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Summary	

All living organisms must ensure that their DNA will remain protected against stresses. 
Intracellular bacteria are no exception, as they have developed strategies to face DNA 
damaging stresses inside their host cells. One well-known example is oxidative stress, which 
can result from the oxidative burst of macrophages. Another DNA damaging stress that is 
predicted to be encountered by intracellular bacteria is alkylating stress, resulting from the 
peroxidation of lipids, the N-nitrosation of metabolites or the presence of week endogenous 
alkylating agents, such as S-adenosyl-methionine. Despite previous attempts, to our 
knowledge, the occurrence of alkylating stress inside host cells still needs to be 
experimentally demonstrated.  

 
Here, we studied the response of the class III pathogen Brucella abortus inside host 

cells, and we showed, for the first time, that an intracellular bacterium is meeting alkylating 
stress inside its host. Indeed, the construction of a fluorescence-based reporter system 
detecting alkylation events on DNA allowed us to find out that B. abortus is mainly subjected 
to alkylation stress during the first stage of its infection, while it is still residing inside its 
endosomal Brucella-containing vacuole (eBCV) and before to reach its replicative niche, the 
endoplasmic reticulum (rBCV). To go further, and in order to better assess the environment in 
which Brucella is residing inside its host cell, a probe was designed so it could be covalently 
attached at the bacterial surface and report, based on fluorescence emission, the level of N-
nitrosation events occurring inside the eBCV. This technique revealed that N-nitrosation 
events do take place inside this compartment in host cells. However, this reaction was 
innocuous to Brucella. Instead, we found that the alkylating stress felt by the bacterium was 
mainly due to the endogenous formation of N-nitroso compounds, which were produced by 
bacterial metabolism.  

 
Without surprise, the deletion of DNA repair genes was inconclusive in showing an 

attenuation of the bacterium inside host cells, as it was the case for previous reports on other 
intracellular pathogens, such as Mycobacterium tuberculosis. It is thus likely that DNA is 
protected by numerous and redundant DNA repair pathways that ensure that it is protected at 
all times. Most bacteria possess a DNA repair pathway that is specialized in coping with 
alkylated DNA. It is the so-called adaptive system. Interestingly, B. abortus does not possess 
a functional adaptive system. Instead, we found that this bacterium is relying on its SOS 
system, as well as on the essential and well-conserved transcription factor GcrA to regulate a 
series of genes involved in DNA repair.  
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Introduction	

I. Alkylating stress 

I.1.	What	is	alkylating	stress?		

I.1.1.	What	are	the	effects	of	alkylating	stress?		

 
Alkylation is a chemical reaction that consists on the transfer of an alkyl group from one 

molecule to another. As alkyl groups are characterized by the formula CnH2n+1, their simplest 
form is a CH3 methyl group, with n =1. Therefore, on DNA, alkylating stress typically results 
in aberrant methylation patterns, even if more complicated adducts do exist. Any atomic 
positions of DNA can be targeted and the consequences of the modifications range from 
innocuous to mutagenic or cytotoxic (Fig 1A) (Beranek, 1990; Fu et al., 2012; Mielecki et al., 
2015). Alkylating stress is therefore very different from epigenetic methylation, which targets 
specific position on DNA. In that regard, there exists a report of alkylating stress leading to 
modification in gene expression, probably via the recognition of the alkyl adducts as 
epigenetic markers (Di Pasquale et al., 2016). The effects of alkylating agents on other 
biomolecules, such as proteins, is less studied but they are known to occur (Boffa & 
Bolognesi, 1985). Importantly, in humans, alkylating agents can eventually lead to cancer but 
they are also used to treat cancer (Fu et al., 2012). 

 
Any base of DNA can be affected by alkylating agents and even the ribose-

phosphodiester backbone is also susceptible to modification and breakage (Fig 1A) (Wyatt & 
Pittman, 2006). Note that guanine is disproportionately damaged (Fig 1B). This is because of 
its lower reduction potential, compared to other bases (Candeias & Steenken, 1993). 
Chemical alkylating agents have been extensively used to study the effect of alkylating stress 
on DNA. The most common agents are methyl methane sulfonate (MMS), dimethyl sulfate 
(DMS), N-methyl-N-nitrosourea (MNU) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) 
(Wyatt & Pittman, 2006). Alkylating agents are usually classified into two categories, 
depending on their reaction mechanism. SN1 agents react with biomolecule in two main steps 
via a unimolecular nucleophilic substitution, while SN2 agents react in one step with the rate-
limiting step involving two reactive species (Smith & March, 2007) (Fig 1C). MMS and 
DMS are SN2-type agents, while MNNG and MNU are considered as SN1-type agents. 
Incidentally, there have been discussions about the real classification of MNNG, which could 
belong to a third category termed “oxyphilic”, as it does not generate a methyl carbocation 
(+CH3) but instead a methyl-diazonium cation (CH3–+N N) (Loechler, 1994). There also 
exist alkylating agents that belong to both SN1 and SN2 categories, such as ethyl methane 
sulfonate (EMS) (Hoffmann, 1980).  

 
According to their category, alkylating agents will react differentially with nitrogen and 

oxygen adducts. O-methyl adducts (O6meG in particular) have been pointed as more toxic and 



Fig 2. Products of lipid peroxidation. A) Polyunsaturated fatty acids (PUFA) get 
peroxidated when ROS or RNS are present in the cells. The initiation step starts 
when an oxidant abstract an H atom from the lipid. The reactive lipid that is formed 
by this reaction then reacts with oxygen during the propagation stage, leading to the 
cyclization of the molecule. More cyclization steps can arise, depending on the 
number of double bonds of the PUFA. Eventually, the termination of the process 
happens through the reaction of the molecule with another radical, or via the action 
of an antioxidant. Once stabilized, the terminal lipid can actually undergo further 
rearrangements to get reduced to an alcohol or to be sliced in several small other 
molecules, such as HNE, which can react with other biomolecules. B) Chemical 
reaction between HNE and guanine (Winczura et al., 2012). C) Examples of 
exocyclic DNA adducts generated by lipid peroxidation (Tudek et al., 2017). 

A	 B	

C	
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mutagenic than N-methyl adducts (Wyatt & Pittman, 2006). One thing to take into account is 
the state of DNA, i.e. if it is in its double stranded form (dsDNA) or in its single stranded 
form (ssDNA) when it gets alkylated. Indeed, some positions of DNA are protected by 
hydrogen bonding in dsDNA. It is the case of N1-adenine (1meA) and N3-cytosine (3meC), 
which are much more present in ssDNA (Fig 1B) (Mielecki et al., 2015). As they possess an 
extra pair of electron, the occurrence of O-methyl adducts that also participate in the 
hydrogen bonding (O6meG, O2meC and O4meT) is not particularly affected by the state of 
DNA (Bodell & Singer, 1979). As for the N3 or N7 positions of purines, they destabilize the 
N-glycosidic bond, so they make the modified bases more susceptible to being hydrolyzed 
into an abasic site (Osborne & Phillips, 2000). Lastly, note that methylphosphotriesters 
(mePtriesters), which arise after alkylating stress on DNA sugar-phosphate backbone, are 
much more present with SN1 agents than with SN2 agents (Fig 1B) (Maxam & Gilbert, 1980). 
These adducts have long been considered as innocuous, but they have recently been 
demonstrated to be mutagenic and slightly cytotoxic, depending on their diastereomer 
conformation (Wu et al., 2018).  

I.1.2.	What	are	the	natural	sources	of	alkylating	agents?	

 
Alkylating agents are ubiquitous, due to their presence in the environment via tobacco 

smoke and fuel combustion products, for example (Hecht, 1999). They also have endogenous 
and dietary sources (Catsburg et al., 2014; Zhu et al., 2014). Inside an organism, there exist 
three sources of generation of alkylating agents. The first one is the intracellular S-
adenosylmethionine (SAM). This coenzyme is found in all living organisms and it is involved 
in three key metabolic pathways: transmethylation, transsulfuration, and polyamine synthesis 
(Lu, 2000). In bacteria, it is also a precursor of two quorum sensing molecules that are 
involved in the virulence of several gram-negative pathogens (Zano et al., 2013). As a methyl 
donor, SAM can target DNA, RNA, proteins, phospholipids and even neurotransmitters 
(Fontecave et al., 2004). One protein that is dependent on SAM and that is very important in 
α-proteobacteria is the methyltransferase CcrM, itself involved in epigenetic methylation 
(Berdis et al., 1998). Since one of the functions of SAM is to give methyl groups to other 
molecules, it is logical that it is also an alkylating agent. Its mechanism of action as such is 
similar to MMS, with a SN2 type of reaction (Naslund et al., 1983). Nevertheless, compared 
to MMS, it is 100 times less reactive with cysteine (Naslund et al., 1983) and 1000-3000 
times less reactive with DNA (Rydberg & Lindahl, 1982). Its concentration inside eukaryotic 
cells has been evaluated to correspond to the continuous exposure of cells to 20 nM of MMS, 
which could cause weak endogenous alkylating damage (Rydberg & Lindahl, 1982). 
However, in some bacteria, SAM could be innocuous. Indeed, a 100-fold range of SAM 
levels was achieved experimentally without causing any change in the mutation rate of E. coli 
(Posnick & Samson, 1999). 

 
The second source of alkylating agents are the reactive alkyls that are created by the 

peroxidation of lipids. Lipid peroxidation occurs when the cells encounter oxidative or 
nitrosative stress (Fig 2A). Importantly, lipid peroxidation occurs on polyunsaturated fatty 



N-Nitroso-N-methylurea 
(MNU) 

Fig 3. Generation of N-nitroso compounds. In presence of N2O3, secondary amines 
or amides (such as the precursor of MNU) can get nitrosated. This reaction is 
greatly favored in acidic conditions. If the N-nitroso compound possesses an alkyl 
group, as with MNU, it can act as a direct alkylating agent. If not, the N-nitroso 
compound will become an alkylating agents only after metabolic activation (see 
main text for details). 
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acids (PUFA) only, as they possess several double bonds (Bielski et al., 1983; Winczura et 
al., 2012) (Fig 2A). These particular alkylating agents can generate exocyclic etheno- or 
propano-adducts on DNA, but the formation of these adducts in vivo is not completely clear 
yet (Tudek et al., 2017). Two major lipid peroxidation products are malondialdehyde (MDA) 
and 4-hydroxy-2-nonenal (HNE). MDA forms mainly M1dG, which are the equivalent of 3-
(2-deoxy-β-D-erythro-pentofuranosyl)pyrimido-[1,2α]purine-10(3H)-one DNA adducts 
(Fig 2C) (Tudek et al., 2017). As for HNE, it can generate bulky adducts (Fig 2B, C) or, in its 
epoxide form, simple etheno adducts such as 1,N2-εdG (Fig 2C). Some exocyclic adducts can 
undergo spontaneous rearrangements into a ring-opened conformation, which can lead to the 
formation of abasic sites (AP sites) on DNA (Tudek et al., 2017). Exocyclic adducts can also 
generate inter- and intra-strand DNA-DNA crosslinks, as well as DNA-protein crosslinks 
(Tudek et al., 2017). Typically, simple unsubsituted etheno-adducts are slightly mutagenic 
and cytotoxic in bacteria thanks to efficient DNA repair, whereas large substituted adducts are 
a strong barrier for replication (Pandya et al., 2000; Winczura et al., 2012; Tudek et al., 
2017). Considering that bacteria are very poor in such fatty acids, and contain mainly mono-
unsaturated and saturated fatty acids, it is considered that they face marginal lipid-derived 
alkylating stress (Bielski et al., 1983; Nichols & McMeekin, 2002). Borrelia burgdorferi is 
the exception that proves the rule as it acquires PUFA from its eukaryotic host, which makes 
the bacterium vulnerable to lipid peroxidation (Boylan et al., 2008).  

 
The third source of alkylating agents is the generation of N-nitroso compounds. These 

compounds are produced when metabolites containing a secondary amine or an amide group 
meet N2O3, following oxidative and nitrosative stress. Importantly, this reaction mainly takes 
place under acidic pH (Fig 3). One example of N-nitroso compound generation is the 
formation of MNU by the nitrosation of methylurea, itself the result of the condensation 
between the catabolite methylamine and carbamyl phosphate, a precursor of pyrimidines. 
MNNG could apparently also be produced naturally (Vaughan et al., 1993). Interestingly, 
amino acids can also undergo N-nitrosation (Shephard et al., 1987; Ulusoy et al., 2016). 
Tryptophan is the most reactive amino acids and it is a potent alkylating agent (Shephard et 
al., 1987; Ulusoy et al., 2016). As for the non-mutagenic N-nitrosoproline, it can transfer its 
nitroso group to thiourea under acidic conditions and transform it into MNU (Inami et al., 
2015). Polyamines, such as spermidine, can also be N-nitrosated into alkylating agents 
(Sedgwick, 1997). Note that many N-nitroso compounds are not direct alkylating agents and 
require metabolic activation. The cytochrome P450 proteins have been found to play a major 
role in their biotransformation (Guttenplan, 1987), but alternative pathways of activation also 
exist, such as through the action of the alcohol dehydrogenase enzyme (Eisenbrand et al., 
1984). Oxidation of the N-nitroso compounds by hydroxyl radicals can also activate the 
mutagenic potential of some compounds (Mestankova et al., 2014). Note that it is also the 
case of photo-activation in presence of phosphate or carboxylate, such as citrate or succinate 
(Arimoto-Kobayashi & Hayatsu, 1998).  

 
In E. coli, the majority of the spontaneous mutations are generated via the endogenous 

formation of N–nitroso compounds (Mackay et al., 1994; Taverna & Sedgwick, 1996). 



Fig 4. Pathway for molybdenum cofactors biosynthesis in E. coli. MoaA is the first enzyme 
of this pathway and its role is to catalyze the insertion of a purine carbon into the ribose of 
GTP. Note that this purine comes from a S-adenosylmethionine (SAM) molecule. In fine, 
three types of cofactors can be formed: the MoO2-molybdopterin cofactor, the guanylyl 
molybdenum cofactor (on the left) and the cytidylyl molybdenum cofactor (on the right). 
Those three cofactors are required by diverse enzymes, among which nitrate reductases and 
periplasmic methionine sulfoxide reductase (involved in the protection of periplasmic 
proteins from oxidative damage) (Leimkühler, 2017). 
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Bacteria are particular in the sense that they can perform N-nitrosation at physiological pH 
(Calmels et al., 1985). Indeed, it has been reported that under anaerobic conditions, even at 
neutral pH, the catalysis of amine nitrosation by E. coli is happening through a side reaction 
of nitrate reductase enzymes (Taverna & Sedgwick, 1996). Three E. coli mutants have been 
shown to be deficient in nitrosation: (1) narG encoding the catalytic subunit of nitrate 
reductase A, (2) fnr encoding a pleotropic activator that influences the expression of the 
narGHIJ operon, and (3) moa genes, involved in the synthesis of the molybdenum cofactor 
(Fig 4), which is required by nitrate reductase enzymes (Calmels et al., 1988; Ralt et al., 
1988; Taverna & Sedgwick, 1996; Leimkühler, 2017). Note that in the case of Pseudomonas 
aeruginosa, nitrite reductase activity seems to be the key to N-nitrosation reaction (Calmels et 
al., 1988). Pseudomonas denitrificans has an even more complex mechanism of generation of 
N-nitroso compounds, as it is apparently dependent on nitrate reductase activity, but 
modulated negatively by high nitrite concentrations (Calmels et al., 1988). In conclusion, the 
study of N-nitrosation in bacteria is very complex, as results differ even among the same 
genera. One common finding is that N-nitrosation reactions typically occur under anaerobic 
conditions, not because this reaction is inhibited by oxygen, but most probably because the 
enzymes responsible for N-nitrosation reactions are induced upon oxygen deprivation (Ralt et 
al., 1988).   

 

 

I.2.	DNA	repair	pathways	involved	in	alkylated	DNA	repair	

I.2.1.	The	adaptive	response		

 
In the late 70’s, a specific response to alkylating stress was described in vitro for E. coli 

(Samson & Cairns, 1977). This system was called “adaptive response” and it is based on the 
detection, by the Ada protein, of a meP3ester modification on DNA (McCarthy et al., 1983). 
If meP3esters are the triggering adducts for the activation of this system, it is probably 
because they are not very frequent, hence their presence denotes the presence of a persisting 
alkylating stress (Friedberg et al., 1995). In E. coli, ada is stochastically expressed to produce 
on average only one Ada protein per generation (Uphoff et al., 2016). The detected meP3ester 
group is captured on the cysteine 38 (C38) residue of Ada, which becomes active as a 
transcription factor, upregulating the expression of a series of genes coding for proteins 
dedicated to the repair of alkylated DNA. These proteins comprise Ada itself, AlkB, AlkA 
and AidB (Fig 5A).  

Alkylating agents can damage DNA, resulting in innocuous, mutagenic or cytotoxic 
modifications. The three sources of natural alkylating agents are (1) SAM, (2) lipid 
peroxidation and (3) N-nitrosation of metabolites. In eukaryotic cells, N-nitrosation 
reactions occur in the presence of acidic pH and N2O3. Bacteria can also perform N-
nitrosation reactions at physiological pH, typically via a side activity of nitrate 
reductase enzymes.  
 



Fig 5. DNA repair pathways activated by the adaptive response in E. coli. A) 
Regulon of E. coli Ada proteins and targeted DNA adducts. MPT stands for 
methylphosphotriester (adapted from Mielecki et al., 2014). B) Base excision repair 
pathway: (1) a DNA glycosylase, such as TagA or AlkA, removes the damaged base 
but leaves the ribose in place, creating an AP site; (2) an AP endonuclease cuts 
DNA on its 5’ side; (3) a DNA deoxyribophosphodiesterase (dRPase) free the sugar 
on its 3’ side; (4) the single strand break is repaired by the DNA polymerase I and 
by (5) a DNA ligase. C) Direct repair by AlkB. In presence of Fe2+, the 
dioxygenase AlkB can catalyze the hydroxylation of the methyl group, which leads 
to the restoration of the native base.   
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In addition to its role as a transcription factor, Ada can also directly repair O6meG and 

O4meT via the capture of the methyl group on its C321 residue. As for the dioxygenase AlkB, 
it is involved in the direct repair of the mutagenic lesions 1meA and 3meC (Fig 5C), as well 
as several etheno adducts repair (Zdzalik et al., 2015). The DNA glycosylase AlkA removes 
the most cytotoxic lesion 3meA via the base excision repair (BER) pathway (see Fig 5B for 
details on the pathway) (Lindahl et al., 1988). Regarding the aidB gene, it is known that it is 
also overexpressed by the adaptive response, but its function still remains elusive. The current 
hypothesis is that AidB is involved in protecting specific sequences of DNA and destroying 
alkylating agents before they reach DNA (Bowles et al., 2008; Rippa et al., 2011). Note that 
the expression of ada is also upregulated by 20-fold via RpoS (σS) during the transition from 
the exponential to the stationary phases of growth (Taverna & Sedgwick, 1996). In contrast, 
the Ada protein can be induced in vitro by as much as 1000-fold upon exposure of E. coli to 
alkylating agents (Taverna & Sedgwick, 1996). At all times, there are also two proteins 
constitutively produced and independent of the adaptive system, which assure the protection 
of DNA from endogenous alkylating agents. These are the direct repair protein Ogt, which 
has a C139 residue with similar function than the C321 of Ada, and the BER glycosylase 
TagA, which is functionally similar to AlkA (Fig 5B) (Lindahl et al., 1988).  

 
Importantly, the Adaptive response is well conserved in the prokaryotic world, but the 

regulon of Ada can be different following the bacterial genera and species (Mielecki et al., 
2015). For example, in Pseudomonas putida, the expression of alkB is not regulated by the 
Ada response but constitutively (Mielecki et al., 2013). As for Mycobacterium tuberculosis, 
its ada gene has been split into two, with one gene (adaA) that is fused to alkA (Yang et al., 
2011). In this bacterium, both ada genes are inducible by more than 15 fold, but alkB and 
aidB can be only moderately upregulated by 2.6 and 1.6 times, respectively (Yang et al., 
2011). In the case of Salmonella enterica serovar Typhimurium, the Ada regulon is organized 
as in E. coli, but the bacterium is unable to adapt to challenging doses of MNNG (Hakura et 
al., 1991). 

I.2.2.	The	SOS	response	

 
Other DNA repair pathways can be involved in repairing alkylated DNA. For example, 

it is known that the SOS pathway, mediated by LexA, is activated early following alkylating 
stress, before the adaptive response is activated to limit mutagenesis (Uphoff, 2018). If the 
BER pathway is impaired or insufficient, the SOS response is even more important. Indeed, in 
this case, at the population level, the activation of the SOS response occurs at even lower 
doses of alkylating agent because of the accumulation of cytotoxic lesions that are taken care 
of by homologous recombination (Costa de Oliveira et al., 1987).  
 

Under non-stressing conditions, E. coli contains about 1300 molecules of LexA 
(Sassanfar & Roberts, 1990). LexA is a dimeric repressor for the expression of about 50 
genes, which are recognized by the transcription factor at the so-called “SOS-box sequences” 
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Fig 6. Activation of the SOS system in E. coli. In absence of genotoxic stress, most dimers 
of LexA bind to SOS-boxes on DNA in promoter regions, which prevents the recruitment of 
RNA polymerase and thus transcription of the target genes. Upon genotoxic stress, RecA 
accumulates on ssDNA and becomes competent for its co-protease activity (*) on unbound 
LexA. Cleaved LexA products are rapidly degraded by the ClpXP and Lon proteases, 
leading to the decrease of the LexA pool. This results in the active transcription of SOS 
genes, amongst which there are many genes involved in DNA repair (recA, uvrA, ruvA, 
dnaE, dinB, umuD, etc). One of the first promoters to be free from LexA is the promoter of 
lexA itself. This leads to the production of LexA proteins, which are rapidly degraded. 
Nevertheless, when the SOS response needs to be shut off, the production of sufficient LexA 
proteins is swift. DD stands for dimerization domain and DBD stands for DNA binding 
domain (based on Butala et al., 2011).  
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in their promoter (Courcelle et al., 2001; Wade et al., 2005). Most LexA proteins are bound to 
DNA, but they can dissociate and reassociate to DNA, so that 20 % of the proteins are also 
found free (Mohana-Borges et al., 2000). When the bacteria encounter genotoxic stresses, 
RecA proteins are recruited on single stranded DNA (ssDNA) and change their conformation 
to acquire a RecA* activity, which promotes the auto-cleavage of LexA (Little, 1991; Butala 
et al., 2011). Eventually, the pool of LexA proteins decreases and gene expression gets 
derepressed (Fig 6) (Courcelle et al., 2001). Promoters are not equal in the timing of LexA 
unbinding. Indeed, two criteria are involved in LexA affinity for a given promoter: (1) the 
number of mismatches away from a perfect palindromic TACTG(TA)5CAGTA SOS-box and 
(2) the pattern of mismatches (Janion, 2008; Zhang et al., 2010). This results in the temporal 
ordering of gene expression, with genes separated into subsets of early, middle and late 
categories.  

 
Interestingly, the early accumulation of LexA is a sign of SOS response activation, 

because lexA itself is part of its early regulon, so that the response can be stopped eventually 
(Little & Mount, 1982). Apart from the constitutively expressed DNA replicating polymerase 
III, three other DNA polymerases are regulated by the SOS response. Actually, the expression 
of polB, coding for the proofreading DNA polymerase II and of dinB, coding for the error-
prone DNA polymerase IV are increased relatively early upon LexA cleavage as they belong 
to the middle category (Little & Mount, 1982; Iwasaki et al., 1990; Janion, 2008). 
Conversely, the expression of umuDC, coding for the most error-prone DNA polymerase V 
occurs in late SOS-induced cells (Little & Mount, 1982; Fernandez De Henestrosa et al., 
2000; Janion, 2008). It is believed that this sequential timing of gene induction allows the 
bacterium to first facilitate a non-mutagenic response, before to eventually use a more 
extreme survival strategy (Simmons et al., 2008).  

 
Very recently, this model of SOS genes activation has been improved by taking into 

account the fact that the dose of DNA damage is also strongly impacting the response. 
Actually, the activation pattern of the SOS network changes according to the relative gene 
induction, but also in terms of the relative timing of peak activation for each gene, which 
changes with damage importance (Culyba et al., 2018). One typical example is the gene sulA, 
coding for a cell division inhibitor, and belonging to the category of late stage genes, like 
umuDC. Under highly stressing conditions, the promoter of sulA is strongly activated, but 
late, with a maximum activity after 90 minutes. At the opposite, under lower stressing 
conditions, such as UV doses 100 times less aggressive, the maximal activity of the promoter 
is about 10 times weaker, but it is reached much faster as it takes about 25 minutes (Culyba et 
al., 2018). This dual response to stress is probably part of the explanation for how E. coli 
induces the expression of dinB and umuDC, coding for the translesion DNA polymerases, 
very early against exogenous DNA alkylation damage (Uphoff, 2018). This way, bacteria 
prioritize the continuation of DNA replication over the potential harmful effects of 
mutagenesis (Uphoff, 2018). Note that this response is viable because the constitutively 
produced TagA is present to cope with the most cytotoxic lesions at the same time (Uphoff, 
2018). 



Fig 7. Models for homologous recombination in E. coli. At gaps, the 5′ single-stranded 
(ssDNA) exonuclease RecJ increases the size of the ssDNA region, then RecF, RecO and 
RecR promote the binding of RecA on ssDNA, which is covered by single strand binding 
proteins. In the case of double strand breaks, the RecBCD complex (replaced by AddAB in 
some bacteria, such as in B. abortus) degrades DNA until it finds a Chi site. It then forms 3′-
ended ssDNA where RecA can be recruited. The homology search and strand exchange 
steps are then performed by RecA, which forms a Holliday junction (i.e a “X” structure). 
The resolution of the Holliday junctions are possible through the action of RuvC, which first 
requires a branch migration performed by RuvAB or RecG. Note that the RecBCD-
mediated recombination is always coupled with PriA-dependent replication restart (Rocha et 
al., 2005) 
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Interestingly, in α-proteobacteria, the SOS boxes are not palindromic, but composed of 

direct repeats: GTTC-N7-GTTC and its reverse and complementary sequence GAAC-N7-
GAAC (Fernandez de Henestrosa et al., 1998; Tapias & Barbe, 1998; Erill et al., 2004). In 
addition, a few genes have been found to be downregulated upon the activation of the SOS 
system in α-proteobacteria (Tapias et al., 2002; da Rocha et al., 2008). Therefore, the mode 
of action of LexA in α-proteobacteria could be quite different than what is observed in E. 
coli. One hypothesis is that, instead of blocking the access of the RNA polymerase to the 
promoter region, LexA can recruit the polymerase, but represses transcription by interfering 
with its clearance process. Indeed, under high LexA concentrations only, the RNA 
polymerase is stalled at the + 5 region in Rhodobacter sphaeroides recA promoter (Tapias et 
al., 2002).  

 
The regulon of LexA in α-proteobacteria has been determined for the model bacterium 

Caulobacter crescentus only (da Rocha et al., 2008), but an earlier study proposed that the 
core SOS regulon of α-proteobacteria is composed of lexA, recA, ssb, uvrA, ruvC, dnaE, dinB 
(coding for the error-prone DNA polymerase IV), imuA (previously known as sulA1, and 
coding for a subunit of another error-prone DNA polymerase (Galhardo et al., 2005)), parE, 
ispE (but it seems to be wrongly annotated in the paper, as the given ORF correspond to 
another gene coding for a transporter), comM (absent in Brucella species) and rmuC 
(previously known as yigN) (Erill et al., 2004). Note that in C. crescentus, the promoter of 
tagA, coding for an enzyme performing alkylated DNA repair, is regulated by LexA (da 
Rocha et al., 2008), whereas it is proposed to be regulated by CtrA in Brucella abortus 
(Francis et al., 2017). 

I.2.3.	Homologous	recombination	

 
The adaptive response typically regulates the BER and direct repair pathways (Lindahl 

et al., 1988), whereas the SOS system is in charge of homologous recombination, nucleotide 
excision repair (NER) and translesion synthesis (TLS) (Baharoglu & Mazel, 2014). RecA 
itself is involved in homologous recombination and in the SOS response, but also in 
stimulating the activity of AlkB by physically interacting with the dioxygenase (Shivange et 
al., 2016).  

 
In the case of alkylating stress, homologous recombination has been shown to be very 

important (Nowosielska et al., 2006). Homologous recombination is a process that exists in 
all forms of life and that allows high-fidelity repair of DNA damage in a template-dependent 
way (Rocha et al., 2005). In bacteria, the two major homologous recombination pathways are 
RecBCD, which processes double-stand breaks (Kuzminov & Stahl, 1999), and RecFOR, 
which processes single-strand gaps (Morimatsu & Kowalczykowski, 2003) (Fig 7). Both 
pathways have been found to be required during alkylating stress (Nowosielska et al., 2006). 
Indeed, single-strand gaps are produced by the AP endonuclease of the BER pathway, as well 
as by DNA replication at blocking lesions. Then, if replication occurs before successful 



Fig 9. Model for mismatch repair in E. 
coli. The MutS proteins are in charge of 
scanning the genome until they detect 
mismatched bases. In E. coli, mismatch 
repair is methyl-directed. Indeed, MutH 
is able to discern the methylated 
parental DNA strand from the non-
methylated newly synthetized DNA 
strand. Therefore, when MutH is 
recruited by MutL, it nicks specifically 
the non-methylated strand. The UvrD 
helicase is then recruited to separate the 
two strands and push the MutSLH 
complex toward the mismatch. 
Depending on the localization of the 
mismatch, different exonucleases can 
digest the ssDNA trail. Note that the 
leftover ssDNA gets coated with single 
strand binding (SSB) proteins until the 
gap is repaired by the DNA polymerase 
III and a DNA ligase. 

Fig 8. Model for nucleotide 
excision repair in E. coli. (1-2) 
B u l k y l e s i o n s ( s u c h a s 
p y r i m i d i n e d i m e r s ) a r e   
recognized by UvrA, which is in 
complex with UvrB. (3-4) UvrA 
is then replaced by UvrC, which 
cleaves a phosphodiester bond 8 
nucleotides upstream of the 
damage, while UvrB cleaves a 
p h o s p h o d i e s t e r b o n d 4 
nucleotides downstream of the 
damage. (5) A fragment of 12 
nucleotide is thus removed with 
the help of the UvrD helicase. 
(6-7) The gap is eventually filled 
with the action of the DNA 
polymerase I and a DNA ligase. 
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repair, single-strand gaps get converted into double strands breaks (Nowosielska et al., 2006). 
Note that some bacteria, such as B. abortus and C. crescentus, do not possess a RecBCD 
complex, but instead use an AddAB system, which is considered as functionally equivalent 
(Martins-Pinheiro et al., 2007; Wigley, 2013).  

 
As homologous recombination requires the presence of a template, this DNA repair 

pathway only works during the S phase (characterized by ongoing replication) and G2 phase 
(with fully replicated DNA) of the cell cycle. At the opposite, the non-homologous end 
joining pathway can work at all stages of the cell cycle (Mao et al., 2008). However, this 
pathway is absent in most bacterial species, including E. coli, C. crescentus and B. abortus 
(Weller et al., 2002; Martins-Pinheiro et al., 2007). Nevertheless, it exists in M. tuberculosis 
and Bacillus subtilis (Weller et al., 2002; Gong et al., 2005), but the relevance of this pathway 
against alkylating stress on these bacteria has not been investigated. 

I.2.4.	Nucleotide	excision	repair	

 
NER relies on the four Uvr proteins: UvrA, UvrB, UvrC, and UvrD (also known as 

DNA helicase II). This pathway is taking care of bulky lesion on DNA. Briefly, UvrA and 
UvrB are charged of scanning the genome until UvrA detects a distortion in DNA, such as 
pyrimidine dimers. UvrA is then replaced by UvrC and the UvrBC dimer cleaves DNA on 
phosphodiester bonds of both sides of the damage. UvrD then breaks the hydrogen bonds 
between the complementary bases and a segment of 12 nucleotides is removed. New DNA is 
synthetized by DNA polymerase I to fill the gap and the repair process finishes with a DNA 
ligase (Truglio et al., 2006) (Fig 8). Importantly, NER can be coupled to transcription via the 
ATPase TRCF (also called Mfd), which removes the stalled RNA polymerase and also 
recruits UvrA (Deaconescu et al., 2006).  

 
Regarding alkylating stress, NER is necessary when adducts are large and distort DNA. 

It is for example the case of ethyl adducts (Nakano et al., 2017) or interstrand cross-links, 
which are caused by bi-functional alkylating agents or following lipid peroxidation (Kondo et 
al., 2010; Tudek et al., 2017). Interestingly, the NER pathway also contributes to the 
cytotoxic and mutagenic O6meG lesion repair during the first hours after alkylating stress in 
E. coli, before the adaptive response can be fully induced (Samson et al., 1988). 

I.2.5.	Mismatch	repair	

 
Mismatch repair (MR) is charged of editing replication errors. The MR system, 

composed of MutH, MutL and MutS proteins, is dependent on the Dam-related methylation 
status of E. coli DNA. Indeed, in this γ-proteobacterium, MutH is able to discern the parental 
DNA strand (that serves as template) from the newly synthesized one by recognizing the non-
methylated state of the new DNA (Yamaguchi et al., 1998; Kunkel & Erie, 2005). Thus, after 
MutS has detected the distortion in the helix caused by a base mismatch, MutL is recruited to 
allow the interaction between MutS and MutH. MutH then nicks the mutated and non-
methylated strand, and the UvrD helicase is recruited by MutL to separate the two strands and 
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Fig 10. Models for MutM functions. A) repair of 8-oxoguanine, a highly mutagenic base 
analog, either as a constituent of DNA (8-oxodG/GO) or when present as a deoxynucleoside 
triphosphate (8-oxodGTP). The MutM protein is a DNA glycosylase that can initiates base 
excision repair (BER) of 8-oxodG when it is paired with a C. If left unrepaired, 8-oxodG 
can be mispaired with a A by replication events. In this case, the MutY DNA glycosylase 
can remove the A. There also exists a MutT protein, which hydrolyzes 8-oxodGTP to 8-
oxodGMP and pyrophosphate in order to prevent its incorporation into DNA (image adapted 
from http://cmgm.stanford.edu/biochem201/Slides/DNA%20Repair/). B) MutM can also 
repair Fapy-7meG adducts. Upon alkylating stress, 7meG adducts can be formed. They are 
considered as innocuous. Nevertheless, they can (a) destabilize the N-glycosidic bond, 
which leads to spontaneous depurination of this lesion and the resulting toxic AP sites, or (b)  
manifest toxicity by converting into their toxic and slightly mutagenic imidazole ring-
opened form, which are the Fapy-7meG adducts. Note that MutM is also known under the 
name of Fpg (formamidopyrimidine-DNA glycosylase). R stands for methyl in this example 
(image adapted from https://ars.els-cdn.com/content/image/1-s2.0-S0007455115305518-
gr4.jpg). 
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push the MutSLH complex toward the mismatch. An exonuclease digest the resulting ssDNA 
trail and the leftover ssDNA gets coated with single strand binding (SSB) proteins. The gap is 
later repaired by the DNA polymerase III and a ligase (Kunkel & Erie, 2005) (Fig 9). In B. 
abortus and other α-proteobacteria, a gene homologous to mutH is missing (Martins-Pinheiro 
et al., 2007; Guarne, 2012). However, it has been proposed that in such a case, MutL is able 
to also perform the MutH function (Kadyrov et al., 2006; Pillon et al., 2010).  

 
In eukaryotic cells, O6meG:T mispairs have been demonstrated to be recognized by the 

MR system, but this results in futile cycles of repair, as the alkyl adducts remain in the 
template (Lips & Kaina, 2001). This leads to the formation of single strand breaks, and then 
double stand breaks and apoptosis (Kondo et al., 2010; Li et al., 2016). MR proteins have also 
been found to be recruited in the presence of alkylation DNA damage in bacteria (Taira et al., 
2008; Nakano et al., 2017; Uphoff, 2018). In E. coli, O6meG:T mispairs are efficiently 
repaired by the MR system (Taira et al., 2008). However, E. coli MR pathway can generate 
futile cycles of repair following O4meT:A detection, by either re-pairing the modified T with 
a A, or with a G (Nakano et al., 2017). In addition, during replication, O4meT is mistaken for 
a C, which leads to the incorporation of a G. Considering that E. coli MR MutS protein is less 
able to recognize O4meT:G than O4meT:A, AT-to-GC mutagenesis is enhanced (Nakano et 
al., 2017).  

I.2.6.	The	MutM	DNA	glycosylase	

 
The MutM enzyme, also known as Fpg, is best known for its role in 8-Oxo-2'-

deoxyguanosine (8-oxodG) repair. The 8-oxodG adducts are the major products of DNA 
oxidation and they have ambiguous base-pairing properties, as they get paired with either A 
or C during DNA synthesis. There exist three enzymes dedicated to protect the cells against 
those adducts: (1) the MutM enzyme, which is a DNA glycosylase of the BER pathway; (2) 
MutY, which is also a DNA glycosylase; and (3) MutT, which is necessary if the oxidized 
base is present as a deoxynucleoside triphosphate (8-oxodGTP). Indeed, MutT can hydrolyze 
8-oxodGTP, thus preventing its incorporation into DNA (Fig 10A) (Fowler et al., 2003).  

 
What is less known about MutM is that is it also involved in alkylated DNA repair. 

First, is has been found to be able to remove Fapy-7meG, which are 7meG with alkali-opened 
imidazole rings (formamidopyrimidines) (Fig 10B) (Chetsanga et al., 1981). It is also able to 
remove the ring-opened derivative of the etheno adduct 1,N6-ethenoadenine (εdA), which is 
called “product B” (Speina et al., 2001).  
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I.3.	Is	alkylating	stress	relevant	for	intracellular	bacteria?		
 

One question that remains about alkylating stress is whether it is occurring on bacteria 
that infected host cells. Macrophages and neutrophils are known to produce N-nitroso 
compounds, some of which are direct alkylating agents (Iyengar et al., 1987; Miwa et al., 
1987; Grisham et al., 1992; Vermeer et al., 2004). However, the occurrence of this stress on 
intracellular bacteria has never been proven. The production of N-nitroso compounds by 
eukaryotic cells is dependent on acidic pH and high intracellular RNS concentration, as they 
lead to N2O3 formation (Fig 3) (Iyengar et al., 1987; Ohshima et al., 1991). Moreover, it is 
also known that bacterial membranes have a higher permeability for some alkylating agents 
when they are in an acidic environment (Guttenplan & Milstein, 1982). It has been 
hypothesized that N-nitroso compounds could be differentially produced in subcellular 
compartments (Espey et al., 2001), so one could wonder if vacuoles containing bacteria are 
also prone to accumulating such compounds. Indeed, many intracellular bacteria first transit 
through an endosomal-derived vacuole, before reaching their replicative compartment (Kumar 
& Valdivia, 2009).  

 
Importantly, the endogenous production of N-nitroso compounds is known to be more 

important in anaerobic and resting E. coli (Kunisaki & Hayashi, 1979). It has been shown that 
Ogt plays a major role in coping with alkylating stress under such conditions (Rebeck & 
Samson, 1991; Mackay et al., 1994). As a reminder, the catalysis of amine and amides 
nitrosation by E. coli is happening through a side reaction of nitrate reductase enzymes 
(Taverna & Sedgwick, 1996).  
 

There exist a very few papers on the potential detection of alkylating stress on bacteria 
during infection. Importantly, those studies were all based on DNA repair deletant mutants 
and were inconclusive as for the existence of the stress inside host cells. It is for example the 
case of Mycobacterium tuberculosis, as an ogt deletion mutant was not attenuated in mice 
(Durbach et al., 2003). It has been proposed that the absence of attenuation could be due to a 
functional redundancy in diverse DNA repair pathways (Puri et al., 2014). Actually, in vitro, 
bacteria are faced with stresses without warning. On the contrary, in vivo, there is a 
preexisting response of the bacteria stemming form their interactions with their host, which 
could explain why the absence of one DNA repair pathway is not detrimental in this case. The 
study performed on Salmonella enterica serovar Typhimurium is a good argument in favor of 

Most DNA repair pathways can be used by cells to cope with alkylating stress. In 
addition to housekeeping DNA repair pathways, there also exist two inducible 
pathways in bacteria: (1) the alkylation-specific adaptive response, which regulates 
the expression of genes of the base excision and direct repair pathways, and (2) the 
SOS response, which plays on homologous recombination, nucleotide excision 
repair and translesion synthesis. 
 



Fig 11. Phylogenetic tree of several bacteria. Brucella belongs to the alpha-
proteobacteria class (image taken from http://wwwabi.snv.jussieu.fr/erocha/
research/ordervsdisorder.html). Note that a more detailed phylogenetic tree (of 
alpha-proteobacteria only) can be found in the appendix 4. 
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this hypothesis. Indeed, the authors had to create a quintuple deletion mutant (∆ada ∆ogt 
∆tagA ∆uvrA ∆mfd) before they could observe an attenuation in orally-infected mice (Alvarez 
et al., 2010). Amazingly, this attenuation was of approximately 200-fold compared to the wild 
type (WT) strain, but was completely absent in intraperitoneally-infected mice (Alvarez et al., 
2010). 

 
The following section will focus on B. abortus, as we used this bacterium as a model for 

the study of alkylating stress on an intracellular bacterial pathogen.  
 

 

II. Brucella abortus 

II.1.	Brucella	is	an	α-proteobacterium	
 
Brucella belongs to the proteobacteria phylum (Fig 11). This phylum was named after 

Proteus, a Greek god of the sea who could change shape at will (Stackebrandt, 1988). 
Nowadays, the adjective "protean" is used to refer to versatility and adaptability. As their 
name suggests it, the α-proteobacteria class consists of very diverse organisms. They are 
Gram-negative bacteria and this class includes pathogens for animals (Brucella, Rickettsia) 
and plants (Agrobacterium), symbionts of arthropods (Wolbachia) and plants roots 
(Rhizobiales which fix nitrogen) as well as free living and opportunistic bacteria like 
Caulobacter and Ochrobactrum, respectively (Moreno & Moriyon, 2006). The α-
proteobacteria class also seems to represent the most abundant marine cellular organisms 
(Giovannoni et al., 2005), yet what they are most famous for is the fact that they are 
considered as the ancestors of mitochondria (Esser et al., 2004). 

 
Without surprise, α-proteobacteria also display very different morphologies. The best 

known are stalked bacteria. They include bacteria such as C. crescentus, Asticaccaulis 
biprosthecum and Hyphomonas neptunium. These three bacteria are characterized by a 
dimorphic life cycle resulting from the production of two functionally and morphologically 
different cells at every cell division: a motile swarmer cell and a sessile stalked cell. Stalks are 
thin tubular extensions of the cell body and seem to be involved in nutrient uptake (Wagner & 
Brun, 2007). Even the other α-proteobacteria that appear to have a more classical rod-shaped 
phenotype can be regarded as a having very different phenotypes. For example, 
Ochrobactrum and Agrobacterium possess peritrichous flagellae, while Brucella is a non-
motile coccobacillus. There also exist spiral-shaped bacteria such as Rhodospirillum or the 
mono-flagellated Kiloniella laminariae (Wiese et al., 2009). 

 

In theory, it is possible that intracellular bacteria encounter alkylating stress inside 
host cells, both endogenously, because of their metabolism, and exogenously, via 
the host cell defense. Nevertheless, it still needs to be demonstrated experimentally.  
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Despite their obvious heterogeneity, α-proteobacteria seem to share common features. 
One of them is that they divide asymmetrically, or at least it is the case for C. crescentus, B. 
abortus, Sinorhizobium melitoti, Agrobacterium tumefaciens and Methylobacterium 
extorquens (Hallez et al., 2004; Bergmiller & Ackermann, 2011). This characteristic is very 
clear in C. crescentus but it is less obvious in the other bacteria since they do not display polar 
organelles. However, the two daughter cells have different sizes and an asymmetric 
subcellular localization of a signal transduction protein called DivK can be observed in S. 
melitoti and B. abortus, for example (Lam et al., 2003; Hallez et al., 2007). It has also been 
shown that a magnetotactic bacterium (i.e. able to orient itself in function of a magnetic field) 
called Magnetospirillum gryphiswaldense had to divide asymmetrically in order to overcome 
its intrinsic magnetic force (Katzmann et al., 2011). 

 

 

II.2.	Brucellosis	
 
Brucella species are responsible for Brucellosis, a major and worldwide zoonosis. They 

have been divided into six classical species: B. melitensis, B. abortus, B. suis, B. canis, B. ovis 
and B. neotomae. Since the improvement of detection methods, several new species have been 
discovered. For instance, B. ceti, B. pinnipedialis and B. microti. Even though their genomes 
share more than 94% of sequence identity, these species have very different host preferences 
amongst mammals. Indeed, they infect preferentially goats, cattle, pigs, dogs, sheep, desert 
wood rats, cetaceans, seals and common voles, respectively (Godfroid, 2018). In animals, 
Brucellosis occurs as a chronic infection that is characterized by epididymitis in males or 
placentitis and abortion in pregnant females (Carvalho Neta et al., 2010). The placenta is 
reported to be a relatively suppressed immune zone, as it is linking the mother and her 
genetically different offspring. Its physical and hormonal characteristics thus make it a 
privileged tissue in which Brucella and other pathogens, such as Coxiella burnettii, can 
proliferate in large numbers (Alexander et al., 1981; Hansen et al., 2011). This particular 
tropism of Brucella for the placenta could also be explained by the high concentration of the 
sugar alcohol erythritol in ruminant placental trophoblasts during the third trimester of 
pregnancy (Smith et al., 1962; Samartino & Enright, 1993). Indeed, erythritol is one of the 
favorite carbon sources for Brucella (Sperry & Robertson, 1975). The excessive proliferation 
of the bacteria in the reproductive tract of its host eventually leads to the disruption of the 
placenta, which can cause abortion or the birth of an infected and weak offspring (Roop et al., 
2009). The bacteria can then spread from one animal to another, as they are present in high 
numbers in the aborted fetus, the discharged reproductive tract and milk (Moreno & Moriyon, 
2006). 

 

Brucella belong to the α-proteobacteria, the same phylogenetic group than Caulobacter 
crescentus, Agrobacterium tumefaciens, Sinorhizobium meliloti and Rickettsiales, such 
as Wolbachia. 
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Humans are accidental hosts of B. melitensis, B. abortus and B. suis, in which they are 
responsible for a debilitating disease known as undulant fever or Malta fever (Moreno & 
Moriyon, 2006). Usually, human infections happen through the ingestion of contaminated 
dairy products or by exposure to infected animals. A major way of infection is through the 
aerosol route, which is why Brucella strains are subjected to strict regulations in laboratories 
(Yagupsky & Baron, 2005). There are currently no vaccines available for humans and the 
only treatment is the use of a combination of antibiotics (Moreno & Moriyon, 2006). Clinical 
manifestations commonly appear within 5 to 60 days after exposure to the bacteria. According 
to a systematic review of 33 databases, the main symptoms are weakness and fever, followed 
by joint, muscle, and back pain (Dean et al., 2012). Testicular infection concerns one man 
over ten and severe complications such as endocarditis and neurological cases occur 
respectively with 1 and 4 cases per 100 patients (Dean et al., 2012). Because the symptoms of 
Brucellosis are not specific but instead present themselves as an acute febrile illness, it is 
believed that cases of Brucellosis are largely underestimated. Despite this, in 2006, 
Brucellosis was still considered as the commonest zoonotic disease worldwide and had been 
estimated to affect more than 500 000 new cases annually (Pappas et al., 2006). Thanks to 
massive eradication programs in the 70’s and 80’s, Brucellosis has disappeared from many 
countries including the USA, as well as Northern and Western Europe (Pappas et al., 2006). 
However, it is still a major health problem in many parts of the world, and especially in 
Mediterranean countries of Europe, the Middle East, south and central Asia, north and east 
Africa, as well as Central and South America (WHO, 2006 report on Brucellosis).  

 

 

II.3.	Brucella	inside	host	cells	
This part of the manuscript has been published in a review  

(Poncin et al., FEMS Microbiology Reviews, 2018) (see appendix 4). 

II.3.1.	Brucella	intracellular	trafficking	

 
A whole genome-based phylogeny study revealed that Brucellosis probably appeared in 

wildlife populations in the past 86,000 to 296,000 years (Foster et al., 2009). It thus happened 
before livestock domestication, even though this crucial step in history probably played a role 
in allowing the worldwide spreading of Brucella species (Foster et al., 2009). Even though 
they can be cultivated on artificial media, it is established that Brucella need to enter inside 
their host cells in order to complete a successful infection process (Moreno & Moriyon, 
2006). This is why they are now considered as facultatively extracellular intracellular 
pathogens (Moreno & Moriyon, 2002). 

 

Brucella are responsible for one of the biggest zoonosis worldwide. These bacteria are 
facultative intracellular pathogens that target species-specific mammalian hosts, with 
humans being accidental hosts of B. abortus, B. suis and B. melitensis.  
  



Fig 12. Schematic representation of B. abortus trafficking inside host cells. 
Once inside its host cell, B. abortus extensively interacts with the endocytic 
pathway. The compartment in which it resides at that stage can be referred to as 
the endocytic Brucella-containing vacuole (eBCV). In HeLa cells and RAW 
264.7, during this first step of the infection, the bacterium is blocked in G1 and 
its growth is arrested. After a transient interaction with the lysosomes and thanks 
to its type IV secretion system VirB, the bacterium reaches its replicative niche 
(rBCV), which is part of the endoplasmic reticulum (ER) in most cell types. 
Later on, bacteria are found in autophagy-dependent vacuoles (aBCV) and are 
proposed to reinfect neighbor cells.	
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The mechanism by which Brucella manage to invade their host organism is not very 
clear but they seem to cross the mucosal barrier, which could imply an interaction with 
epithelial cells (Roop et al., 2009). The role of these cells has not been deciphered yet but 
epithelial HeLa cells have been effectively used as models for Brucella infection in non-
professional phagocytes (Pizarro-Cerda et al., 1998; Castaneda-Roldan et al., 2004; Starr et 
al., 2008). Once inside its host, Brucella can also get internalized by professional phagocytes 
such as macrophages or dendritic cells. There, the bacterium can survive and multiply before 
disseminating in the organism (Archambaud et al., 2010). Surprisingly, B. melitensis has also 
been reported to be able to invade murine erythrocytes during infection, which suggests that 
other cellular and in vivo models of infection should be developed to fully understand 
Brucella pathogenesis (Vitry et al., 2014). 

 
The entry of Brucella into epithelial or phagocytic cells occurs within minutes after cell-

to-cell contact (Pizarro-Cerda et al., 1998). Once internalized, the bacterium stays in a 
membrane-bound Brucella-containing vacuole (BCV) that interacts with the endocytic 
pathway (therefore termed eBCV) (Fig 12). Early endosomal markers, such as Rab5, are 
rapidly followed by the acquisition of late endosomal markers, typically lysosomal 
membrane-associated protein-1 (LAMP1) (Pizarro-Cerda et al., 1998). Transient interactions 
with lysosomes have also been reported (Starr et al., 2008). This eventually leads to eBCV 
acidification, which is deleterious to many bacteria, but nonetheless necessary for Brucella to 
reach their replicative niche and survive in the long-term (Porte et al., 1999; Boschiroli et al., 
2002; Celli et al., 2003; Starr et al., 2008). Indeed, the acidic pH of the eBCV has been linked 
to the capacity of the pathogen to induce the expression of the virB operon (Boschiroli et al., 
2002). These genes code for a type IV secretion system that is essential for the bacteria to 
reach their proliferation niche (Boschiroli et al., 2002).  

 
The Brucella replicative niche (rBCV) has been known for years to be somehow 

associated with the endoplasmic reticulum (ER), in both HeLa cells and macrophages 
(Pizarro-Cerda et al., 1998; Celli et al., 2003). It is only recently that the rBCV was shown to 
actually be part of the endoplasmic reticulum (Sedzicki et al., 2018) (Fig 12). The transition 
from eBCV to rBCV is not clearly understood yet, but it has been suggested that its 
maturation could occur at the ER exit sites (Celli et al., 2005; Celli, 2015). Several ER-
associated functions have been linked to Brucella infection, such as the unfolded protein 
response IRE1a signaling pathway (Qin et al., 2008; Smith et al., 2013; Taguchi et al., 2015), 
some autophagy-associated factors such as ATG9 and WIPI (Taguchi et al., 2015) and the 
early secretory trafficking depending on the Sar1/coat protein complex II (Celli et al., 2005; 
Taguchi et al., 2015). Since the type IV secretion system is essential for Brucella to reach the 
rBCV, it is expected that the maturation of the BCV would be mediated by the delivery of 
bacterial effectors inside the host cell. One such effector is BspB, shown to target the Golgi 
apparatus by interacting with the oligomeric Golgi tethering complex (Miller et al., 2017). 
This leads to the redirecting of Golgi-derived vesicles to the BCV by remodeling the ER-
Golgi secretory trafficking (Miller et al., 2017). It is important to note that there exist 
alternatives to the ER-derived replicative niche since opsonized B. abortus proliferate in a 
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non-acidic LAMP1-positive compartment in the human monocytic cell line THP-1 (Bellaire 
et al., 2005) and in endosomal inclusions in extravillous trophoblasts (Salcedo et al., 2013). 

 
Once the number of bacteria within a cell reaches a critical level, destruction of this host 

cell can be observed (Moreno & Moriyon, 2006). Another means for Brucella to spread from 
one cell to its neighbors has been shown by Starr et al (2012). The formation of a 
compartment with autophagic features (aBCV) could be the key to this important step of the 
infection (Fig 12). Indeed, autophagy-deficient Brucella are not able to perform cell-to-cell 
spreading when cellular infections are prolonged for long periods, typically 72 h (Starr et al., 
2012). Interestingly, only the initiation complex of autophagy seems to be needed by Brucella 
to promote reinfection (Starr et al., 2012). Indeed, markers of the elongation phase of 
autophagy such as ATG5 and LC3 were not found to be associated with the aBCV (Starr et 
al., 2012). It should be noted that autophagy is particularly important at birth. At that time, the 
transplacental nutrient supply is no longer available, which suggests that autophagy is 
strongly activated in the neonate in order to adapt to the early starvation period (Kuma et al., 
2004). The use of this process by the bacteria could therefore be relevant for their spreading 
inside newborn calves. 

II.3.2.	Growth	and	replication	of	Brucella		

 
B. abortus possesses two distinct chromosomes (Chain et al., 2005). Surprisingly, 

bacteria with multipartite genomes are not uncommon, as they represent about 10% of the 
sequenced species (Val et al., 2014). Contrarily to most plasmids that are known to initiate 
replication several times during the bacterial cell cycle, chromids (also known as 
megaplasmids) encode essential genes and initiate their replication only once per cell cycle, 
like chromosomes (Pinto et al., 2012; Val et al., 2014). In B. abortus, the large and circular 
chromosome (I) is 2.1 Mb long and possesses a ParAB segregation system with three 
centromere-like parS sites, while the small chromosome (II) of 1.2 Mb is a chromid, with its 
segregation being controlled by a RepABC system (see Pinto et al., 2012 for a review on this 
segregation system). The repABC operon also contains two centromere-like sequences called 
repS (Livny et al., 2007; Deghelt et al., 2014). The chromosomal replication status of B. 
abortus, and thus the stage of its cell cycle, can be followed with fluorescent reporters of the 
segregation markers ParB and RepB, as well as with fluorescent reporters allowing the 
localization of the replication origins (ori) and terminators (ter). Both chromosomes are 
oriented along the cell length, with oriI and terI associated with the poles, whereas oriII and 
terII are usually found closer to the midcell (Deghelt et al., 2014). This is in agreement with 
what has been found in S. meliloti, another α-proteobacterium. Indeed, this bacterium 
possesses a tripartite genome with one primary chromosome (3.65 Mb) and two chromids 
(1.35 Mb for pSymA and 1.68 Mb for pSymB) (Galibert et al., 2001). Both chromids are 
segregated by a RepABC system and their ori are not anchored to the poles (Kahng & 
Shapiro, 2003; Frage et al., 2016). S. meliloti is capable of colonizing the soil rhizosphere as a 
free-living bacterium, but also of invading the roots of leguminous plants as an intracellular 
symbiotic nitrogen-fixing bacterium, involving complex interactions between the bacterium 





 
21 

 

and its host (Gibson et al., 2006). Similarly to the model bacterium C. crescentus and B. 
abortus, free-living S. meliloti regulate their cell cycle so that replication of their genome 
occurs once-and-only-once per cell division (Mergaert et al., 2006). In both B. abortus and S. 
meliloti, a temporal coordination of replication and segregation was found, as the initiation of 
replication of their chromids is always delayed compared to the main chromosome (Deghelt 
et al., 2014; Frage et al., 2016). In Brucella, the replication of oriI starts before oriII and both 
chromosomes would finish their replication at approximately the same time (Deghelt et al., 
2014). Note that the size of the chromids do not seem to be the determining factor for the 
temporal regulation of their replication initiation. Indeed, in S. meliloti, it has been proposed 
that the smaller pSymA initiates its replication when the ori of the main chromosome has 
reached the new pole and that it is followed by the bigger pSymB, which behaves in a similar 
manner after the pSymA ori has been replicated (Frage et al., 2016).  

