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heralds	new	discoveries,	is	not	'Eureka!',	but	'That's	funny	...'		
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9



	

Dans	 le	 désordre,	 merci	 à	 Séverin	 (et	 son	 remplaçant,	 Francesco)	 pour	 ses	
discussions	(toujours	passionnantes)	en	embuscade.	Bruce,	toi	et	moi,	on	est	pareil	sur	
certains	 points	 («	C’est	 qui	 s’vieux-là	?	»	 –	 *regardent	 en	 direction	 du	 recteur	 de	
l’UNamur*	–	«	Je	sais	pas.	»)	Bonne	m*rd*	pour	la	fin	de	ta	rédac’	!	Dr.	Katy,	pour	avoir	fait	
nos	bacs	ensemble,	je	peux	te	dire	que	tu	as	peu	changé	en	10	ans,	et	c’est	tant	mieux	!	Tes	
histoires	incroyables	de	malchance	me	font	toujours	beaucoup	rire	;	continue	à	prendre	
la	vie	avec	le	sourire.	Jérôme,	amoureux	de	football	(de	Cha’	et	de	votre	petite	fille	aussi	
je	pense	^^)	et	surtout	tellement	drôle,	je	garde	un	souvenir	ému	de	ton	souper	de	thèse	
sur	fond	de	Belgique-Panama	!	Angy,	 je	ne	désespère	pas	de	te	montrer	la	beauté	et	la	
splendeur	de	le	biologie	eucaryote,	peut-être	au	cours	d’une	autre	discussion	au	coin	du	
tableau	 noir	 près	 de	 la	 machine	 à	 café.	 Mat’	 (Mathilde/Marbite),	 tes	 talents	 de	
dessinatrices	de	certaines	parties	de	l’anatomie	humaine	ne	cessent	de	m’étonner.	Rien	à	
voir,	mais	il	faudrait	qu’un	jour	ton	Shib’	rencontre	mon	Shib’,	qui	sait,	ils	seront	peut-être	
potes.	Mat’	(Mathieu),	ton	humour	pince	sans	rire	n’a	pas	d’égal	en	ces	lieux.	Merci	pour	
tout	ce	que	tu	fais	pour	nous,	ce	qui	te	rendscomplètement	essentiel	à	la	bonne	marche	
du	labo	(je	parle	bien	de	ta	propension	à	donner	le	coup	d’envoi	de	la	Beer	Hour).	

A	propos	de	la	Beer	Hour	justement,	ce	fut	un	plaisir	de	participer	à	l’organisation	
de	cette	 fête	hebdomadaire,	une	 tradition	qui	tisse	 les	 liens	sociaux	au	 labo	depuis	26	
ans	maintenant	 !	Parmi	 les	habitués,	 je	 tiens	à	remercier	Kriek	(Gwen),	Kwak	(Agnes),	
Chimay	bleue	(Kévin),	Leopold	7	(Pierre),	Delirium	Tremens	(Pauline),	Coca	(Aurore	&	
Dounz),	Blanche	de	Namur	(Bruce,	mais	c’est	parce	qu’il	conduit)	et	tous	ceux	que	je	n’ai	
pas	pu	inclure	dans	la	liste,	car	impossible	de	les	associer	à	une	bière	particulière…	ils	les	
aiment	toutes	(Charles	&	co)	!	Merci	aussi	à	nos	collègues	d’URPhyM,	notamment	Gégé,	
Axe,	Oli	Svsk,	Niam,	François,	JM	et	les	autres	pour	leur	accueil	et	leur	convivialité.	

	
Au-delà	des	collègues,	je	me	dois	de	remercier	le	personnel	du	Gecko,	pour	leur	

délicieux	plats	Thaï,	leurs	sourires	et	leur	gentillesse	“un	plat	de	riz	gratuit	en	plus,	comme	
ça,	manger	gecko	tous	les	jours“.	Un	thésard	bien	nourri	est	un	thésard	heureux	!	Merci	
aussi	aux	membres	de	 l’harmonie	de	Fraire	pour	me	permettre,	 jusqu’il	y	a	peu	 (pour	
cause	d’emploi	du	temps	trop	chargé),	de	me	vider	la	tête	le	vendredi	soir	aux	répétitions,	
une	activité	qui	a	été	essentielle	au	maintien	de	mon	équilibre	mental	au	cours	de	ces	
quatre	dernières	années.	

	
Merci	 aux	 amis	 et	 à	 la	 famille	 pour	 avoir	 toujours	 été	 là.	 Papa,	 tu	 as	 su	 me	

transmettre	 ta	 curiosité	 naturelle	 et	 ta	 passion	 pour	 les	 sciences.	 Maman,	 ton	 esprit	
critique	m’a	 souvent	 servi	 d’exemple.	 Thomas,	 bro’,	 nos	 discussions	 sur	 le	 chemin	 de	
l’harmonie	me	manquent,	on	ne	se	voit	plus	assez	souvent	ces	temps-ci.	Papy	Luis,	je	te	
dédie	cette	 thèse.	Ta	 force	 tranquille,	 ton	 flegme	et	 tes	blagues	en	espagnol	résonnent	
toujours	en	moi.	

Merci	 à	 mes	 grands-parents	 de	 Dinant	 et	 ma	 tante	 Isa	 de	 m’avoir	 gentiment	
hébergé	une	partie	de	mon	mémoire,	et	merci	aussi	à	mes	couz’	Alex	et	Robin	de	m’avoir	
laissé	l’ex-chambre	de	Céline	pendant	cette	période.	C’était	très	amusant	de	vivre	avec	
vous	tout	ce	temps,	d’ailleurs	je	me	souviens	avec	émotion	des	crabes	royaux	d’Isa,	de	
mon	gâteau-tartine,	qui	était	vraiment	le	meilleur	gâteau	d’anniversaire	du	monde	entier	
et	de	l’univers,	et	de	nos	apéros	presque	quotidiens	:D	
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Virgil’,	si	j’ai	la	force	de	me	lever	le	matin	depuis	bientôt	un	an,	c’est	en	partie	pour	
pouvoir	profiter	de	ton	agréable	compagnie	sur	la	route	de	Dinant.	Merci	d’avoir	accepté	
de	me	prendre	en	covoiturage,	et	d’être	 toujours	 là	au	rendez-vous	“bon	pied-bon	œil“	
comme	tu	dis.	Pourtant,	dieu	sait	que	c’est	un	peu	difficile	pour	toi	le	matin,	quand	chaque	
seconde	compte	et	qu’il	 faut	éviter	les	pièges	tels	que	les	pots	de	shampooing	presque	
vides	ou	les	véhicules	trop	lents	sur	la	route.	Il	n’empêche	qu’en	un	an,	on	n’a	jamais	été	
en	retard,	ou	en	tous	cas,	jamais	plus	en	retard	que	le	train	!	Je	te	souhaite	beaucoup	de	
succès	avec	ton	projet	asinien.	

	

Il	va	sans	dire	que	si	j’en	suis	là	aujourd’hui,	c’est	aussi	et	surtout	grâce	à	ma	petite	
famille.	 Morgane,	 tu	 es	 l’ancre	 de	 mon	 navire,	 et	 quand	 les	 flots	 de	 ma	 thèse	
m’emmenaient	à	la	dérive,	tu	as	toujours	su	tenir	bon	pour	moi.	Quand	le	soir	venu,	 je	
vous	retrouve	toi	et	Yuk-Yuk,	tous	mes	soucis	s’évanouissent,	tant	vous	savez	toujours	me	
faire	rire	avec	vos	bêtises	et	vos	 léchouilles	(enfin,	 les	 léchouilles,	 ça	concerne	surtout	
mon	chien	Yuko).	Si	j’ai	déménagé	au	fin	fond	de	la	Belgique	pour	toi,	toi	tu	prévois	de	me	
suivre	au	fin	fond	du	Canada.	Alors	merci	pour	ça,	merci	de	m’avoir	accepté	comme	je	suis,	
avec	mes	folies	et	mes	défauts,	merci	pour	ton	soutien	inconditionnel,	merci,	merci,	merci,	
je	vous	aime	!	
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HOW	TO	READ	THIS	THESIS	
	
i. Structure	

This	work	is	divided	in	two	main	parts	that	present	two	relatively	independent	
research	output	produced	during	my	thesis.		

In	 the	 first	 part,	 I	 explored	 the	 causes	 and	 consequences	 of	 a	 surprising	
connection	between	Pol	II	phosphorylation	and	tRNA	expression	in	fission	yeast.	Related	
to	this	part,	the	Appendix	1	presents	a	published	work	assessing	the	conservation	of	the	
functions	 of	 the	 RSC	 chromatin	 remodeler	 (a	 candidate	 effector	 in	 the	 Pol	 II	
phosphorylation/tRNA	 expression	 relationship)	 in	 fission	 yeast	 and	 budding	 yeast		
(Yague-Sanz	et	al.,	2017).	

The	 second	part	 of	 the	 thesis	 consists	 in	 a	 collaborative	 project	 in	which	we	
determined	the	role	of	the	kinase	CDK-12	in	C.	elegans	development.	With	the	exception	
of	the	first	two	figures	that	are	required	for	the	general	understanding	of	the	study,	the	
presented	research	represents	mostly	my	contribution	to	the	project,	that	was	limited	to	
the	generation	and	analysis	of	high	throughput	sequencing	data.	Related	to	this	part,	the	
Appendix	2	presents	a	published	bioinformatics	pipeline	that	was	specifically	developed	
for	the	project	in	order	to	quantify	special	mRNA	processing	events	(called	spliced	leader	
trans-splicing	events)	that	we	found	were	dependent	on	the	activity	of	the	CDK-12	kinase	
(Yague-Sanz	and	Hermand,	2018).	

Preceding	those	two	main	parts	of	my	thesis,	a	general	introduction	summarizes	
concepts	 important	 for	 the	 understanding	 and	 contextualization	 of	 both	 parts,	 while	
smaller	introductions	within	the	parts	introduce	more	specific	concepts.	
	

ii. Gene/protein	naming	conventions	

Gene	names	in	S.	pombe	and	C.	elegans	are	always	written	in	lower	case	italic.	For	
instance:	lsk1,	cdk-12.	

For	S.	pombe	proteins,	the	names	are	written	in	straight	lower	case	letters	with	
the	first	 letter	capitalized	(Lsk1).	In	contrasts,	 for	C.	elegans	proteins,	every	letters	are	
capitalized	(CDK-12).	

For	 the	 gene	 and	protein	names	 in	C.	 elegans,	 a	 dash	 separates	 the	 alphabetic	
characters	from	the	numeric	characters	(CDK-12,	not	CDK12).	
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ABBREVIATIONS	
	

Term	 Definition	
ATP	 adenosine	tri-phosphate	
a.k.a.	 also	known	as	
as	 analog	sensitive	
CTD	 C-terminal	domain	
C-terminal	 carboxy-terminal	
ChIP	 chromatin	immunoprecipitation	
CPST	 cleavage	and	polyadenylation	specificity	factor	
CstF	 cleavage	stimulatory	factor	
DNA	 deoxyribonucleic	acid	
DMSO	 Dimethyl	sulfoxide	
GMP	 guanosine	monophosphate	
IGR	 inter-genic	region	
lncRNA	 long	non-coding	RNA	
mRNA	 messenger	RNA	
MAP	 mitogen	activated	protein	
m7G	 N7-methyl	guanosine	
ncRNA	 non-coding	RNA	
NDR	 nucleosome	depleted	region	
Ser2-P	/	Ser5-P	 Phosphorylated	serine	2/5	of	the	RNA	polymerase	II	C-terminal	domain	
polyA	 poly-adenosine	
pre-tRNA	(-mRNA)	 precursor	tRNA	(mRNA)	
RSC	 remodel	the	structure	of	chromatin	
RNA	 ribonucleic	acid	
RP	 ribosomal	protein	
rRNA	 ribosomic	RNA	
RNAi	 RNA	interference	
Pol	 RNA	polymerase	
snRNA	 small	nuclear	RNA	
snoRNA	 small	nucleolar	RNA	
SL	 splice	leader	
SAGA	 Spt-Ada-Gcn5	acetyltransferase	complex	
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GENERAL	INTRODUCTION	
	

1. LIFE	&	TRANSCRIPTION	
	
i. What	is	life?	

Biology	 is	 the	 science	 that	 study	 life,	 but	what	 is	 life	 ?	Physicists,	 chemists	 or	
geologists	do	not	have	issues	in	defining	their	own	field,	yet	biologists	struggle	with	this	
simple	question,	 for	which	 there	 is	no	clear-cut	answer	even	today	(Ferreira	Ruiz	and	
Umerez,	2018).		

Even	if	some	researchers	actually	argue	that	defining	life	is	either	impossible	or	
pointless	(Machery,	2012),	I	will	attempt	here	to	provide	a	short,	partial	definition	of	what	
I	am	studying,	a.k.a	life	–	but	life	in	the	context	of	the	science	pursued	in	my	PhD	thesis.	
As	such,	the	following	definition	does	not	mean	to	be	inclusive	of	every	aspects	of	life:	

	Life:	The	ability	to	use	internal	information,	in	combination	with	energy,	in	order	to	
carry	various	functions,	such	as	regulating	its	internal	environment,	responding	to	stimuli,	
and,	 most	 importantly,	 propagating	 this	 internal	 information	 through	 reproduction	 or	
growth.	

	
ii. The	central	dogma	of	molecular	biology	

According	to	this	opinionated	definition,	one	central	aspect	of	life	is	the	ability	to	
use	internal	information.	In	life	as	it	is	now	–	but	probably	not	in	life-as-it-was	(Alberts	et	
al.,	2002)	–,	biological	internal	information	is	stored	in	a	4-letters	code,	the	DNA2.	The	use	
of	that	internal	information,	a	process	generally	called	gene	expression,	depends	primarily	
on	 transcription,	 where	 RNA	 molecules	 (a	 similar	 4-letters	 code)	 are	 synthetized	
according	to	the	DNA	template	by	DNA-dependent	RNA	polymerases	(Pol).	In	turn,	the	
RNA	can	carry	a	function	per	se,	or	serve	as	a	template	for	protein	synthesis	from	amino	
acids	(a	20-letters	code).	

Even	before	the	discovery	of	the	first	RNA	polymerase	(Stevens,	1960),	the	way	
biological	information	flows	within	the	cells	has	been	described	by	Francis	Crick	in	an	
essay	called	‘On	protein	synthesis’	(Crick,	1958).	He	observed	that	due	to	the	nature	of	
the	biological	codes	(DNA,	RNA,	proteins),	the	biological	information	can	in	theory	flow	
in	any	direction	except	from	proteins	to	either	DNA	or	RNA3.	These	insights	were	later	

																																																													
	

2	 Actually,	 there	 are	 exceptions	 to	 this	 rule,	 for	 instance	 in	 RNA	 viruses.	 Then	 again,	
whether	the	definition	of	life	should	include	viruses	or	not	is	also	controversial.	

3	This	 conclusion	came	 from	the	observation	 that	one	needs	at	 least	3	elements	 (later	
called	codons)	of	a	4-letters	code	to	unambiguously	build	a	20-letters	code.	However,	as	there	are	
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See main text for details. Adapted from (Lieberman et al., 2018)

ETS denotes external transcribed spacer, Gppp denotes guanosine triphosphate, ITS denotes internal transcribed
spacer, and UTR denotes untranslated region.

Figure	1:	A	world	of	RNAs
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referred	 to	 as	 the	 “the	 central	 dogma	 of	 molecular	 biology”	 and	 have	 been	 often	
oversimplified	 as	 an	 unidirectional	 flow	 of	 biological	 information	 (DNA	 -->	 RNA	 -->	
proteins),	 that	 is	often	 true	but	 for	which	 there	are	countless	exceptions.	However,	as	
initially	stated,	the	central	dogma	still	holds	true.	

In	this	work,	we	especially	focused	on	how	the	biological	transfer	of	information	
occurring	during	to	first	step	of	gene	expression	(DNA	-->	RNA)	is	regulated,	both	at	a	
basal	level	and	in	response	to	external	stimuli.	

	
iii. The	complexity	of	transcription	

In	eukaryotes	–	that	is,	living	organism	that	have	nuclei	to	compartmentalize	their	
DNA	within	the	cells	–	there	are	three	main	DNA-dependent	RNA	polymerases	(Pol)	called	
Pol	I,	Pol	II	and	Pol	III	(Roeder	and	Rutter,	1969).	These	polymerases	are	evolutionary-
related	proteins	complexes	that	specialized	to	transcribe	specific	sets	of	genes	(Figure	1).		

Pol	I	transcribes	the	main	ribosomal	RNA	(rRNA)	transcript,	which	encodes	three	
of	the	four	rRNAs	(5.8S,	18S,	and	28S)	that	compose	the	ribosomes,	i.e.,	the	machinery	of	
protein	synthesis.	(Lieberman,	2018)	

In	parallel,	Pol	II	transcribes	“coding”	messenger	RNA	precursors	(pre-mRNAs)	
that,	after	maturation	into	messenger	RNAs	(mRNAs),	will	be	used	as	template	for	protein	
synthesis.	Pol	 II	also	transcribes	a	variety	of	non-coding	RNAs	(ncRNAs)	such	as	small	
nucleolar	 RNAs	 (snoRNAs),	 important	 for	 rRNA	 processing	 into	 functional	 ribosome	
components;	small	nuclear	RNAs	that	assemble	with	proteins	to	form	the	spliceosome,	a	
complex	 involved	 in	 the	maturation	(splicing	of	 the	 introns)	of	 the	pre-mRNAs;	and	a	
plethora	of	micro	RNAs	(miRNAs)	and	other	ncRNAs	(not	shown	on	 figure	1)	that	are	
mainly	involved	in	the	regulation	of	transcription.	

Finally,	Pol	III	mostly	transcribes	transfer	RNAs	(tRNAs)	that	allow	the	conversion	
of	the	4-letters	RNA	code	into	the	20-letters	protein	code	during	protein	synthesis.	Pol	III	
also	transcribes	other	small	ncRNAs	such	as	the	snU6	snRNA	or	the	5S	rRNA.	

Altogether,	 the	 intricated	 network	 of	 coding	 or	 functional	 RNAs	 show	 the	
complexity	of	the	transfer	of	information	that	occurs	within	life.		

	
	
	
	
	

																																																													
	

64	possible	combinations	of	groups	of	3	elements	from	a	4-letters	code,	these	combinations	define	
the	20-letters	in	a	redundant	way	(the	code	is	degenerated).	In	consequence,	it	is	impossible	to	
come	back	to	a	4-letters	code	(RNA	or	DNA)	from	the	20-letters	code	(proteins).	
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2. THE	FISSION	YEAST	S.	POMBE	
	
i. Yeasts:	powerful	eukaryotic	model	organisms	

Yeasts	are	part	of	 the	 fungus	kingdom,	but	 in	contrast	with	your	 typical	white	
mushroom,	they	are	primarily	unicellular	eukaryotes	(although	some	species	are	able	to	
form	 multicellular	 structures	 under	 specific	 conditions).	 Interestingly,	 single-celled	
yeasts	appear	 to	have	 evolved	 from	multicellular	ancestors,	 illustrating	 that	 evolution	
does	not	always	favors	more	complex,	“higher”,	organisms	(James	et	al.,	2006).	Indeed,	
simpler	features,	like	to	be	unicellular,	can	be	evolutionary	advantageous	when	it	comes	
to	multiply	faster	than	competitors.	For	instance,	the	fission	yeast	Schizosaccharomyces	
pombe	 can	 complete	 its	 life	 cycle	 and	 give	 progeny	 within	 2.5	 hours,	 potentially	
multiplying	by	a	thousand	the	number	of	cells	in	a	population	in	little	more	than	24h.	

Because	of	their	fast	growth	rates,	which	make	them	convenient	to	culture	and	
harvest,	 and	 also	 because	 of	 their	 ability	 to	 integrate	 foreign	 DNA	 into	 their	 genome	
through	homologous	recombination,	which	facilitates	genetic	manipulation	(Fowler	et	al.,	
2014),	yeasts	have	been	used	as	eukaryotic	model	organisms	for	decades.	Two	species	
have	 received	 particular	 attention:	 the	 baker’s	 (or	 budding)	 yeast	 Saccharomyces	
cerevisiae	and	the	fission	yeast	Schizosaccharomyces	pombe.		

S.	cerevisiae	is	a	very	interesting	creature.	Since	at	least	7000	years	–	13	000	years	
according	 to	 a	 recent	 study	 (Liu	 et	 al.,	 2018)	 –,	 humans	 have	 taken	 advantage	 of	 its	
intrinsic	ability	to	ferment	in	hypoxic	conditions	to	bake	bread	and	to	brew	a	variety	of	
alcoholic	 beverages	 (Mortimer,	 2000).	 Having	 evolved	 in	 contact	 with	 humanity	 for	
thousands	 of	 years,	 the	 well	 named	 baker’s	 yeast	 is	 now	 considered	 a	 domesticated	
species,	although	some	wild	isolates	still	remain	(Greig	and	Leu,	2009).	Given	this	long	
history	 (and	 the	 relative	 smallness/simplicity	 of	 its	 genome)	 it	 is	 only	natural	 that	 S.	
cerevisiae	 was	 the	 first	 eukaryotic	 species	whose	 genome	 have	 been	 fully	 sequenced,	
entering	the	era	of	genomics	5	years	before	the	publication	of	the	human	genome	(Goffeau	
et	al.,	1996;	Lander	et	al.,	2001;	Venter	et	al.,	2001).	

In	 contrast,	 there	 is	 little	 historical	 application4	 of	 the	 fission	 yeast	
Schizosaccharomyces	pombe	and	as	such,	the	interest	for	this	yeast	as	a	model	organism	
is	rather	recent	and	only	started	in	the	second	half	of	the	20th	century	(Schlake	and	Gutz,	
1993).	 Nonetheless,	 this	 organism	 has	 been	 rapidly	 considered	 as	 a	 central	 model	
organism	in	molecular	genetics	and	provides	advantageous	features	complementary	to	
those	of	the	budding	yeast	–	reviewed	in	(Hoffman	et	al.,	2015)	and	briefly	summarized	
hereafter.	

																																																													
	

4	One	notable	exception	is	that	S.	pombe	was	used	in	African	countries	for	its	alcoholic	
fermentation.	 Accordingly,	 “pombe”	 means	 “booze”	 in	 Swahili.	 Note	 that	 some	 S.	 pombe	
researchers	 have	 experimented	 brewing	 with	 it	 and	 all	 agree	 to	 say	 that	 it	 tastes	 awfully	
[discussion	on	the	pombelist].	Recently,	more	successful	application	of	S.	pombe	in	rum	and	wine	
making	have	been	developed,	but	remain	at	a	very	small	scale	(Volschenk	et	al.,	2003).	
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ii. Why	is	fission	yeast	a	great	model	organism?	

S.	pombe	is	an	ancient	yeast	whose	roots	go	back,	according	to	phylogeny,	to	the	
early	 evolution	 of	 fungi	 (Sipiczki,	 2000).	 In	 consequence,	 the	 evolutionary	 distance	
between	S.	pombe	and	S.	cerevisiae	is	on	the	same	order	as	the	distance	between	either	
yeasts	and	mammals.	However,	S.	pombe	appears	to	have	evolved	at	a	slower	rate	than	S.	
cerevisiae	and	retains	more	characteristics	 from	the	 last	common	eukaryotic	ancestor,	
which	 are	 often	 shared	 with	 mammals	 but	 absent	 in	 S.	 cerevisiae.	 For	 instance	 the	
complete	set	of	proteins	required	for	RNA	interference	(Dicer,	Argonaute	and	the	RNA-
dependent	 RNA	 polymerase)	 are	 conserved	 in	 S.	 pombe	 and	 have	 been	well	 studied,	
leading	to	major	discoveries	in	the	field	–	reviewed	in	(Volpe	and	Martienssen,	2011).	In	
addition	 S.	 pombe	 has	 large	 centromeres,	 structurally	 similar	 to	 that	 of	mammals,	 on	
which	 RNAi-dependent	 heterochromatin	 is	 deposited	 (Volpe	 et	 al.,	 2002).	 All	 those	
features	established	the	fission	yeast	S.	pombe	as	one	of	the	major	models	for	the	study	of	
molecular	and	cellular	biology	in	eukaryotes.	

	
iii. The	fission	yeast	life	cycle	

In	rich	conditions,	when	nutrient	availability	 is	high,	 the	 fission	yeast	S.	pombe	
grows	exponentially.	As	its	lay	name	suggests,	the	fission	yeast	divides	by	medial	fission.	
Partly	because	of	these	symmetric	division	that	allow	researchers	to	assess	the	age	of	a	
cell	–	and	cell-cycle	defect	–	just	by	looking	at	its	size,	study	in	fission	yeast	lead	to	major	
breakthroughs	in	the	area	of	cell-cycle	control.	For	a	personal	recollection	from	sir	Paul	
Nurse	on	how	his	research	on	the	regulators	of	the	cell-cycle	in	fission	yeast	led	him	to	
receive	the	Nobel	prize	in	2001,	see	(Nurse,	2017).	(Volschenk	et	al.,	2003)	

The	exponential	growth	 in	S.	pombe	 corresponds	to	a	succession	of	mitosis	(M	
phase),	a	short	growth	phase	(G1),	DNA	replication	(S	phase),	and	a	longer	growth	phase	
(G2)	 (Forsburg	 and	Nurse,	 1991).	 It	 takes	 about	2h30	 for	 this	 vegetative	 cell	 cycle	 to	
complete	in	optimal	conditions.	

However,	upon	nutrient	starvation,	especially	nitrogen	starvation,	cells	stop	their	
mitotic	 cycle	 at	 the	G1	 stage	 and	 can	undergo	 sexual	differentiation.	 First,	 a	 transient	
diploid	(the	fission	yeast	is	haploid	during	its	vegetative	cell	cycle)	is	generated	by	the	
conjugation	of	two	cells	of	opposed	mating	types	called	h+	and	h-.	The	diploid	cell	(also	
called	zygote)	will	then	proceed	through	meiosis	I	and	II	to	form	an	ascus	containing	four	
spores.	The	spores	are	metabolically	arrested	haploid	cells	that	are	resistant	to	a	variety	
of	stresses	and	can	survive	for	months	in	harsh	conditions.	However,	when	the	conditions	
becomes	 favorable	 again,	 the	 spores	 will	 re-enter	 the	 mitotic	 cell	 cycle	 (Egel,	 1973)	
(figure	2).	(Otsubo	and	Yamamoto,	2012)	

The	 irreversible	 switch	 from	 proliferation	 (mitotic	 cell	 cycle)	 to	 sexual	
differentiation	can	be	considered	as	the	most	important	cell-fate	decision	in	the	life	of	S.	
pombe.	As	such,	it	is	tightly	regulated	in	response	to	environmental	cues	by	a	variety	of	
signaling	pathways	–	reviewed	in		(Anandhakumar	et	al.,	2013)	–	that	converge	to	control	
the	expression	of		Ste11,	the	master	regulator	of	sexual	differentiation.	
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Adapted from (Otsubo et al., 2012). See main text for details

Figure	2:	Schizosaccharomyces	pombe	life	cycle
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3. THE	RNA	POL	II	C-TERMINAL	DOMAIN	
	

A. Complexity	of	the	Pol	II	C-terminal	domain	(CTD)	
	
Among	all	RNA	polymerases,	Pol	II	received	the	most	attention,	as	it	transcribes	

mRNA	with	coding	potential.	The	Pol	II	complex	is	composed	of	12	subunits	(named	Rpb1	
to	Rpb12,	by	decreasing	order	of	molecular	weight).	The	largest	subunit,	Rpb1,	includes	
a	unique	and	flexible	domain	at	the	carboxy-terminal	(C-terminal)	end	of	the	protein.	This	
intrinsically	disordered	extension,	 called	 the	C-terminal	domain	 (CTD)	 is	 composed	of	
sequential	 repeats	 of	 a	 consensus	 Y1S2P3T4S5P6S7	 heptapeptide5	 (Corden	 et	 al.,	 1985).	
While	the	consensus	sequence	is	conserved	among	all	eukaryotes,	the	number	of	repeats	
and	hence,	 the	 length	of	 the	CTD,	 varies	and	 tends	 to	be	correlated	with	 the	apparent	
complexity	of	an	organism	(Allison	et	al.,	1988).	For	instance,	the	number	of	repeats	can	
range	from	26	repeats	in	budding	yeast,	29	in	fission	yeast,	42	in	the	nematode	C.	elegans	
and	52	in	mammals	(Corden,	1990).	

Work	in	Drosophila	melanogaster	showed	that,	although	the	CTD	is	essential	for	
viability	in	vivo,	it	is	dispensable	in	vitro	for	accurate	Pol	II	transcription	(Zehring	et	al.,	
1988).	 In	 budding	 yeast,	 the	 CTD	 can	 be	 shortened	 to	 13	 heptad	 repeats	 and	 still	 be	
perfectly	 viable	 for	 the	 cell,	 but	 further	 deletion	 down	 to	 below	 10	 repeats	 is	 lethal,	
indicating	that	the	heptad	repeats	are	partially	redundant	for	the	essential	role	of	the	CTD	
(Nonet	et	al.,	1987).	In	addition,	the	CTD	can	be	physically	transferred	from	Rpb1	to	the	
Rpb4	or	Rpb6	Pol	II	subunits	without	affecting	cell	viability	(Suh	et	al.,	2013).	Moreover,	
replacement	of	 the	highly	degenerated	CTD	of	drosophila	with	 the	human	CTD	 is	also	
perfectly	viable	(Portz	et	al.,	2017).	Suggesting	that	the	minimal	functional	unit	of	the	CTD	
consists	of	in	two	consecutive	heptads,	genetic	analysis	in	yeast	revealed	that	insertion	of	
additional	 amino	acids	 between	 single	 heptads	 is	 lethal,	while	 insertion	 between	 two	
consecutive	heptads	is	tolerated	(Stiller	and	Cook,	2004).		

Altogether,	 these	 aforementioned	 studies	 highlight	 that	 while	 the	 CTD	 is	 an	
essential	domain,	it	is	not	required	for	Pol	II	transcription	per	se.	Instead,	it	appears	that	
the	 CTD	 function	 as	 a	 recruitment	 platform	 for	 multiple	 factors	 involved	 in	 co-
transcriptional	 processes	 (detailed	 in	 the	 next	 chapters).	 The	 specificity	 of	 the	
recruitment	 of	 those	 diverse	 factors	 has	 been	 attributed	 to	 specific	 configurations	
adopted	by	the	–	otherwise	disordered	–	CTD	due	to	the	combination	of	post-translational	
modifications	 and	 conformation	 changes	 within	 the	 CTD,	 termed	 the	 “CTD	 code”	
(Buratowski,	2003)	.	

Indeed,	the	CTD	is	extensively	post-translationally	modified,	potentially	on	each	
residue	of	the	consensus	heptads.	In	abundance,	the	most	important	modifications	are	the	
phosphorylation	 of	 the	 serines	 S2	 (Ser2-P)	 and	 S5	 (Ser5-P)	 of	 the	 consensus	 repeats	
(Heidemann	et	al.,	2013;	Suh	et	al.,	2016),	but	the	tyrosine	(Y1)	(Baskaran	et	al.,	1993),	
the	threonine	(T4)	(Hsin	et	al.,	2011),	and	the	serine	S7	(Egloff	et	al.,	2007)	can	also	be	

																																																													
	

5	Y=	tyrosine;	S=	serine;	P=	proline;	T=	threonine.	
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Adapted from (Hong et al., 2016). See main text for details

Figure	3:	Pol	II	transcription	cycle
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phosphorylated.	Other	modifications	include	S2,	S5	and	T4	glycosylation	(Lu	et	al.,	2016)	
and	 the	 methylation,	 acetylation	 and	 ubiquitination	 of	 arginine	 residues	 in	 the	 non-
consensus	repeats	(Schröder	et	al.,	2013;	Voss	et	al.,	2015).	In	addition,		the	two	prolines	
(P3	 and	 P6)	 are	 subject	 to	 isomerization	 and	 can	 be	 found	 in	 either	 cis	 or	 trans	
conformations	(Hanes,	2014).	

Deciphering	the	functional	importance	behind	the	–	potentially	very	complex	–	
CTD	code	has	been	the	focus	of	numerous	studies	in	the	past	two	decades.	However,	it	has	
been	shown	recently	by	using	mass	spectrometry	(instead	of	antibody-based	assays)	that	
the	 complexity	 of	 the	 CTD	 code	 might	 have	 been	 overestimated	 in	 the	 past,	 as	 the	
phosphorylation	 of	 Ser2	 and	 Ser5	were	 found	 a	 100-folds	more	 abundant	 than	 other	
phosphorylated	residue	(Suh	et	al.,	2016).	While	the	absolute	abundance	of	a	modification	
is	 not	 a	 measure	 of	 its	 biological	 relevance	 (a	 modification	 could	 be	 present	 only	
transiently	during	the	transcription	cycle,	yet	be	biologically	important),	we	will,	for	the	
sake	of	brevity,	mainly	focus	on	the	roles	of	the	more	abundant	Ser2-P	and	Ser5-P	for	the	
next	chapters	of	this	introduction.	

	
B. Pol	II	CTD	coordinates	mRNA	maturation	with	transcription	

	
i. The	transcription	cycle	

Chromatin	immunoprecipitation	experiments	using	antibodies	specific	to	Ser2-P	
and	 Ser5-P	 revealed	 that	 these	 modifications	 are	 brought	 in	 an	 ordered	 fashion,	
sequentially	 on	 the	 transcription	 units	 and	 are	 correlated	 with	 transcription	 cycle	
(Komarnitsky	et	al.,	2000).		

Before	 initiation,	 unphosphorylated	 Pol	 II	 is	 recruited	 to	 the	 promoter.	 Then,	
CDK7	 (Kin28	 in	 buding	 yeast	 and	 Mcs6	 in	 fission	 yeast),	 within	 the	 TFIIH	 complex,	
phosphorylates	 Ser5	 upon	 transcriptional	 initiation	 (Cismowski	 et	 al.,	 1995).	 Ser5-P	
peaks	 to	 its	maximum	 level	 20	 to	120	nt	downstream	 the	 initiation	 site	 (Mayer	 et	 al.,	
2010),	but	is	then	progressively	removed	by	the	phosphatases	RPAP2	(Rtr1	in	yeast)	in	
the	vicinity	of	the	site	of	transcription	initiation	(Mosley	et	al.,	2009).	Dephosphorylation	
of	Ser5-P	continues	toward	the	3’	end	of	the	transcription	unit	by	the	Ssu72	phosphatase	
(Krishnamurthy	et	al.,	2004).		

In	 parallel	 with	 Ser5-P	 dephosphorylation,	 Ser2	 is	 phosphorylated	 during	
transcriptional	 elongation	 by	 its	major	 kinase	 CDK12	 (Ctk1	 in	 budding	 yeast,	 Lsk1	 in	
fission	yeast)	(Cho	et	al.,	2001;	Coudreuse	et	al.,	2010)	and	by	its	minor	kinase	CDK9	(Bur1	
in	budding	yeast,	cdk9	in	fission	yeast)	(Qiu	et	al.,	2009).	Ser2-P	peaks	to	its	maximum	
level	 toward	 the	 3’-end	 of	 the	 transcription	 unit,	 and	 is	 then	 removed	 by	 the	 Fcp1	
phosphatase	100	to	200	nt	downstream	the	polyadenylation	site	(Cho	et	al.,	2001,Mayer,	
2010	#100).	Finally,	the	fully	dephosphorylated	Pol	II	terminates	and	can	reinitiate	a	new	
cycle	of	transcription	(Figure	3).	(Hong,	2016)	

To	sum	up,	the	interplay	of	multiple	CTD	kinases	and	phosphatases	successively	
recruited	during	the	cycle	of	transcription	contributes	to	create	a	uniform	transition	in	
the	 phosphorylation	 marks	 on	 Pol	 II	 CTD	 (Mayer	 et	 al.,	 2010).	 This	 differential	 CTD	
phosphorylation	between	the	5’	and	3’	end	regions	of	the	transcription	unit	allows	the	
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differential	recruitment	of	factors	required	at	specific	times	of	the	transcription	cycle	as	
exemplified	below.	

	
ii. Capping	

In	eukaryotes,	the	nascent	pre-mRNAs	exiting	the	RNA	polymerase	needs	to	be	
protected	 rapidly	 to	 avoid	 degradation	 by	 exonucleases.	 To	 provide	 exonuclease	
protection,	a	cap	of	N7-methyl	guanosine	(m7G)	 is	added	on	the	5’-end	of	the	nascent	
transcripts	 in	 a	 3-steps	 process.	 (1)	 First,	 a	 RNA	 triphosphatase	 hydrolyses	 the	
triphosphate	 of	 the	 first	 transcribed	 nucleotide	 into	 a	 diphosphate.	 (2)	 Then,	 a	
guanylyltransferase	 transfers	 a	 guanosine	 monophosphate	 (GMP)	 on	 the	 mRNA	 5’-
diphosphate	end.	(3)	Finally	a	methyltransferase	methylates	the		GMP	on	the	N7	position	
(Mizumoto	and	Kaziro,	1987).	

The	 two	 first	 steps	 of	 cap	 formation	 are	 catalyzed	 by	 the	 same	 enzyme	 in	
mammals	 (Mce1),	while	 in	 yeast,	 two	different	 enzymes	 are	 required	 (Pct1	 and	Ceg1	
respectively).	 In	mammals,	 Ser5-P	 connects	 the	 capping	with	 transcriptional	 initiation	
through	the	recruitment	of	Mce1	(Ho	et	al.,	1998).	Similarly,	in	yeast,	both	Pct1	and	Ceg1	
are	 recruited	 by	 Ser5-P	 during	 the	 initiation	 (Proudfoot	 et	 al.,	 2002).	 This	 early	
recruitment	 of	 the	 capping	 enzyme(s)	 to	 the	 nascent	 transcripts	 allows	 their	 timely	
capping,	 an	 essential	 process	 to	 protect	 the	 transcripts	 from	 degradation.	 Actually,	
coordination	of	 the	capping	with	 transcription	 is	 the	only	essential	 function	of	Ser5-P.	
This	was	elegantly	shown	by	the	covalent	tethering	of	the	mammalian	capping	enzyme	
Mce1	to	the	very	end	of	the	CTD,	a	tethering	that	bypasses	the	requirement	of	Ser5-P	for	
viability	in	S.	pombe	(Schwer	and	Shuman,	2011).	

	
iii. Splicing	

In	 eukaryotes,	 many	 genes	 contain	 introns,	 i.e,	 stretches	 of	 nucleotides	
transcribes	and	present	in	the	pre-mRNA	that	are	removed	by	a	process	called	“splicing”	
during	mRNA	maturation.	 Alternative	 splicing	 can	 generate	 diversity	 in	 the	 resulting	
mature	 mRNA	 (Pan	 et	 al.,	 2008),	 and	 the	 splicing	 process	 in	 general	 can	 serve	 as	 a	
regulator	of	gene	expression	(Li	et	al.,	2017;	Shkreta	and	Chabot,	2015).	 In	mammals,	
almost	all	protein-coding	genes	have	multiple	large	introns.	The	situation	is	different	in	S.	
pombe	and	S.	cerevisiae,	where	the	introns	are	much	smaller	and	only	40%	and	8%	of	the	
protein-coding	genes	(respectively)	have	introns	(Hoffman	et	al.,	2015).	

The	splicing	of	pre-mRNA	is	catalyzed	by	a	huge	ribonucleoproteic	complex	called	
the	 spliceosome.	 Although	 the	 splicing	 can	 occur	 independently	 than	 transcription	 in	
vitro,	transcription	is	required	for	efficient	splicing	in	vivo	(David	and	Manley,	2011).	It	
has	been	proposed	that	the	CTD	acts	as	a	landing	platform	for	the	spliceosome	(Greenleaf,	
1993).	 However,	 the	 requirement	 of	 the	 phosphorylation	 of	 the	 CTD	 for	 splicing	 is	
controversial.	

