
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

PARFOR. An experimental parallel environment for fortran programmers

Noel, Roland

Award date:
1988

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/b3e0f6f9-dd04-4591-a331-16fbb93f455a

Facultés Universitaires Notre-Dame de la Paix.
Institut d'Informatique.

Namur, Belgique.

PARFOR

An EXPERlmEnT AL p ARALLEL
EnVIROnmEnT FOR FORTRAn

PROGRAffiffiERS

Mémoire présenté par
Roland NOEL

en vue de l'obtention du titre de
Licencié et Maître en Informatique.

Promoteur : Mr J . Ramaekers.

Année académique 19ô7-19ôô.

Résumé

Le document présent décrit les résultats d'une recherche dans le domaine
de la programmation parallèle . Le sujet principal de la présentation est
l'environnement PARFOR et les possibilités qu' i l offre . Cet environnement
est conçu dans le but de permettre la réécriture de programmes FORTRAN
existants, de manière telle qu'ils puissent être exécutés avec un nombre
que 1 conque de processus .

L'origine de la définition de PARFOR remonte à une pré-étude faite par une
équipe de recherche de SIEMENS Munich . Dans le travail présent, plusieurs
implémentations de cet environnement sont réalisées . Les outils fournis
par PARFOR et la façon de les utiliser sont évalués . Pour ces réalisations,
la machine MXSOO SIEMENS , un multiprocesseur travaillant sous UNIX, est
employée . Ensuite , quelques comparaisons sont faites avec un autre
environnement parallèle existant FORCE . Plusieurs tests sont
envisagés , avec pour but l'évaluation des performances de PARFOR . La
plupart des résultats de ces tests sont fournis sous forme graphique.

Summary

This document presents and describes the results of a research made in
the area of parallel programming. The main subject is the presentation of
the PARFOR environment and its actual possibilities . This environment is
designed to allow the rewriting of existing FORTRAN applications so that
they can take entire profit of a variable number of processes for their
execution .

The starting point of the definition of PARFOR was made in a research
team at SIEMENS Munich . ln this work , Sorne implementations of this
environment are tried ; the facilities provided and the ways they can be
used are evaluated . For all this work , the MXSOO SIEMENS machine ,
which is a full multiprocessor machine working under UNIX , is used .
Then, some comparisons with a concurrent existing parallel environment -
FORCE - are made . Many tests are envisaged in various situations for the
evaluation of the performances of PARFOR , and most of the results are
pr-ovided on graphies .

Acknow l edgements

1 would like to thank Mr FRIELINGHAUS, head of the DST SP 3 department
of SIEMENS AG Munich Perlach, for the possibi l ity he provided me to have
an interest ing sub ject of research , and for the large number of faci lit ies 1
got from his department to complete this work in the best cond i tions in
Munich .

My gratitude also goes to Mr HARTINGER , Mr MÜNCHHAUSEN and Dr KAHL
who supported my work during the whole time I was in Munich in 1986 and
1987 ; who gave me many opportunities to get relations with various
people inside and outside the company at meetings , during discussions ,
and in the daily life ; and for the helpfull aids , advices , and
encouragements they gave me .

ln the same way , 1 would like to thank some collaborators : Heiner
TITTELBACH , Henry GOFFIN , Matthias OLK , Helen STAPLETON , Daniel
TORNO , Francois SCHMITZ , Francoise MIANE , and the other French and
German people who also provided me some help .

Eventually , on the academic side, 1 must tr,ank Mr RAMAEKERS, director
of the lnstitute of informatics in Namur, for the facil i t i es of contacts he
gave me , w i th the responsible people of both SIEMENS Software Namur,
and SIEMENS Munich; and for the help in the preparation of tr,is work .

Table of contents

1 1 ntroducti on 1

2 Elements of parallel programs 3

2.2 Pl:l~llelism 3

2.2.1 1 ntroduct ion 3
2.2.2 Classification of Flynn 4
2.2.3 Partial classifications of the parallelism 4
2.2.4 Classification of the parallelism according to granularity 5
2.2.5 Distribution of the parallelism 6
2.2.6 The degree of parallelism 7

2.3 Introduction to the main basic concepts and tools 8

2.3.1 Definitions 8
2.3.2 Types of mult iprocessing g

2.3.3 Scheduling algorithms 10
2.3.4 Granularity of an application 11
2.3.5 Creation and termination of processes 12
2.3.6 Communications between processes 13
2.3.7 Locks 13
2.3.8 Critical sections 14
2.3.9 Semaphores 15
2.3.10 Events 16
2.3.11 Barri ers 16
2.3.12 Figures 17

7 able of contents p 2

2.4 Theories conceming multiprocessor performances 18

2.4.1 The concept of speedup 18
2.4.2 Conf I icts 19
2.4.3 Discussion of speedup and overheads 20
2.4.4 Concepts of Hockney 21
2.4.5 The main ide a : The performance of a vector 22
2.4.5 Synchron i zat ion overheads 26
2.4.6 Para 11 e I program performance 28
2.4.7 Modelization of a parallel program with synchronization

overheads 31

2.5 Practical measures in a parallel program 33

2.5.1 Benchmarks in a multiprocessor environment 33
2.5.2 Time measurements 34
2.5.3 Cpu-time and Real-time 37
2.5.4 Time routines 37
2.5.5 One representation of a parallel program 39
2.5.6 Test-points in the parallel program 40
2.5.7 Description of a tool that uses these test-points 42
2.5.8 Second kind of measures: speedup and efficiency 44
2.5.9 Description of the tool and its result tables 45
2.5.10 Scheme of the measures 49

2.6 Parallelization of applications 51

2.6.1 Technics to parallelize applications 51
+ Detection of parallel tasks 51
+ Modification of the processing order 51
+ Asynchroneous treatement 52
+ Domain decomposition 52
+ Operator decomposit ion 52
+ The pipe 1 ine processing 53

2.6.2 The effort in trying to parallelize an application 53
2.6.3 Problems when programming in a parallel environment 53

1 able of contents p 3

3 Parallelization in the PARFOR and the FORCE
envi ronments 56

3.1 1 ntroduct ion 56

3.2 Parallelization in the PARFOR environment 57

3.2.1 1 ntroduct ion 57
3.2.2 View of the main tools of PARFOR 58

+ NTASKS 58
+ TASKIN 60
+ WAIT 61

3.2.3 The choice of a level of parallelization 63
3.2.4 The levels of parallelizat1on in PARFOR 64

+ Initial example of a sequential program 64
+ Parallelization at the innermost level 64
+ Scheme of the first parallelized version 65
+ Parallelization at an intermediate level 66
+ Conclusion for this second level of programming 68
+ Scheme of the second parallelized version 68
+ Parallelization at the outermost level 69
+ Conclusion for this third level of programming 70
+ Scheme of the third parallelized version 71

3.2.5 Comparisons between levels 1 , 2 and 3 of programm ing 72
3.2.6 Examples of standard frames to program in PARFOR 74

+ Paralle 1 izatlon of a single loop 74
+ Use of the barriers in a PARFOR program 77

3.2.7 Relations between the number of calls to TASKIN , the
number of processes and the number of avallable
processors 79

3.2.8 Various possibi 1 ities to use the PARFOR environment 83

3.3 Comparisons between PARFOR and FORCE environments 84

3.3.1 Sorne comparisons 84
3.3.2 Personnal conclusion 87
3.3.3 Sorne possible extentions of PARFOR 88

1 able of contents p 4

4 lmplementation of parallel FORTRAN like
languages on UNIX 89

4.1 1 ntroduct ion 89

4.2 The PARFOR implementz,tion on UNIX 90

4.2.1 1 ntroduct ion 90
4.2.2 The various parts of PARFOR 91
4.2.3 The tools provided by PARFOR 92
4.2.4 The ma1n pr1nclple of an execution 94

+ lntroduct1on 94
+ For the driver program 94
+ For the user FORTRAN program 95
+ For the NTASKSO faclllty 96
+ For the TASKIN(. ..) fac11ity 96
+ For theWAITO fac11ity 96

4.2.5 Particular1ty of the PARF0R environment 97
4.2.6 Locat1on of the d1fferences between the versions 97
4.2.7 lmplementat1on of version 1 of PARF0R 98

+ Introduction 98
+ For the driver program 98
+ For the TASKIN facility 99
+ For the WAIT faciltity 100

4.2.8 lmplementation of vers1on 2 of PARF0R 101
+ Introduction 101
+ For the driver program 101
+ For the TASKIN facility 102

4.2.9 lmplementation of version 3 of PARF0R 103
4.2.10 lmplementation of version 4 of PARFOR 103

+ Introduction 103
+ For the WAIT facility 103

4.2.11 lmplementation of version 5 of PARF0R 103
4.2.12 Differences of behaviour between version 1 and the

other versions 104
4.2.13 Compilation and execution of a PARF0R program 106

+ Compilation 106
+ Execution 107

1 able of contents p 5

4.3 The FORCE implementation on UNIX 108

4.3.1 Introducti on 108
4.3.2 The idea of the environment 108
4.3.3 The various parts of FORCE 108
4.3.4 Principle of an execution of a FORCE program 110

+ 1 ntroduct ion 110
+ For the driver program 110
+ For the FORCE user program 111

4.3.5 The implementation of FORCE 1 1 1
+ 1 ntroduct ion 1 1 1
+ The FORCE procedure 111
+ The FORCERUN procedure 113
+ Note about the preprocessor 113

4.3.6 Particularities of the FORCE environment 113
4.3.7 The tools provided by FORCE 114

+ Introduction 114
+ The tools for specification of the program structure 114
+ The tools for the variable declarations 115
+ The tools for parallel execution 116
+ The tools for synchronization 117

4.3.8 Compilation and execution of a FORCE program 118
+ Compi lation 118
+ Execution 119

1 able of contents p 6

5 Tests wi th the MX500 120

5.1 Introduction 120

5.2 Summary 121

5.3 The mu 1 t i processor MX500 123

5.3.1 lntroduct1on 123
5.3.2 The character1st1cs 123
5.3.3 General overvue of the arch1tecture 124

+ The bus system 124
+ The system 11nk and the 1nterrupt1ons controller 125
+ The poo 1 of processors 125
+ The memory 125
+ The peripheral controllers 125

5.3.4 Performances 126
+ Performances of a single processor 126
+ Addition of processors 126

5.3.5 Shared memory between processes 127
5.3.6 Applications with many 1nstruction flows 127
5.3.7 Programming languages 127

5.4 The tools and the measures 128

5.5 Tests with the various versions of PARFOR and with
FORCE 129

5.6 The LI NP ACK benchmark 130

5.6.1 Introduction 130
5.6.2 Main routines used in the main algorithm 131
5.6.3 Results of the benchmark 132
5.6.4 Example of the presentation of the results 134
5.6.5 Scheme of the main program 135

Table of contents p 7

5.7 Results obtained with the LINPACK benchmark 138

5.7.1 Tests with the LINPACK benchmark 138
5.7.2 Parallelization in the PARFOR environment 138
5.7.3 Tests with the single precision 139

+ Description of the parameters for these tests 139
+ Range of the parameters for these tests 140
+ Graphical results 140
+ Results of the tests made with version 1 of PARFOR 141

- Serie 1 141
- Serie 2 143
- Serie 3 145
- Serie 4 147
- Serie 5 149
- Serie 6 151

+ Results of the tests made with version 2 of PARFOR 153
- Serie 1 153
- Graphie of speedup 155

5.7.4 Tests with the double precicion 156
+ Description of the result tables 156
+ Scheme of the measures 156
+ Conclusion for these results with double precision 156

5.8 Tests wi th the SAXPY routine 157

5.8.1 Introduction 157
5.8.2 Description of the parameters for these tests 157
5.8.3 Deseript ion of the tests 158
5.8.4 Seheme of the results 158
5.8.5 Graphieal results 159

+ Graphie 1 159
+ Graph1e 2 160
+ Graphie 3 162
+ Graphie 4 162
+ Serie of 5 graphies 164

1 able of contents p 8

5.9 Tests of the PARFOR overheads 169

5.9.1 General description of the tests 169
5.9.2 Scheme of the tests 169
5.9.3 Result tables and fixed parameters 170
5.9.4 Results of these tests 170

+ Tests with the version 1 of PARFOR 170
+ Tests with the version 2 of PARFOR 176
+ Tests with the version 3 of PARFOR 180
+ Tests with the version 4 of PARFOR 182
+ Tests with the version 5 of PARFOR 184

5.10 Tests wi th the SGEF A routine 187

5.10.1 General description of the tests 187
5.10.2 Scheme of the SGEF A routine 187
5.10.3 Various parallelized versions within PARFOR and FORCE 188

+ Part icularit ies of the f irst parallel ization 188
+ Scheme of the first parallel algorithm 188
+ Particularities of the second parallelization 189
+ Scheme of the second parallel algorithm 190
+ Particularities of the third parallelization 190
+ Scheme of the third parallel algorithm 192
+ Scheme of the third parallel alg. FORCE version 193

5.10.4 Description of the result tables 194
5.10.5 Scheme of the results 195
5.10.6 Fixed parameters for the executions 195
5.10.7 Results of the tests with the first level of parallelization 197
5.10.8 Results of the tests with the 2nd level of parallelization 197

+ Tests with the version I of PARFOR 197
+ Tests with the version 2 of PARFOR 199
+ Tests with the version 5 of PARFOR 199
+ Conclusion for this second level 202

5.10.9 Results of the tests with the third level of parallelization 202
+ Tests with the version I of PARFOR 202
+ Tests with the version 2 of PARFOR 205
+ Tests with versions 4 and 5 of PARFOR 206
+ Tests with the FORCE environment 210
+ Conclusion for this third level 212

7 able of contents

6

6.1

6.2

6.3

Sorne final words as conclusion

1 ntroduct ion

A fut ure for PARFOR ?

My personal experiment

p 9

213

213

214

214

Chapter 1

1 ntroduct ion

Sequentiality was since a long time the only way to think in the growing
world of computers and programs . Sequentiality is still at the present
time the classic way of programming small and middle range computers ,
and also large computers.

But this situation is more and more changing . Many computers that are
designed now are conceived with the basic idea of parallelism .
Parallelism at various levels , from the hardware level to the highest
software levels.

The abject of the present work is the presentation of the design and the
facilities of an experimental parallel environment for FORTRAN
programmers . This environment is called PARFOR , and its target is to
give to the FORTRAN programmer the possibi lty to rewrite its sientific
applications so that they can be executed by many instruction flows on a
multiprocessor machine . The starting point of the definition of PARFOR
was made by a research tearn at SIEMENS Munich in collaboration with the
TU Munich .

The sub ject of this work is to test and evaluate the PARFOR environment
within the UNIX operating system . Then we try to opt imize its
implementation whithin the available UNIX environment . Later , some
comparisons are made with a concurrent in FORTRAN like parallel
languages: The FORCE environment developped earlier in USA by Prof essor
JORDAN and i ts team .

Introduction 2

This work is structurated in the following way :

Chapter one is rather general and remembers some elementar theoretical
concepts concerning parallelism , tools for parallel programming , some
elements of theories for performances measurements , practical measures
that we designed to take the measures in the parallel programs , and
eventually , a review of the main general technics for parallel
programming .

ln a second chapter , the programmation in the PARFOR environment is
explained , with ail the problems that thi s involves , the various ways to
program within PARFOR , the relations between the various concepts of
PARFOR . Then , some comparisons are made with the possibilities
provided by the FORCE environment.

The third chapter contains a description of the PARFOR and the FORCE
implementations in the UNIX environment , and the modifications which
were introduced in order to diminish the overheads when programming
with PARFOR.

The next chapter describes some of the tests and the results we designed
for the evaluation of the PARFOR environment . We describe also one test
made in the FORCE environment , used to compare in a more direct way the
facilities and the possibilities of PARFOR against FORCE .

Eventually , chapter five of this work contains a brief conclusion
concerning this work , the conditions in wich it was done , the results
obtained and the possible future of PARFOR .

Chapter 2

Elements of parallel programs

2 .2 Parallelism

2.2.1 Introduction

Trying a classification of parallelism is a very sensible and delicate will .
Parallelism in programs , as we conceive it in an abstract way , would
consist in a possibility that allows programs or applications to be
executed in a parallel way and at the same time . However, this abstract
hope , at the present time , has found his rea l meaning only in a very
restricted number of types of treatements , and in only a few types of
applications . Actually , there exists not yet a general method of
implementation of this kind of abstract parallelism , allowing a complete
automatization, as we can imagine it. Of course, some specific technics
try to face this rel igious wish . However, these technics , altogether. , are
not sufficient to forma basic general theory , but rather, they form only a
set of technics, directly dependent of the type of application, of the type
of the target machine which is employed , of the type of parallelism
whished , and eventually , of many other factors on which we have
presently no control or simply that we ignore .

But first , we should try to have a definition of a computer system . A
computer system , in the large· sense , is made of many hardware units ,
each of them beeing designed to perf orm some specific tasks . For th is
reason of specificity , it is not yet possible to solve general case of
abstract parallelism that we mentioned earlier . ln the reality , the
paralle l ism is present as early as many of the units begin to work

Elements of para/le/ programs 4

independently , controlled by software . But this reality is still far from
the abstract form of parallelism that we described above .

Sorne guesses of classification of parallelism can however be made . The
better known is the Flynn·s one , consisting of 3 axes . Another
classification can be made on the conception that we have of parallelism ,
so it is a more abstract classification , and necessary more blurred . The
third classification of the parallel ism that we tried , is based on the
concept of granularity of the sections of a program.

22.2 Classification of EJy.nn

The classification of the parallelism introduced by Flynn, is based on 3
main concepts .

The first considers the number of instructions and datas that the machine
can treat simultaneously. Using this axe leads to a partition of 4 classes
of systems, coded by SISD, MIMD, SIMD, MISD.

The second axe is a description of the interconnections between the
memories and the processors . ln this axe , the target of analyse is the
topology of the system .

The third axe of the classification concerns the leve I of which an
instruction flow can recover its operations . Flynn calls this the · inertia
factor·, which can be described as the Pipe-line factor of the machine .

This classification is far away from perfect and is more and more desuet
due to the diversification of the machines .

2.2.3 Partial classifications of the parallelism

Sorne partial rules can help for the class i fication of the parallelism ,
according to the perception that we have aboutit .

Parallelism according to his abstract perception :

Elements of parai/el programs 5

Parallelism , as we consider it in an abstract way , is a target of
research. Sorne people are trying to "resolve" it in the general case , and
in this mind, are trying to improve technics to more general applications.
So , the guess is to remain at the highest level of abstraction during the
conception of parallel projects . That is , for example , the case in
artificial intelligence .

Parallelism determined by a given architecture:

Computers are always in evolution to more complex hardwares and
architectures . Their types are going to more and more diversifications ,
and the applications try to exploit more fully the new advantages provided
by these improvements. That is a reason why new technics of parallelism
are developped , following the multiple types of architectures available
or, in development.

Parallelilsm determined by a type of application :

Another approach to the conception of the systems working with
parallelism , is the conception of an architecture according to the
structure of the problem to be treated later with the machine . A number
of machines have seen their architecture copied on the structure of the
most important types of problems for which they were designed . lt is
essentially the case in sciences, where some architectures are based on a
structure which can easely and quickly salve the problems with matrix
operations .

2.2..1 Classification of parallelism according to granularity_

The granularity is an essential factor in the process of designing parallel
applications. lt defines the mean size of the grain of a parallel progam .
This granularity is mainly dependent of the intrication of the code, and on
the data dependencies in the application . The granularity of a program can
widely vary from one application to another .

Elements of parallel programs 6

A coarse granularity:

A large granularity , is often present in applications in which the
operating system itself manages many processes that are part of the
global application . ln such cases , the application uses calls to system
procedures like FORK() and JOIN() , to be executed by parallel processes .
Coordination middles are invoked to control the correctness of the running
tasks . This type of parallelism is relatively simple and must be
explicitely specified by the programmer, when designing the application .

A fine granularity :

A fine granularity is present in certain types of architectures
Particulary, the machines concerned are pipe-line machines or data-flow
machines . The management of this kind of parallel ism is transparent to
the programmer . The conception of parallel applications is then
simplifed . If it is transparent ta the programmer , the programming
language must care for particular formulations which can take profit of
this parallelism.

A mean granularity :

This type of granularity is relatively frequent . lt includes both
characteristics of programs with large and fine granularities .
Conventionnai languages allowing a certain amount of parallelism ,
dispose of special libraries containing functions to activate the parallel
environment .

~ Distribution of the parallelism

Studies concerning the distribution, in a program , of the portion that can
be parallelized and the part can not be parallelized have showed that in
most of the applications , 99% of the code could be executed in parallel .
But the main problem is that it is not always easy to redraw a parallel
code from the sequential code . The reality shows often that the code is so
intricated that it is not possible without large effort, to parallel ize it .
Often , the parallelizable sections are very fine so that in a given
environment , the parallelism is not exploitable . lt is for example the

flements of parai/el programs 7

case in loops , where assignements could be done in parallel . So the
granularity factor is very important . ln general , a coarse granularity is
bound with a small number of independent tasks running in parallel .

22.ü The degree of parallelism

By the definition, the degree of parallelism is the number of tasks which
can be executed in parallel , simultaneously . lt is greatly dependent on the
size of the problem to manage . But usually , large problems could provide
large degrees of parallelism . ln fact, more the problem is large, more the
treatements it includes are repetitive, so that large degree of parallelism
can easely be exploited.

The degree of parallelism
is highly coupled with the concept of granularity . If the tasks are very
small (fine granularity) , the efficiency of the parallelism is very
dependent of the overheads produced by the exploitation of this
parallelism.

2 .3 Introduction to the main basic concepts

2.ll Defiaitioas

Mult1processor : A multiprocessor 1s a computer or a computer system
containing many processors s1mi lar or not , and a main global memory . The
processors can work in parallel , share the common memory and the
peripherals . By def1n1t1on, a mult1processor supports mult1process1ng.

Parallel machine : A parallel machine is defined as a machine which, in
one or another way , is conceived to treat problems of parallelism . We
define as ·parallel treatement' a treatement that exploits a parallel
environment .

Explicit paralle1ism : lt is the possibility given to the programmer to
execute 1n parallel more than one treatement depend1ng or not , one on the
other . The explicit parallelism is said of a program that 1s explicitely

• designed to be executed on a parallel machine . This concept is often bound
to the concept of synchronization.

lmplic1t paralle11sm : This kind of parallel1sm groups all types of
parallelisms which are not explicitely spec1f1ed by the programmer.

Mult1programm1ng : This ls the character1st1c of an operat1ng system
to make res1de in central memory many unrelated programs , and to make
execute them in an 1mbricated way by the same central unit . The interrupt
system of the machine can switch from one program to another .

Multitasl<ing : This is the characteristic of an operating system to
allow a job to be executed with more than one task . The tasks are
executed in parallel , but not necessarily simultaneously. Multitasking
implies the possibility of multitasking . On a multiprocessor, the tasks
can be executed simultaneously.

Elements of parallel programs 9

Multiprocessing : This is the characteristic of an operating system to
allow the execution of a program by a multiprocessor , so that many
processors execute the same program at the same time . They share a
common memory .

Process : A process is an instruction flow , a simple execution of a
program which can be executed independently by the operating system.

Task : A task is a program unit which can be managed by a job . A task is
typically a single instanciation of a subroutine , or a loop , which is
executed simultaneously with other tasks in the same job .

Job : A job is a single process or a set of processes in .relations which
are executed concurrently for the benefit of one application . For example,
a pipe-! ine command on a UNIX system is a job constituted of many
cooperat i ng processes .

2.12. Types of multiprocessing

Heterogeneous multiprocessing ln the heterogenous
multiprocessing , a program is divided into many parallel sections
perf orm i ng comp I ete ly di f f erent tasks . The tasks can be ease ly executed
in parallel , implying a decrease of the total execution time for the
algorithm . ln fact , the heterogeneous tasks have so little number of
messages to pass to another , that the communication paths could be slow
without affection on the performance of the algorithm.

Homogeneous multiprocessing : ln the homogenous multiprocessing, a
job consists of several identical tasks. An application which passes most
of its time in sequential code , can often be converted to a parallel
version . Each paralle task do the same work , but on diff erent datas . Sorne
cooperation is necessary between the tasks .

E /ements of parai/el programs 10

23..3 Scheduling_a]_gorithms

The pre-schedu li ng : 1 n the pre-schedu 1 i ng a 1 gori thm , the processes
are fixed at the compile time . ln such applications , the programmer
assigns a specific process to each processor . For example , the
programmer can decide that the processor number 6 will be permanently
affected to the management of the input/output operations , and that the
processor 3 will solve the arithmetic operations .

The mixed-scheduled algorithm : The mixed-scheduling algorithm
provides an intermediate step between the pre-scheduled algorithm and
the passive-scheduled algorithm . ln such a way to schedule , the
processes are managed by a master process . All the processes execute the
same code , but the master process spend a part of its time in managing
the other processes . During the rest of its time , it executes the same
code. The sequence for the master process is the following :

1- Distribute the code to the parallel processes
2- Execute the code as the other processes

The sequence for the other processes is the following :

1- Wait for the master process to give me some work to crunch
2- Crunch the work
3- Back to the waiting state for new work.

The passive scheduling : The passive-scheduling algorithm implies
that all processes are managed by a master process . This master process
spend all its time in the management of the other processes . This implies
that at least 2 processes are necessary to execute any algorithm by this
method . The sequence for the master process is the following :

1- Distribute the code to the processes
2- Wait that they have finished
3- Back to the step 1

For the other processes, the sequence is the following :

Elements of parallel programs

1- Wait for the master process to give me some work
2- execute this work
3- Return to the waiting state

11

The self-scheduling : The self-scheduling algorithm is more
interresting because it produces what we will call 'dynamic load
balancing' . The self-scheduling algorithm is val id for all the processes,
and is the following:

1- Wait that some work arrives in the queue of works
2- Remove this work of the queue and execute it
3- back ta step 1 , until there is nothing more to do .

The dynamic load balancing produced by this algorithm finds its interrest
in the fact that all processors available are running at full time until
there is no more work to do . This is the best algorithm in most cases , but
we will see later that it requires certains cond i tions that are not always
available .

~ Granularity of an application

As we discussed earlier, the granularity factor is very important for the
process i ng of para 11 e 1 a 1 gori thms . 1 n f act , the process generat ion , and
its termination take a great time. Sa, the parallel applications must be
conceived sa that the management times are negligible compared to the
time to execute the parallel sections themselves . We will later have the
opportunity to discuss about the overheads due to process generation , and
terminal ion in the PARFOR environment . Figure 2-1 shows an abstract
representation of programs having a large (a) and a fine (b) granularities ,
respect ive ly .

Large Granularily Program

begi n end

Figure 2- l a

Elements of parallel programs 12

Fine Granularity Program

bèg in end

Figure 2-1 b

~ Creation and terminatioo of processes

On a SIN IX system , a new process i s created by a FOR KO primitive . The
child process is no more than a copy of the old process , using the same
datas , the same registers , the same fi les and the same program counter .
So , the chi ld has access to all resources where the father has an access .
FORKO returns the nul l value for the chi ld process , and the pid of the new
process for the f ather .

The JOIN() operation performs the opposite function to return to only one
instruction flow bit it is not implemented in the UNIX environment .

The cost of a FORKO operation is high in terms of time . To reduce this
cost , the parallel applications can create new FORK()s only at their
beginning, and finish them only at the end of the application. Meanwhile,
if a process is not necessary for a moment , it is put into a wait ing queue ,
and its processor is released . This cost of setting into a waiting state is
cheaper than the cost of a new FORKO operation . This technic is explained
later· and is use in the PARF0R environment .

