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ABSTRACT

English

The progress made during the last 20 years in terms of gene sequencing and editing have allowed
cancer treatment techniques to take a bold step forward. Indeed, the study of cell signaling and
gene regulations mechanisms now allows to better comprehend various cancers development and
thus, propose more efficient and targeted treatments than in the past. But the path between
the biology and medical worlds requires the analysis, by specialists, of a large amount of data to
be able to provide doctors with precise and easily exploitable information. This thesis tries to
lay down the foundation of an expert system able to automatically treat this information and
help specialists in their analysis.

Français

Les avancées faites ces 20 dernires années en termes de séquencement et d’édition génétique ont
permis une progression spectaculaire des méthodes de traitement du cancer. En effet, l’étude de
réseaux de signalisation cellulaire et des mécanismes de régulation génétique permet maintenant
de mieux appréhender le développement de nombreux cancers et ainsi de proposer des traite-
ments plus efficaces et plus ciblés qu’auparavant. Mais le passage entre le monde biologique
et le monde médical nécessite l’analyse, par des spécialistes, d’une grande quantité de données
afin de pouvoir fournir aux médecins des informations précises et facilement exploitables. Ce
mémoire tente de poser les bases d’un système expert capable de traiter automatiquement ces
informations afin d’aider les spécialistes dans leur travail d’analyse.
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GLOSSARY

A

Aerobic Characterized by the presence of oxygen. 17

Allele Specific variation of a gene. 4

Amino acid Organic molecule considered as the “building blocks” of the proteins in the human
body. 5

Anaerobic Characterized by the lack of oxygen. 17

Antigen Molecule capable of inducing an immune response. 18

Apoptosis Form of programmed cell death. 11

Apoptotic Referring to apoptosis. 11

C

Chromosome Long strand of DNA containing multiple genes. 4

D

Differentiation Mechanism through which a cell changes from one cell type to another. 6

DNA DeoxyriboNucleic Acid is present in nearly all living organisms as the main constituent
of chromosomes. It is the carrier of genetic information. 4

E

Epithelial Located in the outer surface of organs or delimiting the inner surface of a cavity. 13

Extravasation Leakage of a content from inside a vessel to the extravascular tissue. 14

G

Gene Sequence of DNA encoding proteins. 3

Gene pool Set of all the genetic information of a species. 4

Genome The entire repertoire of an organism’s genetic information. 3
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Genotype Type and arrangements of the genes of a living organism. 3

I

Intravasation Process through which cancer cells enter blood or lymphatic vessels. 14

M

Macroscopic Large enough to be seen without optical magnifying instruments. 13

N

Neoplastic Related to the uncontrolled growth of abnormal tissue. 15

Nucleotide Base element of nucleic acids like DNA. The four types of nucleotides that compose
DNA are Adnine (A), Cytosine (C), Guanine (G) and Thymine (T). 12

O

Oncogenic That causes the formation of tumors. 3

P

Parenchyma Ensemble of cells that constitute the functional part of a tissue, in constrast with
the stroma. 13

Phagocyte Any cell that ingests and destroys foreign particles, bacteria, and cell debris. 11

Phenotype Set of visible, physical characteristics of a living organism. 3

Proteins Large biomolecules composed of one or more chain of amino-acids. They are respon-
sible for a vast array of actions in the human body. 5

S

Stroma In a tissue, environment of the cells with a structural or connective role (blood vessels,
connective tissue...). 10
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CHAPTER

1

INTRODUCTION

The last 20 years have seen the apparition and development of revolutionary technologies in the
field of genetics. Two of the most important ones are high-throughput sequencing, that allows
faster and cheaper DNA sequencing [1], and a gene editing tool named CRISPR, allowing highly
efficient DNA editing [2]. The combination of these technologies provided cancer researchers
with the tools to analyze thousands of cancer genomes and generate precise genetically modified
systems, allowing them to validate the consequences of genetic mutations on cancer phenotypes.

These technologies and the tremendous progress they have fostered in understanding cells sig-
naling pathways and gene regulatory networks have also opened the road for a new approach
on cancer treatment. The sequencing of cancer cells’ DNA now allows biologists to map these
cells’ gene regulatory networks, and the analysis of these networks gives precious insights on
treatment prescriptions and their potential effects.

But to infer treatment options from these networks and generate relevant data for oncologists,
a lot of work is necessary. Biologists need to find out which types of drugs could be used
to activate or inhibit the right genes expression in cancer cells to stop the tumor progression
without compromising the integrity of the other healthy cells in the body. They then need to
run simulations on models of these gene regulatory networks, including various combinations of
these drugs, to find out which combinations have the best chance to work. Also, because some
aspects are still not well understood, the output of these analyses is refined based on statistics
of the efficiency of previous similar treatments.

This study lays out the foundation of an expert system able to help biologists in this work so that
the time cost of these analysis can be reduced. The focus is put on two specific use cases: the
simplification of gene regulatory networks, so that they can be more human readable, and the
inference of the drugs that could have a positive effect on the analyzed cancer cells. The result
is a portable .NET Core library with the ability to perform these two tasks based on qualitative
models of the networks and the usage of logical regulatory networks. A test application to run
this library is also provided.

This document is structured as follows. Chapter 2 introduces the necessary biological back-
ground to understand the way cancer behaves and the development of targeted therapy. Chapter
3 then goes more into details over the goal of the system developed during this work. Chapter
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4 gives an insight on the current state of the art in terms of software, data encoding standards
and data availability. Chapter 6 then briefly introduces the various modeling and simulation
techniques used to work with gene regulatory networks. Chapter 5 details the structure, archi-
tecture and technologies of the application while Chapters 7 and 8 then describe the process
and techniques used to implement both use cases of the system. Finally, Chapter 9 discusses
the strengths, weaknesses and future perspectives of the system while Chapter 10 exposes the
conclusions of this work.
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CHAPTER

2

BIOLOGICAL BACKGROUND

This chapter introduces the necessary biological background to understand the aim of this work.
The beginning of the chapter is a reminder of basic principles of cell and organism genetics and
biology. Then, cell signaling, signaling pathways and gene regulatory networks are explained, as
well as their role in cancer development. The reader will then come to understand how gene mu-
tations can impact these networks and induce oncogenic behaviors. Finally, cancer treatments
will be discussed with a focus on targeted treatments based on patients’ genetic information
analysis.

Note that this chapter is not an exhaustive explanation of all the biological concepts behind
cancer as they are known. It aims to provide the inexperienced reader with enough information
to understand the concepts that drive this work.

2.1 Introduction to cell and organism biology

A basic understanding of cells biology and genetics is important to understand how normal cells
work and how they can evolve and grow to finally become a tumor. This section introduces the
necessary prerequisites before going further into details.

2.1.1 Basics of genetic

In the 1860s, Gregor Mendel’s work on the breeding of pea plants discovered many of the basic
rules of genetics. Of course, some of these rules have been somehow updated by later researches
to fit all living cells, but most of his work still matches today’s understanding [3].

Amongst other things, he observed that the transfer of genetic information from an organism to
its offspring could be explained by a set of rules, suggesting that the entire genetic properties
of living organisms (its genome) was organized as a collection of discrete, separable information
packets called genes [3].

His work also brought to light the notions of phenotype and genotype, the former being the set
of visual characteristics of an organism, and the later, the type and arrangements of its genes
(e.g. blue eyes is a phenotype, while the specific sequences in the genes encoding eyes color is
the genotype). He discovered that the genotype of an organism could be divided in a set of
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independent genes and that the chromosomes actually carry two sets of the same gene (except
for the sex chromosomes) [3].

These two sets, called alleles, can carry different interpretations of the gene. In this case the
organism would be called heterozygous for that gene, in opposition to an homozygous organism
carrying two identical alleles of the gene [3]. In case of heterozygous organisms, the phenotype
encoded by one allele will be dominant and the other one recessive.1

Here is a practical example of dominance and recessiveness in cancer development (Figure 2.1).
Some people carry a defective allele of the gene encoding proteins involved in DNA repair. This
allele is relatively rare and behaves recessively so its phenotype is not apparent. But if two
heterozygous people, carrying the defective allele mate, one fourth of their offspring, on average,
will inherit two defective alleles. These people, now homozygous for mutant allele, will then
lack the DNA repair function the normal gene should express and be more propitious to develop
certain kinds of cancers [3].

Figure 2.1: Genotype, phenotype and heredity. Some individuals can carry a dominant
allele, encoding the DNA repair function, and a recessive mutant allele, whose DNA repair
function is impaired. If two of these individuals mate, one fourth of their offspring will end
up with both mutant alleles and express a deficient DNA repair phenotype [3].

2.1.2 Genes mutations and Darwinian evolution

Something Mendel’s research did not explain is how multiple alleles of a gene could appear.
They seemed to just be present in the gene pool of a species. But in the 1920s and 1930s, it
appeared that the alteration of genes and creation of new alleles was due to mutations. Genetic
mutations occur throughout the lifespan of a species, continuously increasing the number of
different alleles in the genome of its members [3].

This implies that the older a species is, the more heterogeneous its gene pool is and the more
variety of alleles in its genome it has. Humans for example, being a relatively young species of
<150,000 years old, have an alleles count three time lower than chimpanzees. It can then be

1This is not completely accurate. Later research will demonstrate that the alleles of some genes can be co-dominant,
their phenotype thus being a blend of the two alleles expressions. They can also be dominant but not expressed because
their expression depends on other genes in the organism [3].
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inferred that chimpanzees have been around for ∼ 450,000 years [3].

Although, while this is theoretically true, the reality is slightly more complex. These continuous
genetic mutations are somehow “regulated” by the rules of natural selection described by Charles
Darwin. Indeed, some alleles may confer upon individuals carrying them better survivability,
while others will be expressed as some sort of handicap. Their carriers will then have more
difficulty surviving (if they can survive) and the allele will probably disappear completely from
the gene pool [3].

Also, that does not mean that these mutations necessarily change the individuals, because
not all mutations imply a change in the organism phenotype. Research has shown that, in
the ∼ 21,000 genes that compose the human genome, only ∼ 3.5% carry biologically relevant
sequences, impacting our phenotype. This means that only mutations occurring in these 3.5%
are subject to natural selection while countless mutations in the so-called “junk DNA” survive
in our gene pool and have absolutely no impact on individuals’ phenotypes (see Figure 2.2) [3].

Figure 2.2: Neutral mutations and evolution. Mutations that occur on a coding sequence
(red) of the DNA (left) can result in a defective phenotype and compromise the organism
ability to survive. The defective allele would then be lost from the species gene pool. On the
contrary, mutations occurring on the non-coding part (yellow) of the DNA do not express
any phenotype. Therefore, most of the time, they are preserved in the species gene pool [3].

2.1.3 The cellular and organismic phenotypes

What also lacks in Medelian genetics, is the explanation of how genes create cellular and organ-
ismic phenotypes. In other words, how can the information stored in genes influence the way
cells look and behave.

The basic concepts to answer that question where first introduced in 1944, when DNA was proven
to be the chemical entity in which genetic information is stored. In the following twenty years,
Watson and Crick elucidated the double-helical structure of DNA [4] and it became clear that
the sequence of amino acids in proteins are determined by the sequences of bases in the DNA [3].

These proteins, once synthesized, create phenotype in multiple ways. The ones within cells will
determine the behavior of these cells as an entity, while the ones secreted in the space between
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cells will form the extracellular matrix (ECM) that ties cells together to form complex tissues.
Proteins can, for example, act as enzyme, catalyzing chemical reactions inside cells, or they can
contract and create cellular movement or muscle contraction [3].

2.1.4 Cell Signaling

Communication inside and between cells can be seen as an electronic integrated circuit where
transistors are replaced by proteins [5]. The term cell signaling is used to talk about the different
intra- and extra-cellular communication channels. In this work, focus will be put on intra-cellular
signaling and the way signals from cell surface receptors are transmitted and interpreted inside
the cell.

Figure 2.3: The human EGF receptor (HER) signaling network. Growth factors interacts
with cell surface receptors that transmit signals inside the cell. These signals are then
processed by a complex protein network until they reach the transmission factors in the
nucleus. Transmission factors then express their associated genes resulting in a variety
phenotypes [3, 6].

Cells in our body all carry the same, complete, genetic information in their chromosomes. But
that does not mean all cells are the same. Muscle cells do not behave the same way as skin
cells or bone cells. Only the relevant part of their genes is expressed so that they work properly
in their environment. This is achieved by gene expression regulation. But regulation does not
only induce cell differentiation. It is also how cells can react to their environment, determining
whether they need to grow, die or produce a specific protein.

The mechanism usually works as follow:

1. A cell receives an external signal via its cell surface receptors.
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2. This signal triggers a chain reaction in a complex protein network, each protein either
activating or inhibiting others.

3. This signal finally activates Transcription Factors (TFs), a special kind of proteins that
have the ability to express or repress a particular gene according to their type.

4. The expressed gene will then result in a particular phenotype or it may produce another
protein that will trigger the expression of other genes.

Cellular communication is usually divided into two main types of networks:

Signaling Pathways, representing the protein networks that handle the transmission of signals
from extra-cellular receptors to the TFs on the surface of the nucleus.

