Complexity of partially separable convexly constrained optimization with non-Lipschitzian singularities
Chen, Xiaojun; Toint, Philippe; Wang, Hong

Published in:
SIAM Journal on Optimization

DOI:
10.1137/18M1166511

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link to publication
Citation for published version (HARVARD):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 29. Mar. 2020
COMPLEXITY OF PARTIALLY SEPARABLE CONVEXLY
CONSTRAINED OPTIMIZATION WITH NON-LIPSCHITZIAN
SINGULARITIES

XIAOJUN CHEN†, PH. L. TOINT‡, AND H. WANG†

Abstract. An adaptive regularization algorithm using high-order models is proposed for solving partially separable convexly constrained nonlinear optimization problems whose objective function contains non-Lipschitzian ℓ_q-norm regularization terms for $q \in (0, 1)$. It is shown that the algorithm using a pth-order Taylor model for p odd needs in general at most $O(\epsilon^{-(p+1)/p})$ evaluations of the objective function and its derivatives (at points where they are defined) to produce an ϵ-approximate first-order critical point. This result is obtained either with Taylor models, at the price of requiring the feasible set to be “kernel centered” (which includes bound constraints and many other cases of interest), or with non-Lipschitz models, at the price of passing the difficulty to the computation of the step. Since this complexity bound is identical in order to that already known for purely Lipschitzian minimization subject to convex constraints [C. Cartis, N. I. M. Gould, and Ph. L. Toint, IMA J. Numer. Anal., 32 (2012), pp. 1662–1695], the new result shows that introducing non-Lipschitzian singularities in the objective function may not affect the worst-case evaluation complexity order. The result also shows that using the problem’s partially separable structure (if present) does not affect the complexity order either. A final (worse) complexity bound is derived for the case where Taylor models are used with a general convex feasible set.

Key words. complexity theory, non-Lipschitz functions, partially separable problems

AMS subject classifications. 90C30, 90C46, 65K05

DOI. 10.1137/18M1166511

1. Introduction. We consider the partially separable convexly constrained nonlinear optimization problem

$$\min_{x \in \mathcal{F}} f(x) = \sum_{i \in \mathcal{N}} f_i(U_ix) + \sum_{i \in \mathcal{H}} |U_ix|^q,$$

where $\mathcal{F} \subseteq \mathbb{R}^n$ is a nonempty closed convex set, $\mathcal{N} \cup \mathcal{H} \overset{\text{def}}{=} \mathcal{M}$, $\mathcal{N} \cap \mathcal{H} = \emptyset$, $q \in (0, 1)$, U_i is a (fixed) $n_i \times n$ matrix with $n_i \leq n$ and such that

$$n_i = 1 \quad \text{and} \quad U_i U_j^T = 0 \quad \text{for} \quad i, j \in \mathcal{H}, \ j \neq i,$$

and $f_i : \mathbb{R}^{n_i} \to \mathbb{R}$. Without loss of generality, we assume that, for each $i \in \mathcal{M}$, U_i has full row rank and $\|U_i\| = 1$, and that the ranges of the U_i^T for $i \in \mathcal{N}$ span \mathbb{R}^n so that the intersection of the null spaces of the U_i is reduced to the origin.\footnote{If the $\{U_i^T\}_{i \in \mathcal{N}}$ do not span \mathbb{R}^n, problem (1.1) can be modified without altering its optimal value by introducing an additional identically zero element term $f_0(U_0x)$ (say) in \mathcal{N} with associated U_0 such that $\cap_{i \in \mathcal{N}} \ker(U_i) \subseteq \text{range}(U_0^T)$. It is clear that, since $f_0(U_0x) = 0$, it is differentiable with Lipschitz continuous derivative for any order $p \geq 1$. Obviously, this covers the case where $\mathcal{N} = \emptyset$.}

In what follows,
the “element functions” f_i ($i \in \mathcal{N}$) will be nice “well-behaved” smooth functions with Lipschitz continuous derivatives. We also require (initially at least2) that the feasible set is “kernel centered,” in the sense that, if $P_X[\cdot]$ is the orthogonal projection onto the convex set X, then, for $i \in \mathcal{H}$,

$$P_{\ker(U_i)}[\mathcal{F}] \subseteq \mathcal{F} \text{ whenever } \ker(U_i) \cap \mathcal{F} \neq \emptyset$$

in addition to \mathcal{F} being convex, closed, and nonempty. As will be discussed below (after Lemma 4.2), we may assume without loss of generality that $\ker(U_i) \cap \mathcal{F} \neq \emptyset$ (and thus $P_{\ker(U_i)}[\mathcal{F}] \subseteq \mathcal{F}$) for all $i \in \mathcal{H}$. “Kernel-centered” feasible sets include the whole space \mathbb{R}^n, boxes (corresponding to bound constrained problems), and spheres/cylinders centered at the origin, for example, the following box-constrained L_2-$L_{1/2}$ minimization problem:

$$\min_{x_\in \mathcal{F}} \sum_{i \in \mathcal{N}} (U_i x - b_i)^2 + \lambda \sum_{i \in \mathcal{H}} |U_i x|^\frac{1}{2},$$

where $U_i \in \mathbb{R}^{1 \times n}$, $i \in \mathcal{M}$, $\mathcal{F} = \{x \mid \ell \leq x \leq u\}$ with $\ell \in -\mathbb{R}_+^n$, $u \in \mathbb{R}_+^n$, and $\ell < u$, $\mathcal{N} = \{1, \ldots, K_1\}$, $\mathcal{H} = \{K_1 + 1, \ldots, K_1 + K_2\}$ with $K_1, K_2 \geq 1$, $b_i \in \mathbb{R}$ and $\lambda > 0$.

Problem (1.1) has many applications in engineering and science. Using the non-Lipschitz regularization function in the second term of the objective function f has remarkable advantages for the restoration of piecewise constant images and sparse signals23, and sparse variable selection, for instance in bioinformatics8, 22. Theory and algorithms for solving q-norm regularized optimization problems have been developed in7, 9.

The partially separable structure appearing in problem (1.1) is ubiquitous in applications of optimization. It is most useful in the frequent case where $n_i \ll n$ and subsumes that of sparse optimization (in the special case where the rows of each U_i are selected rows of the identity matrix). Moreover, the decomposition in (1.1) has the advantage of being invariant for linear changes of variables (only the U_i matrices vary). Partially separable optimization was first considered by Griewank and Toint in21, then studied for more than 30 years (see14, 15, 24, for instance) and has been extensively used in the popular CUTEst testing environment17 as well as in the AMPL13, LANCELOT11 and FILTRANE18 packages, amongst others. In particular, the design of trust-region algorithms exploiting the partially separable decomposition (1.1) was investigated by Conn et al. in10, 12.

Focussing now on the nice multivariate element functions, we note that using the partially separable nature of a function f can be very useful. We let $x_i = U_i x \in \mathbb{R}^{n_i}$ for $i \in \mathcal{M}$, and $f_x(x) = \sum_{i \in \mathcal{I}} f_i(x)$ for any $\mathcal{I} \subseteq \mathcal{M}$. In particular, we define

$$f_N(x) = \sum_{i \in \mathcal{N}} f_i(U_i x) = \sum_{i \in \mathcal{N}} f_i(x_i) \quad \text{and} \quad f_H(x) = \sum_{i \in \mathcal{H}} f_i(U_i x) = \sum_{i \in \mathcal{H}} f_i(x_i).$$

When we use derivatives of $f_N(x)$ with order larger than one in the context of the pth-order Taylor series

$$T_{f_N}(x, s) = f_N(x) + \sum_{j=1}^p \frac{1}{j!} \nabla_s^j f_N(x)[s]^j,$$

2We will drop this assumption in section 5 by using a model defined in (5.1).
it may be verified that

\[
\nabla_j x f^N(x)[s]^j = \sum_{i \in N} \nabla_j x f_i(x_i)[U_i s]^j.
\]

This last expression indicates that only the $|N|$ tensors $\{\nabla_j x f_i(x_i)\}_{i \in N}$ of dimension n_i^j need to be computed and stored: a very substantial gain compared to the n^j-dimensional $\nabla_j x f^N(x)$ when (as is common) $n_i \ll n$ for all i. It may therefore be argued that exploiting derivative tensors of order larger than two—and thus using the high-order Taylor series (1.5) as a local model of $f(x + s)$ in the neighborhood of x—may be practically feasible if f is partially separable. Of course the same comment applies to $f_{H}(x)$ whenever the required derivatives of $f_i(x_i) = |x_i|^p$ ($i \in H$) exist.

Interestingly, the use of high-order Taylor models for optimization was recently investigated by Birgin et al. [2] in the context of adaptive regularization algorithms for unconstrained problems. Their proposal belongs to this emerging class of methods pioneered by Griewank [20], Nesterov and Polyak [26], and Cartis, Gould, and Toint [4] for the unconstrained case and by the latter authors in [5] for the convexly constrained case of interest here. Such methods are distinguished by their excellent evaluation complexity, in that they need at most $O(\epsilon^{-(p+1)/p})$ evaluations of the objective function and their derivatives to produce an ϵ-approximate first-order critical point, compared to the $O(\epsilon^{-2})$ evaluations that might be necessary for the steepest descent and Newton methods (see [3] for details). However, most adaptive regularization methods rely on a nonseparable regularization term in the model of the objective function, making exploitation of structure difficult.\footnote{The only exception we are aware of is the unpublished note [16] in which a pth-order Taylor model is coupled with a regularization term involving the (totally separable) qth power of the q norm ($q \geq 1$).}

We note that complexity issues for non-Lipschitzian problems have already been investigated [6, 19, 25], but the Lipschitz assumption on the derivatives is in these cases replaced by a (weaker) Hölder condition. Our ambition here is to assume considerably less, since our purpose is to cover severe singularities, as present in cusps and norms of fractional index, for which Hölder conditions fail.

\textbf{Contributions.} The main aim of the present paper is to establish that first-order worst-case evaluation complexity for nonconvex minimization subject to convex constraints is not affected by the introduction of the non-Lipschitzian singularities in the objective function (1.1). This requires several intermediate steps. The first is to derive, in section 2, new first-order necessary optimality conditions that take the non-Lipschitzian nature of (1.1) into account. These conditions motivate the introduction of a new “two-sided” symmetric model of the singularities, which is then exploited in the proposed algorithm. Because the new necessary conditions involve the gradient of a partial objective with a number of singular terms (see Theorem 2.1), this prevents the aggregation of all terms in (1.1) in a single abstracted objective function. As a consequence, complexity bounds must be derived while preserving the additive partially separable structure of the objective function. Our second step is therefore to show, in section 3, that first-order worst-case complexity bounds are not affected by the use of partially separable structure. In section 4, we then specialize our analysis to a wide class of kernel-centered feasible sets and show that complexity bounds are again unaffected by the presence of the considered non-Lipschitzian singularities. The final step is to show, in section 5, that (weaker) complexity results may still be
obtained if one considers feasible sets that are not kernel centered. All these results are discussed in section 6, and some conclusions are presented in section 7.

Notation. In what follows, $\| \cdot \|$ denotes the Euclidean norm, and $\| T \|_p$, the recursively induced Euclidean norm on the pth-order tensor T (see [2, 6] for details). The notation $T[i]_s$ means that the tensor T is applied to i copies of the vector s. For any set \mathcal{X}, $|\mathcal{X}|$ denotes its cardinality.

2. **First-order necessary conditions.** In this section, we first present exact and approximate first-order necessary conditions for a local minimizer of problem (1.1). Such conditions for optimization problems with non-Lipschitzian singularities have been independently defined in the scaled form [9] or in subspaces [1, 8]. The above optimality conditions take the singularity into account by no longer requiring that the gradient (for unconstrained problems, say) nearly vanishes at an approximate solution x^* (which would be impossible if the singularity is active) but by requiring that a scaled version of this requirement holds in that $\| X, \nabla^1_1 f(x^*) \|$ is suitably small, where X^* is a diagonal matrix whose diagonal entries are the components of x^*. Unfortunately, if the ith component of x^* is small but not quite small enough to consider that the singularity is active for variable i (say it is equal to 2ϵ), the ith component of $\nabla^1_1 f(x)$ can be as large as a multiple of ϵ^{-1}. As a result, comparing worst-case evaluation complexity bounds with those known for purely Lipschitz continuous problems (such as those proposed in [2] or [6]) may be misleading, since these latter conditions would never accept an approximate first-order critical point with such a large gradient. In order to avoid these pitfalls, we now propose a stronger definition of an approximate first-order critical point for non-Lipschitzian problems where such “borderline” situations do not occur. The new definition also makes use of subspaces, but reduces exactly to the standard condition for Lipschitzian problems if the singularity is not active at x^*, even if it is close to it.

Given a vector $x \in \mathbb{R}^n$ and $\epsilon \geq 0$, define

\begin{align*}
(2.1) \quad \mathcal{C}(x, \epsilon) & \triangleq \{ i \in \mathcal{H} \mid |U_i x| \leq \epsilon \}, \quad \mathcal{R}(x, \epsilon) \triangleq \bigcap_{i \in \mathcal{C}(x, \epsilon)} \ker(U_i) = \left(\text{span} \{U_i^T \} \right)^\perp, \\
(2.2) \quad \mathcal{W}(x, \epsilon) & \triangleq \mathcal{N} \cup (\mathcal{H} \setminus \mathcal{C}(x, \epsilon)).
\end{align*}

(When $\mathcal{C}(x, \epsilon) = \emptyset$, we set $\mathcal{R}(x, \epsilon) = \mathbb{R}^n$.) For convenience, if $\epsilon = 0$, we define $\mathcal{C}(x) \triangleq \mathcal{C}(x, 0)$, $\mathcal{R}(x) \triangleq \mathcal{R}(x, 0)$, and $\mathcal{W}(x) \triangleq \mathcal{W}(x, 0)$. Finally note that, although $f(x)$ is nonsmooth if $\mathcal{H} \neq \emptyset$, $f_{\mathcal{W}(x, \epsilon)}(x)$ is as differentiable as the $f_i(x)$ for $i \in \mathcal{N}$ and any $\epsilon \geq 0$. This allows us to formulate our first-order necessary condition.

