to de-
tect existed but unfounded vulnerabilities. Nowadays, discover part has be-
come the focus of researchers. Regarding discovery techniques, it went from
manual discovery to computer assisted discovery.

The second activity is software vulnerability analysis. It spotlights on in-
vestigate discovered software vulnerabilities. With analysis, it can be possible
to detect new or same type of vulnerabilities. Plus, it can help to avoid and
defend from this specific kind of vulnerability.

The last activity is related to exploitation. As its name suggests, it concerns
a concrete exploitation of the discovered vulnerabilities. It includes the attack
using the vulnerabilities and the defence against the vulnerabilities.

Obviously, vulnerability discovery is the basis of the two other categories.
In order to discover defects or weaknesses inside the software, there are some
techniques:

2.2.2.1 Static analysis

It is the action of checking out a system depending on its content or its doc-
umentation without executing the program. In other words, it is about man-
ual or automated (e.g. FindBugs1) code inspection. This technique requires
spending lots of time and it highly depends on the experience and skills of the
analyst.

Static analysis

Advantages
- No need to execute the program;
- Easily integrated into the software development circle;
- Able to find bugs before the release of software.

Disadvantages

- High false positive rate;
- Need a human to verify the results;
- Cannot be entirely automatic;
- Unable to detect conception bugs;
- Unable to detect vulnerabilities caused by environment.

Table 2.1: Static analysis: advantages and disadvantages

1http://findbugs.sourceforge.net/

8

2.2.2.2 Fuzzing

The concept of fuzzing is characterised by a generation of random charac-
ters. In most cases, a lot of generated data is totally invalid. At the present time,
researchers proposed new methods of data generation like the data mutation
technique. This latter technique requires knowledge about the tested environ-
ment and therefore, a human involvement is expected in the process. It is also
worth noting that data mutation is more relevant when we have to deal with
very complex specifications.

Fuzzing

Advantages
- Easy understandable;
- No false positive;
- High automation degree.

Disadvantages
- High randomness;
- High false negative;
- Low degree of generalisations.

Table 2.2: Fuzzing: advantages and disadvantages

2.2.2.3 Penetration testing

It evaluates the security of a system by reproducing attacks and it deter-
mines if these latter were successful. Penetration testing can bring developers
a list of vulnerabilities in the environment of test, which can be used to im-
prove security. Note that the penetration testing has become a popular part of
quality assurance techniques for web applications [13].

Penetration testing

Advantages
- No false positive;
- Based on practical user environments;
- Expose vulnerabilities hard detectable by other tools.

Disadvantages
- Technique heavily depending on human;
- Results depend on tester skills and experience;
- May hurt the tested system.

Table 2.3: Penetration testing: advantages and disadvantages

2.2.2.4 Vulnerability discovery models

VDMs are probabilistic methods for modelling the discovery of software
vulnerabilities. They operate on the operational environment and the vulnera-
bility discovery date. They are a helpful tool for understanding vulnerabilities

9

and estimating characteristics of software systems [14]. Also, it can predict the
future vulnerability discover process.

Vulnerability discovery models

Advantages
- Use of the discovered vulnerabilities;
- Able to predict the rate of vulnerability discovery
and the total number of vulnerabilities.

Disadvantages
- Some VDMs base needs to be validated;
- Only apply to a single software;
- Lack general valid VDMs.

Table 2.4: Vulnerability discovery models: advantages and disadvantages

2.3 Evolutionary Computation

This section describes principles of natural selection applied to the com-
putation, that is the evolutionary computation. It is based on Forrest, Koza and
Sivanandam works [15, 16, 17].

2.3.1 Genetic terminology

Evolutionary computation is a name wrapping genetic algorithms (GA),
genetic programming (GP), evolutionary strategies and evolutionary program-
ming. These concepts are related but they are different [18].

Generally, GAs use a fixed length representation whereas GP uses a variable
size structure. Conventionally, the standard representation of each individual
in GA is a stream of bits. GP is a variant of GAs where the hypothesis being
manipulated are programs rather than bit strings [19]. Plus when it comes to
GAs, they do not undoubtedly represent the evolution of algorithms, but rather
a subgroup of all possible algorithms.

2.3.2 Basic idea

Genetic algorithms work has begun in the 60s with John Holland at the
University of Michigan. In 1975, his first accomplishment was the publication
of “Adaptation in Natural and Artificial System”. The basic idea is that the
genetic pool of a given population potentially contains the right solution, or
even a better solution to a problem [17].

In order to understand genetic programming, the connection must be made
with the Darwinian natural selection. In nature, biological structures that can

10

adjust themselves to their environment survive and reproduce at a higher rate
over a period of time. In other words, structure is the consequence of fitness.

Hence, a genetic algorithm is a form of evolution. Genetic algorithm is a
method that can be used as a problem solver and as a modelling for evolu-
tionary systems. For many types of problems, genetic algorithms can help to
evolve a solution with the help of diversified techniques. The latter can in-
clude optimisation and determination of the relevant solution. Also, the per-
fect solution does not exist as these techniques are often used when no optimal
deterministic solution can be found.

Generally, genetic algorithms work on simplified representations of the nat-
ural world (e.g. binary digits). But they are qualified enough to evolve sophis-
ticated structures. These structures are called individuals (or offspring) and
can illustrate a solution form. Note that not every form is a valid solution for
the specific problem.

2.3.3 Genetic algorithm example

Figure 2.4: Operation of the genetic algorithm

As an example [15], a population of three individuals on figure 2.4 can be
seen. At Tn , these individuals are:

• Individual A : 00111
• Individual B : 11100
• Individual C : 01010

Thereafter, a selection is done according to the fitness function. This process
can be seen as the individual reordering: the individual with the best fitness
score will be on top of the list and the worst one at the bottom. According
to figure 2.4, the individual B (11100) has the best fitness score following by
the individual C and A. After the selection process, the genetic operators are
put into use: the first individual on the list is mutated and the remaining two
undergo the crossover process. At Tn + 1, there are three new individuals:

11

• Individual B’ : 01100
• Individual AC : 11010
• Individual CA : 01100

Individual B’ is the mutation of the individual B. Individual AC and CA are
the offspring of the individual A and C.

2.3.4 Individual evaluation

As mentioned before, there is a function called the fitness function. In fact,
each individual is evaluated in the environment and he is attached with a nu-
merical evaluation. This latter is defined by the fitness function F as seen on
figure 2.4.

The environment can be different depending on the experiment purpose.
For example, it could be a computer simulation or an interaction with other
individuals. In most cases, fitness function returns a number that will be linked
with the individual. The fitness function is the command post for the genetic
algorithm if a specific problem has to be resolved.

After having computed all the fitness scores, the algorithm will sort out
individuals according to their fitness result. This is when the selection process
enters in action: individuals with a low fitness score are eliminated and those
with a good fitness score are preserved.

Then, the selected individuals face genetic operators such as the mutation
and the crossover in a probabilistic manner in order to deliver a new popu-
lation of individuals. New generations can be produced in two distinct ways
[15] :

1. Synchronously: The old generation is completely replaced by the new
one;

2. Asynchronously: The old and new generation overlap.

Logically, the global fitness score of the population should improve. There-
fore, the individuals of the new population are considered as improved solu-
tions to the specific problem.

With the operations of selection, mutation and crossover, the genetic algo-
rithms will gather over generations towards the near global optimum.

2.3.5 Mutation

With the aim of improving a population score, genetic algorithms can per-
form an asexual recombination to individuals: the mutation operation. Muta-
tion is a way to get new individuals inside a population. It consists in changing

12

the value of genes. In fact, random changes can be an excellent way of explor-
ing the search space [17].

In genetic algorithms, mutation brings diversity. It operates with only one
individual and there are multiple mutation types. The following list presents
some operators and it is based on Larranaga’s work [20].

Displacement mutation (DM): The DM operator randomly selects sub-list with
elements from the core list. This latter is cut and then inserted in a ran-
dom place.

On figure 2.5, the sub-element (3 4 5) is selected and it is placed after
element 7. This kind of mutation is also called “Cut mutation”.

Figure 2.5: Displacement mutation

Exchange mutation (EM): The EM operator randomly selects two elements in
the list and exchanges them as it is suggested.

On figure 2.6, the elements 3 and 5 are exchanged. The exchange muta-
tion operator is also called the “Swap mutation operator”.

Figure 2.6: Exchange mutation

Insertion Mutation (ISM): The ISM operator choose an element randomly from
the list and removes it. Then it inserts the removed element in a randomly
selected place.

On figure 2.7, the element 4 is inserted after element 7. The insertion
mutation operator is also named the “Position based mutation operator”.

Figure 2.7: Insertion mutation

13

Simple Inversion Mutation (SIM): The SIM selects two cut points randomly
in the list and a reverse operation is applied.

For example, on figure 2.7, the first cut point is between elements 2 and
3. The second cut point is between elements 5 and 6.

Figure 2.8: Simple inversion mutation

Inversion Mutation (IVM): The IVM operator is comparable to the displace-
ment operator. Likewise, it randomly selects a sub-list from the basic
list. Then, this latter is deleted from the list and inserted in a randomly
selected position. But this time, the sub-list is inserted in reversed order.

On figure 2.9, the sub-list (3 4 5) is selected, reversed and inserted af-
ter element 7. The insertion mutation is also known as the “Cut-inverse
mutation operator”.

Figure 2.9: Inversion mutation

Scramble Mutation (SM): The SM operator selects a random sub-list and sim-
ply scrambles it.

For instance, on figure 2.10, the sub-list (4 5 6 7) is selected and a permu-
tation is applied.

Figure 2.10: Scramble mutation

2.3.6 Crossover

Genetic recombination or sexual reproduction is a key operator for natural
evolution. From a technical point of view, it takes two parents and it produces

14

a new result by mixing characteristics found in the originals. In biology, the
most common recombination is the crossover.

The consequence of recombination is decisive because it grants character-
istics from two different parents to be assorted. In fact, if the father and the
mother possess excellent qualities, it is expected that all the good qualities will
be noticeable in the child.

Mutants do not really provide a lot of new fresh individuals. Hence, the
crossover operation offers new offspring to the population. There are many
crossover techniques and the following list is presented few ones [21].

Partially Mapped Crossover (PMX): The PMX operator attempts to preserve
the absolute position of elements. It randomly selects two cut points on
both parents. The sub-list in the first parent replaces the corresponding
sub-list in the second parent. Then, the inverse replacement is applied
outside the cut points with the aim to remove duplicates.

On figure 2.11, the mapped sections are (5 6 4) and (2 3 6). Regarding
to the mapping, element 5 becomes 2 (5 → 2). For the second step, the
element 4 becomes 6 and the element 6 becomes 3 (4→ 6→ 3). It can be
simplified by saying that element 4 become directly 3 (4→ 3).

Figure 2.11: Partially mapped crossover

Cycle Crossover (CX): The CX crossover focuses on sub-list that covers the
same position in both parents. Then, elements are reproduced from the
first parent to the offspring at the same position. The remaining positions
are filled with elements of the second parent.

On figure 2.12, (3 6 4) is selected and the cycle is (3→ 4→ 6→ 3).

Figure 2.12: Cycle crossover

Modified Crossover: This operator is a simple extension of the one-point crossover.
A cut position is taken randomly on the first parent. Then, the offspring
is built by appending the second parent part of the initial segment of the
first parent before the cut point. Plus, the duplicates are removed.

15

On figure 2.13, the cut point is between elements 2 and 5 of the first par-
ent. The offspring takes the left part of the cut point and the right part
of the second parent. The element 2 is considered as duplicate, so it is
replaced.

Figure 2.13: Modified crossover

Order Crossover (OX): The order crossover attempts to preserve the relative
order rather than the absolute position. The OX operator extends the
modified crossover by establishing two cut points randomly. The sub-list
between the two cut points in the first parent is copied to the offspring.
Then, the remaining positions are completed depending on the elements
of the second parent from the second cut position.

On figure 2.14, the sub-list (5 6 4) is between the two cut points. The first
step takes this sub-list without any modification. The second step takes
elements from the second parent at the second cut point and puts them in
the offspring - these elements are (5 7 8 1 4 2 3 6). If a element of the last
list appears in the sub-list (5 6 4), they are ignored. Therefore, the final
list to be added to the offspring is (7 8 1 2 3).

Figure 2.14: Order crossover

Order Based Crossover (OBX): The OBX operator spotlights the relative order
of the parent elements. At first, a set of elements is chosen in the first
parent and they are put in the same order in the offspring. But, their
positions are chosen depending on the second parent. The remaining
positions are completed with the elements of the second parent.

On figure 2.15, elements (5 4 3) are selected in the first parent (the order is
important). In the second parent, these elements are found in a different
order at position (2 4 6). As a consequence, elements (5 4 3) takes place at
position (2 4 6) in the offspring. The remaining positions are completed
with elements from the second parent.