Supporting	 the	 idea	 of	 a	 CTD	 phosphorylation-dependent	 coordination	 of	 the	
splicing	process,	it	has	recently	been	shown	that	the	splicing	occurs	during	transcription,	
as	soon	as	the	3’	splice-site	is	being	transcribed	(Oesterreich	et	al.,	2016).	Moreover,	the	
presence	of	a	hyper-phosphorylated	CTD	increases	splicing	kinetic	(Hirose	et	al.,	1999).	
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In	addition,	physical	interactions	between	the	CTD	and	components	of	the	spliceosome	
have	been	described	(David	et	al.,	2011;	Morris	and	Greenleaf,	2000)	and	in	human	cells,	
a	S2A	mutant	(where	every	Ser2	is	mutated	to	alanine	and	cannot	be	phosphorylated)	
impairs	the	recruitment	of	the	spliceosome	(Gu	et	al.,	2013).	

However,	 arguing	 against	 a	 role	 (or	 at	 least,	 a	 conserved	 role)	 of	 Ser2-P	 in	
coordinating	splicing,	no	splicing	defect	was	detected	in	a	genome-wide	study	using	the	
S2A	mutant	in	fission	yeast	(Inada	et	al.,	2016).	In	addition,	a	recent	studies	that	mapped	
nascent	 RNAs	 associated	 with	 phosphorylated	 Pol	 II	 in	mammals	 found	 that	 splicing	
intermediates	(and	the	spliceosome)	were	mostly	associated	with	Ser5-P,	suggesting	that	
Ser5-P	is	the	phosphorylated	form	the	CTD	responsible	for	the	coordination	of	splicing	in	
mammal	 (Nojima	 et	 al.,	 2015;	 Nojima	 et	 al.,	 2018).	 As	 elongating	 polymerases	 are	
phosphorylated	on	Ser2,	it	was	suggested	this	connection	between	Ser5-P	and	splicing	
implies	a	transient	shift	of	the	phosphorylation	pattern	of	the	Pol	II	CTD	as	the	splice	sites	
are	transcribed	(Custódio	and	Carmo-Fonseca,	2016).	However,	the	mechanism	behind	
such	shift	of	phosphorylation	is	currently	unknown,	promising	further	years	of	exciting	
research	in	decorticating	how	Pol	II	CTD	coordinates	splicing	with	transcription.	
	

iv. Cleavage	and	poly-adenylation	

The	last	step	of	pre-mRNA	maturation	is	the	3’-end	processing	that	consists	in	(1)	
the	cleavage	of	the	pre-mRNA	and	(2)	the	addition	of	a	poly-adenosine	(polyA)	tail.	Again,	
coordination	with	 transcription	 is	 important	because	 it	 is	 the	 cleavage	 that	ultimately	
allows	 the	polymerase	 to	 terminate	according	 to	 the	 torpedo	model	 of	 transcriptional	
termination	(West	et	al.,	2004)	–	although	there	are	multiple	and	partially	redundant	fail-
safe	mechanisms	of	Pol	 II	termination	(Proudfoot,	2016).	 In	addition,	as	 the	polyA	tail	
protects	 the	 free	 3’	 end	 of	 the	 pre-mRNA	 against	 degradation	 by	 3’-5’	 exonucleases,	
polyadenylation	must	occur	in	a	timely	manner.	

Assembly	of	 the	pre-mRNA	3’	processing	complex	 is	 initiated	by	 its	binding	 to	
conserved	 consensus	 sequences	 on	 the	 RNA	 molecule.	 First,	 the	 cleavage	 and	
polyadenylation	 specificity	 factor	 (CPSF)	 recognizes	 the	A(A/U)UAAA	polyadenylation	
signal	 (PAS)	on	 the	pre-mRNA.	Then,	both	a	uridine-rich	downstream	element	(U-rich	
DSE)	 and	 the	 CPSF,	 participate	 in	 the	 recruitment	 of	 the	 cleavage	 stimulatory	 factor	
(CstF).	 Finally,	 the	 RNA	 is	 cleaved	 by	 an	 endonuclease	 subunit	 within	 CPSF	 and	
polyadenylated	 by	 an	 ATP-dependent	 polyA-polymerase	 –	 reviewed	 in	 (Richard	 and	
Manley,	2009).	
	 Several	subunits	of	the	3’	processing	complex,	such	as	Clp1,	Rna14,	Tex1,	Rtt103,	
CstF50	and	Pcf11	are	known	to	 interact	with	Ser2-P	(Harlen	et	al.,	2016,	Lunde,	2010	
#101;	 Meinhart	 and	 Cramer,	 2004	 ).	 In	 addition,	 CTD	 truncation	 causes	 a	 3’-end	
processing	 defects	 (McCracken	 et	 al.,	 1997).	 As	 the	 recruitment	 of	 the	 3’	 processing	
complex	is	primarily	assured	by	the	cis	sequences	on	the	pre-mRNA,	the	involvement	of	
Ser2-P	could	be	a	way	to	assure	robust,	perfectly	timed,	coupling	of	transcription	with	3’-
end	processing	and	termination.	
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C. Pol	II	CTD	coordinates	chromatin	remodeling	with	transcription	
i. What	is	chromatin?	

Nuclear	DNA	from	one	typical	human	cell,	once	unraveled,	can	be	stretched	up	to	
two	meters	(McGraw-Hill,	2012).	Therefore,	there	is	a	strong	need	for	the	cell	to	package	
DNA	into	a	compact	structure	called	chromatin.	This	compaction	also	protects	from	DNA	
damage	and	has	important	implication	in	controlling	gene	expression.	

The	smallest	functional	unit	of	chromatin	is	the	nucleosome.	Nucleosomes	are	8-
subunits	complexes	that	wrap	DNA	on	approximately	147	bp.	They	are	composed	of	two	
heterodimers	 of	 histone	H2A	 and	H2B	 sandwiching	 a	 tetramer	 of	 histone	H3	and	H4	
(Luger	et	al.,	1997).	Non-canonical	histones	also	exist,	such	as	the	histone	H2AZ	and	the	
histone	CENPA,	a	H3	variant	only	present	on	centromeres	(Folco	et	al.,	2008)	.	

Chromatin	 has	 two	 distinguishable	 states:	 the	 heterochromatin	 (densely	
compacted)	and	the	euchromatin	(less	compacted)	(van	Steensel,	2011).	In	contrast	with	
euchromatin,	 DNA	 in	 the	 heterochromatin	 state	 is	 generally	 considered	 silent	 as	 the	
compact	 structure	 is	 not	 accessible	 to	 the	 transcriptional	 machinery.	 In	 addition,	 a	
complex	range	of	more	subtle	chromatin	states	can	be	defined	according	to	the	so	called	
“histone	code”:	the		combination	of	various	post-translational	modification	(acetylation,	
methylation,	phosphorylation,	ubiquitination,	…)	on	the	N-terminal	tails	of	the	histones	
(Jenuwein	and	Allis,	2001).	

	
ii. Determinants	of	nucleosome	positioning	

Genome	wide	studies	of	nucleosome	positioning	revealed	that	one	nucleosome	
spans	on	average	every	200	bp.	Strikingly,	the	distribution	of	the	nucleosomes	within	the	
genome	is	not	random	as	there	are	clear	preferred	positions.	In	particular,	nucleosomes	
directly	 downstream	 transcription	 starting	 sites	 (TSS)	 are	 strongly	 positioned	 while	
regions	 upstream	 TSS	 or	 downstream	 transcription	 end	 sites	 (TES)	 are	 enriched	 in	
nucleosome	depleted	regions	(NDR)	(Fan	et	al.,	2010;	Yague-Sanz	et	al.,	2017).		

This	non-random	distribution	of	nucleosomes	within	the	genome	is	determined	
by	a	multiplicity	of	factors.	First,		the	intrinsic	properties	of	the	underlying	DNA	sequence	
paint	a	landscape	of	nucleosome	positioning	preferences	(Kaplan	et	al.,	2009).	On	top	of	
this	landscape,	the	binding	of	transcription	factor	on	the	DNA	and/or	the	action	of	ATP-
dependent	chromatin	remodelers	(such	as	the	RSC	complex)	creates	NDR	(Yague-Sanz	et	
al.,	2017).	From	there,	nucleosome	positioning	spreads	from	the	NDR	according	to	the	
statistical	 positioning	 theory	 (Mavrich	 et	 al.,	 2008):	 the	 simple	 presence	 of	 a	 barrier	
(NDR)	restricts	the	positions	a	nucleosome	can	occupy	in	adjacent	locations.	Then,	the	
next	nucleosome	 is	 also	 statistically	 restricted	by	 the	previous	one,	 and	 so	on.	As	 the	
distance	with	the	closest	barrier	increases,	the	precision	of	the	positioning	decays.	Among	
the	positions	allowed	by	the	statistical	positioning,	preference	would	be	given	to	those	
with	favorable	intrinsic	DNA	properties	(Johnson,	2010).	
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iii. Chromatin	affecting	transcription	

The	 chromatin	 state	 has	 a	 considerable	 influence	 on	 transcription.	 Besides	
heterochromatin	 regions,	 where	 the	 DNA	 is	 so	 densely	 compacted	 that	 transcription	
almost	never	occurs,	promoter	recognition	by	Pol	II	transcription	factors	and	subsequent	
PIC	assembly	depends	on	DNA	accessibility	(Tirosh	and	Barkai,	2008).	Moreover,	Pol	II	
has	 to	 cope	 with	 the	 transcriptional	 barriers	 imposed	 by	 nucleosomes	 to	 transcribe	
efficiently,	and	it	was	shown	that	Pol	II	actually	pauses	at	each	major	histone-DNA	contact	
sites	(Kujirai	et	al.,	2018).	

In	that	context,	the	histone	code	regulates	transcription	either	by	recruiting	other	
regulatory	proteins,	or	directly	by	altering	the	affinity	between	DNA	and	nucleosomes.	
Typically,	histone	acetylation	decreases	 the	affinity	between	DNA	and	nucleosomes	by	
neutralizing	 the	positively	 charged	histones.	 In	 contrast,	 histone	methylation	 tends	 to	
favor	nucleosome	compaction	by	competing	with	acetylation	for	the	same	residue	or	by	
recruiting	 histone	 deacetylases,	making	 it	 harder	 for	 the	 RNA	 polymerase	 to	 displace	
nucleosomes	during	elongation	(Belch	et	al.,	2010).	Intriguingly,	histone	acetylation	and	
histone	methylation	 are	 both	 correlated	 with	 active	 transcription	 (Berger,	 2002).	 An	
explanation	for	this	apparent	paradox	will	be	proposed	in	the	following	paragraphs.	

	
iv. Transcription	affecting	chromatin	

As	 most	 co-transcriptional	 processes,	 chromatin	 remodeling	 and	 histone	
modifications	are	connected	to	Pol	II	CTD	phosphorylation.	

Shortly	 after	 Pol	 II	 initiation,	 the	 histone	 deacetylases	 Gcn5	 within	 the	 SAGA	
complex	and	Esa1	within	the	NuA4	complex	are	recruited	via	Ser5-P	to	relax	chromatin	
compaction	and	ensure	productive	elongation	(Govind	et	al.,	2007;	Ng	et	al.,	2003).		

During	transcriptional	elongation,	the	RNA	polymerases	displace	nucleosomes	in	
their	wake	as	they	proceed	through	the	genes.	However,	the	displaced	nucleosomes	need	
to	 be	 replaced	 behind	 the	 polymerases	 in	 order	 to	 prevent	 spurious	 transcription	
initiation	within	the	body	of	the	gene	(Workman,	2006)	in	a	process	dependent	on	Pol	II	
CTD	phosphorylation.	At	the	early	elongation	phase	of	Pol	II	transcription,	Ser5-P	leads	
to	the	recruitment	of	the	Set1	histone	methyltransferase	(part	of	the	COMPASS	complex)	
responsible	of	the	methylation	of	the	lysine	4	on	the	histone	H3	(H3K4me)	to	the	5’	ends	
of	 transcribed	 genes	 (Ng	 et	 al.,	 2003).	 Similarly,	 as	 the	 elongation	 proceeds,	 Ser2-P	
recruits	the	Set2	histone	methyltransferase	that	methylates	the	lysine	36	on	the	histone	
H3	(H3K36me)	toward	the	3’	end	of	the	gene	(Kizer	et	al.,	2005).	H3K4me3	and	H3K36me	
then	respectively	recruit	the	histone	deacetylases	Set3	and	Rpd3	(Keogh	et	al.,	2005;	Kim	
and	 Buratowski,	 2009),	which	 deacetylates	 the	 histone	 displaced	 by	 Pol	 II,	 favorizing	
chromatin	recompaction	in	the	polymerase	wake.	

In	short,	a	common	role	of	Ser5-P	and	Ser2-P	in	regards	to	histone	modifications	
would	 be	 to	 restrict	 the	 spread	 of	 chromatin	 acetylation	 to	 promoters	 and	 to	 help	
reposition	nucleosomes	in	the	wake	of	the	RNA	polymerase.	Indeed,	it	was	reported	that	
in	 the	absence	of	 these	mechanisms,	 long	nucleosome	depleted	regions	lead	 to	cryptic	
initiation	 of	 transcription	within	 the	 genes,	 resulting	 in	 the	 transcription	 of	 aberrant	
RNAs	(Guillemette	et	al.,	2011;	Quan	and	Hartzog,	2010).	
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D. Gene-	or	condition-specific	roles	for	CTD	modifications	
i. Gene-specific	requirements	of	Ser2-P	

Challenging	 the	 classical	 view	 of	 CTD	 phosphorylation,	 stating	 that	 a	 uniform	
transition	occurs	 from	Ser5-P	 to	Ser2-P	as	 the	Pol	 II	proceed	spatially	and	 temporally	
through	transcriptional	elongation,	works	from	our	group	revealed	that	a	subset	of	genes	
exhibit	promoter-proximal	Ser2-P	in	fission	yeast.	This	early	Ser2-P	correlates	with	the	
recruitment	of	its	kinase	Lsk1	in	the	promoter	region	of	the	concerned	genes,	including	
the	master	regulator	of	transcription	ste11.	Importantly,	loss	of	Ser2-P	either	by	deleting	
Lsk1	or	in	the	S2A	mutant	(where	every	Ser2	within	the	CTD	are	mutated	into	alanines)	
is	perfectly	viable,	but	causes	a	penetrant	sterility	that	was	attributed	to	a	defect	in	the	
expression	 of	 ste11,	 the	 gene	 encoding	 the	master	 regulator	 of	 sexual	 differentiation	
(Coudreuse	et	al.,	2010).	

Mechanistic	 insights	 into	 this	 gene-specific	 regulation	 revealed	 that	promoter-
proximal	 Ser2-P	 relieves	 ste11	 from	 the	 Ser5-P-dependent	 transcriptional	 repression	
imposed	 by	 Set1	 H3K4	 methylation	 and	 the	 subsequent	 recruitment	 of	 histone	
deacetylases	(Materne	et	al.,	2015).	Downstream	this	histone	modification	cascade,	the	
RSC	 complex	 was	 later	 shown	 to	 be	 important	 for	 ste11	 induction	 in	 creating	 a	
nucleosome	depleted	region	at	ste11	promoter.	In	contrast,	H3K4	methylation,	and	also	
the	ubiquitination	of	H2B,	initiates	the	deacetylation	process,	which	decreases	chromatin	
remodeling	by	the	RSC	complex	(Materne	et	al.,	2016).	

Therefore,	 besides	 challenging	 the	 broadly	 accepted	 model	 where	 Ser2-P	 is	
uniformly	distributed	toward	the	3’-end	of	the	genes,	these	studies	point	toward	a	gene-
specific	requirement	of	Ser2-P	for	gene	expression.	Similarly,	 	gene-specific	expression	
defects	due	to	the	S2A	mutation	on	a	truncated	CTD	were	also	reported	by	another	group,	
also	working	in	S.	pombe	(Schwer	et	al.,	2014).	In	Drosophila	melanogaster,	depletion	of	
the	Ser2	kinase	Cdk12	specifically	affects	the	expression	of	stress-activated	genes	(Li	et	
al.,	 2016)	 and	 causes	 ectopic	 heterochromatin	 formation	 on	 long	 genes	 involved	 in	
neuron	function	(Pan	et	al.,	2015).	Finally,	 in	mammalian	cell	cultures,	the	Ser2	kinase	
CDK12	 depletion	 specifically	 affects	 genes	 implicated	 in	 the	 DNA	 damage	 response	
(Blazek	et	al.,	2011b;	Ekumi	et	al.,	2015;	Liang	et	al.,	2015).		

	
ii. Condition-specific	induction	of	CTD	phosphorylation	

Despite	the	basal	functions	of	CTD	phosphorylation	during	the	transcription	cycle,	
our	work	and	others	revealed	that	CTD	phosphorylation	is	also	regulated	in	response	to	
external	stimuli.	Indeed,	CTD	Ser-2	phosphorylation	is	globally	increased	in	response	to	
nitrogen	starvation	(Sukegawa	et	al.,	2011).	This	stress	response	is	mediated	by	the	Sty1	
MAP	kinase	that	directly	phosphorylates	the	Ser2	kinase	Lsk1	on	its	N-terminal	domain.	
The	phosphorylation	of	Lsk1	boosts	its	activity	and	mediates	its	recruitment	to	the	ste11	
promoter,	allowing	 the	early	Ser2-P	 to	derepress	ste11	expression	as	described	 in	 the	
previous	paragraph	(Materne	et	al.,	2015;	Materne	et	al.,	2016).	

Similar	modulation	of	CTD	phosphorylation	 in	response	 to	external	or	 internal	
cues	 have	 been	 described	 in	 other	 systems.	 For	 instances,	 in	 S.	 cerevisiae,	 nutritional	
stress	 and	 heat	 shock	 also	 result	 in	 higher	 levels	 of	 Ser2-P	 (Åkerfelt	 et	 al.,	 2010).	 In	
Arabidopsis	 thaliana,	 the	 activity	 of	 CTD	 kinases	 and	 phosphatases	 are	modulated	 in	
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response	pathogen	perception	(Li	et	al.,	2014)	and	in	human	T-cells,	HIV	infection	hijack	
the	cellular	CTD	kinases	and	phosphatases	to	stimulate	viral	gene	expression	(Chen	et	al.,	
2014;	Mbonye	et	al.,	2013).		

	
	
	

4. GENERAL	OBJECTIVES	OF	THIS	STUDY	
	
Following	 up	 on	 the	 gene-specific	 and	 condition-specific	 requirements	

highlighted	by	our	work	and	others,	the	first	part	of	this	thesis	builds	on	the	surprising	
observation	that	the	Pol	III-transcribed	tRNA	genes	are	affected	by	the	loss	of	Ser2-P	at	
the	chromatin	level	(unpublished	observation	from	the	data	analyzed	in	Materne	et	al.,	
2015).	In	this	work,	we	explore	how	the	connection	between	Pol	II	CTD	phosphorylation	
and	Pol	III	transcription	might	provide	a	new	mean	of	coordinating	the	expression	of	both	
polymerases,	possibly	in	response	to	environmental	cues.	

In	the	second	part	of	this	thesis,	we	develop	a	rather	different	aspect	as	we	explore	
the	role	of	the	Ser2-P	kinase	CDK-12	in	the	development	of	a	multicellular	nematode,	C.	
elegans.	Again,	we	uncovered	gene-specific	requirements	for	CDK-12	and	hints	that	CDK-
12	might	be,	as	for	its	homolog	in	S.	pombe,	regulated	in	response	to	environmental	and	
developmental	cues.		
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PART	1:	PHOSPHORYLATION	OF	SER2	ON	
THE	 RNA	 POLYMERASE	 II	 CTD	 OPPOSES	
TRNA	EXPRESSION.		
	

	

Contributions:	

Insight	on	and	access	to	the	high-throughput	sequencing	technologies:		 Maxime	Wéry	&	Antonin	Morillon	

ChIP-seq	and	RNA-seq	libraries	generation	and	analysis:	 	 Carlo	Yague-Sanz	

tRNA	northern	blots,	ChIP-qPCR	and	growth-assay	experiments:	 Carlo	Yague-Sanz	

Rpc-25	flag	mutant	characterization	and	identification	of	suppressors:	 Ysaline	Lebrun	

	

1. INTRODUCTION	
	
In	this	part	of	the	thesis,	we	explore	a	functional	and	genetic	interactions	between	

Ser2-P	and	tRNA	expression	and	propose	 the	existence	of	a	new	regulatory	 layer	 that	
controls	Pol	III	transcription.	While	a	summary	of	the	current	knowledge	on	Pol	II	and	
Ser2-P	was	 covered	 in	 the	 general	 introduction,	we	present	hereafter	 a	more	 focused	
overview	 of	 tRNA	metabolism.	 The	 topics	 covered	 include	 the	mechanisms	 of	 Pol	 III	
transcription,	its	regulation	and	the	maturation	process	for	tRNAs	(summarized	in	figure	
0).	 Finally,	 hints	 from	 the	 literature	 that	Pol	 II	might	 constitute	a	Pol	 III	 transcription	
factor	will	be	introduced.	

	
A. The	Pol	III	transcriptional	machinery.	

From	the	three	eukaryotic	RNA	polymerases	(Pol),	Pol	III	is	the	biggest	with	17	
subunits.	Despite	that	10	of	these	subunits	are	unique	to	Pol	III,	the	general	architecture	
of	the	complex	is	conserved	with	Pol	I	and	Pol	II.	Among	the	unique	subunits,	some	have	
clear	 homologs	 within	 Pol	 II	 and/or	 Pol	 I,	 and	 other	 form	 subcomplexes	 which	 are	
structurally	and	functionally	similar	to	general	Pol	II	transcription	factors	(Vannini	and	
Cramer,	2012).	For	instance	the	Pol	III	subunits	Rpc37	and	Rpc53	compose	a	TFIIH-like	
complex	 that	 facilitate	 the	 formation	 of	 an	 open	 promoter	 complex	 (Kassavetis	 et	 al.,	
2010).	Similarly,	the	function	of	the	TFIIE	complex	that	recruits	and	stimulates	TFIIH	is	
recapitulated	in	the	Rpc82/Rpc34/Rpc31	Pol	III	subcomplex	(Geiger	et	al.,	2010).	Thus,	
the	 extra	 subunits	within	Pol	 III	do	not	define	 additional	 features	of	 the	 complex,	 but	
instead	could	be	assimilated	to	a	permanent	recruitment	of	general	transcription	factors	
to	Pol	III	to	accommodate	promoter	specificity	and	transcription	processivity	(Carter	and	
Drouin,	2010).		
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tRNA transcription: The Pol III transcription factor TFIIIC recognizes and binds the A- and B-boxes internal to
the tRNA gene. Then TFIIIB is recruited by TFIIIC and the TATA box upstream of the tRNA gene. Finally, TFIIIB is
able to recruit Pol III for transcriptional initiation/reinitiation.

Figure	0:	tRNA	transcription,	maturation	and	Maf1-dependent	regulation

Pol III

A B

TFIIIB

TFIIIC

tRNA gene

nucleus

cytosol

lo
s1

Maf1

Maf1

-P

5’ leader removal

3’ trailer removal

CAA addition

export + splicing

pre-tRNA

mature tRNA

TORC1

nutrients availability

tRNA maturation: The full length pre-tRNA is processed into mature tRNA by the removal of the 5’ leader, the 3’-
end processing (removal of the 3’ trailer and CAA addition) and, if present, the splicing of the intron. The splicing
occurs in the cytosol, at the outer mitochondrial membrane. Therefore, the pre-tRNA needs to be exported first.

Maf1-dependent regulation of Pol III transcription: When nutrients are available, Maf1 is phosphorylated by
TORC1 and other kinases. In consequence, it localizes in the cytoplasm, preventing its repressive activity.
However, in response to unfavorable conditions, Maf1 is dephosphorylated and is allowed to enter the nucleus,
where it represses Pol III transcription
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There	are	only	two	general	transcription	factors	for	Pol	III:	TFIIIB	and	TFIIIC.	A	
third	transcription	factor,	TFIIIA,	 is	specifically	required	for	the	transcription	of	the	5S	
rRNAs	and	acts	as	an	adapter	for	the	binding	of	TFIIIC.	

	TFIIIC	 can	 be	 regarded	 as	 a	 pioneer	 transcription	 factor	 that,	 through	 strong	
interactions	with	specific	intragenic	promoter	elements	called	the	A-	and	B-	boxes,	is	able	
to	open	up	the	chromatin	(Burnol	et	al.,	1993;	Varshney	et	al.,	2015).	Once	bound,	TFIIIC	
can	recruit	TFIIIB	–	composed	of	the	TATA	binding	protein	(TBP),	Brf1	and	Bdp1	–	via	an	
interaction	with	its	Brf1	subunit.	Although	the	presence	of	a	TATA	box	upstream	Pol	III-
transcribed	genes	is	more	of	an	exception	in	S.	cerevisiae,	it	is	widespread	in	fission	yeast	
and	 human,	 providing	 an	 alternative	 and/or	 complementary	mode	 of	 recruitment	 for	
TFIIIB	(Hamada	et	al.,	2001;	Pugh	and	Venters,	2016).	Accordingly,	in	vitro	studies	found	
that	TFIIIC	is	dispensable	for	Pol	III	transcription	from	TATA	box-containing	promoters	
(Dieci	et	al.,	2000).		

Once	 bound,	 TFIIIB-DNA	 complexes	 are	 stable	 and	 are	 able	 to	 recruit	 Pol	 III	
through	interactions	between	Brf1	and	Rpc34	(Khoo	et	al.,	2014)	and	between	Bdp1	and	
Rpc128	(called	Rpc2	in	fission	yeast)	(Hu	et	al.,	2015).	The	interaction	between	Pol	III	and	
TFIIIB	 causes	 structural	 rearrangements	 within	 Pol	 III	 that	 activate	 the	 TFIIE-like	
Rpc82/Rpc34/	 Rpc31	 subcomplex	 to	 initiate	 the	 opening	 of	 double-stranded	 DNA,	
ultimately	 leading	 to	 Pol	 III	 processive	 elongation	 (Abascal-Palacios	 et	 al.,	 2018;	
Vorländer	et	al.,	2018).	During	active	transcription,	TFIIIC	is	displaced	from	the	gene	body	
(Roberts	et	al.,	2003).		

In	contrast	with	the	two	other	RNA	polymerases,	Pol	III	does	not	require	auxiliary	
factors	to	terminate.	Instead,	it	does	so	with	precision	and	efficiency	on	a	simple	stretch	
of	 Ts	 on	 the	 non-template	 strand	 (Arimbasseri	 and	 Maraia,	 2015).	 The	 number	 of	
consecutive	Ts	required	for	efficient	termination	vary	between	organisms:	four	in	human,	
five	in	fission	yeast,	and	six	in	budding	yeast	(Hamada	et	al.,	2000).		

After	termination,	TFIIIB	remains	bound	to	the	promoter	and	is	able	to	recruit	Pol	
III	again	to	re-initiate	a	round	of	transcription.	Pol	III	re-initiation	is	especially	efficient	
due	(1)	to	the	stable	DNA-TFIIIB	interaction;	and	(2)	the	fact	that	no	other	dissociable	
factors	than	Pol	III	and	TFIIIIB	are	required.	In	fact,	 it	 is	estimated	that	99%	of	Pol	III-
dependent	transcripts	come	from	re-initiation	events	(Arimbasseri	et	al.,	2014).	

	
	

B. Pol	III	regulation	
Pol	III	transcription	is	tightly	regulated	in	response	to	environmental	cues,	such	

as	starvation	(Roberts	et	al.,	2003)	or	DNA	damage	(Boisnard	et	al.,	2009).	This	regulation	
is	central	in	controlling	the	amounts	of	tRNAs	and	ribosome	(due	to	the	transcription	of	
the	5S	rRNA	by	Pol	III)	within	the	cells,	which	determine	the	cell	proliferative	capacity.	As	
such,	 over-expression	 of	 Pol	 III	 products	 in	 mammals	 has	 been	 implicated	 in	
tumorigenesis	(Marshall	and	White,	2012).	In	addition,	for	unicellular	eukaryotes	whose	
environment	is	exposed	to	varying	conditions,	the	ability	to	rapidly	stop	the	synthesis	of	
rRNAs	 and	 tRNAs	 is	 vital	 for	 cell	 survival	 and	 for	 optimal	 economy	 of	 cell	 resources	
(Warner,	1999).	
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In	yeast,	the	first	–	and	only	one	known	–	general	repressor	of	Pol	III	transcription	
is	the	conserved	Maf1	protein.	Maf1	was	first	identified	in	a	screen	for	tRNA-mediated	
anti-suppression	 (Boguta	 et	 al.,	 1997).	 Further	 studies	 showed	 that	 the	 lack	 of	 Maf1	
causes	 accumulation	 of	 pre-tRNAs	 (Ciesla	 and	 Boguta,	 2008).	 Resolved	 structures	 of	
Maf1-Pol	 III	 	 complexes	during	 repression	 revealed	 that	Maf1	binds	 the	Pol	 III	 clamp,	
causes	 rearrangement	 in	 the	 Rpc82/Rpc34/Rpc31	 subcomplex	 (important	 for	 Pol	 III	
initiation),	and	disturbs	Pol	III	recruitment	by	TFIIIB	(Vannini	et	al.,	2010).	

In	 permissive	 conditions,	 Maf1	 localizes	 in	 the	 cytoplasm,	 preventing	 its	
repressive	activity.	In	consequence,	to	repress	Pol	III,	Maf1	has	to	shuttle	from	the	nucleus	
to	 the	 cytoplasm,	 a	process	 controlled	 by	Maf1	phosphorylation	 state.	 Several	 central	
signaling	 pathways	 including	 the	 TORC1,	 Pkc1	 and	 CK2	 pathways	 link	 external	 and	
internal	 cues	 (such	 as	 the	 absence	 of	 DNA	 damage	 and	 nutrient	 availability)	 to	Maf1	
phosphorylation,	which	prevents	Maf1	from	entering	the	nucleus.	In	contrast,	in	response	
to	unfavorable	conditions,	Maf1	is	dephosphorylated	and	is	allowed	to	enter	the	nucleus,	
where	it	can	actively	repress	Pol	III	transcription	–	reviewed	in	(Boguta,	2012).		

Maf1-dependent	 repression	 is	 extremely	 efficient	 and	 rapid	 as	 it	 takes	 place	
within	15	minutes	of	starvation	(Roberts	et	al.,	2003).	After	inhibition,	Pol	III	occupancy	
rapidly	decreases.	In	contrast,	TFIIIC	occupancy	increases,	possibly	to	preserve	the	genes	
from	 encroaching	 nucleosomes	 even	 under	 periods	 of	 transcriptional	 repression	
(Arimbasseri	et	al.,	2014).	

	
To	 crudely	 summarize	 our	 current	 knowledge	 of	 Pol	 III	 regulation	 in	 yeast,	 it	

could	 be	 assimilated	 to	 a	 simple,	 yet	 very	 efficient	 ON/OFF	 button	 called	 Maf1.	 In	
mammals	however,	the	situation	is	more	complex,	perhaps	to	accommodate	gene-specific	
regulation	 of	 Pol	 III	 transcription.	 Indeed,	 not	 all	 Pol	 III	 genes	 are	 transcribed	 in	
mammalian	 cells,	 and	 the	 individual	 Pol	 III	 genes	 transcribed	 vary	 depending	 on	 the	
tissue	or	cell	type	(Dittmar	et	al.,	2006).	For	 instance,	26%	of	 the	tRNA	genes	 that	are	
occupied	by	Pol	III	in	T-cells	are	not	occupied	in	HeLa	cells	(Barski	et	al.,	2010).	How	this	
more	complex	regulation	of	Pol	III	transcription	is	managed	within	mammalian	cells	is	
not	well	understood	yet,	but	certainly	involves	additional	transcription	factors	such	as	
the	proto-oncogene	p53	and	the	c-Myc	factor	(White,	2011).	

	
C. Maturation	of	pre-tRNAs.	

After	 transcription,	 nascent	 pre-tRNAs	 undergo	 extensive	 maturation	 steps	
before	becoming	fully	functional	mature	tRNAs.	For	clarity,	the	main	steps	of	maturation	
will	be	presented	hereafter	sequentially	in	their	most	common	order	(figure	0).	However,	
it	has	become	clear	that	the	pathways	of	maturations	are	multiple	and	non-linear,	with	
many	quality	control	checkpoints,	rescue	pathways	and	alternative	routes	–	reviewed	in	
(Hopper	and	Huang,	2015).	In	addition,	I	will	not	cover	here	the	daunting	complexity	of	
the	multiple	post-transcriptional	nucleotide	modification	deposited	on	tRNAs	at	various	
stages	of	tRNA	biogenesis	–	recently	reviewed	in	(Han	and	Phizicky,	2018).	
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i. 5’	leader	removal	

After	transcription,	the	nascent	pre-tRNA	is	transcribed	in	a	form	that	contains	a	
5’	leader	sequence	and	a	3’	trailer	sequence	that	will	not	be	part	of	the	mature	tRNA.	The	
first	 step	 of	 maturation	 generally	 consists	 in	 the	 5’	 leader	 removal	 by	 the	 RNase	 P	
ribonucleoproteic	complex	that	is	essential	for	cell	viability	(Xiao	et	al.,	2001).		

	
ii. 3’	trailer	removal	

Three	 conserved	 players	 are	 involved	 in	 the	 3’	 trailer	 removal:	 the	 RNaze	 Z	
endonuclease,	 the	 3’-5’	 exonuclease	 Rex1	 and	 the	 tRNA	 chaperone	 Sla1	 (homolog	 of	
human	La).	Sla1	binds	the	3’	end	of	 tRNAs	and	maintains	them	in	a	conformation	 that	
facilitates	endonucleolityc	cleavage	of	the	trailer	by	the	RNaze	Z	protein	(Van	Horn	et	al.,	
1997;	Yoo	and	Wolin,	1997).	In	competition	with	Sla1	binding	at	pre-tRNAs	3’	ends,	the	
Rex1	exonuclease	constitutes	an	alternative	route	for	the	removal	the	3’	trailer	(Copela	et	
al.,	 2008).	 Most	 tRNAs	 utilize	 both	 pathways	 for	 their	 maturation,	 although	 the	
endonucleotlytic	cleavage	is	the	most	frequently	used,	especially	with	longer	(up	to	26	
nucleotides	in	S.	cerevisiae)	trailer	sequences	(Skowronek	et	al.,	2014).	

	
iii. CAA	addition	

Following	 the	 removal	 of	 3’	 trailer,	 the	maturation	of	 a	pre-tRNA	 requires	 the	
addition	of	a	CCA	trinucleotide	to	its	3’	end.	Intriguingly,	for	certain	ill-shaped	unstable	
pre-tRNA	precursors,	a	second	CAA	is	added	at	the	3’	end	(CAACAA),	which	targets	the	
pre-tRNA	for	degradation	and	therefore	constitutes	a	quality	control	mechanism	(Betat	
and	Mörl,	2015).	

	
iv. Splicing	

After	 the	maturation	of	 the	 ends	of	 intron-containing	pre-tRNAs,	 the	next	step	
(that	does	not	concern	intron-less	tRNAs)	is	the	splicing	of	the	introns	by	the	conserved	
SEN	complex.	In	both	budding	and	fission	yeast,	this	complex	is	–	perhaps	surprisingly	–	
localized	 at	 the	 outer	 mitochondrial	 membrane	 (Wan	 and	 Hopper,	 2018).	 Therefore,	
while	the	other	maturation	steps	occur	in	the	nucleus,	pre-tRNA	need	to	be	exported	in	
the	 cytoplasm	 to	 be	 spliced.	 Providing	 a	 checkpoint	 for	 pre-tRNA	 proper	maturation	
before	 export,	 the	 major	 pre-tRNA	 exportin	 Los1	 preferentially	 exports	 end-matured	
tRNAs	to	the	cytosol	(Chatterjee	et	al.,	2018).	
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D. Interplay	between	Pol	II	and	Pol	III	transcription	
	
i. Pol	III	transcription	affecting	Pol	II	transcription	

Work	in	S.	cerevisiae	revealed	that	active	Pol	III	transcription	can	exert	negative	
transcriptional	regulation	to	neighboring	Pol	II	genes	(Hull	et	al.,	1994).	The	mechanism	
behind	this	tRNA	gene-mediated	silencing	(tgm)	is	not	perfectly	clear	yet,	however,	the	
subnuclear	localization	of	the	tRNA	gene	to	the	nucleolus	is	necessary	(but	not	sufficient)	
for	the	silencing	to	occur	(Pratt-Hyatt	et	al.,	2013).		This	suggests	that	sequestrating	Pol	
II	 genes	 within	 the	 nucleolus	 creates	 an	 environment	 unfavorable	 for	 efficient	 Pol	 II	
transcription.	

In	 A.	 thaliana,	 the	 expression	 of	 a	 pol	 II-transcribed	 gene	 was	 shown	 to	 be	
negatively	correlated	with	 the	expression	of	a	Pol	III-transcribed	gene	encoded	on	 the	
opposite	strand	of	the	same	DNA	fragment	(Lukoszek	et	al.,	2013).	Similarly,	a	Pol	 III-
transcribed	gene	embedded	within	the	first	intron	of		the	Pol	II-transcribed	gene	encoding	
the	 Rpc5	 Pol	 III	 subunit	 represses	 Pol	 II	 transcription	 through	 transcriptional	
interference,	providing	an	elegant	feedback	loop	to	control	rpc5	production	(Yeganeh	et	
al.,	2017).	
	

ii. Pol	II	transcription	affecting	Pol	III	transcription	

Recently,	Pol	II	was	reported	to	bind	tRNA	genes	in	S.	pombe	(Castel	et	al.,	2014)	
and	in	mammals	proportionally	to	Pol	III	occupancy	(Barski	et	al.,	2010;	Listerman	et	al.,	
2007;	Moqtaderi	et	al.,	2010;	Oler	et	al.,	2010;	Raha	et	al.,	2010).	In	mammals,	Pol	II	peaks	
about	200	bp	upstream	of	 the	Pol	 III	 initiation	 site,	where,	 in	most	 cases,	 there	 is	no	
annotated	 Pol	 II	 transcription	 units.	 In	 addition,	 the	 histone	 flanking	 tRNA	 genes	 are	
modified	in	ways	similar	to	that	of	Pol	II	transcribed	genes.	For	instance,	H3K4me3,	which	
is	the	hallmark	of	active	Pol	II	transcription	(deposited	following	the	Ser5-P-dependent	
recruitment	of	Set1),	can	be	found	at	actively	transcribed	tRNA	genes	(Barski	et	al.,	2010).	

The	strong	correlation	observed	between	Pol	III	and	Pol	II	occupancy	and	Pol	II-
related	 marks	 suggests	 a	 functional	 relationship	 between	 the	 two	 polymerases	 that	
remains	to	be	elucidated.	Pioneer	studies	suggest	that	Pol	 II	acts	as	a	Pol	 III	enhancer	
because	Pol	 II	 inhibition	by	α-amanitin	reduced	 the	 transcription	of	a	subset	of	Pol	III	
genes	 (Barski	 et	 al.,	 2010;	 Listerman	 et	 al.,	 2007;	 Raha	 et	 al.,	 2010).	 However	 these	
findings	are	difficult	to	interpret	since	Pol	III	is	also	sensitive	to	α-amanitin	at	high	dose,	
and	Pol	II	 inhibition	over	long	time-lapses	is	likely	to	generate	undirect	effects	(White,	
2011).	Currently,	the	functional	relationship	between	Pol	II	and	Pol	III	at	tRNA	genes	is	
still	unclear.	
		
E. Aim	of	the	work	

Starting	with	the	surprising	observation	that	the	loss	of	Ser2-P	strongly	affects	
tRNA	expression	in	 fission	yeast,	we	aimed	to	 investigated	 the	mechanism	behind	this	
relationship	between	Pol	II	transcription	and	Pol	III	output.	Specifically,	we	investigated	
whether	 Ser2-P	 and	 active	 Pol	 II	 transcription	 could	 occur	 directly	 on	 tRNA	 genes,	
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confirming	 and	 expending	 the	 puzzling	 observation	 that	 Pol	 II	 is	 present	 on	 Pol	 III-
transcribed	genes	in	mammalian	cells.		

Another	 important	 aspect	 of	 this	 work	 was	 to	 assess	 how	 the	 relationship	
between	Pol	II	and	tRNA	expression	connects	to	state	of	the	chromatin.	In	particular,	the	
involvement	of	Pol	III,	TFIIIC,	TFIIIB	and	the	RSC	remodeling	complex	were	tested.	

