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Abstract  

The performance of bulk-heterojunction solar cells is significantly affected by several factors 

among which are the nano-morphology of the photoactive layer and the properties of 

interfacial layers promoting charge extraction and collection at the electrodes. In this work, 

we investigate the correlation between the MoOx layer thickness and the thermal annealing 

procedure on the device performance and on the charge extraction efficiency of inverted 

ITO/PEI/P3HT:PCBM/MoOx/Ag bulk heterojunction solar cells. The surface morphology of 

pristine and annealed P3HT:PCBM photoactive layers is examined by atomic force 

microscopy (AFM) before and after the exposure to dichloromethane showing the presence of 

low-molecular weight and regio-random P3HT domains whose distribution can be related to 

the applied thermal annealing procedure. The chemical and molecular composition profiles in 

the photoactive layer and at the interfaces are investigated through depth profile analyses 

combining X-ray photoelectron spectroscopy and time-of-flight secondary ion mass 

spectrometry showing a decreasing oxidation gradient of the MoOx and low diffusion of the 



MoOx species in the P3HT:PCBM layer. Additionally, we show that the voltage dependent 

photocurrent is significantly affected by non-geminate recombination for devices with a too 

thin MoOx layer thickness, while applying a non-optimal thermal annealing procedure leads to 

an increased geminate recombination mechanism of charge carriers. The highest charge 

extraction efficiency and device performance is reached for devices with a MoOx layer above 

5 nm while thermal annealing procedure has to be applied before the deposition of the 

MoOx/Ag layers.  

I. Introduction 

Organic bulk-heterojunction solar cell devices (OSCs) have attracted considerable attention in 

the past decades due to their striking advantages including high versatility for a wide field of 

different applications, cost-effective fabrication and short energy amortization time. However, 

to maintain the competitiveness of OSCs, key metrics like the device performance and the 

long-term stability have to be enhanced on a continuous base. This challenge has been 

addressed in numerous reports through an improved control of the nanoscale morphology of 

the photoactive layer forming a bulk heterojunction system (BHJ) and/or through the 

introduction of interfacial layers to facilitate charge extraction from the photoactive layer.1-5 

To minimize the electron extraction barrier, typically high work function materials such as 

calcium6, lithium fluoride (LiF)7,8 or polyethyleneimine PEI9 are used. On the other hand, low 

work function materials like PEDOT:PSS,10,11 tungsten oxide (WOx)
12 or molybdenum oxide 

(MoOx)
13,14 have been employed to improve the hole extraction. In addition, interfacial layers 

can act as optical spacers to enhance the optical field of the incident light inside the 

photoactive layer and thus improving the generation of excitons.15,16 

However, the overall device performance in BHJ OSC primarily depends on the morphology 

of the bi-continuous and interpenetrating network of donor and acceptor materials, as most 

intensively investigated for poly(3-hexyltiophene) (P3HT) acting as electron donor and the 

fullerene derivate [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) acting as the electron 



acceptor. Yet, in P3HT:PCBM solar cells, as in many other solid state blend systems, post 

deposition annealing treatments need to be applied to improve the phase separation in the 

photoactive blend.17 For this, two approaches have been widely investigated which are called: 

(i) solvent annealing (i.e exposing the photoactive layer at room temperature to solvent 

vapors)18 and (ii) thermal annealing (i.e exposing the photoactive layer to temperatures 

between 110 and 180 °C). At the same time thermal annealing in presence of interfacial layers 

or metal electrodes can also lead to severe interdiffusion and to the formation of intermediate 

layers affecting the charge extraction efficiency and thus the overall solar cell performance. 

These mechanisms have been reported by several groups in particular for standard 

P3HT:PCBM/Al devices where thermal annealing in presence of the Al electrode was found 

to have a beneficial effect on the overall device performance.19 The comparison between 

individual solar cell performance indicators obtained for devices annealed prior (pre-

annealed) or after (post-annealed) the Al electrode deposition showed an enhanced short 

circuit current density (JSC) for post annealed devices. This was attributed to a lowered contact 

resistance between the electrode and the photoactive layer.20,21 However, the introduction of 

an additional interfacial layer between the photoactive blend and the Al electrode may require 

different thermal annealing procedures. For example, Li et al. showed that the performance of 

P3HT:PCBM/LiF/Al solar cells significantly decreases if thermal annealing is performed after 

depositing LiF. The device performance decay was caused through a lowered open circuit 

voltage (VOC) and fill factor (FF) resulting from the LiF diffusing into the photoactive layer 

which significantly reduced the P3HT crystallinity.22 For inverted device structures, 

employing MoOx as interfacial layer, thermal annealing of the photoactive blend is commonly 

performed before the MoOx deposition. The influence of post-thermal annealing, where 

annealing was performed after the deposition of the MoOx/Ag electrode, was investigated in a 

previous report.24 It was concluded that the decay of the device performance is due to the loss 

of cohesion of the MoOx/Ag interface and consequently the formation of a MoOx-Ag alloy 



interlayer, as well as slight diffusion of the Ag, O and Mo species into the P3HT:PCBM layer. 