16

Figure 2.15: Order based crossover

Position Based Crossover (PBX): The PBX focuses on the relative order inher-
itance from the parents. Concerning the absolute position of the elements
from the second parent, it is barely kept. Regarding the functioning, a list
of positions is selected in the first parent. Then, elements from this posi-
tion are copied to the offspring at the same position. The other positions
are completed with the remaining elements.

On figure 2.16, positions for elements (5 4 3) are selected in the first par-
ent. Later, they are found at the same position in the offspring. The
remaining part of the offspring is filled with elements from the second
parent.

Figure 2.16: Position based crossover

On another note, in the context of the travelling salesman problem, it is
interesting to point out that the order-preserving crossover operators are supe-
rior to the operators preserving the absolute position of the elements. In fact,
in the experiment, the order crossover (OX) operator is better than the partially
mapped crossover (PMX) and the cycle crossover (CX) [22].

2.3.7 DEAP: a novel evolutionary computation framework

The distributed evolutionary algorithms in Python (DEAP 2) is a novel evo-
lutionary computation framework for prototyping and testing ideas [23] de-
veloped at the Laval University. In contrast to common black box type of
frameworks, DEAP looks for explicit algorithms and transparent data struc-
tures. Here, the term “black box type framework”means that it brings high
level functionality and it does not bring implementation details. For instance,
some evolutionary computation frameworks like EO [24], ECJ [25] or Open
BEAGLE [26] are black box types.

As a matter of fact, these listed frameworks can be compared to DEAP
even if they work in a different way. For example, ECJ provides an alterna-
tive higher level programming language by offering to set up the algorithms

2Source: https://github.com/DEAP/deap

17

via a pipeline concept submitted to the framework through a configuration file.
When it comes to Open BEAGLE, there is a possibility to customise the algo-
rithm parameters via an external XML file. It is clear that from a software en-
gineering point of view, these solutions are fascinating and interesting because
they can adapt an algorithm in order to meet the requirements. Nevertheless,
the developer returns to the main problem : they are black box frameworks.

In the context of the evolutionary computation, black boxes can become
a handicap when it is about exploration for new algorithms or using custom
methods. Plus, if documentation is missing, the developer needs to look into
the code details at a lower level. Thus, the framework DEAP provide a toolbox
that allows to write a custom evolutionary algorithms and every aspect of the
process.

It must be emphasised that DEAP is developed in Python programming
language. This latter has comprehensible syntax and is accessible for any de-
veloper. In addition, it supports the object-oriented programming and has a
dynamic runtime environment. However, Python has some a major drawback:
the fact that it is interpreted implies a slow execution compared to compiled
languages like C. The project was developed in Python in the first instance be-
cause it is easier to develop a prototype in this programming language in order
to test ideas.

Figure 2.17: DEAP architecture

The architecture of DEAP is assembled around different components as
seen on figure 2.17. There are three modules in core section.

1. Base: It contains objects and data structures regularly used in evolution-
ary computation. It has three classes:

• a basic fitness;
• a coded tree;
• a toolbox which is a package for the operators that the developer

wants to use in his personal evolutionary computation.

18

2. Creator: It is a meta-factory that offers creation of classes giving free-
dom to the user from the weight of a class definition. In other words,
attributes, data and functions can be dynamically added to create new
object classes.

3. Tools: It contains regularly used evolutionary computation operators.
Moreover, it gives analysis tools such as check-pointing, statistics and
genealogy.

Thereafter, there are three other sections which goes with the core section and
it has five different modules.

1. Algorithms: It contains common algorithms in evolutionary computa-
tion. Developers can add their custom algorithms.

2. GP: This module contains operators and data structures relating to ge-
netic programming.

3. CMA: The covariance matrix adaptation evolution strategies can be found
in this module. It is an evolutionary algorithm for difficult non-linear
con-convex black-box optimisation.

4. Benchmarks: As its name suggests, it provides benchmark functions for
analysing algorithm efficiency.

5. DTM: It means “Distributed Task Manager” and it manages parallelism.

In conclusion, the DEAP framework merges the adaptability and the poten-
tial of the Python programming language with a complete evolutionary com-
putation components. These two aspects promote a rapid prototyping of new
ideas and strengthen developing custom algorithms.

19

20

Chapter 3

Research Method and
Contributions

3.1 Vulnerable dataset

Once a vulnerability is discovered, the analysis part can start. This section
explains in detail the vulnerable dataset that will be used as the basis work and
its content relies on paper published by the Serval team from SnT [27, 28].

3.1.1 Origin of the dataset

Effective research should be linked to a specific environment since that a
global solution fitting on every domain does not exist. In this case, the vul-
nerable dataset is based on a specific project, the Linux kernel. In fact, studies
proved that cross projects are commonly less effective than the project specific
ones [29].

The reason for choosing the Linux kernel as a starting point is due to the
fact that its community is well organised and works with strict instructions.
Consequently, the Linux kernel accumulates a well-reported history of vulner-
abilities and therefore, it is easy to gather all the useful information. Moreover,
the fact that the Linux kernel is open-source flavours experimentation and re-
search. Also, it is important to mention that the Linux community created the
git platform and they were the first to use it in 2005. Thus, from that point
of view, the stability of the version control system implies a strong basis for a
decent database.

The vulnerable dataset should be supported by a strong foundation. To
achieve it, a mining is performed on all Linux kernel vulnerabilities reported
in the National Vulnerability Database (NVD) between 2005 and 2016. As a

21

reminder, the NVD1 is the U.S government repository of standards-based vul-
nerability management data. It includes databases of security checklist refer-
ences, security-related software flaws, misconfigurations, product names, and
impact metrics.

To assemble the vulnerable dataset, the Common Vulnerabilities and Ex-
posures (CVE) database is employed. Here, a vulnerability is considered as
a program element that was modified to fix vulnerabilities. Furthermore, the
CVE database is chosen because it is among the largest vulnerability databases
and it includes vulnerabilities that are recognised by the Linux developers.

3.1.2 Building the dataset

The vulnerable dataset will contain well-known vulnerabilities. Before achiev-
ing it, a process of collecting vulnerable files is set up. As mentioned before, the
core basis is the CVE-NVD database concerning the Linux kernel. The process
follows these steps:

1. Collecting all remote repository git URLs of the Linux kernel;
2. Designing a regular expression for extracting the commit hash from the

git URLs that mention these repositories;
3. Extraction of all commit hashes that are in the URL of the vulnerability

reports using the regular expression;
4. Finding all the commits with a CVE number reference;
5. Retrieving all vulnerable files listed by the commits mentioned before.

However, some vulnerability occasionally affects parts in the Linux kernel
written in assembly code. The choice of only considering code written in C is
motivated by the fact that the biggest part of this open-source project is written
in this programming language.

On another note, this process makes a hypothesis that the known and fixed
vulnerabilities are accurate. But eventually, some of this data may represent
some false negatives or false positives. Nevertheless, taking into account the
history of the Linux kernel vulnerability report, there seems little likelihood of
such scenarios.

1Source: https://nvd.nist.gov

22

3.1.3 Usage of the dataset

Once the vulnerable dataset is generated with the collector, the next con-
cerns the retrieval of the useful information. For each vulnerable file from the
dataset, an extraction of two different files is performed. More specifically, here
is the list of the retrieved information:

• The vulnerable file name and its content.
• The patched of the same file and its content.

To sum up, the information concerns the same file but with a different content
that is examined. In practice, the content variation between the two files is the
vulnerability indicator.

To highlight differences between two files like in git, the GNU Diffutils
package2 is chosen. Through this package, the “diff” command is used for
showing differences between two files. Plus, the unified format is selected for
the output. In other words, the output format is more condensed because it
ignores superfluous context lines. The command line for listing 3.1 shows a
basic diff command.

1 diff -U file1 file2 > result.git

Listing 3.1: Diff command

• diff: the diff command;
• -U: the unified format;
• file1: the vulnerable file;
• file2: the patched file;
• result.git: the destination file with the output result.

On output, a list of chunks is generated depending on the modifications.
Each chunk starts with a line that looks like on listing 3.2.

1 @@ −N1 ,N2 +N3 ,N4 @@

Listing 3.2: Diff output

• N1: The file line number where content was removed;
• N2: The number of lines that were removed;
• N3: The file line number where content was added;
• N4: The number of lines that were added.

To illustrate a concrete result, listing 3.3 shows a part of an output. This ac-
tual chunk is from the file “net namespace.c” that was found in the vulnerable
dataset. Lines starting with a minus (-) are the lines that were removed. With
the same logic, lines starting with a plus (+) are the lines that were added.

2https://www.gnu.org/software/diffutils/

23

Clearly, following the logic of a normal software development, the buggy
part of the source code is removed with a security patch. In other words, the
removed lines can be considered without any doubt as vulnerabilities. Because
of that, the next step implies selecting these removed lines and treat them as
vulnerabilities.

1 @@ −317 ,7 +353 ,7 @@
2

3 l i s t a d d t a i l (&ops−>l i s t , l i s t) ;
4 − i f (ops−>i n i t) {
5 + i f (ops−>i n i t | | (ops−>id && ops−>s i z e)) {
6 f o r e a c h n e t (net) {
7 − e r r o r = ops−>i n i t (net) ;
8 + e r r o r = o p s i n i t (ops , net) ;
9 i f (e r r o r)

10 goto out undo ;

Listing 3.3: Git result

3.1.4 Dataset technical management

From the technical point view, a Matthieu Jimenez3 project is used in order
to generate a vulnerable dataset object. From this point, a Java program is
developed to handle the content. To summarise, here are the technical steps
for this section:

1. Extracting the vulnerable dataset from a previous work;
2. Selecting all the vulnerable and patched files stored in the dataset;
3. For each vulnerable and patched file where the file name is the same, the

“diff” command is executed and the result is saved in a new file;
4. The result is read with a Java program in order to collect information;
5. A regular expression is applied to save useful information for each git

result: the line numbers, the added/removed lines and the file name.

From there, the vulnerable content is now ready to be processed. The next
phase is concerning the lexical analysis as the vulnerable part of the dataset is
now extracted and kept under a structured program.

With the modelling point of view, an output like on listing 3.3 is processed
with a personal architecture that can be seen on figure 3.1. There are three
different classes: GitFile, GitChange and GitLine.

As its name indicates, GitFile represents a “.git” file. It contains information
about the file name and the location. A GitFile object possesses changes for a
given file - this is the concept of GitChange.

3https://github.com/electricalwind

24

GitLine

GitFile GitChangepossesses 1..*1

concerns1..*

1

Figure 3.1: Git object diagram

For instance, each chunk delimited by the line seen on listing 3.2 represents
a GitChange object. Each object of this type has information about concerned
lines. When it comes to the content, the idea of GitLine comes up. In fact,
each GitChange has one or multiple line altered. On listing 3.2, there are two
changes than begin on lines 4 and 7.

The concept of GitLine is to couple each modifies part. For example, the two
changes mentioned before represents two GitLine objects where the modified
content can be found.

The presented structure facilitates the lexical analysis. In fact, this archi-
tecture points out directly the useful information like the file name and the
changed content. Each removed content is considered as vulnerable part and
therefore, the lexical analysis focuses on this element.

3.2 Lexical analysis

3.2.1 Motivation

There is a lot of scientific work based abstract syntax tree. As the name sug-
gests, the representation is based on the concept of a tree as a whole. The prob-
lem is that vulnerable code is often given in terms of snippets which complicate
the task of parsing it using AST tools. Unlike the syntax tree, this technique is
based on a sequence of tokens.

3.2.2 Tokenization

In the world of programming languages, words are objects. These objects
can be variable names, numbers, keywords, identifiers, etc. Generally, “token”
is the name given to these objects. In this case, a token is a categorised block
of text. It is frequently defined by regular expressions, which are treated by a
lexical analyser.

A lexical analyser will take in input a character sequence and will divide
into tokens. Writing a lexical analyser is not very difficult. In fact, the process

25

needs to read an input and sees if the encountered token is a keyword, an
identifier, a whitespace, etc [30]. In short, the process of dividing the input text
into units called tokens is referred to as tokenization [31].

3.2.2.1 C-tokenizer : the external tool

To begin with, there is a tool named “C-tokenizer” [32] and as its name sug-
gests, it is a tokenization tool providing a basic C code analysis. It is based on
the “tokenizer” package that can be found with “npm”, the package manager
for the JavaScript runtime environment node.js.

For the technical part, the tokenizer interface follows the WriteStream from
node.js. The tokenizer is looking for the longest string in order to match it with
one or more rules. For the record, rules are regular expressions associated with
a type name. Listing 3.4 shows a source code that will be tokenized with the
node command. The result is shown on table 3.1.