Gene Regulatory Networks, representing the complex interactions between TFs, the genes
they express or repress and the resulting phenotypes.

Both these networks are usually inferred from the analysis of gene sequences and validated via
experimentations [7]. The complexity of the interactions in both networks has resulted in the
separated study of signaling pathways and gene regulatory networks. But only the combina-
tion of both can fully explain, which and how extra-cellular signals can impact a specific gene
expression [8, 9]. An example of such signaling mechanism is illustrated in Figure 2.3

2.1.5 The cell cycle

The cell cycle is the succession of stages through which a cell passes from one cell division to
the next. It consists of five phases named G0, G1, S, G2 and M (Figure 2.4).

The G0 phase is a resting phase, usually called quiescent or senescent state2. In this phase,
the cell is just in stand by, until a signal forces it to enter G1 and start a new cycle, or
maybe differentiate [3].

The G1 phase is the first growth phase. During this phase, cellular content, excluding the
chromosomes, is duplicated. At the end, a first checkpoint can prevent the cell from
entering the S phase, for example if DNA damage has been detected, thus blocking until
DNA is repaired or if the cell does not have enough nutrients to complete the cycle, in
which case it will also block until these nutrient levels are high enough [3].

The S phase (synthesis phase) is the phase during which the DNA is replicated. During this
phase, a second checkpoint ensures that the DNA has been properly replicated [3].

The G2 phase is the second growth phase. The cell gets ready to enter the M phase and a
third checkpoint ensures that the S phase was properly completed [3].

The M phase contains the mitosis and the cytokinesis. The mitosis is itself divided in the
following four sub-phases:

1. The prophase, during which the chromosomes condense so they become thicker [3].

2. The metaphase, during which they are aligned along the cell central axis and the
nuclear membrane disappears [3].

3. The anaphase, where the two halves of each chromosome (the chromatides) are split
and pulled apart to the two opposite poles of the cell. During this phase, a last
checkpoint blocks the progression if all the chromosomes are not properly split and
divided across the cell [3].

2While quiescence and senescence are sometimes used indistinctly in the literature, they are in fact two different cell
states, the main difference being that senescence is irreversible while quiescence is not [10, 11].
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4. The telophase, where the new chromosomes de-condense and a new nuclear mem-
brane forms around each set [3].

Finally, when the cell enters cytokinesis, it is actually divided in two daughter cells that
will either enter the G0 state or start a new growth and division cycle themselves [3].

Figure 2.4: The cell active cycle starts at G1, the first growth phase, through which the
cell will advance based on external signals until it reaches the restriction (R) point. After
this point, the cycle will continue solely based on internal signals. If it passes the first
checkpoint, the cell will continue its way through the S phase during which another DNA
damage checkpoint will occur. Once that checkpoint passed, it will enter the second growth
phase G2, at the end of which a third checkpoint will test its ability to enter the M phase.
During this last phase, once the fourth checkpoint is passed, the cell will go through mitosis
and divide. After the division, the daughter cells will either enter the inactive state G0 or
start a new cycle [3].

2.1.6 The cell cycle clock

The cell cycle clock is a network of proteins that receives multiple signals, originating both from
inside and outside the cell, computes them and regulates whether the cell will enter the active
cell cycle phases or become quiescent (Figure 2.5).It also provides the necessary information for
the cell to pass the multiple checkpoints in the active cell cycle and complete its growth and
division. If the cell is in G0, the cell cycle clock will also determines if it will differentiate or
not3 [3]). Note that, while the quiescent state is reversible, some cells leave the active cell cycle
irreversibly, giving up all chance to go back to the G1 phase and start a new active cycle. This
state is then called post-mitotic [3].

3Cellular differentiation is the process during which unspecialized cells specialize, changing their genes expression to
endorse different roles.
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Figure 2.5: The Cell Cycle Clock. A network of proteins regulates cells behavior. Based
on intra- and extra-cellular signals, it forces the cell to go in a quiescent state or to enter
the active cell cycle. It also controls the progression of the cell throughout this cycle [3].

The only part where the cell cycle clock is influenced by external signals is from the start of G1

until nearly the end of G1. During this time, the clock is sensible to growth and anti-growth
signals, thus allowing it to either continue to the S phase or enter a quiescent state. After this
point, called restriction (R) point (see Figure 2.4), the cell is committed to complete the rest
of the cycle autonomously. The clock will only keep working based on intracellular signals to
pass all the breakpoints between the end of G1 and the cytokinesis. If the cell is not able to go
through the R-point, it will either remain in G1 or go back to G0 [3].

2.2 The hallmarks of cancer

In 2000, in an article entitled “The Hallmarks of Cancer” [5], Douglas Hanahan and Robert
A. Weiberg first introduced a set of rules that, according to them, governs the transformation
of any human cell into a malignant tumor. Their theory is that the genotype of every can-
cer cell is the result of six alterations: self-sufficiency in growth signals, insensitivity to
growth-inhibitory signals, evasion of apoptosis, limitless replicative potential, sus-
tained angiogenesis, and tissue invasion and metastasis (Figure 2.6).

Roughly ten years later, Hanahan and Weinberg published an updated version of their famous
review entitled “The Hallmarks of Cancer: Next Generation” [11]. In this article, they explain
how the six hallmarks described a decade ago are now confirmed, adding nonetheless new details
and new discoveries about them in the past decade. They also introduce two new emerging hall-
marks: evasion of immune destruction and cellular energetics deregulation; and two
enabling capabilities: genome instability and mutation and tumor-promoting inflam-
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mation (Figure 2.10).

This section explains each of these hallmarks and enabling capabilities, how they behave com-
pared to normal cells, how they can be acquired by cancer cells and, when relevant, how they
are related to signaling pathways and gene regulatory networks.

Figure 2.6: The six basic hallmarks of cancer. In 2000, Douglas Hanahan and Robert A.
Weiberg the first hallmarks of cancer, a set of rules governing the transformation of any
human cell into a malignant tumor. [5]

2.2.1 Self-sufficiency in growth signals

To be able to start proliferating, normal cells require external signals. These signals, materialized
by growth factors, are usually generated by other cells and transmitted into the cell via ECM
receptors. But somehow, cancerous cells acquire the ability to mimic these signals in one way
or another [5]. There are four simple strategies for achieving this autonomy:

Alteration of extracellular growth signals. As stated previously, most growth factors are
produced by one cell type to stimulate the proliferation of another. But many cancer cells
acquire the ability to produce their own growth factors, thus creating a positive feedback
signaling loop [5].

Alteration of the transcellular transducers of these signals. This can be achieved in two
ways. Either cancer cells can change the ECM receptors they express to favor progrowth
signals. Or, receptors overexpression can make them become reactive to lower levels of
growth factors than usual to trigger proliferation [5].

Alteration of the intracellular circuits that translate those signals into action. The al-
teration of signaling pathways within cancer cells can cause other receptors information to
be misinterpreted as growth signals [5].

Stimulation of normal cells within the stroma. Research also determined that cancer cells
can stimulate normal cells within the tumor-associated stroma to supply them with various
growth factors [11] [12].

No matter which one of these 4 strategies is used by a given tumor, they all imply changes in
cell signaling and genes expression regulation.
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2.2.2 Insensitivity to anti-growth signals

In normal tissues, multiple growth-inhibitory signals can be transmitted to a cell so that the cell
proliferation cycle is stopped. These signals are transmitted via pathways that interact with the
cell cycle clock, during the G1 phase of the cycle when cells monitor their external environment
to regulate their progression toward growth, quiescence, or to a postmitotic state [5]. In order
to thrive, cancer cells must evade these signals to be able to keep growing.

Many antiproliferative signals rely on the actions of tumor suppressor genes. The two main
tumor suppressors encode the RB (retinoblastoma-associated) and P53 proteins. These proteins
play a major role in two cellular regulatory pathways that can trigger cells proliferation or ac-
tivate senescence and apoptotic (see Section 2.2.3) programs [11].

Disruptions in the RB and P53 pathways can then render cells insensitive to antigrowth signals,
blocking the progression of the G1 phase of the cell cycle and preventing the P53 protein to
trigger apoptosis, thus allowing the cells to multiply endlessly (see Figure 2.7) [5, 11].

2.2.3 Evading cell death

Normal cells are subject to apoptosis. Basically, it’s a programmed cell death that can be trig-
gered by a variety of signals. It causes the cell to be progressively disassembled and consumed
by its neighbors and phagocyte cells [5, 11]. The cell apoptosis actors can be divided in two
classes: the sensors and the effectors. The sensors monitor the extra and intracellular environ-
ment for conditions that influence the cell fate, generating signals accordingly. Extracellular
receptors bind survival or death factors while intracellular sensors monitor the cell’s well-being
by detecting abnormalities like DNA damage, signaling imbalance, survival factor insufficiency,
hypoxia...These signals then regulate the second class of components, potentially triggering the
cell apoptotic death [5].

In normal cells, two of the most common apoptosis-inducing stresses are elevated levels of
oncogene signaling and DNA damage associated with hyper-proliferation (see Section 2.2.4)
[11]. Resistance to apoptosis can then be acquired by cancer through multiple strategies:

Loss of proteins functions. Most common is the loss of P53 tumor suppressor function, elim-
inating this critical damage-sensor from the apoptosis pathways [11].

Changes in signals expression. By increasing expression of anti-apoptotic regulators or sur-
vival signals, or by down-regulating pro-apoptotic factors, cancer cells can acquire the
ability to evade apoptosis.

Alteration of circuitry. Cell death evasion can also simply result from a “short-circuit” in
cell death related signaling pathways.

Also, while apoptosis and the way cancer cells acquire the ability to avoid it were already well
understood in the early 2000s, new conceptual advances involving other forms of cell death have
been discovered [11].

Autophagy. Like apoptosis, autophagy is a reaction that can be induced in certain states of
cellular stress, the most obvious being nutrient deficiency usually experienced by cancer
cells. It enables cells to break down some of its components (such as ribosomes and
mitochondria) and recycle them so they can be used for energy metabolism. Like apoptosis,
autophagy relies on regulatory and effectors components. This is then another barrier to
break down for cancer cells to proliferate [11].

Necrosis. Unlike during apoptosis or autophagy, necrotic cells become bloated and explode,
releasing their contents in their environment. Amongst other things, they also release pro-
inflammatory signals, giving them the ability to alert and attract inflammatory cells. The
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function of these cells is to detect tissue damage and remove associated necrotic debris. But
evidence suggests that inflammatory cells can foster angiogenesis, cancer proliferation, and
invasiveness (see Section 2.2.8). Additionally, necrotic cells can release bioactive regulatory
factors that stimulate surrounding viable cells to proliferate [11]. As cell death by necrosis
is clearly under genetic control in some circumstances, cancer cells may gain advantage in
tolerating some degree of necrotic cell death. It would allow them to attract inflammatory
cells that bring growth factors to the surviving neighbor cells [11].

Figure 2.7: Intracellular signaling networks regulate the operations of cancer cells. They
can be seen as an elaborate integrated circuit that has been reprogrammed within cancer
cells to regulate the hallmark capabilities. Separate sub-circuits, here represented in different
color fields, are specialized to regulate each capability. This is a simplistic view because there
is considerable crosstalk between these sub-circuits, and also because these sub-circuits are
all responsive to signals emitted by other cells and the tumor micro-environment [11].

2.2.4 Limitless replicative potential

At the ends of chromosomes, telomeres, composed of multiple repetitions the same six nu-
cleotides chain (TTAGGG) [13], protect these chromosomes from end-to-end fusion that could
render them unstable and threaten the viability of the cell [11]. Indeed, during DNA replication,
normal cells are not able to completely duplicate the end of DNA [13]. This implies that, based
on the length of its telomeric DNA, a cell can only go through a limited number of divisions
before its telomeres are too eroded to play their protective role [11].

Cells propagation in cultures show that repeated cycles of cell division usually end up inducing
senescence, an irreversible quiescent-like state. The few cells that manage to circumvent this
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barrier end up in a crisis state resulting in their death via apoptosis4 [5].

But in cancer cells, both these mechanisms must be evaded. They need to acquire replicative
immortality. This ability is achieved by maintaining a telomeric DNA long enough to avoid
triggering senescence or apoptosis. Two mechanisms allow this:

Telomerase expression upregulation. Telomerase is a specific protein whose function is to
add new telomere repeat segments to the end of DNA. It is usually absent in normal cells
(except for stem cells) but it has been proven to be expressed in the vast majority (around
85%) of cancer cells [5]. By continuously extending the length of telomeres, telomerase can
counter natural telomeres erosion and grant cancer cells the limitless replicative potential
they need.

Telomere maintenance mechanism. The other 15% of cancer cells seem to have acquired
the ability to maintain their telomere length by a mechanism called ALT (Alternative
Lengthening of Telomeres) [14, 5]. This mechanism is still poorly understood but it seems
to involve homologous-directed DNA recombination; a mechanism through which broken
DNA is repaired using another homologue piece of DNA [15].

