Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Enforcing foreign key constraints in legacy systems

Carl, Henry; Staelens, Thibaud

Award date:
2018

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/82bbfdb9-d5e7-4a82-b751-8ac054720ee3

UNIVERSITE DE NAMUR
Faculty of Computer Science
Academic Year 2017-2018

Enforcing foreign key constraints in legacy
systems

Carl HENRY Thibaud STAELENS

UNIVERSITE
)EE NAMUR

Internship mentor: Jens WEBER

Supervisor: (Signed for Release Approval - Study Rules art. 40)
Anthony CLEVE

A thesis submitted in the partial fulfillment of the requirements
for the degree of Master of Computer Science at the Université of Namur

Acknowledgement

This thesis is based on the work produced during a three-and-a-half month in-
ternship in Victoria, Canada. There we integrated a laboratory that works on
several subjects for improving health-care information systems all over Canada.
A part of this laboratory uses real large electronic medical record (EMR) soft-
ware systems for effectuating research on the management of technical debt in
order to facilitate database schema evolution. During our internship we used
the OSCAR EMR as a case study to progress in that area.

We would like to thank our supervisor, Anthony CLEVE, for offering us the
possibility to accomplish an internship abroad full of happy experiences and
discoveries in Canada, for his support, advices, discussions and enlightenment
on the subject of database.

We would like to thank our internship mentor, Jens WEBER, for his support,
advices and help during our internship and we also would like to thank his
sympathetic research team members for welcoming us among them.

Finally, we would like to thank our relatives - parents, friends, colleagues -
for their support and their help during the writing of this thesis.

Abstract

The world in which we live is constantly changing and information systems
must also evolve to cope with these changes. However, legacy systems, which are
very large and complex, cannot easily evolve. In particular, the semantics of the
logical database schema of these systems is often not documented. Therefore,
the conceptual schema will have been lost over time. Unimplemented foreign
keys are then lost, making the task of upgrading this database perilous. To
compensate for this, this conceptual schema must be restored. Database re-
verse engineering provides tools for retrieving this lost information. Nowadays,
locating implicit foreign keys in order to implement them is no longer a problem.
However, the restoration of these relational constraints is not yet a subject of
much study.

This thesis aims at proposing solutions to facilitate the implementation of
these lost implicit foreign keys thanks to a method of evaluation of the risk of
implementing a constraint through a calculation of the schema transformations
necessary to its addition as well as the probability and the importance of the
errors that it could generate at the application level.

Résumé

Le monde dans lequel nous vivons est en constante évolution et les systémes
d’information se doivent d’évoluer eux-aussi pour faire face a ces changements.
Cependant, les « legacy systems », trés grands et trés complexes, ne peuvent
pas facilement évoluer. Particuliérement, la sémantique du schéma logique de
la base de données de ces systémes n’est bien souvent pas documenté ce qui
entrainera une perte du schéma conceptuel au fil du temps. Les clés étrangéres
non implémentées sont alors perdues, ceci rendant périlleuse la tache de faire
évoluer cette base de données. Pour pallier cela, ce schéma logique doit étre
restauré. La rétro-ingénierie de base de données fournit des outils pour retrouver
cette information perdue. A I’heure actuelle, localiser des foreign keys implicite
en vue de les implémenter n’est plus un probléme. Cependant, la restauration
de ces contraintes relationnelles n’est pas un sujet d’étude encore beaucoup
entrepris.

Cette thése vise a proposer des solutions pour faciliter I'implémentation de
ces foreign keys implicites perdues grace & une méthode d’évaluation du risque
d’implémentation d’une contrainte a travers un calcul des transformations de
schéma nécessaire a son ajout ainsi que de la probabilité et I'importance des
erreurs que cela pourrait engendrer au niveau applicatif.

Contents

[Acknowledgment|

[Abstract]

(1 __Introduction|

[L.1 Legacy System|
[T2 Tegacy system evolution] v v v v
1.3 Implicit Foreign Keys|
I1.4 Reverse engineering and Implicit foreign key detection|
I1.5 Research question|.,
[1.5.1 Research subject|
[T.5.2 Why is it important and dificult?]
I1.5.3 How can we enforce these foreign keys?|

2 State of the art|

2.1 Managing the technical debt|.
2.2 Automatically generating up-to-date database documentation| . .
2.3 Database reverse engineeringl
[2.4 _Implicit foreign key detection tool]
25 _DAHLIAl

[3_Problem statement|

3.1 'The Foreign key constraint|
8.2 Explicit and implicit foreign keys|o
3.3 1mplicit Foreign Key issues|
3.4 Foreign key enforcement|o L.
3.5 Impacts of foreign keys enforcement at the applications level | . .

[35.1 Foreign keys adding Impact]

Methodology|

4.2.3 Empty transformation| o000 oL
4.2.4 Impossible Transformation|
A3 Program adaptation|

11
11
12
12
13
13
13
13
14
14

17
17
18
19
22
23
25

27
27
28
30
31
31
31

5.1 Database Transformationl

4.3.1 Dynamic analysis|.

3.2 tatic Analysis|
4.4 Decision helper process|.
4.4.1 Explicit Foreign key metrics|.
4.4.2 Requirements|

p.1.1 EasySQL : Abstract Database manipulation|.

p.1.2 Context Analyzer|.
5.1.3 Remote Diagnostic|
b.2 Program adaptation|
p.2.1 Dynamic analysis|.
p.2.2 Static analysis|

[6 Implementation|

6.1.1 EasySQL|
6.1.2 Context Analyzer|.
I!illl;i l l!z!li!!!lllz g;[]ll
6.1.4 Remote diagnostic|
6.2 Program adaptation|
6.2.1 Trigger logger|.

[7 Case study : OSCAR]

[7.2.1 Data protection legislation|.
[7.2.2 Data accessibility|.

|A External inputs|

IA.1 Maxime Gobert and Jérome Maes outputs| .

IB Project output|
IB.1 remote diagnostic : transformation analysis|

51
o1
o1
o4
61
63
63
64
65

67
67
67
76
76
78
81
81

85
85
86
86
87
87

93
93
95

99
99

101

List of Figures

[L.1 Work distribution of system developers (taken from [21])|. 11
2.1 The database forward engineering processes (taken from .. 20
2.2 The database reverse engineering processes (taken from ..20
2.3 'The database reverse engineering processes as the inverse of for- |
| ward processes (taken from [19])) 22
24 Fk detectionmethod oL 23
2.5 DAHLIA method for source locationl 24
8.1 Classic Foreign Key Examplel 27
3.2 Cascade Foreign Key Examplel 28
[3.3 _Simple NT'T transformation| 32
[3.4 DAO design pattern class Diagram [UML] 33
3.5 Sequence diagram of Data Adding success [UML]| 34
3.6 Sequence diagram of Data Adding failure [UML| 35
3.7 Sequence diagram of Data Delete success [UML|| 35
3.8 Sequence diagram of Data Delete failure [UML|[. 36
3.9 Sequence diagram of Data Select success [UMLJ||. 37
3.10 Sequence diagram of Data Select failure [UML|| 38
4.1 MBT example|.o oL 42
42 MVMT example| o oo 42
E3 TMTT example 43
4.4 Type transformation example] 43
4.5 ‘Trigger Logger methodology|., 45
4.6 The Decision Helper Process| 49
5.1 EasySQL class diagram [UMLI|[. 53
5.2 Typology decision engine [UML|| 55
5.3 Context Analyzer class diagram [UMLI||. 59
5.4 Transformation choice algorithm [UML|| 60
[5.5 Remote diagnostic schemal 63

6.1 INFORMATION SCHEMA.COLUMNS Table taken from [15] . 70
[6:2 INFORMATION SCHEMA KEY COLUMN USAGE Table taken |
| from [I5]. 71

[6-3 Tmplicit Foreign key FRL| o v v v e i e e et 81

[7.1 Transformation type suggestion| 88

[7.2 _Impossible transtormation kind|.
[7.3 Transformation type suggestion (with refined data)|

List of Tables

5.1 mysql type typology| o 57
5.2 og-table components| 64
6.1 MySQL metadata tables| 0000, 69
7.1 'Type suggested table| 000, 88
7.2 Impossible transformation repartition tablel 90
7.3 'T'ype suggested table| oo 0oL 92

10

Chapter 1

Introduction

Nowadays, new developed information systems are becoming increasingly rare.
Indeed, developers will tend to adapt already developed systems to meet their
requirements instead of developing new systems from scratch.

Year New project. Enhancements| Repai Total
1950 90| 3 g 100)
1960 8,500f 500) 1,000f 10,000,
1970 65,000/ 15,000 20,000 100,000
1980 1,200,000f 600,000 200,000) 2,000,000
1990 3,000,000f 3,000,000) 1,000,000] 7,000,000
2000 4,000,000 4,500,000 1,500,001 10,000,000
2010 5,000,000f 7,000,000) 2,000,000% 14,000,000
2020 7,000,000f 11,000,000 3.,000,000% 21,000,000

Figure 1.1: Work distribution of system developers (taken from [21])

Figure 1.1|shows that estimations for 2020 anticipate that only 30% of system
developers will work on new projects while 70% will work on enhancements and
repairs.

As the world is in constant evolution, these systems have to adapt to it so
that they are also in continuous evolution. This leads to huge and very complex
systems that are called legacy systems.

1.1 Legacy System

A legacy system is a large information system in which the source code and the
architecture is the product of a long maintaining that can cause some obsoles-
cence, incompleteness and inconsistencies but whose replacement cost would be
too high and risky. For that type of systems, the most reasonable solution is
to incrementally update them, fixing specific parts each time. But doing that

11

is not an easy task considering that generally these systems lack in documenta-
tion, reference persons that know them well and who can be reached. Moreover,
ordinarily, the technologies involved are old and so can slow down the whole
system.

But, if someone is researching the subject of legacy system, it will rapidly
appear to him that there are a lot of other denominations that, even if they are
quite straightforward, need to be mentioned: legacy system, legacy software,
legacy hardware or legacy database.

1. Legacy Software : Has the same characteristics as a legacy system but
only at the software level.

2. Legacy Hardware : Has the same characteristics as a legacy system but
only at the hardware level. In this thesis this term will never be used
because there will never be any hardware level discussion.

3. Legacy Database : Has the same characteristics as a legacy system but
only at the database level.

Even if this thesis is essentially focusing on databases, it will generally be
question of legacy systems instead of legacy databases because this first term
is more general and includes every part of an information system.

1.2 Legacy system evolution

As said before, information systems are in constant evolution and obviously so
are legacy systems. Generally, the software developers tend to evolve only the
software part of the system while the database has to evolve as well. To do
that, a good understanding of the database is required and in that perspective
documenting a database and specifically specifying the foreign keys is very im-
portant. If it is not the case, with time, the initial conceptual schema can be
lost, mistakes can be made on the data representation, non-specified relational
constraints can be violated and the data integrity can be lost. It is very difficult
and dangerous to perform a database evolution on an erroneous schema or with
data integrity violations.

But trying to correct the database schema and to restore this data integrity
is not a trivial task. This thesis is focusing on the restoration of relational
constraints that were lost.

1.3 Implicit Foreign Keys

In a relational database, the greatest way to link tables together and so bringing
additional information to the logical schema is the mechanism of the foreign key.

A foreign key is a column or group of columns in a relational database table
that provides a link between data in two tables. It acts as a cross-reference
between tables because it references the primary key of another table, thereby
establishing a link between them|[6].

In practice, it can express a lot of different semantic patterns and it is not
always easy to correctly interpret and understand the conceptual construct it
represents.

12

Moreover, most of the time in legacy systems a lot of foreign keys are not
documented or implemented. The reasons for that are multiple : laziness from
the database developer, lack of time, better performance, ... But however,
in most cases the software has been built with the idea that there should be
relational constraints in the database. So the case of these missing foreign
keys that are however present in the logical schema of the database are called
"implicit foreign keys".

1.4 Reverse engineering and Implicit foreign key
detection

One of the most important issues we are facing with legacy systems is that the
lack of database documentation induces losses of relational constraints. How can
we implement these implicit foreign keys if we are not aware of their existence
because of the missing documentation?

Advanced methods of database reverse engineering can be used to retrieve
the needed information about these foreign keys. The technology of database
reverse engineering is for long time used for retrieving database documentation.
However, the techniques for retrieving missing foreign keys is relatively new.

Nevertheless, the detection of these implicit foreign keys is not the concern
of this paper (it will be briefly presented in but it is obvious that this
step is crucial on the objective of implementing them. So this thesis has been
made with the assumption that retrieving the list of the implicit foreign keys in
a given database is not an issue.

1.5 Research question

1.5.1 Research subject

The main goal of this master thesis is to propose solutions to ease the implemen-
tation of missing implicit foreign keys of a database in a legacy system context.
This process is called enforcing foreign keyﬂ

1.5.2 Why is it important and difficult?

As said before, it is estimated that in a few years, the main jobs of computer
scientists will be to maintain existing systems - and so large legacy systems.

Therefore, research in facilitating and improving the evolution of that kinds
of systems is becoming more and more crucial. Moreover, this implicit foreign
keys concern had not been the center of much research yet while any contribution
in this area is needed.

Indeed, legacy systems evolution often requires database migration which
cannot be safely done with unknown implicit foreign keys in this database.

But implementing those implicit foreign keys is a difficult problem.

1The detailed meaning of this term will be explained in

13

First, there can be a lot of issues at the database level. That is to say :
mismatching types between the foreign key column and the destination column,
mismatching values, cascade foreign keys, ... All these problems have to be
detected and solved before the addition of the foreign key.

Unfortunately, issues will not only rise at the database level but at the
application level as well. Indeed, nothing can ensure that an application using
the database will still be functional after this addition. A short example would
be an application that never violates the logic of an implicit foreign key but
that wrongly enters the data - enters a value in the foreign key column before
entering the same value in the destination column for instance. Again, solutions
to these application issues will have to be provided.

1.5.3 How can we enforce these foreign keys?

As we are facing two different but linked problems (database transformation
and its propagation in the program), we will have to treat them separately for
each step of the design and implementation of the solutions.

For the database transformation part, the idea is to develop a tool that will
automatically take a list of missing foreign keys, treat them one by one and
execute all the required transformations.

For the application propagation part, two directions can be explored :

1. Static Analysis
2. Dynamic Analysis

The static analysis would extract queries from the code. This extraction should
spot us the areas of the code that can be problematic for a certain foreign key.
In summary it will help us to find foreign keys critical sections.

The dynamic analysis is constituted of a mechanism called trigger logger
that will help us detecting critical foreign keys.

The global goal of this thesis is to provide a tool that encompasses the
database transformation tool and both the static and dynamic analysis in order
to provide the user with a good visualization of the difficulty of enforcing a given
foreign key so that he can decide which set of foreign keys he wants to enforce.

1.6 Thesis Structure

Chapter 2 is the state of the art related to the context in which this thesis was
conducted, the database reverse engineering process, several tools that are used
for our solutions and inspiring papers.

Chapter 3 states the research problem in more details than in this short
introduction.

Chapter 4 describes the methodology we used to face this problem and ex-
plains decisions we had to make.

Chapter 5 details the algorithms or other design solutions we built according
to this methodology.

14

Chapter 6 gives explanations about the implementation of the tools we de-
veloped based on these design solutions.

Chapter 7 presents the OSCAR system and discusses the results of our most
advanced tool in this case study.

And finally, chapter 8 concludes this thesis by giving a summary of it, dis-
cussing the potential issues of our solutions and presenting the future works
that we think are needed to improve these solutions.

15

16

Chapter 2

State of the art

First of all, it is important to note that there are not a lot of previous works on
the precise subject of the enforcement of missing implicit foreign keys and the
propagation impacts of these additions at the application level. Nevertheless
it seemed primordial to present the context in which this thesis was conducted
and to describe several works that had been undertaken on the border of this
subject but whose results will be used to develop our specific solution.

This thesis is part of a collaborative project between the University of Namur
and the University of Victoria whose objective is the advancement in the field
of reducing technical debt in critical software. To that end, managing technical
debt in database schemas of critical software is key.

In this state of the art, a paper [27] concerning the management of the
technical debt will be first introduced.

Then, an interesting tool for generating up-to-date database documentation
will be shortly presented. After that, an introduction to the field of database
reverse engineering will be proposed in order to better understand the different
developed tools used in this thesis that will be briefly presented and explained
afterward - these tools being an implicit foreign key detection tool and a critical
query extractor tool.

Finally, there will be a short discussion about a paper describing a solution
that inspired the mechanism of "trigger logger" that will be presented in more
details later.

2.1 Managing the technical debt

First of all, the term Technical Debt is a metaphor that is used to quantify
the issues that can potentially arise from software evolution and maintenance
actions that were undertaken in order to modify the functionality or behaviour
of a system. In reality, the term technical debt can define a very large range of
definition and even if we will stick here to the previously given definition, we
encourage the reader to consult an interesting article [22] on this subject if s/he
is interested.

Usually, this metaphor is used in a software program code or architecture
context and not in the context of database applications (and even less regarding

17

database schemas). This distinction is important because these two technical
debts are different mainly due to the fact that database schemas are linked to
data instances which are not under control and often not accessible to soft-
ware developers. Weber, Cleve, Meurice and Ruiz [27] are concentrating on a
particular type of database schema related technical debt : missing referential
integrity constraints or more commonly known as foreign keys. The authors
argue that it should be considered as technical debt because of its importance
for preserving data validity and quality in relational databases and because it
allows complex transactions that can restore data integrity if violations had
been made.

They describe two ways for this particular type of technical debt to arise
[27] -

1. Because of incremental modifications of the database application’s data
model :

This case can be the consequence of a difference in the view between
application programmers who see the database only as a necessity that is
generated and used by the application code which is the core of the system
and database engineers who see the application code only as peripheral
functions.

This particular point of view from application programmers leads them
to modify the application’s data model without applying the according
changes to the database layer.

2. Because of architectural changes (like a platform migration) :

This case refers for example to a database migration from a noSQL databaseﬂ
to a relational database or upgrading an old version of DBMS to a new
version that supports the foreign key monitoring. Both these situations
result in increased technical debt because of the occurrence of implicit
constructions?

The idea of reducing the technical debt was the genesis of our thesis and
enforcing foreign keys enables this reduction, which is the focus of the thesis.

2.2 Automatically generating up-to-date database
documentation
Reducing technical debt is very important in order to enable database schema

evolution, but it would be better if this technical debt is as few as possible from
the beginning.

1noSQL databases are not presented in this thesis, if the reader is interested to learn more
about them we advise her/him to consult the publication Ezploring the merits of nosql by B.
Jose and S. Abraham|20].

2A debate can be raised on this point because it is not trivial to consider that some
technical debt is created in these situations or if this technical debt was already there before.
The reader can find the full thinking in Managing Technical Debt in Database Schemas of
Critical Software|27].

18

A research conducted by M. Linares-Visquez, B. Li, C. Vendome and D.
Poshyvanyk focused on the idea of creating a process for automatically generat-
ing always up-to-date natural language descriptions of database operations and
schema constraints in source code methods[23].

Their main motivation was that recent studie®] demonstrated that handwrit-
ten comments in the database - that in theory could give to database developers
almost sufficient information for having a satisfactory level of knowledge of the
database - are generally not maintained or updated when the database source
code changes[I6][17].

They designed DBScribe, a tool that can help developers to understand
how features are implemented in the database and - the most interesting part
for this thesis - understand schema constraints that need to be satisfied.

DBscribe would be very useful for documenting relational constraints so that
it would be easy to locate all foreign keys in a database, implicit or not.

This is a very interesting way of reducing technical debt by preventing gen-
erating it but as this thesis focuses on enforcing implicit foreign keys on legacy
systems that already generated this technical debt, we turned ourselves towards
another tool that uses database reverse engineering for locating missing implicit
foreign keys. For this reason, the functioning of this tool is not detailed here.
But if the reader is interested, we advice reading the related paper [23].

2.3 Database reverse engineering

According to Chikofsky and Cross [10], Reverse engineering is the process of
analyzing a subject system to:

1. Identify the system’s components and their interrelationships.

2. Create representations of the system in another form or at a higher level
of abstraction.

But this definition is also valid for database reverse engineering.

And specifically, in the context of legacy systems where documentation is
often lost, database reverse engineering is used to retrieve the logical schema
of a database from its physical schema alone, in order to facilitate system
maintenance, re-engineering, extension, migration or integration (this is a non-
exhaustive list - the reader can find a more complete list in the book Introduction
to Database Reverse Engineering by J-L. Hainaut[19]).

A valid view of database reverse engineering is to consider it simply as the
reverse of the database forward engineering process [8E| .

So let us define what database forward engineering is. It is the process that
moves from the initial requirements of the business to the implementation code
of the database through logical and physical design. summarizes the
database forward engineering processes.

3studies from 2007 and 2009.
4 According to J-L. Hainaut[19], database reverse engineering is more complex than that,
but the author still qualifies this view as a good starting point.

19

User Requirements
Requirements analysis

Coding

Figure 2.1: The database forward engineering processes (taken from [25])

A

Logical Design

These processes can be subdivided in subprocesses that will enhance the
database quality. For instance, during the requirements analysis process, a
normalization step that will improve readability, normality or minimality can
be performed. Also, in the logical design phase, an optimization step can be
achieved to improve performance. More subprocesses are described by Hainaut

Now that we understand better which processes are required in database
forward engineering, it is easier to describe database reverse engineering because

its processes will be essentially the same as in database forward engineering but
inversed.

DDL code Physical extraction Raw physical schema

Physical schema
Database contents
Logical schema

Conceptualization Conceptual schema

Refinement

Cleaning

Figure 2.2: The database reverse engineering processes (taken from [13])

shows the different required processes in database reverse engi-
neering.

20

Here are short descriptions of each of these processes (these descriptions are
taken from [I3])

1. Physical extraction :
Parsing the DDL code for extracting the raw physical schema of the
database.

2. Refinement :
Refining the raw physical schema with additional structures and con-
straints found by analyzing other sources like Static program analysis[24],
dynamic program analysis[I8|, evolution history analysis[I4], ...

3. Cleaning :

Removing the physical constructs in order to produce the logical schema.

4. Conceptualization :

Deriving the conceptual schema implemented by the previously produced
logical schema.

Withtaken from [19] we can appreciate the parallel between database
forward and database reverse engineering. The symbol inv on the forward/re-
verse correspondences means that each process is the inverse of the other, while
the symbol = indicates they are the same.

21

Database Forward Engineering Database Reverse Engineering

| Normalization
Conceptual schema

Conceptual schema
|
Normalization
I o
=]
: S 2
Optimization mv De-optimization "
z 2
8- £
o .
5 Model Translation nv I Untranslation =
= g
= : =)
gﬁ | Preparation =
]
Logical schema Logical schema
= :) : | -
8 Physical design mv | Schema-Cleaning
- =
g >
- Schema-Refinement =1
5 &
£ : | 5
=] | Coding mnv | DDL-code-Extraction =
=
A A

Figure 2.3: The database reverse engineering processes as the inverse of forward
processes (taken from [19]).

As the purpose of this section is to give a quick introduction to what database
reverse engineering is, we will not detail further the different processes.

2.4 Implicit foreign key detection tool
As explained in we are only focusing on the implementation

of implicit foreign keys and its impacts. We considered that deciding where in
the database a foreign key should be added is not part of this research. Luckily,
this precise subject has already been researched by a team of two students of
the University of Namur during an internship at the University of Victoria - see
Gobert and Maes [25]. The two students have indeed developed a tool able to
provide a list of all the foreign keys spotted as "potential implicit foreign keys"
by its algorithm .

The purpose of the research of these two students wasn’t only to provide the
list we need. The main goal was to propose solutions to improve the database

22

comprehension of legacy systems through revisited "Database reverse engineer-
ing". A part of that process is indeed to retrieve the missing foreign keys. That
particular process was divided in two steps.

1. Finding the missing foreign keys :

This can be achieved through heuristics based on column names, SQL
statement analysis, program slicing, DDL code analysis, etc and a new
ORM analysis they developed. All these techniques can help to elaborate
a list of candidate foreign keys.

2. Validating these candidate foreign keys :

Gobert and Maes say it can be made by analyzing the data, the data usage,
the technical constructs and especially by analyzing the historical schema
of the database. They give the specific example of a candidate foreign
key which its target column had been created after its source table. In
this situation the candidate cannot be a foreign key and should then be
eliminated from the list.

To help the reader understand their retrieving foreign key process, here is a
simple schema they provided to synthesize it.

explicit physical
schema with
potential FK

explicit physical
schema with FK
validated

explicit physical Foreign Key Foreign Key
schema Finder Validation

Figure 2.4: Fk detection method

They tested this tool on the case study OSCAR (which will be described
in detail in . With the first step, they found 440 candidate for-
eign keys that needed to be validated. Unfortunately, the second step wasn’t
fully achieved. They wanted to use a tool called "Key analysis" developed by
Rever[4], but due to a lack of data in time, they managed to reject only a few
foreign keys. On the other hand, their technique for analyzing the historical
schema of the database permitted to reject 26 foreign keys.

The consequence of this is that they cannot provide 100% reliable candidate
foreign keys. Nevertheless, this tool has been a great help to us for testing our
proper tool.

2.5 DAHLIA

Another domain useful for us and already been researched is the area of the
static analysis of the code of an application to seek where critical queries have
been made. Obviously, it would be very interesting for our solution to be able
to detect the parts of the code that cannot longer work after the modifications
it made on the database.

23

A team of researchers from the University of Namur developed a tool called
"DAHLIA" for Database ScHema EvoLutlon Analysis and it is described by C.
Nagy, L. Meurice, and A. Cleve in the publication Where was this SQL query
executed? a static concept location approach [26] as an "interactive and visual
analyzer of database schema (and usage) evolution".

