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Résumé 

Le document présent décrit les résultats d'une recherche dans le domaine 
de la programmation parallèle . Le sujet principal de la présentation est 
l'environnement PARFOR et les possibilités qu' i l offre . Cet environnement 
est conçu dans le but de permettre la réécriture de programmes FORTRAN 
existants, de manière telle qu'ils puissent être exécutés avec un nombre 
que 1 conque de processus . 

L'origine de la définition de PARFOR remonte à une pré-étude faite par une 
équipe de recherche de SIEMENS Munich . Dans le travail présent, plusieurs 
implémentations de cet environnement sont réalisées . Les outils fournis 
par PARFOR et la façon de les utiliser sont évalués . Pour ces réalisations, 
la machine MXSOO SIEMENS , un multiprocesseur travaillant sous UNIX, est 
employée . Ensuite , quelques comparaisons sont faites avec un autre 
environnement parallèle existant FORCE . Plusieurs tests sont 
envisagés , avec pour but l'évaluation des performances de PARFOR . La 
plupart des résultats de ces tests sont fournis sous forme graphique. 



Summary 

This document presents and describes the results of a research made in 
the area of parallel programming. The main subject is the presentation of 
the PARFOR environment and its actual possibilities . This environment is 
designed to allow the rewriting of existing FORTRAN applications so that 
they can take entire profit of a variable number of processes for their 
execution . 

The starting point of the definition of PARFOR was made in a research 
team at SIEMENS Munich . ln this work , Sorne implementations of this 
environment are tried ; the facilities provided and the ways they can be 
used are evaluated . For all this work , the MXSOO SIEMENS machine , 
which is a full multiprocessor machine working under UNIX , is used . 
Then, some comparisons with a concurrent existing parallel environment -
FORCE - are made . Many tests are envisaged in various situations for the 
evaluation of the performances of PARFOR , and most of the results are 
pr-ovided on graphies . 
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Chapter 1 

1 ntroduct ion 

Sequentiality was since a long time the only way to think in the growing 
world of computers and programs . Sequentiality is still at the present 
time the classic way of programming small and middle range computers , 
and also large computers. 

But this situation is more and more changing . Many computers that are 
designed now are conceived with the basic idea of parallelism . 
Parallelism at various levels , from the hardware level to the highest 
software levels. 

The abject of the present work is the presentation of the design and the 
facilities of an experimental parallel environment for FORTRAN 
programmers . This environment is called PARFOR , and its target is to 
give to the FORTRAN programmer the possibi lty to rewrite its sientific 
applications so that they can be executed by many instruction flows on a 
multiprocessor machine . The starting point of the definition of PARFOR 
was made by a research tearn at SIEMENS Munich in collaboration with the 
TU Munich . 

The sub ject of this work is to test and evaluate the PARFOR environment 
within the UNIX operating system . Then we try to opt imize its 
implementation whithin the available UNIX environment . Later , some 
comparisons are made with a concurrent in FORTRAN like parallel 
languages: The FORCE environment developped earlier in USA by Prof essor 
JORDAN and i ts team . 



Introduction 2 

This work is structurated in the following way : 

Chapter one is rather general and remembers some elementar theoretical 
concepts concerning parallelism , tools for parallel programming , some 
elements of theories for performances measurements , practical measures 
that we designed to take the measures in the parallel programs , and 
eventually , a review of the main general technics for parallel 
programming . 

ln a second chapter , the programmation in the PARFOR environment is 
explained , with ail the problems that thi s involves , the various ways to 
program within PARFOR , the relations between the various concepts of 
PARFOR . Then , some comparisons are made with the possibilities 
provided by the FORCE environment. 

The third chapter contains a description of the PARFOR and the FORCE 
implementations in the UNIX environment , and the modifications which 
were introduced in order to diminish the overheads when programming 
with PARFOR. 

The next chapter describes some of the tests and the results we designed 
for the evaluation of the PARFOR environment . We describe also one test 
made in the FORCE environment , used to compare in a more direct way the 
facilities and the possibilities of PARFOR against FORCE . 

Eventually , chapter five of this work contains a brief conclusion 
concerning this work , the conditions in wich it was done , the results 
obtained and the possible future of PARFOR . 



Chapter 2 

Elements of parallel programs 

2 .2 Parallelism 

2.2.1 Introduction 

Trying a classification of parallelism is a very sensible and delicate will . 
Parallelism in programs , as we conceive it in an abstract way , would 
consist in a possibility that allows programs or applications to be 
executed in a parallel way and at the same time . However, this abstract 
hope , at the present time , has found his rea l meaning only in a very 
restricted number of types of treatements , and in only a few types of 
applications . Actually , there exists not yet a general method of 
implementation of this kind of abstract parallelism , allowing a complete 
automatization, as we can imagine it. Of course, some specific technics 
try to face this rel igious wish . However, these technics , altogether. , are 
not sufficient to forma basic general theory , but rather, they form only a 
set of technics, directly dependent of the type of application, of the type 
of the target machine which is employed , of the type of parallelism 
whished , and eventually , of many other factors on which we have 
presently no control or simply that we ignore . 

But first , we should try to have a definition of a computer system . A 
computer system , in the large· sense , is made of many hardware units , 
each of them beeing designed to perf orm some specific tasks . For th is 
reason of specificity , it is not yet possible to solve general case of 
abstract parallelism that we mentioned earlier . ln the reality , the 
paralle l ism is present as early as many of the units begin to work 



Elements of para/le/ programs 4 

independently , controlled by software . But this reality is still far from 
the abstract form of parallelism that we described above . 

Sorne guesses of classification of parallelism can however be made . The 
better known is the Flynn·s one , consisting of 3 axes . Another 
classification can be made on the conception that we have of parallelism , 
so it is a more abstract classification , and necessary more blurred . The 
third classification of the parallel ism that we tried , is based on the 
concept of granularity of the sections of a program. 

22.2 Classification of EJy.nn 

The classification of the parallelism introduced by Flynn, is based on 3 
main concepts . 

The first considers the number of instructions and datas that the machine 
can treat simultaneously. Using this axe leads to a partition of 4 classes 
of systems, coded by SISD, MIMD, SIMD, MISD. 

The second axe is a description of the interconnections between the 
memories and the processors . ln this axe , the target of analyse is the 
topology of the system . 

The third axe of the classification concerns the leve I of which an 
instruction flow can recover its operations . Flynn calls this the · inertia 
factor·, which can be described as the Pipe-line factor of the machine . 

This classification is far away from perfect and is more and more desuet 
due to the diversification of the machines . 

2.2.3 Partial classifications of the parallelism 

Sorne partial rules can help for the class i fication of the parallelism , 
according to the perception that we have aboutit . 

Parallelism according to his abstract perception : 



Elements of parai/el programs 5 

Parallelism , as we consider it in an abstract way , is a target of 
research. Sorne people are trying to "resolve" it in the general case , and 
in this mind, are trying to improve technics to more general applications. 
So , the guess is to remain at the highest level of abstraction during the 
conception of parallel projects . That is , for example , the case in 
artificial intelligence . 

Parallelism determined by a given architecture: 

Computers are always in evolution to more complex hardwares and 
architectures . Their types are going to more and more diversifications , 
and the applications try to exploit more fully the new advantages provided 
by these improvements. That is a reason why new technics of parallelism 
are developped , following the multiple types of architectures available 
or, in development. 

Parallelilsm determined by a type of application : 

Another approach to the conception of the systems working with 
parallelism , is the conception of an architecture according to the 
structure of the problem to be treated later with the machine . A number 
of machines have seen their architecture copied on the structure of the 
most important types of problems for which they were designed . lt is 
essentially the case in sciences, where some architectures are based on a 
structure which can easely and quickly salve the problems with matrix 
operations . 

2.2..1 Classification of parallelism according to granularity_ 

The granularity is an essential factor in the process of designing parallel 
applications. lt defines the mean size of the grain of a parallel progam . 
This granularity is mainly dependent of the intrication of the code, and on 
the data dependencies in the application . The granularity of a program can 
widely vary from one application to another . 
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A coarse granularity: 

A large granularity , is often present in applications in which the 
operating system itself manages many processes that are part of the 
global application . ln such cases , the application uses calls to system 
procedures like FORK() and JOIN() , to be executed by parallel processes . 
Coordination middles are invoked to control the correctness of the running 
tasks . This type of parallelism is relatively simple and must be 
explicitely specified by the programmer, when designing the application . 

A fine granularity : 

A fine granularity is present in certain types of architectures 
Particulary, the machines concerned are pipe-line machines or data-flow 
machines . The management of this kind of parallel ism is transparent to 
the programmer . The conception of parallel applications is then 
simplifed . If it is transparent ta the programmer , the programming 
language must care for particular formulations which can take profit of 
this parallelism. 

A mean granularity : 

This type of granularity is relatively frequent . lt includes both 
characteristics of programs with large and fine granularities . 
Conventionnai languages allowing a certain amount of parallelism , 
dispose of special libraries containing functions to activate the parallel 
environment . 

~ Distribution of the parallelism 

Studies concerning the distribution, in a program , of the portion that can 
be parallelized and the part can not be parallelized have showed that in 
most of the applications , 99% of the code could be executed in parallel . 
But the main problem is that it is not always easy to redraw a parallel 
code from the sequential code . The reality shows often that the code is so 
intricated that it is not possible without large effort, to parallel ize it . 
Often , the parallelizable sections are very fine so that in a given 
environment , the parallelism is not exploitable . lt is for example the 
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case in loops , where assignements could be done in parallel . So the 
granularity factor is very important . ln general , a coarse granularity is 
bound with a small number of independent tasks running in parallel . 

22.ü The degree of parallelism 

By the definition, the degree of parallelism is the number of tasks which 
can be executed in parallel , simultaneously . lt is greatly dependent on the 
size of the problem to manage . But usually , large problems could provide 
large degrees of parallelism . ln fact, more the problem is large, more the 
treatements it includes are repetitive, so that large degree of parallelism 
can easely be exploited. 

The degree of parallelism 
is highly coupled with the concept of granularity . If the tasks are very 
small ( fine granularity ) , the efficiency of the parallelism is very 
dependent of the overheads produced by the exploitation of this 
parallelism. 



2 .3 Introduction to the main basic concepts 

2.ll Defiaitioas 

Mult1processor : A multiprocessor 1s a computer or a computer system 
containing many processors s1mi lar or not , and a main global memory . The 
processors can work in parallel , share the common memory and the 
peripherals . By def1n1t1on, a mult1processor supports mult1process1ng. 

Parallel machine : A parallel machine is defined as a machine which, in 
one or another way , is conceived to treat problems of parallelism . We 
define as ·parallel treatement' a treatement that exploits a parallel 
environment . 

Explicit paralle1ism : lt is the possibility given to the programmer to 
execute 1n parallel more than one treatement depend1ng or not , one on the 
other . The explicit parallelism is said of a program that 1s explicitely 

• designed to be executed on a parallel machine . This concept is often bound 
to the concept of synchronization. 

lmplic1t paralle11sm : This kind of parallel1sm groups all types of 
parallelisms which are not explicitely spec1f1ed by the programmer. 

Mult1programm1ng : This ls the character1st1c of an operat1ng system 
to make res1de in central memory many unrelated programs , and to make 
execute them in an 1mbricated way by the same central unit . The interrupt 
system of the machine can switch from one program to another . 

Multitasl<ing : This is the characteristic of an operating system to 
allow a job to be executed with more than one task . The tasks are 
executed in parallel , but not necessarily simultaneously. Multitasking 
implies the possibility of multitasking . On a multiprocessor, the tasks 
can be executed simultaneously. 
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Multiprocessing : This is the characteristic of an operating system to 
allow the execution of a program by a multiprocessor , so that many 
processors execute the same program at the same time . They share a 
common memory . 

Process : A process is an instruction flow , a simple execution of a 
program which can be executed independently by the operating system. 

Task : A task is a program unit which can be managed by a job . A task is 
typically a single instanciation of a subroutine , or a loop , which is 
executed simultaneously with other tasks in the same job . 

Job : A job is a single process or a set of processes in .relations which 
are executed concurrently for the benefit of one application . For example, 
a pipe-! ine command on a UNIX system is a job constituted of many 
cooperat i ng processes . 

2.12. Types of multiprocessing 

Heterogeneous multiprocessing ln the heterogenous 
multiprocessing , a program is divided into many parallel sections 
perf orm i ng comp I ete ly di f f erent tasks . The tasks can be ease ly executed 
in parallel , implying a decrease of the total execution time for the 
algorithm . ln fact , the heterogeneous tasks have so little number of 
messages to pass to another , that the communication paths could be slow 
without affection on the performance of the algorithm. 

Homogeneous multiprocessing : ln the homogenous multiprocessing, a 
job consists of several identical tasks. An application which passes most 
of its time in sequential code , can often be converted to a parallel 
version . Each paralle task do the same work , but on diff erent datas . Sorne 
cooperation is necessary between the tasks . 
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23..3 Scheduling_a]_gorithms 

The pre-schedu li ng : 1 n the pre-schedu 1 i ng a 1 gori thm , the processes 
are fixed at the compile time . ln such applications , the programmer 
assigns a specific process to each processor . For example , the 
programmer can decide that the processor number 6 will be permanently 
affected to the management of the input/output operations , and that the 
processor 3 will solve the arithmetic operations . 

The mixed-scheduled algorithm : The mixed-scheduling algorithm 
provides an intermediate step between the pre-scheduled algorithm and 
the passive-scheduled algorithm . ln such a way to schedule , the 
processes are managed by a master process . All the processes execute the 
same code , but the master process spend a part of its time in managing 
the other processes . During the rest of its time , it executes the same 
code. The sequence for the master process is the following : 

1- Distribute the code to the parallel processes 
2- Execute the code as the other processes 

The sequence for the other processes is the following : 

1- Wait for the master process to give me some work to crunch 
2- Crunch the work 
3- Back to the waiting state for new work. 

The passive scheduling : The passive-scheduling algorithm implies 
that all processes are managed by a master process . This master process 
spend all its time in the management of the other processes . This implies 
that at least 2 processes are necessary to execute any algorithm by this 
method . The sequence for the master process is the following : 

1- Distribute the code to the processes 
2- Wait that they have finished 
3- Back to the step 1 

For the other processes, the sequence is the following : 
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1- Wait for the master process to give me some work 
2- execute this work 
3- Return to the waiting state 

11 

The self-scheduling : The self-scheduling algorithm is more 
interresting because it produces what we will call 'dynamic load 
balancing' . The self-scheduling algorithm is val id for all the processes, 
and is the following: 

1- Wait that some work arrives in the queue of works 
2- Remove this work of the queue and execute it 
3- back ta step 1 , until there is nothing more to do . 

The dynamic load balancing produced by this algorithm finds its interrest 
in the fact that all processors available are running at full time until 
there is no more work to do . This is the best algorithm in most cases , but 
we will see later that it requires certains cond i tions that are not always 
available . 

~ Granularity of an application 

As we discussed earlier, the granularity factor is very important for the 
process i ng of para 11 e 1 a 1 gori thms . 1 n f act , the process generat ion , and 
its termination take a great time. Sa, the parallel applications must be 
conceived sa that the management times are negligible compared to the 
time to execute the parallel sections themselves . We will later have the 
opportunity to discuss about the overheads due to process generation , and 
terminal ion in the PARFOR environment . Figure 2-1 shows an abstract 
representation of programs having a large (a) and a fine (b) granularities , 
respect ive ly . 

Large Granularily Program 

begi n end 

Figure 2- l a 
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Fine Granularity Program 

bèg in end 

Figure 2-1 b 

~ Creation and terminatioo of processes 

On a SIN IX system , a new process i s created by a FOR KO primitive . The 
child process is no more than a copy of the old process , using the same 
datas , the same registers , the same fi les and the same program counter . 
So , the chi ld has access to all resources where the father has an access . 
FORKO returns the nul l value for the chi ld process , and the pid of the new 
process for the f ather . 

The JOIN() operation performs the opposite function to return to only one 
instruction flow bit it is not implemented in the UNIX environment . 

The cost of a FORKO operation is high in terms of time . To reduce this 
cost , the parallel applications can create new FORK()s only at their 
beginning, and finish them only at the end of the application. Meanwhile, 
if a process is not necessary for a moment , it is put into a wait ing queue , 
and its processor is released . This cost of setting into a waiting state is 
cheaper than the cost of a new FORKO operation . This technic is explained 
later· and is use in the PARF0R environment . 
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2.3..ô. Communications between proc_esses 

The UNIX system V provides some communication tools to allow 
communications between processes. These tools are available in the IPC 
system library. 

The messages sysstem a11ows processes to communicate via messages . A 
message queue must be created • the structure and the type of the message 
defined , and a text zone reserved for the user to insert anything in it. The 
messages system is accessible via 2 main primitives which are MSGSND 
and MSGRCV . If a process is waiting for a message • its state can be 
defined as waiting or not. 

The semaphores system allows processes to be synchronized via software 
locks and semaphores . The shared memory is used by this system for the 
definition of the queues and the structures. 

The shared memory allocation system allows a user to define and use part 
of the memory shared among the processes. The memory is attributed and 
attached somewhere in the virtual space of the processes. This memory is 
paged 1 ike any other memory . 

The most simple mechanism for communications is the shared memory . A 
shared space can be reserved in virtual memory at the creation date of 
each process . ln C programs , the shared areas can be specified 
dynamically . ln FORTRAN programs , to the contrary , the memory 
allocation is static and all the shared memory regions are allocated at the 
compile time in "common" statements. 

2.3.7 Locks 

A lock is a particular type of data that can have only 2 states , locked and 
unlocked . When a processor is intended to access a shared data structure, 
it must first be sure that the associated lock is unlocked . While it is not 
the case , it remains waiting . When the lock turns to the unlock state , 
indicating that no other process wants an access to the data , the 
processor 1 ocks the 1 ock , access the data , then un 1 ocks the 1 ock . Wh i 1 e 
waiting, the processor remains in a busy state . 
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The locks can be implemented in hardware by atomic lock memories , or 
simply in software , but with certain restri ctions that we will exp lain 
later . 

The hardware locks are called atom ic Iock memories because t he 
operations necessary to acquire or release one of them are undivizable , 
implying that these operations can not be overlapped when many processes 
compete for them . 

Sometimes , in certain circumstances , software locks are also 
interresting . These locks must be implemented in shared memory reg ions . 
They are treated just 1 ike any other memory locations . 

2.3.8 Critical sections 

A critical sect i on is a section of code wh ich must be executed only by one 
pror.ess at a time . Each critical section begins with a Iock operation and 
finishes with an unlock operation . Figure 2-2 shows how a cri tical 
section can be used in a program . We can observe that only one of the 3 
processes can enter the critical section at a moment . 

Pl 

P2 

P3 

Cr il ic al region protected by locks . 

get 
Iock 

ask 
Iock 

exec ... 
cri tica l 
reg ion 

re lease 
Iock 

get 
lock 

re lease 
Iock 

----+-- -w-ai_t_-il ......... . 
exec . 
criti ca l 
reg ion Iock 

ask get re I ease 
lock Iock exec . lock 

----t--- ---w-a~i.,..-t --- - ---1 · ·· cr ifi ca·1 .. .. ·· I ► 

Iock reg1on 

Figure 2- 2 
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Figure 2-3 shows the standard algorithm which allows or denies accesses 
to a critical section of a program . If the lock associated to a critical 
section is locked , the process must wait that the lock turns to an unlock 
state . 

Section Prolected by Lock 

Start 

LOCK the 
Iock 

Critical 
sect ion 

UNLOCK t he 
lock 

WAIT 
yes 

Figure 2-3 

Note that a critical section can be protected by many ways , not 
necessarily by locks . For example, semaphores are also usefull to protect 
critical regions . 

ll9. Semaphores 

A semaphore is a shared data structure that can be used for the 
synchronizations of various coordinated processes . The most simple type 
of semaphore is the atomic loçk . The semaphore , thus , is designed to 
manage the shared resources inside an application . The semaphore itself 
has always an integer value N . This value can be interpreted as follow : 
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If N > O , the resource is demanded N times by different processes . When 
the semaphore reaches the value 1 , its state becomes unlocked . 

If N <= O , the semaphore is locked, i.e. the resource is not available, and 
-N represent the number of times that the waiting processes have 
demanded the access to the protected resource . 

The value of a semaphore can be modified by only 2 algorithms . These 
algorithms manage the acquisition of the semaphores , and the release of 
them. 

Acquisition algorithm : 

1 - Decrement N by 1 
2- If N <= O, insert me into the processor·s waiting queue and wait my 

tour. Else do nothing . 

Re 1 ease al gori thm : 

1- If N >= O, inform the first process of the processor·s waiting queue 
that it is its tour , and shift the queue of one position. Otherwise, 
do nothing 

2- 1 ncrement N by 1 . 

2.3.10 Events 

An event is something that must be waited for, bef ore a process can start 
or continue its execution .An event has 2 possible values : delivered or 
suppressed . A process waiting for an event must wait until the event is 
delivered by another process . Once the event is delivered , the waiting 
process can continue its execution . lt is the role of the master process or 
the role of one another process to suppress the event after its use . 

2.3. 11 Barri ers 

A barrier is a synchronization point . This point is said to be realized when 
it has been reached by a specified number of processes . The rule for a 
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process when i t arrives at the barri er , i s the f o 11 ow i ng , in most of the 
standard kinds of barriers : 

1- Mark me present at the barrier 
2- Wait until the required number of processes at the barrier is reached 
3- Reset the barrier and continue the execution . 

The barriers can be implemented in many ways . The most known and used 
are the 2 locks barrier, and the software barrier . The implementation of 
both kinds of barriers have their advantages and their inconvenients . 

2.3.12 Eig~ 

The following figures show the relations bet ween multiprogrammed 
system , multitasking system and multiprocessing systems . 

Figure 2-4 shows how the code of a program is executed on a single 
monoprogrammed monoprocessor machine . The first figure (a) shows the 
process running on a very simple machine at a very low machine level . On 
the second figure (b) , one can see the intermediate use of an operating 
system . But the processor can st i 11 execute on ly one process . 

lndependent Personnal 
processor computer 

~ Ev 
Figure 2-4a a G Figure 2-4b 

[::] 
Figure 2-5 shows the dynamic of multiprogrammed system running on a 
monoprocessor machine . Many processes share the only one available 
process . The operat ing system must dispose of a scheduler to distribute 
fairly the processor among Hie asking processes . Only one process is in 
the running state at a t ime . 
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Multiprogrammed operating system 

Figure 2-5 

Figure 2-6 shows the dynamic of a multiprogrammed system with multiple 
processors . The architecture disposes of 4 processors . If more than 4 
processes are introduced in the system , they must follow the rules of a 
multiprogrammed system , i.e. wait until the processor resource becomes 
available, like in the traditionnal multiprogrammed system. 

Multiprogrammed operating system on a multiprocessor machine 

Figure 2-6 

Figure 2-7 shows how a set of many processes can be executed at the 
same time for the benefit of one job . 

Job 

Multiprogrammed operating system on a multiprocessor machine 

Proc. Proc. Proc. Proc. 

Figure 2-7 
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Figure 2-8 shows eventually that dynamic associations of both previous 
cases can appear on a computer system , for the execution of many jobs in 
parallel . Each of them recquires many associated processes executing the 
code in parallel and / or at the same time . The architecture itself 
disposes of many processors . 

Job 
Sequ. 
job Job 

Mult1programmed operating system on a multiprocessor machine 

L-P_ro_c_. -'--Pr_o_c·____,__P_ro_c_. ___.I EJ I Proc. 1 Proc. 1 

Figure 2-8 



2 .4 Theories concerning multiprocessor 
performances 

2. 4 .1 The concept of speedup 

F1rst cons1der an algor1thm A runn1ng on a machine whlch handle only one 
processor for the user processes. The t1me for the execut1on of the entlre 
algorithm ls T( 1) . If the same algorithm A can be executed without 
changes on a second machine which 1s able to allocate N processors for the 
execution, then the time for the entire execution of the algorithm Will be 
T(N). There are relations between T( 1) and T(N) . 

From there , new concepts can be introduced . The is the speedup denoted 
by S(N). The speedup of an algor1thm 1s defined as the increase of speed of 
runn1ng an algortthm when pass1ng from a system wh1ch executes tt w1th 
one processor , to another whlch executes it with N processors . lt 1s 
expressed as f ollow : 

T( 1) 
S(N) = -------

T(N) 

The second concept is related to the efficiency E(N) of one of the parallel 
sections of the algorithm in execution . lt is in relation with the concept 
of speedup by the following way : 

S(N) 
E(N) = -------

N 

The relation between the two concepts is that the comparison of S(N) with 
N is equivalent to the comparison of E(N) with 1 . 
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At this point , it should be pointed at , that the target of the 
developpement of parallel algorithms is not to increase the speedup , but 
well to reduce the execution time of the algorithm . ln some sence , an 
algorithm with a greater speedup uses the hardware more intensively, but 
does not necessarily provide a better execution time . 

2..i2 Conf 1 i cts 

We have just defined the speedup . According to [Darema-Rogers] , it is 
1 ess than the 1 i neari ty . 1 n f act , the best case of speedup i s a mono ton 
increasing function of the number of processors for a given algorithm . But 
we will see that some controverse still remain about the speedup . This 
problem is a sensible point . when s·peeking about parallelization of 
programs . 

Conf1icts seem to appear between people who are thinking about the limits 
of the possibilities provided by parallel algorithms . The main problem is 
simple to imagine . Consider for example a spec i fic program that has a 
sequential execution. What could be the increase of performances given by 
the the same program executed with more than one processor ? The 
question can be reformulated in a different way : ls there an upper limit to 
the increase of performances due to the parallelization of the program ? 

The response to this question is not trivial . Many people have different 
opinions about this problem which , at the first sight , seems to be 
simple . ln fact , there is no clear response to it . So , V.FABER in 
[Faber-Lubeck-White] claims and demonstrates in a very simple way, that 
the superlinear speedup of an efficient algorithm is not possible . But in 
another article of the same issue of the review , D.PARKINSON in 
[Parkinson-86), to the contrary, certifies that the parallel efficiency of 
an algorithm can be greater than unity . 

This conflict among thinkers about a so simple problem is sufficient to 
show that some controverse still exists, and that actually, the problems 
highlighted by the parallel programming are not yet completely understood 
by the users . Of course , for the small problem evoked in the articles , 
there is a solution . This one is found in the default of precision in the 
assumptions, so that they are talking about different things . The solution 
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of this apparently contradiction is described in [Faber-Lubeck-White-87] 
and in [Janssen] of the review which introduced the original consecutive 
articles, to provoke confusions and reactions among readers . 

21J. Discussion of speedup and overheads 

We have defined the theoretical concept of speedup . This concept has 2 
interresting properties which are : First , this concept is processor and 
implementation independent, and secondly , the speedup is the notion that 
we are direct ly interrested in . 