2.2.5 Sustained angiogenesis

Like all tissues, tumors need nutrients, oxygen and the ability to evacuate metabolic wastes and
carbon dioxide [11]. This requires that all cells be located within 100 µm of a capillary blood
vessel [5]. In normal tissues, this is insured by a coordinated growth of vessels and parenchyma.
This dependence would let presume that proliferating cells within a tissue would have the ability
to encourage blood vessels growth. But studies show otherwise. Tumors initially lack this ability
an need to acquire it in order to reach a larger size.

Angiogenesis, the sprouting of new vessels from existing ones, is the process that addresses
this need. This process is usually active during embryogenesis and development but, once nor-
mal vasculature is in place, it becomes mostly quiescent. Only exceptions in the adult are
wound healing and female reproductive cycle, two physiological processes where angiogenesis is
transiently turned on. In tumor tissues though, this process is almost permanently activated,
sustaining constant expansion and allowing cancer cells to form macroscopic tumors [11].

Of course, this mechanism does not only depend on cancer cells. To grow new vessels, the
tumor-associated stroma needs to recruit other cell types from the body, In the same way as it
occurs during wounded tissues healing. Therefore, the whole process actually relies on the same
procedures implied in wound healing [3]: he release of multiple factors to express and regulate
genes responsible for orchestrating new blood vessels growth and repress angiogenesis inhibitors.

2.2.6 Tissue invasion and metastasis

The vast majority of malicious cancers take place in epithelial tissues. They are called carcino-
mas. These tissues are composed of thin sheets of epithelial cells, atop complex layers of stroma.
These two environments are separated by a specialized type of ECM called the basement mem-
brane, composed by proteins secreted by both epithelial and stromal cells. Tumors begin on
the epithelial side of the basement membrane and are considered benign as long as they remain
on this side. But eventually, carcinomas manage to breach the basement membrane, starting
invasion and becoming malignant. This is the first step of what is called the invasion-metastasis
cascade [3].

4Recent experiments have shown that senescence as a result of excessive duplications can be delayed and possibly
eliminated by improved cell culture conditions, leaving the cells proliferate until crisis state. This suggests that senescence
might in fact not be a barrier to limitless replicative potential but only the apoptosis triggered by the crisis state [11]
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This multi-step process usually happens in late stages of tumors development and involves a
succession of biological changes (see Figure 2.8) [11].

1. Local invasion. First, benign carcinomas breach the basement membrane and start in-
vading the nearby stroma [3].

2. Intravasation. Once present in the stromal side of the membrane, cancer cells access
blood and lymphatic vessels and move through their walls [3].

3. Transport. Then, once in the vessels, cancer cells travel through blood or lymph to other
areas in the body. To do so, they need to be surrounded and escorted by platelets that
protect them from being teared apart by the blood flow [3].

4. Arrest: Due to their important size, especially if they are covered by platelets, cancer
cells rapidly find themselves trapped in small blood vessels, most of the time in the lungs
[3].

5. Extravasation. Using various techniques, cancer cells then have to find a way to go
through the vessels walls again and arrive in the parenchyma of a tissue [3].

6. Formation of micro-metastasis. Once there, if the conditions are favorable, cancer cells
will form new microscopic metastases [3].

7. Colonization. Finally, some of these metastases will manage to adapt to their new envi-
ronment and start to grow uncontrollably until they reach a macroscopic size [3].

Figure 2.8: Invasion-metastasis cascade. First, the carcinoma breaches the basement
membrane and invades the nearby stroma, then some of it cells access blood and lymphatic
vessels (intravasation). They are then transported through thee vessels until they get stuck
in micro-vessels of other organs. Finally, they get out of these vessels (extravasation) and
grow to become metastasis [3].

In 2000, the mechanisms behind these processes where poorly understood. But in the last two
decades, even though some behaviors still remain unexplained, research has greatly improved the
understanding of this complex hallmark capability mechanisms [11]. Here is a brief explanation
of some of these mechanisms:
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Key roles of cell adhesion molecules. A characteristic alteration of carcinoma cells is the
loss of E-cadherin, a key cell-to-cell adhesion molecule. In healthy tissues, E-cadherin
helps assemble epithelial cell sheets and maintains the quiescence of the cells within these
sheets [11]. Studies have shown that downregulation and, sometimes, inactivation of E-
cadherin due to mutations was frequently observed in human carcinomas, supporting the
theory that it is an important barrier to invasion and metastasis. Additionally, expression
of other cell-to-cell and cell-to-ECM adhesion molecules has been proven altered in some
highly aggressive carcinomas. Though, inversely, adhesion molecules normally associated
with the cell migrations that occur during embryogenesis and inflammation, like N-cadherin
for example, are often upregulated [11].

The epithelial-mesenchymal transition (EMT) program regulation. EMT is a devel-
opment regulatory program. It is known to be implicated in the epithelial cells transfor-
mation giving them the ability to invade. This program is regulated by a set of transcription
factors (TFs) that are also related to migratory processes during embryogenesis. Evidence
indicates that the expression of these TFs in cells destined to pass through EMT is triggered
by signals sent by neighboring cells [11].

Contribution of stromal cells. It becomes evident that crosstalk between cancer cells and
surrounding stromal cells is essential for cancer cells to acquire invasion and metastasis
capabilities. For example, some cells present in the tumor stroma have been found to
secrete CCL5 (a protein also known as RANTES) in response to a signal released by
cancer cells. This protein then activates invasive behavior on the cancer cells. This kind
of behavior supports the theory that cancer phenotypes cannot be understood just by
studying the genome of tumor cells. These observations also suggest that cancer cells, once
they have invaded new tissues, might be able to revert to a non-invasive state as they do
not benefit anymore from the invasion/EMT-inducing signals provided by their previous
stroma [11].

Other types of invasion. Two other types of invasion, different from EMT, have been identi-
fied and implicated in the invasion-metastasis cascade. The first one, collective invasions,
involves cancer cells moving as a group. The second one, less clear, is a form of invasion
where cancer cells show morphological plasticity, enabling them to go through existing
interstices in the basement membrane instead of clearing a path for themselves [11].

2.2.7 Genome instability and mutation

At this point, it is now clear that tumors development depends largely on a succession of muta-
tions in the cancer cells genome. In many ways, it can be likened to Darwin’s theory of evolution.
Every genetic mutation has a chance to confer neoplastic cells a selective advantage enabling,
step by step, their dominance in a local tissue environment [11]. But there is not one path to
cancer. As illustrated in Figure 2.9, many different combinations of selective mutations enabling
one of the hallmarks of cancer can lead to malignant tumor development.

Nevertheless, the common denominator of all cancers is mutation. The more genetic mutations
a cell undergoes in a generation, the higher is the probability to unlock enough hallmarks to
become a malignant tumor. But, usually, genome maintenance systems included in our cells,
responsible of detecting and fixing deficient DNA ensures that the rate of spontaneous mutations
are very low. It means that, one of the first necessary steps to give a cell a chance to become
cancerous, is to undergo some specific mutations; mutations that break down its genomic main-
tenance and integrity monitoring systems, forcing genetically damaged cells into senescence or
apoptosis, or mutations on genes responsible for intercepting mutagenic molecules before they
have damaged the DNA [11]. For example, mutations affecting the TP53 gene, responsible for
the expression of the protein P53.
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More recently discovered, another major source of genomic instability is the loss of telomeric
DNA. As stated in section 2.2.4, once the amount of telomeric DNA is insufficient to protect the
chromosomes, it can lead to instabilities, amplification or deletion of some genes. This means,
quite paradoxically, that telomerase can be viewed, not only as an enabler of limitless replicative
potential, but also as a caretaker, maintaining genome integrity.

Figure 2.9: There is more than one pathway to cancer. Although some hallmarks are
usually acquired before others, there is an infinity of mutations combinations that can lead
a cell to become a tumor [5].

2.2.8 Tumor-promoting inflammation

It is recognized that tumors contain a lot of cells coming from the immune system, thereby
triggering inflammatory conditions of various intensity depending on the type of cancer and
the amount of immune cells present in the neoplastic lesion. Historically, the presence of these
cells was seen as an attempt by the immune system to fight tumors, and indeed, there is more
and more evidence of antitumoral response from the immune system to many types of cancers,
implying that these cancers have to find a way to avoid immune detection and destruction [11].

But, paradoxically, inflammation was also proved to be necessary for the acquisition of multiple
hallmarks by providing the presence of specific types of cells in the tumor stroma. These
cells provide, amongst other things, growth factors to support proliferation signaling, survival
factors to prevent cells death, enzymes that facilitate angiogenesis, invasion and inductive signals
activating EMT [11]. This tends to classify inflammation as an enabling characteristic for the
other hallmarks even though it might be triggered by the immune system trying to fight the
cancer.

2.2.9 Deregulating cellular energetics

To enable cell growth and limitless division, not only do cancer cells need to have their genes
expression deregulated, but they also need to adapt their energy metabolism [11]. Indeed, fueling
this much activity requires more energy than usual, thus forcing the cell to exploit more sources
than usual.
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Figure 2.10: Ten years of research suggest two new emerging hallmarks: evasion of immune
destruction and cellular energetics deregulation; and two enabling capabilities: genome
instability and mutation and tumor-promoting inflammation [11]

In healthy tissue, under aerobic conditions, normal cells process glucose via glycolysis, produc-
ing pyruvate and a little ATP, the actual energy “currency” of the cells. Then, pyruvate is
processed by the mitochondria using oxygen, producing much more ATP and releasing carbon
dioxide (this is basically why humans breathe). Under anaerobic conditions, when the cell lacks
oxygen, it produces much more ATP via glycolysis and very few pyruvate is sent to the mito-
chondria that needs oxygen to process it. In the early 1900s, Otto Warburg observed that even
in the presence of oxygen, cancer cells can change their energy production metabolism to use
only glycolysis. This looks fairly counterintuitive as to compensate for the lower efficiency of
glycolysis for ATP production, cancer cells need to increase their glucose import by upregulating
glucose transporters. [11]

Observations have shown that some tumors use multiple energy production processes, creating
a perfect symbiosis. In these tumors, one part of the cells use the so-called “Warburg-effect”
to create ATP via glycolysis, thus secreting lactate, while the other part imports and uses the
lactate as their main energy source to create ATP via the mitochondria using oxygen [11].

As the mechanisms redirecting the energy metabolism are largely triggered by proteins in-
volved in programming other hallmarks of cancer, it is not clear if cellular energy metabolism
deregulation should be considered as another core hallmark or if it’s just another side-effect of
proliferation-inducing oncogenes. But, its evident importance suggests it probably is a funda-
mental hallmark as well [11].

2.2.10 Avoiding immune destruction

Some persisting theories state that cells are constantly monitored by the immune system and
that this surveillance system is responsible for recognizing and eradicating the vast majority
of cancer cells, thus preventing tumor formation. With this rational, the appearance of macro-
scopic tumors suggests that their cells have somehow found the ability to evade detection and/or
destruction by the immune system, thus making it a potential new hallmark [11].
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The immune system has the ability to react to both antigens expressed by normal tissues and
those expressed by foreign elements. But it also has the ability, via various mechanisms, to
develop a tolerance towards normal tissues antigens and avoid reacting to them. It means that
the immune system is able to recognize and attack cancer cells, but it might be thrown off
because their antigens are usually part of normal cells proteins. Although, some of these cancer
cells’ antigens might still trigger it, because they are usually expressed in early stages of devel-
opment, expressed at smaller levels, or in parts of the body where tolerance does not develop [3].

There are also other ways for cancer cells to avoid immune destruction. Some rely on their weak
antigenic nature, or the fact that maybe they were strongly antigenic but have mutated to be-
come weakly antigenic. Some release specific factors, capable of killing immune cells that come
too close to them. And others may also attract new kinds of foreign cells that can inactivate
the immune cells coming to fight them [3].

To summarize, the immune response to tumors still remains imperfectly understood, and most
theories on the way the immune system could be regulated to fight cancer have not been clinically
experimented yet. But recent researches have unveiled a lot of evidence suggesting that the
immune system plays a crucial role in preventing tumors development, at least in some forms of
cancer, and the increase of certain cancers in immunocompromised individuals tend to validate
that [3]. It seems that the avoidance of immune destruction should be considered a new major
hallmark [11].

2.3 Targeted cancer therapy

There are currently multiple types of cancer treatments: surgery, chemotherapy, radiotherapy,
immunotherapy, stem cells transplant, hormone therapy... [16] but the one that drives this work
is targeted therapy.

This type of treatment is the result of over 30 years of research on the mechanisms of cancer.
It relies on the ability to analyze a patient’s cancer genetic information (tumor cells signaling
pathways and gene regulatory networks), and prescribe drugs accordingly to take down one or
more of the hallmark capabilities of cancer. The principle behind this approach is simple, “if a
capability is truly important for the biology of tumors, then its inhibition should impair tumors
growth and progression” [11]. As illustrated in Figure 2.11, drugs are currently developed in a
way that their efficiency relies on the fact that they address one of the hallmarks5 [11].