1 # include ” s t d i o . h”
2 # include ” s t d l i b . h”
3 /∗ Ex1 ∗/
4 i n t main (i n t argc , char ∗∗argv) {
5 p r i n t f (”%d\n” , foo (a t o i (argv [1]))) ;
6 re turn 0 ;
7 }

Listing 3.4: A source code to be tokenized

directive =>”#include” operator =>”,” identifier =>”atoi”
whitespace =>” ” whitespace =>” ” open paren =>”(”
quote =>”\”stdio.h”\”” identifier =>”char” identifier =>”argv”
whitespace =>”\n” whitespace =>” ” open square =>”[”
directive =>”#include” operator =>”**” number =>”1”
whitespace =>” ” identifier =>”argv” close square =>”]”
quote =>”stdlib.h” close paren =>”)” close paren =>”)”
whitespace =>”\n” whitespace =>” ” close paren =>”)”
area comment =>”/* Ex1 */” open curly =>”{” close paren =>”)”
whitespace =>”\n” whitespace =>”\n \t” operator =>”;”
identifier =>”int” identifier =>”printf” whitespace =>”\n\t”
whitespace =>” ” open paren=>”(” identifier =>”return”
identifier =>”main” quote =>\”%d\\n”” whitespace =>” ”
open paren =>”(” operator =>”,” number =>”0”
identifier =>”int” whitespace =>” ” operator =>”;”
whitespace =>” ” identifier =>”foo” whitespace =>”\n”
identifier =>”argc” open paren =>”(” close curly =>”}”

Table 3.1: C-Tokenizer output

26

On output it gives for each token, a string type associated the original
source string. There are 19 sorts of token that can be seen on table 3.2.

Type of token
Area comment Directive Open square
Area comment continues Identifier Operator
Character Line comment Quote
Character continue Line continue White space
Close curly Number Word
Close parenthesis Open curly
Close square Open parenthesis

Table 3.2: Basic token output

The number of tokens from the basic tool is inadequate for an in-depth
analysis. To remedy this situation, more tokens were added in order to specify
more elements from the source code. Therefore, adjustments were made for
the operator and the identifier tokens.

3.2.2.2 C-tokenizer : the internal modifications

The “identifier” token is divided in six different categories. Each category
has a set of tokens that relate to it. For example, the “Relational” category has
tokens like “==”, “!=”, “>”, etc. This specialisation provides 39 new tokens.

• Arithmetic
• Assignment

• Bitwise
• Logical

• Member and pointer
• Relational

Concerning the operator token, it has the same logic and it has eleven new
categories that provides 32 tokens. For instance, the “Flow control iteration”
category holds tokens “do”, “for” and “while”.

• Data size
• Data type
• Flow control iteration
• Flow control selection
• Loop control
• Redirection flow

• Return type
• Storage class
• Structure
• Type quantifier
• Qualifier

In addition, there is another added token : the “Joker”. The idea is simple,
this token represent any token. In other words, it is introduced as wildcard
character that can be interpreted as any other token. For example, table 3.3

27

presents two patterns with the same size where tokens are represented as in-
tegers. The last token of Pattern A and the forth token of Pattern B are both
Jokers (J). Because of that, the two patterns are considered similar during the
experiment.

Pattern A 1 2 3 4 5 6 J
Pattern B 1 2 3 J 5 6 7

Table 3.3: The Joker

3.2.3 Token application

After having defined the concept of token, the next step relates directly to
its usage. In fact, everything is going to revolve around this concept directly or
not.

To begin with, vulnerable chunks from the vulnerable dataset are tokenized.
Actually, a pattern is set up from these chunks. In other words, a vulnerable
pattern is created from the set of tokens representing these vulnerable chunks.

Here, the concept of the pattern relates to a flow of abstract information. As
a matter of fact, the information is represented with tokens where the sequence
is essential. This sequence is defined by the process of tokenization. Thus,
a vulnerable part is transformed into a set of tokens that represent a flow of
vulnerable information.

From a technical point of view, a token is linked with a unique identifi-
cation that represents him in the code. The “enum” type in Java responds to
these special needs. This compiler-generated class contains a set of consistent
data. Internally, an enum value includes an integer, corresponding to the or-
der which it is declared in the source code. Therefore, a vulnerable chunk is
represented by a list of ordered tokens.

To sum up, a vulnerable code is transformed to a set of tokens. These tokens
are put inside an ordered list that represents a vulnerable pattern. The purpose
is to be able to find the same kind of pattern somewhere else and be capable of
providing the likelihood of a potential vulnerability.

3.2.4 Pattern structure representation

The pattern structure implementation is straightforward. On figure 3.2,
there are two main concepts: the PatternStructure and the Expression. The idea
of an Expression object is to take into account the output of the C-tokenizer pre-
sented in section 3.2.2.1. In fact, a closer look on table 3.1 spotlights a pairing
between a token name and a source code chunk. Therefore, in an Expression
object, there are two attributes: the token and its content.

28

Considering the fact that the number of recognised token is defined earlier,
there is a list that classifies them in the code. To be more specific, when the
C-tokenizer produce an output like on table 3.1, the program applies a regular
expression in order to separate data. Each token is identified and linked to an
unique integer. Then, a token is linked to the part of the code it represents.

Once a set of Expression objects is created from the C-tokenizer for a given
vulnerable chunk, they need to be put together. To this end, the PatternStruc-
ture object is created. A PatternStructure contains an ordered list of Expression
objects and the source file name.

With this type of structure, the source code decomposition is honoured.
A vulnerable chuck from a given file is transformed into tokens and classified.
Thus, there is no significant loss with this method because the opposite process
can be done: a PatternStructure can rewrite the vulnerable code in C from the
token set.

For example, table 3.4 presents a pattern structure for a code. The first row
is the code and the second one is the corresponding token sequence. Typically,
a PatternStructure object represents all the information from this table and an
Expression object stores the connection between a token and its content. Also,
it is important to note that white spaces are not taken into account and there-
fore, the size of a pattern is determined without them (on table 3.4, the size is
equal to seven).

PatternStructure Expressionstores

1 1..*

Figure 3.2: Pattern structure object diagram

int i = foo () ;
Data
type

Identifier Assignment Identifier
Open
Paren

Close
Paren

Operator

Table 3.4: A pattern structure example

3.2.5 Data cleaning

The tokenizer produces a lot of useless data. As a consequence, filtering
the first output is imperative in order to make the data workable. Thus, an
optimising process is implemented.

The filtering process analyses the output and removes noises. The proce-
dure consists in eliminating some specific cases: white spaces and comment
areas. These two points implies on filtering four different tokens:

29

• Area comment;
• Area comment continue;

• Line comment;
• White space.

On listing 3.5, we can clearly see two types of comment: an area and a line.
Plus, there is a white space between them. All this to say that these kinds of
tokens are useless if a meaningful result is the goal. Thereupon, these tokens
are considered as noise and are removed.

1 /∗
2 ∗ Some u s e l e s s comments .
3 ∗/
4

5 // Here i s another example .

Listing 3.5: Example of useless source code

3.3 Evaluation strategy

Having a population of vulnerable patterns without any precision is not
enough. In fact, a good strategy must be taken in order to classify them. An
ordered list with a score would help to define the way for further decision-
making. Therefore, good vulnerable patterns must be put forward and bad
ones must be put away. Hence, a fitness function will come into play.

3.3.1 Fitness function

A fitness function helps to measure the quality of the represented solution.
In other words, it defines how good a solution is. Each solution needs to be
linked with a score to indicate how close it meets the desired solution. In this
case, the function lies at the core of an evolutionary algorithm and clearly af-
fects its efficiency.

The score should help to get an idea of the solution. A score of zero does not
really point out if the solution is good or bad. Plus, a fitness function score will
note increase indefinitely : the population will improve to a certain point and
then it will stabilise. Thereby, the algorithm must stop at a particular moment.

Obviously, a calculation must be done to obtain a fitness score value. This
computation takes into account a set of variables that must be specified. Start-
ing from the confusion matrix, this section presents these variables and how
they are used at a later stage.

A confusion matrix is a table that contains information about actual and
predicted classifications done by a classification system. Performance of a clas-
sification system is evaluated using the data in the matrix. The table 3.5 shows
the confusion matrix for a two class classifiers [33].

30

Actual
Positive Negative

Predicted Positive True positive False positive
Negative False negative True negative

Table 3.5: The confusion matrix

In practice, the confusion matrix works with three different aspects. To be
more specific, they are :

1. The vulnerabilities;
2. The vulnerable files;
3. Random files considered as not vulnerable.

True positive (TP): TP is the number of correct predictions that an instance is
positive. In this context, this is the number of vulnerable files where a
vulnerability is found.

True negative (TN): TN is the number of correct predictions that an instance
is negative. Here, this is the number of non-vulnerable files where a vul-
nerability is not present.

False positive (FP): FP is the number of incorrect predictions that an instance
is positive. Also known as a Type I Error, the error of rejecting a null
hypothesis when it is actually true. More simply, it happens when the test
assumes the existence of something that is not here. In this experiment,
this is the number of non-vulnerable files where a vulnerability is found.

False negative (FN): FN is the number of incorrect predictions that an instance
is negative. It is also called a Type II Error, the error of not rejecting a null
hypothesis when the alternative one is correct. Here again, this is the
number of vulnerable files where a vulnerability is not found.

To sum up, figure 3.3 shows a decision tree where numbers for each variable
from the confusion matrix is calculated.

A vulnerability

found in a
vulnerable file TP

non-vulnerable file FP

not found in a
vulnerable file FN

non-vulnerable file TN

Figure 3.3: Fitness calculation variables

31

In order to measure the quality of binary classifiers, the Matthews correla-
tion coefficient (MCC) is suitable for the situation. Using the MCC provides a
benchmark indicating on how well a classification is performing. In the context
of the experiment, the MCC is the fitness formula.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

This formula gives on output a score between -1 and +1. A score of -1
indicates that total opposition between prediction and observation and a score
of +1 shows the contrary, i. e. a perfect prediction. In the middle, a score of 0
points out that there is no effect.

To put it simply, if a vulnerable pattern gets a negative score, it means that
this pattern is a bad one. In other words, this bad vulnerable pattern has a
huge number of false positive and false negative results. That is to say, this bad
vulnerable pattern is most often found in non-vulnerable files and not enough
found in vulnerable files.

Another detail bears mentioning concerns the lack of results. The fact that
the denominator of the formula is a square root implies borderline cases. Hence,
the following condition is implicit :

(TP + FP)(TP + FN)(TN + FP)(TN + FN) > 0

There are therefore circumstances where the MCC returns an error for a
division by zero. In the experiment, this kind of event is not blocking because
it simply says that the given vulnerability does not produce a tangible result.
Consequently, this given vulnerability is skipped.

With this method, it is easy to spotlight good results and remove bad ones.
The only problem concerns the performance because this process is time con-
suming. The efficiency improvement will be discussed later in detail.

3.3.2 Training data sensitivity

In order to set up a predictive model, there are two concepts to take into
account: the bias and the variance [34]. Bias is a learner’s inclination to gain
information the same wrong thing. Variance is a trend to learn random things
regardless the real data.

Figure 3.4 shows an example of bias and variance combination. When the
bias is high and the variance is low, the learner algorithm is coherent but un-
reliable on average. On the opposite, when the bias is low and the variance is
high, the learner algorithm is accurate on average but unpredictable.

There is a middle-ground between a high bias and a high variance. In the
first case, algorithms with a low variance tend to be less complex and have a

32

Figure 3.4: Bias and variance

fixed structure. In the second case, algorithms with a low bias turn to be more
complex but with a flexible structure.

As a consequence, an algorithm with an elementary structure makes un-
derfit models that cannot gain information from the data. And when it comes
to a complicated algorithm, it produces overfit models that collects the noise
instead of the useful data.

To get excellent forecasting, a balance must be made between bias and vari-
ance. Thus, that would make smaller the error and avoid overfitting and un-
derfitting. Figure 3.5 there are three plots: the first is an undefitting model, the
second is a good model and the last one is an overfitting model. The aim is
to obtain a model that fits the true function correctly as it can be seen on the
central plot. The other two cases are presented in more details after.

Figure 3.5: Case of underfitting and overfitting

33

3.3.2.1 Overfitting

A poor performance in machine learning can be explained with the problem
of overfitting the data. In a classic way, the aim of a machine learning model
is to generalise from the training data to any data from the problem domain.
This allows to make prediction on data the model has never encountered.

The overfitting problem indicates that the algorithm knows the training
data and it happens when a model learns too much from the latter. There-
fore, if the same training data is used over and over again, the results will be
skewed. In other words, the fact that the model comes across the same noise
and the same variation of data implies that at one point, the model will not be
able to generalise the solution efficiently.

On figure 3.5, the right plot shows an example of an overfit model. In fact,
the model is too well trained and as a consequence, practically all the samples
are taken into account by the model. Also, as it can be seen, the model is distant
from the true function at some point.