When the speedup must be measured in an algorithm , 2 critical points 
must be taken into account . 

First , it is clear that the measurements done , must be done with the 
same datas for bath algorithms . This implies that the same amount of 
work must be crunched by bath versions of the algorithm , the parallelized 
version and the sequential version . For example , if an algorithm is 
designed to search a sub-string in a string , the same string and 
sub-string must be used in bath algorithms for the measurements . 

Secondly, there is a subttle point relative to the definition of speedup . 
Usually, the execution time of a multiprocessor algorithm executed with 
on ly one processor , T( 1 )' , i s greater than the execut ion t ime of the 
execution time T( 1) of the original sequential algorithm doing the same . 
This appears to be due to some additionnal work introduced by the parallel 
environment . This additionnal work is the cost of parallelization , also 
cal led overheads . 

The overheads are of 2 natures . 

First , the hardware overheads . These overheads are due to phenomens 
such as bottlenecks or communication delays . They are denoted by Hloss . 

Secondly , the software overheads . These overheads are the consequence 
of the inaptitude of the algorithm to keep the requested processors all the 
time in a busy state . This is a defficiency of the algorithm . These 
overheads are called Sloss . 
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With these concepts, we can define the execution time of an algorithm on 
a multiprocessor system : 

T( 1) + Sloss • Hloss T( 1 )' 
T(N) = ----------------------- + -------

N N 

On a well designed multiprocessor system, Hloss should be negligible . But 
Sloss can be very great , depending on the way the algorithm has been 
parallelized . 

According to [Darema-Rogers] , the overheads are usual ly low , 
approximately 1 % of the total execution time , but it depends greatly on 
the kind of application studied . For example , small usual benchmarks 
produce overheads on systems that can take until 10% of the runtime . 
Normally, for the large applications, the overheads are rather small . 

2.4.4 Concepts of Hockne~ 

ln a computer machine , the performance measurements can be taken by 
the use of some parameters . Depending on these parameters , some 
measures can be described . One method of measurements is proposed by 
Hockney in [Hockney-86] . The main principle of the method is based on the 
performance of a vector computer . Then the method extended to 
synchronization overheads due to parallel programming, and eventually to 
the performance measurements of a complete parallel program, depending 
on the number of processes execut ing the program . These ideas are 
explained in the following section . 

2.4.5 The main idea: the performance of a vector 

Considering a vector operation, it can be executed in a time T , which can 
be decomposed into 2 sub-times; a fixed time To consisting of the time 
necessary for initialization, a variable time depending on the number N 
of elements in the considered vector , and on the time Te necessary to 
compute one e lement of the vector . This is described by the formula : 
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T = To + ( N * Te ) 

From this expression, we can compute the mean time Tem of computation 
of one element in the vector : 

T To + ( N * Te ) To 
Tem = = ------------------- = + Te 

N N N 

From there , we can describe the mean rate of computation r of an 
element, also called performance . lt is expressed as 

r = = ------------------
T em ( T o / N ) + Te 

Now consider ri as the maximum performance that can be achieved by the 
vector , i.e. the theoretical performance of an infînite vector length for 
the machine . This can be described by 

ri = 1 im ---------------- = 

N ( To / N ) + Te Te 

Note however that this performance is never reached because it is 
valuable for a vector of infinite length . lt can on ly be approached by large 
vector lengths . 

Let us also define N 1 /2 as the length of the half performance , i.e. the 
length of the vector , which is necessary to reach the half maximum 
theoretical performance of this vector . So we have the following 
def init ion : 

N 1 /2 = ri * To = To / Te 

One can check that if To is null , then N1 /2 = 0; and that if To is 
infinite , then N 1 /2 is also infinite . 

The time T for performing the entire vector operation can be rewritten 
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according to these concepts as 

T = To + ( N *Te) 
= Te * [ ( To / Te ) + N ] 
= ( 1 / ri ) * ( N 1 /2 + N ) 

and the performance of the vector can be redefined as 

r = = ----------------------------
Te+ ( To / N ) [ 1 + ( To / ( Te* N ) ) ] * Te 

ri 
= --------------------

1 + ( N 1 /2 / N ) 

We can also simplify the expression of r by defining a function pipe(x) : 

pipe(x) = 

+ 1 /x 

So we rewrite r as 

r = ri * pipe( N / N 1 /2 ) 

25 

Wy these notions of ri and Nl/2 ? lt seems that they are more 
convenient for the user to compare directly the performance r of his 
vector with the theoretical maximum performance of it . ln the same 
sence, Nl/2 allows the user to compare the length of his vector with the 
length of the half performance . 

Figure 2-9 shows a synthesis of these relations and a graphical 
representation for them . 
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Figure 2-9 

2.4.6 Synchronization overheads 

26 

We have wide ly exp lained the theoret ical concepts of performance for 
vectors although it is not directly related to our problem . However, using 
these basic concepts , Hockney ex tends them for measuring the 
synchronization overheads which occur in parallel branches of a parallel 
program . 
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If we have a simple parallel environment executing various branches of a 
parallel program using primitives such as FORK and JOIN , we can consider 
each branch of such a parallel program as a sequence of serial sections . 
The execution time of one parallel branch of the program can be described 
as follow with the concepts used in the vector measurements : 

T = ( 1 / ri ) * ( 5 + 51 /2 ) 

ln this expression , we use the concept of ri introduced earlier for the 
vector performante measurement . lt has here the same signification as 
we gave for the vector measurement , i.e. , the maximum performance of an 
operation within a sub-section of a parallel section . 

Two other new concepts are introduced . The first of these is 5 , 
representing the computation work measured inside one parallel section , 
in terms of equivalent floating point operations . This concept has its 
corresponding N in the vector measurements that we described in the 
prev i ous section . 

The second new concept is 51 /2 . 51 /2 is the synchronization overhead 
in terms of quantity of work , expressed in equivalent floating point 
operations , wh ich could be executed during the synchronization time . ln 
other words , 51 /2 is the quantity of work , in a parallel sect ion, which 
is necessary to reach the half asymptotic performance . 5o , it would be 
very usefull to create a parallel section in a program if the equivalent 
work implied to create it , is clearly less than 51 /2 . 51 /2 is defined as 
N 1 /2 was def ined for the vector performances . 

ln a previous chapter , we also described the notion of granularity of a 
program . Now , we can say that 5 represents this granularity factor , and 
51 /2 represents the minimal granularity for a paral lel section . 

As we can see , there is some parallelism between the performances of a 
vector and the performances of a parallel section of a program . We can 
complete our equations like we made for the vector performances : 

We had 
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T = ( 1 / ri ) * ( N + N 1 /2 ) 

and 

ri 
r = = ri * pipe( N / N 1 /2 ) 

1 + ( N 1 /2 / N ) 

Then we have also: 

T = ( 1 / ri ) * ( 5 + 5 1 /2 ) 

and 

ri 
r = = ri * pipe( 5 / 51 /2 ) 

1 + ( 51 /2 / 5 ) 

for the synchronization overhead problem , in one branch of a parallel 
program. 

21.1 ~gram performance 

ln a similar way, we can describe the concepts related to the performance 
of a program . 

For this, we consider that the time Tp to execute entirely a program is 
the sum of the time To spent in the sequential sections, and the time T 1 
spent in the parallel sections , devided by the number P of parallel 
sections. So we have : 

Tp = To + ( T 1 / P ) 

We can also define the execution rate Rp as 

Rp = = ------------------
Tp To + ( Tl/ P ) 
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Ri 
=---------------------=Ri* pipe( P / Pl/2) 

1 + ( P 1 /2 / P ) 
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where Ri is the maximum performance of the program , increasing 
asymptotically with the number of parallel sections . ln fact, the factor 
T 1 /P diminishes , leading the performance of the program to the 
performance of the unreductable section having a time To . Ri is defined 
as 

Ri = 1 / To 

Pl /2 is the number of processes necessary to reach the half performance 
of the program ( considering that a processor is given to each parallel 
section) . lt is defined as : 

P 1 /2 = T 1 * Ri = T 1 / To 

Compared with the vector performance , the program performance uses 
little differences in formulas because the critical concept in a parallel 
program is not the same as in a vector. ln vectors, this critical concept 
is To , the initialization time of the vector operations, while here, in a 
para 11 e 1 program , the cri t i ca 1 concept i s T 1 , the execut ion t i me of a 
parallel section . 

Figure 2-10 shows a synthesis of these relations and a graphical 
representat ion of them . 



f.lements of parallel programs 

Er:.Qgram performance 

For this graphie, it is assumed that the synchronization times are 
null or negligible . 

Program 
performance t 

Ri , •.•············ · 

Rl/2 

Maximum performance ----
Asymptot ic 

Pl/2 Number of processors 

Tp = To• (Tl /p) 

Rp 1 / Tp 

Ri / ( 1 • ( p 1 /2 / p ) ) 

Ri 1 / To 

Pl/2 Tl* Ri Tl/ To 

Rp Ri* pipe( p / pl/2) 

Tl 

T I To 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
123 4 ... 

1 To t_J 
T p r--ri 

~ Tl/ p 

p 

Figure 2-1 O 

30 



Elements of parai/el programs 31 

~ Mo del i zati on of a para) l el pro gram wi th synchroni zati on 
overheads 

We have described the performance of a theoretical parallel program 
considering that Rp increases always , but more and more slowly in an 
asymptotic way . However , if the number of processors becomes larger , 
the synchronizat ion overheads also increase , leading Rp to a maximum 
R' , to the contrary with Rp . 

The behaviour of such a situation can be described by the following 
function, which has been derived from a lot of observations by Hockney : 

Ri 
Rp = 

P 1 /2 P n 
1 + ( * { l + [ ------- * ( --- ) ] } ) 

p n-1 p· 

This model of performance shows that , when the number P of parallel 
sections of a program increases - or the number of processes - , the 
synchronization overheads increase also quickly . This implies that there 
is an upper limit to the performance of a parallel program , and a drop of 
performances when the number of processes increases further than a 
certain number at which the maximum of performance is reached . 

ln the mode! , we can see that the velocity of increase of the 
synchronization overheads with P is determined by n , which is called 
the the index of synchronizat ion . This index should be as low as possible . 
The magnitude of the synchronization overheads is determined by p· . So, 
more P is large , lower the overhead is . 

The maximum performance Rp of the program , in the mode! , is reached 
when P = p· , and then , the expression Rp turns to R' which is 

Ri 
R. = ---------------------------------

n Pl /2 
[ 1 + -------- * ( ------ ) ] 

(n-1) p · 
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Figure 2- 1 1 shows a synthes i s of these relations and a graph i cal 
interpretation for them . 

Program performance 

For this graphie, it is assumed that the synchroni zation times are 
not necessary null 

Program 
performance 

Ri 

Rl/2 

Rp 

Pl /2 

Maximum performance 

Cost of the 
synchron i zat i ons 

Ri 

p-

pt/2 pEn 
1 + ( ------- ) * { 1 • l ---- * ----- l 1 ) 

p n - t p-

Factor of 
synchronizat ion 

The peak appears at p = p- . with 

Ri 
R- ------------------------

n pl/2 
1 + ( ----- * ------ ) 

n - 1 p-

Figure 2-11 

Number of 
processors 



2 .5 Practical measures in a parallel program 

2.5J. Benchmarks i □ a multiprocessor environment 

Our f1nal a1m is to make measures on the MXSOO w1th1n the PARFOR 
environment , and later, with FORCE . 

A benchmark program 1s constructed to test the machine 1n a very t1ght 
domain . But the results produced by the benchmark are not only the fact of 
the machine , they are greatly dependent of the environment . This 1mpl1es 
the capacities of the compiler which has compiled the benchmark , the 
code of the benchmark , the operat1ng system in which 1t is executed, the 
load of the system , the prec1s1on of the tools used for measur1ng 1ns1de 
the benchmark and inside the operating system , and the measurement 
technics used . 

While trying to parallelize a benchmark , more than for a program , a 
choice of the level at which it will be parallelized must be done . ln fact, 
a benchmark is often a synthetic program , repeating very often a certain 
amount of tasks diff ering by the datas they use , or do not diff er any way . 
This seems to be ok for the sequential environments . But when trying to 
parallelize these benchmarks for their execution on a parallel machine, 
the question of the level at wh1ch it must be parallelized is more 
important . 

For example , taking a benchmark program solving linear equations 
systems , it can be parallelized at various levels . The highest level 
consists ln paralleltsing the number of times that the same system is 
solved in the outermost loop of the benchmark . A second possibility is the 
parallelization in the ma1n parts of the algorithm . And a thtrd level would 
be the paralle 1 izat ion of the irinermost routines which are the effective 
crunchers of the algorithm . 

The first possibility will take into account that the benchmark is a 
synthetic and repetitive job having no interrest , except that it provides 
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time results concerning the calculation rates of the computer on which it 
is executed . This is the outermost level . At this level , because of the 
repetitivity of the benchmark , it is relatively easy to parallelize so that 
the processes are well distributed on the set of processors . 

The second possibility takes into account the particularity of the 
algorithm . So , at this level of parallelization , the algorithm itself is 
parallelized , but not the benchmark . This means that the benchmark is 
still executed in a sequential way , but the main parts of the algorithm 
called many times is distributed on the processors . 

The third possibility is the lowest level of parallelization . ln this 
method , the lowest level routines of the algorithm are parallelized . 
These routines are simple , but the parts of the algorithm spend most of 
their time in their execution . So their parallelization seems to be 
interresting . But the problem is that these routines are really small , and 
the overheads produced by the use of the parallel ennvironment are rather 
great compared to the small work crunched by these routines . 

These possibilities of parallelization could be done simultaneously , but 
our parallel environments do not accept this . Only one level of 
parallelization is accepted in a program . The choice of the level depends 
essentially on the size of a parallel section , the granularity of the 
program . As we said earlier, the various overheads due to the effects of 
parallelization must remain very low or negligible compared to the work 
performed by the section . 

252 Time measurements 

The most difficult ies in trying to measure the performances of a machine 
of the performances of a program , remain certainly the problem of taking 
the measures themse lves . Taking the right measures at the right points 
in the prograrns invo Ives a certain number of questions and requires many 
choices . 

The reasons of this are of various natures . 



Elements of parai/el programs 35 

The first reason is that there exists no global theory or method for trying 
to measure the performances of parallel applications ( which can be the 
system ) . There exist partial theories and methods that are valid in only 
part icular situations . However, when we are determined to take 
measures , the environment itself is fixed , and the question of the 
particularity seems not to be critical . But in most cases, the measures to 
be taken , are destinated to be compared with other measures ( for 
example , if we measure the abilities of a FORTRAN compiler on a 
particular machine, it would be usefull to compare directly the results of 
these measures with those provided by the same compiler working on 
another machine . But for this , the tools for measuring should be the same 
on both machines . ls it the case in the reality? ) . So, for this reason, 
the measures should be comparable , i.e. they should have been taken 
according to similar method on both systems. This is a large problem in 
taking measures on computers . 

A second reason of these difficulties, is that of the choice of the method 
to follow . This could be a subquestion of the first reason . ln the area of 
measures , many articles and books have been written . And sometimes , 
some of them lead to completely different approaches for a given 
problem , leading to results that can not be compared , as explained 
earlier . Sometimes , some difficulties appear . lt is possible that a 
method is followed at the very beginning of the measures , and that this 
method must be changed in faveur of another later , because of some 
critical reasons that only appear late in the developpement of the tests . 

Another reason of the problems is that of the availaibility of the tools 
necessary to implement a particular method on the system to measure . 
After the choice has been taken, the question is the "how to do it" . If the 
method has been choosen according to the tools available , this is not a 
prob 1 em , but maybe the method has not we 11 been choosen . On the other 
hand , if the method has been choosen according to the necessities of the 
problem to be solved, then , the availaibility of the tools can be a great 
problem . lt can involve the building of new tools that were not originally 
ava i la ible on the system to test . 

A fourth reason of the difficul t ies involved by the real measurements is 
the way the tools are implemented on the system to test . Normally , a 
system is provided with some basic tool s . The problem is to know exactly 
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what the routines perform , when they are called to take measures . ln 
fact, the time routines provided and the standard libraries seem not to be 
sufficient to allow the creation of a set of tools . The way and the 
environment in which they are conceived are also necessary , to know and 
understand exact ly what they measure . Otherwise , the measures taken 
are greately undefined , and the results remain relatively uncertain . lt 
seems to be necessary to know the complete implementation of them , 
until the hardware level , the original source of informations concerning 
the time in a computer . 

A fifth reason of the difficulties involved , is that a real environment 
involves errors . The problem becomes of great importance when trying to 
compute statistics concerning the measures taken . Those measures, often 
because of certain hidden reasons , may contain values that apparently do 
not match with most of the other values , taken in the same way in the 
same circumstances . The question is "what to do with these seemingly 
error values?" . Should they be taken into account or should they be 
discarded from the set of results ? The problem is that these values have 
been taken in the same conditions than the others . So perhaps they are 
good , perhaps not , but it is uncertain about them . Sometime too , the 
discovering of errors in measures can lead to the rediscussion of the 
validity of the tools from which the values are taken . From there , the 
necessity to know the exact implementation of the time routines as 
discussed above . So , we think that the problem of errors must take place 
inside the discussion concerning the measures of performances of a 
system. 

A si xth reason is the variability of the measurement results taken . This 
can be a generalization of the problem of errors , except that the values 
we talk about seem to be correct values . One problem is that the results 
are different for multiple executions of the same programs in the same 
environment ( including the load of the system ) . Another problem is that 
the results also vary , depending on the load and the t ime at which the 
measures are taken ( some processes , for example, are activated only 
when a "sufficient" amount of work is present in the queue . So , depending 
on the t ime at which the work arrives , the Joad on the system also 
varies ) . This kind of variability is sometimes called "statistic errors" . 
Th i s involves that the reliability of the measures should be envizaged in 
further measurements , and that studies concerning the trust of the 
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measures should also be reported . lt is sometimes the case that reports 
claim in favour of the high performances of an application , showing 
numbers, but discarding informations concerning their reliability and the 
context in which they have been taken . 

~ Cpu-tlme and Real-tlme 

ln sequential applications , the measures taken are usually the cpu-time 
and the real-time . The cpu-time is more system oriented , while the 
real-time is more user oriented . 

The cpu-time measures the cpu-time consumption of the application. The 
real-time measures the time that the user had to wait for its application 
to be finished , and get the results at his screen . 

ln parallel systems , it is not so true to make the distinction between the 
application and the parallel environment . Bath are tighly coupled . Then , 
what about the distinction between the user point of vue , and the system 
point of vue ? They are quiet associated . 

However, to our point of vue , we continue to think that the concepts are 
valid in parallel environments , even if the notions are not so clear . We 
keep this attitude because we have no other way to take measures , and 
because the abstract concepts remain the same . 

2.5.4 Time routines 

For the time measurements we make in the PARFOR environment , we use 
the t ime funct ions provided by UNIX . So , al 1 measures taken have the 
precision of the functions provided by UNIX . These routines are only 2 and 
are the fol low ing : 

TIMES() 
CLOCK() 
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Bath routines are part of the standard UNIX environment in the system V. 

The first routine , TIMEO , fills its arguments with time-accounting 
informations . These informations corne from t he calling process . The 
informations provided are the user-time and the system-time . 

The user-time is defined as the cpu-lime used while the processor is 
executing instructions in the user space of the ca l ling process . 

n,e syslem-lime is defined as ltle cpu-lirne used by the system on behalf 
of the ca 11 i ng process . 

This routine TIMES() also provides as its return value, the elapsed time 
from an arbitrary point in the time . Because of this , it is necessary for 
the exploitation of this information , to call at least 2 times the routine 
TIMES() to compute the difference. 

All informations provided by TIMES() are given in CLl<-TICKths of a 
second . 

The second routine , CL0CKO , returns the amount of cpu-time used since 
the first call to clock . The time reported is the sum of the user and 
system times of the calling process. 

The value is returned in microseconds . Note that normal ly , this value 
should be the sum of the user and the system limes . ln the reality , 
because of the better precision of the CL0CK() function , there are 
variations, but little. That is the reason why we take this measure into 
account . 

Both functions are called in a C procedure called ZEITO providing these 
values in miliseconds, and in microseconds for the cpu-time . 

The ZEIT() function has 4 parameters, which are the following : 

1) Real-time in miliseconds 
2) User-time in miliseconds 
3) System-time in miliseconds 
4) Cpu-time in microseconds. 
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The interface is standard , so that ZEITO function can be called very 
ease ly f rom a C pro gram or a FORTRAN pro gram . 

25.5 One representation of a parallel progr:mn 

A standard simple parallel program is made of 3 main parts . A standard 
sequential part for declarations and initializations , a set of parallel 
sections depending of the application in which the main treatement of the 
algorithm is made , and the termination part in wh ich all results are 
co 1 lected and the final results produced . 

This is very simple . But often this frame is repeated many times, a serial 
section , a parallel section , a serial section again , a parallel section 
again, and so on ... But the main principle remains the same. 

Figure 2-12 shows this representation . 

Frame of a PARFOR Program 

B ;;,;,~ --ffi E TASK IN WAIT TASKIN WA IT 

G main main 
Pl Pl 

N 
P2 P2 

P3 P3 

~ ---------........____~ \ 
------ - parallel sections 

Figure 2-1 2 
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~ Jest-poi nts in a para) 1 el progr:mn 

Our time measurements in the parallel program are made at certain 
places . Each test-point has a number . With 7 test-points in a parallel 
program or part of a parallel program , we can measure all interresting 
times . The test-points are the following : 

Test-point 1 is made at the begin of the program itself , just after the 
declaration part of the FORTRAN program . 

Test-point 2 is placed at the end of the first serial section of the 
application . The point is just before that the parallel sections are 
initiated. 

Test-point 1 O is placed at the begin of the parallel section , i.e. it is 
the first statement of the child task . Note that this test-point 10 is 
repetitive because appearing in each parallel section . 

Test-point 11 is placed at the end of the paralle section , i.e. it is the 
last statement of the child process . This test-point 11 , as the 
complementary to the test-point 10 , is also repetitive for the same 
reason . 

Test-point 3 is located just after the synchronization barrier statement 
in the main task . At this place , all children have finished their 
execution, and the synchronization barrier is passed . 

Test-point 4 is placed at the end of the sequential termination section 
of the application . This is the logical end of the application . 

Test-point 5 is placed just after the test-point 4 . lt is placed there to 
measure the time consumed by the time routine itself . 

Figure 2-13 below shows these time measurements in a PARFOR program . 
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25.i Description of a tool that uses these test-points 

The time measures are computed after the application is terminated . To 
facrntate these computations , we have created a FORTRAN subroutine 
that takes as parameters , the times measured at the test-points 
described above , and performs ail interresting computations on these 
times. 

As we have said before , we have 7 test-points . For each of them , we 
have 4 values recorded : The real-time, the user-time, the system-time , 
and the cpu-time . This is valuable for the test-points 1 , 2 , 3 , 4 and 5 . 
For the test-points 1 O and 11 , we need to record the 4 values for each 
parallel section . So , we need for them , a table containing at least a 
number of entries greater than the number of processes . But , because of 
the static allocation of memory of the FORTRAN systems , we fix an 
arbitrary large value for them , to be sure that it wi 11 be sufficient in 
most cases. 

We describe now the measures computed on the basis of the times 
recorded at the test-points , and the names of the variables we used for 
the results . We present them for the general case . So , in the names of 
the variables , when we use the letter X , it must be replaced by R for 
the real-time, U for the user-time, 5 for the system-time, and C for 
the cpu-time . 

These are the following: 

□ The time of the time routine which is used to take the times. This 
measure is computed on the basis of test-points 4 and 5 . We have 

xt = xtS - xt4 

□ The time of the initialization section of the application . This time is 
computed on the basis of the test-points 1 and 2 . We have 

xtinit = xt2 - xt 1 - xt 

□ The time of the termination section of the application . Th is time is 
computed on the basis of the test-points 3 and 4 . We have 
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xtterm = xt4 - xt3 - xt 

□ The total time spent in the sequential sections of the application . 
This time is computed on the basis of xtinit and xtterm . We have 

xtsequ = xtinit + xtterm 

□ The time passed during the global parallel section of the application . 
This time is computed on the basis of the test-points 3 and 2 . We have 

xtpara = xt3 - xt2 - xt 

□ The global time of the application . This is based on the sequentia l 
and parallel times . We have 

xttota = xtsequ + xtpara 

□ The total time of the application computed in another way . This 
measure is based on the base of test-points 1 and 4 . We have 

xtglob = ( xt4 - xt 1 ) - ( 3 * xt ) 

□ The execution time of each parallel section. This measure is based 
on the test-points 10 and 11 , and is repetitive for each parallel 
section . We have 

xtpar( i) = ( xt 1 1 ( i) - xt 1 0( i) ) - xt 

□ The initialization overhead of each paralle l section of the application . 
This measure is based on the test-points 1 0 and 11 and is repetitive 
for each parallel section . We have 

oxtpi(i) = xt 1 0(i) - xt2 - xt 

□ The terminat i on overhead of each parallel section due to the end of the 
section and to the wait for synchronization of all processes to finish . 
This measure is computed on the basis of test-points 11 and 3 and is 
repetitive for each parallel section of the program . We have 
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oxtpt(i) = xt3 - xt 1 l(i) - xt 

D The total overhead for each parallel section . This is computed on the 
basis of the initialization and termination overheads, and is repetitive 
for each parallel section. We have 

soxtp( i) = oxtpi( i) + oxtpt( i) 

D The mean time passed in the parallel sections of the application , 
included the main task. This is computed on the basis of all execution 
times in the parallel sections, without overheads . We have 

mxtpar = ( xtpar( 1) + xtpar(2) + ... + xtpar(n) ) / n 

D The mean time for the initialization overhead of the parallel sections . 
This is computed on the basis of each initialization overhead, including 
the main process . We have 

moxtpi = ( oxtpi( 1) + oxtpi(2) + ... + oxtpi(n) ) / n 

D The mean time for the termination overhead of the parallel sections . 
This is computed on the basis of each termination overhead, including 
the main process. So, we have 

moxtpt = ( oxtpt( 1 ) + oxtpt(2) + ... + oxtpt(n) ) / n 

D The mean time of the total overhead in the parallel sections. This is 
computed on the basis of each total overhead in the parallel sections 
of the program , including the main process . So , we have 

moxtp = ( soxtp( 1) + soxtp(2) + + soxtp(n) ) / n 

2.5.8 Second kind of tests: speedup and efflcienc:t 

The concepts of speedup and efficiency have been introduced in a previous 
section . ln this section , we introduce the basic measures that we make 
for the performance measurements. 
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ln this way to take the measures and compute the results , the final 
calculations are based on many executions of the algorithms. This implies 
that the results provided are relative from one execution to another 
instead of beeing absolute . This new type of measures is more general , 
and more user ori ented , as we w i 11 see 1 a ter . 