One of the bright sides of drugs targeting specific capabilities is that, while disabling only one
capability will impair cancer progression, undesirable side effects on healthy tissues are much
more limited [11] than in other kinds of treatments, like chemotherapy. Unfortunately, this is
not so simple. Positive clinical responses to these kinds of treatments usually only last for a
short period of time. Indeed, most patients seem to inevitably relapse [11]. One of the explana-
tions for this phenomenon is that core hallmark capabilities are regulated by partially redundant
pathways. So targeted drugs may not completely shut down a capability, allowing cancer cells
to still survive with lessened capabilities until their offspring eventually adapts to these new
constraints, for example, thanks to a new mutation [11].

Another form of drug resistance is the ability for cancer cells to cope for the lack of an hallmark
by relying more on another one [11]. Recent treatments of human glioblastoma using anti-
angiogenic therapies have seen the cancer cells increase their invasion and metastasis activity,
thus gaining access to the preexisting vasculature of healthy tissues [17].

5Some drugs actually proceed to reinstate more than one barrier as some signaling pathways have an impact on multiple
relevant phenotypes.
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Figure 2.11: Hallmark capabilities targeted drugs. Drugs targeting each individual hall-
mark capability and enabling characteristic have been developed and are in clinical trial
or already approved. Drugs listed here are just examples, there are actually way more
candidate drugs with different molecular targets and modes of action in development [11].

Nonetheless, it does not mean targeted cancer therapy is not the way to go, it just means it
must go further. There is only a limited number of signaling pathways that support a given
hallmark and only so many ways cancer cells can survive without one or more of the hallmarks.
Therefore, the current challenge is to integrating the available data on every single pathway and
regulatory network involved in supporting hallmark capabilities in bigger models. Then, find
the right combination of targeted drugs to completely dismantle tumors [11].

2.4 Further readings

While this introduction covers all the necessary basis to understand the context of this work and
allow an understandable reading of this manuscript, the reader eager to get more information
on the subject of cancer is invited to read Douglas Hanahan and Robert A. Weinberg’s reviews
“The Hallmarks of Cancer” [5] and “The Hallmarks of Cancer: The Next Generation” [11]. A
lot more details regarding each concept discussed in these reviews can also be found in Robert
A. Weinberg’s book “The Biology of Cancer” [3]. These three readings are a gold mine of
information on cancer research and biology and have been a great source of inspiration for the
writing of this biological introduction.
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CHAPTER

3

GOAL OF THE SYSTEM

“For decades now, we have been able to predict with precision the behavior of an
electronic integrated circuit in terms of its constituent parts–its interconnecting com-
ponents, each responsible for acquiring, processing, and emitting signals according to
a precisely defined set of rules. Two decades from now, having fully charted the wiring
diagrams of every cellular signaling pathway, it will be possible to lay out the complete
integrated circuit of the cell upon its current outline. We will then be able to apply
the tools of mathematical modeling to explain how specific genetic lesions serve to
reprogram this integrated circuit in each of the constituent cell types so as to mani-
fest cancer. With holistic clarity of mechanism, cancer prognosis and treatment will
become a rational science, unrecognizable by current practitioners. It will be possible
to understand with precision how and why treatment regimens and specific antitumor
drugs succeed or fail. We envision anticancer drugs targeted to each of the hallmark
capabilities of cancer; some, used in appropriate combinations and in concert with
sophisticated technologies to detect and identify all stages of disease progression, will
be able to prevent incipient cancers from developing, while others will cure preexist-
ing cancers, elusive goals at present. One day, we imagine that cancer biology and
treatment–at present, a patchwork quilt of cell biology, genetics, histopathology, bio-
chemistry, immunology, and pharmacology–will become a science with a conceptual
structure and logical coherence that rivals that of chemistry or physics.”

Douglas Hanahan and Robert A. Weinberg, 2000

Now that the biological context has been fully introduced, this chapter describes the aim of the
system developed in this work. First the concept of expert system is explained, then the two
most common biological model types are briefly discussed. Finally, the specific context of this
work is described; it’s target users, their needs and how this project envisions addressing them.

3.1 Expert Systems

In his book “Introduction to Expert Systems”, Peter Jackson gives the following definition: “An
expert system is a computer program that represents and reasons with knowledge of some spe-
cialist subject with a view to solving problems or giving advice.” [18].
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In other words, an expert system is defined by the following characteristics [18]:

• It can accomplish entirely a task that requires domain-specific human expertise, or it can
act as an assistant to a human decision maker. The decision maker might be an expert,
the purpose of the system then being to increase its productivity.

• It simulates human reasoning.

• It performs reasoning over representations of human knowledge. The knowledge in the
program being usually separated from the reasoning in two different modules. These two
modules are referred to as knowledge base and inference engine respectively.

• It is able to solve problems by heuristic or approximative methods. It does not require
perfect data as for algorithmic solutions, and the solution it provides may be subject to
some degree of certainty.

• It is able to solve problems with a realistic complexity requiring a substantial amount of
human expertise.

• It must have high performance and reliability.

• It must be able to justify its solution by providing proof to convince the user that its
reasoning is correct.

3.2 Model types and visualizations

When talking about biological network computer models, two main types can be distinguished;
qualitative models, focused on the interactions between the different entities og the network
in terms of activation or inhibition; and quantitative models, encoding the actual chemical re-
actions and concentrations inside the network, as well as the way they impact the levels and
concentrations of the implied reactants and products.

3.2.1 Qualitative network models

Figure 3.1 displays a qualitative model representation of the human apoptosis signaling and
regulation network. As for most of these kinds of models, more than the simple connections
between the different entities, it displays whether the effect of one entity over another is an
activation (represented by a link ended by an arrow) or an inhibition (represented by a link
ended by a bar). While these kinds of representation are already way more readable than the
chemical representations, a model like the one in Figure 3.1 still contains too much information
to be easily read and interpreted by a human being.

3.2.2 Quantitative network models

Figure 3.2 displays a subset (the whole thing being way bigger than the qualitative model
displayed in Figure 3.1) of a quantitative model representation of the human apoptosis signaling
and regulation network. The visual representation of this model displays how the product of an
active protein can be a catalyst to the chemical reaction changing another protein’s state. While
these models are really useful to run precise simulations and find the expected concentrations
and combinations of drugs that should have the best results, their representations omits these
parts anyway and are of poor interest compared to a qualitative model for a visual analysis.
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Figure 3.1: Visualization of a qualitative model of the human apoptosis signaling and
regulation network. Arrows represent an activation while arcs ended by a bar represent an
inhibition. Model imported from WikiPathways [19] and rendered with PathVisio (https:
//www.pathvisio.org).
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Figure 3.2: Quantitative model visualization of a subset of the human apoptosis signaling
and regulation network. Model imported from the PANTHER Database [20] and rendered
with CellDesigner (http://www.celldesigner.org).
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3.3 Domain context

With the arising, in the last 20 years, of cheaper DNA sequencing methods and the arrival of
cheap an powerful gene editing tools like CRISPR [2], enormous progress has been made in the
study of signaling pathways and gene regulatory networks and therefore, in the evolution of
targeted cancer treatment. Based on the analysis of the sequenced DNA and the inference of
the associated networks, biologists are now able to provide oncologists with analyses identifying
new opportunities of treatments for their patients.

The problem is, data generated by biologists is usually extremely detailed models (both quan-
titative and qualitative) optimized to run computer simulations and not to generate visual
representations. Their actual rendering is way too big, too complex and too detailed to be eas-
ily readable and efficiently used by an oncologist (see Figures 3.2 and 3.1). In order to provide
oncologists with useful, readable and understandable information, biologists need to simplify
these networks representations, and enrich them with the conclusions of their analysis. The
network visualizations resulting of such work should:

• focus on the main actors of the target pathway: the relevant cell surface receptors, the
main proteins, known for their responsibility in the analyzed pathways and the proteins
for which relevant drugs have been developed.

• display the actual phenotypes that will be expressed at the end of each pathway like
apoptosis, angiogenesis, metastasis...

• hint at the kind of drugs that could be used in order to improve the patient situation and
the proteins they target.

• display a qualitative relation between all elements of the network.

Figure 3.3 shows an example of such simplified qualitative pathway. It clearly displays the main
proteins directly involved, the resulting phenotypes, the drugs that could potentially be useful
to treat the analyzed cancer and the type of interaction between all components.

3.4 The proposal

Currently, to obtain the simplified networks discussed in Section 3.3, a lot of work is required
by biologists and most of the work must be done manually. While data is available, there is
no easy way to automatically simplify the input networks, remap them and add the relevant
information regarding drug proposals. The goal of this work is then to address this problem by
providing the bases of an expert system capable of helping biologists in this task and increase
their productivity.

The solution developed in this paper focuses on two main use-cases: the simplification of qualita-
tive model representations, and the enrichment of these models with relevant drug interactions.
The resulting system should then be able to :

• provide a solution that can take in input a complete gene regulatory network in a standard
format,

• simplify this network in a way that its display is as easy to read and understand as possible,

• complete this network with appropriate hints about drugs prescriptions,

• output that simplified network in an appropriate model standard or as a rendered image
file.
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Figure 3.3: Simplified model representation of the pathways involved in lung cancer in-
cluding proposed treatment options [21]. This visual representation clearly displays, for the
target cancer, the signaling pathway involved in cell growth regulation, its main proteins
and cell surface receptors, and a hint at some drugs that might have a positive effect on the
patient.

Also, in accordance with the characteristics of an expert system described in Section 3.1, the
system will:

• perform these tasks based on human reasoning logic,

• compute its reasoning based on the same input data as the biologist usually doing it,

• provide solutions as accurate as possible based on the available data,

• be able to process actual data from relevant sources,

• be able to justify its final solution by providing details on its reasoning.
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CHAPTER

4

STATE OF THE ART

Up to this point, the necessary biological background and the goals of this work have been
introduced. With that in mind, this chapter now gives an overview of the state of the art in
terms of technologies, data availability and public software. First, a few of the main standards
for data modeling are analyzed and compared. Then, the various public model databases are
overseen, and finally, the functionalities of some specific softwares relevant to this project and
their interactions are discussed.

Figure 4.1: Sample signaling pathway. Receptor A stimulation activates protein C, which
activates protein D, activating the phenotype A. Receptor B stimulation activates protein
E which inhibits the phenotype A
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4.1 The standards

There are a lot of standards for modeling biological networks. They were all created in a effort
to unify the way data is encoded and shared between softwares and organizations. But with time
passing by, only a handful of them steps out, all with a slightly different approach in mind. They
are supported by most softwares and databases and keep evolving to extend their capabilities
and allow new uses cases. Here under is a quick description and comparison of these biggest
players in the field. Also, in an effort to compare the most relevant ones, their descriptions
display their actual encoding of the sample signaling pathway presented in Figure 4.1.

4.1.1 The SBML standard

The System Biology Markup Language (SBML) [22] is a free and open XML-based format
for the computer modeling of biological processes. It can be used to encode almost any biologi-
cal network, including models of metabolisms, cell signaling and gene regulatory networks. The
main purpose of SBML is the quantitative modeling of systems consisting in basic dynamic bio-
chemical reaction networks with a focus on the analysis and simulation of such networks [23, 24].

The basic structure of an SBML model is pretty simple. It is composed of a list of species, located
in one or more comportments, and a list of reactions describing all transformation, transport or
binding process that can change the amount of one or more species in a compartment. But this
implies that the basic qualitative model example shown in Figure 4.1 cannot be encoded as is in
SBML. It has to be encoded as a succession of chemical reactions as represented in Figure 4.2.
The SBML encoding of this model would then look approximately like in Figure 4.3.

Figure 4.2: Visual representation of the SBML Core encoding of the sample network.
Receptor A acts as a catalyst for the reaction changing the state of Protein C, which itself
becomes a catalyst for the state change of Protein D, thus inducing Phenotype A. While
receptor B is a catalyst for Protein E state change, thus inhibiting Phenotype A.
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<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level2/version4" level="2" version="4">

<model metaid="SampleModel" id="SampleModel">

<listOfCompartments>

<compartment metaid="default" id="default" size="1" units="volume"/>

</listOfCompartments>

<listOfSpecies>

<species metaid="s1" id="s1" name="Receptor A" compartment="default"

initialAmount="0"/>

<species metaid="s3" id="s3" name="Protein C" compartment="default" initialAmount

="0"/>

<species metaid="s4" id="s4" name="Protein D" compartment="default" initialAmount

="0"/>

<species metaid="s9" id="s9" name="Phenotype 1" compartment="default"

initialAmount="0"/>

[...]

</listOfSpecies>

<listOfReactions>

<reaction metaid="re7" id="re7" reversible="false">

<listOfReactants>

<speciesReference metaid="CDMT00001" species="s3"/>

</listOfReactants>

<listOfProducts>

<speciesReference metaid="CDMT00002" species="s3"/>

</listOfProducts>

<listOfModifiers>

<modifierSpeciesReference metaid="CDMT00003" species="s1"/>

</listOfModifiers>

</reaction>

[...]

</listOfReactions>

</model>

</sbml>

Figure 4.3: SBML Core encoding of the sample network. species objects encode the
various network nodes while reaction objects encode the reactions between those species.
In this example, reaction re7 encodes the reaction changing Protein C state, catalyzed by
Receptor A.