So its main purpose is to visualize particular schema versions of a database
in 2D or 3D and it allows also to compare two schema versions.

But what interested us is the advanced version of DAHLIA (DAHLIA++)
which its main concern is the "static extraction and analysis of the database
accesses in the java source code" and so to be able to answer the question "where
was a given erroneous SQL query executed in the source code?".

Data Access
03 Extraction l l l
HQL/PA I‘r‘li:_\ {thu\ Criteria JDBC
Queries Queries Queries

ORM-SQL
Developer

Accesses

i

Translation

Searched

o SQL
Queries

Searched Source
SQL ASG M?‘;:Hm Locations

Robust
SQL Parser

Figure 2.5: DAHLIA method for source location

Figure 2.5] shows all the steps the researcher developed through DAHLIA
for answering that difficult question of the erroneous query localization in the
source code.

For simplification purposes this process can be divided in four steps :

1. The extraction :

Extracting the SQL queries, the HQL queries from hibernate and the
JPQL queries from JPA.

2. The parsing :

Parsing these extracted queries in order to construct the Abstract Seman-
tic Graph.

3. The analysis :

Analyzing some metrics, the columns and table access, the coding rules
violation, ...

4. The matching :

Trying to match the extracted query from the Java source code and the

initial problematic query.

The profound complexity of this method will not be described here as it is
not the subject of this thesis but here are some basic and simple explanations.

24

2.6 At the origin of trigger logger

Finally, let’s describe a paper by R. Balzer [7] that greatly inspired the "trigger
logger" technique that will be documented later.

First of all, nearly all constraints and hypotheses have exceptions. To deal
with such exceptions there are three possibilities :

1. Simply not declare the constraint or hypothesis.

2. Not apply the constraint or hypothesis. That is to say treating it like a
commentary so that the constraint is still documented.

3. Weaken the constraint or hypothesis to authorize the exceptions.

Most of the time option 1 or 2 is chosen and problems are found by steady
tests algorithms. These problems are then fixed by hand. But in reality, only
the third option is valid. The key is to formally declare the constraints but at
the same time to authorize violations of these constraints.

They described two implementations to identify particular data that violate
a constraint. The first one called "Paired Maintenance Constraint" interested
us greatly.

The idea is to replace the original constraint by a couple of constraints called
"guards" that assure that when there is a violation, a "Pollution Marker" is
inserted to notify the violation and when the violation disappears the "Pollution
Marker" is removed.

Thanks to the work of R. Balzer [7] the idea of tolerating inconsistencies
emerged in our proper work.

Moreover, as said before, this work inspired us on the mechanism of "trigger
logger" very similar to these "guards". Such mechanism is described further in
this thesis.

25

26

Chapter 3

Problem statement

3.1 The Foreign key constraint

In order to understand what an implicit foreign key is, it is primordial to define
a simple foreign key. A foreign key is a relation between two concepts. For
example, a link between a car and its owner. In UML language, it can be
represented as :

OWNER CAR
ownerld : bigint carld : bigint
firstname : varchar(45) km : bigint
lastname : varchar(45) refOwner : bigint
id : ownerld id : carld

Foreign Key ref : refOwner

Figure 3.1: Classic Foreign Key Example

In the two concepts CAR and OWNER are represented as tables
in a database and the foreign key is the relation that can associate a CAR with
its OWNER.

In its essence, the foreign key mechanism is simply the representation of a
particular type of logical constraint : a reference constraint. But in practice, this
constraint can be used to express many different conceptual constructions on
the logical schema. A non-exhaustive classification had been made by A. Cleve
[12]. Nevertheless, as we are not interested here on the conceptual construction
of a foreign key but mainly on its physical construction (is the foreign key
implemented in the database or not?), we will not dwell on this part.

For simplification purpose, only the simplest physical construction of a for-
eign key like will be discussed in this thesis. In particular, the multi-
column foreign keys will be avoided although it is not a rare construction to find

27

in databases. We argue that taking that case into consideration would greatly
complicate our thinking on the problem whereas including it once the basic for-
eign key problem has been solved should not require too much time and many
other resources.

Additionally, it is interesting to point out that considering only these basic
foreign keys does not exclude the case of cascade foreign keys.

EMPLOYEE CAR Insurance
employeeld : bigint carld : bigint insuranceld : bigint
firstname : varchar(45) km : int price: int
lastname : varchar(45) refCar : bigint
id : clientld id : carld id : insuranceld

‘Lh%fi?““- ref ; carld ‘H—ﬂ(‘_f““ ref ; refCar

Figure 3.2: Cascade Foreign Key Example

In figure if there are modifications on the first constraint, the second
could be affected as welﬂ For instance, if the type of employeeld is changed to
varchar, the type of carld must also be modified to varchar because of fk1. But
because of fk2 the type of refCar should also be changed. This is a complication
that needs to be faced.

3.2 Explicit and implicit foreign keys

In the previous section, we defined the foreign key construction. Now, we will
classify the different ways of expressing that construction. Two main ways of
expressing a foreign key can be considered :

1. Explicit foreign key :

Using DBMS integrated mechanisms by implementing the foreign key in
the DDL code of the application. Using the MySQL example, there are
two ways of implementing it :

(a) declaring it when declaring the source table :

CREATE TABLE Orders (
OrderID int NOT NULL,
OrderNumber int NOT NULL,
PersonID int ,
PRIMARY KEY (OrderID),
COONSTRAINT FK PersonOrder FOREIGN KEY (PersonID)
REFERENCES Persons (PersonID)

E

IHere, carID has the same value that the employeeID of the employee with whom the car
is associated.

28

(b) adding it to a table after that table has already been declared :

ALTER TABLE Orders
ADD CONSTRAINT FK PersonOrder
FOREIGN KEY (PersonID) REFERENCES Persons(PersonlID);

Implementing an explicit foreign key has a lot of advantages :

First, it expresses clearly and without ambiguity the information of the
logical foreign key. This information can easily be extracted from the DDL
code of the database. Moreover, the DBMS will automatically prevent
inconsistencies and guarantee the logical foreign key preservation.

2. Implicit foreign key :

(a) Using other DBMS integrated mechanisms that will simulate a classic
Foreign key :

For example, a set of triggers that will check for every modification of
the two tables if the constraint is respected (when a value is added,
deleted or updated).

This method, unlike the previous one, allows a developer to define by
himself the order in which data should be inserted in the database.
Indeed, if the application code adds data in the order that a classic
foreign key would not tolerate and if the developer does not want to
modify this code, it could be interesting to manage the foreign key
with triggers instead of the dedicated foreign key mechanism.

On the other hand, mistakes in the triggers code could be done and
it would result in serious inconsistency issues in the database. More-
over, if the foreign key is not documented it is likely that it will be
lost with time.

(b) On the application level :

In this case, the foreign key will not be expressed in any way in the
database code but instead, the constraint will be checked through
functions in the code of the applications using the database.

Like the previous method, the main advantage is the freedom of the
application code, not dependent on the database for data insertion
(or deletion, ...).

On the other hand, an annoying issue with expressing the foreign
key on the application code is that every application related to such
database should code its own mechanisms to express that foreign key.
Another huge drawback is the fact that it will be very difficult for a
database developer to know the existence of the foreign key if it has
not been strongly documented. Finally, mistakes can also easily be
made.

29

(c) Expressing it only on the data:

In this case, the constraint is neither declared in the DDL code,
simulated by triggers, nor checked by the applications code. Here,
only the data can express the implicit foreign key. For example, if all
the values of a column are present in the column of another table, it
is likely that there is an implicit foreign key between them. But the
constraint could also be expressed by a subset of these similar data.
Indeed the constraint has not been necessarily completely respected
to effectively be an implicit foreign key. For these reasons, locating
the implicit foreign keys is not easy and so we are using the work of

Gobert and Maes [25] for this part (as mentioned in [section 2.4)).

The main advantage is it requires no computational time for the
database and as relational DBMS are beginning to show their limits
when faced to large load balancing web applications visited by an
important amount of clients, this method of expressing a foreign key
could be interesting.

Of course it leads to a huge risk of losing the information of the
existence of the constraint through time. Moreover, as the observance
of the constraint is never verified, inconsistency in the data is easily
brought.

With this classification it is easier to understand that an implicit foreign
key is a relational constraint not implemented in the database by the DBMS
dedicated mechanism, but is nevertheless present in the logical schema that the
developers have in mind.

3.3 implicit Foreign Key issues

Although implicit foreign keys are very common - especially in large legacy
systems as explained in - these implicit constraints may lead to
relating problems that will be explained in this section.

Once again, instead of listing all issues extensively, the list below will only
describe the most impacting of them. The purpose of this section is indeed
mostly to raise the reader’s awareness of the problematic of the implicit foreign
key.

1. The main problem of implicit foreign keys - already raised in chapter 1 -
is the high risk of loosing the information of the existence of them. As
seen before, generally in legacy systems these implicit foreign keys are not
documented at all and with time the people aware of their existences are
no longer present or have simply forgotten them.

2. As a result, the initial logical schema can be violated. For example, if a
new application is developed on the database and if the developers are
not aware of the existence of some implicit constraints, it is likely that the
application will not respect the logical schema. So it is also likely that
on the same database, some applications are consistent with the logical
schema and other are not.

30

3. This lack of consistency between applications could easily lead to incon-
sistencies in the database itself. Once again, this could lead to major
malfunctions of applications that cannot tolerate this inconsistency.

3.4 Foreign key enforcement

In order to avoid all these concerning issues implicit relational constraints can
generate, a process to transform these implicit foreign keys into explicit ones is
needed. This process is called foreign key enforcement.

With the aim of being as general as possible, we will also consider the adding
of a foreign key that was not previously present on the logical schema as foreign
key enforcement. we argue that this will allow us to provide a more flexible
solution later on this thesis.

So, enforcing foreign keys consists in implementing new foreign keys into the
database. This will require database transformations presented in
and will cause problems at the application level.

3.5 Impacts of foreign keys enforcement at the
applications level

The transformation of the schema is not the only facing problem when trying to
add foreign keys. Such manipulation can also have a great impact on the appli-
cation communicating with the database. This section presents the application
level repercussions of such a transformation.

3.5.1 Foreign keys adding Impact

Now, we will develop all cases where the foreign key adding corrupts the good
execution of the application code. We will develop all the cases on the example
of a delivery application (like Amazon). To visualize these cases we will use as
an example the adding of an explicate foreign key between a table “Order” and
a table “Client”. Order has an “IDClient” column that references an “ID” from
“Order”. Figure [3.3]shows this Transformation.

31

Figure 3.3: Simple NTT transformation

This schema represents a “Numeric Type Transformation” (NTT) defined on
the Transformation typology part (see m). To perform the adding of refer-
ence constraint between “Order.IDClient” and "Client.ID" we need to proceed
in two steps. First, change the type of “Order.IDClient” to BIGINT to respect
the referenced type matching and then add the foreign key constraint in the
DBMS (reasons and steps of all transformations will be developed in the Design
part see Chapter 4). To show the greatest impact that such transformations can
have on an application, the addition of the foreign key is done in NO ACTION
(for deletion, update ...)

To model the application we will use the DAO design pattern (Data Access
Object) which is one of the most used for applications that use database to store
persistent records.

Figure [3.4]represents the implementation of this design pattern based on our
specific example.

32

€¢

Figure 3.4: DAO design pattern class Diagram [UML]

This design pattern splits the data manipulation into two Objects. The first
object is the Beans object. It is a class that stores and structures a database
data (typically a DB table line). The second kind of object, the DAO object,
takes in charge all direct communications with the database (Select data from
tables and generate beans, update/delete/add database line ...)

Operation impact : Adding/update Data

Here, we will see the impact that the adding of the previous foreign key could
have on the data adding operation. For that we will use the following use case
: "A client registration". For some business reasons, a client is only registered
on the database when he places his first order. The following sequence diagram
represents the application flow before the Foreign key adding.

Application DAD Databases

I
|
I 1: register_client_and_first_Order{client,order)

1.1: connexion ()
1.2: OK()
]
1.3 INSERT INTO Order VALUES {...)
1.4: OK()
]
1.5 INSERT INTO Client VALUES {...)
1.6 OK[)
b e e
1.7: OK[) |
I xS |
|
o[|
!

i
|
!

Figure 3.5: Sequence diagram of Data Adding success [UML]

On figure [3.5] we can see that with the "Client" registration operation, the
DAO can execute its requests in any sequence order. So, a developer can freely
choose to add the first "Order" and then adding the "Client".

Now we will see the impacts of the foreign key on the delivery application:

34

1: register_client_and_first_Order(client,order) ‘L

1.5: Emor("Cannot add or update a child row: a foreign key constraint fails ™)

1.1: connexion()

|
L

1.2: OK()

1.3 INSERT INTO Order ORDER{...)

1.4: Emor{*Cannot add or update a child row. a foreign key constraint fails *)

(7

Figure 3.6: Sequence diagram of Data Adding failure [UML]

The foreign key adding have generated new constraints on the execution
sequence of the requests. The Client has to be created first because now the
DBMS checks at every adding/update that the new OrderID value from Order

has as existing reference on Client.

Operation impact : Delete/update data

This case is close to the previous. Here, the use case is :
keep some data integrity, we will delete all Order that references this client at
the same time. But before the foreign key adding it is completely possible to

conserve the linked Order. Figure [3.7] shows this use case :

"Delete a client". To

Application Dao Databases
I I I
| | I
| 1: DeleteClient{x) i 4

1.1: connexion)

1.2: OK[)

,;:_: ______________________
1.3: DELETE FROM Client WHERE id=x

1.4: OK()

,;:_: ______________________
1.5: DELETE FROM Order WHERE ClientID=x

1.6: OK()
s
1.7: OK() I
s !
i I
| T [

Figure 3.7: Sequence diagram of Data Delete success [UML]

35

We can see again that there isn’t any sequence constraint on the requests
without foreign key constraint. Therefore, this implementation is completely
correct. But unfortunately when the constraint is added, this implementation
is no longer accepted as shown in the figure [3.8}

R

| 1: DeleteClient(x) ! i

1.1: connexion()

1.2: OK(}

1.3: DELETE FROM Client WHERE id=x

1.4: Emor("Cannol delete or update a parent row: a foreign key constraint fais)

1.5: Eror("Cannot delete or update a parent row: a foreign key constraint fails *)

d

Figure 3.8: Sequence diagram of Data Delete failure [UML)]

This scenario will return an error from the DBMS because the DAO tries
to delete first a "Client" referenced by at least one "Order". The reference
constraints adding on the DBMS has generated new constraints on the sequence
request order of the application. Thus, to make possible the deleting we have
several alternatives: delete all orders linked to the specific Client, update all
Linked Order to a default user or set ClientID to null if it is possible.

Operation impact : Select data

Now, we will see the impact that a database transformation can have on a
"select" query. We will visualize this impact via the following example : the
application will try to recover all the information of a given "Order" from the
DB via a "DAO" object, then we will create a corresponding "Bean" object.
This operation is modeled by the sequence diagram shown in

36

Application

Databases

}———

1.1: connexion ()

1.2 OK{)

1.3: Select * From Order WHERE id=idOrder

DaAD
I I
|) |
I 1: get_Order(idOrder) L
<
c : Client (BEAN) 1.4: create()
R e <

=

1.5: c.setld{data["id"].getint())

1.6: OK()

1.7: c.setltem(data[" ltem”™].getByte())

1.8: OK()

1.9: ¢ setClientld{data[*clien tld™].getint{})

1,10 OK()

1.11: return(c)

1.4: return{data)

ewarad By Visusl Paradigm Can .||.;.-L'II.'=| 9

Figure 3.9: Sequence diagram of Data Select success [UML]

However, the addition of the foreign key has the impact of modifying the
type of "Order.ClientID" from integer to bigint. This change was necessary
to allow correspondence between referencing column and referenced column.
Unfortunately, this change, which can be insignificant at the database level,
can be problematic at the application level, because the software object that
is supposed to represent the object stored in the database must be modified to
accommodate the new type for preventing the risk of generating potential errors
or exceptions. We can see this case in the following

37

| | |
| 1. get_Order(idOrder) |

| L o
1.1: connexion (}

1.2: OK()

1.3: Select * From Order WHERE id=idOrder

¢ : Client (BEAN) 1.4: create() 1.4: return(data)

1.5: ¢c.setldidata["id"].getint()}

1.6: OK[)

1.7: ¢.setitem{datal"ltem™].getByta()}

1.8: OK()

1.9: ¢.setClientld{data["clientld"].getint(})

1.10: emor(impossible to set *Client D* with a int, must be a Long)

1.11: emer(emor during client bean creation)

T Powered By Visual Paradam Community Editon €

Figure 3.10: Sequence diagram of Data Select failure [UML]

To generalize, a database transformation that adds a foreign key can poten-
tially incorporate a column type change. This type change may, but not always
- like in the case of a change into a less global and therefore encapsulate type,
require an application level refactor to be able to accept this new type. This
refactor operation can be very localized and restricted if the architecture allows
it - if it is based on the DAO design pattern and on the BEAN, for example -
or global if the database processing operations are not centralized.

This chapter describes the problems that motivate the idea of a process for
enforcing foreign keys. In the next chapter we explain the methodology we apply
for elaborating that process.

38

Chapter 4

Methodology

This chapter develops the methodology used for the elaboration of a process for
enforcing foreign keys. We first explain which level of automation we chose to
apply to the process.

Then, the typology aiming to design an algorithm for transforming the
database schema into a new schema where the old implicit foreign keys are
explicit is introduced.

After that we describe the inconsistency an explicit foreign key can bring
and how to use it through dynamic analysis.

Next, we explain how the impacts that these transformations can generate on
the applications based on this database can be analyzed through static analysis.

Finally, we define some metrics useful for the solution.

4.1 Levels of automation of the process

In the previous chapter, we describe the issues with implicit foreign keys and
conclude to the necessity of a process making them explicit.

We defined three different levels of automation that could be applied to such
a process :

1. Automatic
2. Manual

3. Semi-automatic

All these levels have inherent qualities and flaws.

With the automatic level, the process would have an integrated algorithm
that would decide what to do with each foreign key - that is to say what database
transformations would be needed for the adding of the foreign key and what
transformations in the applications code should be made.

The main advantage of this level is obviously that the user has nothing to
do; the process is fully automated and will take every decisions for her/him.
But that particular benefit is also its biggest flaw : the user has no control on
the decision making process and it has been shown in the previous chapter that
some database managers do not tolerate that.

39

Moreover, if such an algorithm is fully conceivable for the database transfor-
mation part, it is however extremely complex to automatically determine which
part of an application code should be modified. This particular point will be
developed later in this thesis.

With the manual level of automation, the process would go through each
implicit foreign key one by one and, for each of them, would ask the user what
to do : add it explicitly, abort this foreign key (keep it implicit) or others (like
simulating it with triggers for example).

If the adding option is chosen and if that requires database transformations,
then the solution will ask the user what it should transform and in what.

This time, the user has complete control on the decisions made but on the
other hand the process is quite limited and its unique contribution is that it will
apply the transformations decided by the user.

Very soon in the development of our thinking it became an evidence that
an automatic database transformation process will not often be used in legacy
systems (The OSCAR case described later supports this assumption). The
reasons for this are many and various. Here are listed only some of them; this
particular point being more deeply developed in chapter 6.

1. Database managers of these systems will not dare to use a process that
will modify the database without their strict consent.

2. Database managers will probably prefer to make explicit only a part of all
the implicit foreign keys : obviously the less costly ones first.

3. As stated in the introduction, the database of the legacy system may re-
quire a migration that cannot be done in one time but have to be iterated.
Thus, all the implicit foreign keys cannot be automatically treated.

The manual level of automation was also very quickly dismissed because of
its lack of user assistance.

With the semi-automatic level, the process will act as a decision helper tool.
Indeed, for each implicit foreign key, it will ask the user what to do but at
the same time, it will provide him with helpful information that comes from
its integrated algorithm (similar to the automatic level) that will allow him to
make better decisions.

This level seems to be a satisfactory balance between control on the process
and its contribution importance. The automatic level is too dangerous for the
database managers because it could lead to unwanted changes and the manual
level does not help him enough for making the decisions.

As we have seen before, adding a foreign key requires two separate manipu-
lations :

1. A database transformation manipulation

2. An application source code changes manipulation

It is conceivable to develop an algorithm that will determinate the best database
transformations that are needed and apply these changes (or the ones decided by

40

the user if he does not agree) but it seems unlikely to develop a module for the
process that would apply changes directly in the source code of applications. For
that last part, it will only inform the user where, in the source code, errors could
rise because of the new foreign key, leaving to the user the task to effectively
deal with these potential issues.

4.2 Database transformation

In order to facilitate the design of a database transformation algorithm, it is
important to first formally define what a database transformation is.

A database transformation can be defined by a function DT : DS — DS
where DT is a Database transformation and DS is a Database schema.

DT can be decomposed into a sequence of atomic database transformation
(ADT) operations: (t1, to, ... , ty)
where DT(ds1) = (tho...0tpot;) (ds1) = ds 2 Ads; € DS Atj € DT

These atoms could be:

1. A foreign key adding

2. A column type modification (that includes column value conversion)

3. A line suppression

4.2.1 Transformation typology

To facilitate the comprehension and the process of the transformations, we
sorted them into 3 main transformations and other sub transformations :

1. Database Transformation

(a) Matching with Basic Transformation (MBT)

(b) Matching with Values Mismatching Transformation (MVMT)
(¢) Length Mismatch Type Transformation (LMTT)

(d) Type transformation

i. Numeric Types Transformation (NTT)

ii. AlphaNumeric Types Transformation (ANTT)
iii. Time Types Transformation (TTT)
iv. Different Type Transformation (DTT)

2. Empty Transformation

3. Impossible Transformation

41

4.2.2 Database Transformation
Matching with Basic Transformation (MBT)

This case happens when there is a perfect matching - same type and same length
- between the source column of the foreign key and its destination.

example:
try to add foreign key between : Tablel.cl -> Table2.c2 on the DB diagram

from

Database schema :
Table1 Table2
¢l : integer(10) c2 : integer(10)

Figure 4.1: MBT example

Matching with Values Mismatching Transformation (MVMT)

This case happens when there is a perfect matching between the source column
of the foreign key and its destination but when some values mismatch.That
means that it is not possible to satisfy the referential constraint, in state, because
some values present in the database do not respect it. New values must either
be added to the reference table. Either, delete the values that have no referents.

example:
try to add foreign key between : Table2.c2 -> Tablel.cl on the DB diagram

from

Database schema :

Table1 Table2
c1: integer(10) c2 : integer(10)
Database content ;
Table1 Table2
1 1
2 2
3 6
4 7

Figure 4.2: MVMT example

42

Length Mismatch Type Transformation (LMTT)

This case happens when the types of the source column and the destination
column of a foreign key match but the length of these types mismatch.

example:
try to add foreign key between : Table2.c2 -> Tablel.cl on the DB diagram

from

Database schema :
Table1 Table2
c1 : varchar(10) c2 : varchar(64)

Figure 4.3: LMTT example

Type transformation

This case happens when there is a type mismatching but the types are both in
the same meaningful set.

example:
try to add foreign key between : Table2.c2 -> Tablel.cl on the DB diagrams

from

Database schema (NTT) : Database schema (ANTT) :
Table1) Table2 Table1 Table2
c1 :integer(10) c2 :bigint(15) c1 :varchar(10) c2 :text(64)
Database schema (TTT) : Database schema (DTT) :
Table1 | Table2 Table1 Table2
c1 timestamp c2 :datetime c1 :integer(64) c2 : varchar(64)

Figure 4.4: Type transformation example

4.2.3 Empty transformation

Specific case when we do not have to proceed any transformation. This case
happens when the foreign key is already implemented.

4.2.4 TImpossible Transformation

Specific case that happens when we don’t find any possible transformation that
can allow the adding of the foreign key. That can mean that the foreign key is
wrong or that we can’t proceed a safe automatic database transformation.

We can already list three cases where a transformation would be impossible:

43

1. If one of the tables concerned by the foreign key is not present in the
database. Aswe work with systems in perpetual maintenance, the database
tables could be deleted or renamed over time. So, if we find or compute a
foreign key of an X version of the database, we will not always know how
to add it in an X+1 version.

2. If we're between two completely incompatible types. In this case, it would
not be possible to convert the values present in a column to add the
referential constraint. For example, try to add a foreign key between a
column typed by a BLOB and a DATETIME. We also add here the case
where we try to add a foreign key between a signed type and unsigned
because here it is impossible for us to determine the one of the 2 types is
the most appropriate one

3. This last case is the "other" case, it would be all the cases where our system
is not capable of performing the transformation, but does not know why.

We now have the basic to design a transformation algorithm that will help
a user in his decisions. That particular algorithm will be elaborated in next
chapter.

4.3 Program adaptation

This section will explore two ways of bringing information to the user about the
impacts the new foreign keys can have on the applications that use the targeted
database:

1. Dynamic analysis : first, a discussion about the tolerance of inconsisten-
cies in a database is required to understand how emerged the idea of the
"trigger logger" that will be presented afterwards.

2. Static analysis : based on the work of C. Nagy, L. Meurice, and A. Cleve
26]

4.3.1 Dynamic analysis
Tolerating Inconsistencies

When facing inconsistency in a database, most people would think it should be
resolved immediately, considering it entirely as an issue. But when performing
a database migration, the inconsistencies are inevitable. Thus, solutions to deal
with them are required. However, "dealing with them" does not necessarily
mean resolving them directly, because in large legacy systems it is an impossible
task to achieve. Indeed, in these cases, the usual upgrading procedure is to
process the migration iteratively because it is nearly inconceivable to stop the
system entirely to do the modifications. This policy of upgrading parts after
parts will obviously engender some more inconsistencies because some parts of
the systems will be of the new version while other parts will still be of the old
version.