We can also confess that these tables were designed after the observation 
that the results provided by the previous measurements were sometimes 
false . This was mainly due to the bad precision of the time routines , 
compared to the relatively small times that are recorded for the overheads 
to measure. 

2.5.9 Description of the tools and the result tables 

We present some results of the tests in tables . A table is a page . Each 
page is related to the execution of a test program with a number of 
processes varying from 1 to 10 , and other fixed parameters. 

The fixed parameters are dependent on the tests made and are theref or 
described for each kind of test . 

Each table contains 10 sub-tables . Each sub-table provides results for the 
execution of the program with a fixed number of processes, between 1 and 
10 . We choose this interval because the machine on wh ich we make the 
tests is configured with 6 processors . 

Each sub-table contains 11 columns, having the following meanings : 

Column 1 : Type of the algorithm 

The measures are taken in tables . For calculating the various results, we 
always base our measures on 3 executions of algorithms in different 
cond i tions . 

The principle is that all the times are recorded at the run time of the 
various algorithms . The calculations are executed after the algorithms 
are f inished . 
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1- Sequential : 
The first execution is the sequential algorithm . This algorithm is the 
original unmodified sequential version of the program that has to be 
paral lel ized . This first algorithm is always the referential case . Ali 
comparisons of the parallel versions ar e done on the basis of the time 
consumptions of this version. 

2- Parallel with 1 process: 
The second execution is the parallelized version of the original sequential 
version , but executed with only 1 process . This version is executed to 
have a global idea about the amount of overheads produced by the 
activation of the parallel environment, and by the way that the sequential 
algorithm has been parallelized . This execution is important for the 
comparisons with the sequential case , and for determining the amount of 
overheads due to the use of this parallelized version executed 
sequentially, compared with the purely sequential original version . 

3- Parallel : 
This algorithm is exactly the same as the second algorithm , but is 
executed with the specified number of processes indicated at the top of 
the column . The version is the normal parallelized version running on the 
multiprocessor system . 

Column 2 : Flops 

This column provides the estimated number of floating point operations 
that are performed to complete the algorithm . This number is computed 
according to the formula 

Flops = < depends on the algorithm to measure > 

Column 3 : Flop-rate 

This column provides the estimated flop-rate of the couple 
machine-algorithm . This flop-rate is calculated on the basis of the 
number of floating point operations done ( column 2 ) and the cpu-time 
consumed to perform them ( column 4) . The formula is the following : 
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Flops 
Flop-rate = 

1.0 E6 * cpu-time 

The factor 1.0 E6 is inserted to provide the results in Mflops instead of in 
flops . 

Co1umn 4 : Cpu-time 

This column provides the cpu-time consumed and measured in the entire 
algorithm . lt includes the user-time and system-time . lt is provided in 
seconds . 

Column 5 : Speedup 

This column provides the speedup in terms of the cpu-time . This speedup 
is measured on the basis of the sequential algorithm , and is computed as 
follow : 

or 

Cpu-time sequential 
Speedup = 

Speedup 

Cpu-time parallel 1 process 

Cpu-time sequent ial 

Cpu-time parallel 

Column 6 : Efficiency 

This column provides the efficiency in terms of cpu-time. lt is computed 
on the basis of the speedup ( column 5) , and the number of processes used 
to execute the algorithm as follow : 

Speedup 
Efficiency = 

Number of processes 
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Co1umn 7 : Rea1-time 

1 

This column provides the real elapsed time consumed to perform the entire 
algorithm. 

Column 8 : Speedup 

This column provides the speedup in terms of real-time . lt is computed as 
follow: 

or 

Real-time sequential 
Speedup = 

Real-time parallel 1 process 

Real-time sequential 
Speedup = -----------------------

Real-time parallel 

Column 9 : Efficiency 

This column provides the efficiency in terms of real-time . lt is computed 
in the following way : 

Speedup 
Efficiency = 

Number of processes 

where the speedup cornes from column 8 . 

Column 1 O : User-time 

This column provides the user-time . This time is part of the cpu-time . lt 
is the time passed in the user defined procedures . lt is provided in 
seconds . 
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Column 11 : System-time 

This column provides the system-time . This time is part of the cpu- time . 
lt is the time spent in the system calls. 

2.5.1 o Scheme of the measures 

Time( 1) 

Execution entire algorithm 

Time(2) 

All performance computations 

Figure 2-14 below shows a standard table containing execution results of 
a test prograrn for this method of taking measurements . 
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Tests with the SAXPY routine, single precision 
-------------------------------------
Leading dimension : 10000 
Vector dimension 4000 
Parallel threshold : 100 
Execution 11u111ber 1000 

1 process Flops Flop-rate Cpu-ti11e Speedup Eff icien. Real-time Speedup Efficien. User-ti111e Sys-ti111e 
-------------------------- ------------+--------------- --·----

Sequenti al 8000 0.0491 0.1628 1.0000 1.0000 0.1620 1.0000 1.0000 0.1501 0.0127 
Par. 1 proc. 8000 0.0490 0.1634 0.9967 0.9967 0.1630 0.9939 0.9939 0.1556 0.0078 
Parallel 8000 0.0490 0.1632 0.9978 . 0.9978 0.1630 0.9939 0.9939 0.1556 0.0076 

2 processes Flops Flop-rate Cpu-ti11e Speedup Efficien. Real-time Speedup Efficien. User-ti111e Sys-time 
--------------------------------- -----------+-----------------------+----------------
Sequential 8000 0.0490 0.1632 1.0000 1.0000 0.1630 1.0000 1.0000 0.1497 0.0135 
Par. 1 proc. 8000 0.0490 0.1634 0.9989 0.9989 0.1630 1.0000 1.0000 0.1561 0.0073 
Parallel 8000 0,()Ç24 0.0865 1.8852 0.9426 0.0860 1.8953 0.9477 0.0820 0.0045 

3 processes Flops Flop-rate Cpu-time Speedup Efficien. Real-til!le Speedup Efficien. User-time Sys-time 
----------------------------------------------------+------------------------+-----
Sequential 8000 0.0492 0.1626 1.0000 1.0000 0.1630 1.0000 1.0000 0.1501 0.0126 
Par. 1 proc. 8000 0.0489 0.1635 0.9951 0.9951 0.1640 0.9939 0.9939 0.1562 0.0072 
Parallel 8000 0.1168 0,0685 2.3750 0.7917 0.0690 2.3623 0.7874 0.0597 0.0088 

4 pro cesses Flops Flop-rate Cpu-time Speedup Efficien. Real-tirne Speedup Effic:ien. User-time Sys-ti111e 
------------------------------------------------+--- ---------------+-----------
Sequential 8000 0.0490 0.1633 1.0000 1.0000 0.1630 1.0000 1.0000 0.1502 0.0131 
Par. 1 proc. 8000 0.0497 0.1610 1.0143 1. 0143 0.1610 1.0124 1.0124 0.1557 0.0052 
Parallel 8000 0.1441 0.0555 2.9400 0.7350 0.0560 2.9107 0.7277 0.0479 0.0076 

5 processes Flops Flop-rate Cpu-time Speedup Efficien. Real-time Speedup Effic:ien. User-time Sys-ti11e 
---------------------------- ---------------------+-------------------------+----------
Sequential 8000 0.0486 0.1644 1.0000 1.0000 0.1650 1.0000 1.0000 0.1503 0.0142 
Par. î proc. 8000 0.0496 0 .1614 1.0190 1.0190 0.1620 1. 0185 1.0185 0,1557 0.0057 
Parallel 8000 0.1974 0.0405 4.0572 0.8114 0.0410 4.0244 0.8049 0.0365 0.0041 

6 processes Flops Flop-ratt1 Cpu-t :me Speedup Effi cien. Real-t ime Speedup Efficien. User-time Sys-ti11e 
------- ------- --------------------+---------------------------+----------
Sequential 8000 0.0473 0.1691 1.0000 1.0000 0.1700 1.0000 1.0000 0.1464 0.0227 
Par. 1 prcc. 8000 0.0486 O. l_t146 1.0276 1.0276 0.1650 1.0303 1.0303 0.1559 0.0086 
Parallel 8000 0.2116 0.0378 4.4741 0.7457 0.0380 4.4737 0.7456 0.0346 0.0032 

Figure 2-14 



2 .6 Parallelization of applications 

2hl Jechnics to parnllelize applications 

There exist 2 main types of technics to parallelize applications : 

1) Technics going backwards 

- Detection in applications of parallel tasks 
- Modification of the processing order of some parts of the applicat ion 

2) Technics more radical going forwards 

- Asynchronous processing 
- Domain decomposition 
- Operator decomposition 
- Pipeline processing 

Detection of parallel tasks 

Th is is not really a technic by itself . Rather, 1t should be considered as a 
forced first step for every type of paralleltzation techn1c that 1s to be 
applied later . This step is relatively easy for some appl ications that are 
loosely coupled , but can be very d1ff1cult for applications that are 
thightly coupled ( where many synchronizations are necessary) . 

Modification of the order of orocess1ng 

Th is kind of parallelization of ·an application consists in tak ing var ious 
parts of an the appl1cat1on and arrange them 1nto another order 1n such a 
way that their execution can be done in paralle l , without affecting the 
results of the original program . Only the time of the execution , due to 
these moves of treatements or parts treatements , is decreased . This is 
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not a true thing to find the portions of application which can be moved , 
and less trivial to move them to their correct place . This type of 
parallelization is greatly dependent on the type of application that is 
treated. 

Asynchronous treatement 

This method consists in taking the application and in trying to find in it 
many treatements that can be distributed in several processes working 
asynchronously , with a minimum of interactions between them . So, the 2 
main rules of this technic are 1) minimize the synchronizations between 
the processes , and 2) , increase at the maximum the number of processes 
that can be executed in para 11 e 1 . 

Domain decomposition 

This technic consists in detecting the integration domain of the 
application and divide it into a set of sub-domains , allowing by this way 
the assignation of the original task to many processes corresponding to 
the number of sub-domains detected . Most of large scientific applications 
are designed to modelize physical processes in the space and time 
doamains . This implies that applications are often regular and repetitive . 
ln this area, the method takes all its advantages because of the relatively 
easyness to decompose the original problem into a number of 
sub-problems , working with different datas . A simple example is the 
large matrix operations . 

Operator decomposition 

This technic is based on the use of multiple processes to compute 
simultaneously diff erent operators on different datas . But this approach 
is very bounded to the particular hardware con.figuration . ln particular, it 
seems to be essential that the load on the processes is well balanced to 
take the maximum advantage of the technic . lndeed , the target is to 
maximize the use of the resources and to minimize the bad effects of 
synchronizat ions between the processes . 
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The pipeline processing 

Thie pipeline processing consists in executing an application with many 
processes . lt is based on the principle of the coroutines executed in 
parallel . Each coroutine takes data structures from an entry , modifies i t 
and puts the result data structure to its output . So , a cha in of processes 
can be executed in parallel using this technic , each process taking for its 
entry , the result or output of the previous process in the chain . This type 
of parallelization is better designed for commerc ial applicat ions, but can 
also be used within scientific domains . 

2.Q2 The effort in t():1ng to parallelize an application 

The hum an effort is an important factor to take into account when trying 
to parallelize an application . This effort is greatly dependent on several 
parameters : 

- The complexity of the code of the application 
- The familiarity of the paople trying to parallelize, with the nature of 

the physical problems 
- The familiary of the persan with the algorithms used in the application 
- The modifications made in the algorithm of the application 
- The facilities provided by the environment in whlch the parallel program 

is to be designed . 

2.6.3 Prob1ems when programming in a paral1e1 environment 

When working on a sequential computer, it is relatively easy to create , 
debug and maintain applications . ln such a sequent ial env i ronment , 
everything is determinist ic , so that it is always possible , and at least 
relatively easy to follow the behaviour of the program in its execution . 

This assertion is no more true in a parallel environment . 
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The tests are sometimes very difficult to implement , because it is not 
possible to know at a moment , what is the state of the program , implying 
that the interpretation of the partial results is not a simple problem in 
the parallel sections . 

For example , in the PARFOR environment , it is not yet possible in the 
current implementation , to specify that a section of a program is 
uninterruptable or indivizable . So, if we try to print results on the screen 
in a parallel section , it is printed by all the processes , if they execute 
the same code . So, the results are very difficult to interpreat . 

Another type of problem appearing only in parallel applications , is the 
case where the program which is to be adaptable to the ~vailable number 
of processes , has a different behaviour depending on the number of 
processes that execute it. 

ln one example , 1 was trying to debug a parallel program which was 
designed so that it was able to run with a variable number of processes . 
But the problem was the following : The program executed with one 
process produced normal results as they were provided by the original 
sequential version . Executed with 2 processes , the parallel program 
began its execution, and then stopped, returning immediately to the shell 
without giving any message nor result . The same program executed with 3 
processes began its execution , and after 3 minutes , produced an error 
message concerning a segmentation violation . With 4 processes , the 
program produced the first results on a total of 26 , but wrong , and then 
stopped without giving any message, returning immediately to the shell . 
Executed with 5 processes , always the same program never produced any 
message, nor result . 1 had to break it . 

This example is very signifiant to present the difficulties in parallel 
programming . Eventually , what was the problem in this case ? The 
problem was depending on the number of processes . But the program was 
designed completely symetric . So , the behaviour should have been the 
same with a variable number of processes . ln fact , the error was found 
later . lt was a problem of bad memory management in the parallel 
environment . 
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Another frequent problem is the detection of an error in a particular 
arrangement of the execution of a program . How could it be possible to 
reproduce that particular execution ? This remains a great problem in 
parallel programming , due to the dynamic allocation of the processes in 
the computer , and to the permanent unknown evolution of the 
environment . ln fact , each execution of a program can lead to different 
results , due to the fact of the asynchronism , implying the difficulties 
when trying to debug parallel programs . 



Chapter 3 

Parallelization in the PARFOR and 
FORCE environments 

3. 1 1 ntroducti on 

ln this chapter , we discuss the possibilities provided by the PARFOR 
environment for parallel programming . We make also some assumptions 
concerning the FORCE environment for some comparisons . However , we 
attribute a larger importance to the programmation in the PARFOR 
environment, because this project is developped in our team, and it is the 
ob ject of this work . 

As a conclusion , at the end of this chapter , we provide some tries of 
comparisons between both PARFOR and FORCE environments , their 
philosophy, and the facilities they provide to the FORTRAN programmer . 



3.2 Parallelizalion in the PARFOR environment 

3.2.1 Introduction 

ln th1s sect1on, we discuss the var1ous ways a program can be parallelized 
w1th the tools prov1ded by PARFOR . The description of the PARFOR 
envlronment 1tself 1s made 1n the next chapter . 

The PARFOR environment can be considered as an interface between the 
FORTRAN programmer and the operating system running on the 
multiprocessor machine . The tools provided by PARFOR are designed to 
take full advantage of the machine facilities . Thus , large complicated 
applications can be parallelized within PARFOR . 

Suppose that you have to paralle11ze a program made of some h1erarch1e of 
subroutines 1n the class1c sequent1al method . Most of these subroutines 
are made of complicated imbricated statements and many calls to various 
other subroutines . Sorne of these subroutines are very simple and 
repetitive , vector operations for example ; and others are more 
complicated, calling themselves also other subroutines . 

such a program is very common in scientific applications . We talk- about 
scientific applications because the FORTRAN language is more specific for 
these kinds of applications, but this is not restriction . 

The main question , in such large applications , is to know exactly what 
must be parallelized, and at which level the paralleliation must occur . lt 
is a question, because the PARFOR environment allows the parallelizat ion 
at only one level of programmlr"!g . So , this is not true at the first view , 
to know whlch level must be parallelized . 

ln this sectlon , we introduce and explain the differences that appear 
between the programmations at the various levels . 
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But first , we give a first view to the main tools of PARF0R and the way 
they must be employed in a parallel program. The details are however not 
showed here . They are avallable in the next chapter describing the PARF0R 
environment and its implementation. 

We give also some informations concerning the programmation of the 
barriers , and the way to divide a simple job between the parallel 
processes. 

Then we try to clarify the relations existing between the number of 
processors available on the machine , the number of paral lel processes 
initiated for a parallel program , and the number of calls to the 
dispatching facility . 

.122 View on the main tools of PARFOR 

There are 3 main tools that constitute the PARFOR facilities for the 
programmer. These tools are called like any other FORTRAN subroutine or 
function . 

NTASKS 

The NTASKSO facility is a function that delivers to the PARFOR program, 
the number of child processes generated for the execution of the parallel 
program. 

The number of processes is a standard FORTRAN integer number . The 
function is used in the following way : 

npar = NT ASKS() 

where npar contains , after the execution of the function , the total 
number of parallel processes - 1 . 
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Figure 3-1 below shows a representatiori of the mechanism . 

Cali to the NTASKS Facilit)'.'.. 

FORTRAN 
main 

1 
n = NT ASKS() 

\, ____ ~,,-----

User FORTRAN 
Program 

• 

i 
NTASKS 

◄ 

C Routine hidden 
to the User 

Figure 3-1 

Get informations 
from C driver which 
reads the command 
line : 

- ntasks=< 0 ... 16 > 

c Driver Program 
hidden to the User 
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This function is important for the parallel programmer to take into 
account the specification of the user which executes the program . This is 
the only way for him to know the number of processes initiated 
automatically by the PARFOR environment . This can be considered as an 
interface between the UNIX environment and the PARFOR program . 

The number of chi ld processes is specified at the run t ime by the user of 
the parallel program . lt can vary it in the range from O to 16 . If the user 
specifies O , the program is executed sequentially ( no child process 
created ) . 

The user specifies this number by an option, like any other UNIX option in 
the following way : 

-ntasks=<O . . 16> 
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The number specified is passed to the PARFOR environment , which in 
turn , init iates the processes . This number can then be known by the 
PARFOR programmer using the NTASKS() facility that we have described . 

TASKIN 

The TASKIN( . . . ) facility is a subroutine that attributes to an initialized 
parallel process , some work to do . The TASKIN facility has some 
parameters . These parameters are present to describe the work to do . 

Figure 3-2 below shows a representation of the mechanism . 

Cali to the TASKIN Facilit)'.'.. 

FORTRAN 
main 

Cal l T ASKIN ( parwork name , 
nparam, 
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C Routine and Driver 
Program , both hidden 

to the User 

Figure 3-2 
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Execute PARWORK 
w1th parameters 

4◄>------'' 

user Parwork 
Routine 
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The call to the TASKIN facility is done in the following way : 

Call T ASKIN ( parwork , nparam , .. arguments .. ) 

where the parameters of TASKIN have the following meaning : 
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- parwork is the name of the parallel work subroutine to be executed in 
parallel . The parallel work subroutine must then be specified as a normal 
FORTRAN subroutine, but, taking into account that it will be executed in 
parallel with the others . The parallel subroutine must also be specified as 
external in the routine_ which calls the T ASKIN facility . This is done in the 
following way : 

externa 1 parwork 

The reason of this external declaration is explained in the section related 
to the implementation of PARF0R. 

- nparam is the number of parameters to pass to the parallel work 
subroutine. This number must be known by the PARF0R environment. lt is 
specified in the following way : 

data nparam / < i nteger number> / 

- arguments contain the real values of the parameters that are passed to 
the parallel work subroutine . These arguments must be given by address . 
The reason is that PARF0R does not support the mechanism to pass the 
parameters by values . The number of parameters that are passed is equal 
to the nparam specified earl ier in nparam . 

the WAIT() fac i lity of PARF0R is a subroutine that makes the parallel 
processes to wait that all of them have fini shed the execut ion of the 
parallel work subroutine . Thus , WAITO provides an easy way for 
synchronizations between the processes . lt is a synchronization barrier. 
When all the processes have reached the point , the sequential code can 
continue until new calls to TASKIN are made . 
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Figure 3-3 below shows a representation of the machanism involved. 

Cali to the WAIT Facilil:-i 
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FORTRAN 
main 

Call WAITO 
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Figure 3-3 
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\..._ 

C Driver Program 
hidden to the User 

The WAIT() is called like any other FORTRAN subroutine. 

Call WAIT() 
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Note that the implementation of the WAITO function varies from one 
version of PARF0R to another . This implies a different behaviour of the 
processes when they are waiting , but it is transparent to the user . This 
is explained in the next chapter. 
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.lU The choi ce of a 1 eyel of para]) eli zati on 

The PARFOR programmer needs to choose a level of programming for its 
parallelization . This is due to the restriction that is coupled with the 
PARFOR concept : The parallelism can only appear at one level . This 
restriction implies that nested parallel routines are not possible . 

A single rule to parallelize , can be the paralle l ization of the innermost 
routines of a program . These innermost routines are called more often 
than the higher level routines . So , maybe that it is a good idea to 
parallelize them . 

Another possible rule is the parallelization of the intermediate level 
routines, depending on the easiness of their parallelization . But there can 
be many intermediate levels of subroutines . So , the question of the 
choice sti 11 remains . 

Another criterium for choosing the level of parallelization can be the 
length of the code of the subroutine to parallelize. We can parallelize the 
largest routines for example . But we must take care because the largest 
routines are not necessarily the longest in execution time . To know this, 
a data flow analysis would be necessary . 

Another simple rule can also be the parallelization at the outermost level . 
This implies that the outermost routines of the program are parallelized . 

Anyway, this is nota true problem to define the level of parallelization of 
an application . lt depends on many factors, and eventually, it is always 
the responsability of the programmer to decide at which level he will 
make it , according to the granularity , according to the length of the 
routines in the algorithm , according to the complexity of the 
paral le 1 izations . 
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.l2.1 The JeveJs of parallelizatioo io PARFOR 

Initial example of a seguential program 

Start the program 

Call some complicated routines 

Call some other routines 

Call the innermost routines 

End lnnermost routines 

End other routines 

End complicated routines 

End of the program 

Parallelization at the innermost level 
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The first level of programming with PARFOR can be the innermost level . 
The innermost routines of a program are parallelized . These routines are 
repetitive and simple . They require no synchronizations. 

The main scheme of the algorithm remains sequential . The calls to the 
TASKIN are still sequential , the structure of the main algorithm remains 
unchanged , and the enclosing environment of the parallelized routines is 
also unmodified . 

ln this way of parallel programming , the standard interface of the 
innermost routines is preserved . The only difference in the interface is 
that the routines may contain some common statements necessary to 
record the parallel results . The calls to the TASKIN facility are made in 
the subroutines that are parallelized , implying that a new parallel work 
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subroutine must also be described ( the parallel subroutine which is called 
by the TASKIN facility) . 

The TASKIN facility of PARFOR calls a parallel subroutine that we call H 

parallel work subroutine " . This new subroutine is executed in parallel by 
the vari ous processes . 

Each process receives the actual pararneters to execute the sarne code of 
the routine , but with its own values . The results of parallel work 
subroutine can not be given back as the standard parameters . The reason 
is that PARFOR does not yet support this mechanism . 

The results of each process must be recorded into an array declared as 
shared between the processes . For example , the process number 3 will 
fill in the place 3 of the result array . 

For this reason , each execution of one parallel process must know that i t 
is execution nurnber i to record the results at the correct place . This 
knowledge of the process number is not automatic in PARFOR . That's why 
a dedicated parameter must be added to the parameter list . However 
some parallel work subroutines do not need any space for results, if only 
the side effect of the routine is important , instead of the functionnal 
result . 

Scheme of the first paral lel ized version 

Start the program 

< Define the common varables > 

Call some compl i cated routines 

Call some other routines 

Call the innermost routines 

Start loop 
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< lnitialize parameters > 
Cali T ASKIN ( parwork, npar, ... 

parameters . . . ) 

Endloop 

Direct call to parwork ( .. . parameters ... ) 

Cali WAITO 

Final computations 

End innermost routiens 

End other routines 

End complicated routines 

End of program 

Subroutine parwork ( . . . parameters . . . ) 

< Define common variables> 
< Define local variables> 

Parallel code 

End subrout i ne 

Parallelization at an intermediate level 

This second kind of parallelization is made at a higher level . The level is 
an intermediate level between the innermost level and the outermost level 
that we describe after this section . This second level of parallelising is 
not very different by itself, from the first parallelization level . 
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The algorithm still remains mainly sequential . This implies that the 
parallel subroutines are still included in the sequential algorithm . No 
synchronizations are necessary between the processes executing the same 
routine on different datas . 

Here , the standard interface of the parallelized subroutines is lost . The 
main difference between this level to program and the previous one, is the 
following : ln the previous parallelizat_ion level , because the interface 
was preserved with the calling environment of the routine , only the 
routine itself was modified . ln this parallelization at a higher level , the 
interface of the routine parallelized beeing lost, the calling environment 
must also be modified. 

The subroutines to parallelize are replaced by the calculations of the 
boundaries for the parallel work , and a loop to call the TASKIN facility , 
the number of times that there are parallel child processes . 

The number of times that the TASKIN facility is called , is not reduced . 
What is reduced, is the number of calls to subroutines . Each original call 
to a subroutine is replaced by a loop over calculations of the boundaries, 
and over calls to the TASKIN facility . 

This level o programming is less transparent for the program that is 
parallelized . 1 mean that the enclosing environment is modified while the 
subroutine itself has dizapeared . The subroutine is replaced by the 
parallel work subroutine executed at the same time by the various 
processes . The calculations associated with the use of the TASKIN 
facility ( boundaries, TASKIN call number, . . . ) are reported to the higher 
level . 

The problem concerning the transmission of the results to the main 
program remains, involving the necessity of declarations of common areas 
in shared memory , if the functionnal effect of the parallel work 
subrout i ne i s des i red . 
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Conclusion for this second level of programming 

The main difference with the first level of programming is located in the 
number of intermediate calls to subroutines , wh ich is reduced here . But 
this reduction does not affect in a very large way the execution time , 
because the extra-calls of the first level , eventually , are not very 
expensive compared to the more critical time consumption of the TASKIN 
facility itself . This second level of parallelization involves still many 
times calls to the TASKIN facility . 

This level of programming is tested in the chapter related to the tests we 
made . 