Nonetheless, in order to extend its capabilities, the current level of SBML includes 14 extension
packages. Here is a quick description of three of them relevant to this work:

Qualitative Models (Qual). An extension to support qualitative models. That is, models
wherein species do not represent quantity of matter, and processes are not reactions [25].
Qual models structure is way simpler than the SBML Core structure. It contains a list of
species that can represent anything, and a list of transitions, composed of inputs, outputs,
and the necessary information to know when a transition must fire, if it’s positive or
negative (activation or inhibition), and the related species level variation. The main idea
behind this extension is to provide the ability to encode logical regulatory networks (boolean
or multi-valued) and standard Petri nets (see Chapter 6). With the use of this extension,
the sample model presented in Figure 4.1 can now be encoded as is and its SBML encoding
would look like Figure 4.4.

Layout. An extension to support the storage of spacial information regarding the network
diagram [26].
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Rendering. Associated to the Layout extension, it supports the storage of graphical symbols
and glyphs used to render a model’s diagram [27].

<?xml version="1.0" encoding="UTF-8"?>

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" xmlns:qual="http://www.

sbml.org/sbml/level3/version1/qual/version1" level="3" version="1" qual:required="

true">

<model metaid="SampleModel" id="SampleModel">

<listOfCompartments>

<compartment metaid="default" id="default"/>

</listOfCompartments>

<qual:listOfQualitativeSpecies>

<qual:qualitativeSpecies qual:id="s1" qual:compartment="default" qual:constant="

false" qual:name="Receptor A"/>

<qual:qualitativeSpecies qual:id="s3" qual:compartment="default" qual:constant="

false" qual:name="Protein C"/>

<qual:qualitativeSpecies qual:id="s4" qual:compartment="default" qual:constant="

false" qual:name="Protein D"/>

<qual:qualitativeSpecies qual:id="s6" qual:compartment="default" qual:constant="

false" qual:name="Phenotype 1"/>

[...]

</qual:listOfQualitativeSpecies>

<qual:listOfTransitions>

<qual:transition qual:id="tr_1">

<qual:listOfInputs>

<qual:input qual:id="in_1" qual:qualitativeSpecies="s1" qual:transitionEffect

="none" qual:sign="positive"/>

</qual:listOfInputs>

<qual:listOfOutputs>

<qual:output qual:id="out_1" qual:qualitativeSpecies="s3" qual:

transitionEffect="production" qual:outputLevel="1"/>

</qual:listOfOutputs>

<qual:listOfFunctionTerms>

<qual:defaultTerm qual:resultLevel="1"/>

</qual:listOfFunctionTerms>

</qual:transition>

[...]

</qual:listOfTransitions>

</model>

</sbml>

Figure 4.4: SBML Qual encoding of the sample network. qual:qualitativeSpecies objects
encode the nodes of the network while qual:transition objects encode the transitions between
those nodes. Here, transition tr 1 represents the activation of Protein C by Receptor A.

Another interesting characteristic of SBML is the support of annotations. This mechanisms
allows applications to enrich their SBML models with additional descriptive data about parts
of the model. These annotations usually contain information about the nature of a protein or a
reaction and links to additional information but some applications, like CellDesigner (see Section
4.3), also use them to store software specific data.

The SBML standard is supported by most of the popular biological networks databases including
PANTHER, BioModels and Reactome (see Section 4.2) and is also supported by more than 290
softwares including CellDesigner, Cytoscape, PathVisio and all the softwares included in the
SBW suite (see Section 4.3.
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4.1.2 The BioPax standard

Biological Pathway Exchange (BioPAX) is a standard language that aims to enable inte-
gration, exchange, visualization and analysis of biological pathway data [28]. It can be used to
represent signaling pathways, molecular and genetic interactions and gene regulation networks.
But unlike SBML, its main focus is on modeling qualitative networks. It does not contain mathe-
matical relations but provides more details about the relations between the different entities [23].
Its is defined in OWL DL, a Web Ontology Language sub-language, and encoded using XML
and RDF.

Basically, BioPAX models are structured in a way that everything is an entity, and entities are
of three main types [24]:

• Physical entities. Than can be genes, proteins, molecules...

• Interactions. That represent the various interactions between entities.

• Pathways. That represents a set of interactions.

Therefore, the sample network described in Figure 4.1 can be encoded as is in BioPAX and its
OWL encoding would look like Figure 4.5.

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:bp="http://www.biopax.org/release/biopax-level3.owl#">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://www.biopax.org/release/biopax-level3.owl#" />

</owl:Ontology>

<bp:Pathway rdf:about="id1">

<bp:pathwayComponent rdf:resource="id8" />

[...]

<bp:displayName rdf:datatype="string">SamplePathway</bp:displayName>

</bp:Pathway>

<bp:Protein rdf:about="adbc2">

<bp:displayName rdf:datatype="string">Protein C</bp:displayName>

<bp:entityReference rdf:resource="id3" />

</bp:Protein>

<bp:Complex rdf:about="dgfh5">

<bp:displayName rdf:datatype="string">Receptor A</bp:displayName>

<bp:entityReference rdf:resource="id2" />

</bp:Complex>

[...]

<bp:BiochemicalReaction rdf:about="id8">

<bp:right rdf:resource="adbc2" />

<bp:left rdf:resource="dgfh5" />

</bp:BiochemicalReaction>

[...]

</rdf:RDF>

Figure 4.5: BioPAX (OWL) encoding of the sample network. The bp:Protein ob-
ject encodes Protein C while the bp:Complex object encodes Receptor A and the
bp:BiochemicalReaction object represents the chemical reaction existing between these two
entities.

Like SBML, Biopax is supported by most of the popular databases, including BioModels and Re-
actome (see Section 4.2), but the range of supporting softwares seems to be smaller. Nonetheless,
it is supported by Cytoscape and PathVisio amongst others (see Section 4.3).
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4.1.3 The SBGN standard

The Systems Biology Graphical Notation (SBGN) is a project whose goal is to standardize
the graphical notations used in visual representations of biological process models [29]. It defines
three visual languages:

The Process Description language (PD), whose goal is to specify the temporal course of
biochemical interaction in a network. It would be the right language to represent SBML
Core models for example.

The Entity Relationship language (ER), that allows the representation of the relation-
ships between a model entities, regardless of the temporal aspects.

The Activity Flow language (AF), used to represent the flow of information between bio-
chemical entities in a network. It would be more suited for the map representation of
SBML Qual models.

SBGN files are encoded using the SBGN-ML XML-based format. Compared to other languages
like SBML, SBGN-ML doesn’t describe species, transitions or reactions anymore. It focuses on
their graphical representation by defining a set of glyphs and arcs (although these arcs and glyphs
still have a biologically-related class that defines their style). Figure 4.6 shows the SBGN-ML
code of an SBGN AF representation of the sample model described in Figure 4.1.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<sbgn xmlns="http://sbgn.org/libsbgn/0.2">

<map language="process description">

<glyph class="macromolecule" id="e7019">

<label text="Protein E"/>

<bbox w="90.0" h="25.0" x="318.41858" y="177.11253"/>

</glyph>

<glyph class="phenotype" id="d2d4c">

<label text="Phenotype A"/>

<bbox w="142.2972" h="59.856968" x="451.27246" y="244.34749"/>

</glyph>

<glyph class="submap" id="f6ede">

<label text="Receptor B"/>

<bbox w="91.18426" h="66.45219" x="317.82648" y="35.7737"/>

</glyph>

[...]

<arc class="production" id="idaf6e8dac" source="f6ede" target="e7019">

<start x="363.41858" y="102.22588"/>

<end x="363.41858" y="177.11253"/>

</arc>

<arc class="inhibition" id="id49da8430" source="e7019" target="d2d4c">

<start x="408.41858" y="189.61253"/>

<next x="522.4211" y="189.61253"/>

<end x="522.4211" y="244.34749"/>

</arc>

[...]

</map>

</sbgn>

Figure 4.6: SBGN-ML encoding of the sample network. In this format, no more species
and reactions but glyphs and arcs defining the visual representation of the network.

The SBGN standard is widely supported with more than 30 applications, including CellDesigner,
PathVisio and the SBW Layout viewer (see Section 4.3). SBGN exports are also provided by
more than 12 databases, among which the PANTHER database, BioModels and Reactome (see
Section 4.2).
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4.1.4 The CSML standard

The Cell System Markup Language (CSML)1 is an XML-based file format for visualizing,
modeling and simulating biological pathways. Version 3 of CSML was introduced with the
main focus of supporting Hybrid Functional Petri net based visualization and simulation (see
Chapter 6). At the time of its creation, it covered functionality lacking from other big standards
as SBML, like the absence of graphical elements. But with the evolution of SBML and BioPAX,
with newer levels and extensions addressing these gaps, and the arrival of SBGN, advantages
of CSML are not so clear anymore. It now looks like it has failed to make its way as a global
standard and doesn’t seem to be developed anymore. Though it is still used by a commercial
application called Cell Illustrator that allows intuitive modeling, visualization and simulation of
biological pathways2.

4.1.5 COMBINE and the COMBINE Archive

The COmputational Modeling in BIology NEtwork (COMBINE) is an initiative to
coordinate the development of various community standards for computational modeling. Its
goal is to foster the development of inter-operable and non-overlapping standards covering all
aspects of modeling biology. Standards related to COMBINE include, among others, BioPAX,
SBGN and SBML [30].

COMBINE is also at the initiative of the COMBINE archive, a project whose goal is to
create a single file, containing all documents necessary for the description of a model and its
associated data and procedures. This includes all models needed to run simulations, associated
data files, experiments descriptions and results, and every other relevant data for the study of a
system. The archive is encoded using the Open Modeling EXchange format (OMEX) [31].

4.2 Databases

There are a few public databases providing biological network models in a variety of fields. This
section presents some of the most relevant ones in the field of cancer research.

4.2.1 BioModels

The BioModels database3 is a public repository hosting models of biological systems. Their
main purpose is to provide reproducible, high-quality, free of use models published in scientific
literature. Hosted models cover various processes. They are usually described in peer-reviewed
scientific literature and some of them are automatically generated from other pathway resources
like KEGG. Models are manually curated and enriched with references to relevant data [32].
Aside from standard image formats, all models can be downloaded in SBML, as well as BioPAX
level 2 and 3, although those are automatically generated and can lack some information.

4.2.2 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG)4 is a database resource in-
tegrating genomic, chemical and functional information. It contains a lot of data: signaling
pathways, their genes and proteins, the actual chemical components and reactions involved and
even the related drugs. Thanks to its API, it can be queried in many ways. Therefore, it is
wildly used as a reference knowledge base for integration and interpretation of genome sequenc-
ing data [33]. KEGG pathway maps can be downloaded as KEGG Markup Language (KGML)
files, a KEGG specific encoding format whose specification is available on their website.

1http://www.csml.org
2http://www.cellillustrator.com
3http://www.ebi.ac.uk/biomodels/
4https://www.kegg.jp/
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4.2.3 Reactome

Reactome5 is an open-source, open access, manually curated and peer-reviewed pathway
database. [34] It provides tools for the visualization, interpretation and analysis of pathways
to support basic and clinical research, genome analysis, modeling, systems biology and educa-
tion. It’s probably one of the biggest public database with more than 2200 human pathways,
all properly classified, linked and annotated. All pathways can be viewed and analyzed online
or exported in multiple formats including SBML, SBGN, and BioPAX level 2 and 3.

4.2.4 PANTHER

The Protein ANalysis THrough Evolutionary Relationships (PANTHER)6 [20] classi-
fication system was designed to classify proteins and genes in order to facilitate high-throughput
analysis. Part of this classification includes PANTHER Pathway [35], over 177 pathways, all
drawn using CellDesigner and containing the mapping information for every component. All
PANTHER pathways can be exported in SBML and SBGN.

4.2.5 WikiPathway

Based on the same MediaWiki software that powers Wikipedia, WikiPathways7 aims at facil-
itating the contribution and maintenance of pathways information by the biology community.
More than a simple database, it provides an easy to use interface, allowing anyone in the commu-
nity, from students to field experts, to contribute in adding, maintaining and reviewing content.
It also provides a custom graphical pathway editing tool and a web API for applications to
easily connect to it. Pathways are encoded in GPML, PathVisio’s default encoding format (see
Section 4.3), but most of them can be exported in BioPAX or in standard images formats.

4.3 Public softwares and libraries

From models design to simulation, there are hundreds of softwares available to work with bio-
logical networks. This section gives an overview of some of them relevant to this work, as well
as some software libraries.

4.3.1 Cell Designer

CellDesigner8 is a free application designed to easily draw and edit gene-regulatory and bio-
chemical networks [36]. It uses the SBML standard as data storage file format, with the addition
of some private annotations, but SBGN export is also supported. CellDesigner can connect to
other applications via the Systems Biology Workbench (see Section 4.3.4). It is used by the
PANTHER database for the design of their pathways and can directly connect to it as well as
other databases such as BioModels.