 
Two main phases can be observed during HeLa cells infection by B. abortus. Indeed, 

when the bacterium is transiting within the eBCV, it is unable to proliferate, which reflects 
the fact that the number of colony forming unit (CFU) is stable during this non-proliferative 
stage (Comerci et al., 2001; Starr et al., 2008; Deghelt et al., 2014). The second phase occurs 
when Brucella reaches its ER-derived proliferative niche, with the number of CFU increasing 
drastically (Pizarro-Cerda et al., 1998; Celli et al., 2003; Starr et al., 2008).  

 
Thanks to fluorescent reporter systems that can track the ori, it has been possible to 

follow B. abortus cell cycle inside host cells. One interesting observation was that during the 
non-proliferative stage of the trafficking in HeLa cells and RAW 264.7 macrophages, the 
bacteria are blocked in G1 (only one focus of oriI), similarly to what happens in the carbon-
starved swarmer cells of C. crescentus, a free living α-proteobacterium (Lesley & Shapiro, 
2008; Deghelt et al., 2014). As Brucella exhibits asymmetric growth like other Rhizobiales 
(Brown et al., 2012), it is also possible to use Texas Red Succinimidyl Ester (TRSE) – a 
fluorescent compound that covalently binds amine groups on the bacterial surface – as a mean 
to follow the bacterium unipolar growth (Brown et al., 2012) inside host cells (Deghelt et al., 
2014). These techniques brought to light the fact that the bacteria found within the eBCV at 
early times after infection are predominantly non-growing newborn cell types. This term 
refers to bacteria that recently divided but did not initiate chromosome replication yet 
(Deghelt et al., 2014). They stay in this state for up to eight hours before resuming their 
growth and chromosome replication when they still reside within an eBCV (Deghelt et al., 
2014). Importantly, even if they do not divide in the eBCV, B. abortus still seem to be able to 
restart their growth just before they reach the rBCV (Deghelt et al., 2014) (Fig 12). 

II.3.3.	Brief	summary	of	the	immune	response	

 
The innate immune system generally recognizes the presence of a pathogen through the 

detection of pathogen associated molecular patterns (PAMPs). This recognition is mediated 
by pattern-recognition receptors (PRRs). The response of the host cells is not specific to one 
pathogen and will lead to the three major actions: (1) the phagocytosis of the intruder, (2) an 
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inflammatory reaction that recruits more phagocytic cells and (3) cytotoxicity via apoptosis of 
the infected cells (Topham & Hewitt, 2009; Moser & Leo, 2010).  

 
Brucella is known for its exquisite ability to hide from its host immune system. One 

typical example is the lipopolysaccharide (LPS) of Brucella that is very weakly 
immunogenic, as it is poorly recognized by toll-like receptors (TLR) 4, which are PRR for 
LPS (Barquero-Calvo et al., 2007). The host cells are thus less prone to generate reactive 
nitrogen species (RNS) via the expression of the inducible nitric oxide synthase (iNOS), to 
undergo a respiratory burst, or to release pro-inflammatory cytokines (Lapaque et al., 2006). 
Brucella can also directly interfere with the signalization pathways of TLR2 and TLR4 (Cirl 
et al., 2008; Salcedo et al., 2008). In addition, Brucella does not possess any pili or capsule 
that could be recognized by PRR (Martirosyan et al., 2011). Nevertheless, some TLR can 
recognize B. abortus. It is for example the case of TLR9, which detects the DNA of Brucella 
and helps to induce IFNγ and iNOS protein production (Copin et al., 2007). Of course, 
bacterial DNA is only accessible if bacterial lysis occurs, thus the ability of the bacteria to 
escape a quick release of such PAMPs seems to have been selected along evolution. 

 
If the innate immune response is no sufficient to get rid of a pathogen, the adaptive 

immune response takes over. This response takes more time, but it is also more specific and 
therefore more efficient. The adaptive response is based on the activation of T and B 
lymphocytes. T cells recognize their targets by binding to antigen-associated major 
histocompatibility complexes (MHC) on antigen presenting cells. Here again, the LPS of 
Brucella is able to sequester the class I and class II MHC so that they are less able to display 
peptide fragments of non-self proteins to cytotoxic T cells (Forestier et al., 2000; Barrionuevo 
et al., 2013). The host is still able to generate an immune response, mainly a Th1 response 
that is specialized with intracellular pathogens, but also a Th17 response that plays mainly on 
extracellular bacteria (Hanot Mambres et al., 2016), and even a memory response (Vitry et 
al., 2014). However, Brucella generally manages to stay hidden and Brucellosis becomes 
chronic (Hanot Mambres et al., 2015).  

II.3.4.	Intracellular	stresses	

 
The ability of Brucella to survive and replicate inside host macrophages and dendritic 

cells is a key aspect of its ability to produce chronic infections (Köhler et al., 2003; Billard et 
al., 2005). Indeed, in addition to its poor recognition by the immune system, Brucella can also 
prevent the apoptosis of its host macrophage (Gross et al., 2000) and interfere with the 
maturation of dendritic cells (Salcedo et al., 2008). The fact that it can stay for prolonged 
periods inside the spleen and the liver also help in maintaining the chronicity of the infection 
(Roop et al., 2009).   

 
The intracellular stresses that Brucella could encounter inside its host cells are 

multiples, even though it is clear that the bacterium seems to work upstream of the formation 
of these stresses to decrease their impact. Nevertheless, macrophages still rely on a weak 



Fig 13. The two-component regulatory system RegBA is a key player in the response of 
Brucella to low oxygen tension. RegB is a membrane-bound histidine kinase, with an auto-
kinase activity in response to redox changes. After auto-phosphorylation, its phosphate 
group is transferred from its conserved histidine residue to the response regulator RegA, a 
transcription factor. RegA positively regulates the expression of three other transcription 
factors: (1) FnrR, further activated by oxygen depletion; (2) NnrA, a sensor of NO; and (3) 
NtrY, another redox-sensing response regulator belonging to the NtrYX two-component  
system (Abdou et al., 2013; Carrica Mdel et al., 2013). The expression of both the 
cytochrome bd oxidase and the cytochrome cbb3 oxidase genes is also upregulated by the 
RegBA system (Abdou et al., 2013; Carrica Mdel et al., 2013). Importantly, the 
overexpression of the genes coding for the cytochrome bd oxidase requires the presence of 
nitrate, too (Abdou et al., 2013). Since RegA, NnrA and NtrY participate in the upregulation 
of the denitrification genes nir, nor and nos, nitrate consumption eventually increases, 
leading to a further overexpression of the genes coding for the cytochrome cbb3 oxidase 
(Abdou et al., 2013; Carrica Mdel et al., 2013). This regulation is reinforced by the parallel 
actions of NtrYX and FnrR, which also represses the expression of the genes coding for the 
cytochrome bd oxidase (Abdou et al., 2013; Carrica Mdel et al., 2013). Note that nar are the 
only genes that are not upregulated by these proteins, but instead by an independent NarR 
transcription factor (Haine et al., 2006) and by the stringent response molecule ppGpp, 
which also upregulates genes coding for the cytochrome cbb3 oxidase (Hanna et al., 2013). 
Solid lines indicate proposed direct interactions and dashed lines represent interactions 
demonstrated by gene expression experiments only.  
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oxidative burst via the activity of NADPH oxidases in order to produce bactericidal and 
bacteriostatic reactive oxygen species (ROS) (Jiang et al., 1993). Brucella is particularly well 
equipped to face ROS. Indeed, its first line of defense against incoming ROS are the 
periplasmic Cu/Zn superoxide dismutase SodC and the catalase KatE, detoxifying O2

- and 
H2O2, respectively (Gee et al., 2005; Steele et al., 2010). A ∆sodC strain is attenuated in mice 
and in macrophages (Gee et al., 2005). This phenotype of attenuation can be compensated by 
the addition of an inhibitor of NADPH oxidase, so it seems clear that Brucella does encounter 
oxidative stress to a certain degree (Gee et al., 2005). On the other hand, the bacterium also 
possesses cytoplasmic enzymes such as the Fe superoxide dismutase SodA and the peroxidase 
AhpC (Steele et al., 2010; Martin et al., 2012). Since O2

- is charged, it cannot cross the 
membranes, so SodA has logically been reported to deal with endogenous oxidative stress 
only (Martin et al., 2012). KatE and AhpC are partially redundant in function, as only a 
double mutant is severely attenuated in macrophages and in the mice (Steele et al., 2010). 
Note that contrarily to what is most commonly believed, the main source of endogenous ROS 
is not aerobic respiration, but the autoxidation of non-respiratory flavoproteins (reviewed 
in(Imlay, 2013). The respiratory cytochrome oxidases of Brucella are actually a help for the 
bacterium, as they scavenge O2 to prevent ROS toxicity (Endley et al., 2001; Jimenez de 
Bagues et al., 2007).  

 
These respiratory cytochrome oxidases are actually very important for Brucella inside 

host cells. Indeed, inside the phagosomes of macrophages, the oxygen concentration is lower 
than in the extracellular environment (James et al., 1995). Being obligate aerobe bacteria, 
Brucella thus need to adapt to low intracellular oxygen tension (Al Dahouk et al., 2009). One 
way to do this is by upregulating the expression of their two high-oxygen-affinity terminal 
oxidases, the cytochrome cbb3 oxidase and the cytochrome bd ubiquinol oxidase, upon 
microaerobiosis. In these conditions, Brucella are thus still able to grow (Jimenez de Bagues 
et al., 2007) and they can even survive under strong oxygen-limited conditions such as inside 
granulomas (Loisel-Meyer et al., 2006). In addition to the upregulation of the cytochrome 
oxidases, when oxygen becomes scarce, Brucella also use nitrogen oxides as electron 
acceptors in order to get enough energy to keep their basic metabolic activities (Al Dahouk et 
al., 2009). Actually, the denitrification pathway and these cytochrome oxidases are co-
regulated. Indeed, the two-component regulatory system RegB/RegA (also known as 
PrrB/PrrA) regulates both directly and indirectly the expression of those two types of targets 
(see Fig 13 for details) (Abdou et al., 2013; Carrica Mdel et al., 2013). As a matter of fact, the 
double deletion of the two genes coding for the redox-sensors RegB and NtrY (also involved 
in the co-regulation of denitrification genes and the cytochrome cbb3 oxidase; see Fig 13) is 
very deleterious to Brucella inside host macrophages, even at 2h post infection (Carrica Mdel 
et al., 2013). 

 
RNS are produced by macrophages via the expression of the iNOS. Brucella possesses 

a nitric oxide reductase (Nor), which probably helps the bacterium to detoxify exogenous NO, 
in addition to its role in denitrification (Fig 13) (Haine et al., 2006; Loisel-Meyer et al., 
2006). Brucella also possesses a DacF D-alanyl-D-alanine carboxypeptidase, which is known 
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to help the bacterium to resist NO in vitro and inside macrophages, but in a still unknown way 
(Kikuchi et al., 2006). Peroxynitrite (ONOO-) is a molecule that exists at the crossroad of 
ROS and RNS. It is a potent antimicrobial agent, but recent findings indicate that in some 
cases, it is produced very rarely by host cells. Indeed, during Salmonella infection, NADPH 
oxidases and iNOS are temporally separated (Vazquez-Torres et al., 2000; Craig & Slauch, 
2009; Burton et al., 2014). Typically, NADPH oxidases play a role only during the first few 
hours after phagocytosis, then iNOS levels increase slowly but stays present longer (Vazquez-
Torres et al., 2000). Therefore, it is unknown if Brucella has to face peroxynitrite inside host 
cells. 

 
Acidic pH is also a stress that Brucella was selected to cope with. More than that, it is 

actually a signal used by the bacterium to trigger the expression of the genes encoding its type 
IV secretion system, which is essential for Brucella to proceed to its replicative niche 
(Boschiroli et al., 2002). Most Brucella species produce a functional urease, which seems to 
be very important for the survival of the bacterium inside the gastrointestinal tract. However, 
it is not involved in intracellular survival (Bandara et al., 2007; Sangari et al., 2007). 
Currently, the key factor(s) necessary for Brucella to survive against acidic pH are still 
unknown.  
 

Several studies point out the fact that Brucella probably encounters starvation inside the 
eBCV (Kohler et al., 2002; Lamontagne et al., 2009; Rossetti et al., 2011). Very recently, our 
team confirmed that genes involved in purine biosynthesis, pyrimidine biosynthesis and 
transport are required very early during macrophages infection by B. abortus (Sternon et al., 
2018). As iron is an essential nutrient for most bacteria, host cells have developed ways to 
restrict iron accessibility to pathogens (Appelberg, 2006). To get access to sufficient iron 
levels, B. abortus is able to produce two siderophores, the 2,3-dihydroxybenzoic acid (Lopez-
Goni et al., 1992) and brucebactin (Gonzalez Carrero et al., 2002). These two siderophores 
seem to be important inside pregnant cows, but apparently not inside macrophages (Roop, 
2012). The reason of their inefficiency inside macrophages is that the host cells can develop a 
lipocalin 2-dependent response in order to capture Brucella siderophores (Hop et al., 2018). 
Therefore, instead, Brucella seems to be relying on heme transport to get iron (Paulley et al., 
2007). Access to manganese seems to also be required by Brucella to proliferate, as the 
manganese-specific transporter MntH has been found to be essential during macrophages and 
mice infection (Anderson et al., 2009; Sternon et al., 2018). Incidentally, one important 
enzyme that requires manganese is the pyruvate kinase PykM, which is required for glucose 
utilization in mice (Pitzer et al., 2018). Another indication that Brucella species encounter 
starvation inside host cells is that the stringent response regulator Rsh, which synthesize 3’,5’-
bis-pyrophosphate (ppGpp) under nutrient deprivation, is necessary during infection (Dozot et 
al., 2006). The role of ppGpp is to help the bacterium to adapt to its poor environment by 
inducing large-scale transcriptional changes after binding to the RNA polymerase (Boutte & 
Crosson, 2013). Interestingly, ppGpp also upregulates genes coding for Brucella nitrate 
reductase (Nar) and the cytochrome cbb3 oxidase (Fig 13) (Hanna et al., 2013), indicating 
that starvation and low oxygen tension can probably occur simultaneously. Importantly, 
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ppGpp accumulation is known to extend the G1 phase of C. crescentus (Ronneau et al., 
2016). The link between ppGpp and the cell cycle of B. abortus is currently under 
investigation in our lab. 

II.3.5.	DNA	repair	capacities	of	Brucella	

 
There exist only three papers that directly focus on the topic of Brucella DNA repair 

capacities. The first one is about B. abortus XthA1 exonuclease (III), which is involved in the 
BER pathway (Hornback & Roop, 2006). As such, its role is to cut the phosphate backbone 5’ 
of the AP site to produce a free 3’ hydroxyl group on the neighboring nucleotide (Fig 5B). In 
E. coli, XthA is the main AP endonuclease but there exists a second enzyme accounting for 
10% of the activity: the endonuclease IV, coded by the nfo gene (Ljungquist et al., 1976; 
Cunningham et al., 1986). In B. abortus, there is no gene homologous to nfo, but there exist 
two copies of xthA, thus named xthA1 and xthA2 (Hornback & Roop, 2006). A B. abortus 
∆xthA1 deletion strain was found to be more sensitive to MMS, H2O2 and peroxynitrite than 
the WT strain, suggesting that it is an authentic AP endonuclease (Hornback & Roop, 2006). 
Infection experiments have also been performed with the ∆xthA1 deletion strain, but it was 
attenuated neither in murine macrophages nor in BALB/c mice, possibly because of the 
presence of the XthA2 enzyme, which was not studied (Hornback & Roop, 2006).  

 
The two other research articles focus on the RecA protein, DNA repair, and SOS 

regulation in B. abortus (Tatum et al., 1993; Roux et al., 2006). As a reminder, in E. coli, the 
SOS system is triggered by the auto-cleavage of the repressor LexA following the activation 
of RecA into RecA* after its polymerization on ssDNA (Butala et al., 2011). A B. abortus 
∆recA deletion mutant was found to be sensitive to MMS, contrarily to a ∆uvrA mutant 
(Tatum et al., 1993; Roux et al., 2006). Interestingly, the ∆recA strain was also slightly 
attenuated in non-activated and activated macrophages (Tatum et al., 1993; Roux et al., 
2006). In addition, this strain was strongly attenuated in mice, but it was found to be able to 
persist in this in vivo model for as long as the WT strain (Tatum et al., 1993). Contrarily to 
most bacteria, the B. abortus ∆recA mutant exhibited a modest sensitivity to UV radiation 
(Roux et al., 2006). The authors suspected that B. abortus radA gene could code for a 
functional homologue to RecA, which would account for the UV resistance of the ∆recA 
mutant. However, a ∆recA ∆radA double mutant was as sensitive to UV as the ∆recA single 
mutant, indicating that RadA does not have the same activity as RecA (Roux et al., 2006). 
The activity of the promoters of B. abortus recA (precA) and uvrA (puvrA) were followed by 
fusing them with a lacZ gene on a plasmid. This allowed the authors to find a high basal 
activity for both promoters (Roux et al., 2006). Interestingly, the addition of an SOS-inducer, 
mitomycin C, led to a small 2-fold increase of precA activity (Roux et al., 2006), which is weak 
compared to the 6 to 10-fold induction of E. coli precA in a similar experiment (Kim & Oh, 
2000; Roux et al., 2006). More surprising, the expression of the precA-lacZ reporter system 
was greatly reduced in a B. abortus ∆recA strain, independently of mitomycin C addition 
(Roux et al., 2006). The authors concluded that B. abortus RecA is involved in its own high 
basal activation without a requirement for high DNA damage (Roux et al., 2006). They thus 
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inferred that B. abortus RecA could possess a natural RecA* activity for SOS induction, 
independently of its polymerization on ssDNA (Roux et al., 2006). To further investigate this 
hypothesis, they heterocomplemented an E. coli ∆recA strain carrying a precA-E.coli-lacZ 
reporter system with B. abortus recA gene (Roux et al., 2006). They observed that B. abortus 
RecA led to a high constitutive expression of the reporter system in E. coli, with a 2-fold 
induction achieved after mitomycin C treatment (Roux et al., 2006). Their conclusion from 
these surprising results was that “the high basal recA-lacZ expression was the result of 
constitutive RecA activation (RecA*), leading to the cleavage of LexA without the normal 
requirements for an inducing treatment” (Roux et al., 2006).  

 
A few other papers bring indirect information about DNA repair capacities of Brucella. 

It is for example the case of the proteomic study of Lamontagne et al. (2009), which showed 
that B. abortus XseA (a subunit of the exonuclease VII), involved in MR, and UvrB, involved 
in NER, were both more abundant at 3 h post infection inside RAW 264.7 macrophages 
compared to pre-infection conditions. Both proteins levels then dropped back to basal levels 
at later time points (44 and 20 h post infection, respectively) (Lamontagne et al., 2009). In the 
same model of infection, it was also found that B. abortus mutM, coding for a DNA 
glycosylase, was overexpressed at 4 h post infection (Eskra et al., 2001). Still in the same 
model and more recently, our group showed that transposon mutants of recF, impaired for 
homologous recombination, are attenuated at 24 h post infection (Sternon et al., 2018) (see 
appendix 3).  

 
As mentioned earlier, B. abortus appears to be devoid of a few genes that code for DNA 

repair enzymes. Indeed, we could not find homologues for polB, coding for the DNA 
polymerase II; umuDC, coding for the DNA polymerase V; recBCD, involved in double 
strand break repair; nfo, coding for an AP endonuclease; phr photolyase genes, which repair 
damage caused by exposure to ultraviolet light; and genes coding for the non-homologous 
end-joining pathway. Still, it seems that other genes are present to compensate for their 
absence, such as the addAB genes instead of recBCD; a second copy of the xthA gene instead 
of nfo; or imuABC instead of umuDC. 

 
As for genes that code for alkylated DNA repair enzymes, such as ada, alkA, tagA, 

alkB, ogt, and aidB, we found that they were all present in the genome of B. abortus (see 
results section I.1. for more details).  
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II.4.	Brucella	as	a	model	for	alkylating	stress	studies	
 
As explained earlier, intracellular bacteria could meet alkylating stress, either because 

the host cells are defending themselves against their intrusion, or because of their own 
metabolism. Let us analyze those two possibilities on a theoretical point of view for the case 
of Brucella.   

 
Firstly, Brucella is known to thrive inside macrophages (Celli et al., 2003; Archambaud 

et al., 2010). As a matter of fact, macrophages were shown to be able to produce N-nitroso 
compounds, one source of alkylating stress (Miwa et al., 1987; Kosaka et al., 1989). It has 
also been shown that the production of such compounds is directly dependent on NO level 
and thus on the induction of iNOS (Iyengar et al., 1987; Ohshima et al., 1991). It is true that 
Brucella LPS is much less immunogenic than E. coli LPS (Lopez-Urrutia et al., 2000), but it 
is nevertheless expected that Brucella would meet some level of nitrosative stress inside host 
cells (Roop et al., 2009). Interestingly, iNOS proteins are known to localize to phagosomal 
membranes of activated macrophages (Vodovotz et al., 1995; Miller et al., 2004), which is 
were Brucella would reside for several hours before to reach its replicative niche (Celli, 
2015). In addition, the eBCV is known to get acidified to pH 4.0 – 4.5 (Porte et al., 1999; 
Starr et al., 2008). Acidic pH is known to contribute to the formation of N-nitroso compounds 
(Fig 3), but also to their permeability through membranes (Guttenplan & Milstein, 1982). All 
the ingredients for the generation of N-nitroso compounds inside the eBCV thus seem to be 
present. As for host cell lipid peroxidation as a source of alkylating stress on Brucella, it is 
unclear. There is a report on the fact that B. melitensis can trigger lipid peroxidation in the 
liver and the spleen of mice after a week, but earlier time points have not been studied and it 
is unknown if those molecules would reach the bacteria themselves (Melek et al., 2006).  

 
Secondly, it seems likely that Brucella would generate endogenous N-nitroso 

compounds when it is residing inside host cells. Indeed, the production of those compounds is 
known to be more important in anaerobic and resting E. coli (Kunisaki & Hayashi, 1979) and 
B. abortus was shown to be blocked in the G1 stage of its cell cycle (characterized by a non-
growing and non-replicating state) during the first hours of infection, when it is still inside the 

Inside host cells such as RAW 264.7 macrophages and HeLa cells, B. abortus has a 
globally biphasic trafficking: (1) the bacterium first resides inside an endosomal 
Brucella-containing vacuole (BCV), where it is blocked in a G1-like phase for several 
hours. At that time, Brucella is thought to encounter many stresses, among which 
starvation, ROS, RNS and acidic pH. (2) In the second phase, the bacterium reaches 
its replicative niche, the rBCV, which is part of the endoplasmic reticulum. The 
DNA repair capacities of Brucella are largely uncharacterized. Nevertheless, there is 
a report on the fact that B. abortus could possess a constitutively active RecA* 
activity, which could trigger the basal induction of some SOS-dependent genes. 
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eBCV (Deghelt et al., 2014). In addition, for most bacteria, the production of N-nitroso 
compounds has been linked to nitrate reductase activity, which can be abolished by 
molybdenum cofactor deprivation (Calmels et al., 1985; Taverna & Sedgwick, 1996). 
Contrarily to E. coli that possesses three nitrate reductase enzymes (Sparacino-Watkins et al., 
2014), Brucella only possesses one. Brucella would thus be a good model for endogenous 
alkylating stress studies, as it will be easier to investigate the role of a single enzyme in this 
process. Moreover, Brucella was found to upregulate the expression of narG (coding for the 
catalytic subunit of the nitrate reductase) at 4 hours post infection, possibly via ppGpp 
accumulation (Rossetti et al., 2011; Hanna et al., 2013). If the nitrate reductase of Brucella is 
indeed involved in the formation of N-nitroso compounds, it would suggest that these 
alkylating agents are generated when the bacterium is still in the eBCV, which also 
corresponds to the theoretically most stressing period of Brucella trafficking (Roop et al., 
2009). As for Brucella lipid peroxidation, it is expected to be minor if not nonexistent. 
Indeed, the amount of PUFA in the cellular fatty acid composition of Brucella is virtually null 
(Dees et al., 1980). However, a paper reported that if looking at the cell wall only, B. abortus 
does possess octadecadienoic acids (C18:2) (Bobo & Eagon, 1968). It is thus difficult to 
evaluate the real impact of the peroxidation of those fatty acids on the bacterium. Note that 
Brucella also possesses a SAM synthase, which could also contribute to endogenous 
alkylating stress.   

 

 

III. Cell cycle transcription factors  

III.1.	Why	work	on	cell	cycle	regulators?		
 
Since the invasive B. abortus are mainly in the G1 phase of their cell cycle (Deghelt et 

al., 2014), it is possible that transcription factors involved in cell cycle regulation could be 
also important for Brucella virulence. Considering that the block in G1 phase correlates with 
the time when Brucella is supposed to meet the most stressing conditions inside host cells, i.e. 
inside the eBCV, the two phenomenon could be linked. Indeed, the G1 phase is characterized 
by stable dsDNA, with no replication fork going on. It could thus be a way for Brucella to 
protect its DNA from genotoxic stresses. 

 
There exist two major cell cycle regulators in α-proteobacteria: CtrA and GcrA. Both of 

them are highly conserved in this phylum (Brilli et al., 2010). Besides, these two transcription 
fcators have been found to regulate the expression of genes coding for DNA repair enzymes 
in several α-proteobacteria (Laub et al., 2002; Haakonsen et al., 2015; Poncin et al., 2018). 
They were thus obvious candidates for this study.  

We expect that Brucella would be a good model for studies on alkylating stress. 
Indeed, all the requirements for the exogenous and the endogenous formations of this 
stress are present. 
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Fig 14. Models for CtrA regulation. A) The PleC-DivJ-DivK signaling network in 
C. crescentus. The non-phosphorylated form of the response regulator DivK is evenly 
distributed within the cell, at the opposite of its phosphorylated form that interacts with the 
cell poles. Its phosphorylation state is dependent on both PleC, a bifunctionnal enzyme 
(kinase/phophatase) and DivJ, a histidine kinase. In the swarmer cell, PleC works in its 
phosphatase mode. It leads to an accumulation of non-phosphorylated DivK and, eventually, to 
CtrA phosphorylation (green background). The differentiation process from a swarmer to a 
stalked cell occurs, among others, through the phosphorylation of the response regulator PleD 
by PleC. In the stalked cell, DivJ is present and, in this model, the switch of activity of PleC 
from the phosphatase to the kinase mode triggers the phosphorylation of DivK. This induces 
the elimination of CtrA~P. CtrA stays present in the predivisionnal cell and in the swarmer cell 
in order to block the initiation of replication. As for the stalked cell, it has to be free of CtrA to 
initiate a new cell division (Thanbichler, 2009). B) Comparison of CtrA regulation in two α-
proteobacteria. The schemes represented here are mainly based on C. crescentus CtrA 
regulation (Laub et al., 2000; Laub et al., 2002; Fumeaux et al., 2014), therefore it is 
important to take into consideration the fact that the phosphorylation cascade events might not 
happen exactly as depicted. In the case of B. abortus, data were obtained from Willet et al. 
(2015) and Francis et al. (2017). Green arrows correspond to confirmed CtrA targets that are 
positively regulated by the transcription factor. Blue rounded arrows correspond to targets that 
are bound by CtrA on their promoter, but for which the effect of this binding still remains 
unknown.	
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III.2.	Roles	and	regulation	of	CtrA	
This part of the manuscript has been published in a review  

(Poncin et al., FEMS Microbiology Reviews, 2018) (see appendix 4). 

III.2.1.	B.	abortus	CtrA	regulation	is	similar	to	that	of	C.	crescentus	

 
CtrA has been best studied in the model organism C. crescentus. As a reminder, this 

remarkable bacterium possesses two distinct life forms. One is a sessile stalked form, which 
allows the bacterium to adhere to surfaces when it is in a nutrient-rich environment. The other 
form is a motile swarmer cell that is used for scouting and colonizing new favorable 
environments but that is not competent for replication (Ausmees & Jacobs-Wagner, 2003; 
Quardokus & Brun, 2003). Importantly, C. crescentus divides asymmetrically into its two 
phenotypically different daughter cells after each cell division. This is why this bacterium is 
considered as an excellent model for bacterial cell cycle studies. In this context, the 
transcription factor CtrA has been found to be of utmost importance as it is a master regulator 
of C. crescentus cell cycle (Quon et al., 1996).  

 
In C. crescentus, CtrA is responsible for the direct regulation of about 100 genes that 

are involved in many different processes (Laub et al., 2002). In general, CtrA is considered as 
an activator of gene expression, but that is not true for all of its targets. Indeed, C. crescentus 
CtrA was shown to repress the expression of moaA, involved in the synthesis of molybdenum, 
and lexA, involved in the regulation of the SOS response (Laub et al., 2002). Another one of 
CtrA many targets is the ori, thus sterically preventing the DnaA protein from initiating the 
replication of C. crescentus chromosome as long as CtrA is present (Quon et al., 1998; Siam 
& Marczynski, 2000). As CtrA needs to be phosphorylated to be active, a tight regulatory 
network based on two-component regulators is in charge of its synthesis, phosphorylation and 
degradation (Fig 14) (Quon et al., 1996; Domian et al., 1997; Wu et al., 1998; Biondi et al., 
2006; Thanbichler, 2009; Tsokos et al., 2011).  

 
In C. crescentus, the dual CckA enzyme that possesses both kinase and phosphatase 

activities regulates the phosphorylation level of CtrA and CpdR, a response regulator 
stimulating CtrA proteolysis when dephosphorylated (Jenal & Fuchs, 1998; Jacobs et al., 
2003; Biondi et al., 2006). CckA does so by interacting with the phosphotransferase ChpT 
(Biondi et al., 2006). The kinase activity of CckA is inhibited by the phosphorylated form of 
the response regulator DivK, which is stabilized by the atypical histidine kinase DivL (Tsokos 
et al., 2011; Childers et al., 2014). DivK phosphorylation is itself regulated by the histidine 
kinase DivJ and by the phosphatase PleC (Wu et al., 1998; Wheeler & Shapiro, 1999) 
(Fig 14). PleC is also able to phosphorylate the diguanylate cyclase PleD, which in turn will 
synthesize cyclic di-GMP (Paul et al., 2008). The binding of this secondary messenger to 
CckA will force CckA to switch from its kinase to its phosphatase mode, thus preventing the 
phosphorylation of CtrA (Lori et al., 2015). Cyclic di-GMP also binds to PopA, which 
interacts with RcdA, another protein involved in CtrA proteolysis at the stalked cell pole 
(Ozaki et al., 2014; Smith et al., 2014). Interestingly, several genes coding for proteins 
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regulating CtrA are also part of its regulon, including divK (Laub et al., 2000) and divJ 
(Fumeaux et al., 2014) in C. crescentus (Fig 14B). 

 
At the transcription level, ctrA is regulated by two proteins in C. crescentus. One of 

them is CtrA itself (Domian et al., 1999). The other one is GcrA, an unconventional 
transcription factor that binds to the housekeeping σ70 factor (see introduction section III.3.) 
(Haakonsen et al., 2015). Since gcrA transcription is repressed by CtrA and ctrA transcription 
is activated by GcrA, the two transcription factors are present temporally and spatially out-of-
phase during the cell cycle of C. crescentus (Holtzendorff et al., 2004).  

 
The spatio-temporal regulation of CtrA is particularly well adapted to C. crescentus 

aquatic free-living lifestyle, but it appears to be surprisingly conserved in other α-
proteobacteria with very different ways of life (Brilli et al., 2010; Pini et al., 2015; Schallies 
et al., 2015; Willett et al., 2015). In B. abortus, the core actors involved in the CtrA 
regulatory network, defined here as the PleC/DivJ/DivK and CckA/ChpT/CtrA two-
component systems, are conserved (Hallez et al., 2004; Brilli et al., 2010) (Fig 14B). Another 
gene, called pdhS for PleC/DivJ homologue sensor, has also been found to be part of this 
network (Hallez et al., 2004). Both pleC and divK from B. abortus are able to 
heterocomplement the corresponding deletion mutants in C. crescentus, which suggests that 
their function is conserved between both organisms (Hallez et al., 2007). In addition, in B. 
abortus, DivK has been found by yeast two-hybrid experiment to bind to DivJ, PleC, DivL 
and PdhS (Hallez et al., 2007). Nevertheless, the localization of PleC is different between B. 
abortus and C. crescentus and DivJ was not found to be crucially involved in DivK 
phosphorylation (Hallez et al., 2007). Indeed, in a ∆divJ background, DivK did not lose its 
phosphorylation-dependent polar localization (Hallez et al., 2007), while a loss-of-function of 
pdhS generates delocalization of DivK-YFP (Van der Henst et al., 2012). As pdhS is an 
essential gene and depletion strain techniques were not available at that time, its involvement 
in DivK phosphorylation could only be suggested through indirect experiments. PdhS was 
also shown to accumulate at the old pole of the large cells, which is the same localization as 
the phosphorylated form of DivK (Hallez et al., 2007). Of note, this localization is similar to 
the one of DivJ in C. crescentus, which suggests a common function between B. abortus PdhS 
and C. crescentus DivJ (Hallez et al., 2007). As PdhS is cytoplasmic in B. abortus, it is 
possible that its function is shared with DivJ depending on the time and/or space of DivK 
phosphorylation (Hallez et al., 2007). The polar localization of PdhS is conserved at 48 hours 
post infection in bovine macrophages (Hallez et al., 2007), but nothing is known about the 
role of DivJ in this context and at later times of the infection. As for the phosphorelay going 
from CckA to CtrA and CpdR via ChpT, it has been confirmed to be functional in B. abortus 
(Willett et al., 2015). As it was the case for C. crescentus (Laub et al., 2000; Fumeaux et al., 
2014), several genes predicted to be involved in CtrA regulation have been found by 
chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to be potentially 
part of CtrA regulon in B. abortus, including ctrA itself, divK, divJ, divL, chpT, cpdR and 
rcdA (Francis et al., 2017). If all of these genes are indeed regulated by B. abortus CtrA, it 
would mean that the control of this transcription factor is more complex in this bacterium than 
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in C. crescentus (Fig 14B). One tempting hypothesis is that the regulation of B. abortus CtrA 
could reflect a need for the bacterium to precisely regulate its cell cycle depending on its 
intracellular environment.  

III.2.2.	The	expression	of	ctrA	is	not	crucial	for	B.	abortus	trafficking	to	the	rBCV	

 
The regulation of genes according to the stage of B. abortus cell cycle can be observed 

through the use of a fluorescent-based reporter system. Such genes are ccrM and the repABC 
operon, and both are probably regulated by CtrA as the activities of their promoters were 
abolished when their respective CtrA-binding boxes were mutated (Francis et al., 2017). As 
the activity of the promoter of the repABC operon seems to be inverted compared to the one 
of ctrA, it is expected that CtrA acts as a negative regulator of chromosome II replication 
(Francis et al., 2017). Knowing that B. abortus first has to go through a non-replicative phase 
inside the eBCV, one can expect that CtrA would be important during this specific stage of 
the infection. However, CtrA was not found to be essential for the ability of B. abortus to 
infect cells in the models of infection tested thus far. Indeed, a study performed with a 
thermo-sensitive allele of B. abortus ctrA concluded that the transcription factor is not 
required for the entry of the bacterium inside THP-1 macrophages (Willett et al., 2015). 
Inside HeLa cells, the CtrA depletion phenotypes of B. abortus were also visible around or 
after 10 h post infection (Francis et al., 2017). Furthermore, a B. abortus CtrA depletion strain 
was able to reach its rBCV replicative niche in the same proportion as the wild type strain 
(Francis et al., 2017). This supports the view that CtrA function is dispensable for B. abortus 
trafficking inside these host cells.  

 
Nevertheless, at 48 h post infection, CtrA depletion strains underwent a clear drop of 

CFU in both cellular infection models (Willett et al., 2015; Francis et al., 2017). The defects 
leading to bacterial cell death are unclear but could be explored by the analysis of suppressor 
mutants. The fact that CtrA might only be necessary at late time points during Brucella 
infection does make sense, though, as its level needs to be regulated more particularly during 
late phases of other intracellular α-proteobacteria life cycle. For example, in the obligate 
intracellular pathogen Ehrlichia chaffeensis, CtrA is important during the late stage of 
intracellular growth (Cheng et al., 2011). In this bacterium, it has been observed that the ctrA 
gene is up-regulated at 72 h post infection, which corresponds to the time when the bacteria 
differentiate back from large reticulate cells to small infectious dense-cored cells in order to 
prepare to spread from the present to the next host cells (Zhang et al., 2007; Cheng et al., 
2011). Similarly, in S. meliloti, CtrA levels are high before infection, then a decrease of ctrA 
transcription coincides with bacteroid differentiation within the nodule (Roux et al., 2014) 
and the CtrA protein is absent in mature bacteroids (Pini et al., 2013).  

 
It is also possible that CtrA is only required when Brucella find themselves in a 

particular situation. For instance, C. crescentus is known to regulate CtrA levels in response 
to stresses affecting its envelope, and this in a CckA-dependent manner, but independently of 
DivK and cyclic-di-GMP (Heinrich et al., 2016). In E. chaffeensis, surE has been proposed to 
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code for a protein involved in bacterial growth under stress and it is thought to be part of CtrA 
regulon (Cheng et al., 2011). It is therefore possible that the in vitro models of infection tested 
thus far for B. abortus CtrA function do not reflect the environment and the stresses that the 
bacteria would have to face inside a living animal. In this respect, an in vivo model of 
infection might prove to be much more relevant for deciphering the potential impact of CtrA 
depletion in B. abortus. 

III.2.3.	The	regulon	of	CtrA	

 
We believe that DNA repair regulation could be an ancestral function of CtrA. Indeed, 

all α-proteobacteria studied in the context of CtrA regulation have at least one DNA repair 
gene predicted or effectively shown to be part of CtrA regulon (Poncin et al., 2018). Some 
DNA repair pathways seem to be regulated by CtrA for whole clusters of bacteria, such as 
mismatch repair for Rhizobiales, Caulobacterales and Rickettsiales (Poncin et al., 2018) (see 
appendix 4). Interestingly, each α-proteobacterium also seems to possess its own specific 
CtrA-dependent DNA repair targets. For example, Dinoroseobacter shibae CtrA could 
regulate recA expression (Wang et al., 2014), while it seems to be uvrB in the case of 
Rhodobacter capsulatus (Mercer et al., 2010). As for E. chaffeensis, it has a perfect 8-mer 
CtrA binding box in the promoter of its mfd gene, which codes for the Transcription Repair 
Coupling Factor that affects nucleotide excision repair (Selby & Sancar, 1993). Thus, each 
bacterium probably optimized the different cellular functions regulated by CtrA through 
evolution according to its specific lifestyle.  
 

In B. abortus, the promoter of tagA, which codes for a DNA glycosylase specifically 
involved in repairing alkylated DNA (Mielecki & Grzesiuk, 2014), is directly bound by CtrA 
(Francis et al., 2017). It is also the case of the promoters of mutM, another DNA glycosylase, 
and uvrC, involved in NER (Francis et al., 2017). Nevertheless, the absence of attenuation of 
the CtrA depletion strain inside host cells suggests that the potential regulation of these genes 
by CtrA inside these cells is not primordial, at least during the first 48 h.   

 
Incidentally, one other striking feature of B. abortus CtrA regulon is the high number of 

genes involved in envelope biogenesis (Francis et al., 2017). Indeed, in addition to revealing 
the direct interaction between CtrA and the promoters of genes involved in the regulation of 
LPS and peptidoglycan synthesis, a ChIP-seq experiment also showed that promoters of genes 
coding for abundant outer membrane proteins (OMP) are also bound by CtrA (Francis et al., 
2017). Note that the regulation of genes involved in the structure of the bacterial envelope by 
CtrA is probably not exclusive to B. abortus as many other α-proteobacteria do seem to 
regulate such genes via CtrA (Laub et al., 2000; Brilli et al., 2010). Nevertheless, it could 
have a more important impact on intracellular bacteria, as their envelope will be presented at 
the interface with their host cell and could therefore impact the host immune response and the 
survival of the bacteria inside them. 

 



Fig 15. Model for GcrA regulation in C. crescentus. Contrarily to most transcription 
factors, GcrA binds first to the RNA polymerase on the second domain of the σ70 factor 
via its C-terminal domain, then the whole complex binds to DNA with a preference for 
GANTC-rich sequences, which are recognized by the N-terminal domain of GcrA. In 
vitro, GcrA can even distinguish the full-, hemi-, or non-methylated state of GANTC 
sites (based on Fioravanti et al., 2013; Haakonsen et al., 2015; Wu et al., 2018). 
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III.3.	Roles	and	regulation	of	GcrA	
  
As mentioned earlier, GcrA and CtrA participate in the regulation of the expression of 

each other in C. crescentus (Domian et al., 1999; Holtzendorff et al., 2004). Of note, DnaA 
also participates to gcrA transcription (Collier, 2012). As CtrA and GcrA are out of phase in 
this bacterium, GcrA is known to accumulate in the stalked cell early during S phase, 
throughout the transition from stalked to swarmer cell (Holtzendorff et al., 2004). However, 
the regulon and mode of action of C. crescentus GcrA remained very obscure for many years. 
Eventually, these two points have been elucidated.  

 
First, its was shown that GcrA can bind to GANTC sequences on DNA (Fioravanti et 

al., 2013). These sequences are methylated on the 6th position of the adenine nucleic acid 
(N6meA) by the methyltransferase CcrM in late predivisional cells and serve as epigenetic 
markers (Stephens et al., 1996; Reisenauer et al., 1999). Actually, C. crescentus GcrA can 
even distinguish the full-, hemi-, or non-methylated state of GANTC sites, with a higher 
affinity for full methylation (Fig 15) (Fioravanti et al., 2013). In vitro, GcrA proteins coming 
form C. crescentus, B. abortus and S. meliloti have also been shown to have an affinity for 
hemi-methylated sequences that depends on the strand that is methylated (Fioravanti et al., 
2013). In C. crescentus, gcrA is not essential in minimal medium but its depletion strain 
exhibits a filamentous morphology with an accumulation of chromosomes (Fioravanti et al., 
2013; Murray et al., 2013; Haakonsen et al., 2015). Interestingly, the hetero-complementation 
of C. crescentus ∆gcrA by either B. abortus gcrA or S. meliloti gcrA can support viability in 
rich medium (Fioravanti et al., 2013), suggesting that they have similar functions. However, 
bacterial morphology is altered, with the formation of long filaments with the gene of B. 
abortus, and thicker bacteria with the one of S. meliloti (Fioravanti et al., 2013). The 
migration profiles of GcrA in electrophoretic mobility shift assays were also different, 
depending on their bacterial origin (Fioravanti et al., 2013). In theory, GcrA could form 
dimers (Fioravanti et al., 2013) but structural analyses suggest that the protein is totally 
functional as a monomer in C. crescentus (Wu et al., 2018). The disparity of phenotypes 
between the three different GcrA could thus be explained by a difference of abundance, 
activity, conformation or targets. 

 
The regulon of C. crescentus GcrA has finally been determined in 2015, with the paper 

of Haakonsen et al. It had previously been shown by ChIP-seq that GcrA binding sites were 

CtrA is a master regulator of the cell cycle of C. crescentus. It is extremely well 
conserved in other α-proteobacteria, and it is very probable that it is also involved in 
the regulation of the cell cycle in B. abortus. A ChIP-seq experiment revealed that in 
B. abortus, CtrA could directly regulate the expression of genes involved in DNA 
repair. It is for example the case of tagA, which codes for a DNA glycosylase 
specifically involved in repairing alkylated DNA. 
 





 
34 

 

three times more likely to possess a GANTC site than other regions of C. crescentus 
chromosome (Fioravanti et al., 2013). However, many in vivo targets that are devoid of 
GANTC sequence were also bound by GcrA (Fioravanti et al., 2013). This observation could 
be explained by the fact that GcrA preferentially binds to the housekeeping σ70 and not to 
DNA like many other transcription factors (Haakonsen et al., 2015). Actually, ChIP-seq 
experiments revealed that C. crescentus GcrA was virtually binding to all σ70 targets, at least 
in the tested conditions (Haakonsen et al., 2015). GcrA can also bind to GANTC sequences 
on DNA, but it seems that the adjacent nucleic acids also strongly impact GcrA binding. An 
extended consensus sequence as been proposed as being YGAKTCK, where Y = C or T and 
K = G or T (Haakonsen et al., 2015). In the end, the regulon of C. crescentus GcrA was 
determined with these three criteria: (1) a change of minimum 1.75 fold between RNA levels 
in GcrA depletion strain, compared to the WT strain, after 30 or 45 minutes of cell cycle 
synchronization; (2) a high ratio of ChIP-seq peak intensities between GcrA and σ70; (3) 
GANTC sites in the promoters of the targets (Haakonsen et al., 2015). These criteria led to 
the establishment of a list of 204 targets, amongst which many are involved in motility, 
nucleotide synthesis, DNA organization and repair, cell biogenesis and cell division 
(Haakonsen et al., 2015). Many of theses targets were also cell cycle-regulated, but not all of 
them (Haakonsen et al., 2015). Interestingly, it also appeared that the expression of genes of 
the replisome was not regulated directly via GcrA, with the exception of dnaE, coding for the 
α subunit of DNA polymerase III (Haakonsen et al., 2015). Nevertheless, since the promoter 
of ctrA is a target of C. crescentus GcrA, the expression of many genes that are required later 
than GcrA in the cell cycle was also shown to be influenced by GcrA (Haakonsen et al., 
2015). 

 
GcrA is clearly an atypical transcription factor, as its mechanism of action is different 

from any other transcription activator characterized to date (Wu et al., 2018). Most 
transcription factors bind to DNA, and then recruit the RNA polymerase holoenzyme (i.e. the 
polymerase core composed of the α2ββ’ω subunits, plus a σ factor), either through an α 
subunit, or through the fourth domain of the σ factor, the one that recognizes the -35 box on 
DNA (Lee et al., 2012). Only a handful of transcription factors directly bind to the RNA 
polymerase, amongst which E. coli DksA that can decrease the open complex stability at 
specific promoters and thus decrease the rate of transcription of its target genes (Paul et al., 
2004; Lennon et al., 2012). In the case of C. crescentus GcrA, the transcription factor C-
terminal domain first binds to the RNA polymerase on the second domain of the σ70 factor 
(the one that recognizes the -10 box on DNA), then the whole complex binds to DNA with a 
preference for GANTC-rich sequences, which are recognized by the N-terminal domain of 
GcrA (Fig 15) (Haakonsen et al., 2015; Wu et al., 2018). This results in the facilitation of the 
DNA strands separation by the formation of an open complex and in the overexpression of the 
target genes (Haakonsen et al., 2015; Wu et al., 2018). As the other typical binding sites of 
transcription factors are still available in this conformation, promoters can be co-regulated by 
several proteins. It is for example the case of the ftsZ promoter, which is directly regulated by 
GcrA (Haakonsen et al., 2015), but also by DnaA (Hottes et al., 2005). Importantly, the 
regulon and operating mode of GcrA is still completely unknown in other bacteria. 
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GcrA is another well-conserved transcription factor of the α-proteobacteria class. Its 
regulon in C. crescentus corresponds to genes involved in motility, nucleotide 
synthesis, DNA organization and repair, cell biogenesis and cell division. In 
C. crescentus, it was found to follow the σ70 factor in an atypical way. We suspect that 
it works in a similar way in other α-proteobacteria, such as Brucella, but it still needs 
to be confirmed. 
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Objectives	

 
The aim of this thesis was double: firstly, continue previous work on cell cycle 

regulators in B. abortus and secondly, investigate the stresses that B. abortus meets inside 
host cells. As cell cycle and infection are coordinated in B. abortus (De Bolle et al., 2015), we 
assumed that there could be a functional link between cell cycle regulators and the ability of 
the bacterium to survive against genotoxic stresses.  

 
The responses of bacteria to alkylating stress have been studied over the last forty years, 

but almost never in a natural environment. Indeed, there are only a handful of articles that 
tried to investigate the natural occurrence of this stress on bacteria. Considering that all the 
ingredients (RNS, acidic pH, nitrate reductase activity) of the generation of alkylating stress 
are present inside host cells, and that we found many genes predicted to code for alkylated 
DNA repair proteins in the genome of B. abortus, we decided to examine the potential 
occurrence of this stress on our model bacterium during infection.  

 
Another area of research that has been very poorly investigated is the DNA repair 

capacity of B. abortus. We therefore also attempted to draw a picture of the DNA repair 
pathways that are required by B. abortus during infection and against in vitro alkylating 
stress. In this context, we wanted to investigate the potential role played by the transcription 
factors CtrA and GcrA. This part of the work follows my master thesis project, which was 
about elucidating the regulon of B. abortus CtrA in culture and in infection (Poncin K., 
Master thesis 2014). As for the role of GcrA, another well-conserved transcription factor that 
is linked to the regulation of the cell cycle in C. crescentus (Brilli et al., 2010), its role had 
never been investigated in B. abortus. We thus worked on the characterization of B. abortus 
GcrA regulon, and more particularly on its function as a regulator of genes involved in DNA 
repair. 
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Results	

I. Detection and sources of alkylating stress in B. abortus 
 

The data presented here are part of a research article,  
which is currently under revision for Nature Communication. 

I.1	Intracellular	bacteria	possess	genes	to	face	alkylating	stress		
 
The response to alkylating stress by bacteria has been best studied in E. coli, with the 

discovery of genes of the adaptive system, as well as other non-inducible genes that code for 
proteins specialized in repairing alkylated DNA (Mielecki & Grzesiuk, 2014). These genes 
include ada, alkA, alkB, aidB, ogt and tagA. We found that many intracellular bacteria, 
including obligate ones such as Chlamidia pneumonia and Coxiella burnettii, retained some 
of the alkylated DNA repair genes (Fig 16A), supporting the hypothesis that alkylating stress 
could be met by these intracellular bacteria. Note that Brucella abortus and other Brucella 
species are predicted to be particularly well equipped against such a stress, as they possess 
genes homologous to all of the genes listed here, except B. ovis that does not have a tagA gene 
(Fig 16B). Most Brucella strains also have a second copy of ada (Fig 16B). Incidentally, the 
two genes that are most often conserved in the bacteria reported in Fig 16A are tagA (coding 
for a DNA glycosylase) and ogt (coding for a dioxygenase), both reported to be independent 
of an adaptive system.  

I.2.	Alkylating	stress	is	encountered	by	B.	abortus	inside	host	cells		
 
Until now, strategies to detect the presence of alkylating stress inside host cells have 

been based on the survival of mutant strains attenuated for alkylated DNA repair. These 
studies were unsuccessful, maybe because of the likely redundancy between the repair 
systems (Durbach et al., 2003; Alvarez et al., 2010). Here, we took advantage of the ability of 
the auto-regulated protein Ada from E. coli (AdaE. coli) to detect meP3ester groups on DNA 
(Sedgwick, 1987), using a transcription-based fluorescent reporter system. The ada gene 
being in operon with alkB in E. coli (Kondo et al., 1986), we cloned ada and replaced alkB by 
a superfolder gfp in a medium-copy plasmid (Fig 17A). A mutated version of the reporter 
system was also constructed to be used as negative control, in which a C38A mutation was 
introduced in AdaE. coli, in order to prevent the protein to capture meP3ester groups.  

 
The system was first tested in vitro in E. coli, with the use of MMS, as alkylating agent 

(Fig 17B). The plasmids carrying either version of the reporter system (pBBRMCS1-pada-
ada-gfp or pBBRMCS1-pada-adaC38A-gfp) were also transferred to Salmonella enterica biovar 
Typhimurium, which does not possess a functional adaptive system (Hakura et al., 1991). In 
both E. coli and S. enterica, the reporter system was switched on in the presence of MMS and 
only with the wild type AdaE. coli (Fig 17B). The reporter system was also functional in B. 



Fig 16. Conservation of genes coding for alkylated DNA repair proteins in A) different 
bacteria and in B) different Brucella species and a close relative, Ochrobactrum 
anthropi. Genes were grouped by function. Homology was calculated based on E. coli 
K12 genome (www.patricbrc.org/). In the case of aidB, genes annotated as acyl-coA 
dehydrogenase with e-value between 10-29 and 10-44 were considered as genes with low 
homolog and genes with e-value lower than 10-133 were considered as genes with high 
homology. In the case of B. ceti and B. microti, two distinct homologues of ada and ogt 
were also found but not included in the figure. Asterisks indicate genes that are 
regulated by Ada in E. coli. 
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Fig 17. Reporter system for alkylation stress. A. Schematic representation of the 
reporter system. The sequence corresponding to adaE. coli  and its promoter were 
cloned into a pBBR-MCS1 plasmid and a superfolder gfp was inserted 
downstream adaE. coli. This plasmid (pBBR-pada-ada-gfp) was transferred to B. 
abortus. When AdaE. coli detects a methylphosphotriester group on B. abortus 
DNA, it activates the expression of its own promoter, which leads to an 
accumulation of AdaE. coli  and GFP. Note that a mutation in adaE. coli  (C38A) 
leads to the abrogation of its ability to bind methylphosphotriester. B. The 
reporter system to detect alkylating stress was used in E. coli and S. enterica 
Typhimurium cultured for 1h45 in the absence of stress (LB only) or in the 
presence of an alkylating agent (LB supplemented with 0.5 and 1 mM of MMS, 
respectively). Scale bars represent 1 µm. 
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Fig 18. Reporter system for alkylation stress in B. abortus. A) B. abortus carrying the pBBR-pada-ada-
gfp reporter system was cultured to reach either exponential phase (OD600 0.6) or stationnary phase 
(OD600 1.2) in rich liquid medium (2YT), then it was exposed to 5 mM of MMS for 1h45. Scale bars 
represent 1 µm. B) Exponential phase B. abortus carrying either the pBBR-pada-ada-gfp reporter system 
or its mutated version (adaC38A) were cultured in rich medium (TSB) and exposed to various doses of 
MMS for 1 or 6 h. Mean fluorescence intensities were calculated for n = 150 bacteria in each condition. 
Scheffe statistical analyses were performed with p < 0.05 (*) and p < 0.001 (***), clearly showing that 
both time of exposure and dose of alkylating agent impact the response of the reporter system. C) The 
two versions of the reporter system were also tested in the WT and ∆ada1 ∆ada2 B. abortus 
backgrounds exposed to 2.5 mM MMS for 1 h. Student’s t test revealed that there is no statistical 
difference in the responses between the two genetic backgrounds (p > 0.05, NS). Error bars represent 
standard deviation from the mean. D) Bacteria carrying either the pBBR-pada-ada-gfp reporter system or 
its mutated version (adaC38A) were used to infect RAW 264.7 macrophages and mean fluorescence 
intensities (FITC channel) were calculated at 5 h or 24 h post infection (n = 60). Ratio of median values 
(ada/adaC38A) were plotted for biological triplicates. Error bars correspond to standard deviation. 
Student’s t test was performed with p < 0.01 (**).  
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Fig 19. Number of mutations occurring after infection and liquid cultures of 
B. abortus 544. Whole genome sequencings were performed on liquid cultures 
resulting from colonies originating from (1) liquid cultures diluted twice in the course 
of 48 h, (2) bacteria recovered after 6 and 48 h post infection in RAW 264.7 
macrophages and (3) bacteria recovered from mice spleen after 60 h of infection (n = 5 
for each condition). Each triangle correspond to the number of mutations for one 
individual colony from one individual experiment. Microsatellites and positions with 
less than 10 reads were excluded. All mutations occurred in the btaE gene 
(BAB1_0069) at different positions, except one in the cls gene (BAB2_1021, 
cardiolipin synthase-like gene) after mice infection. A one-way ANOVA followed by a 
Tukey’s statistical analysis was performed with p > 0.05 (NS). 
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abortus, and we observed that it was more reactive with exponential phase cultures compared 
to stationary phase cultures (Fig 18A). The emitted fluorescence was also dependent on the 
time of exposure and concentration of MMS (Fig 18B). In order to ensure that the reporter 
system was not affected by B. abortus endogenous Ada production (AdaB. abortus), the mean 
fluorescence intensities of the system in a B. abortus ∆ada1 ∆ada2 background were 
compared to the results in the WT background (Fig 18C). No statistical difference could be 
observed between the two experiments, supporting the idea that AdaB. abortus is not affecting 
the level of activation of the reporter system.  