E.lements of parai/el programs 13

2.3..ô. Communications between proc_esses

The UNIX system V provides some communication tools to allow
communications between processes. These tools are available in the IPC
system library.

The messages sysstem a11ows processes to communicate via messages . A
message queue must be created • the structure and the type of the message
defined , and a text zone reserved for the user to insert anything in it. The
messages system is accessible via 2 main primitives which are MSGSND
and MSGRCV . If a process is waiting for a message • its state can be
defined as waiting or not.

The semaphores system allows processes to be synchronized via software
locks and semaphores . The shared memory is used by this system for the
definition of the queues and the structures.

The shared memory allocation system allows a user to define and use part
of the memory shared among the processes. The memory is attributed and
attached somewhere in the virtual space of the processes. This memory is
paged 1 ike any other memory .

The most simple mechanism for communications is the shared memory . A
shared space can be reserved in virtual memory at the creation date of
each process . ln C programs , the shared areas can be specified
dynamically . ln FORTRAN programs , to the contrary , the memory
allocation is static and all the shared memory regions are allocated at the
compile time in "common" statements.

2.3.7 Locks

A lock is a particular type of data that can have only 2 states , locked and
unlocked . When a processor is intended to access a shared data structure,
it must first be sure that the associated lock is unlocked . While it is not
the case , it remains waiting . When the lock turns to the unlock state ,
indicating that no other process wants an access to the data , the
processor 1 ocks the 1 ock , access the data , then un 1 ocks the 1 ock . Wh i 1 e
waiting, the processor remains in a busy state .

Elements of parai/el programs 14

The locks can be implemented in hardware by atomic lock memories , or
simply in software , but with certain restri ctions that we will exp lain
later .

The hardware locks are called atom ic Iock memories because t he
operations necessary to acquire or release one of them are undivizable ,
implying that these operations can not be overlapped when many processes
compete for them .

Sometimes , in certain circumstances , software locks are also
interresting . These locks must be implemented in shared memory reg ions .
They are treated just 1 ike any other memory locations .

2.3.8 Critical sections

A critical sect i on is a section of code wh ich must be executed only by one
pror.ess at a time . Each critical section begins with a Iock operation and
finishes with an unlock operation . Figure 2-2 shows how a cri tical
section can be used in a program . We can observe that only one of the 3
processes can enter the critical section at a moment .

Pl

P2

P3

Cr il ic al region protected by locks .

get
Iock

ask
Iock

exec ...
cri tica l
reg ion

re lease
Iock

get
lock

re lease
Iock

----+-- -w-ai_t_-il
exec .
criti ca l
reg ion Iock

ask get re I ease
lock Iock exec . lock

----t--- ---w-a~i.,..-t --- - ---1 · ·· cr ifi ca·1 ·· I ►

Iock reg1on

Figure 2- 2

f.lements of parai/el programs 15

Figure 2-3 shows the standard algorithm which allows or denies accesses
to a critical section of a program . If the lock associated to a critical
section is locked , the process must wait that the lock turns to an unlock
state .

Section Prolected by Lock

Start

LOCK the
Iock

Critical
sect ion

UNLOCK t he
lock

WAIT
yes

Figure 2-3

Note that a critical section can be protected by many ways , not
necessarily by locks . For example, semaphores are also usefull to protect
critical regions .

ll9. Semaphores

A semaphore is a shared data structure that can be used for the
synchronizations of various coordinated processes . The most simple type
of semaphore is the atomic loçk . The semaphore , thus , is designed to
manage the shared resources inside an application . The semaphore itself
has always an integer value N . This value can be interpreted as follow :

t /ements of parai/el programs 16

If N > O , the resource is demanded N times by different processes . When
the semaphore reaches the value 1 , its state becomes unlocked .

If N <= O , the semaphore is locked, i.e. the resource is not available, and
-N represent the number of times that the waiting processes have
demanded the access to the protected resource .

The value of a semaphore can be modified by only 2 algorithms . These
algorithms manage the acquisition of the semaphores , and the release of
them.

Acquisition algorithm :

1 - Decrement N by 1
2- If N <= O, insert me into the processor·s waiting queue and wait my

tour. Else do nothing .

Re 1 ease al gori thm :

1- If N >= O, inform the first process of the processor·s waiting queue
that it is its tour , and shift the queue of one position. Otherwise,
do nothing

2- 1 ncrement N by 1 .

2.3.10 Events

An event is something that must be waited for, bef ore a process can start
or continue its execution .An event has 2 possible values : delivered or
suppressed . A process waiting for an event must wait until the event is
delivered by another process . Once the event is delivered , the waiting
process can continue its execution . lt is the role of the master process or
the role of one another process to suppress the event after its use .

2.3. 11 Barri ers

A barrier is a synchronization point . This point is said to be realized when
it has been reached by a specified number of processes . The rule for a

Elements of parai/el programs 17

process when i t arrives at the barri er , i s the f o 11 ow i ng , in most of the
standard kinds of barriers :

1- Mark me present at the barrier
2- Wait until the required number of processes at the barrier is reached
3- Reset the barrier and continue the execution .

The barriers can be implemented in many ways . The most known and used
are the 2 locks barrier, and the software barrier . The implementation of
both kinds of barriers have their advantages and their inconvenients .

2.3.12 Eig~

The following figures show the relations bet ween multiprogrammed
system , multitasking system and multiprocessing systems .

Figure 2-4 shows how the code of a program is executed on a single
monoprogrammed monoprocessor machine . The first figure (a) shows the
process running on a very simple machine at a very low machine level . On
the second figure (b) , one can see the intermediate use of an operating
system . But the processor can st i 11 execute on ly one process .

lndependent Personnal
processor computer

~ Ev
Figure 2-4a a G Figure 2-4b

[::]
Figure 2-5 shows the dynamic of multiprogrammed system running on a
monoprocessor machine . Many processes share the only one available
process . The operat ing system must dispose of a scheduler to distribute
fairly the processor among Hie asking processes . Only one process is in
the running state at a t ime .

Etements of parallel programs 18

Multiprogrammed operating system

Figure 2-5

Figure 2-6 shows the dynamic of a multiprogrammed system with multiple
processors . The architecture disposes of 4 processors . If more than 4
processes are introduced in the system , they must follow the rules of a
multiprogrammed system , i.e. wait until the processor resource becomes
available, like in the traditionnal multiprogrammed system.

Multiprogrammed operating system on a multiprocessor machine

Figure 2-6

Figure 2-7 shows how a set of many processes can be executed at the
same time for the benefit of one job .

Job

Multiprogrammed operating system on a multiprocessor machine

Proc. Proc. Proc. Proc.

Figure 2-7

Elements of parallel programs 19

Figure 2-8 shows eventually that dynamic associations of both previous
cases can appear on a computer system , for the execution of many jobs in
parallel . Each of them recquires many associated processes executing the
code in parallel and / or at the same time . The architecture itself
disposes of many processors .

Job
Sequ.
job Job

Mult1programmed operating system on a multiprocessor machine

L-P_ro_c_. -'--Pr_o_c·____,__P_ro_c_. ___.I EJ I Proc. 1 Proc. 1

Figure 2-8

2 .4 Theories concerning multiprocessor
performances

2. 4 .1 The concept of speedup

F1rst cons1der an algor1thm A runn1ng on a machine whlch handle only one
processor for the user processes. The t1me for the execut1on of the entlre
algorithm ls T(1) . If the same algorithm A can be executed without
changes on a second machine which 1s able to allocate N processors for the
execution, then the time for the entire execution of the algorithm Will be
T(N). There are relations between T(1) and T(N) .

From there , new concepts can be introduced . The is the speedup denoted
by S(N). The speedup of an algor1thm 1s defined as the increase of speed of
runn1ng an algortthm when pass1ng from a system wh1ch executes tt w1th
one processor , to another whlch executes it with N processors . lt 1s
expressed as f ollow :

T(1)
S(N) = -------

T(N)

The second concept is related to the efficiency E(N) of one of the parallel
sections of the algorithm in execution . lt is in relation with the concept
of speedup by the following way :

S(N)
E(N) = -------

N

The relation between the two concepts is that the comparison of S(N) with
N is equivalent to the comparison of E(N) with 1 .

Efements of paraffef programs 21

At this point , it should be pointed at , that the target of the
developpement of parallel algorithms is not to increase the speedup , but
well to reduce the execution time of the algorithm . ln some sence , an
algorithm with a greater speedup uses the hardware more intensively, but
does not necessarily provide a better execution time .

2..i2 Conf 1 i cts

We have just defined the speedup . According to [Darema-Rogers] , it is
1 ess than the 1 i neari ty . 1 n f act , the best case of speedup i s a mono ton
increasing function of the number of processors for a given algorithm . But
we will see that some controverse still remain about the speedup . This
problem is a sensible point . when s·peeking about parallelization of
programs .

Conf1icts seem to appear between people who are thinking about the limits
of the possibilities provided by parallel algorithms . The main problem is
simple to imagine . Consider for example a spec i fic program that has a
sequential execution. What could be the increase of performances given by
the the same program executed with more than one processor ? The
question can be reformulated in a different way : ls there an upper limit to
the increase of performances due to the parallelization of the program ?

The response to this question is not trivial . Many people have different
opinions about this problem which , at the first sight , seems to be
simple . ln fact , there is no clear response to it . So , V.FABER in
[Faber-Lubeck-White] claims and demonstrates in a very simple way, that
the superlinear speedup of an efficient algorithm is not possible . But in
another article of the same issue of the review , D.PARKINSON in
[Parkinson-86), to the contrary, certifies that the parallel efficiency of
an algorithm can be greater than unity .

This conflict among thinkers about a so simple problem is sufficient to
show that some controverse still exists, and that actually, the problems
highlighted by the parallel programming are not yet completely understood
by the users . Of course , for the small problem evoked in the articles ,
there is a solution . This one is found in the default of precision in the
assumptions, so that they are talking about different things . The solution

Elements of parai/el programs 22

of this apparently contradiction is described in [Faber-Lubeck-White-87]
and in [Janssen] of the review which introduced the original consecutive
articles, to provoke confusions and reactions among readers .

21J. Discussion of speedup and overheads

We have defined the theoretical concept of speedup . This concept has 2
interresting properties which are : First , this concept is processor and
implementation independent, and secondly , the speedup is the notion that
we are direct ly interrested in .

When the speedup must be measured in an algorithm , 2 critical points
must be taken into account .

First , it is clear that the measurements done , must be done with the
same datas for bath algorithms . This implies that the same amount of
work must be crunched by bath versions of the algorithm , the parallelized
version and the sequential version . For example , if an algorithm is
designed to search a sub-string in a string , the same string and
sub-string must be used in bath algorithms for the measurements .

Secondly, there is a subttle point relative to the definition of speedup .
Usually, the execution time of a multiprocessor algorithm executed with
on ly one processor , T(1)' , i s greater than the execut ion t ime of the
execution time T(1) of the original sequential algorithm doing the same .
This appears to be due to some additionnal work introduced by the parallel
environment . This additionnal work is the cost of parallelization , also
cal led overheads .

The overheads are of 2 natures .

First , the hardware overheads . These overheads are due to phenomens
such as bottlenecks or communication delays . They are denoted by Hloss .

Secondly , the software overheads . These overheads are the consequence
of the inaptitude of the algorithm to keep the requested processors all the
time in a busy state . This is a defficiency of the algorithm . These
overheads are called Sloss .

Elements of parai/el programs 23

With these concepts, we can define the execution time of an algorithm on
a multiprocessor system :

T(1) + Sloss • Hloss T(1)'
T(N) = ----------------------- + -------

N N

On a well designed multiprocessor system, Hloss should be negligible . But
Sloss can be very great , depending on the way the algorithm has been
parallelized .

According to [Darema-Rogers] , the overheads are usual ly low ,
approximately 1 % of the total execution time , but it depends greatly on
the kind of application studied . For example , small usual benchmarks
produce overheads on systems that can take until 10% of the runtime .
Normally, for the large applications, the overheads are rather small .

2.4.4 Concepts of Hockne~

ln a computer machine , the performance measurements can be taken by
the use of some parameters . Depending on these parameters , some
measures can be described . One method of measurements is proposed by
Hockney in [Hockney-86] . The main principle of the method is based on the
performance of a vector computer . Then the method extended to
synchronization overheads due to parallel programming, and eventually to
the performance measurements of a complete parallel program, depending
on the number of processes execut ing the program . These ideas are
explained in the following section .

2.4.5 The main idea: the performance of a vector

Considering a vector operation, it can be executed in a time T , which can
be decomposed into 2 sub-times; a fixed time To consisting of the time
necessary for initialization, a variable time depending on the number N
of elements in the considered vector , and on the time Te necessary to
compute one e lement of the vector . This is described by the formula :

E/ements of parai/el programs 24

T = To + (N * Te)

From this expression, we can compute the mean time Tem of computation
of one element in the vector :

T To + (N * Te) To
Tem = = ------------------- = + Te

N N N

From there , we can describe the mean rate of computation r of an
element, also called performance . lt is expressed as

r = = ------------------
T em (T o / N) + Te

Now consider ri as the maximum performance that can be achieved by the
vector , i.e. the theoretical performance of an infînite vector length for
the machine . This can be described by

ri = 1 im ---------------- =

N (To / N) + Te Te

Note however that this performance is never reached because it is
valuable for a vector of infinite length . lt can on ly be approached by large
vector lengths .

Let us also define N 1 /2 as the length of the half performance , i.e. the
length of the vector , which is necessary to reach the half maximum
theoretical performance of this vector . So we have the following
def init ion :

N 1 /2 = ri * To = To / Te

One can check that if To is null , then N1 /2 = 0; and that if To is
infinite , then N 1 /2 is also infinite .

The time T for performing the entire vector operation can be rewritten

Elements of parai/el programs

according to these concepts as

T = To + (N *Te)
= Te * [(To / Te) + N]
= (1 / ri) * (N 1 /2 + N)

and the performance of the vector can be redefined as

r = = ----------------------------
Te+ (To / N) [1 + (To / (Te* N))] * Te

ri
= --------------------

1 + (N 1 /2 / N)

We can also simplify the expression of r by defining a function pipe(x) :

pipe(x) =

+ 1 /x

So we rewrite r as

r = ri * pipe(N / N 1 /2)

25

Wy these notions of ri and Nl/2 ? lt seems that they are more
convenient for the user to compare directly the performance r of his
vector with the theoretical maximum performance of it . ln the same
sence, Nl/2 allows the user to compare the length of his vector with the
length of the half performance .

Figure 2-9 shows a synthesis of these relations and a graphical
representation for them .

Efements of paraffef programs

Vector performance

Maximum performance
PerformancE:

ri

flop/sec

···•························ ··•·•··•·•·•··•·····•··•·········••········

rl/2 - ·-· -·-·· ·-•- •,•,•, ..

!

Nl/2

T = To • (t~ *Te)

Tem = (To i N) • Te

r = 1 / Ten1

N 1 /2 = ri ~ To = To I Te

T = (1 / ri) * (N 1 /2 + N)

pipe(X) = 1 / (1 + (1 / X))

r = ri * pipe(N / N 1 /2)

Asymptotlc

Vector length

Te

T I To I 1 1 1 ~I 1 1 1 1 1 1 1 1

Figure 2-9

2.4.6 Synchronization overheads

26

We have wide ly exp lained the theoret ical concepts of performance for
vectors although it is not directly related to our problem . However, using
these basic concepts , Hockney ex tends them for measuring the
synchronization overheads which occur in parallel branches of a parallel
program .

f.lements of parallel programs 27

If we have a simple parallel environment executing various branches of a
parallel program using primitives such as FORK and JOIN , we can consider
each branch of such a parallel program as a sequence of serial sections .
The execution time of one parallel branch of the program can be described
as follow with the concepts used in the vector measurements :

T = (1 / ri) * (5 + 51 /2)

ln this expression , we use the concept of ri introduced earlier for the
vector performante measurement . lt has here the same signification as
we gave for the vector measurement , i.e. , the maximum performance of an
operation within a sub-section of a parallel section .

Two other new concepts are introduced . The first of these is 5 ,
representing the computation work measured inside one parallel section ,
in terms of equivalent floating point operations . This concept has its
corresponding N in the vector measurements that we described in the
prev i ous section .

The second new concept is 51 /2 . 51 /2 is the synchronization overhead
in terms of quantity of work , expressed in equivalent floating point
operations , wh ich could be executed during the synchronization time . ln
other words , 51 /2 is the quantity of work , in a parallel sect ion, which
is necessary to reach the half asymptotic performance . 5o , it would be
very usefull to create a parallel section in a program if the equivalent
work implied to create it , is clearly less than 51 /2 . 51 /2 is defined as
N 1 /2 was def ined for the vector performances .

ln a previous chapter , we also described the notion of granularity of a
program . Now , we can say that 5 represents this granularity factor , and
51 /2 represents the minimal granularity for a paral lel section .

As we can see , there is some parallelism between the performances of a
vector and the performances of a parallel section of a program . We can
complete our equations like we made for the vector performances :

We had

Elements of parai/el programs 28

T = (1 / ri) * (N + N 1 /2)

and

ri
r = = ri * pipe(N / N 1 /2)

1 + (N 1 /2 / N)

Then we have also:

T = (1 / ri) * (5 + 5 1 /2)

and

ri
r = = ri * pipe(5 / 51 /2)

1 + (51 /2 / 5)

for the synchronization overhead problem , in one branch of a parallel
program.

21.1 ~gram performance

ln a similar way, we can describe the concepts related to the performance
of a program .

For this, we consider that the time Tp to execute entirely a program is
the sum of the time To spent in the sequential sections, and the time T 1
spent in the parallel sections , devided by the number P of parallel
sections. So we have :

Tp = To + (T 1 / P)

We can also define the execution rate Rp as

Rp = = ------------------
Tp To + (Tl/ P)

Elements of parai/el programs

Ri
=---------------------=Ri* pipe(P / Pl/2)

1 + (P 1 /2 / P)

29

where Ri is the maximum performance of the program , increasing
asymptotically with the number of parallel sections . ln fact, the factor
T 1 /P diminishes , leading the performance of the program to the
performance of the unreductable section having a time To . Ri is defined
as

Ri = 1 / To

Pl /2 is the number of processes necessary to reach the half performance
of the program (considering that a processor is given to each parallel
section) . lt is defined as :

P 1 /2 = T 1 * Ri = T 1 / To

Compared with the vector performance , the program performance uses
little differences in formulas because the critical concept in a parallel
program is not the same as in a vector. ln vectors, this critical concept
is To , the initialization time of the vector operations, while here, in a
para 11 e 1 program , the cri t i ca 1 concept i s T 1 , the execut ion t i me of a
parallel section .

Figure 2-10 shows a synthesis of these relations and a graphical
representat ion of them .

f.lements of parallel programs

Er:.Qgram performance

For this graphie, it is assumed that the synchronization times are
null or negligible .

Program
performance t

Ri , •.•············ ·

Rl/2

Maximum performance ----
Asymptot ic

Pl/2 Number of processors

Tp = To• (Tl /p)

Rp 1 / Tp

Ri / (1 • (p 1 /2 / p))

Ri 1 / To

Pl/2 Tl* Ri Tl/ To

Rp Ri* pipe(p / pl/2)

Tl

T I To 1 1 1 1 1 1 1 1 1 1 1 1 1 1
123 4 ...

1 To t_J
T p r--ri

~ Tl/ p

p

Figure 2-1 O

30

Elements of parai/el programs 31

~ Mo del i zati on of a para) l el pro gram wi th synchroni zati on
overheads

We have described the performance of a theoretical parallel program
considering that Rp increases always , but more and more slowly in an
asymptotic way . However , if the number of processors becomes larger ,
the synchronizat ion overheads also increase , leading Rp to a maximum
R' , to the contrary with Rp .

The behaviour of such a situation can be described by the following
function, which has been derived from a lot of observations by Hockney :

Ri
Rp =

P 1 /2 P n
1 + (* { l + [------- * (---)] })

p n-1 p·

This model of performance shows that , when the number P of parallel
sections of a program increases - or the number of processes - , the
synchronization overheads increase also quickly . This implies that there
is an upper limit to the performance of a parallel program , and a drop of
performances when the number of processes increases further than a
certain number at which the maximum of performance is reached .

ln the mode! , we can see that the velocity of increase of the
synchronization overheads with P is determined by n , which is called
the the index of synchronizat ion . This index should be as low as possible .
The magnitude of the synchronization overheads is determined by p· . So,
more P is large , lower the overhead is .

The maximum performance Rp of the program , in the mode! , is reached
when P = p· , and then , the expression Rp turns to R' which is

Ri
R. = ---------------------------------

n Pl /2
[1 + -------- * (------)]

(n-1) p ·

Elements of parai/el programs 32

Figure 2- 1 1 shows a synthes i s of these relations and a graph i cal
interpretation for them .

Program performance

For this graphie, it is assumed that the synchroni zation times are
not necessary null

Program
performance

Ri

Rl/2

Rp

Pl /2

Maximum performance

Cost of the
synchron i zat i ons

Ri

p-

pt/2 pEn
1 + (-------) * { 1 • l ---- * ----- l 1)

p n - t p-

Factor of
synchronizat ion

The peak appears at p = p- . with

Ri
R- ------------------------

n pl/2
1 + (----- * ------)

n - 1 p-

Figure 2-11

Number of
processors

2 .5 Practical measures in a parallel program

2.5J. Benchmarks i □ a multiprocessor environment

Our f1nal a1m is to make measures on the MXSOO w1th1n the PARFOR
environment , and later, with FORCE .

A benchmark program 1s constructed to test the machine 1n a very t1ght
domain . But the results produced by the benchmark are not only the fact of
the machine , they are greatly dependent of the environment . This 1mpl1es
the capacities of the compiler which has compiled the benchmark , the
code of the benchmark , the operat1ng system in which 1t is executed, the
load of the system , the prec1s1on of the tools used for measur1ng 1ns1de
the benchmark and inside the operating system , and the measurement
technics used .

While trying to parallelize a benchmark , more than for a program , a
choice of the level at which it will be parallelized must be done . ln fact,
a benchmark is often a synthetic program , repeating very often a certain
amount of tasks diff ering by the datas they use , or do not diff er any way .
This seems to be ok for the sequential environments . But when trying to
parallelize these benchmarks for their execution on a parallel machine,
the question of the level at wh1ch it must be parallelized is more
important .

For example , taking a benchmark program solving linear equations
systems , it can be parallelized at various levels . The highest level
consists ln paralleltsing the number of times that the same system is
solved in the outermost loop of the benchmark . A second possibility is the
parallelization in the ma1n parts of the algorithm . And a thtrd level would
be the paralle 1 izat ion of the irinermost routines which are the effective
crunchers of the algorithm .

The first possibility will take into account that the benchmark is a
synthetic and repetitive job having no interrest , except that it provides

E.lements of parallel programs 34

time results concerning the calculation rates of the computer on which it
is executed . This is the outermost level . At this level , because of the
repetitivity of the benchmark , it is relatively easy to parallelize so that
the processes are well distributed on the set of processors .

The second possibility takes into account the particularity of the
algorithm . So , at this level of parallelization , the algorithm itself is
parallelized , but not the benchmark . This means that the benchmark is
still executed in a sequential way , but the main parts of the algorithm
called many times is distributed on the processors .

The third possibility is the lowest level of parallelization . ln this
method , the lowest level routines of the algorithm are parallelized .
These routines are simple , but the parts of the algorithm spend most of
their time in their execution . So their parallelization seems to be
interresting . But the problem is that these routines are really small , and
the overheads produced by the use of the parallel ennvironment are rather
great compared to the small work crunched by these routines .

These possibilities of parallelization could be done simultaneously , but
our parallel environments do not accept this . Only one level of
parallelization is accepted in a program . The choice of the level depends
essentially on the size of a parallel section , the granularity of the
program . As we said earlier, the various overheads due to the effects of
parallelization must remain very low or negligible compared to the work
performed by the section .

252 Time measurements

The most difficult ies in trying to measure the performances of a machine
of the performances of a program , remain certainly the problem of taking
the measures themse lves . Taking the right measures at the right points
in the prograrns invo Ives a certain number of questions and requires many
choices .

The reasons of this are of various natures .

Elements of parai/el programs 35

The first reason is that there exists no global theory or method for trying
to measure the performances of parallel applications (which can be the
system) . There exist partial theories and methods that are valid in only
part icular situations . However, when we are determined to take
measures , the environment itself is fixed , and the question of the
particularity seems not to be critical . But in most cases, the measures to
be taken , are destinated to be compared with other measures (for
example , if we measure the abilities of a FORTRAN compiler on a
particular machine, it would be usefull to compare directly the results of
these measures with those provided by the same compiler working on
another machine . But for this , the tools for measuring should be the same
on both machines . ls it the case in the reality?) . So, for this reason,
the measures should be comparable , i.e. they should have been taken
according to similar method on both systems. This is a large problem in
taking measures on computers .

A second reason of these difficulties, is that of the choice of the method
to follow . This could be a subquestion of the first reason . ln the area of
measures , many articles and books have been written . And sometimes ,
some of them lead to completely different approaches for a given
problem , leading to results that can not be compared , as explained
earlier . Sometimes , some difficulties appear . lt is possible that a
method is followed at the very beginning of the measures , and that this
method must be changed in faveur of another later , because of some
critical reasons that only appear late in the developpement of the tests .

Another reason of the problems is that of the availaibility of the tools
necessary to implement a particular method on the system to measure .
After the choice has been taken, the question is the "how to do it" . If the
method has been choosen according to the tools available , this is not a
prob 1 em , but maybe the method has not we 11 been choosen . On the other
hand , if the method has been choosen according to the necessities of the
problem to be solved, then , the availaibility of the tools can be a great
problem . lt can involve the building of new tools that were not originally
ava i la ible on the system to test .

A fourth reason of the difficul t ies involved by the real measurements is
the way the tools are implemented on the system to test . Normally , a
system is provided with some basic tool s . The problem is to know exactly

Elements of parai/el programs 36

what the routines perform , when they are called to take measures . ln
fact, the time routines provided and the standard libraries seem not to be
sufficient to allow the creation of a set of tools . The way and the
environment in which they are conceived are also necessary , to know and
understand exact ly what they measure . Otherwise , the measures taken
are greately undefined , and the results remain relatively uncertain . lt
seems to be necessary to know the complete implementation of them ,
until the hardware level , the original source of informations concerning
the time in a computer .

A fifth reason of the difficulties involved , is that a real environment
involves errors . The problem becomes of great importance when trying to
compute statistics concerning the measures taken . Those measures, often
because of certain hidden reasons , may contain values that apparently do
not match with most of the other values , taken in the same way in the
same circumstances . The question is "what to do with these seemingly
error values?" . Should they be taken into account or should they be
discarded from the set of results ? The problem is that these values have
been taken in the same conditions than the others . So perhaps they are
good , perhaps not , but it is uncertain about them . Sometime too , the
discovering of errors in measures can lead to the rediscussion of the
validity of the tools from which the values are taken . From there , the
necessity to know the exact implementation of the time routines as
discussed above . So , we think that the problem of errors must take place
inside the discussion concerning the measures of performances of a
system.

A si xth reason is the variability of the measurement results taken . This
can be a generalization of the problem of errors , except that the values
we talk about seem to be correct values . One problem is that the results
are different for multiple executions of the same programs in the same
environment (including the load of the system) . Another problem is that
the results also vary , depending on the load and the t ime at which the
measures are taken (some processes , for example, are activated only
when a "sufficient" amount of work is present in the queue . So , depending
on the t ime at which the work arrives , the Joad on the system also
varies) . This kind of variability is sometimes called "statistic errors" .
Th i s involves that the reliability of the measures should be envizaged in
further measurements , and that studies concerning the trust of the

Elements of parai/el programs 37

measures should also be reported . lt is sometimes the case that reports
claim in favour of the high performances of an application , showing
numbers, but discarding informations concerning their reliability and the
context in which they have been taken .