4.3.2 PathVisio

PathVisio9 is a free, Java-based, open-source pathway analysis and drawing software. It pro-
vides a simple user interface and can be used to edit biological pathways and visualize experimen-
tal data on them [37]. It can be directly connected to the WikiPathways database to retrieve
GPML models, and with the help of extension plugins, it supports most relevant standards
including SBML, SBGN and BioPAX.

5https://reactome.org
6http://www.pantherdb.org
7https://www.wikipathways.org/
8http://www.celldesigner.org/
9https://www.pathvisio.org
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4.3.3 Cytoscape

Cytoscape10 is an open-source application for visualizing complex networks and integrating
them with any kind of data. It supports a lot of fields, by itself or via the hundreds of available
plugins, but is extensively used for its capacities in molecular and system biology. Among other
things, it can be used for visualizing, modeling and analyzing molecular and genetic interaction
networks. [38].

4.3.4 SBW

Researchers in systems biology make use of a large number of software applications for modeling
systems, simulating models or storing and analyzing data. But more than the bother of having
to go from one tool to the other, the problem is that most of these tools come with their own file
format. Another problem is that some tools duplicate the capabilities of others. Indeed, there
is very little code reuse in the biology community and as most projects are short-lived, they are
usually not developed very far, forcing new projects to re-implement the same functionalities in
order to add their own [39].

The System Biology Workbench (SBW) has been developed in an attempt to solve these
problems. It’s an open-source framework that allows applications, written in different program-
ming languages and running on different platforms, to communicate with each other and share
their capabilities via a fast, binary encoded, message system. It comes as a client-server infras-
tructure and the client-side includes integration libraries for multiple programming languages
including C, C++, Java, Delphi, Perl, Python and Matlab. The binary installer also comes
bundled with a set of integrated tool to design, layout and simulate biological models11.

4.3.5 Converters

The way standard file formats are designed is usually dependent on the use cases behind the
models. Some are meant to encode boolean regulatory networks and other may be more suited
to encode hybrid Petri nets for example (see chapter 6). But fortunately, most models can be
generated from one another, or at least to some extent. To help with that, a few converters are
available and here is a short list of the most relevant ones:

SBML2SBGNML12. A converter between SBML and SBGN-ML files. It supports conversion
both ways, from SBML Core and Qual to SBGN PD and AF and vice versa.

BioPAX2SBML. A tool that can convert BioPAX level 2 and 3 files to SBML Core + Qual [40].

KEGGTranslator. A powerful tool, able to convert KEGG pathway maps encoded in KGML
to a multitude of other formats including SBML (Core and Qual), BioPAX and SBGN [41].

4.3.6 Software libraries

In order to favor their support and integration in applications, most big standards also provide
software libraries that can be directly integrated and used to work with their supported file
formats.

libSBML. A free, open-source programming library to help developers read, write, manipulate,
translate, and validate SBML files. It supports all core versions and most extensions (some
are still being developed). It comes with APIs for multiple languages including C, C++,
C#, Java, Python and Matlab and is distributed under the LGPL license.

10http://www.cytoscape.org
11http://jdesigner.sourceforge.net/Site/Welcome.html
12https://github.com/NRNB-GSoC2017-SBML2SBGNML-Converters/SBML2SBGNML
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libSBGN. A library dedicated to writing and reading SBGN-MLfiles. It also implements files
validation and conversion to SBML and BioPAx. It has a Java and a C++ API and is
distributed under the LGPL 2.1 and Apache 2.0 licenses [42].

Paxtools13. A Java library allowing software to read, write, validate, analyze and manipulate
BioPAX models. It’s distributed by the BioPax team under the LGPL 2.0 license.

13http://biopax.github.io/Paxtools/
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CHAPTER

5

THE SOFTWARE

Now that the required background material has been provided and the main modeling techniques
have been presented, this chapter describes the software developed during this work. First, the
usage target and philosophy of the solution are discussed as well as the delivered products. Then
the solution architecture is detailed and the technical choices are explained.

5.1 Usage target

While researching and developing this project, it clearly appeared that software development
and usage in this field did not follow the same rules as usual. As stated earlier in this manuscript,
there are three big problems regarding software in biological research:

1. Researchers work with dozens of small tools, all focused on a specific functionality. There
is no big, multi-functional toolkit.

2. As most projects behind these tools are short-lived, their functionality is usually not really
advanced.

3. Moreover, there is very little code reuse between the developers of these tools. The result is
that, when a new tool is developed to test new functionalities, all the underlying function-
ality necessary to implement the new ones is fully redeveloped even though it is probably
already available in another tool.

So, more than just producing an application able to handle the target use cases, one of the goals
of this project was to address these problems. Even though, ironically, the produced solution is
yet another tool, its open, easily integrable and extensible architecture allows for developers to
integrate its capacities in other softwares and extend them with their own (see Section 5.4 for
more details).

5.2 The Regulatory Networks Expert System library

The first output of this project is the Regulatory Networks Expert System library
(RNESlib). It is delivered as a .Net Core library and provides the basic structure of the
expert system as well as the necessary modules to give it the ability to address the two use-cases
discussed in chapter 3 (see Chapters 7 and 8 for more details on the mechanism behind these

36



modules). It can be integrated in any .Net Core 2.1 application and is dependent on libSBML
for the management of SBML models (see Section 5.5 for more details).

5.3 Test Application

The second output of this work is the RNES command line application (RNESCLI). It
comes as a .Net Core command line application. It exposes the current capabilities of RNESlib,
but it is also a great sample code to apprehend the integration of RNESlib in other projects. It
can be run on any x64 platform with .Net Core 2.1 installed, from Windows command line or
any Linux or macOS terminal.

5.4 Solution architecture

Figure 5.1: RNESlib high level architecture.

The solution architecture has been designed to be as simple as possible with the following aims
in mind:

• Integrating and using the library should be straightforward. A few code line should suffice.

• The current functionality should be easily maintainable and expendable.

• As it is meant to be used by the scientific community, it should be highly reliable and thus
easy to test.

As displayed in Figure 5.1, the high level architecture relies on four main blocks:

• The KnowledgeBase, allowing the registration and resolving of data related components.

• The InferenceEngine, allowing the registration and resolving of processing related compo-
nents.

• The RNESCore, main component of the application. It hosts the KnowledgeBase and the
InferenceEngine and exposes their ability to register and resolve components.

• The Skill and knowledge Components, that can be any class providing the system the ability
to retrieve data or process this data and generate an output.
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As an illustrative example, Figure 5.2 shows the class diagram of the components bundled with
RNESlib and Figure 5.3 contains a snippet of the C# code used RNESlib’s network simplifica-
tion functionality in RNESCLI.

Figure 5.2: RNESlib network simplification and enrichment components class diagram.

public class RNESCli{

public void main(){string[] args}

// retrieve cli arguments and validate them

// ...

var rnesLib = new RNESLib();

// Register nescessary components

rnesLib.RegisterKnowledge<IDrugFinder, DrugFinder>()

rnesLib.RegisterSkill<INetwrokSimplifier, NetworkSimplifier>()

rnesLib.RegisterSkill<INetworkExtender, NetwrokExtender>()

rnesLib.RegisterSkill<ISBMLManager, SBMLManager>()

// Resolve the needed components

// Note that some components like the DrugFinder and the NetworkSimplifier are not resolved,

// they are used by the NetwirkExtender and the system will automatically instanciate them

and provide

// them to it when it is resolved.

var sbmlManager = rnesLib.ResolveSkill<ISBMLManager>();

var networkExtender = rnesLib.ResolveSkill<INetworkExtender>();

// Call the necessary operations

// Read the input file and convert it to a boolean model

var booleanModel = sbmlManager.ReadFromFile(inputFilePath);

// Simplify the model and enric it with the right drugs

booleanModel = networkExtender.SimplifyAndEnrichNetworkWithDrugs(booleanModel);

// Write the output in an SBML file

SBMLManager.WriteToFile(booleanModel)

}

Figure 5.3: Code sample showing the usage of RNESlib by RNESCLI.

38



Adding functionalities to the system can be done in just a few steps:

1. Implement the necessary classes to handle the data and capacities needed by the function-
ality.

2. Every one of these classes must implement an interface and expose the necessary methods.

3. Register every component class in the system via its interface.

4. Resolve the necessary objects and call the desired methods.

Finally, as every supported capability is defined in classes with a single responsibility and ex-
posed by an interface, it makes the system highly modular and easily testable. Indeed, if a user
wants to write a new implementation of the simplification algorithm, to try a new approach for
example, as long as its new class implements the same interface as the original, he just needs
to register it in the system instead of the actual implementation and then everything will work
seamlessly. Moreover, having every implementation properly interfaced makes it easy to write
test systems that integrate mocks of some components to simulate results.

5.5 Input/Output

Currently, the only input file format supported is SBML Qual (see Chapter 4), and to keep the
software consistent, computed results are also re-encoded in SBML Qual. Multiple reasons have
motivated the choice of SBML as the first supported standard:

• SBML seems to be the most widely supported standard in the current software base. Even
though the support of the Qual extension is less frequent.

• SBML comes with SBMLlib, a free and easy to use library to work with SBML files. Com-
pared to the other standards, SBMLlib is bundled with interfaces to many programming
languages, including C#. And as the underlying library is in C++, it stays portable.

• SBML Qual is the easiest formalism to encode qualitative models of biological regulatory
networks. It supports the encoding of models for which very few information is known,
thus allowing a wider range of input models.

• Of all the software libraries available to work with the main standards, SBMLlib has the
best documentation.

• As SBML is supported by merely all of the biggest databases, it is easier to find compatible
input data.

5.6 Programming language

While most of the softwares in the field are developed in Java, the choice has been made to use
C# and .Net Core in this project. Here are some of the arguments that motivated this choice:

• .Net Core is free, open-source and multi-platform.

• It is supported by Visual Studio, Microsoft’s main IDE, an intuitive and powerful environ-
ment.

• Even though it is a pretty recent technology, it benefits from the experience of the .Net
Framework. The deployment of ASP.NET Core applications is already well supported and
it is really impressive how easily a fully functional web application can be developed and
deployed with minimal knowledge.
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• Curent version (2.1) supports web-based applications and console applications but Ver-
sion 3.0 will bring back WPF and WinForm APIs allowing the development of desktop
applications.

5.7 Sources

Complete source code and documentation are available on GitHub at https://github.com/

TonusV/RNES .
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CHAPTER

6

NETWORKS MODELING

To infer behaviors and treatment options from biological networks, they need to be modeled
and simulated. Depending on the abstraction level needed, there are multiple modeling tools
available with different capabilities. Some allow qualitative network modeling, some are more
suited for quantitative networks, some have a deterministic approach while others are based on
stochastic theories... This chapter gives a comparative overview of the main deterministic tools
currently used for biological networks modeling. A conclusion then explains network modeling
technique that has been chosen for the software produced in this thesis. Stochastic models are
not addressed as they do not fit the needs of this work.

6.1 Boolean networks

Boolean networks are one of the more simplistic qualitative modeling tools available to work
with biological networks. In these networks, every entity is either ON or OFF and the state of an
entity is determined by logical rules. Changes in the network are deterministic and synchronous
[43].

A

B

C

D

Figure 6.1: Sample boolean regulatory network. B is activated by A, D is activated by B
and D is inhibited by C

For example, the regulatory network displayed in Figure 6.1, where nodes A, B en C could be
proteins and D a gene, would be defined by the following equations:
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• C(t + 1) = A(t)
(protein C is activated by protein A)

• D(t + 1) = C(t) ∧ ¬B(t)
(Gene D is activated by protein C and inhibited by protein B)

Table 6.1 then displays the truth table of this network, illustrating the impact of the multiple
combinations of proteins A and B activation on protein C and gene D expression. It is clear,
looking at this table, that for gene D to be expressed, protein A must be active and protein C
inactive, thus solving the equation.

t t+1 t+2
A B C D A B C D A B C D
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 0 1 0 1 1
1 1 0 0 1 1 1 0 1 1 1 0

Table 6.1: Truth table of the sample boolean regulatory network. The table clearly shows
that, at t+2, the only steady state where gene D is activated is when protein A is active
and protein B inactive.

The same conclusion can also be inferred by solving the equation D(t + 1) = C(t) ∧ ¬B(t).
C(t) can be replaced by A(t− 1), resulting in D(t) = A(t− 2) ∧ ¬B(t− 1) only solved by A
being true and B being false.

This qualitative modeling method is very efficient to analyze large biological networks, but it
highly simplifies the underlying biochemical processes. A gene expression can only be ON or
OFF, while in reality, some regulatory mechanisms rely on different levels of expression and thus
cannot be modeled properly.

6.2 Generalized logical networks

Introduced by René Thomas in 1991 (see article [44]), generalized logical networks are an ex-
tension of boolean networks where variables can have more than two values, and transitions
can occur synchronously or asynchronously [43]. They are a good approach to model non-linear
interactions in biological regulatory networks while keeping a deterministic qualitative approach.

6.3 Differential equations

Differential equations are another tool that can be used to construct biological regulatory net-
works based on timed experimental data. There are multiple implementations of this model,
not all well suited to represent complex mechanisms because they rely on linear systems. But
basically, differential equation based models are able to compute state changes at a specific time,
discrete or continuous, by using functions that show the effect of the activation or inhibition of
other components [43].