It seems then that there are few options other than tolerating - hopefully
only temporarily - some of the inconsistency.

44

In this thesis it is primordial to take into consideration the inconsistency
brought by the addition of new foreign keys. If the option of banning it entirely
is chosen, it is most likely that a lot of implicit relational constraints could not
effectively be safely added without imperatively changing the application code
first.

A decent solution to this problem, according to Balzer[7], is to "weaken
the constraint to authorize the exceptions". That way, the applications still
work and, at the same time, even if the constraint is not implemented, it is at
least documented and notified so that the developers will hopefully implement
it eventually.

It is important to understand that the inconsistency can be treated as crucial
information about the foreign key and the next section will described a treatment
of this information.

Trigger logger

This section describes a simple methodology we called "trigger logger" that
allows to weaken the constraint of a foreign key by tolerating inconsistency and
at the same time collecting information about this inconsistency. The idea is
to create a new table in the database that will collect the information gathered
about any violation of the new foreign keys whereas the database itself still
accepts these violations. To do that, instead of declaring plainly an implicit
foreign key, triggers will be declared in the source and destination table. These
triggers purpose is to let any violation of the foreign key pass but at the same
time to log these violations into the new created table.

As the new table is a "log table" and the basis of this mechanism is triggers,
the name "trigger logger" seemed appropriate.

Figure[4.5]shows a simple and schematic view of the "trigger logger" method-
ology.

if FK violation
logs it

Potential reference
Table 7 o

Potential foreign key
Table

Log Table

Figure 4.5: Trigger Logger methodology

45

The details of the design and the implementation will be developed later in
this thesis but at this point it is important to understand that this mechanism -
even if its main purpose is to allow the developers of a database not to implement
all the foreign keys in one iteration of a migration - will here essentially be used
as a mean of estimating the potential risk of adding formally a given implicit
foreign key. This point will be developed in the last section of this chapter.

Finally, let us draw the attention of the reader to the importance of under-
standing plainly that the "trigger logger" mechanism can only return informa-
tion about the violations on a temporarily period of time. Thus, if no violation
of an implicit foreign key arises on a given period, it is impossible to affirm
firmly that making that particular key explicit will not cause any issue in a
undetermined period.

Nevertheless it is still very interesting to have that estimation of the probable
frequency of violation of a given implicit key.

4.3.2 Static Analysis

The static analysis of a source code to detect where erroneous queries are made in
the code has already been developed by C. Nagy, L. Meurice, and A. Cleve|26].
They developed a tool called DAHLIA for Database ScHema EvoLutlon Analy-
sis. If the reader is interested in the functioning of this tool, a brief explanation
had been started in the "state of the art" chapter of this thesis. Here, we will
simply say that this tool can allow us to extract useful information for the user
of our process about the locations in the code that should be modified to accept
a new foreign key.

Unfortunately we had not enough time to integrate plainly this tool into
ours. Nevertheless, a short explanation of the mechanism we wanted to develop
for retrieving these queries will be given in

4.4 Decision helper process

Now, we dispose of enough information to help the user take good decisions.
The decision helper process should, for each foreign key notice the user of these
information in a very simple way so that the user can decide quickly (if there
are hundreds candidate foreign keys to be treated, he cannot permit himself
too much time on each one of them). A quick and clear way of giving him
these information would be to condense them into representative metrics that,
combined, would gave the user a faithful representation of the situation.

The next section will explain which metrics we chose to use in the process,
what they represent and how they can be calculated.

4.4.1 Explicit Foreign key metrics

We choose to express three different metrics for the decision helper process :

1. The importance of the database transformation that could be in order to
add the candidate key which we called TRANSFORMATION MAGNI-
TUDE :

46

(a) If the type of a column has to be changed.

(b) If there are value mismatching between the foreign key column and
the destination column.

(¢) If there are cascade transformation required.
For the whole transformation typology, see [subsection 4.2.1

2. The probability of errors that would occur after the adding which we called
VIOLATION FREQUENCY.

3. The importance of the modification on the application level that would
need to be undertaken in order to safely add the foreign key which we
called APPLICATION IMPACT.

In we saw that it is possible to categorize each transforma-

tion of the database. Giving for each transformation an arbitrary cost is not
complicated. Thus, it would be quite easy to compute the "TRANSFORMA-
TION MAGNITUDE" value through our database transformation algorithm.

The "VIOLATION FREQUENCY" value could be given by the results of
the dynamic analysis : analyzing the log table of the trigger loggers should be
sufficient.

The "APPLICATION IMPACT" value is more difficult to calculate but we
are confident that it is achievable through the static analysis we described.

If we could give a value for each of these three metrics it would be possible to
calculate, for every foreign key, a value corresponding to the global cost of the
addition of that foreign key and then it would be very easy to determine which
foreign keys are the safest for making them explicit without overextending cost.

These new informations should help a user by providing him a quick and
global view of the potential dangers of any candidate foreign key and also, with
them, a user will be able to circle down a smaller number of foreign keys to
treat.

Nevertheless, a scale has to be arbitrary attributed for each of these metrics
that could rapidly tell the user if the value for a metric is good or not (with a
color code for example - see figure [£.6]

We have not yet addressed this particular point but we suggest a mecha-
nism that would allow the user himself to determine these scale so that they
correspond exactly to what he is expecting.

4.4.2 Requirements

There are still several problematics that need resolutions.

The domain experts

Often in legacy systems - the case study described in[chapter 7 being an example
- the developers, experts in the domain of database, are not the people allowed
for actually modifying it themselves. The persons in charge, the real database
managers, are only asking the developers advices on what to do but they have

47

the final words on the actions undertaken. This decision helper process targets
being the experts and not the managers, a workaround had to be found.

A good alternative is designing the process for sending a script that will fetch
all the needed information, return them back and then display all the treated
input that are useful for the experts about every foreign key. This mechanism
is explained in chapter 5.

The data privacy issues

There is a last problematic that has to be addressed that this time does not
concern implicit constraints but the data itself from the database. It is not rare
that large legacy systems contain certain data that are under legal legislation
like medical data as it will be shown in chapter 7. But privacy legislations does
not only include medical data but also bank data, or, in general, any personal
data.

As these private data represent a non-negligible amount of data, their cases
should also be taken into account. But what are the issues that a process for
making implicit foreign keys explicit has in the context of private data?

1. In some legacy systems, managers of databases containing private data will
not dare to use an externally developed process. They will rather either
use a secure and internally developed tool or execute all the manipulations
by themselves.

2. These database managers could not be experts in the database field - like
we will see in the case study in chapter 7 - and so, if decision has to be
made, an external expert team should be consulted. In that situation, any
information the process could bring to that external team in order to help
them propose decisions cannot contain any private data.

3. Last but not least, these database managers will always want to give their
consent for every modification of the database. That particular point
excludes the possibility of a fully automated process as already discussed

in [section 4.1

It is obvious that if we want to transform implicit foreign keys into explicit
ones it will be essential to propose solutions for the case of working with pri-
vate data where the process should never manipulate that kind of data. These
solutions will be developed later in this thesis.

Figure gives a visual summary of all the mechanisms that are used for
the improved decision helper process.

48

Database

Transformation

\ 4

| TRANSFORMATION
1 MAGNITUDE

Decision
Helper Process

APPLICATION
IMPACT

Static Analysis

Figure 4.6: The Decision Helper Process

49

50

Chapter 5
Design

This chapter is dedicated to the design and the algorithms that are to be es-
tablish and developed. This purpose of this part is to think about the way of
creating a generic solution that can help database managers to correct their
unimplemented foreign keys.

5.1 Database Transformation

To be able to successfully implement an efficient and maintainable software
solution, it is imperative to subdivide our main problem into sub-problems and
then solve them. To do this, we need to develop a set of tools that we will
combine to get our final solution for computing the database transformations
that are required for the adding of candidate foreign keys. This section will
focus on the design and utility of these tools.

The tools that will be discussed in this part are the following: first, a tool
used for the direct manipulation of a database (reading data, modifying schemas,
modifying data, etc.), then, we will talk about a tool in charge of analyzing
the context of the database and according to it, propose the most adapted
transformation, and finally, a remote diagnostic tool to avoid the maintenance
problem of databases storing confidential or sensitive data will be presented.

This section will focus on the design and utility of these tools, the specific
implementation aspect will be discussed in the next chapter. (see [chapter 6)

5.1.1 EasySQL : Abstract Database manipulation

To facilitate the database schema transformation it is important to have an SQL
abstraction. With it, we can easily encapsulate a lot of database manipulations
(select, update, alteration, add/delete data, ...) on some code classes. This
abstraction makes the software code clearer, more readable and manipulable.

This tool could also be very useful to extract meta-data from the database
schema. It can automatically create “Table” software object class with all in-
formation taken from the database schema such as the primary key, foreign
keys list, column name, type, charset, default values. The SQL manipulations

o1

encapsulation is based on the "abstract factory" design pattern that is used to
facilitate the request creation and to improve the potential interoperability with
multiple DBMS.

A SQL query do/undo feature was added to make possible the rollback of the
database in the previous state if there is any problem or if the transformation

has too many impacts on the application that uses the database.

Figure represents the class diagram of EasySQL, the implementation of
this tool that we have developed (see).

52

€9

Figure 5.1: EasySQL class diagram [UML]

5.1.2 Context Analyzer

The context analyzer is the real heart of this research. This application takes
as parameters a given database and a list of potential foreign keys (given by
another research project by M. Gobert and J. Maes|25]).

The solution uses our EasySQL library to extract meta-data from the given
database and then computes the best transformation that should be processed
in order to add a given candidate foreign key. This transformation should be
the best choice to conserve the data integrity. But this choice is only based on
the database meta-data and another choice could be a better image of the initial
schema logic.

For example if a foreign key have this structure :
clientNumber : int — CommandeClientNumber : BigInt

and the Bigint type is not needed, it is just a maintenance mistake. The
application will foster the transformation of ClientNumber into BigInt to be
sure to store all potential data but it is not the most optimized choice in this
particular case.
It is one of the many cases that demonstrate why this tool is not full-automatic
but is a decision support tool.

So, the best transformation choice uses the transformation typology defined
earlier (see Transformation typology). The following shows the
algorithm to choose which type of transformation is associated with a particular
foreign key.

54

Qg

>@)<
Figure 5.2: Typology decision engine [UML]

Now, let us talk about the different steps that must be performed to allow
the concrete addition of a foreign key in a database. To do this, we will detail the
different strategies to be established depending on the types of transformations
seen and determined above.

Matching with Basic Transformation (MBT)

Proposes to add the foreign key without processing any other transformation.

Matching with Values Mismatching Transformation (MVMT)

After the detection of this case, the “Context Analyzer” leaves 3 different choices
to the user : delete on cascade the unmatching values, set them null or abort
the fk adding.

Another possibility would be to find and execute operations that could po-
tentially resolve these mismatching values. These operations could be switching
the unmatched values with the more potential matched values according to
some statistical algorithms, performing upper case, lower case or more complex
manipulations.

We choose not to develop this last possibility because it is very difficult to
find generic data conversion and it could be dangerous for the database integrity.

Finally, it is worth noting that some DBMS, like Mysql, include built-in
data type conversion functionalities. Effectively, in a lot of cases, the data will
be converted with no problem at all (for example, converting a varchar column
containing numbers - “17, “2”,“235”, ... - into an INT will not cause any trouble
in mysql).

Length Mismatch Type Transformation (LMTT)

Proposes to the user to transform the less precise type into the most precise
before adding the foreign key.

Additional warning:

This transformation (from less to more specific) can cause problems with some
types (like decimal types) because the type parameter has some constraint
(ex: float(m,d) -> (m > d) and (m+d have a maximum length))

Type transformation

To perform this transformation we have to list which types can represent the
similar piece of information and sort them from the less “large” to the most
“large”. And so the context analyzer will propose to transform the less “large”
type into the most “large”. This type hierarchy is presented in the

Empty transformation

The context analyzer just informs the user that the foreign key is implemented
and goes to the next candidate.

56

mysql example :

Set

Classification

INT type (NTT)

TINYINT <SMALLINT <INT <MEDIUMINT <BIGINT

Alpha numeric type,(ANTT)

ENUM <CHAR <VARCHAR <BLOB <TEXT <TINYBLOB

<TINYTEXT <MEDIUMBLOB <MEDIUMTEXT
<LONGBLOB <LONGTEXT

Time type (TTT)

TIMESTAMP <DATETIME

Exception

We excluded TIME,YEAR,DATE of Time type because
their transformations don’t have a lot of meaning to a
database transformation with the aim of adding foreign
keys

We didn’t take into account the transformations between
FLOAT,DOUBLE,DECIMAL because they are different
internal representations that can make impossible good
values transformations.

FLOAT is an approached value with single-precision en-
coding

DOUBLE is an approached value with double-precision
numbers encoding

DECIMAL is an exact numerical value

Table 5.1: mysql type typology

57

Impossible Transformation

We cannot analyze this foreign key (inexistent table, column, ...), therefore we
simply notify the user of the impossibility to treat this case then goes to the
next candidate.

The following figure is a class diagram of the context Analyzer package.
We can see on it a partial representation of EasySQL developed earlier and the
Transformation package based on the Command design pattern that stores the
transformation typology developed earlier.

The shows an algorithm showing the steps required to allow a
foreign key to be added to a database

58

69

strategy

Figure 5.3: Context Analyzer class diagram [UML]

DataBaselntemRep resentation

09

— e

Figure 5.4: Transformation choice algorithm [UML]

Pawarad By Visual Paradgm Community Edison €%

5.1.3 Remote Diagnostic

In the first version of the solution we provided, we were in a perspective where
the database maintenance and transformation team had full access to the database.
However, the reality of the environment is quite different and we quickly realized
that for security reasons, for legal constraints on the protection of certain data
judged critical or in other cases this access could cause problems.

In response to this, we designed a remote diagnostic system that could be
run by someone with the required credentials. This tool, based on the context
analysis mentioned above, would take the list of candidate foreign keys and
generate a report, structured via a language such as XML or JSON, containing
the transformations recommended by our resonance engine (see [Figure 5.4).
This report would not contain any information considered sensitive such as
values being in the database, but would only contain information relating to
the impact of the addition of the foreign key like the number of values not
respecting the referential constraint, the potential type changes of the columns,
the cascade transformations that it implies, ...

Here is the total list of information represented in this report. For each
candidate foreign key it contains :

1. The advised new type (the same that the context analyzer will propose)

2. If there is a potential unmatching compatibility between signed or un-
signed type (Boolean value)

3. If there is an encoding matching or not (Boolean value)

4. If the context analyzer does not find a way to add the foreign key (Boolean
value)

5. The list of potential cascade foreign keys (concerning the candidate foreign
key column)

6. The list of potential cascade foreign keys (concerning the candidate refer-
enced column)

7. The advice transformation target (referenced column, foreign key column
or both)

8. If the foreign key already exists (Boolean value)
9. The transformation type (MBT,MVMT,LMTT,NTT,ANTT,TTT or DTT)
10. The number of unmaching values

11. A potential message from the context analyzer (Warning or reason why
the foreign key adding is impossible)

12. The candidate foreign key information

61

The report also contains a set of information concerning the database schema,
a series of information on the tables concerned by the candidate foreign keys.
These tables are the source and destination tables of the candidate referential
constraints as well as all tables already having a referential constraint with them
(referencing table or referenced table). The total list of stored information about
these tables is as follows:

1. the table name
2. the primary key column name
3. the list of the column of the table with the following information :

a) the column name

(a)
(b) the column type

(c) the default value of the column

(d) the charset of the column

(e) the value true or false if the column is unsigned or not

4. the list of foreign key concerned by this column with the following infor-
mation :

a) the referenced table name

)

b)

¢) the foreign key table (the table with the referential constraint)
)
)

(
(b) the referenced column name
(
(d) the foreign key column (the column with the referential constraint)
(e) the name of the constraint stored on the database
With this report and the information it contains, we have all the useful
data for our decision support tool to interact with a user in order to generate
useful output - for example a SQL script taking care of the addition of approved

candidate foreign keys. It therefore represents a total substitute for a direct
connection to the database.

62

Clinic

L

T a

Private
DATA

Dev Team

Figure 5.5: Remote diagnostic schema

Figure is a very schematic representation of the remote diagnostic tool
on a particular case. It is the case of a hospital that contains private data which
outsources their database management by a extern development team.

5.2 Program adaptation

5.2.1 Dynamic analysis

For the dynamic analysis part of the tool we developed the "trigger loggers"
described in section The purpose is to retrieve information
about violations of simulated constraints, that is to say that it should record
the violations but, at the same time, tolerate them.

To that end, a log-table that will record the information is needed. In this
log-table several information should be recorded for each violation :

63

information Purpose

The Foreign Key name To quickly identify the critical foreign key

The source table name To record the source table location of the problematic
data

The source column name To record the source column location of the problem-
atic data

The destination table name To record the destination table location of the prob-
lematic data

The destination column name To record the destination column location of the
problematic data

The type of the violation To record the problematic operation (insert, delete,

The date and the time o record the exact time of the violation

Table 5.2: Log-table components

Once that log-table has been added, the triggers strictly speaking can be
added. These triggers should check, for each wanted implicit foreign key :

1. Insertions in the source table : if a data is inserted in the source column
while this value is not in the destination column.

2. Deletes in the destination table : if a data is deleted from the destination
column while it is still in the source column.

3. Updates in the source table : if a data is updated in the source column
while this updated value is not in the destination column.

4. Updates in the destination table : if a data is update in the destination
column while its previous value is still in the source column.

The construction of the log-table and the triggers will be explained in
secfion 6.2.11

5.2.2 Static analysis

To retrieve information about the potential erroneous queries executed by an
application on the database for an implicit foreign key made explicit, as intro-
duced in our choice was to use a tool called DAHLIA that is
developed in the purpose of calculating the location of erroneous queries.

As already said, we unfortunately did not have enough time to think it
through. Nevertheless, it is possible to start the thinking and give some clues
to how our tool could use DAHLIA to help its user.

DAHLIA is able to analyze statically the source code of an application to
rebuild and extract the database queries formed inside this application (even if
the built queries have parts in different classes). All these rebuilt queries are
stored in a given format file (DAHLIA uses JSON) that can be analyzed.

So, it is technically possible for our tool to launch the query rebuilding
process of DAHLIA on a given application, to retrieve the output file and then
to analyze it to produce information to the user.

64

For the moment, we mainly explored the possibility to retrieve the locations
of all the queries that could potentially be affected by a given foreign key the
user wants to make explicit, but profound research in this particular field should
be undertaken in order to be able to produce more detailed information about
these queries - which ones will really be an issue when the foreign key will be
added, for example.

Since we had very little time to devote ourselves to this part of this thesis
and even if we started to implement a short analysis of the output given by
DAHLIA, we will not present an implementation for this aspect of the tool in
the next chapter.

5.3 Visualization tool

All the previous designed tools are useful but it is essentially the grouping of all
of them together that will precisely meet the needs outlined in The
global decision helper tool, as said in should provide a visualization
of the level of issue or risk a candidate foreign key has. To that end, 3 different
metrics were defined and they all can be calculated by these previous tools :

1. TRANSFORMATION MAGNITUDE :
This value can easily be calculated by the Context Analyzer Tool (subsec-|
tion 5.1.2) based on the Database Transformation Algorithm (Figure 5.4)),

or, if the database is not directly accessible, by the Remote Diagnostic Tool
(subsection 5.1.3)) which is itself based on the Context Analyzer Tool.

Indeed, as these two tools use the transformation typology defined in
if a weight is attributed for each type of transformation,
the tools - because they can calculate all the required database trans-
formations for a given candidate key - could then also calculate all the
corresponding weights of these transformations, and finally add them to
produce the needed value.

2. VIOLATION FREQUENCY :

This value can also be easily calculated by the Trigger Logger Tool
Section 5.2.1).

This time, the tool just has to calculate the number of violations for a
given candidate foreign key to produce the needed value. We attract the
user attention to the fact that other values could be calculated if weights
are applied to the different types of violation (maybe a user considers an
insert violation as more troublesome than an update violations?) but here
we will simply consider the first solution.

3. APPLICATION IMPACT :

There are several ways for the Static Analysis Tool (subsection 5.2.2)) to
calculate this value :

(a) Add the number of potential impacted queries for a given candidate
foreign key (very simple)

65

(b) Add the number of the surely known impacted queries for a given
candidate foreign key (demands some serious research in static anal-
ysis)

(c) Same as the two previous ones but this time giving weight to the

queries according to their nesting level in the code (we are confident
that DAHLIA could provide this information)

In [subsection 4.4.1] we discussed briefly the possibility to let the user decide

himself of the scales for each metrics (for deciding when a value is considered
acceptable or not). The other possibility is to hard-code them arbitrary during
the implementation of the tool which is not a viable solution as different users
will have different needs.

Unfortunately, like for the previous section, we had not enough time to
concentrate ourselves on this tool other than designing it in general terms so
that no implementation will be presented in the next chapter.

66

Chapter 6

Implementation

In this chapter, we will discuss the implementation of the algorithms discussed
in the previous chapter. We will not detail the code in-depth and will focus on
the most original aspects developed or requiring further research.

The full code is available on Github at https://github.com/hcarlUnamur/prodacon2.
This represents approximately 75 classes and over 9000 lines of code.

6.1 Database transformation

6.1.1 EasySQL

The first part of the solution implemented is EasySQL. It is a SQL query rep-
resentation at a software object level, so we can see it as an abstraction of an
interface with which our software solution interacts to communicate with the
database. It facilitates query creation, execution, rollback and metadata recov-
ery from the database. The metadata that can be searched are the following:

e information on tables like :

— their primary keys

— their foreign keys

— column information such as :
* their names
* their type

* their encoding
x their default values

The way to extract this data will be specified in the following point.

At the structure level, EasySQL is a java implementation of the class dia-
gram presented in the design part (see[Figure 5.3)). This library is based on the
Factory design pattern to allow it to be adapted to any DBMS as well as to
facilitate the instantiation of these objects. Our current implementation is only
compatible with MySQL DBMS, but a multi-Platform version compatible with

67

Microsoft SQL server, DB2 or Oracle Database could be considered in the future.

The following sections will detail 2 important features of EasySQL which
are database metadata extraction and do/undo functionality.

Meta-data extraction

In order to be able to choose which transformations are necessary to make an
implicit foreign key explicit, it is imperative that we extract the information
on the current schema structure from the database. This information is called
metadata and can be stored differently depending on the DBMS. Here, we will
see how the DBMS MySQL stores this metadata, what exactly this data is and
how it is possible to extract it.

Let us start by explaining how this data is stored. MySQL uses a very simple
system to store information about these schemas. This data is simply stored
in a set of tables present in a database named "INFORMATION SCHEMA"
which is present in each instance of MySQL. The following tableEI presents the
tables that this database contains as well as a description of its contents.

Lall information comes from the official website of MySQL|2]

68

Table Name

Description

CHARACTER_ SETS

Provides information about available character sets.

COLLATIONS

Provides information about collations for each char-
acter set.

COLLATION CHARACTER
_SET APPLICABILITY

Indicates what character set is applicable for what
collation.

COLUMNS

provides information about columns in tables.

COLUMN _PRIVILEGES

provides information about column privileges.

COLUMN _STATISTICS

provides access to histogram statistics for column
values.

ENGINES provides information about storage engines.

EVENTS provides information about scheduled events

FILES provides information about the files in which MySQL
tablespace data is stored.

KEYWORDS lists the words considered keywords by MySQL and,

for each one, indicates whether it is reserved.

KEY COLUMN _ USAGE

describes which key columns have constraints.

OPTIMIZER TRACE

provides information produced by the optimizer trac-
ing capability.

PARAMETERS provides information about stored procedure and
function parameters, and about return values for
stored functions.

PARTITIONS provides information about table partitions.

PLUGINS provides information about server plugins.

PROCESSLIST provides information about which threads are run-
ning.

PROFILING provides statement profiling information.

REFERENTIAL CON provides information about foreign keys.

STRAINTS

RESOURCE_GROUPS provides access to information about resource
groups.

ROUTINES provides information about stored routines (both
procedures and functions).

SCHEMATA provides information about databases.

SCHEMA PRIVILEGES

provides information about schema (database) priv-
ileges.

STATISTICS

provides information about table indexes.

ST GEOMETRY_COLUMNS

provides information about table columns that store
spatial data.

ST SPATIAL REFERENCE
_ SYSTEMS

provides information about available spatial refer-
ence systems for spatial data.

TABLESPACES

provides information about active tablespaces.

TABLE CONSTRAINTS

describes which tables have constraints.

TABLE PRIVILEGES

provides information about table privileges.

TABLES provides information about tables in databases.
TRIGGERS provides information about triggers.
USER_PRIVILEGES provides information about global privileges.
VIEWS provides information about views in databases.

VIEW ROUTINE_ USAGE

provides access to information about stored functions
used in view definitions. (The table does not list in-
formation about SQL functions or user-defined func-
tions used in the definitions.)

VIEW_TABLE_USAGE

provides access to information about tables and
views used in view definitions.

Table 6.1: MySQL metadata tables

The totality of these tables will not necessarily be useful for us to solve the

problem. We will therefore only detail the "COLUMNS" and "KEY COLUMN _USAGE"
tables.

The "COLUMNS" table is composed of 19 columns. With this table it is
possible for us to retrieve all the information we need about the column struc-
ture of all the tables on which our reasoning engine must work. The following
diagram shows the structure of this table in detail. The name of the columns
being quite explicit on their content, we will not develop them here.