Theorem 2.1. If $x^* \in \mathcal{F}$ is a local minimizer of problem (1.1), then

\begin{equation}
(2.3) \quad \chi_f(x^*) = 0,
\end{equation}

where, for any $x \in \mathcal{F}$,

\begin{equation}
(2.4) \quad \chi_f(x) \triangleq \min_{x + d \in \mathcal{F}} \frac{\nabla^1_2 f_{\mathcal{W}(x)}(x)^T d}{\| d \| \leq 1}.
\end{equation}
Proof. Suppose first that \(\mathcal{R}(x_*) = \{0\} \) (which happens if \(x_* = 0 \in \mathcal{F} \) and \(\text{span}_{i \in H} \{ U_i^T \} = \mathbb{R}^n \)). Then (2.3) and (2.4) hold immediately. Now suppose that \(\mathcal{R}(x_*) \neq \{0\} \). By assumption, there exists \(\delta_{x_*} > 0 \) such that

\[
f(x_*) = \min \{ f_N(x_* + d) + f_H(x_* + d) \mid x_* + d \in \mathcal{F}, \|d\| \leq \delta_{x_*} \}
\]

\[
= \min_d \left\{ f_N(x_* + d) + \sum_{i \in H} |U_i(x_* + d)|^q \mid x_* + d \in \mathcal{F}, \|d\| \leq \delta_{x_*} \right\}
\]

\[
\leq \min_d \left\{ f_N(x_* + d) + \sum_{i \in H} |U_i(x_* + d)|^q \mid x_* + d \in \mathcal{F}, d \in \mathcal{R}(x_*), \|d\| \leq \delta_{x_*} \right\}
\]

\[
= \min_d \left\{ f_N(x_* + d) + \sum_{i \in H \setminus \mathcal{C}(x_*)} |U_i(x_* + d)|^q \mid x_* + d \in \mathcal{F}, d \in \mathcal{R}(x_*), \|d\| \leq \delta_{x_*} \right\},
\]

where we used (2.1) to derive the last equality. We now introduce a new problem, which is problem (1.1) reduced to \(\mathcal{R}(x_*) \), namely,

\[
\tag{2.5}
\begin{cases}
\min_d & f_{W(x_*)}(x_* + d) = f_N(x_* + d) + \sum_{i \in H \setminus \mathcal{C}(x_*)} |U_i(x_* + d)|^q \\
\text{s.t.} & x_* + d \in \mathcal{F} \text{ and } d \in \mathcal{R}(x_*),
\end{cases}
\]

whose gradient \(\nabla^1 f_{W(x_*)}(x_* + d) \) is locally Lipschitz continuous in some (bounded) neighborhood of \(x_* \). Since we have that

\[
f_{W(x_*)}(x_*) = f_N(x_*) + \sum_{i \in H \setminus \mathcal{C}(x_*)} |U_i x_*|^q = f_N(x_*) + \sum_{i \in H} |U_i x_*|^q = f(x_*),
\]

we obtain that \(f_{W(x_*)}(x_*) \leq \min \{ f_{W(x_*)}(x_* + d) \mid x_* + d \in \mathcal{F}, d \in \mathcal{R}(x_*), \|d\| \leq \delta_{x_*} \} \) and \(x_* \) is a local minimizer of problem (2.5). Hence, no feasible direction from \(x_* \) is a descent direction for \(f_{W(x_*)}(x_* + d) \), which is to say that

\[
\tag{2.6}
\nabla^1 f_{W(x_*)}(x_*)^T d \geq 0, \quad x_* + d \in \mathcal{F}, d \in \mathcal{R}(x_*).
\]

In addition,

\[
\{ d = 0 \} \subseteq \{ d \mid x_* + d \in \mathcal{F}, d \in \mathcal{R}(x_*), \|d\| \leq 1 \} \subseteq \{ d \mid x_* + d \in \mathcal{F}, d \in \mathcal{R}(x_*) \},
\]

which, combined with (2.6), gives the desired results (2.3) and (2.4).

We call \(x_* \) a first-order stationary point of (1.1) if \(x_* \) satisfies the relation (2.3) in Theorem 2.1. For \(\epsilon > 0 \), we call \(x_* \) an \(\epsilon \)-approximate first-order stationary point of (1.1) if \(x_* \) satisfies

\[
\tag{2.7}
\chi_f(x_*, \epsilon) \stackrel{\text{def}}{=} \min_{x_* + d \in \mathcal{F}} \left\| \nabla^1 f_{W(x_*, \epsilon)}(x_*)^T d \right\| \leq \epsilon,
\]

Note that \(\chi_f(x) = \chi_f(x, 0) \). This optimality measure is identical to that used in [5] for the smooth convexly constrained case, but is applied here on the subspace \(\mathcal{R}(x_*, \epsilon) \). In particular, both measures coincide if \(H = \emptyset \).
THEOREM 2.2. For each $\epsilon > 0$, let x_ϵ be an ϵ-approximate first-order stationary point of (1.1). Then any cluster point of $\{x_\epsilon\}_{\epsilon>0}$ is a first-order stationary point of problem (1.1) as $\epsilon \to 0$.

Proof. Suppose that x_ϵ is any cluster point of $\{x_\epsilon\}_{\epsilon>0}$. Then there must exist an infinite sequence $\{\epsilon_k\}$ converging to zero and an infinite sequence $\{x_{\epsilon_k}\}_{k\geq 0} \subseteq \{x_\epsilon\}_{\epsilon>0}$ such that $x_\epsilon = \lim_{k \to \infty} x_{\epsilon_k}$ and x_{ϵ_k} is an ϵ_k-approximate first-order stationary point of (1.1) for each $k \geq 0$. If $\mathcal{R}(x_\epsilon) = \{0\}$, (2.3) holds vacuously, and hence x_ϵ is a first-order stationary point. Suppose therefore that $\mathcal{R}(x_\epsilon) \neq \{0\}$, implying that the dimension of $\mathcal{R}(x_\epsilon)$ is strictly positive and hence that $\mathcal{H} \setminus \mathcal{C}(x_\epsilon) \neq \emptyset$. First of all, we claim that there must exist $k_\epsilon \geq 0$ such that

\[(2.8) \quad \mathcal{C}(x_{\epsilon_k}, \epsilon_k) \subseteq \mathcal{C}(x_\epsilon) \quad \text{for} \quad k \geq k_\epsilon.\]

To prove this inclusion, choose k_ϵ sufficiently large to ensure that

\[(2.9) \quad \|x_{\epsilon_k} - x_\epsilon\| + \epsilon_k < \min_{j \in \mathcal{H} \setminus \mathcal{C}(x_\epsilon)} \|U_j x_\epsilon\| \quad \text{for} \quad k \geq k_\epsilon,\]

the right-hand side of this inequality being strictly positive by the definition of $\mathcal{C}(x_\epsilon)$. Without loss of generality, suppose that $k_\epsilon = 1$. Now consider an arbitrary $k \geq k_\epsilon$ and an index $i \in \mathcal{C}(x_{\epsilon_k}, \epsilon_k)$. Using the definition of this latter set, the identity $\|U_i\| = 1$, and (2.9), we then obtain that

\[|U_i x_\epsilon| \leq |U_i (x_\epsilon - x_{\epsilon_k})| + |U_i x_{\epsilon_k}| \leq \|x_\epsilon - x_{\epsilon_k}\| + \epsilon_k < \min_{j \in \mathcal{H} \setminus \mathcal{C}(x_\epsilon)} \|U_j x_\epsilon\|. \]

This in turn implies that $|U_i x_\epsilon| = 0$ and $i \in \mathcal{C}(x_\epsilon)$, proving (2.8). Using (2.1), we see that (2.8) then implies that, for all k,

\[(2.10) \quad \mathcal{R}(x_\epsilon) \subseteq \mathcal{R}(x_{\epsilon_k}, \epsilon_k) \quad \text{and} \quad \mathcal{W}(x_\epsilon) \subseteq \mathcal{W}(x_{\epsilon_k}, \epsilon_k). \]

For any fixed k, consider now the following three minimization problems:

\[(2.11) \quad (A,k) \quad \begin{cases} \min_d & \nabla^1 f_{\mathcal{W}(x_{\epsilon_k}, \epsilon_k)}(x_{\epsilon_k})^T d \\ \text{s.t.} & x_{\epsilon_k} + d \in \mathcal{F}, \ d \in \mathcal{R}(x_{\epsilon_k}, \epsilon_k), \ \|d\| \leq 1, \end{cases} \]

\[(2.12) \quad (B,k) \quad \begin{cases} \min_d & \nabla^1 f_{\mathcal{W}(x_{\epsilon_k}, \epsilon_k)}(x_{\epsilon_k})^T d \\ \text{s.t.} & x_{\epsilon_k} + d \in \mathcal{F}, \ d \in \mathcal{R}(x_\epsilon), \ \|d\| \leq 1, \end{cases} \]

and

\[(2.13) \quad (C,k) \quad \begin{cases} \min_d & \nabla^1 f_{\mathcal{W}(x_\epsilon)}(x_\epsilon)^T d \\ \text{s.t.} & x_\epsilon + d \in \mathcal{F}, \ d \in \mathcal{R}(x_\epsilon), \ \|d\| \leq 1. \end{cases} \]

Since $d = 0$ is a feasible point of all three problems (A,k), (B,k), and (C,k), their minimum values, which we respectively denote by $\vartheta_{A,k}$, $\vartheta_{B,k}$, and $\vartheta_{C,k}$, are all non-positive. Moreover, it follows from the first part of (2.10) that, for each k,

\[(2.14) \quad \vartheta_{B,k} \geq \vartheta_{A,k}. \]

It also follows from (2.8) and (1.2) that $\nabla^1 f_{\mathcal{W}(x_{\epsilon_k}, \epsilon_k)}(x_\epsilon)^T d = \nabla^1 f_{\mathcal{W}(x_\epsilon)}(x_\epsilon)^T d$ for all k and all $d \in \mathcal{R}(x_\epsilon)$, and thus (2.14) becomes

\[(2.15) \quad \vartheta_{A,k} \leq \vartheta_{B,k} = \vartheta_{C,k} \quad \text{for all} \quad k. \]
In addition, standard perturbation theory for convex problems (see [12, Theorem 3.2.8], for instance) implies that

\begin{equation}
\chi_f(x_*) = \lim_{k \to \infty} |\vartheta_{C,k}|.
\end{equation}

Now the definition of x_{ϵ_k} implies that $-\epsilon_k \leq \vartheta_{A,k}$ for all k. Hence, combining this inequality with the nonpositivity of the minimum values, (2.15) and (2.16) give that $0 \leq \chi_f(x_*) = \lim_{k \to \infty} |\vartheta_{C,k}| \leq \lim_{k \to \infty} \epsilon_k = 0$, which completes the proof. \hfill \Box

3. A partially separable regularization algorithm. We now examine the desired properties of the element functions f_i more closely. Assume first that, for $i \in \mathcal{N}$, each element function f_i is p times continuously differentiable and its pth-order derivative tensor $\nabla_x^p f_i$ is globally Lipschitz continuous with constant $L_i \geq 0$ in the sense that, for all $x_i, y_i \in \text{range}(U_i)$,

\begin{equation}
|\nabla_x^p f_i(x_i) - \nabla_x^p f_i(y_i)| \leq L_i \|x_i - y_i\|.
\end{equation}

It can be shown (see (4.5)) that this assumption implies that, for $i \in \mathcal{N}$,

\begin{equation}
f_i(x_i + s_i) = T_{f_i,p}(x_i, s_i) + \frac{1}{(p + 1)!} \tau_i L_i \|s_i\|^{p+1} \quad \text{with} \quad |\tau_i| \leq 1 \quad \text{and} \quad s_i = U_i s.
\end{equation}

Because the quantity $\tau_i L_i$ in (3.2) is usually unknown in practice, it is impossible to use (3.2) directly to model the objective function in a neighborhood of x. However, we may replace this term with an adaptive parameter σ_i, which yields the following ($p + 1$)st-order model for the ith "nice" element:

\begin{equation}
m_i(x_i, s_i) = T_{f_i,p}(x_i, s_i) + \frac{1}{(p + 1)!} \sigma_i \|s_i\|^{p+1} \quad (i \in \mathcal{N}).
\end{equation}

There is more than one possible choice for defining the element models for $i \in \mathcal{H}$. The first⁴ is to pursue the line of polynomial Taylor-based models, for which we need the following technical result.