However, this study focused on investigating the MoOx/P3HT:PCBM interface, while the 

morphology of the P3HT:PCBM photoactive layer was not examined in detail.  

In this work we investigate both the morphology of the P3HT:PCBM photoactive layer and 

the voltage dependent charge extraction efficiency  for devices fabricated following different 

thermal treatment procedures and bearing MoOx layer thicknesses from 4 to 12 nm. For the 

interface analysis, time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray 

photoelectron spectroscopy (XPS) depth profiles are combined to accurately resolve the in-

depth molecular and chemical distributions. In addition, the effect of the thermal treatment 

sequence on the surface topography of P3HT:PCBM layers was investigated by exposing 

them to an orthogonal solvent (dichloromethane, DCM) with the intention of dissolving the 

PCBM without solubilizing the P3HT. The morphological investigations are completed by a 

discussion of the effects on the voltage dependent photocurrent and the charge extraction 

efficiency for different MoOx layer thicknesses and thermal annealing sequences. 
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Figure 1: (a) Device structure and respective layer thicknesses of the investigated solar cell 

device. (b) Fabrication steps associated with the three annealing procedures. (c) Molecular 

structure of the donor (P3HT) and acceptor (PCBM) species in the photoactive blend. 

 

II. Experimental 

A. Materials & Device Fabrication  

Regioregular Poly(3-hexylthiophene-2,5-diyl) (P3HT) with a molecular weight 50k< MW< 

70k and a regioregularity between 91 and 94% was purchased from Rieke Metals LLC 

(Reference #4002-E). All solvents (chlorobenzene, 2-butanol, ammonia solution, 

dichloromethane (DCM)), Phenyl-C61-butyric acid methyl ester (PCBM) and 

polyethyleneimine (PEI) were purchased from Sigma-Aldrich and used as received. Glass 

substrates with a pre-patterned ITO layer and a nominal sheet resistance of 15 /□ were 

obtained from Kintec Company. 

Glass/ITO/PEI/P3HT:PCBM/MoOx/Ag solar cells were fabricated by dissolving P3HT and 

PCBM compounds in chlorobenzene (20 mg/ml) in a ratio of 1:0.75 (P3HT:PCBM) followed 

by heating to 75 °C and stirring for 3 h. Subsequently, the blend was cooled down to room 

temperature and stirred overnight to ensure the complete dissolution of the solid compounds. 

PEI was dissolved at room temperature under stirring in 2-Butanol to reach a ratio of 0.15 

mg/ml. Glass/ITO substrates were cleaned by a standard cleaning procedure consisting of 

ultrasonication in a diluted Hellmanex bath followed by immersion in acetone and 

isopropanol baths for 15 min each. Successive fabrication steps were performed in an Ar-

filled glovebox where oxygen and water levels were constantly monitored to be below 5 ppm. 

The PEI solution was spin-coated on the Glass/ITO following a two-step procedure at 1500 

rpm for 2 s and 4000 rpm for 20 s. Afterwards, the samples were placed on a hot plate and 

annealed at 105 °C for 10 min to remove solvent residuals. The P3HT:PCBM solution was 

spin-coated at 1200 rpm for 80 s leading to the thickness of ~80 nm (as measured on a scratch 



in the film). Three different fabrication procedures were realized according to the scheme in 

Figure 1b. The applied temperature and the duration of each thermal annealing treatment was 

fixed at 150 °C and 15 min. In the pre (post) annealing procedure, the thermal treatment is 

performed before (after) the MoOx/Ag (~100 nm) deposition by high-vacuum thermal 

evaporation (base pressure below 1×10-6 mbar) at the rate of 0.1 Å/s for the MoOx and 5 Å/s 

for the Ag layer. For the double-annealing procedure, the thermal treatment was applied prior 

and after the deposition of MoOx/Ag. The thickness of the MoOx layer was varied from 4 to 

12 nm to optimize the device performance and to correlate charge extraction efficiency with 

the thickness of the hole transport layer. 

B. Surface and Interface Characterizations  

Tapping-mode atomic force microscopy (AFM, Nanoscope V5 from Veeco) was performed to 

characterize the surface morphology of spin-coated P3HT as well as P3HT:PCBM layers 

deposited on Glass/ITO/PEI substrates and exposed to the different thermal annealing 

treatments. To access the P3HT:PCBM layer surface below the electrodes of fabricated solar 

cell devices, the MoOx/Ag was removed by dipping the samples in an ultrasonic NH3 (30%) 

bath for 45 s followed by mechanical stripping with an adhesive tape. For the investigations 

of P3HT and PCBM distributions in pristine or blended films, the samples were placed on a 

spin coater and DCM was drop-casted on the surface and removed after 10 s by spinning at 

4000 rpm for 60 s. Finally, the samples were dried under nitrogen flow and investigated by 

AFM.  