Solving this issue is uncomplicated in the case of this master thesis: each
time the algorithm needs to perform a test, it must take a new sample from the
training set. It is clear that the training set must be big enough to deal with
this problem. Moreover, the algorithm must take into account that a too long
process of testing can have a negative impact on the results. In the same spirit,
the model will learn the irrelevant detail and noise in the training dataset.

However, this technique looks simple on paper, but it is in fact extremely
heavy during the process. It should be pointed out that selecting a new sam-
ple implies computations in order to make the data workable. To remedy this
situation, a data processing must be introduced. Data processing takes raw
data to prepare it for another processing procedure. It transforms the data in a
workable format.

3.3.2.2 Underfitting

The opposite problem that can occur is the underfitting. An underfit model
ignores the practice from the training data and does not succeed in generalising
to new data. Obviously, an underfit machine learning is not an adequate model
and does not have a good performance.

This case can occur when the model is too simple. For instance, there is too
few data or the regularisation does not work. On figure 3.5, an example of an
overfit model can be seen on the left. In this case, the model does not take into
account samples and therefore, a straight line is drawn.

In the case of this experiment, an underfit model is not witnessed. In fact,
there are enough samples on the plot and most of them do not move apart from
each other. To put it simply, for each iteration, the error is not that big between
data.

34

Chapter 4

Analysis and Results

4.1 Vulnerable dataset analysis

To begin with, the first analysis starts with the tokenization of vulnerable
files from the initial vulnerable dataset. In fact, it is interesting to point out
some type of tokens found in vulnerabilities. As a reminder, before imple-
menting new tokens, the basic tool C-tokenizer was only recognising 19 differ-
ent types. Table 4.1 records the number of tokens per type found in the 1526
vulnerabilities inside 922 files. The column “Filtered” shows statistics with-
out taking into account useless tokens like white spaces and comments (these
tokens are considered as noise).

Contrary to “square” token number, it is interesting to note that the “open
curly” token number is bigger than the “close curly” token number on fig-
ure 4.1. It shows that a vulnerability has more probability to be at the begin-
ning of a function or a statement declaration. This latter can be a loop or an
“if statement” for example. And logically, a vulnerability has less chance to be
found at the statement’s end.

Another interesting point concerns comments which leads to multiple in-
terpretations. According to figure 4.1, there are about 0.3% of comments. On
the one hand, it does not make sense to see a comment part in a vulnerable
dataset knowing that this part of the code will not engage an error. But on
the other hand, it shows another aspect of the source code. In fact, it leads to
think that the comment section next to the vulnerable part is either missing or
its content does not change. The first hypothesis can be easily verified because
a lot of code is not commented. The second hypothesis is not reassuring be-
cause it means that the commented logic of the vulnerable part stays inside the
vulnerable file. To verify it, an in-depth analysis of the code is required.

35

Token type Num. of tokens Percentage Filtered
Identifier 14387 33.47% 44.26%
Operator 10594 24.65% 32.59%
White space 10351 24.08% -
Close parenthesis 2686 6.25% 8.26%
Open parenthesis 2669 6.21% 8.21%
Number 869 2.02% 2.67%
Open curly 336 0.78% 1.03%
Close square 244 0.57% 0.75%
Open square 244 0.57% 0.75%
Close curly 213 0.49% 0.65%
Quote 172 0.40% 0.53%
Area comment 126 0.29% -
Directive 61 0.14% 0.19%
Line continue 21 0.05% 0.06%
Char 7 0.02% 0.02%
Area comment continue 4 0.01% -
Char continue 1 <0.01% <0.01%
Line comment 1 <0.01% -
Word 0 0% 0%
Total 42,986 100% (42,986) 100% (32,504)

Table 4.1: Initial vulnerable dataset statistics

The noise represents 24.38% of the unfiltered vulnerable dataset. Moreover,
identifiers and operators are the most common types of token because they
represent 58.12% of the source code. For that reason, some of these tokens
were specialised as described in section 3.2.2.1.

4.1.1 Operator and identifier specialisation

As mentioned before, operator and identifier tokens are very common in-
side vulnerabilities. Thus, new tokens were brought because creating more
specialised ones would give more diversity.

On table 4.2, there are two sub-tables. On the left side, it is related to opera-
tors and the right side is about identifiers. Not all operators and identifiers are
shown because the table would be huge. This is why the two sub-tables only
displays the ten most used tokens. In addition, a usage percentage is displayed
for each token. For example, on table 4.2, the operator token “==” is consid-
ered as relational type. Plus, among all the operator tokens, the token “==”
represents 2% of usage. The last line of each sub-table indicates the percentage
of other tokens.

36

Token Operator type Pct Token Identifier type Pct

->
Member and

pointer
29.41% if

Flow control
selection

22.89%

= Assignment 24.25% struct Structure 13.2%

.
Member and

pointer
12.24% int Data type 12.53%

- Arithmetic 5.21% long Qualifier 10.79%
! Logical 4.43% unsigned Qualifier 9.17%
+ Arithmetic 4.34% return Return type 8.66%
| Bitwise 4% sizeof Data size 4.07%

> Relational 2.46% goto
Redirecting

flow
3.76%

< Relational 2.43% void Return type 3.76%
== Relational 2% static Storage class 3.28%

Other - 7.23% Other - 4.61%

Table 4.2: Operator and identifier types : top 10

Some findings emerge following the analysis of the most encountered to-
kens in the vulnerable dataset. Firstly, the flow control selection is found one
in three times in the total of identifier table. Typically, the “if statement” and
the relational operator type are frequently modified. This fact emphasises a
problem with conditions. Put in another way, vulnerabilities involves a big
part in conditional statements.

Accordingly to table 4.2, a vulnerable part of software will probably contain
a source code linked to structures. The fact that on top of the two sub-tables
there are three tokens related to structure (“->”, “.”, “struct”) leads to saying
that C structure will be often adjusted when a vulnerability is discovered. In
other words, this acknowledgement points out that the program structure is
usually the subject to error.

Regarding to genetic programming, the table 4.2 put forward an important
point for the future tests. In fact, some genetic programming techniques re-
place a specific token with another. Obviously, it is interesting to change some
operators between them. For example, swapping arithmetic operators between
them is a basic mutation technique.

However, when it comes to identifier types, that is another question. Re-
placing a specific identifier token is more difficult in some ways. In fact, in
many cases these identifiers are very specific to the environment. For instance,
the table 4.2 shows that the most used identifier tokens are closely related to
the context. Consequently, some genetic techniques are counterproductive for
the identifier token.

Hence, the specialisation of the identifier token is useless but the operator
one is interesting to explore. Furthermore, the precision is theoretically valu-

37

able but it must be used with caution in this case. Too much accuracy will
significantly decrease the number of results because the particular and precise
context of one vulnerability is sometimes too uncommon. The generalisation
of certain tokens can be more advantageous than it appears.

4.1.2 Vulnerable pattern size

Before altering any vulnerable pattern, it is interesting to inspect pattern
sizes inside the initial vulnerable dataset. Considering the fact that a pattern is
a flow of tokens, it is useful to know some characteristics of the vulnerabilities
like the size. This latter is defined by the number of tokens inside a pattern as
explained in section 3.2.4.

The figure 4.1 shows the number of patterns without noise per size (as a
reminder, the noise represents with spaces and comments). To be more precise,
when it comes to the vulnerable pattern size from the vulnerable dataset, there
are:

• Mean: 21 tokens per pattern;
• Median: 9 tokens per pattern.

1 21 41 65 10
1

17
3

16
76

0

20

40

60

80

100

120

Pattern size

N
um

be
r

of
pa

tt
er

ns

Figure 4.1: Number of patterns per size

38

This is a fundamental information for the continuation. First, taking a small
pattern would provide a great result but it would limit possibilities. In fact, a
small pattern would always give trivial outcomes with a genetic programming
because mutant and offspring variation would be minimal compared to par-
ents.

Secondly, taking a big pattern would involve a poor result. Actually, there is
little likelihood to find a considerable result due the fact that a bigger pattern
is just harder to discover. Plus, with a big pattern, the genetic programming
would produce a huge population because there are a lot of possible combina-
tions.

As a consequence, all experiments are set up with a pattern size between
two selected values:

30 ≤ size(pattern) ≤ 80

Outside these two values, there is no point to run tests or scan results. Also, it
is interesting to note that the process of searching a pattern in files is obviously
faster with a small size pattern. A big one requires a lot of computing power
and it takes while to have results.

Another realisation about pattern sizes concerns the fitness score. Experi-
ments showed that a small size pattern gives good fitness scores and a big one
delivers bad fitness scores. This is also explained by the fact that small size pat-
terns can be found in many files unlike the bigger ones. Thus, all the difficulty
lies in pattern size choice.

4.2 The technical environment

Before introducing the core of the experiment, this section explains the tech-
nical side with another perspective. To put it simply, this section presents major
technical components and how the experiment is made.

To begin with, the main program which handles the vulnerable dataset con-
tent is written Java 8. This program will extract the useful content and put it
inside an internal structure. Then, it will tokenize the vulnerable data and store
it.

From this point, the Java application passes the baton to the Python ap-
plication. This latter is an upper layer which controls the Java solution with
Py4J1 - a bridge between Python and Java. With Py4J, the Python program can
dynamically access Java objects in a Java Virtual Machine.

The main reason of the Py4J presence is the fact that DEAP framework is
written in Python. In summary, the Python program takes via Py4J vulnera-
ble tokenized data from the Java structure in order to use them with DEAP
framework. The result is generated with the Python program.

1https://www.py4j.org/

39

The above approach is chosen because the subject of this work was amended
during its development. In other words, the DEAP framework solution arrived
in the process at the end of the Java solution development. In order to save de-
velopment time, Py4J was the best compromise.

Another interesting technical point to note concerns the fitness calculation.
For each fitness process, there is a calculation involving a multiple search in
data. In the normal case, this computation is sequential and is time consuming.
In order to enhance this process, the parallel computation technique is used
in Python. This module permits to create processes and takes full advantage
of multiple processors on a computer. Plus, this technique is complementary
with the DEAP multiprocessing module. Hence, the algorithm is improved
and takes less time to generate results.

4.3 The experiment

4.3.1 Data pre-processing

As presented in section 3.2.2.1, the tokenization tool provides set of tokens
on output by applying a data transformation for every string inside a source
code. Unsurprisingly, this process is time consuming for most of the files. And
to add to that, there is a read/write process for each file. This latter is a manda-
tory step which does not accelerate the whole operation.

Thus, some concepts and techniques from data mining must be applied
[35]. A data cleaning routines are set up in order to “clean” the data because
the dirty information can cause confusion for the mining procedure, emerging
in uncertain output. Plus, a data reduction provides smaller but workable data.

One of the most time consuming procedures concerns the random selection
of files inside the Linux kernel and its tokenization. In fact, each time a new
population of patterns is created, a new set of random files is selected in order
to prevent the overfitting case. Here it is in detail the procedure:

1. Catalogue files in the Linux kernel;
2. Select 30 random files from the catalogue;
3. Launch the node command for the C-tokenizer;
4. The C-tokenizer writes a new file containing a set of tokens with noise;
5. A file read process is performed for the C-tokenizer output;
6. The data are cleaned.

It is obvious that the whole procedure for each new population is heavy
in every sense of the word. Therefore, the pre-processing consists in perform-
ing this whole procedure hundreds of times before the experiment in order to
generate “prepared” data. In other words, there is a pre-processing action that
creates a large number of files containing a set of cleaned data. Instead of ex-
ecuting all these points listed before, the program has to load files containing

40

sets of tokens. And of course, the prepared data is always different for each
new population.

The same logic is applied with vulnerabilities and vulnerable files from the
vulnerable dataset. The fact that it is the starting point of the experiment and
that its content is always the same, the pre-processing can accelerate the whole
experiment by generating prepared data.

To summarise, here is all the different kinds of prepared data, with the aim
of speeding the experiment. In all cases, it is a stored file with a list of tokens
without any noise:

• A set of random files from the Linux kernel;
• Chunks that represent vulnerabilities from the vulnerable dataset;
• Files labelled as vulnerable from the vulnerable dataset.

4.3.2 Main process

The starting point for the core process is the listed known vulnerabilities.
The first step is ranking all of them with a fitness score. Therefore, each vul-
nerability is associated with a fitness score and a ranking can be made. This
classification is decisive because patterns with best scores are part of the selec-
tion process.

Once the superior patterns are selected, mutation and crossover operators
are applied. These two processes generate a whole new population of patterns.
Unfortunately, there are a lot of flawed individuals inside this new population.
Hence, a data cleaning is compulsory to eliminate them. Then again, the fitness
is calculated on the new population and the process begins the cycle again. To
summarise, listing 4.1 shows the whole process in pseudo-code.