 
The reporter system was then tested at the single cell level in a RAW 264.7 

macrophages infection model for two time points. The first time point was 5 h PI, which 
corresponds to the end of the first phase of the infection, when B. abortus is non growing and 
blocked in a G1-like phase inside the eBCV (Deghelt et al., 2014). The second time point was 
chosen at 24 h PI, when the bacteria are actively dividing inside the rBCV (Deghelt et al., 
2014). The ratio between mean fluorescence intensities of the functional reporter system and 
its mutated version (AdaC38A) were calculated for the two time points. The level of 
fluorescence was much higher at 5h PI than at 24h PI (Fig 18D), suggesting that the 
bacterium is indeed meeting alkylating stress inside host cells, but mainly during the first 
phase of the infection.  

 
The occurrence of alkylating stress on B. abortus during the first phase of the trafficking 

could result in mutagenesis of the bacterium during infection. To investigate the mutagenic 
properties of the intracellular environment, compared to other conditions, we sequenced the 
genome of several individual clones of B. abortus before and after infection in RAW 264.7 
macrophages (6 and 48 h) and after mice infection (60 h), as well as after a similar number of 
generations in liquid culture (48 h). The genomes of 5 individual clones resulting from these 
different conditions were sequenced and subsequent analyses indicated that the number of 
mutations was not increased in the infection conditions compared to the culture. Indeed, B. 
abortus accumulated a very few mutations in all conditions, and no statistical difference could 
be detected between them (Fig 19). 

I.3.	N-nitrosation	events	occur	inside	the	eBCV	
 
Alkylating agents can arise from different sources, such as the peroxidation of lipids 

and the N-nitrosation of metabolites; or, to a lesser extent, they could be already present as 
weak endogenous alkylating agents, such as SAM (Rydberg & Lindahl, 1982; Posnick & 
Samson, 1999). Since the content of the eBCV is unclear regarding the sources of the stress B. 
abortus encounters, we developed a new tool to investigate the presence of N-nitrosation in 
the eBCV. The use of succinimidyl ester groups to label the outer membrane of bacteria with 
fluorescent molecules has been successfully applied over the last years (Brown et al., 2012; 
Deghelt et al., 2014). Besides, Miao et al (2016) set up a highly specific probe relying on its 
N-nitrosation in order to emit fluorescence. The two techniques were combined in order to 



Fig 20. Production of N-nitroso compounds. A) Schematic representation of the N-
nitrosation sensitive probe reacting with primary amine from B. abortus outer membrane 
(OM), and subsequently being activated by NO. B) The mean fluorescence intensities (MFI) 
of bacteria (FITC channel) were measured after 1 hour of incubation in PBS supplemented 
or not with KNO2, a N-nitrosating agent. MFI were also measured for non-labeled bacteria 
in order to evaluate B. abortus autofluorescence (No probe). Experiments were done in 
biological triplicates and median values of MFI were plotted. Error bars represent standard 
deviations. The number of bacteria analyzed in this study were 152, 333, 556 for non-
labeled bacteria; 155, 260, 246 for labeled bacteria; and 430, 402, 496 for labeled bacteria 
subjected to KNO2. A one-way ANOVA followed by a Tukey’s statistical analyzes were 
performed with p < 0.05 (*) and p < 0.001 (***). C) Evaluation of exogenous N-nitrosation 
by calculating the percentage of positive labeled-bacteria. Bacteria were labeled with the N-
nitrosation-sensitive probe and used to infect RAW 264.7 macrophages. Mean fluorescence 
intensities were calculated at 5 h post infection (n = 60) and values above 100 (set up base 
on in vitro experiments, see figure 20C) were considered as positive. The addition of 163 
µM of ascorbate to the cell culture medium at time 0 was used to inhibit N-nitrosation. 
Experiments were done in biological triplicates. Error bars correspond to standard deviation. 
Student’s t test was performed with p < 0.01 (**). D) Evaluation of endogenous N-nitroso 
compounds formation via the alkylation-sensitive reporter system. The AdaE. coli-based 
reporter system was used in three genetic backgrounds (WT, ∆narG and ∆moaA) and in the 
presence of ascorbate (for the WT background only). Bacteria carrying either the pBBR-
pada-ada-gfp reporter system or its mutated version (adaC38A) were used to infect RAW 
264.7 macrophages and mean fluorescence intensities were calculated at 5 h post infection 
(n = 60). Ratio of median values (ada/adaC38A) were plotted for biological triplicates. Error 
bars correspond to standard deviation. A Student’s t test was performed with a p < 0.05 (*). 
PI stands for post infection.  
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create a N-nitrosation sensitive probe that could be attached to the surface of B. abortus and 
thus follow whether N-nitrosation could take place inside the eBCV (Fig 20A).  

 
Labeled bacteria were first tested for their fluorescence in vitro, in the presence of 

KNO2, which generates the NO donor N2O3 in aqueous solution (Fig 20B). The 
autofluorescence of non-labeled B. abortus was also compared to the fluorescence of the 
labeled bacteria in the absence of KNO2 (Fig 20B). It could thus be concluded that the probe 
is, as expected, emitting fluorescence when N-nitrosated. RAW 264.7 macrophages were then 
infected with labeled bacteria and mean fluorescence intensities were calculated at 5 h PI at 
the single cell level (Fig 20C). The negative control consisted in the cell culture medium 
supplemented with 163 µM of ascorbate, as this concentration of antioxidant is known to 
inhibit N-nitrosation reactions in RAW 264.7 macrophages (Kosaka et al., 1989). We 
observed that about a quarter (23.3 %) of the bacterial population was subjected to N-
nitrosation inside the eBCV (Fig 20C). The addition of ascorbate strongly decreased the mean 
fluorescence intensity of labeled bacteria (Fig 20C). 

 
We also investigated the endogenous production of N-nitroso compounds. To do so, the 

adaE. coli-based reporter system was tested in different genetic backgrounds (WT, ∆narG and 
∆moaA) at 5 h PI. We found out that the deletion of narG alone is not sufficient to reduce the 
stress, whereas it is the case with the ∆moaA strain (Fig 20D). Importantly, the addition of 
163 µM of ascorbate to the cell culture medium did not statistically reduce the detected 
alkylating stress (Fig 20D). Overall, this suggests that alkylating stress is mainly produced 
endogenously by B. abortus metabolism.  
 

II. Defenses of B. abortus against alkylating stress 

II.1.	Ogt	is	a	key	actor	against	alkylating	stress	in	B.	abortus	
 
In order to evaluate which DNA repair genes are required by B. abortus to face 

alkylating stress, deletion strains were constructed and plated on rich medium supplemented 
with alkylating agents. Mutants were constructed for genes predicted to code for proteins 
involved in direct repair (∆ada1, ∆ada2, ∆ogt and ∆alkB), BER (the glycosylases tagA, alkA 
and the endonucleases xthA1 and xthA2), as well as other DNA repair pathways, including 
∆recA, involved in HR, ∆uvrA, involved in NER, and the double mutant ∆mutS ∆mutL 
involved in MR. Two strains were also used as negative controls: the triple mutant ∆mutM 
∆mutY ∆mutT, required for DNA repair following oxidative stress, and the ∆virB strain, 
coding for B. abortus type IV secretion system. All these mutant strains were tested for their 
survival against the SN1 agent MNNG that reacts directly with DNA, and the SN2 agent MMS 
that reacts in two steps via an intermediate product (Beranek, 1990) (Fig 1). Interestingly, 
some genes seem to be required against one type of alkylating agent only, such as alkB and 
the BER mutants that are attenuated only on plates supplemented with MMS. A ∆xthA1 
mutant had been previously reported to be sensitive to MMS (Hornback & Roop, 2006), but 
the question remained as to the function of XthA2. Here, we show that XthA1 is the major 



Fig 21. Survival of DNA repair mutants against alkylating agents in vitro. Deletion 
strains were plated on rich medium (TSB) supplemented or not with alkylating agents 
(35 µM of MNNG or 2.5 mM of MMS). Data shown here are the mean values of 
colony forming units for biological triplicates. DR stands for direct repair, BER for 
base excision repair, HR for homologous recombination, NER for nucleotide excision 
repair and MR for mismatch repair. The category “others” comprises 8-oxo-dG repair 
(mutM mutY mutT) and the type IV secretion system (virB) as negative controls.  
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Fig 22. Alignments of sequences for A) ogt and B) ada in E. coli K12 and B. abortus 
2308. Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) was used to align amino 
acid sequences. Black boxes indicate catalytic sites in E. coli (C39 and C321 for O6-
methylguanine and O4-methylthymine repair and C38 for methylphosphotriester capture). 
The blue box correspond to a position that confers broader substrate specificity to Ogt, if 
mutated into a proline, as in B. abortus. The red box indicates a position which could be 
responsible for the absence of a functional adaptive response in B. abortus.  
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Fig 23. Gene expression following MMS treatment. RT-qPCR was performed on exponential 
phase B. abortus cultured in rich medium for 5 hours in the presence or absence of 2.5 mM 
MMS. Experiments were performed three times and mean values were compared between the 
stressed and non-stressed conditions. Error bars represent standard deviation. Student’s t test 
was performed on data with minimum 1.5 fold induction (p < 0.05, *).  
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endonuclease, since its sole deletion is enough to confer sensitivity to MMS whereas it is not 
the case for the deletion of xthA2. However, the double mutant is about 105 times more 
attenuated than the single ∆xthA1 (Fig 21), so it is clear that both genes have (partially) 
redundant functions. Similarly, it appears that ∆tagA and ∆alkA have also a synergetic effect, 
as the ∆alkA mutant is not affected by MMS whereas the ∆tagA mutant displays a 35-fold 
decrease in the number of CFU. The ∆tagA ∆alkA mutant is even more strongly affected with 
a decrease in CFU of 5 orders of magnitude compared to the control condition (Fig 21). This 
result strongly suggests that AlkA and TagA share a common DNA glycosylase function, 
which is crucial for survival in the presence of MMS in B. abortus, as it is the case in E. coli 
(Kaasen et al., 1986). The ∆recA mutant is also strongly affected by MMS, and slightly by 
MNNG (Fig 21). The ∆ogt mutant is particularly noteworthy, as it appears to be very 
sensitive to MMS exposure. Moreover, the triple methyltransferase mutant ∆ada1 ∆ada2 ∆ogt 
is only marginally more attenuated than the single ∆ogt mutant against MMS, and slightly 
more against MNNG (Fig 21). This clearly indicates that the presence of Ogt is a key factor 
for B. abortus survival against alkylating agents, unexpectedly more than the two Ada 
proteins compared to the E. coli model. At the protein level, OgtB. abortus is predicted to be 
33 % identical to OgtE. coli and the methyl-acceptor C139 residue is conserved (Fig 22A). In 
B. abortus, the residue corresponding to OgtE. coli S134 is a proline (Fig 22A). Remarkably, in 
E. coli, the mutation of S134 into a proline confers a broader specificity to the protein by 
increasing the size of its active site (Schoonhoven et al., 2017). 

 
The two genes predicted to code for Ada proteins also possess the conserved C38 and 

C321 residues, involved in its activation into a transcription factor and the capture of O6meG 
or O4meT, respectively (Fig 22B). Nevertheless, the deletion of the ada1 and ada2 genes did 
not change drastically the sensitivity of B. abortus to alkylating agents (Fig 21), so one could 
wonder if the supposed Ada proteins are actually functional as transcription factors of a 
hypothetical adaptive system. Quantitative reverse transcription polymerase chain reaction 
(RT-qPCR) experiments were performed on liquid cultures of B. abortus in the presence or 
absence of MMS and several DNA repair genes were compared for their RNA levels in these 
conditions (Fig 23). Interestingly, the RNA levels of the two ada genes were not statistically 
increased after MMS exposure. At the opposite, the ones that did have a high fold induction 
were alkA, tagA and lexA (Fig 23). In fact, the only overexpressed alkylation-specific genes 
were alkA and tagA, which are predicted to code for proteins of similar function. The absence 
of induction of the ada genes (Fig 23) and their marginal role in coping with alkylating stress 
in vitro (Fig 21) suggest that B. abortus is not relying on an Ada-dependent adaptive system 
to face alkylating stress. It has been proposed that the absence of an acidic residue as the 106th 
amino acid position of AdaS. enterica, contrarily to AdaE. coli (corresponding to D107), could 
explain the absence of an adaptive response in S. enterica Typhimurium, as it is part of the 
helix-turn-helix motif (Hakura et al., 1991). Similarly, in B. abortus, the corresponding 
position is occupied by either a N116 (Ada1) or a V105 (Ada2) (Fig 22B), so this could be 
the key as to why B. abortus does not possess a functional adaptive system. Instead, it seems 
that it is relying on the non-inducible ogt and the inducible alkA and tagA, as well as the SOS 
system via lexA to face alkylating stress.  
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Fig 24. Targets of the transcription factor GcrA. A) In vivo GcrA binding sites detected 
by ChIP-seq. The number of reads per nucleotide is plotted for five promoter regions 
enriched by GcrA pull-down. B) GcrA depletion generates growth and division defects 
in B. abortus. Bacteria were labeled with TRSE to covalently bind Texas Red to amine 
groups present at the bacterial surface. Non labeled area thus correspond to newly 
incorporated envelope material. Grown in rich medium in presence of IPTG (+ IPTG), 
bacteria have a normal morphology. Upon IPTG removal (- IPTG), bacteria elongate (3 
h), then form branches (6 h). At 24 h post IPTG removal, many bacteria present Y-
shapes or more complex branched phenotypes (white arrow). C) Western blot against 
GcrA in the presence or absence of IPTG, with different timings post IPTG removal. 
Omp10 was used as loading control, as it was not amongst GcrA targets according to the 
ChIP-seq experiment. 
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II.2.	The	expression	of	ogt	is	dependent	on	the	transcription	factor	GcrA	
 
One striking characteristic of ogt is the presence, right after the start codon, of a 

GANTC motif. This sequence is known to be a site of epigenetic regulation in α-
proteobacteria. Indeed, GANTC sites have been shown to be methylated by CcrM in a cell-
cycle dependent manner in the α-proteobacterium Caulobacter crescentus (Collier et al., 
2007; Kozdon et al., 2013; Gonzalez et al., 2014), and probably also in B. abortus (Robertson 
et al., 2000; Francis et al., 2017). Interestingly, the gene coding for the alkylation-specific 
DNA repair AlkB protein is regulated throughout the cell cycle in C. crescentus (Colombi & 
Gomes, 1997). Since the cell cycle-dependent transcription factor GcrA is known to be a 
sensor of methylated GANTC sites on C. crescentus DNA (Fioravanti et al., 2013; Haakonsen 
et al., 2015), we identified the ortholog of gcrA in B. abortus (BAB1_0329), a gene 
previously shown to be essential (Sternon et al., 2018). We performed a ChIP-seq against B. 
abortus GcrA to identify its direct targets in B. abortus genome. As many as 232 hits were 
found for the first chromosome of B. abortus and 110 for the second one. Note that this is a 
lot more than the number of hits (109 with the same threshold) for a ChIP-seq against B. 
abortus CtrA, another cell cycle transcription factor (Francis et al., 2017). This discrepancy 
suggests that, like in C. crescentus, GcrA could be a co-factor of the housekeeping σ70 
(Haakonsen et al., 2015). Amongst GcrA targets, several genes involved in DNA repair were 
found (ogt, lexA, uvrA and mutL, but also aidB) (Fig 24A). Compared to the rest of the 
chromosomes, we found a significantly higher (4.4 and 4.7 fold in chromosomes I and II, 
respectively) frequency of GANTC sites in the peaks of this ChIP-seq (p < 0.001 according to 
a Poisson distribution).  

 
In order to test if genes involved in DNA repair could be regulated by GcrA, a depletion 

strain based on an IPTG-inducible promoter was constructed for this transcription factor 
(∆gcrA pBI-gcrA). In the absence of IPTG, the ∆gcrA pBI-gcrA strain mainly forms Y-shaped 
bacteria after the first six hours of growth, suggesting that their division is impaired. TRSE 
labeling (Brown et al., 2012) suggests that later the bacteria slow down their growth 
(Fig 24B). Importantly, this last observation would need to be confirmed by time-lapse 
experiments, for example. After 3 h in the absence of IPTG, the bacteria are efficiently 
depleted from leftover GcrA, as attested by western blot experiments (Fig 24C). RT-qPCR 
was performed on DNA repair genes after culturing B. abortus ∆gcrA pBI-gcrA in the 
presence or absence of IPTG. With this technique, we could confirm that GcrA regulates the 
expression of ogt and mutL (Fig 25A). The induction of lexA is still happening after MMS 
treatment when the bacteria are depleted in GcrA (Fig 25B), which indicates that the 
activation of the SOS response under exogenous stress is regulated through a GcrA-
independent mechanism.   

 
WT and GcrA depletion strains were cultured in liquid medium supplemented or not 

with IPTG and/or MMS to test if GcrA control is crucial for survival and growth in alkylating 
conditions. Aliquots were taken at different time points and plated on rich medium agar plates 
supplemented with IPTG in order to evaluate the surviving population. As seen with TRSE 



Fig 25. Phenotype of GcrA depletion strain after alkylating stress. A) Gene expression in 
the GcrA depletion strain. The mRNA levels of several genes coding for DNA repair 
proteins were calculated through RT-qPCR experiments for the GcrA depletion strain. As 
predicted by ChIP-seq experiment, ogt and mutL expression are both affected by the 
absence of GcrA (- IPTG). The expression of the other genes was not statistically different 
(Student’s t test) between the two conditions (+/- IPTG) (n = 3). B) RT-qPCR data of lexA 
gene expression in a GcrA depletion background in presence (+) or absence (-) of IPTG, 
after 2.5 mM MMS exposure for 5 h, compared to non exposed bacteria. Experiments 
were repeated three times. Error bars represent standard deviation from the mean. 
Student’s t test was performed with p > 0.05 (NS). C) Survival of  GcrA depletion strain 
in presence of in vitro alkylating stress. Bacteria were cultured in liquid medium 
supplemented or not with IPTG and in the presence or absence of 5 mM of MMS. 
Samples were taken after 0, 3, 6, 24 and 48 h of culture and plated on rich medium 
supplemented with IPTG. Colony forming units were counted to evaluate survival. Error 
bars represent standard deviation (n = 3).  
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Fig 27. Infection of RAW 264.7 macrophages with the GcrA depletion strain. 
Colony forming units were counted after 2, 5, 24 and 48 h post infection for the WT 
and the GcrA depletion strains incubated with or without IPTG ( + IPTG or  - IPTG, 
respectively). Error bars represent standard deviations (n = 3). A Scheffe statistical 
analysis reveals that, in the absence of IPTG, the GcrA depletion strain is attenuated 
at 24 (p < 0.01) and 48 h  (p < 0. 001) post infection in this cell type. 
 
    

Fig 26. Infection of RAW 264.7 macrophages with deletion strain. Colony forming 
units were counted after 2, 5, 24 and 48 h post infection. Error bars represent 
standard deviations (n = 3). A Scheffe statistical analysis reveals that, in this model, 
none of the tested strains were attenuated in infection (p > 0.05, NS). 
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Fig 28. Infection in HeLa cells. This experiment has been performed in biological 
triplicates. Error bars represent standard deviation from the means.  
 

Fig 29. Infection of A) non activated and B) activated bone marrow derived 
macrophages (BMDM) with DNA repair deletion strains. Importantly, this 
experiment has only been done twice, so statistical analysis has not been performed.  
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labeling (Fig 24B), the ∆gcrA pBI-gcrA strain that was cultured without IPTG is not 
multiplying but it survives (at least up to two days) since bacteria recovered once plated on 
medium supplemented with IPTG (Fig 25C). When bacteria were cultured in the presence of 
MMS, the WT and GcrA depletion strains first underwent a massive drop of CFU, 
independently of the presence or absence of IPTG. Then, both the WT and the ∆gcrA pBI-
gcrA, if supplemented with IPTG, were able to overcome the stress and started recovering 
with time, as attested by the raise in CFU (Fig 25C). When B. abortus was depleted in GcrA, 
bacteria were unable to recover from the stress and kept on dying (Fig 25C), indicating that 
the presence of GcrA is required for B. abortus to efficiently cope with high exogenous 
alkylating stress. 

II.3.	Individual	DNA	repair	pathways	are	not	essential	for	B.	abortus	infection	
 
Previous attempts at detecting alkylating stress on other intracellular bacteria, based on 

deletion mutants for DNA repair pathways, were unsuccessful (Durbach et al., 2003; Alvarez 
et al., 2010). The deletion strains that were tested for B. abortus during RAW 264.7 
macrophages infection also failed to show attenuation (Fig 26). These strains comprise the 
alkylation-specific triple mutant ∆ada1 ∆ada2 ∆ogt, double mutant ∆alkA ∆tagA and single 
mutant ∆alkB. Similarly, an aidB mutant had previously been shown to be unaffected in 
infection (Dotreppe et al., 2011). Other DNA repair mutants were also tested, such as the 
BER deficient mutant ∆xthA1 ∆xthA2, the NER deficient mutant ∆uvrA, the MR deficient 
mutant ∆mutS ∆mutL and the homologous recombination deficient mutant ∆recA. In addition, 
the triple mutant ∆mutM ∆mutY ∆mutT, impaired for oxidative damage (8-oxoguanine) repair 
and Fapy-7meG repair, was also tested. Amongst them all, none of the mutants were 
attenuated in infection (Fig 26).  

 
According to RT-qPCR data, GcrA is involved in the regulation of at least two DNA 

repair pathways: direct repair through ogt and MR through mutL (Fig 25A). In RAW 264.7 
macrophages, it was observed that the GcrA depletion strain keeps a stable number of CFU 
until 24 h PI, before to drop at 48 h PI (Fig 27). This indicates that GcrA is required for long-
term survival in this model of infection. However, it would be hasty to attribute this 
attenuation to the sole disruption of DNA repair pathways, as GcrA also regulates many other 
functions.  

II.4.	Unpublished	data		

II.4.1.	DNA	repair	deletion	strains	in	other	infection	models	

 
During RAW 264.7 macrophages infection, no DNA repair deletion strain was 

attenuated (Fig 26). As infection models may be very different between each other (Andreu et 
al., 2017), we decided to try infection in other conditions. First, we infected HeLa cells with 
the WT strain, the triple methyltransferase mutant ∆ada1 ∆ada2 ∆ogt and the double AP 
endonuclease mutant ∆xthA1 ∆xthA2. It appeared that none of the strains were attenuated 
during HeLa cells infection (Fig 28). Next, we tested infection in non-activated and activated 



Fig 30. Data about GcrA depletion strain. A) Infection of non activated BMDM with 
GcrA depletion strain. Note that this experiment has been done with the same cells 
than in Fig 24, so WT data are the same between the two figures. B) DNA content of 
B. abortus GcrA depletion strain. This experiment represent flow cytometry data 
obtained after SytoxGreen labeling of bacterial DNA. This experiment has only been 
done once.  

A	 B	 WT 

∆gcrA pBI-gcrA + IPTG 

∆gcrA pBI-gcrA - IPTG 

Fig 31. Growth curves of different strains of B. abortus in rich medium (TSB). This 
graph was obtained with exponential phase bacteria, normalized at OD600 0.1 to start 
the experiments. The OD600 were calculated every 30 minutes with a Bioscreen. This 
graph represents the mean values of three different experiments. Error bars represent 
standard deviation from the means.  
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bone marrow-derived macrophages (BMDM). To activate the cells, we incubated them 
overnight with 10 ng/mL of LPS and 20 ng/mL of IFNγ. They were then infected with 
bacteria. Importantly, this experiment has only been done twice, so a statistical analysis has 
not been performed and data should be considered with caution. Apparently, no attenuation 
was observable at 24 h PI, but some strains seemed attenuated at 48 h PI. In non-activated 
BMDM, it was the case of the ∆xthA1 ∆xthA2 BER deficient mutant and of the ∆mutS 
mismatch repair deficient mutant (Fig 29A). In activated BMDM, all strains, including the 
WT one, had a low CFU count at 48 h post infection compared to the non-activated condition 
(Fig 29B). This suggests that the host cells are better at controlling bacterial growth between 
24 and 48h of infection when they are activated. In activated macrophages, the ∆xthA1 
∆xthA2 strain was the only one that was clearly attenuated compared to the WT strain. Indeed, 
in this context, the ∆mutS strain looked no worse than the WT strain (Fig 29B). Importantly, 
none of the alkylation-specific mutants were attenuated.  

II.4.2.	GcrA	depletion	strain	is	also	attenuated	in	BMDM…	but	recovers	

 
BMDM were also infected with GcrA depletion strain. Again, this experiment has only 

been done twice, so a statistical analysis has not been performed and data should be 
considered with caution (Fig 30A). At 24 h PI, the GcrA depletion strain (without IPTG) is 
clearly not growing, but at 48 h PI, it is surprising to see that it seems to recover (Fig 30A). 
This recovery is very striking and could mean that the intracellular environment of the rBCV 
is different between RAW 264.7 macrophages and BMDM. On that note, it has been shown 
that GcrA is dispensable in C. crescentus when bacteria are gown in minimal medium or 
starved in phosphate (Murray et al., 2013; Haakonsen et al., 2015). Alternatively, it is 
possible that suppressor mutants appeared during the infection. One way to know if it is the 
case would be to repeat the experiment, then to plate bacteria on medium with and without 
IPTG. If suppressors appeared, bacteria should be able to grow without IPTG.   

II.4.3.	GcrA	depletion	strain	is	impaired	for	normal	DNA	content	

 
In C. crescentus, GcrA is involved in cell cycle regulation (Fioravanti et al., 2013). The 

cell growth defect phenotype of B. abortus GcrA depletion strain also suggests that it is the 
case in B. abortus (Fig 30B). In C. crescentus, a GcrA depletion strain is elongated and has 
extra chromosomes because the rate of cell division is too slow compared to the rate of DNA 
replication (Haakonsen et al., 2015). Here, we found that B. abortus GcrA depletion strain 
also accumulates extra copies of chromosomes, as shown with flow cytometry experiment 
(Fig 30B). Note that in C. crescentus, the GcrA depletion strain is still able to grow, as it 
makes filamentous bacteria (Murray et al., 2013; Haakonsen et al., 2015). At the opposite, in 
B. abortus, the growth appears to be impaired after 24 hours (Fig 24B), contrarily to the 
elongated and branched phenotype that could be observed with B. abortus CtrA depletion 
strain (Francis et al., 2017).  

 



Fig 32. Data about B. abortus SOS system. Infection with SOS deficient strains in A) 
activated RAW 264.7 macrophages and B) bone marrow derived macrophages (BMDM). 
Cells were infected with B. abortus strains producing a mutated version of the SOS repressor 
lexA (LexAS161A). This mutation is supposed to confer LexA a higher stability. The mutation 
was introduces either in the genomic DNA (lexA::lexAS161A) or on a medium copy plasmid 
(pBBR-plac-lexAS161A) in different genetic backgrounds. Importantly, the experiment has only 
been done once in activated RAW 264.7 macrophages and twice in BMDM, so statistical 
analyses have not been performed. C) Partial alignment of LexA amino acid sequences from 
different bacteria (from Mo et al, . 2014). D) Alignment of B. abortus and E. coli LexA 
performed with Clustal Omega. Important sequences are highlighted based on E. coli data.   
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II.4.4.	The	SOS	system	could	be	required	for	intracellular	survival	

 
In the study of Uphoff et al. (2018), it was shown that, in E. coli, the SOS system is 

required very early following alkylating stress. Our data also showed that B. abortus is 
overexpressing the SOS mediator lexA after MMS treatment (Fig 23). In E. coli, the S119 
amino acid position has been reporter to be a catalytic residue of LexA that is required for its 
self-cleavage (Slilaty & Little, 1987). Its mutation into an alanine (S119A) is known to make 
LexA non-cleavable while still making it able to interact with RecA* and without 
destabilizing its structure (Slilaty & Little, 1987). As for B. abortus, it is proposed to have a 
constitutive SOS response, with only a slight induction possible after DNA damage (Roux et 
al., 2006) (see introduction section X). This mutation in B. abortus lexA should thus render 
the bacteria unable to start a SOS response, as LexA would be unresponsive to the natural 
RecA* activity. We therefore changed this residue in B. abortus lexA gene (BAB1_1167) at 
the genomic level (lexA::lexAS161A) or on a medium copy plasmid (pBBR-plac-lexAS161A) in 
different genetic backgrounds. The growth of both strains was tested in vitro in rich medium 
to ensure that the mutation in lexA and its overexpression was not toxic to B. abortus (Fig 31). 
The two strains were then used for infecting activated RAW 264.7 macrophages and non-
activated BMDM (Fig 32A, B). Note that these experiments have not been done three times 
(see legend) so data should be considered with caution. In both models of infection, the WT 
strain carrying the pBBR-plac-lexAS161A plasmid (in blue) was clearly attenuated at 24 and 48 h 
PI. This attenuation was unexpectedly less stringent in the ∆xthA1 ∆xthA2 background (in 
red). In activated RAW 264.7 macrophages, the pBBR-plac-lexAS161A plasmid was also tested 
in other genetic backgrounds: the alkylation-specific ∆alkB and ∆ada1 ∆ada2 ∆ogt mutants, 
as well as the ∆mutM ∆mutY ∆mutT mutant, impaired for oxidative damage repair. These 
strains did not look worse than in the WT background (Fig 32A). It is possible that the 
inability of B. abortus to perform a normal SOS response is already so deleterious that the 
absence of genes coding for specific DNA repair systems is inconsequential. Alternatively, it 
could be a sign that alkylating and oxidative stresses are not very high in these host cells. 
Note that the phenotype of attenuation was only observable with lexA overexpressing strains. 
Indeed, the strain for which the genomic lexA has been replaced by its mutated version 
(lexA::lexAS161A) was not attenuated in activated RAW 264.7 macrophages infection (in green 
in Fig 32A).  

 
A closer look at LexA amino acids sequences revealed that there are a few important 

differences between the canonical E. coli LexA and B. abortus LexA. Mainly, the linker 
region is much longer in B. abortus protein than it is in E. coli (red box in Fig 32D). The short 
linker of E. coli is known to be sufficient for the protein to make a 180° reorientation between 
the bound and the unbound form (Mo et al., 2014), but a longer linker could have an impact 
on the kinetics of this reaction. Importantly, E. coli linker sequence seems to be partially 
conserved in other bacteria, especially for the central EE amino acids, but it is not the case in 
B. abortus (red arrow in Fig 32C, D). Another difference between E. coli LexA and B. 
abortus LexA is the non-conservation in the sequence of the third α-helix of the DNA binding 
domain (black boxes in Fig 32D). This sequence is known to be involved in the recognition of 
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ORF seqID Function Start End score strand 
- BAB_RS16000 branched chain amino acid ABC 

transporter substrate-binding protein -74 -58 0.94 - 

BAB1_0015 BAB_RS31930 hypothetical protein -165 -149 0.94 + 
BAB1_0068 BAB_RS16250 imuAB-dnaE2 (operon) (≈UmuDC) -34 -18 0.94 - 
BAB1_0271 BAB_RS32100 abortive infection protein -372 -356 0.94 + 
BAB1_0273 BAB_RS17215 transcriptional regulator -399 -383 0.94 + 
BAB1_0276 BAB_RS17230 hypothetical protein -293 -277 0.94 - 
BAB1_0416 BAB_RS17915 DUF85:Elongator protein 3/MiaB/

NifB:Radical SAM -86 -70 1.00 + 

BAB1_0276 BAB_RS17920 hypothetical protein -66 -50 1.00 - 
- BAB_RS32235 hypothetical protein -130 -114 0.94 - 

BAB1_0488 BAB_RS18245 hypothetical protein (YicC-like) -257 -241 0.94 - 
BAB1_0524 BAB_RS18415 glyoxalase -31 -15 0.94 - 
BAB1_0525 BAB_RS18420 pyruvate, phosphate dikinase PpdK -249 -233 0.94 + 
BAB1_0738 BAB_RS19450 lactate permease LldP -292 -276 0.94 + 
BAB1_2195 BAB_RS19455 tRNA-Pro -23 -7 0.94 - 
BAB1_0739 BAB_RS19460 ETC complex I subunit region -258 -242 0.94 - 
BAB1_0845 BAB_RS19960 DNA polymerase III subunit alpha (dnaE) -399 -383 0.94 - 
BAB1_0853 BAB_RS20000 inositol monophosphatase -400 -384 0.94 + 
BAB1_0905 BAB_RS20250 5'-nucleotidase SurE -94 -78 0.94 - 
BAB1_1126 BAB_RS21320 single-stranded DNA-binding protein SSB -203 -187 0.94 - 
BAB1_1127 BAB_RS32630 hypothetical protein -381 -365 0.94 + 
BAB1_1128 BAB_RS21325 excinuclease ABC subunit A UvrA -157 -141 1.00 + 
BAB1_1167 BAB_RS21510 LexA repressor -72 -56 1.00 - 
BAB1_1224 BAB_RS21770 DNA recombination/repair protein RecA -139 -123 0.94 - 

- BAB_RS23255 hypothetical protein -137 -121 0.94 - 
BAB1_1856 BAB_RS24745 N-acetyltransferase -399 -383 0.94 - 
BAB1_1967 BAB_RS25305 universal stress protein -253 -237 0.94 + 

- BAB_RS33035 hypothetical protein -64 -48 0.94 - 
BAB1_2186 BAB_RS26350 30S ribosomal protein S20, polyamine 

inhibitor -346 -330 0.94 - 

BAB2_0045 BAB_RS26590 lysophospholipase PldB -38 -22 0.94 - 
BAB2_0282 BAB_RS27710 ABC transporter permease -201 -185 0.94 + 
BAB2_0283 BAB_RS27715 LysR family transcriptional regulator -80 -64 0.94 - 
BAB2_0625 BAB_RS29305 DNA polymerase IV (dinB) -36 -20 0.94 + 
BAB2_0632 BAB_RS29335 MFS transporter (nitrite antiporter) -93 -77 0.94 + 
BAB2_0659 BAB_RS29470 DNA helicase RecG -72 -56 1.00 - 
BAB2_0660 BAB_RS29475 succinate dehydrogenase assembly 

factor 2 family protein -95 -79 1.00 + 

BAB2_0661 BAB_RS29480 transcription-repair coupling factor Mfd -393 -377 1.00 + 
BAB2_0997 BAB_RS31030 peptide deformylase -68 -52 0.94 - 
BAB2_0998 BAB_RS31035 DNA recombination-limiting protein RmuC  -51 -35 0.94 + 

Fig 33. Proposed B. abortus LexA regulon. These hits were obtained by looking for a 
TGTTC-N6-TGTTCT motif in B. abortus genome, with one substitution allowed, using 
RSATool (Van Helden, 2003). Targets that have been proposed to be part of the core regulon 
of LexA in α-proteobacteria (Erill et al., 2004) are highlighted. 



Fig 34. Alignment of RecA amino acid sequences. The alignment was performed with Clustal 
Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) with genomic sequences coming from 
EcoCyc (https://ecocyc.org/). The black box indicates a residue which could be involved in the 
intrinsic RecA* activity of the protein in B. abortus (Henri et al., In preparation).  
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the SOS-boxes on target DNA (Mo et al., 2014). In the α -proteobacterium C. crescentus, a 
TGTTC-N6-TGTTCT motif, which is different from the one of E. coli, as been determined for 
SOS-boxes (da Rocha et al., 2008). We noticed that the predicted recognition domains of B. 
abortus LexA and C. crescentus LexA have 100% of identity (data not shown), suggesting 
that B. abortus LexA recognizes the same DNA sequence than C. crescentus LexA, as 
previously suggested (Erill et al., 2004). This allowed us to propose a LexA regulon for B. 
abortus, using the online software RSAT (van Helden, 2003) (Fig 33). Fortunately, several 
hits were expected and seem to confirm that B. abortus and C. crescentus do share the same 
consensus sequence for SOS-boxes. Amongst those hits, there were the promoters of lexA 
itself, recA, dnaE (coding for DNA polymerase III subunit α), dinB (coding for DNA 
polymerase IV) and the operon imuA-imuB-dnaE2/imuC (coding for proteins of similar 
function than the DNA polymerase V, absent in B. abortus and C. crescentus). Importantly, 
da Rocha et al. (2008) proposed to look for a less stringent consensus sequence for SOS-
boxes, i.e. GTTC-N7-GTTC. Using this sequence with one substitution allowed, many other 
potential targets emerged. We found for example sodA, sodC, clpX, uvrC, uvrD, ruvC, parE, 
xthA2, alkA and ada2, leading to the finding of the complete proposed core regulon of α-
proteobacteria (Erill et al., 2004). Nevertheless, these hits should be taken with caution, as 
many of them are probably false positives.  

 
Conversely, we also wondered if the particularity of B. abortus RecA to be 

constitutively in a RecA* state (Roux et al., 2006) could be a shared characteristic with other 
α-proteobacteria. In E. coli, a M164Q mutation in RecA seems to be make it naturally better 
at launching the auto-cleavage of LexA without affecting its function in homologous 
recombination (Henry et al., In preparation). This is very reminiscent of the phenotype of B. 
abortus RecA. We were thus positively surprised to see that B. abortus and other Rhizobiales 
(Sinorhizobium and Agrobacterium at least), as well as C. crescentus, bore a proline mutation 
at this particular position (black box in Fig 34), which could indicate that they also possess a 
constitutive SOS response. This is of course hypothetical and needs experimental evidences to 
be proven, but it seems worth mentioning.  

II.4.5.	We	 could	 not	 determine	 if	 CtrA	was	 involved	 in	 DNA	 repair	 after	 alkylating	

stress	

 
Considering that we had a CtrA depletion strain in the lab (Francis et al., 2017), we 

figured we could try to do the same experiments with this strain than with the GcrA depletion 
strain. We thus performed RT-qPCR on liquid cultures supplemented or not with IPTG in 
order to determine if the absence of CtrA would have an impact on gene expression. Indeed, 
based on our previously published ChIP-seq experiment, we could predict that the expression 
of tagA, mutM and uvrC should be affected by the absence of CtrA (Francis et al., 2017). 
However, we never managed to properly set up RT-qPCR experiments with this strain, as the 
level of ctrA mRNA was very high even in the absence of IPTG (Fig 35). Note that the team 
of E. Biondi apparently as the same problem with S. meliloti CtrA (personal communication). 
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Fig 35. Gene expression 
in the CtrA depletion 
strain. The mRNA levels 
of several genes coding 
for DNA repair proteins 
were calculated through 
RT-qPCR experiments 
for the CtrA depletion 
strain, in presence or 
absence of IPTG. Note 
that this experiment has 
been performed once, so 
there is no statistical 
analysis.	

Fig 36. Disk assay with H2O2. 
Bacteria were plated on 2YT rich 
medium and a disk wetted with 30 
% H2O2 was placed in the center 
of each petri dish. Diameters of 
inhibition were measured after 3 
days of incubation at 37°C. 
Experiments were repeated three 
times. A Scheffe statistical 
analysis was performed with p > 
0.05 (NS).  

Merge OxyBURST TRSE 

Fig 37. OxyBURST and TRSE labeling of B. abortus in liquid culture after H2O2 
challenge. It is obvious that the signal emitted by OxyBURST is not homogenous, which 
suggest that oxidative stress is not felt homogenously by the bacterial population. Scale 
bars represent 2 µm. 
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We also investigated the survival potential of the CtrA depletion strain in liquid culture 
supplemented with MMS by performing the survival assay. However, we were confronted 
with another problem. Actually, the CtrA depletion strain is unable to survive for long periods 
in liquid cultures, even in the absence of alkylating agents (data not shown). Therefore, it was 
impossible to tell if the growth defect that we observed with the addition of MMS was caused 
by a deregulation of DNA repair pathways or by the accumulation of lethal factors. 

II.4.6.	Genes	coding	for	alkylated	DNA	repair	are	not	required	against	H2O2		

 
One could wonder how specific the genes that code for proteins involved in alkylated 

DNA repair are. To investigate this question, the survival of several deletion strains was 
tested against oxidative stress. More precisely, disk assays were performed on deletion strains 
plated on 2YT–agar. Wathman paper disks were humidified with 30% H2O2 and placed in the 
center of each plate. Zones of growth inhibition were measured after 3 days and revealed that 
there were no statistical differences between the growths of the different strains tested 
(Fig 36). One surprise was that the double mutant ∆xthA1 ∆xthA2, impaired for BER, was 
also not worse than the WT strain. Considering that the specificity of the BER pathway comes 
from its DNA glycosylases (e.g. mutM, mutY, alkA), the suppression of the AP endonucleases 
(XthA enzymes) should result in the complete deficiency in BER and in an accumulation of 
AP sites. Thus, it was expected that this strain would have a greater zone of inhibition than 
the other strains. Considering that it was not the case, it is possible that H2O2 did not 
significantly damage B. abortus DNA, as superoxide dismutase and catalase activities are 
known to be very efficient in B. abortus (Steele et al., 2010). It would thus be very interesting 
to do this experiment again with another oxidative agent.  

II.4.7.	Set	up	of	a	probe	to	detect	oxidative	stress	on	B.	abortus	

 
The lack of phenotype of the triple mutant ∆mutM ∆mutY ∆mutT in infection (Fig ), led 

us to question the occurrence of oxidative stress on B. abortus in our model of infection. 
Since the use of a N-nitrosation sensitive probe was conclusive, we decided to set up a probe 
that could similarly be attached at the bacterial surface and that would report the oxidative 
status of the eBCV. Luckily, such a probe was already available on the market, but had never 
been used for this purpose at the single cell level. We thus performed a series a set up 
experiments with the OxyBURST reagent (D2935 H2DCFDA-SE, Thermo Fisher Scientific), 
which does not emit green fluorescence except when it is oxidized. The pictures presented in 
Fig 37 were taken after labeling the bacteria with the OxyBURST and TRSE probes for one 
hour, then activating the OxyBURST probe with 1.5 M hydroxylamine (pH 8.5) for one hour 
and finally challenging the bacteria in 2YT rich medium supplemented with 0.6% H2O2 after 
15 and 30 minutes. Interestingly, the FITC signal obtained by the OxyBURST-labeled 
bacteria was not homogenous (Fig 37), and a positive signal was also observable with a few 
non-stressed bacteria (data not shown). Importantly, LB medium is known to chemically 
generate H2O2 (Seaver & Imlay, 2001) and it should be no different in 2YT medium as it is 
the equivalent of LB medium, but with double amount of yeast extract. This could thus be the 
reason why non-stressed labeled bacteria also emit fluorescence. As for the heterogeneous 
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signal given by bacteria after H2O2 treatment, it is possible that is comes from a difference in 
the availability and amount of bacterial ROS scavengers between bacteria. It is also possible 
that the probe did not label the bacterial population evenly but that seems less likely as TRSE 
labeling (Fig 37) was efficient for all bacteria.  
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Material	and	methods	

I. Bacterial strains and media 

I.1.	Growth	conditions		
 
E. coli strains DH10B and S17-1, as well as S. enterica serovar Typhimurium were 

grown in Luria-Bertani (LB) medium at 37°C. B. abortus 544 NalR strain and its derivatives 
were grown in either 2YT rich medium (1% yeast extract, 1.6% peptone, 0.5% NaCl) or TSB 
rich medium (3% Bacto tryptic soy broth) at 37°C. Antibiotics were used at the following 
concentrations: ampicillin, 100 µg/ml; kanamycin, 10 µg/ml with integrative plasmids or 50 
µg/ml with replicative plasmids; chloramphenicol, 20 µg/ml; nalidixic acid, 25 µg/ml; 
rifampicin, 20 µg/ml; gentamicin, 10 or 50 µg/ml as indicated. When required, isopropyl β-D-
1-thiogalactopyranoside (IPTG) was used at a concentration of 1 mM in bacterial culture and 
at 10 mM in the culture medium during cellular infections.  

 
Note that the doses of alkylating agents are specified below for each experiment when 

they were required. The choice of those doses was based on early experiments on 2YT 
medium. At that time, we noticed that doses of 2 mM of MMS or below did not lead to a drop 
of CFU in the WT strain, nor did they lead to a change in the percentage of G1-phase bacteria 
in the population (data not shown). We thus decided to work mainly with 2.5-5 mM of MMS. 
The dose for MNNG was attributed with similar criteria.  

I.2.	Deletion,	depletion	and	overexpression	strains	construction	
 
B. abortus deletion strains were constructed by allelic exchange, via pNPTS138 vectors 

(M. R. K. Alley, Imperial College of Science, London, UK) carrying a kanamycin resistance 
cassette and a sucrose sensitivity cassette, as previously described (Deghelt et al., 2014). Note 
that in the case of the ∆xthA2 strain, 204 nucleic acids were kept on each side of the gene, as 
there was a previous report that the full deletion of the gene was not feasible (Hornback & 
Roop, 2006).  
 

B. abortus GcrA depletion strain was constructed similarly than CtrA depletion strain 
(Francis et al., 2017). Briefly, the placI-lacI-plac sequence was amplified from the pSRK-Kan 
plasmid (Khan et al., 2008) using Phusion High-Fidelity DNA Polymerase (New England 
BioLabs). The PCR product was then cloned into a pBBR-MCS1 plasmid using SacI and 
BamHI restriction enzymes. This modified pBBR-MCS1 is referred to as pBI. The gcrA 
coding sequence was amplified form B. abortus 544 genome with Phusion High-Fidelity 
DNA Polymerase (New England BioLabs) and then cloned into pBI using BamHI and KpnI 
enzymes in order to orient the insert opposite to the plac promoter already present in pBBR-
MCS1. This final plasmid (pBI-gcrA) was transferred to B. abortus by mating, after inserting 
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the deletion plasmid (pNPTS138-∆gcrA), then gcrA was removed from the chromosome of B. 
abortus as previously described (Deghelt et al., 2014). 

 
B. abortus lexA::lexAS161A was constructed by allelic exchange, similarly to deletion 

strains, using a pNPTS138 plasmid. The sequence of lexAS161A was ordered as a GBlocks 
gene fragment (Integrated DNA Technologies), with NheI and ApaI sequences (in capital 
letters) following the start codon and BamH1 sequence (in capital letters) downstream of the 
gene: 

atGCTAGCGGGCCCatgttgacccgtaagcagcacgagcttctgctgttcattcatgaacgtcttaaagaaacgggc
attcctccttcttttgacgagatgaaggaagctctggaccttgcgtccaaatcaggtattcaccgcctcatcacggcgctggaagaacgt
ggcttcattcgcaggctgcccaaccgggcgcgcgcactcgaagtgctccgcctgccggattcgatcgctcccggtctcagcccgcag
aagaaattcgcacccagtgtaattgaaggaagcctcggaaaagtagcttccgttcagcccgtgcgccctgccccggctccacaaaaca
gcgaggcgccagccactgtctctgtgccggtcatggggcgtattgctgccggtgtgccgatctctgccatccagaaccagacccatat
gctgagcctgccaccggaaatgatcggcgcgggcgaacattatgcgctggaagtcaaaggcgatgcgatgatcgatgccggaatttt
cgacggcgatacggtcatcatcaaacgcggcgatacggccaatccgggagaaattgtcgtggcactggtggatgaagaggaagcaa
ccttgaagcgcttccgccgcgagggcgcttccatcgcactggaagcagccaatccggcctatgaaacccggattttcggccctgatcg
ggtgcatgttcaggggaagcttgtgggcttgatccgccgctattgaGGATCCat 

 
This GBlock was ligated into a linearized pGEMT plasmid (EcoRV), then amplified 

before to be extracted with NheI and BamHI enzymes, and finally ligated in a PNPTS (for 
allelic replacement) or in a pBBRMCS1 (for the overexpression strain). 

 
Primers, plasmids and ORF of studied genes are listed in the table below.  

 
Gene Corresponding ORF 
ogt BAB1_0185 
ada1 BAB1_0398 
ada2 BAB2_0347 
xthA1 BAB1_0892 
xthA2 BAB1_2004 
tagA BAB2_0179 
alkA BAB1_1661 
alkB BAB2_0704 
mutS BAB1_0146 
mutL BAB2_0212 
mutM BAB1_2184 
mutY BAB1_0518 
mutT BAB1_1940 
recA BAB1_1224 
uvrA BAB1_1128 
lexA BAB1_1167 
narG BAB2_0904 
moaA BAB1_0973 
gcrA BAB1_0329 
ctrA BAB1_1614 
virB BAB2_0068-BAB2_0058 
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Primer Sequence 
F1-ada1 ggacaggtttcggaagaac 
R1-ada1 cataaggttcatgtccgtattcc 
F2-ada1 atacggacatgaaccttatggcatgatcgggcataagc 
R2-ada1 gcagcaattaatatgtgcaagtg 
Up-ada1 gcctgtctggcgataatcc 
Down-ada1 ccatagccatgcatcggaa 
F1-ada2 ctgcagggtctacgacacctacgaaat 
R1-ada2 cggagcggcgtttttatccgggtttgccgccattcttaaactctg 
F2-ada2 aaacccggataaaaacgcc 
R2-ada2 gtcgactccagtcttatgacgcggtt 
Up-ada2 tgacgggcggcgtttatttcg 
Down-ada2 caccacctcctgcgatgttgc 
F1-alkA cgctttcgttccagaatagc 
R1-alkA actttcaaatccgggttcg 
F2-alkA cgaacccggatttgaaagtccgcttctgtagatcccat 
R2-alkA ggaaaagacggcccttattg 
Up-alkA cgcacgatatgggtgatgc 
Down-alkA agggctccagttcgacatc 
F1-alkB agccgtcaacgatgtctc 
R1-alkB gtctttcatcagcccctttt 
F2-alkB aaaaggggctgatgaaagacgcgttctagggcgtgtct 
R2-alkB gagcagacgaagccttacag 
Up-alkB gccggaacatccctacac 
Down-alkB caatccactagggcttgtctg 
F1-ogt atcatcatccgcgctacc 
R1-ogt gattccatgaccgaataatagc 
F2-ogt attattcggtcatggaatcgcagacaggctggtaatcagttc 
R2-ogt cttgagcttggcgaggaac 
Up-ogt ttcgcaagatgccgatgc 
Down-ogt cttccactggccgtctg 
F1-tagA ccgagcggattgttgatc 
R1-tagA ccatatcgctcatttccc 
F2-tagA ccgggaaatgagcgatatggtttaattgccagccgatg 
R2-tagA gcaagtgcgggaaacatg 
Up-tagA agggttgaacccagataaagc 
Down-tagA ccgcgccttcatcttgtc 
F1-xthA1 ctgcagatgccgtataaagttcaact 
R1-xthA1 ccggttaaaacggaatcgtttccataatgattatgcgct 
F2-xthA1 aacgattccgttttaacc 
R2-xthA1 gtcgacgtacttttgctttcgatct 
Up-xthA1 cggcaagcatatccagatagc 
Down-xthA1 ccgtcaagatcgggtctcac 
F1-xthA2 ctgcagggcaagatccgcttcaatta 
R1-xthA2 tagattttctggtccgccgcgaccccgtgataacctttc 
F2-xthA2 gcggcggaccagaaaatc 
R2-xthA2 gtcgacgcccgatgcaggtgtattg 
Up-xthA2 tgttgttctcccgtttttcc 
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Down-xthA2 ggccgtactattctgattgtg 
F1-mutS agacgagctttgtcgtcttc 
R1-mutS cgcttccatgtcacaaacc 
F2-mutS aggtttgtgacatggaagcggggaaggcgtgaggtttc 
R2-mutS caccgtcgagcttttgtg 
Up-mutS gcggcgatcggtctttactg 
Down-mutS ctattcggcggacgaatatgac 
F1-mutL aaggcaatcttcggcaatcc 
R1-mutL ggattgtcatgcggcgactata 
F2-mutL tagtcgccgcatgacaatccgctaatgcatgtctgccaaac 
R2-mutL cgatctatcacgctcagttgc 
Up-mutL cgacaaaataccggacaacc 
Down-mutL ggctgcgatttcatcattatgg 
F1-mutM ctgcagttgccattagccttgcgata 
R1-mutM ccggcatccagactttggcaagggcagggtttctttccgttcaaa 
F2-mutM aagtctggatgccggtccaat 
R2-mutM gtcgacgaccgcttccttggccatata 
Up-mutM gcccccattgaaggtcgatc 
Down-mutM tttcacgccggagggaaac 
F1-mutY ggcggtttttgcttaatacg 
R1-mutY tgaaagcgtctggaatagcggggtcataccagcgcagaag 
F2-mutY gctattccagacgctttcaaa 
R2-mutY gcgctcgaagttttcaaac 
Up-mutY gcgcgatgatcagtttttcg 
Down-mutY cggttcaatccatcgtattgg 
F1-mutT tgccaggtcttgctattgtc 
R1-mutT ggctgtcaaagcagatcgaccatgcgccgtttcttcac 
F2-mutT gtcgatctgctttgacagcc 
R2-mutT caagatggtcgccagcatc 
Up-mutT atattcgcgtggcgcatcag 
Down-mutT ttcaaggaccaggagatgac 
F1-recA gtctcatcggtaactacatgg 
R1-recA catcttacaccatcctcttgtc 
F2-recA caagaggatggtgtaagatgatgtaaggcgctgttcatg 
R2-recA ctttggaaggccgaattcc 
Up-recA tgatctgtgccacatttctg 
Down-recA gaaacgatcaccgtcttcc 
F1-narG gcataactggatcatgtg 
R1-narG gattatatcctctcagtttttctt 
F2-narG aaaactgagaggatataatctagtcgtcccaggttaag 
R2-narG ccagttgtagtaaatcttcttg 
Up-narG gttcggcatgaacgacat 
Down-narG tagcagaagatgcacttctc 
F1-moaA gccaagattccgtcctttgc 
R1-moaA attgcgcataaattaagccgttg 
F2-moaA cggcttaatttatgcgcaatggcggatgacgggatttag 
R2-moaA cctcaaatccgatatgctttgc 
Up- moaA acaagatgtccaaggcag 
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Down-moaA ctgtaatgccgaagattttctg 
F1-gcrA gaatggccaagcgaattgac 
R1-gcrA ctcgtctgtccagttcattgc 
F2-gcrA gcaatgaactggacagacgagtgaattcaggaagcgtccc 
R2-gcrA gctttctcgacatcatgcaga 
Up-gcrA ttcagggtctcgaccagatg 
Down-gcrA cttcatcgaaacgctgcaag 
F-gcrA+ ggatccatgaactggacagacgagc 
R-gcrA+ ggtaccttcctgaattcagcgcgc 
Reference Plasmid name 
This study pNPTS138-∆ogt 
This study pNPTS138-∆ada1 
This study pNPTS138-∆ada2 
This study pNPTS138-∆xthA1 
This study pNPTS138-∆xthA2 
This study pNPTS138-∆tagA 
This study pNPTS138-∆alkA 
This study pNPTS138-∆alkB 
This study pNPTS138-∆mutS 
This study pNPTS138-∆mutL 
This study pNPTS138-∆mutM 
This study pNPTS138-∆mutY 
This study pNPTS138-∆mutT 
This study pNPTS138-∆recA 
This study pNPTS138-∆uvrA 
This study pNPTS138-∆narG 
This study pNPTS138-∆moaA 
Nijskens et al., 2008 pJQ200-∆virB 
This study pNPTS138-∆gcrA 
This study pBI-gcrA 
This study pNPTS138-lexA::lexAS161A 
This study pBBRMCS1-plac-lexAS161A 
This study pBBRMCS1-pada-ada-gfp 
This study pBBRMCS1-pada- adaC38A-gfp 
Francis et al., 2017 pBBRMCS1-ppleC-gfpasv 
Francis et al., 2017 pBBRMCS1-ppleCmut-gfpasv 

I.3.	Cloning	of	the	reporter	system	for	alkylating	stress	
 
The pada-adaE. coli sequence, including the start codon of alkBE. coli, was amplified from 

E. coli DH10B with Phusion High-Fidelity DNA Polymerase (New England BioLabs) using 
primers listed below. Note that capital letters represent SpeI and XhoI restriction sites, 
respectively.  