Scheme of the second parallelized version 

Start the program 

< Define common variables> 

Ca 11 some comp 1 i cared routines 

Call some other routines 

Start loop 

< lnitialize parameters > 
Ca11 T ASKIN ( parwork, npar, . . . parameters ... ) 

End loop 

Direct ca11 to parwork ( ... parameters ... ) 

Cali WAITO 

Final computations 

End other routines 
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End complicated routines 

End of program 

subroutine parwork ( .. . parameters . . . ) 

< define common variables> 
< def ine local variables> 

Parai le 1 code 

End parwork 

Parallelization at the outermost level 
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The next level of parallelization is the highest level . This level of 
parallelization can be considered as an extention of the PARFOR concepts . 
lndead , as we will see below , some new concepts are introduced in th is 
way of programming , leading to some modifications of the original 
philosophy of PARFOR . However , even if this extention of PARFOR is 
considered , no modifications in the PARFOR interface are made . lt is 
simply another way to consider the programmation. 

ln such a parallel iation level , the outermost subroutine is parallelized . 
The interface of the outermost level routine remain unchanged but it does 
not contain any more statements , except the statements for the PARFOR 
environment . These statements are the definit ion of the common variables 
and the initial ization of the outermost routines with the TASKIN facil i ty 
in a loop . 

ln this level of parallelising , the number of calls to TASKIN must 
imperatively be Jess than the number of parallel processes . If not , the 
situation will corne in a deadlock . This is due to the obligation of the main 
process to wait the arrivai of ail processes at the synchronization po int . 
If there are more TASKIN calls than the number of parallel processes , 
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some processes will have to execute sequentia11y 2 different 
instanciations of the same para11el work subroutine, leading eventua11y to 
a deadlock at the synchronization point . 

Only one parameter is given to the para11e1 work subroutine ca11ed . This 
parameter is the identifier number of the process . The shared memory is 
used . The various calculations related to the distribution of the work 
among the processes are made in the para11e1 subroutine . The entire 
algorithm is coded in the para11e1 routine with shared or private 
variables . The shared variables are known by a11 processes , and must be 
updated only in the squential section of a barrier, but can be readen at any 
time . The private variables are used for defining the boundaries , for 
indexes, and so on . . . This kind of para11elization uses FORTRAN barriers 
for the synchronizations between the processes . 

This level of para11elization is very interresting because the entire 
algorithm is truly para11e1ized and executed at the same time by the 
vari ous processes . This was not the case in the previous versions of the 
algorithm where the only para11elism was present when the TASKIN 
function was called . 

ln such a para11elization level , the synchronizations are essential . They 
are mainly driven by barriers , and by message exchanges , decided in the 
main process . 

Because of the absence of locks in PARFOR , the critical sections are not 
possible to implement . But in most cases, a critical section can be turned 
to a loop executed by the main process inside the_ body of a barrier . 

Conclusion for this third level of programming 

This outermost level of programming reduces drastically the number of 
calls to the TASKIN facility . The synchronizations among the processes 
were implicit in the previous level due to the sequential main form of the 
program , only calling some para11el facilities at some times . lt is no 
more the case in this level of programming , where they must be done 
another way . This way is essentia11y the use of synchronization barriers , 
and messages through the shared memory. 
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The barriers can be implemented in FORTRAN , using the shared memory 
like any message between processes . 

The main characteristics of this way of programming is that we can really 
say that it is parallel programming . The most important things in a 
parallel program are not the calls to the TASKIN facility , but well the 
synchronizations between the processes . This is one of the results of our 
tests that we explain later . 

We make some tests later to compare the various performances provided 
by the parallelization at the various levels. 

Scheme of the third parallelized version 

Start the program 

< Define common variables> 

Call some complicated routines 

< Define common variables> 

lnitialize synchronization barriers 

Do for each parallel process 

Call TASKIN with the parallel routine parwork ( id ) 

End do loop 

Direct call to the parallel routine parwork ( id) 

Call WAITO faci 1 ity 

End complicated routines 

End the program 
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Subrout ine parwork ( id ) 

< Define common variables> 
< Define local variables> 

Parallel code using synchronization barriers and/ or 
message exchanges 

End subroutine parwork 

~ Comparisons between levels 1 , 2 and 3 of programming 
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We have described the various levels of programming with PARFOR . Here, 
we make a comparison of the levels 1 and 2, quite similar, and the level 3 
of programming . 

A parallel PARFOR program written in the second level of programming is 
essentially sequential . The parallelization is introduced by the loop 
call ing the TASKIN facility to Joad the waiting parallel processes . 

To the contrary, the PARFOR program written in the third level described, 
is essentially parallel . The parallelism is intrinsic. 

The parallel progr_am written in the second level needs for 
synchronizations , only to call the WAIT function, while in the third level 
program , the synchronizations are made by linear barriers . 

These differences are sufficient to reverse completely the original 
phi losophy of PARFOR . ln the original design of PARFOR , the tools 
provided were proposed to allow the PARFOR programmer to modify or 
write a program for the inclusion of parallelism . If PARFOR is used in the 
third level described, it breaks through this rule . 

The PARFOR programmer must initially design his program so that it is 
executed with many processes . lt is real paralle l programming , while in 
the previous philosophy , PARFOR was there more like an assistant to the 
programmer . 
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ln terms of performances , later we make some measurements to compare 
both levels or levels •Of programming. 

Figure 3-4 shows the differences in the philosophy that we have 
discussed above . 

Levels of r2rogramming with PARFOR 

Levels 1 &. 2 : 
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· ~ Exampl es of standard frames to pro gram in PARFOR 

Parallelization of a single loop 

First, consider the case of a single loop to parallelize . The scheme of this 
loop is the following: 

Do 1 0 i = 1 , 1 000 
array[i] = calculation 

1 0 continue 

To be parallellzed with PARF0R , an extra call to a subroutine must be 
added . This routine is the parallel routine executed by the various 
processes at the same time . 

If n child processes are specified at the beginning of the execution of the 
program , the total number of activated processes is nchild + 1 ( the main 
process can aise do the same job in parallel with the children) . 

The array of working can be divided into the total number of processes . 
The general scheme of the way to do that is the following : 

C -----------

part = 1000 / ( ntasks + 1 ) 
do 1 0 i = 1 , tasks 

1 ow( i) = ( i - 1 ) * part + 1 
high(i) = ( i * part ) 
temp 1 (i) = .. . 

temp2(i) = .. . 

temp3(i) = .. . 

tempN(i) = .. . 

cal! T ASKIN ( PARWRK, nparam, low(i), high(i), 
templ(i), temp2(i), . . . tempN(i) ) 

10 continue 
call PARWRK ( tasks* part+ 1, 1000, ... param . .. ) 
cal] WAIT() 
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C -----------

subroutine PARWRK ( low , high, .. . param .. . ) 

integer low, high 
< declaration of the other parameters > 

do 10 i=low , high 
array[i] = calculation 

1 O continue 
return 
end 

C -----------
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This kind of parallelization is called pre-scheduled . However , in this 
case , the number of parallel processes is determined at the run time . The 
algorithm is completely transparent to the number of processes . This is 
very interresting to have such independent algorithms, because they allow 
the automatic adaptation to the various configurations without any 
modification . But the problem in this kind of algorithm , is that it must be 
pre-scheduled . ln fact , this algorithm does not use any shared variable . 
This is not dramatic , but in some cases , it would be usefull to work with 
self-scheduled algorithms . 

This main difference between the self-scheduled and the pre-scheduled 
algorithms mentionned in chapter one , is that the pre-scheduled must be 
optimized at the compile time , so that its execution provides the best 
possible results . The load is equally distributed on the various processes 
at the run time . lt involves that the execution time of each of the 
processes is known in advance . To the contrary , the self-scheduled 
algorithm allows more efficiency while the time to execute a parallel 
section can be unknown , or variable .The self-scheduled algorithm is 
based on a shared-counter . ln terms of PARFOR , it could be described as 
fo ll ow : · 
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C -----------

integer counter 
common /COUNT / conuter 

counter = O 
do 1 O j= 1 , ntasks 

templ(i) = .. . 

temp2(i) = . . . 

ca 11 T ASKI N ( PARWRK , . . . parameters ... ) 
1 O continue 

call PARWRK ( ... parameters . . . ) 
call WAITO 

C -----------

subroutine PARWRK ( .. . paramet ers . .. ) 

< declaration section> 
integer counter, N 
common /COUNT / counter 

1 O 1 ock counter 
N = counter 
counter = counter + 1 
unlock counter 
if ( N .GT. 1000 ) go to 20 
array[N] = calculation 
go to 1 O 

20 return 
end 

C ------------
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ln this version , the self-scheduling is present , and there is no need to 
compute some boundaries of computations bef ore the T ASKIN f aci 1 ity i s 
called . The most important feature is the shared variable protected by 
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atomic locks . These atomic locks are really the key to the self-scheduling 
algorithm . PARFOR does not yet support them , so , this way of 
programming is not yet possible. 

Note that all of the shared memories between the various processes , need 
to be specified in the Makefile file with the option-Fat the link time, and 
referenced in a common statement . 

Use of the barriers in a PARFOR program 

We have discussed about barriers . As we have said , only the software 
barrier can be used in PARFOR . This kind of synchronization barrier is 
called the linear barrier. We can define it in the following way : 

C 

C 

C 

C 

15 

C 

declarations 

data 
external 

parameter 
integer 
integer 

common 

nparam / 1 / 
parwork 

( mxproc = 30 ) 
lock(mxproc) , pid(mxproc) 
me, i, npar 

/ AREA 1 / Jock, npar , pid 

lnitialization of the barrier before the calls to T ASKIN 

npar = NT A5K5() 
do 15 i= 1 , npar + 1 

lock(i)=O 
continue 
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C Code of the initialization of the parallel subroutine 
C with the TASKIN facility calling the parallel work subroutine 

do 1 O i =2 , npar+ 1 
pid(i)=i 
call T ASKIN ( parwork, nparam , pid(i) ) 

10 continue 
call parwork( 1) 
call WAIT() 

C -----------

C Code of the barrier executed by all processes 
C having a process number from 1 to npar + 1 
C in the parallel work subroutine . 

lock(me) = 1 
if ( me .NE. 1 ) then 

10 if ( lock(me) .EQ. 1 ) go to 1 O 
else 

40 do 20 i = 1 , npar + 1 
if ( lock(i) .EQ. O) go to 40 

20 continue 

endif 

< place here the eventual sequential code that is always 
executed by the driver process > 

do 50 i = 1 , npar + 1 
lock(i)=O 

continue 

C ------------
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Such a code is sensible . The number of T ASKIN calls should not be greater 
than the number of parallel processes initiated . Otherwise , the barrier 
will be in a deadlock, waiting forever . 
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The process that executes the sequential code of the barrier is known in 
advance, and always the same . 

The flag table of the barrier must be initialized before the calls to the 
T ASKIN facility to be sure that all the flags are set when each parallel 
work process start its execution . 

The pid is necessary for each process to know it has the specified number, 
allowing such a way to fi lter the processes according to this vitual pid . 

The code of the barrier can be repeated many times in a PARFOR program . 
The barrier is self-reinitialized . 

Note that all of the shared memories must be specified in the Makefi le fi le 
with the option-Fat the link time, and the variables must be referenced 
in common statements. This is the way to tell the loader that the region 
must be created in a shared memory at the execution time . 

-:û.:J... Relations between the number of calls to TASKIN ~ 
number of processes and the number of available 
processors 

We have seen the various levels to use the PARFOR environment . ln this 
section , we discuss the relations between the number of processors 
available on the machine , the total number of processes generated to 
execute the parallel appl1cat1on , and the number of calls invoked to the 
T ASKIN facility within the PARFOR program , undependent of the number of 
parallel processes, between 2 WAIT synchronizations . 

The most easy way to use the PARFOR facilities is to design an appl ication 
so that the number of cal 1s to the T ASKI N f aci 1 ity is always equal to the 
number of parallel tasks that are initiated for this application . Then, at 
the run time , the user specifies that i ts application must be executed 
w i th the same number of processes that there are processors . 

Tr1is is qui te easy . However , tr1i s i s not always possible . For example , a 
pr-ogr-arn can r1ave a sernant ic constr-ai nt irnply ing that the number of 
parallel prncesses are an even nurnber . But trie user does not know that , 
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and do not need to know it . lt is the responsability of the programmer to 
arrange himself so that the specified number of processes is always even . 
This implies that the application must use less calls to TASKIN than the 
number of processes for a section of the program . 

On the other hand , it is not always qui te useful l to start a number of 
processest equal to the number of processors on the machine . If the load 
of the system is high, running an application requiring the same number of 
processes than the number of processors, will have the effect of slowing 
down the application and al! other users . 

lt may also be the case that some parallel programs need to be executed 
with a fixed number of calls to the TASKIN facil i ty, or a fixed number of 
processes . 

The criteria when designing a PARFOR program , are then the following : 

1 ) 
2) 
3) 

A --> 
B --> 
C --> 

The number of processors 
The number of para 11 e I processes 
The number of calls to the TASKIN facility 

We can formalize the relations between these concepts by the equality and 
inequal ity signs : 

a) 
b) 

c) 

= 

> 
< 

--> 
--> 
--> 

.. Same number as .. 

.. Number greater than .. 
"Number lower than .. 

According to these formulations , the possib le situations wh ich may occur 
are the following : 

1) A = B = C 
2) A = B > C 
3) A = B < C 
4) A > B = C 
5) A > B > C 
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6) 
7) 
8) 
9) 

A > 
A < 
A < 
A < 

B 
B 
B 
B 

< C 
= C 
> C 
< C 
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This is a no sence to compare directly the number of processors with the 
number of calls to TASKIN. Bath concepts are only related one to the other 
by the intermediate of the number of parallel processes . 

Situation 1 is the standard way to program within PARFOR . This case is 
interresting to use when the user is alone working with the operating 
system ( closed session ) . The reason is that each processor actually 
receives its own peace of work from the main program -, in a parallel 
process . All TASKIN calls are satisfied by the allocation of a processor . 

Situation 4 is also very usual , and occurs mainly when the user is not 
alone working within the UNIX environment . The number of processes is 
lower than the number of processors , implying that there is more chance 
that each process is attributed a processor at the same time . Of course , 
it depends on the number of current processes in the running queue , 
cornpeeling for <1 processor . 

Situation 5 is like situation 4 . ln this situation however , the parallel 
processes that are initiated at the begin of the application are not used ( 
at least in the section of the program where this situation occurs ) . ln 
terms of time, this solution is expensive or not, depending on the version 
of PARFOR that is in use . For the version 1 , it is not too expensive 
bacause the waiting process is put into a sleeping state . ln the other 
versions, where the attribution of the parallel work is done by the shared 
memory , this is expensive because the process is waiting in a busy loop . 
Eventually , this situation should be encountered only when the program 
contains semant ic constraints that are ignored by the user who specifies 
an arbitrary number of parallel processes at the begin of the application . 
The various implementations of PARFOR are explained in the next chapter . 

Situation 2 implies that one of the parallel processes is waiting doing 
nothing . The behaviour of this situation is the same as in the situation 5, 
but the number of processes i s equa l to the number of processors . Such a 
situation should be encountered only when the user is alone on the 
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system , and wants to take profit of the maximum capacities of the 
machine . Otherwise , if some other processes from the same user , or 
from another user are running, some processes of the parallel application 
will be delayed, leading to the same cases as in situations 7, 8, and 9 . 

Situation 3 shows a case where the number of calls to TASKIN is greater 
than the number of parallel processes . This situation implies that some 
ca 11 s to T ASKI N can not be executed by a process in para 11 e 1 w i th other 
processes. This , in turn, involves that the calls to TASKIN that would be 
delayed , are executed by the main process to avoid wasting time . When a 
process becomes free , it is waiting until the main process has finished 
its own direct call , and then receives a flag by the main , saying that it 
has finished its execution and prepared the new work for one parallel 
process . lt is true that this solution is bad compared to the other 
solutions . But if some algorithm requires a fixed distribution of the work 
according to some parameter, it is possible to do that with PARFOR . 

Situation 6 is similar to situation 3 except that the number of processes 
is lower than the number of processors . This implies that the power of 
the machine is not completely used . ln interactive mode with other users, 
it is better for the speedup of the algorithm to be in this situation , 
otherwise , some additionna] times are consumed in waiting the 
availability of processors to execute the processes. 

Situations 7 , 8 and 9 shou 1 d never be encountered . The se cases are 
always slower because they involve sequential execution of some parallel 
processes . This is just what we try to avoid with the PARFOR 
environment , using parallel processes to reduce the total sequential 
times . For the tests , we made sometimes some measurements of 
execut ions w i th more processes than the number of ava i 1 ab 1 e processors . 
The curves re lated to these tests show always a wronger behaviour . 

As a conclusion to this section, we think that the more critical situations 
are determined by the cases where 

A = B 
A < B 
B < C 

number of processes equal to number of processors 
number of processes greater than number of processors 
number of T ASKIN cal ls greater than number of processes 
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We think that these situations should be avoided in ail cases for 
performance reasons . They can however be employed when it is not 
possible to divide the parallel work in another way . 

3.2.8 Varlous posslbllltles to use the PARFOR envlronment 

The PARFOR facilities can be used in the fo llowing ways in a program : 

- Call T ASKIN in a loop to attribute the same work to al 1 processes 
and no direct call . Then a WAIT performs the synchronization point . 

- Cali TASKIN in a loop to attribute the same work to all processes 
and the main performs the same work in a direct call . The WAIT 
perf orms the synchronization point . 

- Call TASKIN sometimes to dispatch some heterogenous work to 
some processes . The works are executed asynchronously . 

- Cali TASKIN only one time per process and parallelize at a fine 
granularity level (=the third level of programmiation within 
PARFOR that has been introduced earlier) . 



3 .3 Comparisons between the PARFOR and the 
FORCE envi ronments 

3.3.1 Sorne comparisons 

The FORCE environment , at the present time , can be considered as " the 
state of the art " in the FORTRAN like parallel languages in the world . This 
environment is well known in the scientific world workihg with parallel 
processing . The interface is standard and undependent of the machine on 
which it is used , and it has already been tested on many multiprocessor 
systems. 

To the contrary, PARFOR is a new idea, and has defined its own interface . 
Because of this , it is not yet used and known . lt must still prove its 
efficiency in parallel programming . However , the interface is also 
designed to be independent of the environment in which it is used . So , an 
implementation is also in a developpement state for the B52000 SIEMENS 
machines. 

FORCE includes a set of tools rather complete . This set of tools is 
particulary well fournished for synchronizations between processes. This 
is a critical point in parallel processing , and the problem is particulary 
well solved in the FORCE with the possibilities of synchronizations 
points, asynchron variables allowing some processes to wait implicitely 
when trying to read values that are not yet available , and the critical 
sections . All these facilities make that FORCE is very powerfull and 
allows the programmer to write programs with very high complexity. 

PARFOR is essentially based on 3 facilities . NTASKS(), TASKIN and WAIT . 
These tools are somewhat poor, compared with the mult iple possibilities 
provided by FORCE . However , they are also suff icient to al low the 
developpement of complex programs, taking into account that these tools 
can be used in various ways, as we have seen earlier . With the extentions 
of the concepts of PARFOR in the third way of PARFOR programming , it is 
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possible to reach the same complexity of algorithms , as in FORCE . The 
communication possibilities are the same in PARFOR and FORCE , because 
they use the shared central memory as the privilegied path . 

On the phi losophic point of vue , FORCE is designed for the programmer to 
take a maximum of profit of the power of the machine , taking into account 
that he is alone working with this machine . This implies that he uses at a 
maximum rate the processors for only one application at a time . All the 
hardware possibilities of the machine are required , expecially the 
hardware lock memories . 

PARFOR was not designed with the same f inal aim . lt was essentially 
designed to give to the programmer the possibi 1 ity to . introduce some 
parallelism in its present applications , fortunately running on a 
multiprocessor machine, but in cohabitation with other users . 

The main scheme of a PARFOR program remains sequential , with the 
possibilities to execute parts of the sequential program in parallel . The 
main task distributes the work on the var ious processes ( TASKIN ) and the 
parallel children run asynchronously . Then , a synchronization point ( 
WAIT ) makes return to the sequential code . This scheme can be 
reproduced many times in a PARFOR progr am . 

To the contrary, a FORCE program contains an intrinsic parallelism that is 
present at the early begin of the program execut ion . The FORCE program 
begins its execution with all the processes that have been initiated for 
him . Sorne parts of the program can be executed sequentially . This can be 
done by the use of a barrier which has the function to synchronize the 
processes . Then , at the end of the barrier , the program returns to a 
parallel execution. 

With the extentions of the concepts introduced with the third level of 
programming , the PARFOR environment can also follow this behaviour , 
with nearly the same performances as FORCE provides . This is explained 
in a previous section concerning the parallellization in the PARFOR 
environment . 
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Figures 3-5 a, band c below show respectively a synthetic representation 
of the conception of programs written at the levels 1 & 2 , at the level 3 , 
and in the FORCE environment . 

ConceQtions of Qrogramming with PARFOR and FORCE 

al PARFOR 1eve1s 1 & 2 conceot1on : 

TASKIN WAIT TASKIN WAIT ASKIN WAIT 
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About the granularity , the PARFOR environment can essentially treat the 
coarse grain and middle grain programs . 

To the contrary , the FORCE environment is mostly designed for fine and 
middle granularity programs . This is mostly due to the possibilities of 
synchronizations between the processes . 

On the performances point of vue , we describe in chapter 4 some results 
of tests made in both PARFOR and FORCE environments . 

.l3..2 Personna 1 con cl usi on 

To my mind , and according to the study I made of bath parallel systems , 
they are rather similar, if we consider the extention of the concepts of 
the third level of programming with PARFOR . 

But I thought more easy to program within PARFOR , because of the low 
number of concepts that are available . But FORCE was more easy in some 
circumstances ( critical sections allowed ) . 

The problem of the easyness is also important , and I think that if 
scientific people must program in a parallel environemnt , they must be 
very familiar with computer programming to be able to write parallel 
programs with FORCE . However , the PARFOR environment is more easy 
because it always includes the concept of sequentiality , which is still 
common in most actual algorithms . 

1 have the feeling that the PARFOR environment is better adapted to 
modify an existing application , while the FORCE environment would be 
better to create new parallel programs . 

The performances of programs written in both environments must be 
exactly the sarne . If it is not the case at the present time , i t is due to the 
only fact that the hardware locRs are not used in PARFOR . But it would be 
easy to allow these locks to be used . 
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~ Sorne possible extentions of PARFOR 

As we have seen, the PARFOR environment could still be better than it is 
now . Sorne features could be added , as well in the implementation as in 
the interface with the user . 

The third way of programming that we have explained could be simplified 
by the definition of some additionnal facilities that the programmer could 
call , without having to write very often the same peace of code . 

lt would also be possible to define some preprocessor allowing more 
easely future extentions in the interface, and allowing the automatization 
of the construction of the final parallel program . 

Sorne litt le things could also be better, like the automatic availability of 
the virtual process identifier in the range of from 1 to < number of 
processes > , the suppression of the necessity to specify the number of 
parameters of the subroutine to call , etc . . . 

The availability of the hardware locks would also be very interresting for 
the parallel programs . This would allow the possibilities to define 
cr i t i ca I sections , and 2-1 ocks barri ers . 



Chapter 4 

lmplementation of parallel 
FORTRAN li ke l anguages on UNI X 

4. 1 Introduction 

ln this chapter, we describe how the parallel PARFOR and FORCE languages 
are implemented for working on a multiprocessor machine . The main 
characteristics of the machine itself are described in the next chapter . 
The operating system is the same for both PARFOR and FORCE 
environments . lt is the standard UNIX system V provided by ATT , 
including the I PC l ibraries for communication faci l ities . 

The first section provides a description of the PARFOR system , 
developped in our team at SIEMENS Munich ; and the second section is a 
description of the FORCE, developped by prof essor Jordan and his team in 
USA , and that we adapted for the MXSOO machine . 



4.2 The PARFOR implemenlalion on UNIX 

.i2...l. 1 ntroducti on 

ln this section, we describe the main pr1nciples of working of the PARFOR 
environment . · 

The facilities provided by PARFOR are essentially a set of routines that a 
PARFOR programmer can use in its traditionnal FORTRAN program to 
parallelize some parts of its application . These facilities are only 3 in 
the current implementation . This small number may appear very low , but 
we have seen that it is sufficient to run applications having as well a 
coarse granularity as a fine granularity . 

The parallelism treated in this environment , is processed at the process 
level . 

A subroutine of a PARFOR program can be execvted synchronously or 
asynchronously , depending on the way it is called in the main program . 

A synchron subroutine is called by a standard FORTRAN cal! in the main 
program . Such a routine is necessarily a routine of the main program . 

A synchronous subroutine is called by the intermediate of a special routine 
designed to prepare everything 1t w111 need before 1ts execution . Such an 
asynchonous rout1ne do not need anything to run , except its parameters 
and/ or the common memory containing the common variables . 

The asynchronous routines are said to be asynchron because they can be 
executed independent ly from the other routines independent ly from the 
ma in process . 

The synchronous routines are said to be synchron because they are always 
executed by in the main process . 
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.i22 The various parts of PARFOR 

The implementation of PARFOR on the MXSOO machine is relat1vely simple . 
lt is essentially made of 3 parts. 

The first part is a driver program written is C language . This part of the 
environment is always the first part executed when a PARFOR program is 
called for execution . lt can be considered as an interface between the 
UNIX environment and the FORTRAN system for parallel programming . His 
function is to initialize the FORTRAN system , reserve some shared 
memories , fork the processes and begin the real execution of the program 
to execute . Then it manages the processes and the attribution of the 
works . This part of the environment also contains the description of the 
tools available for the PARFOR programmer . lt is called the cmparex part . 

The second part is the FORTRAN user program including the calls to the 
tools of PARFOR . The program is thus a parallel program , taking into 
account these facilities . lt is is considered by the first part of the 
environment, as a subroutine to execute . 

The third part of the environment is a standard UNIX Makefi le fi le in which 
the various parts necessary for the compilat ions and the links are 
recorded . This part is not essential , but provides a great faci l ity when 
having to create, modify and debug a PARFOR program . 

The environment is , as we see , relatively small . Sorne parts of i t are 
fixed, and some of them are variable . 

The first part of the environment is fixed . The too ls and the driver 
program are compiled only one time . Only the abject file is necessary for 
the 1 inker to prepare the ent ire program . 

The second part i s variable. lt is the app l ication of the user. 

The third part is the Makefile file . l t must also be adapted by the 
programmer according to the necessities of the applicat ion . We wi l l 
de scribe later how to bui lt this fi le . 
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123 The tools provided by PARFOR 

There are 3 main tools that constitute t he PARFOR facilities for the 
PARFOR programmer . These tools are called like any other FORTRAN 
subroutine or function . 

NTASKS 

The NT ASKSO facility is a function that delivers to the PARFOR program , 
the number of child processes that have been generated for the execut ion 
of the parallel program . 

The number of processes is a standard FORTRAN integer number . The 
function is used in the following way : 

npar = NT ASKS() 

where npar contains , after the execution of the funct ion , the total 
number of parallel processes - 1 . 

This function is important for the parallel programmer to take into 
account the specification of the user which executes the program . This is 
the on ly way for him to know the number of processes that have been 
initiated automatically by the PARFOR environment . This can be 
considered as an interface between the UNIX environment and the PARFOR 
program . 