COLUMNS
TABLE_CATALOG varchar(512) N
TABLE_SCHEMA varchar(G4) N
TABLE_NAME varchar(64) N
COLUMN_NAME varchar(G4) N
ORDINAL_POSITION bigint{21) N
COLUMN_DEFAULT longtext N
IS_NULLABLE varchar(3) N
DATA_TYPE varchar(64) N
CHARACTER_MAXIMUM_LENGTH bigint(21) N
CHARACTER_OCTET_LENGTH bigint{21) N
NUMERIC_PRECISION bigint(21) N
NUMERIC_SCALE bigint(21) N
CHARACTER_SET_NAME varchar(32) N
COLLATION_NAME varchar(32) N
COLUMN_TYPE longtext N
COLUMN_KEY varchar(3) N
EXTRA varchar(27) N
FRIVILEGES varchar(80) N
COLUMN_COMMENT varchar(1024) N

Figure 6.1: INFORMATION SCHEMA.COLUMNS Table taken from [I5]

For our problem, we will use only the following 8 columns:

e COLUMN_NAME

e COLUMN_TYPE

o CHARACTER_SET NAME
e NUMERIC _PRECISION

e NUMERIC SCALE

e COLUMN_DEFAULT

e COLUMN_KEY

e TABLE_NAME

The column "KEY COLUMN _USAGE" is composed of 12 columns allow-
ing to recover all the information concerning the constraints to implement in
the DBMS. These constraints can be primary keys, uniqueness constraints and
foreign keys. The following diagram shows the structure of this table in detail.

70

KEY_COLUMN_USAGE
CONSTRAINT_CATALOG varchar(512) N
CONSTRAINT_SCHEMA varchar(64) N
CONSTRAINT_NAME varchar(64) N
TABLE_CATALOG varchari512) N
TABLE_SCHEMA varchar(64) N
TABLE_NAME varchar(64) N
COLUMN_NAME varchar(64) N
ORDINAL_POSITION bigint(10) N
POSITION_IN_UNIQUE_CONSTRAINT bigint(10) N
REFERENCED_TABLE_SCHEMA varchar(64) N
REFERENCED_TABLE_NAME varchar(64) N
REFERENCED_COLUMN_NAME varchar(64) N

Figure 6.2: INFORMATION SCHEMA.KEY COLUMN USAGE Table
taken from [I5]

For our problem, we will use only the following columns:

e TABLE NAME

e COLUMN NAME

e COLUMN NAME

CONSTRAINT NAME

REFERENCED TABLE NAME

REFERENCED COLUMN NAME

Finally, let us see how we can extract this data with Java code. The following
piece of code is one of the manufacturers of the "Table" Class that you can find

in [Figure 5.1

71

o
*
*

@param con Database conmection object

@param name Name of the table to load

@throws LoadUnezistentTableException If there is no table
corresponding to the "name" parameter in the DB to which
the "con" parameter is linked

¥ K X K X X X X

*/

public Table(String name, Connection con) throws
LoadUnexistentTableException {

try{

String [] ONE PARAMETER TYPE-{"YEAR" ,"CHAR" , "VARCHAR" };
String || TWO PARAMETER TYPE—{"FLOAT" ,"DOUBLE" , "DECIMAL" } ;

foreignKeys = new ArrayList<ForeignKey >();
Tablecolumn = new ArrayList<Column > ();
this.name = name;

/s o o o KK KKK KKK KKK K K SR K K K K SR R KRR KK KKK KKK KKK K K SR K SR K SR R KK K K K K K K
* Step 1: load Table columns data *
S oK KK SRR R K K R R KKK KRR R R R SR SR SR KKK R R R K SR KKK K KRR R R R KK KKK KRR SRk sk ok ko ok ok ok

create Tablecolumn
SQLSelectQuery select = new SQLSelectQuery (
new String []{"information schema.columns"},
con ,
new String []{ "column name",
"column type",
"CHARACTER SEI' NAME" ,
"NUMERIC PRECISION" |
"NUMERIC_SCALE" ,
"COLUMN_DEFAULT" } ,
"table name=""+4namet+"’");

/KRR S KKK R R KKK SOR SRHK SR R KK KK SRR S KK SR R SR KK KK SOk SO Kk Rk SR K K KR Kok
x Execute the following Query

*
x"Select column_name, column_type , CHARACTER _SET NAME, *
* NUMERIC PRECISION, NUMERIC SCALE, COLUMN_ DEFAULT =
* From information schema.columns *
x Where table name=$name;" *
x in this query $name is the parameter "name” *
S KKK KRR R K R K KKK KK KRR R R K K KKK KRR R R K R SR KKK KRR R KKK KKKk Kok %/

ResultSet rs = select.sqlQueryDo ();
while(rs.next ()){

String colName = rs.getString ("column name");

72

String colType = rs.getString ("column type");
String charset = rs.getString ("CHARACTER_SET NAME'");
String defaultV = rs.getString ("COLUMN DEFAULT");
Ve
specific case when for example whe store a FLoat
without prescice the parameters
v/
String numPres =
rs.getString ("NUMERIC PRECISION")!=null ?
rs.getString ("NUMERIC PRECISION") :"0";
String numScal =
rs.getString ("NUMERIC SCALE")!=null 7
rs.getString ("NUMERIC SCALE") :"0";

if (! colType.contains (" (") &&
isIn (colType, TWO PARAMEIER TYPE)){
colType = String.format ("%s(%s,%s)",
rs.getString ("column type"),numPres,numScal);
telse if (lcolType.contains("(") &&
isIn (colType, ONE PARAMETER TYPE)){
colType = String . format ("%s(%s)",
rs.getString ("column type"),numPres);
}
this.addColumn (
new Column (colName, colType,charset ,defaultV)
);

}

rs.close ();

KRR KKK KKK K R R R R K K o o o o KKK KKK KKK K oK oK ok o oK o o o o K K K K K
* Step 2: load foreign keys *
******>|<***********>|<***********>|<******************************/

SQLSelectQuery select2 = new SQLSelectQuery (
new String []{"INFORMATION SCHEMA.KEY COLUMN USAGE"},

con,

new String []{
"TABLE NAME"
"COLUMN_NAME" ,

"CONSTRAINT NAME"
"REFERENCED TABLE_NAME"
"REFERENCED COLUMN_NAME"
’
"REFERENCED TABLE NAME_IS NOT_NULL_AND_TABLE NAME='"-name+" "

)

/*>|<**********>|<******>|<**********>|<****************************

x Fxecute the following Query : *
x"Select TABLE NAME,COLUMN NAME, CONSTRAINT NAMEx
* REFERENCED TABLE NAME, REFERENCED COLUMN NAME *

73

x From INFORMATION SCHEMA.KEY COLUMN USAGE *
x Where REFERENCED TABLE NAME 1S NOT NULL *
* AND TABLE NAME-$name;" *
x in this query $name is the parameter "name” *
******>|<***********>l<***********>l<*****************************/

ResultSet resultfk = select2.sqlQueryDo ();
while(resultfk .next ()){
foreignKeys .add(
new ForeignKey (
resultfk . getString ("REFERENCED TABLE NAME"),
resultfk . getString ("REFERENCED COLUMN NAME") ,
resultfk . getString ("COLUMN NAME") ,
resultfk . getString ("TABLE NAME"),
resultfk . getString ("CONSTRAINT NAME")

E
}

/s Rk oK KRR R K R R KKK R KRR R K R R SR SRR R KRR R R R K SR KKK KRR R R K SR KKK KRRk
* Step 8: load Primary key *
s ok ok ok oK oK o K K K K KKK KKK KKK SR R K K K K SR R R R R R K K KKK KKK KRR R SR R R R R SRR Rk ok %/

SQLSelectQuery select3 = new SQLSelectQuery (
new String []{ "INFORMATION SCHEMA.COLUMNS"},
con ,
new String []{"COLUMN NAME"},
"TABLE NAME_=_ ’"+name+" ’ _LAND_COLUMN KEY_=_'PRI""
);

primaryKey=null;

/************>l<******>|<**************************************

x Execute the following Query : *
x"Select COLUMN NAME *
x From information schema.columns *
x Where TABLE NAME=$name AND COLUMN KEY = ’PRI’;" *

x in this query $name is the parameter "name” *

>i<>|<**********>I<>I<**********>l<>l<*********************************/

ResultSet pri = select3.sqlQueryDo ();
while (pri.next ()){
this.primaryKey = pri.getString ("COLUMN NAME");

}catch (SQLException e){
throw new LoadUnexistentTableException (

"It ’s_impossible_to_load_the_table_it_could_doesn’t_exist"
)

}

74

This piece of code can be divided into three key steps.

First, it extracts all the information concerning the columns: "their names,
types, charsets, numeric prescisions, numeric scales, default values". Then it
creates a corresponding java object "column" that will be added to the object
"Table" in creation.

The second step is the extraction of the data concerning the potential for-
eign keys, the referential constraints that this table must satisfy. To do this,
the following information is extracted: "the name of the table, the name of
the column concerned, the name of the constraint, the table referenced by the
constraint and the columns". All this information will be used to create a Java
"Foreign Key" which will be added later to the object "Table" in creation.

The last step, is the loading of the primary keys of the target table which
is then added to the object under construction. Once these three steps are
done, we have a structured Java object in which all the information concerning
a chosen table is gathered and easily accessible. This will be very useful for the
implementation of our reasoning engine.

Do/undo feature

Finally, let us talk about the latest "EasySQL" feature. As said earlier, this
library allows to perform SQL queries in java and obviously to execute them or
retrieve the script (as a string).

But that is not all because, as seen aboveEL adding foreign keys can have
strong impacts on the applications that work with it. This impact can be on
several levels. It may have no impact, which is the most desirable case, because
it does not require any changes to the application; it may be less when it only
prevents the realization of certain functionality of the application; or it may be
global when it makes impossible the operation of the entire application.

To respond to these two potentially problematic impacts, we added the "sql-
QueryUndo()" method to any query. This method will cancel the previous query
(when it is possible). This method makes it possible to make a rollback, restore
the state of the Database before the execution of the request.

To do this, it is necessary to proceed in two different ways according to the
type of request: whether the query has an impact only on the database schema,
or whether it affects the data stored in that database.

The first type is the easiest to manage. If the query has only an impact
on the schema, it is sufficient to memorize the old state of the schema and to
execute the query restoring this state. Requests of this type are as follows:

e Create a table

e Alter a table

75

The second type of request is more delicate, because as it modifies the data
present in the database it is also necessary to restore them. To do this, before
executing one of these requests, the data concerned by the modification must
be loaded and saved for possible restoration. The requests concerned are as
follows:

e Delete Data
Delete tables

Update data

Insert data

Drop table

Finally, it is not possible to implement this feature for all queries. For
example, undo a "select" query makes no sense.
6.1.2 Context Analyzer

This software object is simply a Java implementation of the algorithm presented
during the [subsection 5.1.2} It is a set of "if statements" (as presented on the
Figure 5.4)), based on EasySQL and its meta-data extraction.

It has the particularity to have its own internal representation of its database
table that it modifies depending on the transformations that it chooses - or that
are dictated by the user - in order to keep a coherence on the transformation
that it operates - or that will be operated with a generated SQL script. Thus,
it keeps in memory the old transformations that it operated in order to keep its
internal representation of the database coherent.

6.1.3 Prodacon2 GUI

As a direct java code manipulation can be complex enough and could require
an important amount of time to understand and master it, a GUI was created
to facilitate these manipulations by database managers. This GUI was based
on the javaFX 2.0 technology and was partially built with the JavaFX Scene
Builder tool from Oracle.

It offered a series of features:

1. Configuring the database settings for the connection. This is an essential
part to make the application able to get all schema information and pos-
sibly perform some direct transformations with a user’s authorization. To
retrieve this information it needs the database host name, DB name, port
number and also an authorized user login and his password (if the user
has only read-only access the Direct Database Manipulation feature will
not be available)

2. Loading a list of candidate foreign keys from a text file where each line is
formatted such as:
foreingKeyTableName :foreingKeyColumnName: ReferencedTableName:
ReferencedColumnName

76

3. Proceeding with a direct database transformation managed by a database
manager.

4. Generating a SQL script that has the same impact as a direct database
transformation.

5. Performing a fast analysis.

Direct database transformation

After configuring the database settings E| and loading a list of candidate foreign
keys, a user can start a Direct Database Manipulation which means that the ap-
plication will treat successively all imported potential foreign keys and propose
a transformation that the application judges as being the best choice for each
one of them.

The user is free to change a set of parameters like the transformation type.
Each column will be impacted by this transformation (the referenced or the
foreign key column) but we give no guarantee if bad settings are performed.

The application displays some other information to help the user choosing
the current type of the columns, the list of potential unmatching values between
the two tables and the list of the potential cascade Foreign keys.

With the information made available, s/he has several possibilities :

1. Execute the transformation (the Database will be directly impacted).
If there are some unmatched values the application proposes several choices:

(a) Set null all unmatched values.

(b) Delete unmatched values (the full line) on cascade.

If there are some cascade foreign keys, the transformation is performed on
every linked column involved in the modification.

2. Abort the transformation. No transformation will be performed for the
current foreign key.

3. Add an equivalent Trigger. This technique allows to maintain the integrity
of the database by adding a trigger that will act as a foreign key but
without caring if the previous data is respecting this constraint.

Script generator

This feature is very similar to the previous one. It has exactly the same aspect
but the difference is that the database is not directly altered. Instead, the ap-
plication generates an equivalent SQL script that can be executed by the user
(it is recommended to execute this script on a transaction to avoid all potential
mistakes or database exceptions).

To perform this generation, the context analyzer creates its own database repre-
sentation and modify it for every intended modification so that every step of the
generated script takes into account every previous database alteration. For this
reason, this feature does not support concurrent database modifications during
the process.

3This feature required a full privileges access

7

Fast Analysis

This feature performs a fast and simple analysis of the transformations that
should be executed for adding the candidate foreign key. The application sends
a report of all the transformations that the context analyzer will propose.

The list of transformations is fully automated and does not demand any user
interaction for the transformations choices. So, this analysis is not entirely
reliable but can still be useful for a first look at the impact significance of the
foreign key adding or to check the accuracy of the candidate foreign keys.

6.1.4 Remote diagnostic

To be able to make a remote diagnosis we chose to create a new "Diagnostic"
java object which is based on the "ContextAnalyser" object described above.
They are implemented with the same reasoning engine and therefore make the
same transformations choices on the database to allow the foreign keys to be
updated. The only difference is that instead of generating "Transformation"
java objects, the "Diagnostics" object will generate "Analysis" objects which
role is collecting all information on the proposed transformation and on the
database in order to generate a report in the JSON format.

The following frame presents an extract from the report of our "remote diag-
nosis" on the Oscar database. This extract is placed here to give an idea of the
general structure of the report the full report is available at the following address:
https://drive.google.com/open?id=1JQP _7pK-JykuHJE6yR28rAmBOnYD2Iq3

{"proadcon2Diagnostic": [{
"advisedNewType": "INT(11)",

"unmatchingUnsigned": "false",
"encodageMatching": "true",
"impossibleAdding": "false",
"foreignKeyCascade": [],
"advisedTarget": "ForeignKeyTable",
"fkAlreadyExist": "false",
"transformationType": "MBT",
"unmatchingValuesNumber": "0",
"message": "',
"foreignKey": {
"ReferencedTableName": "Facility",
"ReferencedColumn": "id",
"ForeingKeyColumn": "facilityId",
"ForeingKeyTable": "IntegratorControl",
"ConstraintName": "fk Constraint IntegratorControl Facility 125’

},

"ReferenceCascade": |

{

"ReferencedTableName": "Facility",
"ReferencedColumn": "id ",
"ForeingKeyColumn": "facilityId",
"ForeingKeyTable": "ClientLink",
"ConstraintName": "ClientLink ibfk 1"

78

"ReferencedTableName": "Facility",
"ReferencedColumn": "id",
"ForeingKeyColumn": "facilityId",
"ForeingKeyTable": "DigitalSignature",
"ConstraintName": "DigitalSignature ibfk 1"

}

{
"ReferencedTableName": "Facility",
"ReferencedColumn": "id ",
"ForeingKeyColumn": "facilityId",
"ForeingKeyTable": "HnrDataValidation",
"ConstraintName": "HnrDataValidation ibfk 1"

%

{
"ReferencedTableName": "Facility",
"ReferencedColumn": "id",
"ForeingKeyColumn": "facilityId",
"ForeingKeyTable": "IntegratorConsent",
"ConstraintName": "IntegratorConsent ibfk 1"

’

{
"ReferencedTableName": "Facility",
"ReferencedColumn": "id",
"ForeingKeyColumn": "facilityId",
"ForeingKeyTable": "IntegratorConsentComplexExitInterview ",
"ConstraintName": "IntegratorConsentComplexExitInterview ibfk |

}

{
"ReferencedTableName": "Facility ",
"ReferencedColumn": "id ",
"ForeingKeyColumn": "facilityId",
"ForeingKeyTable": "program",
"ConstraintName": "program ibfk 1"

}

{
"ReferencedTableName": "Facility",
"ReferencedColumn": "id ",
"ForeingKeyColumn": "facility id",
"ForeingKeyTable": "room",
"ConstraintName": "FK room facility"

}

E
"dicoTable": [{

"name": "billingstatus types",
"primaryKey": "billingstatus",
"Tablecolumn ": |

{

"columnName": "billingstatus",

79

1"

"columnType": "char(1)",

"defaultValue": "",
"charset": "latinl",
"unsigned": "false"

I

{
"columnName": "displayName",
"columnType": "varchar (20)",
"defaultValue": "",
"charset": "latinl",
"unsigned": "false"

}s

{
"columnName": "displayNameExt",
"columnType": "varchar (50)",
"defaultValue": "null",
"charset": "latinl",
"unsigned": "false"

}

{
"columnName": "sortOrder",
"columnType": "int (10) unsigned"
"defaultValue": "0",
"charset": "null",
"unsigned": "true"

I

{
"columnName": "billingstatus",
"columnType": "char(1)",
"defaultValue": "",
"charset": "latinl",
"unsigned": "false"

}s

{
"columnName": "displayName",
"columnType": "varchar (20)",
"defaultValue": "",
"charset": "latinl",
"unsigned": "false"

}s

{
"columnName": "displayNameExt",
"columnType": "varchar (50)",
"defaultValue": "null",
"charset": "latinl",
"unsigned": "false"

I

{
"columnName": "sortOrder",
"columnType": "int (10) unsigned"

80

)

"defaultValue": "0",
"charset": "null",
"unsigned": "true"

}

|
"foreignKeys": []}}

6.2 Program adaptation

6.2.1 Trigger logger

As said in the trigger logger mechanism is quite simple. All
it requires before adding the different triggers is to create the log-table that
records all the simulated foreign key violations.

We developed a solution in JAVA that takes as input a candidate foreign key
and returns a Mysql script that has to be executed in order to add the log-table
and the triggers in the database.

The SQL code below correspond to the generated script for this implicit
foreign keyﬂ :

CLIENT ORDER
clientld : bigint orderld : bigint
firstname : varchar(45) Orderdate : date
lastname : varchar(45) refClient : varchar(45)
id : clientld .________‘__-‘! id : orderld

k1 ref : refClient

Figure 6.3: Implicit Foreign key FK1

4Figure 6.3| represents the foreign key as if it was implemented in the DBMS for demon-
strative purpose only.

81

KRR R K KKK KK K R R SR R K R o o o o KK KKK KKK KKK K K R R R R K oK ok ok o K K K R K K
x Creation of the log—table (here called tableTriggerLog) *
s ok ok o o o o K KK KKK KKK KKK SR R R K K K R K R R K KKK KKK K R R R oK oK oK K ok o K R R Rk ok /)

create table IF NOT EXISTS tableTriggerLog (
foreignKeyName varchar(100) NOT NULL,
foreignKeyTable varchar(100) NOT NULL,
foreignKeyColumn varchar (100) NOT NULL,
referencedTable varchar(100) NOT NULL,
referencedColumn varchar (100) NOT NULL,
problemAction varchar (40) NOT NULL,
dateAndTime timeStamp NOT NULL DEFAULT now ()

)

KRR KKK KR KK R R SR KK SR R R KK KK SRR S KK SR R SR KK KR KK K KK SR R S KK R R ok K K Kk oK ok
x Creation of the Trigger that will check the inserts in the *
x Order table *

>|<****>|<>|<>k***>|<*>k**********>|<******>|<****>I<>|<****************************/

CREATE TRIGGER. triggerInsertFK1
BEFORE INSERT ON Order

FOR EACH ROW

BEGIN

IF not (new.refClient IN (SELECT clientId from Client))
THEN

INSERT INTO tableTriggerLog (foreignKeyName, foreignKeyTable,
foreignKeyColumn , referencedTable, referencedColumn, problemAction)
values ("FK1", "Order", "refClient",

"Client", "clientId", "insert");

END IF ;
END

/* >k 3k 3k >k 3k ok ok 3k ok ok ok sk sk ok ok sk ok skok ok skosk ok skok sk sk sk sk sk sk sk ok ok sk ok skok sk skosk ok skosk sk sk sk ok sk sk sk ok sk ok skok ok skook ok skok ok

* Creation of the Trigger that will check the deletes in the *
x Client table *

>!<****>(<>k>|<*****>|<**********>!<******>!<****>l<>!<****************************/

CREATE TRIGGER triggerDeleteFK1
BEFORE delete ON Client

FOR EACH ROW

BEGIN
IF (old.clientId IN (SELECT refClient from Order))
THEN

INSERT INTO tableTriggerLog (foreignKeyName, foreignKeyTable,
foreignKeyColumn , referencedTable, referencedColumn, problemAction)

82

values ("FK1", "Order", "refClient",
"Client", "clientId", "delete");

END IF;
END

x Creation of the

/KK R KRR RO KKK SRR SR KK SR R R KK KK SRR S KK SR R SR KK KR SRR K KK SRk S KK R Rk K Kk ROk
Trigger that will check the updates in the
x Order table

*

*
*****>|<>|<****>|<************>|<***********>I<>|<****************************/

CREATE TRIGGER triggerUpdateSourceFk1
BEFORE UPDATE ON Order

FOR EACH ROW

BEGIN

IF ((old.refClient <> new.refClient) AND

not (new.refClient IN (SELECT clientId from Client)))
THEN

INSERT INTO tableTriggerLog (foreignKeyName, foreignKeyTable,
foreignKeyColumn , referencedTable, referencedColumn, problemAction)

values ("Fkl1", "Order", "clientRef",
"Client", "clientId", "updateForeignkeyTable");
END IF;

END

/KRR KKK SRR KKK SRR SR KK SR R KK KK SRR SO KK SR R SR KK KR SRR K KK SR R S KK R Rk K Kk Kok
x Creation of the

Trigger that will check the updates in the *
x Client table

*
>|<****>|<******************>|<>|<****>|<******>|<****************************/

CREATE TRIGGER triggerUpdateDestFK1
BEFORE UPDATE ON Client

FOR EACH ROW

BEGIN

IF ((old.clientId <> new.clientId) AND

(old.clientId IN (SELECT clientRef from Order)))
THEN

INSERT INTO tableTriggerLog (foreignKeyName, foreignKeyTable,

foreignKeyColumn , referencedTable, referencedColumn, problemAction)
values ("FK1", "Order", "clientRef",

"Client", "clientId", "updateReferencedTable");
END IF;
END

83

Let us not forget that these triggers are only temporary. Therefore, SQL
instructions to retrieve them should also be developed (and an instruction to
clear the log-table as well). However, we judged that it wasn’t interesting to
present these instructions to the reader.

Additionally, a mechanism to retrieve the information from the log-table
should also be developed but once again, we chose to not dwell on that part.

Finally, the name of a trigger could cause a problem if it already exists, even if
it is unlikely - here the name of a trigger describes its function (like triggerInsert)
coupled with the name of the foreign key (here : fk1). A workaround mechanism
has to be developed but we thought this was not a key point of this thesis.

84

Chapter 7

Case study : OSCAR

In order to test the different developed tools, a case study in a real environment
is needed. Luckily, when we developed our solutions during an internship at
the University of Victoria, we had at our disposal a very interesting database
to work with : the OSCAR database - OSCAR stands for Open Source Clinical
Application Resource.

In this chapter, a description of the OSCAR system is given. Then we
will explain what different constraints this system has imposed on our thinking.
Finally, the results of some of our developed tools running on it will be presented.

7.1 What is OSCAR?

The OSCAR system is an Electronic Medical Record (EMR) system. An EMR
is a digital medical record that either originates from an electronic format or is
converted from paper or hard copy to an online version according to [6].

OSCAR is a Clinical Management System that is distributed all over Canada
and is used by hundreds of clinics and hospitals since 2001.

Its main purpose is to reduce the management cost of the clinics but also
to improve health service efliciency by integrating the different clinical health
data in its network. This network is also very interesting for answering research
questions.

As OSCAR is an open source project, a large community of users, developers
and service providers are constantly improving it, adapting it for their own needs
and sharing their contributions.

For more information about the OSCAR project, the reader can consult the
official website [3].

OSCAR is a legacy system (see section for more details about
legacy systems). Indeed, the OSCAR. database is very large : it contains more
than 480 tables and over 18500 lines of DDL code [II]. The enormous issue
with this database is that it contains very few explicitly declared foreign keys
(originally, no foreign key at all had been implemented due to the previous use of
the older MyISAM database engine provided by MySQL, which does not support
foreign keys, according to Gobert and Maes [25]) which implies that all relation-
ships between tables are implicit. Like many legacy systems, OSCAR has lost

85

its documentation concerning the initial logical schema so it is very difficult to
obtain knowledge of the implicit foreign keys it contains but, as said before in
this thesis, the work of Gobert and Maes|25] allows us to discharge ourselves
from the problem of finding them.

Because it is largely used and because of its active community, OSCAR is
in constant evolution and new versions of its system are regularly released. We
were, for our part, working with the version 697 of OSCAR on "stable" brancPE
that the reader could find on the Bitbucket website[I].