~ Cpu-tlme and Real-tlme

ln sequential applications , the measures taken are usually the cpu-time
and the real-time . The cpu-time is more system oriented , while the
real-time is more user oriented .

The cpu-time measures the cpu-time consumption of the application. The
real-time measures the time that the user had to wait for its application
to be finished , and get the results at his screen .

ln parallel systems , it is not so true to make the distinction between the
application and the parallel environment . Bath are tighly coupled . Then ,
what about the distinction between the user point of vue , and the system
point of vue ? They are quiet associated .

However, to our point of vue , we continue to think that the concepts are
valid in parallel environments , even if the notions are not so clear . We
keep this attitude because we have no other way to take measures , and
because the abstract concepts remain the same .

2.5.4 Time routines

For the time measurements we make in the PARFOR environment , we use
the t ime funct ions provided by UNIX . So , al 1 measures taken have the
precision of the functions provided by UNIX . These routines are only 2 and
are the fol low ing :

TIMES()
CLOCK()

Elements of parai/el programs 38

Bath routines are part of the standard UNIX environment in the system V.

The first routine , TIMEO , fills its arguments with time-accounting
informations . These informations corne from t he calling process . The
informations provided are the user-time and the system-time .

The user-time is defined as the cpu-lime used while the processor is
executing instructions in the user space of the ca l ling process .

n,e syslem-lime is defined as ltle cpu-lirne used by the system on behalf
of the ca 11 i ng process .

This routine TIMES() also provides as its return value, the elapsed time
from an arbitrary point in the time . Because of this , it is necessary for
the exploitation of this information , to call at least 2 times the routine
TIMES() to compute the difference.

All informations provided by TIMES() are given in CLl<-TICKths of a
second .

The second routine , CL0CKO , returns the amount of cpu-time used since
the first call to clock . The time reported is the sum of the user and
system times of the calling process.

The value is returned in microseconds . Note that normal ly , this value
should be the sum of the user and the system limes . ln the reality ,
because of the better precision of the CL0CK() function , there are
variations, but little. That is the reason why we take this measure into
account .

Both functions are called in a C procedure called ZEITO providing these
values in miliseconds, and in microseconds for the cpu-time .

The ZEIT() function has 4 parameters, which are the following :

1) Real-time in miliseconds
2) User-time in miliseconds
3) System-time in miliseconds
4) Cpu-time in microseconds.

Elements of parallel programs 39

The interface is standard , so that ZEITO function can be called very
ease ly f rom a C pro gram or a FORTRAN pro gram .

25.5 One representation of a parallel progr:mn

A standard simple parallel program is made of 3 main parts . A standard
sequential part for declarations and initializations , a set of parallel
sections depending of the application in which the main treatement of the
algorithm is made , and the termination part in wh ich all results are
co 1 lected and the final results produced .

This is very simple . But often this frame is repeated many times, a serial
section , a parallel section , a serial section again , a parallel section
again, and so on ... But the main principle remains the same.

Figure 2-12 shows this representation .

Frame of a PARFOR Program

B ;;,;,~ --ffi E TASK IN WAIT TASKIN WA IT

G main main
Pl Pl

N
P2 P2

P3 P3

~ ---------........____~ \
------ - parallel sections

Figure 2-1 2

€.lements of parai/el programs 40

~ Jest-poi nts in a para) 1 el progr:mn

Our time measurements in the parallel program are made at certain
places . Each test-point has a number . With 7 test-points in a parallel
program or part of a parallel program , we can measure all interresting
times . The test-points are the following :

Test-point 1 is made at the begin of the program itself , just after the
declaration part of the FORTRAN program .

Test-point 2 is placed at the end of the first serial section of the
application . The point is just before that the parallel sections are
initiated.

Test-point 1 O is placed at the begin of the parallel section , i.e. it is
the first statement of the child task . Note that this test-point 10 is
repetitive because appearing in each parallel section .

Test-point 11 is placed at the end of the paralle section , i.e. it is the
last statement of the child process . This test-point 11 , as the
complementary to the test-point 10 , is also repetitive for the same
reason .

Test-point 3 is located just after the synchronization barrier statement
in the main task . At this place , all children have finished their
execution, and the synchronization barrier is passed .

Test-point 4 is placed at the end of the sequential termination section
of the application . This is the logical end of the application .

Test-point 5 is placed just after the test-point 4 . lt is placed there to
measure the time consumed by the time routine itself .

Figure 2-13 below shows these time measurements in a PARFOR program .

f.lements of parallel programs

Taskin

Wait

Tjme n-,easurements in a PARFOR program

~
Time 1

1
Time 2

Time 10

Time 10

1 ;1a;o Par 2

Time 11
Time 11

.. :~

Time3

1
Ti me 4-~
Time5 ~

JJ

Déclaration part

Séquential part

Overhead parts

l
Time 10 Time 10

1 Pac 3 1 Par 4

Time 11 Time 11

.,,..,. .,. .,..,. .,. ,.,. .,. _.

Synchronizat ion
overheads

Sequen t i a 1 part

Figure 2- 13

41

E.lements of parai/el programs 42

25.i Description of a tool that uses these test-points

The time measures are computed after the application is terminated . To
facrntate these computations , we have created a FORTRAN subroutine
that takes as parameters , the times measured at the test-points
described above , and performs ail interresting computations on these
times.

As we have said before , we have 7 test-points . For each of them , we
have 4 values recorded : The real-time, the user-time, the system-time ,
and the cpu-time . This is valuable for the test-points 1 , 2 , 3 , 4 and 5 .
For the test-points 1 O and 11 , we need to record the 4 values for each
parallel section . So , we need for them , a table containing at least a
number of entries greater than the number of processes . But , because of
the static allocation of memory of the FORTRAN systems , we fix an
arbitrary large value for them , to be sure that it wi 11 be sufficient in
most cases.

We describe now the measures computed on the basis of the times
recorded at the test-points , and the names of the variables we used for
the results . We present them for the general case . So , in the names of
the variables , when we use the letter X , it must be replaced by R for
the real-time, U for the user-time, 5 for the system-time, and C for
the cpu-time .

These are the following:

□ The time of the time routine which is used to take the times. This
measure is computed on the basis of test-points 4 and 5 . We have

xt = xtS - xt4

□ The time of the initialization section of the application . This time is
computed on the basis of the test-points 1 and 2 . We have

xtinit = xt2 - xt 1 - xt

□ The time of the termination section of the application . Th is time is
computed on the basis of the test-points 3 and 4 . We have

Elements of parallel programs 43

xtterm = xt4 - xt3 - xt

□ The total time spent in the sequential sections of the application .
This time is computed on the basis of xtinit and xtterm . We have

xtsequ = xtinit + xtterm

□ The time passed during the global parallel section of the application .
This time is computed on the basis of the test-points 3 and 2 . We have

xtpara = xt3 - xt2 - xt

□ The global time of the application . This is based on the sequentia l
and parallel times . We have

xttota = xtsequ + xtpara

□ The total time of the application computed in another way . This
measure is based on the base of test-points 1 and 4 . We have

xtglob = (xt4 - xt 1) - (3 * xt)

□ The execution time of each parallel section. This measure is based
on the test-points 10 and 11 , and is repetitive for each parallel
section . We have

xtpar(i) = (xt 1 1 (i) - xt 1 0(i)) - xt

□ The initialization overhead of each paralle l section of the application .
This measure is based on the test-points 1 0 and 11 and is repetitive
for each parallel section . We have

oxtpi(i) = xt 1 0(i) - xt2 - xt

□ The terminat i on overhead of each parallel section due to the end of the
section and to the wait for synchronization of all processes to finish .
This measure is computed on the basis of test-points 11 and 3 and is
repetitive for each parallel section of the program . We have

Elements of parallel programs 44

oxtpt(i) = xt3 - xt 1 l(i) - xt

D The total overhead for each parallel section . This is computed on the
basis of the initialization and termination overheads, and is repetitive
for each parallel section. We have

soxtp(i) = oxtpi(i) + oxtpt(i)

D The mean time passed in the parallel sections of the application ,
included the main task. This is computed on the basis of all execution
times in the parallel sections, without overheads . We have

mxtpar = (xtpar(1) + xtpar(2) + ... + xtpar(n)) / n

D The mean time for the initialization overhead of the parallel sections .
This is computed on the basis of each initialization overhead, including
the main process . We have

moxtpi = (oxtpi(1) + oxtpi(2) + ... + oxtpi(n)) / n

D The mean time for the termination overhead of the parallel sections .
This is computed on the basis of each termination overhead, including
the main process. So, we have

moxtpt = (oxtpt(1) + oxtpt(2) + ... + oxtpt(n)) / n

D The mean time of the total overhead in the parallel sections. This is
computed on the basis of each total overhead in the parallel sections
of the program , including the main process . So , we have

moxtp = (soxtp(1) + soxtp(2) + + soxtp(n)) / n

2.5.8 Second kind of tests: speedup and efflcienc:t

The concepts of speedup and efficiency have been introduced in a previous
section . ln this section , we introduce the basic measures that we make
for the performance measurements.

Elements of parallel programs 45

ln this way to take the measures and compute the results , the final
calculations are based on many executions of the algorithms. This implies
that the results provided are relative from one execution to another
instead of beeing absolute . This new type of measures is more general ,
and more user ori ented , as we w i 11 see 1 a ter .

We can also confess that these tables were designed after the observation
that the results provided by the previous measurements were sometimes
false . This was mainly due to the bad precision of the time routines ,
compared to the relatively small times that are recorded for the overheads
to measure.

2.5.9 Description of the tools and the result tables

We present some results of the tests in tables . A table is a page . Each
page is related to the execution of a test program with a number of
processes varying from 1 to 10 , and other fixed parameters.

The fixed parameters are dependent on the tests made and are theref or
described for each kind of test .

Each table contains 10 sub-tables . Each sub-table provides results for the
execution of the program with a fixed number of processes, between 1 and
10 . We choose this interval because the machine on wh ich we make the
tests is configured with 6 processors .

Each sub-table contains 11 columns, having the following meanings :

Column 1 : Type of the algorithm

The measures are taken in tables . For calculating the various results, we
always base our measures on 3 executions of algorithms in different
cond i tions .

The principle is that all the times are recorded at the run time of the
various algorithms . The calculations are executed after the algorithms
are f inished .

Elements of parai/el programs 46

1- Sequential :
The first execution is the sequential algorithm . This algorithm is the
original unmodified sequential version of the program that has to be
paral lel ized . This first algorithm is always the referential case . Ali
comparisons of the parallel versions ar e done on the basis of the time
consumptions of this version.

2- Parallel with 1 process:
The second execution is the parallelized version of the original sequential
version , but executed with only 1 process . This version is executed to
have a global idea about the amount of overheads produced by the
activation of the parallel environment, and by the way that the sequential
algorithm has been parallelized . This execution is important for the
comparisons with the sequential case , and for determining the amount of
overheads due to the use of this parallelized version executed
sequentially, compared with the purely sequential original version .

3- Parallel :
This algorithm is exactly the same as the second algorithm , but is
executed with the specified number of processes indicated at the top of
the column . The version is the normal parallelized version running on the
multiprocessor system .

Column 2 : Flops

This column provides the estimated number of floating point operations
that are performed to complete the algorithm . This number is computed
according to the formula

Flops = < depends on the algorithm to measure >

Column 3 : Flop-rate

This column provides the estimated flop-rate of the couple
machine-algorithm . This flop-rate is calculated on the basis of the
number of floating point operations done (column 2) and the cpu-time
consumed to perform them (column 4) . The formula is the following :

E lements of parai/el programs 47

Flops
Flop-rate =

1.0 E6 * cpu-time

The factor 1.0 E6 is inserted to provide the results in Mflops instead of in
flops .

Co1umn 4 : Cpu-time

This column provides the cpu-time consumed and measured in the entire
algorithm . lt includes the user-time and system-time . lt is provided in
seconds .

Column 5 : Speedup

This column provides the speedup in terms of the cpu-time . This speedup
is measured on the basis of the sequential algorithm , and is computed as
follow :

or

Cpu-time sequential
Speedup =

Speedup

Cpu-time parallel 1 process

Cpu-time sequent ial

Cpu-time parallel

Column 6 : Efficiency

This column provides the efficiency in terms of cpu-time. lt is computed
on the basis of the speedup (column 5) , and the number of processes used
to execute the algorithm as follow :

Speedup
Efficiency =

Number of processes

Efements of paraffef programs 48

Co1umn 7 : Rea1-time

1

This column provides the real elapsed time consumed to perform the entire
algorithm.

Column 8 : Speedup

This column provides the speedup in terms of real-time . lt is computed as
follow:

or

Real-time sequential
Speedup =

Real-time parallel 1 process

Real-time sequential
Speedup = -----------------------

Real-time parallel

Column 9 : Efficiency

This column provides the efficiency in terms of real-time . lt is computed
in the following way :

Speedup
Efficiency =

Number of processes

where the speedup cornes from column 8 .

Column 1 O : User-time

This column provides the user-time . This time is part of the cpu-time . lt
is the time passed in the user defined procedures . lt is provided in
seconds .

Elements of parai/el programs 49

Column 11 : System-time

This column provides the system-time . This time is part of the cpu- time .
lt is the time spent in the system calls.

2.5.1 o Scheme of the measures

Time(1)

Execution entire algorithm

Time(2)

All performance computations

Figure 2-14 below shows a standard table containing execution results of
a test prograrn for this method of taking measurements .

Elements of parai/el programs 50

Tests with the SAXPY routine, single precision

Leading dimension : 10000
Vector dimension 4000
Parallel threshold : 100
Execution 11u111ber 1000

1 process Flops Flop-rate Cpu-ti11e Speedup Eff icien. Real-time Speedup Efficien. User-ti111e Sys-ti111e
-------------------------- ------------+--------------- --·----

Sequenti al 8000 0.0491 0.1628 1.0000 1.0000 0.1620 1.0000 1.0000 0.1501 0.0127
Par. 1 proc. 8000 0.0490 0.1634 0.9967 0.9967 0.1630 0.9939 0.9939 0.1556 0.0078
Parallel 8000 0.0490 0.1632 0.9978 . 0.9978 0.1630 0.9939 0.9939 0.1556 0.0076

2 processes Flops Flop-rate Cpu-ti11e Speedup Efficien. Real-time Speedup Efficien. User-ti111e Sys-time
--------------------------------- -----------+-----------------------+----------------
Sequential 8000 0.0490 0.1632 1.0000 1.0000 0.1630 1.0000 1.0000 0.1497 0.0135
Par. 1 proc. 8000 0.0490 0.1634 0.9989 0.9989 0.1630 1.0000 1.0000 0.1561 0.0073
Parallel 8000 0,()Ç24 0.0865 1.8852 0.9426 0.0860 1.8953 0.9477 0.0820 0.0045

3 processes Flops Flop-rate Cpu-time Speedup Efficien. Real-til!le Speedup Efficien. User-time Sys-time
--+------------------------+-----
Sequential 8000 0.0492 0.1626 1.0000 1.0000 0.1630 1.0000 1.0000 0.1501 0.0126
Par. 1 proc. 8000 0.0489 0.1635 0.9951 0.9951 0.1640 0.9939 0.9939 0.1562 0.0072
Parallel 8000 0.1168 0,0685 2.3750 0.7917 0.0690 2.3623 0.7874 0.0597 0.0088

4 pro cesses Flops Flop-rate Cpu-time Speedup Efficien. Real-tirne Speedup Effic:ien. User-time Sys-ti111e
--+--- ---------------+-----------
Sequential 8000 0.0490 0.1633 1.0000 1.0000 0.1630 1.0000 1.0000 0.1502 0.0131
Par. 1 proc. 8000 0.0497 0.1610 1.0143 1. 0143 0.1610 1.0124 1.0124 0.1557 0.0052
Parallel 8000 0.1441 0.0555 2.9400 0.7350 0.0560 2.9107 0.7277 0.0479 0.0076

5 processes Flops Flop-rate Cpu-time Speedup Efficien. Real-time Speedup Effic:ien. User-time Sys-ti11e
---------------------------- ---------------------+-------------------------+----------
Sequential 8000 0.0486 0.1644 1.0000 1.0000 0.1650 1.0000 1.0000 0.1503 0.0142
Par. î proc. 8000 0.0496 0 .1614 1.0190 1.0190 0.1620 1. 0185 1.0185 0,1557 0.0057
Parallel 8000 0.1974 0.0405 4.0572 0.8114 0.0410 4.0244 0.8049 0.0365 0.0041

6 processes Flops Flop-ratt1 Cpu-t :me Speedup Effi cien. Real-t ime Speedup Efficien. User-time Sys-ti11e
------- ------- --------------------+---------------------------+----------
Sequential 8000 0.0473 0.1691 1.0000 1.0000 0.1700 1.0000 1.0000 0.1464 0.0227
Par. 1 prcc. 8000 0.0486 O. l_t146 1.0276 1.0276 0.1650 1.0303 1.0303 0.1559 0.0086
Parallel 8000 0.2116 0.0378 4.4741 0.7457 0.0380 4.4737 0.7456 0.0346 0.0032

Figure 2-14

2 .6 Parallelization of applications

2hl Jechnics to parnllelize applications

There exist 2 main types of technics to parallelize applications :

1) Technics going backwards

- Detection in applications of parallel tasks
- Modification of the processing order of some parts of the applicat ion

2) Technics more radical going forwards

- Asynchronous processing
- Domain decomposition
- Operator decomposition
- Pipeline processing

Detection of parallel tasks

Th is is not really a technic by itself . Rather, 1t should be considered as a
forced first step for every type of paralleltzation techn1c that 1s to be
applied later . This step is relatively easy for some appl ications that are
loosely coupled , but can be very d1ff1cult for applications that are
thightly coupled (where many synchronizations are necessary) .

Modification of the order of orocess1ng

Th is kind of parallelization of ·an application consists in tak ing var ious
parts of an the appl1cat1on and arrange them 1nto another order 1n such a
way that their execution can be done in paralle l , without affecting the
results of the original program . Only the time of the execution , due to
these moves of treatements or parts treatements , is decreased . This is

f.lements of parai/el programs 52

not a true thing to find the portions of application which can be moved ,
and less trivial to move them to their correct place . This type of
parallelization is greatly dependent on the type of application that is
treated.

Asynchronous treatement

This method consists in taking the application and in trying to find in it
many treatements that can be distributed in several processes working
asynchronously , with a minimum of interactions between them . So, the 2
main rules of this technic are 1) minimize the synchronizations between
the processes , and 2) , increase at the maximum the number of processes
that can be executed in para 11 e 1 .

Domain decomposition

This technic consists in detecting the integration domain of the
application and divide it into a set of sub-domains , allowing by this way
the assignation of the original task to many processes corresponding to
the number of sub-domains detected . Most of large scientific applications
are designed to modelize physical processes in the space and time
doamains . This implies that applications are often regular and repetitive .
ln this area, the method takes all its advantages because of the relatively
easyness to decompose the original problem into a number of
sub-problems , working with different datas . A simple example is the
large matrix operations .

Operator decomposition

This technic is based on the use of multiple processes to compute
simultaneously diff erent operators on different datas . But this approach
is very bounded to the particular hardware con.figuration . ln particular, it
seems to be essential that the load on the processes is well balanced to
take the maximum advantage of the technic . lndeed , the target is to
maximize the use of the resources and to minimize the bad effects of
synchronizat ions between the processes .

Elements of parallel programs 53

The pipeline processing

Thie pipeline processing consists in executing an application with many
processes . lt is based on the principle of the coroutines executed in
parallel . Each coroutine takes data structures from an entry , modifies i t
and puts the result data structure to its output . So , a cha in of processes
can be executed in parallel using this technic , each process taking for its
entry , the result or output of the previous process in the chain . This type
of parallelization is better designed for commerc ial applicat ions, but can
also be used within scientific domains .

2.Q2 The effort in t():1ng to parallelize an application

The hum an effort is an important factor to take into account when trying
to parallelize an application . This effort is greatly dependent on several
parameters :

- The complexity of the code of the application
- The familiarity of the paople trying to parallelize, with the nature of

the physical problems
- The familiary of the persan with the algorithms used in the application
- The modifications made in the algorithm of the application
- The facilities provided by the environment in whlch the parallel program

is to be designed .

2.6.3 Prob1ems when programming in a paral1e1 environment

When working on a sequential computer, it is relatively easy to create ,
debug and maintain applications . ln such a sequent ial env i ronment ,
everything is determinist ic , so that it is always possible , and at least
relatively easy to follow the behaviour of the program in its execution .

This assertion is no more true in a parallel environment .

élements of parai/el programs 54

The tests are sometimes very difficult to implement , because it is not
possible to know at a moment , what is the state of the program , implying
that the interpretation of the partial results is not a simple problem in
the parallel sections .

For example , in the PARFOR environment , it is not yet possible in the
current implementation , to specify that a section of a program is
uninterruptable or indivizable . So, if we try to print results on the screen
in a parallel section , it is printed by all the processes , if they execute
the same code . So, the results are very difficult to interpreat .

Another type of problem appearing only in parallel applications , is the
case where the program which is to be adaptable to the ~vailable number
of processes , has a different behaviour depending on the number of
processes that execute it.

ln one example , 1 was trying to debug a parallel program which was
designed so that it was able to run with a variable number of processes .
But the problem was the following : The program executed with one
process produced normal results as they were provided by the original
sequential version . Executed with 2 processes , the parallel program
began its execution, and then stopped, returning immediately to the shell
without giving any message nor result . The same program executed with 3
processes began its execution , and after 3 minutes , produced an error
message concerning a segmentation violation . With 4 processes , the
program produced the first results on a total of 26 , but wrong , and then
stopped without giving any message, returning immediately to the shell .
Executed with 5 processes , always the same program never produced any
message, nor result . 1 had to break it .

This example is very signifiant to present the difficulties in parallel
programming . Eventually , what was the problem in this case ? The
problem was depending on the number of processes . But the program was
designed completely symetric . So , the behaviour should have been the
same with a variable number of processes . ln fact , the error was found
later . lt was a problem of bad memory management in the parallel
environment .

élements of parallel programs 55

Another frequent problem is the detection of an error in a particular
arrangement of the execution of a program . How could it be possible to
reproduce that particular execution ? This remains a great problem in
parallel programming , due to the dynamic allocation of the processes in
the computer , and to the permanent unknown evolution of the
environment . ln fact , each execution of a program can lead to different
results , due to the fact of the asynchronism , implying the difficulties
when trying to debug parallel programs .

Chapter 3

Parallelization in the PARFOR and
FORCE environments

3. 1 1 ntroducti on

ln this chapter , we discuss the possibilities provided by the PARFOR
environment for parallel programming . We make also some assumptions
concerning the FORCE environment for some comparisons . However , we
attribute a larger importance to the programmation in the PARFOR
environment, because this project is developped in our team, and it is the
ob ject of this work .

As a conclusion , at the end of this chapter , we provide some tries of
comparisons between both PARFOR and FORCE environments , their
philosophy, and the facilities they provide to the FORTRAN programmer .

3.2 Parallelizalion in the PARFOR environment

3.2.1 Introduction

ln th1s sect1on, we discuss the var1ous ways a program can be parallelized
w1th the tools prov1ded by PARFOR . The description of the PARFOR
envlronment 1tself 1s made 1n the next chapter .

The PARFOR environment can be considered as an interface between the
FORTRAN programmer and the operating system running on the
multiprocessor machine . The tools provided by PARFOR are designed to
take full advantage of the machine facilities . Thus , large complicated
applications can be parallelized within PARFOR .

Suppose that you have to paralle11ze a program made of some h1erarch1e of
subroutines 1n the class1c sequent1al method . Most of these subroutines
are made of complicated imbricated statements and many calls to various
other subroutines . Sorne of these subroutines are very simple and
repetitive , vector operations for example ; and others are more
complicated, calling themselves also other subroutines .

such a program is very common in scientific applications . We talk- about
scientific applications because the FORTRAN language is more specific for
these kinds of applications, but this is not restriction .

The main question , in such large applications , is to know exactly what
must be parallelized, and at which level the paralleliation must occur . lt
is a question, because the PARFOR environment allows the parallelizat ion
at only one level of programmlr"!g . So , this is not true at the first view ,
to know whlch level must be parallelized .

ln this sectlon , we introduce and explain the differences that appear
between the programmations at the various levels .

Parallelisation in the PARFOR and FORCE environments 58

But first , we give a first view to the main tools of PARF0R and the way
they must be employed in a parallel program. The details are however not
showed here . They are avallable in the next chapter describing the PARF0R
environment and its implementation.

We give also some informations concerning the programmation of the
barriers , and the way to divide a simple job between the parallel
processes.

Then we try to clarify the relations existing between the number of
processors available on the machine , the number of paral lel processes
initiated for a parallel program , and the number of calls to the
dispatching facility .

.122 View on the main tools of PARFOR

There are 3 main tools that constitute the PARFOR facilities for the
programmer. These tools are called like any other FORTRAN subroutine or
function .

NTASKS

The NTASKSO facility is a function that delivers to the PARFOR program,
the number of child processes generated for the execution of the parallel
program.

The number of processes is a standard FORTRAN integer number . The
function is used in the following way :

npar = NT ASKS()

where npar contains , after the execution of the function , the total
number of parallel processes - 1 .

Parallefisation in the PARFOR and FORCE environments

Figure 3-1 below shows a representatiori of the mechanism .

Cali to the NTASKS Facilit)'.'..

FORTRAN
main

1
n = NT ASKS()

\, ____ ~,,-----

User FORTRAN
Program

•

i
NTASKS

◄

C Routine hidden
to the User

Figure 3-1

Get informations
from C driver which
reads the command
line :

- ntasks=< 0 ... 16 >

c Driver Program
hidden to the User

59

This function is important for the parallel programmer to take into
account the specification of the user which executes the program . This is
the only way for him to know the number of processes initiated
automatically by the PARFOR environment . This can be considered as an
interface between the UNIX environment and the PARFOR program .

The number of chi ld processes is specified at the run t ime by the user of
the parallel program . lt can vary it in the range from O to 16 . If the user
specifies O , the program is executed sequentially (no child process
created) .

The user specifies this number by an option, like any other UNIX option in
the following way :

-ntasks=<O . . 16>

Parallelisation in the PARfOR and FORCE environments 60

The number specified is passed to the PARFOR environment , which in
turn , init iates the processes . This number can then be known by the
PARFOR programmer using the NTASKS() facility that we have described .

TASKIN

The TASKIN(. . .) facility is a subroutine that attributes to an initialized
parallel process , some work to do . The TASKIN facility has some
parameters . These parameters are present to describe the work to do .

Figure 3-2 below shows a representation of the mechanism .

Cali to the TASKIN Facilit)'.'..

FORTRAN
main

Cal l T ASKIN (parwork name ,
nparam,
parameters

User FORTRAN
Program

i
Get a free process ,

Search Adress and
parameters

Free the process

C Routine and Driver
Program , both hidden

to the User

Figure 3-2

i
Execute PARWORK
w1th parameters

4◄>------''

user Parwork
Routine

Parallelisation in the PARFOR and FORCE environments

The call to the TASKIN facility is done in the following way :

Call T ASKIN (parwork , nparam , .. arguments ..)

where the parameters of TASKIN have the following meaning :

61

- parwork is the name of the parallel work subroutine to be executed in
parallel . The parallel work subroutine must then be specified as a normal
FORTRAN subroutine, but, taking into account that it will be executed in
parallel with the others . The parallel subroutine must also be specified as
external in the routine_ which calls the T ASKIN facility . This is done in the
following way :

externa 1 parwork

The reason of this external declaration is explained in the section related
to the implementation of PARF0R.