X-ray photoelectron spectroscopy (XPS) depth profile analysis (K-Alpha, Thermo Scientific) 

was performed by alternating low-energy (500 eV) Ar+ sputtering and surface analysis in 

"snapshot" mode using a monochromatic Al Kα X-ray beam, a 400 μm spot diameter, a raster 

area of 1.2 mm and dual beam flood gun for charge compensation. The snapshot mode allows 

for the fast acquisition of core level spectra (Ag 3d, N 1s, C 1s, S 2p, O 1s, I 3d and Mo 3d) 

with a high resolution within a few minutes. The atomic percentages associated with each 



chemical component are evaluated from high-resolution spectra after the peak fitting with 

Shirley background and using Avantage© software.  

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) profiles were acquired with a 

dual beam ToF-SIMS spectrometer (TOFSIMS IV from Ion-TOF GmbH, Münster, Germany) 

operated with a 25 keV Bi3
+ analysis beam and a 500 eV Cs+ ion beam oriented at 45° for 

sputtering and a flood gun for charge compensation. The acquisition was in negative polarity 

noninterlaced bunched mode. The analysis area was on 125×125 µm2 with a raster area of 

250×250 µm2. 

C. Solar Cell Performance and Charge Extraction Efficiency 

The spectral absorbance characteristic of P3HT and P3HT:PCBM layers within the UV-

visible range (350-850 nm) was examined by a PERKIN ELMER spectrophotometer 

(PERKIN ELMER, Lambda 900) equipped with an integrating sphere. Photoluminescence 

spectra were acquired between 580 and 800 nm on a spectrofluorophotometer (SHIMADZU, 

RF5301 PC). The wavelength of the excitation source was selected at 517 nm, corresponding 

to the maximum absorption peak of the P3HT:PCBM layers that were deposited on glass 

substrates. The J-V characteristics of fabricated solar cells were acquired using a Keithley 

2400 coupled with a AM 1.5 calibrated solar simulator (ATLAS Material Testing) providing 

an irradiance of Pinc=100 mW/cm2. The solar cell performance is derived through the relation:  

 
𝜂𝑃 =

𝑉𝑀𝑃𝑃𝐽𝑀𝑃𝑃

𝑃𝑖𝑛𝑐
=  

𝑉𝑂𝐶𝐽𝑆𝐶  𝐹𝐹

𝑃𝑖𝑛𝑐
 ; 𝐹𝐹 =

𝑉𝑀𝑃𝑃𝐽𝑀𝑃𝑃

𝑉𝑂𝐶𝐽𝑆𝐶
  

 
Eq.(1) 

where ηP is the power conversion efficiency (PCE), FF is the fill factor and the MPP index 

refers to the maximum power point. The open circuit voltage VOC corresponds to the 

externally applied bias Vext at which under illumination conditions the observed current 

density is zero, while the short circuit current density JSC is obtained when Vext equals zero. 

The voltage-dependent charge extraction of investigated devices is correlated to the obtained 

J-V characteristic by the photocurrent JPh that is defined through the relation:  



 𝐽𝑝ℎ =  𝐽𝑙𝑖𝑔ℎ𝑡 −  𝐽𝑑𝑎𝑟𝑘  Eq.(2) 

where Jlight and Jdark are the current densities under illumination and dark conditions, 

respectively. Additionally, we define the charge extraction efficiency by the ratio: 

 
𝜂𝐶𝐸𝐸 =  

𝐽𝑝ℎ(𝑉𝑒𝑓𝑓)

𝐽𝑝ℎ(𝑉𝑒𝑓𝑓 = 2.2𝑉)
=  

𝐽𝑝ℎ(𝑉𝑒𝑓𝑓)

𝐽𝑝ℎ(𝑚𝑎𝑥)
 

 
Eq.(3) 

The total internal voltage acting on charge carriers (Veff) corresponds to the externally applied 

voltage (Vext) corrected by the compensation voltage (V0) which is the bias where the 

photocurrent is zero (Figure 6a). Plotting Jph vs Veff in log-log scale offers a convenient way 

to evaluate the power law dependence of the derived photocurrent in relation to the acting 

effective voltage (Jph α Veff
k). The experimental linear fit coefficient (k) allows for an 

identification of different charge transport regimes, i.e. ohmic (k=1), saturated (k=0) or space 

charge/recombination limited transport (k=0.5).25 In a common approach, two theoretical 

models are combined to describe the behavior of the voltage dependent photocurrent 