Then	 the	 biological	 relevance	 of	 the	 connection	 between	 Ser2-P	 and	 tRNA	
transcription	was	investigated	in	regards	to	Pol	III	regulation.	Good	evidences	were	found	
that	a	Maf1-independent	repression	of	Pol	III	transcription	exists,	a	repression	that	could	
be	 Ser2-P	 dependent.	 In	 consequence,	we	 set	 up	 a	 screen	 to	 uncover	 new	 regulatory	
layers	 of	 Pol	 III	 transcription,	 highlighting	 a	 connection	 with	 the	 SAGA	 complex	 that	
further	connects	Pol	II	and	Pol	III	transcription.	

2. RESULTS	&	DISCUSSION	
	

A. A	global	view	on	transcriptional	changes	upon	Ser2-P	loss.	
	
i. Ultra-deep	sequencing	reveals	a	global	increase	of	cryptic	transcription	

in	the	S2A	mutant	

In	a	previous	study	from	our	laboratory,	the	impact	of	the	loss	of	Ser2-P	on	the	
S.pombe	transcriptome	was	examined	using	the	microarray	technology	(Coudreuse	et	al.,	
2010).	This	seminal	study	revealed	the	gene-specific	requirement	of	Ser2-P	on	a	genome-
wide	scale,	but	due	to	the	technical	limitations	of	the	microarrays	–	mainly,	the	fact	that	
expression	 measurement	 was	 dependent	 on	 human-designed	 probe,	 restricting	 the	
analysis	to	 the	annotated	genes,	 that	were,	at	the	 time,	mostly	protein-coding	genes	–,	
only	a	fraction	of	the	transcriptome	was	analyzed	(Malone	and	Oliver,	2011).		

In	this	study,	we	used	state-of-the-art	total	RNA-seq	technologies	to	investigate	in	
more	details	the	potential	roles	of	Ser2-P	in	non-coding	RNA	(ncRNA)	transcription.	This	
technology	allows,	thanks	to	small	modifications	to	the	Illumina	TruSeq	stranded	RNA-
seq	protocol	(see	material	&	methods),	to	sequence	all	stable	RNAs	longer	than	50	nts	
from	the	cells.	We	sequenced	two	replicates	of	the	wild-type	and	S2A	mutant	strains	to	an	
average	depth	of	 coverage	of	~300x,	 providing	 enough	power	 to	detect	differences	of	
expression	even	in	lowly	expressed	genes	(table	1).		
	

				Table1:	Conditions	studied	by	RNA-seq.	

strain	 replicate	 deptha	

wild-type	 1	 292	
wild-type	 2	 391	
S2A	 1	 285	
S2A	 2	 314	
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Figure	1:	Cryptic	transcription	in	the	S2A	mutant
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the difference is significant (FDR < 0.01). Genes
(core reads) differentially expressed in the S2A
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a.	The	depth	is	calculated	based	on	the	number	of	uniquely	mapped	reads	to	the	S.	pombe	genome	divided	
by	the	length	of	the	genome	size	(14	x	106	nt)	multiplied	by	the	read	length	(50	nt).	

	
While	 the	 interpretation	 of	 RNA-seq	 data	 is	 still	 dependent	 on	 the	 gene	

annotation,	 it	 is	possible	 to	measure	 expression	beyond	annotated	 transcripts.	 In	 this	
analysis,	we	considered	the	following	regions	(figure	1.A):	

• core:	 this	 region	 consists	 in	 the	 exons	 of	 the	 annotated	 transcripts.	 Reads	
mapped	to	it	contribute	to	what	is	generally	called	“gene	expression”.		

• 5’:	the	500	nt	upstream	of	the	annotated	transcripts.		
• 3’:	the	500	nt	downstream	of	the	annotated	transcripts.		
• intronic:	this	consists	in	reads	spanning	introns.	About	43%	of	S.	pombe	protein	

coding	genes	have	introns	(Wood	et	al.,	2002)	which	are	generally	much	shorter	
than	in	higher	eukaryotes	with	an	average	length	of	83	nt	(Wood	et	al.,	2012).	

• antisense:	 since	 our	 RNA-seq	 is	 strand-specific,	 it	 is	 possible	 to	 distinguish	
signal	 arising	 from	 the	 template	 strand	 of	 the	 annotated	 genes	 (core	 and	
intronic	reads),	but	also	the	signal	arising	from	the	opposite	strand,	antisense	
of	the	annotated	genes.	

After	normalization	based	on	the	median	of	ratio	(Anders	and	Huber,	2010)	for	
the	core	regions	(applied	to	all	regions),	our	analysis	revealed	that	977	genes	(14%	of	the	
annotated	transcriptome)	are	differentially	expressed	on	their	core	regions	(figure	1.B,	
table	2).	They	will	be	discussed	further	below.		

Excluding	those	differentially	expressed	genes,	almost	no	gene	(9)	have	its	introns	
differentially	expressed	(figure	1.C).	Note	that	when	the	genes	differentially	expressed	
on	their	core	regions	where	included	in	the	analysis,	the	number	of	genes	differentially	
expressed	 on	 their	 intronic	 regions	 raised	 to	 82,	 but	 the	 fold	 change	 on	 the	 introns	
strongly	 correlated	with	 the	 fold	 change	 on	 the	 exons	 (see	 caption	 above	 figure	 1.C),	
suggesting	that	the	differential	expression	on	the	introns	is	due	to	a	general	change	in	the	
gene	expression.	In	contrast,	with	a	bona-fide	splicing	defect,	we	would	expect	to	observe	
intron	retention	without	an	increase	in	gene	expression.		

In	addition,	only	237	out	of	the	977	genes	differentially	expressed	had	introns,	
which	 is	 actually	 less	 than	 the	 global	 proportion	 of	 genes	 with	 intron	 (2553/7000).	
Together,	these	results	argue	against	an	global	role	for	Ser2-P	in	coordinating	splicing	in	
S.	 pombe,	 which	 is	 in	 agreement	with	 a	 recent	 study	 that	 found	an	 absence	 of	 intron	
retention	in	the	S2A	mutant	in	fission	yeast	using	splicing-sensitive	microarrays	(Inada	et	
al.,	 2016)	 but	 contrasts	 with	 early	 studies	 demonstrating	 splicing	 defects	 of	 specific	
reporter	introns	in	human	and	chicken	cells	containing	S2A	mutations	(Gu	et	al.,	2013;	
Hsin	 et	al.,	 2014).	A	possible	 explanation	 for	 this	discrepancy	would	be	 that	 Ser2-P	 is	
important	for	the	co-transcriptional	splicing	of	long	introns,	which	is	usually	not	the	case	
in	fission	yeast	with	an	average	intron	length	of	83	nt	(Wood	et	al.,	2012)	as	opposed	in	
higher	eukaryotes	such	as	human,	where	the	average	intron	length	is	of	3356	nt	(Lander	
et	al.,	2001).	
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				Table2:	Regions	up-	or	down-	regulated	in	the	S2A	mutant	

regions	 up	 down	

core	 616	 361	
intron	 5	 4	
5'	 536	 1	
3'	 295	 7	
antisense	 652	 5	

	
While	there	were	few	effects	in	the	intronic	regions,	many	regions	in	antisense	

(figure	1.C),	upstream	(figure	1.D)	and	downstream	(figure	1.E)	of	the	genes	were	found	
significantly	up-regulated	in	the	S2A	mutant	(table	2).	Although	the	variability	is	high	–
probably	in	part	because	of	the	relatively	low	number	of	reads	mapping	to	those	regions	
–	the	distribution	of	the	fold	change	reveals	a	global	shift	of	the	expression.	This	suggests	
a	role	for	Ser2-P	in	enforcing	transcriptional	fidelity	and	preventing	both	extragenic	and	
anti-sense	intergenic	“cryptic”	transcription,	a	role	that	was	never	demonstrated	per	se	
until	now.	However,	it	could	have	been	anticipated	given	the	well	described	function	of	
Ser2-P	in	recruiting	the	Set2	histone	methyl-transferase	(Li	et	al.,	2002)	(Li	et	al.,	2003)	
(Xiao	et	al.,	2003)	whose	activity	favors	histone	deacetylation	and	represses	cryptic	Pol	II	
transcription		(Carrozza	et	al.,	2005)	(Keogh	et	al.,	2005)	(McDaniel	et	al.,	2017).		

	
Along	 with	 those	 effects	 (or	 lack	 of)	 on	 the	 extra-exonic	 regions,	 the	 993	

differentially	expressed	genes	(DEG)	were	affected	differently	depending	on	the	type	of	
gene	considered	(table	3).	For	the	protein-coding	genes,	the	DEG	(522	DEG,	about	10%	
of	all	protein-coding	genes	in	S.	pombe)	are	evenly	distributed	between	up-	and	down-	
regulated	genes.	Consistently	with	previous	publications,	ste11	and	mei2	are	included	in	
the	down-regulated	genes	(Coudreuse	et	al.,	2010)	and	there	is	an	excellent	agreement	
with	 the	 192	 Ser2-P-dependent	 genes	 previously	 identified	 by	 another	 group	 using	
microarray	(Shuman	2016),	since	182	of	those	genes	(95%)	were	also	found	differentially	
expressed	in	our	study.	

	In	contrast,	long	non-coding	RNAs	(lncRNAs)	are	mostly	up-regulated	in	the	S2A	
mutant.	 For	 the	 lncRNA	genes,	277	were	up-regulated	 from	a	 total	 of	1540	annotated	
lncRNA,	most	of	them	being	antisense	RNAs:	227	from	a	total	of	695	annotated	antisense	
RNAs,	which	constitutes	a	very	significant	enrichment	(Fisher’s	exact	test	p-value	<	2.2	x	
10-16).	This	result	is	consistent	with	our	initial	description	of	a	global	up-regulation	of	the	
anti-sense	non-coding	 transcriptome	 in	 the	 S2A	mutant	 (figure	1.C),	 probably	 via	 the	
mis-recruitment	of	the	H3K36	methyl-transferase	Set2	as	discussed	above.	
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A. Scatter plot of the log2 read counts for tRNA genes (averaged over two replicates).

Figure	2:	tRNAs	over-expression	in	the	S2A	mutant.

B. Cartoon representation of the tRNA gene models used for read quantification. From the Pombase gene
models, we extended the region 20 nt upstream and 10 nucleotides downstream in order to generate the 5’ and 3’
trailer of the precursor tRNAs (pre-tRNAs) gene models. In parallel, we removed the introns and added the CAA
trinucleotide to generate the mature tRNA gene models.

C. Log2 total read count on pre- or mature tRNAs (summed over two replicates). The reads were mapped to
both gene models in competition and only uniquely mapped reads where counted.

n = 171

S2A vs wild-type

D. Boxplot of the log2 fold-change for pre- or mature tRNAs.
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Table3:	Type	of	the	993	genes	differentially	
expressed	by	the	S2A	mutation	

gene	type	 up	 down	
protein-coding	 237	 285	
lncRNA	 277	 71	
snRNA	 0	 0	
snoRNA	 3	 1	
tRNA	 91	 0	

	
As	for	the	snRNA	and	snoRNA	genes,	only	0/7	and	4/55	are	respectively	found	

differentially	expressed,	arguing	against	a	global	role	of	Ser2-P	in	controlling	bulk	gene	
expression	for	these	gene	type.		

	
ii. Pre-tRNAs	are	over-expressed	in	the	S2A	mutant.	

Finally,	to	our	surprise,	we	found	that	all	171	nuclear	tRNAs	are	up-regulated	in	
the	S2A	mutant,	including	91	genes	for	which	the	up-regulation	is	significant	(figure	2.A).	
This	result	is	rather	unexpected	given	that	those	genes	are	normally	transcribed	by	Pol	
III	and	that	their	expression	should	not,	a	priori,	be	affected	by	mutations	within	Pol	II	
CTD.		

Furthermore,	the	interpretation	of	this	result	is	difficult	because	high-throughput	
sequencing	of	tRNAs,	especially	the	steps	of	primer	hybridization	or	ligation	and	reverse	
transcription,	is	hampered	by	the	very	stable	and	compact	secondary	structures	adopted	
by	the	tRNAs	(Beltchev	et	al.,	1976)	and	their	high	level	of	modification	(13	modifications	
per	molecule	on	average)	(Pan,	2018).	Methods	have	been	developed	to	facilitate	tRNA	
sequencing	by	removing	the	modifications	(Wilusz,	2015;	Zheng	et	al.,	2015)	or	by	partial	
hydrolysis	of	the	tRNAs	(Arimbasseri	et	al.,	2015;	Gogakos	et	al.,	2017),	but	they	were	not	
applied	to	this	study.	Therefore,	it	is	possible	that	the	reads	that	map	to	the	tRNA	genes	
do	not	represent	mature	tRNAs	but	rather	come	from	hypo-modified	tRNA	precursors.	

To	explore	this	possibility,	we	computationally	extended	the	tRNA	gene	models	
available	in	pombase	(Wood	et	al.,	2012)	into	either	full	length	tRNA	precursors	or	fully	
processed	mature	tRNAs	(figure	2.B).	Then,	reads	from	our	RNA-seq	experiment	were	
mapped	to	these	gene	models	in	competition,	and	uniquely	mapped	reads	were	counted	
in	 order	 to	 differentially	 quantify	 pre-tRNAs	 from	 mature	 tRNAs.	 Validating	 the	
soundness	 of	 our	 procedure,	 a	 conceptually	 similar	 method	 have	 since	 been	
independently	published	(Hoffmann	et	al.,	2018).	Results	from	our	quantification	reveal	
that	most	of	the	reads	counted	on	tRNA	genes	arise	from	pre-tRNAs	(figure	2.C	–	in	log2	
scale),	 confirming	 that	 mature	 tRNAs	 cannot	 be	 efficiently	 sequenced	 without	 using	
specific	techniques.	Both	mature	and	pre-tRNAs	are	over-represented	in	the	S2A	mutant;	
however,	this	upregulation	is	more	robust	and	stronger	for	pre-tRNAs	(figure	2.D).	Those	
results	 were	 confirmed	 later	 using	 Northern	 blots	 that	 allow	 to	 unambiguously	
discriminate	between	tRNA	precursors,	intermediates,	and	mature	forms	(see	figure	3.D	
for	instance).		

	

43



A-C. Growth assay of the indicated strains. Precultures were grown overnight then diluted in liquid YES media
to OD 0.2 and incubated with agitation at 32°C until OD 0.5. From there, 5-fold dilutions were spotted on YES-agar
plates and incubated during 3 days at 32°C.

Figure	3:	Rpc25-flag	is	a	hypomorphic Pol	III	allele,	suppressed	by	the	loss	of	Ser2-P.

D. tRNA northern blot targeted against SPBTRNAARG.05. On the right, cartoon representations of the various
tRNA isoforms recognized by the probe.
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B. Genetic	 interactions	 connect	 Ser2-P	of	 the	RNA	polymerase	 II	
with	Pol	III	transcription	
	
To	connect	the	surprising	accumulation	of	(pre-)tRNAs	in	the	S2A	mutant	with	

changes	in	Pol	III	occupancy	on	chromatin	(an	issue	more	thoroughly	discussed	later	in	
this	 thesis),	we	decided	 to	 tag	 a	 Pol	 III	 subunit	 in	 order	 to	 assess	 Pol	 III	 distribution	
genome-wide	 in	 ChIP-seq	 experiments.	 The	 use	 of	 tagged	 strains	 is	 common	 in	 yeast	
research	as	creating	the	tagged	fusion	gene	is	generally	much	easier/cheaper/faster	than	
generating	an	antibody	of	satisfying	specificity.	However,	this	strategy	has	the	significant	
drawback	 that	 the	 added	 tag	 can,	 sometimes,	 affect	 the	 protein	 function.	 In	 the	 case	
discussed	below,	the	addition	of	a	specific	tag	on	the	Pol	III	subunit	Rcp25	leads	to	a	strong	
growth	defect,	that	is,	to	our	surprise,	fully	suppressed	by	the	loss	of	Ser2-P.	While	such	
phenotype	makes	 the	 tagged	 strain	 unfit	 to	 study	Pol	 III	 occupancy,	we	 took	 it	 as	 an	
opportunity	 to	 learn	 more	 about	 the	 connection	 between	 Pol	 II	 Ser2-P	 and	 Pol	 III	
transcription.	

	
	
i. rpc25-flag	 is	 an	 hypomorphic	 Pol	 III	 allele,	 suppressed	 by	 the	 loss	 of		

Ser2-P.	

Rpc25	 was	 a	 priori	 a	 good	 candidate	 for	 Pol	 III	 tagging.	 This	 rpb7	 paralog	
constitutes,	 with	 its	 heterodimer	 partner	 rpc17	 (Ehara	 et	 al.,	 2011),	 the	 stalk	 of	 the	
polymerase	 (Vannini	 and	 Cramer,	 2012)	 and	 its	 C-terminal	 end	 is	 localized	 at	 the	
periphery	 of	 the	 Pol	 III	 complex	 (Hoffmann	 et	 al.,	 2015),	 making	 it	 potentially	more	
resilient	to	the	conformational	constraints	brought	by	the	tags.	However,	tagging	of	this	
subunit	causes	mild	to	serious	growth	defect	depending	of	the	tag	used:	rpc25-myc	grows	
almost	like	a	wild-type	strain,	rpc25-flag	has	a	marked	growth	defect,	and	rpc25-TAP	an	
intermediate	growth	defect	(figure	3.A).	In	contrast,	TAP-tagging	at	the	C-terminal	of	the	
Rpc1	subunit	does	not	lead	to	a	growth	defect,	which	is	why	we	ultimately	used	this	strain	
for	 the	 Pol	 III	 ChIP-seq	 that	 will	 be	 discussed	 later	 (figure	 3.B).	 This	 is	 somehow	
surprising	given	that	the	TAP-tag	(21	KDa)	is	much	heavier	than	the	flag	(7	KDa	for	the	5	
x	flag	repeats	used)	and	that	Rpc1,	the	largest	Pol	III	subunit	that	contains	the	catalytic	
site,	 is	 at	 the	 core	of	 the	Pol	 III	 complex.	Those	 specific	 cases	 illustrate	 that	 it	 is	 very	
difficult	to	predict	the	functional	impact	of	the	addition	of	a	peptide	to	a	protein.		

While	crossing	the	rpc25-flag	strain	with	the	S2A	mutant	in	order	to	obtain	the	
double	mutant	rpc25-flag	S2A	and	assess	Pol	III	occupancy	changes	in	the	S2A,	we	noticed	
that	the	S2A	mutation	completely	suppresses	the	growth	defect	of	the	rpc25-flag	allele	
(figure	3.C).	While	the	S2A	mutant	has	been	studied	in	the	lab	(and	beyond)	for	10	years,	
this	is	the	only	reported	occurrence	of	such	a	positive	genetic	interaction,	highlighting	the	
importance	of	Ser2-P	in	controlling	tRNA	production.	Confirming	this	result,	deletion	of	
the	Ser2-P	kinase	lsk1	also	restores	normal	growth	in	the	rpc25-flag	background.		

At	the	RNA	level,	pre-tRNAs	–	which	we	saw	are	over-expressed	in	the	S2A	mutant	
–	are	under-expressed	in	the	rpc25-flag	strain	(figure	3.D).	This	is	consistent	with	the	
idea	that	the	growth	defect	 in	that	strain	is	caused	by	a	partial	 loss	of	Pol	 III	 function.	
Interestingly,	the	double	mutant	rpc25-flag	S2A	restores	WT-like	levels	of	pre-tRNAs.	This	
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A. Growth assay of the indicated strains. Precultures were grown overnight then diluted in liquid YES media to
OD 0.2 and incubated with agitation at 32°C until OD 0.5. From there, 5-fold dilutions were spotted on YES-agar
plates and incubated during 3 days at 32°C.

Figure	4:	Molecular	basis	of	rpc25-flag growth	defect

B. ChIP-qPCR experiment on the TAP-tagged Pol III subunit Rpc1. Values are expressed as the percentage of
IP over the input, and the error bars represent the 95% confidence interval of the mean over five biological
replicates.
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correlation	between	the	growth	of	the	strain	and	the	level	of	pre-tRNAs	suggests	that	the	
positive	 genetic	 interaction	 between	 the	 rpc25-flag	 and	 S2A	 alleles	 is	 due	 to	
compensation	of	tRNA	expression.	

As	of	why	the	decrease	in	tRNA	species	observed	in	the	rpc25-flag	mutant	is	more	
apparent	for	the	pre-tRNA	isoforms	than	for	the	mature	forms,	we	can	hypothesize	that	
the	slower	vegetative	growth	of	the	rpc25-flag	strain	allows	the	mature	tRNAs	–	which	
are	stables	for	days	(Kadaba	et	al.,	2004)	–	to	accumulate	for	a	longer	time	in	the	cells	
before	division.	 In	contrast,	 the	short-lived	pre-tRNAs	are	more	directly	dependent	on	
transcription	 as	 their	 much	 smaller	 half-life	 (Gudipati	 et	 al.,	 2012)	 does	 not	 allow	
accumulation.	

As	a	perspective,	 it	would	be	 interesting	 to	assess	whether	other	hypomorphic	
alleles	of	Pol	III	subunits	are	compensated	by	the	S2A	mutation.	To	our	knowledge,	no	
such	allele	have	been	described	in	S.	pombe,	but	several	mutants	in	S.	cerevisiae	with	point	
mutations	in	the	highly	conserved	catalytic	subunit	of	Pol	III,	Rpc160	(Rpc1	in	S.	pombe),	
have	a	slow	growth	phenotype	(Dieci	et	al.,	1995).	Among	these	mutants,	rpc160-112	have	
been	characterized	 the	most	and	 it	was	elegantly	shown	that	 its	Pol	 III	 transcriptional	
defect	 is	 mainly	 due	 to	 a	 reduced	 Pol	 III	 elongation	 rate.	 However,	 despite	 the	 high	
conservation	of	the	catalytic	core	of	Rpc1	in	eukaryotes,	reproducing	this	mutation	is	S.	
pombe	is	not	possible	as	one	of	the	two	residues	substituted	in	that	mutant	(T506I)	is	not	
conserved	in	S.	pombe.	Nevertheless,	other	mutated	residues	that	impact	growth	(but	are	
mechanistically	 less	 characterized)	 are	 conserved	 in	 both	 yeast	 species,	 such	 as	 the	
methionine	 517	 (499	 in	 S.	 pombe),	 mutated	 in	 isoleucine	 in	 the	 rpc160-206	 strain.	
Creating	the	rpc1	M499I	allele	along	with	the	rpc1	M4991	S2A	double	mutant	in	S.	pombe	
could	allow	to	assess	whether	the	S2A-dependent	suppression	of	the	rpc25-flag	growth	
defect	can	be	generalized	to	other	Pol	III	transcriptional	defects.	

	
	

ii. Insights	into	rpc25-flag	growth	defect.	

	In	order	to	better	characterize	the	rpc25-flag	mutant,	we	took	advantage	of	the	
phenotypically	neutral	TAP-tagged	version	of	Pol	III	largest	subunit,	Rpc1.	This	additional	
tag	allows	to	assess	the	chromatin	occupancy	of	the	Pol	III	complex	(or	at	least,	of	its	Rpc1	
subunit)	in	the	rpc25-flag	mutant.	As	expected,	while	the	rpc1-TAP	strain	has	a	wild-type-
like	growth	(figure	3.B),	the	double	rpc1-TAP	rpc25-flag	mutant	shows	the	same	growth	
defect	as	the	simple	rcp25-flag	mutant	(figure	4.A).	

By	ChIP-qPCR,	we	observed	that	the	rpc25-flag	allele	causes	a	significant	~2-fold	
reduction	of	Rpc1-TAP	occupancy	at	the	five	Pol	III-transcribed	genes	tested	(three	tRNA	
genes,	snU6	and	a	5S	rRNA	gene)	(figure	4.B),	yet	the	total	level	of	Rpc1	within	the	cells	
was	unaffected	(figure	4.C).	This	suggests	that	the	interaction	of	the	Pol	III	complex	with	
the	DNA	is	destabilized,	 in	agreement	with	the	decrease	in	pre-tRNAs	transcripts.	As	a	
perspective,	 it	 would	 be	 interesting	 to	 see	 how	 the	 S2A	 mutation	 affects	 the	 Pol	 III	
occupancy	reduction	observed	with	the	rpc25-flag	strain.	If	the	S2A	mutation	suppresses	
that	reduction,	then	it	would	indicate	that	the	suppression	of	the	Pol	III	transcriptional	
defect	in	the	rpc25-flag	S2A	strain	occurs	on	a	transcriptional	level	(for	Pol	III).	
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A. The Apo pol III open complex structure (protein databank accession number: pdb 6EU2) (Abascal-Palacios,
2018). Rpc17, Rpc25 and Rpc31 are respectively colored in yellow, pink and blue. The 5x flag fusion peptide of
the rpc25-flag strain is indicated at its expected position at the C-terminal end of Rpc25, which is colored in red.

Figure	5:	Structural	basis	of	rpc25-flag growth	defect

B. The pol III pre-initiation complex structure (protein databank accession number: pdb 6EU0) (Abascal-
Palacios, 2018). The same color code as in (A) was applied, with the addition of orange to color the bound DNA.
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C. Growth assay of the indicated strains. 5-fold dilutions were spotted on YES-agar plates and incubated during
3 days at 32°C (left) or 37°C (right).
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Work	 in	 Saccharomyces	 cerevisiae	 also	 highlighted	 the	 importance	 of	 the	 well	
conserved	–	and	essential	–	Rpc25	subunit.	For	instance,	mutation	of	a	conserved	residue	
within	rpc25	impairs	the	in	vivo	synthesis	of	pol	III	transcripts	and	causes	a	temperature-
sensitive	phenotype	(Zaros	and	Thuriaux,	2005).	Through	thorough	 in	vitro	 studies	of	
tRNA	synthesis	with	the	mutated	Pol	III	complex,	the	authors	showed	that	the	mutation	
specifically	impacts	the	initiation	step	of	transcription	as	the	tRNA	synthesis	defect	could	
be	relieved	by	pre-assembling	the	Pol	III	initiation	complex.	

To	assess	whether	the	Rpc25-flag	fusion	protein	could	impair	Pol	III	initiation	in	
fission	yeast,	we	took	advantage	of	recently	published	structures	of	the	conformations	
adopted	by	Pol	III	during	transcriptional	initiation	in	S.	cerevisiae	(Abascal-Palacios	et	al.,	
2018;	Vorländer	et	al.,	2018).	Because	of	the	conservation	of	the	RNA	polymerases	among	
eukaryotes	 (Huang	 and	 Maraia,	 2001),	 those	 structures	 should	 allow	 a	 good	
approximation	of	the	conformations	adopted	by	Pol	III	in	S.	pombe.	In	the	apo	structure	
(free	 polymerase),	 the	 C-terminal	 end	 of	 Rpc25,	where	 the	 flag	peptide	was	 fused,	 is	
hanging	freely	outside	of	the	complex	(figure	5-A).	However,	when	the	conformational	
change	required	for	the	formation	of	pre-initiation	complex	occurs,	the	C-terminal	end	of	
Rpc25	rotates	from	the	outer	part	of	the	complex	to	the	inner	part,	in	close	contact	with	
Rpc31	 (figure	 5-B).	 Thus,	 the	 addition	 of	 a	 peptide,	 even	 as	 small	 as	 the	 flag,	 at	 this	
location	is	expected	to	heavily	interfere	with	the	formation	of	the	initiation	complex.		

Finally,	as	it	 is	often	the	case	with	alleles	causing	conformational	problems,	the	
rpc25-flag	strain	is	temperature	sensitive:	the	strong	growth	defect	observed	at	32°C	is	
exacerbated	at	37°C	where	almost	no	growth	is	observed	after	three	days	of	incubation	
(figure	5.C).		
	 Taken	 together,	 (1)	 the	 phenotypes	 of	 rpc25-flag;	 (2)	 the	 reduction	 of	 Rpc1	
chromatin	occupancy	in	the	mutant;	(3)	the	known	function	of	rpc25	in	S.	cerevisiae;	and	
(4)	the	localization	of	the	expected	position	of	the	flag	peptide	at	the	C-terminal	end	of	
Rpc25	in	regards	to	Pol	III	structures;	all	point	toward	the	idea	that	the	rpc25-flag	 is	a	
hypomorphic	allele	that	impairs	Pol	III	transcription	through	destabilization	of	the	pre-
initiation	complex.	However,	more	mechanistical	studies	are	needed	to	confirm	this	idea,	
as	we	 cannot	 fully	 exclude	 that	 the	phenotypes	of	 the	 rpc25-flag	 strain	are	 caused	by	
defects	at	other	levels.	

In	the	end,	regardless	of	the	causes	of	the	rpc25-flag	phenotype,	its	suppression	
by	the	S2A	mutation	provides	a	useful	tool	to	decorticate	the	role	of	Ser2-P	in	tuning	down	
tRNA	expression,	a	tool	that	we	will	use	to	our	advantage	in	the	next	chapters.	
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A-B. tRNA northern blot targeted against SPBTRNAARG.05 or LEU(CAA) in the indicated strains. On the
middle, cartoon representations of the various tRNA isoforms recognized by the probe. For revealing the mature
tRNAs (shorter isoform), a much shorter exposure was used.

Figure	6:	Ser2-P	opposes	tRNA	expression	in	a	maf1-independent	manner.

C-D. Growth assay of the indicated strains. Precultures were grown overnight then diluted in liquid YES media
to OD 0.2 and incubated with agitation at 32°C until OD 0.5. From there, 5-fold dilutions were spotted on YES-agar
plates and incubated during 3 days at 32°C. In (D), the plates were supplemented with either 20 ng/mL of
rapamycin (top panel) or an equal volume of DMSO (bottom panel).
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C. Ser2-P	 opposes	 tRNA	 expression	 in	 a	 Maf1-independent	
manner.	
	
i. Ser2-P	opposes	tRNA	expression	in	a	Maf1-independent	manner.	

The	only	known	global	 regulator	of	 tRNA	expression	 in	 yeast	 is	 the	 conserved	
Maf1	protein	(Ciesla	and	Boguta,	2008)	As	such,	we	wondered	whether	the	increase	in	
(pre-)tRNA	 transcripts	 in	 the	 S2A	mutant	 was	 due	 to	 a	 decrease	 in	Maf1	 repression.	
Indeed,	even	 if	we	did	most	analysis	in	rich	conditions	 in	which	 the	Maf1	repressor	 is	
largely	 sequestrated	 in	 the	 cytosol,	 residual	 Maf1-dependent	 repression	 of	 tRNA	
expression	has	been	reported	in	fission	yeast	in	such	condition	(Arimbasseri	et	al.,	2015).	

In	 our	 hands,	maf1	 deletion	 barely	 affects	 the	 expression	 of	 the	 tRNAs	 tested	
(figure	6.A)	while	the	∆maf1	S2A	double	mutant	showed	a	similar	increase	of	pre-tRNA	
levels	as	in	the	simple	S2A	mutant.	Similarly,	in	the	rpc25-flag	background,	maf1	deletion	
does	not	restore	pre-tRNA	levels,	as	opposed	to	the	S2A	mutation	or	the	double	∆maf1	
S2A	mutant	(figure	6.B).	Finally,	the	growth	defect	observed	in	the	rpc25-flag	strain	is	
not	fully	suppressed	by	maf1	deletion,	in	contrast	with	the	S2A	mutant	(figure	6.C).	These	
results	convincingly	show	that	Ser2-P	opposes	tRNA	expression	in	a	Maf1-independent	
manner.		

The	 fact	 that	maf1	 does	 not	 seem	 to	 affect	 pre-tRNA	 levels	 in	 our	 hands	 is	
surprising	given	 the	previous	reports	(Arimbasseri	et	al.,	2015).	Still,	 there	 is	a	partial	
suppression	of	the	rpc25-flag	growth	phenotype	(figure	6.C),	suggesting	that	either	maf1	
deletion	affects	 the	expression	of	some	other	 tRNAs	 than	 those	we	tested,	or	 that	our	
crude	assays	are	not	able	to	detect	more	subtle	changes	in	pre-tRNA	expression.		

	
ii. Ser2-P,	a	new	regulatory	layer	in	tRNA	expression?	

Given	the	accumulation	of	pre-tRNAs	observed	in	the	S2A	mutant,	we	wondered	
whether	 Ser2-P	 would	 be	 required	 to	 repress	 tRNA	 expressions	 in	 conditions	where	
nutrient	availability	is	limited.	This	regulation	could	prove	especially	relevant	since	Lsk1,	
the	Ser2-P	kinase,	is	activated	by	phosphorylation	in	stress	conditions	by	the	Sty1	MAP	
kinase	(Sukegawa	et	al.,	2010).		

In	 S.	 cerevisiae,	 a	 shift	 from	 YPD	medium	 to	 YPD	0.15x	 causes	 a	dramatic,	 yet	
reversible,	decrease	in	pre-tRNA	levels	(Roberts	et	al.,	2003).	In	fission	yeast,	a	similar	
shift	from	YES	(the	equivalent	of	YPD	medium)	to	YES	0.15x	causes	full	length	precursors	
levels	to	drop	rapidly,	while	intermediate	forms	take	up	to	75	minutes	to	fade	(figure	7.A,	
upper	panel).	Surprisingly,	despite	the	abundant	literature	describing	the	role	of	maf1	in	
inhibiting	Pol	 III	 transcription	 in	 response	 to	 starvation	 in	S.	 cerevisiae	and	mammals	
(Ciesla	and	Boguta,	2008;	Desai	et	al.,	2005;	Karkusiewicz	et	al.,	2011;	Orioli	et	al.,	2016;	
Roberts	et	al.,	2006),	the	decrease	in	pre-tRNAs	still	occur	in	maf1-deleted	cells	in	our	
conditions,	although	perhaps	at	a	slower	rate	(figure	7.A,	lower	panel).	Concerning	the	
lack	 of	 impact	 of	maf1	 deletion,	 it	 could	 be	 more	 appropriate	 to	 test	 other	 types	 of	
starvations,	such	as	nitrogen	starvation,	as	described	{Davie,	2015	#374}.	
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Figure	7:	Ser2-P,	a	new	regulatory	layer	for	tRNA	expression	?

C. Quantification of the full length pre-tRNA for (B). After background subtraction, pre-tRNA levels were
normalized to the mature tRNA level. On the right panel, the ratios are scaled to the values at the first time point.
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This	 result	 strongly	 suggests	 that,	 at	 least	 in	 fission	 yeast	 and	 in	 the	 tested	
conditions,	another	pathway	regulates	tDNA	repression	in	place	of,	or	redundantly	with,	
Maf1.		

To	test	whether	Ser2-P	would	be	involved	in	such	pathway,	we	did	the	same	shift	
in	the	S2A	mutant	(figure	7.A,	middle	panel),	revealing	an	important	delay	in	pre-tRNA	
decrease.	However,	as	this	preliminary	result	is	not	perfectly	reproducible,	we	should	be	
cautious	 in	 not	 over-interpreting	 it.	 Nevertheless,	 repetition	 of	 this	 experiment	 with	
shorter	timing	(and	the	WT	control	and	S2A	mutant	processed	together	with	the	same	
batch	of	media)	 show	 that,	 although	 the	 inhibition	 takes	place	more	 rapidly	 than	our	
preliminary	result	suggested,	the	full	length	pre-tRNA	fails	to	fully	fade	in	the	S2A	mutant	
(figure	7.B).	Indeed,	while	in	the	WT	the	signal	for	the	full	length	pre-tRNA	drops	to	less	
than	10%	of	the	signal	before	the	shift,	almost	50%	of	that	signal	is	retained	after	30’	of	
starvation	in	the	S2A	mutant	(figure	7.C).	This	result	suggests	that	Ser2-P	is	required	for	
efficient	tDNA	repression	upon	starvation,	a	role	that	might	be	partially	redundant	with	
that	of	Maf1.		

Arguing	 that	 both	 Maf1	 and	 Ser2-P	 might	 act	 in	 parallel	 to	 control	 tRNA	
expression,	an	attentive	reader	might	have	notice	that,	although	both	the	S2A	and	∆maf1	
simple	mutants	show	normal	growth	in	spot	assays	(figure	6.D),	a	small	growth	defect	is	
observed	 for	 the	 double	 	 S2A	 ∆maf1	 mutant.	 To	 assess	 how	 this	 negative	 genetic	
interaction	affects	growth	in	recovery	following	long-term	starvation,	we	let	fission	yeast	
cells	grow	into	stationary	phase	overnight.	After	redilution	in	YES	medium,	both	the	S2A	
and	 ∆maf1	 culture	 showed	an	 extended	 lag	phase	 before	 resuming	 growth,	while	 the	
double	S2A	∆maf1	mutant	did	not	grow	at	all	during	the	8	hours	of	the	experiment	(figure	
7.D).	This	result	suggests	that	both	Maf1	and	Ser2-P	are	important	to	survive	long	term	
starvation	and/or	reinitiate	exponential	grow	after	starvation.	This	makes	sense	given	
that	 a	 failure	 to	 efficiently	 shut	 down	 transcription	 and	 translation	 in	 conditions	 of	
nutritious	stress	would	jeopardize	the	chance	that	a	cell	remains	in	good	shape	to	rapidly	
regrow	after	the	stress,	as	the	cell	resources	would	rapidly	be	exhausted	(Huang	et	al.,	
2015).	

	
Altogether,	 our	 somewhat	 preliminary	 results	 converge	 toward	 the	 idea	 that	

Ser2-P	acts	in	parallel	than	Maf1	to	control	pre-tRNA	level,	although	more	work	will	be	
required	to	fully	validate	this	hypothesis.	For	instance,	it	would	be	interesting	to	see	how	
pre-tRNAs	levels	evolve	upon	starvation	in	a	∆maf1	S2A	double	mutant.	
	

iii. ∆maf1	is	not	rapamycin-sensitive	
As	a	side	note,	we	took	advantage	of	our	full	length	maf1	deletion	mutant	to	clarify	

a	discrepancy	in	the	literature	concerning	a	maf1-related	rapamycin	sensitivity.	Indeed,	
researchers	 from	Gustafsson	laboratory	reported	that	maf1	deletion	causes	rapamycin	
sensitivity	(Carlsten	et	al.,	2016)	while	researchers	from	Maraia’s	laboratory	found	that	
maf1	overexpression,	but	not	deletion,	causes	rapamycin	sensitivity	(Arimbasseri	et	al.,	
2015).		

This	disagreement	could	be	caused	by	the	different	genetic	background	of	their	
maf1	deleted	strains	or	the	use	of	different	rapamycin	concentration.	In	addition,	the	gene	
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annotation	for	maf1	was	updated	in	2009	with	the	definition	of	a	new	ATG	start	codon	
228	nt	upstream	of	the	previously	annotated	ATG	(Desai	et	al.,	2005;	Wood	et	al.,	2012).	
Therefore,	maf1	deletion	based	on	the	old	annotation	–	such	as	the	∆maf1	strain	of	the	
Bioneer	deletion	library	(data	not	shown)	–	would	retain	the	first	two	maf1	exons	whose	
protein	product	could	possibly	affect	the	strain	phenotypes	in	ways	that	a	clean	full	length	
deletant	does	not.	

In	our	hands,	the	full	length	deletion	of	maf1	in	a	clean	genetic	background	was	
not	sensitive	on	plates	containing	20	ng/mL	of	rapamycin,	in	contrast	with	our	positive	
control,	∆elp4	(Bauer	et	al.,	2012)	(figure	6.D).	This	absence	of	phenotype	corroborates	
the	 findings	 of	 Maraia’s	 lab,	 and	 makes	 also	 more	 sense	 in	 regards	 to	 the	 action	 of	
rapamycin	within	the	cells.	Indeed,	rapamycin	inhibits	the	TOR	(Target	Of	Rapamycin)	
complex	 1	whose	 kinase	 activity	 favours	 cell	 proliferation	 (Cafferkey	 et	 al.,	 1994).	 In	
fission	yeast,	the	inhibition	is	partial,		explaining	why	WT	cells	are	naturally	rapamycin	
resistant	in	contrast	with	S.	cerevisiae	(Takahara	and	Maeda,	2012).	In	any	case,	inhibition	
of	the	TOR	complex	1	causes	Maf1	dephosphorylation	and	nuclear	localization,	leading	to	
the	repression	of	Pol	III	transcription.	Thus,	Maf1	deletion	is	expected	to	lessen	the	impact	
of	 rapamycin	 inhibition	 while	 Maf1	 overexpression	 would	 aggravate	 it,	 which	 is	
consistent	 with	 the	 absence	 of	 rapamycin	 sensitivity	 observed	 in	 our	 hands	 and	 in	
Maraia’s	laboratory.	
	