- nparam is the number of parameters to pass to the parallel work
subroutine. This number must be known by the PARF0R environment. lt is
specified in the following way :

data nparam / < i nteger number> /

- arguments contain the real values of the parameters that are passed to
the parallel work subroutine . These arguments must be given by address .
The reason is that PARF0R does not support the mechanism to pass the
parameters by values . The number of parameters that are passed is equal
to the nparam specified earl ier in nparam .

the WAIT() fac i lity of PARF0R is a subroutine that makes the parallel
processes to wait that all of them have fini shed the execut ion of the
parallel work subroutine . Thus , WAITO provides an easy way for
synchronizations between the processes . lt is a synchronization barrier.
When all the processes have reached the point , the sequential code can
continue until new calls to TASKIN are made .

Parallelisation in the PARFOR and FORCE environments

Figure 3-3 below shows a representation of the machanism involved.

Cali to the WAIT Facilil:-i

'-

FORTRAN
main

Call WAITO

i
-y-

User FORTRAN
Program

...,,.,1

i
WAIT

4

\..._ _,,)
y

C Routine hidden
to the User

Figure 3-3

Get informations

• from C driver which
maintains the counters
for the processes

\..._

C Driver Program
hidden to the User

The WAIT() is called like any other FORTRAN subroutine.

Call WAIT()

62

Note that the implementation of the WAITO function varies from one
version of PARF0R to another . This implies a different behaviour of the
processes when they are waiting , but it is transparent to the user . This
is explained in the next chapter.

Parai/el isation in the PARFOR and FORCE environments 63

.lU The choi ce of a 1 eyel of para]) eli zati on

The PARFOR programmer needs to choose a level of programming for its
parallelization . This is due to the restriction that is coupled with the
PARFOR concept : The parallelism can only appear at one level . This
restriction implies that nested parallel routines are not possible .

A single rule to parallelize , can be the paralle l ization of the innermost
routines of a program . These innermost routines are called more often
than the higher level routines . So , maybe that it is a good idea to
parallelize them .

Another possible rule is the parallelization of the intermediate level
routines, depending on the easiness of their parallelization . But there can
be many intermediate levels of subroutines . So , the question of the
choice sti 11 remains .

Another criterium for choosing the level of parallelization can be the
length of the code of the subroutine to parallelize. We can parallelize the
largest routines for example . But we must take care because the largest
routines are not necessarily the longest in execution time . To know this,
a data flow analysis would be necessary .

Another simple rule can also be the parallelization at the outermost level .
This implies that the outermost routines of the program are parallelized .

Anyway, this is nota true problem to define the level of parallelization of
an application . lt depends on many factors, and eventually, it is always
the responsability of the programmer to decide at which level he will
make it , according to the granularity , according to the length of the
routines in the algorithm , according to the complexity of the
paral le 1 izations .

Parallelisation in the PARFOR and FORCE environments

.l2.1 The JeveJs of parallelizatioo io PARFOR

Initial example of a seguential program

Start the program

Call some complicated routines

Call some other routines

Call the innermost routines

End lnnermost routines

End other routines

End complicated routines

End of the program

Parallelization at the innermost level

64

The first level of programming with PARFOR can be the innermost level .
The innermost routines of a program are parallelized . These routines are
repetitive and simple . They require no synchronizations.

The main scheme of the algorithm remains sequential . The calls to the
TASKIN are still sequential , the structure of the main algorithm remains
unchanged , and the enclosing environment of the parallelized routines is
also unmodified .

ln this way of parallel programming , the standard interface of the
innermost routines is preserved . The only difference in the interface is
that the routines may contain some common statements necessary to
record the parallel results . The calls to the TASKIN facility are made in
the subroutines that are parallelized , implying that a new parallel work

Parallelisation in the PARFOR and FORCE environments 65

subroutine must also be described (the parallel subroutine which is called
by the TASKIN facility) .

The TASKIN facility of PARFOR calls a parallel subroutine that we call H

parallel work subroutine " . This new subroutine is executed in parallel by
the vari ous processes .

Each process receives the actual pararneters to execute the sarne code of
the routine , but with its own values . The results of parallel work
subroutine can not be given back as the standard parameters . The reason
is that PARFOR does not yet support this mechanism .

The results of each process must be recorded into an array declared as
shared between the processes . For example , the process number 3 will
fill in the place 3 of the result array .

For this reason , each execution of one parallel process must know that i t
is execution nurnber i to record the results at the correct place . This
knowledge of the process number is not automatic in PARFOR . That's why
a dedicated parameter must be added to the parameter list . However
some parallel work subroutines do not need any space for results, if only
the side effect of the routine is important , instead of the functionnal
result .

Scheme of the first paral lel ized version

Start the program

< Define the common varables >

Call some compl i cated routines

Call some other routines

Call the innermost routines

Start loop

Parallelisation in the PARFOR and FORCE environments 66

< lnitialize parameters >
Cali T ASKIN (parwork, npar, ...

parameters . . .)

Endloop

Direct call to parwork (.. . parameters ...)

Cali WAITO

Final computations

End innermost routiens

End other routines

End complicated routines

End of program

Subroutine parwork (. . . parameters . . .)

< Define common variables>
< Define local variables>

Parallel code

End subrout i ne

Parallelization at an intermediate level

This second kind of parallelization is made at a higher level . The level is
an intermediate level between the innermost level and the outermost level
that we describe after this section . This second level of parallelising is
not very different by itself, from the first parallelization level .

Parallelisation in the PARFOR and FORCE environments 67

The algorithm still remains mainly sequential . This implies that the
parallel subroutines are still included in the sequential algorithm . No
synchronizations are necessary between the processes executing the same
routine on different datas .

Here , the standard interface of the parallelized subroutines is lost . The
main difference between this level to program and the previous one, is the
following : ln the previous parallelizat_ion level , because the interface
was preserved with the calling environment of the routine , only the
routine itself was modified . ln this parallelization at a higher level , the
interface of the routine parallelized beeing lost, the calling environment
must also be modified.

The subroutines to parallelize are replaced by the calculations of the
boundaries for the parallel work , and a loop to call the TASKIN facility ,
the number of times that there are parallel child processes .

The number of times that the TASKIN facility is called , is not reduced .
What is reduced, is the number of calls to subroutines . Each original call
to a subroutine is replaced by a loop over calculations of the boundaries,
and over calls to the TASKIN facility .

This level o programming is less transparent for the program that is
parallelized . 1 mean that the enclosing environment is modified while the
subroutine itself has dizapeared . The subroutine is replaced by the
parallel work subroutine executed at the same time by the various
processes . The calculations associated with the use of the TASKIN
facility (boundaries, TASKIN call number, . . .) are reported to the higher
level .

The problem concerning the transmission of the results to the main
program remains, involving the necessity of declarations of common areas
in shared memory , if the functionnal effect of the parallel work
subrout i ne i s des i red .

Paraflelisation in the PARFOR and FORCE environments 68

Conclusion for this second level of programming

The main difference with the first level of programming is located in the
number of intermediate calls to subroutines , wh ich is reduced here . But
this reduction does not affect in a very large way the execution time ,
because the extra-calls of the first level , eventually , are not very
expensive compared to the more critical time consumption of the TASKIN
facility itself . This second level of parallelization involves still many
times calls to the TASKIN facility .

This level of programming is tested in the chapter related to the tests we
made .

Scheme of the second parallelized version

Start the program

< Define common variables>

Ca 11 some comp 1 i cared routines

Call some other routines

Start loop

< lnitialize parameters >
Ca11 T ASKIN (parwork, npar, . . . parameters ...)

End loop

Direct ca11 to parwork (... parameters ...)

Cali WAITO

Final computations

End other routines

Parallelisation in the PARFOR and FORCE environments

End complicated routines

End of program

subroutine parwork (.. . parameters . . .)

< define common variables>
< def ine local variables>

Parai le 1 code

End parwork

Parallelization at the outermost level

69

The next level of parallelization is the highest level . This level of
parallelization can be considered as an extention of the PARFOR concepts .
lndead , as we will see below , some new concepts are introduced in th is
way of programming , leading to some modifications of the original
philosophy of PARFOR . However , even if this extention of PARFOR is
considered , no modifications in the PARFOR interface are made . lt is
simply another way to consider the programmation.

ln such a parallel iation level , the outermost subroutine is parallelized .
The interface of the outermost level routine remain unchanged but it does
not contain any more statements , except the statements for the PARFOR
environment . These statements are the definit ion of the common variables
and the initial ization of the outermost routines with the TASKIN facil i ty
in a loop .

ln this level of parallelising , the number of calls to TASKIN must
imperatively be Jess than the number of parallel processes . If not , the
situation will corne in a deadlock . This is due to the obligation of the main
process to wait the arrivai of ail processes at the synchronization po int .
If there are more TASKIN calls than the number of parallel processes ,

Paralfelisation in the PARFOR and FORCE environments 70

some processes will have to execute sequentia11y 2 different
instanciations of the same para11el work subroutine, leading eventua11y to
a deadlock at the synchronization point .

Only one parameter is given to the para11e1 work subroutine ca11ed . This
parameter is the identifier number of the process . The shared memory is
used . The various calculations related to the distribution of the work
among the processes are made in the para11e1 subroutine . The entire
algorithm is coded in the para11e1 routine with shared or private
variables . The shared variables are known by a11 processes , and must be
updated only in the squential section of a barrier, but can be readen at any
time . The private variables are used for defining the boundaries , for
indexes, and so on . . . This kind of para11elization uses FORTRAN barriers
for the synchronizations between the processes .

This level of para11elization is very interresting because the entire
algorithm is truly para11e1ized and executed at the same time by the
vari ous processes . This was not the case in the previous versions of the
algorithm where the only para11elism was present when the TASKIN
function was called .

ln such a para11elization level , the synchronizations are essential . They
are mainly driven by barriers , and by message exchanges , decided in the
main process .

Because of the absence of locks in PARFOR , the critical sections are not
possible to implement . But in most cases, a critical section can be turned
to a loop executed by the main process inside the_ body of a barrier .

Conclusion for this third level of programming

This outermost level of programming reduces drastically the number of
calls to the TASKIN facility . The synchronizations among the processes
were implicit in the previous level due to the sequential main form of the
program , only calling some para11el facilities at some times . lt is no
more the case in this level of programming , where they must be done
another way . This way is essentia11y the use of synchronization barriers ,
and messages through the shared memory.

Paraflelisation in the PARFOR and FORCE. environments 71

The barriers can be implemented in FORTRAN , using the shared memory
like any message between processes .

The main characteristics of this way of programming is that we can really
say that it is parallel programming . The most important things in a
parallel program are not the calls to the TASKIN facility , but well the
synchronizations between the processes . This is one of the results of our
tests that we explain later .

We make some tests later to compare the various performances provided
by the parallelization at the various levels.

Scheme of the third parallelized version

Start the program

< Define common variables>

Call some complicated routines

< Define common variables>

lnitialize synchronization barriers

Do for each parallel process

Call TASKIN with the parallel routine parwork (id)

End do loop

Direct call to the parallel routine parwork (id)

Call WAITO faci 1 ity

End complicated routines

End the program

Parallelisation in the PARFOR and FORCE environments

Subrout ine parwork (id)

< Define common variables>
< Define local variables>

Parallel code using synchronization barriers and/ or
message exchanges

End subroutine parwork

~ Comparisons between levels 1 , 2 and 3 of programming

72

We have described the various levels of programming with PARFOR . Here,
we make a comparison of the levels 1 and 2, quite similar, and the level 3
of programming .

A parallel PARFOR program written in the second level of programming is
essentially sequential . The parallelization is introduced by the loop
call ing the TASKIN facility to Joad the waiting parallel processes .

To the contrary, the PARFOR program written in the third level described,
is essentially parallel . The parallelism is intrinsic.

The parallel progr_am written in the second level needs for
synchronizations , only to call the WAIT function, while in the third level
program , the synchronizations are made by linear barriers .

These differences are sufficient to reverse completely the original
phi losophy of PARFOR . ln the original design of PARFOR , the tools
provided were proposed to allow the PARFOR programmer to modify or
write a program for the inclusion of parallelism . If PARFOR is used in the
third level described, it breaks through this rule .

The PARFOR programmer must initially design his program so that it is
executed with many processes . lt is real paralle l programming , while in
the previous philosophy , PARFOR was there more like an assistant to the
programmer .

Parallelisation in the PAR.FOR and FORCE environments 73

ln terms of performances , later we make some measurements to compare
both levels or levels •Of programming.

Figure 3-4 shows the differences in the philosophy that we have
discussed above .

Levels of r2rogramming with PARFOR

Levels 1 &. 2 :

TASKIN WAIT T ASKIN WAIT

B main ma in ---------T-
E Pl Pl

G P2 P2

N
P3-~''"I P3

Level 3 : /
TASKIN

. Pl .. -·-·c
~ main L_ \ P2 r 1
1

N

-w-••r•w,,~~
/ Î t /

Barrier
Code

End
Barrier

Code

Barrier
Code

Figure 3-4

~~îilllTmain E
>------·-- N

---- D

End
Barrier

Code

Parallelisation in the PARFOR and FORCE environments 74

· ~ Exampl es of standard frames to pro gram in PARFOR

Parallelization of a single loop

First, consider the case of a single loop to parallelize . The scheme of this
loop is the following:

Do 1 0 i = 1 , 1 000
array[i] = calculation

1 0 continue

To be parallellzed with PARF0R , an extra call to a subroutine must be
added . This routine is the parallel routine executed by the various
processes at the same time .

If n child processes are specified at the beginning of the execution of the
program , the total number of activated processes is nchild + 1 (the main
process can aise do the same job in parallel with the children) .

The array of working can be divided into the total number of processes .
The general scheme of the way to do that is the following :

C -----------

part = 1000 / (ntasks + 1)
do 1 0 i = 1 , tasks

1 ow(i) = (i - 1) * part + 1
high(i) = (i * part)
temp 1 (i) = .. .

temp2(i) = .. .

temp3(i) = .. .

tempN(i) = .. .

cal! T ASKIN (PARWRK, nparam, low(i), high(i),
templ(i), temp2(i), . . . tempN(i))

10 continue
call PARWRK (tasks* part+ 1, 1000, ... param . ..)
cal] WAIT()

Parallelisation in the PARFOR and FORCE. environments

C -----------

subroutine PARWRK (low , high, .. . param .. .)

integer low, high
< declaration of the other parameters >

do 10 i=low , high
array[i] = calculation

1 O continue
return
end

C -----------

75

This kind of parallelization is called pre-scheduled . However , in this
case , the number of parallel processes is determined at the run time . The
algorithm is completely transparent to the number of processes . This is
very interresting to have such independent algorithms, because they allow
the automatic adaptation to the various configurations without any
modification . But the problem in this kind of algorithm , is that it must be
pre-scheduled . ln fact , this algorithm does not use any shared variable .
This is not dramatic , but in some cases , it would be usefull to work with
self-scheduled algorithms .

This main difference between the self-scheduled and the pre-scheduled
algorithms mentionned in chapter one , is that the pre-scheduled must be
optimized at the compile time , so that its execution provides the best
possible results . The load is equally distributed on the various processes
at the run time . lt involves that the execution time of each of the
processes is known in advance . To the contrary , the self-scheduled
algorithm allows more efficiency while the time to execute a parallel
section can be unknown , or variable .The self-scheduled algorithm is
based on a shared-counter . ln terms of PARFOR , it could be described as
fo ll ow : ·

Parai/elisation in the PARFOR and FORCE environments

C -----------

integer counter
common /COUNT / conuter

counter = O
do 1 O j= 1 , ntasks

templ(i) = .. .

temp2(i) = . . .

ca 11 T ASKI N (PARWRK , . . . parameters ...)
1 O continue

call PARWRK (... parameters . . .)
call WAITO

C -----------

subroutine PARWRK (.. . paramet ers . ..)

< declaration section>
integer counter, N
common /COUNT / counter

1 O 1 ock counter
N = counter
counter = counter + 1
unlock counter
if (N .GT. 1000) go to 20
array[N] = calculation
go to 1 O

20 return
end

C ------------

76

ln this version , the self-scheduling is present , and there is no need to
compute some boundaries of computations bef ore the T ASKIN f aci 1 ity i s
called . The most important feature is the shared variable protected by

Paralfelisation in the PARFOR and FORCE environments 77

atomic locks . These atomic locks are really the key to the self-scheduling
algorithm . PARFOR does not yet support them , so , this way of
programming is not yet possible.

Note that all of the shared memories between the various processes , need
to be specified in the Makefile file with the option-Fat the link time, and
referenced in a common statement .

Use of the barriers in a PARFOR program

We have discussed about barriers . As we have said , only the software
barrier can be used in PARFOR . This kind of synchronization barrier is
called the linear barrier. We can define it in the following way :

C

C

C

C

15

C

declarations

data
external

parameter
integer
integer

common

nparam / 1 /
parwork

(mxproc = 30)
lock(mxproc) , pid(mxproc)
me, i, npar

/ AREA 1 / Jock, npar , pid

lnitialization of the barrier before the calls to T ASKIN

npar = NT A5K5()
do 15 i= 1 , npar + 1

lock(i)=O
continue

Parallelisation in the PARfOR and FORCE environments

C Code of the initialization of the parallel subroutine
C with the TASKIN facility calling the parallel work subroutine

do 1 O i =2 , npar+ 1
pid(i)=i
call T ASKIN (parwork, nparam , pid(i))

10 continue
call parwork(1)
call WAIT()

C -----------

C Code of the barrier executed by all processes
C having a process number from 1 to npar + 1
C in the parallel work subroutine .

lock(me) = 1
if (me .NE. 1) then

10 if (lock(me) .EQ. 1) go to 1 O
else

40 do 20 i = 1 , npar + 1
if (lock(i) .EQ. O) go to 40

20 continue

endif

< place here the eventual sequential code that is always
executed by the driver process >

do 50 i = 1 , npar + 1
lock(i)=O

continue

C ------------

78

Such a code is sensible . The number of T ASKIN calls should not be greater
than the number of parallel processes initiated . Otherwise , the barrier
will be in a deadlock, waiting forever .

Parallelisation in the PARFOR and FORCE environments 79

The process that executes the sequential code of the barrier is known in
advance, and always the same .

The flag table of the barrier must be initialized before the calls to the
T ASKIN facility to be sure that all the flags are set when each parallel
work process start its execution .

The pid is necessary for each process to know it has the specified number,
allowing such a way to fi lter the processes according to this vitual pid .

The code of the barrier can be repeated many times in a PARFOR program .
The barrier is self-reinitialized .

Note that all of the shared memories must be specified in the Makefi le fi le
with the option-Fat the link time, and the variables must be referenced
in common statements. This is the way to tell the loader that the region
must be created in a shared memory at the execution time .

-:û.:J... Relations between the number of calls to TASKIN ~
number of processes and the number of available
processors

We have seen the various levels to use the PARFOR environment . ln this
section , we discuss the relations between the number of processors
available on the machine , the total number of processes generated to
execute the parallel appl1cat1on , and the number of calls invoked to the
T ASKIN facility within the PARFOR program , undependent of the number of
parallel processes, between 2 WAIT synchronizations .

The most easy way to use the PARFOR facilities is to design an appl ication
so that the number of cal 1s to the T ASKI N f aci 1 ity is always equal to the
number of parallel tasks that are initiated for this application . Then, at
the run time , the user specifies that i ts application must be executed
w i th the same number of processes that there are processors .

Tr1is is qui te easy . However , tr1i s i s not always possible . For example , a
pr-ogr-arn can r1ave a sernant ic constr-ai nt irnply ing that the number of
parallel prncesses are an even nurnber . But trie user does not know that ,

Paralfelisation in the PAR.FOR. and FORCE environments 80

and do not need to know it . lt is the responsability of the programmer to
arrange himself so that the specified number of processes is always even .
This implies that the application must use less calls to TASKIN than the
number of processes for a section of the program .

On the other hand , it is not always qui te useful l to start a number of
processest equal to the number of processors on the machine . If the load
of the system is high, running an application requiring the same number of
processes than the number of processors, will have the effect of slowing
down the application and al! other users .

lt may also be the case that some parallel programs need to be executed
with a fixed number of calls to the TASKIN facil i ty, or a fixed number of
processes .

The criteria when designing a PARFOR program , are then the following :

1)
2)
3)

A -->
B -->
C -->

The number of processors
The number of para 11 e I processes
The number of calls to the TASKIN facility

We can formalize the relations between these concepts by the equality and
inequal ity signs :

a)
b)

c)

=

>
<

-->
-->
-->

.. Same number as ..

.. Number greater than ..
"Number lower than ..

According to these formulations , the possib le situations wh ich may occur
are the following :

1) A = B = C
2) A = B > C
3) A = B < C
4) A > B = C
5) A > B > C

Parallelisation in the PARFOR and FORCE environments

6)
7)
8)
9)

A >
A <
A <
A <

B
B
B
B

< C
= C
> C
< C

81

This is a no sence to compare directly the number of processors with the
number of calls to TASKIN. Bath concepts are only related one to the other
by the intermediate of the number of parallel processes .

Situation 1 is the standard way to program within PARFOR . This case is
interresting to use when the user is alone working with the operating
system (closed session) . The reason is that each processor actually
receives its own peace of work from the main program -, in a parallel
process . All TASKIN calls are satisfied by the allocation of a processor .

Situation 4 is also very usual , and occurs mainly when the user is not
alone working within the UNIX environment . The number of processes is
lower than the number of processors , implying that there is more chance
that each process is attributed a processor at the same time . Of course ,
it depends on the number of current processes in the running queue ,
cornpeeling for <1 processor .

Situation 5 is like situation 4 . ln this situation however , the parallel
processes that are initiated at the begin of the application are not used (
at least in the section of the program where this situation occurs) . ln
terms of time, this solution is expensive or not, depending on the version
of PARFOR that is in use . For the version 1 , it is not too expensive
bacause the waiting process is put into a sleeping state . ln the other
versions, where the attribution of the parallel work is done by the shared
memory , this is expensive because the process is waiting in a busy loop .
Eventually , this situation should be encountered only when the program
contains semant ic constraints that are ignored by the user who specifies
an arbitrary number of parallel processes at the begin of the application .
The various implementations of PARFOR are explained in the next chapter .

Situation 2 implies that one of the parallel processes is waiting doing
nothing . The behaviour of this situation is the same as in the situation 5,
but the number of processes i s equa l to the number of processors . Such a
situation should be encountered only when the user is alone on the

Parallelisation in the PARFOR and FORCE environments 82

system , and wants to take profit of the maximum capacities of the
machine . Otherwise , if some other processes from the same user , or
from another user are running, some processes of the parallel application
will be delayed, leading to the same cases as in situations 7, 8, and 9 .

Situation 3 shows a case where the number of calls to TASKIN is greater
than the number of parallel processes . This situation implies that some
ca 11 s to T ASKI N can not be executed by a process in para 11 e 1 w i th other
processes. This , in turn, involves that the calls to TASKIN that would be
delayed , are executed by the main process to avoid wasting time . When a
process becomes free , it is waiting until the main process has finished
its own direct call , and then receives a flag by the main , saying that it
has finished its execution and prepared the new work for one parallel
process . lt is true that this solution is bad compared to the other
solutions . But if some algorithm requires a fixed distribution of the work
according to some parameter, it is possible to do that with PARFOR .

Situation 6 is similar to situation 3 except that the number of processes
is lower than the number of processors . This implies that the power of
the machine is not completely used . ln interactive mode with other users,
it is better for the speedup of the algorithm to be in this situation ,
otherwise , some additionna] times are consumed in waiting the
availability of processors to execute the processes.

Situations 7 , 8 and 9 shou 1 d never be encountered . The se cases are
always slower because they involve sequential execution of some parallel
processes . This is just what we try to avoid with the PARFOR
environment , using parallel processes to reduce the total sequential
times . For the tests , we made sometimes some measurements of
execut ions w i th more processes than the number of ava i 1 ab 1 e processors .
The curves re lated to these tests show always a wronger behaviour .

As a conclusion to this section, we think that the more critical situations
are determined by the cases where

A = B
A < B
B < C

number of processes equal to number of processors
number of processes greater than number of processors
number of T ASKIN cal ls greater than number of processes

Parallelisation in the PARFOR and FORCE environments 83

We think that these situations should be avoided in ail cases for
performance reasons . They can however be employed when it is not
possible to divide the parallel work in another way .

3.2.8 Varlous posslbllltles to use the PARFOR envlronment

The PARFOR facilities can be used in the fo llowing ways in a program :

- Call T ASKIN in a loop to attribute the same work to al 1 processes
and no direct call . Then a WAIT performs the synchronization point .

- Cali TASKIN in a loop to attribute the same work to all processes
and the main performs the same work in a direct call . The WAIT
perf orms the synchronization point .

- Call TASKIN sometimes to dispatch some heterogenous work to
some processes . The works are executed asynchronously .

- Cali TASKIN only one time per process and parallelize at a fine
granularity level (=the third level of programmiation within
PARFOR that has been introduced earlier) .

3 .3 Comparisons between the PARFOR and the
FORCE envi ronments

3.3.1 Sorne comparisons

The FORCE environment , at the present time , can be considered as " the
state of the art " in the FORTRAN like parallel languages in the world . This
environment is well known in the scientific world workihg with parallel
processing . The interface is standard and undependent of the machine on
which it is used , and it has already been tested on many multiprocessor
systems.

To the contrary, PARFOR is a new idea, and has defined its own interface .
Because of this , it is not yet used and known . lt must still prove its
efficiency in parallel programming . However , the interface is also
designed to be independent of the environment in which it is used . So , an
implementation is also in a developpement state for the B52000 SIEMENS
machines.

FORCE includes a set of tools rather complete . This set of tools is
particulary well fournished for synchronizations between processes. This
is a critical point in parallel processing , and the problem is particulary
well solved in the FORCE with the possibilities of synchronizations
points, asynchron variables allowing some processes to wait implicitely
when trying to read values that are not yet available , and the critical
sections . All these facilities make that FORCE is very powerfull and
allows the programmer to write programs with very high complexity.

PARFOR is essentially based on 3 facilities . NTASKS(), TASKIN and WAIT .
These tools are somewhat poor, compared with the mult iple possibilities
provided by FORCE . However , they are also suff icient to al low the
developpement of complex programs, taking into account that these tools
can be used in various ways, as we have seen earlier . With the extentions
of the concepts of PARFOR in the third way of PARFOR programming , it is

Para!lelisation in the PARFOR and FORCE environments 85

possible to reach the same complexity of algorithms , as in FORCE . The
communication possibilities are the same in PARFOR and FORCE , because
they use the shared central memory as the privilegied path .

On the phi losophic point of vue , FORCE is designed for the programmer to
take a maximum of profit of the power of the machine , taking into account
that he is alone working with this machine . This implies that he uses at a
maximum rate the processors for only one application at a time . All the
hardware possibilities of the machine are required , expecially the
hardware lock memories .

PARFOR was not designed with the same f inal aim . lt was essentially
designed to give to the programmer the possibi 1 ity to . introduce some
parallelism in its present applications , fortunately running on a
multiprocessor machine, but in cohabitation with other users .

The main scheme of a PARFOR program remains sequential , with the
possibilities to execute parts of the sequential program in parallel . The
main task distributes the work on the var ious processes (TASKIN) and the
parallel children run asynchronously . Then , a synchronization point (
WAIT) makes return to the sequential code . This scheme can be
reproduced many times in a PARFOR progr am .