Jph(Veff).
41,48 The first model developed by Onsager and later extended by Braun in 1984,49,50 

addresses the dissociation probability of the polaron-pair formed in the photoactive layer upon 

absorption of an incident photon. Upon successful separation of the polaron-pair and further 

neglecting trapping and recombination of the free charge carriers, the behavior of Jph(Veff) can 

be related to simulation results obtained from the Sokel-Hughes model.51 

 

III. Results and Discussion 

A. Impact of the thermal treatment sequence on the device performance 

Three device sets are investigated to examine the impact of the annealing sequence and the 

MoOx layer thickness on the device performance. The current-voltage curves of pre-, post- 

and double-annealed devices bearing a MoOx layer thickness (l) of 4, 8 and 12 nm are 

displayed in Figure 2 and Figure S7a in Supplementary Information. The corresponding 

average device performance indicators (PCE, FF, VOC, ISC) and the corresponding standard 



deviation derived from 16 solar cell devices are summarized in Table 1. The highest average 

PCE of 3.4 % is obtained for l= 8 nm and pre-annealing conditions. For l= 8 nm post- and 

double-annealing procedures result in a lower average PCE of 2.5% and 2.1% (-26.5% and -

38.2% respectively). By analyzing the other performance indicators, the reduction of the PCE 

in post and double annealed devices appears to be mainly caused by the significant decrease 

of JSC (by -23.5% and - 36,5%, respectively) while other indicators are almost unaffected by 

the thermal treatment sequence. Similar results are observed independently from the MoOx 

layer thickness (for l=4 and l=12 nm). The JSC induced decay of the PCE was previously 

reported for solar cells treated by a thermal aging procedure (ISOS-D2),26 and explained by (i) 

interface degradation mechanisms or by (ii) the diffusion of the top electrode material into the 

photoactive blend.27 Since both reasons can explain the decreased JSC observed for post- and 

double-annealed devices, the morphology of the photoactive blend and the properties of the 

MoOx interfacial layer will be carefully investigated in the next section.  

 

(a) (b) 

  

Figure 2. J-V characteristic of investigated device sets subjected to the pre-, post- and double-

annealing procedure bearing a MoOX layer thickness of l=8 nm (a) and l=4 nm (b).  

 

 



B. Composition and interface depth profile analyses  

In contrast to the general consensus concerning Al diffusion at the P3HT:PCBM/Al interface, 

previous reports about the P3HT:PCBM/MoOx interface are much more controversial. 

Namely, for ITO/MoO3/P3HT:PCBM/Al devices, MoOx was shown to diffuse through the 

whole photoactive layer,23 while this behavior was not observed for 

Glass/ITO/TiOx/P3HT:PCBM/MoOx/Ag devices.24 To assess the potential diffusion of Mo 

and/or MoOx related species in the devices fabricated following our three annealing 

procedures, the chemical composition of the MoOx layer was investigated by XPS and ToF-

SIMS depth profiling. XPS profiles were made with low energy (500 eV) Ar+ sputtering and 

ToF-SIMS with low-energy Cs+ in order to limit sputtering induced artifacts and preserve the 

device interfaces.28,29 The accurate peak fitting of Mo 3d core level spectra acquired at 

different sputtering times (i.e. depths) evidence a variable in-depth chemical composition of 

the MoOx layer with a more oxidized (~MoO3) state at the Ag/MoOx interface and a less 

oxidized layer (~MoO) at the MoOx/P3HT:PCBM interface (Figure 3a and 3b). Interestingly, 

the depth evolution of the MoOx layer chemical composition was almost identical for the 

devices subjected to the pre- or double-annealing procedures (Figure 3c and 3d and Figure 

S5). To improve the detection limit with respect to XPS analysis (~0.1 atomic %) and more 

safely exclude that the depth-dependent MoOx layer composition variation is the result of the 

preferential sputtering of oxygen species by the low-energy Ar+ beam.30,31  

ToF-SIMS depth profiles were performed with low-energy Cs+ beam on pre- (Figure 4) or 

double-annealed (Figure S6) devices. From the comparative analysis of MoO-, MoO2
- and 

MoO3
- molecular signals profiles (note that each fragment is characterized by its specific 

ionization yield) in pre- and double-annealed devices, we clearly observe perfectly similar 

features, i.e. (i) a negligible diffusion of MoOx across the P3HT:PCBM, (ii) the presence of 

the three oxidation states in agreement with XPS results and (iii) that the thermal annealing 

procedure does not sensibly affect the MoOx layer composition. From this clear experimental 



results we can safely assess that the performance differences in the solar cells exposed to 

different thermal annealing schemes are not ascribed to differences in the MoOx layer 

composition or by interdiffusion effects at the P3HT:PCBM/MoOx interface.   