Lemma 3.1. We have that, for $i \in \mathcal{H}$ and all $x, s \in \mathbb{R}^n$ with $U_i x \neq 0 \neq U_i (x + s)$,

\begin{equation}
|x_i + s_i|^q = |x_i|^q + q \sum_{j=1}^{\infty} \frac{1}{j!} \left(\prod_{\ell=1}^{j-1} (q - \ell) \right) |x_i|^{q-j} \mu(x_i, s_i)^j,
\end{equation}

where

\begin{equation}
\mu(x_i, s_i) \overset{\text{def}}{=} \begin{cases}
s_i & \text{if } x_i > 0 \text{ and } x_i + s_i > 0, \\
-s_i & \text{if } x_i < 0 \text{ and } x_i + s_i < 0, \\
-(2x_i + s_i) & \text{if } x_i > 0 \text{ and } x_i + s_i < 0, \\
2x_i + s_i & \text{if } x_i < 0 \text{ and } x_i + s_i > 0.
\end{cases}
\end{equation}

Proof. If $y \in \mathbb{R}^n_+$, it can be verified that the Taylor expansion $|y + z|^q$ at $y \neq 0$ and $y + z \in \mathbb{R}^n_+$ is given by

\begin{equation}
[y + z]^q = y^q + q \sum_{j=1}^{\infty} \frac{1}{j!} \left(\prod_{\ell=1}^{j-1} (q - \ell) \right) y^{q-j} z^j.
\end{equation}

⁴Another choice is discussed in section 5.
Let us now consider \(i \in \mathcal{H} \). Relation (3.6) yields that, if \(x_i > 0 \) and \(x_i + s_i > 0 \),

\[
|x_i + s_i|^q = |x_i|^q + q \sum_{j=1}^{\infty} \frac{1}{j!} \left[\prod_{\ell=1}^{j-1} (q - \ell) \right] |x_i|^{q-j} s_i^j.
\]

By symmetry, if we have that, if \(x_i < 0 \) and \(x_i + s_i < 0 \), then

\[
|x_i + s_i|^q = |x_i|^q + q \sum_{j=1}^{\infty} \frac{(-1)^j}{j!} \left[\prod_{\ell=1}^{j-1} (q - \ell) \right] |x_i|^{q-j} (2x_i + s_i)^j.
\]

Moreover, if \(x_i > 0 \) and \(x_i + s_i < 0 \), then

\[
|x_i + s_i|^q = -|x_i|^q + q \sum_{j=1}^{\infty} \frac{(-1)^j}{j!} \left[\prod_{\ell=1}^{j-1} (q - \ell) \right] -|x_i|^{q-j} (2x_i + s_i)^j.
\]

Symmetrically, if \(x_i < 0 \) and \(x_i + s_i > 0 \), then, again,

\[
|x_i + s_i|^q = -|x_i|^q + q \sum_{j=1}^{\infty} \frac{1}{j!} \left[\prod_{\ell=1}^{j-1} (q - \ell) \right] -|x_i|^{q-j} (2x_i + s_i)^j,
\]

and (3.4) and (3.5) then trivially result from (3.7)–(3.10) and the identity \(|-x_i| = |x_i|\).

We now slightly abuse notation by defining

\[
T_{q,p}(x_i, s_i) = \begin{cases}
T_{x_i,s_i}(x_i, s_i) & \text{if } x_i > 0 \text{ and } x_i + s_i > 0, \\
T_{-x_i,-s_i}(x_i, -s_i) & \text{if } x_i < 0 \text{ and } x_i + s_i < 0, \\
T_{-x_i,-s_i}(x_i, 2x_i + s_i) & \text{if } x_i > 0 \text{ and } x_i + s_i < 0, \\
T_{x_i,s_i}(-x_i, 2x_i + s_i) & \text{if } x_i < 0 \text{ and } x_i + s_i > 0.
\end{cases}
\]

We are now in a position to define the regularized “two-sided” model for the element function \(f_i \) \((i \in \mathcal{H})\) as

\[
m_i(x_i, s_i) \overset{\text{def}}{=} T_{q,p}(x_i, s_i).
\]

Figure 3.1 illustrates the two-sided model (3.11), (3.12) for \(x_i = -\frac{3}{2}, p = 3, q = \frac{1}{2} \).

We may now build a model for the complete \(f \) at \(x \) on \(\mathcal{R}(x, \epsilon) \) as

\[
m(x, s) = \sum_{i \in \mathcal{W}(x, \epsilon)} m_i(x_i, s_i).
\]

The algorithm considered in this paper exploits the model (3.13) as follows. At each iteration \(k \), the model (3.13) taken at the iterate \(x = x_k \) is (approximately) minimized in order to define a step \(s_k \in \mathcal{R}(x_k, \epsilon) \). If the decrease in the objective function value along \(s_k \) is comparable to that predicted by the Taylor model, the trial point \(x_k + s_k \) is accepted as the new iterate, and the regularization parameters \(\sigma_{i,k} \) (i.e., \(\sigma_i \) at iteration \(k \)) possibly updated. The process is terminated when an approximate local minimizer is found, that is, when, for some \(k \geq 0 \),

\[
\chi_f(x_k, \epsilon) \leq \epsilon.
\]
In order to simplify the notation in what follows, we provide the following definitions:

\[C_k \overset{\text{def}}{=} C(x_k, \epsilon), \quad R_k \overset{\text{def}}{=} R(x_k, \epsilon), \quad W_k \overset{\text{def}}{=} W(x_k, \epsilon), \]

and

\[C_k^+ \overset{\text{def}}{=} C(x_k + s_k, \epsilon), \quad R_k^+ \overset{\text{def}}{=} R(x_k + s_k, \epsilon), \quad W_k^+ \overset{\text{def}}{=} W(x_k + s_k, \epsilon). \]

Having defined the criticality measure (2.4), it is natural to also use this measure for terminating the approximate model minimization: to find \(s_k \), we therefore minimize \(m(x_k, s) \) over \(s \in R_k \) until, for some constant \(\theta \geq 0 \) and some exponent \(r > 1 \),

\[
\chi_{m}(x_k, s_k, \epsilon) = \chi_{m,W_k^+}(x_k, s_k, \epsilon) \leq \min \left[\frac{1}{4} q^2 \min_{i \in N \cap W_k^+} |U_i(x_k + s_k)|^r , \theta \|s_k\|^p \right],
\]

where

\[
\chi_{m,W_k^+}(x_k, s_k, \epsilon) \overset{\text{def}}{=} \min_{x_k + s_k + d \in F} \frac{\nabla^T \nabla \chi_{m,W_k^+}(x_k, s_k)}{d \in R_k^+ ; \|d\| \leq 1}.
\]

We also require that, once \(|U_i(x_k + s)| < \epsilon \) occurs for some \(i \in H \) in the course of the model minimization, it is fixed at this value, meaning that the remaining minimization is carried out in \(R(x_k + s, \epsilon) \). Thus, the dimension of \(R(x_k + s, \epsilon) \) (and therefore of \(R(x_k, \epsilon) \)) is monotonically nonincreasing during the step computation and across iterations. Note that computing a step \(s_k \) satisfying (3.15) is always possible since the subspace \(R(x_k + s, \epsilon) \) can only become smaller during the model minimization and since we have seen in section 2 that \(\chi_{m}(x_k, s_k) = 0 \) at any local minimizer of \(m_{W(x_k+s,\epsilon)}(x_k, s) \). This model minimization is in principle simpler than the original problem because the general nonlinear \(f_i \) have been replaced by locally accurate polynomial approximations and also because the model is now Lipschitz continuous, albeit still nonsmooth. Importantly, the model minimization does not involve any evaluation of the objective function or its derivatives, and model evaluations within this calculation therefore do not affect the overall evaluation complexity of the algorithm.
We conclude this section by introducing some useful notation and describing our algorithm. Define \(x_{i,k} \overset{\text{def}}{=} U_i x_k \) and \(s_{i,k} \overset{\text{def}}{=} U_i s_k \). Also let

\[
\delta f_{i,k} \overset{\text{def}}{=} f_i(x_{i,k}) - f_i(x_{i,k} + s_{i,k}),
\]

\[
\delta f_k \overset{\text{def}}{=} f_{W_k^+}(x_k) - f_{W_k^+}(x_k + s_k) = \sum_{i \in W_k^+} \delta f_{i,k},
\]

\[
\delta m_{i,k} \overset{\text{def}}{=} m_i(x_{i,k}, 0) - m_i(x_{i,k}, s_{i,k}),
\]

\[
\delta m_k \overset{\text{def}}{=} m_{W_k^+}(x_k, 0) - m_{W_k^+}(x_k, s_k) = \sum_{i \in W_k^+} \delta m_{i,k},
\]

and

\[
(3.17) \quad \delta T_k \overset{\text{def}}{=} T_{f_{W_k^+}, p}(x_k, 0) - T_{f_{W_k^+}, p}(x_k, s_k)
\]

\[
= \left[T_{f_{\mathcal{N}}}, p(x_k, 0) - T_{f_{\mathcal{N}}}, p(x_k, s_k) \right] + \left[T_{f_{\mathcal{N} \setminus \mathcal{C}_k^+}, p}(x_k, 0) - T_{f_{\mathcal{N} \setminus \mathcal{C}_k^+}, p}(x_k, s_k) \right]
\]

\[
= \delta m_k + \frac{1}{(p+1)} \sum_{i \in \mathcal{N}} \sigma_{i,k} \|s_{i,k}\|^{p+1}.
\]

The partially separable adaptive regularization algorithm is now formally stated as Algorithm 3.1.

Note that an \(x_0 \in \mathcal{F} \) can always be computed by projecting an infeasible starting point onto \(\mathcal{F} \). The idea of the second and third parts of (3.21) and (3.22) is to identify cases where the model \(m_i \) overestimates the element function \(f_i \) to an excessive extent, leaving some space for reducing the regularization and hence allowing longer steps. The requirement that \(\rho_k \geq \eta \) in both (3.21) and (3.22) is intended to prevent a situation where a particular regularization parameter is increased and another decreased at a given unsuccessful iteration, followed by the opposite situation at the next iteration, potentially leading to cycling. Other, more elaborate mechanisms can be designed to achieve the same goal, such as attempting to reduce a given regularization parameter at most a fixed number of times before the occurrence of a successful iteration, but we do not investigate those alternatives in detail here. Observe also that it would have been possible to use a single regularization parameter \(\sigma_k \) large enough to ensure that the model overestimates the objective function \(f \). However, this might lead to excessive overestimation for the better behaved \(f_i \), potentially decreasing the quality of the model as an approximation to \(f \). This can be avoided by our more flexible proposal.

We note at this stage that the condition \(s_k^+ \in \mathcal{R}_k \) implies that \(\mathcal{C}_k \subseteq \mathcal{C}_k^+ \) and \(\mathcal{W}_k^+ \subseteq \mathcal{W}_k \). Note that Algorithm 3.1 considerably simplifies in the Lipschitzian case where \(\mathcal{H} = \emptyset \), since \(f_{W_k}(x) = f_{\mathcal{M}}(x) = f(x) \) for all \(k \geq 0 \) and all \(x \in \mathcal{F} = \mathcal{F}_{\mathcal{Q}} \).

We illustrate some concepts of this algorithm with a special case of problem (1.1),

\[
(3.25) \quad \min_{x \geq 0} \sum_{i \in \mathcal{N}} f_i(U_i x) + \lambda \sum_{i=1}^n |x_i|^q,
\]

from [1]. For this problem, \(\mathcal{H} = \{|\mathcal{N}| + 1, \ldots, |\mathcal{N}| + n\} \), \(U_i = e_i^T \) for \(i \in \mathcal{H} \), and \(T_{f, |\cdot|^p}(x, s_i) \) reduces to \(T_{f, |\cdot|^p}(x_i, s_i) \) because of the (kernel-centered) nonnegativity...
Algorithm 3.1 Partially separable adaptive regularization.

Step 0: Initialization. $x_0 \in \mathcal{F}$ and $\{\sigma_{i,0}\}_{i \in \mathcal{N}} > 0$ are given as well as the accuracy $\epsilon \in (0, 1]$ and constants $0 < \gamma_0 < 1 < \gamma_1 \leq \gamma_2$, $\eta \in (0, 1)$, $\theta \geq 0$, $\sigma_{\text{min}} \in (0, \min_{i \in \mathcal{N}} \sigma_{i,0}]$, and $\kappa_{\text{big}} > 1$. Set $k = 0$.

Step 1: Termination. Evaluate $f(x_k)$ and $\{\nabla^j f_{W_k}(x_k)\}^p_{j=2}$. If $\chi_f(x_k, \epsilon) \leq \epsilon$, return $x_\epsilon = x_k$ and terminate. Otherwise evaluate $\{\nabla^j f_{W_k}(x_k)\}^p_{j=2}$.

Step 2: Step computation. Compute a step $s_k \in \mathbb{R}^k$ such that $x_k + s_k \in \mathcal{F}$, $m(x_k, s_k) < m(x_k, 0)$, and (3.15) holds.

Step 3: Step acceptance. Compute

\[
\rho_k = \frac{\delta f_k}{\delta T_k}
\]

and set $x_{k+1} = x_k$ if $\rho_k < \eta$, or $x_{k+1} = x_k + s_k$ if $\rho_k \geq \eta$.

Step 4: Update the “nice” regularization parameters. For $i \in \mathcal{N}$, if

\[
f_i(x_{i,k} + s_{i,k}) > m_i(x_{i,k}, s_{i,k}),
\]

set

\[
\sigma_{i,k+1} \in [\gamma_1 \sigma_{i,k}, \gamma_2 \sigma_{i,k}].
\]

Otherwise, if either

\[
\rho_k \geq \eta \text{ and } \delta f_{i,k} \leq 0 \text{ and } \delta f_{i,k} < \delta m_{i,k} - \kappa_{\text{big}} |\delta f_k|
\]

or

\[
\rho_k \geq \eta \text{ and } \delta f_{i,k} > 0 \text{ and } \delta f_{i,k} > \delta m_{i,k} + \kappa_{\text{big}} |\delta f_k|,
\]

then set

\[
\sigma_{i,k+1} \in [\max[\sigma_{\text{min}}, \gamma_0 \sigma_{i,k}], \sigma_{i,k}] ;
\]

else set

\[
\sigma_{i,k+1} = \sigma_{i,k}.
\]

Increment k by one and go to Step 1.