1 i n i t i a l i s e population with a s e t of vulnerable p a t t e r n s
2 repeat
3 data c leaning
4 f i t n e s s evaluat ion on the population
5 s e l e c t i n g bes t vulnerable p a t t e r n s
6 crossover
7 mutation
8 u n t i l terminal condi t ion

Listing 4.1: Pseudocode of the main process

It is important to note that a data cleaning is performed each time a new pop-
ulation appears. Plus, the terminal condition of the loop is the number of iter-
ations that is chosen at the beginning of the experiment.

Another important note concerns the loop: each new generation is pro-
duced asynchronously to a certain extent. As explained in section 2.3.4, an
asynchronous generation means that the old and the new generation overlap.
But in this experiment, the asynchronous concept is done to a certain degree:
only best patterns from the old generation are preserved. In contrast, the syn-

41

chronous generation does not produce any meaningful results.

At the end of the experiment, the last population should theoretically pro-
vide a set of strong vulnerable patterns.

4.4 Vulnerable pattern selection

Each time a new generation is created, a pattern is selected for the muta-
tion process and two patterns are chosen for the crossover procedure. In both
cases, it is a random choice based on probabilities. To this end, The Poisson
Distribution is used.

Before taking into account the probability regarding the selection process,
an observation was made during experiments: taking always best individuals
in order to generate a new population leads to nowhere. Instead of creating a
personal selection probability, a basic discrete probability distribution is used.
It already provides fixed values and can be applied to the selection algorithm
in order to boost diversity within the population.

To illustrate a use of this distribution in the context of this work, an exam-
ple is shown in this section. On figure 4.32, the horizontal axis is the index k
(the number of occurrences). The vertical axis represents the probability of k
occurrences depending on λ (the expected number of occurrences).

When a new generation is created, a fitness process is performed in order
to classify from best to worst patterns. In other words, a classification is made
where the first element is supposed to be the best one. To produce a new gen-
eration, a selection must be performed among the best elements. On figure 4.3,
the first 10 elements of this ranked list are selected (k = 10). The figure shows
3 different set of patterns where each element has a given probability to be
selected for the mutation/crossover process.

A different view of the Poisson distribution can be seen on table 4.3. For ex-
ample, the second set of patterns (λ = 3) shows the probability of each patterns
to be chosen. For instance, the fourth pattern (k = 4) has 17% of chance to be
picked up for the mutation process.

With this technique, patterns are selected depending on their associated
probability. Plus, the fact that the expected number of occurrences (λ) is se-
lected randomly each time, the best patterns are not always the ones with the
highest probability values (this can be seen on when the λ increases). For ex-
ample, when λ = 5, the pattern at the first position has only 1% of chance to
be chosen by the process. This last point is set up in order to make a new
generation wider and more varied.

2Source: http://sasnrd.com/poisson-distribution/

42

Figure 4.2: The Poisson distribution

Pattern number (k)
0 1 2 3 4 5 6 7 8 9 10

λ

1 37% 37% 18% 6% 2% 0% 0% 0% 0% 0% 0%
3 5% 15% 22% 22% 17% 10% 5% 2% 1% 0% 0%
5 1% 3% 8% 14% 18% 18% 15% 10% 7% 4% 3%

Table 4.3: Pattern probability selection

4.5 Mutation and crossover used techniques

After selecting unique patterns with a given probability, new individuals
must be produced. The new generation will be composed of two kinds of indi-
viduals: a set of vulnerable patterns produced with mutation techniques and
a set of vulnerable patterns created with crossover techniques. This section
introduces used techniques and the data validity on output.

There are all kinds of different techniques when it comes to the mutation or
the crossover techniques. Some of them have been presented in section 2.3.5
and 2.3.6. Therefore, there is no need to reinvent the wheel because many
methods have already demonstrated their performance.

43

As explained before, the main evolutionary computation framework used
here is DEAP (see section 2.3.7). Concerning mutation and crossover opera-
tors, they offer a set of methods in its evolutionary tool. To put it simply, it
contains the operators for evolutionary algorithms3. Because of this module, it
is possible to modify, select and move individuals in their context.

4.5.1 Data validity

As a reminder from section 3.2.2, a vulnerable pattern is represented as a
sequence of tokens. And logically, mutants and offspring are represented the
same way. However, each new individual generated is not valid regarding the
architecture: the suitability is defined by the validity of the token set.

Each recognised token has a unique token number. But a mutation or a
crossover process can produce an unidentified token inside the new individ-
uals. Therefore, a data cleaning must be performed on the new generation in
order to remove invalid individuals. In short, the law of the strongest is ap-
plied: the weakest and most helpless are eliminated.

4.5.2 Mutation operators application

A series of mutation operators are used from DEAP in the context of this
work. This section presents different techniques from this framework and their
actual usefulness in the context of tokenization.

Shuffles indexes : As its name suggests, it shuffles different tokens inside a
sequence. There is no new token produced and therefore, most of new
individuals are valid after the data validity verification. But this process
has its limit: changing randomly the token order will not make a vulner-
able pattern stronger. In fact, there is a lot of chance to have an absence
of result.

Uniform integers : This kind of mutation will replace a random token inside
a token set by a value uniformly drawn between low and up inclusively.
This method can be interesting because it does not really produce a ran-
dom individual. With a given probability of modification for each token
and a given interval of a minimum/maximum token value, the new in-
dividual receives a small adjustment.

Polynomial Bounded : This mutation is an implementation of the NSGA-II
algorithm [36]. Clearly for this context, the polynomial bounded operator
is present for experimental purposes. Therefore, this technique is not
used a lot.

3http://deap.readthedocs.io/en/master/api/tools.html

44

4.5.3 Crossover operators application

Overall, for each crossover operators, there are a lot of results. Crossover
methods presented in this section are simple to understand and easy to use. In
addition, these methods provide diversity for the new generation. But a partic-
ular attention must be paid here because sometimes, offspring are totally dif-
ferent compared to parents (especially with the messy one-point and uniform
technique). It should not be forgotten that each new generation is supposed to
have things in common with the previous one.

One-point crossover : A random position is chosen along the two parents.
Then, the parents are cut at the given position, and their end parts are
swapped to create two different offspring. On figure 4.3, an example can
be seen [37].

Figure 4.3: One-point crossover

Two-points crossover : The two-points crossover operator choose two points
in each parent. Then, the content between these points are exchanged
between two mated parents. Figure 4.4 shows an example [37].

Figure 4.4: Two-points crossover

Uniform crossover : This operator picks values from two parents randomly
to create the offspring [38]. An example on figure 4.5 is given where two
offspring are composed by uniform crossover.

45

Figure 4.5: Uniform crossover

Messy one-point : The messy one-point crossover use cut and slice operators
allowing an offspring to inherit random values from each parent. Surely,
this allows new individuals to have duplicate values or missing data [39].
In most situations the individual size on output changes. This kind of
mutation produces a lot of valid result but the fact that the size varies ev-
ery time could potentially raise the question with the vulnerable pattern
size as explained in section 4.1.2.

4.6 Results

After having presented details of the main process, this section presents
results. As a reminder, the question is : “Can a vulnerable pattern be improved
with genetic programming techniques?”.

4.6.1 Variable parameters

During the experiment, there are certain number of parameters on back-
ground that define the context of the experiment. In other words, technical
specifications chosen before starting the experiment are important. Therefore,
this section presents different aspects influencing the final result.

4.6.1.1 First vulnerable pattern

First of all, the whole experiment depends on the vulnerable dataset intro-
duced in section 3.1. The first vulnerable pattern is selected will influence the
result directly. Without any doubt, there are some vulnerable patterns from
the vulnerable dataset with zero impact. In other words, if one of these bad
patterns is selected at the beginning, there is some chance that the outcome
will not be satisfying. Unfortunately, is it impossible to know in advance if a
pattern is good or not.

However, if we want to be more precise, a vulnerable pattern cannot be
“bad” or “good”. These terms are used here in order to simplify the explana-
tion. In fact, a vulnerable pattern can be potentially too specific: it is attached
to a certain context in a particular way. If that occurs, the vulnerable pattern

46

is too complex and genetic programming techniques do not help. This kind of
problem will be compared to the Wild-Caught Mutants issue in section 5.2.1.

4.6.1.2 Fitness process

The fitness function introduced in section 3.3.1 and applied randomly on
different files can bring a small problem. It is recalled that the fitness process is
based on searching a piece of data inside a file. The problem is the randomness:
selecting a random file does not guarantee that the selected search domain fulfil
expectations. In other words, if the random file contains too specific data, the
fitness process does not provide any result.

This issue can be compared to the first vulnerable pattern selection case.
The common factor of randomness could lead to a useless process where the
result does not show any interesting data. But in this case, effects are not defini-
tive on the outcome: as explained in section 4.3.1, there is sufficient flexibility
because 30 random files are selected. On one side, it gives some room for ma-
noeuvre and on the other side, it prevents the overfitting problem as seen in
section 3.3.2.1.

4.6.1.3 Number of jokers

As introduced in section 3.2.2.2, a special token is created and it is called
the “Joker”. As a reminder, this kind of placeholder accepts any value when
the fitness is calculated. Its functioning is simple but there is an important side
effect: too many jokers inside a pattern structure leads to biased results.

Logically, at some stage, the algorithm understand that implementing jok-
ers makes a pattern more powerful because it can be exploited more easily dur-
ing the fitness computation. In this case, the maximum number jokers must be
defined before the beginning of the experiment otherwise there are a lot of in-
dividuals with just some jokers at different positions. Thus, in the experiment,
the number of jokers inside a single pattern cannot exceed 10% of the total
pattern size.

4.6.1.4 Number of iterations

The maximum number of iterations is defined before the beginning of the
experiment. To put it simply, it is the amount of time that the main process
presented in section 4.3.2 is executed. Theoretically, at one point, a population
score does not evolve anymore - this means that the algorithm reached its edge.

The algorithm stops if one of the following conditions is met:

1. The maximum number of iterations is reached;
2. The number of failed attempts for one generation is reached.

47

The second condition is also fixed before running the algorithm. It exists be-
cause sometimes, the main process does not produce enough valid new indi-
viduals for some reason. Therefore, the algorithm gives a “second try” to create
a new population. If it fails after a given amount of time, the algorithm stops.
This approach tries to handle a certain degree of randomness.

Regarding the maximum number of iterations, it is more challenging to
define one. Once again, it depends on the vulnerable pattern potential: some
of them reaches their maximum very fast and other needs more iterations. In a
case like this, the algorithm should stop by itself because there is no more gain
relating to the fitness score.

4.6.1.5 Top individuals scope

Another parameter to take into account before starting the experiment con-
cerns the scope of the ranked vulnerable pattern list. The algorithm selects
three vulnerable patterns using a technique described in section 4.4. Obvi-
ously, choosing a vulnerable pattern with a bad fitness score does not lead to
valuable results. Therefore, choosing a pattern from a set that contains only
vulnerable pattern with an excellent fitness score is more valuable.

This process raises questions on the size of the selected vulnerable patterns.
It is true that the vulnerable patterns with the highest fitness score have more
potential. But, selecting always the top of the ranked list does not bring di-
versity in the new population. Hence, sometimes it is necessary to choose a
vulnerable pattern that is not on the podium regarding its fitness score.

By default, the experiment only takes into account the first ten vulnerable
patterns from the ranked list. In that way, the new population has the insurance
in terms of diversification. However, this given number can become a problem
if there is not enough new individuals. This situation can happen when the size
of the selected vulnerable pattern is too big. This latter becomes too specific
for the experiment and does not produce enough valid new individuals. The
number of failed attempts for one generation presented in section 4.6.1.4 limits
the damage.

Plus, as explained in section 4.3.2, the generation from the main process is
asynchronous. By default, the experiment takes into account just 2 vulnerable
patterns. In other words, there are 2 individuals taken from the generation N
and put in generation N + 1.

4.6.1.6 Number of generated individuals

Previously, section 4.5 presented different kinds of genetic programming
techniques. Technically speaking, the number of generated individuals cannot
be predicted precisely. As a result, this section presents a set of variables that
could affect directly this number regardless the used technique.

48

Each technique can be assigned with a given number of repetitions. This
latter decides how many times a technique will be called for one selected vul-
nerable pattern. Also, it should be noted that the size of the selected vulnerable
pattern affects the outcome. In other words, genetic programming techniques
generate fewer new individuals if the selected vulnerable pattern is small and
these same techniques create a lot of individuals with bigger ones. Here, the
number of repetitions is between ∼500 and ∼1000 depending on techniques.

Besides that, genetic programming presents another important variable:
the probability of each token to be changed. Considering the fact that a vul-
nerable pattern is composed of tokens, an important decision must me made.
In fact, a high probability means that the new individual is almost different
and in the same way, a small probability value implies that the new individual
would be a simple copy. In the experiment, this value is between 5% and 10%
for each token depending on techniques.

4.6.1.7 Fitness mean evolution

To get a better idea of the evolution during the experiment, a simple indica-
tor is needed. For that purpose, a fitness mean is calculated for each population
in order to have a quick look on the population “strength”. It gives an under-
standable visualisation for the next section when it comes to the graph study.