The complexity of the physical schema of its database implies the require-
ments defined in where we saw that it would be unlikely for experts
to decide to make all implicit foreign keys explicit at once. The reasonable way
to perform this database transformation incrementally is: adding the safest for-
eign keys first, which brought us toward the idea of a decision helper tool that
would be able to advise the user for this purpose.

Because OSCAR is a real and very large system with a lot of real world
issues that can be often found in other systems that it is a very interesting case
study for many research questions. For example, its database has already been
the case study of former research that were very useful for ours like [25] or [20].

Some of these issues became constraints for our project and in the next
section we will go through them.

7.2 Constraints

Even if the main issue of OSCAR is the loss of the logical schema documentation,
it was not a constraint for us strictly speaking (even if it was one for previous
research as mentioned in the previous section).

On the other hand, the problem of the data privacy (seen in [section 4.4.2)

and the data accessibility became profound challenges.

7.2.1 Data protection legislation

The subject of the protection of the data is very actual, particularly this year
in the European Union with the new GDPR (the Global Data Protection Reg-
ulation) active since 25 May 2018 in all 28 member states.

Of course, data protection laws differ between Canada and Europe but, as
the GDPR is stricter than the PIPEDA (Personal Information Protection and
Electronic Documents Act[d]) in Canada, it is wise for us to design our tools to
be accepted under every legislations.

First of all the data inside the OSCAR database are predominantly personal
data because according to the definition (Art. 4, §1 GDPRJ5]) a personal data
is any information relating to an identified or identifiable natural person. Here,
the data are medical data of thousands of patients. It is obvious that the clinics
and hospitals have to register their name, address, phone number, ... and link
them to all the data concerning them.

So, the data protection applies and without the formal consent of each pa-
tient, our tools have not the sufficient authorization to treat these data. This

lwith commit hash : b685eda393de5b95c6d74966b9436b0e2a0142a3

86

is why during our internship we had access to a test version of the original
database. This mock database contained nearly no data at all. But even if we
could only test our tools on an empty database, it was still very interesting to
have at our disposal a real-life sized physical schema of a database.

The real challenge that we had not foreseen at the beginning of the internship
was that we had to design our tools so that the data manipulation was minimal.
For example, at first, our database transformation tool displayed mismatching
values to the user. If the data shown are private data, it is likely to be forbidden.

A solution had to be found and it was explained in

7.2.2 Data accessibility
This problem has already been addressed in but it is an im-

portant milestone in our project as we had to change completely the vision of
our system. The issue was that the user of our first database transformation
tool imperatively had to be the people with access to the database but also
be the people experts that will know the domain sufficiently to make the good
decisions. But in reality, in the case of OSCAR, the persons with access to the
database are not the experts in the domain.

This is the constraint that brought us to design the Remote Diagnostic tool
(see Fubsection 5.13).

Nevertheless we think it would be a waste to consider the previous database
transformation tool that needed direct access to the database as obsolete because
in most cases, the constraint will not be relevant.

7.3 Results

This section presents the results of the remote diagnostic tool, developed ear-
lier in [subsection 6.1.4] as well as their analysis. To perform this diagnostic,
we based ourselves on the results of Maxime Gobert and Jérome Maes’ 2013
thesis [25]. The latter had iterated the potential implicit foreign keys present in
OSCAR at that time, this list is available in appendixe

Our tool thus produced a JSON file (available partially in appendix .
This document therefore provides all the transformations that our reasoning
engine recommends for adding the foreign keys mentioned above as well as a
description of the database tables that may be affected by this modification.

Let us begin by analyzing the types of transformations that this document

suggests. To do this, we made a pie chart (see [Figure 7.2) and a table (see
Table 7.3) to see the distribution.

87

Distribution of transformation types from the remote

tool diagnostic

ANTT :1

MVMT : 3

MBT : 60

[impossible adding [l DTT

NT%

LMTT : 19

LMTT B8 MBT [MVMT

Figure 7.1: Transformation type suggestion

/ impossible adding : 19

DTT :27

O NTT ANTT

meta-chart.com

Type of transformation sug- | Number of cases | Unmatching values case
gested

Time Types Transformation 0 (0%) 0
(TTT)

AlphaNumeric Types Transfor- 1 (0.8%) 0 (0%)
mation (ANTT)

Matching with Values Mismatch- 3 (2.3%) 3 (100%)
ing Transformation (MVMT)

Numeric Types Transformation 4 (3.0%) 0 (0%)
(NTT)

Length Mismatch Type Trans- 19 (14.3%) 2 (10.5%)
formation (LMTT)

Impossible adding 19 (14.3%) /
Different Type Transformation 27 (20.3%) 2 (7.4%)
(DTT)

Matching with Basic Transfor- 60 (45.1%) 0 (0%)
mation (MBT)

Table 7.1: Type suggested table

These figures are interesting, because they show us that among the 133 for-
eign keys suggested, our solution is capable of adding 114 (or 85.7%) of them.

2Number of times at least one value exists in the database that does not meet the referential

constraint.

88

We will focus on the remaining 14.3% a little later.

This concrete use of our tool also shows us that the typology of transfor-
mations developed in the section [£:2.1] must be appropriated, because all cases
are found here, with the exception of "Time Types Transformation" (TTT). We
can therefore conclude that the typology is well representative of concrete cases
in the field.

We can also see that the majority of our cases are "Matching with Basic
Transformation" (MBT). This can be reassuring, because, as a reminder, it is
the simplest case treated. Here the 2 columns concerned by the foreign key are
of the same type because they are both coded on the same number of bits. It
is therefore enough to add the constraint in the DBMS to pass this implicit
constraint into explicit constraint.

The 3rd column of the table shows us that there are very few cases where
there are unmatched values, values that make it impossible to add the foreign
key because they are not referenced. This is very good news, however, perhaps
because the database on which we tested the tool is a test database and not a
real production database and therefore may not be sufficiently populated. To
be certain of these results, the test would therefore have to be conducted on an
active OSCAR database, which is quite difficult, as these databases are confi-
dential and protected by many private personal information laws.

The other transformations, representing 54 keys or 40.7% are more delicate
cases requiring more attention from the user, because there are several alterna-
tive ways to add these constraints. Now, let us focus on the transformations
that are deemed impossible by our diagnostic tool. These cases are illustrated

by [Figure 7.2] and [Table 7.2

89

Distribution of impossible transformation types from the
remote tool diagnostic

Signed/unsigned Type : 3
The Fk is already in DB : 4 /

\

[signed/unsigned Type [l Impossible to find the Ref table/column
Il The Fk is already in DB

Impossible to find the Ref table/column : 12

meta-chart.com

Figure 7.2: Impossible transformation kind

Reason of incapacity Percentage | Number of cases

Different signed/unsigned values be- 15.8 % 3
tween the foreign key column and the
reference column

The Fk is already on the database 21.1 % 4

Impossible to find the Reference table 63.2 % 12
and/or column.

Table 7.2: Impossible transformation repartition table

We see here that there are 3 categories of cases that make impossible the ad-
dition of a foreign key. First, the case where the type of one of the two columns
is a signed type and the type of the other column is an unsigned type. This
case could actually be dealt with in our system. This gap is actually a relic of
the time when we wanted to achieve a 100% automated system, but we know
today that it would be very difficult to achieve. Our solution could thus in its
future version take in charge this case.

Then we have the case where we have not been able to find one of the tables
or columns concerned by the foreign key. Here, this situation arises because the
list of candidate foreign keys that we take as input dates from an older version
of OSCAR. This database has in 3 years known a large number of versions and
therefore refactors of its schema. After a more detailed analysis, we realized
that, most of the time, these tables or columns had been renamed or had been

90

removed. Finally, the case where the foreign key is already in the database is also
due to our out-of-date inputs (the foreign key has been added in the meantime).

This analysis allows us to refine the candidate foreign keys and thus to re-
move the two cases of impossible addition which are those where the table is
not found and where the foreign key has already been added. This gives us the

results as illustrated in [Figure 7.5 and [Table 7.3}

Distribution of transformation types from the remote tool diagnostic
(with refined data)

ANTT :1 impossible adding (Signed/unsigned) : 3

MVM%
NTT : 4

DTT :27

MBT : 60 '/

LMTT :19

M impossible adding (Signed/unsigned) B DTT [LMTT B MBT [INTT
[MvMT [0 ANTT

meta-chart.com

Figure 7.3: Transformation type suggestion (with refined data)

91

Type of transformation sug-
gested

Number of case

Unmatching values case

mation (MBT)

Time Types Transformation 0 (0%) 0 (0%)
(TTT)

AlphaNumeric Types Transfor- 1 (0.9%) 0 (0%)
mation (ANTT)

Matching with Values Mismatch- 3 (2.5%) 3 (100%)
ing Transformation (MVMT)

Impossible adding (signed/un- 3 (2.5%) /
signed)

Numeric Types Transformation 4 (3.4%) 0 (0%)
(NTT)

Length Mismatch Type Trans- 19 (16.2%) 2 (10.5%)
formation (LMTT)

Different Type Transformation 27 (23%) 2 (7.4%)
(DTT)

Matching with Basic Transfor- 60 (51.3%) 0 (0%)

Table 7.3: Type suggested table

In conclusion, we see that our system is capable of processing 97.5% of the
candidate foreign keys encountered. This result is quite satisfactory while know-
ing that it would be quite possible to correct the small gap of the remaining 2.5%
in a future version. However, it is important to note that this tool only focuses
on transformations related to the database schema and the data it contains, but
does not take into consideration the resulting application level changes.

92

Chapter 8

Conclusion

8.1 Summary

In the introduction, the motivation of the thesis has been explained. As new in-
formation systems are becoming increasingly rare, a lot of systems are old, very
large and have been continuously modified in order to follow a constantly evolv-
ing world. These systems, called legacy systems, are characterized by a source
code and an architecture that is the product of a long maintaining that can
cause some obsolescence, incompleteness and inconsistencies but whose replace-
ment cost would be too high and risky. In these legacy systems, documentation
is often missing and at the database level, the conceptual schema can be lost
so that unimplemented and undocumented foreign keys - called missing implicit
foreign keys - are often lost as well. But evolving a database schema with miss-
ing implicit constructs in it, is very perilous for the database integrity so that
the recovery of the conceptual schema - and so the reimplementation of these
foreign keys - is required. Reverse engineering proposes solutions for retrieving
this information but as it is not the subject of our thesis we took the location
of the missing foreign keys for granted and we used a tool developed by two
students from the University of Namur for that.

So the focus of this thesis was to propose solutions for enforcing foreign keys
in legacy systems. It is a difficult problem because implementing a foreign key
in a database could require database transformations and also modifications
in the application code that is using this database. We then introduced the
directions for enforcing foreign keys : a database transformation solution that
takes a list of missing foreign keys, treats them one by one and executes all the
required transformations, and an application propagation analysis with both a
static and a dynamic analysis for determining if the application code still works
after adding a foreign key and where changes have to be applied in it.

In chapter 2, we gave a state of the art of different subjects, tools and papers
that we used in our thesis or inspired us. We first presented the context in which
our thesis was conducted; that is to say inside a collaboration project between
the University of Namur and the University of Victoria about the question of
managing technical debt. As in this project implicit foreign keys are considered
as a form of technical debt, enforcing these foreign keys will greatly help reducing
this debt. After that, an introduction to database reverse engineering was given

93

in order to better understand the description of a tool we used for retrieving
the location of implicit foreign keys in a database. We presented also another
tool for locating erroneous queries in the application code and a paper about the
possible tolerance of inconsistency which helped us design our dynamic analysis.

In chapter 3 we developed more extensively the problem statement of this
research. In particular, we defined precisely a foreign key and the scope of an
implicit foreign key. The potential issues an implicit foreign key can generate
was also explained - loss of these constraints, violation of the logical schema,
inconsistency in the database, ... - and our proper definition of "enforcing foreign
key" was also detailed. Finally, the impacts the foreign keys enforcement process
could have on the application context was explained.

In chapter 4, we established a methodology for elaborating a process an-
swering the problem raised earlier which is a process for enforcing foreign keys
in a database. First, we decided which level of automation would be best for
this process. We chose a semi-automatic level of automation where the process
will act as a decision helper process that, for each implicit foreign key that has
to be enforced, will ask the user what to do but, at the same time, will provide
him with helpful information that comes from an integrated algorithm that will
allow him to make better decisions. After that, in order to design a database
transformation algorithm, we constructed a transformation typology to catego-
rized without ambiguity every type of database transformation. Then, a first
description of the mechanism of the trigger logger used for the dynamic analysis
and motivated by the idea of tolerating inconsistency was given. The principle
is to log in a specific table any violation that occurred on a constraint that is
not implemented but simulated by triggers. The static analysis using DAHLIA,
a tool described in chapter 2, was quickly introduced because, unfortunately, we
had not time to develop this part as much as we wanted. Finally, we determined
3 metrics for expressing the dangerousness of implementing a foreign key : the
transformation magnitude that measures the importance of the database trans-
formation required for implementing the foreign key, the wviolation frequency
that measures the probability of errors that would occur after the adding and
the application impact that measures the importance of the modifications on
the application level required after the implementation of the foreign key. We
ended this chapter by explaining some problematics we had to face like data
privacy issues.

In chapter 5, we designed the different processes and algorithms needed for
enforcing foreign keys. For the database transformation part, we first designed
an abstract database manipulation process that aims to ease readability and
manipulability of the software code of our solution by encapsulating database
manipulations. Then, the context analyzer, a process that computes the best
transformations that should be processed in order to add a given foreign key,
is introduced and the algorithm - based on the transformation typology con-
structed in the previous chapter - that this process uses was also presented. Af-
ter that, a remote diagnostic process that addresses the problem of the database
maintenance and transformation team not necessarily having full access to the
database was designed. The idea is to take as input the list of candidate for-
eign keys and to generate a structured report containing the transformations
recommended by the context analyzer process. And in order to answer the data

94

privacy issue, this report could not contain any sensitive data. For the program
adaptation part, the design of the trigger logger was explained, giving the type
of information that the log table should retrieve when a violation occurs. Clues
for retrieving information from a static analysis was provided afterward. Finally,
the last section of this chapter explains how we can use the different processes
and tools designed previously in order to give values for each metric defined in
chapter 4 that aims to help the user visualize the risk of implementing a certain
foreign key.

In chapter 6, we have given the reader the indications about the implementa-
tion of every database transformation tool we designed in the previous chapter
as well as the implementation of the triggers required for the dynamic analysis.
The static analysis and the visualization tool was not implemented.

Finally, in chapter 7, we presented the OSCAR case study (a clinical man-
agement system distributed all over Canada), the constraints this case study
imposed on our solutions like the data protection legislation or the data accessi-
bility issue, and the results of the remote diagnostic tool on the OSCAR system
that allowed us to conclude that our solution is capable of processing 97.5% of
the candidate foreign keys encountered which we think is a satisfactory result.

8.2 Evaluation ans future works

Although we have tried to be as comprehensive and as generic as possible, there
are a number of elements that should be improved, deepened or developed in
the future.

First of all, to better validate our solution, we should test it on a larger
database panel, as varied as possible, in order to be sure that we are able to
handle as many cases as possible, even some that can be judged to be limited.
Indeed, currently we have only tried our tool on a test version of the OSCAR
database, which, although relatively large and partially populated, is not a
production version that would have been more concrete and representative of
the reality.

Another criticism we can make to our solution is that our transformations
do not consider some dynamic aspects of DBMS, like triggers for example. It is
possible that some foreign keys that we believe implicit are actually implemented
by means of these triggers and a future version of our solution could be able to
recognize these constructions and could eventually transform them into more
conventional foreign keys.

In addition, currently our solution is implemented only for MySQL. It would
be interesting to extend this compatibility to a larger number of databases. It
should however be noted that the architecture of our solution was thought to
allow this with the design pattern "Abstract Factory". But to do this, it would
be necessary to study more widely the differences between the main DBMS,
mainly on how to extract meta-data and implement a "Factory" for each DBMS.

In addition, in the publication by Weber, Cleve, Meurice, and Ruiz
we have developed metrics to calculate the magnitude that the adding
of a foreign key could have and the resulting transformation of the schema at

95

the application level. For that, we based ourselves on 3 metrics which are the
number of transformations realized on the database schema and on the values
which are stored there, the number of violations of this constraint realized by
a dynamic analysis (ex: Logger trigger) and finally the impact that this foreign
key could have on the application thanks to a static analysis. Although these
3 criteria are extremely relevant, it would be interesting to discover and study
more of them. In [27] the authors mention that having the possibility to deter-
mine if the candidate foreign key would be implemented in a critical section of
the database or not. Indeed, if we could attribute values of criticality for each
part of a database, this could be a very interesting information for the user who
will directly know if the candidate foreign key is likely to handle sensible data
or not.

Also, the creation of a metric more configurable by a user, which would allow
for example to select the foreign keys to add in priority according to the metrics
that he considers more important.

Finally, in the implementation of our tools, we mainly focused on the database
aspect with schema transformations, content corrections, meta-data analysis...
Due to the lack of time, and because it would deserve a thesis dedicated to it,
we have developed very few tools to analyze the impact of adding foreign key,
and resulting transformations, on applications using this database. This aspect
has only been designed at a theoretical level and should be further developed,
implemented and tested. It could also be supplemented with an application
correction tool that could automatically detect, by static and/or dynamic anal-
ysis, which location would pose a problem or represent a risk E For this, it
would be possible to rely on reports generated by DAHLIA, the latter is able
to analyze the code of an application and notify all the locations of the code
communicating with a database and with which tables or columns it does it. It
is also able to trace the context of callers which could be useful to determine
the sequences of interactions with the database that are no longer possible after
adding foreign keys.

Isee : Foreign keys adding Impact

96

Bibliography

(1]
2]

13l
4]
5]

[6]

17l

18]

19]
[10]
[11]
[12]

[13]

[14]

Bitbucket. See https://bitbucket.org/oscaremr/oscar/branch /stable.

MySQL :: MySQL 8.0 Reference Manual :: 24 INFORMATION _schema
Tables | See : https://dev.mysql.com/doc/refman/8.0/en/information-
schema.html.

OSCAR EMR | Clinical Management System. See https://oscar-emr.com/.
REVER | see https://www.rever.eu/en.

Réglement (UE) 2016/679 DU PARLEMENT EUROPEEN ET DU CON-
SEIL du 27 avril 2016.

Techopedia | See https://www.techopedia.com/.

R. Balzer. Tolerating inconsistency [software development]. In /1991 Pro-
ceedings| 13th International Conference on Software Engineering, pages
158165, May 1991.

I. D. Baxter and M. Mehlich. Reverse engineering is reverse forward en-
gineering. In Proceedings of the Fourth Working Conference on Reverse
Engineering, pages 104-113, October 1997.

Office of the Privacy Commissioner of Canada. The Personal Information
Protection and Electronic Documents Act (PIPEDA), January 2018.

E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery:
a taxonomy. IEEFE Software, 7(1):13-17, January 1990.

A. Cleve. Analyzing the Evolution of Data-Intensive Software Systems,
2017.

A. Cleve. Conceptual interpretation of foreign keys, 2017.

Anthony Cleve. Program analysis and transformation for data-intensive
system evolution. In 2010 IEEFE International Conference on Software
Maintenance, pages 1-6, Timi oara, Romania, September 2010. IEEE.

Anthony Cleve, Maxime Gobert, Loup Meurice, Jerome Maes, and Jens
Weber. Understanding database schema evolution: A case study. Science
of Computer Programming, 97:113-121, January 2015.

97

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

23]

[24]

[25]

[26]

27]

Emil Drkusi¢. vertablo | An Overview of MySQL’s Information Schema
| See : http://www.vertabelo.com/blog/technical-articles/an-overview-of-
mysqls-information-schema, September 2016.

B. Fluri, M. Wursch, and H. C. Gall. Do Code and Comments Co-Evolve?
On the Relation between Source Code and Comment Changes. In 14th
Working Conference on Reverse Engineering (WCRE 2007), pages 70-79,
October 2007.

B. Fluri, M. Wiirsch, E. Giger, and H. C. Gall. Analyzing the co-evolution
of comments and source code. Software Quality Journal, 17(4):367-394,
20009.

C. Del Grosso, M. Di Penta, and I. G. de Guzman. An approach for mining
services in database oriented applications. In 11th European Conference
on Software Maintenance and Reengineering (CSMR’07), pages 287-296,
March 2007.

Jean-Luc Hainaut. Introduction to Database Reverse Engineering. page
139, 2007.

B. Jose and S. Abraham. Exploring the merits of nosql: A study based
on mongodb. In 2017 International Conference on Networks Advances in
Computational Technologies (NetACT), pages 266-271, July 2017.

Paul Klint. The software Evolution Volcano, 2011.

P. Kruchten, R. L. Nord, and I. Ozkaya. Technical Debt: From Metaphor
to Theory and Practice. IEEE Software, 29(6):18-21, November 2012.

Mario Linares-Vasquez, Boyang Li, Christopher Vendome, and Denys
Poshyvanyk. Documenting database usages and schema constraints in
database-centric applications. In Proceedings of the 25th International Sym-
posium on Software Testing and Analysis - ISSTA 2016, pages 270281,
Saarbrücken, Germany, 2016. ACM Press.

Di Lucca, Fasolino, and De Carlini. Recovering class diagrams from data-
intensive legacy systems. In Proceedings 2000 International Conference on
Software Maintenance, pages 52—63, October 2000.

Maxime Gobert and Jérome Maes. Innovative Techniques and Tools for
Database Reverse Engineering in Large Data Intensive Systems, 2013.

C. Nagy, L. Meurice, and A. Cleve. Where was this SQL query executed? a
static concept location approach. In 2015 IEEE 22nd International Confer-
ence on Software Analysis, Evolution, and Reengineering (SANER), pages
580-584, March 2015.

J. H. Weber, A. Cleve, L. Meurice, and F. J. B. Ruiz. Managing Technical
Debt in Database Schemas of Critical Software. In 201/ Sizth International
Workshop on Managing Technical Debt, pages 43-46, September 2014.

98

Appendix A

External inputs

A.1 Maxime Gobert and Jérome Maes outputs

The next element represents a series of foreign keys candidate discovered by
Maxime Gobert and Jérome Maes in their 2013 thesis [25].