This kind of model is quite popular as it allows a continuous, deterministic approach more
precise than discrete or stochastic models. But it requires a large amount of data to compute
accurate equations.
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6.4 Standard Petri nets

Petri nets have been introduced by Carl Adam Petri in 1962 to model and analyze processes.
Because of their strong mathematical basis, precise statements can be made regarding the be-
havior and state of a modeled system. But it also forces their users to define them rigorously.
Petri nets are based on four items: places, transitions, arcs and tokens. Their visual representa-
tions is also strongly formalized [45]. An example of the visual representation of such networks
is shown in Figure 6.2.

Figure 6.2: Standard Petri net visual representation. The places (P1 and P2) are repre-
sented by a circle, the transitions (T1 and T2) by black rectangles, the arcs (A1, A2, and
A3) by arrows and the token by a big dot. [45]

Petri nets behave according to the following rules [45]:

• A place can be an input place (if it has outgoing transitions), an output place (if it has
incoming transitions), or both.

• A place can contain zero or more tokens.

• A transition consumes and produces tokens. It can fire if there is at least one token in each
of its input places.

• Arcs are just arrows that link places and transitions.

• If a transition needs to consume more than one token from a place to fire or produces more
than one token, either additional arcs are added so that each arc has a weight of 1, or the
weight of the arcs is adjusted accordingly.

• A transition can consume more or less tokens than it produces.

• Transitions fire instantaneously, there is no notion of time.

• The amount of tokens across the network defines the state of the system.

Petri nets are a more recent approach to biological networks modeling. Although they have
been used for the first time to this purpose in 1993 [46], their usage has only become popular in
the last decade. They are well suited to model qualitative data but it becomes really hard, and
sometimes even impossible, to use them for precise quantitative modeling [45].
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6.5 Hybrid Functional Petri nets

In order to palliate to the weaknesses of standard Petri nets when it comes to quantitative
modeling of complex systems, multiple incremental extensions have been created; all proposing
various improvements to the original formalism. One of the more recent extended Petri net
proposition is called Hybrid Functional Petri nets. In addition to the original Petri net items,
it allows the usage of multiple new features [45]:

• Continuous places and arcs, allowing the representation of continuous transitions over time
that can be combined with the original discrete transitions.

• Test arcs, that allow a transition to check the content of a place and fire only if its equal
or higher to a certain threshold, but without consuming content from this place.

• Inhibitory arcs that, like test arcs, check the content of a place. But if its equal or higher
to the threshold, they prevent the transition from firing.

This extension of Petri nets (that also has a couple of extensions available) is way more suited
for the quantitative modeling of biological systems. Continuous transitions and test arcs allow
easier modeling of chemical reactions changing concentrations over time, and the catalysis or
inhibition of these reactions by other reactants [45].

6.6 Comparison

There is not one and only good way to model biological networks. Depending on the data avail-
able and the type of information that must be computed, some choices may be more adequate
than others. For example, boolean networks are perfectly suited for the qualitative modeling of
big networks. Even though they completely ignore some underlying biological mechanisms, it
is not a problem if one does not need them. Hybrid Functional Petri nets, on the other hand,
would be perfect for the modeling of quantitative networks with precise experimental data over
the chemical reactions happening in the network.

Even though they are not described in this chapter, if the model needs to take into account
parameters like the probability of a reaction to fire over time or the impact of external noise on
reactions, one may then prefer to use probabilistic models like stochastic Petri nets.

One point to take into account is also the usage evolution of the modeled system. If it is used
at first for qualitative modeling but should be reused later to add experimental data and run
quantitative simulations, the better choice would be to start with Standard Petri nets. The
model could then be updated to an Hybrid Functional Petri net when more data is available.
Table 6.2 shows a comparative overview of the modeling techniques previously described in this
chapter over three parameters: their deterministic approach, their suitability for qualitative or
quantitative modeling and their ability to be used to run continuous simulations over time.

Model Deterministic Qualitative Quantitative Continuous time simulation
Boolean networks X X
Generalized logical networks X X
Differential equations X X X
Standard Petri nets X X X
Hybrid Functional Petri nets X X X

Table 6.2: Comparison of the most relevant modeling tools for biological networks.
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6.7 Conclusion

To suit the needs of this project, a deterministic, qualitative model was needed. Indeed, to
generate the target network visualizations, it must be clear whether the impact of a unit on
another is an activation or an inhibition, and what the state of the system could be with the
usage of specif drugs. In concordance with the choice of using SBML Qual models as input
and output of the application (see Chapter 5), the two possible choices were logical regulatory
networks and standard Petri nets. While the first idea was to go for standard Petri nets, the final
choice was the use of boolean networks. Keeping in mind that the goal of this implementation
is to simplify networks based on a logical approach, and later on, enrich them with hints of
drugs that might have a beneficial effect, the choice of boolean networks was motivated by the
following arguments:

• they fulfill the minimal requirements in terms of data to be able to generate the target
views,

• most SBML Qual models do not contain the necessary information to properly model Petri
nets so using a simpler modeling allows for more supported inputs,

• actual simulations are not needed,

• Software implementations need to stay as simple as possible in order to be understandable
and easily maintained.
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CHAPTER

7

NETWORKS SIMPLIFICATION

As the general structure of the software and the technological choices have been described, this
chapter now presents the implementation steps of the way human thinking was emulated in
the network simplification algorithm. The first section details the boolean regulatory model
implementation used in the software to work with the networks. Then, the multi-step approach
of the implementation of the network simplification algorithm is presented.

7.1 Networks modeling

As specified in Chapter 6, the modeling technology that has been chosen to work on biological
regulatory networks in this project is the use of boolean networks. The way these networks have
actually been implemented can be described as follows:

• Every model is composed of a set of nodes, each node representing a species of the network;
and a set of edges, each edge representing an interaction between two nodes.

• Every node has a state (active, inactive or undefined) and a status (protected or unpro-
tected).

• Every edge has an input and an output node, a type (positive or negative) and a state
(active, inactive or undefined).

Also, to understand the further reasoning, here is the basic set of rules that apply to the models
encoded in the system:

• A protected node cannot be removed from the model during simplification.

• A positive edge implies that the input node as a positive effect on the output node, rep-
resented as an activation, while a negative edge represents an inhibition of the output by
the input.

• Neither activation nor inhibition edges must be interpreted as strict state changers. A node
will be considered active if at least one of its incoming positive edge is active or one if its
incoming negative edge is inactive. For example, if a node C is activated by a node A and
inhibited by a node B, the equation defining its state would be C(t + 1) = A(t) ∨ ¬B(t).

46



• Auto-regulation edges are automatically removed from the system, whether they are defined
in the original model or are the result of a simplification. They make no sense in a static
representation that does not take transitions time into account.

• The same edge (same input, output and type) is only added once to the model.

Figure 7.1 shows the class diagram of this implementation.

Figure 7.1: Custom boolean network implementation class diagram

Finally, the basic simplification rules that apply to the model can be defined as follows. Con-
sidering three nodes A,B and C:

A⇒ B⇒ C = A⇒ C
A⇒ ¬B⇒ C = A⇒ ¬C
A⇒ B⇒ ¬C = A⇒ ¬C
A⇒ ¬B⇒ ¬C = A⇒ C

This can of course be demonstrated by solving the underlying logical equations.
Considering the first rule for example,

A⇒ B⇒ C

could be represented by the following equations:

B(t + 1) = A(t)
C(t + 1) = B(t)

Solving these equations would produce

C(t + 1) = A(t)

Which is equivalent to

A⇒ C
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To better comprehend the steps described further in this chapter and the next, every step will
be illustrated using the pathway displayed in Figure 7.2. It is a qualitative representation of the
Vascular Endothelial Growth Factor (VEGF) pathway. This pathway regulates genes responsible
for angiogenesis, cells survival and proliferation. The original pathway model was imported from
the KEGG database1 and converted to SBML Qual using KEGGTranslator. Visualizations are
generated using Cytoscape.
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Figure 7.2: Original model visualization. Visualization of a qualitative model of the VEGF
signaling pathway.

7.2 First steps

Once the models are loaded and before they can be simplified, some nodes need to be protected,
as they are necessary for the understanding of the output network. By default, the decision
was made to protect all model input and output nodes. That means, every node that has only
incoming or outgoing edges. Usually, for a signaling pathway, input nodes would be cell sur-
face receptors and output nodes the impacted phenotypes. For the example in Figure 7.2, the
only input node is the VEGFA receptor and the output nodes are three phenotypes (angiogene-
sis, proliferation and survival) and two proteins that have no associated phenotype in that model.

Once this was done, the first hunch when developing the simplification algorithm was to remove
the node “chains”. What is meant by chains is any node that has only one incoming edge and
one outgoing edge. In other words, every set of three nodes A,B and C defined by the following
type of equations system:

B(t + 1) = A(t)
C(t + 1) = B(t)

1https://www.genome.jp/kegg-bin/show pathway?hsa04370
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By applying the rules defined in the previous section, these nodes can easily be removed, as well
as their related edges. The three entities can then be replaced by a single edge between the input
node of the original incoming edge and the output of the original outgoing edge. And of course,
this is done recursively on all graph nodes until none can be removed anymore. Figure 7.3 shows
the result of this operation on the original VEGF pathway. The size and complexity of the
diagram are already reduced but this is not enough.

VEGFA

SRC PLCG

PIK3 SHC2 PRKC SH2D2A

KDR

MAPK

Proliferation

MAPK_1

PLA2G10

RAC Survival

Angiogenesis

AKT

RAF1NOS3

NRAS

BAD

Figure 7.3: Original model after a first simplification step. All node chains have been
simplified, resulting in a sensible reduction of the model.
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7.3 Extrapolation to complex nodes

While removing the node chains showed some promising results, this was clearly not enough.
A method had to be found to generalize this principle and address more complex nodes. By
extrapolating the same rules used before, complex nodes can be considered as sets of chains, all
passing through the same node. Considering, for example, the following nodes A,B,C,D and
E so that:

A⇒ C C⇒ D B⇒ C C⇒ E

By cross-combining these nodes, we can in fact rewrite this as four node chains like

A⇒ C⇒ D A⇒ C⇒ E B⇒ C⇒ D B⇒ C⇒ E

and simplify them using the same logic as earlier, thus obtaining the following edges and allowing
the removal of the C node and its associated edges.

A⇒ D A⇒ E B⇒ D B⇒ E

Mathematically, it would come to solving the following equation system:

C(t + 1) = A(t) ∨B(t)
D(t + 1) = C(t)
E(t + 1) = C(t)

resulting in:

D(t + 1) = A(t) ∨B(t)
E(t + 1) = A(t) ∨B(t)

As for the first mechanism, this is applied recursively until no more nodes can be removed.
Figure 7.4 shows the result of this improved mechanism on the original network. It seems to be
extremely efficient compared to the previous algorithm.

SHC2

VEGFA

SH2D2AAngiogenesis ProliferationSurvival

Figure 7.4: Original model after the application of the improved simplification algorithm.
The network is now reduced at its simplest expression.

7.4 Avoiding inconsistency

While Figure 7.4 seems to be the most reductive representation of the original pathway, some-
thing is wrong with it. The way it is displayed, the VEGFA receptor both activates and inhibits
angiogenesis. In other words, by continuously solving equations, the system ends up with a node
whose state description is of the type B(t + 1) = A(t) ∨ ¬A(t) which is always true.

This is a reality in some way, but presenting it like this renders the pathway inconsistent for
the reader. So the decision was made to tweak the simplification algorithm so that a new edge
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can only be added to the model if it doesn’t already contain the same edge with the opposite
type. In this case, the original node and edges are kept in the model. This way, the reader
can understand that, while the activation of one protein can have contradictory effects on one
phenotype, it can still be fixed by acting on intermediary nodes. Figure 7.5 Shows the result of
this small improvement on the simplification of the VEGF pathway.

Angiogenesis

SH2D2A

VEGFA

BADSHC2 SurvivalProliferation

Figure 7.5: Original model after using the third version of the simplification algorithm.
The resulting pathway is now as small as possible without introducing contradictory edges
between the VEGFA and Angiogenesis nodes.

Note: the watchful reader might raise the concern that this renders the final output dependent
of the order in which the nodes have been encoded and treated. Indeed, to avoid that problem,
nodes and edges need to be sorted before being processed so that the final result is always the
same.

7.5 One last optimization

After the last fix, one more problem appeared with this optimization algorithm. But it doesn’t
occur with the VEGF pathway model used as example here. In some cases, when a node must
be kept to avoid contradictory edges, simplifying the remaining edges related to this node could
lead the algorithm to add more new edges than it actually removes. Consider the following
nodes A,B,C,D and E, and the following set of edges:

A⇒ C C⇒ D A⇒ ¬D B⇒ C C⇒ E

The removal of C and its related edges could be done by introducing the following four new
edges:

A⇒ D A⇒ E B⇒ D B⇒ E

But A⇒ D cannot be added to the model because A⇒ ¬D already exists. So the C node must
be kept as well as the A⇒ C and C⇒ D edges. It means that, if the algorithm keeps these
but applies the possible optimizations to the other edges, the resulting model would contain:

A⇒ C C⇒ D A⇒ ¬D B⇒ D B⇒ E A⇒ E

The system would then have introduced one more edge than the original situation, rendering
the model more complex. To counter this effect, a last improvement was made to the algorithm
so that an optimization only occurs if it can remove a node, or wouldn’t add more edges to the
model than it removes.
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CHAPTER

8

NETWORKS ENRICHMENT

Now that the mechanisms behind the networks simplification algorithm have been detailed, this
chapter will go further into details to explain how this algorithm was improved to be able to
enrich the resulting models with new nodes, containing hints on potentially beneficial drugs.