Given that the randomness is strong during the experiment because of all
the parameters listed below, the fitness mean value fluctuates a lot sometimes.
Undeniably, if the fitness value increases during the experiment, the outcome is
fantastic. Unfortunately, this is not always the case and the fitness mean value
oscillates very often in both ways. Worse still, a fitness mean value can drop
significantly from one generation to another because the main process selected
patterns with no potential and produced a bad set of individuals.

This case scenario happens from time to time and can lead to bad results.
To remedy this situation, a simple technique is implemented and it is based
on the comparison between two fitness mean values. To be more specific, a
juxtaposition is made between a fitness mean value from generation N and
N + 1: if the fitness mean value drops too much, the main process starts again
the procedure. Obviously, the process does not repeat indefinitely the gener-
ation procedure. Hence, if the fitness mean score loses 100% of its value, the
operation will restart up to ten times.

49

4.6.2 Visualisation

With all the parameters chosen, the experiment produces a result in text
format. The content has multiple lines with three indications concerning a vul-
nerable pattern:

1. The generation number;
2. The fitness score;
3. The token sequence.

Clearly, in order to generate a graph, the first two points are needed. There-
fore, the process reunites all patterns for one given generation and calculates
the fitness score mean. The purpose is simple: see if the mean improves over
time.

But displaying only the mean on the graph is not enough to get an idea of
the general outcome. Therefore, the second step concerns the concept of curve
fitting with a model. It is the process of creating a curve that has the best fit to a
series of data points. Here, the fitness score means are the series of data points.

The presented models have polynomial features of distinct degrees. For in-
stance, a polynomial with degree 1 is not useful because a linear function is not
adequate to fit the training samples. In case of this experiment, a polynomial
of degree 4 is used. The degree value is determined according to the mean
squared error (MSE) : a high value means that the model does not generalise
accurately from the training data. Thus, the degree value is chosen when the
MSE value is at its minimum.

As explained previously on section 4.6.1, there is a large number of param-
eters to take into account. Thus, different kinds of parameters combination is
tested during experimentation and the result can be examined from multiple
angles. The most important parameters are as follows:

• The maximum number of generations that the experiment creates;
• The minimum size of the selected patterns;
• The number of top patterns considered for GP techniques;
• The mean squared error (MSE).

The outcome of the global algorithm is shown on figure 4.6 where the fit-
ness score mean for a given generation is a green dot and the model is the blue
curve. This figure as itself shows four results with each time a different set of
parameters as presented on table 4.4. The number of generations goes from 100
to 1000 in order to demonstrate that the algorithm is interesting independently
to the number of iterations.

50

Figure 4.6a Figure 4.6b Figure 4.6c Figure 4.6d
Nb of generations 100 200 500 1000
Minimum size 30 40 40 35
Nb of top patterns 8 8 8 8

MSE ± Error 0.0351
±0.0033

0.0241
±0.0138

0.0298
±0.0020

0.0436
±0.0030

Table 4.4: Different parameters depending on the figure

At the first look, figure 4.6 indicates positive results for the most part. In
fact, models presented on this figure have a promising outcome. Clearly for
each model, the fitness score mean of the last population is greater than the
first one. Hence, it proves that genetic programming techniques improves the
fitness score mean.

Interesting observations can be made on figure 4.6 (a), (b) and (c) because
they have a certain likeness. At the beginning, there is an expansion: the algo-
rithm selects vulnerable patterns with the best fitness score and the next few
generations displays directly a better fitness score mean. Then, there is a con-
traction presenting a trough: the fitness score mean seems to decrease. But
the recovery comes after and the algorithm starts to produce strong vulnerable
pattern as it can be seen distinctly on figure 4.6 (b). Obviously, the algorithm
learns with the training data and produces only “powerful” vulnerable pat-
terns.

On the opposite, figure 4.6 (c) shows a logarithmic evolution with no con-
traction at all on the model. On the one hand, it is a good result because the
fitness score mean does not decrease but, on the other hand, the model does
not have the potential to evolve more.

Additionally, the minimum pattern size is an important part of the exper-
iment because it defines a portion of the vulnerable dataset that is ignored.
As analysed in section 4.1.2, most of the vulnerable patterns are composed of
fewer than ∼20 tokens (these patterns do not take into account white spaces
or comment sections). But, as presented in table 4.4, the minimum is 30 and
the maximum is 40 tokens. It is a conscious choice because the algorithm is
designed to find new vulnerable patterns from the well-known. Furthermore,
during experiments, observations were made about the number of tokens in a
pattern:

1. Obviously, small vulnerable patterns produce less “new” patterns with
genetic programming. This means that there is less probability to have
new vulnerabilities and observations were made about the number of to-
kens in a pattern: as a result, new individuals will progressively resemble
to the first generations.

51

2. Small vulnerable patterns have more chance to be discovered in non-
vulnerable files because they are too generic. For instance, many vulner-
abilities relate to one changed line where a function name is modified.
This kind of case is not representative inside a tokenization process and
therefore, it is useless to analyse it.

3. Technically speaking, a pattern with a large number of tokens is more
time consuming during the experiment. This case can become a huge
problem on many levels:

• A gigantic populations is created and needs to be filtered.
• The fitness process where a pattern is searched inside files takes a

fairly long time to calculate a value.

Observations listed above brings a simple conclusion to write but hard to
implement in the algorithm: “A pattern has to be big enough but not obese”.
Clearly, when it comes to talking about the number of tokens in a pattern, the
real difficulty lies to select the right interval.

Another important aspect about the experiments that needs to be explained
is about the showed randomness. As explained before, there are a lot of config-
ured parameters that concerns probability in general. For example, there is a
value that determines if a given token is going to be mutated or if a vulnerable
pattern is selected. Consequently, like with the theory of evolution, there are
some aspects that cannot be calculated in advance.

52

Figure 4.6: Results with different numbers of generations

53

4.6.3 Coverage investigation

Once experiments are done, there is another facet to explore. Figure 4.6
shows in each result that there are some vulnerable patterns with a high fitness
score. This section is going to investigate more closely these individuals by
inspecting global coverage independently to the generation number.

At the end of the experiment, it is interesting to inspect the new individuals
with the vulnerable dataset. As explained in section 3.1, there is a list of recog-
nised vulnerable file. This list is the central point for the detailed investigation
in order to see the overall coverage of mutants and offspring. In other words,
it is interesting to see if some good individuals cover a lot of files or not.

Therefore, this kind of analysis shows if patterns with good fitness scores
perform well on the vulnerable dataset and if they are connected somehow.
The concept of connection relies on the vulnerable file: two patterns are con-
nected if they are found in the same set of files.

The experiment on this section directly concerns results presented in ta-
ble 4.4, section 4.6.2. Each experiment in this section selects ±5% of the total
population and keeps only individuals with the best fitness. For each pattern
from the results, the fitness score is calculated again and concerned vulnerable
files are stored. Finally, patterns are compared in order to found equivalency.

Data in tables 4.5, 4.6, 4.7 and 4.8 are classified by the number of concerned
files. They have these following information:

Pattern ID Patterns are no longer treated according to their respective genera-
tion. Therefore, an ID is associated with each pattern. A pattern with an
ID1 means that it is the first of the list in terms of coverage. Tables have
missing ID at some point and it indicates that the given pattern affects the
exactly same set of vulnerable files. For example, in table 4.5, there is no
pattern with an ID2 because it refers to the exact same list of vulnerable
files as ID1.

Fitness score It indicates the fitness score value (see section 3.3 for the for-
mula). The evaluation strategy is similar to the main process as seen in
section 4.3.2. In this experiment, the fitness evaluation is performed only
on good patterns.

Number of concerned files When a vulnerable pattern is found inside a vul-
nerable file, it is considered as a concerned file. A high value indicates
that a given pattern is found in a lot of vulnerable files.

Percentage of concerned files The number of vulnerable files from the vulner-
able dataset is fixed : there are 922 vulnerable files listed. Therefore, the
percentage represents the coverage of a given pattern.

54

Number of same-scoped patterns As explained before for the “Pattern ID”,
some of the patterns concerns the exactly same set of vulnerable files. In-
stead of listing them with details, this column indicates the exact number
of same patterns and it provides a link between different rows of “Pattern
ID”. For instance, in table 4.5 for ID1 the value for this column shows 10
same patterns: in other words, patterns ID from 2 to 11 covers exactly the
same set of vulnerable files.

Pattern size It shows the size of the given pattern. As a reminder, the whole
experiment only considers useful tokens: white spaces and comment sec-
tions are filtered.

Precision It is the fraction (or percentage) of retrieved documents that are rel-
evant. Based on the confusion matrix presented in section 3.3.1:

Precision =
TP

TP + FP

Recall It is the fraction (or percentage) of the relevant documents that are suc-
cessfully retrieved. Based on the confusion matrix:

Recall =
TP

TP + FN

Pattern
ID

Fitness
score

No. of
concerned

files

% of
concerned

files

No. of
same

scoped
patterns

Pattern
size

Precision Recall

1 0.423 276 30% 10 30 53% 30%
12 0.283 232 25% 0 31 56% 19%
13 0.388 198 21% 7 34 56% 19%
21 0.327 179 19% 1 36 67% 27%
23 0.302 178 19% 0 39 78% 24%
24 0.42 174 19% 4 39 47% 15%
29 0.327 143 16% 0 43 58% 13%
30 0.363 139 15% 0 43 43% 10%
31 0.42 138 15% 3 44 73% 11%
35 0.392 133 14% 18 44 54% 15%
54 0.327 119 13% 0 47 50% 14%
55 0.363 113 12% 6 49 54% 13%
62 0.267 98 11% 0 53 75% 10%
63 0.302 96 10% 0 54 80% 14%
64 0.363 95 10% 16 55 54% 13%
81 0.333 85 9% 7 59 51% 10%

Table 4.5: File coverage for 100 iterations

55

Pattern
ID

Fitness
score

No. of
concerned

files

% of
concerned

files

No. of
same

scoped
patterns

Pattern
size

Precision Recall

1 0.233 176 19% 1 40 59% 17%
3 0.250 145 16% 0 40 75% 10%
4 0.392 143 16% 115 42 51% 16%

120 0.327 128 14% 0 45 80% 13%
121 0.327 123 13% 0 46 80% 13%
122 0.333 119 13% 26 48 55% 12%
149 0.302 99 11% 0 50 60% 14%
150 0.333 98 11% 19 54 54% 12%
170 0.302 89 10% 0 55 86% 20%
171 0.333 85 9% 38 58 52% 13%
210 0.333 79 9% 133 63 52% 10%
344 0.363 68 7% 129 69 53% 7%
474 0.302 62 7% 15 74 52% 7%
490 0.302 60 7% 15 78 84% 7%

Table 4.6: File coverage for 200 iterations

Pattern
ID

Fitness
score

No. of
concerned

files

% of
concerned

files

No. of
same

scoped
patterns

Pattern
size

Precision Recall

1 0.333 176 19% 10 40 51% 17%
12 0.392 174 19% 24 40 49% 17%
37 0.327 153 19% 0 42 60% 20%
38 0.392 152 17% 2 42 55% 22%
41 0.268 145 16% 0 41 63% 17%
42 0.42 143 16% 16 41 51% 17%
59 0.392 140 15% 3 41 56% 13%
63 0.392 139 15% 3 43 57% 17%
67 0.333 138 15% 38 45 52% 14%
105 0.447 133 14% 46 45 53% 14%
152 0.392 122 13% 0 46 63% 17%
153 0.327 120 13% 1 47 56% 13%
155 0.363 119 13% 7 48 58% 10%
163 0.327 116 13% 6 48 53% 10%
170 0.363 115 12% 38 50 54% 14%
210 0.327 113 12% 25 50 55% 13%
236 0.363 98 11% 6 53 56% 10%
243 0.363 96 10% 15 55 58% 13%
259 0.333 95 10% 6 54 49% 10%
266 0.363 85 9% 27 60 58% 12%

Table 4.7: File coverage for 500 iterations

56

Pattern
ID

Fitness
score

No. of
concerned

files

% of
concerned

files

No. of
same

scoped
patterns

Pattern
size

Precision Recall

1 0.388 200 22% 0 35 69% 37%
2 0.417 198 21% 0 36 40% 20%
3 0.447 186 20% 0 35 39% 17%
4 0.5 179 19% 95 37 50% 17%

100 0.447 178 19% 9 39 52% 18%
110 0.392 176 19% 4 37 50% 17%
115 0.363 161 17% 0 37 50% 10%
116 0.333 145 16% 2 40 66% 18%
119 0.447 143 16% 19 44 56% 17%
139 0.388 138 15% 2 43 59% 13%
142 0.333 123 13% 0 46 67% 13%
143 0.42 119 13% 14 48 53% 14%
158 0.392 116 13% 1 48 63% 12%
160 0.333 115 12% 0 50 80% 13%
161 0.392 98 11% 17 51 59% 8%
179 0.363 96 10% 1 53 58% 7%
181 0.363 85 9% 4 58 72% 11%
186 0.363 79 9% 6 63 48% 7%
194 0.363 85 9% 4 58 58% 10%

Table 4.8: File coverage for 1000 iterations

First, table 4.5 is not very representative of the global outcome because the
number of individuals is not significant. For example, the pattern ID1 covers
over 30% of the vulnerable dataset. Compared to other tables first pattern of
the list, this is too high. Clearly, this shows that figure 4.6(a) does not produce
enough data to be analysed.