To the contrary, a FORCE program contains an intrinsic parallelism that is
present at the early begin of the program execut ion . The FORCE program
begins its execution with all the processes that have been initiated for
him . Sorne parts of the program can be executed sequentially . This can be
done by the use of a barrier which has the function to synchronize the
processes . Then , at the end of the barrier , the program returns to a
parallel execution.

With the extentions of the concepts introduced with the third level of
programming , the PARFOR environment can also follow this behaviour ,
with nearly the same performances as FORCE provides . This is explained
in a previous section concerning the parallellization in the PARFOR
environment .

Parallelisation in the PARFOR and FORCE environments 86

Figures 3-5 a, band c below show respectively a synthetic representation
of the conception of programs written at the levels 1 & 2 , at the level 3 ,
and in the FORCE environment .

ConceQtions of Qrogramming with PARFOR and FORCE

al PARFOR 1eve1s 1 & 2 conceot1on :

TASKIN WAIT TASKIN WAIT ASKIN WAIT

B ·~u,;..;,;; ·

ma in Pl main
E
G P2
1 P3 >«•«•«'[
N 3(~)$:

P l

P3

P2 1 :~ 7 main ~]

- master

User Program - work 1ng

""''""'"' w ai t i ng

Figure 3-Sa

b) PARFOR leve l 3 conception: ~

Ô T ASKIN "'""1---.----,-L :~IT
main P 1 main E

E ,__ _ _ r,••••"'""'""-___ _,., ~t~m. tt~ · ~" N

G 1------· =···=·,]~wx ... ·· ·1------>

~ -•~- -.,~,;,wwaw,J
- master

User
Program

I
Barrier

Code

- w orking Figure 3-Sb
Bar r i er End, w aiting

t
End

b) FORCE conception

B

Barr ier
Code

Code Barr ier
Code

~ ,____________,,,,, --·+·7 P} PO~(f· __ Jl ~
~;~-;ram _.,,/ _ Î -D ;·t .

Barrier End End Bar r ier
Code Barrier Code

Code
Barrier

Code

- w or king
wa iting Figure 3-Sc

Parallelisation in the PARFOR and FORCE envir onments 87

About the granularity , the PARFOR environment can essentially treat the
coarse grain and middle grain programs .

To the contrary , the FORCE environment is mostly designed for fine and
middle granularity programs . This is mostly due to the possibilities of
synchronizations between the processes .

On the performances point of vue , we describe in chapter 4 some results
of tests made in both PARFOR and FORCE environments .

.l3..2 Personna 1 con cl usi on

To my mind , and according to the study I made of bath parallel systems ,
they are rather similar, if we consider the extention of the concepts of
the third level of programming with PARFOR .

But I thought more easy to program within PARFOR , because of the low
number of concepts that are available . But FORCE was more easy in some
circumstances (critical sections allowed) .

The problem of the easyness is also important , and I think that if
scientific people must program in a parallel environemnt , they must be
very familiar with computer programming to be able to write parallel
programs with FORCE . However , the PARFOR environment is more easy
because it always includes the concept of sequentiality , which is still
common in most actual algorithms .

1 have the feeling that the PARFOR environment is better adapted to
modify an existing application , while the FORCE environment would be
better to create new parallel programs .

The performances of programs written in both environments must be
exactly the sarne . If it is not the case at the present time , i t is due to the
only fact that the hardware locRs are not used in PARFOR . But it would be
easy to allow these locks to be used .

Parallelisation in the PARFOR and FORCE environments 88

~ Sorne possible extentions of PARFOR

As we have seen, the PARFOR environment could still be better than it is
now . Sorne features could be added , as well in the implementation as in
the interface with the user .

The third way of programming that we have explained could be simplified
by the definition of some additionnal facilities that the programmer could
call , without having to write very often the same peace of code .

lt would also be possible to define some preprocessor allowing more
easely future extentions in the interface, and allowing the automatization
of the construction of the final parallel program .

Sorne litt le things could also be better, like the automatic availability of
the virtual process identifier in the range of from 1 to < number of
processes > , the suppression of the necessity to specify the number of
parameters of the subroutine to call , etc . . .

The availability of the hardware locks would also be very interresting for
the parallel programs . This would allow the possibilities to define
cr i t i ca I sections , and 2-1 ocks barri ers .

Chapter 4

lmplementation of parallel
FORTRAN li ke l anguages on UNI X

4. 1 Introduction

ln this chapter, we describe how the parallel PARFOR and FORCE languages
are implemented for working on a multiprocessor machine . The main
characteristics of the machine itself are described in the next chapter .
The operating system is the same for both PARFOR and FORCE
environments . lt is the standard UNIX system V provided by ATT ,
including the I PC l ibraries for communication faci l ities .

The first section provides a description of the PARFOR system ,
developped in our team at SIEMENS Munich ; and the second section is a
description of the FORCE, developped by prof essor Jordan and his team in
USA , and that we adapted for the MXSOO machine .

4.2 The PARFOR implemenlalion on UNIX

.i2...l. 1 ntroducti on

ln this section, we describe the main pr1nciples of working of the PARFOR
environment . ·

The facilities provided by PARFOR are essentially a set of routines that a
PARFOR programmer can use in its traditionnal FORTRAN program to
parallelize some parts of its application . These facilities are only 3 in
the current implementation . This small number may appear very low , but
we have seen that it is sufficient to run applications having as well a
coarse granularity as a fine granularity .

The parallelism treated in this environment , is processed at the process
level .

A subroutine of a PARFOR program can be execvted synchronously or
asynchronously , depending on the way it is called in the main program .

A synchron subroutine is called by a standard FORTRAN cal! in the main
program . Such a routine is necessarily a routine of the main program .

A synchronous subroutine is called by the intermediate of a special routine
designed to prepare everything 1t w111 need before 1ts execution . Such an
asynchonous rout1ne do not need anything to run , except its parameters
and/ or the common memory containing the common variables .

The asynchronous routines are said to be asynchron because they can be
executed independent ly from the other routines independent ly from the
ma in process .

The synchronous routines are said to be synchron because they are always
executed by in the main process .

lmplementation of parallel FORTRAN like languages on UNIX 91

.i22 The various parts of PARFOR

The implementation of PARFOR on the MXSOO machine is relat1vely simple .
lt is essentially made of 3 parts.

The first part is a driver program written is C language . This part of the
environment is always the first part executed when a PARFOR program is
called for execution . lt can be considered as an interface between the
UNIX environment and the FORTRAN system for parallel programming . His
function is to initialize the FORTRAN system , reserve some shared
memories , fork the processes and begin the real execution of the program
to execute . Then it manages the processes and the attribution of the
works . This part of the environment also contains the description of the
tools available for the PARFOR programmer . lt is called the cmparex part .

The second part is the FORTRAN user program including the calls to the
tools of PARFOR . The program is thus a parallel program , taking into
account these facilities . lt is is considered by the first part of the
environment, as a subroutine to execute .

The third part of the environment is a standard UNIX Makefi le fi le in which
the various parts necessary for the compilat ions and the links are
recorded . This part is not essential , but provides a great faci l ity when
having to create, modify and debug a PARFOR program .

The environment is , as we see , relatively small . Sorne parts of i t are
fixed, and some of them are variable .

The first part of the environment is fixed . The too ls and the driver
program are compiled only one time . Only the abject file is necessary for
the 1 inker to prepare the ent ire program .

The second part i s variable. lt is the app l ication of the user.

The third part is the Makefile file . l t must also be adapted by the
programmer according to the necessities of the applicat ion . We wi l l
de scribe later how to bui lt this fi le .

lmplementation of parallel FORTRAN like languages on UNIX 92

123 The tools provided by PARFOR

There are 3 main tools that constitute t he PARFOR facilities for the
PARFOR programmer . These tools are called like any other FORTRAN
subroutine or function .

NTASKS

The NT ASKSO facility is a function that delivers to the PARFOR program ,
the number of child processes that have been generated for the execut ion
of the parallel program .

The number of processes is a standard FORTRAN integer number . The
function is used in the following way :

npar = NT ASKS()

where npar contains , after the execution of the funct ion , the total
number of parallel processes - 1 .

This function is important for the parallel programmer to take into
account the specification of the user which executes the program . This is
the on ly way for him to know the number of processes that have been
initiated automatically by the PARFOR environment . This can be
considered as an interface between the UNIX environment and the PARFOR
program .

The number of child processes is specified at the run t ime by the user of
the parallel environment . lt can vary in the range from 0 to 16 . If the user
specifies 0 , the program is executed sequentially (no ch i ld process
created) .

The user specifies this number by an option , like any other UNIX option in
the following way :

-ntasks=<0 .. 16>

The number specified is passed to the PARF0R environment , which in

lmplementation of parai/el F0R.1R.AN like languages on UNIX 93

turn , initiates the processes . This number can then be known by the
PARF0R programmer using the NT ASKSO fac il ity that we have described .

TASKIN

The TASKIN(...) facility is a subroutine that attributes to an initialized
parallel process , some work to do . The TASKIN facility has some
parameters . These parameters are there to describe the work to do .

The call to the T ASKIN subroutine is done in the following way :

Call T ASKIN (parwork, nparam, .. arguments ..)

where the parameters of TASKIN have the following meaning :

- parwork. is the name of the parallel work subroutine to be executed in
parallel . The parallel work subroutine must then be specified as a normal
FORTRAN subroutine , but , taking into account that it will be executed in
parallel with the others . The parallel subroutine must also be specified as
external in the routine which calls the TASKIN facility . This is done in the
following way :

externa 1 parwork

The reason of this external declaration is explained in the section related
to the implementation of PARF0R .

- nparam is the number of parameters to pass to the parallel work
subroutine . This number must be known by the PARF0R environment. lt is
specified in the following way :

data nparam / < i nteger number> /

- arguments contain the real values of the parameters that are passed to
the parallel work subroutine . ~hese arguments must be given by address .
The reason is that PARF0R does not support the mechanism to pass the
parameters by values . The number of parameters passed is equal to the
nparam spec if i ed ear 1 i er in nparam .

lmplementation of parai/el FORTRAN like languages on UNIX 94

the WAITO facility of PARF0R is a subroutine that makes the parallel
processes to wait that all of them have finished the execution of the
parallel work subroutine . Thus , WAITO provides an easy way for
synchronizations between the processes . lt is a synchronization barrier .
When all the processes have reached the point , the sequential code can
continue until new calls to TASKIN are made .

The WAIT() is called like any other FORTRAN subroutine :

Call WAIT()

Note that the implementation of the WAITO function varies from one
version of PARF0R to another . This implies a different behaviour of the
processes when they are waiting, but it is transparent to the user .

.1.2..1 The main principle of an execution

Introduction

We can describe the main principle of PARF0R by an algorithm for each of
the actors of the parallel · environment . This involves the main driver
program , the user program , and each of the facilities provided to the
programmer . Here , we give these algorithms .

For the driver program

- Start the driuer program mith internai declarations
- Take and treat the flags of the command line, -ntasks option

included
- Initiale the FORTRAN .enuironaent interface
- Get shared memory region for ■essage queue
- Get shared aemory region for the semaphore uariables
- Get shared aeaory region for the arguments of the function to

execute asynchronously
- Initial ize protected counters

lmplementation of parai/el FORTRAN like languages on UNIX

- Loop over the nuaber of processes to create
- Fork() the process

If process = the father
- do nothlng

95

If not , process = chi Id, then do the fol lo1ing sequence
- Ualt for a ■essage sent by the TASKIH facillty
- Uhen a ■essage present , ■anage the counters
- Decode the ■essage and flnd the address of ■eaory

, region ln •hich the arguments are recorded
- Take the argu■ents and the address of the function
- Give the1 to the asse■bler routine to execute lt
- Update the counters
- Return to the •altlng state for a nem 1essage

end if
- end loop
- Execute the subroutlne MAIH = the user FORTRAH program
- Delete the shared memory regions to free the place
- End environment

For the user PARFOR program

- Start the user PARFOR program 11th the declarations

- < sequentlal code>

- Optlonally call to the HTASKS facility
- Loop in FORTRAN

- Call TASKIH faci I ity 1ith the subroutine name and
lts arguments

- End loop
- Optional ly direct call to the same function
- Cal I the WAil faci I ity to synchronize the processes

(barrier)

- < sequential code>

- < any other sequential or parai lel code again >

- End PARFOR user part

lmplementation of parai/el fOR1RAN like languages on UNIX

For the NT ASK() faci 1 ity

- Start the HTASKS() faclllty
- Read the nu1ber of chlldren generated, fro1 the

driver progra■
- End of HTASK() facl I lty

For tr,e TASKIN(.. .) facility

- Start the TASKIH faci lity 1ith the declarations .
- If the nu■ber of processes ,orklng is equal to the nu1ber

of chi Id processes
- Give the addresses to the asse1bler routine to execute

i1mediately the cal led parai lei subroutine
- Return to the user PARFOR prograa

- If not
- Adjust the counters

96

- Prepare the 1essage text 1here the argu1ents are recorded
- Copy the arguments ln the shared 1e1ory
- Send the ■essage to a chi Id that has nothlng to do noœ
- Return to the user PARFOR program

- End if
- End TASKIH

For the WAIT facility

- Start the UAIT faci I ity with the declarations
- Uait that al I processes have flnlshed the executlon of thelr

subroutine, on the base of the counters .
- Return to the PARFOR user program

The se algorithms are given for the first version that has been
imp lemented . We will give some more details of the implementation in
the next section .

lmplementation of parallel FOR1RAN like languages on UNIX 97

125. Particularity of the PARFOR environment

The PARF0R environment has the particularity that at least one process is
always running . This is the main process . lt executes the driver, and then
jumps to the PARF0R user program.

So , the driver is always executed sequentially by the main . The
TASKIN(...) facility is then also always executed sequentially in the user
PARF0R part . This is an important characteristic that we will soon
explain .

ln the same direction, the WAITO facility is also always executed by the
driver program . lt implies that , when the driver is in the WAITO , no
T ASKI N call is running.

The child processes, to the contrary, once initiated , execute always the
same C code of the driver program , in a loop . Each iteration of the loop
implies for the process , the execution of a new parallel work subroutine
described in the user PARF0R program .

The parallelism only occurs when the parallel child processes are
executing a PARF0R parallel work subroutine .

4.2.6 Location of the differences between the various versions

The differences between the versions of PARF0R are located in the
mechanisms to transfer the work to the parallel work subroutine , and in
the implementation of the synchronization routine WAIT().

The various versions have been conserved to show the possibilities that
are reachab le for each kind of mechanism . But the main princip le remains
the same for all of them . Anyway, the standard PARF0R interface remains
unchanged for the user .

lmplementation of parai/el fOR1RAN like languages on UNIX 98

.i21. lmplementatioo of version J of PARFOR

1 ntroduct ion

This version of PARFOR is the first version that has been implemented on
the MXSOO .

The particularity of this version cornes from the fact that it uses
messages to act ivate or deact ivate the processes . The messages are
managed by the UNI X system V I PC ca 11 s .

The procedures to manage the messages are MSGRCV to receive a message,
and MSGSND to send it . The particulari t ies of these mechanisms are that
the processes are put in a sleeping state when waiting for a subroutine to
be given by the T ASKIN facility.

For the driver program

The detailed mechanism is the following . The driver program first , reads
the number of processes choosen by the user by the intermediate of the
-ntasks option on the command line . Then it initializes the FORTRAN
system, and validates the signal procedure called automatically at the end
of the PARFOR environment , and when a crash occurs in the user PARFOR
program .

Then , 3 shared memories are reserved . The first is dedicated to the
message queue . The second i s reserved to the semaphore vari ab 1 es and has
a fixed size . The third region is reserved for the arguments of the parallel
work subroutine that is to be called . This last shared memory region has a
size depending on the number of processes that are to be initiated . Each of
these regions must be attached to a certain address of the virtual space of
the process .

Protected shared counters are used for the decision of the attribution of
the works to a chi ld process or to the parent , and the same counters are
also used to count the processes in the WAIT facility . The counters are
the following :

lmplementation of parallel FORTRAN like languages on UNIX 99

- A counter of the number of processes that are busy, i.e. running, called
taskbusy,

- A counter of the number of T ASKIN calls that are queued , i.e. waiting
for a f ree process .

At this point, everything is ready for the parallel processes to be started .
The loop is executed , forking the processes : The main process quits
immediately the loop, while the children remain blocked, waiting for a
message in the MSGRCV system V call. Each process, while waiting , is in
a sleeping state, and releases his cpu .

The message , once sent , wakes up one process . The process , then
decodes the content of the message .

The message contains the following inf ormations : The address of the
function to execute , its number of arguments , the number of the shared
segment in which the arguments are recorded and are available for use .

From these informations , the real address of the arguments can be
known , and the assembler routine can execute the function with the
correct arguments . When the function is executed, the control cornes back
to the C part of the process .

Eventually , the counter taskbusy is updated (decremented) and the
process returns to the waiting state.

For the T ASKI N faci 1 ity

The TASKIN facility , once invoked, contains as arguments, the address of
the number of parameters of the function , the address of the function to
execute , and the address of the arguments .

The first thing T ASKI N perf orms , is a check , on the base of the present
value of the shared counters , ot the number of processes that are busy by
a parallel work subroutine at the present time . If this number is just
equal to the number of initiated processes, then, the TASKIN facility can
not be executed at the present itme by the child process . lt should wait
that one process becomes free . lnstead of this waiting , the call is

lmplementation of parallel FORTRAN like languages on UNIX 100

executed directly inside the TASKIN facility , which is itself always
called by the driver program. So, the parallel work subroutine is executed
by the driver process . When the execution is finished, the TASKIN returns
immediately to the user PARFOR program .

If the processes are not all busy , then , the TASKIN call can be given to
one process .

The protected counters are adapted (taskqueued incremented) , and a
message is prepared with the possibility to execute the parallel work
subroutine . For this, the message buffer is filled with the address of the
function to execute and its number of arguments.

Then , as we know that at least one process is free , a shared memory
region associated with this process is also free . The TASKIN facility
searches this free region . When it is found , it records the number of this
region in the message buffer .

The arguments of the subroutine are then copied in the shared memory
region found .

Then , the message prepared in the buffer is sent to a child process with
all informations . The TASKIN facility , eventually , returns to the user
PARFOR program .

For the WAIT facility

The WAIT facility is essentially a loop that tests the values of the shared
protected counters . These counters are managed so that when al 1 the cal 1s
to TASKIN have been executed , the final state is detected . When this
moment arrives , the WAIT facility r eturns immediately to the user
PARFOR program .

-------------- --------

lmplementation of para/le/ FORTRAN like languages on UNIX 101

~ lmplementatioo of version 2 of PARFOR

1 ntroduct ion

This version of PARF0R has been modified from the first version . 1 t
differs only in the mechanisms relative to the attribution of some work to
the parallel subroutines .

The system procedures MSGRCV and MSGSND are no longer used . They are
replaced by a circular table in shared memory , and 2 integer indexes to
this table .

The table has an arbitrary fixed size of 100 places . The 2 indexes are
called "in" and "out" and are protected by locks . lnitially , the table is
filled with -1 values. The main principle is the f ollowing :

For the driver program

The driver program is only modified in the vari ous declarations · for the
initialization of the table , the indexes , and the suppression of the
message queues and procedures . The other modifications are made in the
waiting mechanism of the child processes .

Each initialized child process performs the following actions . lt executes
an infinite loop from which it can leave in only special conditions.

1 n this loop , first , it tries to get t he lock2 semaphore managing the
accesses to the protected indexes . When it has the lock2 , it is sure to be
alone working with the values in the shared table. Then, it takes from the
table, the value located at the address determined by the index "out" .

If this value is -1 , it means that this entry corresponds to no TASKIN
call . Then, the child process releases the semaphore to allow the access
to the other children and to TASKIN . Then , t he process continues this
infinite loop, waiting that the value readen becomes positive .

When this value becomes positive , it is recorded and trie process jumps
out of the loop . The value in the table is reinitialized at the value -1 to

lmplementation of parai/el FORTRAN like languages on UNIX 102

say that it is free again . The "out" index is incremented circulary to the
next position in the shared table, and the lock2 is released.

The shared counters managing the T ASKIN and WAIT are updated , and the
address of the argument is calculated on the base of the segment number
taken from the shared table . Then , the address of the function and the
number of parameters are taken from the shared region , and the contro 1 is
given to the assembly routine that executes t he subroutine .

When it is finished , the shared segment is freed , the protected counters
are updated, and the process returns to the waiting state .

For the TASKIN facility

The TASKIN facility acts in the same way as in the version 1 of PARFOR,
except in some small things that we describe here .

The beginning is the same as in the version 1 until the update of the
protected counters . After this, the TASKIN facility searches a free region
in the shared memories . A free region is marked by a value different from
-1 . We are sure at this point (for similar reasons as in version 1) , that
at least one reg ion exists . When it is f ound , it is marked as used by a
value -1 in the last place of the shared region.

The address of the subroutine to execute by the TASKIN call is copied in
the first place of the shared region , the number of arguments of this
subroutine is copied in the second position of the region , and then , all
arguments are copied in the region .

Then The TASKIN facility tries to get the semaphore sem2 . When it has i t ,
it is sure to be alone working with the shared tab le . lt inserts the number
of the region at the current input of the table and increases the input
index . Eventually, the semaphore is released and TASKIN returns .

lmplementation of parallel FORTRAN like languages on UNIX 103

12.9. lmplementation of version 3 of PARFOR

This version of PARFOR uses exactly the same mechanisms as in the
version 2 previously described . The only difference resides in the way the
semaphore variables are protected.

ln this version, they are all protected by system V semaphores instead of
atomic locks .

We do not describe here the way these semaphores are used . For more
details, refer to the UNIX system V IPC reference manual .

4.2.10 lmplementation of version 4 of PARFOR

1 ntroduct ion

This version of PARFOR environment is not very different from the version
2 . The main diff erence resides in the fact that hardware locks are no more
needed for the WAIT facility .

For the WAIT facility

This faci 1 ity is managed by 2 counters . These counters do net need to be
protected . The reason is that they are readen at any time by the children,
but only updated in the TASKIN facility always executed sequentially .

4.2.11 lmplementlltion of version 5 of PARFOR

This version of the PARFOR environment is also quite similar to the
version 2 . The main diff erence resides in the fact that there is no more
need of hardware locks for the control of the processes and for the WAIT
fac i 1 ity .

Th is version of PARFOR is then implemented without any locks , taking
profit of the fact that the main process is always the control process .

lmplementation of parai/el FORTRAN like languages on UNIX

4.2. 12 Differences of behaviour between version 1 and the
other versions

104

The version 1 of PARFOR can be compared directly with its successors .
The key difference is located in the behaviour of the child processes when
waiting for a subroutine to execute .

ln the original environment , the child processes , while waiting, are put
in a sleeping state by the message system calls . This implies that they
consume no cpu-time during this time . Sending a mesage from the TASKIN
facility to a child has the effect of waking up a child process . This
mechanism is automatically managed by the system calls :

ln the other modified environments , it is qui te diff erent . A chi ld process
waiting for a subroutine to be attributed , remains in a busy loop , waiting
for a flag to be positionned in the central memory . During the busy loop,
the child reads this flag until it is set.

These various behaviours must have an influence on the effective cpu-time
that a paralle 1 app 1 icat ion consumes whi le beeing executed .

ln the measures , no difference should be discovered if all measures are
taken in the main process .

However , there will be a great difference in the times measured in the
child processes for the same application , when using version 1 or the
other versions , but the se diff erences wi 11 on ly appear when programming
in parallel with the first or the second level of programming . We can
exp lain the behaviour by review ing the various possible cases :

Consider the fol low ing environments :

1) PVl --> PARFOR version 1
2) PV2 --> PARFOR version 2 and next versions

Another parameter is the level of programming described in the previous
chapter, concerning the programmation with PARFOR .

lmplementation of parai/el FORTRAN like languages on UNIX 105

1) L 1 --> First and second levels of programming
2) L3 --> Third level of programming

Eventually , the third factor affecting the behav iour of the environment,
is the number of calls to the TASKIN facility .

1) HN --> A "high" number of calls to the TASKIN facility
2) LN --> A "low" number of calls to the TASKIN facil i ty

If we combine these parameters, we have the foll owing possible cases :

1) PV 1 , L 1 , HN
2) PV 1 , L 1 , LN
3) PV 1 , L3 , HN
4) PV 1 , L3, LN
5) PV2 , L 1 , HN
6) PV2 , L 1 , LN
7) PV2 , L3 , HN
8) PV2 , L3 , LN

Now , we can examine the eff ects of these factors :

The programs where the environment PV 1 is used consume always a true
cpu-time . This means that the cpu-time in the parallel sections of an
application is influenced in a normal way by the algorithm and the
environment . For example , if a part of a program is divided into equal
parallel sections , then the cpu-time consumed will be approximately
s imi lar in all these parallel sections, because the cpu are allocated to the
processcs only when these processes require something to do .

The programs where the environrnent PV2 is used , consume always more
cpu-lime in the child prnce~~e~ lt1<1r1 r-equired by Lt1e alyor ithm . Many dead
times are introduced , due to the environment itself . These dead times are
consumed by the parallel processes when waiting in a busy state , some
work to do from the TASKIN fac i lity . The processes are always
cpu- demanding when the PARFOR environment is running .

The programs parallelized in the L 1 are very i nfluenced by t he version of
the environment that is used . These programs make a number of calls to

lmplementation of parai/el FORTRAN like languages on UNIX 106

TASKIN that is relativley large. Between the calls to TASKIN, the child
processes are waiting or not , depending on the version of the
environment .

The programs parallelized in the L3 are not influenced by the environment
used . This is due to the fact that synchronizations and all waiting times
are only the problem of the algorithm . The processes are always processor
demanding , undepending on the version that is used .

The programs that make many calls to T ASKIN are not very influenced by
the version of the environment that is used . This is due to the fact that
these programs try to maximize the use of parallel subroutines, involving
that the initiated child processes are very often used . The rat io
occupied / free for the cpu-time of the child processes is high implying a
low effect of the busy loop or not busy loop , on the cpu-time in the
environment .

As a conclusion for this section , it is clear that the busy loop in the
implementation of PARFOR , is not a very good solution . ln terms of
performances , it is however not possible to choose one version or the
other without tests . ln fact , the successive versions have been built to
test the various possibilities provided by the UNIX system V . ln chapter 5,
we provide results of some tests that have been made in the various
environments .

4.2.13 .G.Qmpilation and execution of a PARFOR pCQ.gram

Compilation

A PARFOR program must first be compiled . For this , the Makefile file
containing the description of all the commands must be updated . This
involves the specification (according to the standard UNIX syntax of the
make file) of the various parts of the application to compile , the
specification of all the libraries that must be linked with the various
ab j ect modules , and eventua lly , trie specif ication of t he shared reg ions
names spec i fied in the PARFOR user program .

lmplementation of parallel FORTRAN like languages on UNIX 107

When the Makefile file is ready , the user has just to make the file with
the "make" command .

Execution

The execution of a PARFOR program is very simple . The user has only to
type :

< program name > -ntasks=<number of chi ldren>

The number of child processes is equal to the total number of processes
less one , for the main process .

Figure 4-1 below shows the flow of act ions unt i 1 the execut ion of a
PARFOR program .

Compilation and Execution of a PARFOR Program

PARFOR make command Makefi le ~

text to - fi le
compile

produc tien
Of

',
Execution of

< prgm name >
-ntasks=N Executab le

the para 11 e 1 ~
~ program

program

Figure 4-1

4.3 The FORCE implementation on UNIX

1.3..1 Introduction

ln this section , we describe the FORCE environment in its principle of
working and its implementation on UNIX .