Each line represents a foreign key in the following format:
"TABLE SOURCE:ATTRIBUT SOURCE:TABLE DESTINATION:ATTRIBUT DESTINATION"

billing history:billingstatus:billingstatus_types:billingstatus
billingmaster: billingstatus:billingstatus_types:billingstatus
billing : billingtype: billingtypes: billingtype

billing history:billingtype:billingtypes:billingtype

caisi_ form instance tmpsave:form id:caisi form:form id

cr policy:role id:caisi role:role id - -

default _role_access:role_id:caisi_role:role_id

program access roles:role id:caisi role:role id

program provider:role id:caisi role:role id

casemgmt issue notes:note id:casemgmt note:note id
casemgmt:tmpsa;e:note_id:Easemgmt_note; note_id -
consultationRequestExt:requestld:consultationRequests:requestld
consultdocs:requestId:consultationRequests:requestld
FaxClientLog:requestId:consultationRequests:requestId
consultationRequests:serviceld:consultationServices:serviceld
serviceSpecialists:serviceld:consultationServices:serviceld
caisi form data:question id:cr securityquestion:question id
caisi form data tmpsave:question id:cr securityquestion:question id
intake node:question id:cr securityquestion:question id -
intake node js:question id:cr securityquestion:question id
survey test data:question id:cr securityquestion:question id
caisi_fzrm_Tnstance_tmpsa;e:use;_id:cr_user:user_id -
caisi_form _instance:user_id:cr_user:user_id
cr_cert:user_id:cr_user: er_id
cr_policy:user_id:cr_user:user_id

cr _securityquestion:user id:cr_ user:user id

survey test instance:user id:cr user:user id

hl7 msh: message id:hl7 message: message id

hl17 pid: message id:hl7 message: message id

hl17 obr:pid id:hl7 pid:pid id -

- pid _id:hl7 pid:pid_id

egmentID : mdsMS egmentID

egmentID : mdsMS egmentID

egmentID :mdsMSH: segmentID

:segmentID :mdsMSH: segmentID

egmentID : egmentID

mdsZRG : :mdsMSH: segmentID
consultationRequests:specld: professionalSpecialists:specld
serviceSpecialists:specld: professionalSpecialists:specld
admission:team _id:program_team:team _id

bed:team _id:program_team:team _id

program provider:team id:program team:team id
form:provider _no:provider:provider_ no -

99

billing : provider_no:providerbillcenter :provider_no

billinginr :provider_no:providerbillcenter :provider_no
billingnote:provider_ no:providerbillcenter :provider_no

allergies :providerNo: ProviderPreference: providerNo

billing preferences:providerNo:ProviderPreference:providerNo
CdsClientForm: providerNo: ProviderPreference: providerNo

config Immunization:providerNo:ProviderPreference:providerNo
consultationRequests : providerNo: ProviderPreference: providerNo
demographicQueryFavourites: providerNo: ProviderPreference : providerNo
DigitalSignature: providerNo: ProviderPreference: providerNo
drugReason: providerNo: ProviderPreference : providerNo

eChart: providerNo: ProviderPreference : providerNo
EyeformConsultationReport: providerNo: ProviderPreference: providerNo
HRMDocumentComment: providerNo: ProviderPreference: providerNo
HRMDocumentToProvider: providerNo: ProviderPreference : providerNo
IntegratorConsent : providerNo: ProviderPreference: providerNo
measurements: providerNo: ProviderPreference : providerNo
measurementsDeleted : providerNo: ProviderPreference : providerNo
MyGroupAccessRestriction: providerNo: ProviderPreference : providerNo
OcanStaffForm: providerNo: ProviderPreference: providerNo

oncall questionnaire:providerNo: ProviderPreference : providerNo
PageMonitor: providerNo: ProviderPreference: providerNo
PrintResourceLog: providerNo: ProviderPreference : providerNo
ProvPrefApptmentScreenEForm: providerNo: ProviderPreference: providerNo
ProvPrefApptmentScreenForm: providerNo: ProviderPreference: providerNo
ProvPrefApptmentScreenQuickLink: providerNo: ProviderPreference: providerNo
quickListUser: providerNo: ProviderPreference: providerNo
RemoteDataLog: providerNo: ProviderPreference : providerNo
reportByExamples: providerNo: ProviderPreference : providerNo
reportByExamplesFavorite: providerNo: ProviderPreference : providerNo
SecurityToken: providerNo: ProviderPreference: providerNo
form2MinWalk:studyID :rehabStudy2004 :studyID
formCaregiver:studyID:rehabStudy2004:studyID

formCESD :studyID :rehabStudy2004 :studyID
formCostQuestionnaire:studyID:rehabStudy2004:studyID
formFalls:studyID:rehabStudy2004:studyID
formGripStrength:studyID:rehabStudy2004:studyID
formHomeFalls:studyID :rehabStudy2004 :studyID
formInternetAccess:studyID:rehabStudy2004 :studyID
formLateLifeFDIFunction:studyID:rehabStudy2004:studyID
formSatisfactionScale:studyID:rehabStudy2004:studyID
formSelfAdministered :studyID:rehabStudy2004:studyID
formSelfEfficacy :studyID:rehabStudy2004:studyID
formSelfManagement:studyID:rehabStudy2004:studyID
formSF36:studyID:rehabStudy2004 :studyID
formTreatmentPref:studyID:rehabStudy2004:studyID
IntakeInfo:studyID:rehabStudy2004:studyID

LateLifeFDIDisability :studyID:rehabStudy2004:studyID
SF36Caregiver:studyID:rehabStudy2004 :studyID

report qgviewfield:fieldno:report filter:fieldno

report template criteria:fieldno:report filter: fieldno
rschedule:sdate:scheduleholiday :sdate -
scheduledate:sdate:scheduleholiday :sdate

secObjPrivilege :objectName:secObjectName: objectName
SentToPHRTracking: objectName:secObjectName:objectName
teleplanC12:s21_id:teleplanS21:s21_id
teleplanS00:s21_id:teleplanS21:s21_id

teleplanS2‘2:521:id teleplanS21 _id
teleplanS23:s21_ id:teleplanS21 _id
teleplanS25:s21 id:teleplanS21: id

mdsZCL: setID : config Immunization:setId

mdsZMC: setID : config Immunization:setld
groupMembers tbl:groupID:groups tbl:grouplD
msgDemoMap : messagelD : messagetbl: messageid
remoteAttachments: messageid: messagetbl : messageid
SecUserRole:role_name:SecRole:role_name
SecObjPrivilege :roleUserGroup : SecRole:role_name
SecObjPrivilege:objectName:SecObjName:objectName
SecObjPrivilege: privilege : SecPrivilege: privilege
HL7HandlerMSHMapping: facility : Facility :id
CdsFormOption: facilityId: Facility :id
ClientLink: facilityId:Facility :id
DemographicContract: facilityId: Facility :id
DigitalSignature: facilityId: Facility :id
HnrDataValidation: facilityId: Facility :id
IntegratorConsent: facilityId: Facility d
IntegratorControl: facilityId: Facility :id
OcanStaffForm: facilityId: Facility:id
RemotelntegratedDataCopy: facilityId: Facility :id
caisi_form: facilityId:Facility:id

survey: facilityId: Facility :id

100

Appendix B

Project output

B.1 remote diagnostic : transformation analysis

The next element is a part of the output generated by the remote diagnostic present in the[subsection 6.1.4}
This extract contains only the transformations suggested for adding the 133 foreign keys presented in the
appendix [A.T] So this diagnosis lacks the part including the information relating to the structure of the
database schema and tables concerned or impacted by these foreign keys.

The complete diagnosis is available at the following address:
https://drive.google.com/open?id=1JQP _7pK-JykuHJE6yR28rAmB0OnYD2Iq3

{ "proadcon2Diagnostic" : [{"advisedNewType" : "CHAR(1)"," unmatchingUnsigned" : "false","encodageMatchi
g" : "true","impossibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarget" : "ForeignKeyTable"
"fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message" : "" "f
reignKey" : {"ReferencedTableName" : "billingstatus types", "ReferencedColumn" : "billingstatus", "Forei
gKeyColumn" : "billingstatus", "ForeingKeyTable" :ﬁ'billing_history”, "ConstraintName" : "fk_Constraint_
illing _history _ billingstatus_types_0"},"ReferenceCascade" : |] }.,{"advisedNewType" : "CHAR(1)","unmatc
ingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [
], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT","unmatchi
gValuesNumber" : "0","message" : "","foreignKey" : {"ReferencedTableName" : "billingstatus_types", "Refe
encedColumn" : "billingstatus", "ForeingKeyColumn" : "billingstatus", "ForeingKeyTable" : "billingmaster
"ConstraintName" : "fk Constraint billingmaster billingstatus types 1"},"ReferenceCascade" : [| },{"
dvisedNewType" : "VARCHAR(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdd
ng" : "false","foreignKeyCascade" : [|, "advisedTarget" : "ForeignKeyTable"," fkAlreadyExist" : "false"
"transformationType" : "LMTT","unmatchingValuesNumber" : "0","message" : "","foreignKey" : {"ReferencedT
bleName" : "billingtypes", "ReferencedColumn" : "billingtype", "ForeingKeyColumn" : "billingtype", "Fore
ngKeyTable" : "billing", "ConstraintName" : "fk Constraint_billing_billingtypes_2"}," ReferenceCascade"
[] }.,{"advisedNewType" : "VARCHAR(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","imp
ssibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist"
"false","transformationType" : "LMTT","unmatchingValuesNumber" : "O0","message" : "" 6 "foreignKey" : {"R
ferencedTableName" : "billingtypes", "ReferencedColumn" : "billingtype", "ForeingKeyColumn" : "billingty
e", "ForeingKeyTable" : "billing history", "ConstraintName" : "fk Constraint billing history billingtype
3"} ,"ReferenceCascade" : [] },{"advisedNewType" : "BIGINT(20)"," unmatchingUnsigned" : "false","encoda
eMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarget" : "ForeignK
yTable","fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message"
" "foreignKey" : {"ReferencedTableName" : "caisi_ form", "ReferencedColumn" : "form id", "ForeingKeyCo
umn" : "form_id", "ForeingKeyTable" : ”caisi_form_i;stance_tmpsave”, "ConstraintName" : "fk _Constraint_c
isi_form _instance_ tmpsave_caisi_form_4"},"ReferenceCascade" : |] },{"advisedNewType" : "INT(10)","unma
chingUnsigned" : "false","encodageMatching" : "false","impossibleAdding" : "false","foreignKeyCascade"
], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "DTT","unmat
hingValuesNumber" : "4","message" : "","foreignKey" : {"ReferencedTableName" "caisi_role", "Referenced
olumn" "role id", "ForeingKeyColumn" "role id", "ForeingKeyTable" : "cr policy", T ConstraintName"
fk Constraint cr_ policy caisi_ role 5"},"ReferenceCascade" : |] },{"advisedNewType" : "INT(11)","unmatc
ingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : |
], "advisedTarget" : "ReferencedTable","fkAlreadyExist" : "false","transformationType" : "LMTT","unmatch
ngValuesNumber" : "283" "message" "n vforeignKey" : {"ReferencedTableName" "caisi role", "Referenced
olumn" "role id", "ForeingKeyColumn" "role id", "ForeingKeyTable" : "default role access", "Constrai
tName" : "fk_601\straint_default_role_access_ca?si_role_(i"},”ReferenceCascade" T] ¥.,{"advisedNewType"
"BIGINT (20)" ,"unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false",6"
oreignKeyCascade" : |], "advisedTarget" : "ReferencedTable","fkAlreadyExist" : "false","transformation
ype" : "NTT","unmatchingValuesNumber" : "0","message" "","foreignKey" : {"ReferencedTableName" : "cais
role", "ReferencedColumn" "role _id", "ForeingKeyColumn" "role id", "ForeingKeyTable" : "program acc
ss _roles", "ConstraintName" : "fk Constraint program access roles caisi role 7"} ,"ReferenceCascade" : |
] ¥.,{"advisedNewType" : "BIGINT(20)","unmatchingUnsigned" : "false","encodageMatching” : "true","impossi

101

leAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ReferencedTable","fkAlreadyExist" : "
alse" ,"transformationType" : "NTT","unmatchingValuesNumber" : "0","message" """ "foreignKey" : {"Refere
cedTableName" : "caisi_role", "ReferencedColumn" : "role id", "ForeingKeyColumn" "role id", "ForeingKe
Table" : "program provider", "ConstraintName" : "fk Constraint program provider caisi_ role 8"} ," Referenc
Cascade" : [| },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "tru
" "impossibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarget" : "ForeignKeyTable","fkAlread
Exist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message" "o foreignKey "
{"ReferencedTableName" : "casemgmt note", "ReferencedColumn" : "note id", "ForeingKeyColumn" "note i
"ForeingKeyTable" : "casemgmt issue notes", "ConstraintName" : "fk Constraint casemgmt issue notes ca
emgmt note 9"} ,"ReferenceCascade"” : [] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false",
encodageMatching" : "true","impossibleAdding" : "false"," foreignKeyCascade" : [], "advisedTarget" : "F
reignKeyTable" ," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","m
ssage" "","foreignKey" : {"ReferencedTableName" : "casemgmt_note", "ReferencedColumn" : "note_ id", "Fo
eingKeyColumn" : "note_id", "ForeingKeyTable" : "casemgmt_ tmpsave", "ConstraintName" : "fk_ Constraint_ca
emgmt_tmpsave casemgmt_note_ 10"} ," ReferenceCascade" : |] },{"advisedNewType" : "INT(10)","unmatchingUn
igned™ : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [|, "a
visedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValu
sNumber" : "0","message" : "","foreignKey" : {"ReferencedTableName" : "consultationRequests", "Reference
Column" "requestId", "ForeingKeyColumn" "requestId", "ForeingKeyTable" : "consultationRequestExt", "
onstraintName" : "fk Constraint consultationRequestExt consultationRequests 11"} ," ReferenceCascade" : |
] }.{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossible
dding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "fal
e" ,"transformationType" : "MBT","unmatchingValuesNumber" : "0","message" " o"foreignKey" : {"Reference
TableName" : "consultationRequests", "ReferencedColumn" "requestId", "ForeingKeyColumn" : "requestId",
"ForeingKeyTable" "consultdocs", "ConstraintName" : "fk_ Constraint_consultdocs_consultationRequests_12
},"ReferenceCascade" : |] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatc
ing" "false","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTab
e","fkAlreadyExist" : "false","transformationType" : "DTT","unmatchingValuesNumber" "0","message" : ""
"foreignKey" : {"ReferencedTableName" : "consultationRequests", "ReferencedColumn" requestId", "Forei
gKeyColumn" "requestId", "ForeingKeyTable" : "FaxClientLog", "ConstraintName" : "fk Constraint FaxClie
tLog consultationRequests 13"},"ReferenceCascade" [1 },{"advisedNewType" : "INT(10)","unmatchingUnsi
ned" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [], "adv
sedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValues
umber" : "0","message" """ "foreignKey" : {"ReferencedTableName" : "consultationServices", "ReferencedC
lumn" "serviceld", "ForeingKeyColumn" "serviceld", "ForeingKeyTable" : "consultationRequests", "Cons
raintName" : "fk Constraint_consultationRequests_consultationServices_ 14"} ," ReferenceCascade" : | 1 ¥ {
advisedNewType" : "INT(10)"," unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding
"false","foreignKeyCascade" : [|, "advisedTarget" : "ForeignKeyTable"," fkAlreadyExist" : "false","t
ansformationType" : "MBT","unmatchingValuesNumber" : "0","message" "o foreignKey " {"ReferencedTable
ame" "consultationServices", "ReferencedColumn" "serviceld", "ForeingKeyColumn" "serviceld", "Fore
ngKeyTable" : "serviceSpecialists", "ConstraintName" : "fk Constraint serviceSpecialists consultationSer
ices 15"} ,"ReferenceCascade" : [] },{"advisedNewType" : "VARCHAR(37)","unmatchingUnsigned" : "false","
ncodageMatching" : "false","impossibleAdding" : "false"," foreignKeyCascade" : [], "advisedTarget" : "F
reignKeyTable" ," fkAlreadyExist" : "false","transformationType" : "DTT","unmatchingValuesNumber" : "0","m
ssage" "" "foreignKey" : {"ReferencedTableName" : "cr_securityquestion", "ReferencedColumn" : "questio
_id", "ForeingKeyColumn" : "question_id", "ForeingKeyTable" : "caisi_form_data", "ConstraintName" "fk
onstraint _caisi_form _data_cr_securityquestion_ 16"} ,"ReferenceCascade" : |] },{"advisedNewType" : "VARC
AR(37)" ,"unmatchingUnsigned" : "false","encodageMatching" : "false","impossibleAdding" : "false"," foreig
KeyCascade" : [|, "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType"
"DTT" ,"unmatchingValuesNumber" : "0","message" "o foreignKey " {"ReferencedTableName" "cr securit
question", "ReferencedColumn" : "question id", "ForeingKeyColumn" : "question id", "ForeingKeyTable" "
aisi form data tmpsave", "ConstraintName" : "fk Constraint caisi form data tmpsave cr securityquestion 1
"},"ReferenceCascade" : |] }.,{"advisedNewType" : "VARCHAR(255)","unmatchingUnsigned" : "false","encoda
eMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget" : "Referenc
dTable" ," fkAlreadyExist" : "false","transformationType" : "LMTT","unmatchingValuesNumber" : "2" "message
""" "foreignKey" : {"ReferencedTableName" : "cr securityquestion", "ReferencedColumn" : "question id",
"ForeingKeyColumn" : "question id", "ForeingKeyTable" : "intake node "ConstraintName" : "fk Constraint
intake node cr_securityquestion 18"} ," ReferenceCascade" : [| },{"advisedNewType" : "VARCHAR(255)","unm
tchingUnsigned"™ : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" :
[], "advisedTarget" : "ReferencedTable","fkAlreadyExist" : "false","transformationType" : "LMTT","unma
chingValuesNumber" : "0","message" "n wforeignKey" : {"ReferencedTableName" : "cr securityquestion", "
eferencedColumn" : "question id", "ForeingKeyColumn" : "question id", "ForeingKeyTable" : "intake node j
", "ConstraintName" : "fk Constraint intake node js cr_ securityquestion 19"} ," ReferenceCascade" : [| }
{"advisedNewType" : ”VARCﬁAR(37)”,"uEmatchi;gUnsiigneid”7: "false","encodageMatching" : "false","impossibl
Adding" : "false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "fa
se" ,"transformationType" : "DTT","unmatchingValuesNumber" : "0","message" " o"foreignKey" : {"Referenc
dTableName" : "cr_securityquestion", "ReferencedColumn" : "question_id", "ForeingKeyColumn" : "question
d", "ForeingKeyTable" : "survey test_data", "ConstraintName" : "fk Constraint_survey test_ data_cr_securi
yquestion_ 20"} ,"ReferenceCascade" : |] },{"advisedNewType" : "VARCHAR(64)","unmatchingUnsigned" : "fal
e","encodageMatching" : "false","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget"
"ForeignKeyTable"," fkAlreadyExist" : "false","transformationType" : "DTT","unmatchingValuesNumber" "
,"message" : "","foreignKey" : {"ReferencedTableName" : "cr_ user", "ReferencedColumn" : "user id", "For
ingKeyColumn" : "user id", "ForeingKeyTable" : "caisi form instance tmpsave", "ConstraintName" : "fk Con
traint caisi_ form instance tmpsave cr_ user 21"},"ReferenceCascade" : [] },{"advisedNewType" : "VARCHAR
64)”,"7ur\rxxafclxixxgﬁrxsigrxed"7: "false ","encodageMatching" : "false","impossibleAdding" : "false","foreignKe
Cascade" : [], "advisedTarget" : "ForeignKeyTable"," fkAlreadyExist" : "false","transformationType" "
TT" ,"unmatchingValuesNumber" : "O0","message" "","foreignKey" : {"ReferencedTableName" : "cr_user", "Re
erencedColumn" : "user_id", "ForeingKeyColumn" : "user_id", "ForeingKeyTable" : "caisi_form _instance", "
onstraintName" : "fk_ Constraint_caisi_form instance_cr_user_ 22"} ,"ReferenceCascade" : |] },{"advisedNe
Type" : "VARCHAR(64)" ," unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "f
lse","foreignKeyCascade" : | |, "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transfo
mationType" : "MBT","unmatchingValuesNumber" : "0","message" " vforeignKey" : {"ReferencedTableName"
"cr user", "ReferencedColumn" : "user id", "ForeingKeyColumn" "user id", "ForeingKeyTable" "er cert
, "ConstraintName" : "fk Constraint cr_cert cr_ user_ 23"},"ReferenceCascade" : |] }.{"advisedNewType"
"VARCHAR(64)”,”unmatchinEUnsigned” T "false ","encodageMatching" : "true","impossibleAdding" : "false","f
reignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationT
pe" : "MBT","unmatchingValuesNumber" : "0","message" " " foreignKey" : {"ReferencedTableName" : "cr us
r", "ReferencedColumn" : "user_id", "ForeingKeyColumn" : "user_id", "ForeingKeyTable" : "cr_policy", "Co
straintName" : "fk_ Constraint_cr_policy cr_user_ 24"} ,"ReferenceCascade" : |] },{"advisedNewType" : "VA
CHAR(128)" ,"unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false","fore
gnKeyCascade" : |], "advisedTarget" : "ReferencedTable","fkAlreadyExist" : "false","transformationType
"LMTT" ," unmatchingValuesNumber" : "0","message" "n o wforeignKey" : {"ReferencedTableName" : "cr user
, "ReferencedColumn" "user id", "ForeingKeyColumn" : "user id", "ForeingKeyTable" "cr securityquesti
n", "ConstraintName" : "fk Constraint cr_ securityquestion cr user 25"},"ReferenceCascade" : [] },{"adv
sedNewType" : "VARCHAR(64)" ," unmatchingUnsigned" : "false","encodageMatching" : "false","impossibleAddin
" : "false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","

"

"
s

"

"

0

ransformationType" : "DTT","unmatchingValuesNumber" : "O0","message"
Name" : "cr_user", "ReferencedColumn" : "user_id", "ForeingKeyColumn" : "user_id", "ForeingKeyTable"

urvey test instance", "ConstraintName" : ”fk_Constraint_survey_test_instance_cr_user_ZG”},”ReferenceCasc

"" "foreignKey" : {"ReferencedTabl

"

102

de" : [] },{"advisedNewType" : "INT(10) UNSIGNED","unmatchingUnsigned" : "false","encodageMatching"
true","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable"," fkAl
eadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message" "","foreign
ey" : {"ReferencedTableName" : "hl7_ message", "ReferencedColumn" : "message id", "ForeingKeyColumn" "m
ssage id", "ForeingKeyTable" : "hl7 msh", "ConstraintName" : "fk_ Constraint_ hl7_ msh_hl7 message 27"},"Re
erenceCascade" : [| },{"advisedNewType" : "INT(10) UNSIGNED","unmatchingUnsigned" : "false","encodageM
tching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarget" : "ForeignKeyT
ble","fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message"
","foreignKey" : {"ReferencedTableName" : "hl7 message", "ReferencedColumn" : "message id", "ForeingKeyC
lumn" : "message id", "ForeingKeyTable" : "hl7 pid", "ConstraintName" : "fk Constraint hl7 pid hl7 messa
e 28"} ,"ReferenceCascade" : |] },{"advisedNewType" : "INT(10) UNSIGNED","unmatchingUnsigned" : "false"
"encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget" : "
oreignKeyTable" ," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0O",6"
essage" : "" "foreignKey" : {"ReferencedTableName" : "hl7_pid", "ReferencedColumn" : "pid_id", "ForeingK
yColumn" : "pid_ id", "ForeingKeyTable" : "hl7 obr", "ConstraintName" : "fk Constraint hl7 obr hl7 pid_ 29
}.,"ReferenceCascade" : [] },{"advisedNewType" : "INT(10) UNSIGNED","unmatchingUnsigned" : "false","enc
dageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarget" : "Forei
nKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","messa
e" : "' vforeignKey" : {"ReferencedTableName" : "hl7_ pid", "ReferencedColumn" : "pid id", "ForeingKeyCol
mn" : "pid id", "ForeingKeyTable" : "hl7 orc", "ConstraintName" : "fk Constraint hl7 orc_ hl7 pid 30"},"R
ferenceCascade" : |] }.,{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching"
: "true","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable", " f
AlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message" : "" ,"fore
gnKey" : {"ReferencedTableName" : "mdsMSH", "ReferencedColumn" : "segmentID", "ForeingKeyColumn" : "segm
ntID", "ForeingKeyTable" : "mdsNTE", "ConstraintName" : "fk Constraint mdsNTE mdsMSH 31"} ," ReferenceCasc
de" : [] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","i
possibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable"," fkAlreadyExis
" "false","transformationType" : "MBT","unmatchingValuesNumber" "0","message" "o foreignKey" : {"
eferencedTableName" : "mdsMSH", "ReferencedColumn" : "segmentID", "ForeingKeyColumn" : "segmentID", "For
ingKeyTable" : "mdsOBR", "ConstraintName" : "fk Constraint mdsOBR_mdsMSH 32"} ," ReferenceCascade" : [|
,{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdd
ng" : "false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false"
"transformationType" : "MBT","unmatchingValuesNumber" : "O","message" : "" "foreignKey" : {"ReferencedTa
leName" : "mdsMSH", "ReferencedColumn" : "segmentID", "ForeingKeyColumn" "segmentID", "ForeingKeyTable
"mdsOBX", "ConstraintName" : "fk Constraint_mdsOBX_ mdsMSH_33"}," ReferenceCascade" : |] },{"advisedN
wType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching” : "true","impossibleAdding" : "fals
","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transforma
ionType" : "MBT","unmatchingValuesNumber" : "0","message" : "" "foreignKey" : {"ReferencedTableName" : "
dsMSH", "ReferencedColumn" : "segmentID", "ForeingKeyColumn" : "segmentID", "ForeingKeyTable" : "mdsPID"
"ConstraintName" : "fk_ Constraint _mdsPID mdsMSH 34"} ," ReferenceCascade" [1 }.,{"advisedNewType" : "I
T(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignkK
yCascade" : [], "advisedTarget" : "ForeignKeyTable"," fkAlreadyExist" : "false","transformationType" :
MBT" ,"unmatchingValuesNumber" : "0","message" : "" "foreignKey" : {"ReferencedTableName" : "mdsMSH", "Re
erencedColumn" : "segmentID", "ForeingKeyColumn" : "segmentID", "ForeingKeyTable" : "mdsPV1", "Constrain
Name" : "fk_Constraint_mdsPV1_mdsMSH_35"}," ReferenceCascade" : |] },{"advisedNewType" : "INT(10)","unm
tchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" :
], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT","unmat
hingValuesNumber" : "0","message" : "","foreignKey" : {"ReferencedTableName" : "mdsMSH", "ReferencedColu
n" : "segmentID", "ForeingKeyColumn" : "segmentID", "ForeingKeyTable" : "mdsZCL", "ConstraintName" : "fk
Constraint mdsZCL mdsMSH 36"} ,"ReferenceCascade" [] }.,{"advisedNewType" : "INT(10)","unmatchingUnsig
ed" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [|, "advi
edTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesN
mber" : "O0","message" """ "foreignKey" : {"ReferencedTableName" : "mdsMSH", "ReferencedColumn" : "segme
tID", "ForeingKeyColumn" : "segmentID", "ForeingKeyTable" : "mdsZCT", "ConstraintName" : "fk_Constraint_
dsZCT_mdsMSH_37"}," ReferenceCascade" : [] }.,{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "fals
","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" :
"ForeignKeyTable"," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "O0"
"message" "","foreignKey" : {"ReferencedTableName" : "mdsMSH", "ReferencedColumn" : "segmentID", "Fore
ngKeyColumn" : "segmentID", "ForeingKeyTable" : "mdsZFR", "ConstraintName" : "fk Constraint mdsZFR_mdsMS
38"} ,"ReferenceCascade" : |] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodage
atching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarget" : "ForeignKey
able"," fkAlreadyBExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0O", 6 "message" :
"M, "foreignKey" : {"ReferencedTableName" : "mdsMSH", "ReferencedColumn" : "segmentID", "ForeingKeyColumn
"segmentID", "ForeingKeyTable" : "mdsZLB", "ConstraintName" : "fk Constraint mdsZLB mdsMSH 39"}, " Refe
enceCascade" : [] }.,{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" :
true","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable"," fkAl
eadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message" "","foreign
ey" : {"ReferencedTableName" : "mdsMSH", "ReferencedColumn" : "segmentID", "ForeingKeyColumn" : "segment
D", "ForeingKeyTable" : "mdsZMC", "ConstraintName" : "fk Constraint_mdsZMC_mdsMSH_40"}," ReferenceCascade
B] }.,{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","impo
sibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarget" "ForeignKeyTable"," fkAlreadyExist "
"false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message" : "","foreignKey" : {"Ref
rencedTableName" : "mdsMSH", "ReferencedColumn" : "segmentID", "ForeingKeyColumn" : "segmentID", "Forein
KeyTable" : "mdsZMN", "ConstraintName" : "fk Constraint_ mdsZMN mdsMSH 41"} ," ReferenceCascade" : [1 ¥ .{
advisedNewType" : "INT(IO)","unrnatchingUnsigine(" . "false","encodageMatching" : "true","impossibleAdding
"false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable"," fkAlreadyExist" : "false","t
ansformationType" : "MBT","unmatchingValuesNumber" : "0","message" : "", "foreignKey" : {"ReferencedTable
ame" : "mdsMSH", "ReferencedColumn" : "segmentID", "ForeingKeyColumn" : "segmentID", "ForeingKeyTable"
"mdsZRG", "ConstraintName" : "fk_ Constraint_mdsZRG_mdsMSH_42"}," ReferenceCascade" : |] },{"advisedNewT
pe" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching” : "true","impossibleAdding" : "false",
foreignKeyCascade" : | |, "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformatio
Type" : "MBT","unmatchingValuesNumber" : "0","message" : "" "foreignKey" {"ReferencedTableName" : "pro
essionalSpecialists ",
consultationRequests "ConstraintName" : "fk Constraint consultationRequests professionalSpecialists 43
},"ReferenceCascade" : |] }.{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatc
ing" : "true","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTabl
","fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message" "y
foreignKey" : {"ReferencedTableName" : "professionalSpecialists", "ReferencedColumn" : "specld", "Forein
KeyColumn" : "specld", "ForeingKeyTable" : "serviceSpecialists", "ConstraintName" : "fk_ Constraint_servi
eSpecialists _professionalSpecialists_44"}," ReferenceCascade" : |] }.{"advisedNewType" : "BIGINT(20)","
nmatchingUnsigned" : "false","encodageMatching” : "true","impossibleAdding" : "false","foreignKeyCascade
: |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "NTT","un
atchingValuesNumber" : "0","message" : "","foreignKey" : {"ReferencedTableName" : "program team", "Refer
ncedColumn" : "team id", "ForeingKeyColumn" : "team id", "ForeingKeyTable" : "admission", "ConstraintNam
" : "fk_ Constraint admission program team 45"} ," ReferenceCascade" : [] },{"advisedNewType" : "BIGINT(2
","unmatchingUnsigned" : "true'","enc "