	
D. Evidences	for	Pol	II	activity	at	tRNA	genes.	

	
While	 we	 have	 established	 that	 Ser2-P	 opposes	 tRNA	 expression	 in	 a	 Maf1-

independent	 way	 and	 contributes	 to	 tRNA	 down-regulation	 upon	 starvation,	 the	
mechanisms	at	play	are	still	elusive.	 In	particular,	we	wondered	whether	 this	putative	
new	 role	 could	 arise	 from	 the	 direct	 involvement	 of	 Pol	 II	 in	 controlling	 Pol	 III	
transcription.	

	
i. Phosphorylated	Pol	II	associates	with	tRNA	genes.	

No	 gene	 coding	 for	 proteins	 involved	 in	 tRNA	 transcription	was	 differentially	
expressed	 in	 the	 S2A	 mutant.	 As	 such,	 there	 is	 no	 evidence	 that	 the	 observed	 over-
expression	of	tRNAs	comes	from	undirect	effects.	Therefore,	in	order	to	assess	whether	a	
relation	 of	 direct	 causality	 could	 explain	 the	 observed	 molecular	 phenotype,	 we	
wondered	whether	Pol	II	–	and	in	particular,	Ser2-P	–	associates	with	tRNA	genes.	

Through	 the	 re-analysis	 of	 ChIP-seq	 data	 from	 a	 previous	 collaboration	 with	
Murakami’s	 lab	 (Kajitani	 et	 al.,	 2017),	 we	 found	 that	 Pol	 II	 strikingly	 associates	with	
virtually	all	nuclear	 tRNA	genes	 in	S.	pombe	 (figure	8.A).	This	association	 is	generally	
centered	on	the	annotated	tRNA	genes	and	does	not	coincide	with	neighboring	Pol	II	TSS.	
Importantly,	Ser2-P	and	Ser5-P	were	also	detected,	which	is	consistent	with	the	idea	that	
Ser2-P	within	Pol	II	CTD	might	have	a	local	role	on	Pol	III-dependent	tRNA	transcription,	
and	 that	 the	 perturbation	 of	 this	 putative	 role	 in	 the	 S2A	mutant	 causes	 tRNA	 over-
production.	
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A.

A. Meta-gene average profile of ChIP-seq signal for Pol II, Ser2-P and Ser5-P centered on tDNAs TSS. The
raw data was obtained from Murakami’s lab, now published in (Kajitani, 2018).

Figure	9:	Anti-sense	Pol	II	transcription	at	tRNA	genes.

C. Strand-specific RTq-PCR in the indicated strains. Values were normalized to the expression of act1 SENSE.
ARG.05 and PRO.09 are tRNAs. –RT indicates controls for which the reverse transcriptase was not added to the
reaction. Error bars represent standard deviation from two technical replicates.
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Using	ChIP-qPCR,	we	were	able	to	confirm	the	association	of	Ser2-P	normalized	
on	Pol	II	on	3	tRNA	genes,	with	Ser2-P	levels	3-	to	5-folds	above	background	(level	of	Ser2-
P	in	the	S2A	mutant).	In	contrast,	the	level	of	Ser2-P	does	not	rise	above	background	in	an	
intergenic	region	or	even	at	the	promoter	of	the	housekeeping	gene	adh1.	

Altogether,	 those	 results	 show	 that	 Pol	 II	 associates	 with	 tRNA	 genes	 in	
Schizosaccharomyces	pombe,	echoing	previous	findings	in	human	cell	lines	(Barski	et	al.,	
2010;	Moqtaderi	et	al.,	2010;	Oler	et	al.,	2010;	Raha	et	al.,	2010),	mice	(Canella	et	al.,	2012;	
Carriere	et	al.,	2012)	and	fission	yeast	(Castel	et	al.,	2014).		

	
ii. Anti-sense	Pol	II	transcription	at	tRNA	genes.	

Examining	more	 closely	 the	patterns	of	 Ser5-P	 and	Ser2-P	on	 tRNA	genes,	we	
noticed	that,	on	average,	the	Ser2-P	signal	extended	more	upstream	of	the	genes	than	the	
–	almost	confounded	–	signals	of	Ser5-P	and	Pol	II	(figure	8.A).	This	trend,	more	apparent	
on	meta-gene	profiles	(figure	9.A),	suggests	the	occurrence	of	a	transcription-dependent	
transition	from	Ser5-P	(Pol	II	initiation	mark)	toward	Ser2-P	(Pol	II	elongation	mark)	in	
antisense	of	the	orientation	of	the	tRNA	genes.	

While	RNA-seq	is	a	great	technique	to	interrogate	the	steady-state	abundance	of	
RNA,	 i.	e.,	 the	result	of	 transcription	rate	and	degradation	rate,	 the	recently	developed	
NET-seq	method	provides	an	unmatched	snapshot	of	the	transcriptional	activity	of	RNA	
polymerases	 (Churchman	 and	 Weissman,	 2011).	 It	 relies	 on	 the	 sequencing	 of	 the	
transcribed	 RNA	 exiting	 the	 polymerase	 following	 its	 co-immunoprecipitation.	 As	 the	
immunoprecipitation	can	be	targeted	against	either	Pol	I,	Pol	II	or	Pol	III,	the	results	are	
polymerase-specific,	which	in	our	case	allow	to	distinguish	signal	specifically	from	Pol	II	
transcription.	

Confirming	our	interpretation	of	the	phosphorylated	Pol	II	ChIP-seq	data,	analysis	
of	Pol	II	NET-seq	data	obtained	in	collaboration	with	Morillon’s	lab	revealed	small	nascent	
Pol	II-associated	transcripts	mapping	in	anti-sense	on	tDNAs	(figure	9.B).	They	are	found	
in	low	abundance	in	comparison	with	other	Pol	II	transcripts	and	are	probably	very	short-
lived,	as	they	are	not	detected	in	the	input	fraction.	Moreover,	strand-specific	RT-qPCR	
confirmed	the	existence	of	the	antisense	transcript	on	one	tRNA	gene	out	of	the	two	that	
were	tested	(figure	9.C).	Remarkably,	the	antisense	transcript	appeared	to	be	stabilized	
in	the	rrp6	and	dcr1	ribonucleases	deletion	mutants,	suggesting	that	these	two	nucleases	
are	involved	in	their	degradation.	These	results	are	consistent	with	previous	observation	
of	Dcr1-dependent	siRNA	mapping	in	antisense	of	tDNAs	(Castel	et	al.,	2014).	

Finally,	we	found	a	small	(R2=0.45),	yet	significant	correlation	between	the	level	
of	Ser2-P	(elongating	Pol	II)	and	the	level	of	antisense	transcription	detected	by	NET-seq	
(figure	9.D).	This	correlation	reinforces	the	idea	that	the	antisense	transcription	on	tDNA	
is	Pol	II	dependent.	Reversely,	it	argues	against	the	proposed	idea	that	Pol	II	occupancy	
on	tDNA	genes	is	solely	due	to	the	mis-recruitment	of	Pol	II	by	the	TATA	box	upstream	of	
tRNA	genes	(Carriere	et	al.,	2012),	since	Pol	II	activity	is	detected	in	antisense.	However,	
we	 should	 note	 that	 sense	 tRNA	 contamination	 in	 both	 the	 input	 and	 IPed	 fractions,	
inherent	 to	 the	 NET-seq	 protocol	 (Churchman	 and	 Weissman,	 2011),	 impairs	 the	
detection	 of	 Pol	 II-specific	 transcription	 on	 the	 sense	 direction.	 Therefore,	we	 cannot	
exclude	that	some	Pol	II	transcription	on	tDNAs	also	occurs	in	the	sense	direction.	

57



A.

A. Snapshot of the the MNase-seq profiles in the indicated conditions. Tracks are available on an online
genome browser at the following address: https://tinyurl.com/ybdw3bra (Materne, 2015).

Figure	10:	Chromatin	changes	at	Pol	III	genes.

C. Nucleosome scanning/MNase-qPCR in the indicated conditions. ARG.05, TYR.04 and ILE.04 are three
tRNAs. ILE.04 +1000 nt refers to an intergenic region located 1000 nt upstream of ILE.04. srp7 is another Pol III-
transcribed gene.

B. Meta-gene average profile of MNase-seq signal in the indicated conditions. The data for the WT and S2A
conditions are from (Materne, 2015) (upper panel); the data for the high and low MNase conditions are from (Gal,
2016) (lower panel).

D.

D. Percentage of IP over input for H3 ChIP-qPCR signal. Error bars represent the standard error of the mean
(SEM) over two biological replicates. Statistically significant differences of mean are indicated by a (*) and were
computed with a 2-tailed unpaired t-test assuming unequal variance.
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E. Ser2-P	affects	the	chromatin	structure	at	tRNA	genes.	
	
i. Increased	 micrococcal	 nuclease	 resistance	 at	 tRNA	 genes	 in	 the	 S2A	

mutant.	

Having	established	that	Pol	II	 is	transcribing	tRNA	genes	in	anti-sense	and	that	
the	loss	of	Ser2-P	leads	to	an	increase	in	sense	tRNA	expression,	we	wondered	whether	
this	differential	expression	was	due	to	changes	at	the	chromatin	level.	Indeed,	previous	
work	in	our	lab	linked	Ser2-P	to	the	RSC	chromatin	remodeler	activity	via	a	modulation	
of	the	level	of	histone	acetylation	at	genes	promoters	(Materne	et	al.,	2015;	Materne	et	al.,	
2016).	 The	 RSC	 complex	 (remodel	 the	 structure	 of	 chromatin)	 is	 an	 ATP-dependent	
chromatin	remodeler	conserved	within	eukaryotes	whose	role	 in	 the	establishment	of	
nucleosome	depleted	regions	at	gene’s	promoters	was	described	by	us	and	others	(see	
Appendix	1:	Yague-Sanz	et	al.,	2017	–	“A	conserved	role	of	the	RSC	chromatin	remodeler	in	
the	establishment	of	nucleosome-depleted	regions”).	

In	 order	 to	 assess	 changes	 in	 chromatin	 structure	 in	 the	 S2A	 mutant,	 we	
reanalyzed	 the	 MNase-seq	 data	 published	 along	 the	 aforementioned	 publications,	
focusing	 on	 tRNA	 genes.	 MNase-seq	 is	 a	 method	 that	 assesses	 the	 resistance	 of	 the	
chromatin	 to	 digestion	 by	 the	micrococcal	 exonuclease.	Well	 positioned	 nucleosomes	
typically	 provide	 digestion	 resistance,	 in	 contrast	 with	 internucleosomal	 regions	 and	
nucleosome	depleted	regions	that	are	more	labile	to	digestion.	Strikingly,	tDNAs	coincide	
with	 regions	 completely	 digested	 in	 a	WT	 strain	while	 a	well-defined	 peak	 of	MNase	
resistance	 is	 systematically	 detected	 in	 the	 S2A	 mutant	 (figure	 10.A,	 10.B	 –	 upper	
panel).	 This	 result	 was	 confirmed	 with	 independent	 experiments	 using	 nucleosome	
mapping	(a	technique	that	could	have	been	called	“MNase-qPCR”	by	analogy	to	the	ChIP-
qPCR/ChIP-seq)	 on	 four	 Pol	 III	 genes	 and	 one	 intergenic	 region	 as	 negative	 control	
(figure	10.C).		

	
ii. Nature	of	the	micrococcal	nuclease	resistance	at	tDNA	genes.	

However,	despite	the	fact	that	variation	in	MNase	resistance	is	often	associated	
with	 differential	 nucleosome	 binding,	 ChIP-qPCR	 experiments	 on	 histone	 H3	 do	 not	
provide	consistent	evidence	that	the	increased	in	MNase	resistance	on	Pol	III-transcribed	
genes	is	due	to	increased	nucleosome	(or	at	least,	histone	H3)	occupancy	(figure	10.D).	
For	 this	 experiment,	we	 used	 as	 positive	 control	 the	 ste11	promoter	 region	 that	was	
shown	in	a	previous	study	to	be	more	occupied	by	histone	H3	in	the	S2A	mutant	(Materne	
et	 al.,	 2015),	and	as	negative	 control,	 the	housekeeping	adh1	promoter.	No	 significant	
difference	 was	 observed	 for	 the	 four	 Pol	 III-transcribed	 loci	 (including	 one	 tDNA)	
assessed.	

As	the	discrepancy	between	the	ChIP	an	MNase	experiments	raises	the	question	
of	the	nature	of	the	MNase	resistance,	we	explored	several	hypotheses	in	an	attempt	to	
explain	it.	

	
(1) Concerns	have	been	 raised	 in	 the	 community	 about	 the	higher	 sensitivity	of	 some	

nucleosomes	 to	 variation	 of	 technical	 parameters	 of	 the	 MNase-seq	 experiments.	
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Figure	11:	Normal	association	of	Pol	III	transcription	factors	to	tDNAs	in	the	S2A	mutant.

B. ChIP-qPCR experiment on the TAP-tagged TFIIIC subunit Sfc6. Values are expressed as the percentage of IP
signal over the input, and the error bars represent the standard deviation of the mean over three biological
replicates.
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Indeed,	depending	on	the	degree	of	digestion	by	the	MNase,	some	well-defined	peaks	
of	MNase	 resistance	 can	 completely	 disappear	while	most	 other	 peaks	 are	 barely	
affected	(Henikoff	et	al.,	2011;	Kubik	et	al.,	2015;	Pradhan	et	al.,	2015;	Vera	et	al.,	
2014).	 Those	 “fragile”	 sites	 are	 mainly	 located	 at	 gene’s	 promoters,	 which	 are	
accordingly	classified	into	two	classes:	those	with	stable	-1	nucleosome	(=	the	first	
nucleosome	before	the	TSS)	and	those	with	fragile	-1	nucleosome,	which	tend	to	have	
larger	nucleosome	depleted	regions	(Kubik	et	al.,	2015).	To	assess	how	the	striking	
difference	in	MNase	protection	at	tDNAs	observed	in	the	S2A	mutant	is	related	to	this	
“fragility”,	we	 compared	 the	MNase-seq	profiles	 in	WT	and	S2A	with	WT	 samples	
either	highly	or	lowly	digested	(Gal	et	al.,	2016).	The	whole	regions	centered	on	tDNAs	
is	sensitive	the	level	of	digestion,	especially	the	-1	nucleosome	(figure	10.B,	lower	
panel).	In	contrast,	in	the	S2A	mutant,	the	-1	nucleosome	is	largely	unaffected,	while	
there	 is	 tremendous	 difference	 at	 tDNAs	 TSS	 (figure	 10.B,	 higher	 panel).	 This	
comparison	suggests	that	the	observed	difference	of	MNase	resistance	between	the	
WT	 and	 S2A	 mutants	 is	 not	 due	 to	 technical	 variation	 on	 the	 degree	 of	 MNase	
digestion	and	reveals	a	specific	impact	of	the	loss	of	Ser2-P	on	the	chromatin	structure	
at	tRNA	genes.	
	

(2) One	 generally	 accepted	 view	 is	 that	 transcription	 factors	 (TFs)	 compete	 with	
nucleosomes	 for	 DNA	 binding.	 In	 consequence,	 regions	 bound	 by	 TFs	 are	 often	
nucleosome	 free	 and	 MNase-sensitive	 (Schones	 et	 al.,	 2008;	 Zhu	 et	 al.,	 2018).	
However,	this	view	has	been	recently	challenged	by	an	analysis	comparing	MNase-
seq	 and	 histone	 ChIP-seq	 data	 (Chereji	 et	 al.,	 2017).	 	 The	 authors	 found	 that	 the	
MNase-sensitive	particles	at	yeast	promoters	(the	so-called	“fragile	nucleosome”)	do	
not	contain	histones	and	might	be	composed	of	 transcription	 factors	or	chromatin	
remodeler	 complexes	 instead,	 which	 are	 providing	 partial	 MNase	 protection.	 In	
particular,	they	found	that	the	Pol	III	TFs,	TFIIIB	and	TFIIIC,	 interact	strongly	with	
DNA	 and	 provide	 strong	 MNase	 protection.	 This	 hypothesis,	 supported	 by	 other	
studies	(Nagarajavel	et	al.,	2013;	Shukla	and	Bhargava,	2018),	makes	sense	 in	 this	
specific	case	since	it	is	difficult	to	reconciliate	strong	nucleosome	occupancy	at	tDNAs	
in	 the	S2A	mutant	with	 the	 increased	pre-tRNA	 levels,	 since	 the	extra	nucleosome	
would	be	expected	to	sterically	impair	Pol	III	transcription.	In	addition,	the	size	of	the	
DNA	protected	by	the	MNase-resistant	particle	at	tRNA	genes	is	much	smaller	(with	a	
mode	 of	 about	 90	 nt)	 to	 that	 of	 MNase-resistant	 particles	 throughout	 the	 whole	
genome	(i.e.,	mostly	nucleosomes,	with	a	mode	of	about	120-147	nt),	suggesting	that	
their	nature	differ	(figure	10-bis).	To	test	whether	the	change	in	MNase	sensitivity	in	
the	S2A	mutant	could	be	attributed	to	non-histone	protein	bindings,	we	compared	the	
occupancy	of	TFIIIB,	TFIIIC	and	Pol	III	in	the	WT	and	S2A	strain.	Pol	III	ChIP-seq	data,	
although	 complex	 to	 interpret	 (see	next	point	 –	 iii),	 revealed	no	 increase	 (there	 is	
actually	a	clear	decrease)	in	Pol	III	occupancy	on	tDNAs	in	the	S2A	mutant	(figure	12,	
discussed	later).		Similarly,	TFIIIB	(figure	11.A)	and	TFIIIC	ChIP-qPCR	(figure	11.B)	
respectively	 targeting	 their	 Brf1	 and	 Sfc6	 tagged	 subunits	 did	 not	 highlight	 any	
significant	change	on	the	three	tDNAs	tested.	All	in	all,	we	have	no	evidence	that	the	
peak	 of	 MNase	 resistance	 we	 observe	 in	 the	 S2A	 mutant	 is	 due	 to	 a	 change	 in	
occupancy	in	Pol	III	or	its	transcription	factors.	However,	we	cannot	exclude	that	the	
affinity	of	 these	 factors	with	 the	DNA	 is	 increased	in	 the	S2A	mutant,	affecting	 the	
MNase	resistance	but	not	their	occupancy	on	tDNAs.		
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B. Meta-gene average profile of the spike-in (S. cerevisiae Rpb3-TAP) signal mapped on S. cerevisiae genome
and scaled to annotated Pol II genes normalized on the total number of spike-in reads by condition.
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Figure	12:	tRNA	over-expression	in	the	S2A	
mutant		can	not	be	explained	by	an	increase	
in	Pol	III	occupancy

A,C-E. Meta-gene average profile of ChIP-seq or input signal for Pol III (Rpc1-TAP) centered on tDNAs TSS
for the indicated subset of tDNAs (A) The signal was normalized on the total number of mapped reads by
condition. (C-E) The signal was normalized on the total number of spike-in reads by condition.

F.

F. Scatter plot of the Pol III peak intensity on tDNAs in the WT and S2A conditions summed over two
replicates and normalized on the total number of spike-in reads by condition.
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(3) Finally,	it	should	be	noted	that	our	premise	(the	idea	that	the	MNase	and	histone	ChIP	

data	are	inconsistent)	might	not	hold.	Indeed,	in	a	response	to	(Chereji	et	al.,	2017),	
researchers	from	David	Shore’s	lab	argue	against	the	idea	that	the	MNase-sensitive	
particles	are	due	 to	TF	binding,	based	upon	functional	experiments	where	TFs	are	
rapidly	depleted	(Kubik	et	al.,	2017).		They	propose	instead	that	histone	ChIP	assays	
have	 a	 limited	 capacity	 to	 capture	 these	highly	dynamic,	MNase-sensitive	 “fragile”	
nucleosomes.	Therefore,	our	failure	to	detect	histone	H3	changes	in	the	S2A	mutant	
does	not	necessarily	imply	that	there	is	no	change,	an	hypothesis	that	is	difficult	to	
experimentally	 validate.	 In	 any	 case,	 the	 nature	 of	 the	 MNase-sensitive	 particle	
observed	at	gene’s	promoters	appears	very	controversial6,	and	despite	our	thorough	
investigation,	 the	–	possibly	related	–	peak	of	MNase	resistance	 in	the	S2A	mutant	
remains	of	unknown	origin.	

	
iii. tRNA	 over-expression	 in	 the	 S2A	 mutant	 cannot	 be	 explained	 by	 an	

increase	in	Pol	III	occupancy.	

In	budding	yeast	and	higher	eukaryotes,	active	transcription	of	tRNAs	is	globally	
correlated	with	Pol	III	occupancy	on	tDNAs	chromatin	(Orioli	et	al.,	2016;	Roberts	et	al.,	
2003).	Therefore,	we	wondered	whether	the	increase	in	(pre-)tRNAs	transcripts	–	and	
also	the	increased	MNase	resistance	–	observed	in	the	S2A	mutant	is	accompanied	with	
an	 increase	 in	Pol	 III	occupancy.	To	address	 this	question	at	a	genome-wide	scale,	we	
designed	a	ChIP-seq	experiment	using	an	epitope	TAP-tagged	Rpc1	(the	biggest	Pol	III	
subunit).	Classical	ChIP-seq	normalization	methods,	like	scaling	on	total	read	counts,	rely	
on	 the	 assumption	 that	 there	 is	 no	 global	 change	 in	 protein	 binding.	 As	 we	 cannot	
reasonably	assume	this	in	our	conditions	(all	tRNAs	are	up-regulated	after	all),	we	set-up	
a	 spike-in-based	 normalization	 strategy	 for	 which	 we	 mixed	 10%	 of	 a	 Rpb3-TAP	 S.	
cerevisiae	culture	to	our	samples	at	the	beginning	of	the	ChIP	experiment,	right	before	the	
cross-linking	step.	After	sequencing,	we	scaled	the	reads	mapped	to	S.	pombe	genome	by	
the	number	of	reads	mapped	on	S.	cerevisiae	genome	in	order	to	control	for	both	technical	
variation	 in	sample	preparation	(chromatin	extraction,	 IP	efficiency,	…)	and	 for	global	
changes	in	S.	pombe	Rpc1	occupancy.	
	 Validating	the	Rpb3-TAP	S.	cerevisiae	spike-in,	the	average	profile	on	S.	cerevisiae	
Pol	II	genes	display	the	expected	trend	for	a	Pol	II	subunit	(Mayer	et	al.,	2010),	peaking	at	
the	beginning	and	end	of	genes	regardless	of	the	condition	(figure	12.B).	This	confirms	
that	Rpb3	was	properly	immuno-precipitated	in	all	of	our	samples.	

																																																													
	

6	 To	 cite	David	Shore	and	 colleagues:	 “We	 currently	 do	not	know	whether	 the	 dynamic	
nature	of	[fragile	nucleosomes]	is	due	to	more	frequent	unwrapping	of	DNA	from	the	histone	octamer	

core,	rapid	translational	motion	of	the	DNA	over	the	histone	core,	direct	destabilization	by	bound	

[general	regulatory	factors]	and/or	chromatin	remodelers,	a	sub-octamer	core	composition,	or	some	

combination	of	these	factors,	but	this	is	a	question	of	considerable	interest.”		(Kubik	et	al.,	2015)	
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A. Log2-ratio between S2A and WT chromatin input. The figure and ratios were calculated using CNV-seq.

Figure	13:	copy	number	variation	or	chromatin	accessibility	change	in	the	S2A	mutant.
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	 On	S.	pombe	tRNA	genes,	Rpc1-TAP	levels	were	found	highly	enriched	compared	
to	background	(figure	12.A).	Confirming	the	specificity	of	the	Rpc1	immunoprecipitation,	
no	signal	was	detected	at	mitochondrial	tRNA	genes	that	are	transcribed	by	a	dedicated	
RNA	polymerase	(figure	12.E).	Comparison	of	the	Rpc1-TAP	signal	in	the	S2A	and	wild-
type	conditions	on	nuclear	tRNA	genes	reveals	a	slightly	lower	level	in	the	S2A	mutant	
(figure	12.A);	a	trend	that	is	accentuated	after	spike-in	normalization	(figure	12.C).	This	
surprising	result	indicates	that	the	accumulation	of	pre-tRNAs	in	the	S2A	mutant	is	not	
due	 to	 an	 increase	 in	 Pol	 III	 occupancy	 at	 tDNAs.	 Instead,	 it	 could	 be	 that	 Pol	 III	
transcriptional	or	recycling	rate	is	increased	in	the	S2A	mutant	–	independently	of	Pol	III	
occupancy	–	or	 that	 the	 tRNA	misregulation	occurs	 at	 a	post-transcriptional	 level,	 for	
instance	through	the	stabilization	of	the	tRNA	precursors.	That	last	hypothesis	could	be	
validated	 using	 assays	 directly	measuring	 transcription	 rate,	 rather	 than	 steady-state	
RNA	 level	 of	 bulk	 polymerase	 occupancy,	 for	 instance	 4-tU	 labelling-based	 methods	
{Mata,	2017	#373}.	
	 Strikingly,	Rpc1	occupancy	on	a	subset	of	tRNA	does	not	follow	the	same	trend	
and	is	either	unaffected	or	higher	in	the	S2A	mutant	(figure	12.F).	Those	genes	are	highly	
occupied	in	both	conditions	and	are	clustered	within	the	centromeric	regions,	although	
some	centromeric	tDNAs	(usually	those	located	at	the	border	of	the	centromeres)	behave	
like	the	other	tDNAs	scattered	throughout	the	genome.	Accordingly,	the	average	profiles	
for	Rpc1-TAP	at	centromeric	tDNAs,	in	contrast	with	the	non-centromeric	ones,	are	not	
very	different	between	the	WT	and	S2A	conditions.	However,	this	distinction	between	the	
two	sets	of	tRNA	genes	appears	artefactual	as	the	average	profiles	for	the	input	fractions	
at	centromeric	tDNAs	are	significantly	higher	in	the	S2A	mutant	(figure	12.D),	suggesting	
either	 copy	 number	 variation	 (CNV)	 or	 differential	 chromatin	 accessibility	 at	
centromeres.	
	

iv. CNV	and	chromatin	accessibility	changes	in	the	S2A	mutant	

	 In	 order	 to	 systematically	 assess	 changes	 in	 chromatin	 accessibility	 or	 CNV	
genome-wide	in	the	S2A	mutant,	we	applied	the	sliding	windows	approach	implemented	
in	CNV-seq	(Xie	and	Tammi,	2009)	to	our	data,	comparing	the	number	of	mapped	reads	
in	the	input	for	every	Kb	of	S.	pombe	genome.	Systematically,	more	reads	are	mapped	at	
sub-telomeric	and	centromeric	loci	of	each	of	the	three	chromosomes	in	the	S2A	mutant	
(figure	 13),	 indicating	 that	 those	 regions	 are	 either	 in	 multiple	 copies	 or	 present	
chromatin	alterations	that	favors	their	recovery	during	sample	preparation.	Intriguingly,	
it	 was	 recently	 reported	 that	 Ser2-P	 in	 fission	 yeast	 is	 required	 for	 pericentromeric	
(Kajitani	 et	 al.,	 2017)	 and	 subtelomeric	 (Inada	 et	 al.,	 2016)	 silencing,	 although	 the	
mechanisms	at	play	are	still	controversial:	one	study	claims	that	Ser2-P	is	required	for	
heterochromatin	 formation	at	subtelomeres	based	on	H3K9me2	ChIP-microarray	data	
(Inada	 et	 al.,	 2016),	 while	 the	 other	 concludes	 that	 the	 heterochromatin	 structure	 is	
almost	completely	retained	in	the	S2A	mutant	at	pericentromeres,	based	on	ChIP-qPCR	
data	 on	multiple	 heterochromatin	 factors	 (although	 they	 also	 observed	 a	 decrease	 in	
H3K9me2)	(Kajitani	et	al.,	2017).		

Regardless	of	the	mechanism,	those	studies	suggest	that	the	changes	in	the	input	
level	are	caused	by	changes	in	the	chromatin	structure	at	centromeres	and	subtelomeres.	
Therefore,	 caution	 should	 be	 taken	 when	 interpreting	 differences	 in	 ChIP-seq	
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A. Meta-gene average profile of MNase-seq signal in the indicated conditions. Data from (Materne, 2016).

Figure	14:	The	RSC	complex	is	not	involved	in	Ser2-P	dependent	chromatin	regulation	at	
tRNA	genes.

B. Meta-gene average profile of MNase-seq signal in the indicated conditions. The expression of snf21, the
gene encoding the catalytic RSC subunit, is under the control of a tetO promoter that is activated (snf21 +) or
repressed (snf21 -). Data from (Yague-Sanz, 2017).

C. ChIP-qPCR experiment on the TAP-tagged RSC subunit Rsc1. Values are expressed as the percentage of IP
signal over the input, and the error bars represent the standard error of the mean over four biological replicates.
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experiments	 in	 the	 S2A	mutant.	 In	 our	 case,	 the	 difference	 observed	 in	 Rpc1	 level	 at	
centromeres	tDNAs	are	indeed	artefactual,	as	after	scaling	to	the	input,	all	tDNAs	behaved	
similarly,	i.e,	they	were	all	less	occupied	by	Pol	III	in	the	S2A	mutant	(data	not	shown).	

Finally,	we	observed	a	2-3-fold	increase	in	the	number	of	rDNA	repeats	at	the	ends	
of	 chromosome	 III	 (unless	 this	 difference	 is	 also	 due	 to	 a	 change	 in	 chromatin	
accessibility)	and	about	three	times	more	mitochondrial	DNA	in	the	S2A	mutant	(figure	
13).	How	Pol	II	Ser2-P	is	connected	to	mitochondria	biogenesis	and	rDNA	copy	number	
control	is	currently	unknown	and	could	become	the	focus	of	future	studies.	
	

v. The	 RSC	 complex	 is	 not	 involved	 in	 the	 Ser2-P-dependent	 chromatin	
regulation	at	tDNAs.	

Work	 in	 budding	 yeast	 highlighted	 a	 critical	 role	 for	 the	 RSC	 (Remodel	 the	
Structure	of	Chromatin)	–	a	chromatin	remodeler	complex	present	at	all	Pol	III	genes	(Ng	
et	al.,	2002;	Parnell	et	al.,	2015)	–	in	establishing	nucleosome-depleted	regions	at	tRNA	
genes.	Specifically,	inactivation	of	the	RSC	catalytic	subunit	leads	to	a	general	reduction	
of	de	novo	Pol	III	transcription	and	a	bulk	increase	in	nucleosome	density	at	tRNA	genes	
(Kumar	and	Bhargava,	2013;	Mahapatra	et	al.,	2011;	Parnell	et	al.,	2008).	Because	this	
increase	is	reminiscent	of	the	changes	in	MNase	resistance	we	observed	in	the	S2A	mutant	
(although	the	impact	on	Pol	III	transcription	is	not),	we	wondered	whether	Pol	II	Ser2-P	
could	be	required	for	the	RSC	complex	recruitment	and/or	activity	at	fission	yeast	tDNAs.	
Indeed	previous	works	from	our	group	revealed	that	Ser2-P,	through	the	taming	of	the	
Set1	histone	methyl-transferase	recruitment,	is	important	for	histone	acetylation	and	RSC	
recruitment	at	a	subset	of	Pol	 II	gene	promoters	(Materne	et	al.,	2015;	Materne	et	al.,	
2016).	(Gossen	and	Bujard,	1992)	

In	order	to	assess	the	role	of	the	RSC	complex	at	tRNA	genes	in	fission	yeast,	we	
re-analyzed	MNase-seq	 data	 in	 conditions	 where	 the	 function	 of	 the	 RSC	 complex	 is	
impaired.	By	deleting	rsc1,	a	non-essential	subunit	(Materne	et	al.,	2016),	we	could	not	
observe	differences	in	MNase	resistance	at	tDNAs	(figure	14.A).	Similarly,	by	switching-
off	with	 a	 Tet-Off	 system7	 the	 expression	 of	 the	 gene	 encoding	 the	 essential	 catalytic	
subunit	of	the	RSC	complex,	snf21	(Yague-Sanz	et	al.,	2017),	no	difference	was	observed	
(figure	14.B).	Those	results	argue	against	the	conservation	of	the	role	of	the	RSC	complex	
in	excluding	nucleosomes	at	tDNAs	in	fission	yeast.	However,	as	thoroughly	discussed	the	
Appendix	1,	the	activity	of	the	RSC	complex	is	not	fully	abolished	in	those	strains	and	we	
cannot	 exclude	 that	 this	 residual	 RSC	 activity	 is	 sufficient	 to	 generate	 nucleosome	
depleted	regions	at	tDNAs.	

In	relation	to	the	previous	point	that	interrogates	the	nature	of	the	peak	of	MNase	
resistance	at	tRNA	genes,	we	cannot	help	but	notice	that	the	intensity	of	this	peaks	vary	

																																																													
	

7	In	a	Tet-Off	system,	the	expression	of	a	gene	is	switched	off	rapidly	upon	the	addition	of	
tetracycline.	Tetracycline	binds	and	inhibits	a	transactivator	protein	that,	when	free,	activates	the	
expression	of	a	gene	of	interest	through	the	binding	of	tetO	operator	sequences	placed	upstream	
of	the	gene	promoter	(Gossen	&	Bujard,	1992)	
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from	experiments	to	experiments,	even	for	the	exact	same	strains,	processed	by	the	same	
lab	(although	at	different	 times)	and	analyzed	using	 the	same	bioinformatics	pipeline:	
very	 low	 for	 the	 WT	 from	 (Materne	 et	 al.,	 2015)	 (figure	 10.B,	 higher	 panel)	 but	
significantly	higher	in	the	WT	from	(Materne	et	al.,	2016)	(figure	14.A).	This	variation	
reinforces	the	idea	that	those	sites	are	“fragile”	–	histone	or	non-histone	–	sites	of	MNase	
resistance,	that	are	very	sensitive	to	technical	variation	in	the	MNase	experiments	and	
whose	nature	is	still	largely	under	debate.	

Finally,	to	assess	the	putative	role	of	Ser2-P	in	recruiting	the	RSC	complex	at	tRNA	
genes,	we	 immunoprecipitated	an	 epitope	 tagged	version	of	 one	of	 its	 subunits,	Rsc1.	
Although	we	observe	a	small	decrease	of	RSC	occupancy	at	the	tDNAs	tested	–	and	not	at	
a	control	intergenic	region	–,	the	difference	is	not	statistically	significant,	arguing	against	
a	major	role	of	Ser2-P	in	recruiting	the	RSC	remodeling	complex	at	tRNA	genes.	This	is	
consistent	with	the	literature	that	describes	a	direct	interaction	between	Rbp5	(a	subunit	
shared	between	Pol	I,	Pol	II	and	Pol	III)	and	the	Rsc4	RSC	subunit	(Soutourina	et	al.,	2006).		
	

vi. Final	comments	

As	a	whole,	this	chapter	on	chromatin	changes	in	the	S2A	mutant	reports	mixed	
results.	Although	the	chromatin	structure	appears	altered	at	tRNA	genes	(and	other	loci)	
in	the	S2A	mutant,	it	is	still	unclear	in	what	way	it	is	altered.	Our	negative	results	point	
that	 it	 is	 probably	 not	 due	 to	 differential	 TF	 binding,	 RSC	 binding,	 Pol	 III	 binding	 or	
nucleosome	 binding.	 As	 a	 consequence,	 it	 is	 currently	 unclear	 how	 this	 chromatin	
alteration	could	affect	Pol	III	transcription	and	whether	it	is	related	at	all	to	the	increased	
level	of	pre-tRNAs	observed	in	the	S2A	mutant.		

To	further	investigate	this	issue,	one	could	test	the	differential	binding	of	other	
protein	 candidates,	 such	 as	 condensin.	 Indeed,	 condensin	was	 reported	 to	 bind	 tRNA	
genes	and	to	bridge	them	together,	allowing	centromeric	localization	of	dispersed	tRNA	
genes,	 which	 negatively	 correlates	 with	 tRNA	 expression	 (Iwasaki	 et	 al.,	 2010).	
Potentially	altered	nuclear	 localization	of	 tRNA	genes	 in	 the	 S2A	mutant	 could	 impact	
tRNA	metabolism	in	multiple	ways,	such	as	transcription	(Iwasaki	et	al.,	2010)	and	export	
(Chen	 and	 Gartenberg,	 2014),	 providing	 a	 possible	 mechanistic	 basis	 for	 the	 tRNA	
accumulation	in	the	S2A	mutant.		
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F. The	exonuclease	Rrp6	targets	pre-tRNAs	for	degradation	
i. rrp6	deletion	suppresses	the	growth	defect	of	rpc25-flag	
In	the	previous	analyses,	we	found	little	evidence	that	the	accumulation	of	pre-

tRNAs	 in	 the	 S2A	mutant	 is	 directly	 caused	 by	 a	modulation	 of	 Pol	 III	 transcription.	
Indeed,	while	Pol	III	occupancy	is	known	to	generally	correlate	with	its	activity	(Roberts	
et	al.,	2003),	Pol	III	ChIP-seq	revealed	that	there	is	actually	less	Pol	III	at	tRNA	genes	in	
the	S2A	mutant.	Moreover,	deletion	of	maf1,	the	gene	encoding	for	the	only	known	global	
Pol	III	repressor	in	yeast,	barely	affected	the	expression	of	the	tRNA	tested,	suggesting	
that	Pol	III	is	largely	unrepressed	in	our	conditions	where	nutrients	are	fully	available.	In	
that	unrepressed	setting,	it	is	difficult	to	imagine	how	the	loss	of	Ser2-P	could	boost	tRNA	
transcription	 directly.	 Therefore,	 we	 wondered	 whether	 Ser2-P	 could	 act	 at	 a	 post-
transcriptional	level	by	being	involved	in	pre-tRNA	degradation.		

	
The	exosome	contains	 two	catalytic	subunits,	 the	essential	endo-/exo-nuclease	

Dis3,	and	the	non-essential	3’-5’exonuclease	Rrp6.	Interestingly,	deletion	of	rrp6	within	
the	 rpc25-flag	 strain	 almost	 completely	 restored	 wild-type-like	 growth	 in	 the	 strain,	
reminiscent	of	the	suppression	by	the	S2A	mutation	(figure	15.B).	This	also	suggests	that,	
in	fission	yeast,	just	like	in	budding	yeast,	at	least	some	of	the	pre-tRNA	degraded	by	the	
exosome	 can	 become	 fully	 matured,	 functional	 tRNAs,	 and	 as	 such,	 probably	 lack	
processing	defects.	

	
ii. Rrp6	deletion	causes	pre-tRNA	accumulation	

At	the	RNA-level,	the	∆rrp6	deletion	causes	pre-tRNAs	to	accumulate	massively,	
in	 a	 way	 that	 (over-)compensate	 the	 decrease	 in	 pre-tRNAs	 of	 the	 rpc25-flag	 strain	
(figures	15.A,	15.C).	However,	quantification	of	the	tRNA	precursors	and	mature	tRNAs	
show	that	the	various	isoforms	are	differentially	affected	(figure	15.D,	right	panel).	Full	
length	pre-tRNAs	(pre-)	accumulate	the	most	after	rrp6	deletion;	between	4-	and	8-	folds	
over	WT	depending	on	the	tRNA	tested.	In	contrast,	the	5’-processed	tRNA	precursors	(5’)	
reach	levels	lower	than	the	WT	while	the	5’-3’-processed	tRNA	precursors	(5’-3’)	mildly	
accumulate	(between	1-	and	2-folds	over	WT).	Finally,	mature	tRNAs	accumulate	about	
2-folds	over	WT.	

This	 suggests	 that	 rrp6	 preferentially	 targets	 for	 degradation	 full	 length	 pre-
tRNAs	although	more	insight	into	the	complex	dynamics	of	the	various	tRNA	processing	
steps	involved	would	be	required	to	conclude	strongly	on	these	results.	Nevertheless,	it	
is	 intriguing	to	see	that	the	S2A	mutant	displays	almost	the	same	patterns	at	a	smaller	
scale	(figure	15.D,	left	panel):	Full	length	pre-tRNAs	accumulate	the	most	(between	2-	
and	3-folds),	5’-processed	precursors	reach	a	slightly	lower-than-WT	level	and	mature	
tRNAs	accumulate	between	1-	and	2-	folds.	Those	similarities	could	indicate	that	the	S2A	
mutation	affects	tRNA	expression	in	a	way	similar	to	the	rrp6	deletion	if	it	was	not	for	the	
effect	on	the	5’-3’-processed	tRNA	precursors.	Indeed,	these	precursors	accumulate	in	the	
S2A	mutant	almost	to	the	same	level	as	the	full-length	precursors.		