The number of child processes is specified at the run t ime by the user of 
the parallel environment . lt can vary in the range from 0 to 16 . If the user 
specifies 0 , the program is executed sequentially ( no ch i ld process 
created ) . 

The user specifies this number by an option , like any other UNIX option in 
the following way : 

-ntasks=<0 .. 16> 

The number specified is passed to the PARF0R environment , which in 
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turn , initiates the processes . This number can then be known by the 
PARF0R programmer using the NT ASKSO fac il ity that we have described . 

TASKIN 

The TASKIN( ... ) facility is a subroutine that attributes to an initialized 
parallel process , some work to do . The TASKIN facility has some 
parameters . These parameters are there to describe the work to do . 

The call to the T ASKIN subroutine is done in the following way : 

Call T ASKIN ( parwork, nparam, .. arguments .. ) 

where the parameters of TASKIN have the following meaning : 

- parwork. is the name of the parallel work subroutine to be executed in 
parallel . The parallel work subroutine must then be specified as a normal 
FORTRAN subroutine , but , taking into account that it will be executed in 
parallel with the others . The parallel subroutine must also be specified as 
external in the routine which calls the TASKIN facility . This is done in the 
following way : 

externa 1 parwork 

The reason of this external declaration is explained in the section related 
to the implementation of PARF0R . 

- nparam is the number of parameters to pass to the parallel work 
subroutine . This number must be known by the PARF0R environment. lt is 
specified in the following way : 

data nparam / < i nteger number> / 

- arguments contain the real values of the parameters that are passed to 
the parallel work subroutine . ~hese arguments must be given by address . 
The reason is that PARF0R does not support the mechanism to pass the 
parameters by values . The number of parameters passed is equal to the 
nparam spec if i ed ear 1 i er in nparam . 
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the WAITO facility of PARF0R is a subroutine that makes the parallel 
processes to wait that all of them have finished the execution of the 
parallel work subroutine . Thus , WAITO provides an easy way for 
synchronizations between the processes . lt is a synchronization barrier . 
When all the processes have reached the point , the sequential code can 
continue until new calls to TASKIN are made . 

The WAIT() is called like any other FORTRAN subroutine : 

Call WAIT() 

Note that the implementation of the WAITO function varies from one 
version of PARF0R to another . This implies a different behaviour of the 
processes when they are waiting, but it is transparent to the user . 

.1.2..1 The main principle of an execution 

Introduction 

We can describe the main principle of PARF0R by an algorithm for each of 
the actors of the parallel · environment . This involves the main driver 
program , the user program , and each of the facilities provided to the 
programmer . Here , we give these algorithms . 

For the driver program 

- Start the driuer program mith internai declarations 
- Take and treat the flags of the command line, -ntasks option 

included 
- Initiale the FORTRAN .enuironaent interface 
- Get shared memory region for ■essage queue 
- Get shared aemory region for the semaphore uariables 
- Get shared aeaory region for the arguments of the function to 

execute asynchronously 
- Initial ize protected counters 
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- Loop over the nuaber of processes to create 
- Fork() the process 

If process = the father 
- do nothlng 
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If not , process = chi Id, then do the fol lo1ing sequence 
- Ualt for a ■essage sent by the TASKIH facillty 
- Uhen a ■essage present , ■anage the counters 
- Decode the ■essage and flnd the address of ■eaory 

, region ln •hich the arguments are recorded 
- Take the argu■ents and the address of the function 
- Give the1 to the asse■bler routine to execute lt 
- Update the counters 
- Return to the •altlng state for a nem 1essage 

end if 
- end loop 
- Execute the subroutlne MAIH = the user FORTRAH program 
- Delete the shared memory regions to free the place 
- End environment 

For the user PARFOR program 

- Start the user PARFOR program 11th the declarations 

- < sequentlal code> 

- Optlonally call to the HTASKS facility 
- Loop in FORTRAN 

- Call TASKIH faci I ity 1ith the subroutine name and 
lts arguments 

- End loop 
- Optional ly direct call to the same function 
- Cal I the WAil faci I ity to synchronize the processes 

( barrier) 

- < sequential code> 

- < any other sequential or parai lel code again > 

- End PARFOR user part 
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For the NT ASK() faci 1 ity 

- Start the HTASKS() faclllty 
- Read the nu1ber of chlldren generated, fro1 the 

driver progra■ 
- End of HTASK() facl I lty 

For tr,e TASKIN( .. . ) facility 

- Start the TASKIH faci lity 1ith the declarations . 
- If the nu■ber of processes ,orklng is equal to the nu1ber 

of chi Id processes 
- Give the addresses to the asse1bler routine to execute 

i1mediately the cal led parai lei subroutine 
- Return to the user PARFOR prograa 

- If not 
- Adjust the counters 
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- Prepare the 1essage text 1here the argu1ents are recorded 
- Copy the arguments ln the shared 1e1ory 
- Send the ■essage to a chi Id that has nothlng to do noœ 
- Return to the user PARFOR program 

- End if 
- End TASKIH 

For the WAIT facility 

- Start the UAIT faci I ity with the declarations 
- Uait that al I processes have flnlshed the executlon of thelr 

subroutine, on the base of the counters . 
- Return to the PARFOR user program 

The se algorithms are given for the first version that has been 
imp lemented . We will give some more details of the implementation in 
the next section . 
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125. Particularity of the PARFOR environment 

The PARF0R environment has the particularity that at least one process is 
always running . This is the main process . lt executes the driver, and then 
jumps to the PARF0R user program. 

So , the driver is always executed sequentially by the main . The 
TASKIN( ... ) facility is then also always executed sequentially in the user 
PARF0R part . This is an important characteristic that we will soon 
explain . 

ln the same direction, the WAITO facility is also always executed by the 
driver program . lt implies that , when the driver is in the WAITO , no 
T ASKI N call is running. 

The child processes, to the contrary, once initiated , execute always the 
same C code of the driver program , in a loop . Each iteration of the loop 
implies for the process , the execution of a new parallel work subroutine 
described in the user PARF0R program . 

The parallelism only occurs when the parallel child processes are 
executing a PARF0R parallel work subroutine . 

4.2.6 Location of the differences between the various versions 

The differences between the versions of PARF0R are located in the 
mechanisms to transfer the work to the parallel work subroutine , and in 
the implementation of the synchronization routine WAIT(). 

The various versions have been conserved to show the possibilities that 
are reachab le for each kind of mechanism . But the main princip le remains 
the same for all of them . Anyway, the standard PARF0R interface remains 
unchanged for the user . 



lmplementation of parai/el fOR1RAN like languages on UNIX 98 

.i21. lmplementatioo of version J of PARFOR 

1 ntroduct ion 

This version of PARFOR is the first version that has been implemented on 
the MXSOO . 

The particularity of this version cornes from the fact that it uses 
messages to act ivate or deact ivate the processes . The messages are 
managed by the UNI X system V I PC ca 11 s . 

The procedures to manage the messages are MSGRCV to receive a message, 
and MSGSND to send it . The particulari t ies of these mechanisms are that 
the processes are put in a sleeping state when waiting for a subroutine to 
be given by the T ASKIN facility. 

For the driver program 

The detailed mechanism is the following . The driver program first , reads 
the number of processes choosen by the user by the intermediate of the 
-ntasks option on the command line . Then it initializes the FORTRAN 
system, and validates the signal procedure called automatically at the end 
of the PARFOR environment , and when a crash occurs in the user PARFOR 
program . 

Then , 3 shared memories are reserved . The first is dedicated to the 
message queue . The second i s reserved to the semaphore vari ab 1 es and has 
a fixed size . The third region is reserved for the arguments of the parallel 
work subroutine that is to be called . This last shared memory region has a 
size depending on the number of processes that are to be initiated . Each of 
these regions must be attached to a certain address of the virtual space of 
the process . 

Protected shared counters are used for the decision of the attribution of 
the works to a chi ld process or to the parent , and the same counters are 
also used to count the processes in the WAIT facility . The counters are 
the following : 
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- A counter of the number of processes that are busy, i.e. running, called 
taskbusy, 

- A counter of the number of T ASKIN calls that are queued , i.e. waiting 
for a f ree process . 

At this point, everything is ready for the parallel processes to be started . 
The loop is executed , forking the processes : The main process quits 
immediately the loop, while the children remain blocked, waiting for a 
message in the MSGRCV system V call. Each process, while waiting , is in 
a sleeping state, and releases his cpu . 

The message , once sent , wakes up one process . The process , then 
decodes the content of the message . 

The message contains the following inf ormations : The address of the 
function to execute , its number of arguments , the number of the shared 
segment in which the arguments are recorded and are available for use . 

From these informations , the real address of the arguments can be 
known , and the assembler routine can execute the function with the 
correct arguments . When the function is executed, the control cornes back 
to the C part of the process . 

Eventually , the counter taskbusy is updated ( decremented ) and the 
process returns to the waiting state. 

For the T ASKI N faci 1 ity 

The TASKIN facility , once invoked, contains as arguments, the address of 
the number of parameters of the function , the address of the function to 
execute , and the address of the arguments . 

The first thing T ASKI N perf orms , is a check , on the base of the present 
value of the shared counters , ot the number of processes that are busy by 
a parallel work subroutine at the present time . If this number is just 
equal to the number of initiated processes, then, the TASKIN facility can 
not be executed at the present itme by the child process . lt should wait 
that one process becomes free . lnstead of this waiting , the call is 



lmplementation of parallel FORTRAN like languages on UNIX 100 

executed directly inside the TASKIN facility , which is itself always 
called by the driver program. So, the parallel work subroutine is executed 
by the driver process . When the execution is finished, the TASKIN returns 
immediately to the user PARFOR program . 

If the processes are not all busy , then , the TASKIN call can be given to 
one process . 

The protected counters are adapted ( taskqueued incremented ) , and a 
message is prepared with the possibility to execute the parallel work 
subroutine . For this, the message buffer is filled with the address of the 
function to execute and its number of arguments. 

Then , as we know that at least one process is free , a shared memory 
region associated with this process is also free . The TASKIN facility 
searches this free region . When it is found , it records the number of this 
region in the message buffer . 

The arguments of the subroutine are then copied in the shared memory 
region found . 

Then , the message prepared in the buffer is sent to a child process with 
all informations . The TASKIN facility , eventually , returns to the user 
PARFOR program . 

For the WAIT facility 

The WAIT facility is essentially a loop that tests the values of the shared 
protected counters . These counters are managed so that when al 1 the cal 1s 
to TASKIN have been executed , the final state is detected . When this 
moment arrives , the WAIT facility r eturns immediately to the user 
PARFOR program . 
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~ lmplementatioo of version 2 of PARFOR 

1 ntroduct ion 

This version of PARF0R has been modified from the first version . 1 t 
differs only in the mechanisms relative to the attribution of some work to 
the parallel subroutines . 

The system procedures MSGRCV and MSGSND are no longer used . They are 
replaced by a circular table in shared memory , and 2 integer indexes to 
this table . 

The table has an arbitrary fixed size of 100 places . The 2 indexes are 
called "in" and "out" and are protected by locks . lnitially , the table is 
filled with -1 values. The main principle is the f ollowing : 

For the driver program 

The driver program is only modified in the vari ous declarations · for the 
initialization of the table , the indexes , and the suppression of the 
message queues and procedures . The other modifications are made in the 
waiting mechanism of the child processes . 

Each initialized child process performs the following actions . lt executes 
an infinite loop from which it can leave in only special conditions. 

1 n this loop , first , it tries to get t he lock2 semaphore managing the 
accesses to the protected indexes . When it has the lock2 , it is sure to be 
alone working with the values in the shared table. Then, it takes from the 
table, the value located at the address determined by the index "out" . 

If this value is -1 , it means that this entry corresponds to no TASKIN 
call . Then, the child process releases the semaphore to allow the access 
to the other children and to TASKIN . Then , t he process continues this 
infinite loop, waiting that the value readen becomes positive . 

When this value becomes positive , it is recorded and trie process jumps 
out of the loop . The value in the table is reinitialized at the value -1 to 
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say that it is free again . The "out" index is incremented circulary to the 
next position in the shared table, and the lock2 is released. 

The shared counters managing the T ASKIN and WAIT are updated , and the 
address of the argument is calculated on the base of the segment number 
taken from the shared table . Then , the address of the function and the 
number of parameters are taken from the shared region , and the contro 1 is 
given to the assembly routine that executes t he subroutine . 

When it is finished , the shared segment is freed , the protected counters 
are updated, and the process returns to the waiting state . 

For the TASKIN facility 

The TASKIN facility acts in the same way as in the version 1 of PARFOR, 
except in some small things that we describe here . 

The beginning is the same as in the version 1 until the update of the 
protected counters . After this, the TASKIN facility searches a free region 
in the shared memories . A free region is marked by a value different from 
-1 . We are sure at this point ( for similar reasons as in version 1 ) , that 
at least one reg ion exists . When it is f ound , it is marked as used by a 
value -1 in the last place of the shared region. 

The address of the subroutine to execute by the TASKIN call is copied in 
the first place of the shared region , the number of arguments of this 
subroutine is copied in the second position of the region , and then , all 
arguments are copied in the region . 

Then The TASKIN facility tries to get the semaphore sem2 . When it has i t , 
it is sure to be alone working with the shared tab le . lt inserts the number 
of the region at the current input of the table and increases the input 
index . Eventually, the semaphore is released and TASKIN returns . 
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12.9. lmplementation of version 3 of PARFOR 

This version of PARFOR uses exactly the same mechanisms as in the 
version 2 previously described . The only difference resides in the way the 
semaphore variables are protected. 

ln this version, they are all protected by system V semaphores instead of 
atomic locks . 

We do not describe here the way these semaphores are used . For more 
details, refer to the UNIX system V IPC reference manual . 

4.2.10 lmplementation of version 4 of PARFOR 

1 ntroduct ion 

This version of PARFOR environment is not very different from the version 
2 . The main diff erence resides in the fact that hardware locks are no more 
needed for the WAIT facility . 

For the WAIT facility 

This faci 1 ity is managed by 2 counters . These counters do net need to be 
protected . The reason is that they are readen at any time by the children, 
but only updated in the TASKIN facility always executed sequentially . 

4.2.11 lmplementlltion of version 5 of PARFOR 

This version of the PARFOR environment is also quite similar to the 
version 2 . The main diff erence resides in the fact that there is no more 
need of hardware locks for the control of the processes and for the WAIT 
fac i 1 ity . 

Th is version of PARFOR is then implemented without any locks , taking 
profit of the fact that the main process is always the control process . 
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4.2. 12 Differences of behaviour between version 1 and the 
other versions 
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The version 1 of PARFOR can be compared directly with its successors . 
The key difference is located in the behaviour of the child processes when 
waiting for a subroutine to execute . 

ln the original environment , the child processes , while waiting, are put 
in a sleeping state by the message system calls . This implies that they 
consume no cpu-time during this time . Sending a mesage from the TASKIN 
facility to a child has the effect of waking up a child process . This 
mechanism is automatically managed by the system calls : 

ln the other modified environments , it is qui te diff erent . A chi ld process 
waiting for a subroutine to be attributed , remains in a busy loop , waiting 
for a flag to be positionned in the central memory . During the busy loop, 
the child reads this flag until it is set. 

These various behaviours must have an influence on the effective cpu-time 
that a paralle 1 app 1 icat ion consumes whi le beeing executed . 

ln the measures , no difference should be discovered if all measures are 
taken in the main process . 

However , there will be a great difference in the times measured in the 
child processes for the same application , when using version 1 or the 
other versions , but the se diff erences wi 11 on ly appear when programming 
in parallel with the first or the second level of programming . We can 
exp lain the behaviour by review ing the various possible cases : 

Consider the fol low ing environments : 

1) PVl --> PARFOR version 1 
2) PV2 --> PARFOR version 2 and next versions 

Another parameter is the level of programming described in the previous 
chapter, concerning the programmation with PARFOR . 
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1) L 1 --> First and second levels of programming 
2) L3 --> Third level of programming 

Eventually , the third factor affecting the behav iour of the environment, 
is the number of calls to the TASKIN facility . 

1) HN --> A "high" number of calls to the TASKIN facility 
2) LN --> A "low" number of calls to the TASKIN facil i ty 

If we combine these parameters, we have the foll owing possible cases : 

1 ) PV 1 , L 1 , HN 
2) PV 1 , L 1 , LN 
3) PV 1 , L3 , HN 
4) PV 1 , L3, LN 
5) PV2 , L 1 , HN 
6) PV2 , L 1 , LN 
7) PV2 , L3 , HN 
8) PV2 , L3 , LN 

Now , we can examine the eff ects of these factors : 

The programs where the environment PV 1 is used consume always a true 
cpu-time . This means that the cpu-time in the parallel sections of an 
application is influenced in a normal way by the algorithm and the 
environment . For example , if a part of a program is divided into equal 
parallel sections , then the cpu-time consumed will be approximately 
s imi lar in all these parallel sections, because the cpu are allocated to the 
processcs only when these processes require something to do . 

The programs where the environrnent PV2 is used , consume always more 
cpu-lime in the child prnce~~e~ lt1<1r1 r-equired by Lt1e alyor ithm . Many dead 
times are introduced , due to the environment itself . These dead times are 
consumed by the parallel processes when waiting in a busy state , some 
work to do from the TASKIN fac i lity . The processes are always 
cpu- demanding when the PARFOR environment is running . 

The programs parallelized in the L 1 are very i nfluenced by t he version of 
the environment that is used . These programs make a number of calls to 
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TASKIN that is relativley large. Between the calls to TASKIN, the child 
processes are waiting or not , depending on the version of the 
environment . 

The programs parallelized in the L3 are not influenced by the environment 
used . This is due to the fact that synchronizations and all waiting times 
are only the problem of the algorithm . The processes are always processor 
demanding , undepending on the version that is used . 

The programs that make many calls to T ASKIN are not very influenced by 
the version of the environment that is used . This is due to the fact that 
these programs try to maximize the use of parallel subroutines, involving 
that the initiated child processes are very often used . The rat io 
occupied / free for the cpu-time of the child processes is high implying a 
low effect of the busy loop or not busy loop , on the cpu-time in the 
environment . 

As a conclusion for this section , it is clear that the busy loop in the 
implementation of PARFOR , is not a very good solution . ln terms of 
performances , it is however not possible to choose one version or the 
other without tests . ln fact , the successive versions have been built to 
test the various possibilities provided by the UNIX system V . ln chapter 5, 
we provide results of some tests that have been made in the various 
environments . 

4.2.13 .G.Qmpilation and execution of a PARFOR pCQ.gram 

Compilation 

A PARFOR program must first be compiled . For this , the Makefile file 
containing the description of all the commands must be updated . This 
involves the specification ( according to the standard UNIX syntax of the 
make file ) of the various parts of the application to compile , the 
specification of all the libraries that must be linked with the various 
ab j ect modules , and eventua lly , trie specif ication of t he shared reg ions 
names spec i fied in the PARFOR user program . 
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When the Makefile file is ready , the user has just to make the file with 
the "make" command . 

Execution 

The execution of a PARFOR program is very simple . The user has only to 
type : 

< program name > -ntasks=<number of chi ldren> 

The number of child processes is equal to the total number of processes 
less one , for the main process . 

Figure 4-1 below shows the flow of act ions unt i 1 the execut ion of a 
PARFOR program . 

Compilation and Execution of a PARFOR Program 

PARFOR make command Makefi le ~ 

text to - fi le 
compile 

produc tien 
Of 

', 
Execution of 

< prgm name > 
-ntasks=N Executab le 

the para 11 e 1 ~ 
~ program 

program 

Figure 4-1 



4.3 The FORCE implementation on UNIX 

1.3..1 Introduction 

ln this section , we describe the FORCE environment in its principle of 
working and its implementation on UNIX . 

The FORCE environment is designed for parallel programmers that have in 
mind to develop applications taking into account the possibilit1tes 
provided by a paral le 1 machine . The phi losophy of FORCE impl ies that a 
parallel application considers that it is alone to be executed on the 
machine . A maximum of processors is allocated to the application by the 
intermediate of parallel processes . A parallel program is executed by 
many processes . 

4.3.2 The idea of the environment 

The FORCE environment is based on a language also called FORCE , and an 
implementation on a particular machine . 

The FORCE language is a FORTRAN 77 based language with some semantic 
and syntactic variations and constraints, to allow the introduction of the 
tools for parallel programming . Most of these differences are calls to 
special macros that are extended by a preprocessor befor e the compilation 
of the program can be made . So , this imp 1 ies that a FORCE program is 
always preprocessed . A standard FORTRAN 77 comp i ler compiles the 
extended preprocessed fi le to produce an executab le fi le . The language 
allows essentially parall el programming at both fine and midd le 
granul ar ity leve l s . Sorne special construct s al so allow para l lel 
programming with large granularity , all owing completely different 
sect ions of programs to be executed in par allel, without many cooperat ion 
between the processes . 



lmplementation of parai/el FORTRAN like languages on UNIX 109 

4 .3.3 The vari ous parts of the FORCE 

The FORCE environment implemented for the MXSOO is essentially made of 
4 parts . 

The first part is a driver program written in FORTRAN 77. The function of 
this driver program is to start the parallel processes specified by the user 
at the execution time , declare some shared variables that are used by all 
parallel processes for the synchronization fac i lities , initialize some 
procedures managing the hardware locks, ini tialize the barriers, and call 
the main part of the FORCE program when everything is ready . This is the 
user program . When this part of the application has finished its 
execution, the control returns to the driver program which in turns, kills 
the parallel processes and finishes the entire FORCE environment. 

The second part of the environment is the FORCE user program . This FORCE 
part is the parallel application written with the various tools of FORCE 
that will be briefly described later . This part is executed in parallel by 
the various processes initialized in the driver program . lt is considered as 
a subrout ine to execute , for the driver program . 

The third part is the shell procedure that allows the automatic 
construction of the final file containing the parallel program . This 
procedure makes calls to some small FORTRAN programs , to some script 
files, and eventually, to the preprocessor. lt also transforms the original 
FORCE program to a standard FORTRAN 77 program that can be taken into 
account by the standard FORTRAN compi 1er . 

The f ourth essent ial part of FORCE is its execut ion procedure . This 
procedure allows a FORCE program to be called and executed with many 
processes as specified by the programmer . 

The on ly variable part of the environment is the user FORCE program 
containing the parallelized application. 
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.iH Principle of an execution of a FORCE prog.crun 

1 n troduct ion 

ln this sub-section, we describe the main principle of a FORCE program by 
an algorithm for the actors that are involved at the execution time . These 
actors are the driver program and the user program . Here , we give these 
algorithms. 

For the driver program 

- Start the driver program with internai declarations 
- Declare some shared regions for atomic Iock memories 

shared between the processes 
- lnitialize the barrier variables 
- Cal I the subroutine containing the declarations for 

shared memory regions 
- Read the total number NP of processes specified by the user 

on the command I ine . 
- Label 
- If not yet forked NP-1 processes 

- Fork the process and note the real pid 
- If I have the real pid of the father , return ta label 
- Else continue 

- End if 
/* Note : Here is the beginning of the parai lel code*/ 
- Begin of critical section 
- Execute the PMAIN subroutine = the user FORCE program 
- Begin of the barrier 
- End of the barrier 
- If I am the father process 

- Finish the program, the environment , and ki 11 the 
other chi ldren 

- End if 
- End driver program 
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For the FORCE user orogram 

- Start the FORCE user program •ith 1any processes ln parallel 

- < User parai lel code lncluding the tools provlded by the FORCE 
language for synchronlzatlons and communications bet1een the 
processes . > 

- < Description of parallel and/ or sequential subroutines 
according to the syntax of FORCE . > 

- End the FORCE user program 

4.3.5 The implementation of FORCE 

1 ntroduct ion 

ln this sub- section , we explain the way a FORCE executable program is 
built on the base of a FORCE source file . ln the previous section, we have 
explained how a FORCE program is executed, involving the 2 first parts of 
the environment defined earlier . This section highlights the 2 remaining 
parts of the ennvironment , the FORCE procedure to prepare the paralle 1 
executable program, and the Forcerun procedure to start its execution . 

We describe these 2 parts by an algorithm 

The FORCE procedure 

The FORCE procedure is the most important part in the FORCE 
impl ementat i on . The sequence of orders is made of UNIX comm ands . These 
commands are t he following : 

- Test the cammand I ine ta check if al I arguments are val id 
- Prepracess a 1 1 . frc fi I es a f the cammand I i ne ta praduce 

abject . a fi I es 

- Prepare a cammand I ine to I ink a load module 
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- Execute this co11and I ine to produce the executable version 
of the load aodule 

- Prepare a teaporary file containing all .o fi les, one on each 
1 ine 

- Execute the executable load module œith the temporary file 
as data file, producing such a way a new command line . 

- Execute the new command I ine which is a command for I inking 
the final program . The result is the .exe final file 
contalnlng the parai lel program . 

This procedure uses of an intermediate load module . This module is 
necessary for the complete automatic preparation of the final program . 
lts function is to prepare the command line for the linkage of the final 
program . The problem is that this command line is functionnally 
dependent on the application for the .o files to include , and the shared 
memory names to specify to the linker . 

The load module is written in FORTRAN and makes the following: 

- Begin of the load module 
- Urite on the standard output the first part of the 

command I ine for the I inkage of the final program ( nome of 
the I inker, nome of the standard I ibrary and nome of the 
standard shared area used for the management of the 
environaent ) . 

- Execute the subroutine MEMSHA(IHT) located in the fi le of 
the user program . This subroutine contains the declarations 
for the shared variables, and a ~rite statement of the nome 
of the shared region, on the standard output . This 
subroutine is automatical ly produced by the preprocessor 
in the main .f fi le . 

- Get al I arguments from the Input data f i le and write them 
on the standard output 

- End of the load module 
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The F orcerun procedure 

The Forcerun UNIX procedure is very simple . lt is the following: 

- Test the coamand llne to see If lt ls the correct format 
If not , return to the shell •ith a aessage 
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- Read the total number of processes spec i fied by the user and 
pass it to the driver program by the intermediate of a fi le 

- Execute the parallel program specified , with as entry, the 
fi le containing the nu1ber of processes 

- Delete the temporary file . 

ln a further sub-section, the invocation of a FORCE program is explained . 

Note about the oreprocessor 

As we have said , the original .frc FORCE program is first proprocessed to 
be transf ormed in a FORTRAN 77 .f fi le . This preprocessing is made in a 
multiple pipe command, with as input, the original FORCE .frc file, and as 
output , the FORTRAN 77 .f fi le . 

The first 5 stages of the pipe command are subtitutions of names made by 
the SEO editor with a script file for the description of these 
substitutions. The last 2 stages extend the names of the macros to their 
code . These extent ions are made with the M4 module , a standard UNIX 
preprocessor, and an input file containing the semantic extentions . 