The use of low energy sputtering beams allows limiting although not completely excluding 

preferential sputtering of oxygen (i.e. the reduction of MoOx species); however, the oxidation 

profile is mainly ascribed to the high-vacuum thermal evaporation process of the MoO3 

precursor, namely by the possibly different sticking coefficients of oxygen and Mo atoms on 

the BHJ surface.32 

 



Figure 3. Fitting procedure of the XPS Mo 3d spectra acquired at different depths for a 

double-annealed device. Different oxidation states of molybdenum are found at the upper 

(Ag/MoOx) interface (a) and at the lower (MoOx/P3HT:PCBM) interface (b). XPS depth 

profiles with 500 eV Ar+ sputtering beam show very similar Mo layer chemical composition 

profiles in solar cells subjected to pre- (c) or double-annealing (d) procedures. 

 

 

Figure 4. (a) ToF-SIMS depth profiles obtained on device fabricated following the pre-

annealing scheme. (b) Comparison between MoO-, MoO2
- and MoO3

- molecular signals 

derived from pre- or double-annealed devices. 

 

C. Influence of the thermal annealing sequence on the bulk heterojunction morphology 

The P3HT:PCBM BHJ morphology was characterized in devices bearing the same MoOx 

layer thickness (l=8 nm) but treated by different thermal annealing procedures. AFM 

topography and phase images did not reveal any significant annealing procedure (see Figure 

S1 and S3 in Supplementary Information). Moreover, the associated phase images do not 

allow distinguishing between the individual components of the photoactive layer to eventually 

evidence phase separation within the photoactive layer (Figure S1). It was previously 



reported that prolonging the annealing time resulted in the enhancement of the vertical 

segregation of the PCBM phase and possibly lead to the formation of µm-sized PCBM 

aggregates which considerably increased the charge recombination rate.33–38  In our case, 

since PCBM aggregates are not observed at the BHJ surface, maybe because of the too short 

annealing time, we considered an alternative approach consisting of washing the BHJ film 

with dichloromethane (DCM) in order to dissolve PCBM without affecting the P3HT 

morphology. Therefore, we expected the appearance of cavities in the film morphology 

corresponding to PCBM-rich phases. To confirm the successful removal of the PCBM species 

from the P3HT:PCBM layer following the DCM treatment, we performed photoluminescence 

and absorbance investigations. Regardless of the thermal annealing procedure, the 

photoluminescence and the absorbance properties of DCM washed P3HT:PCBM layers are 

similar to those observed for a pristine P3HT layer (i.e. without PCBM, see Figure 5a and 

5b). The suppression of the quenching effect from PCBM is a clear indication of the PCBM 

removal by DCM. In addition, the absorbance spectrum of pristine P3HT layers does not 

change upon DCM treatment (shown in Figure S2 in Supplementary Information), 

confirming that the bulk of the P3HT is not affected by the solvent treatment, whereas the 

absorbance spectra of P3HT:PCBM layers differs significantly from pristine P3HT films. (see 

inset-graph in Figure 5b).  

 

 

 

 

 

 

 



(a) (b) 

  

Figure 5. (a) Fluorescence spectra from P3HT, P3HT:PCBM and DCM-treated 

P3HT:PCBM layers subjected to the pre- or double-annealing procedure. (b) Absorbance 

spectra of DCM washed P3HT and P3HT:PCBM layers subjected to the pre- or double-

annealing procedures. The inset-graph shows the absorbance spectra of thermally 

annealed P3HT and P3HT:PCBM layers before DCM treatment. 

 

We further investigated by AFM the surface morphology of P3HT:PCBM films subjected to 

the different thermal annealing procedures and to the DCM treatment. The AFM images are 

taken both at open areas between the electrodes (see Figure 6a-c) and underneath the 

electrodes (see Supplementary Information Figure S4). For both regions and regardless of the 

applied thermal annealing procedure, the DCM treatment results in the appearance of cavities, 

whose density is significantly higher in post- and double- annealed devices. For these devices, 

we observe an almost uniform dense distribution of sub-micrometer scale cavities, while in 

pre-annealed devices, only few sparse micrometer scale cavities are observed (see Figure 6a-

c). To investigate the origin of these cavities and to discriminate whether they can be 

correlated to the removal of PCBM-rich phases, pristine P3HT films were also annealed and 

washed with DCM in a similar manner as the P3HT:PCBM layers. Surprisingly, and 

regardless of the thermal annealing procedure, the cavities in DCM washed P3HT are very 



similar than the ones observed at P3HT:PCBM films (see Figure 6d-f). This leads us to the 

conclusion that the cavities appearing following DCM treatment originate from the partial 

removal of P3HT domains. Previous reports focusing on the solubility of P3HT in DCM 

evidenced that high-MW P3HT (as used within this study) is almost insoluble in DCM while 

regio-random and low-MW P3HT impurities can be solubilized by DCM washing.39,40 In 

summary, we observe a clear difference between the three differently annealed and DCM 

washed P3HT:PCBM samples. However, the occurrence of the DCM-induced cavities in 

P3HT:PCBM films cannot be exclusively related to the removal of PCBM as shown by the 

outcome of the control experiments where pristine P3HT layers were treated with DCM. To 

correlate the results obtained from our morphological investigation to the key performance 

indicators of solar cells, the behavior voltage dependent photocurrent in dependence of the 

applied thermal annealing procedure and the MoOx layer thickness is discussed in the 

following section.  