4. Evaluation complexity for “kernel-centered” feasible sets. We start our worst-case analysis by formalizing our assumptions for problem (1.1).

(AS.1) The feasible set \mathcal{F} is closed, convex, and nonempty.

(AS.2) Each element function f_i ($i \in \mathcal{N}$) is p times continuously differentiable in an open set containing \mathcal{F}, where p is odd whenever $\mathcal{H} \neq \emptyset$.

(AS.3) The pth derivative of each f_i ($i \in \mathcal{N}$) is Lipschitz continuous on \mathcal{F} with associated Lipschitz constant L_i (in the sense of (3.1)).
(AS.4) There exists a constant \(f_{low} \) such that \(f_X(x) \geq f_{low} \) for all \(x \in F \).

(AS.5) There exists a constant \(\kappa_X \geq 0 \) such that \(\| \nabla_x f_X(x) \| \leq \kappa_X \) for all \(x \in F \) and all \(j \in \{1, \ldots, p \} \).

Note that (AS.4) is necessary for problem (1.1) to be well defined. Also note that, because of (AS.2), (AS.5) automatically holds if \(F \) is bounded or if the iterates \(\{x_k\} \) remain in a bounded set. It is possible to weaken (AS.2) and (AS.3) by replacing \(F \) with the level set \(L = \{ x \in F \mid f(x) \leq f(x_0) \} \) without affecting the results below. As can be seen in the proof of Lemma 4.7, (AS.5) may also be weakened by replacing \(F \) with \(\{ x + s \in F \mid x \in L \text{ and } \|s\| \leq 1 \} \) or strengthened by assuming the boundedness of the level set \(L = \{ x \in F \mid f(x) \leq f(x_0) \} \).

We first observe that our assumptions on the partially separable nature of the objective function imply the following useful bounds.

Lemma 4.1. There exists a constant \(\zeta > 0 \) such that, for all \(s \in \mathbb{R}^m \) and all \(v \geq 1 \) and for any subset \(\mathcal{N} \subseteq \mathcal{X} \subseteq \mathcal{M} \),

\[
\zeta^v \|s_X\|^v \leq \sum_{i \in \mathcal{X}} \|s_i\|^v \leq |\mathcal{X}| \|s_X\|^v, \quad \text{where} \quad s_X = P_{\text{span}_{i \in \mathcal{X}}(U^T_i)}(s).
\]

Proof. Assume that for every \(\zeta > 0 \) there exists a vector \(s_\zeta \) in \(\text{span}_{i \in \mathcal{X}}\{U^T_i\} \) of norm 1 such that \(\max_{i \in \mathcal{X}} \|U_i s_\zeta\| < \zeta \|s_\zeta\| = \zeta \). Then, taking a sequence of \(\{s_i\} \) converging to zero and using the compactness of the unit sphere, we obtain that the sequence \(\{s_\zeta\} \) has at least one limit point \(s_0 \) with \(\|s_0\| = 1 \) such that \(\max_{i \in \mathcal{X}} \|U_i s_0\| = 0 \), which is impossible since we assumed that the intersection of the null spaces of the \(U_i \) is reduced to the origin. Thus, our assumption is false and there is a constant \(\zeta > 0 \) such that, for every \(s \in \text{span}_{i \in \mathcal{X}}\{U^T_i\} \),

\[
\max_{i \in \mathcal{X}} \|s_i\| = \max_{i \in \mathcal{X}} \|U_i s\| \geq \zeta_{\min}[U_i]\|s\|,
\]

where \(\zeta_{\min}[U_i] > 0 \) is the smallest singular value of \(U_i \). If we now set

\[
\zeta = \min_{i \in \mathcal{X}} \zeta_{\min}[U_i],
\]

the first inequality of (4.1) then follows from \(\sum_{i \in \mathcal{X}} \|s_i\|^v \geq \max_{i \in \mathcal{X}} \|s_i\|^v \geq \zeta^v \|s\|^v \).

We also have that

\[
\sum_{i \in \mathcal{X}} \|s_i\|^v \leq |\mathcal{X}| \max_{i \in \mathcal{X}} \|U_i s\|^v \leq |\mathcal{X}| \max_{i \in \mathcal{X}} (\|U_i\| \|s\|)^v,
\]

which, with the identity \(\|U_i\| = 1 \), yields the second inequality of (4.1). \(\Box \)

Taken for \(v = 1 \) and \(\mathcal{X} = \mathcal{N} \), this lemma states that \(\sum_{i \in \mathcal{N}} \| \cdot \| \) is a norm on \(\mathbb{R}^n \) whose equivalent constants with respect to the Euclidean one are \(\zeta \) and \(|\mathcal{N}| \). In most applications, these constants are very moderate numbers.

We now turn to the consequence of the Lipschitz continuity of \(\nabla^p_i f_i \) and define, for a given \(k \geq 0 \) and a given constant \(\phi > 0 \) independent of \(\varepsilon \),

\[
O_{k,\phi} \overset{\text{def}}{=} \{ i \in \mathcal{W}_k^+ \cap \mathcal{H} \mid \min[|x_{i,k}|, |x_{i,k} + s_{i,k}|] \geq \phi \}.
\]

Note that \(O_{k,\phi} = \mathcal{H} \setminus (\mathcal{C}(x_k, \phi) \cup \mathcal{C}(x_k + s_k, \phi)) \).

Lemma 4.2. Suppose that (AS.2) and (AS.3) hold. Then, for \(k \geq 0 \) and \(L_{\max} \overset{\text{def}}{=} \max_{i \in \mathcal{N}} L_i \),

\[
f_i(x_{i,k} + s_{i,k}) = m_i(x_{i,k}, s_{i,k}) + \frac{1}{(p + 1)!} [\tau_{i,k}(p + 1)L_{\max} - \sigma_{i,k}]\|s_{i,k}\|^{p+1} \quad \text{with} \quad |\tau_{i,k}| \leq 1
\]
for all \(i \in \mathcal{N} \). If, in addition, \(\phi > 0 \) is given and independent of \(\epsilon \), then there exists a constant \(L(\phi) \) independent of \(\epsilon \) such that

\[
(4.4) \quad \| \nabla_x^i f_{N \cup \mathcal{G}_k}(x_k + s_k) - \nabla_x^i T_{f_{N \cup \mathcal{G}_k} p}(x_k, s_k) \| \leq L(\phi)\| s_k \|^p.
\]

These results hold irrespective of the parity of \(p \).

Proof. First note that, if \(f_i \) has a Lipschitz continuous \(p \)th derivative as a function of \(U_i x \), then (1.6) shows that it also has a Lipschitz continuous \(p \)th derivative as a function of \(x \). It is therefore enough to consider the element functions as functions of \(x = U_i x \).

Assumption (AS.3) and (3.1) imply that

\[
(4.5) \quad f_i(x_{i,k} + s_{i,k}) = T_{f_i,p}(x_{i,k}, s_{i,k}) + \frac{\tau_{i,k}}{p!} \max \| s_{i,k} \|^{p+1} \quad \text{with} \quad |\tau_{i,k}| \leq 1
\]

for each \(i \in \mathcal{N} \) (see [2]). Equation (4.3) then follows from (3.3).

Consider now \(i \in \mathcal{G}_{k,\phi} \) and assume first that \(x_{i,k} > \phi \) and \(x_{i,k} + s_{i,k} > \phi \). Then \(f_i(x_i) = x_i^q \) is infinitely differentiable on the interval \([x_{i,k}, x_{i,k} + s_{i,k}] \subset [\phi, \infty) \) and the norm of its \((p+1)\)st derivative tensor is bounded above on this interval by

\[
(4.6) \quad L_{\mathcal{H}}(\phi) \defeq \prod_{\ell=0}^{p+1}(q - \ell)|\phi^{q-\ell}|.
\]

We then apply the same reasoning as above using the Taylor series expansion of \(x_i^q \) at \(x_{i,k} \) and, because of the first line of (3.11), deduce that

\[
(4.7) \quad f_i(x_{i,k} + s_{i,k}) = m_i(x_{i,k}, s_{i,k}) + \frac{1}{(p+1)!} \tau_{i,k}(p+1) L_{\mathcal{H}}(\phi) |s_{i,k}|^{p+1} \quad \text{with} \quad |\tau_{i,k}| \leq 1
\]

and

\[
(4.8) \quad \| \nabla_x^i f_i(x_{i,k} + s_{i,k}) - \nabla_x^i T_{m_i,p}(x_{i,k}, s_{i,k}) \| \leq L_{\mathcal{H}}(\phi) |s_{i,k}|^p
\]

hold in this case (see [2]). The argument is obviously similar if \(x_{i,k} < -\phi \) and \(x_{i,k} + s_{i,k} < -\phi \), using symmetry and the second line of (3.11). Let us now consider the case where \(x_{i,k} > \phi \) and \(x_{i,k} + s_{i,k} < -\phi \). The expansion (3.4) then shows that we may reason as for \(x_{i,k} < -\phi \) and \(x_{i,k} + s_{i,k} < -\phi \) using a Taylor expansion at \(-x_i\) (which we know by symmetry) and the third line of (3.11). The case where \(x_{i,k} < -\phi \) and \(x_{i,k} + s_{i,k} > \phi \) is similar, using the fourth line of (3.11). As a consequence, (4.7) and (4.8) hold for every \(i \in \mathcal{G}_{k,\phi} \) with Lipschitz constant \(L_{\mathcal{H}}(\phi) \). Moreover, using (4.1) and the definitions (4.6),

\[
\sum_{i \in \mathcal{N} \cup \mathcal{G}_{k,\phi}} L_i |s_i|^{p+1} \leq \max[L_{\max}, L_{\mathcal{H}}(\phi)] \sum_{i \in \mathcal{N} \cup \mathcal{G}_{k,\phi}} |s_i|^{p+1}
\]

and (4.4) then follows from (4.8) and (4.1) with \(L(\phi) \defeq |\mathcal{M}| \max[L_{\max}, L_{\mathcal{H}}(\phi)] \).

Note that there is no dependence on \(\phi \) in \(L \) if \(\mathcal{H} = \emptyset \). We now return to our statement that

\[
(4.9) \quad \ker(U_i) \cap \mathcal{F} \neq \emptyset
\]
may be assumed without loss of generality for all \(i \in \mathcal{H} \). Indeed, assume that (4.9) fails for \(j \in \mathcal{H} \). Then \(j \in \mathcal{O}_k \xi_j \) for all \(k \geq 0 \), where \(\xi_j > 0 \) is the distance between \(\ker(U_j) \) and \(F \), and we may transfer \(j \) from \(\mathcal{H} \) to \(\mathcal{N} \) (possibly modifying \(L_{\max} \)).

The definition of the model in (3.13) also implies a simple lower bound on model decrease.

Lemma 4.3. For all \(k \geq 0 \), \(s_k \neq 0 \), (3.18) is well defined and

\[
\delta T_k \geq \frac{1}{(p+1)!} \sigma_{\text{min}} \sum_{i \in \mathcal{N}} \|s_{i,k}\|^{p+1}.
\]

Proof. The bound directly follows from (3.17), the observation that the algorithm enforces \(\delta m_k > 0 \), and (2.23). Moreover, \(\chi_{m}(x_k,0,\epsilon) = \chi_{f}(x_k,\epsilon) > \epsilon \). As a consequence, (3.15) cannot hold for \(s_k = 0 \) since termination would then have occurred in Step 1 of Algorithm 3.1. Hence, at least one \(\|s_{i,k}\| \) is strictly positive because of (4.1), and (4.10) therefore implies that (3.18) is well defined.

We now verify that the two-sided model (3.12) overestimates \(|x|^q\) for all relevant \(x_i \) and \(s_i \).

Lemma 4.4. Suppose that (AS.2) holds. Then, for \(i \in \mathcal{H} \) and all \(x_i, s_i \in \mathbb{R}^n \) with \(x_i \neq 0 \neq x_i + s_i \), we have that

\[
|x_i + s_i|^q \leq m_i(x_i, s_i).
\]

Proof. Since \(i \in \mathcal{H} \) by assumption, this implies that \(\mathcal{H} \neq \emptyset \), and thus, by (AS.2), that \(p \) is odd. From the mean-value theorem, we obtain that

\[
|x_i + s_i|^q = |x_i|^q + q \sum_{j=1}^{p} \frac{1}{j!} \prod_{\ell=1}^{j-1} (q - \ell) |x_i|^{q-j} \mu(x_i, s_i)^j
\]

\[
+ \left[\prod_{\ell=1}^{p} (q - \ell) \right] |U_i z|^q \frac{|\mu(x_i, s_i)|^{p+1}}{(p+1)!}
\]

for some \(z \) such that, using symmetry, \(z \in [x, x+s] \) if \((U_i z)(U_i(x+s)) > 0 \) or \(z \in [-x, x+s] \) otherwise. As a consequence, we have that \(|U_i z| \geq \min\{|x_i|, |x_i + s_i|\} > 0 \). Recall now that \(p \) is odd. Then, using that \(q \in (0,1) \), we have that \(\mu(x_i, s_i)^{p+1} \geq 0 \) and \(\prod_{\ell=1}^{p} (q - \ell) < 0 \). The inequality

\[
|x_i + s_i|^q \leq |x_i|^q + q \sum_{j=1}^{p} \frac{1}{j!} \prod_{\ell=1}^{j-1} (q - \ell) |x_i|^{q-j} \mu(x_i, s_i)^j
\]

therefore immediately follows from (4.12), proving (4.11).