Accumulation	of	unspliced	5’-3’-processed	is	typical	of	strains	defective	in	nuclear	
tRNA	 export	 –	 a	 prerequisite	 for	 pre-tRNA	 splicing	 –,	 such	 as	 strains	 deleted	 for	 the	
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conserved	los1	nuclear	tRNA	exportin	(Chatterjee	et	al.,	2017;	Cherkasova	et	al.,	2011).	
However,	 it	 is	 difficult	 to	 incriminate	 a	processing	defect	 for	 the	accumulation	of	pre-
tRNAs	 in	 the	 S2A	 mutant,	 as	 mature	 tRNAs	 accumulate	 as	 well	 and	 rescue	 the	
transcriptional	defect	of	the	rpc25-flag	allele.	

	
iii. lsk1	deletion	causes	a	mild	pre-tRNA	accumulation,	yet	fully	suppresses	

rpc25-flag	
From	the	same	experiment,	we	also	observe	that	deletion	of	Lsk1,	the	main	Ser2-

P	 kinase	 in	 S.	 pombe	 has	 a	 similar	 impact	 on	 (pre-)tRNA	 levels	 as	 in	 the	 S2A	mutant	
although	the	changes	compared	to	the	WT	are	of	much	smaller	amplitude	(figure	15.D,	
left	panel).	This	discrepancy	could	be	explained	by	residual	Ser2-P	observed	in	the	∆lsk1	
mutant	(data	not	shown).	Remarkably,	while	the	level	of	tRNA	precursors	cannot	be	fully	
rescued	 in	 the	 ∆lsk1	 rpc25-flag	 mutant,	 lsk1	 deletion	 still	 restores	 WT-like	 levels	 of	
mature	 tRNAs	and	 –	 probably	 as	 a	 consequence	 –	 completely	 suppresses	 the	 growth	
defect	of	the	rpc25-flag	allele	(figure	3.C).	

	
iv. Two-way	suppression	for	the	∆rrp6	rpc25	double	mutant	
Surprisingly,	while	the	double	∆rrp6	rpc25-flag	mutant	is	growing	faster	than	the	

simple	rpc25-flag	mutant,	it	is	also	growing	better	than	the	single	∆rrp6	mutant	(figure	
16.A).	 This	 result	 suggests	 that	 one	of	 the	 reasons	 for	 the	∆rrp6	growth	defect	 is	 the	
accumulation	 of	 pre-tRNAs,	 an	 accumulation	 that	 would	 be	 tuned	 down	 by	 the	
hypomorphic	rpc25-flag	allele.		

In	 addition,	 despite	 that	 the	 exosome	 is	 known	 to	 cooperate	with	 the	 TRAMP	
complex	to	target	RNAs	for	degradation	(Schmidt	and	Butler,	2013),	deletion	the	TRAMP	
subunit	Cid14	(homologous	to	Trf5	in	S.	cerevisiae)	does	not	recapitulate	the	suppression	
of	∆rrp6	strain.	Moreover,	deletion	of	the	gene	encoding	the	Xrn2	cytosolic	exonuclease	–
responsible	for	the	rapid	tRNA	decay	(Xrn1	homolg)	[REF]–	is	also	not	suppressive.		These	
result	highlight	the	specificity	of	the	suppression	of	the	hypomorphic	rpc25-flag	allele	by	
the	∆rrp6	strain,	but	more	work	would	be	required	to	assess	whether	Rrp6	degrades	pre-
tRNA	in	an	TRAMP-independent	fashion,	or	even	in	an	core	exosome-independent	fashion	
(Graham	et	al.,	2009).	
	

v. Is	Rrp6	connected	to	Ser2-P?	

To	assess	whether	the	increase	in	pre-tRNA	observed	in	the	S2A	mutant	would	be	
dependent	 on	 Rrp6	 degradation,	 we	 tried	 to	 generate	 a	 ∆rrp6	 S2A	 double	 mutant.	
However,	 despite	 our	 best	 efforts,	we	 never	 could	 obtain	 this	 strain,	 be	 it	 by	 crosses	
followed	by	random	spore	analysis	or	by	transformation	targeting	rrp6	deletion	in	the	
S2A	background.	In	the	case	of	difficult	crosses,	tetrad	dissection	is	the	method	of	choice	
as	it	allows	to	see	whether	a	particular	combination	of	alleles	is	lethal.	In	the	S2A	mutant	
however,	 tetrad	dissection	 is	 impractical	 given	 its	penetrant	 sterility.	 In	 consequence,	
while	our	inability	to	obtain	it	make	it	likely	that	the	S2A	∆rrp6	double	mutant	is	lethal,	
we	could	not	prove	it.	
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Figure	16:	Rrp6	suppression	of	rpc25-flag is	TRAMP-independent	but	Rrp6	does	not	
differentially	localize	at	tRNA	genes..

A. Growth assay of the indicated strains. Precultures were grown overnight then diluted in liquid YES media
to OD 0.2 and incubated with agitation at 32°C until OD 0.5. From there, 5-fold dilutions were spotted on YES-
agar plates and incubated during 3 days at 32°C.
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As	an	alternative	approach	to	study	the	connection	between	Ser2-P	and	Rrp6,	we	
used	an	epitope-tagged	rrp6	subunit	to	assess	Rrp6	occupancy	on	tRNA	genes	in	the	S2A	
mutant.	Indeed,	the	nuclear	exosome	has	been	reported	as	involved	in	co-transcriptional	
processing	and	as	such,	can	interact	with	chromatin	(de	Almeida	et	al.,	2010;	Hessle	et	al.,	
2012;	Lemay	et	al.,	2014).	Accordingly,	we	were	able	to	immunoprecipitate	the	exosome	
at	the	 two	tRNA	genes	 tested	to	a	 level	of	at	 least	5-fold	above	background	(untagged	
strain).	In	contrast,	at	the	act1	control	loci,	only	a	2-fold	increase	over	background	was	
observed,	indicating	that	the	exosome	is	preferentially	found	at	tRNA	genes	(figure	16.B).	
Arguing	 against	 a	 role	 for	 Ser2-P	 in	 recruiting	 Rrp6,	 no	 significant	 difference	 of	
enrichment	was	observed	in	the	S2A	mutant	compared	to	the	wild-type	strain.	

In	conclusion,	despite	troubling	similarities	in	how	pre-tRNAs	react	to	both	the	
loss	Ser2-P	and	the	loss	of	Rrp6,	we	were	not	able	to	demonstrate	a	connection	between	
the	two.	To	provide	further	insight	into	the	question,	we	are	currently	assessing	pre-tRNA	
stability	in	the	S2A	mutant	in	order	to	unambiguously	distinguish	a	transcriptional	effect	
from	a	stability	effect.	

	
G. The	SAGA	connection	

	
i. Isolation	of	Rpc25-flag	suppressors	
Despite	 our	 candidate-based	 assays	 exploring	 connections	 with	 chromatin	

changes	 and	 exosome	 degradation,	 the	mechanistical	 connection	 between	 Ser2-P	 and	
pre-tRNA	remains	largely	elusive.	Therefore,	we	wanted	to	try	to	unravel	this	connection	
using	a	more	unbiased	approach,	taking	advantage	of	the	rpc25-flag	phenotype.	The	idea	
for	 the	 screen	 stem	 from	 the	 observation	 that	 some	 fast-growing	 rpc25-flag	 colonies,	
visible	in	most	growth	assays	(see	figure	16.A,	lower	panel,	for	instance),	appear	to	bypass	
the	growth	defect	imposed	by	the	rpc25-flag	allele.	Those	naturally	occurring	suppressors	
where	intriguing,	as	they	mimicked	the	loss	of	Ser2-P	in	the	rpc25-flag	strain.	Therefore,	
we	set	up	a	screen	aimed	at	the	 identification	of	 the	suppressive	mutation	 in	order	 to	
unravel	potentially	new	regulatory	layers	for	Pol	III	transcription,	which	might	provide	
the	missing	link	between	Ser2-P	and	tRNA	expression.	

Eleven	natural	suppressors	were	isolated	from	growth	at	restrictive	temperature	
(32°C	or	37°C).	In	order	to	avoid	working	with	trivial	second-sites	suppressors,	we	first	
screened	by	PCR,	western-blot	and/or	sanger	sequencing	for	the	integrity	of	the	rpc25-
flag	allele.	Five	of	the	suppressors	had	partially	of	totally	lost	their	flag	fusion	at	the	end	
of	rpc25,	incidentally	confirming	that	the	growth	defect	of	the	rpc25-flag	strain	is	due	to	
the	presence	of	the	flag.		

The	remaining	six	suppressors,	named	s1	to	s6	restored	wild-type-like	growth	at	
restrictive	 temperature	 (figure	17),	with	 the	 exception	of	 s1	 that	 is	 still	 temperature	
sensitive	at	37°C.	This	result	makes	sense	as	s1	is	the	only	suppressor	isolated	at	32°C	
where	the	selective	pressure	is	different,	and	likely	less	stringent,	than	at	37°C	(figure	
5.C).	
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Figure	17:	Growth	assay	the	naturally	isolated	rpc25-flag suppressors.

A. Growth assay of the indicated strains. Precultures were grown overnight then diluted in liquid YES media
to OD 0.2 and incubated with agitation at 32°C until OD 0.5. From there, 5-fold dilutions were spotted on YES-
agar plates and incubated during 3 days at 32°C.

B. tRNA northern blot targeted against SPBTRNAARG.05, LEUCAA and 5.8S rRNA in the indicated strains.
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		Table	4:	Identification	of	the	suppressive	mutations.	
suppressor	 T°	of	selection	 genotypea	 effect	 %	of	ORF	affectedb	

s1	 32°C	 rpc25-flag	pcr1_18+T	 frameshift	 96.5	
s2	 37°C	 rpc25-flag	tra1_3767+A	 frameshift	 66.1	
s3	 37°C	 rpc25-flag	sgf73_967+A	 frameshift	 13.5	
s4	 37°C	 rpc25-flag	tms1_G155T	 Gly	to	Val	 NA	
s5	 37°C	 rpc25-flag	mug133_C500T	 silent	 NA	
s6	 37°C	 rpc25-flag	tra1_G3145T	 STOP	 71.7	

a:	 for	the	suppressive	mutations,	the	naming	convention	follow	this	scheme:	 ‘pcr1_18+T’	means	
that	 a	 T	 is	 inserted	 18	 nucleotides	 after	 the	 annotated	 start	 codon	 of	 the	 pcr1	 gene	 model.	
‘tms1_G155T’	means	that	the	G	positioned	155	nucleotides	downstream	the	annotated	start	codon	
of	the	tms1	gene	model	is	replaced	by	a	T.	
b:	proportion	of	the	open	reading	frame	downstream	the	frame	shift	or	stop	codon.	

	
	

In	 the	 golden	 age	 of	 genetics,	 the	 suppressive	 mutations	 could	 have	 been	
identified	using	tedious	genetic	mapping	but	(thankfully)	the	advent	of	high	throughput	
sequencing	 techniques	 considerably	 facilitated	 this	 step.	 Indeed,	 through	 the	 whole	
genome	sequencing	of	the	suppressors,	we	easily	sequenced	and	identified	the	mutated	
alleles	by	comparison	with	 the	original	rpc25-flag	strain	using	VarScan	(Koboldt	et	al.,	
2012).	Only	one	indel	or	single-nucleotide	variation	by	suppressor	was	detected	in	ORFs	
with	high	confidence,	that	is,	with	at	least	75%	of	reads	supporting	that	variation	(table	
4).	Although	we	cannot	exclude	to	have	missed	some	variation	(in	particular,	the	mode	of	
sequencing	 chosen	 –	 single-end	 50	 nt	 –	 does	 not	 allow	 to	 unveil	 complex	
rearrangements),	 we	 do	 not	 expect	 to	 have	 more	 than	 one	 or	 two	 mutations	 per	
suppressor	given	that	the	yeast	mutated	at	their	natural	rate	(about	2.00	×	10-10	mutations	
per	site	per	generation	(Farlow	et	al.,	2015))	during	only	a	few	days.	

	

ii. Mutations	within	genes	encoding	subunits	of	the	SAGA	complex	suppress	
a	defect	in	Pol	III	transcription.	

Strikingly,	 three	 out	 of	 the	 six	 suppressors	 identified	 (frameshift	 in	 sgf73	 and	
frameshift	and	stop	codon	in	tra1)	had	disruptive	mutations	within	subunits	of	the	Spt-
Ada-Gcn5	 acetyltransferase	 complex	 (SAGA).	 SAGA	 is	 an	 evolutionarily	 conserved	
transcriptional	coactivator	of	Pol	II	comprising	18	to	20	subunits	organized	within	five	
(six	 in	 metazoan)	 functional	 modules	 with	 distinct	 regulatory	 activities,	 reviewed	 in	
(Helmlinger	and	Tora,	2017;	Rodríguez-Navarro,	2009):		

• Interaction	with	transcription	activators	(by	Tra1)	
• histone	acetyl	transferase	activity	(by	Gcn5	acetyl-transferase)	
• deubiquitinylation(DUB)	(by	the	Ubp8	deubiquitinase	–	and	Sgf73	)	
• recruitment	of	the	TATA-box	binding	protein	(by	Spt3	and	Spt8)	
• binding	of	methylated	histone	(by	Sgf29)	

When	localized	at	gene	promoters,	SAGA	is	thought	to	activate	gene	expression	
through	the	recruitment	of	the	TATA	binding	protein	and	through	histone	acetylation	and	
deubiquitinylation.	While	a	seminal	study	estimates	at	~10%	the	number	of	Pol	II	gene	
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promoters	controlled	by	SAGA	(Huisinga	and	Pugh,	2004),	a	more	recent	study	found	that	
the	expression	of	virtually	all	Pol	II	genes	is	SAGA-dependent	(Baptista	et	al.,	2017).	To	
our	knowledge,	no	role	in	controlling	tRNA	expression	has	been	reported	for	the	SAGA	
complex,	yet	it	is	found	at	tRNA	genes	in	drosophila	(Weake	and	Workman,	2012).		Adding	
to	the	complexity	of	understanding	SAGA	roles,	deletion	of	individual	SAGA	subunit	lead	
to	gene-specific	expression	changes	(Helmlinger	et	al.,	2011;	Lenstra	et	al.,	2011).		

In	our	screen,	 two	SAGA	subunits	 from	two	different	modules	came	out	of	our	
screen,	Tra1	and	Sgf73.	The	Tra1	SAGA	subunit,	an	unusually	large	protein	(422	Kda),	is	
not	essential	for	viability	in	S.	pombe	in	contrast	with	its	homologs	in	budding	yeast	and	
mammals	(Calonge	et	al.,	2010).	Intriguingly,	the	Tra1	homolog	TRRAP	is	known	to	be	
recruited	at	Pol	III	transcription	sites,	along	the	Gcn5	histone	acetyltransferase	(probably	
within	the	SAGA	complex),	by	the	proto-oncogene	c-Myc	to	promote	tRNA	expression	in	
human	 cell	 lines	 (Kenneth	 et	 al.,	 2007).	 However,	 this	 link	 between	 Tra1	 and	 Pol	 III	
expression	is	difficult	to	connect	with	the	suppression	of	the	rpc25-flag	growth	defect	by	
Tra1	disruption.	Indeed,	c-Myc	is	not	conserved	in	yeast.	In	addition,	the	disruption	of	a	
factor	promoting	tRNA	expression	would	probably	not	compensate	a	hypomorphic	Pol	III	
allele.		

In	fission	yeast,	Tra1	is	required	for	the	expression	of	only	a	subset	of	the	SAGA-
dependent	genes.	Intriguingly,	although	no	global	SAGA	assembly	defect	was	detected	in	
mutants	 lacking	 Tra1,	 components	 of	 the	DUB	module	 such	 as	 Ubp8	and	 Sgf73	were	
underrepresented	in	the	proteins	associated	with	the	SAGA	subunit	Ada2	in	a	∆tra1	strain	
(Helmlinger	 et	 al.,	 2011).	 Therefore,	 an	 alternative	 hypothesis	 to	 the	 idea	 that	 Tra1	
disruption	 suppresses	 a	 Pol	 III	 defect	 directly	 would	 be	 that	 the	 suppression	 occurs	
through	a	less	efficient	recruitment	of	the	DUB	module	within	SAGA,	including	Sgf73,	the	
other	SAGA	subunit	uncovered	in	our	screen.	

The	 regulation	 of	 histone	 H2B	 ubiquitination	 (H2Bubi)	 has	 important,	 yet	
complex,	 implications	 in	 the	 control	 of	 gene	 expression.	 Indeed,	 H2Bubi	 affects	
transcription	differentially	depending	on	where	it	is	deposited:	it	acts	as	a	repressor	at	
gene	 promoters,	 yet,	 it	 facilitates	 elongation	 through	 favored	 nucleosome	
assembly/disassembly	 (Batta	 et	 al.,	 2011).	 This	dual	 role	 has	 profound	 implication	 in	
processes	as	important	as	the	control	of	sexual	differentiation	in	fission	yeast,	for	which	
we	showed	that	H2Bubi	opposes	RSC	remodeling	at	the	ste11	promoter	(Materne	et	al.,	
2016).		In	addition,	mutations	that	abolish	the	DUB	activity	induce	a	decrease	in	Ctk1	(a	
Ser2-P	 kinase,	 homolog	 to	 Lsk1	 in	 S.	 cerevisiae)	 recruitment,	 further	 connecting	
deubiquitination	with	Ser2-P	(Wyce	et	al.,	2007).	

In	budding	yeast,	Sgf73	is	also	implicated	in	ribosomal	protein	(RP)	expression	as	
the	 deletion	 of	 sgf73	 causes	 reduced	 expression	 of	 RP	 genes	 and	 replicative	 lifespan	
extension	(Mason	et	al.,	2017).	The	situation	appears	similar	in	S.	pombe	(Helmlinger	et	
al.,	 2011),	 suggesting	 that	 the	 role	 of	 SAGA	 in	 controlling	 RP	 expression	 is	 conserved	
within	eukaryotes,	or	at	least	between	those	two	distantly	related	yeast	species.	Given	the	
importance	of	a	coordinated	regulation	of	the	expression	of	the	components	of	the	protein	
synthesis	 machinery	 (rRNAs,	 RP	 genes	 and	 tRNAs)	 (Warner,	 1999),	 a	 possible	
explanation	for	the	suppression	of	the	Pol	III	transcriptional	defect	of	the	rpc25-flag	strain	
could	depend	on	the	decrease	of	expression	of	other	components	of	the	protein	synthesis	
machinery,	such	as	the	SAGA-dependent	RP	genes.	However,	Northern	blot	analysis	of	the	
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suppressors	 revealed	 that	 they	 restored	 the	 expression	 of	 the	 pre-tRNAs,	 at	 least	 in	
proportion	 to	 the	 level	 of	 mature	 tRNAs,	 the	 total	 amount	 of	 RNA	 loaded	 and	 the	
expression	of	the	5.8S	rRNA,	a	restoration	that	cannot	be	explained	solely	by	the	possible	
down-regulation	of	the	RP	genes	in	the	suppressors	(figure	17.B).	
	 Strengthening	 the	 idea	 that	 the	disruption	of	SAGA-regulated	processes	causes	
rpc25-flag	suppression,	a	4th	suppressor,	in	which	the	pcr1	gene	is	disrupted,	is	connected	
to	 SAGA.	 Indeed,	 Pcr1	 is	 a	 transcription	 factor	 that	 cooperates	 with	 its	 heterodimer	
partner	Atf1	to	recruit	SAGA	at	gene	promoters	(Sansó	et	al.,	2011).		

	The	 remaining	 two	 suppressive	 mutations	 identified	 in	 our	 screen	 are	 more	
difficult	 to	 interpret.	One	of	 these	 is	 located	on	 the	gene	coding	 for	Tms1,	a	predicted	
hexitol	 dehydrogenase	 that,	 intriguingly,	 binds	 human	 p53	 expressed	 in	 fission	 yeast	
(Wagner	et	al.,	1993).	The	other	one	is	a	silent	mutation	on	the	mug133	gene,	which	is	
coding	for	an	uncharacterized	protein.	

In	conclusion,	with	three	out	of	six	suppressive	mutations	falling	into	genes	coding	
for	SAGA	subunits,	our	screen	uncovered	a	strong	genetic	link	between	the	SAGA	Pol	II	
coactivator	complex	and	Pol	III	transcription.	However,	more	work	will	be	required	to	
confirm	these	suppressions,	and	even	more	work	to	comprehend	the	mechanism	behind,	
which	might	be	linked	to	the	Ser2-P-dependent	regulation	of	tRNA	expression	proposed	
through	this	work.	

	
H. ADDENDUM:	 A	 global	 Pol	 II	 transcriptional	 defect	 in	 the	 S2A	
mutant	?	
	
As	Ser2-P	is	involved	in	transcriptional	termination	through	the	recruitment	of	

subunits	of	the	3’-processing	complex	(Harlen	et	al.,	2016),	we	wondered	whether	Pol	II	
distribution	 on	 the	 genome	 would	 be	 affect	 in	 the	 S2A	 mutant,	 and	 therefore,	 we	
performed	 ChIP-seq	 experiments	 targeted	 against	 Pol	 II.	 Intriguingly,	 global	
normalization	revealed	few	differences	in	the	meta-genes	profiles	centered	on	protein-
coding	genes	between	 the	wild-type	 and	S2A	mutant,	with	almost	no	Pol	 II	 extending	
beyond	the	gene	boundaries	 (figure	18.A,	 top-left	panel).	This	result	argue	against	a	
global	and	essential	role	for	Ser2-P	in	triggering	transcriptional	termination.	

In	contrast,	on	tRNA	genes,	global	normalization	revealed	increased	Pol	II	level	in	
the	S2A	mutant	(figure	18.A,	top-right	panel).	This	result	could	have	been	interpreted	
in	a	model	where	Pol	II	has	a	positive	effect	on	Pol	III	transcription	on	tRNA	genes	while	
Ser2-P	helps	Pol	II	to	disengage	the	DNA	template	at	these	loci.	The	loss	of	Ser2-P	would	
therefore	cause	a	local	increase	in	Pol	II	occupancy	that	could,	in	turn,		lead	to	increased	
tRNA	expression.	

However,	when	S.	cerevisiae	chromatin	spike-in	is	used	to	provide	an	unbiased	
normalization	method,	it	 leads	to	a	very	different	interpretation	of	the	results.	Indeed,	
after	 spike-in	normalization,	Pol	 II	 occupancy	on	both	protein-coding	genes	 and	 tRNA	
genes	is	massively	decreased	in	the	S2A	mutant	(figure	18.A,	lower	panels),	suggesting	
a	global	Pol	II	defect	in	this	strain..	Somehow	confirming	this	idea,	Western	blot	analysis	
of	 Rpb3	 abundance,	 an	 Pol	 II	 subunit,	 show	 that	 the	 amount	 of	 Rpb3	 is	 significantly	
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Figure	18:	A	global	Pol	II	transcriptional	defect	in	theS2A	mutant	?

A. Meta-gene average profile of Pol II (Rpb3-HA) ChIP-seq signal (10% trimmed mean). The profiles are
either scaled on protein coding genes (left panels) or centered on tDNAs TSS (right panels). The signal was
either normalized on the total number of mapped reads by condition (global normalization, top panels) or
normalized on the total number of spike-in reads by condition (spike-in normalization, bottom panels). Two
replicates were merged.
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B. Western blot against Rpb3-HA. Tubuline serves as loading control.

C. Quantification of the Rpb3-HA signal from (A). The signal was background-substracted and normalized
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decreased	 (more	 than	 two-folds)	 in	 the	 S2A	mutant	 (figure	 18.B-C).	 Together,	 those	
results	 suggest	 that	 an	 unknown	mechanism	 (possibly	 proteolysis)	 causes	 the	 global	
quantity	of	Pol	II	subunits	to	decrease	in	the	S2A	mutant,	and	in	consequence,	the	amount	
of	chromatin-bound	Pol	II	is	also	decreased.	

How	the	cell	can	cope	with	such	an	heavy	defect	of	Pol	II	transcription	is	currently	
unknown,	yet	as	shown	repeatedly	throughout	this	manuscript,	the	S2A	mutant	has	no	
growth	 defect	 in	 exponential	 growth.	 A	 possible	 explanation	 for	 this	 apparent	
contradiction	would	be	“buffering”	effects,	 i.e.,	 compensation	of	 transcriptional	defects	
through	a	global	stabilizations	of	RNAs	(Sun	et	al.,	2013).	This	putative	buffering	effect	
could	be	asserted	using	methods	to	directly	quantify	the	rate	of	transcription	rather	than	
the	 steady-state	 abundance	 of	 particular	 transcripts,	 for	 instance	 the	 4-tU	 labelling	
method	 (Mata	 and	 Wise,	 2017).	 If	 the	 buffering	 effect	 is	 genuine,	 then	 a	 plausible	
explanation	 for	 the	 accumulation	of	pre-tRNA	 in	 the	 S2A	mutant	would	be	 that	while	
mRNAs,	transcribed	at	a	lower	rate,	are	stabilized	by	the	global	buffering	effect	to	reach	
wild-type-like	levels,	tRNAs,	transcribed	at	a	normal	rate,	are	also	stabilized	and	reach	
higher	levels.	This	model,	however,	fail	to	explain	why	Pol	I-transcribed	rRNA	transcripts	
escape	the	buffering-dependent	stabilization,	as	pre-tRNA	accumulate	compared	to	both	
rRNA		(as	shown	repetitively	by	Northern	blot	within	this	thesis)	or	Pol	II-transcribed	
RNAs	 (as	 seen	 by	 RNA-seq).	 In	 addition,	 the	 deletion	 of	 exo2,	 homolog	 of	 xrn1,	 the	
exonuclease	responsible	for	the	buffering	effect	in	S.	cerevisiae	(Sun	et	al.,	2013),	does	not	
suppress	the	rpc25-flag	allele	(see	figure	16.A,	lower	panel).	

Altogether,	while	our	results	indicate	a	clear	global	Pol	II	transcriptional	defect,	a	
defect	 that	 could	 possibly	 be	 involved	 in	 the	 (still	 elusive)	mechanism	 of	 tRNA	 over-
expression	 in	 the	 S2A	 mutant,	 it	 is	 not	 sufficient	 to	 explain	 such	 mechanism.	 To	
disentangle	long-term	compensatory	effects	to	direct	effects	associated	with	the	loss	of	
Ser2-P,	one	could	take	advantage	of	conditional	mutants	of	the	Ser2-P	kinase,	such	as	the	
lsk1-as	mutant	(Materne	et	al.,	2015).	
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3. 	CONCLUSION	
	

i. Global	and	gene-specific	requirements	for	Ser2-P	in	fission	yeast.	

In	a	methodic	assessment	of	changes	 in	 the	 transcriptional	 landscape	 in	a	S2A	
mutant,	we	uncovered	global	and	gene-specific	requirements	for	Ser2-P	in	fission	yeast.	
As	 for	 the	 global	 aspect,	 the	most	 prominent	 feature	 of	 the	 S2A	mutant	 is	 a	 general	
increase	in	the	level	of	the	transcripts	falling	outside	the	genes	boundaries,	especially	in	
anti-sense	of	the	annotated	genes.	This	increase	is	probably	caused	by	an	augmentation	
of	Pol	II	cryptic	transcription	due	to	the	loss	of	Ser2-P,	involved	in	the	recruitment	of	the	
H3K36	 methyltransferase	 Set2.	 Set2	 activity	 leads	 to	 the	 Rpd3	 histone	 deacetylase	
recruitment,	 that	 ultimately	 helps	 to	 close	 the	 chromatin	 in	 the	 wake	 of	 Pol	 II	
transcription.	This	process	has	been	extensively	covered	in	S.	cerevisiae	studies	(Carrozza	
et	al.,	2005;	Keogh	et	al.,	2005;	Kim	and	Buratowski,	2009;	Li	et	al.,	2003;	Li	et	al.,	2002;	
Lickwar	et	al.,	2009;	McDaniel	et	al.,	2017;	Venkatesh	et	al.,	2016;	Xiao	et	al.,	2003)	and	to	
a	lesser	extent,	in	fission	yeast	(Hennig	et	al.,	2012;	Kizer	et	al.,	2005;	Shim	et	al.,	2012).	
Our	results	 therefore	confirm	that	Ser2-P,	 involved	 in	Set2	recruitment,	 is	 required	 to	
enforce	transcriptional	fidelity	in	fission	yeast.		

In	 contrast,	 no	 global	 splicing	 defect	 was	 observed	 in	 the	 S2A	 mutant,	 in	
agreement	with	a	recent	publication	(Inada	et	al.,	2016).	These	results	contrast	with	early	
studies	demonstrating	splicing	defects	of	specific	reporter	introns	in	human	and	chicken	
cells	containing	S2A	mutations	(Gu	et	al.,	2013;	Hsin	et	al.,	2014),	but	might	be	consistent	
with	a	more	recent	report	suggesting	that	the	spliceosome	is	associated	primarily	with	
Ser5-P	and	not	Ser2-P	(Nojima	et	al.,	2015).	Taken	together,	our	results	and	these	studies	
argue	that	Ser2-P	is	not	globally	required	in	coordinating	splicing	with	transcription	in	
fission	yeast,	an	absence	of	requirement	that	might	be	conserved	in	higher	eukaryotes	as	
well,	although	the	situation	is	more	controversial.	

As	 for	 the	gene-specific	requirements,	we	confirmed	that	only	a	 fraction	of	 the	
protein-coding	genes	(about	10%)	requires	Ser2-P	for	proper	expression,	including	the	
ste11	master	 regulator	 of	 sexual	 differentiation,	 as	 expected	 from	 our	 earlier	 studies	
(Coudreuse	et	al.,	2010;	Materne	et	al.,	2015;	Materne	et	al.,	2016).	Besides	the	protein-
coding	 genes,	 an	 unexpected	 class	 of	 genes	were	 found	 to	 be	 differentially	 expressed	
(upregulated)	in	the	S2A	mutant:	the	Pol	III-transcribed	tRNA	genes.	
	

ii. Mechanisms	for	tRNA	accumulation	in	the	S2A	mutants.	

To	understand	how	the	 loss	of	Pol	 II	Ser2-P	could	affect	Pol	 III	 transcriptional	
output,	we	performed	a	series	of	experiments	and	analysis	whose	results	are	summarized	
hereafter:	

• No	gene	coding	for	protein	involved	in	Pol	III	transcription	or	its	regulation	
was	differentially	expressed	in	the	S2A	mutant.	Consistent	with	the	idea	that	
Pol	 II	 could	 directly	 affect	 tRNA	 expression,	 Pol	 II,	 Ser2-P	 and	 Ser5-P	 are	
present	 at	 tDNAs.	 In	 addition	 Pol	 II	 is	 active	 in	 anti-sense	 of	 the	 tDNAs,	
although	the	product	of	that	transcription	is	very	unstable.	
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• The	chromatin	structure	at	tDNAs	is	dependent	on	Ser2-P.	Indeed,	in	the	S2A	
mutant,	a	fragile	MNase-sensitive	particle	becomes	more	resistant	to	MNase	
degradation.	However,	the	nature	of	the	MNase-sensitive	is	currently	unclear.	

• Despite	tRNA	accumulation	in	the	S2A	mutant,	Pol	III	is	actually	less	present	
at	tRNA	genes	in	that	mutant.	Therefore,	tRNA	accumulation	could	be	due	to	
the	stabilization	of	the	tRNA	precursors.	Accordingly,	deletion	of	the	exosome	
subunit	 rrp6	 causes	 massive	 tRNA	 accumulation.	 However,	 we	 could	 not	
highlight	a	connection	between	the	exosome	function	and/or	recruitment	and	
Ser2-P.	

All	 in	 all,	 the	mechanistic	 connection	 between	 Ser2-P	 and	 tRNA	 accumulation	
remains	 elusive.	 In	 particular,	 the	 discrepancy	 between	 the	 increased	 tRNA	 level	 and	
decreased	 Pol	 III	 occupancy	 observed	 in	 the	 S2A	mutant	 is	 difficult	 to	 interpret.	 One	
possible	 explanation	 could	 that	 Ser2-P	 affects	 tRNA	expression	on	 two	 level,	 affecting	
both	Pol	III	occupancy	and	tRNA	stability	in	opposite	ways.		

Nevertheless,	 the	 correlation	 between	 Pol	 II	 activity	 at	 tRNA	 genes	 and	 tRNA	
accumulation	 in	 the	 S2A	mutant	 is	 suggestive	 of	 a	 direct	 effect.	 Indeed,	 it	 is	 hard	 to	
conceive	that	anti-sense	Pol	II	transcription	at	tRNA	genes	would	not,	one	way	or	another,	
interfere	with	 sense	Pol	 III	 transcription.	As	Pol	 II	was	also	 found	 in	association	with	
actively	 transcribed	 Pol	 III	 genes	 in	mammals	 –	 reviewed	 in	 (White,	 2011)	 –	we	 can	
speculate	that	such	Pol	II-Pol	III	interferences	might	be	widespread	in	eukaryotes.	
	

iii. A	new	regulatory	layer	to	control	tRNA	expression.	

Strikingly,	 the	 S2A	 mutant	 appeared	 unable	 to	 properly	 shut	 down	 tRNA	
expression	in	conditions	of	nutritional	stress,	in	a	maf1-independent	way.	Suggesting	that	
both	 Maf1	 and	 Ser2-P	 might	 act	 in	 parallel	 to	 repress	 tRNA	 expression	 in	 stress	
conditions,	 our	preliminary	 results	 showed	 that	 the	double	∆maf1	 S2A	mutant	have	 a	
somewhat	aggravated	growth	defect	phenotype,	especially	when	recovering	from	long-
term	starvation.		

In	addition,	in	a	screen	without	a	priori	for	suppressors	of	a	Pol	III-transcriptional	
defect,	we	uncovered	 that	disruptive	mutations	within	 the	 SAGA	 complex	or	 the	Pcr1	
transcription	factor	lead	to	a	clear	suppression	of	the	growth	defect	associated	with	the	
Pol	 III	 transcriptional	 defect.	 Strikingly,	 as	 Pcr1	 and	 SAGA	 are	 associated	 with	 the	
regulation	 of	 Pol	 II	 transcription,	 this	 result	 further	 connects	 Pol	 II	 with	 Pol	 III	
transcription.		

Intriguingly,	all	those	newly	identified	player	associated	with	the	control	of	tRNA	
expression	 (or	 at	 least,	 suppressive	 of	 a	 Pol	 III	 growth	 defect)	 are	 part	 of	 the	 same	
regulatory	 pathway.	 Indeed,	 Pcr1	 is	 a	 transcription	 factor	 that	 cooperates	 with	 its	
heterodimer	partner	Atf1	to	recruit	SAGA	at	gene	promoters	(Sansó	et	al.,	2011).	Atf1,	but	
also	 the	 Ser2	kinase	Lsk1,	 are	phosphorylated	by	 the	 Sty1	MAP	kinase	 in	 response	 to	
stresses	–	such	as	nitrogen	starvation	(Salat-Canela	et	al.,	2017;	Sukegawa	et	al.,	2011).	
The	 phosphorylation	 of	 Lsk1	 leads	 to	 an	 increase	 in	 Ser2-P	 (Materne	 et	 al.,	 2015;	
Sukegawa	et	al.,	2011),	while	Atf1	phosphorylation	favors	its	transcription	factor	activity	
(Wilkinson	et	al.,	1996)	and	SAGA		mobilization	(Sansó	et	al.,	2011).	
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Together,	even	if	we	might	face	very	indirect	effects,	our	results	suggest	that	an	
alternative	 pathway	 to	 the	 Maf1-dependent	 repression	 of	 tRNA	 expression	 exists,	 a	
pathway	 possibly	 dependent	 on	 Pol	 II	 transcription	 at	 tRNA	 genes	 and	 connected	 to	
environmental	cues	via	the	Sty1	MAP	kinase	(figure	19).	However,	more	work	is	required	
to	validate	this	model	and	to	assess	how,	exactly,	Pol	II	transcription	and	Ser2-P	at	tRNA	
genes	interfere	with	tRNA	expression.	
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PART	2:	PHOSPHORYLATION	OF	SER2	ON	
THE	RNA	 POLYMERASE	 II	 CTD	 IS	 REQUIRED	
FOR	 EFFICIENT	 TRANS-SPLICING	 OF	
POLYCISTRONIC	TRANSCRIPTS	IN	C.	ELEGANS.		
	

	

Contributions:	

RNA	extractions,	cdk-12as	design	and	phenotyping,	Figure	2:		 	 Clement	Cassart	

ChIP	extractions,	immunofluorescence,	Figures	1.B-C:	 	 Fanélie	Bauer	

ChIP-seq	and	RNA-seq	libraries	generation	and	analysis:	 	 Carlo	Yague-Sanz	

	

1. INTRODUCTION	
	
The	 Ser2	 phosphorylation	 (Ser2-P)	 is	 a	 widespread	 and	 abundant	 RNA	

polymerase	 II	 CTD	 modification	 that	 is	 conserved	 in	 all	 eukaryotes.	 Despite	 being	
observed	on	most	Pol	II	genes,	our	work	in	the	yeast	model	organism	S.	pombe	shows	that	
Ser2-P	is	dispensable	for	growth	and	for	the	proper	expression	of	most	genes	(see	the	
first	part	of	this	thesis;	Coudreuse	et	al.,	2010;	Materne	et	al.,	2015).	As	detailed	in	the	
general	 introduction,	 others	 studies	 in	mammalian	 cell	 systems,	 fruit	 fly	 and	 budding	
yeast,	also	reached	the	conclusion	that	Ser2-P	only	required	for	the	expression	of	subsets	
of	genes	(Cassart	et	al.,	2010;	Blazek	et	al.,	2011;	Ekumi	et	al.,	2015;	Pan	et	al.,	2015;	Li	et	
al.,	2016).	

While	working	on	single-celled	organisms	such	as	yeast	is	convenient	for	reasons	
mentioned	in	the	general	introduction,	it	cannot	provide	relevant	insight	on	the	complex	
regulation	 of	 the	 development	 of	 multicellular	 organisms.	 To	 study	 the	 potential	
implication	of	Ser2-P	in	developmental	processes,	we	therefore	choose	a	well-described	
multi-cellular	organism:	Caenorhabditis	elegans.		

	
A. C.	elegans	development.	

In	optimal	conditions,	C.	elegans	has	a	short	life	cycle	(convenient	for	lab	work)	of	
about	three	days.	The	adults,	which	are	in	large	majority	hermaphrodites	–	99.8%	of	the	
population	are	hermaphrodites,	the	remaining	0.2%	being	males	(Klass	et	al.,	1976)	–,	are	
able	to	self-fertilize	their	eggs,	in	which	embryos	develop	during	approximately	12h	into	
L1	larvae.	Once	the	L1	larva	is	formed,	the	egg	hatches	and	the	larva	starts	eating	bacteria	
in	its	environment.	It	accumulates	mass	and	passes	through	three	additional	larval	stages	
(L2,	 L3	 and	 L4)	 until	 it	 reaches	 adulthood	 about	 two	 days	 after	 hatching.	 An	 adult	C.	
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A. The C. elegans life cycle. Modified from (Wolkow et al., 2016). See main text for details.