 

 

 

 

 

 

 

 

 

 

 

 

 



(a) P3HT:PCBM,  

    Pre-Annealed 

(b) P3HT:PCBM, 

     Post-Annealed 

(c) P3HT:PCBM, 

    Double-Annealed 

  

 

 

(d) P3HT 

      As-Cast 

(e) P3HT 

      Pre-Annealed 

(f) P3HT 

     Double-Annealed  

   

Figure 6: AFM topography images of annealed P3HT:PCBM (a-c) and P3HT (d-f) films 

exposed to DCM. Images (a), (b) and (c) are acquired in regions between the metal electrodes. 

 

D. Impact of the thickness of the MoOx layer and the thermal treatment procedure on 

the charge extraction  

Since neither the interface depth profiles nor the morphological characterization could give 

valuable information to derive structure-to-performance relationships in solar cells, we 

characterized the charge extraction regimes by the conventional approach of plotting 

photocurrent-effective voltage (Jph-Veff) curves in a double-logarithmic scale.  

We firstly restrict our discussions on pre-annealed solar cells bearing different MoOx layer 

thicknesses. The effects of the MoOx layer thickness on the overall device performance has 

been extensively investigated by a number of different approaches, including fitting of the 

obtained JV curve to an equivalent electrical circuit model. In this case, for a MoOx layer 



thicknesses < 3 nm the low device performance, caused by a decreased VOC, JSC and FF, was 

ascribed to an increased series resistance and/or by a decreased shunt resistance.43,44 

Investigating the effect of a varied MoOx layer thickness on the voltage dependent 

photocurrent shows for small Veff <0.1 V an ohmic transport regime (i.e.  𝐽𝑝ℎ ∝ 𝑉𝑒𝑓𝑓
𝑘  with 

k=1), while increasing Veff > 0.2 V leads to saturation of the photocurrent (k=0) as shown in 

Figure 7. A similar trend of the photocurrent is observed for both 𝑙=8 nm and 𝑙=12 nm, 

whereas Jph is slightly lowered for devices bearing a higher MoOx layer thickness than 8 nm. 

The shape of the extraction efficiency, which we define by normalizing the photocurrent 

Jph(Veff) to the photocurrent observed at Veff = 2.2V (see Eq. 3), is in good agreement with 

results obtained from the Sokel-Hughes model showing a linear increase for small Veff and 

saturation of Jph for high effective voltages. Thus, for pre-annealed devices with 𝑙≥8 nm 

recombination and trapping mechanisms are apparently not affecting charge extraction. 

However, for 𝑙=4 nm, Jph(Veff) differs significantly within 0.2< Veff < 0.5 V and saturation of 

the photocurrent is only observed when increasing Veff > 0.5 V. An exponent of k ~ 0.3 was 

derived for 0.2 < Veff < 0.5 V, which does not allow for an association with space charge or 

recombination limited transport regimes as this would require an exponent k=0.5 .25,41,42 The 

effective voltage Veff acting on charge carriers within a device can be understood in general as 

the sum of the applied external voltage and the  built-in voltage Vbi which depends on the 

HOMO and LUMO level of the donor and acceptor material as well as on the work function 

of the electrode materials.51 In a previous report, investigating the development of the work 

function in relation to the film thickness for metal oxide layers, it was shown that the work 

function of metal oxides become stable only above a certain layer thickness; for MoOx a 

critical thickness of 𝑙=5 nm was derived.46 Hence, for devices bearing a MoOx layer thickness 

below this critical value an energy level mismatch is observed between the HOMO energy 

level of P3HT and the MoOx work function. As a consequence, such devices require a larger 

effective voltage to reach saturation of the photocurrent while for small Veff the charge 



extraction efficiency is affected by surface recombination due to the lower charge selectivity 

of the anode. 45 

 

(a) (b) 

  

Figure 7. (a) JPh-Veff curves obtained for the pre-annealed solar cell devices (with 𝑙=8 nm) 

showing the derived photocurrent (JPh) and the compensation voltage (V0). (b) Comparison 

between the JPh characteristics for pre-annealed solar cells differing by the respective MoOx 

layer thickness (𝑙=4, 8 or 12 nm). The exponent k derived from the exponential relation Jph ~ 

Veff 
k, is indicated by dashed lines. For devices with a MoOx layer thickness > 8 nm the 

voltage-dependent charge extraction efficiency shows a similar exponential relationship on 

the effective voltage as high-lighted at the inset graph in (b). 