We next investigate the consequences of the model’s definition (3.12) when the singularity at the origin is approached, and show that the two-sided model has to remain large in the steps when \(x_{i,k} \) is not too far from the singularity.

Lemma 4.5. Suppose that \(p \geq 1 \) is odd, \(q \in (0,1) \), \(i \in \mathcal{H} \), \(|x_i| \in (\epsilon,1] \), and \(|x_i + s_i| \geq \epsilon \). Then

\[
|\nabla_{s_i} m_i(x_i, s_i)| > \frac{1}{2} q |\nabla_{s_i} m_i(x_i, 0)|.
\]
Proof. Following the argument in the proof of Lemma 4.2, it is sufficient to consider that \(x_i > 0 \) and \(x_i + s_i > 0 \). From (3.11) (where \(\mu(x_i, s_i) = s_i \)), we have that

\[
(4.15) \quad \nabla^1_{s_i} T_{x^q, p}(x_i, s_i) = q \sum_{j=1}^{p} \frac{1}{(j-1)!} \left[\prod_{\ell=1}^{j-1} (q - \ell) \right] x_i^{q-j} s_i^{j-1}.
\]

Define \(s_i = \beta x_i \). This gives that (4.15) now reads

\[
(4.16) \quad \nabla^1_{s_i} T_{x^q, p}(x_i, \beta x_i) = q \sum_{j=1}^{p} \frac{1}{(j-1)!} \left[\prod_{\ell=1}^{j-1} (q - \ell) \right] x_i^{q-1} \beta^{j-1},
\]

from which we deduce that

\[
(4.17) \quad \nabla^1_{s_i} m_i(x_i, 0) = \nabla^1_{s_i} T_{x^q, p}(x_i, 0) = qx_i^{q-1}.
\]

Suppose first that \(s_i < 0 \), i.e., \(\beta \in (-1, 0) \), and observe that \(s_i^{q-1} < 0 \) exactly whenever

\[
\prod_{\ell=1}^{j-1} (q - \ell) < 0,
\]

and thus, using \(x_i \leq 1 \) and (4.17), that

\[
(4.18) \quad \nabla^1_{s_i} m_i(x_i, s_i) > qx_i^{q-1} = \nabla^1_{s_i} m_i(x_i, 0) \quad \text{for} \quad \beta \in (-1, 0).
\]

Suppose now that \(\beta \in (0, \frac{1}{3}) \). Then (4.16) implies that

\[
\nabla^1_{s_i} T_{x^q, p}(x_i, \beta x_i) \geq qx_i^{q-1} - q \sum_{j=2}^{p} \frac{1}{(j-1)!} \left[\prod_{\ell=1}^{j-1} (q - \ell) \right] x_i^{q-1} \beta^{j-1} = qx_i^{q-1} \left(1 - \sum_{j=2}^{p} \frac{1}{(j-1)!} \left[\prod_{\ell=1}^{j-1} (q - \ell) \right] \left(\frac{1}{3} \right)^{j-1} \right).
\]

Observe now that

\[
(4.19) \quad \left| \frac{1}{(j-1)!} \left[\prod_{\ell=1}^{j-1} (q - \ell) \right] \right| = \left| \prod_{\ell=1}^{j-1} \frac{q - \ell}{\ell} \right| \leq 1,
\]

and therefore

\[
\nabla^1_{s_i} T_{x^q, p}(x_i, \beta x_i) \geq qx_i^{q-1} \left(1 - \sum_{j=2}^{p} \left(\frac{1}{3} \right)^{j-1} \right) > qx_i^{q-1} \left(1 - \sum_{j=2}^{\infty} \left(\frac{1}{3} \right)^{j-1} \right) = qx_i^{q-1} \left(1 - \frac{1}{1 - \frac{1}{3}} \right) = qx_i^{q-1} \left(1 - \frac{1}{2} \right).
\]

Using (4.17), this implies that

\[
(4.20) \quad \nabla^1_{s_i} T_{x^q, p}(x_i, \beta x_i) \geq \frac{1}{2} \nabla^1_{s_i} T_{x^q, p}(x_i, 0) \quad \text{for} \quad \beta \in \left[0, \frac{1}{3} \right].
\]
Suppose therefore that
\begin{equation}
\beta > \frac{1}{3}.
\end{equation}
We note that (4.16) gives that
\begin{align*}
\nabla^1_{s_i} T_{x^s,1}(x_i, s_i) &= qx_i^{q-1} \\
\nabla^1_{s_i} T_{x^s,t+2}(x_i, s_i) &= \nabla^1_{s_i} T_{x^s,t}(x_i, s_i) + qx_i^{q-1} h_t(\beta)
\end{align*}
for \(t \in \{1, \ldots, p-2\} \) odd, where
\begin{equation}
\frac{1}{t!} \left[\prod_{\ell=1}^t (q-\ell) \right] \beta^t + \frac{1}{(t+1)!} \left[\prod_{\ell=1}^{t+1} (q-\ell) \right] \beta^{t+1}
\end{equation}
\begin{equation}
= \frac{1}{t!} \left[\prod_{\ell=1}^t (q-\ell) \right] \beta^t \left(1 + \frac{q-(t+1)}{t+1} \beta \right).
\end{equation}
It is easy to verify that \(h_t(\beta) \) has a root of multiplicity \(t \) at zero and another root
\begin{equation}
\beta_{0,t} = \frac{t+1}{t+1-q} \in \left(1, \frac{2}{2-q}\right),
\end{equation}
where the last inclusion follows from the fact that \(q \in (0, 1) \). We also observe that \(h_t(\beta) \) is a polynomial of even degree (since \(t \) is odd). Thus,
\begin{equation}
h_t(\beta) \geq 0 \quad \text{for all} \quad \beta \geq \frac{t+1}{t+1-q} \quad \text{and} \quad t \in \{1, \ldots, p\} \text{ odd}.
\end{equation}
Now,
\begin{align*}
\frac{\nabla^1_{s_i} T_{x^s,p}(x_i, \beta x_i)}{qx_i^{q-1}} &= \frac{\nabla^1_{s_i} T_{x^s,p-2}(x_i, \beta x_i)}{qx_i^{q-1}} + h_{p-2}(\beta) \\
&= \frac{\nabla^1_{s_i} T_{x^s,1}(x_i, \beta x_i)}{qx_i^{q-1}} + \sum_{j=1, j \text{ odd}}^{p-2} h_j(\beta) \\
&= 1 + \sum_{j=1, j \text{ odd}}^{p-2} h_j(\beta) + \sum_{j=1, j \text{ odd}}^{p-2} h_j(\beta) \\
&\geq 1 + \sum_{j=1, j \text{ odd}}^{p-2} h_j(\beta),
\end{align*}
where we have used (4.16) to derive the third equality. Observe now that, because of (4.23),
\begin{equation}
\{ j \in \{1, \ldots, p-2\} \text{ odd} \mid h_j(\beta) < 0 \} = \{ j \in \{1, \ldots, p-2\} \text{ odd} \mid \beta < \frac{j+1}{j+1-q} \} \defeq \{ j \in \{1, \ldots, t_0 \} \mid j \text{ odd} \}
\end{equation}
for some odd integer \(t_0 \in \{1, \ldots, p - 2\} \). Hence, we deduce from (4.22) and (4.24) that

\[
\nabla_{s_i}^1 T_{x^q,p}(x_i, \beta x_i) = 1 + \sum_{j=1}^{t_0+1} \frac{1}{j!} \prod_{\ell=1}^{j} (q - \ell) \beta^j.
\]

Moreover, since \(h_t(\beta) < 0 \) for \(t \in \{1, \ldots, t_0\} \) odd and observing that the second term in the first line of the right-hand side of (4.22) is always positive for \(t \) odd, we deduce that the terms in the summation of (4.26) alternate in sign. We also note that they are decreasing in absolute value since

\[
\frac{1}{(t+1)!} \prod_{\ell=1}^{t+1} (q - \ell) \beta^{t+1} - \frac{1}{t!} \prod_{\ell=1}^{t} (q - \ell) \beta^t = \frac{1}{t!} \prod_{\ell=1}^{t} (q - \ell) \beta^t \left(\frac{t+1-q}{t+1} \beta - 1 \right),
\]

and (4.23) ensures that the term in brackets on the right-hand side is always negative for \(q \in (0, 1) \) and \(t \in \{1, \ldots, t_0\} \) odd. Thus, keeping the first (most negative) term in (4.26), we obtain that

\[
\nabla_{s_i}^1 T_{x^q,p}(x_i, \beta x_i) \geq q x_i^{q-1} (1 + (q - 1) \beta) \geq \frac{q}{2} - \frac{q}{q} \nabla_{s_i}^1 T_{x^q,p}(x_i, 0) > \frac{q}{2} \nabla_{s_i}^1 T_{x^q,p}(x_i, 0),
\]

where we have used (4.16) to deduce the second inequality. Combining (4.18), (4.20), and (4.27) then yields that (4.14) holds for all \(\beta \in (-1, \infty) \), which completes the proof since \(s_i = \beta x_i \).

Our next step is to verify that the regularization parameters \(\{\sigma_{i,k}\}_{i \in \mathcal{X}} \) cannot grow unbounded.

Lemma 4.6. Suppose that (AS.2) and (AS.3) hold. Then, for all \(i \in \mathcal{N} \) and all \(k \geq 0 \),

\[
\sigma_{i,k} \in [\sigma_{\min}, \sigma_{\max}],
\]

where \(\sigma_{\max} \stackrel{\text{def}}{=} \gamma_2(p+1)L_{\max} \).

Proof. Assume that, for some \(i \in \mathcal{N} \) and \(k \geq 0 \), \(\sigma_{i,k} \geq (p+1)L_i \). Then (4.3) gives that (3.19) must fail, ensuring that (4.28) holds because of the mechanism of the algorithm.

We next investigate the consequences of the model’s definition (3.12) when the singularity at the origin is approached.

Lemma 4.7. Suppose that (AS.2) and (AS.5) hold and that \(\mathcal{H} \neq \emptyset \). Let

\[
\omega \stackrel{\text{def}}{=} \left(\frac{q^2}{4 \max(\frac{a^2}{4}, [p \kappa \mathcal{N} + \frac{|\mathcal{N}|}{p} \sigma_{\max}])} \right)^{\frac{1}{\omega}}
\]

and suppose, in addition, that

\[
\|s_k\| \leq 1
\]

and that, for some \(i \in \mathcal{H} \),

\[
|x_{i,k}| \in (0, \omega).
\]
Then
\[\| P_{R_i} [\nabla^1_s m(x_k, s_k)] \| \geq \frac{1}{2} q^2 \omega^{q-1} \text{ and } \text{sign}(P_{R_i} [\nabla^1_s m(x_k, s_k)]) = \text{sign}(x_{i,k} + s_{i,k}), \]
where \(R_i \) is defined as \(\text{span}\{U_i^T\} \).

Proof. Consider \(i \in \mathcal{H} \). Suppose, for simplicity, that
\[x_{i,k} > 0 \text{ and } x_{i,k} + s_{i,k} > 0. \]
We first observe that Lemma 4.5 implies that
\[\nabla_s^1 m_i(x_{i,k}, s_{i,k}) \geq \frac{1}{2} q^q \nabla^1_s m_i(x_{i,k}, 0) \text{ for all } s_{i,k} \neq -x_{i,k}. \]
Moreover,
\[\nabla^1_s m_N(x_k, s_k) = \nabla^1_s f_N(x_k) + \sum_{j=2}^p \left(\frac{1}{(j-1)!} \right) \nabla^2_j f_N(x_k)[s_k]^{j-1} + \frac{1}{p!} \sum_{\ell \in \mathcal{N}} \sigma_{\ell,k}s_{\ell,k}\|s_{\ell,k}\|^{p-1} \]
and thus, using the contractive property of orthogonal projections, (4.30), (AS.5), and (4.1), we have that
\[\| P_{R_i} [\nabla^1_s m_N(x_k, s_k)] \| \leq \| \nabla^1_s m_N(x_k, s_k) \| \]
\[\leq \kappa_N[1 + (p-1)] + \frac{|\mathcal{N}|}{p!} \sigma_{\max} \]
\[= p \kappa_N + \frac{|\mathcal{N}|}{p!} \sigma_{\max}. \]
We next successively use the linearity of \(P_{R_i} [\cdot] \), the triangle inequality, (4.34), the facts that \(\|U_i^T\| = 1 \),
\[\|\nabla^1_s m_i(x_{i,k}, s_{i,k})\| = \frac{1}{2} q|x_{i,k}|^{q-1} \geq \frac{1}{2} q\omega^{q-1}, \text{ and } \|U_i^T \nabla^1_s m_i(x_{i,k}, s_{i,k})\| = \frac{1}{2} q|x_{i,k}|^{q-1}, \]
the bound (4.35), and (4.29) to deduce that
\[\| P_{R_i} [\nabla^1_s m(x_k, s_k)] \| = \| P_{R_i} [\nabla^1_s m_N(x_k, s_k) + \sum_{j \in \mathcal{H}} m_j(x_k, s_{j,k})] \| \]
\[= \| P_{R_i} [\nabla^1_s m_N(x_k, s_k) + \sum_{j \in \mathcal{H}} U_j^T \nabla^1_s m_j(x_{j,k}, s_{j,k})] \| \]
\[= \| P_{R_i} [\nabla^1_s m_N(x_k, s_k) + U_i^T \nabla^1_s m_i(x_{i,k}, s_{i,k})] \| \]
\[\geq \| U_i^T \nabla^1_s m_i(x_{i,k}, s_{i,k}) \| - \| P_{R_i} [\nabla^1_s m_N(x_k, s_k)] \| \]
\[\geq \frac{1}{2} q^2 \omega^{q-1} - \left[p \kappa_N + \frac{|\mathcal{N}|}{p!} \sigma_{\max} \right] \]
\[\geq \frac{1}{2} q^2 \omega^{q-1}, \]
which proves the first part of (4.32) and, because of (4.34), implies the second for the case where (4.33) holds. The proof for the cases where
\[[x_{i,k} < 0 \text{ and } x_{i,k} + s_{i,k} < 0] \text{ or } x_{i,k}(x_{i,k} + s_{i,k}) < 0 \]
are identical when making use of the symmetry \(m_i(x_i) \) with respect to the origin. \(\square \)
Note that, like $\sigma_{\text{max}}, \omega$ only depends on the problem data. In particular, it is independent of ϵ. Lemma 4.7 has the following crucial consequence.