The FORCE environment is designed for parallel programmers that have in
mind to develop applications taking into account the possibilit1tes
provided by a paral le 1 machine . The phi losophy of FORCE impl ies that a
parallel application considers that it is alone to be executed on the
machine . A maximum of processors is allocated to the application by the
intermediate of parallel processes . A parallel program is executed by
many processes .

4.3.2 The idea of the environment

The FORCE environment is based on a language also called FORCE , and an
implementation on a particular machine .

The FORCE language is a FORTRAN 77 based language with some semantic
and syntactic variations and constraints, to allow the introduction of the
tools for parallel programming . Most of these differences are calls to
special macros that are extended by a preprocessor befor e the compilation
of the program can be made . So , this imp 1 ies that a FORCE program is
always preprocessed . A standard FORTRAN 77 comp i ler compiles the
extended preprocessed fi le to produce an executab le fi le . The language
allows essentially parall el programming at both fine and midd le
granul ar ity leve l s . Sorne special construct s al so allow para l lel
programming with large granularity , all owing completely different
sect ions of programs to be executed in par allel, without many cooperat ion
between the processes .

lmplementation of parai/el FORTRAN like languages on UNIX 109

4 .3.3 The vari ous parts of the FORCE

The FORCE environment implemented for the MXSOO is essentially made of
4 parts .

The first part is a driver program written in FORTRAN 77. The function of
this driver program is to start the parallel processes specified by the user
at the execution time , declare some shared variables that are used by all
parallel processes for the synchronization fac i lities , initialize some
procedures managing the hardware locks, ini tialize the barriers, and call
the main part of the FORCE program when everything is ready . This is the
user program . When this part of the application has finished its
execution, the control returns to the driver program which in turns, kills
the parallel processes and finishes the entire FORCE environment.

The second part of the environment is the FORCE user program . This FORCE
part is the parallel application written with the various tools of FORCE
that will be briefly described later . This part is executed in parallel by
the various processes initialized in the driver program . lt is considered as
a subrout ine to execute , for the driver program .

The third part is the shell procedure that allows the automatic
construction of the final file containing the parallel program . This
procedure makes calls to some small FORTRAN programs , to some script
files, and eventually, to the preprocessor. lt also transforms the original
FORCE program to a standard FORTRAN 77 program that can be taken into
account by the standard FORTRAN compi 1er .

The f ourth essent ial part of FORCE is its execut ion procedure . This
procedure allows a FORCE program to be called and executed with many
processes as specified by the programmer .

The on ly variable part of the environment is the user FORCE program
containing the parallelized application.

lmplementation of parai/el FORTRAN like languages on UNIX 110

.iH Principle of an execution of a FORCE prog.crun

1 n troduct ion

ln this sub-section, we describe the main principle of a FORCE program by
an algorithm for the actors that are involved at the execution time . These
actors are the driver program and the user program . Here , we give these
algorithms.

For the driver program

- Start the driver program with internai declarations
- Declare some shared regions for atomic Iock memories

shared between the processes
- lnitialize the barrier variables
- Cal I the subroutine containing the declarations for

shared memory regions
- Read the total number NP of processes specified by the user

on the command I ine .
- Label
- If not yet forked NP-1 processes

- Fork the process and note the real pid
- If I have the real pid of the father , return ta label
- Else continue

- End if
/* Note : Here is the beginning of the parai lel code*/
- Begin of critical section
- Execute the PMAIN subroutine = the user FORCE program
- Begin of the barrier
- End of the barrier
- If I am the father process

- Finish the program, the environment , and ki 11 the
other chi ldren

- End if
- End driver program

lmplementation of parai/el FORTRAN like languages on UNIX 1 1 1

For the FORCE user orogram

- Start the FORCE user program •ith 1any processes ln parallel

- < User parai lel code lncluding the tools provlded by the FORCE
language for synchronlzatlons and communications bet1een the
processes . >

- < Description of parallel and/ or sequential subroutines
according to the syntax of FORCE . >

- End the FORCE user program

4.3.5 The implementation of FORCE

1 ntroduct ion

ln this sub- section , we explain the way a FORCE executable program is
built on the base of a FORCE source file . ln the previous section, we have
explained how a FORCE program is executed, involving the 2 first parts of
the environment defined earlier . This section highlights the 2 remaining
parts of the ennvironment , the FORCE procedure to prepare the paralle 1
executable program, and the Forcerun procedure to start its execution .

We describe these 2 parts by an algorithm

The FORCE procedure

The FORCE procedure is the most important part in the FORCE
impl ementat i on . The sequence of orders is made of UNIX comm ands . These
commands are t he following :

- Test the cammand I ine ta check if al I arguments are val id
- Prepracess a 1 1 . frc fi I es a f the cammand I i ne ta praduce

abject . a fi I es

- Prepare a cammand I ine to I ink a load module

lmplementation of parai/el FORTRAN like languages on UNIX 112

- Execute this co11and I ine to produce the executable version
of the load aodule

- Prepare a teaporary file containing all .o fi les, one on each
1 ine

- Execute the executable load module œith the temporary file
as data file, producing such a way a new command line .

- Execute the new command I ine which is a command for I inking
the final program . The result is the .exe final file
contalnlng the parai lel program .

This procedure uses of an intermediate load module . This module is
necessary for the complete automatic preparation of the final program .
lts function is to prepare the command line for the linkage of the final
program . The problem is that this command line is functionnally
dependent on the application for the .o files to include , and the shared
memory names to specify to the linker .

The load module is written in FORTRAN and makes the following:

- Begin of the load module
- Urite on the standard output the first part of the

command I ine for the I inkage of the final program (nome of
the I inker, nome of the standard I ibrary and nome of the
standard shared area used for the management of the
environaent) .

- Execute the subroutine MEMSHA(IHT) located in the fi le of
the user program . This subroutine contains the declarations
for the shared variables, and a ~rite statement of the nome
of the shared region, on the standard output . This
subroutine is automatical ly produced by the preprocessor
in the main .f fi le .

- Get al I arguments from the Input data f i le and write them
on the standard output

- End of the load module

lmplementation of parai/el FORTRAN like languages on UNIX

The F orcerun procedure

The Forcerun UNIX procedure is very simple . lt is the following:

- Test the coamand llne to see If lt ls the correct format
If not , return to the shell •ith a aessage

113

- Read the total number of processes spec i fied by the user and
pass it to the driver program by the intermediate of a fi le

- Execute the parallel program specified , with as entry, the
fi le containing the nu1ber of processes

- Delete the temporary file .

ln a further sub-section, the invocation of a FORCE program is explained .

Note about the oreprocessor

As we have said , the original .frc FORCE program is first proprocessed to
be transf ormed in a FORTRAN 77 .f fi le . This preprocessing is made in a
multiple pipe command, with as input, the original FORCE .frc file, and as
output , the FORTRAN 77 .f fi le .

The first 5 stages of the pipe command are subtitutions of names made by
the SEO editor with a script file for the description of these
substitutions. The last 2 stages extend the names of the macros to their
code . These extent ions are made with the M4 module , a standard UNIX
preprocessor, and an input file containing the semantic extentions .

4.3.6 Particularities of the FORCE environment

The FORCE environment rias the particularity triat wrien a parallel program
is started , no one of the parallel processes is considered as a master
proces?. All the processes are considered the same way irnplyi ng that the
system is perf ectly symetric .

This involves that the peace of sequential code enclosed in a barrier
construct , must be executed by on ly one process , but this process can be
any process .

lmpfementation of parai/el FORTRAN like fanguages on UNIX 114

Another particularity is that a FORCE program begins immediately its
execution in a parallel way . So , the par allelism is intrinsic to the
environment . The program remains parallel until the join construct at the
end of the program .

A FORCE program is always executed with the number of processes that
has been specified by the user on the command line .

ill The too 1 s provi ded by FORCE

Introduction

ln this section, we will quickly review the tools available for the FORCE
programmer in a parallel program . We do not describe here all the details .
For more informations , please ref er t o the user manual of the FORCE
environment .

The tao ls avai lab le in a PARFOR program are of various natures . But the
common factor of these tools is that they are al 1 implemented as macros
that are extended to standard FORTRAN 77 by the preprocessor .

The tools for soecification of the orogram structure

Force:
This macro declares the start of a parallel main program. lt sets
up the environment, and all processes begin their execution from
this point unt il the join operat ion .

End Declarations :
This macro indicates to the preprocessor that the declaration
part is finis~1ed .

Jo in:
This macro terminales the execution of a paralle l program.

lmplementation of parai/el FORTRAN like languages on UNIX

Forcesub :
This macro declares the start of a parallel subroutine .

Externf:
This macro informs the Force compiler/ preprocessor about the
necessity of external modules not included in t he same f i le
as the Force main program .

Forcecall :
This macro is used to invoke parallel subroutines that have been
declared by the Forcesub macro .

The tools for the variable declarations

115

The variables of a FORCE program are declared with a set of macros .
Essentially, there are 3 types of variables which can be local or common .
The macros for the declarat ions are the following :

Private :
A private variable consists in a variable known only by one
process . This implies that each process maintains separately its
own copy of the variable , which is diff erent from one process
to another .

Shared :
A shared variable consists in a variable t hat is known by all
parallel processes. There is only one copy of this var iab le .

Async :
Asynchronous variables are shared between processes . They have
on ly one instanciation for al l processes . These variab les have bath
a value and a status . The type of the value i s one of the types
provided by FORTRAN . The state of the var i able is always "full" or
"empty'' . These variables are managed onl y by special pri mitives
that we rev iew in the next sub-sect ion .

Pri va t e Common, Shared Common, Async Comrn on :
These variables have the same respectiv sign i fication as described

lmplementation of parai/el fOR1RAN like languages on UNIX

above, bul they are global variables, i .e. they are known in the
entire program .

The tools for parallel execution

Pcase :
This macro allows a serie of independent sections of code
to be executed by a single process .

Usect :
This macro separates multiple stream code sections of a parallel
case Pcase .

Csect :
This macro begins a conditional single stream code section of a
para 11 e 1 case Pcase .

End Pcase :
This macro delimits the end of a Pcase construction .

Scase :
This macro is simi lar to the Pcase macro , but instead of a
static assignment of the sections to the processes, the
assignment is done at the run time (self-scheduling).

End Scase :
This macro delimits the end of the Scase section.

Presched Do :
This macro allows the parallel execution of a loop in a
prescheduled way . The work is automatically distributed in a

116

fixed way between the processes according to the indexes that
are specified.

Pre2Do :
This macro a11ows the parallel execution of a doubly indexed
1 oop in a preschedu 1 ed w ay .

lmplementation of parallel FORTRAN like languages on UNIX

End Presched Do :
This macro delimits the end of a Presched Do construct.

Selfsched Do :
This macro allows the parallel execution of a loop as with the
presched do construct , but the attribut ion of the work to the
processes is done dynamically, in a self-scheduled way .

5elf2do :
Thi s macro allows the parallel execution of a doubly indexed
loop in a selfscheduled way .

End Se 1 f sched do :
This macro terminates the body of a selfsched do construct .

Tr,e t ool s for synchronization

Barri er :
This macro defines the begin of a synchronization barrier . The
code of the barrier is executed by all processes . When al l of them
have reached th is point , only one process can continue the
execut ion , unt il the end of the barrier .

End Bar rier :
Th is macro terminates a barrier. When t his point is reached ,
the execut i on of the pro gram returns to a para 11 e 1 state .

Critical :
Thi s macro defi nes the beg in of a critical section . Only one
process can enter in a cr i tical section at a time.

End Critical :
This macro defines the end of the cri ti ca l sect ion .

Produce :
Th is macro al lows the ass ignment of a va lue t o an asynchron
variable . This i s the onl y way t o assign a value to such variables .
!f the state of t he vari abl e is "full" , t hen the process that

117

lmplementation of parai/el FORTRAN like languages on UNIX

tries ta fill it, must wait until the state returns ta "empty" .
Then, it marks the state of the variable as "full" .

Consume :
This macro allows an asynchron variable ta be readen . If
the state of the variable is "empty" , then the process try ing
ta read must wait until it is "full" . Then it can read the variable
and set its state ta "empty'' .

Copy :
This macro has the same eff ect as Consume , but the value and
the state of the variable rem a in unchanged .

Void :
This macro marks the state of the asynchronous variable as
"empty", unconditionnally.

lsfull :
This macro returns the state of the asynchronous variable in
a logical variable that can be readen by FORTRAN .

4.3.8 ComQilation and execution of a FORCE Qrogram

Campi lat ion

118

The preparation of a FORCE parallel program i s very easy . This easyness is
due to the fact that everything needed is spec i fied by the user in only the
FORCE user progr am . The FORCE procedure i s ca 11 ed for the preparat ion of
the program in the following way :

FORCE -o < exec fi lename > < fi lenames.frc >

The < exec filename > is the resulting name of the file containing the
progr am to execute .

Trie < filenames.frc > are the source fil es , parts of the para llel
appli cati on .

lmplementation of parai/el FORTRAN like languages on UNIX 119

Execution

The execution of a FORCE program is easy . The user has only to start the
Forcerun procedure with the name of the file containing the program to
execute , and the total number of processes that he wants to attribute to
this execution of the program .

This is done in the following way :

Forcerun < executable filename > < number of processes >

Figure 4-2 shows the process of generation and execution of a FORCE
program.

ComQilation and Execulion of a FORCE Program

FORCE
tex t to
compile

given to _ FORCE
procedure

produces -
1

Execu t able 1
progr am

i

Execution of < number o f
the para 11 el 14---p=r...::.o.::..:c e:..::s-=-s e::..::s:....:>_~

program

Figure 4-2

given to

FORCERUN
procedure

Chapter S

Tests w i th the MXSOO

5. 1 1 ntroducti on

ln this chapter, we introduce the machine on wh ich we do our tests , and
the actual configuration of the machine .

Then , we report the most interresting results that we obtain , and the
conditions in which they were taken , for each kind of test . We also
pro vide a brief conclusion for each serie of tests .

Most of the tests are made for the PARFOR environment . But for the last
serie of tests, we provide also results for the FORCE environment.

5 .2 Summary

After rnany tests , we f eel that the PARFOR environment is easy to use for
the FORTRAN programmer . But the too ls provided still suffer of youth
sins . lt could be possible that the PARFOR provides a better interface ,
without many changes to the actual design .

On the performances point of vue , we report here the results of the tests
that we made with PARFOR in the ATT environment with the original
version, and the next optimized versions .

The large number of results show that the ideal number of processes to
execute a parallel program, is not always equal to the maximum number of
available processors . They also confirm that the number of parallel
processes initiated for a PARFOR program should be less or equal to the
number of processors .

This number of processes is greatly dependent on the size of the parallel
sections, i.e. the granularity of the program .

Our results also confirm that the original phil osophy in the conception of
parallel PARFOR programs , is interresting for middle and large sizes of
programs . To the contrary , the tests show that , when the size of a
parallel section of a program is small , the standard way of programming
in PARFOR is very expensive . lt is better , in this case, to program with
only the initial calls to the TASKIN facility , and then , make the
synchronsat ions i ns ide the para 11 el w ork subrout i ne .

The speedup of a PARFOR parallel program depends on the algorithm , on
the implementation of PARFOR, and on the level at which the program has
been parallelized .

Tests with the MXS00 122

All versions of the implementation of PARFOR based on different
mechanisms were tested . The original version is improved in terms of
performances . The last version we wrote provides the best results for our
tests . We think that this version 5 should be adopted as the standard
version of PARFOR .

We also made one test within the FORCE environment . This other
environment , according to the time results of this test , is also
powerfull , and provides better results than those of the PARFOR
environment for the same algorithm .

The PARFOR env i ronment is , in terms of perforemances , not so good as
the FORCE environment . But the difference is very litt le .- This difference
is due to the absence, in PARFOR , of har dware tools that allow the use of
critical sections, as well as barriers implemented with 2 locks .

All the programs written within the FORCE environment could also be
written within PARFOR . The translation from one system to the other is
relatively simple . The most important modifications are located in the
conversion of the critical sections into barriers . The cost of this would be
a little diminution of the performances of the program compared to its
FORCE version.

We must be very carefull in our assupt ions , because the results that we
take from the large number of tests done, ar e very sens i tive according to
the multiple parameters that we made vary . But these results provide the
mean behaviour of the PARFOR environment .

5 .3 The multiprocessor MX500

5.3.1 Introduction

ln this section , we expose the main characteristics concerning the
multiprocessor mxSOO .

5.3.2 The characteristics

The MXSOO system , is based on a bus architecture on which can be
connected from 2 to 16 processors to constitut e a full multiprocessor
environment . Our test machine is configured with a set of 6 processors .
The global architecture of the system is driven by a special version of the
operating system UNIX VS.O . The main characteristics of the system are
the following :

- There is a high degree of coupling between the processors . Al! the
memory is sharable among them, allowing the sharabi li ty of al!
resources, and communications between the processors .

- The common bus is the path used to exchange all messages between the
processors .

- lt is a real multiprocessor system , i.e. completely symetr ic. All
processors can execute the system or an application at any t ime when
t hey are free of work .

- All applications written for a standard one processor architecture can
be executed on the MXSOO system without any modificati on .

- The system allows dynarnic l oad bal anc ing , rneaning t hat t he processors
use at the maxi mum level t he poss ibili ti es of t rie machine. As soon as
a processor becomes free , it can immediatel y be used f or another task .

1ests with the MXSOO 124

- An application can be written on the base of multiple instruction flows ,
all accessing to shared memory datas .

- A hardware support exists for mutual exclusion , including a set of hard
locks accessible to the user .

~ General overvue of the architecture

The bus system

The main bus is a 5B8000 . lt is the main communication path between the
processors , the memory modules and the peripherals . The rate of
transmission is nearly 26.7 Mbytes in a second .

Figure 5-1 shows the global architecture of the machine .

Architecture of the MX500 machine

Central
memory

S68000 BUS

Pool of the processors

Figure 5- 1

Periphernl
controllers
(Multibus,
Ethernet)

Tests with the MX500 125

The system link and the interruption controller

A specific circuit has been developped to manage the processors connected
to the system . Each of the processors has i ts own SLI C , as we 11 as each
board connected to the system . All SLICs are connected to a mini-bus
called the SLIC-bus , which is a serial connection . These SLICs manage
together the inter-processor communications , the synchronized accesses
to the data structures of the operating syst em , the interruptions of the
processors . A 11 the se operat ions are transparent for the final user of the
system .

The poo 1 of processors

The processors are grouped 2 by 2 on a board , but remain completely
independent . Each board can be added or removed from the system . The
interf erences between the processors are not important , at the maximum
load . Each processor is a standard NS32032 , not original ly conceived to
work in a parallel environment . However , the annexed circuitry takes a
part of the management tasks . For example , when a processor prepares a
memory access , it is the task of the annexed circuitry to validate , if
necessary , a particular type of interruption . This annexed circuitry is
composed by the SLIC chip managing the communications, by a bloc of 8K
local RAM and 8K cache memory , by a memory management N532032
circuit, and by a floating point NS32081 processor working in cooperation
with the main NS32032 processor .

The physical architecture can support until 28 Mbytes of central memory .
All this memory is available to all processors . The bloc memory
allocation is done dynamically when processes recquire new space, so the
use of the memory resource is nearly optimal .

The peripheral contra l lers

The system can be connected to a set of peripherals as disk uni ts , tape
units, terminals or others, including gates for the multibus system .

1ests with the MXS00 126

5-.H Pert ormances

Performances of a single processor

The performances of one processor are nearly simi lar to those of a
V AX750 , so that the system running with on ly one processor can provide
the same power as the power of a VAX 750 system . When the system is
configured with many processors , an equivalent number of processes can
be treated in paralle 1 , showing the advantages of the mult iprocessor
environment .

Addition of processors

The advantages of the addition of new processors can therefore be
characterized by a better throughput of the system , and a better
performance for running parallel applications , taking into account the
avai labi l ity of the processors .

The machine is managed by the modified version of the UNIX environment
VS.0 . lt is a multi-users multi-programmed operating system perfectly
adapted to the MXS00 mult iprocessor.

The parallel applications designed to run on a multiprocessor system can
take profit of the parallel architecture , and the gains in performances of.
these applications are influenced by the following factors :

- The percent age of the execut ion t ime of the app 1 icat ion which must be
spent in the sequential sections . According to some statistics, many
applications must spent only a few time in the sequential code, i .e. 1 %
of the total time .

- The number of processors available in the configuration . The MXS00
machine can support until 16 processors .

- The problems of contention for the accesses to the bus . But inthe MXS00
machine, they are negligible, according to trie constructor.

Tests with the MX500

- The overheads during the creation of multiple processes . They are
measured in hundreth of a second .

- The overheads due to the communications and the synchronizations
between processes . They are measured in mi 1 iseconds .

il5. Shared memocy between processes

127

Shared memory regions can be declared , for several processes. Each
process having an access to the shared reg ion can easely read and write
into this region . Each process canuse until 8 shared regions of any size .
The reservation of a shared memory reg ion is done by a single system call
(IPC system V) .

5.3.6 AQplications with many instruction flows

Parallel applications can coexist with sequential applications . For
example , suppose that someone starts an application requiring 4
processors . The system disposes of 6 processors . If the application has a
sufficient priority , the 4 processes started by the parai le 1 application
will run , each with its own processor . Depending on the load of the
system , the users can observe, at the time the application is running, an
increase of the load on the system . The on ly 2 remaining processors can
execute the code of the other users . Now , if the parallel application has
nota higher priority, it will run more slowly, depending on the number of
the other users working on the system . The most interresting for an
application , is to have the ability to adapt itself to the number of
avai lab le processors .

The MXSOO , in the present days , supports the C environment , the PARFOR
environment , the FORCE environment , the FORTRAN77 env ironment , and
the ASSEMBLER language Note that the se languages do not provide by
tr1emselves the tools for parallel programming . lnstead , they use the
standard faci1ities provi ded witri trie UN IX environments .

5 .4 The tools and the measures

The tools we use for providing results are described in chapter 2 in the
section concerning the measurements .

5 .5 Tests with the various versions of PARFOR ,
and wi th FORCE

The tests we design are made within the var ious environments . lt means
that the same programs are executed with the versions 1 , 2 , 3 , 4 and 5
of the PARFOR driver program . Sorne tests are not made with all versions
of PARFOR , because of the unavailabi l ity of the new versions at the
moment of the test , and because of lack of time , the tests were not
reexecuted later with the new available versions .

Here , we remember the main characteristics of each of the versions of
PARFOR . The details are available in the previous chapter describing the
implementation of PARFOR .

Version 1 is the original version that uses the system messages to
act ivate or deact ivate the processes when they are ca lled by the T ASKI N
facility . This version also uses some atomic Iock memories for the
synchronization primitive .

Version 2 is modified . lnstead of using system messages , it takes profit
of the shared memory, and atomic Iock memories .

Version 3 uses only system V semaphores to protect the shar ed variables .

Version 4 uses no locks for the synchronizat ions , but still for the
attr ibut i on of the work to the various processes .

Version 5 uses no more locks , no semaphores , but only standard C
instructions .

For the FORCE environment , that·s more easy because we have on ly one
version of this environment . However , for this environment , we make
only one serie of tests. The results of these tests are direct ly comparabl e
w i t h the results provided in the PARFOR env ironment .

5.6 The LINPACK benchmark

5&.l Introduction

ln this section, we explain the linpack benchmark, used as a test program
for the PARFOR environment .

The linpack benchmark is a FORTRAN program used for comparing the
performances of various computer systems that must tackle dense
systems of linear equations. The program was written by Jack J. Dongarra
of the Argonne National Laboratory.

lts execution profile has a high percentage of floating point arithmetic
operations . Linpack performance is measured in terms of millions of
floating point operations per unit of time (megaf lops) .

The program itse 1f i s based on 2 subrout i nes named SGEF A ans SGESL .
SGEFA factors the matrix by Gaussian el im1nation, while SGESL solves the
real system

A* X = b

using the factors computed by SGEFA .

Both subroutines call a third subroutine ca lled SAXPY , which computes a
constant times a vector, plus a vector .

ln all , linpack makes 8 performances measurements and includes a
consistent check in the form of a residual calculation of the results for
the f irst of the 8 computations .

we know that linpack spends nearly 83 percent of its time in the SAXPY
routine , ctescribed earlier, and 5 percent in SGEFA. Avery small amount
of time is spent in SGESL .

Tests with the MXSOO 131

So , the most important optimization to do must be made in the SAXPY
routine, by using the standard tools of PARFOR .

.5...Q.2 Main routines used j o the mai o al gori thm

We can describe the main scheme of the benchmark program by an
algorithm . But first, the most important routines, are the following :

SECOND()

This routine is a function which gets the present time from the system
and returns it in a real f orm .

MATGEN(...)

This routine fills in tables representing the linear system to salve , by a
pseudo random way . Also various vectors are initialized .

SGEFA(...)

This routine factors a real matrix by Gaussian elimination .

SGESU ...)

Tr1is routine salves the real system

A * X = b

using the fac tors computed by SGEFA .

Tests with the MXSOO 132

5.6.3 Results of the benchmark

Ttw rcsulls of the original linpack are the following :

The first line computes various residus to check if the results provided by
the calculations are correct . lt means that they must be the same at each
execution of the program because the same original linear system is used
for each execut ion .

The lime results of the execution are given in 2 groups of 6 columns. Each
column has a special meaning.

Column I: SGEFA

This column provides the total time spent in the SGEFA routine which
factors the system . Most of the time is spent in this routine .

Co/umn 2 : SGESL

This column gives the total time spent in the SGESL routine which salves
the system factorized by SGEFA . A litt le time is spent in this routine .

Co/umn .3: TOTAL

This column provides the total time spent to sa lve completely the linear
system . lt is the sum of columns 1 and 2 .

Co/umn 4: t!FLOPS

This co lumn gives the est imated power of the machine under tests in
MFLOPS . This power is cornputed by the following way :

OPS
MFLOPS = ---------------------

1000000 * TOTAL

îests with the MXS00

where

MFLOPS

OPS

TOTAL

1000000

is the estimated power of t he machine,

is the number of floating point operations necessary
to solve completely the given l i near system ,

is the total t ime spent to solve the linear system ,

is a conslanl lu olila in lhc result in MFLOPS instead
of in FLOPS .

Co/umn 5 : UNIT

133

This column provides the number of seconds necessary to compute a
million of floating point numbers. lt is computed by the following :

where

RES

2

MFLOPS

2
RES=-----------

MFLOPS

is the result described above ,

is a constant . The value is 2 because each floating point
operat ion is assumed to compute 2 numbers ,

is the est imated power of t he machine under test .

1ests with the MXS00 134

Column 6 : RA T/0

This column gives the relative power of the Cray 1 computer compared to
the machine under test . This ratio is computed by the following way:

where

TOTAL
RATIO=-----------

CRAY

is the result described above , RATIO

TOTAL

CRAY

is the estimated time consumed to solve the linear system ,

is the mean estimated time consumed to salve the same
system . lt is considered as a constant in the program .

