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All models are wrong but

some are useful

Box, George E. P. (1979), "Robustness in the strategy of
scientific model building", in Launer, R. L.; Wilkinson, G. N,
Robustness in Statistics, Academic Press, pp. 201-236.

What matters is the question you are interested in
and the level of precision you want to achieve.
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PART 1

Epidemic models
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Complexity Explorables About Explorables € »

Epidemonic

A'simple model for contagion dynamics in a population

EXPLORABLES

Cpidemonic

by Janina Schéneberger
3 October, 2017
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Divide the population into classes, each class being characterized by
one possible “state” of the illness.

All agents in the same class behave in the same way and interactions
among agents belonging to different classes are proportional to their
number (homogeneous mixing: mean field assumption).

birthﬂwith bi'r'tgws without

passiye tmmunity pasgive tmmunity

transf er | horizontal _ transfer . transf er
M from M > incidence L from E 1 from I R

de%th,s de%ths dea!'ths de%ths den{ths

Fig. | The general transfer diagram for the MSEIR model with the passively immune class M, the
susceptible class S, the exposed class E, the infective class I, and the recovered class R.
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You get sick, then recover, but without immunity, e.g. the common cold.
Two classes: susceptible and infected persons.

Susceptible = Infected = Susceptible

2 Susceptible people become infected at rate a

2 Infected ones recover at rate b

s| < > 1]
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Susceptible - Infected : SIS model —
S| = |

2 S = number of susceptible persons

2 | = number of infected persons

?Becoming infected depends on contact between Susceptible and
Infected;

2 Recovery is at a constant rate, proportional to number of Infected;

a5 — pI — aSIT
al — — ST — bl
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Susceptible - Infected : SIS model —
S| = |

2 S = fraction of susceptible persons

2 | = fraction of infected persons

?Becoming infected depends on contact between Susceptible and
Infected;

2 Recovery is at a constant rate, proportional to number of Infected;

a5 — pI — aSIT
al — — ST — bl

———
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You get sick, then recover, but with immunity. Three classes: susceptible,
infected persons and recovered.

Susceptible = Infected = Recovered

2 Susceptible people become infected at rate a

2 Infected ones recover at rate b

Note that sometimes R stands for Removed (i.e. dead or immune, not
able to diffuse the illness)

? a)T b)R
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2 S = fraction of susceptible persons
2 | = fraction of infected persons

2 R= fraction of recovered persons

?Becoming infected depends on contact between Susceptible and

Infected;

2 Recovery is at a constant rate,
proportional to number of Infected;

ds
dt
dI
dt
dR

—aS1
aSIT — bl
bl

dt
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2 Vaccination: people can pass directly from S to R (constant rate ¢)

C

_— NN

S a>l b)R

2 Mutation: virus mutates and recovered persons become again
susceptible;

2 Time Delay: the infected persons need some time before to able to
spread the infection;

2 Consider natural births and deaths;

2 Consider age groups
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PART 2

Network models
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A network is a set of nodes connected by links (edges)

Ex.: 5 nodes and 4 edges (undirected)

Adjacency matrix

{1 if nodes 7 and j are linked

0 otherwise

The number of links entering (going out) from each node is

called in-degree (out-degree)

Ex.: “degree node 1" =3 A network is said to be complex if
“degree nodes 2 & 4" =2 the degree distribution is not trivial,
“degree node 3" = i.e. not constant (lattice) nor
“degree node 5” =0 Poissonian (random, Erd&s-Rényi)
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Erdos-Rényi model
ErdSs, P.; Rényi, A. (1959). “On Random Graphs”,
Publicationes Mathematicae, 6, 290-297

Given n nodes, consider all the possible couples (i,j) and with]

The probability to have a node with degree k is given by:

P(deg(v) = k) = <n B 1>pk(1 _p)nik

The average degree is given by (k) = np
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Watts-Strogatz (small world) model
Watts, D. J.; Strogatz, S. H. (1998). “Collective dynamics of 'small-
world' networks" Nature, 393 (6684) 440- 442

leen n nodes arranged into a regular rlng, each with 2m|
ineighbours, consider all the possible couples (i,j) and with|
'some probability p rewire the link ij (i.e. delete ij and make a
'new link ik)

Reguar  Smallwold

Increasing randomness
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Watts-Strogatz (small world) model

Path among two nodes: minimum number of “hops” to pass from one
node to the other one.

Clustering coefficient is a measure of the degree to which nodes in
a graph tend to cluster together (triangles).
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Barabasi-Albert (preferential attachment) model

Barabdési, A.; Albert, R. (1999), “Emergence of scaling in random
networks”, Science, 286 (5439): 509-512.