 
Primer Sequence 
F-yojLE. coli aaACTAGTtgagctactgaagttaccgttc  
R-serine2-adaE. coli ccttcgaCTCGAGgctcattacctctcctcattttc 
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A superfolder gfp coding sequence, with a XhoI sequence after the start codon and a 
PstI sequence after the stop codon (see capital letters), was adapted to fit the codon usage of 
B. abortus 2308 (http://www.kazusa.or.jp/codon/) and ordered as gBlocks gene fragment 
(Integrated DNA Technologies): 

 
taatgCTCGAGtcgaagggcgaagaactgttcaccggcgtggtgccgatcctggtggaactggatggcgatgtgaatg

gccataagttctccgtgcgcggcgaaggcgaaggcgatgccaccaatggcaagctgaccctgaagttcatctgcaccaccggcaag
ctgccggtgccgtggccgaccctggtgaccaccctgacctatggcgtgcagtgcttctcgcgctatccggatcatatgaagcgccatg
atttcttcaagtcggccatgccggaaggctatgtgcaggaacgcaccatctcgttcaaggatgatggcacctataagacccgcgccga
agtgaagttcgaaggcgataccctggtgaatcgcatcgaactgaagggcatcgatttcaaggaagatggcaatatcctgggccataag
ctggaatataatttcaattcgcataatgtgtatatcaccgccgataagcagaagaatggcatcaaggccaatttcaagatccgccataatg
tggaagatggctcggtgcagctggccgatcattatcagcagaataccccgatcggcgatggcccggtgctgctgccggataatcattat
ctgtcgacccagtcggtgctgtcgaaggatccgaatgaaaagcgcgatcatatggtgctgctggaattcgtgaccgccgccggcatca
cccatggcatggatgaactgtataagtgaCTGCAGaaaa 

 
 Both DNA products were cloned into a pBBR-MCS1 plasmid using PstI, XhoI and 

SpeI restriction enzymes in a triple ligation to orient the pada-adaE. coli -gfp fusion opposite to 
the plac promoter of pBBR-MCS1.  

II. Synthesis and binding of the probes to bacteria 

II.1.	N-nitrosation	sensitive	probe		
 
The probe was designed based on Mio et al (2016), with the addition of a succinimidyl 

ester group in order to allow the binding of the probe on amines at the bacterial surface. The 
complete synthesis protocol can be found in the appendix X.  

 
One mL of bacteria (DO600 0.5) were centrifuged at 7000 rpm for 2 min and washed 

twice in phosphate buffered saline (PBS). They were incubated for 1 hour at 37°C with the 
probe (10 µM) in 1 mL of PBS supplemented with 100 µL of NaHCO3 1 M (pH 8.4). Bacteria 
were then washed three times with PBS and used either for RAW 264.7 infection or for in 
vitro experiments. In the case of in vitro experiments, labeled bacteria were left for 1 h on 
wheel in the dark with 1 M of KNO2 (Thermo Fisher scientific) and 20 µL of HCl 3 M, before 
to be washed twice with PBS and fixed with paraformaldehyde (PFA) 2% for 20 min at 37°C. 

II.2.	Texas	Red	succinimidyl	ester	(TRSE)	
 
One mL of bacteria (DO600 0.5) were centrifuged at 7000 rpm for 2 min and washed 

twice in PBS. Bacteria were resuspended in 1 mL of PBS and incubated with TRSE at a final 
concentration of 1 µg/mL (Invitrogen) for 15 min at room temperature, as previously 
described (Francis et al., 2017).  
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II.3.	OxyBURST	
 
OxyBURST reagent (D2935 H2DCFDA-SE, Thermo Fisher Scientific) was purchased 

and resuspended in DMSO at a concentration of 1 mg/mL, and then air was removed with a 
vacuum system. Aliquots of 300 µL were prepared in PCR tubes, sealed with Parafilm 
(VWR), and stocked at -80°C. Bacteria were washed three times in PBS, then labeled with 
OxyBURST reagent (D2935 H2DCFDA-SE, Thermo Fisher Scientific) at a concentration of 1 
µg/mL in NaHCO3 0.1 M buffer (pH 8.5) for 30 minutes at room temperature. The probe 
were then activated with 1.5 M hydroxylamine (pH 8.5) for one hour and finally the bacteria 
were challenged in 2YT rich medium supplemented with 0.6% H2O2 after 15 and 30 minutes.  

III. Cell cultures and infections 

III.1.	RAW	264.7	macrophages		
 
RAW 264.7 macrophages (ATCC) were cultured at 37°C in the presence of 5% CO2 in 

DMEM (Invitrogen) supplemented with 4.5 g/L glucose, 1.5 g/L NaHCO3, 4 mM glutamine 
and 10% fetal bovine serum (Gibco). RAW 264.7 macrophages were seeded in 24-well plates 
(with coverslips for immunolabeling) at a concentration of 105 cells/mL and left in the 
incubator overnight. The next morning, late exponential phase cultures of Brucella (DO600 06-
0.9) were washed twice in PBS in order to remove antibiotics and traces of growth medium, 
then they were prepared in DMEM at a multiplicity of infection of 50 (i.e. 50 bacteria for one 
eukaryotic cell). During that step, 10 mM of IPTG or 163 µM of ascorbate were added to the 
culture medium if required. Bacteria and cells were centrifuged at 400 g for 10 min at 4°C 
and then incubated for 1 h at 37°C with 5% CO2 atmosphere before to be washed twice with 
PBS and then incubated in medium supplemented with 50 µg/mL of gentamicin to kill 
extracellular bacteria. One hour later, the medium was replaced by fresh medium 
supplemented with 10 µg/mL of gentamicin. Note that when working with activated cells, we 
first seeded the cells in 24-well plates, then after 7 hours, we changed the medium to incubate 
the macrophages overnight with DMEM (Invitrogen) supplemented with 10 ng/mL of E. coli 
LPS (Sigma-Aldrich) and 20 ng/mL of IFNγ (R&D system), then started the infection as 
usual, but with using this modified DMEM medium instead of the classical medium.  

III.2.	HeLa	cells	
 
HeLa cells (from the Centre d’Immunologie de Marseille-Luminy, Marseille, France) 

were cultivated at 37°C and in a 5% CO2 atmosphere in DMEM (Invitrogen) supplemented 
with 0.1 g/L of non-essential amino acids, 0.1 g/L of sodium pyruvate (Invitrogen) and with 
10% fetal bovine serum (Gibco). Infection with HeLa cells were carried out as with RAW 
264.7 macrophages, but with a few differences: cells were plated in 24-well plates with a 
concentration of 6 x 104 cells/mL; B. abortus cultures were diluted to reach a MOI of 300; 
and cells were left in 50 µg/mL of gentamicin until the end of the experiment. 
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III.3.	Bone	marrow-derived	macrophages	(BMDM)	
 
Bone marrow-derived macrophages (BMDM) were prepared as previously described 

(Pireaux et al., 2016). Briefly, they were obtained from femurs and tibia of 6 to 8 week old 
C57BL/6 mice, which were euthanized by cervical dislocation. Cells were incubated in cell 
culture Petri dishes (Greiner Bioscience) for 7 days with DMEM (Gibco) supplemented with 
10% heat-inactivated low-endotoxin serum (Sigma-Aldrich) and 10% of L929 conditioned 
medium. This conditioned medium was obtained by recovering the supernatant of murine L-
929 fibroblasts (ATCC) cultured for 6 days in DMEM supplemented with low-endotoxin 
serum (Sigma-Aldrich). The 3 first days only, the BMDM culture medium also contained 1% 
of penicillin/streptomycin (Life Technologies). On the 7th day, DMBM were seeded in 24-
well plates and the infection was carried as for RAW 264.7 macrophages. 

IV. Immunolabeling of infected cells 
 
Cells were washed twice in PBS before to be fixed for 20 min in 2% PFA pH 7.4 at 

37°C. They were then left in PBS in the dark at 4°C overnight before to be permeabilized in 
PBS with 0.1% Triton X-100 (Prolabo) for 10 min. Cells were incubated for 45 min with anti-
Brucella LPS primary monoclonal antibody (A76-12G12, undiluted hybridoma culture 
supernatant) in PBS containing 0.1% Triton X-100 and 3% (w/v) bovine serum albumin 
(BSA, Sigma Aldrich). Next, cells were washed three times in PBS before to be incubated 
with goat anti-mouse secondary antibodies coupled to Texas Red (1:500) (Sigma Aldrich) in 
PBS containing 0.1% Triton X-100 and 3% bovine serum albumin. Coverslips were washed 
three times in PBS, once in ddH2O and then mounted on Mowiol (Sigma). 

V. Microscopy and analyses of fluorescence 
 
We used a Nikon Eclipse E1000 (objective 100X, plan Apo) microscope connected to a 

ORCA-ER camera (Hamamatsu). The Hg lamp was set with ND filter at 4. Bacteria in culture 
were observed with the phase contrast on PBS-agarose (1%) pads. Bacteria inside host cells 
were observed with the TxRed channel (100 ms). The FITC channel (1 sec) was used to 
detect either the N-nitrosation sensitive probe or the GFP signal of the reporter systems. 
Pictures were encoded with NIS-element software and analyzed with the plug-in MicrobeJ in 
ImageJ (Ducret et al., 2016). For bacteria on pads, mean fluorescence intensities (MFI) were 
obtained as the “mean_c” values with MicrobeJ for individual bacteria. For intracellular 
bacteria, MFI were obtained by subtracting the background fluorescence (defined here as the 
average value of fluorescence given by the Pixel Inspection Tool on three points randomly 
chosen around a bacterium) to the “mean” value of fluorescence obtained for each bacterium 
with MicrobeJ.  
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VI. Growth curves and colony forming units counts 

VI.1.	Growth	curves	
 
Growth curves were performed with a Bioscreen C (Oy Growth curves). Overnight 

cultures cultures were washed twice in TSB, then they were diluted to an OD of 0.1 and 
resuspended in their final fresh medium. Wells were filled with 200 µL of culture and OD 
were measured every 30 min during 72 h. 

VI.2.	CFU	after	infection	
 
For CFU counts after infection, cells were washed twice in PBS, then lysed with 0.01% 

Triton X-100 in PBS for 10 min at 37°C. Several dilutions were plated on TSB supplemented 
with IPTG when required. Plates were incubated for 3 days at 37°C.  

VI.3.	CFU	after	liquid	culture	(survival	assay)	
 
For CFU counts in culture, wild type B. abortus and GcrA/CtrA depletion strain 

supplemented with IPTG were grown to mid exponential phase (OD600 0.3-0.6) and 
normalized to OD600 0.15. Cultures were divided in different aliquots to be tested with or 
without MMS 5 mM and with or without IPTG. Samples were taken at different time points 
(3, 6, 20, 24 and 48 h) and plated with serial dilutions on 2YT plates, supplemented with 
1 mM of IPTG for the depletion strain.  

VI.4.	CFU	on	plates	supplemented	with	alkylating	agents	(plating	assay)	
 
For CFU counts on plates supplemented with MMS or MNNG, 100 µL of bacteria in 

mid exponential phase (OD600 0.3-0.6) were plated after a normalization to OD600 0.1 of all 
bacterial cultures. All plates were prepared fresh, 1-2 hours before each experiment. MMS 
was added at a concentration of 2.5 mM in TSB-agar rich medium during plate preparation. 
MNNG was prepared in an acetate buffer (pH 5), and then added at a final concentration of 
35 µM in TSB-agar rich medium during plate preparation. 

VII. Chromatin immunoprecipitation with anti-GcrA antibodies 

VII.1.	ChIP-seq		
 
ChIP-seq experiment was conducted as previously described for CtrA (Francis et al., 

2017). Cultures of 80 mL of B. abortus (OD600 0.8) were harvested by centrifugation and 
proteins were cross-linked to DNA with 10 mM sodium phosphate buffer (pH 7.6) and 1% 
(v/v) formaldehyde for 10 min at RT and 30 min on ice. Bacteria were centrifuged and 
washed twice in cold PBS before to be resuspended in lysis buffer (10 mM Tris-HCl pH 7.5, 
1 mM EDTA, 100 mM NaCl, 2.2 mg/ml lysozyme, 20 ml protease inhibitor solution from 
Roche). Bacteria were lysed, after the addition of 0.1 and 0.5 mm diameter Zirconia/Silica 
beads (Biospec Products), in the cell Disruptor Genie from Scientific Industries at maximal 
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amplitude (2800) for 25 min at 4°C. Bacteria were then incubated for 10 min in the presence 
of ChIP buffer (1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.0, 167 mM 
NaCl, protease inhibitors). DNA fragments of about 300 base pairs were obtained by 
sonicating the lysate on ice (Branson Sonifier Digital cell disruptor S-450D 400W) by 
applying 15 bursts of 20 s (50% duty) at 30% amplitude. Debris were excluded in the pellet 
by centrifugation at 14,000 rpm for 3 min. The supernatant was normalized by protein content 
by measuring the absorbance at 280 nm and 7.5 mg of protein was diluted in 1 ml of ChIP 
buffer supplemented with 0.01% SDS and pre-cleared in 80 ml of protein A-agarose beads 
(Roche) and 100 µg BSA. Homemade anti-rabbit polyclonal GcrA antibodies (290.S3) were 
added to the supernatant (1/1000) and incubated over night at 4°C. The mix was then 
incubated with 80 ml of protein A-agarose beads pre-saturated with BSA for 2 h at 4°C. 
Beads were then washed in the following order: once with low salt buffer (0.1% SDS, 1% 
Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.1, 150 mM NaCl), once with high salt 
buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.1, 500 mM NaCl), 
once with LiCl buffer (0.25 M LiCl, 1% NP-40, 1% sodium deoxycholate, 1 mM EDTA, 10 
mM Tris-HCl pH 8.1) and twice with TE buffer (10 mM Tris-HCl pH 8.1 and 1 mM EDTA) 
before to be eluted with 500 µL of elution buffer (1% SDS and 0.1 M NaHCO3). The reverse-
crosslinking was performed with 500 mL of 300 mM of NaCl overnight at 65°C. Samples 
were then treated with Proteinase K (in 40 mM EDTA and 40 mM Tris-HCl pH 6.5) for 2 h at 
45°C and DNA was finally extracted with QIAGEN MinElute kit to be resuspended in 30 µL 
of Elution buffer.  

VII.2.	Analyses	
 
Illumina MySeq was used to sequence immunoprecipitated DNA. Data consisted of a 

number of reads per nucleotide. A Z score for each base pair (i.e. the number of standard 
deviation from the average) was calculated based on average and variance in a window of 1 
million base pairs. A threshold of Z score above 4 was set to consider genomic regions as 
bound by GcrA. These sequences were mapped to the genome of B. abortus 2308 (table 
available on request). The GcrA binding peaks can also be visualized on Artemis (freely 
available at http://www.sanger.ac.uk/science/tools/artemis) with the genomic sequences (.gb 
files) available on request. To calculate the number of GANTC sequences in ChIP-seq peaks, 
we extracted peak sequences online with Emboss-extractseq 
(http://emboss.bioinformatics.nl/cgi-bin/emboss/extractseq) and looked for the presence of 
GANTC sites with the “pattern matching, dna-pattern” tool on RSATools (van Helden, 
2003)(http://embnet.ccg.unam.mx/rsa-tools/) on both strands and with allowing overlapping 
matches. Results were normalized according to peak size to obtain the number of GANTC 
sites per kb (GANTC/kb). A similar analysis was performed for whole chromosomes with the 
“pattern matching, genome-scale dna-pattern” tool on RSATools. Ratios were calculated 
between data obtained (in GANTC/kb) for the peaks and for the whole chromosomes. 
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VIII. Whole genome sequencing after infection and liquid cultures 
 
Ethics Statement: The animal handling and procedures of this study were in accordance 

with the current European legislation (directive 86/609/EEC) and the corresponding Belgian 
law “Arrêté royal relatif à la protection des animaux d’expérience du 6 avril 2010 publié le 14 
mai 2010.” The Animal Welfare Committee of the Université de Namur (UNamur, Belgium) 
reviewed and approved the complete protocol for Brucella infections (Permit Number: 05-
558). 

 
Two liquid cultures of WT B. abortus were inoculated in 2YT rich medium from the 

same plate. One of them was divided in 5 subcultures and diluted (1:10) in liquid cultures 
twice every 24 h, before to be plated. The remaining original liquid culture was used to infect 
five C57BL/6 mice and RAW 264.7 macrophages. Mice were acquired from Harlan (Bicester, 
UK) and bred in the animal facility of the Gosselies campus of the Université Libre de 
Bruxelles (ULB, Belgium). Mice were injected intraperitoneally with a dose of 105 CFU/mL 
of B. abortus in 500 µl of PBS. Infectious doses were validated by plating serial dilutions of 
inoculums. At 60 h post inoculation, mice were euthanized by cervical dislocation. 
Immediately after being killed, spleens were recovered in PBS with 0.1% Triton X-100 
(Sigma) and plated on 2YT. RAW 264.7 macrophages were infected as described above and 
bacteria were plated at 6 and 48 h post infection. Five streaks were made from five isolated 
colonies obtained after passage in either liquid cultures, mice or RAW 264.7 macrophages 
from different wells. The five streaks served for inoculation of liquid cultures, from which 
genomic DNA was extracted (NucleoSpin Tissue extraction kit, Macherey-Nagel). Samples 
were sequenced with Illumina sequencing technique using NextSeq500 run Mid PE150 after 
preparing a TruSeq DNA library (performed by Genomics Core Leuven, Belgium). 
Sequencing hits were mapped on the genome of B. abortus 544 (performed by Genomics 
Core Leuven, Belgium) and mutations were counted for each strain, excluding regions 
corresponding to microsatellites.  

IX. Reverse transcription followed by quantitative PCR 
 
Bacterial cultures were grown in 2YT rich medium to exponential phase (OD600 0.3), 

washed twice in PBS and allowed to grow in rich medium supplemented or not with IPTG 
and/or MMS 2.5 mM (Sigma) for 5 h. Bacteria were washed twice in PBS, then collected by 
centrifugation and immediately frozen and stored at -80°C until processing. RNA was 
extracted using TriPure isolation reagent (Roche) according to manufacturer’s instructions. 
Samples were treated with DNase I (Fermentas), then RNA was reverse transcribed with 
specific primers (see below), using the High capacity cDNA Reverse Transcription kit 
(Applied Biosystems). Specific cDNAs were amplified on a LightCycler 96 Instrument 
(Roche) using FastStart Universal SYBR Green Master (Roche). Results were normalized 
using 16S RNA as a reference.  
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Primers for RT-qPCR 
F-ada1 tttccatcgtgttttcaaggcc 
R-ada1 atcccgcatcatagatcgtatcc 
F-ada2 caggttgatgccggttttgaatc 
R-ada2 aaattgcgatcatggtgccaag 
F-mutL cgatagcggctttgaagtgtg 
R-mutL cccgatccgtcttcatgaatttc 
F-ogt ccgctttcatcaggcaaactatt 
R-ogt ccggtttcagttccagaatgatt 
F-tagA cttgtcgcaaaccccataacc 
R-tagA caatggcaaccctcgatatgatc 
F-alkB ggacaaggacgaacggaatttt 
R-alkB gccatggtgcaggatatatttgg 
F-gcrA cagtgatcgggaaagtgcatc 
R-gcrA gggtgccgctattgttgtttt 
F-lexA ccttgcgtccaaatcaggtattc 
R-lexA aatttcttctgcgggctgaga 
F-mutS tcgatatctcaaccggaaccttc 
R-mutS gccgcaattcctcatcatgaaa 
F-alkA gcggatcgatacattgagcgata 
R-alkA agccagactttcaaatccggg 
F-recA catttcccgttcaaactgcatg 
R-recA gaaccgaagcatagaacttgagc 
F-uvrA cgtttatgtgacctgcgatgtc 
R-uvrA gaattcagcaccttcttccactg 
F-xthA1 caagtcggtggatgagcaattt 
R-xthA1 gaaggcctttattgatctcatccg 
F-xthA2 agtttctgcgcgattatcagc 
R-xthA2 cgaccccgtgataacctttct 
F-16S taataccgtatgtgcccttcgg 
R-16S tgatcatcctctcagaccagct 

 

X. Western blot 
 
Cultures of B. abortus in late exponential phase (OD600 0.7-1) were concentrated to an 

OD600 of 10 in PBS, then inactivated for 1 h at 80°C. Loading buffer (1:4 of final volume) was 
added before to heat the sample at 95°C for 10 min. Ten µL of sample were loaded on each 
well of a 12% acrylamide gels. After migration, proteins were transferred with the semi-dry 
method onto a nitrocellulose membrane (GE Healthcare) which was blocked in PBS 
supplemented with 0.05% Tween 20 (VWR) and 5% (w/v) milk (Nestlé, foam topping) over 
night. The membrane was incubated for 1 h with polyclonal anti-GcrA (290.S3) or 
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monoclonal anti-Omp10 (A68/4B10/F05) primary antibodies (1:1000), then with secondary 
antibodies coupled to HRP (Dako Denmark) (1:5000), both in PBS 0.05% Tween 1% milk. 
The membrane was washed three times in PBS before to be revealed with The Clarity 
Western ECL Substrate (Biorad) and Image Quant LAS 4000 (General Electric). 

XI. Flow cytometry 
 
DNA content was measured using flow cytometry. Bacteria were washed twice in PBS, 

then fixed in ice-cold 70% ethanol and left for a day at -20°C. Fixed samples were then 
washed twice in FACS staining buffer (10 mM Tris pH 7.2, 1 mM EDTA, 50 mM NaCitrate, 
0.01% Triton X-100) containing 0.1 mg/ml of RNaseA and incubated at room temperature for 
30 min. Bacteria were then centrifuged for 2 min at 8000g, resuspended in 1 ml of FACS 
staining buffer supplemented with 0.5 µM of Sytox Green Nucleic acid stain (Life 
Technologies), then incubated at room temperature in the dark for 5 min. Samples were 
analyzed by flow cytometry (FACS Calibur, BD Biosciences) at laser excitation of 488 nm. 
A minimum of 104 cells were recorded in triplicate for each experiment.  

XII. Disk assays 
 
Liquid cultures of bacteria in mid exponential phase (OD600 0.3-0.6) were normalized to 

OD600 0.15 in 2YT, then 100 µL of each culture was plated on 2YT-agar plates. Wathman 
paper disks of 6 mm of diameters were pasteurized, then were humidified with 30% H2O2 
(Sigma Aldrich) and placed in the center of each plate. Zones of growth inhibition (diameters) 
were measured after 3 days in the incubator at 37°C. 
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Discussion	and	perspectives	

I. On the existence of intracellular alkylating stress 

I.1.	What	are	the	sources	of	the	detected	alkylating	stress?	
 
Many environmental and pathogenic bacteria possess an adaptive system (Mielecki et 

al., 2015), indicating that alkylating stress is widespread in the environment. Nevertheless, it 
was unknown if intracellular bacteria could also face this stress during infection.  

 
To investigate this question, we developed a fluorescence-based reporter system to 

follow the occurrence of the stress on bacterial DNA at the single cell level. Here, using the 
class III pathogen B. abortus as a model of pathogenic intracellular bacterium, we were able 
to show that it does encounter alkylating stress inside host cells. B. abortus trafficking and 
replicative state inside host cells being well-characterized (Deghelt et al., 2014; Celli, 2015), 
we could more specifically track the occurrence of alkylating stress in the intracellular 
environment. So not only can we say that alkylating stress is occurring, we can also propose 
that it happens when B. abortus is inside its endosome-derived compartment (eBCV), which 
is a common step to many intracellular bacteria (Kumar & Valdivia, 2009).  

 
In order to understand if the stress was generated endogenously or exogenously, we first 

investigated whether N-nitroso compounds, which are alkylating agents, were produced by 
the host cells inside the eBCV. To do so, a probe was designed so it could be covalently 
attached at the bacterial surface and report, based on the emission of fluorescence, the level of 
N-nitrosation events occurring inside the eBCV. This technique is particularly interesting 
because it allowed us to examine the environment of each bacterium at a given time. Note that 
ultimately, this approach could be used for other questions, such as pH or oxidative stress 
occurrence in the environments met soon after internalization, before bacterial growth. In the 
case of alkylating stress, this technique revealed that N-nitrosation reactions do take place 
inside the eBCV, but only for a subset of the bacterial population. It could mean that 
exogenous N-nitrosation is not constant along time. For example, it could occur through 
waves with some bacteria being positive and other bacteria negative at a given time point. 
Alternatively, heterogeneity in the intracellular bacteria could generate a diversity of 
environments more or less prone to N-nitrosation. Another important point is that N-
nitrosation reaction is favored by acidic pH (Mirvish, 1975), which is a characteristic of the 
eBCV (Porte et al., 1999). Yet, even if this affirmation is true at the population level, its has 
been very recently proposed that acidification inside phagosomes is a stochastic mechanism 
with the final pH being very variable between vacuoles (Dragotakes et al., 2018). Therefore, 
it is possible that the 23% of the population for which we detected N-nitrosation events 
correspond to the subsets of the eBCV with the most favorable pH for this reaction to occur. 
To know whether this is the case, it would be very interesting to test the endosomal pH of 
Brucella in parallel with our N-nitrosation reporter probe. Actually, a double labeling of the 
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bacteria should be possible, so we could imagine using a second probe with a pH-dependent 
fluorescent signal in order to test both signals at the single-cell level. At the opposite, we 
could also inhibit vacuolar acidification by using Bafilomycin A to see whether acidic pH is 
involved in N-nitrosation reactions in the eBCV or not. 

 
Importantly, the addition of ascorbate to the cell culture medium diminished the level of 

exogenous N-nitrosation (Fig 20C), but not the level of alkylating stress detected with the 
Ada-based reporter system (Fig 20D). In addition to exogenous N-nitrosation, lipid 
peroxidation should also have been - at least partially – prevented by the addition of the 
antioxidant ascorbate, too. Theses results thus indicate that the alkylating stress signal that we 
detected with our reporter system does not reflect exogenous N-nitrosation or lipid 
peroxidation events, but more probably an endogenous event. Notably, the occurrence of 
external N-nitrosation events is relevant for alkylating stress only if metabolites are present in 
the environment. Indeed, alkylating stress is generated by those modified metabolites, and not 
by N-nitrosation per se (Archer, 1989). It has been proposed that the eBCV is very poor in 
metabolites (Kohler et al., 2002; Lamontagne et al., 2009; Rossetti et al., 2011), which could 
explain why the production of alkylating agents by the host cells is innocuous compared to 
the endogenous generation of the stress. If this observation is true for cultured cells, we 
should keep in mind that it could be different in a more physiological environment, i.e. inside 
the host.  

 
Another important point is that N-nitrosation reactions are dependent on RNS levels 

(Ohshima et al., 1991) and B. abortus is known to be very weakly immunogenic, as it 
prevents proinflammatory responses in macrophages and neutrophils (Barquero-Calvo et al., 
2007). Interestingly, a study revealed that Salmonella is meeting sublethal RNS stresses early 
during macrophages, with patchy iNOS localization, which is reminiscent of what we 
observed with our N-nitrosation probe (Burton et al., 2014). It could thus be very interesting 
to explore the effects of external N-nitrosation on intracellular bacteria that induce higher 
amounts of RNS, or in a more aggressive cell type, such as voluntarily activated bone 
marrow-derived macrophages.  

 
We also have to keep in mind that even if N-nitroso compounds are generated by the 

host cells inside the eBCV, it is possible that they never reach Brucella’s DNA. Indeed, those 
modified metabolites would have to pass through the membranes of B. abortus, either via an 
active mechanism or via diffusion. Not much is known about how alkylating agents go 
through membranes, so this would be an interesting topic for future research. 
 

Considering that external N-nitrosation was not a major source of alkylating stress, we 
decided to study the endogenous N-nitrosation potential of Brucella. In the case of E. coli and 
most of the other bacteria tested, the formation of N-nitroso compounds seems to be directly 
linked to nitrate reductase activity (Taverna & Sedgwick, 1996). Nevertheless, there are 
exceptions, such as in the case of Pseudomonas aeruginosa, where nitrite reductase activity is 
the key (Calmels et al., 1988). As for Pseudomonas denitrificans, its N-nitrosation capacity is 
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apparently dependent on nitrate reductase activity, but modulated negatively by high nitrite 
concentrations (Calmels et al., 1988).  

 
Logically, we first tested the involvement of B. abortus nitrate reductase enzyme in the 

formation of endogenous alkylating stress. To do so, we tested our AdaE. coli-based reporter 
system in a ∆narG deletion background. Surprisingly, the signal of our reporter system did 
not decrease (Fig 20D). We also decided to try this experiment again but in a ∆moaA strain. 
Indeed, moaA codes for an enzyme involved in the molybdenum cofactor biosynthesis 
pathway (Fig 4). In E. coli, a ∆moa mutant was shown to be greatly reduced in its ability to 
form N-nitroso compounds and therefore endogenously-produced mutations (Taverna & 
Sedgwick, 1996). The authors suggested that this was due to the inhibition of the activity of 
the three nitrate reductases of E. coli at once, as they all require this cofactor to be active 
(Taverna & Sedgwick, 1996). Since B. abortus possesses only one nitrate reductase, which is 
also dependent on molybdenum cofactor, we were expecting to obtain similar results between 
the ∆narG and the ∆moaA strains. Surprisingly, that was not the case, as the signal detected 
with the AdaE. coli-based reporter system did decrease with the ∆moaA strain, contrarily to 
what we observed with the ∆narG strain (Fig 20D). Firstly, these results strongly suggest that 
the endogenous formation of N-nitroso compounds were indeed responsible for most of the 
alkylating stress that we could detect with our reporter system. Secondly, they indicate that 
the nitrate reductase of Brucella is not responsible for this stress, or at least not alone. Thus, it 
is probable that the phenotype of the ∆moaA mutant comes from other enzymes depending on 
the molybdenum cofactor. It could for example be the case of MSF, a nitrate-nitrite antiporter, 
which is probably part of B. abortus LexA regulon (Fig 33), as well as FdnG, a formate 
dehydrogenase involved in nitrate respiratory chain (Stewart, 1988).  

 
As for the part played SAM, it is still unknown. Its involvement would need to be 

investigated but it probably won’t be easy. Indeed, SAM is involved in many important 
processes and playing on its abundance to study its effects might generate many polar effects. 
 

I.2.	Could	B.	abortus	actively	avoid	alkylating	stress?		

I.2.1.	What	we	can	expect	

 
Importantly, the signal that we detected with our Ada-based reporter system was never 

very high compared to what we could obtain in vitro with alkylating agents. This suggests 
that, even though it is present, alkylating stress on intracellular B. abortus is probably very 
week. This is not that surprising considering that Brucella has been selected through evolution 
to be able to survive and even thrive inside macrophages. The avoidance of the stress by the 
bacterium must thus be part of its adaption to its intracellular lifestyle. The two main sources 
of alkylating agents generated by the host cells would be lipid peroxidation and N-nitroso 
compounds formation. Since we know that both sources are not very present in the case of 
Brucella infection (in our model at least), we could suppose that the bacterium has evolved to 
actively avoid their generation.  
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I.2.2.	The	case	of	oxidative	stress	

 
Lipid peroxidation can arise from oxidative or nitrosative stress (Tudek et al., 2017) 

(Fig 2A). As oxidative stress is also a direct-acting mechanism of defense against pathogens, 
it has been extensively studied over the last decades. There is a lot to learn from these studies. 
One main finding is that in one given type of host cell, oxidative stress and its consequences 
can be very diverse, owing to the bacterium that entered it. Indeed, bacteria are more or less 
prone to activate macrophages depending on the antigens they provide to their host, and some 
can even hijack their host so as to avoid stresses.  

 
One particularly interesting study, reported by Schlosser-Silverman et al. (2000), 

revealed that E. coli and S. enterica Typhimurium do not share the same fate, in many 
aspects, inside J774 macrophages. Even though S. enterica Typhimurium was known to be 
able to multiply inside macrophages, they postulated that it must also encounter oxidative 
stress as recA and recBC mutants showed increased sensitivity in macrophages and 
attenuation in mice. However, while comparing the mutation frequencies of both bacteria 
inside host cells, they realized that E. coli, but not S. enterica Typhimurium, was affected by 
oxidative stress on this aspect (Schlosser-Silverman et al., 2000). They also found that E. coli 
had a 20-fold increase of 8-oxodG adducts while S. enterica Typhimurium did not display any 
increase compared to the culture medium (Schlosser-Silverman et al., 2000). Finally, they 
noticed that both bacteria were actually alive during the first 90 minutes, but that E. coli had 
arrested gene expression at that time. This phenotype was also observable with 
enteropathogenic E. coli but not with S. enterica Typhimurium (Schlosser-Silverman et al., 
2000). Other groups later completed these observations by proposing mechanisms of survival 
for S. enterica Typhimurium. First, it was demonstrated that the bacterium is relying on its 
Type-III secretion system to divert the localization of NADPH oxidases, so they do not settle 
on the Salmonella-containing vacuole (Vazquez-Torres et al., 2000). Then, it was shown that 
S. enterica Typhimurium is particularly well equipped against oxidative stress and that its 
arsenal of detoxifying enzymes is essential for efficient detoxification following oxidative 
burst, even in the presence of a functional Type-III secretion system (Aussel et al., 2011).  

 
Intriguingly, it had been reported that very few NAPH oxidase complexes were found to 

localize on the eBCV in murine peritoneal macrophages (Gay et al., 1984), suggesting that B. 
abortus could use a similar tactic than S. enterica Typhimurium to decrease oxidative stress. 
It was also shown that B. abortus uses an active mechanism to inhibit respiratory burst in 
neutrophils (Canning et al., 1985) and prevents their degranulation (Kreutzer et al., 1979). 
Note that despite B. abortus potential ability to delocalize NADPH oxidase, the phagocytosis 
of the bacteria does induce a raise in the production of superoxide anions by the host cells, but 
mainly in the extracellular environment (Gay et al., 1984). B. abortus is weakly 
immunogenic, but even in non-activated macrophages, a sodC mutant, unable to produce a 
periplasmic superoxide dismutase, is attenuated at early (3 h PI) and later times (27 h and 
51 h) of infection (Gee et al., 2005). This indicates that oxidative stress is happening inside 
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host cells and that the bacterium does need some detoxifying enzyme in order to thrive inside 
its host.  

 
In conclusion, both S. enterica Typhimurium and B. abortus seem to rely on 

mechanisms to decrease the direct source of oxidative stress and to protect themselves against 
its effects.  

I.2.2.	Are	RNS	produced	against	B.	abortus?		

 
As the formation of N-nitroso compounds is directly dependent on RNS levels 

(Ohshima et al., 1991), it could be very interesting for a bacterium to inhibit the iNOS 
function in the host cells. Such ability is for example reported for Burkholderia pseudomallei. 
Indeed, this bacterium can suppress the iNOS activity in human hepatocyte via a rpoS-
dependent mechanism (Sanongkiet et al., 2016). S. enterica serovar Typhimurium and M. 
tuberculosis can also directly interfere with the localization of the iNOS proteins to prevent 
their arrival on phagosomal membranes (Chakravortty et al., 2002; Miller et al., 2004).  
 

As stated earlier, the exogenous production of N-nitroso compounds was not 
detrimental enough to generate an alkylating stress that was detectable with our reporter 
system. However, we could detect N-nitrosation events for about 23 % of the labeled bacteria 
(Fig 20C), so NO must be present in the eBCV. Actually, B. abortus has never been reported 
to possess an active mechanism to inhibit iNOS, but it is well known that its LPS is naturally 
less prone to activate iNOS production than E. coli LPS (Lopez-Urrutia et al., 2000). In 
addition, B. abortus is known to take advantage of its internalization by a TREM-2 mediated-
phagocytosis to decrease the level of macrophages NO (Wei et al., 2015). Indeed, for most 
bacteria, TREM-2 receptors stimulate phagocytosis while increasing intracellular oxidative 
stress, but for B. abortus, the receptors instead decrease the level of NO via the MAPK 
pathways (Wei et al., 2015). These reports thus indicate that B. abortus does possess means to 
decrease the level of RNS that it will encounter inside these host cells.   

 
Nevertheless, NO is a potent antibacterial tool against Brucella, as NOS2- mice were 

delayed for their control of B. abortus infection (Ko et al., 2002) and intracellular 
development of B. suis was impaired in human macrophages that produced NO (Gross et al., 
2004). Note that the preexisting existence of anti-Brucella antibodies seems to have a big 
influence on the production of microbicidal NO levels, as non-opsonized B. suis are subjected 
to lower level of NO than opsonized ones (Gross et al., 1998). Nevertheless, murine spleen 
cells have been reported to generate high level of NO after non-opsonized B. abortus 
infection (Zhan et al., 1996). Actually, inside the spleen and the liver of mice, B. melitensis 
was found to localize mainly in cells expressing iNOS (Copin et al., 2012). Notably, the level 
of NO of previously stimulated macrophages is known to drop by more than two-fold once 
cells have internalized B. abortus (Wang et al., 2001), so the bacterium must have expressed 
genes to counteract the effect of a high NO environment. Incidentally, B. ovis is the only 
Brucella species that does not possess a complete tagA gene (Fig 16B), but it is also the only 
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known exception of Brucella species that are all able to perform nitrate and nitrite reduction 
(Pickett & Nelson, 1954), but more importantly, to reduce nitric oxide (via Nor proteins) and 
nitrous oxide (via Nos proteins) (Haine et al., 2006; Tsolis et al., 2009; Ronneau et al., 2016). 
Interestingly, a norE mutant is known to be attenuated in mice, bovine macrophages and 
HeLa cells (Lestrate et al., 2003). In addition, mutants for norB and nnrA (coding for a 
transcriptional regulator of nir, nor and nos) are also attenuated in activated macrophages but 
their survival defect can be suppressed by the addition of an inhibitor of iNOS (Haine et al., 
2006). This suggests that, in addition to their role in respiration, the Nor proteins also help to 
detoxify the intravacuolar nitric oxide. Note that in addition to narG, norB and nosZ are also 
known to be overexpressed at 4 h and 12 h PI in host cells (Rossetti et al., 2011), indicating 
that NO production could happen early during infection.  

 
Considering all those data, it seems that B. abortus does meet RNS inside its BCV, but 

also that the bacterium has evolved to minimize the amount of NO that will eventually reach 
it inside the BCV. This could be part of the reason why exogenous alkylating agents were too 
scarce to create a detectable amount of stress in our experiments. The circle is now complete: 
by avoiding exogenous sources of alkylating stress, B. abortus is generating an endogenous 
one. Indeed, as B. abortus activates its nitrate respiration/denitrification pathway inside host 
cells, it would probably also automatically generate endogenous N-nitroso compounds and 
thus endogenous alkylating agents.  

II. On the genes that are required to face alkylating stress in vitro 

II.1.	Inducible	genes	
 
To cope with the endogenous alkylating stress that its metabolism is generating, 

B. abortus must most probably rely on some DNA repair pathways. To better understand what 
role individual pathways were playing in repairing alkylated DNA, we first performed in vitro 
experiments. RT-qPCR were executed in the presence or absence of MMS in order to see 
which genes were upregulated after 5 hours of high alkylating stress and deletion strains were 
tested for their ability to grow on plates supplemented with MMS or MNNG.  
 

As a reminder, in E. coli, the alkylation-specific adaptive response is characterized by 
Ada activation, leading to the upregulation of ada itself, alkA, alkB and aidB (Fig 5A). RT-
qPCR experiments revealed that none of the two B. abortus ada genes was overexpressed 
following MMS treatment, indicating that Brucella is not relying on an adaptive response to 
cope with alkylating stress. Similarly, the expression of alkB was not induced in our 
experiment (Fig 23). As for aidB, we did not check its level of expression. At the opposite, 
we did find that alkA, but also tagA, were overexpressed after MMS treatment (Fig 23). The 
fact that these two genes were overexpressed was a surprise, as they are supposed to code for 
DNA glycosylases of similar function, which was also suggested by plating experiments 
(Fig 21). Actually, in E. coli and many other bacteria, tagA is known to be expressed 
constitutively, while alkA is the only one of the two genes to be inducible (Mielecki & 
Grzesiuk, 2014). In E. coli, AlkA is known to have much broader substrate specificity than 
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tagA, including unmodified bases (Berdal et al., 1998). TagA, on the other hand, has a 
preference for 3meA (Thomas et al., 1982) and is naturally inhibited by free 3meA, which is 
not the case of AlkA (Tudek et al., 1998). In B. abortus, the deletion of alkA only was not 
deleterious for survival on plate with either MMS or MNNG, contrarily to the tagA deletion 
strain which was impaired for normal growth in presence of MMS (Fig 21). This suggests 
that, of the two genes, the most important one is tagA. It is thus possible that, in B. abortus, 
TagA substrate specificity evolved to be broader than AlkA.  

 
Regarding their induction, we can only make assumptions. The fact that the two ada 

genes were not overexpressed after alkylating stress exclude their regulation via an adaptive 
response, so other mechanisms of regulation must be at play. The promoter of tagA was 
bound by CtrA in a ChIP-seq experiment (Francis et al., 2017), but it is probable that its 
overexpression upon alkylating stress is due do another mechanism. One possibility is that 
tagA could be upregulated by the presence of a stress-induced σ factor, such as the general 
stress response σE1. However, the level of expression of tagA did not change in a ∆rpoE1 
strain, which is deprived of σE1, under in vitro stress conditions (Kim et al., 2014). Since the 
regulons of the other σ factors are not yet known in Brucella, it would be interesting to keep 
an eye on future research in this filed, as it could provide answers to our interrogations. As for 
alkA, we found a degenerated LexA-binding box in its promoter, which suggests that its 
overexpression following alkylating stress could be due to the induction of the SOS response. 
As a matter of fact, the lexA gene, coding for the SOS response repressor and being one of the 
first genes to be expressed following SOS induction, was overexpressed after MMS treatment 
(Fig 23). This strongly suggests that the SOS response is indeed triggered by high exogenous 
alkylating stress on B. abortus. This is not surprising as it is also the case in other bacteria 
(Jeggo et al., 1977; Uphoff, 2018). One way to know if alkA was really activated via the SOS 
response in B. abortus would be to mutate the LexA-binding box in the promoter of alkA and 
check by RT-qPCR if the gene is still upregulated following MMS exposure. In addition, a 
way to confirm that SOS induction is required against high exogenous alkylating stress would 
be to do the MMS/MNNG plating experiments with a lexA overexpression strain. 

 
Importantly, there is a report on the fact that B. abortus could possess a constitutively 

active RecA* activity, which would lead to a basal constitutive SOS response that can be 
slightly more activated upon stress exposure (Roux et al., 2006). As a reminder, this 
hypothesis is based on the facts that (1) the expression of a precA-B.abortus-lacZ reporter system 
was greatly reduced in a B. abortus ∆recA strain, independently of mitomycin C addition, 
suggesting that B. abortus RecA is involved in its own high basal activation without a 
requirement for high DNA damage and (2) that B. abortus RecA led to a high constitutive 
expression of the precA-E.coli-lacZ reporter system in E. coli, with a 2-fold induction achieved 
after mitomycin C treatment (Roux et al., 2006) (see introduction section II.3.5. for a 
complete description of this paper). Since recA expression is conditioned by the presence of 
RecA* itself, we can assume that the high basal expression of B. abortus recA is dependent on 
the SOS system (Roux et al., 2006). In this case, it would mean that some genes of the SOS 
regulon of Brucella would also be more highly expressed than in other bacteria. Notably, in 
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E. coli, translesion synthesis is known to generate spontaneous mutations, mostly because of 
the action of the DNA polymerase V, encoded by umuDC (Kato & Shinoura, 1977). 
Therefore, a E. coli recA730 mutant, which exhibits a constitutively active SOS system, 
presents a mutator phenotype that can be abolished by mutations in the umuC gene (Caillet-
Fauquet & Maenhaut-Michel, 1988). As Brucella does not possess umuDC genes but relies on 
imuABC genes instead, it can be expected that this problem would not happen. Indeed, in 
C. crescentus, the ImuABC system was shown to have no effect on spontaneous mutagenesis 
on undamaged DNA, even if the expression of imuABC was artificially overexpressed by 28-
fold compared to the WT conditions (Alves et al., 2017). This also implies that the idea of a 
high basal de-repression of Brucella SOS system proposed by Roux et al. (2006) would be 
viable. In addition, since the strength of LexA binding depends on the conservation of the 
SOS-boxes, we can also imagine that some DNA repair genes, such as the ones coding for the 
translesion synthesis polymerases, could still be tightly repressed in non-stressing conditions. 

 
In B. abortus, Roux et al. (2006) found that recA expression could only be 

overexpressed by two fold at best. It is interesting to note that our RT-qPCR experiments 
seem to confirm this data, as recA was not statistically overexpressed after alkylating stress 
(Fig 23). Note that RecA is important for Brucella to survive against alkylating stress, as 
attested by our plating experiments (Fig 21), but since its basal expression level is supposed 
to be naturally high (Roux et al., 2006), a higher induction might not be biologically 
necessary. The gene coding for UvrA, which we believe is part of LexA regulon in B. abortus 
(Fig 33), was also not statistically overexpressed after alkylating stress (Fig 23). Still, there is 
a marked difference between recA and uvrA expression patterns (Fig 23), suggesting that 
other LexA targets might be released from the repressor with different kinetics. It would be 
very interesting to test if other DNA repair genes, and more particularly those coding for 
translesion DNA polymerases, are overexpressed under alkylating stress conditions. 
Obviously, the list of our putative SOS-dependent genes (Fig 33) would first have to be 
confirmed experimentally. We could do this by playing on the SOS-binding boxes of the 
promoters, as proposed earlier, or with different genetic backgrounds, such as lexA deletion 
and overexpression strains. 

 
Note that a constitutive de-repression of the SOS regulon, due to the absence of a lexA 

homologue, has also been proposed for the intracellular pathogens Coxiella burnetii, 
Rickettsia prowazeckii and Legionella pneumophila (Mertens et al., 2008). A high expression 
of DNA repair genes could thus be a common strategy in several intracellular pathogens. 

II.2.	Non-inducible	genes	
 
In the plating experiments, the non-inducible genes ogt and xthA1 appeared to be 

particularly important for survival against alkylating stress (Fig 21). These mutant strains 
were always systematically sicker on plates with MMS, than on plates with MNNG. MMS 
being a SN2 type of alkylating agent, it mainly induces methylation on N atoms (Fig 1). As 
for MNNG, which is a SN1 agent, it generates both N- and O-methylations (Beranek, 1990). 
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The worse phenotype of the mutant strains on MMS is thus surprising, as we would expect 
the opposite. In the case of alkB, this was expected, as E. coli AlkB had been demonstrated to 
be insensitive to MNNG (Dinglay et al., 2000), but for xthA1 and recA, it was not anticipated. 
Actually, in E. coli, a ∆ogt strain is known to be completely unaffected by MNNG (Rebeck & 
Samson, 1991), but it does not match with our result, as B. abortus ∆ogt strain was slightly 
affected by MNNG (and even more so in the triple methyltransferase mutant ∆ada1 ∆ada2 
∆ogt) (Fig 21). Importantly, experiments on S. enterica Typhimurium revealed that, in this 
bacterium devoid of a functional adaptive system, Ogt plays a more crucial role in dealing 
with MNNG than Ada (Yamada et al., 1995), which is also what we observed in B. abortus. 
Yamada et al (1995) also showed that S. enterica Typhimurium Ogt has much broader 
substrate specificity than E. coli Ogt. We believe it is also the case for B. abortus Ogt, as it 
possesses a proline as its 127th amino acid position (fig 22A). Indeed, in E. coli, this position 
is occupied by a serine (S134), which, if mutated into a proline, confers broader substrate 
specificity to the protein by increasing the size of its active site (Schoonhoven et al., 2017). 
As for the difference between the phenotypes in presence of MMS and in presence of MNNG, 
one simple explanation could be that the chosen doses for each alkylating agent were not 
equivalent in their damaging potentials. The doses used for the plating experiments had been 
chosen to be sublethal for the WT strain, so that we would obtain information about the most 
important DNA repair pathways under “low” alkylating stress. It might be worth repeating the 
experiments with doses of MMS and MNNG leading to a slightly lethal effect on the WT 
strain, so that the two alkylating agents could be better compared. 

 

III. On the absence of attenuation of the mutant strains inside host cells 

III.1.	Alkylating	agents	induce	a	non-linear	dose	response		
 
With the in vitro experiments, we found several deletion strains that were sensitive to 

alkylating stress, such as the triple methyltransferase mutant ∆ada1 ∆ada2 ∆ogt, the double 
DNA glycosylase mutant ∆alkA ∆tagA or the single mutant ∆recA (Fig 21). The next step was 
thus to test those mutants during infection. Surprisingly, these strains were not attenuated in 
RAW 264.7 macrophages (Fig 26), despite the fact that low alkylating stress had been 
detected in these host cells at 5 h post infection (Fig 18D). This apparent discrepancy could 
be explained by the fact that the intensity of the alkylating stress is much lower inside 
macrophages compared to the addition of alkylating agents in culture or on plates. Looking at 
more aggressive models of infection would thus be a good idea. Indeed, when working in 
BMDM, we did manage to detect attenuation phenotypes with some DNA repair deficient 
strains (Fig 29).  

 
One very important aspect of alkylating agents is that they do not induce a linear dose 

response. Actually, it has been shown that on eukaryotic cells, alkylating agents are innocuous 
until they reach a certain dose, called LOGEL (lowest observed genotoxic effect level) (Doak 
et al., 2007). This LOGEL is not fixed, as it can be shifted depending on available DNA 
repair proteins (Thomas et al., 2013). DNA repair pathways can be functionally redundant 
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and B. abortus is particularly well equipped against alkylating stress (Fig 16), so it could 
explain why the deletion of a single DNA repair pathway is not enough to generate an 
attenuated phenotype during infection. At the opposite, in culture, we probably systematically 
exceeded the LOGEL. This is consistent with the much higher activation of the reporter 
system in culture (Fig 18B, C), compared to infection experiments (Fig 18D). In fact, the 
redundancy in DNA repair pathways could have been predicted for B. abortus. Indeed, a Tn-
seq study showed that no DNA repair gene is essential for B. abortus to infect and proliferate 
inside macrophages, at the exception of recF (Sternon et al., 2018) (see appendix 3). Tn-seq 
is a high throughput technique that allows the detection of essential (i.e. required for survival 
or growth) genes in a given condition based on the analysis of transposon mutant libraries. 
Importantly, one of the major flaws of this technique is its inability to detect functional 
redundancy, which is in line with what we hypothesize here. 

 
One way to see if the LOGEL can be displaced according to Brucella DNA repair 

capacities would be to try our AdaE. coli-based reporter system in our DNA repair deletion 
backgrounds. Indeed, if it is the case, we should be able to observe a higher induction of the 
reporter system. 

III.2.	Did	we	look	at	the	right	phenotype?		
 

If the LOGEL was attained inside host cells, the effect of alkylating stress would be 
cytotoxic and/or mutagenic. We looked at cytotoxic events through CFU counting and we 
were not able to detect any statistical difference between the WT and the various deletion 
strains (Fig 26). This indicates that, even in DNA repair deficient strains, the stress is not 
enough to generate a detectable cytotoxic effect. Note that in the case of the recA mutant, a 
previous report states that this strain was slightly attenuated in peritoneal murine 
macrophages, with half a log of difference with the WT strain (Roux et al., 2006). Our data 
(Fig 26) are very similar to those but were not confirmed statistically. Looking into a more 
hostile and physiological model of infection might thus reveal attenuation phenotypes that are 
currently uncertain.  

 
Another aspect of stresses that is often underestimated is their potential to be 

bacteriostatic. For example, oxidative stress has often be considered as bactericidal, when in 
reality its main purpose in host defense could be to stall bacterial multiplication (Imlay, 
2013). Since B. abortus has evolved to block its cell cycle in the G1 phase during the first 
hours inside host cells (Deghelt et al., 2014), there is no way to actually observe a potential 
bacteriostatic effect at that time. As for the mutagenic potential of the stress met by 
B. abortus, it appears to be null if we refer to culture conditions in our whole genome 
sequencing experiments (Fig 19). However, as stated above, the LOGEL is not fixed and 
should depend on functional DNA repair pathways (Thomas et al., 2013). Therefore, it is 
possible that the absence of high mutation rates in the WT strain inside host cells does not 
reflect what happens in mutant strains. For example, the fact that the triple mutant ∆mutM 
∆mutY ∆mutT was not attenuated in RAW 264.7 macrophages infection (Fig 26) might be 





 
71 

 

because this DNA repair system is involved in coping with 8-oxodG, which is very mutagenic 
but weakly cytotoxic. It would thus be interesting to do mutagenesis assays on intracellular 
bacteria with different genetic backgrounds.  

III.3.	On	the	role	of	the	SOS	response	inside	host	cells	

III.3.1.	What	part	does	the	SOS	system	play	in	Brucella	infectious	process?		

 
Since all of the mutant strains that we tested were impaired for a single DNA repair 

pathway at a time, we decided to investigate the impact of the inhibition of several repair 
pathways at the same time. Combining deletion mutants was a way to do it. We did try this 
technique with the ∆alkB ∆uvrA double mutant, but it was infructuous (Fig 29). We then 
decided to suppress the expression of the SOS regulon, as this system affects several DNA 
repair pathways simultaneously. To do so, we generated a lexA overexpressing strain, and 
checked that it was not toxic in vitro (Fig 31). We decided to work with a theoretically stable 
form of LexA (via the S161A mutation), but it would definitely be very interesting to use a 
control strain that overexpresses the natural form of B. abortus lexA, which we do not have at 
present. The result obtained with our lexA overexpressing strain was very clear: the de-
repression of the SOS system is required by B. abortus inside macrophages. Since the 
attenuation was visible at 24 h post infection (Fig 32A,B), we can expect that the DNA repair 
pathways that are under the control of LexA were necessary to cope with the post-replicative 
phase of the infection, when mutations have started to arise.  

  
We also constructed a lexA::lexAS161A strain, for which the genomic lexA had been 

replaced by its mutated version. Importantly, this strain was not attenuated in activated RAW 
264.7 macrophages infection (in green in Fig 32A). It is difficult to determine why the 
phenotype of this strain was so different from the one of the overexpressing strain, but we can 
make speculations. (1) First of all, it is possible that the S161A mutation does not confer the 
same phenotype to B. abortus LexA than it does to E. coli. If both LexA are structurally very 
different, this mutation could thus potentially have no effect in B. abortus and our strain 
would be the equivalent of a “normal” lexA overexpression strain. (2) It is also possible that 
B. abortus LexA possesses intrinsic characteristics to allow the bacterium to monitor tightly 
which promoters to release under which conditions. Indeed, the absence of attenuation of the 
lexA::lexAS161A B. abortus strain (Fig 32A) could be explained if B. abortus LexA has 
globally less affinity for its targets than E. coli LexA. The S161A mutation that plays on 
LexA stability only would therefore not greatly affect B. abortus SOS response, as target 
genes would often be free from LexA binding anyway. At the opposite, the overproduction of 
LexA (via the pBBR-plac-lexAS161A plasmid) would sterically hinder the expression of the 
target genes. (3) Importantly, if B. abortus lexA behaves like R. sphaeroides LexA on recA 
promoter (see introduction section I.2.2.), its mode of action itself could also be a reason for 
the absence of attenuation of the lexA::lexAS161A B. abortus strain. Indeed, if that is the case, 
under high LexA concentrations (like with our pBBR-plac-lexAS161A plasmid), the RNA 
polymerase would be stalled, preventing the expression of the SOS regulon (Tapias et al., 
2002). At the opposite, if the intracellular level of LexA is naturally low (that would be 
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possible if proteins are diluted by division events), LexA greater stability (via the S161A 
mutation) would not prevent the SOS response. Instead, it would act as an activator on some 
genes by recruiting the RNA polymerase (Tapias et al., 2002).  

III.3.2.	Why	would	a	BER
	
deficient	mutant	help	when	the	SOS	system	is	repressed?		