4.3.6 Particularities of the FORCE environment 

The FORCE environment rias the particularity triat wrien a parallel program 
is started , no one of the parallel processes is considered as a master 
proces?. All the processes are considered the same way irnplyi ng that the 
system is perf ectly symetric . 

This involves that the peace of sequential code enclosed in a barrier 
construct , must be executed by on ly one process , but this process can be 
any process . 
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Another particularity is that a FORCE program begins immediately its 
execution in a parallel way . So , the par allelism is intrinsic to the 
environment . The program remains parallel until the join construct at the 
end of the program . 

A FORCE program is always executed with the number of processes that 
has been specified by the user on the command line . 

ill The too 1 s provi ded by FORCE 

Introduction 

ln this section, we will quickly review the tools available for the FORCE 
programmer in a parallel program . We do not describe here all the details . 
For more informations , please ref er t o the user manual of the FORCE 
environment . 

The tao ls avai lab le in a PARFOR program are of various natures . But the 
common factor of these tools is that they are al 1 implemented as macros 
that are extended to standard FORTRAN 77 by the preprocessor . 

The tools for soecification of the orogram structure 

Force: 
This macro declares the start of a parallel main program. lt sets 
up the environment, and all processes begin their execution from 
this point unt il the join operat ion . 

End Declarations : 
This macro indicates to the preprocessor that the declaration 
part is finis~1ed . 

Jo in: 
This macro terminales the execution of a paralle l program. 
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Forcesub : 
This macro declares the start of a parallel subroutine . 

Externf: 
This macro informs the Force compiler/ preprocessor about the 
necessity of external modules not included in t he same f i le 
as the Force main program . 

Forcecall : 
This macro is used to invoke parallel subroutines that have been 
declared by the Forcesub macro . 

The tools for the variable declarations 
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The variables of a FORCE program are declared with a set of macros . 
Essentially, there are 3 types of variables which can be local or common . 
The macros for the declarat ions are the following : 

Private : 
A private variable consists in a variable known only by one 
process . This implies that each process maintains separately its 
own copy of the variable , which is diff erent from one process 
to another . 

Shared : 
A shared variable consists in a variable t hat is known by all 
parallel processes. There is only one copy of this var iab le . 

Async : 
Asynchronous variables are shared between processes . They have 
on ly one instanciation for al l processes . These variab les have bath 
a value and a status . The type of the value i s one of the types 
provided by FORTRAN . The state of the var i able is always "full" or 
"empty'' . These variables are managed onl y by special pri mitives 
that we rev iew in the next sub-sect ion . 

Pri va t e Common, Shared Common, Async Comrn on : 
These variables have the same respectiv sign i fication as described 
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above, bul they are global variables, i .e. they are known in the 
entire program . 

The tools for parallel execution 

Pcase : 
This macro allows a serie of independent sections of code 
to be executed by a single process . 

Usect : 
This macro separates multiple stream code sections of a parallel 
case Pcase . 

Csect : 
This macro begins a conditional single stream code section of a 
para 11 e 1 case Pcase . 

End Pcase : 
This macro delimits the end of a Pcase construction . 

Scase : 
This macro is simi lar to the Pcase macro , but instead of a 
static assignment of the sections to the processes, the 
assignment is done at the run time ( self-scheduling). 

End Scase : 
This macro delimits the end of the Scase section. 

Presched Do : 
This macro allows the parallel execution of a loop in a 
prescheduled way . The work is automatically distributed in a 
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fixed way between the processes according to the indexes that 
are specified. 

Pre2Do : 
This macro a11ows the parallel execution of a doubly indexed 
1 oop in a preschedu 1 ed w ay . 
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End Presched Do : 
This macro delimits the end of a Presched Do construct. 

Selfsched Do : 
This macro allows the parallel execution of a loop as with the 
presched do construct , but the attribut ion of the work to the 
processes is done dynamically, in a self-scheduled way . 

5elf2do : 
Thi s macro allows the parallel execution of a doubly indexed 
loop in a selfscheduled way . 

End Se 1 f sched do : 
This macro terminates the body of a selfsched do construct . 

Tr,e t ool s for synchronization 

Barri er : 
This macro defines the begin of a synchronization barrier . The 
code of the barrier is executed by all processes . When al l of them 
have reached th is point , only one process can continue the 
execut ion , unt il the end of the barrier . 

End Bar rier : 
Th is macro terminates a barrier. When t his point is reached , 
the execut i on of the pro gram returns to a para 11 e 1 state . 

Critical : 
Thi s macro defi nes the beg in of a critical section . Only one 
process can enter in a cr i tical section at a time. 

End Critical : 
This macro defines the end of the cri ti ca l sect ion . 

Produce : 
Th is macro al lows the ass ignment of a va lue t o an asynchron 
variable . This i s the onl y way t o assign a value to such variables . 
!f the state of t he vari abl e is "full" , t hen the process that 
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tries ta fill it, must wait until the state returns ta "empty" . 
Then, it marks the state of the variable as "full" . 

Consume : 
This macro allows an asynchron variable ta be readen . If 
the state of the variable is "empty" , then the process try ing 
ta read must wait until it is "full" . Then it can read the variable 
and set its state ta "empty'' . 

Copy : 
This macro has the same eff ect as Consume , but the value and 
the state of the variable rem a in unchanged . 

Void : 
This macro marks the state of the asynchronous variable as 
"empty", unconditionnally. 

lsfull : 
This macro returns the state of the asynchronous variable in 
a logical variable that can be readen by FORTRAN . 

4.3.8 ComQilation and execution of a FORCE Qrogram 

Campi lat ion 
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The preparation of a FORCE parallel program i s very easy . This easyness is 
due to the fact that everything needed is spec i fied by the user in only the 
FORCE user progr am . The FORCE procedure i s ca 11 ed for the preparat ion of 
the program in the following way : 

FORCE -o < exec fi lename > < fi lenames.frc > 

The < exec filename > is the resulting name of the file containing the 
progr am to execute . 

Trie < filenames.frc > are the source fil es , parts of the para llel 
appli cati on . 
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Execution 

The execution of a FORCE program is easy . The user has only to start the 
Forcerun procedure with the name of the file containing the program to 
execute , and the total number of processes that he wants to attribute to 
this execution of the program . 

This is done in the following way : 

Forcerun < executable filename > < number of processes > 

Figure 4-2 shows the process of generation and execution of a FORCE 
program. 

ComQilation and Execulion of a FORCE Program 

FORCE 
tex t to 
compile 

given to _ FORCE 
procedure 

produces -
1 

Execu t able 1 
progr am 

i 

Execution of < number o f 
the para 11 el 14---p=r...::.o.::..:c e:..::s-=-s e::..::s:....:>_~ 

program 

Figure 4-2 

given to 

FORCERUN 
procedure 



Chapter S 

Tests w i th the MXSOO 

5. 1 1 ntroducti on 

ln this chapter, we introduce the machine on wh ich we do our tests , and 
the actual configuration of the machine . 

Then , we report the most interresting results that we obtain , and the 
conditions in which they were taken , for each kind of test . We also 
pro vide a brief conclusion for each serie of tests . 

Most of the tests are made for the PARFOR environment . But for the last 
serie of tests, we provide also results for the FORCE environment. 



5 .2 Summary 

After rnany tests , we f eel that the PARFOR environment is easy to use for 
the FORTRAN programmer . But the too ls provided still suffer of youth 
sins . lt could be possible that the PARFOR provides a better interface , 
without many changes to the actual design . 

On the performances point of vue , we report here the results of the tests 
that we made with PARFOR in the ATT environment with the original 
version, and the next optimized versions . 

The large number of results show that the ideal number of processes to 
execute a parallel program, is not always equal to the maximum number of 
available processors . They also confirm that the number of parallel 
processes initiated for a PARFOR program should be less or equal to the 
number of processors . 

This number of processes is greatly dependent on the size of the parallel 
sections, i.e. the granularity of the program . 

Our results also confirm that the original phil osophy in the conception of 
parallel PARFOR programs , is interresting for middle and large sizes of 
programs . To the contrary , the tests show that , when the size of a 
parallel section of a program is small , the standard way of programming 
in PARFOR is very expensive . lt is better , in this case, to program with 
only the initial calls to the TASKIN facility , and then , make the 
synchronsat ions i ns ide the para 11 el w ork subrout i ne . 

The speedup of a PARFOR parallel program depends on the algorithm , on 
the implementation of PARFOR, and on the level at which the program has 
been parallelized . 
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All versions of the implementation of PARFOR based on different 
mechanisms were tested . The original version is improved in terms of 
performances . The last version we wrote provides the best results for our 
tests . We think that this version 5 should be adopted as the standard 
version of PARFOR . 

We also made one test within the FORCE environment . This other 
environment , according to the time results of this test , is also 
powerfull , and provides better results than those of the PARFOR 
environment for the same algorithm . 

The PARFOR env i ronment is , in terms of perforemances , not so good as 
the FORCE environment . But the difference is very litt le .- This difference 
is due to the absence, in PARFOR , of har dware tools that allow the use of 
critical sections, as well as barriers implemented with 2 locks . 

All the programs written within the FORCE environment could also be 
written within PARFOR . The translation from one system to the other is 
relatively simple . The most important modifications are located in the 
conversion of the critical sections into barriers . The cost of this would be 
a little diminution of the performances of the program compared to its 
FORCE version. 

We must be very carefull in our assupt ions , because the results that we 
take from the large number of tests done, ar e very sens i tive according to 
the multiple parameters that we made vary . But these results provide the 
mean behaviour of the PARFOR environment . 



5 .3 The multiprocessor MX500 

5.3.1 Introduction 

ln this section , we expose the main characteristics concerning the 
multiprocessor mxSOO . 

5.3.2 The characteristics 

The MXSOO system , is based on a bus architecture on which can be 
connected from 2 to 16 processors to constitut e a full multiprocessor 
environment . Our test machine is configured with a set of 6 processors . 
The global architecture of the system is driven by a special version of the 
operating system UNIX VS.O . The main characteristics of the system are 
the following : 

- There is a high degree of coupling between the processors . Al! the 
memory is sharable among them, allowing the sharabi li ty of al! 
resources, and communications between the processors . 

- The common bus is the path used to exchange all messages between the 
processors . 

- lt is a real multiprocessor system , i.e. completely symetr ic. All 
processors can execute the system or an application at any t ime when 
t hey are free of work . 

- All applications written for a standard one processor architecture can 
be executed on the MXSOO system without any modificati on . 

- The system allows dynarnic l oad bal anc ing , rneaning t hat t he processors 
use at the maxi mum level t he poss ibili ti es of t rie machine. As soon as 
a processor becomes free , it can immediatel y be used f or another task . 
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- An application can be written on the base of multiple instruction flows , 
all accessing to shared memory datas . 

- A hardware support exists for mutual exclusion , including a set of hard 
locks accessible to the user . 

~ General overvue of the architecture 

The bus system 

The main bus is a 5B8000 . lt is the main communication path between the 
processors , the memory modules and the peripherals . The rate of 
transmission is nearly 26.7 Mbytes in a second . 

Figure 5-1 shows the global architecture of the machine . 

Architecture of the MX500 machine 

Central 
memory 

S68000 BUS 

Pool of the processors 

Figure 5- 1 

Periphernl 
controllers 
( Multibus, 
Ethernet) 
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The system link and the interruption controller 

A specific circuit has been developped to manage the processors connected 
to the system . Each of the processors has i ts own SLI C , as we 11 as each 
board connected to the system . All SLICs are connected to a mini-bus 
called the SLIC-bus , which is a serial connection . These SLICs manage 
together the inter-processor communications , the synchronized accesses 
to the data structures of the operating syst em , the interruptions of the 
processors . A 11 the se operat ions are transparent for the final user of the 
system . 

The poo 1 of processors 

The processors are grouped 2 by 2 on a board , but remain completely 
independent . Each board can be added or removed from the system . The 
interf erences between the processors are not important , at the maximum 
load . Each processor is a standard NS32032 , not original ly conceived to 
work in a parallel environment . However , the annexed circuitry takes a 
part of the management tasks . For example , when a processor prepares a 
memory access , it is the task of the annexed circuitry to validate , if 
necessary , a particular type of interruption . This annexed circuitry is 
composed by the SLIC chip managing the communications, by a bloc of 8K 
local RAM and 8K cache memory , by a memory management N532032 
circuit, and by a floating point NS32081 processor working in cooperation 
with the main NS32032 processor . 

The physical architecture can support until 28 Mbytes of central memory . 
All this memory is available to all processors . The bloc memory 
allocation is done dynamically when processes recquire new space, so the 
use of the memory resource is nearly optimal . 

The peripheral contra l lers 

The system can be connected to a set of peripherals as disk uni ts , tape 
units, terminals or others, including gates for the multibus system . 
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5-.H Pert ormances 

Performances of a single processor 

The performances of one processor are nearly simi lar to those of a 
V AX750 , so that the system running with on ly one processor can provide 
the same power as the power of a VAX 750 system . When the system is 
configured with many processors , an equivalent number of processes can 
be treated in paralle 1 , showing the advantages of the mult iprocessor 
environment . 

Addition of processors 

The advantages of the addition of new processors can therefore be 
characterized by a better throughput of the system , and a better 
performance for running parallel applications , taking into account the 
avai labi l ity of the processors . 

The machine is managed by the modified version of the UNIX environment 
VS.0 . lt is a multi-users multi-programmed operating system perfectly 
adapted to the MXS00 mult iprocessor. 

The parallel applications designed to run on a multiprocessor system can 
take profit of the parallel architecture , and the gains in performances of. 
these applications are influenced by the following factors : 

- The percent age of the execut ion t ime of the app 1 icat ion which must be 
spent in the sequential sections . According to some statistics, many 
applications must spent only a few time in the sequential code, i .e. 1 % 
of the total time . 

- The number of processors available in the configuration . The MXS00 
machine can support until 16 processors . 

- The problems of contention for the accesses to the bus . But inthe MXS00 
machine, they are negligible, according to trie constructor. 
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- The overheads during the creation of multiple processes . They are 
measured in hundreth of a second . 

- The overheads due to the communications and the synchronizations 
between processes . They are measured in mi 1 iseconds . 

il5. Shared memocy between processes 
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Shared memory regions can be declared , for several processes. Each 
process having an access to the shared reg ion can easely read and write 
into this region . Each process canuse until 8 shared regions of any size . 
The reservation of a shared memory reg ion is done by a single system call 
( IPC system V) . 

5.3.6 AQplications with many instruction flows 

Parallel applications can coexist with sequential applications . For 
example , suppose that someone starts an application requiring 4 
processors . The system disposes of 6 processors . If the application has a 
sufficient priority , the 4 processes started by the parai le 1 application 
will run , each with its own processor . Depending on the load of the 
system , the users can observe, at the time the application is running, an 
increase of the load on the system . The on ly 2 remaining processors can 
execute the code of the other users . Now , if the parallel application has 
nota higher priority, it will run more slowly, depending on the number of 
the other users working on the system . The most interresting for an 
application , is to have the ability to adapt itself to the number of 
avai lab le processors . 

The MXSOO , in the present days , supports the C environment , the PARFOR 
environment , the FORCE environment , the FORTRAN77 env ironment , and 
the ASSEMBLER language Note that the se languages do not provide by 
tr1emselves the tools for parallel programming . lnstead , they use the 
standard faci1ities provi ded witri trie UN IX environments . 



5 .4 The tools and the measures 

The tools we use for providing results are described in chapter 2 in the 
section concerning the measurements . 



5 .5 Tests with the various versions of PARFOR , 
and wi th FORCE 

The tests we design are made within the var ious environments . lt means 
that the same programs are executed with the versions 1 , 2 , 3 , 4 and 5 
of the PARFOR driver program . Sorne tests are not made with all versions 
of PARFOR , because of the unavailabi l ity of the new versions at the 
moment of the test , and because of lack of time , the tests were not 
reexecuted later with the new available versions . 

Here , we remember the main characteristics of each of the versions of 
PARFOR . The details are available in the previous chapter describing the 
implementation of PARFOR . 

Version 1 is the original version that uses the system messages to 
act ivate or deact ivate the processes when they are ca lled by the T ASKI N 
facility . This version also uses some atomic Iock memories for the 
synchronization primitive . 

Version 2 is modified . lnstead of using system messages , it takes profit 
of the shared memory, and atomic Iock memories . 

Version 3 uses only system V semaphores to protect the shar ed variables . 

Version 4 uses no locks for the synchronizat ions , but still for the 
attr ibut i on of the work to the various processes . 

Version 5 uses no more locks , no semaphores , but only standard C 
instructions . 

For the FORCE environment , that·s more easy because we have on ly one 
version of this environment . However , for this environment , we make 
only one serie of tests. The results of these tests are direct ly comparabl e 
w i t h the results provided in the PARFOR env ironment . 



5.6 The LINPACK benchmark 

5&.l Introduction 

ln this section, we explain the linpack benchmark, used as a test program 
for the PARFOR environment . 

The linpack benchmark is a FORTRAN program used for comparing the 
performances of various computer systems that must tackle dense 
systems of linear equations. The program was written by Jack J. Dongarra 
of the Argonne National Laboratory. 

lts execution profile has a high percentage of floating point arithmetic 
operations . Linpack performance is measured in terms of millions of 
floating point operations per unit of time ( megaf lops) . 

The program itse 1f i s based on 2 subrout i nes named SGEF A ans SGESL . 
SGEFA factors the matrix by Gaussian el im1nation, while SGESL solves the 
real system 

A* X = b 

using the factors computed by SGEFA . 

Both subroutines call a third subroutine ca lled SAXPY , which computes a 
constant times a vector, plus a vector . 

ln all , linpack makes 8 performances measurements and includes a 
consistent check in the form of a residual calculation of the results for 
the f irst of the 8 computations . 

we know that linpack spends nearly 83 percent of its time in the SAXPY 
routine , ctescribed earlier, and 5 percent in SGEFA. Avery small amount 
of time is spent in SGESL . 
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So , the most important optimization to do must be made in the SAXPY 
routine, by using the standard tools of PARFOR . 

.5...Q.2 Main routines used j o the mai o al gori thm 

We can describe the main scheme of the benchmark program by an 
algorithm . But first, the most important routines, are the following : 

SECOND() 

This routine is a function which gets the present time from the system 
and returns it in a real f orm . 

MATGEN( ... ) 

This routine fills in tables representing the linear system to salve , by a 
pseudo random way . Also various vectors are initialized . 

SGEFA( ... ) 

This routine factors a real matrix by Gaussian elimination . 

SGESU ... ) 

Tr1is routine salves the real system 

A * X = b 

using the fac tors computed by SGEFA . 
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5.6.3 Results of the benchmark 

Ttw rcsulls of the original linpack are the following : 

The first line computes various residus to check if the results provided by 
the calculations are correct . lt means that they must be the same at each 
execution of the program because the same original linear system is used 
for each execut ion . 

The lime results of the execution are given in 2 groups of 6 columns. Each 
column has a special meaning. 

Column I: SGEFA 

This column provides the total time spent in the SGEFA routine which 
factors the system . Most of the time is spent in this routine . 

Co/umn 2 : SGESL 

This column gives the total time spent in the SGESL routine which salves 
the system factorized by SGEFA . A litt le time is spent in this routine . 

Co/umn .3: TOTAL 

This column provides the total time spent to sa lve completely the linear 
system . lt is the sum of columns 1 and 2 . 

Co/umn 4: t!FLOPS 

This co lumn gives the est imated power of the machine under tests in 
MFLOPS . This power is cornputed by the following way : 

OPS 
MFLOPS = ---------------------

1000000 * TOTAL 
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where 

MFLOPS 

OPS 

TOTAL 

1000000 

is the estimated power of t he machine, 

is the number of floating point operations necessary 
to solve completely the given l i near system , 

is the total t ime spent to solve the linear system , 

is a conslanl lu olila in lhc result in MFLOPS instead 
of in FLOPS . 

Co/umn 5 : UNIT 
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This column provides the number of seconds necessary to compute a 
million of floating point numbers. lt is computed by the following : 

where 

RES 

2 

MFLOPS 

2 
RES=-----------

MFLOPS 

is the result described above , 

is a constant . The value is 2 because each floating point 
operat ion is assumed to compute 2 numbers , 

is the est imated power of t he machine under test . 
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Column 6 : RA T/0 

This column gives the relative power of the Cray 1 computer compared to 
the machine under test . This ratio is computed by the following way: 

where 

TOTAL 
RATIO=-----------

CRAY 

is the result described above , RATIO 

TOTAL 

CRAY 

is the estimated time consumed to solve the linear system , 

is the mean estimated time consumed to salve the same 
system . lt is considered as a constant in the program . 

5.6.4 Example of the presentation of the results 

NORM. RESID RESID MACHEP 
3.97839260E+OO 7.59065151E-04 9.53674316E-07 

X(l) X(N) 

9.99704897E-01 9.99731898E-01 

TIMES ARE REPORTED FOR MATRICES OF OROER 100 
SGEFA SGESL TOTAL MFLOPS UtilT RATIO 

TIMES FOR ARRAY UITH LEADIHG DIMENSION OF 201 
3.997E-01 1 .670E-02 4.164E-01 1 .649E+OO 1 .213E+OO 7.436E+OO 
3.998E-01 1 .670E-02 4. 165E-01 1 .649E+OO 1 .213E+OO 7.438E+OO 
4. 128E-01 1.690E-02 4.297E-01 1 .596E+OO 1 .252E+OO 7.673E+OO 
4.091E-01 1 .627E-02 4.254E-01 1 .614E+OO 1 .239E+OO 7.596E+OO 
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TIMES FOR ARRAY UITH LEADIHG DIMEHSIOH OF 200 
1.019E-01 1 .690E-02 1.218E-01 1 .626E+OO 1 .229E+OO 7.532E+OO 
1.260E-01 1.770E-02 1.137E-01 1 .516E+OO 1.292E+OO 7.923E+OO 
1.306E-01 1.730E-02 1.161E-01 1 .532E+OO 1.305E+OO 8.002E+OO 
1.255E-01 1.611E-02 1.119E-01 1.551E+OO 1 .287E+OO 7.692E+OO 

5.6.5 Scheme of the main program 
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We need to define some constants and variables before trying to 
understand the measures provided by the benchmark . 

Tl, T2 

Time( 1, 1 .. 6) 

TOTAL 

OPS 

CRAY 

Temporary variables containing the 
instantaneous value of the time . 

Vector of 6 e lements containing the results 
of the measures as described in the paragraph 
explaining them . 

Contains the total cpu-time used to perform the 
solution of the linear system. 

Constant defining the number of f loating point 
operations performed to salve completely 
the Gaussian system . This number is always known 
if we know the size of the system to salve . ln our 
case, the size of the system is 100 . So the value 
of OPS is : 

0 P S = ( ( 2 * ( 1 0 0 ** 3)) / 3) + ( 2 * ( 1 0 0 ** 2)) 

Mean estimated time t o salve completely the linear 
system on a CRA Y computer . 
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The basic measures are taken in the following way : 

Call MATGEN( ... ) 

T 1 = SECOND() 

Call SGEFA( .. . ) 

T2 = SECOND() 

Time( 1, 1) = T2 - T 1 

T 1 = SECOND() 

Call SGESL ( .. . ) 

T2 = SECOND() 

Time( 1,2) = T2 - T 1 

TOT AL= Time( 1, 1) + Time( 1,2) 

Time( 1,3) = TOT AL 

Time( 1,4) = OPS / ( 1000000 *TOTAL ) 

Time( 1,5) = 2 / Time( 1,4) 

Time( 1,6) =TOTAL/ CRAY 

print Time( 1, 1 .. 6) 

lnitialization 

Time routine 

factorization 

time routine 

first time 
computation 

time routine 
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salves the linear 
system 

time routine 

second time 
computation 

Total cpu-time 
consumed 

total cpu-t ime 

MFLOPS result 

cpu-time for 
1 MFLOPS 

ratio for compar. 
with CRAY 
computer 

print results 
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These are the basic measurements . The same scheme is reproduced 4 
t imes in the same way, so we can get a mean of the results . ln all cases, 
the same system is solved, so that the results can be compared . 



5 .7 Results obtained with the linpack benchmark 

5.1..1 Tests witb the )inpock benchmork 

The linpack benchmark that we have described , is the starting poi nt of a 
serie or measures on our mach1ne MXSOO . 

The tests we make have as target , the measures of the speedup of the 
algorithm using the PARFOR environment . 

The series of tests that we made , provide a relatively large number of 
tables . We use these automat1cally produced tables later for analysis and 
drawing curves on the behaviour of the speedup . The tables are recorded in 
files . 

These tests are written only for the PARFOR environment . 

5.7.2 Parallelization in the PARFOR environment 

We only parallel i ze the benchmark at the lowest level . This is the level of 
the innermost routines . We begin by the most often called routine , which 
is SAXPY . Ths routine, as we have explained at the begin of our chapter, 
multiplies a vector by a constant, and adds the result to another vector. 
The length and the start-address of the vectors are parameters . 

The principle of work division between the processes is the following : 

- i f the length of the vector is less than the number of ava i lab le 
pr ocesses , the sequential version is performed . 

- otherwise , the vector is divided into subparts , and the bounds of each 
subpart are calculated so that they can be given to each paral lel process 
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- the TASKIN facility of PARFOR is invoked with the new parameters to 
pass at a sub-function executing the work . 
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- the main process performs the same work i n a direct call to the function 

- the synchronizat ion point is reached when all processes have finished 
their own work on their respect ive reg ion of the original vector . Then 
the subroutine is finished . 

The same kind of parallelization is made in t he other routines at the same 
level , but the influence of these routines is far less determinent on the 
global results , because they are less often cal led . 

These routines are SDOT which computes the dot product of 2 vectors , 
55CAL which scales a vector by a constant , and izaMAX which finds the 
index of the e lement having the maximum abso lute value in a vector . 

5.7.3 Tests with the single precision 

De script ion of the parameters for the se tests 

The fixed parameters for the results are the following : 

Parameter I .- Leading dimension 

This par·ameter corresponds to the static enclosing matrix size fixed at 
the compile time . This dimension is the maximum size of a linear system 
that can be so lved by the algorithm , because of the place in the central 
memory . 

Parameter 2 .- t!atrh( dirnension 

This parameter is the size of the 1 inear system to be so lved . This number 
must be lower than the leading dimension . 
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Parameter 3: Parai/el t/Jres/Jold 

This parameter was introduced later for several tests , but is not very 
usefull in this serie of tests . Anyway , it defines the threshold on the 
number of elements to process , under which the parallel algorithm is no 
more used, instead, the sequential version of the algorithm is called . 

Parameter 4 : Execution number 

This parameter reports the number of executions of the algorithm on 
which the mean results provided in the tables are computed . 

These parameters are val id for all result tables . 