Lemma 4.8. Suppose that (1.3), (AS.2), (AS.5), and the assumptions (4.30) and (4.31) of Lemma 4.7 hold and that $H \neq \emptyset$. Suppose in addition that (3.15) holds at x_k, s_k. Then, either

\begin{equation}
|x_{j,k} + s_{j,k}| \leq \epsilon \quad \text{or} \quad |x_{j,k} + s_{j,k}| \geq \omega \quad (j \in H).
\end{equation}

Proof. If $j \in H \cap C(x_k + s_k, \epsilon)$, then clearly $|x_{j,k} + s_{j,k}| \leq \epsilon$ and there is nothing more to prove. Consider therefore any $j \in H \setminus C_k^+ \subseteq W_k^+$ and observe that (1.2) implies $R_j \subseteq R_k^+$ for $j \in H \setminus C_k^+$. Hence,

\begin{equation}
\begin{aligned}
\min_{x_k + s_k + d \in F} P_{R_j} \langle \nabla_x m(x, s_k) \rangle^T d & = \min_{x_k + s_k + d \in F} \nabla_x m_{W_k^+}^T (x_k, s_k) d \\
& \leq \min_{x_k + s_k + d \in F} \nabla_x m_{W_k^+}^T (x_k, s_k) d \\
& = \chi_m(x_k, s_k, \epsilon) \\
& \leq \frac{1}{2} \eta^2 |x_{j,k} + s_{j,k}|^	au.
\end{aligned}
\end{equation}

Observe now that, because of the second part of (4.32) and the fact that $n_j = 1$, the optimal value for the convex optimization problem in the left-hand side of this relation is given by

\begin{equation}
|P_{R_j} \langle \nabla_x m(x, s_k) \rangle| \leq |d_s|,
\end{equation}

where d_s is the problem solution and d_s has the opposite sign to $P_{R_j} \langle \nabla_x m(x, s_k) \rangle$. Moreover, the facts that $j \in H$ and (1.3) holds ensure that $x_{j,k} + s_{j,k} + d_j = 0$ is feasible for the optimization problem on the left-hand side of (4.37), and hence that $|d_s| \geq |x_{j,k} + s_{j,k}|$. Hence, we obtain that $\frac{1}{2} \eta^2 \omega^{q-1} |x_{j,k} + s_{j,k}| \leq \frac{1}{2} q^2 |x_{j,k} + s_{j,k}|^\tau$, and thus, since $\omega \leq 1$, that $|x_{j,k} + s_{j,k}| \geq \omega^{(q-1)/\tau} \geq \omega$, and the second alternative in (4.36) holds.

The rest of our complexity analysis depends on the following partitioning of the set of iterations. Let the index sets of the “successful” and “unsuccessful” iterations be given by

\begin{equation}
S = \{ k \geq 0 \mid \rho_k \geq \eta \} \quad \text{and} \quad U = \{ k \geq 0 \mid \rho_k < \eta \}.
\end{equation}

We next focus on the case where $H \neq \emptyset$, and partition S into subsets depending on $|x_{i,k}|$ and $|x_{i,k} + s_{i,k}|$ for $i \in H$. We first isolate the set of successful iterations that “deactivate” some variable, i.e.,

\begin{equation}
S_\epsilon = \{ k \in S \mid |x_{i,k}| > \epsilon \quad \text{and} \quad |x_{i,k} + s_{i,k}| \leq \epsilon \quad \text{for some} \quad i \in H \},
\end{equation}

as well as the set of successful iterations with large steps

\begin{equation}
S_{||s||} = \{ k \in S \setminus S_\epsilon \mid ||s_k|| > 1 \}.
\end{equation}

Let us now choose a constant $\alpha \geq 0$ such that

\begin{equation}
\alpha = \begin{cases}
\frac{3}{4} \omega & \text{if} \quad H \neq \emptyset, \\
0 & \text{otherwise}.
\end{cases}
\end{equation}
Then, at iteration \(k \in S \setminus (S_\epsilon \cup S_{\|s\|}) \), we distinguish

\[
\mathcal{I}_{\diamondsuit,k} \overset{\text{def}}{=} \{ i \in H \setminus C_k \mid |x_{i,k}| \in [\epsilon, +\infty) \text{ and } |x_{i,k} + s_{i,k}| \in [\alpha, +\infty) \},
\]

\[
\mathcal{I}_{\triangle,k} \overset{\text{def}}{=} \{ i \in H \setminus C_k \mid (|x_{i,k}| \in [\omega, +\infty) \text{ and } |x_{i,k} + s_{i,k}| \in (\epsilon, \alpha)) \\
\text{or } (|x_{i,k}| \in (\epsilon, \alpha) \text{ and } |x_{i,k} + s_{i,k}| \in [\omega, +\infty)) \},
\]

\[
\mathcal{I}_{\clubsuit,k} \overset{\text{def}}{=} \{ i \in H \setminus C_k \mid |x_{i,k}| \in (\epsilon, \omega) \text{ and } |x_{i,k} + s_{i,k}| \in (\epsilon, \omega) \}.
\]

Using this notation, we further define

\[
S_{\diamondsuit} \overset{\text{def}}{=} \{ k \in S \setminus (S_\epsilon \cup S_{\|s\|}) \mid \mathcal{I}_{\diamondsuit,k} = \emptyset \},
\]

\[
S_{\triangle} \overset{\text{def}}{=} \{ k \in S \setminus (S_\epsilon \cup S_{\|s\|}) \mid \mathcal{I}_{\triangle,k} \neq \emptyset \},
\]

\[
S_{\clubsuit} \overset{\text{def}}{=} \{ k \in S \setminus (S_\epsilon \cup S_{\|s\|}) \mid \mathcal{I}_{\clubsuit,k} \neq \emptyset \}.
\]

Figure 4.1 displays the various kinds of steps in \(S_{\diamondsuit,k}, S_{\triangle,k}, S_{\clubsuit,k}, \) and \(S_{\epsilon,k} \).

It is important to observe that the mechanism of the algorithm ensures that, once an \(x_i \) falls in the interval \([-\epsilon, \epsilon]\) at iteration \(k \), it never leaves it (and essentially “drops out” of the calculation). Thus, there are no right-oriented dotted steps in Figure 4.1, and also

\[
|S_{\epsilon}| \leq |H|.
\]

Crucially, Lemma 4.8 ensures that \(\mathcal{I}_{\clubsuit,k} = \emptyset \) for all \(k \in S \), and hence that \(|S_{\clubsuit}| = 0 \). As a consequence, one has that

\[
S_{\epsilon}, S_{\|s\|}, S_{\diamondsuit}, \text{ and } S_{\triangle} \text{ form a partition of } S.
\]

It is also easy to verify that, if \(k \in S_{\diamondsuit} \) and \(i \in \mathcal{I}_{\triangle,k} \), then

\[
|s_k| \geq \|P_{\mathcal{R}_{1,i}}(s_k)\| = |s_{i,k}| \geq \omega - \alpha = \frac{1}{4} \omega > 0,
\]

where we have used the contractive property of orthogonal projections.

We now show that the steps at iterations whose index is in \(S_{\diamondsuit} \) are not too short.
Lemma 4.9. Suppose that (AS.1)–(AS.3) and (AS.5) hold, that
\[\epsilon < \alpha,\]
and consider \(k \in S_{\emptyset}\) before termination. Then
\[\|s_k\| \geq (\kappa_{\emptyset} \epsilon)^{\frac{1}{p}},\]
where
\[\kappa_{\emptyset} \overset{\text{def}}{=} \left[2 \left(L(\alpha) + \theta + \frac{|N|}{p!} \sigma_{\max} \right) \right]^{-1}.\]

Proof. Observe first that, since \(k \in S_{\emptyset} \subseteq S\), we have that \(x_{k+1} = x_k + s_k\) and, because \(\epsilon \leq \alpha\) and \(C_k^+ \subseteq C_k\), we deduce that \(C_k^+ = C_{k+1}\) and \(R_k^+ = R_{k+1}\).
Moreover, the definition of \(S_{\emptyset}\) ensures that, for all \(i \in H \setminus C_k\),
\[\min\{|x_{i,k}|, |x_{i,k} + s_{i,k}|\} \geq \alpha.\]
Hence,
\[O_* \overset{\text{def}}{=} O_{k,\alpha} = H \setminus C_k = H \setminus C_k^+,\]
and thus
\[R_* \overset{\text{def}}{=} R_k^+\]
and \(W_* \overset{\text{def}}{=} W_k = W_k^+ = N \cup O_*\).

As a consequence, the step computation must have been completed because (3.15) holds, which implies that
\[\chi_m(x_k, s_k, \epsilon) = \chi_{m_{W_*}}(x_k, s_k, \epsilon) = \min_{x_{k+1} + s_k + d \in F, d \in R_* \setminus \{d\} \leq 1} \nabla_s m_{W_*} (x_k, s_k)^T d \leq \theta \|s_k\|^p.\]

Observe also that (4.47), (4.4) with \(\phi = \alpha\) (because \(k \in S_{\emptyset}\)), (4.28), and (4.1) then imply that
\[\|\nabla^1_x f_{W_*}(x_{k+1}) - \nabla^1_s m_{W_*}(x_k, s_k)\| = \|\nabla^1_x f_{N \cup O_*}(x_{k+1}) - \nabla^1_s m_{N \cup O_*}(x_k, s_k)\|\]
\[\leq L(\alpha) \|s_k\|^p + \frac{1}{(p+1)!} \sigma_{\max} \sum_{i \in N} \|\nabla^1_s s_{i,k}\|^{p+1} \]
\[\leq L(\alpha) \|s_k\|^p + \frac{p!}{p!} \sigma_{\max} \sum_{i \in N} \|s_{i,k}\|^p\]
\[\leq L(\alpha) \|s_k\|^p + \frac{|N|}{p!} \sigma_{\max} \|s_k\|^p\]
\[= \left[L(\alpha) + \frac{|N|}{p!} \sigma_{\max} \right] \|s_k\|^p,\]
and also that

(4.50)\[
\chi_f(x_{k+1}, \epsilon) = |\nabla_x^1 f_{W_1}(x_{k+1})|d_{k+1}|
\]

\[
\leq |\nabla_x^1 f_{W_1}(x_{k+1})|d_{k+1}| - \nabla_s^1 m_{W_1}(x_k, s_k)|d_{k+1}|
\]

\[
+ |\nabla_s^1 m_{W_1}(x_k, s_k)|d_{k+1}|
\]

where the first equality defines the vector d_{k+1} with

(4.51)\[
\|d_{k+1}\| \leq 1.
\]

Assume now, for the purpose of deriving a contradiction, that

(4.52)\[
\|s_k\| < \left[\frac{\chi_f(x_{k+1}, \epsilon)}{2(L(\alpha) + \theta + \frac{\|N\|}{p!}\sigma_{\text{max}})}\right]^{\frac{1}{2}}
\]

at iteration $k \in S_\ominus$. Using (4.51) and (4.49), we then obtain that

(4.53)\[
-\nabla_x^1 f_{W_1}(x_{k+1})|d_{k+1}| + \nabla_s^1 m_{W_1}(x_k, s_k)|d_{k+1}|
\]

\[
\leq |\nabla_x^1 f_{W_1}(x_{k+1})|d_{k+1}| - \nabla_s^1 m_{W_1}(x_k, s_k)|d_{k+1}|
\]

\[
= |(\nabla_x^1 f_{W_1}(x_{k+1}) - \nabla_s^1 m_{W_1}(x_k, s_k))|d_{k+1}|
\]

\[
\leq \|\nabla_x^1 f_{W_1}(x_{k+1}) - \nabla_s^1 m_{W_1}(x_k, s_k)||d_{k+1}|
\]

\[
< \left(L(\alpha) + \frac{\|N\|}{p!}\sigma_{\text{max}} \right) \|s_k\|^p.
\]

From (4.52) and the first part of (4.50), we have that

\[
-\nabla_x^1 f_{W_1}(x_{k+1})|d_{k+1}| + \nabla_s^1 m_{W_1}(x_k, s_k)|d_{k+1}|
\]

\[
< \frac{1}{2}\chi_f(x_{k+1}, \epsilon)
\]

\[
= -\frac{1}{2}\nabla_x^1 f_{W_1}(x_{k+1})|d_{k+1}|
\]

which in turn ensures that $\nabla_s^1 m_{W_1}(x_k, s_k)|d_{k+1}| < \frac{1}{2}\nabla_x^1 f_{W_1}(x_{k+1})|d_{k+1}| < 0$. Moreover, by definition of $\chi_f(x_{k+1}, \epsilon)$,

\[
x_{k+1} + d_{k+1} \in F \text{ and } d_{k+1} \in R_{k+1} = R_k^+.
\]

Hence, using (3.16) and (4.51), we obtain

(4.54)\[
|\nabla_s^1 m_{W_1}(x_k, s_k)|d_{k+1}| \leq \chi_{m_{W_1}}(x_k, s_k, \epsilon).
\]

We may then substitute this inequality into (4.50) to deduce as above that

(4.55)\[
\chi_f(x_{k+1}, \epsilon) \leq |\nabla_x^1 f_{W_1}(x_{k+1})|d_{k+1}| - \nabla_s^1 m_{W_1}(x_k, s_k)|d_{k+1}|
\]

\[
+ \chi_{m_{W_1}}(x_k, s_k, \epsilon)
\]

\[
\leq \left(L(\alpha) + \theta + \frac{\|N\|}{p!}\sigma_{\text{max}} \right) \|s_k\|^p,
\]

where the last inequality results from (4.53), the identity $x_{k+1} = x_k + s_k$, and (4.48). But this contradicts our assumption that (4.52) holds. Hence, (4.52) must fail.
The inequality (4.44) then follows by combining this conclusion with the fact that
\(\chi_f(x_{k+1}, \epsilon) > \epsilon \) before termination.