"ReferencedColumn" : "specld", "ForeingKeyColumn" : "specld", "ForeingKeyTable"

"
s

encodageMatching" : "true","impossibleAdding" : "false"," foreignKeyCas
ade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "NTT"
"unmatchingValuesNumber" : "0","message" : "Differents signed/unsigned values between the foreign key co
umn and the reference column","foreignKey" : {"ReferencedTableName" : "program_team", "ReferencedColumn"

103

"team _id", "ForeingKeyColumn" : "team_id", "ForeingKeyTable" : "bed", "ConstraintName" : "fk_ Constrain
_bed_program_team_46"}," ReferenceCascade" : |] },{"advisedNewType" : "BIGINT(20)","unmatchingUnsigned"
"false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedT
rget" : "ForeignKeyTable"," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumbe
" ¢ "O0","message" "","foreignKey" : {"ReferencedTableName" : "program_team", "ReferencedColumn" : "tea
id", "ForeingKeyColumn" : "team id", "ForeingKeyTable" : "program provider", "ConstraintName" : "fk Con
traint program provider program team 47"} ," ReferenceCascade" : [| },{"advisedNewType" : "VARCHAR(6)","
nmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade
:], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT","un
atchingValuesNumber" : "0","message" " ovforeignKey" : {"ReferencedTableName" : "provider", "Reference
Column" : "provider mno", "ForeingKeyColumn" : "provider mno", "ForeingKeyTable" : "form", "ConstraintName

”fk_Constraint_fgrm_provider_48”},“ReferenceCascade"7: [{"ReferencedTableName" : "provider", "Refere
cedColumn" : "provider no", "ForeingKeyColumn" : "linkProviderNo", "ForeingKeyTable" "ClientLink", "Co
straintName" : "ClientLink ibfk_ 3"}, {"ReferencedTableName" : "provider", "ReferencedColumn" : "provider
no", "ForeingKeyColumn" : "unlinkProviderNo", "ForeingKeyTable" : "ClientLink", "ConstraintName" : "Clie
tLink ibfk 4"}, {"ReferencedTableName" : "provider", "ReferencedColumn" : "provider no", "ForeingKeyColu
n" TproviderNo", "ForeingKeyTable" : "DigitalSignature", "ConstraintName" : "DigitalSignature ibfk 2"}
{"ReferencedTableName" : "provider", "ReferencedColumn" : "provider no", "ForeingKeyColumn" “"validato
ProviderNo", "ForeingKeyTable" : "HnrDataValidation", "ConstraintName" : "HnrDataValidation ibfk 3"}, {"
eferencedTableName" : "provider", " u 1 ",

"ReferencedColumn" : "provider no", "ForeingKeyColumn" : "providerNo
"ForeingKeyTable" : "IntegratorConsent", "ConstraintName" : "IntegratorConsent ibfk 3"}, {"ReferencedTab
eName" : "provider", "ReferencedColumn" : "provider_no", "ForeingKeyColumn" :Tproviider_no”, "ForeingKey
able" : "program _client_ restriction", "ConstraintName" : "FK_pcr_provider"} | },{"advisedNewType" : "VAR
HAR(6)" ,"unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false"," foreign
eyCascade" : |], "advisedTarget" : "ForeignKeyTable"," fkAlreadyExist" : "false","transformationType"

"MBT" ," unmatchingValuesNumber" : "0","message" "","foreignKey" : {"ReferencedTableName" : "providerbil
center", "ReferencedColumn" : "provider no", "ForeingKeyColumn" : "provider no", "ForeingKeyTable" : "bi
ling", "ConstraintName" : "fk Constraint billing providerbillcenter 49"} ," ReferenceCascade" : |] }.{"a
visedNewType" : "VARCHAR(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAddi
g" : "false","foreignKeyCascade" : [|, "advisedTarget" : "ReferencedTable","fkAlrecadyExist" : "false",
transformationType" : "LMTT","unmatchingValuesNumber" : "0", 6 "message" "

leName" : "providerbillcenter", "ReferencedColumn" : "provider no", "ForeingKeyColumn" : "provider no",
ForeingKeyTable" : "billinginr", "ConstraintName" : ”fk_Const?aint_billiuginr_providerbillcenter_56"},"R
ferenceCascade" : [] },{"advisedNewType" : "VARCHAR(6)" ,"unmatchingUnsigned" : "false","encodageMatchi
g" "true","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable"
"fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message" : "" "f

reignKey" : {"ReferencedTableName" : "providerbillcenter", "ReferencedColumn" : "provider_no", "ForeingK

yColumn" : "provider no", "ForeingKeyTable" : "billingnote", "ConstraintName" : "fk Constraint billingno
e providerbillcenter 51"} ,"ReferenceCascade" : [| },{"advisedNewType" : "VARCHAR(6)","unmatchingUnsign
d™ : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [|, "advis
dTarget" : "ForeignKeyTable"," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNu
ber" : "O0","message" """ "foreignKey" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColum
" : "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" "allergies ", "ConstraintName"
"fk _Constraint_allergies_ProviderPreference_ 52"} ," ReferenceCascade" : [] },{"advisedNewType" : "VARCHA
(6)" ,"unmatchingUnsigned" : "true","encodageMatching" : "false","impossibleAdding" : "false","foreignKey
ascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "D
T","unmatchingValuesNumber" : "0","message" : "Differents signed/unsigned values between the foreign key
column and the reference column","foreignKey" : {"ReferencedTableName" : "ProviderPreference", "Referenc
dColumn" : "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "billing preferences", "
onstraintName" : "fk Constraint billing preferences ProviderPreference 53"} ," ReferenceCascade" : [| },
"advisedNewType" : "VARCHAR(6)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAd
ing" : "false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false
,"transformationType" : "MBT","unmatchingValuesNumber" : "0","message" : "" "foreignKey" : {"ReferencedT
bleName" : "ProviderPreference", "ReferencedColumn" "providerNo", "ForeingKeyColumn" : "providerNo", "
oreingKeyTable" : "CdsClientForm", "ConstraintName" : "fk_ Constraint_CdsClientForm _ProviderPreference_54
},"ReferenceCascade" : |] },{"advisedNewType" : "VARCHAR(6)","unmatchingUnsigned" : "false","encodageM
tching" : "true","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyT
ble","fkAlreadyExist" : "false","transformationType" : "MVMTI","unmatchingValuesNumber" : "5","message"
"","foreignKey" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColumn" : "providerNo", "For
ingKeyColumn" : "providerNo", "ForeingKeyTable" : "config Immunization", "ConstraintName" : "fk Constrai
t config Immunization ProviderPreference 55"} ," ReferenceCascade" : [| },{"advisedNewType" : "VARCHAR(6
""unmatchingUnsigned™ : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCas
ade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT"
"unmatchingValuesNumber" : "O0","message" : "" "foreignKey" : {"ReferencedTableName" : "ProviderPreferenc
", "ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "consultati
nRequests", "ConstraintName" : "fk_Constraint_consultationRequests_ ProviderPreference_ 56"} ," ReferenceCas
ade" : |] },{"advisedNewType" : "TEXT","unmatchingUnsigned" : "false","encodageMatching" : "true","imp
ssibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ReferencedTable","fkAlreadyExist"
"false","transformationType" : "ANTT","unmatchingValuesNumber" : "O","message" """ foreignKey" : {"R
ferencedTableName" : "ProviderPreference", "ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "prov
derNo", "ForeingKeyTable" : "demographicQueryFavourites", "ConstraintName" : "fk Constraint demographicQ
eryFavourites ProviderPreference 57"}," ReferenceCascade" : [| },{"advisedNewType" : "VARCHAR(6)","unma
chingUnsigned” : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" :
{"ReferencedTableName" : "provider", "ReferencedColumn" : "provider no" "ForeingKeyColumn" : "provider
o", "ForeingKeyTable" : "DigitalSignature", "ConstraintName" : "DigitalSignature ibfk 2"}, {"ReferencedT
bleName" : "provider", "ReferencedColumn" : "provider_no", "ForeingKeyColumn" : "linkProviderNo", "Forei
gKeyTable" : "ClientLink", "ConstraintName" : “ClientLink_ibfk_S"}, {"ReferencedTableName" : "provider",
"ReferencedColumn" : "provider_no", "ForeingKeyColumn" : "unlinkProviderNo", "ForeingKeyTable" : "Client
ink", "ConstraintName" : "ClientLink ibfk 4"}, {"ReferencedTableName" : "provider", "ReferencedColumn"
"provider no", "ForeingKeyColumn" TvalidatorProviderNo", "ForeingKeyTable" : "HnrDataValidation", "Con
traintName" : "HnrDataValidation ibfk 3"}, {"ReferencedTableName" : "provider", "ReferencedColumn" : "pr
vider no", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "IntegratorConsent", "ConstraintName"
"IntegratorConsent ibfk 3"}, {"ReferencedTableName" : "provider", "ReferencedColumn" : "provider no", "
oreingKeyColumn" : "provider no", "ForeingKeyTable" : "program client restriction", "ConstraintName"
K pcr_provider"}], "advisedTarget" : "ForeignKeyTable"," fkAlreadyExist" : "false","transformationType"
"MBT'","unmatchingValuesNumber" : "0"," message" "' "foreignKey" {"ReferencedTableName" : "ProviderPr
ference", "ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "Dig
talSignature", "ConstraintName" : "fk_ Constraint_DigitalSignature_ ProviderPreference_ 58"} ," ReferenceCasc
de" : |] },{"advisedNewType" : "VARCHAR(6)","unmatchingUnsigned" : "false","encodageMatching" : "true"
"impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyE
ist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0O" "o "M MforeignKey "
{"ReferencedTableName" : "ProviderPreference", "ReferencedColumn" : "providerNo", "ForeingKeyColumn"
roviderNo", "ForeingKeyTable" : "drugReason", "ConstraintName" : "fk Constraint drugReason ProviderPrefe
ence 59"} ,"ReferenceCascade" : [] },{"advisedNewType" : "VARCHAR(6)"," unmatchingUnsigned"” : "false","e
codageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "For
ignKeyTable" ," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0", 6 "mes
age" """ "foreignKey" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColumn" : "providerNo
, "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "eChart", "ConstraintName" : "fk_Constraint_eCh

rt _ProviderPreference_ 60"} ,"ReferenceCascade" : |] },{"advisedNewType" : "VARCHAR(20)","unmatchingUnsi

,"foreignKey" : {"ReferencedTa

"

"

104

non non

ned" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : |], "adv
sedTarget" : "ReferencedTable"," fkAlreadyExist" : "false","transformationType" : "LMTT","unmatchingValue
Number" : "0","message" "","foreignKey" : {"ReferencedTableName" : "ProviderPreference", "ReferencedCo
umn" : "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "EyeformConsultationReport",
"ConstraintName" : "fk_Constraint_EyeformConsultationReport_ProviderPreference_ 61"} ," ReferenceCascade"
[] }.{"advisedNewType" : "VARCHAR(20)","unmatchingUnsigned" : "false","encodageMatching" : "true","imp
ssibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarget" : "ReferencedTable","fkAlreadyExist"
"false","transformationType" : "LMTT","unmatchingValuesNumber" : "0","message" : "", "foreignKey" : {"R
ferencedTableName" : "ProviderPreference", "ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "prov
derNo", "ForeingKeyTable" : "HRMDocumentComment", "ConstraintName" : "fk Constraint HRMDocumentComment P
oviderPreference 62"} ," ReferenceCascade" : [] },{"advisedNewType" : "VARCHAR(20)","unmatchingUnsigned"
"false","encodageMatching”" : "true","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedT
rget" : "ReferencedTable","fkAlreadyExist" : "false","transformationType" : "LMTT","unmatchingValuesNumb
r" : "O0","message" "","foreignKey" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColumn"
: "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "HRMDocumentToProvider", "Constra
ntName" : "fk_ Constraint _ HRMDocumentToProvider ProviderPreference_ 63"} ," ReferenceCascade" : |] },{"adv
sedNewType" : "VARCHAR(6)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding"
"false","foreignKeyCascade" : [{"ReferencedTableName" : "provider", "ReferencedColumn" : "provider no
, "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "IntegratorConsent", "ConstraintName" : "Integr
torConsent ibfk 3"}, {"ReferencedTableName" : "provider", "ReferencedColumn" : "provider no", "ForeingKe
Column" : "linkProviderNo", "ForeingKeyTable" : "ClientLink", "ConstraintName" : "ClientLink ibfk 3"}, {
ReferencedTableName" : "provider", "ReferencedColumn" : "provider_no", "ForeingKeyColumn" TunlinkProvi
erNo", "ForeingKeyTable" : "ClientLink", "ConstraintName" : ”ClientLink_ibfk_4”}, {"ReferencedTableName"
"provider", "ReferencedColumn" : "provider no", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable"
"DigitalSignature", "ConstraintName" : "DigitalSignature ibfk_ 2"}, {"ReferencedTableName" : "provider",
ReferencedColumn" : "provider no", "ForeingKeyColumn" : "validatorProviderNo", "ForeingKeyTable" : "HnrD
taValidation", "ConstraintName" : "HnrDataValidation ibfk 3"}, {"ReferencedTableName" : "provider", "Ref
rencedColumn" : "provider no", "ForeingKeyColumn" : "provider no", "ForeingKeyTable" : "program client r
striction", "ConstraintName" : "FK pcr_ provider"} |, "advisedTarget" : "ForeignKeyTable","fkAlrcadyExist
" "transformationType" : "MBT","unmatchingValuesNumber" : "0","message" "rovforeignKey" : {"R
ferencedTableName" : "ProviderPreference", "ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "prov
derNo", "ForeingKeyTable" : "IntegratorConsent", "ConstraintName" : "fk Constraint IntegratorConsent Pro
iderPreference 64"} ," ReferenceCascade" : |] }.,{"advisedNewType" : "VARCHAR(6)"," unmatchingUnsigned"
false" ,"encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarg
t" : "ForeignKeyTable"," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber"
"0","message" "","foreignKey" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColumn" : "
roviderNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "measurements", "ConstraintName" : "f
Constraint _measurements ProviderPreference 65"} ," ReferenceCascade" : [| },{"advisedNewType" : "VARCHA
(6)","unmatchingUnsigned" : "false","encodageMatching” : "true","impossibleAdding" : "false","foreignKey
ascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "M
T","unmatchingValuesNumber" : "0","message" "t tforeignKey" : {"ReferencedTableName" : "ProviderPrefer
nce", "ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "measure
entsDeleted", "ConstraintName" : "fk Constraint measurementsDeleted ProviderPreference 66"} ," ReferenceCa
cade" : |] },{"advisedNewType" : "VARCHAR(20)" ,"unmatchingUnsigned" : "false","encodageMatching" : "tr
e","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget" : "ReferencedTable"," fkAlrea
yExist" : "false","transformationType" : "LMTT","unmatchingValuesNumber" : "O0","message" : "","foreignKe
" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColumn" : "providerNo", "ForeingKeyColumn"
"providerNo", "ForeingKeyTable" : "MyGroupAccessRestriction", "ConstraintName" : "fk Constraint_MyGrou
AccessRestriction ProviderPreference 67"} ," ReferenceCascade" : [| },{"advisedNewType" : "VARCHAR(6)","
nmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade
:], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT","un
atchingValuesNumber" : "0","message" : "","foreignKey" : {"ReferencedTableName" : "ProviderPreference",
ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "OcanStaffForm"
"ConstraintName" : "fk_Constraint_OcanStaffForm_ProviderPreference_ 68"} ," ReferenceCascade" : [] }.{"a
visedNewType" : "VARCHAR(40)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAddi
g" : "false","foreignKeyCascade" : [], "advisedTarget" : "ReferencedTable","fkAlreadyExist" : "false",
transformationType" : "LMTT","unmatchingValuesNumber" : "O0","message" ,"foreignKey" : {"ReferencedTa
leName" : "ProviderPreference", "ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "providerNo", "F
reingKeyTable" : "oncall questionnaire", "ConstraintName" : "fk Constraint oncall questionnaire Provider
reference 69"} ,"ReferenceCascade" : |] },{"advisedNewType" : "VARCHAR(10)","unmatchingUnsigned" : "fal
e","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : | |, "advisedTarget"
"ReferencedTable" ," fkAlreadyExist" : "false","transformationType" : "LMTT","unmatchingValuesNumber" : "
","message" "","foreignKey" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColumn" : "pro
iderNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "PageMonitor", "ConstraintName" : "fk Co
straint _PageMonitor _ProviderPreference_70"}," ReferenceCascade" : |] },{"advisedNewType" : "VARCHAR(10)
,"unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCasc
de" : |], "advisedTarget" : "ReferencedTable","fkAlreadyExist" : "false","transformationType" : "LMTT"
"unmatchingValuesNumber" : "0","message" "","foreignKey" : {"ReferencedTableName" : "ProviderPreferenc
", "ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "PrintResou
ceLog", "ConstraintName" : "fk Constraint PrintResourceLog ProviderPreference 71"} ,"ReferenceCascade" :
] }.{"impossibleAdding" : "true","message" : "Impossible to find the Reference table and/or column. It
can be not exist","foreignKey" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColumn" : "pr
viderNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "ProvPrefApptmentScreenEForm", "Constra
ntName" : "fk Constraint ProvPrefApptmentScreenEForm ProviderPreference 72"}},{"impossibleAdding" : "tru
", "message" : "Impossible to find the Reference tableiand/or column. It can be not exist","foreignKey"
{"ReferencedTableName" : "ProviderPreference", "ReferencedColumn" : "providerNo", "ForeingKeyColumn"
roviderNo", "ForeingKeyTable" : "ProvPrefApptmentScreenForm", "ConstraintName" : "fk_Constraint_ProvPref
pptmentScreenForm _ProviderPreference 73"}},{"impossibleAdding" : "true","message" : "Impossible to find
he Reference table and/or column. It can be not exist","foreignKey" : {"ReferencedTableName" : "Provider
reference", "ReferencedColumn" : "providerNo" "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "P
ovPrefApptmentScreenQuickLink", "ConstraintName" : "fk Constraint ProvPrefApptmentScreenQuickLink Provid
rPreference 74"}},{"advisedNewType" : "VARCHAR(20)","unmatchingUnsigned" : "false","encodageMatching" :
true","impossibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarget" : "ReferencedTable","fkA
ecadyExist" : "false","transformationType" : "LMTT","unmatchingValuesNumber" : "0","message" : "" "foreig
Key" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColumn" : "providerNo", "ForeingKeyColu
n" : "providerNo", "ForeingKeyTable" : "quickListUser", "ConstraintName" : "fk Constraint quickListUser
roviderPreference 75"} ," ReferenceCascade" : |] },{"advisedNewType" : "VARCHAR(255)","unmatchingUnsigne
" "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : |], "advise
Target" : "ReferencedTable","fkAlreadyExist" : "false","transformationType" : "LMTT","unmatchingValuesNu
ber" : "0","message" "","foreignKey" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColum
" . "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "RemoteDataLog", "ConstraintNam
" . "fk Constraint RemoteDataLog ProviderPreference 76"} ," ReferenceCascade" : | | },{"advisedNewType" :
"VARCHAR(6)" ," unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false"," fo
ecignKeyCascade" : [|, "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationTy
e" : "MBT","unmatchingValuesNumber" : "0","message" "n o wforeignKey" : {"ReferencedTableName" : "Provid
rPreference" "ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable"
reportByExamples", "ConstraintName" : "fk_ Constraint_reportByExamples_ProviderPreference_ 77"} ," Reference
ascade" : [] },{"advisedNewType" : "VARCHAR(6)","unmatchingUnsigned" : "false","encodageMatching" : "t
ue","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable"," fkAlre

"false

"o

"