Range of the oarameters for these tests 

We make vary the parameters described above in the following ranges : 

- Leading dimension 
- Matrix dimension 
- Parallel threshold 
- Execut ion number 
- processes 

Graohical results 

201 
25 .. 500 
2 
3 or l , depending on the matrix dimension 
1 .. 10 

For more ease , we draw some graphies , showing the critical results 
extracted from the tables . We draw various series of curves , each of 
them showing some particular behaviour of the parallelized FORTRAN 
program . 
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Results of the tests made with version 1 of PARFOR 

Sen'e ! 

This serie contains the figures 5-2 a , b , c & d provided on the next page . 

Each graphie shows the speedup and the efficiency according to the number 
of processes , with all other parameters fixed . The most important f ixed 
parameter is the size of the matrix . We have 4 graphies for matr ix 
dimensions of 50 , 100 , 200 and 500 elements . Sorne intermediate basic 
results for other dimensions are provided in the tables , but not reported 
in the graphies . 

When looking to these graphies, it is surprising to see that the speedup is 
always the best when the algorithm is executed with one process . 1 t is 
1 ow er than one . For the execut ion w i th 2 .. 1 O pro cesses , the degradat ion 
of the speedup is clear . The results expected before the tests , were an 
increase of the speedup according to the number of processes . ln our 
case , it is not the case . 

Concerning the efficiency of the processors, it is directly coupled to the 
speedup , so , the results are also very bad . The results that we expected 
for the efficiency , were a curve , quasi horizontal , showing a quas i 
constant efficiency of the processors according to the number of 
processes created . 

If we compare the 4 graphies, we can say that they are better for greater 
dimensions , but still decreasing with the number of processes . We can 
only say that the tendency is less bad for great sizes . For the matrix 
dimension 500 , there is a small positive speedup for the algorithm 
executed with 2 processes . But this is still weak, and the general aspect 
of the curve is not aff ected by this . 

As a conclusion for these results , we would say that the parallelized 
version of linpack provides very.bad performances . This can be attributed 
to the way it has been parallelized, and/or to the env ironment in which i t 
is executed . 
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5erie2 

This serie contains the figures 5-3 a , b , c & d provided on the next page . 

This serie of graphies shows the amount of time consumed by the 
parallelized linpack according to the number of processes, and the matrix 
dimension . The user-time, system-time and real-time are reported . 

ln this serie , we report 4 graphies . Each of them is the result of the 
execution of the algorithm with all parameters fixed , except the number 
of processes varying from 1 to 1 O . We draw a curve for each size of the 
matrix. 

On each graphi c , the X axe shows the number of processes , and the Y axe , 
the time to execute the algorithm , in seconds . The absol~te values of the 
Y axis are not very important . What we are interrested in, is the variation 
of the repartit ion of the user-time, the system-time, and the real-time. 

From these 4 graphies , it appears immediately that the behaviour is 
nearly the same for the various matrix dimensions . So , from this , we can 
say that the repartition is relatively indcpendent from the matrix 
dimension . We say "relatively" , because the last curve ( matrix dimension 
= 500 ) shows a slight variation from the behaviour of the other curves, 
but weak . 
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Serie3 

This serie contains the figures 5-4 a, b , c & d provided on the next page . 

This serie of graphies is the complement of the serie 2 . lt shows , in 
terms of percentages, the repartit ion between the user and system times . 

We reproduce the 4 graphies of the serie 2 , for matrix dimensions of 50 , 
1 00 , 200 and 500 . 

As we saw previously in the serie 2 , the repartition i s nearly the same 
for each of the 4 graphies . 

As a conclusion to the series 2 and 3 , we can see and cla im that the user 
time follows a logical behaviour ( reduced user-time according to the 
reduced task to achieve ) , but the system-time follows a strange 
behaviour. More the number of processes increases, more the system time 
al so increases , in both absolute value , and relative value to the tota l 
cpu-time . 
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Serie 4 

This serie contains the figures 5-5 a, b , c & d provided on the next page . 

This serie of graphies is intended to show in a microscopie way , the 
tendency of the cpu-time . the previous graphies, because of their too high 
scale, did not show very well this behaviour . 

The serie includes 4 graphies , for matr,ix dimensions 50 , 100 , 200 and 
500 elements . The other parameters are fixed . 

We can observe that the user-time varies from a convex-like increasing 
curve, to a concav-like curve with a minimum . 

The expected behaviour would have been a decreasing curve for the 
user-time , because of the diminution in terms of part of the global task 
to perform . 

This particular behaviour of the user-time is probably due to the time 
consumed for the synchronizations between the processes , almost when 
the number of processes is relatively high and the parallel work very littl . 
But we can not give , at the present time , a better explanation of th is 
strange behaviour . 
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Serie5 

This serie eontains the figures 5-6 a & b provided on the next page . 

This serie of graphies shows only the point at whieh the system-time 
beeomes greater than the user-time . We eonsider only matrix dimensions 
of 200 and 500 elements . 

We ean see that this point does not vary too mueh aeeording to the matrix 
dimension. 

These graphies eonfirm the assumpt ion we made about the serie 2 , and 
serie 4 . 
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5erie 6 

This serie contains the figures 5-7 a, b, c & d provided on the next page . 

This serie of graphies shows an analysis of the behaviour of the real-t ime 
compared to the cpu-time for execution of the algorithm with a variable 
number of processes . 

For each graphie , all the parameters are fixed except the number of 
processes . We draw a graphie for matrix dimensions 50 , 100 , 200 and 
500 . 

This analysis shows immediately that the cpu-time remains always nearly 
half the value of the cpu-time . 

We can conclude that the value of the relative repartition of the 
real-time , is independent from the matrix dimension . We must remember 
that all measures are taken in a block time environment , so, we were the 
only user working on the MX500 machine at the tests time . 



(~ 
,:, 
C 
0 
u 
Cl) 

U) 

(~ 
-0 
C 
0 
u 
(l\ 

(./) 

250 

200 

150 

100 

50 

3500 

3000 

2500 

2000 

1500 

1000 

500 

0 

7ests with the MX500 

2 

2 

LINPACK single precision 

Leading dimension= 201 
Matrix dimension = 50 

3 4 5 6 7 

Number of processes 

Figure 5-7a 

LINPACK single precision 

-----------------------

Leading dimension = 201 
Matrix dimension = 200 

3 4 5 6 7 

Number of processes 

Figure 5-7c 

900 

800 

700 

600 

500 

400 

300 

200 

100 

LINPACK single precision 

Leadtng d1menston = 201 
Matrtx d1menston = 100 

152 

o~---~-~-~~-~-~--.-----. 
8 . 9 10 2 3 4 5 6 7 8 9 10 

8 

20000 

18000 

16000 

14000 

12000 

10000 

8000 

6000 

4000 

Number of processes 

Figure 5-7b 

LINPACK single preciston 

Leadtng d1mens1on = 501 
Matrix dimension = 500 
Parallel threshold = 2 
Execut1on number = 1 

2000 -+-------.....-
0 -+-----~-~-~~-~--...-----, 

9 10 2 3 4 5 6 7 8 9 10 

Number of processes 

Figure 5-7d 

ŒJ Cpu-ttme 

G Real -lime 



1ests with the MX500 153 

Results of the tests made with version 2 of PARFOR 

5ene I 

This serie contains the figures 5-8a to 5-8f provided on the next page . 

This serie of graphies shows the evolution of the cpu-time of the entire 
program when the size of the matrix is increased , i .e. , when the 
granularity of the program is increased, and thus the size of each parallel 
process. 

From these grphics, we can conclude that the behaviour is quite similar to 
the behaviour showed with the original PARFOR environment . The 
cpu-time for small matrix sizes is increasing with the number of 
processes , showing that the overheads introduced by the use of PARFOR 
are very large for small sizes of the parallel work subroutine . When the 
size of the matrix increases , we can see that a minimum appears in the 
curve associated with the fixed size and increasing numbers of processes . 

When the cpu-time is minimum , the speed of the parallel program is 
maximum . The point of the minimum shows the number of processes 
providing the best results . 
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6rap/7/c ol speedup 

This graphie ( figure 5-9 ) shows the speedup of the parallel program 
compared to the sequential version . A curve is drawn for various sizes . 
We have here the confirmation that the PARF0R is better with large 
parallel sizes . 

The speedup is greater than one for at least 3 parallel processes when the 
parall el size of the matrix is greater than 100 elements . Compared to the 
results of linpack provided by the same program executed in the original 
PARF0R environment , there are more greater speedup than 1 . Remember 
that the speedup was only greater than one with matrix sizes greater than 
400 in the original version . 

We make further tests to verify this assumpt ion , and measure the exact 
overheads introduced by PARF0R , with the various versions of the 
implementation we made . 
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5..L1 Tests wi th the doubJ e preci si on 

Description of the result tables 

The results provided by the double precision test program are exactly the 
same as those for single precision . The tests were done so that the 
results can be compared in the same conditions . 

Scheme of the measures 

The scheme is the same as it is for the single precision : 

Time( 1) 

Execute the entire algorithm 

Time(2) 

All performance computations 

Conclusions for the results with the double precision 

We did not draw any graphie for the results with the double precision 
because the scheme of the graphies were exactly the same as they were 
for single precision . 

The only variations were located in the abo lute values of the real - time and 
the cpu-time , which are greater for the algorithm executed in the double 
precision .But this is not surprising , because the same behaviour was 
al ready observed in the original sequent ial linpack program for double 
preci sion . 



5 .8 Tests wi th the SAXPY routine 

5lt1 Introduction 

At the view of the so bad results obtained with the l inpack benchmark , we 
decided to test in a d1rect way the most important routine responsible for 
the results of linpack. 

This is the SAXPY routine . ln a few words, we remember that this routine 
multiplies a vector by a constant, and adds the resulting vector to ano.ther 
vector . A study made by [ Johnstone l shows that most of the time of 
linpack is spent in this routine . 

5.8.2 Description of the parameters for these tests 

For these tests , we provide the resul ts in the same kind of tables than 
these produced for the previous results of the linpack tests . 

The parameters for the execution of the test program are the following : 

Parameter I : Leading dimension 

This parameter is fixed at the compile time . lt corresponds to the 
maximum vector length on which the program can be executed . 

Parameter 2 .- Vector !enqt/J 

This parameter is the size of the vector on which the tests of the SAXPY 
routine are built . The specified size must be lower than the leading 
dimension . 
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Parameter J .- Parai/el t/Jres/Jo/d 

This parameter is not used here , and is always nul 1 . 

Parame.ter 4 : EKecut/on numbe.r 

This parameter specifies the number of executions of the algorithm . More 
this number is high , more the results are accurate , but more the time to 
execute the tests is high . So , a compromize is to be decided . 

5.8.3 DescriP-tion of the tests 

The tests made for this routine are based on a comparable scheme as the 
tests for trie ent ire l inpack benchmark . 

First we execute the sequent ial version of the SAXPY routine , then the 
parallelized version , but with only one process , and third , we execute 
the parallelized version, with the spec i fied number of processes . 

5.8.4 Scheme of the results 

The scheme for taking the measures is always the same : 

Time( 1) 

Execute many t imes the SAXPY routine 

Time(2) 

Al 1 performances computations 

The results are generated in tables at the last phase . 
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2.62 Graphical results 

Grap/Jic I 

This graphie ( on figure 5-1 Oa ) shows the measured speedup of the 
algorithm when it is executed with many processes . 

The tests made ta draw this graphie were designed with various lengths of 
the vector , and all other parameters were fixed . The graphie includes a 
curve for vector lengths 100 , 200 , 400 , 800 , 1000 , 2000 , 4000 and 
8000 . 

The X axis shows the number of processes , and the y axis shows the 
speedup in terms of cpu-time . 

On the graphie, it is clear that the parallelized routine should not be used 
for small numbers of elements . This conclusion is very important for 
linpack , in which the SAXPY routine is used with vector lengths varying 
from <mtrix dimension> ta 1 . This means that, while the standard linpack 
benchmark , is executed with a matri x dimension of 100 , the SAXPY 
routine is always called with vector lengths of less than 100 . And 
unfortunately, this is the badest region of working for the parallel SAXPY 
routine , as the graphie shows us . 

The graphie shows that the SAXPY routine should not be used with many 
processes under a length of 400 element s . And for this vector length, not 
with more than 2 processes , for providing the maximum speedup . The 
curves with more than 400 elements show also a maximum, indicating the 
ideal number of processes at which the maximum speedup is reached . 

We can observe that the curves for small numbers of e lements , are far 
from the linear speedup , according to the number of processes . But more 
the vector length increases , more the behaviour of the algorithm becomes 
close to a linear speedup . The best behaviour is reached for a length of 
8000 elements . We did not go further in vector lengths because the time 
to execute the tests is too long , and secondly because we think that these 
results are sufficient enough to conclude . But we can easely extrapolate 
the behaviour for greater lengths : A speedup closer and closer to the 
l inearity, with an increasing number of processes that increases . 



Tests with the MX500 160 

But from this behaviour , we can also think that the real problem of the 
bad behaviour of the parallelized version is the problem of the overheads 
appearing when trying to use the PARFOR facilities with relatively small 
tasks . ln the case of the SAXPY routine , the parallel work is too small 
compared to the overheads generated by the PARFOR environment itself . 

We think that a further analysis of the overheads of the PARFOR 
environment is a necessity . That's what we do in further tests . 

Grap/Jic 2 

This graphie ( on figure 5-1 Ob ) is the complement to the previous one . 1 t 
shows the efficiency of the algorithm , in terms of cpu-time . 

As for the speedup above , we draw a curve for each vector length 
reported . But the numerical results for other lengths are available in the 
appendices . 

The graphie can be commented as the previous , in terms of efficiency . We 
can clearly observe that there is a large decrease of the efficiency of the 
algorithm when the vector length is very low . The eff i ciency is better for 
larger vectors, but still decreasing . 
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Grap/Jic J 

This graphie ( on figure 5-11 a ) shows the speedup of the algorithm when 
it is used with many processes . The speedup is measured in terms of 
real-time . 

The conditions and matrix sizes are the same as these explained in the 
graphie of figure 5-1 Oa . The results are given in terms of real-time 
instead of cpu-t ime . 

6rap/Jic 4 

This graphie ( on figure 5-11 b ) shows the efficiency of the algorithm for 
the 5AXPY routine . lt is the complement of t he previous graphie. 

1 t can be compared with the graphie of the figure 5-1 Ob . 
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Serie 5 of graphies 

This serie contains the figures 5-12a to 5-12h provided on the next 
pages . 

The graphies constitute an analysis of the cpu-time . We want to know 
more about the dilemn : How is it possible that , while the size of the 
parallel task decreases with the number of processes, the cpu-time is not 
always decreasing . 

We got these results from the general tables recorded and computed while 
running the tests as decribed earlier . 

For these graphies , we fix all parameters except the number of processes 
and the vector length . Each graphie is related to executions with from 1 to 
1 0 processes , and the vector length fixed . We take into account the 
following vector lengths : 100 , 200, 400 , 1000 , 2000 , 4000 and 5000 
elements . 

The X axe of each graphie represents the number of processes , and the Y 
axe is the time in seconds . ln our comparisons between the results 
provided by the various lengths , we do not t ake into account the absolute 
value of these times , but well the frame of the curves . Each graphie 
contains 3 curves , the user-time the system-time and the cpu-time . The 
cpu-time is the sum of user and system times . 

The 5 graphies show clearly where the probl em of the SAXPY routine is 
located . This is not particulary the problem of the SAXPY routine , but 
well a more general problem of PARF0R . The user-time is always 
decreasing , except for the very litt le vector l engths ( 100 and 200 ) . But 
apart from this , we can quai ify of "exected" , the behaviour of al l 
user-time curves for the various lengths . But the most interresting in 
these curves , remains the behaviour of the system-time, which is always 
increasing . 

As a direct consequence of this , the cpu-time has a minimum value , 
depending on the magnitude of both curves ( user and system curves ) . 
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We can see that the user-time decreases slowly for the little lengths of 
the vector , and decreases more quickly for the large values . To the 
contrary , the system-time increases very quickly for the litt le values of 
the vector length , and decreases slowly for the high values . 

We can conclude that there is some f eatures in the PARFOR environment 
that makes increase the system-time very quickly . These results also 
show the necessity of an analysis of the PARFOR overheads . That's what 
we do in further steps . 

Anyway , concerning the SAXPY routine , we can conclude that in the 
current implementation of the PARFOR environment , it is no use to work 
with the parallelized routine if the length is less than 400 elements . 
And , from there , it seems "normal" that the 1 inpack benchmark provides 
very bad results because the SAXPY routine , within this program , works 
always on very low vector lengths ( from 1 to 100 elements for the 
standard version of the benchmark ) . 
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5. 9 Tests of the PARF OR overheads 

5.91. General description of the tests 

We have expla1ned the bad results we obtained when trylng to measure the 
performances of the parllel1zed LINPACK program . ln th1s section , we 
learn the behav1our of the parallel env1ronment ltself , by trylng to 
measure the overheads due to calls to TASKIN plus the_ synchron1zat1on 
with the WAIT fac11ity . 

At the origin , we wanted to measure all kinds of overheads 1n a parallel 
program or routine . Therefore , we bu11t a tool ( descr1bed in chapter 1 ) 
to compute all results from testpoint s in the program . But the major 
problem with this tool was coming from the t iming routines . The SINIX 
environment , as 1t is also the case in all UNIX environment , does not 
prov1de any time routine with a greater resolut 1on than 20 mi11seconds . 
so , with such a low precision , it was not possible to measure 
interresting things, and we had to discard th1s tool . 

Anyway , this problem with the time routine can not be avoided , implying 
that the only solution is the modification of the way the tests are made . 
That's why , instead of providing results for each kind of overhead ( 
initialization and termination ) , we provide a global overhead involving 
the global execution of a parallel program . With this view , we got 
interresting results less detailed, but more stable . All measurements are 
made in the main program . 

For these tests , we provide results for the 5 versions of PARFOR , 
ava i lab le at the present t ime . 
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5..92 Scheme of the tests 

The measures for this kind of tests are taken in the follow ing way : 

Time( 1) 

Do loop i = 1 , ntimes 

npar = NT ASKS() 
Do loop2 k = 1 , npar 

Execute the entire parallel section with the 
TASKIN facility calling the parallel work subroutine 

End of Do 1oop2 

Direct call to the parallel work subroutine 

Call WAITO facility for synchronization 

End of Do loop 

Times(2) 

169 

The entire parallel section is a loop over a call to the TASKIN facility with 
the number of processes that are generated according to the -NT ASKS= 
option at the run time . The parallel work subroutine called each time by 
the TASKIN , i s an empty subroutine with a different fixed number of 
dummy parameters for each test . The parallel work subroutine perfor ms 
only a call-and-return . This global time measurement ensure that we 
measure exactly the additional overheads present in the execution time of 
a para 11 e 1 program . 

The ntimes specifies the number of execut ions for calcu lat ing the results . 
These results are undependent from the number of iterations , because 
they are normalized ; but the number of iterations acts as a factor of 
quality on the results provided. 
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5-U Resul t tables and fi xed parameters 

For these tests , we provide results in tables . Each table is a serie of 
executions of the tests with a fixed number of parameters passed to the 
subroutine called by the TASKIN function . Each serie of tests provides 
results for the execution of the test programs with from 1 to 1 O 
processes . 

We bui ld our tests so that the number of parameters passed to the 
subroutine has a logarithmic variation : O , 1 , 2 , 4 , 8 , 16 , 32 and 64 
parameters . 

For these tests , we use the first tool originally described that we 
designed for measuring the performances of parallel programs , but we 
measure only in the main program . 

5.9.4 Results of the tests 

Tests with the version 1 of PARFOR 

Figure 5-13 shows the distribution of the system and user times . Figure 
5-14 shows the variation of the user-time for execut ions with various 
numbers of processes . Figures 5-15a to 5- 15d show the mean repartition 
of the various times for various numbers of parameters passed to the 
parallel subroutine, according to the number of processes . 
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We are surprised to observe that , when the number of parameters is 
varying , the system-t ime does not or nearly not vary according to this 
number of parameters passed . lnstead , it is close to a constant for a 
fixed number of processes . 

To the contrary , the user-time consumed is clearly dependent on the 
number of parameters passed . This is true if we know that the actual 
parameters are copied to the shared memory , in a loop in the C driver 
program. 

Another interresting result is the amount of cpu-time consumed for the 
execution with many processes . More the number of processes increases, 
more the amount of cpu-time consumed is high . However ·, if we consider 
the decomposition of the cpu-time between the system and the user 
times , we can observe that the user-time remains very low , while the 
amount of system-time is increasing very quickly . 

The absolute value of the cpu-time according to the various numbers of 
parameters remain anyway very high . This is the main reason why the 
performances of the parallelized program are very low . The overheads of 
PARFOR , in this version 1 of the implementation , are high in absolute 
value . 

This very bad behaviour of PARFOR in terms of cpu-time lead us to 
reconsider the way the processes rece ive their part of the job from the 
main program . According to these results, the messages transfer facility 
of the I PC system V is very slow . The only system routine called are the 
routines concerning the messages ( msgrcv and msgsnd ) . ln the next 
versions of PARFOR, we avoid these expensive calls . 

According to these results , PARFOR version 1 is interresting to use to 
the customer point of view, depending on the size of the parallel sections 
that he has to create . ln most of the cases , for a single precision , the 
mean critical size of a parallel section should perform a work of at least 
the following values ( in miliseconds ) , depending on the number of 
processes that must be created : 
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Number of parameters of the subroutine 16 
Number of executions for these results : 10000 

Number Total Equivalent Flops number 
of cpu ----------------------

procs time Single prec. Doub 1 e prec. 
------- ----------- -----------
1 0,26 13 1 1 
2 5,70 263 211 
3 12,75 567 472 
4 16,75 663 694 
5 27,66 1274 1025 
6 36,46 1676 1350 
7 47,57 2166 1761 
6 60,59 2766 2242 
9 79, 16 3642 2929 
10 66,32 4063 3266 

With this version of PARFOR , the overheads are very high . They would 
restrict the number of applications that can be parallelized in this 
environment . 

The third and fourth columns provide the number of equivalent floating 
point operations that the machine should execute to face the overhead 
times provided in the column2 . These numbers are computed by the 
formula : 

overhead time 
Flop number = 

time to execute 1 flop 

The time to execute 1 flop is given by the result of the sequential original 
LINPACK benchmark , and has the val ue 1 ms/ 46 for single precision and 
1 ms/37 for double precision . 

If the number of operations to perform in a parallel process is lower than 
this number , the sequential environment is more usefull in terms of 
speedup . These numbers are theoretical values, according to the measures 
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of the overheads and the estimated power of the cpu . ln the reality, there 
are some little variations around these values . For example , the values 
that we measured within the tests of the SAXPY routine , are following 
this rule unti 1 4-5 processes , and then , the overheads in this routine are 
greater than the theoretical values that we prov ide here . But this is quite 
understandable if we consider, in these theoretical values, that we have 
the same number of processors than the number of processes . We must 
remember that our machine has only 6 cpus , implying that we should 
consider the values until 6 processes only . 

Tests with the version 2 of PARFOR 

This second version of PARFOR , according to our tests , provides better 
results in terms of both cpu-time and real-time . 

We observe that , when the number of parameters is varying , the 
system-time is quasi constant . To he contrary with the previous version 
of PARFOR , ( version 1 ) , the system-time is now a very low part of the 
total cpu-time , quasi negligible . lt increases with the number of 
processes , but of a very small amount , and only when the number of 
processes is greater than the available number of processors . 

The user-time consumed , as it was the case for version 1 remains 
dependent on the number of parameters passed . The explanation we had for 
version 1 is still valuable for this second version . 

The amount of cpu-time consumed for executions with many processes 
increases , but in a reasonable way, i.e. in proportions with the number of 
parameters passed to the parallel subroutine . 

The absolute value of cpu-time accord-ing to the various numbers of 
parameters are now reduced . This should lead to better performances of 
the parallelized programs with this second environment . 

This better behaviour of PARFOR is mainly due to the shared memory and a 
busy loop that replace the message syst em calls . 
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Figure 5-16 shows the repartition of the cpu-time between the user and 
system times. Notice the very litt le part of the system time . 

Figure 5-17 shows the variation of the user-t ime for executions with 
various numbers of processes . 

Figures 5-18a to 5-18b show a mean distribution of the various times for 
the tests . This is for the tests with 8 parameters passed to the parallel 
subrout ine . 

For the first version , we provide some summary tables showing 
approximated equivalent costs of the overheads introduced by the use of 
the PARFOR . We can reproduce the same tables calculated in the same 
way, for this second version. We have : 

Number of parameters of the subrout i ne : 8 
Number of executions for these results : 10000 

Number Total Equivalent Flops number 
of cpu ----------------------

procs time Single prec. Double prec. 
------- ----------- -----------

0,23 1 1 9 
2 1,28 59 47 
3 2,83 130 105 
4 3,64 167 135 
5 3,93 181 145 
6 5, 16 237 191 
7 7,92 364 293 
8 11,31 520 418 
9 15,89 731 588 
10 19,42 893 719 

1 t is true by these results , that this version all ows a middle granularity 
of the program to be taken into account by PARF0R . The costs of the 
TASKI~~ calls are in another order of magnitude , lower for this version . 
The busy loop lhat replaces the calls to the message system in the 
implementation, is less expensive . 
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Note however that the behaviour of the processes is different for versions 
1 and 2 . ln the first version , when a process is waiting , it does not 
consume any cpu-time . ln the second version , it remains in a busy loop . 
But the results presented here lead to think that , even if there is a busy 
loop , the results claim in favour of this second version . 

Tests with the version 3 of PARFOR 

This third version of PARFOR is an attempt to substitute àll hardware 
atomic lock memories of the implementation , by software system V 
semaptlores, based mainly on the Dekker·s algorithm . 

The results for this version are provided only for the execution of the test 
with no parameter . We did not go further in these tests , because it 
appeared immediately that this solution was the worst possible . 

Figure 5-19 shows the distribution of the system and user times . Figure 
5-20 show the mean repartition of the various times for no parameter 
passed to the parallel subroutine, according to the number of processes . 

The system V semaphores is very slow and then , it is also too expansive 
to execute all tests with this solution . 

The first graphie shows the repartition of the cpu-time into the user-time 
and the system-time . All the system-time is consumed by the 
management of the software semaphores . The user-time remains 
unsignificant in the total cpu-time . 

The second graphie shows the 4 curves , real-time , cpu-time user- time 
and the system-time . lt is clear on the graphie , that th i s solution is to 
be rejected . 
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Tests with the version 4 of PARF0R 

This version of PARFOR shows better results than the version 2 . However, 
exact ly the same remarks from the version 2 can be transported for this 
version . 