On the other hand, tables 4.6 and 4.7 display the same outcome in a certain
manner: both have generic and specific patterns. It is interesting to note that
ID4 from table 4.6 covers the same set of files as 115 other patterns from this
generation. This can be attributed to two factors.

1. A side effect of implementing the joker concept. A pattern is considered
different to another if its internal structure has a distinct set of tokens. As
a result, different patterns may affect the same set of files if they have a
certain correspondence through jokers.

2. Apart from the joker case, there is another situation where a pattern pos-
sesses the same trait as another. For instance, a pattern with a given size
of N tokens can potentially affect the exactly same files as a pattern with
a size of N+1 tokens. In other words, a token sequence could probably
bring the same result as another if there is not a large gap concerning
their size.

57

Table 4.8 presents an interesting coverage. The first three patterns covers
22%, 21% and 20% respectively of the vulnerable dataset - but the number of
same patterns is zero. Moreover, their fitness score are very high. One inter-
pretation would be that these three patterns are generic because the concern
a large number of files and they are uncommon because basically there is no
other similar patterns.

Being generic and uncommon sounds counter-intuitive as first. On the one
hand, this kind of pattern could apply on many vulnerable files but, on the
other hand, it is likely to be very specific to the context. Further research is
needed on that point.

Overall, coverage results vary depending on the number of iterations and
there is no particular correlation between each column. However, it is worth
noting a certain connection between the number of concerned files and the
pattern size. In fact, the size decreases as the percentage of concerned files in-
creases. Clearly, this can be explained by the fact that a smaller pattern can be
more easily found in files. Also, an interesting observation can be made after a
closer look on table 4.4: the algorithm seems to increase patterns size over gen-
erations. New generations are composed of bigger specialised patterns with a
strong fitness score but with less files coverage.

No. of iterations Avg. fitness score Avg. precision Avg. recall
100 0.35 60% 16%
200 0.32 64% 13%
500 0.36 57% 14%

1000 0.39 58% 15%

Table 4.9: Average results

On another note, table 4.9 displays the average fitness score, precision and
recall. As a reminder, precision is measuring what fraction of predictions for
the positive class is valid. Concerning the recall, it telling how often predictions
actually capture the positive class.

The precision value answers the question “Of all things that were identified
as vulnerable, how many were actually vulnerable ?” and the recall measure is
“Of all the things that are truly vulnerable, how many did it identified?”.

Here, around∼60% of predictions for the positive class are valid and∼15%
of predictions capture the positive class. Clearly, the precision is not extremely
high and the recall is low. In other words, it means that ∼60% of the patterns
that were labelled as vulnerable were indeed vulnerable. Regarding the recall,
only ∼15% of the truly vulnerable pattern were caught by the algorithm.

However, the classification judgements can be trusted partially. But it is
very conservative: it means that a lot of vulnerable patterns remained uniden-
tified.

58

Chapter 5

Related work

5.1 Problem statement

This section presents some related work to the subject. To be more specific,
targets concern some concepts presented in this work. The initial point is to
inspect a perspective of an actual working procedure and then try to apply it
in the context of the local vulnerable dataset as presented in section 3.1. Plus,
another point to explore is the use of tokens as explained in section 3.2.2. And
finally, the last point to consider is the genetic programming as introduced in
section 2.3.

5.2 The Care and Feeding of Wild-Caught Mutants

The first section is related to the “The Care and Feeding of Wild-Caught
Mutants” published by Brown et al. from the University of Wisconsin [40].
This paper submits a technique to increase performance of the mutation test-
ing. It implements a method for conceiving possible faults that are linked with
changes made by actual developers. Hence, this technique allows the tester to
have more conviction that the test cases are sensitive to changes that have been
studied.

The main objective of this research project involves a new examination
of the mutation testing by making use of mutation operators that are more
closely resembling defects injected by real developers. To put it simply, the
Wild-Caught Mutants solution is a method for creating potential faults that are
linked with defects created by actual developers.

59

5.2.1 Wild-Caught Mutants toolchain

Figure 5.1: The mutgen / mutins toolchain

Language definition: A language is defined with a set of operators (O), key-
words (K), quote delimiters (Q) and comments (C) as seen on listing 5.1.
Basically, the presented language parser is a lexical analyser and it allows
to spot tokens with high accuracy. In other words, a lexical analysis gen-
erates a set of tokens identified by the rules in the language definition.

1 K auto break case char const continue d e f a u l t do double e l s e enum
2 K extern f l o a t f o r goto i f i n t long r e g i s t e r re turn shor t signed
3 K s i z e o f s t a t i c s t r u c t switch typedef union unsigned void
4 K v o l a t i l e while
5 O = += −= ∗= /= %= &= |= ˆ= <<= >>= ++ −− + − ∗ / % ˜ & | ˆ
6 O << >> ! && | | == != < > <= >= [] −> . () , ? :
7 Q ’ ”
8 C /∗ ∗/
9 c //

Listing 5.1: Language definition for C

Idiomisation: The language definition covers language keywords and oper-
ators. Yet, some identifiers are used too many times and as a conse-
quence, they must be considered as additional keywords. These specific
identifiers are considered as “idioms” and the process of locating them
is “idiomisation”. The process of idiomisation can recognise idiomatic
keywords that appear barely in the system under test. As a result, the
idiomisation is optional.

Harvesting (mutgen): It is the extraction process of reusable mutation opera-
tors. Referred as the “harvesting”, it creates a mutation operator set from
a corpus of diff-formatted code patches (see section 3.1.3 for a diff ex-
ample). In practice, mutgen classifies mutation operators by cutting off
small transformation from the revision history received in input.

60

On listing 5.2, an example of the command line is given. The mutgen
process takes three parameters into account: the language definition in
listing 5.1, a diff revision input (see example in listening 3.3) and an out-
put name.

1 ./mutgen −d clanguage . def −i input diff.git −x output.dat

Listing 5.2: Mutgen command

After running the mutgen command, a file on output is generated. A line
example of its content can be seen in listening 5.3. At the first approach,
it seems incomprehensible but that is not the case. In fact, the line can be
divided in two: what is on the left and what is on the right of the “@”.
The right part concerns an example of the pattern which is on the left
side. In each case, the symbol “:” indicates the code mutation. In this
example, a pointer is eliminated on the second identifier $2 and it can be
observed on the variable called buf.

1 M $1 .= .∗ $2 : $1 .= $2 @ p = ∗buf ; : p = buf ;

Listing 5.3: Mutgen output

Insertion (mutins): This is the process of applying operators to the source
code. In other words, this insertion tool applies mutation operators to
a source code different from the one used during harvesting. Therefore,
on output, the source code will be mutated.

Mutins operates by tokenizing the source code input file using the same
language definition as presented in listening 5.1. Then, it chooses a mu-
tation operator from the mutation operator set. It has to be noted that the
selection is done randomly but it can be specified by the developer. Af-
ter, the process insertion tries to match the mutation operator’s pattern.
If there is a match, mutins alters the tokens in the source file.

In order to illustrate the insertion process, the listing 5.4 demonstrates the
mutins command. It takes four arguments: the output from listing 5.2,
the mutant index number N1 to be used, the specific index for insertion
N2 and the result file name.

1 ./mutins −x output.dat −m N1 −i N2 −t result.c

Listing 5.4: Mutins command

61

5.2.2 Vulnerable dataset association

Once the main concept of the Wild-Caught Mutants is assimilated, the next
step is to find a potential combination with the vulnerable dataset as described
in section 3.1. In fact, using an existing project with confirmed results can be
very profitable.

As described in the previous section 5.2.1, the input diff revision has sim-
ilarities with the vulnerable dataset. In fact, the input file in the form of com-
parison of two different files is the same format. Thus, it is interesting to see
if using a vulnerable dataset from Linux kernel can be coupled with the Wild-
Caught Mutants solution.

After extracting the vulnerable parts from the vulnerable dataset, the ex-
periment consists to see if the mutgen process could produce an interesting
mutant pattern. In other words, the harvesting aspect from the Wild-Caught
Mutants is used to see if the output is promising. Plus, the vulnerable dataset
includes files written in C and the language definition for C is provided for the
tool. It is thus clear that the tool could potentially be complementary.

Regrettably, the Wild-Caught Mutants solution cannot fit with the vulner-
able dataset. This conclusion can be explained easily by analysing the output
data from the test case and from the vulnerable dataset. To put it simply: at
first, the test concerned files provided by the project and secondly, the test con-
cerned files provided by the vulnerable dataset.

In the first instance, the experiment takes into account all the artifacts1 pro-
vided by the project. Over 53 elements are generated from different sources.
The content analysis revolved around the biggest files: in this way, many cases
of tokenization can be observed instead of few ones from smaller files. The
main observation spotlights the fact that many mutants were very basic. In
other words, the developer mistakes involved in most cases the lack of atten-
tion.

Taking into account the first point brings to the fore the problem of the sec-
ond case involving the vulnerable dataset: most of vulnerable chunks reported
with the CVE-NVD database are complex. In fact, the level of programming
is not the same and it is problematic. In other words, vulnerabilities from the
Linux kernel are hard to tokenize with the Wild-Caught Mutants tool.

The experiment with the vulnerable dataset brings an insufficient and inad-
equate a result, even with different sources. Trying different parameters during
the experiment involving identifiers and operators does not lead to interesting
results.

1Source: https://github.com/d-bingham/fse2017artifact

62

5.3 Bugram: Bug Detection with N-gram Language
Models

5.3.1 Bugram presentation

Another scientific paper linked to this work concerns bugs detection called
Bugram [41]. Even if many concepts presented do not directly refer here, there
are some ideas under the same basis and especially, the token concept. It must
be noted that recent studies demonstrated that n-gram language model [42]
can spot or identify the regularities of software source code [43, 44].

Bugram takes advantage of n-gram language models instead of rules to de-
tect bugs. This solution uses token sequentially exploiting the n-gram language
model. Token sequences from the program are then evaluated depending on
their probability in the learned model. Therefore, if there is a low probability in
the learned model implies that the token sequence is a potential bug. In fact, a
low probability token sequences may not indicate a bug but another problem.
This latter involves bad programming practices, unusual uses of the code of
which programmers may want to be aware.

Here, n-gram models learn probabilities of using a method depending on its
context. With the learned probability distribution, they compute the possibility
of each token sequence. Then, they report small probability token sequences
as potential bugs.

Figure 5.2: Tokenization in Bugram

As mentioned before, Bugram uses tokens when it comes to representing a
program. Figure 5.2 shows the way how Bugram works. First, it converts an
input into tokens. Then, it uses the tokens to build n-gram models. Finally,
Bugram exploits the n-gram models to detect bugs. Without getting into the
specifics of the n-gram model, the next section presents only the common con-
cept to this work : the tokenization.

5.3.2 Bugram tokenization

In order to build a n-gram-model for a given project, a tokenization is
needed of the source code. Here, the main challenge concerns the granularity:
defining the length of the smallest element inside a system with great finesse
is the key for success.

Based on existing works, a n-gram-model is built at the syntactic level. As

63

a result, tokens can be suggested for code completion and recommendations.
For instance, listing 5.5 shows an incomplete “for loop”. The suggestion for
this example would be the token “i++”.

1 f o r (i n t i =0 ; i<n ;

Listing 5.5: Incomplete “for loop”

Unfortunately, this kind of n-gram model is useless at this level: nowadays,
a basic integrated development environment or even a compiler will point out
this kind of problem. Hence, a semantic level is more appropriate is the context
of bug detection.

1 f o r (i n t i =0 ; i<n ; i ++) {
2 foo (i) ;
3 }

Listing 5.6: Complete “for loop”

At the semantic level, high-level tokens are selected. They represent the
structure and context for the code source. As an example, listing 5.6 presents
a simple “for loop” without any syntax errors. Bugram represents this part of
the code with high level tokens as it can be seen on listing 5.7.