 
One surprising phenotype was that the attenuation of the lexA overexpressing strain was 

less stringent in the ∆xthA1 ∆xthA2 background than in the WT background (Fig 32A, B). It 
seems that B. abortus is trying to compensate the absence of a functional SOS system by 
relying on the BER pathway. The absence of the XthA endonucleases should lead to an 
accumulation of AP sites, which are cytotoxic but also mutagenic (Troll et al., 2014). The 
accumulation of mutations through deficient BER could thus compensate for the absence of 
the SOS response-derived mutagenesis. 

III.3.3.	What	about	phages?		

 
Incidentally, the idea of a basal constitutively active SOS system developed by Roux et 

al. (2006) raises the question as to how phages do not spontaneously excise. Indeed, 
prophages can sense the activation of the SOS response and usually consider it as a signal to 
go lytic, as it means that the host bacterium might not survive (Johnson et al., 1981). This 
sensing has been best studied for phage λ, a temperate phage infecting E. coli. For this 
prophage to maintain lysogeny, it necessarily needs to repress several genes, for example 
those involved in replication and synthesis of structural proteins. Structurally, the phage 
repressor that plays this role is very similar to LexA. This is why when RecA* stimulates the 
autocleavage of the SOS repressor, it also does so for the phage repressor (Galkin et al., 
2009). Considering that B. abortus has a constitutive SOS system, how do its prophages 
detect that the bacterium is not necessarily dying? That question is still unanswered but the 
cell cycle regulator GcrA might have something to do with it. Indeed, several Brucella phages 
encode a gene homologous to gcrA (X. De Bolle & E. Biondi, personal communication), 
which is puzzling. It is also possible that the phages of Brucella possess a very high number 
of repressors, which would compensate for the theoretical basal RecA* activity of B. abortus. 

 

IV. On the role of cell cycle transcription factors to regulate DNA repair 

IV.1.	GcrA	and	CtrA	as	regulators	of	DNA	repair	
 

The absence of an adaptive system in B. abortus, but also in some other α-
proteobacteria (Kaufman & Walker, 1990; Fernandez de Henestrosa & Barbe, 1991; Colombi 
& Gomes, 1997), led us to investigate which other factors could regulate genes involved in 
alkylating stress response. We found that B. abortus is relying on the essential and well-
conserved transcription factor GcrA to control the expression of a series of genes involved in 
DNA repair. Those genes comprise mutL and ogt. In the free-living C. crescentus, GcrA is 
known to participate in cell cycle regulation (Holtzendorff et al., 2004) and both mutL and 
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mutS are considered to be part of its regulon (Haakonsen et al., 2015). In addition, the 
alkylation-specific alkB has been shown to be cell cycle-regulated in C. crescentus (Colombi 
& Gomes, 1997) and in this bacterium, alkB mRNA levels go down by more than two-fold in 
a GcrA depletion strain (Haakonsen et al., 2015). It is unknown if GcrA also participates in 
the regulation of the cell cycle in other α-proteobacteria, but it is likely considering its high 
conservation in other bacteria of this class (Brilli et al., 2010; Poncin et al., 2018). In favor of 
this hypothesis, B. abortus GcrA depletion strain was impaired for division, growth and 
virulence, suggesting that it does play a role in B. abortus cell cycle regulation.  

 
In E. coli, ada is known to be overexpressed in stationary phase, independently of the 

methylation of its C38 residue but through the activity of the alternative sigma factor RpoS 
(Taverna & Sedgwick, 1996). In this bacterium, the activity of Ogt is also known to be 
particularly important in non-dividing cells when endogenous alkylating agents are most 
produced (Rebeck & Samson, 1991; Mackay et al., 1994). Of note, there is no gene 
homologous to rpoS in B. abortus and other α-proteobacteria (Staron & Mascher, 2010). 
Knowing this and taking into account the fact that B. abortus GcrA was found to regulate the 
expression of ogt and mutL, it reinforces the hypothesis that α-proteobacteria selected systems 
in which cell cycle regulators control DNA repair. During B. abortus infection, it has been 
shown that the expression level of mutL is five times higher at 4 h PI in HeLa cells than in 
liquid culture (Rossetti et al., 2011). Thus, it would be particularly interesting to see if gcrA or 
ogt are also overexpressed at that time. Another gene that would merit more attention is aidB, 
as it is a potential target of B. abortus GcrA according to the ChIP-seq experiment (Fig 24A). 
Note that in M. tuberculosis, ogt, alkA and tagA are overexpressed early inside macrophages 
(Schnappinger et al., 2003).  

 
Incidentally, one other characteristic of GcrA in C. crescentus is its ability to sense 

CcrM-dependent methylation on DNA (Fioravanti et al., 2013). Knowing that this epigenetic 
methylation is cell cycle regulated in C. crescentus (Stephens et al., 1996) and probably also 
in B. abortus (Robertson et al., 2000; Francis et al., 2017), there could exist a functional link 
between both damage and epigenetic types of methylation. Importantly, in human cells, the 
promoter of the eukaryotic ogt gene (called MGMT) is regulated by epigenetic methylation 
(Esteller et al., 2000). Indeed, its hypermethylation leads to MGMT silencing (Esteller et al., 
2000). It would be very interesting to confirm that B. abortus CcrM-dependent methylation 
pattern also has an effect on bacterial gene regulation. One way to know if it is the case for 
ogt, mutL, or even aidB would be to put these genes under the control of another promoter. 
We could also directly mutate the GANTC boxes in their promoters, provided that these 
sequences are indeed recognized by B. abortus GcrA. Considering the high percentage of 
GANTC boxes in the anti-GcrA ChIP-seq peaks (Fig 24A), we believe it should be the case. 
In addition, in vitro experiments show that B. abortus GcrA is able to discriminate non-, 
hemi- and fully-methylated DNA sequences, which is a good indication that its regulation 
must be similar than in C. crescentus (Fioravanti et al., 2013). Importantly, we should also 
keep in mind that that the attenuated phenotype of the GcrA depletion in infection is probably 
due to more than its inability to properly regulate DNA repair. One way to know if the 
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deregulation of DNA repair genes is the cause of this attenuation would be to overexpress 
those genes in a GcrA depletion background and repeat infection experiments. 

 
Finally, it would also be very interesting to study the effects that aberrant methylation 

pattern, arising from alkylating stress, could have on gene expression. Indeed, if GcrA 
recognizes alkylation stress as a signal, it could activate the expression of some genes that 
would otherwise be non-induced. It is possible that alkylation stress would also prevent the 
normal CcrM-dependent methylation pattern. Indeed, a similar problem is known to arise with 
O6meG adducts, which can prevent the methylation of 5meC in eukaryotes by interfering with 
the binding of 5meC DNA methyltransferases and by pairing O6meG with thymine (Franco et 
al., 2008). 

 
In C. crescentus, several genes coding for proteins involved in DNA repair, such as 

LexA, RecN, RecA or MutS, are regulated along the cell cycle (Laub et al., 2000). 
Importantly, most of these genes are overexpressed when bacteria exit the G1 stage and enter 
S-phase, then their expression levels go back to normal by the end of the S-phase (Laub et al., 
2000). Importantly, those genes are also overexpressed in a CtrA depletion background (Laub 
et al., 2000). In B. abortus, where CtrA is thought to also be cell cycle-regulated, a ChIP-seq 
experiment revealed that CtrA binds to the promoters of tagA, mutM and uvrC (Francis et al., 
2017). The sole known function of TagA is to repair alkylated DNA, whereas MutM is 
mainly taking care of repairing oxidative damage on DNA, but also some alkylation lesions. 
(see introduction section I.2.6.). Note that SodC, which helps preventing oxidative DNA 
damage, appears to also be regulated by CtrA in B. abortus (Francis et al., 2017). This 
indicates that alkylating stress and oxidative stress could be encountered at specific times 
during B. abortus cell cycle. As discussed earlier, each α-proteobacterium seems to have put 
different genes coding for DNA repair proteins under the control of CtrA, in a way that 
probably reflects their lifestyle (see introduction section III.2.3.). Thus, it is particularly 
interesting that B. abortus would have evolved to put precisely tagA and mutM under its 
control. Unfortunately, the role played by B. abortus CtrA on regulating genes coding for 
DNA repair proteins was very hard to decipher. We did try to perform RT-qPCR on a CtrA 
depletion strain to investigate which genes are effectively regulated by CtrA, but we never 
managed to properly set up the experiments (see results section III.3.5.). Nevertheless, the 
activity of B. abortus CtrA is not essential during the first hours of infection (Willett et al., 
2015; Francis et al., 2017), which indicates that the probable part played by this transcription 
factor in the temporal regulation of DNA repair is not critical for the infection process.  

IV.2.	What	would	be	the	advantage	of	regulating	DNA	repair	along	the	cell	cycle?	
 
If DNA repair is more active just after the G1 phase in B. abortus, as it is in 

C. crescentus, it could be relevant for what is happening inside the host cells. Indeed, 
B. abortus is blocked in a G1-like phase for several hours inside host cells before to reach its 
replicative niche (Deghelt et al., 2014) (Fig 12).  
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One benefit of a G1 state is that, by definition, there is no ongoing replication fork. 
Therefore, there is no risk of a fork collapsing and leading to death at that stage, and the 
formation of double strand breaks is limited (Cox et al., 2000). In addition, the absence of 
replication means that mutagenic adducts can accumulate on DNA without creating a lesion, 
as replication is necessary to generate mutations by mispairing bases (Fersht & Knill-Jones, 
1981; Klapacz et al., 2016). This protective effect can also be increased by diminishing the 
rate of transcription, which Brucella does during the first hours of infection (Rossetti et al., 
2011). Indeed, some positions on DNA are only accessible to genotoxic agents when DNA is 
in its single stranded form (Fig 1B) (Fix et al., 2008). Moreover, intensive transcription in 
rapidly dividing bacteria can lead to the RNA polymerase stalling on DNA, which could 
become an obstacle to subsequent replication (Trautinger et al., 2005; Lang & Merrikh, 
2018). As for the absence of growth itself during the first hours of the infection, it could be a 
way for B. abortus to limit its PAMPs production and thus to limit its recognition by host 
cells. Not growing could also be a way for the bacterium to avoid using too many resources 
while it still resides in the eBCV, which is usually considered a nutrient-poor environment 
(Roop et al., 2009).  

 
Therefore, a G1 block could be a way to prevent mutations and conflicts to occur when 

B. abortus is still in the eBCV. The exit from this G1-block by B. abortus would require to be 
able to perform DNA repair rapidly at this time, so as to not fix mutations. A genetically 
encoded cell cycle-dependent regulation of DNA repair would thus favor the smooth 
functioning of this process. It is probable that this layer of regulation is not essential for 
Brucella to survive inside its host, as attested by infection experiments (see Fig 27, 30 
and(Francis et al., 2017), but rather that it contributes to the general fitness of the pathogen 
under stressing conditions.   

 
Note also that B. abortus is devoid of genes coding for proteins of the non-homologous 

end joining repair pathway (see introduction section II.3.5.), which can be used during the 
G1 phase of the cell cycle, at the opposite of homologous recombination, for example. Thus, 
the existence of a basal activation of DNA repair genes during the G1 phase is also clearly 
advantageous in this situation. Importantly, the G1 block of B. abortus does not seem to 
happen inside all models of infection, as our team found that, inside trophoblasts, B. abortus 
grows at first, then stops growing for several hours before to finally restart growth (P. Thi 
Ong’s PhD thesis, 2017). Knowing if DNA repair mutants have the same phenotype in this 
model would therefore be really interesting, as it could give an indication about the 
importance of the cell cycle stage regarding the generation of alkylating stress. 

 

V. Model for Brucella resistance to alkylating stress  
 

By crosschecking the information on the pathways typically involved in alkylated DNA 
repair and our experimental results, we can propose a model for B. abortus system of defense 
against alkylation damage (Fig 38).  
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Fig 38. Model for the DNA repair pathways that are used by B. abortus under alkylating 
stress. DR stands for direct repair, MR for mismatch repair, HR for homologous 
recombination, TLS for translesion synthesis, BER for base excision repair and NER for 
nucleotide excision repair. 
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Typically, the first line of defense could be operated by the repair proteins TagA 

(involved in BER) and Ogt (involved in direct repair), as in E. coli (Uphoff, 2018). 
Interestingly, B. abortus seems to have put the two genes coding for these proteins under the 
control of the transcription factors CtrA and GcrA, respectively. If their regulation is similar 
to what is observed in C. crescentus (Laub et al., 2000), this added layer of regulation could 
help the bacterium to produce more DNA repair proteins in anticipation of DNA replication. 
Indeed, contrarily to most other DNA repair pathways, BER and direct repair can be used at 
any time of the cell cycle, which makes tagA and ogt particularly important in the context of 
the G1-block. Note that the NER pathway, which can also be helpful when adducts are large 
(Mazon et al., 2010), could also be used by Brucella during the eBCV stage. As explained 
earlier, Brucella transcription is globally downregulated early inside host cells, but it is not 
completely shut down (Rossetti et al., 2011), thus still making it possible for the bacterium to 
couple its NER pathway to transcription via TRCF/Mfd (Deaconescu et al., 2006). 

 
Of note, inside host cells, Brucella is known to restart growth just before leaving the 

eBCV compartment, but it is unknown whether replication also restart at that time or later in 
the rBCV (Deghelt et al., 2014) (Fig 12). Still, if the alkyl group on DNA has not been 
detected on time or if TagA and Ogt were saturated, the first round of replication will either 
stall or make errors and generate mismatches. As a post-replicative mechanism, the MR 
system could then serve as a backup pathway to prevent the occurrence of a mutation (Taira et 
al., 2008; Kondo et al., 2010; Uphoff, 2018). In B. abortus, GcrA also regulates mutL, so MR 
could participate in the basal handling of alkylation damage. If the alkyl adducts (typically 
O4meT) remain in the template, futile cycles of MR can lead to the formation of mutations 
and potentially also to single strand breaks (Kondo et al., 2010; Nakano et al., 2017). In that 
case, homologous recombination is particularly useful, as it enables replication forks to 
bypass alkylation lesions. Note that homologous recombination is also a post-replicative 
pathway and it is promoted by a functional BER pathway, as BER generates transient single 
strand breaks (Kiraly et al., 2014). Another way to bypass cytotoxic lesions is by relying on 
the translesion polymerases encoded by dinB and imuABC. In Pseudomonas, both DNA 
polymerases have been shown to be required by the bacterium to face alkylating stress 
(Jatsenko et al., 2017). Their involvement is even more important in a ∆alkA ∆tagA 
background, suggesting that translesion synthesis is used as a backup strategy by 
Pseudomonas if BER is insufficient (Jatsenko et al., 2017). Note that in addition to its 
replisomal function, dinB could also have other functions (Henrikus et al., 2018), and thus 
play a role at other moments of the cell cycle. Indeed, it was also found to be active at stalled 
transcription complexes (Cohen & Walker, 2010). In addition, in E. coli, the expression of 
genes coding for translesion polymerases is induced during the transition from exponential to 
stationary-phase growth in the absence of induction of the SOS system (Corzett et al., 2013).  

 
By bioinformatics, we predicted the regulon of LexA in B. abortus (Fig 33). If we can 

trust those predictions, we expect that the SOS system helps in tightly regulating homologous 
recombination. Indeed, among LexA regulon we found genes coding for RecA and RecG, 





 
77 

 

which are active players of the system, and SSB and RmuC, which are inhibitors. Importantly, 
the SOS system seems to also promote NER and translesion synthesis. The potential to further 
activate the SOS system when stresses increase has probably been kept to reinforce specific 
DNA pathways. On that note, cell cycle transcription factors and the SOS system seem to be 
regulating distinct DNA repair pathways. In addition, CtrA and GcrA are only involved in the 
first line of defense (early in the eBCV), whereas the SOS system might be needed at all 
times, as it can get further activated if necessary (Fig 23).  
 

Altogether, the interconnection between the different layers of regulation of DNA repair 
pathways might be the reason why we could not observe any phenotype of attenuation with 
our mutant strains. Indeed, the absence of only one pathway should not be a problem as long 
as the others are present. At the opposite, when the SOS system is strongly repressed, many 
DNA repair pathways should be impacted, which could explain why the lexA overexpressing 
strain was attenuated in infection (Fig 32A, B). Incidentally, as B. abortus is known to inhibit 
its replication during the first five hours inside macrophages (Deghelt et al., 2014), it is no 
surprise that the phenotype of attenuation was only visible at latter timings, when replication 
had restarted (Fig 32A, B). 

 

VI. What about other intracellular bacteria?  
 

The main question brought out by this thesis is whether our conclusions also apply to 
other intracellular pathogens. First of all, it should be noted that there is good evidence that 
other bacteria precisely regulate their cell cycle during infection. One striking example is 
Legionella pneumophila, which has been found to occupy a compartment that avoids fusion 
with lysosomes if it infects the cells when it is in stationary phase. At the opposite, when 
macrophages are fed with replicative L. pneumophila, the bacteria are rapidly killed 
(Molofsky & Swanson, 2004). There even exists a specialized infectious non-replicative form 
of L. pneumophila that is ten times more infectious than stationary phase bacteria and that is 
produced exclusively in the intracellular environment (Garduno et al., 2002). The obligate 
intracellular Chlamydia trachomatis is also known to rely on a biphasic infection process, 
with the infectious form being non-replicative (Cosse et al., 2018). This infectious form will 
stay as such for at least 8 hours inside host cells before to differentiate into a replicative form 
(Wolf et al., 2000). Other bacteria that are known to display biphasic infection steps are 
Salmonella and Francisella, with a relatively long non-proliferative period followed by a 
phase of massive proliferation (Salcedo & Holden, 2005).  

 
It is clear that only α-proteobacteria possess genes coding for CtrA and GcrA (Brilli et 

al., 2010), so our finding about these transcription factors regulating DNA repair cannot be 
broaden to many other bacteria. However, we believe that other organisms could use other 
ways to end up with the same results. Indeed, even E. coli has evolved so that ada is 
overexpressed during stationary phase, independently of the real alkylation status of its DNA 
(Taverna & Sedgwick, 1996). It is doing so via the very well-conserved RpoS protein, which 
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is the stationary phase-specific σ subunit of RNA polymerase (Taverna & Sedgwick, 1996). 
As virtually all intracellular bacteria transit through the endosomal pathway (Kumar & 
Valdivia, 2009), we believe that most of them could be exposed to extracellular alkylating 
stress. However, millions of years of co-evolution with their host probably led them to 
develop strategies to counter the production and/or the effect of exogenous N-nitroso 
compounds, as Brucella is proposed to do.  

 
There remains the question of endogenous alkylating stress by other bacteria. It is 

expected that the endogenous formation of N-nitroso compounds by bacteria happens because 
of a side reaction of nitrate reductase activity (Taverna & Sedgwick, 1996). However, other 
enzymes, such as nitrite reductase, can also be at play (Calmels et al., 1988). In theory, 
looking at the presence of those two enzymes in the genome of a given species should be a 
good indicator of its ability to generate N-nitroso compounds. However, it is extremely 
complicated to infer conclusions with this criterion only. For example, Salmonella enterica 
serovar Typhimurium possesses both enzymes (Sparacino-Watkins et al., 2014) but has been 
reported to be a poor N-nitrosating bacterium in vitro (Calmels et al., 1985). Importantly, the 
N-nitrosation abilities of bacteria also seem to vary within the same genus or even within the 
same species (Calmels et al., 1985), similarly to the very different fates that several related 
bacteria can encounter inside host cells (Schwan et al., 2000). Nevertheless, we can assume 
that some intracellular bacteria do meet alkylating stress, as we found that genes coding for 
specialized DNA repair proteins have been conserved in many pathogens, including obligate 
intracellular ones (Fig 16). In addition, the human pathogen M. tuberculosis is known to 
upregulate genes coding for alkylated DNA repair enzymes early during infection 
(Schnappinger et al., 2003), so it is a good indication that this bacterium probably meets the 
stress in the intracellular environment. 
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Conclusion	

As a picture is worth a thousand words, we could summarize the principal findings of 
this thesis as follows: 

 

 

During my thesis, we found that B. abortus is exposed to a weak alkylating stress inside 
macrophages, and more particularly during the first stage of the infection, when it is residing 
inside its endosome-derived compartment (eBCV). We also found that the host cell is able to 
generate N-nitroso compounds, which are natural alkylating agents, inside the eBCV. 
However, the production of N-nitroso compounds is minimal and heterogeneous against 
B. abortus and the bacteria do not seem to suffer from their presence. We believe that 
B. abortus, like many other pathogens, has learnt to divert and minimize the stresses that are 
produced by its host. Indeed, B. abortus is equipped with RNS detoxifying enzymes, which 
are part of the nitrate respiration enzymes used by the bacterium inside host cells (Lestrate et 
al., 2003; Haine et al., 2006). It is therefore not surprising that Brucella are not directly 
affected by exogenous alkylating agents, as they have evolved to cope with such agents at 
their source. Paradoxically, the use of denitrifying enzymes by B. abortus inside host cells is 
probably also part of the cause of the generation of endogenous alkylating agents, similarly to 
other bacteria (Calmels et al., 1988). To cope with alkylating stress, we propose that 
B. abortus is relying on the transcription factors GcrA and CtrA, as well as on the SOS 
system. In conclusion, this thesis brought to light the existence of a stress that affects 
intracellular bacteria and that had been neglected for too long. 
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Appendix	

Appendix 1: synthesis of the N-nitrosation sensitive probe. 
 

This probe was synthetized by Dr. Ravikumar Jimmidi and Prof. Stéphane Vincent, both from 
the Unité de Chimie Organique in the University of Namur. 
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Protocol on the synthesis of the N-nitrosation sensitive probe 
All reactions were carried out under an argon atmosphere. Yields refer to 
chromatographically and spectroscopically homogeneous materials. Reagents and chemicals 
were purchased from Sigma-Aldrich or Acros at ACS grade and were used without 
purification. All reactions were performed using purified and dried solvents: tetrahydrofuran 
(THF) was refluxed over sodium-benzophenone, dichloromethane (CH2Cl2), triethylamine 
(Et3N), and pyridine were refluxed over calcium hydride (CaH2). All reactions were 
monitored by thin-layer chromatography (TLC) carried out on Merck aluminum roll silica gel 
60-F254 using UV light and a phosphomolybdic acid solution as revelator. Merck silica gel 
(60, particle size 40 -63 µm) was employed for flash column chromatography and preparative 
thin layer chromatography using technically solvent distilled prior to use as eluting solvents. 
Purification through adsorption silica chromatography columns were performed using Merck 
Gerduran silica gel 60 (40-63 Å).  

NMR Spectra were either recorded on a JEOL JNM EX-400 at 400 MHz for 1H NMR and 
100 MHz for 13C NMR or on a JEOL JNM EX-500 at 500 MHz for 1H NMR and 125 MHz 
for 13C NMR. All the samples were prepared in a standard 5 mm quartz tube at room 
temperature (18-22°C) and without degassing, diluting the sample in deuterated solvents. 
Spectra were resolved with JEOL’s Delta software. Chemical shifts (δ) are given in ppm 
referring to the partially deuteride nuclei of the used solvent (for 1H NMR: 7.26 for CDCl3, 
2.50 for (CD3)2SO, 3.31 for CD3OD; 13C NMR: 77.16 for CDCl3, 39.52 for (CD3)2SO, 49.00 
for CD3OD). The coupling constants (J) are given in Hertz (Hz). The chemical shifts of 
signals featuring defined multiplicity were determined by arithmetic mean of the signal lines. 
Therefore, the following abbreviations were used: s = singlet, d = doublet, m = multiplet, br = 
broad and their combinations. Assignment of protons was accomplished by 1H-1H correlation 
COSY experiments. Assignment of carbons was accomplished by 1H-13C correlation 
HMQC, HMBC and DEPT experiments. 

High-resolution mass spectra (HRMS) were performed on a Bruker maXis mass spectrometer 
Q-TOF by the “Fédération de Recherche” ICOA/CBM (FR2708) platform of Orléans in 
France. Melting points were performed on BOCHI Melting point B-545. The absorption 
spectra were acquired on a Perkin-Elmer Spectrum II FT-IR System UATR on neat 
compounds, mounted with a diamond crystal. Selected absorption bands are reported by 
wavenumber (cm-1). The spectra were measured between wavenumbers of 4000-450 cm-1. 

 

 

 

 

 



 

Scheme S1 

	

Synthesis of compound 2: 

 

A solution of 1 (130 mg, 0.366 mmol, 1 eq), methyl 4-formylbenzoate (48.0 mg, 0.292 mmol, 
0.8 eq), and AcOH (0.2 mL) in dry Methanol (3 mL) was stirred at 50 oC for 1h, then 
NaBH3CN (57.5 mg, 0.915 mmol, 2.5 eq) was added to the mixture at room temperature and 
stirring was continued for 16 h. The solvent was evaporated under vacuum and quenched with 
water and extracted with ethyl acetate. The organic layer was washed with brine and dried 
over Na2SO4. Filtration, evaporation and purification of the residue by silica gel flash 
chromatography (Cy/EtOAc 7:3) gave the desired product as red solid (113.1 mg, 61.4% 
yield).  



 

Formula: C28H28BF2N3O3 

Mw: 503.35 g/mol    

Rf: 0.34 (Cy/ EtOAc 1:1) 

1H NMR (CDCl3, 400 MHz) δ ppm 1.49 (s, 6H, CH3), 2.45 (s, 6H, CH3), 3.87 (s, 3H, 
CH3CO), 4.27 (bs, 2H), 5.96 (bs, 2H), 6.22 (d, J = 2.8 Hz, 1H), 6.60 (dd, J = 8.8, 2.8 Hz, 1H), 
6.68 (d, J = 8.8, 1H), 7.35 (dd, J = 8.8, 2.8 Hz, 2H), 7.95 (J = 8.8, 2.8 Hz, 2H). 

13C NMR (CDCl3, 100 MHz) δ ppm 13.79 (CH3), 14.70 (CH3), 48.59 (CH2Ar), 
60.49(CH3CO), 112.55, 116.57, 118.11, 121.47,121.75, 127.21, 128.14, 129.26, 130.01, 
131.72, 136.04, 142.60, 143.40, 144.41, 144.57, 156.32, 167.17. 

HRMS: (ESI+-MS, m/z) calculated for C28H28BF2N3O3 [M+H]+: 504.2270, found: 504.2269. 

Melting point: 213-215 oC 

IR: 3379 (N-H), 1688.48 (C=O), 1541, 1439 (C=C)Ar, 1233 (C-O), 804, 735 cm-1. 

Synthesis of compound 3: 

 

To a solution of compound 2 (80 mg, 0.158 mmol, 1 eq) in 3 mL of THF: MeOH: H2O 
(2:0.5:0.5) was added LiOH.H2O (20.0 mg, 0.476 mmol, 3 eq) at 0 oC. Then, the reaction 
mixture was stirred at room temperature for 16 h. After completion of the reaction, solvents 
were evaporated under reduced pressure. Then 5 ml of water were added and the solution was 
acidified with 1 N HCl and extracted with ethyl acetate (2 x 10 mL). The organic phases were 
combined and dried over MgSO4, concentrated in vacuum to afford the crude intermediate 
acid as a red solid (30 mg, 38.6 %, 0.0613 mmol). The latter was dissolved in 1 mL dry DMF 
and DCC (15 mg, 0.073 mmol, 1.2 eq) and NHS (8.5 mg, 0.073 mmol, 1.2 eq) were added at 
room temperature and stirred at 40 oC. After disappearance of the starting material as 
monitored by TLC (1 h), the crude was directly subjected to flash chromatography eluted with 
cyclohexane to 50% Cy/EtOAc to get the desired product as red solid (25 mg, 69.6%). 

Formula: C31H29BF2N4O5 

Mw: 586.40 g/mol    



 

Rf: 0.4 (Cy/ EtOAc 1:1) 

1H NMR (CDCl3, 400 MHz) δ ppm 1.51 (s, 6H, CH3), 2.52 (s, 6H, CH3), 2.89 (bs, 4H, 
CH2NCO), 4.37 (bs, 2H, Bn), 5.98 (bs, 2H), 6.34 (d, J = 2.8 Hz, 1H), 6.65 (dd, J = 8.8, 2.8 
Hz, 1H), 6.82 (d, J = 8.4, 1H), 7.45 (d, J = 8.8, 2H), 8.05 (J = 8.8, 2H). 

13C NMR (CDCl3, 100 MHz) δ 13.78 (CH3), 14.69 (CH3), 25.75(CH2N), 48.55 (Bn), 113.06, 
116.68, 117.80, 121.53, 121.77, 124.06, 127.63, 128.87, 131.01, 131.32, 136.01, 142.18, 
143.44, 144.67, 147.23, 156.32, 161.72 (CO), 169.36 (NCO).  

HRMS: (ESI+-MS, m/z) calculated for C28H28BF2N3O3 [M+H]+: 587.2277, found: 504.2271. 

Melting point: 114-116 oC 

IR: 3370 (N-H), 2920 (C-H), 1732 (C=O), 1542.8, 1504 (C=C)Ar, 1190 (C-O), 1306, 810.5 
cm-1. 

1H NMR of compound 2 (400 MHz, CDCl3)  

 
 

 

 

 

 

 



 

13C NMR of compound 2 (100 MHz, CDCl3) 

 
1H NMR of compound 3 (400 MHz, CDCl3) 

 
 

 



 

13C NMR of compound 3 (100 MHz, CDCl3) 
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of a conditional B. abortus ctrA loss of function mutant confirmed that CtrA controls cell 35 

division. Impairment of cell division generates elongated and branched morphologies, 36 

that are also detectable inside HeLa cells. Surprisingly, abnormal bacteria are able to 37 

traffic to the endoplasmic reticulum, the usual replication niche of B. abortus in host 38 

cells. We also found that CtrA depletion affected outer membrane composition, in 39 

particular the abundance and spatial distribution of Omp25. Control of the B. abortus 40 

envelope composition by CtrA indicates the plasticity of the CtrA regulon along 41 

evolution. 42 

  43 
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Introduction 44 

Brucella abortus is a facultative intracellular pathogen (Moreno & Moriyon, 2006) 45 

preferentially infecting cattle, although humans can be accidental hosts. Infection by B. 46 

abortus causes a disease called brucellosis, a worldwide zoonosis. B. abortus can infect 47 

both epithelial cells (such as HeLa and Vero cells) (Detilleux et al., 1990) and 48 

professional phagocytes (macrophages and dendritic cells) (Archambaud et al., 2010). 49 

Once inside host cells, B. abortus resides in a membrane-bound compartment called BCV 50 

for Brucella containing vacuole. B. abortus intracellular trafficking is biphasic; in a first a 51 

non-proliferative phase the BCV interacts with early and then late endosomes (Chaves-52 

Olarte et al., 2002, Pizarro-Cerda et al., 1998a, Starr et al., 2008), as shown by the 53 

acquisition of Lamp1, a marker of late endosomes and lysosomes. Then, in most cell 54 

types (Salcedo et al., 2013), the second phase is characterized by bacterial proliferation 55 

in a compartment harbouring endoplasmic reticulum (ER) markers (Celli et al., 2003, 56 

Celli et al., 2005, Pizarro-Cerda et al., 1998a). After this proliferation step, BCVs can 57 

acquire autophagic markers and bacteria spread to neighbouring cells (Starr et al., 58 

2012).  59 

Recently, new evidence showed that cell cycle and virulence of B. abortus are 60 

coordinated (De Bolle et al., 2015, Deghelt et al., 2014). B. abortus cell cycle starts with 61 

cell division, that generates two unequal daughter cells (Van der Henst et al., 2013). 62 

Each daughter cell has a period in which chromosome replication is not initiated, they 63 

are proposed to be at the so-called G1 stage. When the chromosomal replication has 64 

started, the bacteria are at the S (DNA synthesis) phase. The stage between the end of 65 

chromosomal replication and cell division is G2. We recently developed tools to identify 66 

B. abortus at the G1 stage, at the single cell level (Deghelt et al., 2014). Bacteria in the G1 67 

stage of their cell cycle are more infectious than their counterparts in S or G2 phases 68 
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(Deghelt et al., 2014). Furthermore, during the early non-proliferative phase of the 69 

infection, bacteria remained in G1 phase for up to 6 h and were arrested for their growth 70 

(Deghelt et al., 2014). B. abortus is thus able to block its cell cycle while trafficking 71 

through the endocytic pathway. Around 8 h post-infection (PI) in HeLa cells, bacteria 72 

resumed chromosome replication and growth while still residing in Lamp1+ 73 

compartments. However, the newly generated daughter cells were delivered into 74 

Lamp1- BCVs (Deghelt et al., 2014).  75 

B. abortus is a member of the Alphaproteobacteria class, and many key regulators 76 

controlling the cell cycle progression of the model organism Caulobacter crescentus are 77 

conserved in B. abortus (Brilli et al., 2010, Hallez et al., 2004). In particular the response 78 

regulator and transcription factor CtrA is exclusively present in Alphaproteobacteria and 79 

well conserved among them (Brilli et al., 2010). In C. crescentus this transcription factor 80 

controls the expression of genes involved in polar morphogenesis, division, DNA 81 

methylation and chemotaxis (Laub et al., 2002, Quon et al., 1998, Reisenauer et al., 82 

1999). CtrA also binds the replication origin of C. crescentus chromosome, thereby 83 

preventing the initiation of its replication (Quon et al., 1998). CtrA regulates similar 84 

processes in Sinorhizobium meliloti, a symbiont of legume plants (Pini et al., 2015). In 85 

these two microorganisms, CtrA amount oscillates during cell cycle thanks to 86 

regulations occurring at multiple levels (Domian et al., 1997, Holtzendorff et al., 2004, 87 

Pini et al., 2015). In B. abortus, DNase I footprinting assays suggested that CtrA is also 88 

involved in cell cycle regulation as it is able to bind the promoter of ccrM coding for an 89 

essential DNA methyltransferase (Robertson et al., 2000), and promoters of ftsE and 90 

minC genes, that are involved in division (Bellefontaine et al., 2002). CtrA also binds its 91 

own promoter (Bellefontaine et al., 2002). In C. crescentus CtrA recognizes two 92 

consensus sequences, the “TTAA(N7)TTAAC” 9-mer box (Quon et al., 1998) and the 93 
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“TTAACCAT” 8-mer box (Laub et al., 2002), which are also found in predicted CtrA target 94 

promoters in B. abortus (Bellefontaine et al., 2002, Hallez et al., 2004).  95 

At the post-translational level, phosphorylation and proteolysis of CtrA are controlled by 96 

a complex network (Curtis & Brun, 2010) that is predicted to be conserved in many 97 

Alphaproteobacteria (Brilli et al., 2010). The phosphorylation cascade controlling CtrA 98 

activity in B. abortus is conserved and functional (Willett et al., 2015). Alteration of CtrA 99 

control generates defects in intracellular survival and a shift in the abundance in ccrM 100 

transcripts (Willett et al., 2015). However, the regulon of CtrA in B. abortus was poorly 101 

explored until now. 102 

Here we investigated the regulon of B. abortus CtrA by performing a chromatin 103 

immunoprecipitation followed by deep sequencing (ChIP-seq) analysis. A detailed 104 

analysis of CtrA binding sites on B. abortus genome not only revealed that CtrA binds to 105 

the promoters of genes involved in cell cycle control and progression, but it also binds to 106 

the promoters of genes involved in biogenesis of the outer membrane. We show that 107 

CtrA is dispensable for elongation but is essential for division, CtrA absence generating 108 

large branched morphologies both in culture and inside host cells. Moreover, CtrA is 109 

involved in the control of outer membrane composition. Finally, we show that the 110 

activity of two CtrA-bound promoters change according to bacterial cell size, suggesting 111 

that CtrA is indeed a cell cycle regulator. 112 

 113 

Results 114 

Investigating the CtrA regulon by ChIP-seq 115 

Since CtrA was recently proposed to control B. abortus cell cycle (Bellefontaine et al., 116 

2002, Willett et al., 2015), a ChIP-seq analysis was performed to map CtrA binding sites 117 

on B. abortus 544 genome, when this bacterium is grown in rich medium until the mid-118 
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exponential phase. The ChIP-seq data and the annotated genbank files are available as 119 

Supplemental material (Chr1.gb, ChIP-seq_CtrA_chr1.txt, Chr2.gb and ChIP-120 

seq_CtrA_chr2.txt files). From this analysis, 109 CtrA binding regions were selected 121 

(Table S1). CtrA binding sites are scattered on the two chromosomes (Fig. S1). Of these 122 

regions, 71% had a predicted 9-mer or 8-mer consensus binding site with 0, 1 or 2 123 

mismatches, and 97% mapped to intergenic regions. Among the CtrA-bound sequences 124 

with no predicted 9-mer or 8-mer box, 57% had at least one “TTAA(C)” half site. CtrA 125 

binding pattern to DNA showed a single peak coinciding with a predicted binding site 126 

upstream of cpdR (BAB2_0042) and ccrM (BAB1_0516) (Fig. 1). CtrA binding upstream 127 

of its own promoter showed two peaks of equal size overlapping multiple consensus 128 

sequences (Fig 1). These peaks corresponded to the regions protected from DNase I 129 

digestion by purified phosphorylated CtrA in an in vitro assay (Bellefontaine et al., 130 

2002). It should be noted that this intergenic region bound by CtrA could also serve to 131 

regulate the expression of another gene (BAB1_1615), which has an opposite 132 

orientation to ctrA (BAB1_1614). Similarly, CtrA binding between BAB2_1162 and repA 133 

(BAB2_1163, a gene putatively involved in the segregation of chromosome II replication 134 

origins) had a double peaks pattern, but the peaks were of unequal size, and the 135 

apparently stronger binding site contains a half site TTAAC (Fig. 1). Some other CtrA 136 

binding patterns to DNA were less expected. For instance, CtrA bound a region upstream 137 

of divK (BAB2_0628, coding for a regulator of cell cycle (Hallez et al., 2007b, Mignolet et 138 

al., 2010)) at the level of a TTAAC half site despite the presence of a 9-mer box around 139 

300 base pairs upstream the actual binding site (Fig. 1). CtrA also bound a region inside 140 

the ddl open reading frame (BAB1_1447), which is in operon with ftsQ, ftsA and ftsZ. Ddl 141 

is a D-Ala-D-Ala ligase while FtsQ, FtsA and FtsZ are cell division proteins. Interestingly, 142 

this binding site overlaps three TTAAC half sites. A similar binding profile was observed 143 
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in C. crescentus, where CtrA also bound a sequence within the ddl gene upstream of the 144 

ftsQA operon (Laub et al., 2002). 145 

The direct binding of CtrA to promoters identified in ChIP-seq was confirmed by 146 

an electrophoretic mobility shift assay (EMSA), using minC, dnaA, ftsQ, bamA, omp25 and 147 

tolQ promoters as probes (Fig. S2), suggesting that –at least in the case of these target 148 

genes– CtrA alone is able to directly bind these promoters. 149 

The genome-wide analysis of the functional classes of CtrA-targeted genes 150 

revealed an enrichment of genes involved in cell cycle (cell division, replication, DNA 151 

methylation and cell cycle control) as expected, but also numerous genes involved in 152 

envelope biogenesis/homeostasis. Indeed, genes predicted to be involved in envelope 153 

composition and cell cycle are significantly enriched among CtrA targets, as they 154 

constitute 33.3% and 11.5% of CtrA regulon respectively compared to 3.3% and 2.6% of 155 

the whole genome of B. abortus (p < 0.001 in a χ2 analysis). 156 

CtrA is predicted to directly control many genes involved in cell division (Table 157 

S1). These include the minCDE operon coding for the Min system (Meinhardt & de Boer, 158 

2001), whose function is to control the mid-cell placement of the Z ring. This role in Z 159 

ring placement is in agreement with the MinD oscillation reported in B. abortus (Hallez 160 

et al., 2007a). The promoters of the genes coding for proteins involved in Z ring 161 

formation and subsequent constriction (ftsQAZ, ftsB, ftsEX) are also directly bound by 162 

CtrA. The genes (pal and tolQRAB) coding for proteins involved in the invagination of the 163 

outer membrane during cell division (Gerding et al., 2007) are also direct targets of CtrA, 164 

suggesting that CtrA potentially controls the whole cell division process. CtrA is also 165 

binding the promoters of genes or operons involved in dNTP synthesis (nrdHIEF), the 166 

initiation of chromosome I replication (dnaA), the partition of chromosome II origins 167 
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(repAB) (Deghelt et al., 2014), and the segregation of chromosomes at the termination of 168 

replication (ftsK) (Stouf et al., 2013). 169 

CtrA is binding many B. abortus promoters involved in envelope composition 170 

(Table S1). Indeed, it is targeting genes involved in LPS biosynthesis (lpxD-fabZ-lpxAB 171 

and lpxE), LPS export to the OM (lptAB and lptFGD), OM proteins composition (omp2b, 172 

omp25, ropB, omp19, BAB1_0045, BAB1_0075, BAB1_1701 and BAB2_0314) and the 173 

incorporation of proteins into the OM (bamA). Moreover, CtrA binds to the promoter of 174 

six genes coding for L,D-transpeptidases homologs (BAB1_0047, BAB1_0138, 175 

BAB1_0589, BAB1_0978, BAB1_1159, BAB1_1867), enzymes that link m-Dap residues 176 

within the peptidoglycan mesh (Magnet et al., 2008). The function of these L,D-177 

transpeptidases is unexplored in B. abortus, but one of these L,D-transpeptidases 178 

(homologous to BAB1_0589) was found to be localized at the growth pole in 179 

Agrobacterium tumefaciens (Grangeon et al., 2015). PopZ is also localized at the growth 180 

pole in B. abortus (Deghelt et al., 2014) and A. tumefaciens (Grangeon et al., 2015), and 181 

its gene is also a direct target of CtrA in B. abortus. These observations suggest that polar 182 

differentiation could be controlled by CtrA in B. abortus. 183 

One striking feature of the CtrA regulon in B. abortus is the high proportion of 184 

genes encoding proteins involved in the control of CtrA. As depicted in Fig. S3, the divJ, 185 

divK, divL, chpT, cpdR, rcdA, sciP and ccrM genes are proposed to control CtrA, but our 186 

data also suggest that these genes are direct targets of CtrA, higlighting the potential 187 

circular topology of this regulation network, consistent with cell cycle control. CtrA was 188 

reported to control ccrM transcripts levels in B. abortus (Willett et al., 2015), which is 189 

consistent with its binding to the ccrM promoter in vitro (Bellefontaine et al., 2002) and 190 

in vivo (Table S1). It is noteworthy that enrichment of reads at the dnaA promoter is 191 
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weak, suggesting either CtrA binding is infrequent or it happens only in a small fraction 192 

of the bacterial population. 193 

It is also worth mentioning that only few genes proposed to encode virulence 194 

factors are directly bound by CtrA. These include a manganese transporter gene mntH 195 

(Anderson et al., 2009) and a periplasmic superoxide dismutase gene sodC (Gee et al., 196 

2005). CtrA proposed direct targets also comprise the main transcriptional regulator of 197 

flagellar genes (ftcR) (Leonard et al., 2007) and several putative DNA repair genes (uvrC, 198 

addBA, mutM and tagA). 199 

We decided to further investigate the role of CtrA in regulating cell division and 200 

envelope composition by constructing a CtrA depletion strain and analysing its 201 

phenotype in culture and in the context of a cellular infection. 202 

 203 

CtrA is crucial for B. abortus cell division 204 

In C. crescentus, CtrA is the master regulator controlling many important genes required 205 

for cell cycle progression. Here we investigated the B. abortus CtrA function in vivo by 206 

generating a ctrA depletion strain, as this gene was suggested to be essential 207 

(Bellefontaine et al., 2002). First, a wild type (WT) copy of ctrA was cloned on a 208 

replicative plasmid as a fusion with an IPTG-inducible promoter; then the chromosomal 209 

ctrA deletion was obtained by allelic replacement in the presence of IPTG. When the 210 

growth medium was supplemented with IPTG, the ∆ctrA plac-ctrA strain harboured a WT 211 

morphology (Fig. 2A). Upon IPTG removal, CtrA was cleared within 2 hours from the 212 

cells (Fig. 2B). Abnormal morphologies appeared from 3 h post IPTG removal and 213 

consisted of elongated cells and cells with mislocalized constrictions (Fig. 2A). At 3 h 214 

post-IPTG removal, a fraction of CtrA-depleted bacteria (10.9 %) were longer than 2.75 215 

µm while only 1.6% of WT bacteria and 1.3 % of the depletion strain grown with IPTG 216 
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exceeded this size (p < 0.05). A highly significant proportion (p < 0.01) of CtrA-depleted 217 

bacteria (6.3%) had a mislocalized constriction, i.e. detectable septa located very close 218 

to one pole (Fig. 2A; white arrow heads), compared to the WT strain (0.88%) and to the 219 

CtrA depletion strain grown with IPTG (1.33%) (Fig. 2A). Seven hours after IPTG was 220 

removed from the culture, we observed bacteria that grew to form multiple branches 221 

while others generated small chains, interpreted as filamentation with aborted divisions 222 

segmenting the bacteria (Fig. 2A). If the incubation in a CtrA-depleted state is prolonged 223 

(15 h), bacteria kept on branching. These results suggest that in the absence of CtrA, 224 

bacterial elongation is maintained but division is highly perturbed, since it is either 225 

abolished (there are almost no visible constriction sites in branching bacteria) or 226 

division is initiated at various positions but it is often not completed since bacteria form 227 

chains.  228 

We next characterized the viability of the CtrA depletion strain. The viability of the 229 

CtrA depletion strain in rich culture medium was assessed by counting the number of 230 

colony forming units (CFU) (Fig. 3A). In these assays, colonies were grown on plates in 231 

the presence of IPTG, since this strain does not grow on plates without IPTG, consistent 232 

with the essentiality of the ctrA gene. When the CtrA depletion strain was cultivated in 233 

the presence of IPTG in liquid medium, a stable number of CFU was reached earlier than 234 

the WT control, and the plateau was lower (Fig. 3A). In the absence of IPTG, the number 235 

of CFU did not increase, and remained constant for 24 h before decreasing (Fig. 3A). The 236 

high variability of CFU numbers after 48 h of depletion (Fig. 3A) could be due to a high 237 

variability in the capacity of branched bacteria to divide and release viable bacteria. 238 

These data suggest that CtrA is essential for B. abortus growth and long-term survival in 239 

rich medium. 240 
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To test the reversibility of the CtrA depletion on cell division, the CtrA depletion 241 

strain was grown overnight without IPTG, labeled with Texas Red Succinimidyl Ester 242 

(TRSE) and inoculated in fresh medium supplemented with IPTG. The newly 243 

incorporated envelope appears unlabeled with TRSE after growth and thus new division 244 

sites appear as unlabeled rings (Brown et al., 2012). After 3 h of repletion, we observed 245 

a reaccumulation of CtrA (Fig. S4A) and several unlabeled constriction sites were visible 246 

on the large bacteria (Fig. S4B). Six hours after IPTG was added to the medium, several 247 

division events were completed as shown by the release of unlabeled or partially labeled 248 

bacteria (Fig. S4B). Those bacteria were of different size and shapes, demonstrating that 249 

the septa were formed at ectopic sites. These results further confirm that CtrA is 250 

essential for division in B. abortus, and that CtrA depletion effect is reversible for the 251 

generation of cell division events, but not for their correct positioning in the cell. It also 252 

indicates that large branching bacteria generated in the absence of IPTG are not dead, at 253 

least after an overnight depletion of CtrA. 254 

In the ChIP-seq study reported above, only one condition was tested, and it is likely 255 

that CtrA could be able to bind other targets in different conditions. Moreover is it also 256 

likely that CtrA could be a crucial regulator in a fraction of its targets, but only an 257 

accessory regulator for other promoters. The availability of a depletion strain for CtrA 258 

allowed us to test some CtrA targets promoters for their dependence on CtrA. Using 259 

reverse transcription followed by quantitative PCR (RT-qPCR), we found that the 260 

abundance of ccrM transcript is strongly dependent on CtrA since after a CtrA depletion 261 

condition (without IPTG) of 6 h, there is a significant (p < 0.01) 17.1 (±0.8) fold decrease 262 

of ccrM mRNA abundance compared to the control condition (with IPTG). RT-qPCR 263 

anaysis of other predicted CtrA targets (omp25 and ftsEX) revealed statistically relevant 264 
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changes in mRNA abundance, but of very low amplitude (typically <40%), highlighting 265 

the complexity of the regulation network involving CtrA.  266 

 267 

The activity of CtrA target promoters varies in function of bacterial cell size 268 

Since CtrA is a cell cycle regulator in C. crescentus (Laub et al., 2002, Quon et al., 1998, 269 

Reisenauer et al., 1999) and S. meliloti (Pini et al., 2015), we wondered if CtrA is also 270 

able to regulate its targets according to cell cycle. Because B. abortus is not 271 

synchronizable as of yet, we monitored the activity of CtrA target promoters at the 272 

single cell level, and we then sorted bacteria according to their size to reconstruct their 273 

cell cycle. A reporter system was designed to monitor the activity of ccrM (pccrM), repAB 274 

(prepAB), ctrA (pctrA) and pleC (ppleC) promoters by fusing each of them to a gene coding for 275 

an unstable GFP (GFP-ASV) (Andersen et al., 1998) on a medium-copy replicative vector 276 

(Terwagne et al., 2013). The ccrM and ctrA transcription follows a tightly regulated 277 

profile throughout C. crescentus cell cycle while PleC protein amount remains stable 278 

(Quon et al., 1996, Wheeler & Shapiro, 1999, Zweiger et al., 1994). The repAB, ctrA and 279 

ccrM promoters are bound by CtrA in the ChIP-seq (Table S1), while the pleC promoter 280 

is not, at least in the conditions tested here.  281 

Currently, unlike C. crescentus cell cycle, the B. abortus cell cycle is not 282 

synchronizable. In order to test if ctrA, ccrM, repAB and pleC promoters are controlled 283 

along cell cycle, fluorescence intensity of the B. abortus reporter strains was measured 284 

in three independent experiments and mean fluorescence intensity was plotted against 285 

bacterial cell size (Fig. 4). The pctrA and prepAB activities changed according to cell length, 286 

and they display opposite profiles as maximal fluorescence intensity was measured in 287 

intermediate bacteria for prepAB and in small and large bacteria for pctrA reporters. These 288 

data suggest that pctrA activity is maximal in large dividing bacteria, and this activity 289 
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decreases after division (Fig. 4). The maximal activity of pctrA in large bacteria is 290 

consistent with cell division defect in the CtrA depletion strain (Fig. 2). On the contrary, 291 

prepAB seems to be turned on early in the cell cycle, leading to an accumulation of GFP-292 

ASV in intermediate bacteria (Fig. 4). These data correlate with the initiation of 293 

replication of chromosome II at about half of the cell cycle of B. abortus (Deghelt et al., 294 

2014). The pccrM activity profile is similar to pctrA (Fig. 4); differences between bacterial 295 

length classes are however not significant, probably due to the high variability of 296 

fluorescence intensity between experiments, while variations of prepAB and pctrA activities 297 

according to cell length were significant (Fig. S5). The ppleC did not show any significant 298 

variation in its activity according to bacterial cell size (Fig. 4 and Fig. S5). Taken 299 

together, these data suggest that two promoters bound by CtrA in vivo are differentially 300 

regulated during B. abortus cell cycle, supporting the role of CtrA as a cell cycle 301 

regulator. 302 

The ccrM and repAB promoters contain two and one proposed CtrA binding sites, 303 

respectively (Fig. S6). Using the pccrM-gfpasv and prepAB-gfpasv fusions cited above, we 304 

created mutants in the CtrA binding boxes (Fig. S6) and we were able to show that 305 

mutagenesis of CtrA binding box 2 for pccrM and mutagenesis of the CtrA binding box in 306 

prepAB abolished activity of these promoters, strongly suggesting that CtrA is crucial to 307 

activate them. Of course, we cannot exclude that these mutations also impair the binding 308 

of other crucial factors required for the activity of repAB and ccrM promoters. The 309 

mutation of CtrA binding box 1 in pccrM did not yield a significant effect, suggesting that 310 

its role is either subbtle or restricted to a condition that was not present in our 311 

experiments.  312 

 313 

  314 
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CtrA is required for B. abortus division and survival in HeLa cells.  315 

To assess the role of CtrA during infection, the depletion strain was used to infect HeLa 316 

cells. Bacteria were incubated with HeLa cells for one hour with IPTG. Cells were then 317 

washed and gentamycin was added to kill extracellular bacteria. The CtrA depletion 318 

strain was able to infect HeLa cells and to replicate intracellularly almost to the same 319 

extent as the WT when IPTG was kept in the medium (Fig. 3B). When IPTG was removed 320 

after the initial hour of internalization, a similar number of CFU was recovered 3 h PI, 321 

and then the CFU counts dropped dramatically and went below the detection limit at 322 

48 h PI. We verified that the presence of Triton X-100, used for the extraction of bacteria 323 

from host cells, did not decrease the CFU counts for the CtrA depletion strain in the 324 

absence of IPTG (Fig. S7). Altogether, these data suggest that CtrA is crucial for B. 325 

abortus viability during HeLa cells infection. 326 

Similarly to the rich medium condition, we analysed the morphology of the CtrA 327 

depletion strain during infection. As expected, this strain had WT morphology when 328 

IPTG was kept in the medium (Fig. 5A). When the infection was performed in the 329 

absence of IPTG, bacteria with aberrant morphologies appeared from 10h PI, but their 330 

proportion was variable from one infection to the other. The intracellular branched 331 

morphologies are similar to those observed after a long depletion in culture (Fig. 2). If 332 

bacteria are labeled with TRSE prior to infection, they also display a Texas Red 333 

fluorescence at the base of the branched morphology (Fig. 5B; white arrow head). The 334 

emergence of abnormal morphologies late in the trafficking is consistent with the 335 

previously reported biphasic trafficking of B. abortus in HeLa cells (Deghelt et al., 2014). 336 

Indeed, B. abortus intracellular growth is detected between 6 and 8 h PI in HeLa cells, 337 

suggesting a growth arrest of at least 6 hours (Deghelt et al., 2014). The CtrA depletion 338 

generates elongated morphologies at 10 h PI, suggesting that growth was also arrested 339 
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for several hours before, otherwise these abnormal morphologies would have appeared 340 

around 3 h PI. This suggests that CtrA is not crucial to control the timing of the 341 

intracellular growth recovery. 342 

We also investigated the intracellular trafficking of the CtrA depletion strain by 343 

monitoring the labeling of BCV with Lamp1, a marker of late endosomes and lysosomes 344 

that is excluded from the BCV during a normal trafficking in HeLa cells. Therefore, to test 345 

the ability of the CtrA depletion strain to leave Lamp1+ compartments, we chose to 346 

monitor the Lamp1 labeling of BCV with this marker at a time PI (10 h), when the WT 347 

strain is expected to leave late endosomes (Deghelt et al., 2014, Pizarro-Cerda et al., 348 

1998b). As a control, we used a ∆virB strain known to stay in Lamp1+ compartments for 349 

up to 12 h PI (Celli et al., 2003, Comerci et al., 2001). Our results showed indeed a low 350 

proportion of Lamp1+ vacuoles for the WT strain compared to ∆virB (p < 0.01) (Fig. 6A 351 

and 6B). The CtrA depletion strain supplemented or not with IPTG had a similar 352 

proportion of Lamp1+ vacuoles compared to the WT (Fig 6A), suggesting that its 353 

intracellular trafficking is similar to the WT. This suggested that CtrA depletion does not 354 

profoundly affect trafficking of B. abortus in HeLa cells. Since an abnormal morphology 355 

seems to be a typical feature of CtrA depletion (Fig. 2), we evaluated the proportion of 356 

bacteria with abnormal morphology in ER compartments, compared to the proportion of 357 

bacteria with a normal morphology in the same compartment. To label the ER, we chose 358 

two markers, the translocon component Sec61β (Fig. 6B) (Hartmann et al., 1994) and 359 

the dolichol kinase (DolK, Fig. 6C) (Shridas & Waechter, 2006), typical proteins of the 360 

endoplasmic reticulum. The HeLa cells were infected with the CtrA depletion strain in 361 

the absence of IPTG, Sec61β positive (Sec61β+) and DolK positive (DolK+) BCVs were 362 

detected using immunofluorescence, and the proportion of Sec61β+ and DolK+ BCVs 363 

was evaluated for normal and abnormal morphologies (Fig. 6B and 6C). If CtrA depletion 364 
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affects trafficking, one could expect a lower proportion of abnormal morphologies in the 365 