5.6.4 Example of the presentation of the results

NORM. RESID RESID MACHEP
3.97839260E+OO 7.59065151E-04 9.53674316E-07

X(l) X(N)

9.99704897E-01 9.99731898E-01

TIMES ARE REPORTED FOR MATRICES OF OROER 100
SGEFA SGESL TOTAL MFLOPS UtilT RATIO

TIMES FOR ARRAY UITH LEADIHG DIMENSION OF 201
3.997E-01 1 .670E-02 4.164E-01 1 .649E+OO 1 .213E+OO 7.436E+OO
3.998E-01 1 .670E-02 4. 165E-01 1 .649E+OO 1 .213E+OO 7.438E+OO
4. 128E-01 1.690E-02 4.297E-01 1 .596E+OO 1 .252E+OO 7.673E+OO
4.091E-01 1 .627E-02 4.254E-01 1 .614E+OO 1 .239E+OO 7.596E+OO

1ests with the MX500

TIMES FOR ARRAY UITH LEADIHG DIMEHSIOH OF 200
1.019E-01 1 .690E-02 1.218E-01 1 .626E+OO 1 .229E+OO 7.532E+OO
1.260E-01 1.770E-02 1.137E-01 1 .516E+OO 1.292E+OO 7.923E+OO
1.306E-01 1.730E-02 1.161E-01 1 .532E+OO 1.305E+OO 8.002E+OO
1.255E-01 1.611E-02 1.119E-01 1.551E+OO 1 .287E+OO 7.692E+OO

5.6.5 Scheme of the main program

135

We need to define some constants and variables before trying to
understand the measures provided by the benchmark .

Tl, T2

Time(1, 1 .. 6)

TOTAL

OPS

CRAY

Temporary variables containing the
instantaneous value of the time .

Vector of 6 e lements containing the results
of the measures as described in the paragraph
explaining them .

Contains the total cpu-time used to perform the
solution of the linear system.

Constant defining the number of f loating point
operations performed to salve completely
the Gaussian system . This number is always known
if we know the size of the system to salve . ln our
case, the size of the system is 100 . So the value
of OPS is :

0 P S = ((2 * (1 0 0 ** 3)) / 3) + (2 * (1 0 0 ** 2))

Mean estimated time t o salve completely the linear
system on a CRA Y computer .

Tests with the MX500

The basic measures are taken in the following way :

Call MATGEN(...)

T 1 = SECOND()

Call SGEFA(.. .)

T2 = SECOND()

Time(1, 1) = T2 - T 1

T 1 = SECOND()

Call SGESL (.. .)

T2 = SECOND()

Time(1,2) = T2 - T 1

TOT AL= Time(1, 1) + Time(1,2)

Time(1,3) = TOT AL

Time(1,4) = OPS / (1000000 *TOTAL)

Time(1,5) = 2 / Time(1,4)

Time(1,6) =TOTAL/ CRAY

print Time(1, 1 .. 6)

lnitialization

Time routine

factorization

time routine

first time
computation

time routine

136

salves the linear
system

time routine

second time
computation

Total cpu-time
consumed

total cpu-t ime

MFLOPS result

cpu-time for
1 MFLOPS

ratio for compar.
with CRAY
computer

print results

7ests with the MXSOO 137

These are the basic measurements . The same scheme is reproduced 4
t imes in the same way, so we can get a mean of the results . ln all cases,
the same system is solved, so that the results can be compared .

5 .7 Results obtained with the linpack benchmark

5.1..1 Tests witb the)inpock benchmork

The linpack benchmark that we have described , is the starting poi nt of a
serie or measures on our mach1ne MXSOO .

The tests we make have as target , the measures of the speedup of the
algorithm using the PARFOR environment .

The series of tests that we made , provide a relatively large number of
tables . We use these automat1cally produced tables later for analysis and
drawing curves on the behaviour of the speedup . The tables are recorded in
files .

These tests are written only for the PARFOR environment .

5.7.2 Parallelization in the PARFOR environment

We only parallel i ze the benchmark at the lowest level . This is the level of
the innermost routines . We begin by the most often called routine , which
is SAXPY . Ths routine, as we have explained at the begin of our chapter,
multiplies a vector by a constant, and adds the result to another vector.
The length and the start-address of the vectors are parameters .

The principle of work division between the processes is the following :

- i f the length of the vector is less than the number of ava i lab le
pr ocesses , the sequential version is performed .

- otherwise , the vector is divided into subparts , and the bounds of each
subpart are calculated so that they can be given to each paral lel process

îests with the MX500

- the TASKIN facility of PARFOR is invoked with the new parameters to
pass at a sub-function executing the work .

139

- the main process performs the same work i n a direct call to the function

- the synchronizat ion point is reached when all processes have finished
their own work on their respect ive reg ion of the original vector . Then
the subroutine is finished .

The same kind of parallelization is made in t he other routines at the same
level , but the influence of these routines is far less determinent on the
global results , because they are less often cal led .

These routines are SDOT which computes the dot product of 2 vectors ,
55CAL which scales a vector by a constant , and izaMAX which finds the
index of the e lement having the maximum abso lute value in a vector .

5.7.3 Tests with the single precision

De script ion of the parameters for the se tests

The fixed parameters for the results are the following :

Parameter I .- Leading dimension

This par·ameter corresponds to the static enclosing matrix size fixed at
the compile time . This dimension is the maximum size of a linear system
that can be so lved by the algorithm , because of the place in the central
memory .

Parameter 2 .- t!atrh(dirnension

This parameter is the size of the 1 inear system to be so lved . This number
must be lower than the leading dimension .

1ests with the MX500 140

Parameter 3: Parai/el t/Jres/Jold

This parameter was introduced later for several tests , but is not very
usefull in this serie of tests . Anyway , it defines the threshold on the
number of elements to process , under which the parallel algorithm is no
more used, instead, the sequential version of the algorithm is called .

Parameter 4 : Execution number

This parameter reports the number of executions of the algorithm on
which the mean results provided in the tables are computed .

These parameters are val id for all result tables .

Range of the oarameters for these tests

We make vary the parameters described above in the following ranges :

- Leading dimension
- Matrix dimension
- Parallel threshold
- Execut ion number
- processes

Graohical results

201
25 .. 500
2
3 or l , depending on the matrix dimension
1 .. 10

For more ease , we draw some graphies , showing the critical results
extracted from the tables . We draw various series of curves , each of
them showing some particular behaviour of the parallelized FORTRAN
program .

Tests with the MXS00 141

Results of the tests made with version 1 of PARFOR

Sen'e !

This serie contains the figures 5-2 a , b , c & d provided on the next page .

Each graphie shows the speedup and the efficiency according to the number
of processes , with all other parameters fixed . The most important f ixed
parameter is the size of the matrix . We have 4 graphies for matr ix
dimensions of 50 , 100 , 200 and 500 elements . Sorne intermediate basic
results for other dimensions are provided in the tables , but not reported
in the graphies .

When looking to these graphies, it is surprising to see that the speedup is
always the best when the algorithm is executed with one process . 1 t is
1 ow er than one . For the execut ion w i th 2 .. 1 O pro cesses , the degradat ion
of the speedup is clear . The results expected before the tests , were an
increase of the speedup according to the number of processes . ln our
case , it is not the case .

Concerning the efficiency of the processors, it is directly coupled to the
speedup , so , the results are also very bad . The results that we expected
for the efficiency , were a curve , quasi horizontal , showing a quas i
constant efficiency of the processors according to the number of
processes created .

If we compare the 4 graphies, we can say that they are better for greater
dimensions , but still decreasing with the number of processes . We can
only say that the tendency is less bad for great sizes . For the matrix
dimension 500 , there is a small positive speedup for the algorithm
executed with 2 processes . But this is still weak, and the general aspect
of the curve is not aff ected by this .

As a conclusion for these results , we would say that the parallelized
version of linpack provides very.bad performances . This can be attributed
to the way it has been parallelized, and/or to the env ironment in which i t
is executed .

Tests with the MXS00

1,00

0,90

0,80

0,70

0,60

0,50

0,40

0,30

0,20

0,10

c,c.::i

1,00

0,90

0,80

0,70

0,60

0,50

0,40

0,30

0,20

o. 10

1

2

Tests with LINPACK single precision

Leading dimension - 201
Matrix dimension = 50
Parallel threshold • 2
Execut ion number • 3

---r--,==- f
5 6 7

Number of processes

Figure s-221

1
8

=r=t-
9 10

Tests with LINPACK single precision

Leadlng dimension • 201
Matrlx dimension • 200
Parallel threshold = 2
Execution number • 3

0,00 +--r------,---.--=::;::=:=l~:::::::;::=~=====lo=---,; .. ,
2 3 4 5 6 7 8 9 10

Number of processes

Figure 5-2c

1,00

0,90

0,80

0,70

0,60

0,50

0,40

0,30

0,20

142

Tests with LINPACK single preclsion

Leading dimension • 201
Matrix dimension = 100
Parallel threshold • 2
Execut Ion number • 3

o.101-~-===~=====~:;:=:;:::::;::=:;:~ 0,00

2 3

1,10
1,00
0,90
0,80
0,70
0,60
0,50
0,40
0,30
0,20

4 5 6 7 8 9 10

Number of processes

Figure 5-2b

Tests w i th the LINPACK single prec

Leading dimension • 501
Matrix dimension • 500
Parallel threshold = 2
Execution number • 1

0, 10
0 , 00-4----.---.---,------.-_:;:.=:;==⇒==~~,

2 3 4 5 6 7 8 9 10

Number of pr ocesses

Figure 5-2d

GJ Speedup

0 Effic i ency

1ests with the MX500 143

5erie2

This serie contains the figures 5-3 a , b , c & d provided on the next page .

This serie of graphies shows the amount of time consumed by the
parallelized linpack according to the number of processes, and the matrix
dimension . The user-time, system-time and real-time are reported .

ln this serie , we report 4 graphies . Each of them is the result of the
execution of the algorithm with all parameters fixed , except the number
of processes varying from 1 to 1 O . We draw a curve for each size of the
matrix.

On each graphi c , the X axe shows the number of processes , and the Y axe ,
the time to execute the algorithm , in seconds . The absol~te values of the
Y axis are not very important . What we are interrested in, is the variation
of the repartit ion of the user-time, the system-time, and the real-time.

From these 4 graphies , it appears immediately that the behaviour is
nearly the same for the various matrix dimensions . So , from this , we can
say that the repartition is relatively indcpendent from the matrix
dimension . We say "relatively" , because the last curve (matrix dimension
= 500) shows a slight variation from the behaviour of the other curves,
but weak .

Tests with the MXSOO

250
LINPACK single precision

200 Leading dimension "'201
Matrix dimension "'50
Parallel threshold "' 2

li) 150 Execution number "' 3 'O
C
0
(..)
Q.\

100 (/)

50

0 e-c· ..

Number of processes

Figure 5-3a

LlNPACK single precision
3500 -----------------------
3000 Leading dimension = 201

Matrix dimension = 200
2500

Parallel threshold = 2
li) Execut ion number "' 3 'O 2000
C
0
u

1500 a:,
(/)

1000

500

0
2 3 4 5 6 7 8 9

Number of processes

Figure 5-3c

900

800

700

600
li)

'O 500 C
0
(..) 400 Q)
(/)

300

200

100

0

20000

18000
16000

14000
12000

10000

8000

6000

4000

2000

0

10

GJ User-tlme

G System-lime

0 Real-time

144

LlNPACK single precision

Leading dimension
Matrix dimension
Parallel threshold
Execution number

C 201
= 100
= 2
= 3

1

2 3 5 6 7

Number of processes

Figure 5-3b

LlNPACK single precision

Leading dimension = 501
Matrix dimension = 500
Parallel threshold = 2
Execut ion number = 1

2 3 4 5 6 7

Number of processes

Figure 5-3d

;---i

8 9 10

8 9 10

Tests with the MXS00 145

Serie3

This serie contains the figures 5-4 a, b , c & d provided on the next page .

This serie of graphies is the complement of the serie 2 . lt shows , in
terms of percentages, the repartit ion between the user and system times .

We reproduce the 4 graphies of the serie 2 , for matrix dimensions of 50 ,
1 00 , 200 and 500 .

As we saw previously in the serie 2 , the repartition i s nearly the same
for each of the 4 graphies .

As a conclusion to the series 2 and 3 , we can see and cla im that the user
time follows a logical behaviour (reduced user-time according to the
reduced task to achieve) , but the system-time follows a strange
behaviour. More the number of processes increases, more the system time
al so increases , in both absolute value , and relative value to the tota l
cpu-time .

Tests with the MXSOO

100%

90~

80%

70~
60%

50%

40%
30%

20%

10%
0%+= ..,.........._~'"---, ;_,... ~:........,..u:.--,....Œ......,..J....._,

100%
90%

80%

70%
60%

sor.
40%
30%

20%
l 0%

Number of processes

Figure 5-4a

0%-+-'""'-r-"----.-....:....--r-"""---,-=-.-'""'--..,..-1-""---..-..=......-1;:;___...=_

Number of processes

Figure S-4c

100%

90%

80%

70%
60%

50%

40%
30%
LO%
10%

146

0%-t-'"'"'--.-""'"--ra.,.;_-.J'-"'-,-........ ..,....~ ~-r-li........,....IL~"1....,

100%

90%
80%

70%

60%

sor.
40%

té

~~: ~

Number of processes

Figure 5-4b

10% ;
0%--+,i~ ,:i::::::....-=-.-1E'---r.E....-r1"~..m~:::::......,...i.::::~c::......,

Number of processes

Figure 5- 4d

§ user- tlme

C] System-lime

1ests with the MX500 147

Serie 4

This serie contains the figures 5-5 a, b , c & d provided on the next page .

This serie of graphies is intended to show in a microscopie way , the
tendency of the cpu-time . the previous graphies, because of their too high
scale, did not show very well this behaviour .

The serie includes 4 graphies , for matr,ix dimensions 50 , 100 , 200 and
500 elements . The other parameters are fixed .

We can observe that the user-time varies from a convex-like increasing
curve, to a concav-like curve with a minimum .

The expected behaviour would have been a decreasing curve for the
user-time , because of the diminution in terms of part of the global task
to perform .

This particular behaviour of the user-time is probably due to the time
consumed for the synchronizations between the processes , almost when
the number of processes is relatively high and the parallel work very littl .
But we can not give , at the present time , a better explanation of th is
strange behaviour .

"' "O
C:
0
u
Q)

lf)

(/)

"O
C:
0
u
Q)

t()

Tests with the MXS00

LINPACK single precision

14 -,-Lea mg 1mens1on ,.

Matrix dimension = 50 v' /

d' d ' 201

12

10

8

6

4

2

-,- Parallel threshold
Execution number

C 2
C 3

v"'

60

55

50

45

40

35

30

25

'.2()

15

/
V-

/
.----,r

j_
V

1
1

2 3 4 5 6 7 8

Number of processes

Figure 5-Sa

LINPACK single preclslon

220 Leading dimension C 201
210 Matrlx dimension "'200
200 Parallel threshold C 2

190 Execut1on numt>er C 3

180
170

160

150
140

130

/
.,,....-r

/r'

V
/

./,..
.

120

2 3 4 5 6 7 8

Number of processes

Figure 5-Sc

/

9 10

/
V

9 10

J

1900

1800

1700

1600

1500

1400

1300

1200

1100

1000

1

ŒJ User-time

148

LINPACK single preclsion

Leading dimension = 201
Matrlx dimension = 100
Para11e1 threshold = 2 V
Execution numt>er = 3 ~V

V

V
V

V.-
/

1
1

2 3 4 5 6 7 8 9 10

Number of processes

Figure 5-Sb

LINPACK single precision

Leading dimension C 501
Matrix dimension = 500

\ Parallel threshold = 2
\ Execut ion number = 1

\
\

1 .,,,
\ / V

\ /
.....

Î'------ .,,/
~

2 3 4 5 6 7 8 9 10

Number of processes

Figure 5-Sd

Tests with the lr1X500 149

Serie5

This serie eontains the figures 5-6 a & b provided on the next page .

This serie of graphies shows only the point at whieh the system-time
beeomes greater than the user-time . We eonsider only matrix dimensions
of 200 and 500 elements .

We ean see that this point does not vary too mueh aeeording to the matrix
dimension.

These graphies eonfirm the assumpt ion we made about the serie 2 , and
serie 4 .

Tests w;th the MX500

700
Test LINPACK

600

500

single precision

/

Lead. dim. "' 20 1
I 11atr. dim. 0 ?00

(Il 400
'O
C:
0
u
OJ

300 (f)

I
Par. thresh. "' 2

/
Exec. numb. "' 3

200 / ---
/ L.--

L.--

-- l.--
- - -

100

0

/,

V 1
1

V
1

' 1

2 3 4 5 6 7 8 9 10

Number of processes

4000
Test LINPACK

3500

3000

) single prec ision

/ --------------

Lead. dim. = 501 1/
Matr. dim. "' 500

2500
tn
'O
C:

2000 C,
u
a,,

(./)

I Par. lhresh. = 2

/ Exec. numb. = 1

""
/

J 1500

~ ~I L--L-----
1000

500

0

- - -

V"
2

/ '
' ' '
' ' '

3 4 5 6 7 8 9 10

Number of processes

150

ŒJ User-lime

0 System-time

Figure 5-6a

ŒJ User-time

[-J System-lime

Figure 5-6b

Tests with the MX500 151

5erie 6

This serie contains the figures 5-7 a, b, c & d provided on the next page .

This serie of graphies shows an analysis of the behaviour of the real-t ime
compared to the cpu-time for execution of the algorithm with a variable
number of processes .

For each graphie , all the parameters are fixed except the number of
processes . We draw a graphie for matrix dimensions 50 , 100 , 200 and
500 .

This analysis shows immediately that the cpu-time remains always nearly
half the value of the cpu-time .

We can conclude that the value of the relative repartition of the
real-time , is independent from the matrix dimension . We must remember
that all measures are taken in a block time environment , so, we were the
only user working on the MX500 machine at the tests time .

(~
,:,
C
0
u
Cl)

U)

(~
-0
C
0
u
(l\

(./)

250

200

150

100

50

3500

3000

2500

2000

1500

1000

500

0

7ests with the MX500

2

2

LINPACK single precision

Leading dimension= 201
Matrix dimension = 50

3 4 5 6 7

Number of processes

Figure 5-7a

LINPACK single precision

Leading dimension = 201
Matrix dimension = 200

3 4 5 6 7

Number of processes

Figure 5-7c

900

800

700

600

500

400

300

200

100

LINPACK single precision

Leadtng d1menston = 201
Matrtx d1menston = 100

152

o~---~-~-~~-~-~--.-----.
8 . 9 10 2 3 4 5 6 7 8 9 10

8

20000

18000

16000

14000

12000

10000

8000

6000

4000

Number of processes

Figure 5-7b

LINPACK single preciston

Leadtng d1mens1on = 501
Matrix dimension = 500
Parallel threshold = 2
Execut1on number = 1

2000 -+-------.....-
0 -+-----~-~-~~-~--...-----,

9 10 2 3 4 5 6 7 8 9 10

Number of processes

Figure 5-7d

ŒJ Cpu-ttme

G Real -lime

1ests with the MX500 153

Results of the tests made with version 2 of PARFOR

5ene I

This serie contains the figures 5-8a to 5-8f provided on the next page .

This serie of graphies shows the evolution of the cpu-time of the entire
program when the size of the matrix is increased , i .e. , when the
granularity of the program is increased, and thus the size of each parallel
process.

From these grphics, we can conclude that the behaviour is quite similar to
the behaviour showed with the original PARFOR environment . The
cpu-time for small matrix sizes is increasing with the number of
processes , showing that the overheads introduced by the use of PARFOR
are very large for small sizes of the parallel work subroutine . When the
size of the matrix increases , we can see that a minimum appears in the
curve associated with the fixed size and increasing numbers of processes .

When the cpu-time is minimum , the speed of the parallel program is
maximum . The point of the minimum shows the number of processes
providing the best results .

(J)

"C
C
0
u
a,
tr,

(J)

'O
C
0
u
Q)

U)

"' 'O
C
c,
L' a.,
lfl

1ests with the MXSOO

8,0

7,5

7,0

6,5

6,0

/
/

)V

LINPACK tests

/ single precision

Lead. dim • 501
Matr. dim. • 50

5,5

5,0
7

4,5

4,0

3,5

V
/

- ·- /
I

3,0 /

,/
2,5

2 3 4 5 6 7 8 9 10

Number of processes
Figure 5-8a

140
LINPACK tests

135

130

125

120

115

110

105

100

95

1 single precision

/ ------------------
/ Lead. dim = 501

J / Matr. dim. • 200

\ J

\ /
\ .7

/

\ 7
\ /

V

90

2 3 4 5 6 7 8 9 10

Number of processes
Figure 5-8c

950 LINPACK tests

900 single precision

850

800

750

700

650

:_.:;:,

550

\ ------------------

\ Lead. dim = 501

\ Matr. dim. • 400

\
\
\ /

~ /

500
1

2 3 4 5 6 7 8 9 10

Number of processes

Figure 5-8e

34

32

30

28

26

24

22

21)

18

16

400

380

360

340

320

300

280

260

1900

1800

1700

1600

1500

1400

1300

i20C

1100

1000

154

LINPACK tests

I single precision

/ ------------------

I Lead. dim • 501

/
Matr. dim. • 100

JV

/
/

/ r-----.. I

2 3 4 5 6 7 8 9 10

Number of processes
Figure 5-8b

LINPACK tests

1
single precision

\

Lead. dim = 501

\ Matr. dim. • 300

\ J

\ 7
\ /

/

./ --~

2 3 4 5 6 7 8 9 10

Number of processes
Figure 5-8d

LINPACK tests
1 single precision

\ ------------------

\ Lead. dim: 501

\ Matr. dim. = 500

\
\
' -t-

~
-- - --

" ...____ /

2 3 4 5 6 7 8 9 10

Number of processes

Figure 5-8f

7ests with the MXSOO 155

6rap/7/c ol speedup

This graphie (figure 5-9) shows the speedup of the parallel program
compared to the sequential version . A curve is drawn for various sizes .
We have here the confirmation that the PARF0R is better with large
parallel sizes .

The speedup is greater than one for at least 3 parallel processes when the
parall el size of the matrix is greater than 100 elements . Compared to the
results of linpack provided by the same program executed in the original
PARF0R environment , there are more greater speedup than 1 . Remember
that the speedup was only greater than one with matrix sizes greater than
400 in the original version .

We make further tests to verify this assumpt ion , and measure the exact
overheads introduced by PARF0R , with the various versions of the
implementation we made .

3,0

LINPACK tests, single precision

Speedup according to the matrix size

2,5-+-----+----+----+----+-----1

2,0-+-----+-----+----+----+------l

0,0-+-----+----+----+----+-----1

1 1 3 5 6

Number of processes

Figure 5-9

~ Size = 50

ŒJ Size = 100

G Size = 200

~ Size E 300

GJ Size = 400

~ Size" 500

7ests with the MX500 156

5..L1 Tests wi th the doubJ e preci si on

Description of the result tables

The results provided by the double precision test program are exactly the
same as those for single precision . The tests were done so that the
results can be compared in the same conditions .

Scheme of the measures

The scheme is the same as it is for the single precision :

Time(1)

Execute the entire algorithm

Time(2)

All performance computations

Conclusions for the results with the double precision

We did not draw any graphie for the results with the double precision
because the scheme of the graphies were exactly the same as they were
for single precision .

The only variations were located in the abo lute values of the real - time and
the cpu-time , which are greater for the algorithm executed in the double
precision .But this is not surprising , because the same behaviour was
al ready observed in the original sequent ial linpack program for double
preci sion .

5 .8 Tests wi th the SAXPY routine

5lt1 Introduction

At the view of the so bad results obtained with the l inpack benchmark , we
decided to test in a d1rect way the most important routine responsible for
the results of linpack.

This is the SAXPY routine . ln a few words, we remember that this routine
multiplies a vector by a constant, and adds the resulting vector to ano.ther
vector . A study made by [Johnstone l shows that most of the time of
linpack is spent in this routine .

5.8.2 Description of the parameters for these tests

For these tests , we provide the resul ts in the same kind of tables than
these produced for the previous results of the linpack tests .

The parameters for the execution of the test program are the following :

Parameter I : Leading dimension

This parameter is fixed at the compile time . lt corresponds to the
maximum vector length on which the program can be executed .

Parameter 2 .- Vector !enqt/J

This parameter is the size of the vector on which the tests of the SAXPY
routine are built . The specified size must be lower than the leading
dimension .

Tests with the MX500 158

Parameter J .- Parai/el t/Jres/Jo/d

This parameter is not used here , and is always nul 1 .

Parame.ter 4 : EKecut/on numbe.r

This parameter specifies the number of executions of the algorithm . More
this number is high , more the results are accurate , but more the time to
execute the tests is high . So , a compromize is to be decided .

5.8.3 DescriP-tion of the tests

The tests made for this routine are based on a comparable scheme as the
tests for trie ent ire l inpack benchmark .

First we execute the sequent ial version of the SAXPY routine , then the
parallelized version , but with only one process , and third , we execute
the parallelized version, with the spec i fied number of processes .

5.8.4 Scheme of the results

The scheme for taking the measures is always the same :

Time(1)

Execute many t imes the SAXPY routine

Time(2)

Al 1 performances computations

The results are generated in tables at the last phase .

Tests with the MXSOO 159

2.62 Graphical results

Grap/Jic I

This graphie (on figure 5-1 Oa) shows the measured speedup of the
algorithm when it is executed with many processes .

The tests made ta draw this graphie were designed with various lengths of
the vector , and all other parameters were fixed . The graphie includes a
curve for vector lengths 100 , 200 , 400 , 800 , 1000 , 2000 , 4000 and
8000 .

The X axis shows the number of processes , and the y axis shows the
speedup in terms of cpu-time .

On the graphie, it is clear that the parallelized routine should not be used
for small numbers of elements . This conclusion is very important for
linpack , in which the SAXPY routine is used with vector lengths varying
from <mtrix dimension> ta 1 . This means that, while the standard linpack
benchmark , is executed with a matri x dimension of 100 , the SAXPY
routine is always called with vector lengths of less than 100 . And
unfortunately, this is the badest region of working for the parallel SAXPY
routine , as the graphie shows us .

The graphie shows that the SAXPY routine should not be used with many
processes under a length of 400 element s . And for this vector length, not
with more than 2 processes , for providing the maximum speedup . The
curves with more than 400 elements show also a maximum, indicating the
ideal number of processes at which the maximum speedup is reached .

We can observe that the curves for small numbers of e lements , are far
from the linear speedup , according to the number of processes . But more
the vector length increases , more the behaviour of the algorithm becomes
close to a linear speedup . The best behaviour is reached for a length of
8000 elements . We did not go further in vector lengths because the time
to execute the tests is too long , and secondly because we think that these
results are sufficient enough to conclude . But we can easely extrapolate
the behaviour for greater lengths : A speedup closer and closer to the
l inearity, with an increasing number of processes that increases .

Tests with the MX500 160

But from this behaviour , we can also think that the real problem of the
bad behaviour of the parallelized version is the problem of the overheads
appearing when trying to use the PARFOR facilities with relatively small
tasks . ln the case of the SAXPY routine , the parallel work is too small
compared to the overheads generated by the PARFOR environment itself .

We think that a further analysis of the overheads of the PARFOR
environment is a necessity . That's what we do in further tests .

Grap/Jic 2

This graphie (on figure 5-1 Ob) is the complement to the previous one . 1 t
shows the efficiency of the algorithm , in terms of cpu-time .

As for the speedup above , we draw a curve for each vector length
reported . But the numerical results for other lengths are available in the
appendices .

The graphie can be commented as the previous , in terms of efficiency . We
can clearly observe that there is a large decrease of the efficiency of the
algorithm when the vector length is very low . The eff i ciency is better for
larger vectors, but still decreasing .

Tests with the MX500

5,0-,----.--.......----,-----lle----t

2 3 4 5

1 , 00 -,----,--.......----.----,-------1

c.eo

2 3 5

Tests with the SAXPY routine

Single precision
Leading dimension • 10000
Execution number " 1000

Measured speedup in terms of
cpu-time according to the
n;;moer of vect0r t: ,emenb
and processes .