8.1 Targeted treatment

To be able to find out what drugs could be used to treat the analyzed cancer and improve the
patient’s health, the application must be able to find out, based on the available data, which
drugs have an impact on which protein and what kind of impact. But it still needs to know
which phenotypes must be targeted. In the scope of this work, we consider this information to
be provided by the user.

Also, for the sake of keeping the example easy to understand, the available drugs data has been
limited to a set of three drug types:

• An AKT inhibitor

• A VEGFA activator

• A MAP2K inhibitor

While real drugs targeting these proteins exist in the scope of cancer treatment, it is easier to
ignore their names here.

8.2 Protecting drug-related nodes

The first step in the implementation of this functionality was to get back all the nodes that
could be targeted by drugs in the model. To do so the system parses all the nodes and checks
in its database if there is a drug available that could impact it. If there is one, the node will
be marked as protected so it can’t be removed by the optimization algorithm. Figure 8.1 shows
the state of the original model after a run of the optimization algorithm, but with all nodes that
could potentially be targeted by a drug protected, as well as the model input and output nodes.
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Figure 8.1: Original model optimization with drug-related nodes protected. The resulting
pathway now contains more nodes than the previous version but it is necessary to integrate
relevant drugs in the model.

8.3 Adding the right drugs

Now that the algorithm was able to simplify a model while keeping all nodes potentially relevant
for the targeted treatment of the encoded phenotypes, it needed to extend it with the right drug
nodes. But before going into the details of how this was done, let’s remember that the output
of this functionality is not an approved treatment proposition. The drugs added in the model
are added based solely on boolean qualitative data.

The only thing that can be inferred is that each one of these drugs has a positive effect on at
least one of the targeted phenotypes via one or more pathways. To know more precisely which
of these drugs would create the best combination for an effective treatment and what effect can
really be expected from their usage, simulations need to be run on quantitative models contain-
ing more precise data on the nodes activation levels. With that in mind, here is the explanation
of how the algorithm was implemented in the application.

Mathematically, the concept is simple: considering two nodes A and B, and the phenotype node
P whose state equation is

P(t + 1) = A(t) ∨B(t)

if the user wants this phenotype to be expressed, the system needs to find all the drug nodes
whose activation would provide a solution to this equation. On the contrary, if the user wants
this phenotype to be inhibited, the system will find all the drug nodes whose activation solve
the equation

¬P(t + 1) = A(t) ∨B(t)

At the software level, here is an explanation of how the system solves these equations based on
the available drugs. Basically, the process starts from the targeted phenotypes and runs what
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could be qualified as a “backward simulation”. From the first node, the only thing known by the
application is the desired result (activation or inhibition). The algorithm then runs according
to the following steps:

1. If the state of the current node is not undefined, return.
If not:

2. Change the current node state to active or inactive based on the desired result.

3. Check if there is a drug able to apply the desired result on the current node.

4. If there is one, add the drug node and the appropriate edge to the model.

5. Get all the incoming edges of the current node.

6. For each one of these edges, computes the desired state of their input node based on the
current node desired state and the edge type.

7. Call this algorithm recursively on the input node of every incoming edge with the right
desired state until all possible pathways have been covered.

Once this algorithm is over, the model has been enriched with every drug that could possibly
have the desired effect on the targeted phenotypes. Figure 8.2 shows the result of this update
on the original VEGF pathway having targeted the inhibition of survival and proliferation.
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AKT
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Angiogenesis

SH2D2A SHC2

Proliferation

MAP2K

VEGFA

SurvivalRAC

Figure 8.2: Optimization and enrichment of the VEGF signaling pathway targeting the
inhibition of survival and proliferation.

8.4 One last step

Now that the application was able to find the right drugs to target one or more phenotypes, it
also knew exactly what nodes should be kept as they were of interest for the user. With that in
mind, a last improvement was made to the software so that, once the drugs have been added, a
model simplification can be rerun on the enriched model with a couple of updates:
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• The protection is removed from the drug-related nodes for which no drug has been added
to model.

• The protection of model input nodes and model output nodes that are not part of the
phenotypes targeted by the user are also removed.

This allows the final generation of a minimalist model containing only the strictly necessary
data, based on the user needs. Figure 8.3 shows the result of this last optimization on the
original model, now reduced to 6 nodes and 5 edges (coming from 31 nodes and 45 edges).

Proliferation

MAP2K

VEGFA

Survival

MAP2K_inhibitor

VEGFA_activator

Figure 8.3: Final optimization of the VEGF signaling pathway model, targeting the inhi-
bition of survival and proliferation.
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CHAPTER

9

PERSPECTIVES

This chapter discusses future perspectives for the project based on various strengths and weak-
nesses of the current implementation.

9.1 User interface

A CLI application should suffice to test and use functionality to some extent. It might also
be considered a good feature as it allows tools to be easily integrated in automatic workflows.
Nonetheless, for this solution to have a chance to be widely adopted, a more user-friendly appli-
cation with an actual UI is a must have. It makes it easier for the user to apprehend the software
without having to read the documentation to find out what arguments should be passed to the
command line.

As long as developing a UI, the way to go seems to be a web-based interface. More than the
fact that it is really popular these days, it is actually a smart, cost-efficient move. Web-base
UIs can easily be integrated in desktop applications using tools like Electron1 while the opposite
statement is not true. By doing so, if the application later needs to be extended as a full web
application, the UI can just be reused at practically no cost.

9.2 Complex networks

While the simplification and enhancement algorithms have given pretty good results in the
tested networks, they have their limitations. For example, looking at the regulatory network in
Figure 9.1, displaying multiple interconnected signaling pathways regulating some cancer phe-
notypes, the original network has 49 nodes and 100 edges with numerous cross connections.

The passage of this network through our algorithms with the growth arrest phenotype as only
target and one drug available (an AKT inhibitor) outputs a network containing 12 nodes and
30 edges as displayed in Figure 9.2. This is roughly a reduction of 70%, which is not that bad,
but still, the resulting network remains too complex to be quickly readable by a human being.

1https://electronjs.org
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Figure 9.1: Mitogen-Activated Protein Kinase (MAPK) signaling pathways. These inter-
connected signalling pathways are involved in multiple cancer-related phenotypes such as
apoptosis, cell growth and proliferation [47].
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There are some leads that could be investigated to try and shrink this kind of network a bit
more. Gathering some nodes based on codependent relations to form node groups might render
these networks easier to read. Running simulations on the modeled networks and try to identify
non-relevant signaling loops might help too. But it would probably be difficult to go further
without more data on the actual activation levels of the transitions. We might then be forced
to upgrade our system to support more complex models.

9.3 Supporting Petri nets

Boolean networks are a really good starting point as they allow the processing of a wide range
of models, and their encoding represents a system very close to the target visual representation.
However, as stated in Section 9.2, they have their limitations. The data they express can only
allow networks simplification up to some point, and the drug-mapping algorithm can only in-
sure that the drugs added to the system could have a positive effect on the target phenotype
depending on the actual levels of activations of the nodes implied in the regulation pathways
between this drug and the phenotype.

Supporting the modeling of standard Petri nets would give the application the ability to be more
efficient. Properly configured Petri nets would provide the ability to simplify the networks more
realistically based on the transitions firing pre-conditions that represent the activation levels of
the associated nodes. More nodes could be removed and contradictory edges could be resolved
based on the difference between their token production and consumption. Moreover, it could be
done without having to support another encoding format than SBML Qual as it supports the
encoding of standard Petri nets.

9.4 Visual rendering

A feature that would be a great improvement, if a UI-based application was developed, is the
visual rendering of the networks. It would bring multiple advantages and could allow the user
to:

• avoid the obligation to use another tool to validate the results and exploit them;

• interact directly with the network;

• manually select the target phenotypes on the screen;

• force the protection or removal of some nodes;

• manually layout the networks;

• ...

But that would also require a lot of work and bring multiple questions and problems to the
table:

• Displaying the network on screen would mean to be able to display it properly, not as a
pile of nodes and edges.

• Even though automatic layout algorithms do exist, they usually don’t work very well for
big networks.

• The visual rendering style of nodes should be chosen.

• A biological visualization, using for example the SBGN standard, would be the best choice
but that would imply identifying the nature of all nodes of the network.
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• While some input networks might have rendering and layout information included or an-
notations with information on the nature of the species, this is not always the case.

• Even if it is the case, once the network is simplified, some of this information might not be
relevant anymore.

• ...

Nonetheless, there is interesting work to do in this field.

9.5 Software integration

No matter the type of application, a good integration with existing softwares seems to be an
important feature. For the product to be adopted, it needs to be usable in the current environ-
ment and then maybe start growing and integrate more functionality. A nice way to provide that
integration would be to add the possibility to connect to the SBW (see Chapter 4) and interact
with the other compatible softwares. The SBW is also a good way to share functionalities with
software developed in other languages and that couldn’t integrate RNESlib.

9.6 Standards support

Even though the integration with SBML Qual is already a good thing, with SBML probably
being the most popular standard, supporting more formats as input and output would open
the application to a wider user base. It could also open the door to new functionalities like
conversion from one format to another, at least to the extent of the information supported by
the internal boolean model.

9.7 Public databases

The actual implementation of the RNESCLI tool requires the user to pass the list of available
drugs as an argument. For the application to be more easily used in real conditions, providing
drug-related knowledge modules that can connect to public databases like KEGG or PANTHER
to retrieve the necessary information would be an interesting feature. It would only require the
implementation of new modules that can be seamlessly substituted to the original one, letting
the users or developers decide what public data source they want to use.
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CHAPTER

10

CONCLUSION

The aim of this thesis was to lay down the foundations of an expert system, able to help biolo-
gists in the simplification of gene regulatory networks and the research of potentially beneficial
targeted treatments. The first chapter introduced the biological background of cancer and the
basic principles of targeted therapy. Then, the work of biologists to provide oncologists with
relevant treatment options was discussed and, after characterizing the traits of an expert system,
a solution was proposed.

After providing an overview of the current state of the art in terms of software and technolo-
gies, the implemented solution was presented with all its targets, constraints and technological
choices. The next chapters then provided a more detailed explanation on the way the simplifi-
cation and network enrichment algorithms were conceived, as well as their mathematical bases.
And finally, future perspectives of the solution where discussed.

While the implemented solution does provide the ability to successfully simplify and enhance
biological regulatory networks, it might not meet the requirements of an expert system per
se. One of the main missing features being the justification of its reasoning on the processed
network. This could be addressed by providing a way to output intermediary networks, or a
list of the computed simplifications and drugs signaling pathways. But a good solution should
probably involve a user interface. It would open the application to more use cases and give it a
real chance to be adopted as a viable tool for actual biologists.

Also, a user interface would make it easier to layout the resulting pathways and really create
a visual representation that can be used, as is, by an oncologist. The actual implementation
makes it mandatory to use another tool to visualize and layout the resulting networks and it is
yet another constraint as this tool has to support the SBML Qual standard. Finally, support-
ing more standard formats would help intercommunication with other applications and make it
easier to integrate the current solution in an existing workflow.

More than the development of the software itself, the biggest challenge throughout this work
was certainly to fill the necessary knowledge gap to finally be able to start producing something.
Indeed, starting the research with absolutely no knowledge of the underlying biological concepts
behind cancer, it was quite difficult to find its way through the enormous amount of information
out there. Also, more than the difficulty of finding the relevant documentation, most of this
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documentation is targeted at biologists which doesn’t help the learning curve.

But finally, after months of research, gathering information and trying to make biological and
computational concepts fit together, the development could start. Though, the elaboration of
the final solution has probably been more guided by the software side than the biological side.
More than trying to address a field problem, the produced system is oriented to solving a user
problem with its current environment and is probably of more interest to the biological software
development world than to the biologists themselves.

Looking at the current state of software dedicated to biological research, at least based on the
information gathered during this work, it seems like the field is in desperate need of a common
goal in term of software development. An awful lot of small tools are developed by researchers to
address specific models or algorithms, but it seems like nothing is ever integrated together to try
and form a bigger product, capable of addressing a wider range of problems. No effort is made
at gathering and combining different concepts or different process stages in the same application.

The software produced in the scope of this work might be too specific in terms of capabilities to
trigger the attention yet. But it could be an interesting basis to build upon for future projects,
enlarging its functionalities and improving it so that it really becomes a relevant application for
the field. Anyway, the only certainty is that software and artificial intelligence have a great role
to play in helping researchers in the fight against cancer.
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