Figure	0:	C.	elegans life	cycle,	trans-splicing	and	operons

B. The SL trans-splicing process. See main text for details

C. Coordination of the SL2 trans-splicing with the processing of polycistronic transcripts. See main text for
details. CPSF: cleavage and polyadenylation specificity factor; PAS: polyadenylation signal; DSE: down-stream

element. RNP: ribonucleoprotein; CstF: cleavage stimulatory factor; TMG: trimethylated guanosine.
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elegans	worm	has	a	lifespan	of	about	two	weeks	and	is	able	to	produce	up	to	300	eggs	
during	that	period	of	time	(Byerly	et	al.,	1976)	(figure	0.A).	(Wolkow,	2016)	

However,	in	an	always	changing	environment,	bacteria	appropriate	for	C.	elegans	
diet	 can	 be	 unavailable.	 If	 the	 L1	 larvae	 hatch	 in	 such	 environment,	 it	 enters	 a	
developmental	arrest	state	called	“L1	arrest”.	During	starvation,	the	L1-arrested	larvae	
are	 able	 to	 survive	 for	 up	 to	 four	weeks	 –	 nearly	 twice	 the	 normal	 lifespan	 for	 a	 fed	
individual	 –,	 slowing	 down	 their	 metabolism	 and	 building	 up	 their	 stress	 resistance	
(Baugh,	 2013).	 Once	 food	 is	 available	 in	 the	 environment,	 L1-arrested	 larvae	 rapidly	
recover	from	starvation	and	resume	their	development.	Remarkably,	the	marks	of	ageing	
accumulated	 by	 the	 starved	 L1	 larvae	 are	 reversed	 upon	 the	 return	 to	 development	
induced	by	feeding.	In	consequence,	the	time	spend	during	the	L1-arrested	stage	does	not	
affect	adult	lifespan	(Roux	et	al.,	2016).	

	
B. Operons	and	trans-splicing	in	C.	elegans.	
i. Operons	

A	peculiarity	of	C.	elegans	genome	–	which	was	the	first	genome	of	a	multicellular	
organism	 to	 be	 sequenced	 (Consortium,	 1998)	 –	 is	 to	 contain	 operons.	 Operons	 are	
common	in	prokaryotes,	but	usually	sparse	in	eukaryotes,	except	in	some	phyla	including	
nematodes	 and	 trypanosomes.	 In	 the	 C.	 elegans	nematode,	 there	 are	 1371	 annotated	
operons	 that	 contain	 clusters	of	 two	 to	 eight	 genes	whose	 transcription	 starts	 from	a	
single	promoter	(Blumenthal	et	al.,	2002).	In	contrast	with	bacterial	operons,	the	genes	
within	 the	 same	 operon	 in	 C.	 elegans	 are	 not	 part	 of	 the	 same	 pathway	 and	 the	
polycistronic	 pre-mRNA	 is	 co-transcriptionally	 processed	 into	 monocistronic	 mature	
mRNAs.	Therefore,	the	evolutive	advantage	of	such	operon	structures	can	be	difficult	to	
understand.	However,	based	on	the	observation	that	many	genes	organized	in	operons	
are	over-expressed	during	the	recovery	phase	post	L1	starvation,	it	has	been	proposed	
that	clustering	these	genes	within	operon	can	allow	to	more	effectively	transcribe	them	
in	recovery.	Indeed,	after	starvation,	the	cell	resources	are	sparse	and	the	number	Pol	II	
transcriptional	machinery	available	can	be	limiting.	In	the	case	of	operons,	only	one	Pol	II	
transcriptional	 machinery	 is	 required	 to	 transcribe	 the	 whole	 operon,	 which	 is	 more	
efficient	 in	 such	 conditions	 with	 limited	 Pol	 II	 transcriptional	 machineries.	 In	
consequence	 of	 this	 optimization,	 the	 worms	 can	 proceed	 more	 rapidly	 through	 the	
transcriptional	program	of	recovery	and	resume	their	development	faster,	which	surely	
confers	an	evolutionary	advantage	(Zaslaver	et	al.,	2011).	

	
ii. Trans-splicing.	

The	 co-transcriptional	 processing	 of	 the	 operon-born	 polycistronic	 pre-mRNA	
into	monocistronic	mature	mRNA	depends	on	the	co-transcriptional	3’	end	processing	
(cleavage	and	polyadenylation)	of	 the	 transcript	 originating	 from	 the	upstream	genes,	
coupled	 with	 a	 process	 called	 “spliced	 leader	 2	 trans-splicing”	 on	 the	 transcript	
originating	from	the	downstream	genes	(Blumenthal	et	al.,	2015).	Spliced	leader	2	(SL2)	
trans-splicing	consists	in	the	splicing	of	a	capped	small	nuclear	RNA	called	“spliced	leader	
2”	 onto	 the	 5’	 end	 of	 a	 pre-mRNA	 molecule,	 substituting	 for	 canonical	 capping.	 This	
process,	also	catalyzed	by	the	spliceosome	(Hannon	et	al.,	1991),	differs	from	canonical	
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“cis-“splicing	 by	 the	 fact	 that	 the	 exons	 spliced	 together	 come	 from	 two	 distinct	RNA	
molecules	(figure	0.B).	

While	the	SL2	trans-splicing	is	restricted	to	the	transcripts	originating	from	genes	
in	position	two	and	over	in	operons	(about	10%	of	the	annotated	protein-coding	genes),	
another	 type	of	 SL	 trans-splicing	 can	occur	on	 a	majority	of	 the	 remaining	pre-mRNA	
transcripts	originating	from	promoter-proximal	genes:	the	SL1	trans-splicing,	a	process	
that	 uses	 the	 SL1	 RNA.	 Intriguingly,	 some	 transcripts	 whose	 gene	 is	 located	 within	
operons	containing	facultative	internal	promoters	can	be	trans-spliced	by	either	SL1	or	
SL2	depending	on	whether	the	transcription	initiated	at	the	internal	promoter	or	at	the	
operon	promoter	 (Allen	 et	 al.,	 2011).	The	 function	of	 the	 SL1	 trans-splicing	 remained	
elusive	until	 recently,	when	 it	has	been	attributed	to	 the	enhancement	of	 translational	
efficiency	(Yang	et	al.,	2017)	

Specific	signals	converge	to	provide	the	specificity	of	the	recruitment	of	the	SL2	
particle	 to	 the	 transcripts	 from	 the	 genes	 downstream	 in	 operons.	 The	 cleavage	 and	
polyadenylation	specificity	factor	(CPSF)	recognizes	the	polyadenylation	signal	(PAS)	on	
the	upstream	pre-mRNA.	Then,	both	a	uridine-rich	downstream	element	(U-rich	DSE)	and	
the	CPSF,	participate	in	the	recruitment	of	the	cleavage	stimulatory	factor	(CstF)	through	
its	Cstf-50	subunit.	Finally,	the	SL2	ribonucleoprotein	(RNP),	containing	the	spliceosome	
loaded	with	the	SL2	RNA,	is	recruited	by	both	the	Ur	Element	and	CstF	and	catalyzes	the	
timely	trans-splicing	of	the	capped	SL2	RNA	to	the	second	pre-mRNA	(Graber	et	al.,	2007)	
(figure	0.C).	

	
C. CTD-Ser2	kinases	in	C.	elegans.	

In	C.	elegans,	there	are	two	CTD-Ser2	kinases:	CDK-9	and	CDK-12.	CDK-9	was	the	
first	one	identified	and	is	essential	for	the	embryonic	development	of	the	worm	(Shim	et	
al.,	2002).	Upon	CDK-9	knock-down,	global	mRNA	level	is	strongly	reduced	and	Ser2-P	
becomes	undetectable	in	all	cells	of	the	embryo,	except	in	the	two	primordial	germ	cells8	
(Furuhashi	et	al.,	2010).	In	contrast,	CDK-12	knock-down	leads	to	a	strong	decrease	of	
Ser2-P	 in	 all	 cells	 (with	 residual	phosphorylation	 still	 detected),	 but	 the	 embryos	 are	
viable	 and	 develop	 until	 the	 L1	 larval	 stage	 (Bowman	 et	 al.,	 2013).	 (Hubbard	 and	
Greenstein,	2005)	

So,	 which	 kinase	 is	 the	 main	 CTD-Ser2	 kinase	 in	 C.	 elegans?	 One	 proposed	
interpretation	of	the	aforementioned	results	is	that	there	is	a	tissue-specific	regulation	of	
the	Ser2	phosphorylation:	in	somatic	cells,	some	Ser2-P	by	CDK-9	would	prime	the	CDK-
12	activity,	while	 in	the	germ	 line	cells	CDK-12	 is	active	 independently.	 In	that	model,	
while	 both	 kinases	 are	 required	 for	 bulk	 Ser2	 phosphorylation,	 CDK-12	 is	 directly	
responsible	for	most	of	it	and	can	be	considered	as	the	main	CTD-Ser2	kinase.		

																																																													
	

8	 Primordial	 germ	cells	 are	 two	cells	 (called	Z2	and	 Z3)	 present	 in	 the	 L1	worm	after	
hatching	that	will	start	proliferate	mid-L1	and	form	the	eggplant-shaped	germline	over	the	course	
of	repeated	meiosis	(Hubbard	et	al.,	2005).	
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D. Objectives	

From	 these	 seminal	 studies,	 it	 appears	 that	 CDK-12-dependent	 Ser2-P	 is	 not	
required	for	the	transcription	and	worm	embryonic	development.	Instead,	it	is	essential	
for	larval	development	from	stage	L1	to	L2	(Bowman	et	al.,	2013).	Interestingly,	this	L1	–	
L2	 transition	 is	 tightly	 regulated	 in	 response	 to	 the	presence	of	 food	 (bacteria)	 in	 the	
worm	environment:	in	starvation,	the	larvae	remain	in	L1	stage	for	several	weeks	until	
they	die.	However,	when	food	is	available,	they	start	recovering	from	starvation,	rapidly	
changing	their	transcriptional	program	to	develop	into	L2	larvae	(Maxwell	et	al.,	2012).	

In	this	work,	we	studied	how	CDK-12	–	and,	by	extension,	Ser2-P	–	is	connected	
to	 the	worm	development	beyond	the	L1	stage.	Using	both	RNA-seq	and	ChIP-seq,	we	
found	that	only	a	subset	of	genes	is	sensitive	to	the	loss	(or	at	least,	a	strong	decrease)	of	
Ser2-P	–	as	 it	 is	 the	 case	 in	 yeast.	 Consistent	with	 the	L1-arrest	phenotype	of	CDK-12	
inhibition,	 the	 genes	 affected	 comprised	 genes	 annotated	 as	 being	 involved	 in	
development.	Importantly,	the	majority	of	CDK-12-dependent	genes	are	also	organized	in	
operon,	 revealing	 a	 role	 for	 CDK-12	 in	 coupling	 transcription	 with	 the	 processing	 of	
polycistronic	transcripts	into	discrete	mRNAs.	Finally,	we	discuss	how	the	efficiency	of	
this	co-transcriptional	processing,	which	appears	CDK-12-dependent,	might	be	tuned	in	
order	to	tightly	control	gene	expression	within	the	operon.	

2. RESULTS	&	DISCUSSION	
	

A. An	analog-sensitive	allele	of	the	Ser2	kinase	Cdk-12.	
In	order	to	study	the	functions	of	the	essential	CDK-12	protein,	we	had	to	find	a	

system	to	conveniently	inactivate	it,	either	at	the	gene	level,	the	mRNA	level	or	protein	
level.	Several	options	were	available,	including:	

• Gene	disruption:	the	tm3846	allele	(from	the	National	BioRessource	Project)	
is	a	partial	deletion	in	the	cdk-12	gene,	which	causes	a	frame-shift.	Homozygous	
mutants	for	this	allele	are	arrested	in	L1	and,	therefore,	cannot	be	maintained	
(Bowman	et	al.,	2013).	

• Gene	silencing:	RNAi	against	cdk-12	also	results	in	L1	arrest	(Bowman	et	al.,	
2013)	while	allowing	for	more	control	as	for	when	the	inhibition	takes	place.	
However,	 it	 has	 some	 caveats:	 the	 inhibition	 is	 not	 always	 reproductible	
between	experiments	and	can	be	experimentally	challenging.	

• Kinase	 inhibition:	 Because	 of	 those	 caveats,	we	 wanted	 to	 create	 a	 cdk-12	
conditional	mutant	using	the	Shokat	method	(Alaimo	et	al.,	2011).	It	consists	in	
the	 introduction	of	a	mutation	 in	a	conserved	residue	of	 the	kinase	catalytic	
pocket.	 In	 consequence,	 the	pocket	becomes	 slightly	 larger.	While	 still	 being	
able	to	bind	and	catalyze	ATP,	the	kinase	with	the	enlarged	pocket	can	also	bind	
synthetic	ATP-analogs	too	large	for	natural	kinases.	Those	ATP-analogs	cannot	
be	hydrolyzed	and	therefore	act	as	“suicide	substrate”,	effectively	inhibiting	the	
mutated	kinase	in	a	very	efficient,	specific,	reproducible,	rapid,	and	reversible	
way	(figure	1.A).	
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CDK-12as

A. Cartoon representation of C. elegans CDK-12 and CDK-12as proteins. CDK-12 (wild-type) is a kinase of the
Pol II CTD and uses ATP to phosphorylate Ser2. Bulky ATP analogs, such as 3MB-PP1, cannot be bound by the
kinase (or any other natural kinase) because of steric hindrance. In contrast, CDK-12as carries a mutation that
enlarges the catalytic pocket of the kinase. While it can still bind and catalyze ATP, it is also able to bind 3MB-PP1,
which cannot be catalyzed and therefore blocks the kinase activity by acting as a “suicide substrate”.

Figure	1:	An	analog-sensitive	mutant	of	the	Ser2	kinase	CDK-12.
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B. Immunofluorescence of wild-type and cdk-12as L1 worms treated with either DMSO or 1µM 3MB-PP1 and
fed for 4h. DAPI (that colors nuclei) and antibodies against Ser2-P and AMA-1 (Pol II largest subunit that contains
the CTD) were used. Inserts = 5x zoom on the gut region close to the pharynx.

B. Quantification of Ser2-P immunofluorescence signal relative to AMA1 in whole worms (n>22). P-values
and significance of paired Wilcoxon-Mann-Whitney tests are indicated.
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Given	its	advantages,	this	last	method	was	chosen	to	study	CDK-12	function.	The	
strain	mutated	for	the	kinase	was	obtained	and	called	cdk-12as	(“as”	standing	for	“analog	
sensitive”)	 (see	Clement	Cassart’s	 thesis).	The	 inhibition	was	performed	using	 the	ATP	
analog	3MB-PP1,	known	to	be	 the	most	effective	 inhibitor	 for	as	kinases	(Zhang	et	al.,	
2013).	After	CDK-12	inhibition,	Ser2-P	levels	dropped	dramatically	within	the	cell	nucleus	
as	seen	by	immuno-staining	of	L1	worms	(figure	1.B-C).	This	validates	the	efficiency	of	
our	conditional	system	for	CDK-12	inhibition	and	confirms	that	CDK-12	is	a	genuine	CTD-
Ser2	kinase.	However,	it	should	be	noted	that	even	without	inhibitor,	the	level	of	Ser2-P	
in	 the	 cdk-12as	 strain	 is	 lower	 than	 in	 the	wild-type.	 This	 suggests	 that	cdk-12as	 is	 a	
hypomorphic	allele,	probably	because	 the	 introduced	mutation	causes	a	partial	 loss	of	
function	of	CDK-12,	leading	to	an	intermediate	level	of	Ser2-P.	As	expected,	the	addition	
of	inhibitor	does	not	decrease	Ser2-P	levels	in	the	wild-type	control	worms	–	Ser2-P	level	
actually	increases,	possibly	because	of	technical	variations	as	the	immunofluorescence	on	
L1	worms	is	experimentally	challenging	–,	confirming	that	the	activity	of	CDK-12	is	not	
inhibited	by	3MB-PP1	when	the	kinase	is	not	sensitized	by	the	as	mutation.	

	
B. Cdk-12	is	required	for	post-L1	development.	

Despite	 the	cdk-12as	allele	being	hypomorphic,	 the	worms	are	able	 to	develop	
past	the	L1	stage	like	wild-type	worms.	However,	upon	CDK-12	inhibition	starting	at	the	
L4	stage	with	the	specific	3-MB-PP1	inhibitor,	only	L1	larvae	are	observed	on	the	plate	
from	the	progeny,	indicating	that	they	cannot	develop	further	into	the	L2	stage	(figure	2).	
This	 phenotype,	mimicking	 the	 starvation-dependent	 L1-arrest,	 is	 consistent	with	 the	
results	from	a	previous	study,	obtained	with	a	homozygous	mutant	for	a	cdk-12	null	allele	
or	with	RNAi	targeted	against	CDK-12	(Bowman	et	al.,	2013).		

Intriguingly,	CDK-12	appears	to	be	required	for	post-L1	development,	but	not	for	
embryonic	development,	while	both	stages	require	active	transcription	(Gerstein	et	al.,	
2010)	 that	 is	 accompanied	 by	 CTD-Ser2	 phosphorylation	 by	 CDK-12.	 To	 explain	 this	
difference	in	CDK-12-dependence,	we	hypothesized	that	Ser2-P	could	be	essential	for	the	
transcription	of	a	subset	of	genes	(such	as	genes	involved	 in	 the	L1-L2	transition)	but	
dispensable	for	the	transcription	of	others.		

	
C. Cdk-12	 inhibition	 impairs	 the	 expression	 of	 a	 subset	 of	
development	genes.	
To	test	this	hypothesis,	we	decided	to	analyze	the	transcriptome	of	L1	cdk-12as	

worms	during	the	early	stages	of	this	L1-L2	transition.	We	studied	the	wild-type	and	cdk-
12as	strains	in	four	conditions	that	we	named	“S0”,	“S”,	“R”	or	“R+I”.	In	the	“S0”	(the	“S”	
standing	for	starved),	the	freshly	hatched	worms	were	starved	for	12h,	being	effectively	
synchronized	in	the	L1	stage.	From	there,	the	population	was	divided	in	three	conditions:	

• In	 the	“S”	 (starved)	condition,	the	L1-arrested	 larvae	 from	the	S0	condition	
were	starved	for	four	additional	hours.		

• In	the	“R”	(recovery)	condition,	the	L1-arrested	larvae	from	the	S0	condition	
were	fed	during	four	additional	hours.	
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L4 worms were grown in liquid cultures in presence of 1µM 3MB-PP1 or DMSO. Three days later, we observed
progeny as old as L4 in the wild type worms and cdk-12as worms without inhibitor while only the parental worm
with its L1-arrested progeny were observed for the cdk-12as strain inhibited with 1µM 3MB-PP1.

Figure	2:	CDK-12	activity	is	dispensable	for	embryonic	development,	but	required	for	
post-L1	development.
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• In	the	“R	+	i”	(recovery	+	inhibitor)	condition,	the	L1-arrested	larvae	from	the	
S0	condition	were	fed	as	in	the	“R”	condition,	but	in	presence	of	1	µM	of	3-MB-
PP1	inhibitor.	

Finally,	as	the	3MB-PP1	inhibitor	is	resuspended	in	dimethyl	sulfoxide	(DMSO),	
and	that	DMSO	can	affect	gene	expression	(Wang	et	al.,	2010),	equal	volume	of	DMSO	was	
added	in	all	conditions	without	inhibitor,	except	from	the	additional	L1-starved	control	
(“S0”)		taken	before	DMSO	addition.		

For	 those	 “S0”,	 “S”,	 “R”	 and	 “R	 +	 I”	 conditions,	 summarized	 in	 table1,	 we	
sequenced	 two	 replicates	 (in	 two	 batches)	 of	 ribo-depleted	 RNA	 extracts	 using	 the	
Illumina	TruSeq	protocol	coupled	with	HiSEQ	paired-end	50	nt	sequencing	to	an	depth	of	
coverage	between	18	and	40x.	Because	fed	worms	(“R”	and	“R+	i”	conditions)	tend	to	have	
bacteria	stuck	to	their	cuticle	and	within	their	pharynx	and	gut,	reads	were	first	mapped	
to	the	E.	coli	OP50	(the	bacterial	strain	used	to	feed	the	worms)	genome	and	excluded	
from	further	analysis.	As	expected,	only	 the	conditions	with	fed	worms	had	significant	
levels	of	E.	coli	 contamination	while	 the	residual	contamination	observed	 in	 the	other	
conditions	 could	 be	 attributed	 to	 aspecific	 mapping	 of	 the	 reads	 on	 sequences	
homologous	 between	 C.	 elegans	 and	 E.	 coli.	 The	 high	 variability	 observed	 in	 the	
percentage	of	E.	coli	reads	recovered	between	replicates	1	and	2	for	the	conditions	with	
fed	conditions	could	be	attributed	to	variation	in	the	efficiency	of	the	washes	performed	
on	the	full	worms	before	RNA	extraction.	

	
	

Table1:	Conditions	studied	by	RNA-seq.	

condition	 strain	 food	 inhibitor	 DMSO	 batch	 E.	coli	(‰)	 deptha	

S0	 wild	type	 starved	 Ø	 Ø	 1	 0.2	 28.5	
S0	 wild	type	 starved	 Ø	 Ø	 2	 0.1	 19.3	
S	 wild	type	 starved	 Ø	 DMSO	 1	 0.3	 37.2	
S	 wild	type	 starved	 Ø	 DMSO	 2	 0.1	 22.7	
R	 wild	type	 fed	 Ø	 DMSO	 1	 7.0	 24.8	
R	 wild	type	 fed	 Ø	 DMSO	 2	 0.7	 23.5	
R	+	i	 wild	type	 fed	 3MB-PP1	 DMSO	 1	 16.0	 38.2	
R	+	i	 wild	type	 fed	 3MB-PP1	 DMSO	 2	 0.9	 25.9	
S0	 cdk-12as	 starved	 Ø	 Ø	 1	 0.1	 20.6	
S0	 cdk-12as	 starved	 Ø	 Ø	 2	 0.2	 37.1	
S	 cdk-12as	 starved	 Ø	 DMSO	 1	 0.2	 24.3	
S	 cdk-12as	 starved	 Ø	 DMSO	 2	 0.1	 29.1	
R	 cdk-12as	 fed	 Ø	 DMSO	 1	 13.0	 18	
R	 cdk-12as	 fed	 Ø	 DMSO	 2	 2.5	 39.5	
R	+	i	 cdk-12as	 fed	 3MB-PP1	 DMSO	 1	 17.5	 21.7	
R	+	i	 cdk-12as	 fed	 3MB-PP1	 DMSO	 2	 6.2	 39.3	

a.	The	depth	is	calculated	based	on	the	number	of	uniquely	mapped	reads	to	the	C.	elegans	genome	divided	
by	the	length	of	the	genome	size	(100	x	106	nt)	multiplied	by	the	read	length	(50	nt).	
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Heatmap of the Z-score of the rlog-transformed expression score averaged over the two replicates for the 6550
genes differentially expressed by the presence of food or inhibitor in either strain. Six genes clusters (A-F) are
defined according to the food and inhibitor effect. “S” = starvation (no food); “R” = recovery (food was added
during 4h); “R + i” = recovery + 1 µM 3MB-PP1 inhibitor. The number of genes in each cluster is indicated on the
figure except for clusters B (271 genes) and E (153 genes).

Figure	3:	A	subset	of	genes	cannot	be	induced	in	recovery	when	CDK-12	is	inhibited.
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The	 remaining	 reads	mapped	on	 the	C.	 elegans	genome	were	quantified	at	 the	
gene	level	(i.e,	on	all	annotated	exons	for	a	gene,	without	regard	for	alternative	splicing)	
and	multifactorial	differential	gene	expression	analysis	was	performed	in	DESeq2	using	
the	following	generalized	linear	model:	

EXPRESSION	~	STRAIN	+	INHIBITOR	+	FOOD	+	STRAIN:INHIBITOR	+	STRAIN:FOOD	+	DMSO	+	BATCH	

	
The	individual	effects	of	the	strain	(cdk-12as	VS	wild-type),	inhibitor	(3MB-PP1	vs	

Ø)	and	food	(fed	vs	starved)	were	evaluated.	In	addition,	since	the	inhibitor	is	expected	to	
differentially	affect	gene	expression	in	both	strains	and	because	the	cdk-12as	strain	is	not	
perfectly	wild-type,	we	also	included	the	interaction	between	the	‘strain’	and	‘inhibitor’	
factors	and	between	the	‘strain’	and	‘food’	factors.	The	‘DMSO’	and	‘batch’	factors	were	
not	directly	analyzed,	but	were	integrated	into	the	model	as	covariates	in	order	to	control	
for	technical	variation	(batch	effect)	and	the	effect	of	DMSO9	on	gene	expression.	

To	provide	a	general	overview	of	the	impact	of	CDK-12	inhibition	in	the	context	
of	 the	 L1-L2	 transition	 during	 recovery	 from	 starvation,	 we	 selected	 the	 6550	 genes	
differentially	 expressed	 by	 the	 ‘food’	 or	 ‘inhibitor’	 effect	 in	 either	 strains	 and	 draw	 a	
heatmap	of	gene	expression	(figure	3).	Overall,	the	transition	from	starvation	(“S”)	into	
recovery	(“R”)	has	a	dramatic	impact	on	the	expression	profiles,	regardless	of	the	genetic	
background.	In	contrast,	the	addition	of	the	inhibitor	(“R	+	i")	has,	as	expected,	very	little	
impact	on	 the	wild-type,	but	affects	gene	expression	 in	 the	cdk-12as	 strain	as	detailed	
below:	

• Most	genes	(clusters	C	and	D)	are	unaffected	by	CDK-12	inhibition	and	behave	
similarly	than	in	the	“R”	condition.	This	is	somewhat	surprising	given	that	the	
phenotype	of	inhibited	worms	matches	that	of	L1-starved	worms.	It	indicates	
that	the	transcriptional	program	of	the	recovery	from	starvation	leading	into	
post-L1	development	is	globally	activated	even	if	it	cannot	complete	properly.	

• However,	 a	 relatively	 big	 subset	 of	 genes	 (cluster	 A),	 whose	 expression	 is	
normally	induced	in	recovery,	are	under-expressed	when	CDK-12	is	inhibited.	
Some	of	 them	remain	at	 the	same	expression	 level	 than	 in	starvation,	others	
reach	 intermediate	 levels	 between	 starvation	 and	 recovery,	 but	 most	 are	
actually	more	under-expressed	than	in	starvation.	

• Conversely,	cluster	F	contains	genes,	whose	expression	is	normally	repressed	
in	recovery,	are	over-expressed	upon	CDK-12	inhibition.	

																																																													
	

9	In	retrospect,	there	is	a	small	flaw	in	the	rather	well-controlled	design	of	our	experiment:	
the	DMSO	effect	is	confounded	with	a	“+4h”	effect	because	the	worms	in	the	“S0”	condition	were	
sacrificed	4h	before	the	others.	In	consequence,	gene	expression	changes	due	to	the	DMSO	(+4h)	
effect	are	difficult	to	interpret,	which	prompted	us	to	not	display	the	“S0”	condition	in	our	results.	
However,	it	remains	perfectly	safe	to	use	the	DMSO	factor	as	a	covariate;	and	including	the	“S0”	
condition	in	our	analysis	has	the	advantage	to	improve	the	gene	dispersion	estimate	used	within	
DESeq2,	increasing	the	power	of	our	experiment.	
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• Finally,	 the	 smaller	 clusters	 B	 and	 E	 contains	 genes	 that	 are	 respectively	
excessively	under-expressed	or	excessively	over-expressed	in	recovery	when	
CDK-12	is	inhibited.	

Altogether,	this	analysis	shows	that	only	a	subset	of	genes	involved	in	recovery	is	
misregulated	 upon	 CDK-12	 inhibition,	 and	 that	 this	 misregulation	 is	 sufficient	 to	
phenotypically	mimic	the	L1	arrest	observed	in	starvation.	Accordingly,	216	of	the	genes	
in	clusters	A	are	annotated	by	the	gene	ontology	consortium	(Ashburner	et	al.,	2000)	as	
being	 involved	 in	 nematode	 larval	 development.	 This	 does	 not	 constitute	 a	 specific	
enrichment	–	582,	99,	17,	22	and	47	genes	involved	in	nematode	larval	development	are	
found	respectively	in	clusters	C,	D,	B,	E	and	F	–	but	could	explain	the	observed	phenotype.	
However,	 more	 detailed	 analyses	 were	 required	 to	 understand	 why	 some	 genes	 are	
affected	by	CDK-12	inhibition	while	others	are	not.	

	
	
	
	

D. CDK-12	 inhibition	 does	 not	 globally	 impact	 the	 pre-mRNA	
splicing	or	3’	end	formation.	
Only	 as	 relatively	 small	 subset	 of	 genes	 (1211	 genes,	 including	 1191	 protein	

coding	genes)	were	detected	as	differentially	expressed	(DE)	upon	CDK-12	inhibition	(i.	
e.,	DE	by	the	inhibitor	effect	in	the	cdk-12as	strain).	This	is	somewhat	surprising	given	
that	Ser2-P	deposited	by	CDK-12	is	an	ubiquitous	mark,	present	on	all	expressed	Pol	II	
genes	 (Mayer	 et	 al.,	 2010),	 and	 has	 been	 implicated	 in	 essential	 co-transcriptional	
processes	 such	 as	 the	 splicing	 (Gu	et	 al.,	 2013)	 and	 the	 cleavage	 and	polyadenylation	
(Lunde	et	al.,	2010)	of	the	pre-mRNAs.	However,	despite	this	connection,	those	processes	
appear	unaffected	in	mutants	lacking	Ser2-P	in	fission	yeast	as	shown	in	the	first	part	of	
this	thesis	and	as	recently	published	by	another	group	(Inada	et	al.,	2016).	

Confirming	that	the	impact	of	the	CDK-12	inhibition	in	C.	elegans	is	limited	to	the	
identified	genes,	we	did	not	observe	global	splicing	defect	(intron	retention)	nor	cleavage	
defect	or	readthrough	(reads	mapping	beyond	the	gene	boundaries)	in	the	cdk-12as	strain	
in	the	R	+	i	condition	(figure	4.A).	Moreover,	quantification	of	the	“readthrough”	reads	in	
the	500	nt	downstream	the	annotated	transcription	end	sites	revealed	that	only	53	genes	
(including	28	protein	coding	genes)	have	significantly	more	readthrough	when	CDK-12	is	
inhibited	(figure	4.B).	In	addition,	manual	inspection	of	those	genes	in	an	online	genome	
browser	loaded	with	our	RNA-seq	tracks	(https://tinyurl.com/ycvchkb4)	showed	rather	
anecdotical	differences.	
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Figure	5:	Genes	under-expressed	upon	CDK-12	inhibition	are	located	in	position	2	and	
over	in	operons
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B - C. Meta-gene of the trimmed mean of normalized read counts centered on the scaled intergenic regions
(IGR) between the first and second gene in operons in the indicated conditions. Only the 993 IGR whose length is
smaller or equal to 800 were included in this analysis.
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E. Genes	in	operons	are	specifically	affected	by	CDK-12	inhibition.	
Surprisingly,	 the	 genes	 affected	by	CDK-12	 inhibition	 –	 in	particular	 the	 genes	

down-regulated	–	are	not	randomly	distributed	within	C.	elegans	genome:	they	are	highly	
enriched	in	operons	(clusters	of	genes	transcribed	from	a	single	promoter),	and,	more	
specifically,	 in	 genes	downstream	 of	 the	 first	 gene	 in	 the	 operons	 (Fisher’s	 exact	 test	
pvalue	<	2.2	 x	10-16)	 (figure	5.A).	Metagene	analysis	 confirmed	 that	 the	 first	genes	 in	
operons	are	globally	unaffected	 in	 the	cdk-12as	R	+	 i	 condition	while	 there	 is	a	global	
decrease	 of	 expression	 of	 almost	 two-fold	 for	 the	 genes	 downstream	 (figure	 5.B).	
Interestingly,	even	without	 inhibition	(“R”	 condition),	 those	genes	are	expressed	 to	an	
intermediate	level	in	the	hypomorphic	allele	cdk-12as,	indicating	that	their	expression	is	
affected	in	a	dose-dependent	manner	by	CDK-12	activity	and	the	level	of	Ser2-P.	

Replacing	these	results	in	their	biological	context,	we	can	see	that	the	genes	in	
operon	are	globally	up-regulated	in	recovery	from	starvation	in	wild-type	strains	(figure	
5.C).	 This	 is	 consistent	with	 the	 findings	of	a	published	analysis	 of	 the	 transcriptional	
reprogramming	occurring	during	the	L1-L2	transition	(Maxwell	et	al.,	2012).	In	contrast,	
in	the	cdk-12as	R	+	i	condition,	the	expression	in	operon	is	properly	induced	for	the	first	
genes,	but	remains	at	the	starvation	level	for	the	seconds	genes	

	

	

F. Cdk-12	 is	 required	 for	 efficient	 SL2	 trans-splicing	 of	 genes	 in	
operons.	

By	definition10,	the	peculiarity	of	the	genes	in	position	two	and	over	in	operons	is	
to	be	co-transcriptionally	trans-spliced	to	the	SL2	spliced-leader	(SL)	RNA	(Allen	et	al.,	
2011).	 Therefore,	we	 hypothesized	 that	 CDK-12	 is	 directly	 involved	 in	 the	 SL2	 trans-
splicing.	This	hypothesis	is	supported	by	a	recent	study	that	found	that	Ser2-P	peaks	in	
the	inter-genic	regions	between	genes	in	operons	(Garrido-Lecca	et	al.,	2016).		

To	test	the	implication	of	CDK-12	in	the	SL2	trans-splicing,	we	quantified	the	SL-
trans-splicing	 events	 in	 our	 RNA-seq	 dataset	 using	 a	 bioinformatics	 pipeline	 recently	
developed	for	this	purpose:	SL-quant	(Yague-Sanz	and	Hermand,	2018).	Briefly,	the	SL	
sequences	 are	 identified	with	 high	 specificity	 and	 are	 trimmed	 from	 the	 input	 reads,	
which	are	then	remapped	on	the	reference	genome	and	quantified	at	the	gene	level.	The	
paper	containing	the	details	and	validation	of	the	method	is	attached	in	the	Appendix	2	
(Yague-Sanz	and	Hermand,	2018	–	SL-quant:	a	fast	and	flexible	pipeline	to	quantify	spliced	
leader	trans-splicing	events	from	RNA-seq	data”).	

Using	 this	 quantification,	 we	 calculated	 the	 proportion	 of	 SL2	 trans-splicing	
events	over	the	total	number	of	trans-splicing	events	for	each	gene	across	all	conditions.	
Stratification	of	the	genes	according	to	this	SL2/(SL1+SL2)	proportion	revealed	that	the	
genes	down-regulated	upon	CDK-12	inhibition	are	in	majority	mostly	trans-spliced	with	

																																																													

	

10	Actually,	annotation	of	genes	in	operons	is	directly	based	on	their	level	of	SL2	trans-

splicing	(Allen	et	al.,	2011).	

99



0.0 0.2 0.4 0.6 0.8 1.0

-3
-2

-1
0

1
2

3

SL2/(SL1+SL2) ratio

lo
g2

 fo
ld

 c
ha

ng
e

2d in operon, DE
2d in operon, not DE
other

SL1 SL1/SL2 SL2

-3
-2

-1
0

1
2

3

lo
g2

 fo
ld

 c
ha

ng
e

Mostly 
SL1

SL1/SL2
mix

Mostly 
SL2

lo
g2

 fo
ld

 c
ha

ng
e

A. Relationship between the gene fold change upon CDK-12 inhibition with proportion of SL2 trans-
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1). Genes in position two and over (2d+) in operons differentially expressed (DE) or not are respectively indicated
in red and green. Genes with less than 64 total trans-splicing events detected were not included in the analysis.

Figure	6:	Genes	in	operon	underexpressed	upon	CDK-12	inhibition	are	mostly	trans-
spliced	with	SL2.

B. Boxplot of the log2 fold change due to CDK-12 inhibition for genes classified according to their position
in operon and their SL2/(SL1+SL2) ratio. Genes with less than 64 total trans-splicing events detected were not
included in the analysis. Mostly SL1: genes with more than 80% SL1 trans-splicing (n= 3646). Mostly SL2: genes in
operons with more than 80% SL2 trans-splicing (n= 728). SL1/SL2 mix: genes in operons in operons with
between 20% and 80% SL2 trans-splicing (n= 294).

B.

A.

SL2/(SL1+SL2)

2d+ in operons, DE
2d+ in operons, not DE
other genes

100



SL2_WT_S_1 SL2_WT_RD_1 SL2_as_R_1

0
10

20
30

40
50

SL1_WT_S_1 SL1_WT_RD_1 SL1_as_R_1

0
10

20
30

40

R R+i

wild-type cdk-12as

S R R+iS

S
L1

S
L2

Boxplot of the number of SL1 (top) and SL2 (bottom) trans-splicing events per gene in operons trans-
spliced by both SL1 and SL2 (genes with more than 64 total SL trans-splicing events and between 20% and 80%
of SL2) in the indicated conditions. (n=294). P-values and significance of paired Wilcoxon-Mann-Whitney tests
are indicated.

Figure	7:	CDK-12	is	specifically	required	for	the	SL2	trans-splicing	of	genes	in	operons.
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A.	Meta-operon	profiles	of	BEADS-normalized	Pol	II	occupancy	data	averaged	over	two	replicates.	Only	
the	regions	with	one	value	above	a	threshold	(5.058,	set	in	such	a	way	that	only	1000	lone	genes	pass	the	
threshold)	were	considered.	Operons	with	an	intergenic	regions	between	the	first	and	second	genes	bigger	than	
800	nt were	also	excluded	from	the	analysis.	

Figure	8:	Pol	II	level	on	second	genes	in	operons	is	decreased	upon	CDK-12	inhibition	
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B.	Meta-gene	profiles	of	BEADS-normalized	Pol	II	occupancy	data	averaged	over	two	replicates.	Only	the	
regions	with	one	value	above	a	threshold	(5.058,	set	in	such	a	way	that	only	1000	lone	genes	pass	the	threshold)	
were	considered.	
C	and	D.	Meta-gene	profiles	of	the	median	log2	fold	change	between	Pol	II	ChIP signal	in	the	R	and	R	+	i
conditions	for	the	regions	described	in	(A)	and	(B)	respectively.	Each	replicate	was	processed	separately	(grey	
dots)	and	the	average	between	both	replicate	for	each	data	point	is	indicated	with	black	doths.
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SL2	(figure	6.A-B).	 	 In	contrast,	 the	effect	 of	 the	 inhibition	 is	 less	pronounced	 for	 the	
genes	in	positions	two	and	over	in	operons	that	can	be	trans-spliced	by	either	SL2	(when	
the	transcription	starts	from	the	promoter	of	the	operon)	or	SL1	(when	the	transcription	
starts	from	an	auxiliary	internal	promoter).	

These	results	indicate	that	the	gene-specific	sensitivity	to	CDK-12	inhibition	is	not	
dictated	by	the	gene	localization	within	operons,	but	rather	by	the	dependency	to	the	SL2	
trans-splicing	for	the	co-transcriptional	processing	of	the	polycistronic	pre-mRNAs.	

To	assess	how	CDK-12	inhibition	affects	the	SL2	trans-splicing,	we	also	compared	
the	SL	quantification	between	our	conditions.	In	the	cdk-12as	R	+	i	condition,	we	observed	
less	 SL2	 trans-splicing	 than	 in	 the	cdk-12as	R	condition	(see	 for	 instance	 figure	11.A).	
However,	 this	result	is	difficult	 to	 interpret	because	 the	decrease	 in	SL2	trans-splicing	
could	be	 the	 consequence,	 rather	 than	 the	 cause,	 of	 the	down-regulation	of	 the	 genes	
mostly	trans-spliced	with	SL2.	To	disentangle	those	two	effects,	we	took	advantage	of	the	
genes	trans-spliced	with	both	SL2	and	SL1.	For	those	genes,	the	level	of	SL1	trans-splicing	
remains	stable	upon	CDK-12	inhibition	while	the	level	of	SL2	trans-splicing	significantly	
decreases	 (figure	 7),	 demonstrating	 that	CDK-12	activity	 is	 required	 for	 efficient	 SL2	
trans-splicing	of	the	genes	in	operons.	

	

	

	

G. Deficient	SL2	 trans-splicing	 leads	 to	premature	 termination	of	
Pol	II	transcription.	
Next,	 we	 wondered	 about	 the	 fate	 of	 Pol	 II	 when	 CDK-12	 is	 inhibited.	 We	

considered	two	main	possibilities:	

1. Pol	II	transcribes	until	the	end	of	the	operon,	but	the	trans-splicing	of	the	second	
(and	 over)	 genes	 in	 operons	 is	 impaired.	 Therefore,	 pre-mRNA	 lacking	 the	
capped	SL2	snRNA	are	degraded.	

2. The	SL2	trans-splicing	issue	occurring	between	the	first	gene	and	the	second	
(and	over)	genes	in	operon	causes	the	polymerase	to	terminate	prematurely.		