105

" o

dyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "O0","message" ," foreignKe
" : {"ReferencedTableName" : "ProviderPreference", "ReferencedColumn" : "providerNo", "ForeingKeyColumn"
"providerNo", "ForeingKeyTable" "reportByExamplesFavorite", "ConstraintName" : "fk Constraint_report
yExamplesFavorite ProviderPreference_ 78"} ,"ReferenceCascade" : |] },{"advisedNewType" : "VARCHAR(10)",
unmatchingUnsigned" : "false","encodageMatching” : "true","impossibleAdding" : "false","foreignKeyCascad
" . [], "advisedTarget" : "ReferencedTable","fkAlreadyExist" : "false","transformationType" : "LMTT","
nmatchingValuesNumber" : "0","message" : "","foreignKey" : {"ReferencedTableName" : "ProviderPreference"
"ReferencedColumn" : "providerNo", "ForeingKeyColumn" : "providerNo", "ForeingKeyTable" : "SecurityToke
", "ConstraintName" : "fk Constraint SecurityToken ProviderPreference 79"} ," ReferenceCascade" : [1 ¥ .{
advisedNewType" : "INT(10)7","unmatchiingUnsigned" : "false","encodageMatching" : "false","impossibleAddin
" "false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false",6"
ransformationType" : "DTT","unmatchingValuesNumber" : "0","message" : "", "foreignKey" : {"ReferencedTabl
Name" : "rehabStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyColumn" : "studyID", "ForeingKeyTab
e" : "form2MinWalk", "ConstraintName" : "fk Constraint_form2MinWalk rehabStudy2004_ 80"} ,"ReferenceCascad
" [] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "false","im
ossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist
"false","transformationType" : "DTT","unmatchingValuesNumber" : "0","message" "ot foreignKey" : {"R
ferencedTableName" : "rehabStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyColumn" : "studyID", "
oreingKeyTable" : "formCaregiver", "ConstraintName" : "fk Constraint formCaregiver rehabStudy2004 81"} ,"
eferenceCascade" : |] }.{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching
"false","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable"
fkAlreadyExist" : "false","transformationType" : "DTT","unmatchingValuesNumber" : "0","message" : "","fo
eignKey" : {"ReferencedTableName" : "rehabStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyColumn"
"studyID", "ForeingKeyTable" : "formCESD", "ConstraintName" : "fk Constraint_formCESD _rehabStudy2004_8
"},"ReferenceCascade" : |] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMat
hing" : "false","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTa
le","fkAlreadyExist" : "false","transformationType" : "DTT","unmatchingValuesNumber" : "0","message" : "
,"foreignKey" : {"ReferencedTableName" : "rehabStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyCo
umn" : "studyID", "ForeingKeyTable" : "formCostQuestionnaire", "ConstraintName" : "fk Constraint formCos
Questionnaire rehabStudy2004 83"} ,"ReferenceCascade" : [] },{"advisedNewType" : "INT(10)","unmatchingU
signed" : "false","encodageMatching" : "false","impossibleAdding" : "false","foreignKeyCascade" : |[1,
advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "DTT","unmatchingVa
uesNumber" : "0","message" : "", "foreignKey" : {"ReferencedTableName" : "rehabStudy2004", "ReferencedCol
mn" : "studyID", "ForeingKeyColumn" : "studyID", "ForeingKeyTable" : "formFalls", "ConstraintName" : "fk
Constraint _formFalls_rehabStudy2004 84"} ,"ReferenceCascade" : |] },{"advisedNewType" : "INT(10)","unma
chingUnsigned" : "false","encodageMatching" : "false","impossibleAdding" : "false","foreignKeyCascade"
], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "DTT","unmat
hingValuesNumber" : "0","message" : "","foreignKey" : {"ReferencedTableName" : "rehabStudy2004", "Refere
cedColumn" : "studyID", "ForeingKeyColumn" : "studyID", "ForeingKeyTable" : "formGripStrength", "Constra
ntName" : "fk Constraint formGripStrength rehabStudy2004 85"} ," ReferenceCascade" : [| },{"advisedNewTy
e" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "false","impossibleAdding" : "false",
foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformatio
Type" : "DTT","unmatchingValuesNumber" : "0","message" : "" "foreignKey" : {"ReferencedTableName" "reh
bStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyColumn" : "studyID", "ForeingKeyTable" : "formHo
eFalls", "ConstraintName" : "fk_Constraint_ formHomeFalls_ rehabStudy2004_ 86"} ," ReferenceCascade" : |] 3}
{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "false","impossibleAdd
ng" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false"
"transformationType" : "DTT","unmatchingValuesNumber" : "0","message" : "" "foreignKey" : {"ReferencedTa
leName" : "rehabStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyColumn" : "studyID", "ForeingKeyT
ble" : "formInternetAccess", "ConstraintName" : "fk Constraint formInternetAccess rehabStudy2004 87"} ,"R
ferenceCascade" : [| },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching"
: "false","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable", K"
kAlreadyExist" : "false","transformationType" : "DTT","unmatchingValuesNumber" : "0","message" "no"for
ignKey" : {"ReferencedTableName" : "rehabStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyColumn"
"studyID", "ForeingKeyTable" : "formLateLifeFDIFunction", "ConstraintName" : "fk_ Constraint_formLateLif
FDIFunction rehabStudy2004 88"} ," ReferenceCascade" : |] },{"advisedNewType" : "INT(10)","unmatchingUns
gned" : "false","encodageMatching" : "false","impossibleAdding" : "false","foreignKeyCascade" : | 1, "a
visedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "DTT","unmatchingValu
sNumber" : "0","message" : "","foreignKey" : {"ReferencedTableName" : "rehabStudy2004", "ReferencedColum
" . "studyID", "ForeingKeyColumn" : "studyID", "ForeingKeyTable" : "formSatisfactionScale", "ConstraintN
me" : "fk Constraint formSatisfactionScale rehabStudy2004 89"} ,"ReferenceCascade" : [| },{"advisedNewT
pe" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "false","impossibleAdding" : "false"
"foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformati
nType" : "DTT","unmatchingValuesNumber" : "0","message" : "" "foreignKey" : {"ReferencedTableName" "re
abStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyColumn" : "studyID", "ForeingKeyTable" : "formS
1fAdministered", "ConstraintName" : "fk_Constraint_formSelfAdministered rehabStudy2004_90"}," ReferenceCa
cade" : |] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "false"
"impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyE
ist" : "false","transformationType" : "DTT","unmatchingValuesNumber" : "0","message" """ foreignKey" :
{"ReferencedTableName" : "rehabStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyColumn" : "studyID
, "ForeingKeyTable" : "formSelfEfficacy", "ConstraintName" : "fk Constraint formSelfEfficacy rehabStudy?2
04 91"} ,"ReferenceCascade" : [] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encoda
eMatching" : "false","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget" : "Foreign
eyTable"," fkAlreadyExist" : "false","transformationType" : "DTT","unmatchingValuesNumber" : "O0","message
: """ "foreignKey" : {"ReferencedTableName" : "rehabStudy2004", "ReferencedColumn" : "studyID", "Foreing
eyColumn" : "studyID", "ForeingKeyTable" : "formSelfManagement", "ConstraintName" : "fk_Constraint_formS$S
IfManagement rehabStudy2004_92"}," ReferenceCascade" : [] },{"advisedNewType" : "INT(10)","unmatchingUn
igned" : "false","encodageMatching" : "false","impossibleAdding" : "false","foreignKeyCascade" : | 1, "
dvisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "DTT","unmatchingVal
esNumber" : "0","message" : "", "foreignKey" : {"ReferencedTableName" : "rehabStudy2004", "ReferencedColu
n" : "studyID", "ForeingKeyColumn" : "studyID", "ForeingKeyTable" : "formSF36", "ConstraintName" : "fk C
nstraint formSF36 rehabStudy2004 93"} ," ReferenceCascade" : [| },{"advisedNewType" : "INT(10)","unmatch
ngUnsigned" : "false","encodageMatching" : "false","impossibleAdding" : "false","foreignKeyCascade" :
], "advisedTarget" : "ForeignKeyTable"," fkAlreadyExist" : "false","transformationType" : "DTT","unmatchi
gValuesNumber" : "0","message" : "" "foreignKey" : {"ReferencedTableName" : "rehabStudy2004", "Reference
Column" : "studyID", "ForeingKeyColumn" : "studyID", "ForeingKeyTable" : "formTreatmentPref", "Constrain
Name" : "fk Constraint_formTreatmentPref rehabStudy2004_94"}," ReferenceCascade" : |] },{"impossibleAdd
ng" : "true","message" : "Impossible to find the Reference table and/or column. It can be not exist","fo
eignKey" : {"ReferencedTableName" : "rehabStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyColumn"
"studyID", "ForeingKeyTable" : "IntakeInfo", "ConstraintName" : "fk_ Constraint_ IntakeIlnfo_ rehabStudy20
4 95"}},{"impossibleAdding" : "true","message" : "Impossible to find the Reference table and/or column.
t can be not exist","foreignKey" : {"ReferencedTableName" : "rehabStudy2004", "ReferencedColumn" : "stud
ID", "ForeingKeyColumn" : "studyID", "ForeingKeyTable" : "LateLifeFDIDisability", "ConstraintName" : "fk
Constraint LateLifeFDIDisability rehabStudy2004 96"}},{"impossibleAdding" : "true","message" : "Impossib
e to find the Reference table and/or column. It can be not exist","foreignKey" : {"ReferencedTableName"
"rehabStudy2004", "ReferencedColumn" : "studyID", "ForeingKeyColumn" : "studyID", "ForeingKeyTable" : "
F36Caregiver", "ConstraintName" : "fk_ Constraint_SF36Caregiver_ rehabStudy2004_97"}},{"advisedNewType"
INT(10)" ,"unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false"," foreig
KeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType"

106

"MVMT" ,"unmatchingValuesNumber" : "80","message" ,"foreignKey" : {"ReferencedTableName" : "report_ f
Iter ", "ReferencedColumn" : "fieldno", "ForeingKeyColumn" : "fieldno", "ForeingKeyTable" : "report_qgvie
field", "ConstraintName" : "fk Constraint_ report_qgviewfield report_ filter 98"} ," ReferenceCascade" :
}.,{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleA
ding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "fals
" "transformationType" : "MBT","unmatchingValuesNumber" : "0","message" "n wforeignKey" : {"Referenced
ableName" "report filter", "ReferencedColumn" : "fieldno", "ForeingKeyColumn" : "fieldno", "ForeingKey
able" : "report template criteria", "ConstraintName" : "fk Constraint report template criteria report fi
ter 99"} ,"ReferenceCascade" : |] }.,{"advisedNewType" : "DATE","unmatchingUnsigned" : "false","encodage
atching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget" "ForeignKey
able"," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "O0","message"
" "foreignKey" : {"ReferencedTableName" : "scheduleholiday", "ReferencedColumn" : "sdate", "ForeingKeyC
lumn" : "sdate", "ForeingKeyTable" : "rschedule", "ConstraintName" : "fk_ Constraint_rschedule_scheduleho
iday 100"} ,"ReferenceCascade" : |] },{"advisedNewType" : "DATE","unmatchingUnsigned" : "false","encoda
eMatching” : "true","impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignK
yTable"," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message"
"w wforeignKey" : {"ReferencedTableName" : "scheduleholiday", "ReferencedColumn" : "sdate", "ForeingKe
Column" : "sdate", "ForeingKeyTable" : "scheduledate", "ConstraintName" : "fk Constraint scheduledate sc
eduleholiday 101"} ,"ReferenceCascade" : [| },{"advisedNewType" : "VARCHAR(100)","unmatchingUnsigned"
"false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTar
et" : "ForeignKeyTable"," fkAlreadyExist" : "false","transformationType" : "MVMI","unmatchingValuesNumber
"171" ,"message" : "","foreignKey" : {"ReferencedTableName" : "secObjectName", "ReferencedColumn" "o
jectName", "ForeingKeyColumn" : "objectName", "ForeingKeyTable" : "secObjPrivilege", "ConstraintName" :
fk _Constraint_secObjPrivilege secObjectName 102"} ," ReferenceCascade" : |] },{"advisedNewType" : "VARCH
R(100)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false"," foreign
eyCascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType"
"LMTT" ,"unmatchingValuesNumber" : "0","message" : "","foreignKey" : {"ReferencedTableName" : "secObjectN
me", "ReferencedColumn" : "objectName", "ForeingKeyColumn" : "objectName", "ForeingKeyTable" : "SentToPH
Tracking", "ConstraintName" : "fk Constraint SentToPHRTracking secObjectName 103"} ," ReferenceCascade" :
] }.{"advisedNewType" : "INT(10) UNSIGNED","unmatchingUnsigned" : "true","encodageMatching" : "true","
mpossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ReferencedTable"," fkAlreadyExi
t" : "false","transformationType" : "LMTT","unmatchingValuesNumber" : "0","message" : "Differents signed
unsigned values between the foreign key column and the reference column","foreignKey" : {"ReferencedTabl
Name" : "teleplanS21", "ReferencedColumn" : "s21_id", "ForeingKeyColumn" : "s21_id", "ForeingKeyTable"
"teleplanC12", "ConstraintName" : "fk_ Constraint_ teleplanC12_ teleplanS21_ 104"} ," ReferenceCascade" : |
}.,{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAd
ing" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false
,"transformationType" : "MBT","unmatchingValuesNumber" : "0","message" "mo"foreignKey" : {"ReferencedT
bleName" : "teleplanS21", "ReferencedColumn" : "s21 id", "ForeingKeyColumn" : "s21 id", "ForeingKeyTable
"teleplanS00", "ConstraintName" : "fk Constraint teleplanS00 teleplanS21 105"} ," ReferenceCascade"
] }.{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibl
Adding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "fa
se" ,"transformationType" : "MBT","unmatchingValuesNumber" : "0","message" : "" "foreignKey" : {"Referenc
dTableName" : "teleplanS21", "ReferencedColumn" : "s21_id", "ForeingKeyColumn" : "s21_ id", "ForeingKeyTa
le" : "teleplanS22", "ConstraintName" : "fk_Constraint_ teleplanS22_ teleplanS21_106"}," ReferenceCascade"
[] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","imposs
bleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist"
false" ,"transformationType" : "MBT","unmatchingValuesNumber" : "0","message" : "" "foreignKey" : {"Refer
ncedTableName" : "teleplanS21", "ReferencedColumn" : "s21 id", "ForeingKeyColumn" : "s21 id", "ForeingKe
Table" : "teleplanS23", "ConstraintName" : "fk Constraint teleplanS23 teleplanS21 107"} ," ReferenceCascad
" . [] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "true","imp
ssibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist"
: "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message" """ "foreignKey" : {"Re
erencedTableName" : "teleplanS21", "ReferencedColumn" : "s21_id", "ForeingKeyColumn' "s21_id", "Forein
KeyTable" : "teleplanS25", "ConstraintName" : "fk Constraint_teleplanS25_ teleplanS21_108"}," ReferenceCas
ade" : |] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" : "false",
impossibleAdding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable"," fkAlreadyEx
st" : "false","transformationType" : "DTT","unmatchingValuesNumber" : "0","message" """ foreignKey"
"ReferencedTableName" : "config Immunization", "ReferencedColumn" : "setId", "ForeingKeyColumn" : "setID
, "ForeingKeyTable" : "mdsZCL", "ConstraintName" : "fk Constraint mdsZCL config Immunization 109"} ," Refe
enceCascade" : [| },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatching" :
false","impossibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarget" : "ForeignKeyTable","fkA
readyExist" : "false","transformationType" : "DTT","unmatchingValuesNumber" : "0","message" "ot foreig
Key" : {"ReferencedTableName" : "config Immunization", "ReferencedColumn" : "setld", "ForeingKeyColumn"
"setID", "ForeingKeyTable" : "mdsZMC", "ConstraintName" : "fk _Constraint_mdsZMC _config_Immunization_110
},"ReferenceCascade" : |] },{"advisedNewType" : "INT(10)","unmatchingUnsigned" : "false","encodageMatc
ing" : "true","impossibleAdding" : "false","foreignKeyCascade" : [], "advisedTarget" : "ForeignKeyTabl
" "fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0","message" : "",
foreignKey" : {"ReferencedTableName" : "groups_tbl", "ReferencedColumn" : "groupID", "ForeingKeyColumn"
"groupID", "ForeingKeyTable" : "groupMembers tbl", "ConstraintName" : "fk Constraint groupMembers tbl g
oups tbl 111"} ,"ReferenceCascade" : [| },{"advisedNewType" : "MEDIUMINT(9)" ," unmatchingUnsigned" : "fa
", "o " "foreignKeyCascade" : [|, "advisedTarget"
"

se","encodageMatching" : "true","impossibleAdding" : "false
"ForeignKeyTable"," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber"
","message" """ "foreignKey" : {"ReferencedTableName" : "messagetbl", "ReferencedColumn" : "messageid",
"ForeingKeyColumn" "messagelD", "ForeingKeyTable" : "msgDemoMap", "ConstraintName" : "fk Constraint ms
DemoMap_messagetbl 112"} ," ReferenceCascade" : [] },{"advisedNewType" : "MEDIUMINT(9)" ,"unmatchingUnsig
ed" : "false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : |], "advi
edTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesN
mber" : "0","message" "","foreignKey" : {"ReferencedTableName" : "messagetbl", "ReferencedColumn" "m
ssageid", "ForeingKeyColumn" "messageid", "ForeingKeyTable" : "remoteAttachments", "ConstraintName"
fk_ Constraint remoteAttachments messagetbl 113"} ," ReferenceCascade" : [| },{"impossibleAdding" : "true
,"message" : "Impossible to find the Reference table and/or column. It can be not exist","foreignKey"
"ReferencedTableName" : "SecRole", "ReferencedColumn" : "role name", "ForeingKeyColumn" : "role name", "
oreingKeyTable" : "SecUserRole", "ConstraintName" : "fk Constraint SecUserRole SecRole 114"}},{"impossib
eAdding" : "true","message" : "Impossible to find the Reference table and/or column. It can be not exist
,"foreignKey" : {"ReferencedTableName" : "SecRole", "ReferencedColumn" : "role name", "ForeingKeyColumn"
"roleUserGroup", "ForeingKeyTable" : "SecObjPrivilege", "ConstraintName" : 'rfk_Constraint_SecObjPrivil
ge SecRole 115"}},{"impossibleAdding" : "true","message" : "Impossible to find the Reference table and/o
column. It can be not exist","foreignKey" : {"ReferencedTableName" : "SecObjName", "ReferencedColumn"
"objectName", "ForeingKeyColumn" : "objectName", "ForeingKeyTable" : "SecObjPrivilege", "ConstraintName"
"fk _Constraint_SecObjPrivilege SecObjName_ 116"}},{"impossibleAdding" : "true","message" : "Impossible
o find the Reference table and/or column. It can be not exist","foreignKey" : {"ReferencedTableName" : "
ecPrivilege", "ReferencedColumn" : "privilege", "ForeingKeyColumn" : "privilege", "ForeingKeyTable" : "S
cObjPrivilege", "ConstraintName" : "fk Constraint SecObjPrivilege SecPrivilege 117"}},{"advisedNewType"
"INT(11)","unmatchingUnsigned" : "false","encodageMatching" : "false","impossibleAdding" : "false","for
ignKeyCascade" : [], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationTyp
" : "DTT","unmatchingValuesNumber" : "17","message" """ foreignKey" : {"ReferencedTableName" : "Facili
yv", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facility", "ForeingKeyTable" : "HLT7HandlerMSHMappin
", "ConstraintName" : "fk_Constraint_ HL7HandlerMSHMapping Facility 118"} ," ReferenceCascade" : [{"Refere

107

cedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTab
e" : "ClientLink", "ConstraintName" : ”ClientLink_ibfk_l"}, {"ReferencedTableName" : "Facility", "Refere
cedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "DigitalSignature", "Constrain
Name" : "DigitalSignature ibfk_ 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "For
ingKeyColumn" : "facilityld", "ForeingKeyTable" : "HnrDataValidation", "ConstraintName" : "HnrDataValida
ion ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "faci
ityId", "ForeingKeyTable" : "IntegratorConsent", "ConstraintName" : "IntegratorConsent ibfk 1"}, {"Refer
ncedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTa
le" "IntegratorConsentComplexExitInterview", "ConstraintName" : "IntegratorConsentComplexExitInterview
ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facility
d", "ForeingKeyTable" : "program", "ConstraintName" : "program ibfk 1"}, {"ReferencedTableName" : "Facil
ty", "ReferencedColumn" : "id", "ForeingKeyColumn" : ”facility:id" , "ForeingKeyTable" : "room", "Constra
ntName" : "FK_ room _facility"}] },{"impossibleAdding" : "true","message" : "Impossible to find the Refer
nce table and/or column. It can be not exist","foreignKey" : {"ReferencedTableName" : "Facility", "Refer
ncedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "CdsFormOption", "ConstraintN
me" : "fk_ Constraint_CdsFormOption_Facility 119"}},{"impossibleAdding" : "true","message" : "The Fk is a
ready on the database","foreignKey" : {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "F
reingKeyColumn" : "facilityId", "ForeingKeyTable" : "ClientLink", "ConstraintName" : "fk Constraint Clie
tLink Facility 120"}},{"impossibleAdding" : "true","message" : "Impossible to find the Reference table a
d/or column. It can be not exist","foreignKey" : {"ReferencedTableName" : "Facility", "ReferencedColumn"
"id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "DemographicContract", "ConstraintName"
"fk_Constraint_DemographicContract_Facility 121"}},{"impossibleAdding" : "true","message" : "The Fk is a
ready on the database","foreignKey" : {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "F
reingKeyColumn" : "facilityId", "ForeingKeyTable" : "DigitalSignature", "ConstraintName" : "fk Constrain
DigitalSignature Facility 122"}},{"impossibleAdding" : "true","message" : "The Fk is already on the dat
base","foreignKey" : {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn"
"facilityId", "ForeingKeyTable" : "HnrDataValidation", "ConstraintName" : "fk Constraint HnrDataValidat
on_ Facility 123"}},{"impossibleAdding" : "true","message" : "The Fk is already on the database","foreign
ey™ : {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId",
"ForeingKeyTable" : "IntegratorConsent", "ConstraintName" : "fk Constraint IntegratorConsent Facility 12
"}},{"advisedNewType" : "INT(11)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossible
dding" : "false","foreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "fal
e","transformationType" : "MBT","unmatchingValuesNumber" : "O","message" : "", "foreignKey" : {"Reference
TableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable"
: "IntegratorControl", "ConstraintName" : "fk Constraint_IntegratorControl_ Facility 125"} ,"ReferenceCasc
de" : | {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityld
, "ForeingKeyTable" : "ClientLink", "ConstraintName" : "ClientLink ibfk 1"}, {"ReferencedTableName" : "F
cility ", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "DigitalSigna
ure", "ConstraintName" : "DigitalSignature ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedCol
mn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "HnrDataValidation", "ConstraintName"
"HnrDataValidation ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingK
yColumn" : "facilityId", "ForeingKeyTable" : "IntegratorConsent" "ConstraintName" : "IntegratorConsent
bfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityl
", "ForeingKeyTable" : "IntegratorConsentComplexExitInterview", "ConstraintName" : "IntegratorConsentCom
lexExitInterview ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyCo
umn" : "facilitylId", "ForeingKeyTable" : "program", "ConstraintName" : "program_ibfk 1"}, {"ReferencedTa
leName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facility _id",_"ForeingKeyTable"
"room", "ConstraintName" : "FK room facility"} | },{"advisedNewType" : "INT(11)","unmatchingUnsigned" :
false","encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : [|, "advisedTarg
t" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber"
"0" "message" "n wforeignKey" : {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "Fore
ngKeyColumn" : "facilityId", "ForeingKeyTable" : "OcanStaffForm", "ConstraintName" : "fk Constraint_ Ocan
taffForm Facility 126"} ," ReferenceCascade" : [{"ReferencedTableName" : "Facility", "ReferencedColumn"
"id", "ForeingKeyColumn" : "facilityld", "ForeingKeyTable" : "ClientLink", "ConstraintName" : "ClientLin
_ibfk_1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilit
Id", "ForeingKeyTable" : "DigitalSignature", "ConstraintName" : "DigitalSignature ibfk 1"}, {"Referenced
ableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityld", "ForeingKeyTable"
"HnrDataValidation", "ConstraintName" : "HnrDataValidation ibfk_1"}, {"ReferencedTableName" : "Facility
, "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityld", "ForeingKeyTable" : "IntegratorConsent",
"ConstraintName" : "IntegratorConsent ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn"
"id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "IntegratorConsentComplexExitInterview", "
onstraintName" : "IntegratorConsentComplexExitInterview ibfk 1"}, {"ReferencedTableName" : "Facility", "
eferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "program", "ConstraintNa
e" "program ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColum
"o ”facility:id" , "ForeingKeyTable" : "room", "ConstraintName" : "FK_room _facility"}] },{"advisedNewTy
e" : "INT(11)","unmatchingUnsigned" : "false","encodageMatching" : "true","impossibleAdding" : "false",6"
oreignKeyCascade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformation
ype" : "MBT","unmatchingValuesNumber" : "0","message" : "","foreignKey" : {"ReferencedTableName" : "Faci
ity ", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "Remotelntegrate
DataCopy", "ConstraintName" : "fk_ Constraint RemoteIntegratedDataCopy Facility 127"} ,"ReferenceCascade"
[{"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "F
reingKeyTable" : "ClientLink", "ConstraintName" : "ClientLink ibfk 1"}, {"ReferencedTableName" : "Facili
y", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "DigitalSignature"
"ConstraintName" : "DigitalSignature ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn"
"id", "ForeingKeyColumn" : "facilityld", "ForeingKeyTable" : "HnrDataValidation", "ConstraintName" : "H
rDataValidation_ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyCol
mn" : "facilityId", "ForeingKeyTable" : "IntegratorConsent", "ConstraintName" : "IntegratorConsent _ibfk
"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "
oreingKeyTable" : "IntegratorConsentComplexExitInterview", "ConstraintName" : "IntegratorConsentComplexE
itInterview ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn"
"facilityId", "ForeingKeyTable" : "program", "ConstraintName" : "program ibfk 1"}, {"ReferencedTableNa
e" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facility id", "ForeingKeyTable" : "roo
", "ConstraintName" : "FK room facility"} | },{"advisedNewType" : "INT(11)","unmatchingUnsigned" : "fals
", "encodageMatching" : "true","impossibleAdding" : "false","foreignKeyCascade" : |[], "advisedTarget"
ForeignKeyTable" ," fkAlreadyExist" : "false","transformationType" : "MBT","unmatchingValuesNumber" : "0O"
"message" """ "foreignKey" : {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKe
Column" : "facilityId", "ForeingKeyTable" : "caisi_form", "ConstraintName" : "fk_Constraint_caisi_form _F
cility 128"} ,"ReferenceCascade" : [{"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "For
ingKey_Column" : "facilityId", "ForeingKeyTable" : "ClientLink", "ConstraintName" : "ClientLink ibfk 1"},
{"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "Fore
ngKeyTable" : "DigitalSignature", "ConstraintName" : "DigitalSignature ibfk 1"}, {"ReferencedTableName"
"Facility ", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityld", "ForeingKeyTable" : "HnrDataV
lidation", "ConstraintName" : "HnrDataValidation ibfk 1"}, {"ReferencedTableName" : "Facility", "Referen
edColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "IntegratorConsent", "Constrain
Name" : "IntegratorConsent ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "Fo
eingKeyColumn" : "facilityld", "ForeingKeyTable" : "IntegratorConsentComplexExitlnterview", "ConstraintN
me" : "IntegratorConsentComplexExitInterview ibfk_ 1"}, {"ReferencedTableName" : "Facility", "ReferencedC
lumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "program", "ConstraintName" : "prog
am_ibfk_ 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facil

108

ty_id", "ForeingKeyTable" : "room", "ConstraintName" : "FK_room_facility"} | },{"advisedNewType" : "INT(

1)7,”unmatchingUnsigned” : "false","encodageMatching" : "trEe”,”impossibleAdding" : "false","foreignKeyC
scade" : |], "advisedTarget" : "ForeignKeyTable","fkAlreadyExist" : "false","transformationType" : "
","unmatchingValuesNumber" : "0","message" : "", "foreignKey" : {"ReferencedTableName" : "Facility", "Ref
rencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "survey", "ConstraintName"
"fk Constraint survey Facility 129"} ,"RReferenceCascade" : | {"ReferencedTableName" : "Facility", "Refer
ncedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "ClientLink", "ConstraintName
"ClientLink ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColu
n" : "facilityId", "ForeingKeyTable" : "DigitalSignature", "ConstraintName" : "DigitalSignature ibfk 1"}
{"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "For
ingKeyTable" : "HnrDataValidation", "ConstraintName" : "HnrDataValidation ibfk 1"}, {"ReferencedTableNam
" . "Facility", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "Integ
atorConsent", "ConstraintName" : "IntegratorConsent_ ibfk 1"}, {"ReferencedTableName" : "Facility", "Refe
encedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "IntegratorConsentComplexExi
Interview", "ConstraintName" : "IntegratorConsentComplexExitInterview ibfk_ 1"}, {"ReferencedTableName"
"Facility ", "ReferencedColumn" : "id", "ForeingKeyColumn" : "facilityId", "ForeingKeyTable" : "program",
"ConstraintName" : "program ibfk 1"}, {"ReferencedTableName" : "Facility", "ReferencedColumn" : "id", "F
reingKeyColumn" : "facility id", "ForeingKeyTable" : "room", "ConstraintName" : "FK room facility"} | }]

109