'Each time step a new node enters into the system and it makes!
‘a new link to an already existing node with a probability that!
lis proportional to the number of links that the existing nodes!
\already have. |

Preferential attachment means that the more connected a
node is, the more likely it is to receive new links. Nodes with
higher degree have stronger ability to grab links added to the
network.
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Barabasi-Albert (preferential attachment) model

The probability to have a node with degree k is given by:

10" ¢

P(k)

10° |

10° L.

A

T

Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
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Scale Free networks. The degree distribution is “broad”
and can be described by the functions :
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PART 3

Epidemics & networks
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1 node = 1 person
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1 node = 1 person

SIS model on homogeneous network (all nodes have - almost
- the same degree, i.e. all persons have - almost - the same
number of neighbors).

% = bl — aS]1 S 1 —1

AL _ 0§ —bI |4 =a(k)(1— )] —bI

dt

former model (no space) ~—
( two competing times
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1 node = 1 person

SIS model on homogeneous network (all nodes have - almost
- the same degree, i.e. all persons have - almost - the same
number of neighbors).

For short times (I(t) is assumed to be small):

Epidemic threshold:

a(k)/b>1 (exp) growth

a{k)/b <1 (exp) decrease
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1 node = 1 person

SIS model on homogeneous network (all nodes have - almost
- the same degree, i.e. all persons have - almost - the same
number of neighbors).

dl
For longtimes (— =0 ) :
g ( gy )

Epidemic threshold:

a(k)(1 —Ioo)loo =bloc (k) /b>1 I =1—0b/(alk))

alk)/b<1 I,=0
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1 node = 1 person

SIS model on homogeneous network (all nodes have - almost
- the same degree, i.e. all persons have - almost - the same
number of neighbors).

foo

Absorbing
phase

Virus death

Active phase
Finite prevalence

>

Ao = (k) A=a/b
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All persons with the same

degree behave in the same way.
Classes of state and degree.
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All persons with the same

degree behave in the same way.
Classes of state and degree.

The number of neighbors can vary a lot (k%) > (k)

Heterogeneous mean-field

rx = Xi /Ny fraction .of person.in the state X
(x =s, i or r) having degree k

L = Z zkP(k)  total fraction of person in the state X
" P(k) Probability to have degree k
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All persons with the same

degree behave in the same way.
Classes of state and degree.

SIS heterogeneous mean-field model

— =ak(l —i)O — biy, s =1—1ip

O, = Z P(k'\k)ig Probability that a generic link (with deg k)
% points to an infected node (with deg k’)

P(k'|k) Probability that a link originated in a node
with connectivity k points to a node with connectivity k'’
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All persons with the same

degree behave in the same way.
Classes of state and degree.

SIS heterogeneous mean-field model

d :
d—@k_ZPk\k

d@k

— ZP (K'|k) [ak' (1 — i1 )Op — bij]

For short times (ix is assumed to be small and thus 7,0, < 1)

d : : . ey
— O ~ ZP(k k) [ak'©ps — biys] = aZP(k k)k'©p — bOy
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All persons with the same

degree behave in the same way.
Classes of state and degree.

SIS heterogeneous mean-field model

for uncorrelated networks P(k'|k) = <—k>P(k’)
d / /
O ~ azk;P(k )k Q) — bOy

K 49 — (a<k2> b) O

O = Z iy P(K)in = © dt (k)
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All persons with the same

degree behave in the same way.
Classes of state and degree.

SIS heterogeneous mean-field model

For long times and uncorrelated networks:

di kO™
Tk ak(1—i)0 —big =0 => z';;ozba’

dt ak©®°°
O = Z %P(k’)z?f ,
k! 1 ak-©>
O = P(k
Implicit equation for ©~° <]{7> 2}{: ak©O> + b ( )

R ———
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All persons with the same

degree behave in the same way.
Classes of state and degree.

SIS heterogeneous mean-field model

Epidemic threshold (uncorrelated networks)

a_ k)
b~ (k2)

02 r

i For scale free networks : | |
<k2> > 1 ; 000 ; | -l | Y T 0z0
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1 node = 1 city/country
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metapopulation model
-- macro scale

/'\ o
& B

Metapopulation models

e.g. in the framework of ecology:

May R., Will a large complex system be stable?
Nature, 238, pp. 413, (1972)

Interactions occur at each node. Ditfusion occurs across edges.
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interaction term:

as;
o = ol
% — CLSjIj — bIj
dR;

dt — blj

At each node j=1.....n, “species” S, | and R interact through the SIR
model depending on the quantities available af the jth node
(metapopulation assumption)

We assume the parameters to be the same for all nodes.
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Diffusion term:

Diffusive transport of species into a certain node i is given by the sum of
incoming fluxes to node i from other connected nodes j, fluxes are proportional
to the concentration difference between the nodes (Fick's law).