ER compartments. Actually, we found that the proportion of Sec61β+ or DolK+ BCVs 366 

containing abnormal morphologies was slightly higher compared to the Sec61β+ or 367 

DolK + BCV containing bacteria with a normal morphology. The main interpretation of 368 

these data is that CtrA depletion does not impair trafficking to the ER. The lower 369 

proportion of bacteria with a normal morphology could be explained by the presence of 370 

dead or non-growing bacteria, unable to traffic until ER compartments. 371 

 372 

CtrA depletion affects OMP amounts. 373 

One surprising feature of the CtrA regulon, according to ChIP-seq data (Table S1), is the 374 

high proportion of direct targets corresponding to genes encoding outer membrane 375 

components, particularly outer membrane proteins (OMPs). In order to reveal a possible 376 

impact of CtrA depletion on the abundance of some of these OMPs, three integral OMPs 377 

(Omp2b, Omp25 and BamA) and two proposed OM lipoproteins (Omp16 and Omp19) 378 

were detected by Western blot on a B. abortus wild type strain, on the CtrA depletion 379 

strain cultivated with IPTG and on the same strain depleted in CtrA overnight. While the 380 

amount of Omp16 and Omp19 seems to remain unchanged in the absence of CtrA, a 381 

slight decrease in the amount of Omp2b and BamA was observed (Fig. 7A). Omp25 382 

abundance was lower in the absence of CtrA, and strongly decreased at longer depletion 383 

times (Fig. 7B). Given that OMPs of group 2 and 3 (Omp2b and Omp25) are the major 384 

OMPs in Brucella envelope (Dubray & Charriaut, 1983), their reduced abundance in the 385 

absence of CtrA could lead to the perturbation of the envelope, which could have 386 

dramatic consequences for the bacterium when it is inside host cells (Fig. 3C).  387 

We also labeled Omp25 present at the surface of B. abortus by 388 

immunofluorescence. The localization of Omp25 on the CtrA-depletion strain grown 389 
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overnight without IPTG was heterogeneous. This was observed with a monoclonal 390 

antibody directed against Omp25 (Fig. S8). The labeling was often partial and 391 

concentrated on the tip of the branches (Fig. 8A). For the wild type strain, 86.6 % of the 392 

bacteria were either completely unlabeled or displayed an homogeneous labeling (Fig. 393 

8B). The ∆ctrA plac-ctrA depletion strain cultivated in the presence of IPTG displayed a 394 

similar proportion of unlabeled or homogeneously labeled bacteria (82.2 %) (Fig. S8). 395 

Partially labeled bacteria were counted in three independent experiments, and their 396 

proportion is reported in Fig. 8C. The proportion of partially labeled bacteria was 397 

significantly higher for the depletion strain compared to the wild type strain (p < 2.1 10-398 
5 in a Scheffé statistical analysis). These data suggest that in the absence of CtrA, Omp25 399 

localization on the surface of B. abortus is perturbed. Curiously, the Omp25 labeling 400 

pattern was symmetric, meaning that if the tip of one branch is labeled, the tip of the 401 

other branches are also labeled (Fig. 8A). One plausible explanation is that Omp25 is 402 

incorporated in the outer membrane in a similar manner in all parts of the branched 403 

cells that are generated at the same time. In this model, Omp25 proteins remain 404 

immobile in the outer membrane, probably because they are directly or indirectly bound 405 

to peptidoglycan (Cloeckaert et al., 1992).  406 

  407 
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Discussion 408 

The essential transcription factor CtrA is known to be at the heart of a complex network 409 

regulating the cell cycle progression of the model organism C. crescentus. CtrA is 410 

essential and its regulon is also partially conserved in Sinorhizobium meliloti (Pini et al., 411 

2015). However, in phylogenetically more distant organisms such as Rhodospirillales 412 

(Greene et al., 2012) or Rhodobacterales, CtrA is not essential and has evolved to 413 

regulate cell cycle-independent processes (Cheng et al., 2011, Francez-Charlot et al., 414 

2015, Lang & Beatty, 2000, Mercer et al., 2012). Analysis of the expression of CtrA 415 

targets in B. abortus suggests that CtrA is involved in cell cycle-dependent regulation 416 

(Fig. 4). 417 

Here we show that CtrA regulon in B. abortus is partially conserved in comparison 418 

with C. crescentus and S. meliloti CtrA regulons. They indeed share genes involved in cell 419 

cycle regulation such as DNA methylation, chromosome replication and segregation and 420 

division (Laub et al., 2002, Pini et al., 2015). However, as previously suggested by the 421 

identification of a limited number of CtrA targets in B. abortus (Bellefontaine et al., 422 

2002), a similar process can be regulated through different target genes. For example, 423 

CtrA is binding to the mipZ promoter in C. crescentus (Fumeaux et al., 2014), allowing 424 

the control of Z ring positioning, while this control is proposed to be mediated by the 425 

binding to the minCDE promoter in B. abortus (Bellefontaine et al., 2002), as also 426 

recently elucidated in S. meliloti (Pini et al., 2015). These comparisons underline the 427 

plasticity of the CtrA regulon along evolution.  428 

Depletion of CtrA leads to a severe (Fig. 2) and reversible (Fig. S4) cell division 429 

defect in B. abortus. However, among the direct targets of CtrA found in the conditions 430 

tested here, cell cycle-related genes are not restricted to cell division. Indeed, genes 431 

involved in replication, the DivK-CtrA regulation network and the recruitment of 432 
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proteins to the poles (popZ) have also their promoter enriched by ChIP-seq. Besides cell 433 

cycle-related genes, one obvious conclusion of the ChIP-seq experiment reported here is 434 

the high proportion of genes involved in envelope biogenesis or homeostasis. Indeed, 435 

CtrA predicted regulon is enriched in genes coding for LPS and outer membrane 436 

proteins biosynthesis and export. The presence of CtrA is crucial for the production of 437 

normal amounts of Omp25 (Fig. 7) and for an homogeneous distribution of Omp25 on 438 

the surface of the bacterium (Fig. 8). We cannot exclude that alteration of Omp25 439 

localization on the surface is an indirect effect of the inhibition of cell division. Indeed it 440 

is likely that the generation of elongated and branched morphologies takes more time 441 

than the generation of normal shaped bacteria, thus partially labeled bacteria could 442 

reveal the oscillating nature of Omp25 incorporation in the outer membrane in these 443 

cells. A B. abortus deletion strain for omp25 was found to be attenuated in cattle 444 

(Edmonds et al., 2001), but more recent data suggested that this attenuation could be 445 

explained by a higher internalization and a higher intracellular killing of the omp25 446 

mutant compared to the wild type strain (Manterola et al., 2007). The molecular 447 

functions of the highly abundant Omp25 are still unknown; it was shown to inhibit TNFα 448 

production in human macrophages (Jubier-Maurin et al., 2001) and it could be involved 449 

in defining the properties of the outer membrane by interacting with the LPS (Manterola 450 

et al., 2005). Interestingly, in S. meliloti, CtrA binds to the promoter of ropB gene (Pini et 451 

al., 2015), encoding an Omp25 homolog involved in outer membrane stability in 452 

Rhizobium leguminosarum (Vanderlinde & Yost, 2012). It is thus possible that in 453 

Rhizobiales, CtrA controls factors involved in outer membrane biogenesis or 454 

homeostasis. Their control by CtrA would have been acquired after the divergence from 455 

the common ancestor with C. crescentus, since CtrA regulon of C. crescentus is not 456 
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particularly enriched in genes involved in outer membrane biogenesis or homeostasis 457 

(Fumeaux et al., 2014, Laub et al., 2002).  458 

Depletion of CtrA results in a strong inhibition of cell division (Fig. 2A), possibly 459 

explaining why the ctrA gene is essential in B. abortus as suggested in previous studies 460 

(Bellefontaine et al., 2002, Willett et al., 2015). The inhibition of cell division results in 461 

branched morphology or formation of small chains of cells, the latter being probably 462 

produced by incomplete septation. It is noteworthy that the CtrA-loss of function 463 

phenotype is reversible, as induction of ctrA expression after depletion resulted in the 464 

reactivation of cell division (Fig. S4). Perturbation of division in the CtrA-depleted 465 

condition is likely explained by the presence of numerous genes and operons involved in 466 

division in the CtrA predicted regulon. Indeed, the minCDE operon is involved in Z ring 467 

placement, and many genes and operons proposed to be involved in the cell division 468 

process, like ftsQAZ, ftsEX, ftsK and the pal(omp16)-tolQRAB locus are detected as 469 

possible direct targets of CtrA in B. abortus (Table S1). The deregulation of some of these 470 

genes is probably sufficient to block the whole cell division process.  471 

Depletion of CtrA also resulted in altered morphology of bacteria infecting host 472 

cells (Fig. 5B). During infection elongated and branched morphologies can only be 473 

generated by growth, suggesting that these bacteria are able to uptake nutrients during 474 

cellular infection, after an initial stage of growth arrest that could be due to starvation 475 

(see below). In host cells, the timing of the appearance of the altered morphologies is 476 

different from the timing of their formation in bacteriological medium. Indeed, in HeLa 477 

cells abnormal morphologies of the CtrA depletion strain appeared around or after 10 h 478 

PI (Fig. 5B), mainly consisting of elongated cells (Fig. 5A) resembling bacteria recovered 479 

3 h after IPTG removal in rich culture medium (Fig. 2A). At 15 h PI, branched bacteria 480 

were observed (Fig. 5A), similarly to the 7 h depletion in culture (Fig. 2A). Interestingly, 481 
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B. abortus was shown to resume its intracellular growth around 8 h PI in HeLa cells 482 

(Deghelt et al., 2014). The observation of elongated bacteria at or after 10 h PI for the 483 

CtrA-depleted bacteria thus suggests that the absence of CtrA does not drastically 484 

change the timing of growth arrest/resumption in HeLa cells. If CtrA is not required for 485 

the control of the intracellular growth arrest/resumption, it is likely that other 486 

regulation networks, like those triggered by starvation (Dozot et al., 2006), could be 487 

involved. Previous work also showed that B. abortus growth is resumed in Lamp1+ 488 

compartments around 8 h PI and that daughter cells are found almost exclusively in 489 

Lamp1- compartment from 10 h PI (Deghelt et al., 2014). While CtrA depleted bacteria 490 

with a normal morphology could be dead or non-growing bacteria unable to traffic until 491 

the ER, bacteria that have grown to generate branching morphology are able to traffic to 492 

the ER, demonstrating that they are able to perform this crucial step of intracellular 493 

trafficking. This suggests that despite their morphological alterations, these bacteria are 494 

probably still able to produce a functional VirB system, which is required for this step of 495 

their intracellular trafficking (Comerci et al., 2001, Delrue et al., 2001). Thus CtrA-496 

dependent cell cycle control and intracellular trafficking seem to be relatively 497 

independent processes in B. abortus. The dramatic drop of the CFU counts at 48 h PI 498 

(Fig. 3B) suggests that the branched bacteria are unable to survive for long periods in 499 

host cells.  500 

In conclusion, our data support the idea that along evolution of the CtrA regulon, 501 

CtrA has kept the control of cell division in many Alphaproteobacteria. However, in B. 502 

abortus and possibly in Rhizobiales it also acquired new functions, including the control 503 

of envelope composition. It is interesting to realize that CtrA has to be cleared from S. 504 

meliloti cells to allow them to differentiate into nitrogen-fixing bacteroids inside host 505 

plants (Pini et al., 2013), illustrating that fundamental processes of bacterial cell cycle 506 
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have been adapted to the lifestyle of pathogens and symbionts within the 507 

Alphaproteobacteria. 508 

 509 

Experimental procedures 510 

Bacterial strains and media 511 

E. coli strains DH10B, BL21 (DE3) and DB3.1 were grown in Luria-Bertani (LB) medium 512 

at 37°C. Derivatives of the Brucella abortus 544 NalR strain were cultivated in 2YT rich 513 

medium (1% yeast extract, 1.6% peptone, 0.5% NaCl) at 37°C. Antibiotic concentrations 514 

are the following: ampicillin, 100µg/ml; kanamycin, 20 or 50 µg/ml; chloramphenicol, 515 

20 µg/ml; nalidixic acid, 25 µg/ml; rifampicin, 20 µg/ml; gentamycin, 50 µg/ml. B. 516 

abortus strains were constructed as previously described (Deghelt et al., 2014). 517 

Plasmids are listed in Table S2. 518 

 519 

Cloning of the pBBR-MCS1-placI-lacI-plac-ctrA 520 

The placI-lacI-plac sequence was amplified from the pSRK-Kan vector (Khan et al., 2008) 521 

using Phusion High-Fidelity DNA Polymerase (New England BioLabs) and SacI-Kan3’ 522 

and plac-R1 primers (see Table S3). The ctrA coding sequence was amplified from B. 523 

abortus 544 purified genomic DNA using ctrA-F2 and KpnI-ctrA-R2 primers. The PCR 524 

product was fused to the placI-lacI-plac sequence by joining PCR. The placI-lacI-plac-ctrA 525 

insert was then cloned in the pBBRMCS1 using SacI and KpnI restriction enzymes. By 526 

using these enzymes, the insert was cloned in the opposite orientation to the plac 527 

promoter of the pBBRMCS1. 528 

 529 

  530 
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Cloning of a ctrA deletion for allelic exchange 531 

The ctrA gene was deleted from B. abortus 544 chromosome by allelic replacement. A 532 

750 base pair (bp)-region upstream and another one downstream of ctrA were 533 

amplified by PCR using PstI-Up-ctrA-F/Up-ctrA-R and Down-ctrA-F/SalI-Down-ctrA-R 534 

pairs of primers respectively and both PCR products were fused together by joining PCR. 535 

The PCR product was cloned in the pNPTS138 vector (M. R. K. Alley, Imperial College of 536 

Science, London, UK) carrying a kanamycin resistance cassette and a sucrose sensitivity 537 

cassette. 538 

 539 

Cloning of reporter vectors 540 

Promoter regions were amplified from B. abortus 544 purified genomic DNA using 541 

Phusion High-Fidelity DNA Polymerase and fused by joining PCR to gfp(ASV). The pairs 542 

of primers used to amplify the promoter regions are XbaI-pctrA-F1/pctrA-R1, XbaI-prepAB-543 

F1/prepAB-R1, XbaI-pccrM-F1/pccrM-R1 and XbaI-ppleC-F1/ppleC-R1. The pair of primers used 544 

to amplify the gfp(ASV) gene is gfP(ASV)-F2/XhoI-gfp(ASV)-R2. XbaI and XhoI restriction 545 

sites were added to the upstream and downstream primers. The fusion was first cloned 546 

in pGEMT digested by EcoRV, generating blunt ends, and sequenced. A XbaI-XhoI 547 

restriction allowed the transfer of the insert to a pBBRMCS1 vector, in the opposite 548 

direction to the lac promoter of the vector. 549 

Mutagenesis of the �CtrA boxes was generated in the same way, but using the 550 

constructs with a wild type promoter as DNA template.  The XbaI-pgene-F1 and XhoI-551 

gfp(ASV)-R2 were kept as they were but their corresponding pair of primer (R1 and F2) 552 

were modified to include the mutated CtrA-binding boxes. In the case of pccrM-mut1&2-553 

gfp(ASV), boxes were mutated sequentially (CtrA-binding box 1, followed by CtrA-554 

binding box 2). The wild type and mutated promoters are shown in figure S5. 555 
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 556 

Chromatin immunoprecipitation with anti-CtrA antibodies 557 

An 80 ml culture of B. abortus 544 at an OD600 of 0.8 was centrifuged to harvest the 558 

bacteria. Protein-DNA crosslinking was performed in 10 µM sodium phosphate buffer 559 

(pH 7.6) and 1% formaldehyde for 10 min at RT and 30 min on ice. Bacteria were 560 

harvested by centrifugation at 8500 rpm for 5 min at 4°C, washed twice in cold PBS and 561 

resuspended in lysis buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 100 mM NaCl, 2.2 562 

mg/ml lysozyme, 20 µl protease inhibitor solution). Zirconia/Silica beads (Biospec 563 

Products) of 0.1 and 0.5 mm diameter were added. Bacteria were lysed in the cell 564 

Disruptor Genie from Scientific Industries at maximal amplitude (2800) for 25 min at 565 

4°C. ChIP buffer was added (1.1% TritonX-100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8.0, 566 

167 mM NaCl, protease inhibitors) and bacteria were incubated at 37°C for 10 min for 567 

further lysis. The lysate was sonicated on ice (Branson Sonifier Digital cell disruptor S-568 

450D 400W) by applying 15 bursts of 20 sec (50% duty) at 30% amplitude to cut the 569 

DNA to fragments of about 300 base pairs and centrifuged at 14,000 rpm for 3 min to 570 

pellet the debris. The supernatant was normalized by protein content by measuring the 571 

absorbance at 280 nm. Around 7.5 mg of protein was diluted in 1 ml of ChIP buffer 572 

supplemented with 0.01% SDS and pre-cleared in 80 µl of protein A-agarose beads 573 

(Roche) and 100 µg BSA. Polyclonal anti-CtrA anitbodies (Bellefontaine et al., 2002) 574 

were added to the supernatant (dilution 1:1000) and incubated for one night at 4°C to 575 

form immune complexes which were then incubated with 80 µl of protein A-agarose 576 

beads pre-saturated with BSA for 2 h at 4°C. Beads were then washed once with low salt 577 

buffer (0.1% SDS, 1% TritonX-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.1, 150 mM NaCl), 578 

high salt buffer  (0.1% SDS, 1% TritonX-100, 2 mM EDTA, 20 mM Tris-HCl pH 8.1, 500 579 

mM NaCl) and LiCl buffer (0.25 M LiCl, 1% NP-40, 1% sodum deoxycholate, 1 mM EDTA, 580 
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10 mM Tris-HCl pH 8.1) and twice with TE buffer (10 mM Tris-HCl pH 8.1 and 1 mM 581 

EDTA). Protein-DNA complexes were eluted with 500 µl of elution buffer (1% SDS and 582 

0.1M NaHCO3). Reverse crosslinking was performed in presence of 300 mM of NaCl O/N 583 

at 65°C. Samples were treated with 2 µg of Proteinase K for 2h at 45°C in 40 mM EDTA 584 

and 40 mM Tris-HCl pH 6.5. DNA was extracted using QIAgen minelute kit and 585 

resuspended in 30 µl of Elution Buffer. ChIP DNA was sequenced using Illumina MySeq. 586 

Analysis of the sequencing data 587 

Sequencing data consisted of a number of reads per nucleotide. Computing of average 588 

and variance in a window of 1 million base pairs allowed the calculation of Z score pour 589 

each base pair (i.e. the number of standard deviation from the average). Genomic 590 

regions with reads numbers above the threshold (Z > 4) were kept and considered to be 591 

bound by CtrA. These regions were mapped to the genome of Brucella abortus 2308, a 592 

close relative to the B. abortus 544 strain. The mapping is available in the Supplemental 593 

files ChIP-seq_CtrA_chr1.txt and ChIP-seq_CtrA_chr2.txt, that can be analysed using the 594 

Chr1.gb and Chr2.gb genomic sequences respectively, with the Artemis program (freely 595 

available at the following website http://www.sanger.ac.uk/science/tools/artemis). 596 

 597 

Electrophoretic mobility shift assay 598 

DNA probes of 50-70 pb were prepared by amplifying promoter regions from B.  abortus 599 

544 purified genomic DNA using Phusion High Fidelity DNA Polymerase (see Table S3 600 

for list of primers, named as EMSA-F/R-promoter). Each PCR product was concentrated 601 

and purified after migration on agarose gel eletrophoresis, using NucleoSpin® Gel and 602 

PCR Clean-up (Macherey-Nagel) according to manufacturer’s instructions. These 603 

purified PCR products were then used as template for a new amplification with a 604 

cyanine-5(Cy5)-labeled primer (Integrated DNA Technologies) (Table S3). The labeled 605 
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amplicons were purified after gel electrophoresis and quantified using a Qubit® 3.0 606 

Fluorometer (Thermo Fisher Scientific). 607 

His6-CtrA was purified and phosphorylated as previously described (Bellefontaine et al, 608 

2002). Binding reactions were prepared in a final volume of 20 µl with 0 to 340 µg of 609 

CtrA, 3 ng of labeled probes and when necessary with 400 ng of competing probe (non-610 

labeled PCR product) in binding buffer (10 mM Tris pH 7.4, 10 mM MgCl2, 50 mM NaCl, 611 

10% glycerol). Samples were incubated for 30-45 minutes at 37°C and 10 µl were 612 

loaded onto a 13.3% polyacrylamide gel (3.9 ml of ddH2O, 700 µl of 5X TBE buffer, 2.3 613 

ml of 40% acrylamide stock 19:1, 70 µl of 10% APS and 7 µl of TEMED). TBE is 89 mM 614 

Tris, 89 mM boric acid and 2 mM EDTA, pH 8.3. Samples were run at 100V for 3h20 in 615 

0.5 x TBE buffer at 4°C. Samples were revealed using an Amersham Imager 600 (GE 616 

Healthcare Life Sciences) with the Cy5 fluorescence channel.  617 

 618 

Reverse transcription followed by quantitative PCR 619 

The B. abortus strains were grown in rich medium (2YT) until exponential phase, 620 

washed and growth was restart in rich medium, with or without IPTG for 6 hours. Then 621 

bacteria were washed in PBS, collected by centrifugation and immediately frozen and 622 

stored at -80°C until processing. RNA was then extracted with TriPure isolation reagent 623 

(Roche) according to the instructions of the manufacturer. DNA contamination was 624 

eliminated by incubation with DNase I (Fermentas). RNA was reverse transcribed with 625 

specific primers, using the High capacity cDNA Reverse Transcription kit (Applied 626 

biosystems). Specific cDNAs were amplified using FastStart Universal SYBR Green 627 

Master (Roche) with a LightCycler 96 Instrument (Roche). The specificity of the PCR was 628 

assessed by melting-point analysis and gel electrophoresis. Results were normalized 629 
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using the housekeeping groEL gene as a reference. Primer sequences (with a name 630 

starting by RT-qPCR) are available in Table S3. 631 

 632 

TRSE labeling 633 

Bacteria were harvested by centrifugation at 7000 rpm for 2 min. They were then 634 

washed thrice with phosphate-buffered saline (PBS) and incubated with Texas Red 635 

succinimidyl ester (TRSE) from Invitrogen diluted at 1µg/ml in PBS for 15 min at room 636 

temperature (RT) in the dark. Bacteria were then washed once with PBS and twice with 637 

the appropriate medium, 2YT for growth assays and Dulbecco’s Modified Eagle’s 638 

Medium (DMEM) for HeLa cells infections. 639 

 640 

Microscopy and analysis of GFP fluorescence in the reporter systems using MicrobeTracker  641 

B. abortus strains labeled with TRSE were analysed by fluorescence microspy as 642 

previously reported (Deghelt et al., 2014). The pairwise comparisons of the proportions 643 

of morphotypes such as elongated cells or bacteria with mislocalized constriction sites 644 

were made using a Scheffe analysis. B. abortus strains expressing a promoter-gfp fusion 645 

were observed using a Nikon 80i (objective phase contrast x 100, plan Apo) connected 646 

to a Hammamatsu ORCA-ER camera. Cell meshes were obtained using the Matlab-based 647 

MicrobeTracker software (Sliusarenko et al., 2011), determining the cell length and 648 

quantifying the average amount of fluorescence per bacterium. Data were then 649 

transferred to Excel files using the “XLStotmeansteparea.m” script. Data were sorted 650 

according to bacterial cell length, and the mean cell length and mean fluorescence 651 

intensity were calculated using a sliding window of 300 bacteria.  652 

 653 

  654 
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HeLa cells culture and infection 655 

HeLa cells (from the Centre d’Immunologie de Marseille-Luminy, Marseille, France) 656 

were cultivated at 37°C and in a 5% CO2 atmosphere in DMEM (Invitrogen) 657 

supplemented with 10% fetal bovine serum (Gibco), 0.1 g/l non-essential amino acids 658 

and 0.1 g/l sodium pyruvate (Invitrogen). For the infection, HeLa cells were seeded in 659 

24-well plates (on cover-slips for immunolabeling) at a concentration of 4.104 cells/ml. 660 

On the day of the infection, an O/N culture of B. abortus was diluted in DMEM to reach 661 

an MOI (multiplicity of infection) of 300. Bacteria were added to HeLa cells and the 24-662 

well plates were centrifuged at 1200 rpm for 10 min at 4°C. Cells were then incubated at 663 

37°C in a 5% CO2 atmosphere for one hour. Cells were washed twice in PBS and fresh 664 

medium supplemented with 50 µg/ml gentamycin was added. 665 

 666 

Immunolabeling of infected HeLa cells 667 

Cells were fixed in PBS 2% paraformaldehyde (Prolabo) for 20 min at RT then 668 

permeabilized in PBS 0.1% Triton X-100 for 10 min. Cells were incubated for 45 min 669 

with primary and secondary antibodies supplemented with 0.1% Triton X-100 and 3% 670 

bovine serum albumin (BSA, Sigma Aldrich). Brucella were detected with the A76-12G12 671 

monoclonal antibody (non-diluted hybridoma culture supernatant) followed by a 672 

secondary anti-mouse antibodies coupled to Alexa-488 diluted 500 times (Sigma 673 

Aldrich). Coverslips were washed thrice with PBS and once with ddH2O and mounted 674 

with Mowiol (Sigma). Antibodies are listed in Table S4. 675 

For Lamp1 labeling, cells were fixed in methanol-acetone (80%-20%) for 20 min at 676 

RT. Bacteria and Lamp1 were labeled with a rabbit anti-Brucella serum diluted 2000 677 

times and mouse anti-Lamp1 antibodies diluted 200 times in PBS 2% BSA. Secondary 678 

anti-rabbit antibodies coupled to Pacific Blue and anti-mouse antibodies coupled to 679 
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Alexa-488 (Sigma Aldrich) were diluted 500 times in PBS 2% BSA. Coverslips were 680 

washed thrice in PBS 2% BSA and mounted with Mowiol. For each strain in each 681 

condition (+/- IPTG), the number of BCVs analysed was as follows : 66 to 77 for the wild 682 

type strain, 62 to 100 for the depletion strain with IPTG, 48 to 70 for the depletion strain 683 

without IPTG, and 36 to 71 for the ∆virB strain. 684 

For endoplasmic reticulum (ER) labeling, cells were fixed in PBS 2% 685 

paraformaldehyde for 20 minutes at RT, then washed twice with PBS before to be 686 

permeabilized with PBS 0.2% saponin (Sigma Aldrich) for 20 minutes at RT. Cells were 687 

then blocked for 30 minutes with 0.2% saponin, 3% BSA, 50 mM NH4Cl in 0.1% dPBS-688 

Tween20. ER was labeled either with primary anti-DOLK rabbit antibody (Abcam, 689 

ab93609) diluted 200 times or with anti-Sec61β rabbit antibody (B. Dobberstein, 690 

Universität Heidelberg, Heidelberg, Germany) diluted 100 times, both in 3% BSA, 0.2% 691 

saponin and 0.1% dPBS-Tween20. Secondary anti-rabbit coupled to Alexa-488 (Sigma 692 

Aldrich) diluted 500 times were used for staining after washing thrice with PBS. B. 693 

abortus were labeled using non-diluted A76-12G12 primary antibody obtained from 694 

homemade hybridoma culture supernatant in 0.2% saponin and 3% BSA, followed by a 695 

secondary anti-mouse antibody coupled to TxRed (Sigma Aldrich) diluted 500 times in 696 

3% BSA, 0.2% saponin and 0.1% dPBS-Tween20. Coverslips were washed thrice in PBS 697 

and once in ddH2O before to be mounted on Mowiol. The infections were repeated three 698 

times independently, and 167 to 317 BCVs were analyzed in each infection. 699 

 700 

Growth curve and CFU counts 701 

Growth curves were performed by using Bioscreen C from Oy Growth curves. O/N 702 

cultures were diluted to an OD of 0.1 and the OD was measured every 30 min during 70 703 
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hours. For CFU counts in culture, wild type (WT) B. abortus 544 and the CtrA depletion 704 

strain supplemented with IPTG were diluted to 10-6 or 10-7 in 2YT and 100 µl were 705 

plated on 2YT, supplemented with chloramphenicol and 1 mM IPTG for the depletion 706 

strain. The depletion strain grown without IPTG was diluted to 10-4 or 10-5. For CFU 707 

counts after infection, HeLa cells were lysed with 0.01% TritonX-100 PBS for 10 min at 708 

RT. Several dilutions were plated on 2YT supplemented with chloramphenicol and IPTG 709 

if needed. Plates were incubated for 3 to 4 days at 37°C. 710 

 711 

Western blot analysis 712 

One ml of a B. abortus culture was concentrated to an OD600 of 10 in PBS. Bacteria were 713 

inactivated for one hour at 80°C and loading buffer was added. Fifteen µl of bacterial 714 

lysate was loaded in each well. After migration, proteins were transferred onto a 715 

nitrocellulose membrane which was blocked in PBS supplemented with 0.05% Tween 716 

and 5% milk for at least one hour. The membrane was incubated for 1 h with the 717 

appropriate serum (diluted 10, 100 or 1000x depending on the serum) and secondary 718 

antibodies coupled to HRP (diluted 5000x) (Dako Denmark) diluted in PBS 0.05% 719 

Tween 1% milk. The membrane was washed for 3 times for 5 min. The Clarity Western 720 

ECL Substrate (Biorad) and Image Quant LAS 4000 (General Electric) were used to 721 

reveal the bands. 722 

 723 

Immunodetection of Omp25 on bacteria 724 

Bacteria grown overnight in rich culture medium were washed twice in PBS by 725 

centrifugation at 4000 rpm for 2.5 min and resuspension. Washed bacteria were 726 

resuspended in non-diluted hybridoma culture supernatant containing monoclonal anti-727 

Omp25 antibodies and secondary anti-mouse antibodies coupled to Alexa-488 diluted 728 
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500 times in PBS, and were incubated for 40 min at RT on a wheel. Bacteria were 729 

washed twice in PBS and 2 µl were dropped on an agarose pad (1% PBS agarose) for 730 

microscopy. 731 
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Figure Legends 960 

 961 

Fig. 1. In vivo CtrA binding sites detected by ChIP-seq. The number of reads per nucleotide is 962 

plotted for 6 promoter regions enriched by CtrA pull-down. Red bars surrounded by red 963 

rectangles represent predicted 8-mer and 9-mer binding sites. Green bars surrounded by green 964 

rectangles represent TTAA(C) half binding sites. Arrows under gene names represents the start 965 

of the coding sequences. 966 

 967 

Fig. 2. CtrA depletion generates cell division defects strain in B. abortus. 968 

A. Phase contrast (“Phase”) and fluorescence (“TexasRed”) microscopy images of a CtrA 969 

depletion strain labeled with TRSE and grown with IPTG (“+IPTG”) show that bacteria have a 970 

normal morphology. Upon IPTG removal (“-IPTG”), bacteria elongate (3 h), form chains and 971 

branch (7 and 15 h). TRSE allows covalent binding of amine groups present at the bacterial 972 

surface to Texas Red. Growth occurring after TRSE labeling results in the incorporation of 973 

unlabeled envelope material. The scale bar corresponds to 2 µm.  974 

B. CtrA detection by Western blot shows a quick decrease in CtrA amount and apparent 975 

clearance 120 min post-IPTG removal. 976 

 977 

Fig. 3. Viability of the CtrA depletion strain in rich medium and infection. 978 

A. CFU count of wild type and CtrA depletion (∆ctrA plac-ctrA) strains cultivated with or without 979 

IPTG (+IPTG or -IPTG, respectively) in rich medium. Error bars correspond to standard 980 

deviations (n = 3). 981 

B) CFU count of wild type and CtrA depletion (∆ctrA plac-ctrA) strains incubated with or without 982 

IPTG (+IPTG or -IPTG, respectively) during a HeLa cell infection over a 48 h period of time. 983 

Standard deviations are shown (n = 3). 984 

 985 

  986 
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Fig. 4. Activity profile of repAB, ctrA, ccrM and pleC promoters according to cell length. 987 

Phase and fluorescence microscopy images of B. abortus reporter strains were analysed 988 

with the MicrobeTracker program. Bacteria were ordered according to their cell length 989 

and the mean cell length and mean fluorescence intensity was calculated for a sliding 990 

window (from smallest to largest bacteria) of 300 bacteria. The mean fluorescence 991 

intensities were normalized to the average fluorescence intensity of the whole 992 

population of a given experiment, allowing the representation of results from three 993 

independent experiments on the same plot. Each experiment is shown with a different 994 

color. The number of bacteria analysed for prepAB are 1632, 1402 and 2377; for pctrA 995 

1456, 1487 and 1467; for pccrM 1446, 753 and 1678; for ppleC 1888, 1297 and 1953. 996 

 997 

Fig. 5. Morphology of the CtrA depletion strain during infection. 998 

A. Immunofluorescence microscopy of HeLa cells infected for 15 h with the depletion strain in 999 

presence or in absence of IPTG. Phase contrast images were merged with anti-Brucella staining 1000 

(cyan) to detect intracellular bacteria. The scale bars correspond to 5 µm. The absence of IPTG, 1001 

bacteria with normal and abnormal morphologies can be found in variable proportions from one 1002 

infection to the other. 1003 

B. Representative image of an abnormal morphology generated by the CtrA depletion strain 15 h 1004 

post-infection in HeLa cells, with bacteria labeled with TRSE before infection. The TRSE-labeled 1005 

part corresponds to the old pole of the initial bacterium that invaded the host cell (white arrow 1006 

head). DAPI (staining the nucleus in blue), anti-Brucella (green) and Texas Red are merged.  1007 

 1008 

Fig. 6. Intracellular trafficking of the CtrA depletion strain. 1009 

A. Three B. abortus strains, wild type, CtrA depletion (with or without IPTG) and ∆virB, were 1010 

used to infect HeLa cells. At 10 h PI, cells were fixed and immunofluorescence (IF) was 1011 

performed to detect bacteria and Lamp1. The proportion of Lamp1+ BCV is shown for each 1012 
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strain/condition. The mean of three independent infections is indicated, the error bars 1013 

correspond to standard deviation. 1014 

B. The CtrA depletion strain was used to infect HeLa cells for 10 to 24 h (3 samples) in the 1015 

absence of IPTG and IF was performed to detect bacteria and the ER marker Sec61β. The 1016 

abnormal morphology indicates that bacteria experienced a CtrA depletion inside host cells. The 1017 

average and standard deviation are shown (497 normal and 153 abnormal bacteria were 1018 

counted in total). 1019 

C. The CtrA depletion strain was used to infect HeLa cells for 15 h (3 samples) in the absence of 1020 

IPTG and immunofluorescence was applied to detect the proportion of ER-associated bacteria 1021 

using the dolichol kinase (DolK) marker. The average and standard deviation are shown (235 1022 

normal and 65 abnormal bacteria were counted in total).  1023 

 1024 

Fig. 7. Effect of the CtrA depletion on outer membrane proteins abundance. 1025 

A. Western blots on B. abortus lysates of the wild type (WT) strain and the CtrA depletion strain 1026 

grown with or without IPTG for one night, using monoclonal antibodies recognizing OMPs 1027 

whose genes were identified by ChIP-seq as being potentially regulated by CtrA. 1028 

B. Western blots on lysates of the CtrA depletion strain grown without IPTG for 0, 7, 15 and 24 h, 1029 

using a monoclonal anti-Omp25 antibody (A68/4B10/F05). Omp10 was detected by Western 1030 

blot as a loading control. 1031 

 1032 

Fig. 8. Effect of CtrA depletion on Omp25 localization. 1033 

A. Phase contrast microscopy and associated fluorescent anti-Omp25 signal of the CtrA 1034 

depletion strain cultivated in the absence of IPTG. In these bacteria, the Omp25 signal is 1035 

localized at the tip of the branches, revealing the heterogeneity of the outer membrane 1036 

composition in these bacteria. These localization patterns also suggest that Omp25 diffusion in 1037 

the outer membrane is slow. 1038 
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B. Homogeneous localization of anti-Omp25 signal on the wild type strain. The scale bars 1039 

correspond to 2 μm. 1040 

C. Proportion of partially labeled bacteria generated with the anti-Omp25 antibody, for the wild 1041 

type strain or the depletion strain cultivated in the presence or in absence of IPTG. Standard 1042 

deviations are shown (n = 3). 1043 
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Graphical abstract 

 

Abbreviated Summary 

Brucella abortus is an alpha-proteobacterial pathogen responsible for worldwide 

zoonosis. Here we report that CtrA is essential for the cell division process, in culture 

and inside host cells. By characterizing the CtrA regulon, we found that CtrA not only 

controls cell cycle, but it also modulates the outer membrane composition. 
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Summary 22 

Brucella abortus is a class III zoonotic bacterial pathogen able to survive and replicate inside 23 

host cells, including macrophages. Here we report a multi-dimensional transposon sequencing 24 

analysis to identify genes essential for Brucella abortus growth in rich medium and 25 

replication in RAW 264.7 macrophages. The construction of a dense transposon mutants 26 

library and mapping of 929,769 unique mini-Tn5 insertion sites in the genome allowed 27 

identification of 491 essential coding sequences and essential segments in the B. abortus 28 

genome. Chromosome II carries a lower proportion (5%) of essential genes compared to 29 

chromosome I (19%), supporting the hypothesis of a recent acquisition of a mega-plasmid as 30 

the origin of chromosome II. Temporally resolved transposon sequencing analysis as a 31 

function of macrophage infection stages identified 79 genes with a specific attenuation 32 

phenotype in macrophage, at either 2, 5 or 24 h post-infection, and 86 genes for which the 33 

attenuated mutant phenotype correlated with a growth defect on plates. We identified 48 34 

genes required for intracellular growth including the virB operon, encoding the type IV 35 

secretion system, which supports the validity of the screen. The remaining genes encode 36 

amino acid and pyrimidine biosynthesis, electron transfer systems, transcriptional regulators 37 

and transporters. In particular, we report the need of an intact pyrimidine nucleotide 38 

biosynthesis pathway in order for B. abortus to proliferate inside RAW 264.7 macrophages. 39 

  40 
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Introduction 41 

Brucella abortus is a class III bacterial pathogen from the Brucella genus known for being the 42 

causative agent of brucellosis, a worldwide anthropo-zoonosis generating major economic 43 

losses and public health issues (1). These bacteria are Gram-negative and belong to the 44 

Rhizobiales order within the Alphaproteobacteria group and share common characteristics 45 

such as the DivK-CtrA regulation network which governs cell cycle regulation (2) and 46 

unipolar growth as observed in Agrobacterium tumefaciens and Sinorhizobium meliloti (3). A 47 

specific feature of B. abortus compared to other Alphaproteobacteria is its multipartite 48 

genome, composed of two replicons of 2.1 and 1.2 Mb named chromosome 1 (chr I) and 49 

chromosome 2 (chr II), respectively (4). The chr I replication origin is similar to the one of C. 50 

crescentus, while chr II replication origin resembles those found in megaplasmids of the 51 

Rhizobiales (5, 6).  52 

One main aspect of B. abortus infections is the ability of the bacteria to invade, survive, and 53 

proliferate within host cells, including macrophages (7). Recently, the cellular infection 54 

process of B. abortus in both RAW 264.7 macrophages and HeLa cells has been extensively 55 

characterized at the single cell level in terms of growth and genome replication, highlighting a 56 

typical biphasic infection profile (5). Indeed, during the course of cellular infections, Brucella 57 

first enters host cells through the endosomal pathway where it remains in a “Brucella 58 

containing vacuole” (BCV) for several hours without proliferating while preventing the 59 

maturation of its compartment into a phagolysosome (7). During that period, typical markers 60 

such as LAMP1 are acquired (7). In most cell types, surviving bacteria are able to control the 61 

biogenesis of their vacuole into an endoplasmic reticulum (ER) derived compartment where 62 

they actively proliferate (7-9). This process is dependent on the type IV secretion system 63 

called VirB (10, 11). The chemical composition of the replicative BCV is difficult to study 64 

directly, but mutant Brucella strains may be used as probes to gain a better knowledge of the 65 
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bacterial environment in these compartments. Screening of transposon mutants collections for 66 

attenuated strains generated hypotheses, such as the availability of histidine that was proposed 67 

to be limited (12), which is consistent with the ability of histidinol dehydrogenase inhibitors 68 

to impair growth of Brucella in macrophages (13). However, a major drawback of previous 69 

screenings for attenuated mutants was the size of the library, typically limited to a few 70 

thousands of mutants, that does not allow saturation at the genome-wide level and therefore 71 

cannot yield quantitative results. Moreover, several interesting hypotheses regarding 72 

biosynthetic pathways required for intracellular proliferation have never been investigated. 73 

In the present study, we have performed Tn-seq on B. abortus both before and after the 74 

infection of RAW 264.7 macrophages using a highly saturating transposon mutant library. 75 

This library was generated by plating on a rich medium and was subsequently used to infect 76 

RAW 264.7 macrophages for 2, 5 and 24 h. At each stage, the transposon insertion sites were 77 

mapped to identify genes in which the transposition insertion frequency is low, suggesting 78 

that these genes are required for growth and/or survival. This approach allowed identification 79 

of genes involved in several essential processes for growth on rich medium. The temporally 80 

resolved transposon sequencing analysis allowed the identification of mutants attenuated at 81 

three post-infection (PI) time points. Complete and near-complete pathways required for 82 

trafficking to the ER and intracellular growth in host cells have been identified, including the 83 

ability to synthesize pyrimidines when B. abortus is growing in RAW 264.7 macrophages.  84 

 85 
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Results 86 

Identification of essential genes in B. abortus 2308  87 

To gain genome-wide insights into the composition of essential genes necessary for growth of 88 

B. abortus on rich medium, we carried a Tn-seq analysis. A B. abortus 2308 library of 3.106 89 

random mutants was constructed using a kanR derivative of mini-Tn5, a mini-transposon that 90 

was previously used with Brucella (12, 14). A Pxyl promoter was present in the mini-Tn5 91 

derivative to limit the potential polar effects (see Material and Methods). The mini-Tn5 92 

derivatives transpose using a conservative mechanism, and a single insertion is found in each 93 

mutant (14). Directly after mating, the library was grown on rich medium and transposon 94 

insertion sites were identified by deep sequencing (Fig. 1). We identified 929,769 insertion 95 

sites from 154,630,306 mapped reads, saturating the B. abortus genome with an insertion site 96 

every 3.5 bp on average. To allow a genome-wide analysis independent of gene annotations, 97 

we created a simple parameter assessing transposon insertion frequency termed R200 (see 98 

Experimental procedures and Fig. S1), equal to the log10 of the number of transposon 99 

insertions + 1 found within a 200 bp sliding window (Fig. 2). According to the frequency 100 

distribution of R200 values (see Fig. S2), a main peak of frequency is centered on an average 101 

value of 4.05 with a standard deviation of 0.204. Since average values are strongly influenced 102 

by extreme data and because the proportion of essential genes is very different between chr I 103 

and chr II (see below), the average R200 values for chr I and II are 3.3 and 3.8 respectively. 104 

The theoretical distribution of R200 values (Fig. S2) allows the definition of cutoffs to 105 

consider growth alteration, expressed as the number of standard deviations from the average 106 

of the main peak of R200 values. Simple statistics can also be applied to compare the R200 107 

values of different genomic regions, as indicated in Fig. 2. As shown in Fig. 2 and the 108 

Supplemental Data (SD) files (SD1 to SD14) showing the transposition tolerance maps 109 

(TTMs), the essential genes and genes generating a fitness defect when mutated are very often 110 
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located in the coding sequences, validating the use of R200 values. One TTM was generated 111 

for each chromosome, generating SD1 for chr I 112 

(https://figshare.com/s/bd0d4fa73ad8cf7737fe) and SD2 for chr II 113 

(https://figshare.com/s/3219dfa7ac60d1cda34f). Moreover, R200 and dense coverage offer an 114 

analysis with high resolution to identify new essential genes and domains (see below). 115 

We considered as essential all genes where at least one R200 value was equal to 0 in the 116 

control condition (growth on rich medium), since the probability of such events to happen 117 

randomly was estimated to be approximately 4.10-15 (see Material and Methods) (15). In order 118 

to test the validity of this analysis, we checked that genes required for supposedly essential 119 

processes were indeed scored as essential if they do not have functional paralogs. As 120 

expected, genes coding for all four RNA polymerase core subunits (D, E, E’ and Z), the 121 

housekeeping V70, and 51 out of the 54 ribosomal proteins were found as essential. 122 

Additionally, the previously established essentiality of pdhS, ccrM, omp2b, divK, cckA and 123 

chpT genes (16-20) was also confirmed. 124 

Out of the 3419 predicted genes annotated on the B. abortus genome, 491 genes were 125 

found to be essential for in vitro culture, i.e. 14.4% of the predicted genes. This percentage is 126 

in agreement with those previously reported for other Alphaproteobacteria such as C. 127 

crescentus (12.4%), Brevundimonas subvibrioides (13.4%), and Agrobacterium tumefaciens 128 

(6.9%) (15, 21). A list of all essential genes for in vitro culture is available as Supplementary 129 

Table S1. 130 

Based on the presence of a plasmid-like replication and segregation system on chr II and 131 

differences in gene content, it has been postulated that chr II could originate from an 132 

ancestrally acquired mega-plasmid (5, 22). We thus tested the distribution of essential genes 133 

between the two chromosomes of B. abortus. Accordingly, 429 out of the 2236 genes (19%) 134 

of chr I were essential. This is 3.7 times more than the 5 % found on chr II with 62 essential 135 
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genes out of 1183. This result further supports the mega-plasmid hypothesis. One can thus 136 

hypothesize that essential genes have started to be transferred from chr I to chr II but that the 137 

frequency of this transfer was not sufficient to equilibrate the proportion of essential genes on 138 

both chromosomes yet. Besides the repABC operon, essential for replication initiation and 139 

segregation (5, 6), many essential genes of chr II could have been gained by recombination 140 

events with chr I. In agreement with this hypothesis, a fraction of the essential genes of chr II 141 

are clustered, such as the BAB2_0983 - BAB2_1013 region which contains 10 essential genes 142 

potentially involved in housekeeping functions like diaminopimelate biosynthesis (dapD and 143 

dapE), cell division (fzlA) and LPS export (msbA). 144 

The high resolution of the mapping (200 bp) due to the high number of reads aligned to 145 

many unique sites allow the identification of previously unannotated essential coding 146 

sequences. Indeed, since R200 values clearly map to the position of coding sequences in 147 

many instances in the genome, a drop of R200 values in a region where no gene has been 148 

predicted could indicate that a gene is indeed present and functionally relevant. This is 149 

conceptually validated by two examples shown in Fig. 3A. Interestingly, one of the two newly 150 

identified genes codes for the antitoxin component of a homologue of the SocAB system first 151 

identified in C. crescentus (Fig. 3A) (23). In C. crescentus, SocA is a proteolytic adaptor for 152 

the degradation of the SocB toxin by the ClpXP machinery (23). The essentiality of ClpXP in 153 

C. crescentus is due to the presence of the SocAB system (23). Therefore the essentiality of 154 

clpXP genes in B. abortus (Fig. S3) could also be due to the presence of a SocAB homologue 155 

in B. abortus. Moreover, this method also allows for the reannotation of genes as exemplified 156 

by ftsK, where the open reading frame extends beyond the current ftsK locus in 5’ and 157 

matches with an essentiality region (see Fig. 3B). Furthermore, thanks to the high coverage of 158 

this Tn-seq, our analysis also permits to map essentiality regions in genes corresponding to 159 

protein domains, as displayed by genes showing essentiality on a fraction of their coding 160 
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sequence (see Fig. 3C). Taken together, these observations show that high resolution Tn-seq 161 

could support genomic re-annotations and identification of essential protein domains. 162 

Tn-seq allows for the reconstruction of essential pathways, complexes and systems. Here, 163 

we specifically focused on pathways relative to B. abortus cell cycle, which will be divided 164 

into four categories, the replication of DNA, the growth of the envelope, the cell division, and 165 

the cell cycle regulation network. Regarding the replication of DNA, D, E, J, G, F and W 166 

subunits of the DNA polymerase III as well as the helicase dnaB and the primase dnaG are 167 

essential for growth. None of the three ε-subunits (BAB1_2072, BAB2_0617, and 168 

BAB2_0967) were scored essential, which is likely due to functional redundancy. Genes 169 

responsible for the initiation of DNA replication for chromosome I (dnaA) and for 170 

chromosome II (repC) and for the segregation of chromosome I (parA and parB) and 171 

chromosome II (repA and repB) were also essential. Interestingly, only one homolog of the 172 

structural maintenance of chromosome gene (smc, BAB1_0522) could be found in the 173 

genome and was not essential in our Tn-seq, either suggesting that a functional analog is 174 

present, or that this function is not essential in B. abortus. Genes responsible for the synthesis 175 

of peptidoglycan precursors from fructose-6-phosphate and their export to the periplasm 176 

(namely, glmS, glmM, glmU, murA, murB, murC, murD, murE, murF, murG, mraY, ftsW) 177 

were all scored essential. Out of three predicted class-A penicillin-binding proteins (PBP), 178 

only one (BAB1_0932) was found to be essential for growth on rich medium as well as the 179 

only predicted class-B PBP, ftsI. The two other class A PBPs were either only needed for 180 

optimal growth on rich medium while not being strictly essential (BAB1_0607) or not 181 

required at all (BAB1_0114). 182 

The entire pathway responsible for the synthesis of lipopolysaccharide (LPS) lipid A 183 

from UDP-GlcNAc (namely, lpxA, lpxB, lpxC, lpxD, lpxK, lpxXL and kdtA), as well as the 184 

pathway responsible for its export to the outer membrane (namely, msbA, lptA, lptB, lptC, 185 
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lptD, lptE, lptF, lptG) appears to be essential for growth on rich medium. Conversely, no gene 186 

known for being involved in the LPS core synthesis (24) was scored essential for culture on 187 

plates. Moreover, none of the genes responsible for the LPS O-chain synthesis were scored 188 

essential, with the exception of wbkC (see Discussion). 189 

Genes involved in the export of outer membrane proteins (OMPs) such as bamA, bamD 190 

and bamE were essential for growth on rich medium (see Discussion). However, no predicted 191 

homolog of bamB nor bamC could be found. Interestingly, none of the three homologs of the 192 

OMPs periplasmic chaperone degP were scored essential, which is probably due to functional 193 

redundancy. It should be noted that no clear predicted homolog of the OMPs periplasmic 194 

chaperones skp and surA could be identified in silico. Additionally, among the genes 195 

responsible for lipoprotein export to the outer membrane, both lgt and lspA were essential, but 196 

surprisingly lnt was not. Lnt is the phospholipid/apolipoprotein transacylase, that is N-197 

acylating the N-terminal cysteine in the biogenesis of lipoproteins. The lnt gene is also not 198 

essential in B. subvibrioides, suggesting that the dispensability of lnt could be a shared feature 199 

among Alphaproteobacteria. 200 

Genes coding for the divisome proteins ftsZ, ftsA, ftsQ, ftsK, ftsW, ftsY, ftsI, as well as for 201 

the outer membrane invagination system tolQRAB-pal were all essential on plates. The cell 202 

division regulatory operon minCDE as well as ftsEX were not essential, and no predicted 203 

homologs could be found for ftsB, ftsN and zipA.  204 

Regarding the regulation of the bacterial cell cycle in Brucella, one of the key features of 205 

Brucella cell cycle is the DivK-CtrA pathway, conserved among many Alphaproteobacteria 206 

(25). Most but not all members of the DivK-CtrA pathway were found to be essential for 207 

growth on plates in Tn-seq. Indeed, pdhS, divK, divL, cckA, chpT, ctrA, cpdR and clpXP were 208 

found to be essential (Fig. S3). Presumably redundant genes for c-di-GMP synthesis (pdeA 209 

and pleD) and for DivK phosphorylation (pleC and divJ) were not essential (Fig. S3). 210 
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Taken together, these data demonstrate that Tn-seq enables the reconstitution of essential 211 

pathways, in a single experiment. In particular, it allows the identification of a crucial 212 

homolog within a family of several potential paralogs. 213 

 214 

Screening for genes required for macrophage infection 215 

Another main objective of this study was to identify genes specifically required for 216 

macrophage infection. For this purpose, three large-scale infections of RAW 264.7 217 

macrophages were carried out in parallel using the transposon mutants library described 218 

above (Fig. 1). For each infection, a specific post-infection (PI) time point was selected in 219 

order to have a better understanding of the specific gene requirement at different stages of the 220 

cellular infection process. After each time point, bacteria were extracted from infected 221 

macrophages and grown on rich medium prior to transposon insertion site identification and 222 

R200 calculation as explained above (Fig. 1). 223 

Attenuation corresponds to a decrease of fitness specific to infection. Therefore, in the 224 

context of an attenuated mutant, one expects that the R200 values for the mutated gene would 225 

be lower after infection compared to the control condition. Consequently, for analyzing post-226 

infection data, the control R200 values were subtracted from the corresponding PI R200 for 227 

each PI dataset. This resulted in three lists of Delta-R200 values, namely “2 h PI - control”, 228 

“5 h PI - control”, and “24 h PI - control”, corresponding to Delta-R200 2 h PI (SD3 229 

https://figshare.com/s/77195e0a2cc1a1933b7f and SD4 230 

https://figshare.com/s/2475d4b00e6a58226e40), Delta-R200 5 h PI (SD5 231 

https://figshare.com/s/93ce83ccea559a0de2f7 and SD6 232 

https://figshare.com/s/6f604b5eba5934c392f1) and Delta-R200 24 h PI (SD7 233 

https://figshare.com/s/ea7871157f284d31eaed and SD8 234 

https://figshare.com/s/958e728387a31b8ce139), respectively. A total of 165 candidates have 235 
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been identified using the Delta-R200 analysis. Among these candidates, 75 were found at 2 h 236 

PI, 98 were found at 5 h PI, and 165 were found at 24 h PI (see Tables 1 and 2).  237 

In order to validate the Delta-R200 analysis, we checked for genes known to cause an 238 

attenuation during a cellular infection when mutated. For this purpose, we have chosen one 2 239 

h PI control, the response regulator bvrR, and two 24 h PI controls, the type IV secretion 240 

system operon virB (10, 26), required for intracellular proliferation, and vjbR, an important 241 

transcriptional activator of virB which is not part of the virB operon (27, 28). As expected, the 242 

bvrR mutants were strongly attenuated from 2 h PI, and both virB and vjbR mutants were only 243 

attenuated at 24 h PI (Fig. S4 and Table 1), which is in agreement with the timing required by 244 

the bacterium to reach its replicative niche and proliferate. Taken together, these data lean 245 

toward the validation of the candidates identified by the Delta-R200 analysis.  246 

We decided to assess the validity of our datasets by testing for the reproducibility of the 247 

observed phenotypes by mutating candidate genes and testing mutant survival by the counting 248 

of colony forming units -CFU- after infection of RAW 264.7 macrophages for two hours. We 249 

chose four candidates, two that displayed no attenuation in Tn-seq as negative controls 250 

(omp2a and ftsK-like, corresponding to BAB1_0659 and BAB2_0709 coding sequences, 251 

respectively), and two that displayed attenuation in Tn-seq as positive controls (wadB and 252 

pgk, corresponding to BAB1_0351 and BAB1_1742, respectively). As expected, the two 253 

negative control strains did not show any sign of attenuation compared to the wild type strain, 254 

while the positive control strains exhibited a statistically significant attenuation phenotype 255 