1 [<FOR>, foo () , <END FOR>]

Listing 5.7: High-level tokens representation

The precision of bug detection is dependent on the control flow informa-
tion. Therefore, Bugram adds the control flow elements into the token sets.
These elements are method calls, constructors and initialisers:

• if/else
• for/do/while/foreach
• break/continue
• try/catch/finally

• return
• synchronized
• switch/case/default
• assert

Compared to the solution presented in this work, Bugram implements a
higher view of tokens. In this master thesis, tokens are recognised one after
another in a sequence but Bugram uses a semantic level with an abstract ap-
proach. The control flow elements from Bugram can be examined in contrast to
different types of tokens presented as an add-on in section 3.2.2.1. Overall, Bu-
gram proves its efficiency and paper results recommend using Bugram along
side to existing rule-based bug detection.

64

Chapter 6

Future Works

This section presents future potential work concerning the subject. In fact
many concepts were introduced in this master thesis and some of them should
be discussed in greater detail. The purpose of this section is to suggest new
avenues of investigation or even an alternative approach to the problem.

Many optimisations were done during the algorithm development but there
is room for improvement. One of the key components is the mutation and
crossover operators. Both have a set of pre-defined techniques creating new
individuals based on variable parameters. The difficulty is that not every ge-
netic programming operators are useful for a token sequence. Therefore, a
study shall be conducted to see which operators produce valid and strong in-
dividuals. In other words, there is a possibility to create an interesting new
population with genetic programming techniques by selecting proper param-
eters with the correct operators.

The tokenizer tool presented in this work is accessible and straightforward.
With a syntactic approach, it performs a lexical analysis on a source code and
tokens on output are stored inside a pattern structure as an ordered sequence.
However, this tactic has its limit: the semantic aspect may be absent. For exam-
ple, Bugram (section 5.3) shows interesting results with more abstract tokens.
Exploring this way of proceeding may need to rethink the global structure of
the algorithm and that is why it was not implemented in this work.

Alternatively, the token sequence method could be replaced by one of the
other representations of the code. For instance, the abstract syntax tree is more
often seen in the context of genetic programming. Additionally, the DEAP
framework (section 2.3.7) has already a set of methods that deals with abstract
syntax trees. Clearly, it is interesting to combine the vulnerable dataset and an-
other source code representation in order to analyse the outcome with genetic
programming techniques.

More generally, a study involving the nature of the results would be inter-

65

esting. In fact, in this current work, there is no behaviour analysis on the indi-
viduals. In other words, there is a list of strong mutants and offspring in the
results but there is an in-depth analysis on token nature. This research study
would lead to understand the vulnerability from a technical point of view.

Plus, it could also be worthwhile to see the context of a strong individual.
As a reminder, the vulnerable dataset comes from the Linux kernel and the ex-
act location of vulnerable files is well-known. Obviously, some files are more
critical than others: a vulnerable mutant that affects a strategic file may be prof-
itable for a further analysis. But then again, this idea concerns the behaviour
of the individuals.

66

Chapter 7

Conclusion

This master thesis introduces generation of vulnerabilities with the aim of
protecting software against unknown security issues. These undiscovered vul-
nerabilities are composed from existing source code using genetic program-
ming techniques.

Starting from a vulnerable dataset based on the Linux kernel, a collection
of well-known vulnerabilities were processed by external tools. In fact, the
modified C-Tokenizer tool brought tokens for the lexical analysis and the evo-
lutionary computation framework DEAP were responsible for the genetic pro-
gramming part.

Clearly, results showed that a vulnerable pattern can be improved with ge-
netic programming. In other words, the Darwin’s principle of survival of the
fittest works perfectly with vulnerabilities as they became stronger generation
after generation.

Also, detailed investigation showed that there might be two kinds of pow-
erful patterns on the outcome: generic and specific. The first one covers a lot
of vulnerable files and the second one few. A further study may be considered
in order to analyse the pattern behaviour.

The actual behaviour of a generated pattern, that is what is the effect of
the vulnerability it introduces in the program, has not been explored in this
thesis. Answering this question requires a different research method mixing
automated and manual analysis. I nevertheless believe the work performed
here set a basis for the automated generation of vulnerable patterns.

67

68

References
[1] Brian Marick. The Craft of Software Test-

ing: Subsystem Testing Including Object-
based and Object-oriented Testing. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA,
1995. ISBN 0-13-177411-5.

[2] Zakir Durumeric, James Kasten, David
Adrian, J Alex Halderman, Michael Bai-
ley, Frank Li, Nicolas Weaver, Johanna
Amann, Jethro Beekman, Mathias Payer,
et al. The matter of heartbleed. In Proceed-
ings of the 2014 Conference on Internet Mea-
surement Conference, pages 475–488. ACM,
2014.

[3] Gregory Tassey. The economic impacts
of inadequate infrastructure for software
testing. National Institute of Standards and
Technology, RTI Project, 7007(011), 2002.

[4] Fabian Yamaguchi. Pattern-based vulner-
ability discovery. 2015.

[5] Fabian Yamaguchi, Nico Golde, Daniel
Arp, and Konrad Rieck. Modeling and dis-
covering vulnerabilities with code prop-
erty graphs. In Security and Privacy (SP),
2014 IEEE Symposium on, pages 590–604.
IEEE, 2014.

[6] Frances E Allen. Control flow analysis. In
ACM Sigplan Notices, volume 5, pages 1–
19. ACM, 1970.

[7] Hugo Gascon, Fabian Yamaguchi, Daniel
Arp, and Konrad Rieck. Structural detec-
tion of android malware using embedded
call graphs. In Proceedings of the 2013 ACM
workshop on Artificial intelligence and secu-
rity, pages 45–54. ACM, 2013.

[8] Jeanne Ferrante, Karl J Ottenstein, and
Joe D Warren. The program dependence
graph and its use in optimization. ACM
Transactions on Programming Languages and
Systems (TOPLAS), 9(3):319–349, 1987.

[9] Ivan Victor Krsul. Software vulnerabil-
ity analysis. Purdue University West
Lafayette, IN, 1998.

[10] Matt Bishop and David Bailey. A critical
analysis of vulnerability taxonomies. Cse-
96-11, (September 1996):0–14, 1996.

[11] Edward G. Amoroso. Fundamentals of Com-
puter Security Technology. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1994.
ISBN 0-13-108929-3.

[12] Bingchang Liu, Liang Shi, Zhuhua Cai,
and Min Li. Software vulnerability dis-
covery techniques: A survey. In Multi-
media Information Networking and Security

(MINES), 2012 Fourth International Confer-
ence on, pages 152–156. IEEE, 2012.

[13] William GJ Halfond, Shauvik Roy Choud-
hary, and Alessandro Orso. Penetration
testing with improved input vector identi-
fication. In Software Testing Verification and
Validation, 2009. ICST’09. International Con-
ference on, pages 346–355. IEEE, 2009.

[14] James Andrew Ozment. Vulnerability dis-
covery & software security. PhD thesis, Uni-
versity of Cambridge, 2007.

[15] Stephanie Forrest. Genetic algorithms:
principles of natural selection applied to
computation. Science, 261(5123):872–878,
1993.

[16] John R Koza. Genetic programming as
a means for programming computers by
natural selection. Statistics and computing,
4(2):87–112, 1994.

[17] SN Sivanandam and SN Deepa. Introduc-
tion to genetic algorithms. Springer Science
& Business Media, 2007.

[18] John R Woodward. Ga or gp? that is not
the question. In Evolutionary Computation,
2003. CEC’03. The 2003 Congress on, vol-
ume 2, pages 1056–1063. IEEE, 2003.

[19] Melanie Mitchell. An introduction to genetic
algorithms. MIT press, 1998.

[20] Pedro Larranaga, Cindy M. H. Kuijpers,
Roberto H. Murga, Inaki Inza, and Sejla
Dizdarevic. Genetic algorithms for the
travelling salesman problem: A review of
representations and operators. Artificial In-
telligence Review, 13(2):129–170, 1999.

[21] Jean-Yves Potvin. Genetic algorithms for
the traveling salesman problem. Annals of
Operations Research, 63(3):337–370, 1996.

[22] I. M. Oliver, D. J. Smith, and J. R. C. Hol-
land. A study of permutation crossover
operators on the traveling salesman prob-
lem. In ICGA, 1987.

[23] Félix-Antoine Fortin, François-Michel De
Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP:
Evolutionary algorithms made easy. Jour-
nal of Machine Learning Research, 13:2171–
2175, jul 2012.

[24] Maarten Keijzer, Juan J Merelo, Gustavo
Romero, and Marc Schoenauer. Evolving
objects: A general purpose evolutionary
computation library. In International Con-
ference on Artificial Evolution (Evolution Ar-
tificielle), pages 231–242. Springer, 2001.

69

[25] Sean Luke. Ecj then and now. In Proceed-
ings of the Genetic and Evolutionary Compu-
tation Conference Companion, pages 1223–
1230. ACM, 2017.

[26] Christian Gagné and Marc Parizeau. Open
beagle: A new versatile c++ framework
for evolutionary computation. In GECCO
Late Breaking Papers, pages 161–168. Cite-
seer, 2002.

[27] Matthieu Jimenez, Mike Papadakis, and
Yves Le Traon. An empirical analysis of
vulnerabilities in openssl and the linux
kernel. In Software Engineering Conference
(APSEC), 2016 23rd Asia-Pacific, pages 105–
112. IEEE, 2016.

[28] Matthieu Jimenez, Mike Papadakis, and
Yves Le Traon. Vulnerability prediction
models: a case study on the linux kernel.
In Source Code Analysis and Manipulation
(SCAM), 2016 IEEE 16th International Work-
ing Conference on, pages 1–10. IEEE, 2016.

[29] Riccardo Scandariato, James Walden,
Aram Hovsepyan, and Wouter Joosen.
Predicting vulnerable software compo-
nents via text mining. IEEE Transactions
on Software Engineering, 40(10):993–1006,
2014.

[30] Torben Ægidius Mogensen. Basics of com-
piler design. Torben Ægidius Mogensen,
2009.

[31] Christopher D. Manning and Hinrich
Schütze. Foundations of statistical natural
language processing. Information Retrieval,
4:80–81, 2001.

[32] James Halliday. C-tokenizer. URL
https://github.com/substack/
c-tokenizer.

[33] AK Santra and C Josephine Christy. Ge-
netic algorithm and confusion matrix for
document clustering. International Journal
of Computer Science, 9(1):322–328, 2012.

[34] Pedro Domingos. A few useful things to
know about machine learning. Communi-
cations of the ACM, 55(10):78, 2012. ISSN
00010782. doi: 10.1145/2347736.2347755.

[35] Jiawei Han, Jian Pei, and Micheline Kam-
ber. Data mining: concepts and techniques.
Elsevier, 2011.

[36] Kalyanmoy Deb, Amrit Pratap, Sameer
Agarwal, and T. Meyarivan. A fast and

elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolution-
ary Computation, 6(2):182–197, 2002. ISSN
1089778X. doi: 10.1109/4235.996017.

[37] Yılmaz Kaya, Murat Uyar, et al. A
novel crossover operator for genetic al-
gorithms: Ring crossover. arXiv preprint
arXiv:1105.0355, 2011.

[38] Xian-Huan Wen, Tina Yu, and Seong Lee.
Coupling sequential-self calibration and
genetic algorithms to integrate production
data in geostatistical reservoir modeling.
In Geostatistics Banff 2004, pages 691–701.
Springer, 2005.

[39] Peter J Bentley and Jonathan P Wake-
field. Hierarchical crossover in genetic al-
gorithms. In Proceedings of the 1st On-line
Workshop on Soft Computing (WSC1), pages
37–42, 1996.

[40] David Bingham Brown, Michael Vaughn,
Ben Liblit, and Thomas Reps. The care
and feeding of wild-caught mutants. Pro-
ceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering - ES-
EC/FSE 2017, pages 511–522, 2017. doi:
10.1145/3106237.3106280.

[41] Song Wang, Devin Chollak, Dana
Movshovitz-Attias, and Lin Tan. Bugram:
bug detection with n-gram language mod-
els. Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software
Engineering - ASE 2016, pages 708–719,
2016. doi: 10.1145/2970276.2970341.

[42] Eugene Charniak. Statistical language learn-
ing. MIT press, 1996.

[43] Abram Hindle, Earl T. Barr, Zhendong Su,
Mark Gabel, and Premkumar Devanbu.
On the naturalness of software. In Pro-
ceedings of the 34th International Conference
on Software Engineering, ICSE ’12, pages
837–847, Piscataway, NJ, USA, 2012. IEEE
Press. ISBN 978-1-4673-1067-3.

[44] Baishakhi Ray, Vincent Hellendoorn, Sa-
heel Godhane, Zhaopeng Tu, Alberto Bac-
chelli, and Premkumar Devanbu. On the
”naturalness” of buggy code. In Proceed-
ings of the 38th International Conference on
Software Engineering, ICSE ’16, pages 428–
439, New York, NY, USA, 2016. ACM.
ISBN 978-1-4503-3900-1. doi: 10.1145/
2884781.2884848.

70

https://github.com/substack/c-tokenizer
https://github.com/substack/c-tokenizer

71