To	 explore	 those	 possibilities,	 we	 made	 a	 Pol	 II	 ChIP-seq	 experiment	 for	 the	
conditions	 R	 and	 R	 +	 i	 in	 the	 cdk-12as	 strain.	 Overall,	 the	 efficiency	 of	 the	
immunoprecipitation	was	poor,	perhaps	because	of	technical	difficulties	of	the	chromatin	
extraction	on	 starved	 (and	then	 in	 recovery	 for	4h)	L1	worms.	Therefore,	 in	 order	 to	
obtain	robust	signal,	we	selected	the	genes	with	a	BEADS-normalized	signal	(see	material	
and	methods)	higher	than	a	threshold	defined	in	such	a	way	that	1000	lone	genes	pass	
that	 threshold.	 Analysis	 of	 the	meta-genes	 for	 those	 1000	genes	 and	 for	 the	 genes	 in	
operons	passing	the	same	threshold	reveals	no	difference	upon	CDK-12	inhibition	on	the	
body	of	the	first	genes	in	operon	and	on	the	body	of	lone	genes	(figure	8.A).		In	contrast,	
signal	on	the	body	of	the	second	genes	is	slightly	lower.	More	strikingly,	Pol	II	signal	in	
the	 intergenic	 region	–	 that	 is	more	 enriched	probably	because	of	Pol	 II	 slow	down	–	
between	 the	 first	 and	 the	 second	genes	 and	at	 the	 end	of	 the	 second	genes	decreases	
dramatically.	
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Figure	9:	Pol	II	level	decreases	over	the	course	of	operon	transcription	when	CDK-12	is	
inhibited.		

B.	Meta-gene	profiles	of	the	median	log2	fold	change	between	Pol	II	ChIP signal	in	the	R	and	R	+	i
conditions	for	the	regions	described	in	(A).	
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Overall,	 this	analysis	supports	our	second	hypothesis	–	namely,	 that	 the	 trans-
splicing	defect	causes	the	polymerase	to	terminate	prematurely.	To	further	challenge	this	
hypothesis,	we	reasoned	that	if	the	SL2	trans-splicing	failure	truly	causes	the	polymerase	
to	terminate	early,	then	for	operons	containing	more	than	two	genes,	the	effect	would	be	
amplified	at	each	subsequent	intergenic	region.	Confirming	our	hypothesis,	meta-operon	
analysis	of	operons	containing	at	least	four	genes	revealed	exactly	the	expected	trend:	the	
difference	between	the	inhibited	and	normal	condition	grows	larger	over	the	course	of	
the	operon	(figure	9.A).	

Because	meta-genes	calculate	average	values	between	all	genes,	they	are	sensitive	
to	extremes.	In	order	to	confirm	our	results	and	assess	whether	the	individual	operons	
behave	similarly,	we	also	plotted	the	median	of	the	log2	fold	change	value	between	the	
two	conditions	at	each	position	(figure	8.B,	9.B).	At	the	end	of	the	4th	genes	in	operons,	
the	median	log2	fold	change	reaches	a	minimum	of	about	-0.6	(a	difference	of	about	33%).		
Although	robust,	this	difference	is	smaller	than	the	difference	of	about	two-fold	(50%)	we	
observed	at	the	RNA	level.	It	could	be	due	to	the	relatively	high	level	of	noise	in	our	ChIP-
seq	 data,	 or	 this	 could	 mean	 that	 the	 two	 proposed	 hypotheses	 can	 coexist:	 Pol	 II	
sometimes	terminates	after	a	SL2-trans-splicing	failure,	but	sometimes,	it	can	go	on.		

Collectively,	our	results	point	toward	the	following	model	(figure	10):	During	the	
transcription	of	the	operons,	the	cleavage	and	polyadenylation	specificity	factor	(CPSF)	
recognizes	the	polyadenylation	signal	(PAS)	on	the	first	pre-mRNA.	The	cleavage	of	the	
pre-mRNA	 by	 CPSF	 creates	 an	 entry	 point	 for	 exonucleases.	 Therefore,	 to	 avoid	
degradation,	the	5’end	of	the	second	mRNA	needs	to	be	rapidly	capped.	When	CDK-12	is	
active,	 CTD-Ser2	 is	 phosphorylated	 and	 participates,	 along	 with	 a	 uridine-rich	
downstream	 element	 (U-rich	 DSE)	 and	 the	 CPSF,	 in	 the	 recruitment	 of	 the	 cleavage	
stimulatory	factor	(CstF)	through	its	Cstf-50	subunit.	Finally,	the	SL2	ribonucleoprotein	
(RNP)	is	recruited	by	both	the	Ur	Element	and	CstF	and	will	catalyze	the	timely	trans-
splicing	of	the	capped	SL2	RNA	to	the	second	pre-mRNA.	

However,	when	CDK-12	is	inactivated,	the	recruitment	of	CstF	and	the	SL2	RNP	is	
less	efficient	due	to	the	lack	of	Ser2-P.	As	a	consequence,	the	SL2	trans-splicing	does	not	
occur	(or	is	untimely)	and	the	free	5’	end	of	the	second	mRNA	is	be	rapidly	degraded	by	
an	exonuclease	such	as	Xrn-2.	When	the	exonuclease	catches	up	with	the	polymerase,	it	
leads	 to	 the	 destabilization	 of	 the	 template–transcript–Pol	 II	 ternary	 complex	 and	
ultimately	causes	transcriptional	termination.	
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Figure	10:	Model	for	the	CDK-12	requirement	in	the	SL2	trans-splicing	process.
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Figure	11:	Specific	induction	of	the	level	of	SL2	trans-
splicing	and	of	the	second	genes	in	operons	in	recovery.	

D. Scatterplot of the log2 fold change due to the food effect for the second genes in operons compared to
the first genes. A linear regression with its equation and coefficient of determination (R2) are displayed in red.
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H. Specific	CDK-12-dependent	induction	of	the	SL2	trans-splicing	
upon	recovery.	
Intriguingly,	the	global	level	of	SL2-trans-splicing	is	strongly	increased	(+73%)	in	

recovery	from	starvation	(figure	11.A).	This	could	be	simply	explained	by	the	fact	that	
genes	in	operon	are	globally	up-regulated	in	recovery	(Maxwell	et	al.,	2012).	However,	
transcription	from	the	internal	promoters	(estimated	from	the	level	of	SL1	trans-splicing)	
is	not	induced	in	recovery,	while	polycistronic	transcription	(estimated	from	the	level	of	
SL2	trans-splicing)	is	significantly	induced	(figure	7).		

In	consequence	 for	 this	specific	 induction,	 the	proportion	of	SL2	trans-splicing	
increases	 for	the	genes	 in	operons	with	auxiliary	internal	promoters	(the	genes	 trans-
spliced	 with	 a	 mix	 of	 SL1	 and	 SL2)	 (figure	 11.B).	 As	 this	 switch	 toward	 productive	
polycistronic	 transcription	 is	CDK-12-dependent	(figure	11.C),	we	wondered	whether	
the	efficiency	of	trans-splicing	could	be	used	by	the	cell	to	finely	tune	the	expression	of	
genes	in	operons.	Consistent	with	this	idea,	the	expression	changes	in	recovery	of	the	first	
and	second	genes	in	operon	are	poorly	corelated	(figure	11.D),	with	the	second	genes	in	
operons	 significantly	 more	 over-expressed	 (figure	 11.E).	 The	 existence	 of	 internal	
promoters	 cannot	 explain	 this	 difference	 because	 (1)	 a	minority	 of	 operons	 contains	
internal	promoters	with	 significant	 activity	 (figure	6),	 and	 (2),	 expression	 from	 these	
internal	promoters	 (as	 approximated	 from	SL1	trans-splicing	quantification)	does	not	
generally	change	in	recovery	(figure	7).	

Collectively,	 our	 results	 suggest	 that	 the	 expression	 of	 the	 polycistronic	
transcripts	is	uncoupled	from	the	expression	of	their	promoter.	This	decoupling	could	be	
caused	by	various	post-transcriptional	processes,	such	as	the	modulation	of	the	stability	
of	 the	mRNAs,	 but	also	by	 co-transcriptional	processes,	 such	 as	 the	modulation	of	 the	
efficiency	 of	 the	 SL2	 trans-splicing,	 that,	 upon	 failure,	 causes	 Pol	 II	 to	 terminate	
prematurely.	This	last	possibility	is	plausible	given	that	the	efficiency	of	trans-splicing	is	
dependent	on	the	activity	of	CDK-12	and	that	CDK-12	activity	itself	could	be	regulated.	
This	last	argument	needs	to	be	demonstrated	in	C.	elegans,	but	in	fission	yeast,	the	activity	
of	 the	 CDK-12	 homolog	 Lsk1	 is	 modulated	 by	 the	 phosphorylation	 of	 its	 N-terminal	
domain	in	response	to	extracellular	cue	(Materne	et	al.,	2015;	Sukegawa	et	al.,	2011).		

	
I. Other	roles	for	CDK-12	activity?	
i. Longer	genes	

All	together	our	results	convincingly	point	toward	a	model	where	CDK-12	activity	
is	 required	 for	 the	 SL2	 trans-splicing.	 However,	 many	 of	 the	 protein-coding	 genes	
significantly	mis-regulated	 (222	down-regulated	 and	 149	 up-regulated)	 upon	 CDK-12	
inhibition	 are	 not	 in	 operon.	 Therefore,	 their	 mis-regulation	 could	 either	 be	 due	 to	
undirect	effects	or	reveal	other	roles	for	CDK-12	beyond	the	coordination	of	the	SL2	trans-
splicing.	

Interestingly,	the	distribution	of	the	length	of	the	lone	genes	down-regulated	upon	
CDK-12	 inhibition	not	 in	operon	(with	a	median	gene	 length	of	2.2	Kb)	 is	significantly	
higher	 (Wilcoxon-Mann-Whitney	 unpaired	 test	 p-value	 <	 2.2	 x	 1016)	 than	 for	 the	
unaffected	genes	(with	a	median	gene	length	of	1.1	Kb)	(figure	12.A).	This	result	could	
be	biased	by	the	fact	that	longer	genes	tend	to	be	more	represented	in	RNA-seq	libraries,	
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A-B-C.	Density	plot	of	gene	size	for	the	protein-coding	genes	in	the	indicated	categories.	Effectives	are	as	
follow:	A. Lone	genes	down-regulated	by	CDK-12	inhibition	(n	=	222)	or	not	(n	=	13754);	B.	genes	in	position	two	
and	over	in	operons	down-regulated	by	CDK-12	inhibition	(n	=	765)	or	not	(n	=	1246);	C. Lone	genes	up-
regulated	by	CDK-12	inhibition	(149)	or	not	(13321).	

Figure	12:	Genes	not	in	operons	down-regulated	upon	CDK-12	inhibition	are	longer.
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providing	more	 read	 –	 i.e	 smore	 power	 –	 for	 the	 differential	 expression	 analysis.	 To	
control	for	this	possible	bias,	we	compared	the	rather	similar	gene	length	distribution	for	
the	 genes	 in	 operon	 down-regulated	 or	 not	 (figure	 12.B)	 and	 for	 the	 lone	 genes	 up-
regulated	 or	 not	 (figure	 12.C).	 Those	 results	 convincingly	 demonstrate	 that	 the	
aforementioned	 bias	 is	 negligible	 and,	 in	 consequence,	 that	 CDK-12	 activity	 can	 be	
important	for	the	expression	of	longer	genes	via	a	currently	unknown	mechanism	that	
could	become	the	focus	of	future	studies.	Intriguingly,	this	dependence	of	longer	genes	on	
CDK-12	function	is	conserved	in	Drosophila	melanogaster	and	human	cell	lines	(Blazek	et	
al.,	2011a;	Pan	et	al.,	2015).		

	

ii. tRNAs	

The	studies	in	fission	yeast	presented	in	the	first	part	of	this	thesis	revealed	that	
mutants	 lacking	 Ser2-P	 have	 increased	 tRNA	 expression.	 Here,	 no	 tRNAs	 were	 found	
significantly	affected	by	CDK-12	inhibition	in	C.	elegans	(table2).		

However,	more	careful	analysis	of	the	tRNAs	expression	showed	that	the	number	
of	reads	uniquely	mapped	to	the	tRNAs	is	very	low	and	does	not	provide	sufficient	power	
for	robust	differential	expression	analysis	(figure	12.D).	Nevertheless,	the	overall	trend	
tends	toward	over-expression,	which	is	reminiscent	of	our	findings	in	fission	yeast.	While	
more	work	is	required	to	corroborate	this	finding	and	assess	the	mechanisms	behind	it,	
we	also	noted	that	genes	annotated	as	involved	in	tRNA	processing	are	enriched	in	the	
genes	down-regulated	upon	CDK-12	inhibition	(Fisher’s	exact	test	FDR	=	0.014).	

	

	

Table	2:	genes	up	or	down-regulated	by	CDK-12	inhibition	

gene	type	 up	 down	

protein-coding	 187	 1004	

lncRNA	 15	 4	

snRNA	 1	 0	

snoRNA	 0	 0	

tRNA	 0	 0	

	

iii. DNA	repair	

Studies	of	CDK-12	function	in	mammals	and	drosophila	highlighted	that	CDK-12	
is	essential	for	the	expression	of	DNA	damage	response	genes	(Blazek	et	al.,	2011a;	Li	et	
al.,	 2016).	While	 our	 own	 study	 is	 focused	 on	developmental	 aspect	 rather	 than	DNA	
damage,	 DNA	 repair	 genes	 are	 enriched	 in	 the	 genes	 down-regulated	 upon	 CDK-12	
inhibition	 (Fisher’s	 exact	 test	 FDR	 =	 0.02),	 suggesting	 that	 this	 function	 of	 CDK-12	 is	
conserved	in	C.	elegans.	Again,	more	work	would	be	required	to	confirm	that	correlation.		
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3. CONCLUSIONS	
	

i. A	gene	specific	requirement	for	CDK-12	activity	

In	this	work,	we	studied	the	role	of	Ser2	kinase	CDK-12,	and,	by	extension,	Ser2-
P,	in	C.	elegans	development.	Using	a	cdk-12as	(analog-sensitive)	strain,	we	were	able	to	
confirm	that	CDK-12	is	dispensable	for	embryonic	development,	but	is	essential	for	post-
L1	development.	This	stage-specific	requirement	suggests	that	CDK-12	is	not	required	for	
general	 transcription	but	 that	 it	might	be	 important	 for	 the	 expression	of	 some	genes	
involved	in	post-L1	development.	

Accordingly,	 we	 found	 that	 only	 a	 subset	 of	 the	 genes	 are	 sensitive	 to	 the	
inhibition	of	CDK-12	in	a	RNA-seq	experiment.	Consistent	with	the	L1-arrest	phenotype	
of	CDK-12	inhibition,	the	genes	affected	are	enriched	in	genes	overexpressed	during	the	
recovery	from	starvation.	Among	these	genes,	many	are	annotated	as	being	associated	
with	development.	Therefore,	we	propose	that	the	failure	to	overexpress	some	of	these	
genes	is	the	causes	the	requirement	for	CDK-12	during	larval	development.	

This	gene-	and	stage-specific	requirement	is	reminiscent	of	an	earlier	work	from	
our	group	that	describes	the	specific	requirement	of	Ser2-P	for	the	sexual	differentiation	
and	ste11	expression	in	fission	yeast	(Coudreuse	et	al.,	2010).	With	the	reports	of	similar	
gene-specific	requirements	in	mammals	(Blazek	et	al.,	2011b;	Ekumi	et	al.,	2015;	Liang	et	
al.,	 2015)	 and	drosophila	 (Pan	et	 al.,	 2015;	 Li	 et	 al.,	 2016),	 it	appears	more	 and	more	
clearly	that	Ser2-P	is	more	than	just	a	signal	that	flag	elongating	polymerases.	

	

ii. A	mechanism	for	CDK-12	requirement	for	efficient	SL2	trans-splicing	

Strikingly,	 the	 majority	 of	 the	 CDK-12-dependent	 genes	 were	 found	 to	 be	
organized	in	operons	and	were	localized	more	specifically	downstream	the	first	genes	of	
the	operons.	Quantification	of	 the	 trans-splicing	events	revealed	a	defect	 in	SL2-trans-
splicing	for	those	genes,	highlighting	a	role	for	CDK-12	in	coupling	transcription	with	the	
processing	 of	 polycistronic	 transcripts	 into	 discrete	 mRNAs	 (figure	 10).	 A	 failed	 or	
untimely	SL2	trans-splicing	causes	Pol	II	to	terminate	early	before	it	reaches	the	end	of	
the	operon,	possibly	because	the	uncapped	5’	end	of	the	transcript	creates	an	entry	point	
for	exonucleases	that	can	terminate	Pol	II	according	to	the	torpedo	model	(West	et	al.,	
2004).	

The	connection	between	CDK-12	and	SL2	trans-splicing	might	lie	in	the	described	
interactions	between	the	termination	factor	CstF	and	Ser2-P	and	between	CstF	and	the	
SL2	ribonucleoprotein	(Garrido-Lecca	et	al.,	2016).	However,	the	fact	that	the	loss	of	Ser2-
P	upon	CDK-12	inhibition	does	not	globally	affect	termination	per	se	in	any	tangible	way	
suggest	that	CstF	is	still	properly	recruited,	at	least	at	genes	not	in	operons.	To	clarify	this	
point,	 a	 short	 term	 perspective	 would	 be	 to	 assess	 CstF	 occupancy	 upon	 CDK-12	
inhibition	at	genes	outside	and	within	operons.	

	

	 In	 conclusion,	 while	 the	 gene-specific	 requirements	 for	 Ser2-P	 is	 almost	 a	
constant	in	every	organisms	where	it	has	been	investigated,	the	mechanism	behind	it	can	
vary.	 In	 fission	 yeast,	 we	 previously	 described	 a	 Ser2-P	 dependent	 chromatin-based	
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mechanism	of	repression/derepression	of	ste11	and	other	genes	(Materne	et	al.,	2015;	
Materne	et	al.,	2016)	while	in	this	study,	the	gene-specificity	lie	in	the	modulation	of	the	
SL2	trans-splicing	efficiency.	As	SL	trans-splicing	has	a	patchy	phylogenetic	distribution	
(Krchnakova	et	al.,	2017),	it	would	be	interesting	to	assess	whether	the	dependence	on	
Ser2-P	 is	 also	 conserved	 in	 species	 evolutionary	 distant	 from	 C.	 elegans,	 such	 as	
trypanosomes	(whose	Pol	II	has	a	non-canonical	CTD)	or	the	chordate	Ciona	intestinalis.	

	

iii. Does	CDK-12	regulate	trans-splicing	in	response	to	environmental	cues?	

Finally,	our	results	show	that	 the	expression	of	 the	polycistronic	 transcripts	 is	
uncoupled	 from	the	expression	of	 their	promoter.	This	decoupling	could	be	caused	by	
various	post-transcriptional	processes	playing	on	the	stability	of	the	mRNAs,	but	perhaps	
also	by	co-transcriptional	processes,	such	as	the	modulation	of	the	efficiency	of	the	SL2	
trans-splicing,	 that,	 upon	 failure,	 causes	 Pol	 II	 to	 terminate	 prematurely.	 Premature	
termination	would	be	more	economic	(in	term	of	cell	resources)	than	post-transcriptional	
degradation.	

As	we	saw	that	the	efficiency	of	the	SL2	trans-splicing	depends	on	CDK-12	activity,	
it	would	 be	 an	 exciting	 perspective	 to	 assess	whether	 CDK-12	 activity	 is	 regulated	 to	
respond	to	the	presence	of	food	in	the	environment,	therefore	connecting	the	expression	
of	genes	in	position	two	and	over	in	operons	with	extracellular	cues.	Indeed,	condition-
specific	inductions	of	CTD	kinase	activity	has	been	reported	in	various	species	as	distant	
as	the	fission	yeast	(Materne	et	al.,	2015;	Sukegawa	et	al.,	2011)	and	Arabidopsis	thaliana	
(Li	 et	 al.,	 2014)	 and	 could	 therefore	 be	 conserved	 across	 eukaryotes,	 bringing	 new	
perspectives	into	the	reductive	view	of	CTD	phosphorylation	that	describes	it	as	global,	
uniform	transition	from	Ser5-P	to	Ser2-P	during	the	transcription	cycle.	
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MATERIAL	&	METHODS	

1. EXPERIMENTAL	PROCEDURES	
	

i. Yeast	strains	and	media	

Yeast	 were	 grown	 in	 YES	 medium	 unless	 stated	 otherwise.	 Classical	 genetic	
procedures	(gene	targeting,	crosses	and	growth)	were	performed	as	described	(Bähler	et	
al.,	1998;	Forsburg,	2003;	Moreno	et	al.,	1991).	

The	 following	 strains	were	used,	 presented	 in	 their	 order	of	 apparition	 in	 this	
thesis:	

	

#	 name	 from	 mating-
type	 genotype	

94	 WT	 Paul	Nurse	 h-	 -	

552	 S2A	 (Coudreuse	et	al.,	2010)	 h-	 rpb1	CTD	S2A	-kanR	

1635	 rpc25-flag	 this	study	 h-	 rpc25-flag-natR	

1576	 rpc25-myca	 (Iwasaki	et	al.,	2010)	 h-	 rpc25-myc-kanR	ade6-216	ura4-D18	leu1-32	his2	

1590	 rpc25-myc	 this	study	 h+	 rpc25-myc-kanR	

1577	 rpc25-TAPa	 (Iwasaki	et	al.,	2010)	 h-	 rpc25-TAP-kanR	ade6-216	ura4-D18	leu1-32	his2	

1913	 rpc1-TAP	 François	Bachand	 h+	 rpc1-TAP-natR	ura4-D18	leu1-32	his3-D1	

1914	 rcp2-TAP	 François	Bachand	 h+	 rpc2-TAP-natR	ura4-D18	leu1-32	his3-D1	

1915	 rpc25-TAP	 François	Bachand	 nd	 rpc25-TAP-natR	ura4-D18	leu1-32	his3-D1	

1606	 rpc25-flag	S2A	 this	study	 h-	 rpc25-flag	rpb1	CTD	S2A	-kanR	

581	 ∆lsk1	 (Coudreuse	et	al.,	2010)	 h+	 lsk1::ura4	ura4-D18	

1861	 ∆lsk1	 this	study	 h+	 rpc25-flag-natR	lsk1::ura4	ura4-D18	

1919	 rpc1-TAP	 this	study	 h-	 rpc1-TAP-natR	

1950	 rpc1-TAP	rpc25-flag	 this	study	 h-	 rp25-flag-hphR	rpc1-TAP-natR	

1712	 ∆maf1	 this	study	 h-	 maf1::natR	

1713	 ∆maf1	S2A	 this	study	 h-	 maf1::natR	rpb1	CTD	S2A	-kanR	

1850	 ∆maf1	rpc25-flag	 this	study	 h-	 maf1::natR	rpc25-flag-hphR	

1851	 ∆maf1	rpc25-flag	S2A	 this	study	 h-	 maf1::natR	rpc25-flag-hphR	rpb1	CTD	S2A	-kanR	

643	 ∆elp3	 (Bauer	et	al.,	2012)	 h-	 elp3::natR	

1096	 ∆ste11	 (Materne	et	al.,	2015)	 h-	 ste11::kanR	

780	 ∆rrp6	 this	study	 h-	 rrp6::kanR	

1273	 ∆dcr1	 this	study	 h-	 dcr1::natR	

1917	 rpc1-TAP	S2A	 this	study	 h-	 rpb1	CTD	S2A	-kanR	rpc1-TAP-natR	

1719	 brf1-TAP	 this	study	 h-	 brf1-TAP-kanR	

1720	 brf1-TAP	S2A	 this	study	 h-	 rpb1	CTD	S2A	-natnR	rpc1-TAP-kanR	

1971	 sfc6-TAP	 this	study	 h-	 sfc6-TAP-kanR	

1972	 scf6-TAP	S2A	 this	study	 h-	 rpb1	CTD	S2A	-natR	sfc6-TAP-kanR	

954	 rsc1-TAP	 (Materne	et	al.,	2015)	 h-	 rsc1-TAP-hphR	
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1033	 rsc1-TAP	S2A	 (Materne	et	al.,	2015)	 h-	 rpb1	CTD	S2A	-kanR	rsc1-TAP-hphR	

1873	 rpc25-flag	∆rrp6	 this	study	 h-	 rrp6::kanR	rpc25-flag-natR	

1867	 ∆cid14	 this	study	 h-	 cid14::kanR	

1904	 ∆cid14	rpc25-flag	 this	study	 h-	 cid14::kanR	rpc25-flag-natR	

1923	 rrp6-flag	 this	study	 h-	 rrp6-flag-natR	
1916	 rrp6-flag	S2A	 this	study	 h-	 rpb1	CTD	S2A	-kanR	rrp6-flag-natR	

	

	

ii. Western	blot	

Alkaline	 protein	 extraction	was	 performed	 as	 described	 (Matsuo	 et	 al.,	 2006).	
Briefly,	10	mL	of	yeast	culture	at	OD	0.5	(about	5.3x107	cells)	were	pelleted,	then	the	pellet	
was	resuspended	in	water	and	incubated	during	10	minutes	in	a	NaOH	0.3M	final	solution.	
After	 centrifugation,	 the	pellet	was	 resuspended	 in	 a	buffer	 containing	Tris	HCL,	 SDS,	
glycerol	and	β-mercaptoethanol.	The	extracts	where	boiled,	separated	on	SDS-PAGE	gels	
(4-15%	gradient	gels,	precast,	from	Biorad)	and	transferred	to	a	PVDF	membrane	using	
the	Trans-Blot	Turbo	Transfer	System	(Biorad).	The	membrane	was	then	blocked	in	PBS-
Tween	with	5%	milk	and	incubated	with	the	appropriate	antibody	for	1	hour.	After	signal	
amplification	 with	 secondary	 antibodies	 covalently	 bound	 to	 horseradish	 peroxidase,	
revelation	and	quantification	of	 the	 chemiluminescence	using	ECL	was	made	using	an	
ImageQuantTL	apparatus	and	software.	The	antibodies	used	 in	this	study	are	as	 follow	
(also	for	the	ChIP	experiments):	

	

target	 ref	

flag	 M2	(Sigma	F3165)	
Pol	II	Rpb1	CTD	 8WG16	
Ser2-P	 3E10,	ab5095	
H3	 AB1791.1	
TAP	 Sigma	P1291	
Tubuline	 Sigma	T5168	

 

	

iii. Chromatin	immunoprecipitation	(ChIP)	

Chromatin	 immunoprecipitation	 experiments	 were	 performed	 as	 described	 in	
(Materne	et	al.,	2015;	Migeot	and	Hermand,	2018).		

Briefly,	for	the	chromatin	extraction,	80	mL	of	cultures	at	OD	0.7	were	crosslinked	
with	1%	formaldehyde	(final	concentration)	during	10	minutes.	Then,	the	crosslinking	
reaction	 was	 quenched	 using	 excess	 glycine	 (final	 concentration	 of	 0.4M)	 during	 5	
minutes.	 From	 this	point,	we	worked	on	 ice	or	 in	 the	4°C	 room.	The	 crosslinked	 cells	
where	pelleted,	washed	in	a	Tris	HCL	0.02M	solution,	then	resuspended	in	a	detergent-
containing	 	 (0.1%	 SDS,	 1%	 tritonX100)	 FA/SDS	 solution	 supplemented	with	protease	
inhibitors	(PMSF).	Then,	the	crosslinked	cells	were	lysed	by	7	cycles	of	20	seconds	in	the	
fast-prep	apparatus,	which	physically	shear	the	cells	by	vigorous	shaking	in	presence	of	
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zirconium	beads.	The	chromatin	was	then	purified	from	the	cell	extracts	by	two	cycles	of	
high-speed	 centrifugations	 (the	 pellet	 contains	 the	 chromatin)	 -	 resuspension	 in	
FA/SDS/PMSF.	 Then	 the	 chromatin	 was	 sheared	 by	 sonication	 in	 the	 Bioruptor	
(Diagenode)	apparatus	(7	cycles	of	30	seconds	ON,	1	minutes	OFF,	in	high	voltage	mode),	
providing	chromatin	fragments	of	about	300	bp.	

For	 the	chromatin	 immunoprecipitation,	 the	sheared	chromatin	was	 incubated	
during	 2	 hours	 at	 21°C	 with	magnetic	 beads	 (Diagenode)	 coupled	 to	 the	 antibody	 of	
interest	(see	previous	table	in	the	western-blot	section).	After	multiple	washes	in	high	salt	
(0.5M	NaCl)	FA/SDS	buffer	at	room	temperature,	the	chromatin	bound	to	the	magnetic	
beads	 was	 eluted	 by	 20	 minutes	 incubation	 at	 65°C.	 Then,	 the	 proteins	 from	 the	
immunoprecipitated	chromatin	extracts	were	digested	by	proteinase	K	during	1h	at	37°C.	
After	overnight	incubation	at	65°C	to	decrosslink	the	chromatin,	RNA	contamination	was	
eliminated	 with	 RNaseA	 treatment	 (1h	 at	 37°C).	 Finally,	 the	 DNA	 from	 the	
immunoprecipitated	chromatin	was	further	purified	on	rapace	PCR	purification	columns	
and	resuspended	in	water.	

Finally,	enrichment	at	target	loci	was	assessed	by	qPCR	(quantitative	Polymerase	
Chain	 Reaction),	 by	 comparing	 SyberGreen	 (Roche)	 fluorescent	 signal	 between	 the	
immunoprecipitated	 samples	 and	 the	 input	 samples11.	 The	 following	 oligonucleotides	
were	used	for	PCR	amplification	(F	=	forward,	R=	reverse),	presented	in	their	order	of	
apparition	in	this	thesis:	

	

name	 sequence	
ARG.05	F	 AACCAGGCAAAGGTTGTTAC	
ARG.05	R	 TAATTCACTCCCCAACAACG	
ILE.04	F	 TGGCAAGAGTGGTGTCCATC	
ILE.04	R	 AACCGACTACATCATGCGAC	
TYR.04	F	 CAAGCACCGGCTATACAACAC	
TYR.04	R	 TGGAAGAGAGCTTGCCTTAGTG	
snU6	(+192)	F	 TTCCCATGTTGTCTCCAACC	
snU6	(+192)	R	 TTCCCATGTTGTCTCCAACC	
ILE.04	+1000	F	 TTGAGTCGAACTTAGCAAATGG	
ILE.04	+1000	R	 GTTGCGAAACATAGCCTCTTAC	
adh1	promoter	(-132)	F	 TTCCCATGTTGTCTCCAACC	
adh1	promoter	(-132)	R	 TTCCCATGTTGTCTCCAACC	
srp7	F	 GGGTTTGCAATGAAAAGTTGA	
srp7	R	 ACTAAACACTTCGACCAAGC	
ste11	-2842	F	 TTCCCATGTTGTCTCCAACC	
ste11	-2842	R	 TTCCCATGTTGTCTCCAACC	

																																																													

	

11	 The	 input	 samples	 come	 from	 the	 same	 chromatin	 extract	 than	 their	
immunoprecipitated	counterparts	and	undergo	same	processing	steps	(proteinase	K,	decrosslink,	
RNAse	A,	purification),	but	without	the	immunoprecipitation.	
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ste11	-2465	 TTCCCATGTTGTCTCCAACC	
ste11	-2465	 TTCCCATGTTGTCTCCAACC	
ste11	-1337	 TTCCCATGTTGTCTCCAACC	
ste11	-1337	 TTCCCATGTTGTCTCCAACC	
snU6	+379	F	 CAAATCTTGATTTCCAATCGCT	
snU6	+379	R	 TTTGCGACTTAGCAAGAAGT	
act1	F	 CCACTATGTATCCCGGTATTGC	
act1	R	 CAATCTTGACCTTCATGGAGCT	
5S	rRNA	F	 TAGGCGAAAACACCAGTTCC	
5S	rRNA	R	 TTCCCATGTTGTCTCCAACC	
PRO.09	F	 GCCGTTTGGTCTAGTGGTATG	
PRO.09	R	 TTGGGCTGTTGTGGGAATC	

	
	

iv. Northern-blot	and	strand-specific	RT-qPCR	

Total	RNA	was	prepared	using	the	classical	hot	phenol	protocol,	where	after	cell	
lysis,	three	successive	phenol	extraction	followed	by	one	ethanol	precipitation	and	two	
ethanol	washes	are	applied	to	ensure	high	RNA	purity	(Schmitt	et	al.,	1990).	For	the	tRNA	
Northern	blots,	8	µg	of	total	RNA	extracts	were	loaded	on	10%	acrylamide-urea	gels	as	
described	 (Wu	 et	 al.,	 2015)	 and	 detection	 was	 made	 using	 the	 following	 32P-labeled	
oligonucleotides:	

	
name	 sequence	
ARG.05	 TAGGAATGAGATGCGCTACCATTGCGCCA	
LEU.CAA	 GTATTACTTGAGTGCTGCGCCATAGACCGC	
5S	rRNA	 TTCCCATGTTGTCTCCAACC	

	
For	 the	strand-specific	RT-qPCR,	complementary	DNA	(cDNA)	was	synthetized	

from	the	total	RNA	extract	using	the	SuperScript	II	reverse	in	presence	of	actinomycin	to	
enforce	strand-specificity.	

After	purification	of	the	cDNA	products,	a	quantitative	PCR	reaction	allowed	to	
infer	 the	 relative	 quantity	 of	 RNA	 in	 the	 samples	 using	 the	 ∆∆Ct	 method	 on	 the	
SyberGreen	(Roche)	fluorescent	signal.	

	
	

v. RNA-seq	library	preparation	

RNA-seq	library	preparation	was	made	using	the	Illumina	TruSeq	stranded	total	
RNA	 library	 preparation	 kit	 following	 manufacturer’s	 instructions,	 with	 the	 notable	
exception	that	the	quantity	of	AMPure	XP	beads	used	for	clean	ups	was	scaled	up	by	a	
ratio	of	1.1	in	order	to	retrieve	smaller	RNA	species	such	as	tRNAs.	
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vi. ChIP-seq	and	genomic	DNA	library	preparations	

ChIP	extracts	were	prepared	as	for	the	ChIP-qPCR	experiments.	Total	purification	
of	 genomic	 DNA	 was	 made	 using	 Zymo	 research	 Kit	 for	 genomic	 DNA	 extraction	
(YeaStarTM	Genomic	DNA	Kit)	 then	 the	DNA	was	 fragmented	by	 sonication	using	 the	
Bioruptor	(Diagenode)	set	on	Low	position	(130	W)	for	7	cycles	of	30	seconds.	A	fraction	
of	the	sonicated	DNA	was	charged	on	a	1	%	agarose	gel	in	order	to	check	the	fragment	
size.	The	resulting	fragments	were	sequenced,	along	with	ChIP	extracts,	using	the	Illumina	
TruSeq	ChIP-seq	library	preparation	protocol	according	to	manufacturer’s	instructions.	

	

2. BIOINFORMATICS	ANALYSIS		
	
i. Generalities:	quality	control	&	figure	drawing.	

For	all	high	throughput	sequencing	experiments,	the	reads	quality	was	assessed	
using	FastQC.	Quality	and	adaptor	clipping	was	performed	using	trimmomatic	(Bolger	et	
al.,	 2014).	 Statistical	 analysis	 and	 figure	 drawing	 was	 performed	 within	 the	 R	
programming	environment	(R	Core	Team,	2017).	

	
ii. MNase-seq	data	analysis	

The	MNase-seq	 data	was	 analyzed	 as	 described	 in	 the	 section	 “bioinformatics	
analysis”	of	the	Appendix	I.	

	
iii. RNA-seq	analysis	

Reads	were	mapped	on	the	S.	pombe	genome	or	the	C.	elegans	genome	using	hisat2	
(Kim	 et	 al.,	 2015)	 as	described	 in	 the	 Appendix	 II.	 The	 number	 of	 reads	 by	 region	 of	
interest	was	quantified	using	 featureCounts	 (Liao	 et	 al.,	 2014).	Differential	 expression	
analysis	 was	 carried	 on	 with	 DESeq2	 (Love	 et	 al.,	 2014).	 Criteria	 for	 a	 differentially	
expressed	feature	are	a	false	discovery	rate	(FDR)	<	0.01	and	an	absolute	fold	change	>	
1.5.	

The	quantification	of	trans-splicing	events	from	the	RNA-seq	data	was	performed	
using	SL-quant	(thoroughly	described	in	Appendix	II)	in	sensitive	mode.	

	
iv. ChIP-seq	analysis	

Reads	 were	 mapped	 on	 the	 S.	 pombe/S.	 cerevisiae	 genomes	 or	 the	 C.	 elegans	
genome	using	bowtie2	(Langmead	and	Salzberg,	2012).	Normalization	of	the	signal	tracks	
for	the	S.	pombe	experiments	was	either	made	by	scaling	on	the	total	number	of	reads	
mapped	to	the	S.	pombe	nuclear	chromosomes	(excluding	the	rDNA	repeats),	or	to	the	
number	of	spike-in	reads	mapped	on	S.	cerevisiae	genome	for	the	IPed	samples	divided	by	

117



	

the	 proportion	 of	 spike-in	 reads	 in	 the	 corresponding	 input	 samples.	 The	 C.	 elegans	
profiles	were	normalized	using	the	BEADS	algorithm	(Cheung	et	al.,	2011).	
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APPENDIX	I	
	

Yague-Sanz,	C.,	Vazquez,	E.,	Sanchez,	M.,	Antequera,	F.,	and	Hermand,	D.		
A	 conserved	 role	 of	 the	 RSC	 chromatin	 remodeler	 in	 the	 establishment	 of	
nucleosome-depleted	regions.		
2017,	Current	Genetics,	63,	187-193.	

	

While	we	were	studying	 the	Ser2-P-	and	RSC-dependent	nucleosome	dynamics	
that	 occur	 at	 the	promoter	of	 ste11	and	of	 other	 genes	 in	 fission	yeast	by	MNase-seq	
(Materne	et	al.,	2015;	Materne	et	al.,	2016),	another	group	published	MNase-seq	data	in	
budding	yeast	in	a	RSC-depleted	strain	(Parnell	et	al.,	2015).	We	seized	that	opportunity	
to	 compare	 the	 changes	 in	 nucleosome	 occupancy	 following	 RSC	 impairment	 (by	
depletion	or	deletion	of	a	non-essential	subunit)	in	the	two	distantly	related	yeast	species,	
and	 concluded,	 in	 contrast	 with	 earlier	 studies	 (Pointner	 et	 al.,	 2012),	 that	 the	 RSC	
complex	is	required,	at	least	partially,	for	NDR	formation	in	both	species.	

	

ABSTRACT	

The	 occupancy	of	nucleosomes	governs	 access	 to	 the	 eukaryotic	 genomes	 and	
results	 from	 a	 combination	 of	 biophysical	 features	 and	 the	 effect	 of	 ATP-dependent	
remodelling	complexes.	Most	promoter	regions	show	a	conserved	pattern	characterized	
by	a	nucleosome-depleted	region	(NDR)	flanked	by	nucleosomal	arrays.	The	conserved	
RSC	remodeler	was	reported	to	be	critical	to	establish	NDR	in	vivo	in	budding	yeast	but	
other	 evidences	 suggested	 that	 this	activity	may	not	be	 conserved	 in	 fission	yeast.	By	
reanalysing	and	expanding	previously	published	data,	we	propose	that	NDR	formation	
requires,	at	least	partially,	RSC	in	both	yeast	species.	We	also	discuss	the	most	prominent	
biological	 role	 of	 RSC	 and	 the	 possibility	 that	 non-essential	 subunits	 do	 not	 define	
alternate	versions	of	the	complex.	
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Abstract 

The occupancy of nucleosomes governs access to the eukaryotic genomes and results 
from a combination of biophysical features and the effect of ATP-dependent 
remodeling complexes. Most promoter regions show a conserved pattern 
characterized by a nucleosome-depleted region (NDR) flanked by nucleosomal 
arrays. The conserved RSC remodeler was reported to be critical to establish NDR in 
vivo in budding yeast but other evidences suggested that this activity may not be 
conserved in fission yeast. By reanalysing and expanding previously published data, 
we propose that NDR formation requires, at least partially, RSC in both yeast species. 
We also discuss the most prominent biological role of RSC and the possibility that 
non-essential subunits do not define alternate versions of the complex.  
 