(Fig. 4A).  256 

One can distinguish two categories of attenuated mutants. On the one hand, mutants can 257 

be attenuated due to a failure to perform a successful infection, but on the other hand, mutants 258 

can be attenuated due to growth impairments that are actually already observed when grown 259 

on rich medium and amplified during infection. In fact, as opposed to candidates displaying a 260 
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typical attenuation profile such as the wadB mutant, others displayed attenuation in 261 

conjunction with low control R200 values as exemplified by the pgk mutant (Fig. 4B). This 262 

second type of profile suggested growth deficiencies independent of infection. In addition, 263 

while the pgk mutant strain displayed a small but yet significant decrease in CFU (Fig. 4A), it 264 

was clear that colonies were smaller in size than the wild type colonies (Fig. 4C). Therefore, 265 

the attenuation of candidates sharing a pgk-like profile in Tn-seq is likely to be due, at least in 266 

part, to growth impairments already present in the control condition. Actually, the second 267 

round of culture taking place after the infection could simply amplify the disadvantage of 268 

clones that already display growth delays on plates.  269 

In order to investigate the effect of re-plating on Tn-seq candidates, we performed a 270 

new Tn-seq experiment in which the colonies of the library of transposon mutants were 271 

collected and re-plated prior to sequencing instead of infecting host cells. The TTMs obtained 272 

for this control condition (SD9 https://figshare.com/s/519aecf6ea1bea563510 and SD10 273 

https://figshare.com/s/266012d35d5780c5a1b3) and the re-plating (SD11 274 

https://figshare.com/s/9282c05218ec976c4286 and SD12 275 

https://figshare.com/s/c5318e37bf294ff0cdde) are available at the indicated URLs. Despite a 276 

large difference in the average R200 values between the two control experiments (3.47 for the 277 

first control and 5.21 for the second), a good correlation (r = 0.86) was found between the two 278 

datasets. By comparing the control with the re-plating, we were able to monitor the fitness 279 

loss of mutants due to a second growth on plate, independently of any infection. Surprisingly, 280 

54 % of the candidates harboring attenuation at 2, 5 or 24 h PI in our initial Tn-seq also 281 

displayed a similar attenuation after re-plating, thus meaning that the fitness loss of those 282 

mutants could be due to a growth defect detectable after a simple re-plating instead of 283 

infection. Consequently, attenuated candidates displaying pre-existing growth impairments 284 

(listed in Table 2) should be carefully analyzed in future investigations (see Discussion). It is 285 
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striking that complete or almost complete pathways fall into this category, like the purine 286 

biosynthesis (purB, purC, purD, purF, purH, purL, purMN and purQ) and the cytochrome c 287 

maturation (ccmABC and ccmIEFH) pathways (Table 2).  288 

 289 

Identification of hyper-invasive mutants 290 

Tn-seq can theoretically highlight hyper-invasive mutants in addition to attenuated mutants. 291 

Indeed, such mutants would display higher R200 values compared to the control, meaning 292 

that proportionally more mutant bacteria would be found inside host cells when such genes 293 

are disrupted, thus resulting in positive Delta-R200 values. Using this criterion, only nine 294 

genes (namely wbkD, wbkF, per, gmd, wbkA, wbkE, wboA, wboB, and manBcore 295 

[BAB2_0855]) were identified and remarkably all of them are part of the lipopolysaccharide 296 

O-chain synthesis pathway (24). Indeed, such mutants have a rough LPS and rough mutants 297 

are known to be more invasive than the smooth parental strain (29, 30). To confirm this using 298 

our settings, a mutant of the GDP-mannose dehydratase gene (gmd) was constructed and CFU 299 

were counted after infecting RAW 264.7 macrophages for 2 h. As expected, the resulting 300 

strain displayed increased invasiveness typical of rough strains (Fig. S5).  301 

 302 

Identification of genes required for growth in RAW 264.7 macrophages  303 

The 24 h PI-specific candidates mainly include genes predicted to be involved in trafficking, 304 

regulation, transport and metabolism, including amino acid and nucleic base biosynthesis (see 305 

Table 1). The biosynthesis of histidine seems to be crucial, as well as the synthesis of 306 

pyrimidines, suggesting that B. abortus cannot find or uptake enough of these compounds 307 

from the ER compartments in which it is proliferating. The 24 h PI specific candidates also 308 

comprise expected virulence genes such as the virB operon (11), transcriptional regulators 309 

like vjbR (28) and vtlR (31), the cytochrome bd biosynthesis operon cydABCD (32). When 310 
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comparing our data with the list of attenuated transposon mutants from previous studies 311 

performed on various infection models and Brucella species (33-37), it is striking that only 42 312 

% of the attenuated mutants identified here had already been identified. Indeed, 33 of the 79 313 

candidates attenuated in our time-resolved Tn-seq analysis were part of the 257 candidates 314 

compiled from the previous studies. Therefore, the Tn-seq approach reported here has 315 

generated 46 new candidates, suggesting that the comprehensive analysis of the Brucella 316 

genome could yield new insights into the genes required for a macrophage infection (see 317 

Discussion). 318 

 319 

  320 
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The pyrimidine biosynthesis pathway allows intracellular proliferation 321 

One of the major hits of the 24 h PI dataset is the pyrimidine biosynthesis (here called “pyr”) 322 

pathway. In fact, with the exception of genes already essential for culture on rich medium, all 323 

pyr biosynthesis genes became strongly attenuated at 24 h PI (namely pyrB, pyrC, pyrD, 324 

pyrE, and pyrF), while none of them were impacted when re-plated.  325 

We further investigated the pyr pathway by creating a deletion mutant of its first non-326 

essential gene, the ∆pyrB strain. The ∆pyrB mutant grew as the wild type strain in rich 327 

medium (Fig. S6). We then evaluated the infectious potential of the ∆pyrB strain and its 328 

complementation strain by enumerating CFU in RAW 264.7 macrophages at both 2 h PI and 329 

24 h PI. Estimation of the intracellular growth ratio (CFU at 24 h PI divided by CFU at 2 h 330 

PI) clearly showed that the ∆pyrB strain is strongly attenuated compared to the wild type and 331 

the complementation strains, validating the Tn-seq profile of the mutant (Fig. 5). 332 

Consistently, deletion mutants for all other pyr genes (∆pyrC, ∆pyrD, ∆pyrE, and ∆pyrF) 333 

behaved as the wild type when cultured in rich medium (Fig. S6) and were impaired for 334 

intracellular growth, further validating the involvement of the pyr pathway for proliferation 335 

inside RAW 264.7 macrophages (Fig. 5). 336 

 337 
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Discussion 338 

In this work, a multi-dimensional Tn-seq analysis has been performed with B. abortus to 339 

identify genes essential for growth on rich medium as well as genes required for replication in 340 

RAW 264.7 macrophages. The analysis of mutants at different times PI as well as the analysis 341 

of re-plated library allowed the identification of genes specifically involved in the infection 342 

model tested here, by comparison with the control condition (growth on rich medium). A 343 

similar approach could be successfully applied to many other bacterial pathogens.  344 

As most of the current therapies against bacterial pathogens aim at targeting essential 345 

processes such as translation or cell wall biosynthesis, the collection of all essential genes for 346 

growth on rich medium generates a baseline to identify novel therapeutic targets. In this 347 

study, a total of 491 candidate genes were qualified as essential for growth on rich medium 348 

plates. Interestingly, our quantitative analysis also highlights genome sections that show a 349 

reduced fitness and statistical comparison of any regions (inside or outside predicted genes) in 350 

the genome is thus also feasible (Fig. 2). The quantitative analysis also allows the 351 

identification of regions in which mutagenesis generates a growth defect on the control plates, 352 

and thus a category of attenuated mutants with growth defects on plates (Table 2) should be 353 

distinguished from specifically attenuated mutants (Table 1). This type of discrimination is 354 

supported by the possibility that a fraction of the attenuated mutants with growth defects on 355 

plates could be non-specifically affected during the infection process. On the other hand, the 356 

specificity of the attenuated mutants reported in Table 1 is expected to be medium-dependent 357 

and could thus be challenged by other screenings. Additionally, it would be interesting to 358 

apply Tn-seq to B. abortus grown in different media. In particular, it would be informative to 359 

test chemically defined media. 360 

While PG biosynthesis is obviously essential, only one of the three predicted class-A 361 

penicillin-binding proteins, BAB1_0932, was found to be essential for growth on rich 362 
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medium, showing that Tn-seq could allow the identification of the main functional gene 363 

among a group of paralogs. As expected, BAB1_0932 is the ortholog of Atu1341, which was 364 

also identified as essential in A. tumefaciens (21). Comparison of essential genes in B. 365 

abortus, A. tumefaciens and B. subvibrioides also reveals interesting observations. The D-Ala-366 

D-Ala ligase encoding gene ddl (BAB1_1447) located near the murA-G, mraY genes cluster 367 

involved in cell wall synthesis, is not essential in B. abortus while it is essential in A. 368 

tumefaciens and B. subvibrioides. This could be explained by the presence of a paralog for ddl 369 

(BAB1_1291, also not essential) in B. abortus. MurI, a glutamate racemase that was found to 370 

be essential in C. crescentus (15) and non-essential in A. tumefaciens (21), is actually required 371 

for B. abortus growth in RAW 264.7 macrophages but not in rich medium (see below and 372 

Table 1). Tn-seq also allowed to reshape essential processes compared to other bacteria, as 373 

exemplified by the bam genes, responsible for the OMPs export system. Brucella possesses 374 

an incomplete OMPs export system composed of only bamADE and lacking bamB and bamC, 375 

and here, we showed that bamE was scored essential in Tn-seq, whereas it is not essential in 376 

E. coli (38). One possibility would be that bamE is functionally redundant with another gene 377 

in E. coli, while this redundancy is absent in B. abortus. At the level of the regulation network 378 

involving CtrA (Fig. S1), it is interesting to note that cpdR, sciP, gcrA and ccrM are identified 379 

here as essential genes, which is consistent with the previous identification of ccrM as an 380 

essential gene in B. abortus (18), but surprisingly different compared to A. tumefaciens where 381 

they are all non-essential, except for gcrA that is absent in A. tumefaciens C58 (21). In C. 382 

crescentus, cpdR and sciP are not essential (39, 40), while gcrA and ccrM were first reported 383 

as essential (41, 42), which was later questioned by the observation of a slow growth 384 

phenotype for C. crescentus ∆gcrA and ∆ccrM strains (43). Essentiality of cpdR, sciP, gcrA 385 

and ccrM genes could indicate that this part of the regulation network is less redundant with 386 

other cell cycle control systems in B. abortus compared to C. crescentus. 387 
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Intriguingly, a few genes (mucR, sodA, pgm and wbkC) for which a viable deletion 388 

mutant was previously reported (44-49) are actually scored as essential in our Tn-seq analysis. 389 

A pssA gene (BAB1_0470) was also scored as essential but the corresponding viable mutant 390 

was previously characterized (50). Interestingly, mutants for another pssA homolog 391 

(BAB2_0668) were found to be attenuated from 2 h PI (Table 2), suggesting that these 392 

enzymes are playing distinct roles. The absence of mini-transposon in dispensable genes has 393 

already been observed in previous Tn-seq experiments performed on other bacterial species 394 

(51). It is also possible that, in the Tn-seq protocol, suppressor mutations do not have the time 395 

to be selected, and thus these genes appear as essential only in Tn-seq. Another possibility 396 

would be that these mutants have a long lag phase for growth on plates or a very low growth 397 

speed, and are thus wrongly detected as essential in the Tn-seq.  398 

Remarkably, a second Tn-seq assessing the effects of re-plating revealed that 54 % of 399 

these candidates displayed fitness decreases similar to those found in infection when 400 

undergoing a second round of culture. Strikingly, 55 out of the 75 initial candidates identified 401 

at 2 h PI are in the second category (Table 2) since they were already affected by re-plating. 402 

Such observations suggest that it could be important to take into account growth defect in 403 

culture before proposing a “specific” virulence attenuation for mutant strains. Interestingly, 404 

this does not rule out that particular mutants could have an exacerbated growth defect 405 

phenotype inside host cells. R200 analysis of the difference between 24 and 5 h PI (SD13 406 

https://figshare.com/s/44d2126e6c24ca1214d1  and SD14 407 

https://figshare.com/s/c6a0d65386f6edb2202b) indicates that several pur genes (purA, purB, 408 

purC, purD, purF, purH, purL, purM, purN and purQ) have lower R200 values at 24 h PI 409 

compared to 5 h PI. These data suggest that even if a mutant has growth problems in a given 410 

culture medium, Tn-seq analysis at different times post-infection allows to generate 411 

hypotheses regarding attenuation at different times PI. Additionally, the reference culture 412 
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medium is of course important, and it would be interesting to test several rich media for the 413 

growth colonies before and after infection. 414 

When comparing our candidates to the list of 257 attenuated mutants previously available 415 

from different infection models (33-37), it was surprising that only 33 genes could be found 416 

in common (Table S3). This means that 46 additional candidates were identified by Tn-seq. 417 

However, this also means that 214 attenuated mutants previously reported were not identified 418 

using Tn-seq in a RAW 264.7 macrophages infection, which is not surprising since these 419 

screening were done with different strains/species and different infection models. However, it 420 

should be noted that intriguingly, out of the remaining 214 candidates, 80 were categorized 421 

here as either strictly essential for growth on rich medium or essential when re-plated (Table 422 

S3). It is thus possible that different strains and different culture media generate different 423 

collections of essential genes, or that several attenuated mutants previously reported are 424 

actually suppressors of mutants in essential genes that display a growth defect in the infection 425 

model.  426 

The 24 h PI time point revealed several pathways involved in trafficking and metabolism. 427 

The type IV secretion system VirB was needed but the effectors proposed to be translocated 428 

to the host cell (52) were untouched in our Tn-seq analysis, which is probably the result of 429 

functional redundancy between effectors. Indeed, under the infection conditions used here, 430 

there is usually one bacterium per infected cell, and thus trans-complementation (53) is 431 

unlikely although it cannot be completely ruled out. Regarding metabolism, glk mutants were 432 

attenuated at 24 h PI (see Table 2), suggesting that B. abortus could need to utilize glucose in 433 

the replication niche of RAW 264.7 macrophages, which is consistent with the requirement of 434 

glucose uptake in alternatively activated macrophages (54). The biosynthesis of histidine was 435 

strongly impacted at 24 h PI, as previously suggested (55), and we found here that it is more 436 

specifically the second part of the pathway that is important for bacterial proliferation inside 437 
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RAW 264.7 macrophages (namely, hisB, hisC, and hisD). This could be due to the fact that 438 

the first half of the histidine biosynthesis pathway (composed of hisZ, hisG, hisE, hisI, hisA, 439 

hisH, hisF) is also responsible for the production of 5’-phosphoribosyl-4-carboxamide-5-440 

aminoimidazole (AICAR) that contributes to purine biosynthesis. The first half of the 441 

histidine biosynthesis pathway and the purine biosynthesis pathway are both impacted when 442 

re-plated (Table 2). Therefore, Tn-seq suggests that genes responsible for the synthesis of 443 

histidine, at least from imidazole-glycerol-3-phosphate, are required for the proliferation of B. 444 

abortus in the endoplasmic reticulum of RAW 264.7 macrophages. The ilvC and ilvD genes, 445 

coding for enzymes involved in the biosynthesis of isoleucine and valine, are also scored as 446 

required for growth in RAW 264.7 macrophages. It is also noticeable that the glutamate 447 

racemase (MurI) is required for growth in these macrophages. This enzyme converts L-Glu to 448 

D-Glu, presumably to allow the synthesis of PG. The late attenuation of these murI mutants is 449 

consistent with a late growth of B. abortus in RAW 264.7 macrophages (5). Another major hit 450 

is the biosynthesis of pyrimidines. Indeed, Tn-seq showed that all non-essential pyr 451 

biosynthesis genes (i.e. pyrB, pyrC, pyrD, pyrE, and pyrF) were consistently attenuated at 452 

24 h PI in RAW 264.7 macrophages while none of the associated mutants display growth 453 

defects on rich medium. Interestingly, none of the pyr genes were impacted when re-plated as 454 

opposed to most genes involved in purine biosynthesis (i.e. purB, purC, purD, purH, purL-1, 455 

purL-2, purN, purM). This is likely due to the composition of the culture medium and the heat 456 

resistance of purines and pyrimidines during medium sterilization. The hisD, hisF, pyrB, pyrC 457 

and pyrD genes were already hit in previous screenings for attenuated mutants (12, 56) but the 458 

pyr mutants have not been complemented and the pyrimidines biosynthesis pathway was 459 

never investigated in B. abortus. Here we show that all the mutants in genes of the pyr 460 

pathway are attenuated for growth inside macrophages, hence validating the Tn-seq data. It 461 

should be noted that a second homolog was found for pyrC (BAB1_0688, here called pyrC2), 462 
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however a B. abortus ∆pyrC2 strain displays a growth defect in rich medium (Fig. S7) and 463 

attenuation at 5 h PI in Tn-seq (Table 1), suggesting pleiotropic defects in this mutant 464 

compared to the pyr mutants characterized in this work. Altogether, these results strongly 465 

suggest that the ability of B. abortus to synthesize pyrimidines in the host cell is decisive for 466 

its proliferation inside macrophages. It would be interesting to investigate the survival, 467 

trafficking and proliferation of pyr mutants in different cell types as well as in other infection 468 

models. If the inability of the pyrB mutant to proliferate inside several intracellular niches is 469 

confirmed, this mutant could be a good candidate to start vaccinal tests.  470 

Tn-seq data also generate unexpected observations, such as the attenuation of the lnt 471 

mutants at 2 h PI, while lnt is not required for growth on rich medium, suggesting that a 472 

redundant function is present for growth on plates but not for short term survival in 473 

RAW 264.7 macrophages. Alternatively, it is also possible that the activity of Lnt is 474 

dispensable in B. abortus, at least in the control condition. It is noticeable that lnt is also 475 

dispensable for growth in Francisella tularensis (57), suggesting that the dispensability of Lnt 476 

is widespread. Interestingly, our screening also revealed a role for a TamAB (BAB1_0045 477 

and BAB1_0046) system homolog for intracellular proliferation, TamAB being proposed to 478 

be involved in the translocation of outer membrane proteins (58). These data thus open new 479 

investigations pathways to better understand the molecular processes required for B. abortus 480 

survival and growth inside host macrophages. 481 

In conclusion, Tn-seq is a comprehensive method that allowed the identification of 482 

attenuated B. abortus mutants for macrophages infection. The high coverage of the genome 483 

with transposons has allowed for identification of essential, attenuated and non-essential 484 

genes, as well as genes or operons required for full growth on rich medium. It would be 485 

interesting to perform such experiments on other Brucella strains as well as other host cell 486 

types (including activated macrophages and trophoblasts (59)) and more complex infection 487 
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models such as animal models like a mouse intranasal infection (60). This would generate a 488 

fundamental knowledge of the molecular arsenal required for Brucella survival and growth in 489 

the course of infections. 490 

 491 

Material and Methods 492 

Bacterial strains and media 493 

The wild type strain Brucella abortus 2308 NalR was cultivated in 2YT (1% yeast extract, 494 

1.6% peptone, 0.5% NaCl). The conjugative Escherichia coli S17-1 strain was cultivated in 495 

rich medium (Luria-Bertani broth). When required, antibiotics were used at the following 496 

concentrations: ampicillin, 100 μg ml-1; kanamycin 50 μg ml-1 for E. coli and 10 μg ml-1 for B. 497 

abortus; Nalidixic acid, 25 μg ml-1. 498 

RAW 264.7 macrophages culture 499 

Macrophages were cultivated in DMEM (Invitrogen) supplemented with 10% fetal bovine 500 

serum (Gibco), 4.5 g l-1 glucose, 1.5 g l-1 NaHCO3, and 4 mM glutamine at 37 °C with 5% 501 

CO2. 502 

Mini-Tn5 KanR plasmid construction 503 

The pXMCS-2 mini-Tn5 GentaR plasmid (61) was manipulated to exchange the gentamycin 504 

resistance cassette (GentaR) with a KanR gene, using a dual joining PCR strategy. The region 505 

upstream of the GentaR cassette was amplified by PCR from the pXMCS-2 mini-Tn5 GentaR 506 

plasmid using primers “Tn-Kan part 1 F” and “Tn-Kan part 1 R” and fused by overlapping 507 

PCR to the KanR coding sequence, amplified from the pNPTS138 plasmid using primers “Tn-508 

Kan part 2 F” and “Tn-Kan part 2 R”. Then, this DNA fragment was fused to the region 509 

downstream of the GentaR cassette amplified by PCR using primers “Tn-Kan part 3 F” and 510 

“Tn-Kan part 3 R” from the pXMCS-2 mini-Tn5 GentaR plasmid. In parallel, the pXMCS-2 511 

mini-Tn5 GentaR plasmid was restricted using EcoRI and NdeI to excise the GentaR fragment. 512 
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The DNA fragment bearing the new KanR cassette was digested with EcoRI and NdeI was 513 

then ligated in the previously restricted pXMCS-2 mini-Tn5 GentaR plasmid. Primers used for 514 

this construct are listed in Table S2. 515 

Mutant library generation 516 

One ml of an overnight culture of B. abortus 2308 was mixed with 50 μl of an overnight 517 

culture of the conjugative E. coli S17-1 strain carrying the pXMCS-2 mini-Tn5 KanR plasmid. 518 

This plasmid possesses a hyperactive Tn5 transposase allowing the straightforward generation 519 

of a high number of transposon mutants. The resulting B. abortus transposon mutants were 520 

selected on 2YT plates (2% Agar) supplemented with both kanamycin and nalidixic acid. Tn5 521 

mutagenesis generates insertion of the transposon in only one locus per genome, as 522 

demonstrated previously for Brucella (14). Each Tn5 derivative contains a C. crescentus xyl 523 

promoter that is constitutively active in B. abortus since when it is fused to YFP coding 524 

sequence on a pBBR1-derived plasmid, it generates a fluorescent signal of uniform intensity 525 

similar to the E. coli lac promoter fused to YFP coding sequence. 526 

RAW 264.7 macrophages infection using the transposon mutants library 527 

Transposon mutants were pooled using 2YT medium, diluted in RAW 264.7 macrophages 528 

culture medium to reach a MOI (Multiplicity of Infection) of 50, and added onto the 529 

macrophages, which were previously seeded in 6-well plates to a concentration of 1.5 105 530 

cells per ml. A total of 16 6-well plates were planned per time point. Macrophages were then 531 

centrifuged 10 min at 400 g at 4°C and subsequently incubated for 1 hour at 37°C with 5% 532 

CO2. The culture medium was then removed and replaced with fresh medium containing 533 

gentamycin 50 µg ml-1 in order to kill extracellular bacteria, and macrophages were then 534 

further incubated for 1, 4, and 23 hours at 37°C with 5% CO2. For each time post-infection 535 

(2 h, 5 h or 24 h PI), culture medium was removed, each well was washed twice with PBS, 536 

and macrophages were lysed using PBS 0.1 % Triton X-100 for 10 min at 37°C. Macrophages 537 
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lysates were then plated on 100 2YT plates per time point, each supplemented with 538 

kanamycin and incubated at 37°C for four days in order to obtain colonies that were collected 539 

for genomic DNA (gDNA) preparation and sequencing of Tn5-gDNA junctions.  540 

RAW 264.7 macrophages infection and Colony Forming Units (CFU) counting 541 

The infection protocol for performing CFU is identical to the one described above with the 542 

exception of the inoculum, which originates from an overnight liquid culture. After infection, 543 

infected macrophages are lysed and the resulting extracts are cultivated on 2YT plates 544 

supplemented with kanamycin. Once grown, colonies were counted to calculate the number of 545 

colonies per ml of lysate. 546 

Analysis of essential genes for growth on plates 547 

In order to assess the overall transposon insertion across B. abortus genome, we have created 548 

a parameter called R200, defined by the log10(number of Tn5 insertion + 1) for a 200 bp 549 

sliding window. This sliding window was shifted every 5 bp to generate a collection of R200 550 

spanning the whole genome for the control condition, i.e. bacteria on plates. Given that B. 551 

abortus genome is 3,278,307 bp, a list of 655,662 R200 values was created, with an average 552 

value of 9481 transposon insertions mapped per window. As previously published (15), the 553 

probability of obtaining a window of a given size with no transposon insertion event can be 554 

estimated by the following formula: P = (1-(w/g))n where w is the window size, g is the 555 

genome size, and n is the number of independent Tn5 insertion events. In our case, the 556 

resulting probability was 3.8 10-15, with g = 3,278,307; w = 200, and n = 544,094. It should be 557 

noted that this value only accounts for a single window, whereas essential genes are typically 558 

characterized by a series of overlapping empty windows rather than a single 200 bp window, 559 

thus further lowering the probability of finding such profiles fortuitously. Essential genes 560 

were defined as all genes having at least one R200 equal to 0. Defined essential genes usually 561 

have many R200 equal to 0, as indicated in the Supplemental Datasets (SD) 1 to 14 (see the 562 
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list below). The TTMs can be aligned to the annotated Genbank files for chromosomes I and 563 

II (SD15 and SD16) of B. abortus 2308 using Artemis (Sanger institute, 564 

http://www.sanger.ac.uk/science/tools/artemis). Here is the list of Supplementary Datasets : 565 

(SD1) TTM_ctrl_chrI.txt Transposon tolerance map (R200) for chromosome I when grown 566 
on rich medium. Link : https://figshare.com/s/bd0d4fa73ad8cf7737fe 567 

(SD2) TTM_ctrl_chrII.txt Transposon tolerance map (R200) for chromosome II when grow 568 
on rich medium. Link : https://figshare.com/s/3219dfa7ac60d1cda34f 569 

(SD3) Delta-R200_2hPI_chrI.txt Attenuation profile at 2 h post-infection for chromosome I. 570 
Link : https://figshare.com/s/77195e0a2cc1a1933b7f 571 

(SD4) Delta-R200_2hPI_chrII.txt Attenuation profile at 2 h post-infection for chromosome II. 572 
Link : https://figshare.com/s/2475d4b00e6a58226e40 573 

(SD5) Delta-R200_5hPI_chrI.txt Attenuation profile at 5 h post-infection for chromosome I. 574 
Link : https://figshare.com/s/93ce83ccea559a0de2f7 575 

(SD6) Delta-R200_5hPI_chrII.txt Attenuation profile at 5 h post-infection for chromosome II. 576 
Link : https://figshare.com/s/6f604b5eba5934c392f1 577 

(SD7) Delta-R200_24hPI_chrI.txt Attenuation profile at 24 h post-infection for chromosome I. 578 
Link : https://figshare.com/s/ea7871157f284d31eaed 579 

(SD8) Delta-R200_24hPI_chrII.txt Attenuation profile at 24 h post-infection for chromosome 580 
II. Link : https://figshare.com/s/958e728387a31b8ce139 581 

(SD9) TTM_replated_ctrl_chrI.txt Transposon tolerance map (R200) for chromosome I when 582 
grown on rich medium (prior to replating). Link : 583 
https://figshare.com/s/519aecf6ea1bea563510 584 

(SD10) TTM_replated_ctrl_chrII.txt Transposon tolerance map (R200) for chromosome II 585 
when grown on rich medium (prior to replating). Link : 586 
https://figshare.com/s/266012d35d5780c5a1b3 587 

(SD11) TTM_replated_chrI.txt Transposon tolerance map (R200) for chromosome I when 588 
replated on rich medium. Link : https://figshare.com/s/9282c05218ec976c4286 589 

(SD12) TTM_replated_chrII.txt Transposon tolerance map (R200) for chromosome II when 590 
replated on rich medium. Link : https://figshare.com/s/c5318e37bf294ff0cdde 591 

(SD13) DD-R200_24-5hPI_chrI.txt Attenuation at 24 h PI compared to 5 h PI for 592 
chromosome I. Link : https://figshare.com/s/44d2126e6c24ca1214d1 593 

(SD14) DD-R200_24-5hPI_chrII.txt Attenuation at 24 h PI compared to 5 h PI for 594 
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chromosome II. Link : https://figshare.com/s/c6a0d65386f6edb2202b 595 

(SD15) ChrI.gb Annotated chromosome I of B. abortus 2308. Link : 596 
https://figshare.com/s/ae37affea7e62601b553 597 

(SD16) ChrII.gb Annotated chromosome II of B. abortus 2308. Link : 598 
https://figshare.com/s/ddee5b11fe553d1a2052 599 

Statistical analysis is described in Fig. S2. Briefly, a main frequency peak centered on a R200 600 

value of 4.05 was used to predict a theoretical distribution of R200 from which thresholds 601 

corresponding to 2 (-2S), 4 (-4S) and 6 (-6S) standard deviations for the average of the 602 

theoretical distribution were computed. 603 

Analysis of the effect of re-plating on rich medium was tested in an independent Tn-seq in 604 

which a new mutant library was constructed with the same mini-Tn5 derivative as described 605 

above. All colonies were collected and the resulting suspension was used on the one hand for 606 

control analysis (data in TTM_replated_ctrl_chrI and TTM_replated_ctrl_chrII) and on the 607 

other hand for re-plating on the same rich medium. Colonies generated after re-plating were 608 

collected and analyzed by Tn-seq as described above (data in TTM_replated_chrI and 609 

TTM_replated_chrII). 610 

Attenuation in infection analysis 611 

For each post infection sample (2 h PI, 5 h PI and 24 h PI), a list of R200 values was 612 

calculated as for the control condition. Then, the control R200 values list was subtracted from 613 

each post infection sample R200 list separately, generating three Delta-R200 datasets, 614 

available as Supplemental Datasets (SD3 to SD8). Therefore, regions with a neutral Delta-615 

R200 value have no impact during infection when mutated, while regions with a negative 616 

Delta-R200 are attenuated during infection, and regions with a positive Delta-R200 depict 617 

hyper-invasiveness for the corresponding mutants. For each time PI, the frequency 618 

distribution of Delta-R200 value was computed to define a normal distribution with an 619 

average and a standard deviation covering the main peak of this distribution. The threshold 620 
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for negative Delta-R200 values was set at - 0.75 log10 for the “2 h - control” and “5 h -621 

 control” Delta-R200 analyses, selecting respectively 5.5% and 6.7% of windows from the 622 

total genome. The threshold for negative Delta-R200 values was set at -1 log10 for the “24h -623 

 control” Delta-R200 analysis, allowing selection of 10.3% of the windows. The threshold for 624 

positive Delta-R200 values for the “2 h - control” condition was set at +0.6 log10, selecting 625 

1.1% of the windows. The genes covered by selected windows were considered as required 626 

for the infection, with usually most of their coding sequences covered.  627 

Generation of the B. abortus targeted mutants 628 

Unless stated otherwise, all B. abortus mutants were generated by insertion of a plasmid in 629 

the targeted gene, according to a previously published procedure (62). The primers sequences 630 

used to generate PCR products cloned in the disruption plasmids are available in Table S2.  631 

All deletion strains were constructed using a previously described allelic exchange strategy 632 

(5). The primers used to amplify upstream and downstream regions of the target genes 633 

required for homologous recombination are also available in Table S2.  634 

Growth curves 635 

Growth was monitored in 2YT medium at 37 °C during 72 h by measuring the Optical 636 

Density at 600 nm using a permanently shaking plate reader (Epoch2 microplate 637 

spectrophotometer, Biotek). 638 
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TABLE 1    Attenuated B. abortus mutants in RAW 264.7 infection at 2, 5 or 24 h PI 885 

ORF Gene 
name 

2 h PI  5 h PI  24 h PI  Predicted functions 

      
     Secretion 

BAB2_0068 virB1 - - + type IV secretion system 

BAB2_0067 virB2 - - + type IV secretion system 

BAB2_0066 virB3 - - + type IV secretion system 

BAB2_0065 virB4 - - + type IV secretion system 

BAB2_0064 virB5 - - + type IV secretion system 

BAB2_0063 virB6 - - + type IV secretion system 

BAB2_0062 virB7 - - + type IV secretion system 

BAB2_0061 virB8 - - + type IV secretion system 

BAB2_0060 virB9 - - + type IV secretion system 

BAB2_0059 virB10 - - + type IV secretion system 

BAB2_0058 virB11 - - + type IV secretion system 

BAB1_0045 tamA - - + export of autotransporters (type V secretion system) 

BAB1_0046 tamB - - + export of autotransporters (type V secretion system) 

      

     Protein synthesis and degradation 
BAB1_2087 hisE - - + histidine biosynthesis 

BAB1_2082 hisB - - + histidine biosynthesis 

BAB1_1988 hisC - - + histidine biosynthesis 

BAB1_0285 hisD - - + histidine biosynthesis 

BAB1_1399 ilvC - - + isoleucine, leucine and valine biosynthesis 

BAB1_0096 ilvD - - + isoleucine, leucine and valine biosynthesis 

BAB1_2158 lnt + + + lipoprotein synthesis 

BAB1_1437 pepP + + + peptidase, Xaa-Pro aminopeptidase 

BAB1_0162 ibpA - - + chaperone 

BAB1_2025 + + + DnaJ-like chaperone 

BAB1_1115 tgt + + + tRNA modification 

BAB1_0477 rplI - + + ribosomal protein L9 

BAB1_0427 - + + tRNA1(Val) A37 N6-methylase TrmN6 

      

     Nucleic acid synthesis and degradation 
BAB2_0641 pyrB - - + pyrimidines biosynthesis 

BAB2_0640 pyrC - - + pyrimidines biosynthesis 

BAB1_0341 pyrD - - + pyrimidines biosynthesis 

BAB1_0673 pyrE - - + pyrimidines biosynthesis 

BAB1_2132 pyrF - - + pyrimidines biosynthesis 

BAB1_0688 pyrC2 - + + pyrimidines biosynthesis 

BAB1_1695 purA - - + purines biosynthesis 

BAB1_1757 purE + + + purines biosynthesis 

BAB1_0861 purS - - + purines biosynthesis 

BAB1_0024 cmk + + + CDP synthesis from CMP 

BAB1_0168 ydjH - - + adenosine kinase (AK) 
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BAB1_0172 rph - - + ribonuclease 
BAB2_0643 yqgF - + + endonuclease, resolvase family 
BAB1_0003 recF - - + recombination in response to DNA damage 
BAB1_1206 queF - - + dehydrogenase, involved in queuosine biosynthesis 

      
     Electrons transfer and redox 

BAB2_0727 cydB - - + cytochrome bd 
BAB2_0728 cydA - - + cytochrome bd 
BAB2_0729 cydC - - + ABC transporter, cytochrome bd biogenesis 
BAB2_0730 cydD - - + ABC transporter, cytochrome bd biogenesis 
BAB1_1435 - + + related to cytochrome c oxidase synthesis 
BAB1_0051 pcuC - + + incorporation of Cu(I) in cytochrome c oxidase 
BAB1_0139 nfuA - - + Fe-S cluster biogenesis protein 

      
     Cell envelope 

BAB1_0351 wadB + + + envelope, LPS core synthesis 
BAB1_1217 murI - - + glutamate racemase 
BAB1_1462 ampD-like - + + N-acetyl-anhydromuramyl-L-alanine amidase 

      
     Regulation 

BAB1_2092 bvrR + + + two-component regulator 
BAB1_1665 rpoH2 + + + RNA polymerase sigma factor 
BAB1_1669 + + + signal transduction, HWE-family histidine kinase 
BAB2_0678 rirA - + + transcriptional regulator, iron responsive 
BAB1_1517 vtlR - - + LysR transcriptional regulator controlling sRNA expression 
BAB2_0118 vjbR - - + quorum sensing transcriptional regulator 
BAB2_0143 deoR1 - - + transcriptional regulator 
BAB1_0160 ptsN + + + pts, metabolism, carbon catabolite repression 
BAB1_0638 glnE - - + glutamine pool regulation 

      
     Transport 

BAB1_1460 mntH + + + manganese transport, ion transport 
BAB2_0699 oppA + + + ABC transporter, substrate binding, oligopeptide transport 
BAB2_0701 oppB + + + ABC transporter, permease, oligopeptide transport 
BAB2_0702 oppC + + + ABC transporter, permease, oligopeptide transport 
BAB2_0703 oppD + + + ABC transporter, ATPase 
BAB1_2145 phoU - + + phosphate transport control 
BAB1_1345 - - + Kef-type potassium/proton antiport protein 

      
     Metabolism 

BAB2_1010 glk - - + glucokinase 
BAB1_0435 glcD + + + glycolate oxidase 
BAB1_1918 lpd + + + dihydrolipoyl dehydrogenase 
BAB1_0898 bglX - + + beta-glucosylase-related glycosidase 
BAB1_1476 pldB - + + lysophospholipase L2 
BAB1_0113 fabG - - + 3-oxoacyl-ACP reductase 
BAB1_0318 gph - - + phosphoglycolate phosphatase 
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     Unknown functions 

BAB1_1485 + + + inner membrane conserved protein (DUF475) 

BAB1_1766 hfaC + + + duplicated ATPase domains 

BAB1_0478 - - + inner membrane conserved protein (DUF2232) 

BAB1_1283 - - + conserved periplasmic protein (DUF192) 

BAB1_2069 maf-2 - - + Maf-like nucleotide binding protein 

 886 

Note. For each coding sequence (“ORF”), a reduced R200 value is indicated by “+”. If the 887 

corresponding mutants also display a lower R200 after re-plating on rich medium, they are 888 

reported in Table 2. If a similar R200 value is found between a given time PI and the control, 889 

a “-“ is indicated in the table. The coding sequences untouched by previous screenings of 890 

mutant libraries are shown in bold, including some (like mntH, rirA, wadB and rpoH2) that 891 

were investigated by targeted mutagenesis (63-66). The R200 values (TTMs) and the genomic 892 

maps are available as Supplementary Datasets (see Material and Methods for a complete list). 893 
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TABLE 2    Attenuated B. abortus mutants in RAW 264.7 infection at 2, 5 or 24 h PI 894 

with a growth defect on plates 895 

ORF Gene name 2 h PI 5 h PI 24 h PI Predicted function 
      
     Protein synthesis and degradation 

BAB1_1846 - + + membrane bound metallopeptidase 

BAB1_1191 clpA + + + protease-associated factor 

BAB2_0183 hisG - - + histidine biosynthesis, first part of the pathway 

BAB2_0182 hisZ - - + histidine biosynthesis, first part of the pathway 

BAB1_1098 hisI - - + histidine biosynthesis, first part of the pathway 

BAB1_2085 hisA + + + histidine biosynthesis, first part of the pathway 

BAB1_2084 hisH + + + histidine biosynthesis, first part of the pathway 

BAB1_2086 hisF + + + histidine biosynthesis, first part of the pathway 

BAB1_0704 ksgA - + + 16S ribosomal RNA methyltransferase 

BAB1_1553 ychF + + + translation-associated GTPase 

BAB1_2167 truB - + + tRNA modification 

BAB1_1019 rluA - - + pseudouridylate synthase, 23S RNA-specific 

BAB1_1657 dsbB - - + dislufide bond formation in periplasm 

BAB1_0962 + + + protein-L-isoAsp O-methyltransferase 

      
     Nucleic acid synthesis and degradation 

BAB1_0442 purD + + + purines biosynthesis 

BAB1_0730 purN + + + purines biosynthesis 

BAB1_0857 purL + + + purines biosynthesis 

BAB1_0860 purQ + + + purines biosynthesis 

BAB1_0731 purM + + + purines biosynthesis 

BAB1_0862 purC + + + purines biosynthesis 

BAB1_0868 purB + + + purines biosynthesis 

BAB1_1824 purH + + + purines biosynthesis 

      
     Electrons transfer and redox 

BAB1_0091 ccmA + + + cytochrome c maturation 

BAB1_0092 ccmB + + + cytochrome c maturation 

BAB1_0093 ccmC + + + cytochrome c maturation 

BAB1_0632 ccmE + + + cytochrome c maturation 

BAB1_0633 ccmF + + + cytochrome c maturation 

BAB1_0634 ccmH + + + cytochrome c maturation 

BAB1_0631 ccmI + + + cytochrome c maturation 

BAB2_0656 ccdA + + + cytochrome c maturation (dsbD homolog) 

BAB1_0388 ccoG - + + cytochrome c oxidase 

BAB1_0389 ccoP - + + cytochrome c oxidase 

BAB1_0392 ccoN - + + cytochrome c oxidase 

BAB1_1557 - + + cytochrome c1 family 

BAB1_1559 - + + ubiquinol cytochrome c reductase, iron-sulfur component 

BAB1_0739 + + + Electron Transport Chain (ETC)- complex I subunit 
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BAB1_1030 gor + + + glutathione reductase 

BAB2_0476 gshA + + + gamma-glutamylcysteine synthetase 

BAB1_2135 gshB + + + glutathione synthetase 

BAB1_0855 + + + glutaredoxin-like protein 

      
     Cell envelope 

BAB1_1041 mlaA + + + predicted lipoprotein 

BAB1_1040 mlaD + + + ABC transporter-associated inner membrane protein 

BAB1_1038 mlaE + + + ABC transporter, permease 

BAB1_1039 mlaF + + + ABC transporter, ATPase 

BAB2_0076 omp10 + + + outer membrane lipoprotein 

BAB1_1930 omp19 - - + outer membrane lipoprotein 

BAB1_0491 + + + invasion protein B (conserved periplasmic protein) 

      
     Regulation 

BAB1_0143 glnD + + + glutamine pool regulation 

BAB1_0304 cenR + + + regulator for envelope composition 

BAB1_2006 cenR + + + transcriptional regulator(also called otpR) 

BAB1_1962 gntR13 - + + transcriptional regulator 

BAB1_0640 pleC - - + histidine kinase, regulation of cell cycle 

BAB1_2093 bvrS + + + histidine kinase for BvrR regulator 

BAB1_2094 hprK + + + kinase, regulator of phsphotranferase system (PTS) 

BAB1_2159 hipB + + + transcriptional regulator 

BAB1_2175 irr + + + transcriptional regulator, ferric uptake regulator 

      
     Transport and storage 

BAB1_0386 copA + + + cation metal exporter, ATPase 

BAB1_0387 + + + cation exporter associated protein 

BAB2_1079 znuA - - + ABC transporter for zinc 

BAB2_1080 znuC - - + ABC transporter for zinc 

BAB2_1081 znuB - - + ABC transporter for zinc 

BAB2_0411 + + + conserved hypothetical 

BAB2_0412 tauE + + + sulfite exporter 

BAB1_1589 - + + major facilitator superfamily (transporter) 

BAB1_1045 fdx + + + ferredoxin 

      
     Metabolism 

BAB2_0366 eryI + + + erythritol metabolism (also called rpiB) 

BAB2_0367 eryH + + + erythritol metabolism (also called tpiA2) 

BAB2_0370 eryC + + + erythritol metabolism 

BAB2_1013 gpm + + + phosphoglycerate mutase 

BAB1_1761 pykM - - + pyruvate kinase 

BAB2_0513 gcvT - - + glycine cleavage system 

BAB2_0514 gcvH - - + glycine cleavage system 

BAB2_0515 gcvP - - + glycine cleavage system 

BAB1_2022 cobT - - + cobalamin biosynthesis 
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BAB1_2023 cobS - - + cobalamin biosynthesis 
BAB2_1012 dapB + + + dihydrodipicolinate reductase 
BAB1_0773 gppA + + + exopolyphosphatase 
BAB1_2103 + + + nucleotidyl transferase 
BAB2_0442 acaD + + + acyl-CoA dehydrogenase 
BAB2_0511 + + + reductase 
BAB2_0668 pssA + + + phosphatidylserine synthase 
BAB1_0471 - + + oxoacyl-(acyl carrier protein) reductase 
BAB2_1027 upp - + + phosphoribosyl transferase 

      
     Unknown functions 

BAB1_0084 yccA - - + inner membrane protein 
BAB1_1670 - - + hypothetical protein 
BAB1_1092 - - + hypothetical protein 
 896 

Note. For each coding sequence (“ORF”), a reduced R200 value is indicated by “+”. If a 897 

similar R200 value is found between a given time PI and the control, a “-“ is indicated in the 898 

table. These mutants also display a lower R200 after re-plating on rich medium. The R200 899 

values (TTMs) and the genomic maps are available as Supplementary Datasets (see Material 900 

and Methods for a complete list). 901 

 902 

 903 
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Figure Legends 904 

FIG 1  Summary of the Tn-seq approach. A transposon mutants library was initially created 905 

in B. abortus on plates using a mini-Tn5 derivative. Three million mutants were then pooled 906 

and the resulting suspension was split in two. A first part of the pool underwent direct 907 

sequencing of Tn5-gDNA junctions, allowing the identification of mini-Tn5 insertion sites by 908 

mapping on the genomic sequence (see Fig. S1 for a detailed description of the mapping and 909 

the subsequent computing), resulting in the control dataset. The second part of the pool was 910 

used to infect RAW 264.7 macrophages in three separated infections. At given time points 911 

post-infection (2 h, 5 h and 24 h PI), bacteria were extracted, grown on plates, colonies were 912 

collected and their gDNA was subsequently extracted to be sequenced as for the control, 913 

resulting in 2 h PI, 5 h PI and 24 h PI-specific datasets. Transposon tolerance maps (TTMs) in 914 

the form of R200 values, and all post-infection lists were separately compared to the control 915 

list using the Delta-R200 method (see Material and Methods). The number of mapped read (in 916 

millions) for each dataset is displayed besides its respective mapping icon, and the number of 917 

insertion sites is 929 x 103 for the control condition, and 742 x 103, 713 x 103, and 579 x 103 918 

for the 2 h, 5 h and 24 h PI datasets, respectively. 919 

 920 

FIG 2  Sliding R200 values along a gene map. Statistical analysis of the R200 values is 921 

indicated in Fig. S2. This analysis indicates a main peak of R200 centered on a value of 4.05. 922 

Values of 2 (-2S), 4 (-4S) and 6 (-6S) standard deviations below 4.05 are indicated on the Y 923 

axis. The region shown here is an example in which non-essential genes such as the nikBCDE 924 

operon (red) are found close to the acaD gene (BAB2_0442, in green) and the fadAJ operon 925 

(yellow) contributing to fitness. In the same region, an essential gene (lysK) is also identified. 926 

The R200 values of nikBCDE are statistically different compared to acaD (p < 10-3) and 927 

fadAJ (p < 10-19) according to a Scheffé pairwise comparison test with independent samples 928 
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(9 and 16 non-overlapping windows for the nikBCDE-acaD and nikBCDE-fadAJ 929 

comparisons, respectively). The light grey horizontal bar is the average R200 for chr II (3.8). 930 

 931 

FIG 3  Genomic re-annotations and identification of essential domains according to Tn-seq. 932 

The red line represents R200 values across the genome, the thin grey line represents the mean 933 

R200 per chromosome, and the black size marker corresponds to 0.5 kb. (A) Tn-seq has 934 

allowed to identify two previously unannotated essential genes as exemplified by the ssrA 935 

gene (encoding tmRNA, allowing proteolysis of incomplete proteins) (67) between 936 

BAB1_1419 and BAB1_1420. A coding sequence located between BAB2_0403 and 937 

BAB2_0404, carrying a DUF4065 domain and well conserved (>90% identities at the protein 938 

level) within Rhizobiales, was also found to be essential. This gene encodes the antitoxin 939 

component of a toxin/antitoxin system called SocAB in C. crescentus (see text), and 940 

BAB2_0403 is homologous to socB. Proposed reannotations are shown with a hatched line. 941 

Old and new proposed annotation are shown. (B) Open reading frame extension and matching 942 

essentiality region strongly suggest that ftsK (BAB1_1895) was misannotated. It should be 943 

noted that this corrected annotation is supported by BLASTP of the resulting extended ftsK 944 

gene against the Alphaproteobacterium model C. crescentus. Examples in (A) and (B) are 945 

also supported by correct annotation in other genomic sequences. (C) Tn-seq is able to 946 

identify domain-specific essentiality as shown for polA (BAB1_0120) and dnaJ 947 

(BAB1_2130). In DnaJ, the Hsp70 interaction site seems essential, while in PolA, encoding 948 

the DNA polymerase I, the 5’-3’ exonuclease domain is proposed to be essential. 949 

 950 

FIG 4  Validation of Tn-seq data using reconstructed mutants. (A) CFUs counting after a 2 h 951 

infection of RAW 264.7 macrophages with individual mutants in omp2a, ftsK-like, wadB and 952 

pgk. The Tn-seq data indicate that omp2a and ftsK-like mutants are fully virulent at 2 h PI 953 
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while the wadB and pgk mutants are attenuated. The wild type (wt) strain was used as a 954 

virulent control. * = p < 0.05, *** = p < 0.001. (B) Comparison of the Tn-seq profiles of the 955 

wadB and pgk mutants, highlighting the growth defect of the pgk mutant (below the -4S 956 

threshold shown as a hatched line, i.e. 4 standard deviations under the average of the 957 

theoretical distribution of R200 value, see supplementary Fig. S2). The grey lines correspond 958 

to the average R200 or average ∆R200 for the whole chromosome. (C) Pictures of the wild 959 

type strain, wadB mutant, and pgk mutant colonies on rich medium, supporting the hypothesis 960 

of the pgk growth defect. 961 

 962 

FIG 5  Intracellular growth of pyr mutants. The pyrimidine biosynthesis pathway with the 963 

corresponding genes for each step, with aspartate (Asp) and phosphoribosylpyrophosphate 964 

(PRPP) involved in uridine monophosphate (UMP) synthesis. CFUs ratio for each pyr mutant 965 

after infection of RAW 264.7 macrophages at 2 h PI and 24 h PI. For each strain, the 966 

log10CFUs counting after a 24 h infection of RAW 264.7 macrophages was divided by the 967 

corresponding log10CFUs counting after a 2 h infection, resulting in a ratio depicting the 968 

evolution of the bacterial load from 2 h PI to 24 h PI. Accordingly, an increased load will give 969 

a ratio > 1. Each strain was compared to the wild type control using a Scheffé analysis 970 

(Anova 1) and significant differences are indicated by *** (p < 0.001) or **** (p < 0.0001). 971 
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regulator in Brucella abortus and other alpha-proteobacteria  
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One sentence summary: Comparative analysis of α-proteobacteria reveals how the control of CtrA 
and its regulon have been adapted along evolution, and particularly in the Brucella abortus pathogen.  
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Abstract  

 

The α-proteobacteria are a fascinating group of free-living, symbiotic and pathogenic organisms, 
including the Brucella genus, which is responsible for a worldwide zoonosis. One common 
feature of α-proteobacteria is the presence of a conserved response regulator called CtrA, first 
described in the model bacterium Caulobacter crescentus, where it controls gene expression at 
different stages of the cell cycle. Here, we focus on Brucella abortus and other intracellular α-
proteobacteria in order to better assess the potential role of CtrA in the infectious context. 
Comparative genomic analyses of the CtrA control pathway revealed the conservation of specific 
modules, as well as the acquisition of new factors during evolution. The comparison of CtrA 
regulons also suggests that specific clades of α-proteobacteria acquired distinct functions under its 
control, depending on the essentiality of the transcription factor. Other CtrA-controlled functions, 
for instance motility and DNA repair, are proposed to be more ancestral. Altogether, these 
analyses provide an interesting example of the plasticity of a regulation network, subject to the 
constraints of inherent imperatives such as cell division and the adaptations to diversified 
environmental niches. 
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Introduction 

 

Brucella species are responsible for Brucellosis, a major and worldwide zoonosis. In animals, it occurs 
as a chronic infection that is characterized by epididymitis in males or placentitis and abortion in 
pregnant females (Carvalho Neta et al., 2010). Humans are accidental hosts of B. melitensis, B. 
abortus and B. suis, in which they are responsible for a debilitating disease known as undulant fever or 
Malta fever (Moreno & Moriyon, 2006). Usually, human infections happen through the ingestion of 
contaminated dairy products or by exposure to infected animals. Another major way of infection is 
through the aerosol route, which is why Brucella strains are subjected to strict regulations in 
laboratories (Yagupsky & Baron, 2005). There are currently no vaccines available for humans and the 
only treatment is the use of a combination of antibiotics (Moreno & Moriyon, 2006).  
 

This review aims at summarizing what is known about B. abortus infectious process in host cells, with 
a particular emphasis on its cell cycle regulation. Indeed, B. abortus has been reported to stall its cell 
cycle in the G1 phase, which corresponds to a non-replicating stage, for up to eight hours at the onset 
of infection of HeLa cells or RAW 264.7 macrophages (Deghelt et al., 2014). This review therefore 
focuses on the master regulator CtrA, a transcription factor particularly well conserved in α-
proteobacteria and known to regulate the Caulobacter crescentus cell cycle (Laub et al., 2002; Brilli et 
al., 2010). Up to now, the only comparative studies about the CtrA regulons of different α-
proteobacteria were mainly based on bioinformatics predictions (Hallez et al., 2004; Brilli et al., 
2010). As literature on CtrA has been dramatically increasing over the last years, it is now possible to 
compile experimental data. We thus give an overview of the conservation of specific modules in the 
CtrA regulon, as well as the acquisition of new factors that occurred during evolution, while focusing 
more particularly on intracellular bacteria.  

 

Brucella inside host cells 

 

Brucella intracellular trafficking 

 
A whole genome-based phylogeny study revealed that brucellosis probably appeared in wildlife 
populations in the past 86,000 to 296,000 years (Foster et al., 2009). It thus happened before livestock 
domestication, even though this crucial step in history probably played a role in allowing the 
worldwide spreading of these pathogens (Foster et al., 2009). Even though they can be cultivated on 
artificial media, it is established that Brucella need to enter inside their host cells in order to complete 
a successful infection process (Moreno & Moriyon, 2006). This is why they are now considered as 
facultatively extracellular intracellular parasites (Moreno & Moriyon, 2002). 
 
The mechanism by which Brucella manage to invade their host organism is not very clear but they 
seem to cross the mucosal barrier, which could imply an interaction with epithelial cells (Roop et al., 
2009). The role of these cells has not been deciphered yet but epithelial HeLa cells have been 
effectively used as models for Brucella infection in non-professional phagocytes (Pizarro-Cerda et al., 
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1998; Castaneda-Roldan et al., 2004; Starr et al., 2008). Once inside its host, Brucella could also get 
internalized by professional phagocytes such as macrophages or dendritic cells. There, the bacterium 
can survive and multiply before disseminating in the organism (Archambaud et al., 2010). 
Surprisingly, B. melitensis has also been reported to be able to invade murine erythrocytes during 
infection, which suggests that other cellular and in vivo models of infection should be developed to 
fully understand Brucella pathogenesis (Vitry et al., 2014). 
 
The entry of Brucella into epithelial or phagocytic cells occurs within minutes after cell-to-cell contact 
(Pizarro-Cerda et al., 1998). Once internalized, the bacterium stays in a membrane-bound Brucella-
containing vacuole (BCV) that interacts with the endocytic pathway (therefore termed eBCV) (Figure 
1). Early endosomal markers, such as Rab5, are rapidly followed by the acquisition of late endosomal 
markers, typically lysosomal membrane-associated protein-1 (LAMP1) (Pizarro-Cerda et al., 1998). 
Transient interactions with lysosomes have also been reported (Starr et al., 2008). This eventually 
leads to eBCV acidification, which is deleterious to many bacteria, but nonetheless necessary for 
Brucella to reach their replicative niche and survive in the long-term (Porte et al., 1999; Boschiroli et 
al., 2002; Celli et al., 2003; Starr et al., 2008). Indeed, the acidic pH of the eBCV has been linked to 
the capacity of the pathogen to induce the expression of the virB operon (Boschiroli et al., 2002). 
These genes code for a type IV secretion system (T4SS) that is essential for the bacteria to reach their 
proliferation niche (Boschiroli et al., 2002).  
 
The Brucella replicative niche (rBCV) has been known for years to derive from the endoplasmic 
reticulum (ER), in both HeLa cells and macrophages (Pizarro-Cerda et al., 1998; Celli et al., 2003). It 
is only recently that the rBCV was shown to actually be part of the endoplasmic reticulum (Sedzicki et 
al., 2018) (Figure 1). The transition from eBCV to rBCV is not clearly understood yet, but it has been 
suggested that its maturation could occur at the ER exit sites (Celli et al., 2005; Celli, 2015). Several 
ER-associated functions have been linked to Brucella infection, such as the unfolded protein response 

(Qin et al., 2008; Smith et al., 2013; Taguchi et al., 2015), some autophagy-
associated factors such as ATG9 and WIPI (Taguchi et al., 2015) and the early secretory trafficking 
depending on the Sar1/coat protein complex II (Celli et al., 2005; Taguchi et al., 2015). Since the 
T4SS is essential for Brucella to reach the rBCV, it is expected that the maturation of the BCV would 
be mediated by the delivery of bacterial effectors inside the host cell. One such effector is BspB, 
shown to target the Golgi apparatus by interacting with the oligomeric Golgi tethering complex 
(Miller et al., 2017). This leads to the redirecting of Golgi-derived vesicles to the BCV by remodeling 
the ER-Golgi secretory trafficking (Miller et al., 2017). It is important to note that there exist 
alternatives to the ER-derived replicative niche since opsonized B. abortus proliferate in a non-acidic 
LAMP1-positive compartment in the human monocytic cell line THP-1 (Bellaire et al., 2005) and in 
endosomal inclusions in extravillous trophoblasts (Salcedo et al., 2013). 
 