 

In the following, the voltage dependent charge extraction efficiency is discussed as a function 

of the thermal annealing procedure. The comparison between the voltage dependent charge 

extraction efficiency defined as the ratio of Jph(Veff) to Jph(max, Veff = 2.2) observed for pre-

annealed devices is given in Figure 8a and Figure 8b for devices with 𝑙= 4, 8 nm; for 

devices with 𝑙= 12 nm see  Figure S7 in Supplementary Information. With respect to pre-

annealed devices, post- and double-annealed solar cells feature an overall lower photocurrent 



for Veff > 0.1 V. Furthermore, the photocurrent does not saturate for Veff > 0.3 V, but rather 

increases with a constant exponent k ~ 0.2. Hence, for post- and double annealed devices a 

higher internal field (i.e. Veff) is needed to sweep out light-generated charges and to reach the 

saturation regime. Moreover, a similar behavior of the charge extraction efficiency for Veff > 

0.6 V is observed independently of the MoOx layer thickness for post and double-annealed 

devices, as shown in Figure 8c and Figure 8d. 

The dependence of the derived light-generated photocurrent with respect to different 

magnitudes of the effective voltage has been investigated by Mihailetchi et. al,41 showing that 

for small effective voltages Jph can be described by the model proposed by Sokel and 

Hughes,51 while for large Veff the behavior of the photocurrent becomes governed by the 

dissociation probability of the polaron pairs which was developed by Onsager and extended 

later by Braun.49,50 In a different approach based on fundamental statistics of fermions it was 

shown that non-geminate recombination dominate when V~VOC (i.e small Veff) while 

geminate recombination dominates at low applied voltages (V~0 V, or Veff > 0.4 V), i.e at 

high internal electric field.47 Hence, for the pre-annealed solar cell with l=4 nm, the extraction 

of light-generated charges is mainly limited by non-geminate recombination of (free) charge 

carriers at the anode that can be suppressed by increasing the MoOx layer thickness. In 

contrast, for post- and double-annealed devices the behavior of the photocurrent cannot be 

related to the MoOx thickness for Veff > 0.6 V and thus the charge extraction efficiency is 

mainly limited  by geminate recombination that can be only overcome by increasing the 

effective voltage. In the following section we will show how the individual performance 

indicators (VOC, FF and JSC) are affected by the different recombination mechanisms. 
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Figure 8. Charge extraction efficiency of post- and double annealed solar cell devices 

compared to pre-annealed devices with a MoOx layer thickness 𝑙=8 nm (a) and 𝑙=4 nm (b). 

For post- and double-annealed devices the behavior of the charge extraction efficiency differs 

in dependence of the MoOx layer thickness for small Veff but becomes similar for Veff > 0.6 V 

(c, d). Dashed lines correspond to the linear fit values used to evaluate the power law k (Jph ~ 

Veff
k). Vertical dashed lines indicate the bias where Veff equals to Vext = 0 V.  

 

 

 



E. Influence of the MoOx layer thickness and the annealing procedure on the solar cell 

performance indicators  

The results obtained from the JPh-Veff curves allow for a rigid interpretation of the evolution of 

individual performance indicators with the MoOx layer thickness and the annealing procedure. 

The optimum conditions giving the best performance (ηp = 3.4 ± 0.2 %, JSC = 8.5 ± 0.1 

mA/cm2 and FF = 0.66 ± 0.3), correspond to pre-annealed devices with l=8 nm. This result is 

in good agreement with our observations of the voltage dependent charge extraction 

efficiency, which showed an ohmic behavior for Veff < 0.1 while becoming saturated for Veff 

> 0.2 V. However, for devices with a lower MoOx layer thickness (l=4 nm), the JSC increases 

by 3.5% but the FF decreases by -19.7 %, resulting in a significantly lowered PCE (-18%). 

Increasing the MoOx thickness (l=12 nm) results also in a drop of the FF (-6.1%) and to a 

reduction of JSC (-4.7%). The drop of FF is ascribed to the different behavior of the charge 

extraction efficiency within 0.1 V < Veff < 0.3 V (see Figure 7b). This effective voltage 

interval corresponds to an external voltage range of 0.6 V < Vext < 0.4V and thus to the 

interval where FF is derived (see Eq. 1). Interestingly, we find JSC increased for l= 4 nm but 

an opposite trend for devices with l >8 nm and which cannot be explained by the behavior of 

the voltage dependent charge extraction efficiency. In agreement with previous reports we 

attribute the different behavior of JSC in dependence of the MoOx thickness to different series 

and shunt resistance of each respective device, where both resistors were acquired through 

fitting of the JV curve to an equivalent circuit model.23,26,43 The JSC reduction observed for 

post- and double-annealed solar cells and regardless of l, is a consequence of the Jph 

suppression for Veff > 0.1 V which can be explained by geminate charge recombination due to 

a significantly lowered polaron pair dissociation probability.  