Ex.: consider the amount of v in node 1,
u can enter from 2, 3 and 4
u can leave 1fo goto 2, 3 and 4

)
U9 —+ us + Uyg — 3U1 = ZAUU]' — klul = Z (Alj — 51jkj) Uj = ZLljuj
J J

J

L is called Laplacian matrix of the network

WWW.unamur.be timoteo.carletti@unamur.be




The model:

s,

dt
di;

—&Sj]j + Dy ZZ:1 Lngk
di aS;1; —bl; +D; > 0 Lkl
de T
7 blj + Dy ) 1 Ljk By

Ds, Di and D; are the diffusion coefficients of S, | and R, i.e. capability to move
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Social networks
layers=different social networks | |
nodes=same agent ineach SN |

- Transportation networks ’
| | layers=different modalities 4
N‘ nodes=same spatial location (
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Temporal networks Temporal Multiplex Network
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Timelines of nodes
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PRL 119, 148301 (2017) PHYSICAL REVIEW LETTERS 6 OCTOBER 2017

Theory of Turing Patterns on Time Varying Networks

Julien Petit,"2 Ben Lauwens,2 Duccio Fanelli,3 4 and Timoteo Carletti""
'naXys, Namur Institute for Complex Systems, University of Namur, BS000 Namur, Belgium
2Department of Mathematics, Royal Military Academy, B1000 Brussels, Belgium
*Dipartimento di Fisica e Astronomia and CSDC, Universita degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
*INFN Sezione di Firenze, 50019 Sesto Fiorentino, Italy
(Received 22 May 2017; published 4 October 2017)

The process of pattern formation for a multispecies model anchored on a time varying network is
studied. A nonhomogeneous perturbation superposed to an homogeneous stable fixed point can be
amplified following the Turing mechanism of instability, solely instigated by the network dynamics. By
properly tuning the frequency of the imposed network evolution, one can make the examined system
behave as its averaged counterpart, over a finite time window. This is the key observation to derive a closed
analytical prediction for the onset of the instability in the time dependent framework. Continuously and
piecewise constant periodic time varying networks are analyzed, setting the framework for the proposed
approach. The extension to nonperiodic settings is also discussed.

DOI: 10.1103/PhysRevLett.119.148301

eek endi
PRL 119, 108301 (2017) PHYSICAL REVIEW LETTERS 8 SEPTEMBER 2017

Concurrency-Induced Transitions in Epidemic Dynamics on Temporal Networks

Tomokatsu Onaga,"2 James P. Gleeson,2 and Naoki Masuda®"
'Department of Physics, Kyoto University, Kyoto 606-8502, Japan
*MACSI, Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland
3Departmem of Engineering Mathematics, University of Bristol, Woodland Road, Bristol BS8 1UB, United Kingdom
(Received 16 February 2017; revised manuscript received 13 June 2017; published 6 September 2017)

Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The
spreading of infections on such temporal networks can differ dramatically from spreading on static
networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has
at a given time point, on the epidemic threshold in the stochastic susceptible-infected-susceptible dynamics
on temporal network models. We show that network dynamics can suppress epidemics (i.e., yield a higher
epidemic threshold) when the node’s concurrency is low, but can also enhance epidemics when the
concurrency is high. We analytically determine different phases of this concurrency-induced transition, and
confirm our results with numerical simulations.

DOI: 10.1103/PhysRevLett.119.108301
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Contact-based model for epidemic spreading on temporal networks

Andreas Koher*
Institut fiir Theoretische Physik, Technische Universitit Berlin, Hardenbergstrafle 36, 10623 Berlin, Germany

Hartmut H. K. Lentz
Institute of Epidemiology, Friedrich-Loeffler-Institut,
Stidufer 10, 17493 Greifswald - Insel Riems, Germany

James P. Gleeson
MACSI, Department of Mathematics and Statistics, University of Limerick, Ireland

Philipp Hoével
School of Mathematical Science, University College Cork, Cork T12 XF6/, Ireland and
Institut fiir Theoretische Physik, Technische Universitdat Berlin, Hardenbergstrafle 36, 10623 Berlin, Germany
(Dated: November 15, 2018)

We present a contact-based model to study the spreading of epidemics by means of extending
the dynamic message passing approach to temporal networks. The shift in perspective from node-
to edge-centric quantities allows to accurately model Markovian susceptible-infected-recovered out-
breaks on time-varying trees, i.e., temporal networks with a loop-free underlying topology. On
arbitrary graphs, the proposed contact-based model incorporates potential structural and temporal
heterogeneity of the underlying contact network and improves analytic estimations with respect to
the individual-based (node-centric) approach at a low computational and conceptual cost. Within
this new framework, we derive an analytical expression for the epidemic threshold on temporal
networks and demonstrate the feasibility on empirical data.
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