Introduction 
 
A fundamentally different logic of gene regulation between procaryotes and 
eukaryotes was previously proposed based on the existence of chromatin in the latter, 
which results in a closed, less accessible genome (Struhl, 1999). Despite the fact that 
this view may be too simplistic - there are structural proteins associated with the DNA 
in procaryotes (Anuchin et al., 2011) and eukaryotes use more repressors than 
anticipated (Kemmeren et al., 2014)- the general concept still stands true (Estrada et 
al., 2016). Strikingly, the human genome harbours the blueprint of about 200 highly 
specialized cell types characterized by very different morphology, metabolism and 
capacities including for example neurons, hepatocytes or gametes. By comparison, 
most procaryotes have a limited range of cellular states. Therefore, the invention of 
chromatin may have been pivotal for the emergence of highly differentiated cell 
types, most likely because the expression of specific programmes must be tightly 
regulated to allow diverse and sometimes antagonistic differentiated states to co-exist. 
For example, yeast differentiation during gametogenesis must be very strictly limited 
to diploid cells to avoid massive cell death resulting from haploid meiosis and recent 
data support that chromatin-based mechanisms play a key role in that process (van 
Werven et al., 2012). The understanding of how chromatin is established and how it 
contributes with most, if not all nuclear processes including transcription, DNA 
replication, DNA repair, recombination or chromosome segregation therefore 
constitutes an outstanding focus in current biology. In that context, an important 
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and long-standing question is to decipher how nucleosomes, which constitutes the 
basic unit of chromatin, are positioned genome-wide. There has been abundant 
debates about what dictates the position of nucleosomes with models fully relying on 
biophysics - the position is DNA encoded – and a model encompassing a layer of 
active, ATP-dependent modelling of the chromatin template. The reader is redirected 
to excellent reviews addressing these issues (Korber, 2012; Lieleg et al., 2015; Struhl 
and Segal, 2013). In the meantime, the discovery of a large set of chromatin 
remodelers supported the second possibility and the development of more refined 
nucleosome occupancy maps in various species led to the discovery of general 
features of nucleosome positioning along the eukaryotic genomes. Particularly, 
nearby the promoter, there is often a stereotypical organization just upstream of the 
transcription start site (TSS) with a large nucleosome depleted region (NDR) flanked 
by highly positioned nucleosomes referred to as the +1 and the -1. From these two 
landmarks, arrays of regularly-spaced nucleosomes often extend. The RSC (Remodel 
the Structure of Chromatin) complex has a specific role in the generation of NDR in 
budding yeast (Badis et al., 2008; Hartley and Madhani, 2009; Parnell et al., 2008; 
Wippo et al., 2011). RSC is an abundant and essential paralog of the canonical 
SWI/SNF remodeler (Cairns et al., 1996) that contains a DNA-dependent ATPase 
(Sth1 in budding yeast, Snf21 in fission yeast) that translocates DNA and allows to 
shift nucleosome positions, or even completely eject nucleosomes. Importantly, RSC 
show compositional and functional differences between budding and fission yeasts 
(Monahan et al., 2008) and it was suggested that RSC is not required for NDR 
formation in the latter (Pointner et al., 2012). In addition, not all subunit of RSC are 
essential, which may indicate that subcomplexes exist and may have specialized 
functions. Finally, it is unclear what is the most prominent biological role of RSC, in 
other words which nuclear process is mainly affected upon RSC inactivation and 
results in lethality. Here we briefly comment on these issues by reanalysing 
previously published data from budding yeast and by building on our recent work in 
fission yeast. 
 
Defects in the RSC remodeler affects NDR formation in both budding yeast and 
fission yeast 
One of the early difficulties in comparing the two model yeast species (the budding 
yeast Saccharromyces cerevisae, hereafter S. cerevisiae, and the fission yeast 
Schizosaccharomyces pombe, hereafter S. pombe) was the very poor annotation of the 
transcription start sites in S. pombe. This is an issue when plotting the average 
nucleosome signal obtained from MNase-Seq experiments to transcripts coordinates. 
Very recently, several groups (Booth et al., 2016; Eser et al., 2016; Li et al., 2015) 
have used different approaches to address that issue and Figure 1A shows a 
comparison of the average nucleosome signal when plotted to the Pombase annotation 
(the reference of the community working on fission yeast) and the most recent work 
performed by the Lis laboratory using Precision Run-On 5’ cap sequencing (PRO-
cap) (Booth et al., 2016), which corresponds to the annotation used in this manuscript. 
Comparing the overlay of MNase-Seq data after alignment at the TSS between the 
two yeast species confirms previous observations from the pioneer work of the Korber 
laboratory in fission yeast, namely the absence of a clearly positioned -1 nucleosome 
and shorter nucleosome spacing in S. pombe (Lantermann et al., 2009). In addition, 
the +1 nucleosome is positioned further away from the TSS and there are clear, albeit 
weak nucleosome arrays upstream of NDR in fission yeast (Figure 1B). Importantly, 
the low amplitude of the peaks and the absence of a positioned -1 nucleosome were 
previously shown to result from the larger variation in the size of individual NDRs in 
fission yeast (Soriano et al., 2013). Therefore, nucleosomal arrays emanate 
bidirectionally from the NDRs in fission yeast as well. 
It is now well established that the ablation of RSC activity in budding yeast strongly 
affects the majority of NDRs (Badis et al., 2008; Hartley and Madhani, 2009; 
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Parnell et al., 2008). Recent data further confirmed that in the inactivation of RSC 
(resulting from switching-off the expression of rsc8) leads to upstream and 
downstream nucleosomal arrays to shift to and eventually occlude the NDR. This 
work also supports the idea that phasing patterns reflect the resultant of phasing 
signals emanating from neighbouring NDRs (Ganguli et al., 2014). Most recently, it 
was reported by the Cairns laboratory that RSC and ISW1 have functional 
antagonism, which is supported by the fact that the gain in nucleosome occupancy in 
rsc mutant is attenuated by the additional inactivation of ISW1 (Parnell et al., 2015). 
In the fission yeast, the RSC complex was also associated with the generation of NDR 
in the context of heterochromatin. Indeed the deletion of rsc1 that encodes a non-
essential subunit of RSC suppresses the requirement of the histone deacetylase 
(HDAC) Clr3 for NDR elimination (Garcia et al., 2010), which indirectly supports 
that RSC is responsible for acetylation-dependent NDR formation in that species. 
However, that study did not expand to euchromatin. Finally, it was reported that 
CHD1 remodelers, Hrp1 and Hrp3 are required in fission yeast to link nucleosomal 
arrays to most TSS (Pointner et al., 2012). In the same study, the role of RSC in 
nucleosome positioning was also analysed using the only conditional 
(thermosensitive) mutant allele available for the gene snf21 that encodes the catalytic 
subunit of RSC (Yamada et al., 2008). Unexpectedly, no effect on nucleosome 
positioning around TSS was obvious upon thermal inactivation of the mutant, which 
suggested that RSC plays no role in NDR formation in S. pombe. 
Our recent work identified RSC as a key downstream effector of a cascade controlling 
the level of acetylation around the NDR of ste11, which encodes the master regulator 
of gametogenesis in S. pombe (Anandhakumar et al., 2013; Cassart et al., 2012; 
Coudreuse et al., 2010; Devos et al., 2015). Deletion of non-essential subunits of RSC 
or transcriptional switch-off of snf21 both impede ste11 expression and correlate with 
higher nucleosome occupancy at the ste11 NDR (Materne et al., 2015; Materne et al., 
2016). This effect led us to analyse the genome-wide effect of both RSC mutants on 
nucleosome positioning using MNase-Seq, which allows us to assess the conservation 
of the chromatin remodelling function of the RSC complex in budding and fission 
yeast.  
We have reanalysed the data presented in the Parnell et al. paper (Parnell et al., 2015) 
with the following modifications compared to the published work. First, no filtering 
for specific gene organization was applied. Second, the data are presented at single 
base pair resolution rather that within 50bp windows relative to the TSS as done 
before. This was made possible as we used the MNase-Seq data rather than the 
Agilent 244K mircoarrays used for the main figures of the original study. Third, the 
TSS annotation was obtained from a different source (Ganguli et al., 2014). Figure 
2A shows the profile of nucleosome occupancy ratios between the sth1 degron (a 
strain that allows rapid and conditional degradation of the Sth1 protein RSC subunit) 
and control strains +/- 750 bp relative to the TSS. Genes were organized into clusters 
based on their rsc-/RSC+ ratio. As reported in the published work, a leftward shift in 
nucleosome positions over the transcribed region is observed, confirming that 
nucleosomal arrays emanate from the NDR flanking nucleosomes. Most likely thus, 
NDR filling reflects encroachment by the flanking -1 and +1 nucleosomes, rather than 
insertion of an additional nucleosome within the NDR region as previously discussed 
(Ganguli et al., 2014). 
We next applied identical analyses to the data obtained in a fission yeast rsc1 mutant. 
It should be noted straight away that Rsc1 is a non-essential subunit of RSC while the 
work done in budding yeast targeted the gene encoding the catalytic subunit. 
Nonetheless, the general picture obtained when rsc1 is absent (Figure 2B) is 
reminiscent of the budding yeast data (Figure 2A). Compared to budding yeast, the 
shortening of NDR is observed with a slight shift towards the TSS that recalls the 
shift of the position of the +1 nucleosome between budding and fission yeast (Figure 
1B). In addition, the leftward shift in nucleosome positions over the transcribed region 
is also obvious in most clusters. These data suggest that similarly to budding yeast, 
RSC also play an important conserved role in the establishment of NDRs in fission 
yeast in contrast to previous conclusions (Pointner et al., 2012). However, it is 
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important to keep in mind that the previous study relies on a ts allele of snf21. As 
rightly pointed by the authors in their manuscript, it is possible that the inactivation of 
the snf21-ts was not complete despite the fact that the strain has obvious phenotypes 
(see below), somehow masking an effect of most NDR. Supporting this possibility, 
we report here that while switching-off snf21 expression using a Tet-off system 
eventually results in cell death on plates (Materne et al., 2015), it has a weak genome-
wide effect on NDR formation when a short time point is used (Figure 3A). This 
suggests that lowering RSC activity by switching-off the transcription of the snf21 
gene (with about 35% of the snf21 mRNA left) may only affect the most sensitive 
RSC-dependent processes. These data claim for the generation of a much more 
efficient switch-off system that could quickly deplete the vast majority of the Snf21 
protein pool in the cell. 
 
A single RSC complex containing non-essential subunits likely fulfils all RSC 
functions 
Interestingly, the analysis of rsc1 deletion in fission yeast reveals a genome-wide 
effect on NDR, yet the effect appears milder than the inactivation of the catalytic 
subunit in S. cerevisiae (compare Figure 2A and 2B). However, the shrinkage of 
NDR when rsc1 is deleted is statistically significant (one-sample Wilcoxon test pval < 
0.01), Figure 3B). To us, these data do not support that the non-essential subunits 
constitute an RSC submodule with specific functions but rather indicates that within 
RSC, the non-essential subunits may have a less prominent structural role than 
essential subunits. In line with this, all the phenotypes reported when inactivating 
RSC, including chromosomal segregation defects, and sensitivity to drugs, are shared 
to various degrees by all mutants (Monahan et al., 2008). 
 
A key role of RSC in mitotic chromosome condensation 
Despite the genome-wide defect observed in NDR formation (Figure 2B), the rsc1 
mutant has a subtle impact on steady-state transcription. Expression alteration effects 
in either direction were seen for only 1.4% of S pombe genes in the rsc1 mutant and 
other non-essential subunit similarly affect the transcriptome (Monahan et al., 2008). 
Interestingly, the third cluster in Figure 2B harbours the highest frequency of genes 
affected in the rsc1 mutant (Figure 3C), including ste11 (Materne et al., 2015; 
Materne et al., 2016). That cluster is characterized by an increase in occupancy over a 
broad region upstream of the TSS that may be typical of highly regulated genes 
relying on larger regulatory sequences, as typically seen for ste11 (Anandhakumar et 
al., 2013). Nonetheless, the main phenotypes of the rsc1 mutant, and the snf21-ts 
mutant for that matter, are cell elongation associated with chromosomes segregation 
defects. Although these phenotypes may result from the reduced expression of 
specific genes, a recent study rather points to a direct role of RSC and nucleosome 
eviction in condensin loading and chromosome condensation (Toselli-Mollereau et 
al., 2016). A genetic screen for functional partners of condensin in fission yeast 
(synthetic lethality with cut3-477 that encodes a condensin ATPase subunit) identified 
alleles of arp9 and snf21 that both showed high frequency of chromatin bridges in 
anaphase (Robellet et al., 2014). Further analyses revealed the preferred localization 
of condensin at, or near NDR and that increased nucleosome occupancy upon RSC 
downregulation is sufficient to decrease condensin binding. These data point to a 
prominent role of RSC is establishing the landscape of condensin binding during 
mitosis by establishing NDR. 
 
In conclusion it appears that the role of RSC in NDR formation is conserved between 
both S. pombe and S. cerevisae. The milder effect observed with the rsc1 mutant in 
fission yeast may be caused by (1) the fact that this subunit is not essential and its 
deletion could only partially impair RSC activity; (2) the presence of an additional 
remodeler involved in NDR formation; (3) the fact that S. pombe lacks ISW1-type 
remodelers that are known to oppose the action of RSC in NDR formation in budding 
yeast (Parnell et al.). Future work will clarify this issue. Biologically, the most 
prominent role of RSC may be to maintain proper chromosome segregation and 
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may extend to kinetochore function, sister chromatid cohesion and DNA repair, in 
addition to its role in promoting transcription (Cao et al., 1997; Hsu et al., 2003; 
Huang et al., 2004; Shim et al., 2007). 
 
 
Bioinformatic analyses. 
TSS annotations for S. pombe were obtained from pombase 
(http://www.pombase.org/, ASM294v2.26) and (Booth et al., 2016). TSS annotation 
for S.cerevisiae was obtained from (Ganguli et al., 2014). Nucleosome genome-wide 
occupancy profiles at 1bp resolution were generated as described (Bauer and 
Hermand, 2012; Drogat et al., 2012; Lenglez et al., 2010; Materne et al., 2015) using 
DANPOS for the S. pombe data or directly downloaded from GEO (supplementary of 
GSE65593) for the S. cerevisiae data (Parnell et al., 2015). 
Nucleosome occupancy ratios were computed as the log2 ratio between treatment and 
control profiles centered at TSS for all protein coding genes. A pseudocount of +1 
was added to both the numerator and the denominator to avoid division by zero. 
Clustering of the nucleosome occupancy ratio was made using the kmeans() function 
in base R with default parameters and k=5 and visualized with the heatmap.2() 
function from the "gplots" package. 
Nucleosome positions were computed for each dataset as the local maximum of 
nucleosome occupancy in a 100 bp window using the localMaximum() function from 
the "MassSpecWavelet" package. Promoter NDR length is computed as the distance 
in bases between the position of the first nucleosome before the TSS and the first 
nucleosome after the TSS. This metric was computed for mutants and wild type 
strains and substracted accordingly to obtain the NDR length difference as in Figure 
3B. 
 
Data access 
 
The nucleosome sequencing data are available in the GEO database under the 
accession numbers GSE84912 (S. pombe datasets) and GSE65593 (S. cerevisiae 
datasets).  
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Figures legends 
Figure 1: Average nucleosome occupancy nearby the TSS in fission and budding 
yeasts  
A. Average nucleosome signals centered on two different fission yeast TSS 
annotations. 
B. Average nucleosome signals centered on TSS in fission yeast and budding yeasts. 
Figure 2: Defects in the RSC remodeler affects NDR formation in both budding 
yeast and fission yeast 
A. The profile of nucleosome occupancy ratios between budding yeast sth1 degron 
(sth1deg) and control strains is presented as an heatmap, where blue represents a gain 
in nucleosome occupancy and red represents a loss within a region ranging from -750 
bp to +750 bp around the TSS at single nucleotide resolution. Rows represent genes 
and are organized into 5 groups by k-means clustering. 
B. Same as in A, except that the fission yeast rsc1 deletion mutant (rsc1�) and control 
strains are presented. 
Figure 3: Comparison of the fission yeast rsc1 deletion mutant and the snf21 
switch-off strains 
A. The profile of nucleosome occupancy ratios between fission yeast rsc1 deletion 
mutant (rsc1�) and control strains on the left panel (note that this panel is identical to 
Figure 2B and repeated here for clarity), and between the fission yeast snf21 switch-
off mutant (tetO-snf21, 3 hours of inhibition, (Materne et al., 2015)) and control 
strains on the right panel are presented as an heatmap, where blue represents a gain in 
nucleosome occupancy and red represents a loss within a region ranging from -750 bp 
to +750 bp around the TSS at single nucleotide resolution. Rows represent genes and 
are organized into 5 groups by k-means clustering. 
B. Box plot representing the difference in NDR lenght between the rsc1� and tetO-
snf21 strains and the corresponding wt strains. Statistical significance was calculated 
by a one-sample Wilcoxon test (pval < 0.01). 
C. Frequency of genes dowregulated (log2 fold change < -0.5, based on (Monahan et 
al., 2008) in rsc1Δ strain sorted by cluster. Cluster 3 includes the ste11 gene and is 
enriched (Fisher’s exact test p-value < 0.05) for genes whose expression is 
downregulated in the rsc1Δ strain. 
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trans-spliced	with	the	SL2	RNA,	we	wanted	to	explore	our	RNA-seq	data	in	search	for	such	
SL	 trans-splicing	 events.	 However,	 as	 no	 tool	 to	 quantify	 trans-splicing	 events	 were	
available,	we	developed	our	own,	and	wanted	to	share	it	with	the	community.	

	
	
ABSTRACT	

The	spliceosomal	transfer	of	a	short	spliced	leader	(SL)	RNA	to	an	independent	
pre-mRNA	 molecule	 is	 called	 SL	 trans-splicing	 and	 is	 widespread	 in	 the	 nematode	
Caenorhabditis	elegans.	While	RNA-sequencing	(RNA-seq)	data	contain	information	on	
such	events,	properly	documented	methods	to	extract	them	are	lacking.	

To	address	this,	we	developed	SL-quant,	a	fast	and	flexible	pipeline	that	adapts	to	
paired-end	 and	 single-end	 RNA-seq	 data	 and	 accurately	 quantifies	 SL	 trans-splicing	
events.	 It	 is	 designed	 to	 work	 downstream	 of	 read	 mapping	 and	 uses	 the	 reads	 left	
unmapped	as	primary	input.	Briefly,	the	SL	sequences	are	identified	with	high	specificity	
and	are	trimmed	from	the	input	reads,	which	are	then	remapped	on	the	reference	genome	
and	quantified	at	the	nucleotide	position	level	(SL	trans-splice	sites)	or	at	the	gene	level.	

SL-quant	completes	within	10	minutes	on	a	basic	desktop	computer	for	typical	C.	
elegans	 RNA-seq	 datasets	 and	 can	 be	 applied	 to	 other	 species	 as	well.	 Validating	 the	
method,	the	SL	trans-splice	sites	identified	display	the	expected	consensus	sequence,	and	
the	 results	 of	 the	 gene-level	 quantification	 are	 predictive	 of	 the	 gene	 position	within	
operons.	 We	 also	 compared	 SL-quant	 to	 a	 recently	 published	 SL-containing	 read	
identification	strategy	that	was	found	to	be	more	sensitive	but	less	specific	than	SL-quant.	
Both	methods	are	implemented	as	a	bash	script	available	under	the	MIT	license	[1].	Full	
instructions	for	its	installation,	usage,	and	adaptation	to	other	organisms	are	provided.	
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ABSTRACT
Background: The spliceosomal transfer of a short spliced leader (SL) RNA to an independent pre-mRNA molecule is called
SL trans-splicing and is widespread in the nematode Caenorhabditis elegans. While RNA-sequencing (RNA-seq) data contain
information on such events, properly documented methods to extract them are lacking. Findings: To address this, we
developed SL-quant, a fast and flexible pipeline that adapts to paired-end and single-end RNA-seq data and accurately
quantifies SL trans-splicing events. It is designed to work downstream of read mapping and uses the reads left unmapped
as primary input. Briefly, the SL sequences are identified with high specificity and are trimmed from the input reads, which
are then remapped on the reference genome and quantified at the nucleotide position level (SL trans-splice sites) or at the
gene level. Conclusions: SL-quant completes within 10 minutes on a basic desktop computer for typical C. elegans RNA-seq
datasets and can be applied to other species as well. Validating the method, the SL trans-splice sites identified display the
expected consensus sequence, and the results of the gene-level quantification are predictive of the gene position within
operons. We also compared SL-quant to a recently published SL-containing read identification strategy that was found to be
more sensitive but less specific than SL-quant. Both methods are implemented as a bash script available under the MIT
license [1]. Full instructions for its installation, usage, and adaptation to other organisms are provided.

Keywords: NGS; RNA-seq; maturation; trans-splicing; sequence analysis

Background
The capping, splicing, and polyadenylation of eukaryotic pre-
mRNAs are well-studiedmaturation processes that are essential
for proper gene expression in eukaryotes [2]. Much less is known
about spliced leader (SL) trans-splicing, a process by which a
capped small nuclear RNA called spliced leader is spliced onto
the 5’ end of a pre-mRNA molecule, substituting for canonical
capping [3] (Fig. 1A). SL trans-splicing has a patchy phyloge-
netic distribution ranging from protists [4] to bilaterian meta-
zoans, including nematodes, rotifers [5], and even chordates [6].
It appears not conserved inmammals, although “non-SL” trans-
splicing events—when exons from two different RNA transcripts
are spliced together—have been detected at low frequency [7]. In

contrast, SL trans-splicing is widespread in the Caenorhabditis el-
egans nematode where there are two classes of SL, SL1 and SL2,
which trans-splice about 70% of the mRNA transcripts. Strik-
ingly, the SL2 trans-splicing is highly specific for genes in po-
sition two and over within operons that range from two to eight
genes expressed from a single promoter [8].

While the function of SL trans-splicing begins to be eluci-
dated [9], its regulation remains unclear. To study this ques-
tion, two main strategies have been proposed to exploit RNA-
sequencing (RNA-seq) data in order to quantify SL trans-splicing.
The first one involves the mapping of the reads to a complex
database containing all the possible trans-spliced gene models
[10, 11]. The creation of such a database requires the in silico
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2 Quantification of trans-splicing events from RNA-seq data

Figure 1: Trans-splicing and RNA-seq. (A) The trans-splicing process. Splice
leader RNA precursors (SL RNA) are small nuclear RNAs cappedwith a trimethyl-
guanosine (TMG). The 5’-region of the SL RNA, including the TMG cap, is spliced
on the first exon of the pre-mRNAs. (B) Reads originating from trans-spliced RNA
fragments do not map end-to-end to the reference genome. (C) The left-most
read (R2) of a read pair does not map end-to-end to the reference. (D) Special
case when the paired-end reads “dovetail” and both reads do not map end-to-
end to the reference due to the SL sequence.

trans-splicing of every SL sequence isoform (12 in C. elegans) to
all the putative trans-splice sites predicted for a gene. In con-
trast, the second strategy does not rely on trans-splice site an-
notation or prediction. Instead, the SL sequences are directly
identified in reads partially mapped to the genome or transcrip-
tome [12-14]. However, no implementation of these methods is
directly available, which prompted us to develop, test, and op-
timize SL-quant, a ready-to-use pipeline that applies the second
strategy to rapidly quantify SL trans-splicing events from RNA-
seq data.

Pipeline overview

In order to search for SL sequences in a limited number of reads,
only unmapped reads are used as input for SL-quant, assuming
that reads containing the SL sequence (or the 3’ end of it) would
notmap on the reference genomeor transcriptome (Fig. 1B). This
implies that a first round of mapping must precede the use of
SL-quant. It must be performed end-to-end in order to guaran-
tee that reads originating from trans-spliced RNA fragments do
not map. In addition to this specification, any bam file contain-

ing unmapped reads can be fed into SL-quant, making it particu-
larlywell suited for subsequent analyses of previously generated
data.

In the case paired-end reads are available, only the un-
mapped reads originating from the left-most ends of the frag-
ments are considered. In addition, we developed an optimized
paired-endmode (-p –paired option) that further limits the search
for SL-containing reads by filtering out the unmapped reads
whose mates are also unmapped. This assumes that only the
left-most read of a pair originating from a trans-spliced frag-
ment would not map due to the SL sequence while the other
one would map (Fig. 1C). This is generally true unless the frag-
ment is so small that the mates significantly overlap with each
other (Fig. 1D).

To identify SL trans-splicing events, the input reads are
aligned locally to the SL sequences with Basic Local Alignment
Search Tool (BLAST) [15]. Reads whose 5’ end belongs to a sig-
nificant alignment (e-value <5%) that covers the 3′ end of the SL
sequence (Fig. 2A, left panel) are considered SL-containing reads.
Then, the SL-containing reads are trimmed of the SL sequence
(based on the length of the BLAST alignment) and mapped back
on the C. elegans genomewith HISAT2 [16]. Finally, the remapped
reads are counted at the gene level with featureCounts [17] to ob-
tain a quantification of the SL1 and SL2 trans-splicing events per
genes.

SL-containing reads identification

We tested SL-quant on the single-end modENCODE 4594 [18]
dataset (2.5 × 106 unmapped reads) and the paired-end
SRR1585277 [19] dataset (1.3 × 106 unmapped left reads) using a
desktop computer with basic specifications. Every run was com-
pleted within 10 minutes using four threads, with a processing
rate of about 106 unmapped reads by 5 minutes.

In order to assess the specificity of the BLAST alignments, we
reasoned that reads originating from a trans-spliced RNA would
align to the 3’ end of the SL sequence from their 5’ end, while
random alignment would start anywhere (Fig. 2A). The fact that
94% of significant alignments were in that specific configuration
indicates good specificity (Table 1 and Fig. 2B). In contrast, we ob-
tained less than 0.3% with randomly generated reads. In paired-
end mode, fewer alignments were found, but a slightly higher
proportion of them (95%) were in proper configuration and con-
sidered SL-containing reads. This was expected given the more
stringent prefiltering implemented in that mode. When consid-
ering only the nonsignificant alignments, we obtained interme-
diate proportions of proper configuration (15%–20%), suggesting
that most, but not all, of those nonsignificant alignments were
spurious.

Despite the C. elegans SL sequences being 22 nucleotides (nt)
long,most alignments cover themon only 10–11 nt (Fig. 2C), with
a preference for 10 nt alignment for SL1-containing reads and
11 nt alignments for SL2-containing reads. This could be caused
by reverse transcriptase drop-off during the library preparation
due to secondary structure and the proximity of the hyperme-
thylated cap at the 5’ end of the SL. Moreover, in classic RNA-
seq library preparation protocols, the second-strand synthesis
is primed by RNA oligonucleotides generated by the digestion of
the RNA-DNA duplex obtained after the first strand synthesis.
This results in truncated dsDNA fragments that do not preserve
the 5’ end of the original RNA fragments [20].
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Figure 2: Configuration of the BLAST alignments. (A) In SL-quant, the BLAST alignments are considered as properly configured if starting from the 5’ end of the
unmapped read and ending at the 3’ end of the SL sequence. (B) Proportion of properly configured alignments out of the significant alignment identified by SL-quant
in single and paired-end (-p) mode on the SRR1585277 dataset, or on 106 random reads in single-end mode. (C) Number of properly configured significant alignments
found by SL-quant on the SRR1585277 dataset (single-end mode) by alignment length on the SL1 or SL2 sequences.

Table 1: Identification of SL-containing reads by SL-quant

Significant alignments Nonsignificant alignments

Dataset Method
Total
reads Input reads Total

Properly
configured Total Properly configured

SRR1585277 SL-quant 40 × 106 1.3 × 106 71, 512 67,021 (94%) 70 211 10,359 (15%)
SL-quant -p 40 × 106 0.9 × 106 67, 463 64,010 (95%) 47 596 9,849 (21%)

modENCODE 4594 SL-quant 30 × 106 2.5 × 106 168, 351 158,529 (94%) 100 139 20,417 (20%)
random SL-quant 1 × 106 1.0 × 106 12, 788 36 (0.3%) 43 501 83 (0.2%)

SL-containing reads are defined as reads with significant and properly configured alignment to the SL sequences (sixth column).

SL trans-splice sites identification

While we designed SL-quant with the idea of quantifying SL
trans-splicing events by gene, it is also possible to use it to
identify the 3’ trans-splice sites at single-nucleotide resolution.
SL trans-splice sites are known to display the same UUUCAG
consensus as cis-splice sites [21], which could be verified with
our method (Fig. 3A, 3B). Previous work described a significant
switch fromA to G after consensus sequence (position +1) for the
SL1 trans-splice sites compared to SL2 trans-splice sites [21]. At
that position, we observed a decreased preference for A for the
SL1 trans-splice sites, but no significant enrichment in G. This
discrepancy could be due to the fact that we identified (and in-

cluded in the consensus) about 20 times more SL1 trans-splice
sites than previously reported.

As SL trans-splice sites (and splice sites in general) contain an
almost invariant AG sequence, we reasoned that non-AG splice
sites were potential “spurious” trans-splice sites. In order to as-
sess the performances of our method, we considered identified
sites bearing the “AG” consensus as true positives (TPs). Recip-
rocally, we considered any other sites identified as false posi-
tives (FPs), althoughwe cannot completely exclude the existence
of nonconsensus splice sites. These reasonable approximations
allow us to characterize our method despite not knowing the
ground truth. Indicating excellent specificity (ability to exclude
FP), 98% of the sites identified by SL-quant display the AG con-
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4 Quantification of trans-splicing events from RNA-seq data

Figure 3: SL-sites consensus sequence. (A) Sequence logo of the sequence environment surrounding SL1 or (B) SL2 trans-splice sites determined by SL-quant on the
SRR1585277 dataset in single-end mode. (C) Proportion of AG sequences in SL trans-splice sites identified by SL-quant on the SRR1585277 dataset with the method used
in Tourasse et al. 2017 [14] and with SL-quant in single-end mode with or without the sensitive option (-s).

Table 2: Performances of SL-quant with various parameters.

Dataset Method Run time
Mapped
SL-containing reads Trans-splice sites

Site is “AG” consensus
(%)

SRR1585277 SL-quant 4 minutes 02 seconds 65,126 6,301 6,149 (98)
SL-quant -p 5 minutes 14 seconds 61,451 6,539 6,402 (98)
SL-quant -s 2 minutes 45 seconds 120,542 8,770 8,254 (94)
SL-quant -s -p 6 minutes 58 seconds 114,948 8,436 7,957 (94)
Tourasse 4 minutes 45 seconds 120,710 8,932 8,260 (92)

modENCODE 4594 SL-quant 9 minutes 51 seconds 146,358 8,247 8,081 (98)
SL-quant -s 3 minutes 10 seconds 258,706 10,735 9,948 (93)
Tourasse 5 minutes 08 seconds 259,284 11,155 9,953 (89)

random SL-quant 3 minutes 20 seconds 53 52 34 (65)
SL-quant -s 1m23s 5,757 5,692 5,612 (99 a)
Tourasse 2m24s 8,890 8,777 5,612 (64)

aThe very high proportion of “AG” sites for the random dataset is an artifact caused by the fact that the reads were generated from randomly sampling the genome
and that all the C. elegans SL sequences end by AG. -p: paired-end mode; -s: sensitive mode.

sensus, regardless of the mode used (single or paired) and the
dataset studied (Table 2).

Comparison with a previous method

We also compared our method with a re-implementation of the
SL-containing read identification strategy previously reported
[14]. Briefly, the unmapped reads whose 5’ end align to the SL
sequences (or their reverse complement) on at least 5 nt with
at most 10% mismatch are considered SL-containing reads. The
alignment is realized with cutadapt [22] that directly trims the SL
sequences from the unmapped reads so they can be remapped
to the genome.

Compared to SL-quant, this conceptually similar method was
faster and identified almost twice the number of SL-containing
reads from the real datasets and 150 times the number of SL-
containing reads from random reads (Table 2). More splice-sites
were identified, but the proportion of spurious (nonconsensus)
trans-splice sites increased almost 5-fold (Fig. 3C).

The method developed in [14] has a higher detection power
but appears less specific than SL-quant. Nevertheless, we con-
sider it an interesting option for applications requiring more

sensitivity (ability to detect TP) than specificity. Therefore, we
decided to re-implement it within SL-quant as an [-s –sensitive]
option with the following enhancement:

(i) The input reads, if strand specific, are aligned to the SL se-
quences only (not their reverse complement).

(ii) With paired-end data in single-end mode, only the left-
most unmapped reads are considered as input.

(iii) With paired-end data in paired-end mode, only the left-
most unmapped reads whose mates are mapped are con-
sidered as input.

These modifications significantly improved the specificity of
the method (although not to the level of SL-quant), with almost
no compromise on sensitivity regarding SL trans-splice site de-
tection (Fig. 3C) or SL-containing read identification (Table 2).

Gene-level quantification

Finally, we tested SL-quant for its ability to predict gene posi-
tion within operons as SL2-trans-splicing is the best predictor of
transcription initiated upstream of another gene [11] (Fig. 4A).
Using the ratio of SL2/(SL1 + SL2) from the SL-quant output as a
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Figure 4: Prediction of gene position in operons. (A)Number of SL1 and SL2 trans-splicing events by genes as calculated using SL-quant. Genes annotated as downstream
in the operons are represented as red dots. (B) Receiver operating characteristic curve analysis using the SL2/(SL1 + SL2) ratio as a predictor of downstream position in
operons for the 5,521 genes with at least one trans-splicing event detected. The number of SL1 and SL2 trans-splicing events by genes was calculated using SL-quant
in single or paired (-p) mode, with or without the sensitive (-s) option. TPR: true-positive rate, FPR: false-positive rate.

predictor of gene positions in operons, receiver operating char-
acteristic curve analysis reveals a high TP rate (>90%) at a 5%
false discovery rate threshold, regardless of SL-quant options
(Fig. 4B). However, when tolerating more FPs, SL-quant in sensi-
tive mode is a superior predictor.

Conclusion

In summary, SL-quant is able to rapidly and accurately quantify
trans-splicing events from RNA-seq data. It comes as a well-
documented and ready-to-use pipeline in which two main op-
tions were implemented to fit the type of input data and the in-
tended usage of the quantification (Fig. 5). Importantly, thiswork
provides a way to test and validate SL trans-splicing quantifica-
tion methods that might serve as a baseline for future develop-
ment of such methods.

Recently, the hypothesis that the SL trans-splicing mecha-
nism originates from the last eukaryotic common ancestor has
been proposed to explain its broad phylogenetic distribution
[23]. Given the number of applicable species, the continuously
decreasing cost of RNA-seq experiments, and the thinner line
between model and nonmodel organisms, it is likely that the SL
trans-splicing will be studied in a growing number of species.
Therefore, a procedure to adapt SL-quant to species other than
C. elegans, requiring only a few steps, is detailed online. As a
proof of concept, we successfully applied SL-quant to six addi-
tional RNA-seq libraries from five species (Table 3). In the near
future, we anticipate that the application of SL-quant to various
datasets might become instrumental in unveiling trans-splicing
regulation in the model organism C. elegans and other organ-
isms.

Methods
We ran SL-quant with four threads (default) on the mod-
ENCODE 4594, modENCODE 4705, modENCODE 4206 [18],
SRR2832497 [24], SRR440441, SRR440557 [25], SRR038724 [26],
and SRR1585277 [19] poly-A + datasets using a desktop com-
puter with a 2.8-GHz processor and 8 GB random access
memory. The C. elegans, C. briggsae, C. brenneri, and C. remanei
reference genome and annotation (WS262) were downloaded

from wormbase [27]. The T. brucei reference genome and an-
notation (Apr 2005 version) were downloaded from Ensembl
[28]. The read mapping steps prior to using SL-quant and at the
end of the pipeline were performed using HISAT2 [16] (v 2.0.5)
with parameters –no-softclip –no-discordant –min-intronlen
20 –max-intronlen 5000. As we noticed adaptor contamination
in the modENCODE 4594 dataset, trimmomatic [29] (v 0.36) was
used to trim them off prior to the mapping. Samtools [30] (v 1.5),
picard [31] (v 2.9), and bedtools [32] (v 2.26) were used to convert
and/or filter the reads at various stages of the pipeline. BLAST+
(v 2.6) [15] was used to align the reads locally to the relevant
SL sequences [33, 34] with parameter -task blastn -word size 8
max target seqs 1. Alternatively, cutadapt (v 1.14) [22] was used
to directly trim the SL sequences from the reads with parame-
ters -O 5 -m 15 –discard-untrimmed. FeatureCounts [17] was used
to summarize re-mapped SL-containing reads at the gene level.
Bedtools [32] was used to summarize mapped SL-containing
reads at the genomic position level and to generate random
reads by randomly sampling the C. elegans genome for 50-nt
segments. Sequence logo were made with weblogo [35]. Finally,
R [36] (v 3.4) was used for analyzing and visualizing the data.

Availability of source code and requirements
Project name: SL-quant
Project home page: https://github.com/cyaguesa/SL-quant
Operating system(s): UNIX-based systems (tested on macOS
10.12.6, macOS 10.11.6, Ubuntu 14.04)
Programming language: Shell, R
Other requirements: The BLAST+ suite (2.6.0 or higher), sam-
tools (1.5 or higher), picard-tools (2.9.0 or higher), featureCounts
from the subread package. (1.5.0 or higher), bedtools (2.26.0 or
higher), cutadapt (1.14 or higher), hisat2 (2.0.5 or higher). Instal-
lation instruction for those requirements is provided online.
License: MIT
RRID:SCR 016205
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6 Quantification of trans-splicing events from RNA-seq data

Figure 5: Recommendations on SL-quant usage. [-s –sensitive]: it provides increased detection power at the cost of some specificity and it is significantly faster. It is
not recommended for applications that are very sensitive to FPs (e.g., trans-splice sites detection) but is an interesting option otherwise (e.g., gene-level quantification
of SL trans-splicing events). [-p –paired]: a more stringent prefiltering reduces the number of reads aligned to the SL sequences. It can only be used with paired-end
reads. It is not recommended when the average fragment size is small (many “dovetail” reads). It can be used in combination with the [-s –sensitive] option.

Table 3: SL-quant can be applied to a wide range of datasets from various species, with varying read length and made with various library
preparation protocols.

Organism Dataset Read length (nt) Total reads Input reads

Mapped
SL-containing
reads

Trans-splice sites
(% AG)

Caenorhabditis
elegans

SRR1585277 76 40 × 106 1.3 × 106 120,542 8,770 (94)

modENCODE 4594 76 30 × 106 2.5 × 106 258,706 10,735 (93)
SRR2832497 (∗) 41 4 × 106 1.8 × 106 16,307 4,882 (87)

Caenorhabditis
briggsae

SRR440441 42 11 × 106 5.7 × 106 117,738 8,382 (93)

SRR440557 42 12 × 106 4.8 × 106 176,205 11,495 (92)
Caenorhabditis
brenneri

modENCODE 4705 76 4 × 106 0.4 × 106 74,689 8,891 (97)

Caenorhabditis
remanei

modENCODE 4206 76 9 × 106 1.8 × 106 248,335 11,223 (92)

Trypanosoma brucei SRR038724 35 8 × 106 2.2 × 106 40,320 6,703 (89)

The datasets modENCODE 4594, SRR2832497, and SRR038724 are single end, the others are paired. The asterisk (∗) for the SRR2832497 denotes that the second-strand
synthesis was made using a ligation-based protocol instead of the classic random priming protocol. All datasets were analyzed with the same SL-quant parameters:
single-end mode with the -s –sensitive option

Availability of supporting data
The datasets supporting the results presented here are available
in the modMine or the European Nucleotide Archive (ebi-ENA)
repositories, under the identifiers modENCODE 4594, mod-
ENCODE 4705, modENCODE 4206, SRR1585277, SRR2832497,
SRR440441, SRR440557, SRR038724. Snapshots of the code and
other supporting data are available in the GigaScience repository,
GigaDB [1].

Additional file
Figure S1. (A) Number of properly oriented significant align-
ments found by SL-quant on the SRR2832497 dataset (single-
end mode) by alignment length on the SL1 or SL2 sequences.
(B)Number of properly oriented significant alignments found by
with the method used in Tourasse et al, 2017 on the SRR1585277
dataset by alignment length on the SL1 or SL2 sequences.
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