To sum up, our results indicate the necessity of accurately optimizing the MoOx layer 

thickness and the annealing-procedure for maximizing the charge carrier extraction efficiency 

and reducing geminate and non-geminate charge recombination. Moreover, the final JSC and 



the FF values are affected differently by varying the MoOx layer thickness or the annealing 

procedure as indicated by the charge recombination mechanism occurring in different voltage 

intervals. 

 

Table 1. Derived performance indicators of solar cells with different MoOx layer 

thicknesses (𝑙) and thermal annealing procedures. Presented results are the average and 

the standard deviation derived from 16 cells for each individual case. 

Annealing procedure 
V

OC
 

[V] 

J
SC  

[mA/cm
2
] 

FF 
ηP 

[%] 

𝒍=4 nm  

Pre-Annealing 
0.59l±0.01 

 
8.8 ± 0.1 0.53 ± 0.03 2.8 ±0.2 

Post-Annealing 0.61 ±0.01 7.4 ± 0.1 0.57 ± 0.01 2.6 ±0.2 

Double-Annealing 0.61 ±0.01 6.3 ± 0.1 0.54 ± 0.01 2.1 ± 0.1 

𝒍=8 nm 

Pre-Annealing 0.60 ±0.01 8.5 ± 0.1 0.66 ± 0.03 3.4 ± 0.2 

Post-Annealing 0.61 ±0.01 6.5 ± 0.1 0.63 ± 0.03 2.5±0.2 

Double-Annealing 0.62 ±0.01 5.4 ± 0.1 0.62 ± 0.02 2.1± 0.1 

𝒍=12 nm 

Pre-Annealing 0.60 ±0.01 8.1 ± 0.1 0.62 ± 0.03 3.0 ± 0.2 

Post-Annealing 0.62 ±0.01 6.4 ± 0.5 0.64 ± 0.02 2.5 ± 0.3 

Double-Annealing 0.62 ±0.01 6.0 ± 0.6 0.64 ± 0.02 2.3 ± 0.3 



IV. Conclusion 

The effect of the MoOx layer thickness and the thermal annealing procedure on the 

performance and charge extraction efficiency has been investigated for the inverted 

ITO/PEI/P3HT:PCBM/MoOx/Ag solar cell structure. In addition, the photoactive layer 

morphology was examined through an original approach combining DCM treatment and 

AFM analysis. Absorbance and photoluminescence measurements have proved the successful 

PCBM removal upon DCM treatment and AFM analysis has shown the formation of circular-

shaped cavities which were ascribed to the partial dissolution of low-MW and regio-random 

P3HT domains present at the BHJ surface. The in-depth chemical and molecular composition 

of the MoOx layer and its interfaces, characterized by XPS and ToF-SIMS, shows the 

presence of a gradient Mo oxidation profile, with a more oxidized layer (~MoO3) at the 

MoOx/Ag interface and a less oxidized state (~MoO) at the P3HT:PCBM/MoOx interface 

possibly due to the different sticking coefficient of oxygen and molybdenum species. 

Interestingly, neither the MoOx oxidation profile nor the (weak) diffusion of the MoOx species 

in P3HT:PCBM are influenced by the thermal annealing procedure. Log-log JPh-Veff curves 

were analyzed to identify the different charge extraction regimes by the respective power law 

fit coefficient k (Jph ~ Veff
k). For the best performing solar cells (pre-annealing and l=8 nm) an 

ohmic regime (k=1) is observed at Veff~VOC followed by a saturation regime (k=0) at Veff > 

0.3 V indicating an optimal carrier sweepout. The reduction of the MoOx layer thickness 

introduces an intermediate charge extraction regime (k=0.28) at 0.2< Veff< 0.5 V. In post- or 

double-annealed solar cells, a similar regime (with k~0.2) is observed for Veff > 0.4 V. 

Intermediate charge extraction regimes occur in different effective voltage ranges, indicating 

for different charge recombination mechanisms and well-explain the JSC and FF reduction for 

non-optimized process conditions. The results clearly indicate that exceeding a minimum 

MoOx layer thickness (~5 nm) and application of an optimized thermal annealing procedure 



(here by the pre-annealing scheme) is mandatory to maximize the charge extraction efficiency 

and thus the overall solar cell performance.  

 

Supporting Information 

The supporting information provides additional experimental results, including AFM images 

for regions below the electrodes, absorbance spectra, XPS depth profiles, TOF-SIMS depth 

profiles and JV curves. 
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