We are now ready to consider our first complexity result, whose proof uses restrictions of the successful and unsuccessful iteration index sets defined above to \(\{0, \ldots, k\} \), which are given by

\[
S_k \overset{\text{def}}{=} \{0, \ldots, k\} \cap S, \quad U_k \overset{\text{def}}{=} \{0, \ldots, k\} \setminus S_k,
\]

respectively.

Theorem 4.10. Suppose that (AS.1), (1.3), and (AS.2)–(AS.5) hold and that

\[
\epsilon \leq \min \left[\alpha, \left(\frac{1}{4} \omega K \phi^{p+1} \right)^p \right] \quad \text{if} \quad \mathcal{H} \neq \emptyset.
\]

Then Algorithm 3.1 requires at most

\[
\kappa S(f(x_0) - f_{\text{low}}) \epsilon^{\frac{p+1}{p}} + |\mathcal{H}|
\]

successful iterations to return a point \(x_\epsilon \in \mathcal{F} \) such that \(\chi_f(x_\epsilon, \epsilon) \leq \epsilon \) for

\[
\kappa S = \frac{(p + 1)!}{\eta \sigma_{\min} q^{p+1}} \left[2 \left(L(\alpha) + \theta + \frac{|N|}{p!} \gamma_2 \right) \right]^{\frac{p+1}{p}}.
\]

Proof. Let \(k \in S \) be the index of a successful iteration before termination, and suppose first that \(\mathcal{H} \neq \emptyset \). Because the iteration is successful, we obtain, using (AS.4), that

\[
f(x_0) - f_{\text{low}} \geq f(x_0) - f(x_{k+1}) \geq \sum_{\ell \in S_k} [f(x_\ell) - f(x_\ell + s_\ell)] \geq \eta \sum_{\ell \in S_k} [f(x_\ell) - T_{f,p}(x_\ell, s_\ell)].
\]

In addition to (4.56), let us define

\[
S_{\epsilon,k} \overset{\text{def}}{=} \{0, \ldots, k\} \cap S_{\epsilon}, \quad S_{\parallel s\parallel,k} \overset{\text{def}}{=} \{0, \ldots, k\} \cap S_{\parallel s\parallel},
S_{\varnothing,k} \overset{\text{def}}{=} \{0, \ldots, k\} \cap S_{\varnothing}, \quad S_{\varnothing,k} \overset{\text{def}}{=} \{0, \ldots, k\} \cap S_{\varnothing}.
\]

We now use the fact that, because of (4.41),

\[
S_{\parallel s\parallel,k} \cup S_{\varnothing,k} \cup S_{\varnothing,k} = S_k \setminus S_{\epsilon,k} \subseteq S_k,
\]
and (4.1) to deduce from (4.60) and Lemma 4.3 that

\[
f(x_0) - f_{\text{low}} \geq \eta \left\{ \sum_{\ell \in S_{\parallel \cdot \parallel, k}} [f(x_\ell) - T_{f,p}(x_\ell, s_\ell)] + \sum_{\ell \in S_{\text{\#}, k}} [f(x_\ell) - T_{f,p}(x_\ell, s_\ell)] \right\}
\]

\[
+ \sum_{\ell \in S_{\text{\#}, k}} [f(x_\ell) - T_{f,p}(x_\ell, s_\ell)] \right\}
\]

\[
\geq \eta \sigma_{\text{min}} \left(\frac{p+1}{(p+1)!} \right) \left\{ |S_{\parallel \cdot \parallel, k}| \min_{\ell \in S_{\parallel \cdot \parallel, k}} \left[\sum_{i \in N} \|s_{i, \ell}\|^{p+1} \right] \right.
\]

\[
+ |S_{\text{\#}, k}| \min_{\ell \in S_{\text{\#}, k}} \left[\sum_{i \in N} \|s_{i, \ell}\|^{p+1} \right] + \left| S_{\text{\#}, k} \right| \min_{\ell \in S_{\text{\#}, k}} \left[\sum_{i \in N} \|s_{i, \ell}\|^{p+1} \right] \right\}
\]

\[
\geq \eta \sigma_{\text{min}} \left(\frac{p+1}{(p+1)!} \right) \left\{ |S_{\parallel \cdot \parallel, k}| \min_{\ell \in S_{\parallel \cdot \parallel, k}} \|s_{\ell}\|^{p+1} + |S_{\text{\#}, k}| \min_{\ell \in S_{\text{\#}, k}} \|s_{\ell}\|^{p+1} \right\}
\]

\[
+ \left| S_{\text{\#}, k} \right| \min_{\ell \in S_{\text{\#}, k}} \|s_{\ell}\|^{p+1} \right\}.
\]

Because of (4.38), (4.61), Lemma 4.9, and (4.42), this now yields that

\[
f(x_0) - f_{\text{low}} \geq \eta \sigma_{\text{min}} \left(\frac{p+1}{(p+1)!} \right) \left\{ |S_{\parallel \cdot \parallel, k}| \min_{\ell \in S_{\parallel \cdot \parallel, k}} \|s_{\ell}\|^{p+1} + |S_{\text{\#}, k}| \min_{\ell \in S_{\text{\#}, k}} \|s_{\ell}\|^{p+1} \right\}
\]

\[
+ \frac{\eta \sigma_{\text{min}} \left(\frac{p+1}{(p+1)!} \right)}{\left(\frac{1}{4} \omega < 1 \right) \left(\frac{1}{4} \omega < 1 \right) \left(\frac{1}{4} \omega < 1 \right)} \left\{ |S_{\parallel \cdot \parallel, k}| + |S_{\text{\#}, k}| + \left| S_{\text{\#}, k} \right| \min \left[\left(\kappa \gamma \epsilon \right)^{\frac{p+1}{p}}, \left(\frac{1}{4} \omega \right)^{p+1} \right] \right\}
\]

\[
+ \frac{\eta \sigma_{\text{min}} \left(\frac{p+1}{(p+1)!} \right)}{\left(\frac{1}{4} \omega < 1 \right) \left(\frac{1}{4} \omega < 1 \right) \left(\frac{1}{4} \omega < 1 \right)} \left\{ |S_{\parallel \cdot \parallel, k}| + \left| S_{\text{\#}, k} \right| \left(\kappa \gamma \epsilon \right)^{\frac{p+1}{p}} \right\},
\]

where we used (4.57), the partition of $S_{\parallel \cdot \parallel, k}$ in $S_{\parallel \cdot \parallel, k} \cup S_{\text{\#}, k} \cup S_{\text{\#}, k}$, and the inequality $\frac{1}{4} \omega < 1$ to obtain the last inequality. Thus,

\[
(4.62) \quad |S_{\ell, k}| \leq \kappa_S (f(x_0) - f_{\text{low}}) \epsilon^{-\frac{p+1}{p}} + |S_{\ell, k}|,
\]

where κ_S is given by (4.59). The desired iteration complexity (4.58) then follows from this bound, $|S_{\ell, k}| \leq |S_{\ell}|$, and (4.40).

We note the presence of the constants ζ and σ_{min} in the denominator of (4.59). The first is problem dependent and typically not much smaller than one. The second is a typical feature of regularization methods, and is an important difference from other well-known algorithms, such as Newton’s method. In practice, σ_{min} is chosen (by the user) relatively small (10^{-3} say). As it is central to the derivation of the complexity bound, its presence appears to be the price to pay for obtaining an optimal worst-case complexity bound in terms of the power of ϵ.

To complete our analysis in terms of evaluations rather than successful iterations, we need to bound the total number of all (successful and unsuccessful) iterations.
Lemma 4.11. Assume that (AS.2) and (AS.3) hold. Then, for all \(k \geq 0 \),
\[k \leq \kappa^a |S_k| + \kappa^b, \]
where
\[\kappa^a \overset{\text{def}}{=} 1 + \frac{|N| \log \gamma_0}{\log \gamma_1} \quad \text{and} \quad \kappa^b \overset{\text{def}}{=} \frac{|N|}{\log \gamma_1} \log \left(\frac{\sigma_{\max}}{\sigma_{\min}} \right). \]

Proof. For \(i \in \mathcal{N} \), define
\[\mathcal{J}_{i,k} \overset{\text{def}}{=} \{ j \in \{ 0, \ldots, k \} \mid (3.19) \text{ holds with } k \leftarrow j \} \]
(the set of iterations where \(\sigma_{i,j} \) is increased) and
\[\mathcal{D}_{i,k} \overset{\text{def}}{=} \{ j \in \{ 0, \ldots, k \} \mid (3.23) \text{ holds with } k \leftarrow j \} \subseteq S_k \]
(the set of iterations where \(\sigma_{i,j} \) in decreased), the final inclusion resulting from the condition that \(\rho_k \geq \eta \) in both (3.21) and (3.22). Observe also that the mechanism of the algorithm, the fact that \(\gamma_0 \in (0, 1) \) and Lemma 4.6 impose that, for each \(i \in \mathcal{N} \),
\[\sigma_{\min} \gamma_1 |\mathcal{J}_{i,k}| \gamma_0 |S_k| \leq \sigma_{i,k} \leq \sigma_{\max}. \]
Dividing by \(\sigma_{\min} > 0 \) and taking logarithms yields that, for all \(i \in \mathcal{N} \) and all \(k > 0 \),
\[|\mathcal{J}_{i,k}| \log \gamma_1 + |S_k| \log \gamma_0 \leq \log \left(\frac{\sigma_{\max}}{\sigma_{\min}} \right). \]
Note now that, if (3.19) fails for all \(i \in \mathcal{N} \) and given that Lemma 4.4 ensures that \(f_i(x_i + s_i) \leq m_i(x_i, s_i) \) for \(i \in \mathcal{H} \setminus \mathcal{C}_k^+ \), then
\[\delta f_k = \sum_{i \in \mathcal{W}_k^+} \delta f_{i,k} \geq \sum_{i \in \mathcal{W}_k^+} \delta m_{i,k} = \delta m_k. \]
Thus, in view of (3.18), we have that \(\rho_k \geq 1 > \eta \) and iteration \(k \) is successful. Thus, if iteration \(k \) is unsuccessful, \(\sigma_{i,k} \) is increased by using (3.20) for at least one \(i \in \mathcal{N} \). Hence, we deduce that
\[|\mathcal{J}_{i,k}| \leq \sum_{i \in \mathcal{N}} |\mathcal{J}_{i,k}| \leq |\mathcal{N}| \max_{i \in \mathcal{N}} |\mathcal{J}_{i,k}|. \]
The desired bound follows from (4.63) and (4.64) by using the fact that \(k = |S_k| + |\mathcal{U}_k| - 1 \leq |S_k| + |\mathcal{U}_k| \), the term \(-1\) in the equality accounting for iteration 0. \(\square \)

We may now state our main evaluation complexity result.

Theorem 4.12. Suppose (AS.1), (1.3), (AS.2)–(AS.5), and (4.57) hold. Then Algorithm 3.1 using models (3.12) for \(i \in \mathcal{H} \) requires at most
\[\kappa^a \left[\kappa_S(f(x_0) - f_{\text{low}}) \epsilon^\frac{p+1}{p} + |\mathcal{H}| \right] + \kappa^b + 1 \]
iterations and evaluations of \(f \) and its first \(p \) derivatives to return a point \(x_\epsilon \in \mathcal{F} \) such that \(\chi_f(x_\epsilon, \epsilon) \leq \epsilon. \)
Proof. If termination occurs at iteration 0, the theorem obviously holds. Assume therefore that termination occurs at iteration \(k + 1 \), in which case there must be at least one successful iteration. We may therefore deduce the desired bound from Theorem 4.10, Lemma 4.11, and the fact that each successful iteration involves the evaluation of \(f(x_k) \) and \(\{ \nabla^i f_{\mathcal{W}_k}(x_k) \}_{i=1}^p \), while each unsuccessful iteration only involves that of \(f(x_k) \) and \(\nabla^1 f_{\mathcal{W}_k}(x_k) \).

Note that we may count the derivatives' evaluations in Theorem 4.12 because only the derivatives of \(f_{\mathcal{W}_k} \) are ever evaluated, and these are well defined. For completeness, we state the complexity bound of the important purely Lipschitzian case.