Once the number of bacteria within a cell reaches a critical level, destruction of the host cell can be 
observed (Moreno & Moriyon, 2006). Another means for Brucella to spread from one cell to its 
neighbors has been shown by Starr et al (2012). The formation of a compartment with autophagic 
features (aBCV) could be the key to this important step of the infection (Figure 1). Indeed, 
autophagy-deficient Brucella are not able to perform cell-to-cell spreading when cellular infections are 
prolonged for long periods, typically 72 h (Starr et al., 2012). Interestingly, only the initiation complex 
of autophagy seems to be needed by Brucella to promote reinfection (Starr et al., 2012). Indeed, 
markers of the elongation phase of autophagy such as ATG5 and LC3 were not found to be associated 
to the aBCV (Starr et al., 2012). It should be noted that autophagy is particularly important at birth. At 
that time, the transplacental nutrient supply is no longer available, which suggests that autophagy is 
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strongly activated in the neonate in order to adapt to the early neonatal starvation period (Kuma et al., 
2004). The use of this process by the bacteria could therefore be relevant for their spreading inside 
newborn calves. 
 
Growth and replication of Brucella  
 
B. abortus possesses two distinct chromosomes (Chain et al., 2005). Surprisingly, bacteria with 
multipartite genomes are not uncommon, at about 10% of the sequenced species (Val et al., 2014). 
Contrarily to plasmids that are known to initiate replication several times during the bacterial cell 
cycle, chromids (also known as megaplasmids) code for essential genes and initiate their replication 
only once per cell cycle, like chromosomes (Pinto et al., 2012; Val et al., 2014). In B. abortus, the 
large and circular chromosome (I) is 2.1 Mb long and possesses a ParAB segregation system with 
three centromere-like parS sites, while the small chromosome (II) of 1.2 Mb is a chromid, with its 
replication being controlled by a RepABC system (see Pinto et al., 2012 for a review on this 
segregation system). The repABC operon also contains two centromere-like sequences called repS 
(Livny et al., 2007; Deghelt et al., 2014). The chromosomal replication status of B. abortus, and thus 
the stage of its cell cycle, can be followed with fluorescent reporters of the segregation markers ParB 
and RepB, as well as with fluorescent reporters allowing the localization of the replication origins 
(ori) and terminators (ter). Both chromosomes are oriented along the cell length, with oriI and terI 
associated with the poles, whereas oriII and terII are usually found closer to the midcell (Deghelt et 
al., 2014). This is in agreement with what has been found in Sinorhizobium meliloti, another α-
proteobacterium. Indeed, this bacterium possesses a tripartite genome with one primary chromosome 
(3.65 Mb) and two chromids (1.35 Mb for pSymA and 1.68 Mb for pSymB) (Galibert et al., 2001). 
Both chromids are segregated by a RepABC system and their ori are not anchored to the poles (Kahng 
& Shapiro, 2003; Frage et al., 2016). S. meliloti is capable of colonizing the soil rhizosphere as a free-
living bacterium, but also of invading the roots of leguminous plants as an intracellular symbiotic 
nitrogen-fixing bacterium, involving complex interactions between the bacterium and its host (Gibson 
et al., 2006). Similarly to C. crescentus and B. abortus, free-living S. meliloti regulate their cell cycle 
so that replication of their genome occurs once-and-only-once per cell division (Mergaert et al., 2006). 
In both B. abortus and S. meliloti, a temporal coordination of replication and segregation was found, 
as the initiation of replication of their chromids is always delayed compared to the main chromosome 
(Deghelt et al., 2014; Frage et al., 2016). In Brucella, the replication of oriI starts before oriII and 
both chromosomes would finish their replication at approximately the same time (Deghelt et al., 
2014). Note that the size of the chromids do not seem to be the determining factor for the temporal 
regulation of their replication initiation. Indeed, in S. meliloti, it has been proposed that the smaller 
pSymA initiates its replication when the ori of the main chromosome has reached the new pole and 
that it is followed by the bigger pSymB, which behaves in a similar manner after the pSymA ori has 
been replicated (Frage et al., 2016).  
 
Two main phases can be observed during HeLa cells infection by B. abortus. Indeed, when the 
bacterium is transiting within the eBCV, it is unable to proliferate, which reflects the fact that the 
number of colony forming unit (CFU) is stable during this non-proliferative stage (Comerci et al., 
2001; Starr et al., 2008; Deghelt et al., 2014). The second phase occurs when Brucella reaches its ER-
derived proliferative niche, with the number of CFU increasing drastically (Pizarro-Cerda et al., 1998; 
Celli et al., 2003; Starr et al., 2008). Thanks to fluorescent reporter systems that can track ori, it has 
been possible to follow the B. abortus cell cycle inside host cells. One interesting observation was that 
during the non-proliferative stage of the trafficking in HeLa cells and RAW 264.7 macrophages, the 
bacteria are blocked in G1 (only one focus of oriI), similarly to what happens in the carbon-starved 
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swarmer cells of C.  crescentus, a free living α-proteobacterium (Lesley & Shapiro, 2008; Deghelt et 
al., 2014). As Brucella exhibits asymmetric growth like other Rhizobiales (Brown et al., 2012), it is 
also possible to use Texas Red Succinimidyl Ester – a fluorescent compound that covalently binds 
amine groups on the bacterial surface – as a mean to follow the bacterium unipolar growth (Brown et 
al., 2012) inside host cells (Deghelt et al., 2014). These techniques brought to light the fact that the 
bacteria found within the eBCV at early times after infection are predominantly non-growing newborn 
cell types. This term refers to bacteria that recently divided but did not yet initiate chromosome 
replication (Deghelt et al., 2014). They stay in this state for up to eight hours before resuming their 
growth and chromosome replication when they still reside within an eBCV (Deghelt et al., 2014).  
 

Roles and regulation of CtrA 

 

B. abortus CtrA regulation is similar to that of C. crescentus  

 

Since the invasive B. abortus are mainly in the G1 phase of their cell cycle (Deghelt et al., 2014), it is 
possible that transcription factors involved in cell cycle regulation could be also important for 
Brucella virulence. One such factor is CtrA. This transcription factor is very well conserved amongst 
α-proteobacteria (Brilli et al., 2010) and has been best studied in the model organism C. crescentus. 
This remarkable bacterium possesses two distinct life forms. One is a sessile stalked form, which 
allows the bacterium to adhere to surfaces when it is in a nutrient-rich environment. The other form is 
a motile swarmer cell that is used for scouting and colonizing new favourable environments but that is 
not competent for replication (Ausmees & Jacobs-Wagner, 2003; Quardokus & Brun, 2003). 
Importantly, C. crescentus divides asymmetrically into its two phenotypically different daughter cells 
after each cell division. This is why this bacterium is considered as an excellent model for bacterial 
cell cycle studies. In this context, the transcription factor CtrA has been found to be of utmost 
importance as it is a master regulator of C. crescentus cell cycle (Quon et al., 1996) (Figure 2). 
Indeed, one of CtrA many targets is the ori, thus preventing the DnaA protein from initiating the 
replication of C. crescentus chromosome as long as CtrA is present (Quon et al., 1998; Siam & 
Marczynski, 2000). As CtrA needs to be phosphorylated to be active, a tight regulatory network based 
on two-component regulators is in charge of its synthesis, phosphorylation and degradation (Quon et 
al., 1996; Domian et al., 1997; Wu et al., 1998; Biondi et al., 2006; Tsokos et al., 2011).  

 

In C. crescentus, the dual CckA enzyme that possesses both kinase and phosphatase activities 
regulates the phosphorylation level of CtrA and CpdR, a response regulator stimulating CtrA 
proteolysis when dephosphorylated (Jenal & Fuchs, 1998; Jacobs et al., 2003; Biondi et al., 2006). 
CckA does so by interacting with the phosphotransferase ChpT (Biondi et al., 2006). The kinase 
activity of CckA is inhibited by the phosphorylated form of the response regulator DivK, which is 
stabilized by the atypical histidine kinase DivL (Tsokos et al., 2011; Childers et al., 2014). DivK 
phosphorylation is itself regulated by the histidine kinase DivJ and by the phosphatase PleC (Wu et 
al., 1998; Wheeler & Shapiro, 1999). PleC is also able to phosphorylate the diguanylate cyclase PleD, 
which in turn will synthesize cyclic di-GMP (Paul et al., 2008). The binding of this secondary 
messenger to CckA will force CckA to switch from its kinase to its phosphatase mode, thus preventing 
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the phosphorylation of CtrA (Lori et al., 2015). Cyclic di-GMP also binds to PopA, which interacts 
with RcdA, another protein involved in CtrA proteolysis at the stalked cell pole (Ozaki et al., 2014; 
Smith et al., 2014). Interestingly, several genes coding for proteins regulating CtrA are also part of its 
regulon, including divK (Laub et al., 2000) and divJ (Fumeaux et al., 2014) in C. crescentus. 

 

At the transcription level, ctrA is regulated by two proteins in C. crescentus. One of them is CtrA itself 
(Domian et al., 1999). The other one is GcrA, an unconventional transcription factor that binds to the 
housekeeping σ70 factor (Haakonsen et al., 2015). Since gcrA transcription is repressed by CtrA and 
ctrA transcription is activated by GcrA, the two transcription factors are present temporally and 
spatially out-of-phase during the cell cycle of C. crescentus (Holtzendorff et al., 2004). Of note, DnaA 
also participates to gcrA transcription (Collier, 2012). 

 

The spatio-temporal regulation of CtrA is particularly well adapted to C. crescentus aquatic free-living 
lifestyle, but it appears to be surprisingly conserved in other α-proteobacteria with very different ways 
of life (Brilli et al., 2010; Pini et al., 2015; Schallies et al., 2015; Willett et al., 2015). In B. abortus, 
the core actors involved in the CtrA regulatory network, defined here as the PleC/DivJ/DivK and 
CckA/ChpT/CtrA two-component systems, are conserved (Hallez et al., 2004; Brilli et al., 
2010)(Figure 2). Another gene, called pdhS for PleC/DivJ homologue sensor, has also been found to 
be part of this network (Hallez et al., 2004). Both pleC and divK from B. abortus are able to 
heterocomplement the corresponding deletion mutants in C. crescentus, which suggests that their 
function is conserved between both organisms (Hallez et al., 2007). In addition, in B. abortus DivK 
has been found by yeast two-hybrid experiment to bind to DivJ, PleC, DivL and PdhS (Hallez et al., 
2007). Nevertheless, the localization of PleC is different between B. abortus and C. crescentus and 
DivJ was not found to be crucially involved in DivK phosphorylation (Hallez et al., 2007). Indeed, in 
a ∆divJ background, DivK did not lose its phosphorylation-dependent polar localization (Hallez et al., 
2007), while a loss-of-function of pdhS generates delocalization of DivK-YFP (Van der Henst et al., 
2012). As pdhS is an essential gene and depletion strains were not available at that time, its 
involvement in DivK phosphorylation could only be suggested through indirect experiments. PdhS 
was also shown to accumulate at the old pole of the large cells, which is the same localization as the 
phosphorylated form of DivK (Hallez et al., 2007). Of note, this localization is similar to the one of 
DivJ in C. crescentus, which suggests a common function between B. abortus PdhS and C. crescentus 
DivJ (Hallez et al., 2007). As PdhS is cytoplasmic in B. abortus, it is possible that its function is 
shared with DivJ depending on the time and/or space of DivK phosphorylation (Hallez et al., 2007). 
The polar localization of PdhS is conserved at 48 hours post infection in bovine macrophages (Hallez 
et al., 2007), but nothing is known about the role of DivJ in this context and at later times of the 
infection. As for the phosphorelay going from CckA to CtrA and CpdR via ChpT, it has been 
confirmed to be functional in B. abortus (Willett et al., 2015). As was the case for C. crescentus (Laub 
et al., 2000; Fumeaux et al., 2014), several genes predicted to be involved in CtrA regulation have 
been found by ChIP-seq to be potentially part of CtrA regulon in B. abortus, including ctrA itself, 
divK, divJ, divL, chpT, cpdR and rcdA (Francis et al., 2017). If all of these genes are indeed regulated 
by B. abortus CtrA, it would mean that the control of this transcription factor is more complex in this 
bacterium than in C. crescentus (Figure 2). One tempting hypothesis is that the regulation of B. 
abortus CtrA could reflect a need for the bacterium to precisely regulate its cell cycle depending on its 
intracellular environment.  
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B. abortus CtrA controls the expression of genes involved in envelope biogenesis 

 

The impact of B. abortus CtrA levels inside host cells could potentially be very important, as this 
transcription factor seems to be involved in both cell cycle regulation and bacterial envelope 
composition (Francis et al., 2017). Actually, one striking feature of B. abortus CtrA regulon is the 
high number of genes involved in envelope biogenesis (Francis et al., 2017). Indeed, in addition to 
revealing the direct interaction between CtrA and the promoters of genes involved in the regulation of 
LPS and peptidoglycan synthesis, a ChIP-seq experiment also showed that promoters of genes coding 
for abundant outer membrane proteins (OMP) are also bound by CtrA (Francis et al., 2017). CtrA-
dependent regulation of these genes was supported by western blots against Omp2b and Omp25, two 
major OMPs of B. abortus that were found at lower levels in a CtrA depletion strain (Francis et al., 
2017). In addition, Omp25 homogenous localization patterns are perturbed when CtrA is absent 
(Francis et al., 2017). This modification of the envelope composition could potentially have an impact 
on the bacterial fitness inside its host cell (Cha et al., 2012) Indeed, the levels of Omp2b have been 
shown to decrease after 20 to 40 hours during the course of macrophage infection by B. abortus 
(Lamontagne et al., 2009). As for omp25, its disruption in B. abortus led to an increased sensitivity to 
Polymyxin B in vitro (Manterola et al., 2007). In HeLa cells and murine macrophages, this strain was 
not shown to be involved in virulence, as its intracellular replication was similar to that of the WT 
(Manterola et al., 2007). In BALB/C mice, however, results were different in two independent 
experiments. In the first, a B. abortus omp25 mutant was injected intravenously at 5 x 104 CFU and 
led to an attenuation of virulence at 18 weeks post infection, when compared to the wild type strain 
(Edmonds et al., 2002). In the second experiment, mice were infected via the intraperitoneal route 
with 105 CFU and behaved like the wild-type strain even after 24 weeks (Manterola et al., 2007). This 
suggests that the route of infection could be an important factor to take into account when studying B. 
abortus infection. In this respect, it would be more appropriate to use a more physiological mode of 
infection in future research, such as the intranasal one (Hanot Mambres et al., 2016). Note that the 
omp25 mutant seems to have different phenotypes depending on the Brucella species in which it is 
studied. Indeed, in B. suis, the disruption of this gene had much more dramatic consequences, as it was 
already attenuated from 1 to 8 weeks post infection, before to be completely cleared from mice spleen 
(Edmonds et al., 2002). The authors suggested that this might be due to the fact that the B. suis strain 
that they used is a naturally occurring rough strain, thus the loss of the structural Omp25 could be 
more damaging in this case (Edmonds et al., 2002). Another difference between the two Brucella 
strains is that in B. suis, Omp25 is involved in the inhibition of the production of the pro-inflammatory 
TNF-α cytokine in human macrophages (Jubier-Maurin et al., 2001; Luo et al., 2017), whereas in B. 
abortus, it could be involved in the activation of the synthesis of TNF-α in human trophoblastic cells 
(Zhang et al., 2017).  

 

The regulation of genes involved in the structure of the bacterial envelope by CtrA is probably not 
exclusive to B. abortus as many other α-proteobacteria do seem to regulate such genes via CtrA (Laub 
et al., 2000; Brilli et al., 2010). Nevertheless, it could have a more important impact on intracellular 
bacteria, as their envelope will be presented at the interface with their host cell and could therefore 
impact the host immune response and the survival of the bacteria inside them. For instance, the 
obligate intracellular Ehrlichia chaffeensis is thought to regulate the expression of its pal gene, coding 
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for a major outer membrane stabilizing protein, through CtrA (Cheng et al., 2011). This α-
proteobacterium is the causative agent of the life-threatening human monocytic ehrlichiosis and has a 
developmental cycle comprising two forms in mammalian cells (Zhang et al., 2007). The small dense-
cored cells (with dense nucleoids) attach to and enter into the host cells, then differentiate into larger 
reticulate cells (defined by uniformly dispersed nucleoids) that can multiply for 48 h before 
transforming back into dense-cored cells at 72 h post infection in order to prepare for reinfection 
(Zhang et al., 2007). Interestingly, both pal and ctrA gene expression were found to be highest when 
bacteria were in their dense-cored infectious form (Cheng et al., 2011). Conversely, CtrA was found to 
be rapidly degraded, following a proline and glutamine uptake, after bacterial entry in host cells 
(Cheng et al., 2014). Pal is known to be immunogenic in dogs infected with E. chaffeensis and 
bacteria treated with anti-Pal antibodies were shown to be less infectious in vitro (Cheng et al., 2011). 
Note that E. chaffeensis has been reported to lack lipopolysaccharide (Lin & Rikihisa, 2003). 

 

S. meliloti also interacts tightly with host cells during nodulation. Very interestingly, it appears that B. 
abortus and S. meliloti do share some similarities in their potential CtrA targets. Indeed, CtrA binds to 
the promoter of several genes coding for L,D-transpeptidases homologs in B. abortus (BAB1_0047, 
BAB1_0138, BAB1_0589, BAB1_0978, BAB1_1159 and BAB1_1867) and S. meliloti (SMc00150, 
SMc01200, SMc01575 and SMc01769). L,D-transpeptidases are required to cross-link peptides in the 
peptidoglycan, and appear to be localized at the specific growth sites in the Rhizobiale Agrobacterium 
tumefaciens (Cameron et al., 2014), another Rhizobiale displaying a unipolar growth (Brown et al., 
2012). Still, B. abortus seems to have evolved to possess more complex regulation of envelope 
biogenesis than S. meliloti:  All but one (BAB1_0785) L,D-transpeptidase gene promoters are bound 
by CtrA in B. abortus (Francis et al., 2017), as opposed to four out of seven in the case of S. meliloti 
(the others being SMc02636, SMc02582 and SMc00039)(Pini et al., 2015). These L,D-transpeptidases 
should be further investigated in order to understand how they are truly regulated, as well as their 
specific roles in peptidoglycan growth and homeostasis. To determine if the envelope biogenesis 
regulation can directly be linked to the lifestyle of the bacteria would of course require more 
experimental data from other intracellular bacteria. 

 

The expression of ctrA is not crucial for B. abortus trafficking to the rBCV 

 

The regulation of genes according to the stage of B. abortus cell cycle can be observed through the use 
of a fluorescent-based reporter system. Such genes are ccrM and the repABC operon, and both are 
probably regulated by CtrA as the activities of their promoters were abolished when their respective 
CtrA-binding boxes were mutated (Francis et al., 2017). As the activity of the promoter of the repABC 
operon seems to be inverted compared to the one of ctrA, it is expected that CtrA acts as a negative 
regulator of chromosome II replication (Francis et al., 2017). Knowing that B. abortus first has to go 
through a non-replicative phase inside the eBCV, one can expect that CtrA would be important during 
this specific stage of the infection. However, CtrA was not found to be essential for the ability of B. 
abortus to infect cells in the models of infection tested thus far. Indeed, a study performed with a 
thermo-sensitive allele of B. abortus ctrA concluded that the transcription factor is not required for the 
entry of the bacterium inside THP-1 macrophages (Willett et al., 2015). Inside HeLa cells, the CtrA 
depletion phenotypes of B. abortus were also visible around or after 10 h post infection (Francis et al., 
2017). Furthermore, a B. abortus CtrA depletion strain was able to reach its rBCV replicative niche in 
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the same proportion as the wild type strain (Francis et al., 2017). This supports the view that CtrA 
function is dispensable for B. abortus trafficking inside these host cells.  

 

Nevertheless, at 48 h post infection, CtrA depletion strains underwent a clear drop of CFU in both 
cellular infection models (Willett et al., 2015; Francis et al., 2017). The defects leading to bacterial 
cell death are unclear but could be explored by the analysis of suppressor mutants. The fact that CtrA 
might only be necessary at late time points during Brucella infection does make sense, though, as its 
level needs to be regulated more particularly during late phases of other intracellular α-proteobacteria 
life cycle. For example, in the obligate intracellular pathogen E. chaffeensis, CtrA is important during 
the late stage of intracellular growth (Cheng et al., 2011). It has been observed that the ctrA gene is 
up-regulated at 72 h post infection, which corresponds to the time when the bacteria differentiate back 
from large reticulate cells to small infectious dense-cored cells in order to prepare to spread from the 
present to the next host cells (Zhang et al., 2007; Cheng et al., 2011). Similarly, in S. meliloti, CtrA 
levels are high before infection, then a decrease of ctrA transcription coincides with bacteroid 
differentiation within the nodule (Roux et al., 2014) and the CtrA protein is absent in mature 
bacteroids (Pini et al., 2013).  

 

It is possible that CtrA is only required when Brucella find themselves in a particular situation. For 
instance, C. crescentus is known to regulate CtrA levels in response to stresses affecting its envelope, 
and this in a CckA-dependent manner, but independently of DivK and cyclic-di-GMP (Heinrich et al., 
2016). In E. chaffeensis, surE has been proposed to code for a protein involved in bacterial growth 
under stress and it is thought to be part of CtrA regulon (Cheng et al., 2011). It is therefore possible 
that the in vitro models of infection tested thus far for B. abortus CtrA function do not reflect the 
environment and the stresses that they would have to face inside a living animal. In this respect, an in 
vivo model of infection might prove to be much more relevant for deciphering the potential impact of 
CtrA depletion in B. abortus. 

 

Hypotheses emerging from analyses of CtrA regulons 

 

Regulation of the cell cycle in different α-proteobacteria  

As several groups are now focusing on CtrA functions in other α-proteobacteria, more data about this 
transcription factor have become available over the last years. Despite their very diverse ways of life, 
α-proteobacteria do share some common traits, including the presence of a gene coding for CtrA 
(Brilli et al., 2010). The comparison of the CtrA regulons in different bacteria, in light of their 
respective evolutionary lineage and lifestyle, might lead to interesting hypotheses regarding CtrA 
functions in B. abortus and other intracellular bacteria. Indeed, comparison of the direct CtrA 
regulons, when they are available, clearly indicate that CtrA binds to promoters of orthologous genes, 
suggesting that the control of these promoters by CtrA is a conserved feature. With that in mind, we 
compiled the experimental data that were available for this transcription factor in different α-
proteobacteria. Data were collected in a hierarchical manner: (i) direct binding of CtrA to its target 
promoter, typically by ChIP-seq data, was considered first, (ii) when no such data were available, 
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mRNA-level studies (for example microarrays) were used, (iii) bioinformatics predictions were taken 
into account only if no experimental data were found. For the determination of the predicted targets, 
we used RSAT (van Helden, 2003). All data were compiled in Figure 3. It is important to keep in 
mind that the approaches based on protein binding, mRNA levels or bioinformatics only are not a 
direct proof of gene regulation and that they should be considered with reserve. This section is thus 
more prospective since meta-analyses usually generate working hypotheses that, if they lead to 
correlation, could indicate that similar processes are at play. Importantly, the absence of correlation 
does not necessarily mean the opposite. Hypotheses proposed here might therefore be challenged in 
the future. 

 

In Figure 3, it appears at first sight that the bacteria reported in this table belong to three distinct 
categories. The first one comprises A. tumefaciens, S. meliloti, B. abortus and C. crescentus, i.e. 
Rhizobiales and Caulobacterales. These bacteria have the common characteristic that the gene coding 
for CtrA is essential (Barnett et al., 2001; Christen et al., 2011; Figueroa-Cuilan et al., 2016; Francis 
et al., 2017). Moreover, at the exception of A. tumefaciens, their cell cycle has been shown to be 
regulated by CtrA (Quon et al., 1998; Reisenauer et al., 1999; Laub et al., 2002; Pinto et al., 2012; 
Pini et al., 2015; Francis et al., 2017). Therefore, it is not surprising to see that CtrA binds promoters 
for many genes involved in chromosome replication and segregation, as well as cell division, It is 
interesting to note that these processes are achieved through different genes in different bacteria and 
that it reflects their evolutionary lineage. Indeed, both A. tumefaciens and S. meliloti, which are closely 
related, seem to directly regulate their main chromosomal origin partitioning genes (parAB) through 
CtrA, while B. abortus is proposed to regulate its chromosome I replication through dnaA. As for C. 
crescentus, CtrA is directly binding to the ori as discussed earlier. It also seems that when a bacterium 
in this clade possesses a secondary chromosome, CtrA regulates its partition via the repABC operon 
(Pinto et al., 2012; Pini et al., 2015; Francis et al., 2017). One feature that is shared between 
Rhizobiales and C. crescentus is the predicted regulation of ftsK and ftsQ by CtrA, FtsK being 
involved in the segregation of the ter (Stouf et al., 2013) and FtsQ in the Z ring formation and 
constriction (Carson et al., 1991). The Z ring is composed of the tubulin-like FtsZ proteins, triggering 
the invagination of the cytoplasmic membrane, thus leading to septation and cytokinesis of the 
bacterium (Lutkenhaus & Addinall, 1997). Interestingly, the ftsZ gene seems to be a target of CtrA in 
the first group of bacteria in Figure 3. Note that in the case of A. tumefaciens, two copies of ftsZ exist 
and it is only the promoter region of the second one (Atu2086) that is predicted to possess an 8-mer 
CtrA binding site. There are also two ftsZ genes encoded in S. meliloti genome, and in this case, only 
the promoter of ftsZ1 is predicted to have a S. meliloti–specific CtrA-binding box with a AACCAT 
motif (Ichida & Long, 2016), with one substitution (AGCCAT). However, neither of the two ftsZ 
promoters was found to be bound by ChIP-seq, so it was concluded that S. meliloti regulates its cell 
division through the control of minC and minD expression (Pini et al., 2015). Indeed, MinC and MinD 
participate to the proper localization of the Z ring in Escherichia coli (de Boer et al., 1989) and many 
other bacteria. Interestingly, CtrA seems to systematically bind the promoter the minCDE operon in 
Rhizobiales. Note that this operon is absent in C. crescentus, where it is replaced by mipZ 
(Thanbichler & Shapiro, 2006). Altogether, these analyses indicate that a number of crucial targets 
involved in different stages of the cell cycle were placed under the control of CtrA in the ancestors of 
Rhizobiales. 
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In C. crescentus, some genes that are regulated by CtrA need to be expressed at very specific times. 
The most recent model to explain how CtrA-dependent genes are regulated in a timely manner is 
based on two other transcription factors, SciP and MucR (Fumeaux et al., 2014). Genes that need to be 
expressed only in G2 phase cells, such as the DNA methyltransferase ccrM, are repressed by SciP in 
G1 phase cells even when CtrA is present (Gora et al., 2010). On the other hand, genes that need to be 
expressed only in G1 phase cells are repressed by MucR in predivisional bacteria (Fumeaux et al., 
2014). From Figure 3 it is clear that mucR is not predicted to be regulated by CtrA, in contrast to sciP, 
which is potentially regulated in S. meliloti, B. abortus and C. crescentus. The absence of a conserved 
CtrA-binding box in A. tumefaciens is surprising but does not mean that the gene is not regulated by 
CtrA in this bacterium.  

 

Another important player in C. crescentus gene expression regulation is the methyltransferase CcrM. 
As discussed above, ccrM temporal regulation by CtrA is important since it must only be present in 
late predivisional cells, where it methylates the newly synthesized DNA strands on GANTC sites 
precisely before cell division occurs (Stephens et al., 1996; Reisenauer et al., 1999). This means that, 
according to their chromosomal position away from the origin of replication, genes stay hemi-
methylated for a different amount of time during the cell cycle (Marczynski, 1999). This could have an 
important impact on gene expression at the whole genome level (Kozdon et al., 2013). In fact, the 
transcription of several genes of C. crescentus has been observed to change in response to the 
methylation state of their promoters (Collier & Shapiro, 2007; Gonzalez & Collier, 2013). 
Remarkably, the promoter of ctrA is one of those (Reisenauer & Shapiro, 2002). This is also supported 
by the fact that ccrM overexpression leads to abnormal chromosome content (Zweiger et al., 1994). In 
the first group, ccrM appears to be uniquely regulated by CtrA. This suggests that DNA methylation 
could be important for cell-cycle regulation in these bacteria. Of note, the function of GcrA has been 
demonstrated to be sensitive to CcrM DNA methylation in C. crescentus (Fioravanti et al., 2012). As 
mentioned earlier, GcrA controls ctrA expression in this bacterium and vice versa (Holtzendorff et al., 
2004; Haakonsen et al., 2015). The regulation of gcrA by CtrA in C. crescentus was predicted by 
Brilli et al. (2010) to be an exception in α-proteobacteria. Experimental data obtained since then seem 
to be in agreement with this prediction, as gcrA has not yet been found to be part of the direct CtrA 
regulon in B. abortus (Francis et al., 2017), S. meliloti (Pini et al., 2015) or A. tumefaciens (Figure 3).  

 

The second group of bacteria in Figure 3 ranges from Sphingomonas melonis to Magnetospirillum 
magneticum. In this group, CtrA is not essential and the cell cycle progression does not seem to be 
coupled to this transcription factor (Greene et al., 2012). Nevertheless, it is notable that some bacteria 
in this category could be at an evolutionary crossroads between the first and third group, as S. melonis 
(Francez-Charlot et al., 2015) and Rhodospirillum  centenum are both predicted to regulate the cell 
cycle transcription factor SciP. Of note, CtrA levels are regulated by quorum sensing in 
Dinoroseobacter shibae (Wang et al., 2014), Rhodobacter capsulatus (Mercer et al., 2010) and 
Ruegaria (Zan et al., 2013). Despite not being involved in the cell cycle regulation of these bacteria, 
the role of CtrA as a regulator of bacterial development, like in C. crescentus, seems to be conserved 
in this class. Indeed, cells of ctrA deletion strains are elongated (Wang et al., 2014; Francez-Charlot et 
al., 2015), which is reminiscent to the observation made with α-proteobacteria depletion strains when 
ctrA is essential (Reisenauer & Shapiro, 2002; Figueroa-Cuilan et al., 2016; Francis et al., 2017).  
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One can wonder how the cell cycle is regulated in α-proteobacteria that do not rely on CtrA for this 
function. Interestingly, bacteria from other clades developed similar strategies than C. crescentus to 
avoid replication over-initiation (Wolanski et al., 2014). For example, the Gram-positive species 
Streptomyces coelicolor relies on AdpA to directly bind to its ori and inhibit binding of the replication 
machinery (Wolanski et al., 2012), whereas the J-proteobacterium-Escherichia coli uses SeqA for a 
similar purpose (Nievera et al., 2006). It is thus possible that α-proteobacteria inherited a similar 
mechanism from a more distantly related ancestor. When the regulation of DNA replication was put 
under the control of CtrA (in bacteria of the first group in Figure 3 for example), this ancestral system 
could have progressively become obsolete, whereas it kept its role in the other α-proteobacteria. 
Importantly, essential vital functions may be regulated by redundant mechanisms to ensure their 
precise control. In the case of chromosome replication, redundant mechanisms are indeed often at 
play, such as proteolytic degradation of DnaA, its titration, the modulation of its activity by other 
proteins or a tight control of the expression of the dnaA gene (Wolanski et al., 2014). Only future 
studies will be able to reveal the real actors of cell cycle regulation in the second group of α-
proteobacteria but GcrA could be a good candidate for this function. Indeed, in C. crescentus, the 
transcription factor GcrA is known to participate in cell cycle regulation by regulating CtrA 
expression but also, amongst others, by inhibiting the expression of dnaA when it is not necessary 
(Holtzendorff et al., 2004). As a gene coding for GcrA is predicted to be present in all the α-
proteobacteria of the second group, it is possible that GcrA still retains this particular function in these 
bacteria. Note that M. magneticum does not seem to possess a gcrA gene, but this particular bacterium 
is apparently an exception, as all other Rhodospirillales studied thus far do possess one (Brilli et al., 
2010). A gene predicted to code for CcrM was also found in the genome of all the bacteria of the 
second group (Brilli et al., 2010). If the ability of GcrA to differentiate genes during the cell cycle 
according to their CcrM-dependent methylation status is conserved in these bacteria, the two proteins 
might be sufficient to adequately control expression of cell cycle-related genes.  

 

The third group of bacteria in Figure 3 is composed of the Rickettsiales E. chaffeensis, Wolbachia 
wMel, the endosymbiont of Drosophila melanogaster, and Rickettsia prowazekii. Not much is known 
about CtrA regulon and essentiality in these bacteria. However, the prediction that genes involved in 
cell division and chromosome replication are regulated by CtrA in these organisms is in agreement 
with the fact that the ori of R. prowazekii is bound by CtrA (Brassinga et al., 2002) and that the 
promoter of the E. chaffeensis pal gene has been found as a target of the transcription factor (Cheng et 
al., 2011). Moreover, eight strains of Wolbachia, in addition to other Rickettsiales, were found to 
possess DnaA binding sites and up to five CtrA consensus binding sites per ori (Ioannidis et al., 
2007). It is thus possible that ctrA regulates the cell cycle and is essential in this group of bacteria 
(Figure 4). If this is confirmed in the future, it could mean that CtrA gained the function of regulating 
the cell cycle twice during evolution: once before the emergence of Rickettsiales and once before the 
appearance of Caulobacterales and Rhizobiales (Figure 4). An alternative hypothesis would be that 
the regulation of the cell cycle was an ancestral function of CtrA that was lost early, but that seems 
less likely as it would imply the re-acquisition of this function in C. crescentus and Rhizobiales. Note 
that the third group in Figure 3 is quite different from the first group, as they do not possess genes 
coding for the other cell cycle transcription factors such as SciP, MucR or GcrA. Nonetheless, they 
were found to possess a CckA/CtrA two-component system (Christensen & Serbus, 2015). 
Furthermore, all Wolbachia CckA proteins were found to share a common conserved PAS domain, 
which could suggest that this protein has a “sensor” capacity with a possibly conserved signal 
(Christensen & Serbus, 2015). This potentially intrinsic ability of CckA to detect environmental 
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signals has also been suggested to explain how C. crescentus is able to regulate CckA independently 
of the PleC/DivJ/DivK two-component system under stress (Heinrich et al., 2016).  

 

In light of what can be observed in these three groups of bacteria, a hypothesis can be proposed about 
why B. abortus CtrA was not found to be important for infecting cells (Willett et al., 2015; Francis et 
al., 2017). It is possible that B. abortus does not rely solely on CtrA to regulate its cell cycle. Maybe 
another transcription factor, such as GcrA, directs this important function during the first phase of the 
infection, when B. abortus are in their non-replicative stage. Since the function of B. abortus CtrA 
during later times post infection was not investigated, it would be interesting to test whether this 
transcription factor is required for reinfection, as in E. chaffeensis (Cheng et al., 2011). It is also 
possible that CtrA is only necessary during infection, when CckA responds to specific environmental 
stressors, similar to its role in C. crescentus (Heinrich et al., 2016). These hypotheses are of course 
speculative and will need to be tested in the future. 

 

Could DNA repair regulation be an ancestral function of CtrA?  

 

Elucidation of the targets of M. magneticum CtrA suggests that motility is an ancestral trait of α-
proteobacteria (Greene et al., 2012). The authors of that study also proposed that the transition to the 
intracellular lifestyle of E. chaffeensis and R. prowazekii led to the loss of flagellar and chemotaxis 
genes and thus the loss of this regulation function (Greene et al., 2012). Alternatively, the regulation 
of motility could have occurred on an evolutionary branch that is further away from the Rickettsiales 
(Figure 4). Brucella is also a non-motile and non-flagellated intracellular bacterium but it retains 
flagellar genes that appear to be important during infection (Halling, 1998). Indeed, flagellin was 
shown to modulate the host response and bacterial proliferation in a mouse model of infection 
(Terwagne et al., 2013). This is an interesting example of alteration of a given protein during 
evolution, from its initial function as a flagellin into a host protective factor (Shames & Finlay, 2010; 
Terwagne et al., 2013). The flagella of Bartonella bacilliformis, a close phylogenetic relative of 
Brucella, were also found to be required for entry into host erythrocytes (Scherer et al., 1993), 
illustrating that the function of these organelles diverged quickly during the course of evolution. 

 

In a transcriptomic study focusing on the M. magneticum CtrA regulon, the promoters of genes coding 
for proteins involved in motility were not predicted to be enriched amongst CtrA targets, even though 
the regulation of such genes by CtrA is proposed to be ancestral in α-proteobacteria (Greene et al., 
2012). Another functional category that could have been underestimated is DNA repair. Indeed, all α-
proteobacteria studied in the context of CtrA regulation have at least one DNA repair gene predicted 
or effectively shown to be part of CtrA regulon. In the first and third groups, one interesting 
observation is that promoters of genes coding for the Mismatch Repair (MR) system appear to be 
systematically targeted by CtrA. The MR system, composed of MutH, MutL and MutS proteins, is 
dependent on the Dam-related methylation status of E. coli DNA. Indeed, in this J-proteobacterium, 
MutH is able to discern the parental DNA strand (that serves as template) from the newly synthetized 
one by recognizing the non-methylated state of the new DNA (Yamaguchi et al., 1998; Kunkel & 
Erie, 2005). Thus, after MutS has detected the distortion in the helix caused by a base mismatch, MutL 
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is recruited to allow the interaction between MutS and MutH. After MutH has excised the base, an 
exonuclease degrades a portion of DNA on the mutated and non-methylated strand, which is later 
repaired by the DNA polymerase III and a ligase (Kunkel & Erie, 2005). In B. abortus and other α-
proteobacteria, a homologous gene coding for MutH is missing (Martins-Pinheiro et al., 2007; Guarne, 
2012). However, it has been proposed that in such a case, MutL is able to also perform the MutH 
function (Kadyrov et al., 2006; Pillon et al., 2010).  

 

In C. crescentus, mutS expression has been found to be cell cycle regulated (Laub et al., 2000). 
Moreover, mutS was over-expressed in a CtrA depletion background, suggesting that it is under the 
control of CtrA (Laub et al., 2000). As for mutL, it is not cell cycle regulated but its promoter has been 
found to be potentially linked to CtrA, based on a DNA microarray experiment (Laub et al., 2002). It 
should be noted that in C. crescentus, another gene is oriented opposite of mutL, so it is possible that 
this gene is the one being regulated by CtrA. However, the promoter of either mutL or mutS is 
consistently predicted to be bound by CtrA in other α-proteobacteria where CtrA probably regulates 
their cell cycle (Figure 3, groups 1 and 3). One hypothesis would therefore be that the regulation of 
the MR system along the cell cycle would insure the correct timing for the utilization of this DNA 
repair mechanism. Indeed, the use of MR system is not always favourable, as it is known to result in 
enhanced mutagenesis in bacteria treated with e.g. alkylating agents (Nakano et al., 2017). Note that in 
C. crescentus, CtrA directly activates the expression of the gene coding for S-adenosylmethionine 
(SAM) synthase, the enzyme responsible for the production of SAM (Laub et al., 2002). SAM is a 
methyl-donor for CcrM but it is also known to be a weak aspecific endogenous alkylating agent 
(Rydberg & Lindahl, 1982). As for B. abortus, the promoter of tagA, which codes for a protein 
specifically involved in repairing alkylated DNA (Mielecki & Grzesiuk, 2014), is directly bound by 
CtrA (Francis et al., 2017). Incidentally, it would be interesting to know if TagA is required during B. 
abortus cellular infection, as it would suggest that alkylating stress is met by the bacterium inside its 
host. Knowing that several other genes involved in DNA repair are cell cycle regulated in C. 
crescentus, including the gene coding for the SOS repressor LexA (Laub et al., 2000), it would also be 
interesting to investigate whether bacteria are more prone to DNA damage during certain stages of 
their cell cycle or not.  

In C. crescentus, both mutL and mutS, in addition to ctrA, are considered to be part of the GcrA 
regulon, as their promoters are all bound by GcrA in a ChIP-seq experiment and their expression 
changes in cells depleted in GcrA compared to wild-type cells (Haakonsen et al., 2015). As GcrA is 
able to sense CcrM-dependent methylation on DNA (Fioravanti et al., 2013) and since this specific 
type of methylation is cell cycle regulated in C. crescentus (Stephens et al., 1996) and probably also in 
B. abortus (Francis et al., 2017), an interesting hypothesis would be that the regulation of the MR 
system by CtrA is a way to prevent it from functioning after full methylation has occurred and thus to 
avoid the cleavage of the wrong strand. However, CcrM-dependent methylation has been shown to be 
dispensable for C. crescentus to perform proper MR, as suggested by the frequency of rifampicin 
resistant mutants (Gonzalez et al., 2014). This either means that the MR system is independent of 
CcrM methylation in C. crescentus (Gonzalez et al., 2014), or alternatively that there are redundant 
DNA repair systems that prevent mismatches from occurring in C. crescentus, such as a robust base 
excision repair system (Martins-Pinheiro et al., 2007).  

 

Two other genes that are supposedly involved in DNA repair could often be regulated by CtrA: dprA, 
also known as smf, and radC (Figure 3). Both dprA and radC code for proteins with enigmatic 
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functions. DprA interacts with RecA and is known to be essential for natural competence (Kidane et 
al., 2012; Yadav et al., 2013; Le et al., 2017). However, the gene coding for this protein is conserved 
in many bacteria that are not naturally competent. In the α-proteobacterium R. capsulatus, DprA is 
involved in the regulation of Gene Transfer Agent (GTA) production in a CtrA-dependent manner 
(Brimacombe et al., 2014). A GTA system is analogous to phage transduction but it is unable to fully 
self-propagate and contains random segments of the host DNA that spread from one cell to another 
(Lang et al., 2012). As for RadC, and despite numerous efforts, its real function has remained elusive 
(Ogura et al., 2002; Peterson et al., 2004; Attaiech et al., 2008). It is also known to be specifically 
expressed in naturally competent bacteria (Ogura et al., 2002; Peterson et al., 2004; Redfield et al., 
2005; Vickerman et al., 2007). In the Rickettsiale pathogen Wolbachia, there exist three homologues 
of radC and all of them are associated with a cluster of genes that are distantly related to phage 
repressors (Wu et al., 2004). Therefore, one hypothesis would be that RadC and DprA are not 
involved in competence in these bacteria but rather in coping with phage-derived DNA integration.  

Note also that each α-proteobacterium seems to possess its own specific CtrA-dependent DNA repair 
targets. For example, D. shibae CtrA could regulate recA expression (Wang et al., 2014), while it 
seems to be uvrB in the case of R. capsulatus (Mercer et al., 2010). As for E. chaffeensis, it has a 
perfect 8-mer CtrA binding box in the promoter of its mfd gene, which codes for the Transcription 
Repair Coupling Factor that affects nucleotide excision repair (Selby & Sancar, 1993). Thus, each 
bacterium probably optimized the different cellular functions regulated by CtrA through evolution 
according to its specific lifestyle.  

The clade of α-proteobacteria is composed of organisms with very different phenotypes and lifestyles. 
As proposed by others (Greene et al., 2012), it seems that motility is an ancestral trait of CtrA regulon 
in these organisms. In addition to this observation, our review has proposed that DNA repair could 
also be a common target of this transcription factor. More precisely, the CtrA regulon seems to have 
evolved to couple the MR system to cell cycle regulation in some bacteria and to modulate the levels 
of DprA and RadC in others. It also appears that each bacterium has selected the regulation of some 
specific DNA repair genes under the control of CtrA, which could reflect the kind of stresses that they 
meet in their respective environments. Yet, in B. abortus and most other α-proteobacteria, there is a 
gap in the literature on DNA repair. In the case of B. abortus, addressing this question would 
undoubtedly help to better understand what type of stresses are met by the bacterium inside its host 
cells and thus, to better understand the infectious process itself. In this regard, it would be very 
interesting to know if the blockage in G1 in HeLa cells and RAW 264.7 macrophages (Deghelt et al., 
2014) is linked to more resistance to DNA damage. 

 

Concluding remarks  

 

One surprising conclusion about CtrA is that it is neither involved in the ability of B. abortus to enter 
inside its host cells, nor in its capacity to reach its replicative niche (Willett et al., 2015; Francis et al., 
2017). As the survival of a B. abortus CtrA depletion strain decreases after 48 h post infection (Willett 
et al., 2015; Francis et al., 2017), investigation of the impact of the protein at later times could lead to 
interesting discoveries and might provide answers to some open questions. For example, is the ability 
of CtrA to modify the bacterial envelope a way to modulate its pathogenicity? Is CtrA necessary for 
the cell-to-cell spreading of B. abortus, like in E. chaffeensis (Cheng et al., 2011)?  
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The fact remains that B. abortus does need to tightly regulate its cell cycle at early times post 
infection, so that it is blocked in the G1 phase for up to eight hours after the entry inside HeLa cells 
and RAW 264.7 macrophages (Deghelt et al., 2014). As this process is apparently independent of 
CtrA (Francis et al., 2017), the question remains as to what is the molecular mechanism ensuring this 
G1 blockage. As B. abortus was suggested to face starvation while it is inside the eBCV, it is possible 
that the ppGpp-dependent starvation response is involved at that stage (Dozot et al., 2006). In favour 
of this hypothesis, ppGpp has been found to regulate DnaA stability and initiation of DNA replication 
in carbon-starved C. crescentus (Lesley & Shapiro, 2008), as well as to modulate the cell cycle when 
C. crescentus is unable to synthesize fatty acids (Stott et al., 2015) or when it senses a decrease in 
intracellular glutamine concentration (Ronneau et al., 2016). Another transcription factor that is 
supposed to be involved in cell cycle regulation, such as GcrA, could also perform this function. 
Another important question to answer to is to know whether this blockage occurs in all eukaryotic cell 
types, or if it is specific to infection of HeLa cells and RAW 264.7 macrophages. 

 

Conversely, one could wonder why B. abortus has evolved to favour a delay in its cell cycle 
progression during infection. One hypothesis would be that avoiding DNA replication as long as the 
bacterium is in the endosomal pathway is a way to prevent the fixation of mutations. Indeed, the 
passage through the eBCV is thought to be very stressful for the bacterium, which could cause DNA 
damage (Roop et al., 2009). In addition, at that stage, most proteins -including those for DNA repair - 
are very weakly produced (Lamontagne et al., 2009).  It would therefore be more advantageous for B. 
abortus to wait for the storm to pass and repair its DNA when it is safe to do so. Otherwise, there is a 
risk that replication forks would stall and eventually collapse, which would lead to cell death (Cox et 
al., 2000). As for the absence of growth itself during the first hours of the infection, it could be a way 
for B. abortus to limit its pathogen associated molecular pattern production and thus limit its 
recognition by host cells. Not growing could also be a way for the bacterium to avoid using too many 
resources while it still resides in the eBCV, which is usually considered a nutrient-poor environment 
(Roop et al., 2009). 

 

The question of whether the G1 block is a common strategy to other intracellular pathogens also 
merits attention. Indeed, Legionella, Salmonella, Chlamydia and Francisella have also been reported 
to display a biphasic infection, with a relatively long non-proliferative period followed by a phase of 
massive proliferation (Salcedo & Holden, 2005). There is a crucial need to address these fundamental 
issues in the future, as only a good knowledge of bacterial biology and infectious processes will allow 
us to combat pathogens that are becoming more and more resistant to antibiotic treatments. 
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Figure 1. Schematic representation of B. abortus trafficking inside host cells. Once inside its host 
cell, B. abortus extensively interacts with the endocytic pathway. The compartment in which it resides 
at that stage can be referred to as the endocytic Brucella-containing vacuole (eBCV). In HeLa cells 
and RAW 264.7, during this first step of the infection, the bacterium is blocked in G1 and its growth is 
arrested. After a transient interaction with the lysosomes and thanks to its type IV secretion system 
VirB, the bacterium reaches its replicative niche (rBCV), which is part of the endoplasmic reticulum 
(ER) in most cell types. Later on, bacteria are found in autophagy-dependent vacuoles (aBCV) and are 
proposed to reinfect neighbor cells. 
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Figure 2. Models for CtrA regulation in two α-proteobacteria. The schemes represented here are 
mainly based on C. crescentus CtrA regulation (Laub et al., 2000; Laub et al., 2002; Fumeaux et al., 
2014), therefore it is important to take into consideration the fact that the phosphorylation cascade 
events might not happen exactly as depicted. In the case of B. abortus, data were obtained from Willet 
et al. (2015) and Francis et al. (2017). Green arrows correspond to confirmed CtrA targets that are 
positively regulated by the transcription factor. Blue rounded arrows correspond to targets that are 
bound by CtrA on their promoter, but for which the effect of this binding still remains unknown. 

 

 

Figure 3. Comparison between CtrA targets in different α-proteobacteria. Data were collected in 
a hierarchical manner. Information about the direct binding of CtrA were found for C. crescentus 
(Laub et al., 2000; Laub et al., 2002; Fumeaux et al., 2014), B. abortus (Francis et al., 2017), S. 
meliloti (Pini et al., 2015; Ichida & Long, 2016), E. chaffeensis (Cheng et al., 2011) and R. prowazekii 
(Brassinga et al., 2002). Data concerning the mRNA-level of potential CtrA targets were then 
collected for S. melonis (Francez-Charlot et al., 2015), D. shibae (Wang et al., 2014), R. capsulatus 
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(Mercer et al., 2010; Leung et al., 2013) and M. magneticum (Greene et al., 2012). Finally, when no 
experimental data were available, we considered bioinformatics predictions. In the case of 
Rickettsiales and A. tumefaciens, some were already available (Hallez et al., 2004; Ioannidis et al., 
2007; Pinto et al., 2012). For S. meliloti, prediction on ftsZ1 promoter was based on Ichida and Long 
(2016), with one substitution allowed. To complete these data, we also predicted CtrA targets for A. 
tumefaciens, E. chaffeensis, Wolbachia wMel and R. prowazekii. To do so, we used RSAT (van 
Helden, 2003) and considered genes based on the presence in their promoter of either a 9-mer 
(TTAAN7TTAAC) or a 8-mer (TTAACCAT) CtrA-binding box (Marczynski & Shapiro, 1992; Laub 
et al., 2002) with one substitution allowed. Note that we considered that ftsZ was potentially regulated 
by CtrA when it was the case for the ddl gene, as ftsZ is probably in operon with this gene in S. 
meliloti, B. abortus and A. tumefaciens. In C. crescentus, CtrA was found to bind upstream the 
ruvCAB operon, itself located upstream the tolQRAB operon. We considered that the spacing between 
these two operons did not allow the prediction of a CtrA control on the tolQRAB operon. The ORF of 
each gene analyzed here are available in supplementary data. See the text for a detailed discussion 
about this figure. “OM constr.” stands for outer membrane constriction.  

 

 

Figure 4. Phylogenetic tree of α-proteobacteria based on CtrA. The tree was constructed with CtrA 
sequences from the genome of A. tumefaciens C58, S. meliloti 1021, B. abortus 2308, C. crescentus 
CB15, S. melonis TY, R. capsulatus SB 1003, D. shibae DFL 12, M. magneticum AMB-1, R. 
centenum SW ATCC 51521, R. prowazekii Rp22, Wolbachia wMel and E. chaffeensis Arkansas 
(https://biocyc.org/). Sequences were aligned with Clustal Omega (version 1.2.4; 
http://www.clustal.org/omega/) and curated manually with Jalview 
(http://www.jalview.org/download). The tree was created with PhyML (Guindon & Gascuel, 2003) 
with the following settings: Starting tree = BioNJ; Tree Topology = SPR Move; Boostrap = 100 
replicates; Substitution model = WAG. The final figure was formated on iTol (https://itol.embl.de/), 
then on Inkscape. This tree is in agreement with previously published results (Williams et al., 2007; 
Greene et al., 2012). Numbers correspond to bootstrap values. The units of branch length are 
nucleotide substitutions per site (the number of changes divided by the length of the sequence). This 
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figure suggests a possible timing, along evolution, of major events concerning genes that were taken 
under the control of CtrA. Note that cell cycle regulation seems to always coincide with a regulation of 
ftsZ and mismatch repair genes. 
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ctrA Atu2434 SMc00654 BAB1_1614 CC_3035 BJP26_06220 Dshi_1508 RCAP_rcc01663 RC1_1752 amb0629 WD0732 ECH_1012 rpr22_CDS069
sciP Atu8136 SMc00657 BAB1_1609 CC_0903 BJP26_13545 Dshi_1507 RCAP_rcc01662 RC1_1399 - - - -
mucR Atu0916 SMc00058 BAB1_0594 CC_0933 BJP26_04725 - - RC1_2608 amb2337 - - -

SMa0748 CC_0949 BJP26_14535 RC1_1344 amb4459
SMa1705 BJP26_18250 amb0993

amb2080
amb3183
amb3297
amb1206
amb0924

ccrM Atu8136 SMc00021 BAB1_0516 CC_0378 BJP26_01315 Dshi_0024 RCAP_rcc00201 RC1_3173 amb3988 WD0263 - -
WD0594

gcrA Atu0426 SMc02139 BAB1_0329 CC_2245 BJP26_05815 Dshi_2616 RCAP_rcc03144 RC1_0907 - - - -
dnaA Atu0324 SMc01167 BAB1_0001 CC_0008 BJP26_18250 Dshi_3373 RCAP_rcc00001 RC1_3057 amb0636 WD0001 ECH_0809 rpr22_CDS577
parA Atu2136 SMc02800 BAB1_2060 CC_3753 BJP26_03085 Dshi_3457 RCAP_rcc00061 RC1_1628 amb0004 WD1217 ECH_1156 rpr22_CDS056
repA Atu3924 SMb20046 BAB2_1163 - - Dshi_4023 RCAP_rcp00114 RC1_3742 - - - -

Atu5000 SMa2395 Dshi_4104
Atu6043 SMb20598

ftsK Atu3210 SMc03808 BAB1_1895 CC_3704 BJP26_03230 Dshi_0059 RCAP_rcc03328 RC1_2785 amb0016 WD0120 ECH_0890 rpr22_CDS803
Atu2759 SMb20595

ftsZ Atu2086 SMc01874 BAB1_1444 CC_2540 BJP26_12215 Dshi_2416 RCAP_rcc00826 RC1_0606 amb3854 WD0723 ECH_1153 rpr22_CDS643
Atu4673 SMc04296 amb1015

minC Atu3249 SMb21524 BAB2_0884 - - - - RC1_3503 - - - -
ftsQ Atu2088 SMc01872 BAB1_1446 CC_2542 BJP26_12225 Dshi_2418 RCAP_rcc00824 RC1_0608 amb3852 WD0096 ECH_0337 rpr22_CDS244
pal Atu3713 SMc02942 BAB1_1707 CC_3229 BJP26_03845 Dshi_1112 RCAP_rcc03195 RC1_1799 amb3210 WD1255 ECH_0462* rpr22_CDS753

amb3209
tolQ Atu3717 SMc03958 BAB1_1712 CC_3233 BJP26_03825 Dshi_1108 RCAP_rcc03199 RC1_1803 amb3214 - - rpr22_CDS303
mutS Atu0345 SMc01125 BAB1_0146 CC_0012 BJP26_12770 Dshi_3466 RCAP_rcc03495 RC1_2903 amb0287 WD0190 ECH_0824 rpr22_CDS292

WD0952
mutL Atu0699 SMc00932 BAB2_0212 CC_0695 BJP26_09470 Dshi_0363 RCAP_rcc00266 RC1_3601 amb4416 WD1306 ECH_0884 rpr22_CDS858

WD0509
dprA Atu1305 SMc01363 BAB2_0638 CC_2447 BJP26_04460 Dshi_1138 RCAP_rcc03098 RC1_1527 amb0681 WD0092 ECH_0883 -
radC Atu1607 SMc00299 BAB1_1301 CC_2680 BJP26_00830 Dshi_3569 RCAP_rcc00222 RC1_3389 RS10505 WD0357 ECH_0363 -

WD0625
WD0257

*The similiarity of this ORF with the pal gene is rather low. In additiion, the "pal" gene is not accompanied by a complete Tol system. Nevertheless, Cheng et al 
(2011) reported the existence of a pal/ompA gene in E. Chaffeensis, so we decided to include this locus as such.

Supplementary	data	