Figures 5-21 a to 5-21 b show the mean repartit ion of the various times for 
various numbers of parameters passed to the parallel subroutine , 
according to the number of processes . 

Remember that here , we modified the environment such a way that the 
WAIT facility is implemented without calls to the parallel library 
previously necessary to access the atomic lock memories : 

We also compute the approximated equivalent number of floating point 
operations for the time results of this solution : 

Number of parameters of the subroutine : 8 
Number of executions for these results : 10000 

Number Total Equivalent Flops number 
of cpu ----------------------

procs time Single prec. Doub 1 e prec. 
------- ----------- -----------
1 0,20 10 8 
2 0,90 42 33 
3 1,60 74 59 
4 2,20 101 81 
5 3,20 147 118 
6 4,50 207 167 
7 8,30 381 307 
8 13,30 611 492 
9 19, 10 879 707 
10 29, 10 1339 1077 
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These equivalent floating point numbers are better than those of the 
version 2 of PARFOR . As we can see when comparing these tables , this is 
always true when the number of processes is lower than the avai lable 
number of processors ( 6 processors on our test machine ) . 

The conclusion for this version is good anyway . 

Tests with the version 5 of PARFOR 

This is the last version of PARFOR that we implemented until now . The 
target of these multiple versions is always the reduction of the costs 
when calling the TASKIN and WAIT facilities . As we have explained in the 
chapter describing these various versions , this one is implemented 
w i thout any 1 ock . 

Figures 5-22a & 5-22b show the mean repartit ion of the various times for 
various numbers of parameters passed to the parallel subroutine , 
according to the number of processes . 

The results of these tests show similar results to those provided for the 
previous version . The comments made for the version 2 are also still 
valuable for this version . The frames of the curves that we draw are close 
to those of the previous versions . 

Hewever , the suppression of the remammg calls to the atomic lock 
facilities benefit to the performances of the TASKIN and WAIT facilities. 

Always in the same way , we compute the equivalent floating point 
operation number for the various number of processes . This gives us the 
following table : 

Number of parameters of the subroutine 
Number of executions for these results 

: 8 
: 10000 
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Number Total Equivalent Flops number 
of cpu ----------------------

procs time Single prec. Double prec. 
------- ----------- -----------
1 0, 10 5 4 
2 0,70 32 26 
3 1, 10 56 41 
4 1,40 64 52 
5 1,90 57 70 
6 2,40 110 89 
7 4,90 225 181 
8 9,80 451 363 
9 16,40 754 607 
10 31,40 1444 1162 

With such values , the PARFOR environment becomes quite interresting to 
use for low granularity parallel programs . But the costs are still too high 
for some applications . Linpack is such a kind of application which has a 
rather fine granularity , that can only be exploited with an environment 
having a very low total overhead . Even with these results of the version 5 
of PARFOR, the results of linpack would not be very good . 

Until now , this version is the best implementation. We can also compare 
the overheads in terms of floating point operations, with the overheads of 
the original version . The reduction of the costs is drastic . 

The graphies show that a similar frame of the curves to the version 4 and 
version 2 . Mostly, the absolute values are decreased in this version 5 . 
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5. 10 Tests wi th the SGEF A routine 

5.1 o. 1 Genera 1 description of the tests 

ln this section, we descr1be the tests made w1th the SGEFA routine. The 
most important thing is not that the results are provided by SGEFA ; but 
well that the SGEFA routine 1s a good example for demonstratlng what ls 
practically possible w1th PARFOR. A slm1lar test is done for FORCE. 

The test program w1th SGEFA was wrltten 1n 3 versions . The first version 
1s parallelized at the 1nnermost level wlth the standard tools of PARFOR . 
The second version 1s paralle11zed at a h1gher level. And the thlrd version 
1s parallelized at the hlghest possible level 1n the PARFOR env1ronment . 

Most of these tests have been made 1n 5 versions of PARFOR descr1bed 
earl1er . 

Eventually , a FORCE version of the parallelized program at the h1ghest 
level was wr1tten and testsed , and the t1me results are compared w1th 
those of the PARFOR env1ronment . 

5.10.2 Scheme of the SGEFA routine 

The SGEFA routine , in its sequential version , is structurated in the 
following way : 
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Do loop over the pivots 

Search the absolute maximum value in the 
column to find the new pivot . 

Swap the pivot row into position 

Take the reciprocal of the pivot 

( 
Reduce the non-pivot rows 

End of loop over the pivots 

5.10.3 Yarious parallelized versions within PARFOR 

Particularities of the first parallelization 

166 

The first parallelized version of the PARFOR SGEFA program is done in its 
innermost routines. This parallelization was done in a very similar way as 
in the tests with LINPACK . 

So , the calls to the subroutines in SGEFA remain unchanged , while the 
subroutines themselves are parallelized . ln this way , the standard 
interface of the subroutines is preserved, except that the subroutines 
contain some common statements necessary for the parallel work 
subroutines . The calls to the TASKIN PARFOR facility are made in the 
subroutines that are parallelized, implying that a new parallel subroutine 
must a 1 so be descri bed ( the para 11 e 1 subrout i ne that i s ca 11 ed by the 
TASKIN facility) . 

Scheme of the first parallel algorithm 

- _ _ __ _ _ _ , 
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Do loop over the pivots 

Call izaMAX to search the absolute maximum value 

Call TASKIN with the parallel subroutine 
and the parameters for each process 

End izaMAX 

Determine pivot and its inverse 

Call SSCAL to compute the multipliers 

Call TASKIN with the parallel subroutine 
and the parameters for each process 

End SSCAL 

Row elimination with column indexing 

Call SAXPY to modify the rows 

Call TASKIN with the parallel subroutine 
and the parameters for each process 

End SAXPY 

End row elimination 

End loop over the pivots 

Particularities of the second parallelization 

189 

ln the second version, the parallelization is made at a higher level . The 
standard interface is lost . The subroutines are directly parallelized in the 
body of 5GEFA, instead of inside the subroutines themselves . That is why 
the standard interface of the subroutines called is lost . These subroutines 
are replaced by the calculations of the boundaries for the parallel work , 
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and a loop to call the TASKIN facility , the number of times that there are 
parallel processes . Note that in this solution , the number of times that 
the TASKIN facility is called , is not reduced. Only the number of calls to 
subroutines is reduced . Each original call to a subroutine is replaced by a 
loop over calculations of the boundaries , and over calls to the TASKIN 
facility . 

Scheme of the second parallel algorithm 

Do loop over the pivots 

Call T ASKIN with the parallel subroutine and the 
parameters for each process to search the 
absolute maximum value 

Determine pivot and its inverse 

Call T ASKIN with the parallel subroutine and the 
parameters for each process to compute the 
multipliers 

Row elimination with column indexing 

Cali T ASKIN with the parallel subroutine 
and the parameters for each process to 
modify the rows 

End row elimination 

End loop over pivots 

Particularities of the third parallelization 

The thirs parallelization of this algorithm is made at the higest level , 
implying that a minimal number of calls to the TASKIN facility is made . 
The body of the SGEFA algorithm is still more reduced , and contains only 
some initializations , and a loop to call the TASKIN fac i lity the same 
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number of times that there are parallel processes . No parameters are 
given to the parallel called subroutine, but instead, the shared memory is 
extensively used . The various calculations related to the distribution of 
the work among the processes are made in the parallel routine with shared 
or private variables . The shared variables are known by all processes and 
must be updated only in the sequential section of a barrier , but can be 
readen at any time by all of them . The priva te variables are used for 
defining the boundaries , for indexes , and so on . This kind of 
parallelization uses FORTRAN barriers for the synchronization between the 
processes . As we describe in chapters 2 and 3, the implementation of the 
barriers in the PARFOR environment do not require any special hardware 
locks , because we always consider that one of the processes is the driver 
and the only one allowed to execute the sequential code of .the barrier . 

This kind of parallelization, as we have seen in chapter 4, is the standard 
way to program in the FORCE environment , whi le it is not the original 
philosophy of PARFOR . 

The third parallel algorithm is a derivation adapted for PARFOR , of the 
original parallel algorithm drawn by professor H. JORDAN for its own 
FORCE environment . The main difference resides in the critical sections 
not available in PARFOR . However, we are sure that one of the parallel 
processes keeps always the control of the others when executing the 
barrier code . 

From there, we can convert the critical sections into sequential code that 
can be executed in the sequent i a 1 protected code of the barri er . 1 n f act , 
the only differences between the FORCE version and the PARFOR version 
are the following : 

- The FORCE version uses one critcal section . lt is converted to a loop 
contre l led by the main process of a FORTRAN barrier in the PARFOR 
environment . 

- The FORCE version has an implicit implementat ion of the barriers 
with atomic locks, while the PARFOR vers ion uses only FORTRAN 
statements . 
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- The FORCE version does not need to compute explicitely the boundaries 
of the work for each process . lt is calculated automatically by the 
preprocessor . ln the PARFOR environment, these boundaries must be 
explicitely calculated, and determined as a function of the process 
identifier. 

Scheme of the third paral lel algorithm ( PARFOR version ) 

T/Je parai/el main program is built as follow : 

1 nitial ize synchronization barri ers 

Do for each para 11 e 1 process 

Cali T ASKIN with the parallel routine and with 
only as parameter, the identifier of the process 

Direct call to the parallel routine 

Call WAIT facility from PARFOR 

End do loop 

T/Je parai/el subroutfne fs buflt in t/Je followfnq wav : 

do loop over the pivots 

Search part of the pivot column for private maximum 

Barrier code 

Update the global maximum and record the pivot 

End barrier code 
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Swap part of pivot row into position 

Barrier code 

Take the reciprocal of the pivot 

End of barrier code 

Reduce part of non pivot rows 

Barrier code 

reset global maximum 

End of barrier code 

End loop over pivots 

Sc/Jeme of the t/Jird parai/el a/gorit/Jm (FORCE version) 

The parallel algorithm is built in the fo llowing way: 

Do loop over the pivots 

Search part of pivot column for private maximum 

Critical section 

Update global maximum 

End critical section 

Barrier code 

Record pivot when all processes have finished 

End barri er code 

193 
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Swap part of pivot row into position 

Barrier code 

Take reciprocal of pivot 

End of barrier code 

Reduce part of non-pivot 

Barrier code 

Reset global maximum 

End barri er code 

End loop over pivots 

5.10.4 Description of the result tables 

194 

The result tables provided conta in the same informations as it is the case 
for the other tests . But for the present tests , we had tao many tests to 
do , so we decided to suppress the line in the results , that provided the 
comparison with the paralle 1 version of the algorithm executed as a 
sequential program . This execution was interresting for measuring the 
overheads introduced by the parallel version of t he algorithm , compared 
with the original sequential execution. 
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5.10,5 Scheme of the results 

The measures for this kind of tests are taken in the following way: 

lnitializations 

Time(l,1) 

do loop : i = t , ntimes 

execute the sequential algorithm 

loop: continue 

Time( 1,2) 

1 nitia 1 izations 

Time(2, 1) 

Do loop2 : i = 1 , ntimes 

execute the parallelized algorithm 

loop2: continue 

Time(2,2) 

Computations and prints 

5.10.6 Fixed parameters for the executions 

The fixed parameters for the results are the following : 

195 
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Parameter I: Leadingdimension of t/Je matrix 

This parameter corresponds to the stat ic enclosing matrix size fixed at 
the compile time . This dimension corresponds to the maximum size of a 
linear system that can be solved by the algorithm . This parameter has the 
same meaning as the parameter of the same name that has been used in the 
LINPACK tests 

Parameter 2 : Matrix dimension 

This parameter is the size of the linear system to be solved . This number 
must be lower than the leading dimension . 

Parameter 3 : Sequentia! execution number 

This parameter is the number of execut ions of the sequential algorithm on 
which the mean results provided in the tables are computed . 

Parameter 4 : Para!!e.! execution number 

This parameter is the number of executions of the parallel algorithm on 
which the mean results provided in the tables are computed . 

These parameters are valid for all results of the tables . We made vary 
them in the following ranges : 

Leading dimension 
Matrix dimension 
Sequ. exec. number 
Para 11 . exec. number 
Pro cesses 

: 501 
: 25 .. 500 
: 3 or 1 , depending on the matrix size 
: 3 or 1 , depending on the matrix size 
: 1 .. 6 

From the tables , we draw some graphies , showing the critical results . 
Ali these results are available in the appendix 4 . 
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5.10.7 Results of the tests with the first level of paralle)izatioo 

The first version of the SGEFA algorithm was not used for the tests . The 
main reason of this attitude is that this version was already extensively 
used within the tests of the LINPACK benchmark . So , we know that the 
results provided by the parallelization of this algorithm by this level, are 
very bad . For more informations, refer to the section describing the tests 
we made first with LINPACK . 

5.10.8 Results of the tests with the second level 
of p~rnllelizlltion 

Tests with the version 1 of PARFOR 

The graphies of figures 5-23 a & b provided show the bad performances of 
PARFOR when the TASKIN facility is invoked very often for very small 
parallel Jobs to perform . 

The SGEFA calls very often the TASKIN facility for executlons of very 
little jobs . so , these are the circumstances in which PARFOR has the 
badest behaviour . This is confirmed by the curves showing that the 
speedup is better when the slze of the matrlx ( and thus the parallel task ) 
1s greater . 

The graphies are nearly the same for the Real-time and the Cpu-time . 
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Tests with the version 2 of PARF0R 

ln this section , with the same program and the same measurements as in 
the previous section , we can observe a simi lar behaviour of PARF0R , 
except that some results are positive when the granularity of the parallel 
task is increased . For sizes less than 100 , it is never usefull to run a 
program with more than 1 process . 

Anyway , for greater sizes , the speedup is greater than 1 . So , if we 
increase the size of the parallel job, there is a tendency for the curves to 
become linear. 

Because the test program is the same , we can think that this increase of 
performances is due to the modified PARF0R environment . 

The graphies on figures 5-24 a & b are nearly the same for the Real-Ti me 
and the Cpu-time . 

Tests with the version 5 of PARF0R 

The same program parallelized in the same way , executed in this last 
version of PARF0R , provides better results . The graphies of figures 5-25a 
& 5-25b show that the influence of the PARF0R implementation is very 
high in this kind of parallelization. The costs of the calls to TASKIN are 
reduced ( as we have seen in the serie of tests concerning the overheads ) , 
and this is easely visible on the performance point of vue . 

The performances are however still better for large sizes of the parallel 
subrout i nes . 
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Conclusion for this second level 

These results show that this level of parallelization is not very different 
from the first Jevel . The main difference is located in the number of 
intermediate calls to subroutines , which is reduced . But this reduction 
does not affect in a very large way the results, because the extra-calls of 
the first level , eventually , are not very expensive compared to the more 
critical time consumption of the TASKIN facility . 

This second level of parallelization is very sensible to the costs of the 
TASIN facility . This is due to the multiple calls that are made to this 
tool , and that is the r eason why we try to reduce the cpu-time of the calls 
toTASKIN . 

The tests we built show that the calls to the T ASKIN facility remain very 
expensive in a parallel program . This is the reason why we try to avoid 
them as most as possible . This reduction of the cal ls to the TASKIN 
facility is done in the third level of parallelization . We discuss the 
results of ths third method in the next sub-section . 

5, 10,9 Results of the tests with the third Jevel 
of para1lelization 

Tests with the version 1 of PARFOR 

The first graphie ( figure 5-26a ) shows immediate ly that this third leve l 
of parallelization of a PARFOR program is far better for our SGEFA 
program . The cpu curve shows that the speedup is quasi linear according 
to the number of processes that are used to run the para l le l program . 

This curve shows the first good results obtained with the PARFOR 
envi ronment . For this application, where the size of a parallel job is very 
little , we can observe that the speedup follows the curve that we 
expected to see . The speedup is l inear unt i 1 the execut ions with 4 
processes . After that , it is st i 11 increasing for most of the curves , but 
there is a tendency to a certain stabilization . 

We can make a distinct ion between 2 k inds of curves on this graphie . 
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First , the curves drawn for the executions of the algorithm with a matrix 
size of 50 to 200 . These curves show a relatively good behaviour of 
PARF0R . The speedup is quasi linear . The stabilization for the executions 
with more than 4 processes can be explained by the fact that the machine 
on which the tests are made , disposes of only 6 processors . But in a Unix 
environment , even if a user is working alone on the system , some 
processes , part of the system are still running periodically . lt implies 
that , when a parallel program is executed with a number of parallel 
processes close to the number of available processors , some processors 
are not immediately available , involving some delays for the user 
processes, having in turn an influence on the time consumption of the user 
program . 

This is true for the real-time of the parallel program, but in this level of 
parallelization , it is also true for the cpu-time partially determined by 
the waiting times at the synchronization barriers . There , the parallel 
processes are waiting in a busy loop involving unusefull time wasting that 
can not be avoided . This leads immediately to a direct conclusion that 
such a parallel program should never be executed with a number of 
processes that is greater than the available number of processors . That i s 
also the reason why we limited our tests to executions with as a maximum 
6 processes, although it was pefectly correct to use more. 

Concerning th is first serie of curves, we can also notice that the speedup 
for the execution with 1 process is not 1 . The reason of this is that the 
comparisons are based on the timings of the sequential algorithm , and not 
on the timing of the parallel algorithm executed with 1 process . We 
discussed this subject earlier . Note that taking this assumption into 
account , it is very clear on the graphie , that the factor of the speedup is 
approximately equal to the number of processes that execute the program . 
This means a very good behaviour of PARF0R . 

Secondly, the curves drawn for the executi ons of the algorithm with little 
matrix sizes , and large matrix sizes . These curves show a relative ly bad 
behaviour of PARF0R for executions wi t h more than 3 processes . 

For the little matrix sizes, it seems that the size fo the parallel code is 
tao little compared to the number of operations that are necessary to 
manage these parallel processes . This imp l ies that most of the time is 
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spent in the synchronization barriers , wasting such a way the effective 
user time . This involves a drastic diminution of the performances when 
the number of parallel processes increases . This phenomenon is relatively 
similar to the one we discovered in the second type of parallelization with 
the TASKIN routine . lt is the problem of granularity which appears again 
at a lower level . 

For the large matrix size (400) , we have a very strange curve for which 
we have no reasonable explanation until now . The speedup is not too bad 
until 3 processes, but then it is stabilized. 

lt seems very strange that the speedup is so bad , despite the large 
parallel work assigned to each process . This behaviour goes to the 
opposite direction with the results we had until now . Perhaps it is a 
problem of the algorithm , but this would be strange too because the 
algorithm is independent of such a factor . 

One possibility to explain this strange behaviour would be the following : 
some extra-mechanisms could be automatically called, like paging of the 
memory , inactivation of the local cache memories , and so on , because of 
the size of the matrix . But these things are difficult to certify . What 
could be done to prove it , is to execute the program many limes with 
increasing sizes until the moment at which we can observe large 
degradations in the performances of the algorithm . But this was not done 
because of the costs that such tests involve in terms of time . 

The curve that is provided for the real-time has nearly the same scheme 
as the curve provided for the cpu-time . This behaviour can be considered 
as "normal" because we always use a number of calls to TASKIN which is 
the same as the number of processes , which in turn , is less or equal to 
the number of processors. We describe in chapter 3 the influences and the 
relations between these factors . 

Tests with version 2 of PARFOR 

ln these tests , with the same program and the same measurements as in 
the previous case , we can observe a simi lar behaviour of PARFOR . The 
curves of figures S-27a & 5-27b show that the performances of this level 
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of programming are independent of the implementation of the TASKIN 
facility and the way the messages are sent to the parallel processes . 

This behaviour is quite normal , because this way of programming the 
algorithm implies only the number of times a TASKIN call , that there are 
paralle 1 processes . The amount of time spent in the T ASKIN faci 1 ity is 
reduced to a fixed value undependent of the matrix size , and thus , to a 
minimum . And the modifications made in its implementation do quasi not 
affec_t the timing results of the algorithm . 

This is why this third method of programming in the PARFOR environment 
appears to be the best solution. The implication is that PARFOR can also 
be performant for small granularity parallel programs , if they are 
parallelized in such a way , with barriers when the synchronizations are 
necessary , and with shared memory as the mean of communications 
between the processes . 

Tests with the versions 4 and 5 of PARFOR 

The same remarks from the PARFOR environment 3 are still valuable for 
the results provided by the same program executed with the versions 4 and 
5 of the PARFOR . The differences in the implementation of PARFOR do 
affect in a very little and constant way , the results of the algorithm 
under test . This affection is negligible compared to the execution time of 
the algorithm . 

Sorne variations can be observed on the curves ( figures 5-28 & 5-29 ) . 
But these are very little , and can be considered as acceptable statistic 
variations . 
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Tests with the FORCE environment 

The FORCE environment provides tools that are relatively different from 
those provided by PARFOR . FORCE is actually considered as " the state of 
the art " for parallel programming in FORTRAN like languages , while 
PARFOR is just barn some months ago . 

The FORCE SGEFA version that we tested on our machine was written and 
provided to us by professor H. Jordan . We did not modify anything in this 
parallel algorithm. We have only modified the enclosing program in such a 
way that the timing results are provided in the same standard tables we 
proposed for the PARFOR environment. 

The results provided on the graphies show very good performances for the 
SGEF A routine. 1 n f act , because of the phi losophy of the FORCE 
environment , a FORCE program has necessary the same structure that we 
described for the third method of parallelizat ion within PARFOR . For this 
reason , even if FORCE provides many tools for parallel programming, the 
performances of a program can not be very different from the 
performances provided by PARFOR . The main differences that remain 
between the SGEFA program written in FORCE and the SGEFA program 
written in PARFOR are explained in the section describing the third level 
of parallelization . Mostly , FORCE makes extensive uses to hardware 
facilities . But this is implicit for the FORCE user , which only wri te 
macros for the preprocessor . 

Then, the results are no more dependent of the environment, but well of 
the use or not of the hardware facilities . If they are used , because of 
their specificity to the machine , they must increase the performances of 
a program that makes use of them against the same program that do not 
use these funct ions . 



Tests wi1h the MX500 

w 
r:: 
1-

1 

=· û. 
u 
LL 
0 

tr, 
:i::: 
ü:'. 
w 
1-

z -
(l_ 

=· 0 
w 
w 
(l_ 
t r, 

w 
r:: 
l

i 
...J 
<! 
w 
Ci: 

LL 
0 

tf) 

r:: 
ü:'. 
w 
1-

z 

û. 
::, 
0 
w 
w 

The SGEF A test 

3,5--t----t---+---+---+---+----I 

3,0 

2,5 

2,0 

1,5 

1,0 

0,5 

0,0 

• t1aüdne MX500 with 
6 processors 

-i---+----+---+--+--++-----1 • A TT universe 
• FORCE Environment 
• closed session 

• Program SGEF AFRC 
• 1 to 3 executions 

-i---+----+------.+-r----+------1 • Lead i ng di m. 500 

Date 16 Nov. 1987 
Author : R NOEL 

-+---+---,,'-,4-,L-....,..--4---f-----l 

2 3 4 5 6 7 8 9 

NUMBER OF PARALLEL PROCESSES 

10 

The SGEF A test 

3,5 -1---+----+----+----+---t---i 
• Machine MX500 with 

6 processors 

3,0--+---+---+----+----+---4~ • ATT universe 
• FORCE env i ronment 
• closed session 

2,5--+---+----+-----+f----t---i 
• Program SGEF AFRC 
• 1 to 3 execut ions 

2,0 - t---+----+-i1--!r-----+---+------i • L ead i ng di m. 500 

Date 16 Nov. 1987 

l ,5 -+-----+-----.<-+-----t---<--< 
Author : R NOEL 

Üi 1 , 0 -;---~~...,...-------t------t----1--r--t---r-----1 

0,0--t---+----+--+---+---t---<r--r--t-----i 

2 3 4 5 6 7 8 9 10 

NUMBER OF PARALLEL PROCESSES 

211 

ŒJ S1ze = 25 

ŒJ Size = 50 

ŒJ Size = 100 

0 Size a 200 

ŒJ Size = 400 

Figure 5-30a 

ŒJ s1ze = 50 

~ Size = 100 

0 Si ze = 200 

~ Size a 400 

Figure 5-30b 



Tests with the MX500 212 

Conclus ion for this third level 

As we have seen, this third level of parallel programming seems to be the 
best way to program in PARFOR . The curves show that the speedup is 
nearly always good , despite of some exceptions that we can explain or 
not. This way of programming requires additionnai tools that can be 
directly implemented in FORTRAN, perticulary the barriers that allow an 
easy way for synchronizations . These barriers seem to be sufficient for 
many parallel programs , but are expensive in terms of time consumpt ion. 
The curves for the same FORCE program are better than the curves for 
PARFOR . But this is mainly due t o the fact that FORCE uses hrdware 
atom ic locks, while PARFOR not . 

The main characterist ic of this way of programming is that we can real ly 
say that it is parallel programming . The most important things in a 
parallel program are not the calls to the TASKIN routine , but well the 
synchronizat ions between the processes . 



Chapter 6 

Sorne final words as conclusion 

6 .1 Introduction 

ln this work , we studied concepts , bath for the starting point of the 
development of the PARFOR environment, and for programming within this 
environment. We also made some comparisons with the FORCE environment 
- that we had first ta adapt ta our UNIX system - and its concepts. 

At the beginning of this study , after the first tests , we were 
disappointed at the view of the results . They were rather bad . But further 
tests more elaborated allowed us to reconsider the implementation on 
some specific points , ta increase the speed of the parallelized 
applications, and eventually, get better results . 

The tests we made were essentially concentrated on benchmark programs, 
and this could be considered as a restriction ta the results that we got . 
However, the LINPACK application which was the base of our work, is a 
complete scientific application , but still compact , compared ta some 
others . An extention of this work could be the parallelization of larger 
applications ta confirm the results we have , for very large parallel 
programs . 
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6.2 A future for PARFOR? 

The main hope concerning this study , is that the t ime spent to this 
project is not spent "just for bui lding one another of these multiple tries 
in FORTRAN-like parallel computing languages" . We can already confirm 
that, this project is continuing in collaboration with the TU München, and 
another student , trying to adapt PARFOR in another context ( VAX clusters 
environment ) . The PARFOR environment , is also developped for the 
B52000 machines in another team of our department . The key words for 
the futur of PARFOR remain SIMPLICITY and PERFORMANCES . 

Simplicity for the user to have the possibility to modify its applicat ions 
with a low number of tools . 

Performances for the applications to gain in time when executed within 
this parallel system . 

6 .3 My persona l experi ment 

Anyway , 1 found very interesting to work in this area of parallel 
programming , and interesting to discover practical di fficulties that 
parallel programs involve . But in all cases, 1 found and realized that the 
parallel programming is always more complicated than the traditionnal 
sequential programming , leading to a greater time in trying to find a 
parallel solution to a given algorithm , and to a longer time in debugging a 
program that includes parallelism. 
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