Corollary 4.13. Suppose that (AS.1)–(AS.4) hold and \(\mathcal{H} = \emptyset \). Then Algorithm 3.1 requires at most

\[
\kappa^a \left[\kappa_S(f(x_0) - f_{\text{low}}) \epsilon^{-\frac{p+1}{p}} \right] + \kappa^b + 1
\]

iterations and evaluations of \(f \) and its first \(p \) derivatives to return a point \(x_\epsilon \in \mathcal{F} \) such that

\[
\chi_f(x_\epsilon) \overset{\text{def}}{=} \min_{x+d \in \mathcal{F}} \left\| \frac{\nabla^1 f_{\mathcal{W}(x)}(x)^T d}{\|d\| \leq 1} \right\| \leq \epsilon.
\]

Proof. The proof directly follows from Theorem 4.12, \(\mathcal{H} = \emptyset \) and the observation that \(\mathcal{R}(x, \epsilon) = \mathcal{R}^0 \) for all \(x \in \mathcal{F} \) since \(\mathcal{C}(x, \epsilon) = \emptyset \).

5. **Evaluation complexity for general convex \(\mathcal{F} \).** The regularized two-sided model (3.12) has clear advantages, the main ones being that, except at the origin, where it is nonsmooth, it is polynomial and has finite gradients (and higher derivatives) over each of its two branches. It is not, however, without drawbacks. The first of these is that its prediction for the gradient (and higher derivatives) is arbitrarily inaccurate as the origin is approached, and the second being its evaluation cost, which is typically higher than evaluating \(|x + s|^q \) or its derivative directly. In particular, it is the first drawback that requires the careful analysis of Lemma 4.5, leading in turn, via Lemma 4.7, to the crucial lemma (Lemma 4.8). This is significant because the latter, in addition to the use of (3.12) and the requirement that \(p \) must be odd, also requires the “kernel-centered” assumption (1.3), a sometimes undesirable restriction of the feasible domain geometry.

In the case where evaluating \(f_N \) is very expensive and the convex \(\mathcal{F} \) is not “kernel centered,” it may sometimes be acceptable to push the difficulty of handling the non-Lipschitzian nature of the \(\ell_q \) norm regularization in the subproblem of computing \(s_k \), if evaluations of \(f_N \) can be saved. In this context, a simple alternative is then to use

\[
(5.1) \quad m_i(x_i, s_i) = |x_i + s_i|^q \quad \text{for} \quad i \in \mathcal{H}
\]

that is, \(m_i(x_i, s_i) = f_i(x_i + s_i) \) for \(i \in \mathcal{H} \). The cost of finding a suitable step satisfying (3.15) may of course be increased, but, as we already noted, this cost is irrelevant for worst-case evaluation analysis as long as only the evaluation of \(f_N \) and its derivatives is taken into account. The choice (5.1) clearly maintains the overestimation property of Lemma 4.4. Moreover, it is easy to verify (using (AS.3) and (5.1)) that

\[
\| \nabla_x f_{\mathcal{W}_k}(x_k + s_k) - \nabla_x m_{\mathcal{W}_k}(x_k, s_k) \| = \| \nabla_x f_N(x_k + s_k) - \nabla_x m_N(x_k, s_k) \| \leq L_{\text{max}} \| s_k \|^p.
\]
This in turn implies that the proof of Lemma 4.9 can be extended without requiring (4.46) and using \(C_k = H \setminus C_k^+ \). The derivation of (4.49) then simplifies because of (5.2) and holds for all \(i \in H \setminus C_k^+ \) with \(L(\alpha) = L_{\text{max}} \), so that (4.44) holds for all \(k \in S \), the assumption (4.43) now being irrelevant. This result then implies that the distinction made between \(S_\omega \), \(S_\delta \), \(S_\bullet \), and \(S_{||s||} \) is unnecessary because (4.44) holds for all \(k \in S = S_\omega \). Moreover, since we no longer need Lemma 4.8 to prove that \(S_\bullet = \emptyset \), we no longer need the restrictions that \(p \) is odd and (1.3) holds either. As a consequence, we deduce that Theorem 4.10 holds for arbitrary \(p \geq 1 \) and for arbitrary convex, closed nonempty \(F \), without the need to assume (4.57) and with \(L(\alpha) \) replaced by \(L_{\text{max}} \) in (4.59). Without altering Lemma 4.11, we may therefore deduce the following complexity result.

Theorem 5.1. Suppose that (AS.1), (AS.2) (without the restriction that \(p \) must be odd), (AS.3), and (AS.4) hold. Then Algorithm 3.1 using the true models (5.1) for \(i \in H \) requires at most

\[
\kappa^a \left[\kappa^S f(x_0) - f_{\text{low}} \epsilon \right] \frac{p+1}{p} + |H| + \kappa^b + 1
\]

iterations and evaluations of \(f_N \) and its first \(p \) derivatives to return a point \(x_\epsilon \in F \) such that \(\chi_f(x_\epsilon, \epsilon) \leq \epsilon \), where

\[
\kappa^S = \frac{(p+1)!}{\eta \sigma_{\min} \varsigma^{p+1}} \left[2|N| \left(L + \theta + \frac{\gamma_2}{p!} \right) \right]^{\frac{p+1}{p}}.
\]

As indicated, the complexity is expressed in this theorem in terms of evaluations of \(f_N \) and its derivatives only. The evaluation count for the terms \(f_i \) (\(i \in H \)) may be higher since these terms are evaluated in computing the step \(s_k \) using the models (5.1). Note that the difficulty of handling infinite derivatives is passed on to the subproblem solver in this approach.

Moreover, from the analysis in this section it also follows that one may consider objective functions of the form \(f(x) = f_N(x) + f_H(x) \) and prove an \(O(\epsilon^{-\frac{p+1}{p}}) \) evaluation complexity bound if \(f_N \) has Lipschitz continuous derivatives of order \(p \) and if \(m_H(x_k, s) = f_H(x_k + s) \), passing all difficulties associated with \(f_H \) to the subproblem of computing the step \(s_k \).

As it turns out, an evaluation complexity bound may also be computed if one insists on using the Taylor models (3.12) while allowing the feasible set to be an arbitrary convex, closed, and nonempty set. Not surprisingly, the bound is (significantly) worse than that provided by Theorem 4.12, but it has the merit of existing. Its derivation is based on the observation that (4.12) and (4.19) imply that

\[
|\nabla^1_s|x_i + s_i|^q - \nabla^1_s m_i(x_i, s_i)| \leq q(\min|x_i|, |x_i + s_i|)^{q-p-1}|\mu(x_i, s_i)|^p \leq q\epsilon^{q-p-1}|s_i|^p.
\]

This bound can then be used in a variant of Lemma 4.9, just as (5.2) was in section 5. In the updated version of Lemma 4.9, we replace \(L(\alpha) \) by \(L_* \text{def} = |N| L_{\text{max}} + |H| q \), and (4.49) now becomes

\[
\|\nabla^1 f_{W_k^+}(x_{k+1}) - \nabla^1 m_{W_k^+}(x_k, s_k)\| \leq L_* \epsilon^{q-p-1} + \frac{|N|}{p!} \sigma_{\max} \|s_k\|^p.
\]

This results in the replacement of (4.55) by

\[
\chi_f(x_{k+1}) \leq \left(L_* \epsilon^{q-p-1} + \theta + \frac{|N|}{p!} \sigma_{\max} \right) \|s_k\|^p \leq \left(L_* \epsilon^{q-p-1} \right) \|s_k\|^p.
\]
and therefore (4.44) is replaced by
\[
\|s_k\| \geq \left[2 \left(L_* + \theta + \frac{|N|}{p!} \sigma_{\text{max}} \right) \right]^{-\frac{1}{2}} e^{-\frac{p+2}{p} \frac{q-p}{p+1}}.
\]
We may now follow the steps leading to Theorem 5.1 to deduce a new complexity bound.

Theorem 5.2. Suppose that (AS.1)–(AS.4) hold. Then Algorithm 3.1 using the Taylor models (3.12) for \(i \in H\) requires at most
\[
\kappa_a \left[\kappa^*_S \left(f(x_0) - f_{\text{low}} \right) \epsilon^{-\frac{(p+2-q)(p+1)}{p}} + |H| \right] + \kappa^*_b + 1
\]
iterations and evaluations of \(f\) and its first \(p\) derivatives to return a point \(x_\epsilon \in F\) such that \(\chi_f(x_\epsilon, \epsilon) \leq \epsilon\), where
\[
\kappa^*_S = \frac{(p+1)!}{\eta \sigma_{\min}} \left[2 \left(L_* + \theta + \frac{|N|}{p!} \gamma_2 \right) \right]^{\frac{p+1}{p}}.
\]
Observe that, due to the second inequality of (5.4), \(\theta\) can be replaced in (3.15) by \(\theta_* = \theta \epsilon^{q-p-1}\), making the termination condition for the step computation very weak.

6. Further discussion.

The above results suggest some additional comments.

- [The complexity result in \(O(\epsilon^{-(p+1)/p})\) evaluations obtained in Theorem 4.12 is identical in order to that presented in [2] for the unstructured unconstrained cases and in [5] for the unstructured convexly constrained cases. It is remarkable that incorporating non-Lipschitzian singularities in the objective function does not affect the worst-case evaluation complexity of finding an \(\epsilon\)-approximate first-order critical point.

- [Interestingly, Corollary 4.13 also shows that using a partially separable structure does not affect the evaluation complexity either, therefore allowing cost-effective use of the problem structure with high-order models.

- [The algorithm presented here is considerably simpler than that discussed in [10, 12] in the context of structured trust regions. In addition, the present assumptions are also weaker. Indeed, an additional condition on long steps (see Assumption AA.1s in [12, Page 364]) is no longer needed.

- [Can one use even-order models with Taylor models in the present framework? The main issue is that, when \(p\) is even, the two-sided model \(T_{i|[s,p]}(x_i, s_i)\) is no longer always an overestimate of \(|x_i + s_i|^q\) when \(|x_i + s_i| > |x_i|\), as can be verified from (4.12). While this can be taken care of by adding a regularization term to \(m_i\), the necessary size of the regularization parameter may be unbounded when the iterates are sufficiently close to the singularity. This in turn destroys the good complexity because it forces the algorithm to take excessively short steps.

An alternative is to use mixed-order models, that is, models of even order \(p\) for the \(f_i\) whose index is in \(N\) and odd-order models for those with index in \(H\). However, the latter (odd) order has to be at least as large as \(p\), because it is the lowest order that dominates in Lemma 4.9. The choice of a \((p+1)\text{st}\)-order model for \(i \in H\) is then the most natural.

\(^5\)And theory, if one restricts one’s attention to the case where \(H = \emptyset\).
A variant of the algorithm in which it is possible for a particular \(x_i \) to leave the \(\epsilon \)-neighborhood of zero can be stated, provided the associated step results in a significant (in view of Theorem 4.10) objective function decrease, such as a multiple of \(\epsilon^{(p+1)/p} \) or some \(\epsilon \)-independent constant. These decreases can then be counted separately in the argument of Theorem 4.10, and cycling is impossible since there can be only a finite number of such decreases.

We have assumed in (1.1) that the same exponent \(q \) is used in all element functions \(f_i \) for \(i \in H \). This can be extended without modifying the above results to the case where \(f_i(x_i) = |U_i x|^q_i \) for \(i \in H \) and \(0 < q_{\text{min}} \leq q_i \leq q_{\text{max}} < 1 \). The proofs are, however, (even) more technical, as one then needs to take \(q_{\text{min}} \), \(q_{\text{max}} \), and their ratio into account.

7. Conclusions. We considered the problem of minimizing a partially separable nonconvex objective function \(f \) involving non-Lipschitzian \(q \)-norm regularization terms and subject to general convex constraints. Problems of this type are important in many areas, including data compression, image processing, and bioinformatics. We showed that the introduction of these non-Lipschitzian singularities and the exploitation of problem structure do not affect the worst-case evaluation complexity. More precisely, we first defined \(\epsilon \)-approximate first-order critical points for the considered class of problems in a way that makes the complexity bounds obtained comparable to existing results for the purely Lipschitzian case. We then showed that, if \(p \) is the (odd) degree of the models used by the algorithm, if the feasible set is “kernel centered,” and if Taylor models are used for the \(q \)-norm regularization terms, the bound of \(O(\epsilon^{(p+1)/p}) \) evaluations of \(f \) and its relevant derivatives (derived for the Lipschitzian case in [2]) is preserved in the presence of non-Lipschitzian singularities. In addition, we showed that the partially separable structure present in the problem can be exploited (especially for high-degree derivative tensors) without affecting the evaluation complexity either. We also showed that, if the difficulty of handling the non-Lipschitzian regularization terms is passed to the subproblem (which can be meaningful if evaluating the other parts of the objective function is very expensive), in that non-Lipschitz models are used for these terms, then the same bounds hold in terms of evaluation of the expensive part of the objective function, without the restriction that the feasible set be “kernel centered.” Finally, a worse complexity bound was provided in the case where one uses Taylor models for the \(q \)-norm regularization terms with a general convex feasible set.

These objectives were attained by introducing a new first-order criticality measure as well as the new two-sided model of the singularity given by (3.11), which exploits the inherent symmetry and provides a useful overestimate of \(|x|^q \), if its order is chosen to be odd, without the need for smoothing functions.

An obvious extension of our work is the derivation of worst-case complexity bounds for computing an approximate second-order critical point of problem (1.1). This requires the specification of the associated necessary conditions and modifications of the algorithm, not to mention a new complexity theory. While this may be possible, it is clearly nontrivial and is the aim of ongoing research.

REFERENCES