6 7 8 9 10

Tests with the SAXPY routine

Single precision
Leading dimension = 10000
Execut ion number • 1000

Measured efficiency in terms
of cpu- time according to the
nu'Tlber o< vect c~ e leme ~, ts
and processes .

6 7 8 9 10

Nurnber of processes

GJ Length = 1 00

~ Length = 200

~ Length = 400

[!] Length = 800

0 Length = 1 000

G Length = 2000

G Length = 4000

@] Length = 8000

@ Linear speedup

Figure 5-1 Oa

0 Length = 100

ŒJ Length = 200

ŒJ Length = 400

ŒJ Length = 800

0 Length = 1000

G Length = 2000

G Length = 4000

@] Length = 8000

Figure 5- 1 Ob

161

Tests with the MX500 162

Grap/Jic J

This graphie (on figure 5-11 a) shows the speedup of the algorithm when
it is used with many processes . The speedup is measured in terms of
real-time .

The conditions and matrix sizes are the same as these explained in the
graphie of figure 5-1 Oa . The results are given in terms of real-time
instead of cpu-t ime .

6rap/Jic 4

This graphie (on figure 5-11 b) shows the efficiency of the algorithm for
the 5AXPY routine . lt is the complement of t he previous graphie.

1 t can be compared with the graphie of the figure 5-1 Ob .

Tests with the MX500

5,0-,-----r---,----,----ll~

2 3 4 5

1,00 -----~-~-~---,-----1

0,00

2 3 4 5

Tests with the SAXPY routine

Single precision
Leading dimension• 10000
Execution number • 1000

Measured speedup in terms
of real-tirnc- accc-din; to the
number of vector elements
and processes .

6 7 8 g 10

Tests with the SAXPY routine

Single precision
Leading dimension - 10000
Execut ion number = 1 000

Measured efficiency in terms
of rea1-time <1ccording to the
number of vector elements
and processes .

6 7 8 g 10

Number or processes

0 Length " 100

,--,
L:J L~, ,gth = 200

~ Length = 400

~ Length = 800

0 Length = 1000

G Length = 2000

G Length " 4000

@J Length = 8000

ŒJ L 1near speedu~

Figure 5- 1 1 a

0 Length = 1 00

!el Ll'nt:'th = 2()0
i..........J ~

~ Length = 400

~ Length = 800

0 Length = 1 000

G Length = 2000

G Length = 4000

@J Length • 8000

Figure 5-1 1 b

163

Tests with the MX500 164

Serie 5 of graphies

This serie contains the figures 5-12a to 5-12h provided on the next
pages .

The graphies constitute an analysis of the cpu-time . We want to know
more about the dilemn : How is it possible that , while the size of the
parallel task decreases with the number of processes, the cpu-time is not
always decreasing .

We got these results from the general tables recorded and computed while
running the tests as decribed earlier .

For these graphies , we fix all parameters except the number of processes
and the vector length . Each graphie is related to executions with from 1 to
1 0 processes , and the vector length fixed . We take into account the
following vector lengths : 100 , 200, 400 , 1000 , 2000 , 4000 and 5000
elements .

The X axe of each graphie represents the number of processes , and the Y
axe is the time in seconds . ln our comparisons between the results
provided by the various lengths , we do not t ake into account the absolute
value of these times , but well the frame of the curves . Each graphie
contains 3 curves , the user-time the system-time and the cpu-time . The
cpu-time is the sum of user and system times .

The 5 graphies show clearly where the probl em of the SAXPY routine is
located . This is not particulary the problem of the SAXPY routine , but
well a more general problem of PARF0R . The user-time is always
decreasing , except for the very litt le vector l engths (100 and 200) . But
apart from this , we can quai ify of "exected" , the behaviour of al l
user-time curves for the various lengths . But the most interresting in
these curves , remains the behaviour of the system-time, which is always
increasing .

As a direct consequence of this , the cpu-time has a minimum value ,
depending on the magnitude of both curves (user and system curves) .

Tests with the MXS00 165

We can see that the user-time decreases slowly for the little lengths of
the vector , and decreases more quickly for the large values . To the
contrary , the system-time increases very quickly for the litt le values of
the vector length , and decreases slowly for the high values .

We can conclude that there is some f eatures in the PARFOR environment
that makes increase the system-time very quickly . These results also
show the necessity of an analysis of the PARFOR overheads . That's what
we do in further steps .

Anyway , concerning the SAXPY routine , we can conclude that in the
current implementation of the PARFOR environment , it is no use to work
with the parallelized routine if the length is less than 400 elements .
And , from there , it seems "normal" that the 1 inpack benchmark provides
very bad results because the SAXPY routine , within this program , works
always on very low vector lengths (from 1 to 100 elements for the
standard version of the benchmark) .

0,030

0,025

0,020

0,015

0,010

0,005

0,000

0,040

0,035

0,030

0,025

0,020

0,015

0,010

0,005

0,000

7ests with the MXS00

The SAXPY rout tne

Single prec1s1on

• / Lead. dim. = 10000

// Exec. numb. = 1000
Vect. length = 100

/ / User & System ttmes

) Il
V / -- -----/ ...----

/ __.. ~

~ V
/

2 3 4 5 6 7 8 9 10

Number of processes
Figure 5-12a

The SAXPY rout tne

• 5 tngle prec1s1on

/
/ Lead. dim. = 10000

Exec. numb. = 1 ooo

/ /
Vect. length = 400

user & System t1mes

/ /
J

.... ~/ /
"\ V /

... /
........ /

/
/

/
V
2 3 4 5 6 7 8 9 10

Number of processes
Figure 5-12c

ŒJ Cpu-time

166

The SAXPY routine

--------------------0,030
Single prects1on

1

0,025

U,020

0,015

/ Lead. dim. = 10000

/ Exec. numb. = 1 ooo
V~ct. length = 200

user & System t imes 1

/ /
/ /

/ / 0,010 ik., / --_____. ..-
0,005

0,000

0, 100

0,090

0,080

0,070

0,060

0,050

0,040

0,030

0,020

0,010

0,000

/

V
V

2 3 4 5 6 7 8 9 10

Number of processes

Figure 5-12b

The SAXPY routine

Single precision

--
Lead. dim. = 10000 -- Exec. numb. = 1000 / -- Vect. length = 800

-- User & System t imes J / '
)V /V

/ V
V / jv /

~ L __..-l V /
r-----_ /

~

~
,.,..,..

----2 3 4 5 6 7 8 9 10

Number of processes

Figure S-12d

G User-time 0 System-t imf

Tests with the MX500

0,070

0,060

0 05(\

0,040

0,030

0,020

0,010

0,000

o. 18

0,16

0,14

The SAXPY routine

-- Single precision

Lead. dim. = 10000 ;' -- Exec. numb. = 1 000 / Vect. length = 1000
J • -- I V User & system l irr.es

)

\ / V V '~ ..,..,---1 V I '
-,

""' - /'
/

V
~

------2 3 4 5 6 7 8 9 10

Number of processes
Figure 5-12e

The SAXPY routine

Single precision

Lead. dim. = 10000

\ Exec. numb. = 1000
Vect. length = 4000

\ C, i2 - User & System t im~s

o. 10

0,08

0,06

0,04

0,02

0,00

\
ï~

.,.,..l V
~ ~ / ...---- /' k ---1 ·~ ~ ,,,,,V

,_______ .___..... ..,.,.
.-- ...-

~ V---

2 3 4 5 6 7 8 g 10

Number of processes

Figure s-129

0,100

0,090

0,080

0,070

0,060

0,050

0,040

0,030

0,020

0,010

0,000

0,35

0,30

0,25

0,20

0,15

o. 10

0,05

0,00

167

The SAXPY routine

Single precision

--
Lead. dim. = 10000 I --)V 1 Exec. numb. = 1000

:~
Vect. length = 2000

User &. System times / /
/ /V

1 /✓ / ~

'r---.. '\__ V /
", /

' / ,...___, r'

~_
...---r' -

/
r- -

2 3 4 5 6 7 8 9 10

Number of processes

Figure 5-12f

The SAXPY routine

Single precision

1 J

1 ~ Lead. dim. = 10000

\ Exec. numb. = 1000 1

Vect. length = 8000
1

\ User&. System t imes 1

1

\ 1

~
i
!

1 ~ i ,
_,,--

"" ..____

---- ~ -,_____
...---, ~ --.--- 1

1

1 1

2 3 4 5 6 7 8 9 1C

Number of processes

Figure S-12h

0 Cpu- time GJ User-time 0 System- time

5. 9 Tests of the PARF OR overheads

5.91. General description of the tests

We have expla1ned the bad results we obtained when trylng to measure the
performances of the parllel1zed LINPACK program . ln th1s section , we
learn the behav1our of the parallel env1ronment ltself , by trylng to
measure the overheads due to calls to TASKIN plus the_ synchron1zat1on
with the WAIT fac11ity .

At the origin , we wanted to measure all kinds of overheads 1n a parallel
program or routine . Therefore , we bu11t a tool (descr1bed in chapter 1)
to compute all results from testpoint s in the program . But the major
problem with this tool was coming from the t iming routines . The SINIX
environment , as 1t is also the case in all UNIX environment , does not
prov1de any time routine with a greater resolut 1on than 20 mi11seconds .
so , with such a low precision , it was not possible to measure
interresting things, and we had to discard th1s tool .

Anyway , this problem with the time routine can not be avoided , implying
that the only solution is the modification of the way the tests are made .
That's why , instead of providing results for each kind of overhead (
initialization and termination) , we provide a global overhead involving
the global execution of a parallel program . With this view , we got
interresting results less detailed, but more stable . All measurements are
made in the main program .

For these tests , we provide results for the 5 versions of PARFOR ,
ava i lab le at the present t ime .

Tests with the MX500

5..92 Scheme of the tests

The measures for this kind of tests are taken in the follow ing way :

Time(1)

Do loop i = 1 , ntimes

npar = NT ASKS()
Do loop2 k = 1 , npar

Execute the entire parallel section with the
TASKIN facility calling the parallel work subroutine

End of Do 1oop2

Direct call to the parallel work subroutine

Call WAITO facility for synchronization

End of Do loop

Times(2)

169

The entire parallel section is a loop over a call to the TASKIN facility with
the number of processes that are generated according to the -NT ASKS=
option at the run time . The parallel work subroutine called each time by
the TASKIN , i s an empty subroutine with a different fixed number of
dummy parameters for each test . The parallel work subroutine perfor ms
only a call-and-return . This global time measurement ensure that we
measure exactly the additional overheads present in the execution time of
a para 11 e 1 program .

The ntimes specifies the number of execut ions for calcu lat ing the results .
These results are undependent from the number of iterations , because
they are normalized ; but the number of iterations acts as a factor of
quality on the results provided.

Tests with the MXSOO 170

5-U Resul t tables and fi xed parameters

For these tests , we provide results in tables . Each table is a serie of
executions of the tests with a fixed number of parameters passed to the
subroutine called by the TASKIN function . Each serie of tests provides
results for the execution of the test programs with from 1 to 1 O
processes .

We bui ld our tests so that the number of parameters passed to the
subroutine has a logarithmic variation : O , 1 , 2 , 4 , 8 , 16 , 32 and 64
parameters .

For these tests , we use the first tool originally described that we
designed for measuring the performances of parallel programs , but we
measure only in the main program .

5.9.4 Results of the tests

Tests with the version 1 of PARFOR

Figure 5-13 shows the distribution of the system and user times . Figure
5-14 shows the variation of the user-time for execut ions with various
numbers of processes . Figures 5-15a to 5- 15d show the mean repartition
of the various times for various numbers of parameters passed to the
parallel subroutine, according to the number of processes .

,o
-0
C
0
u
Cl'
li)

Tests with the MX500
90~-~------------,--,-----,

Measured overheads of PARFOR

ao~--1
------------------------------- ml user ttme

Mean distribution of the System
and User times

2 3 4

(//

-0
C
0
(.J
(1.) ,,,

5

[] System time .

Figure 5-13

6 7 8 9 10

35--.--.======~=======;r---.----,

30

Measured overheads of PARFOR

Measure of the User-time
Mean on 10000 execut ions

20-+---+---+----+--+--++-+---1----1-----1

Figure S-14

2 3 4 5 6 7 8 9 10

171

ŒJ No parameter

0 1 parameter

~ 2 parameters

@ 4 parameters

G 8 parameters

~ 16 parameters

ŒJ 32 parameters

0 64 parameters

7ests with the MXSOO

180

160

140

!!2 120

0
u
(1)

100 (0

E
E 80
"' Q.)

E
i= 60

40

20

0

180

160

140

20

Measured overheads of PARFOR V 1

Mean distribution of the System
time, User time, Cpu time and
Rea l time .

Number of parameters :

2 3 4 5 6 7

Number of parallel processes

Measured overheads of PARFOR V 1

Mean distribution of the System
t ime , User t ime , Cpu t ime and

Real time .

Number of parameters : 8

2 3 4 5 6 7

8

8

Number of par allel processes

172

G Real tlme

~ User time

ŒJ System t lme

0 Cpu time

9 10 Figure 5-1 Sa

G Real tlme

ŒJ User time

ŒJ System time

0 Cpu time

9 10
Figure 5- 1 Sb

Tests with the MXSOO

160 -~ Measured overheads of P ARFOR V 1

------------------------------- .

140

120

----- Mean distribution of the System
time, User time, Cpu time and / Real time .

----- Number of parameters 32 /

!:.~
è 100
C,
u
(l/

~

E 80
.:: ,,,

/
/

/

I
Q)

E 60
i'.=

40

20

0

/ /

V V
/ v~

/
V V- V

V V
V V

/ L----v~ ~ ~ -
~ -~ ~

2 3 4 5 6 7 8 9 10

250

200

Number of parallel processes

Measured overheads of PARFOR V 1

Mean distribution of the Syst em
time, User time, Cpu time and
Real time .

Number of parameters : 6L1

2 3 4 5 6 7

Number of para 11 e 1 processes

8 9 10

173

ŒJ Real time

ŒJ User time

ŒJ System t1me

0 Cpu time

Figure 5- 1 Sc

ŒJ Real Ume

~ User time

ŒJ System t1me

ŒJ Cpu time

Figure 5-1 Sd

Tests with the MXSOO 174

We are surprised to observe that , when the number of parameters is
varying , the system-t ime does not or nearly not vary according to this
number of parameters passed . lnstead , it is close to a constant for a
fixed number of processes .

To the contrary , the user-time consumed is clearly dependent on the
number of parameters passed . This is true if we know that the actual
parameters are copied to the shared memory , in a loop in the C driver
program.

Another interresting result is the amount of cpu-time consumed for the
execution with many processes . More the number of processes increases,
more the amount of cpu-time consumed is high . However ·, if we consider
the decomposition of the cpu-time between the system and the user
times , we can observe that the user-time remains very low , while the
amount of system-time is increasing very quickly .

The absolute value of the cpu-time according to the various numbers of
parameters remain anyway very high . This is the main reason why the
performances of the parallelized program are very low . The overheads of
PARFOR , in this version 1 of the implementation , are high in absolute
value .

This very bad behaviour of PARFOR in terms of cpu-time lead us to
reconsider the way the processes rece ive their part of the job from the
main program . According to these results, the messages transfer facility
of the I PC system V is very slow . The only system routine called are the
routines concerning the messages (msgrcv and msgsnd) . ln the next
versions of PARFOR, we avoid these expensive calls .

According to these results , PARFOR version 1 is interresting to use to
the customer point of view, depending on the size of the parallel sections
that he has to create . ln most of the cases , for a single precision , the
mean critical size of a parallel section should perform a work of at least
the following values (in miliseconds) , depending on the number of
processes that must be created :

Tests with the MX500 175

Number of parameters of the subroutine 16
Number of executions for these results : 10000

Number Total Equivalent Flops number
of cpu ----------------------

procs time Single prec. Doub 1 e prec.
------- ----------- -----------
1 0,26 13 1 1
2 5,70 263 211
3 12,75 567 472
4 16,75 663 694
5 27,66 1274 1025
6 36,46 1676 1350
7 47,57 2166 1761
6 60,59 2766 2242
9 79, 16 3642 2929
10 66,32 4063 3266

With this version of PARFOR , the overheads are very high . They would
restrict the number of applications that can be parallelized in this
environment .

The third and fourth columns provide the number of equivalent floating
point operations that the machine should execute to face the overhead
times provided in the column2 . These numbers are computed by the
formula :

overhead time
Flop number =

time to execute 1 flop

The time to execute 1 flop is given by the result of the sequential original
LINPACK benchmark , and has the val ue 1 ms/ 46 for single precision and
1 ms/37 for double precision .

If the number of operations to perform in a parallel process is lower than
this number , the sequential environment is more usefull in terms of
speedup . These numbers are theoretical values, according to the measures

Tests with the MX500 176

of the overheads and the estimated power of the cpu . ln the reality, there
are some little variations around these values . For example , the values
that we measured within the tests of the SAXPY routine , are following
this rule unti 1 4-5 processes , and then , the overheads in this routine are
greater than the theoretical values that we prov ide here . But this is quite
understandable if we consider, in these theoretical values, that we have
the same number of processors than the number of processes . We must
remember that our machine has only 6 cpus , implying that we should
consider the values until 6 processes only .

Tests with the version 2 of PARFOR

This second version of PARFOR , according to our tests , provides better
results in terms of both cpu-time and real-time .

We observe that , when the number of parameters is varying , the
system-time is quasi constant . To he contrary with the previous version
of PARFOR , (version 1) , the system-time is now a very low part of the
total cpu-time , quasi negligible . lt increases with the number of
processes , but of a very small amount , and only when the number of
processes is greater than the available number of processors .

The user-time consumed , as it was the case for version 1 remains
dependent on the number of parameters passed . The explanation we had for
version 1 is still valuable for this second version .

The amount of cpu-time consumed for executions with many processes
increases , but in a reasonable way, i.e. in proportions with the number of
parameters passed to the parallel subroutine .

The absolute value of cpu-time accord-ing to the various numbers of
parameters are now reduced . This should lead to better performances of
the parallelized programs with this second environment .

This better behaviour of PARFOR is mainly due to the shared memory and a
busy loop that replace the message syst em calls .

1ests with the MXSOO

"' "O
C
0
u
a.•

"' ;::

:i:

25 ----r:M~e_a_s-ur-e~d-o-v-er~h-e-ad~s-o~f~P~AR::::::FO~R::-:-:V~2tr----.-----,

20

15

10

0

1

Mean distribution of the System
and the User t irnes .

Values for 16 pararneters

6 l 10

!Ill User tirne

C] System Urne

Figure 5-16

60-....r---------=--=-=---:-=--,.......,,------,---
Measured overheads of PARFOR V2

50

40

o-,
"O
C
0
u

30 Q.\

'f! ·-
!:

20

Figure 5- 17

10

Measure of the CPU-TIME
Mean on 1 0000 execut ions

2 3 4 5 6 7 8 9 10

177

G No parameter

0 1 parameter

~ 2 parameters

0 4 parameters

ŒJ 8 parameters

G 16 parameters

ŒJ 32 parameters

[!] 64 parameters

Tests with the MX500 178

25 Measured overheads of PARF0R V2

------------------------------- E] Real t1me

Mean distribution of the System
time • User time. Cpu time and

20 Real time .

Number of parameters
0 User time

YI
"I,•
C
D 15
'-' c.,
v .. ~ System t1me =
E
5 ,~
"'' 10
E 0 Cpu time
1--

5

2 3 4 5 6 7 8 9 10

Figure S- l 8a
Number of parallel processes

35 Measured overheads of PARF0R V2

30

25

.... Mean distribution of the System I

time. User time. Cpu time and / Real time .

_,__
Number of parameters 8

ŒJ Real t1me

0 User time

(i)

'='
C
c,
u

20 "'' ,~
E
C

/
1/ ✓

~ System t ime

,,. 15
a,

E
1--

'

V 0 Cpu time

10

5

/

J V
_L.----""

0
V

V-

~ -

2 3 4 5 6 7 8 9 10

Figure S-18b

Number of parallel processes

7ests with the MX500 179

Figure 5-16 shows the repartition of the cpu-time between the user and
system times. Notice the very litt le part of the system time .

Figure 5-17 shows the variation of the user-t ime for executions with
various numbers of processes .

Figures 5-18a to 5-18b show a mean distribution of the various times for
the tests . This is for the tests with 8 parameters passed to the parallel
subrout ine .

For the first version , we provide some summary tables showing
approximated equivalent costs of the overheads introduced by the use of
the PARFOR . We can reproduce the same tables calculated in the same
way, for this second version. We have :

Number of parameters of the subrout i ne : 8
Number of executions for these results : 10000

Number Total Equivalent Flops number
of cpu ----------------------

procs time Single prec. Double prec.
------- ----------- -----------

0,23 1 1 9
2 1,28 59 47
3 2,83 130 105
4 3,64 167 135
5 3,93 181 145
6 5, 16 237 191
7 7,92 364 293
8 11,31 520 418
9 15,89 731 588
10 19,42 893 719

1 t is true by these results , that this version all ows a middle granularity
of the program to be taken into account by PARF0R . The costs of the
TASKI~~ calls are in another order of magnitude , lower for this version .
The busy loop lhat replaces the calls to the message system in the
implementation, is less expensive .

Tests with the MX500 180

Note however that the behaviour of the processes is different for versions
1 and 2 . ln the first version , when a process is waiting , it does not
consume any cpu-time . ln the second version , it remains in a busy loop .
But the results presented here lead to think that , even if there is a busy
loop , the results claim in favour of this second version .

Tests with the version 3 of PARFOR

This third version of PARFOR is an attempt to substitute àll hardware
atomic lock memories of the implementation , by software system V
semaptlores, based mainly on the Dekker·s algorithm .

The results for this version are provided only for the execution of the test
with no parameter . We did not go further in these tests , because it
appeared immediately that this solution was the worst possible .

Figure 5-19 shows the distribution of the system and user times . Figure
5-20 show the mean repartition of the various times for no parameter
passed to the parallel subroutine, according to the number of processes .

The system V semaphores is very slow and then , it is also too expansive
to execute all tests with this solution .

The first graphie shows the repartition of the cpu-time into the user-time
and the system-time . All the system-time is consumed by the
management of the software semaphores . The user-time remains
unsignificant in the total cpu-time .

The second graphie shows the 4 curves , real-time , cpu-time user- time
and the system-time . lt is clear on the graphie , that th i s solution is to
be rejected .

7 ests with the MXSOO

350

300

250

Measured overheads of PARFOR V3

Mean d1stribut1on of the System
t1me, User t1me, Cpu t1me and
Real t1me .

Number of parameters : 0

l]ill] user tlme

EJ System t ime

<J'>
"O
C
0
~ 200-+----+----+-----if----i-----l--~

"' = E

::: 150 --4-----+---+----i-----if--~:-:-:•:•:•
E
i==

0

1 z

Figure 5- 19

4 6 8 9 -10

Number of parallel processes

700~---,--~---,------r---,-,---,,----r--r----i

<J',
"O
C
0
u
a.>
(/.'

,:

600

500

400

300

200

Measured overheads of PARF0R V3

Measures of the real-time, user-time
, system-lime, cpu-time

Number of parameters passed · 0

Figure 5-20

100

2 3 4 5 6 7 8 g

Number of processes

181

ŒJ Real ttme

ŒJ User time

~ System t1me

0 Cpu time

10

7ests with the MX500 182

Tests with the version 4 of PARF0R

This version of PARFOR shows better results than the version 2 . However,
exact ly the same remarks from the version 2 can be transported for this
version .

Figures 5-21 a to 5-21 b show the mean repartit ion of the various times for
various numbers of parameters passed to the parallel subroutine ,
according to the number of processes .

Remember that here , we modified the environment such a way that the
WAIT facility is implemented without calls to the parallel library
previously necessary to access the atomic lock memories :

We also compute the approximated equivalent number of floating point
operations for the time results of this solution :

Number of parameters of the subroutine : 8
Number of executions for these results : 10000

Number Total Equivalent Flops number
of cpu ----------------------

procs time Single prec. Doub 1 e prec.
------- ----------- -----------
1 0,20 10 8
2 0,90 42 33
3 1,60 74 59
4 2,20 101 81
5 3,20 147 118
6 4,50 207 167
7 8,30 381 307
8 13,30 611 492
9 19, 10 879 707
10 29, 10 1339 1077

Tests with the MX500

25

20

,r,
D

D 15 u
(l)
(,j

-
E

-
(0
a., 10 c
t-

5

30

25

"'
20

T""

é:,
1...>
o.•
•.o ·---- 15 E
C: ·-,,,
(l)

E
t- 10

Measured overheads of PARFOR V4

Mean distribution of the System
time, User time, Cpu time and
Real time .

Number of parameters

2 3 4 5 6 7

Number or parallel processes

Measured overheads or PARFOR V4

Mean distribution of the System
time , User t ime , Cpu time and
Real time .

Number or parameters 8

2 3 4 5 6 7

8

Number or parallel processes

183

~ Real t1me

~ User time

~ System t1me

[!] Cputime

g 10

Figure 5-21 a

~ Real time

~ User time

~ System time

0 Cpu time

8 g 10

Figure 5-21 b

Tests with the MXSOO 164

These equivalent floating point numbers are better than those of the
version 2 of PARFOR . As we can see when comparing these tables , this is
always true when the number of processes is lower than the avai lable
number of processors (6 processors on our test machine) .

The conclusion for this version is good anyway .

Tests with the version 5 of PARFOR

This is the last version of PARFOR that we implemented until now . The
target of these multiple versions is always the reduction of the costs
when calling the TASKIN and WAIT facilities . As we have explained in the
chapter describing these various versions , this one is implemented
w i thout any 1 ock .

Figures 5-22a & 5-22b show the mean repartit ion of the various times for
various numbers of parameters passed to the parallel subroutine ,
according to the number of processes .

The results of these tests show similar results to those provided for the
previous version . The comments made for the version 2 are also still
valuable for this version . The frames of the curves that we draw are close
to those of the previous versions .

Hewever , the suppression of the remammg calls to the atomic lock
facilities benefit to the performances of the TASKIN and WAIT facilities.

Always in the same way , we compute the equivalent floating point
operation number for the various number of processes . This gives us the
following table :

Number of parameters of the subroutine
Number of executions for these results

: 8
: 10000

7ests with the MXS00 185

Number Total Equivalent Flops number
of cpu ----------------------

procs time Single prec. Double prec.
------- ----------- -----------
1 0, 10 5 4
2 0,70 32 26
3 1, 10 56 41
4 1,40 64 52
5 1,90 57 70
6 2,40 110 89
7 4,90 225 181
8 9,80 451 363
9 16,40 754 607
10 31,40 1444 1162

With such values , the PARFOR environment becomes quite interresting to
use for low granularity parallel programs . But the costs are still too high
for some applications . Linpack is such a kind of application which has a
rather fine granularity , that can only be exploited with an environment
having a very low total overhead . Even with these results of the version 5
of PARFOR, the results of linpack would not be very good .

Until now , this version is the best implementation. We can also compare
the overheads in terms of floating point operations, with the overheads of
the original version . The reduction of the costs is drastic .

The graphies show that a similar frame of the curves to the version 4 and
version 2 . Mostly, the absolute values are decreased in this version 5 .

- -------------------------~

1ests with the MXS00 186

20 -- Measured overheads of PARF0R VS

18

16

14
(/)
,:,
C:
0 12
Il,
lO

E 10
;:
(0
Q) 8
E
t-

6

4

2

--
Mean distribution of the System I tirne, User tirne , Cpu tirne and

_,___ Real time .

I Nurnber of pararneters 1 --
!__
/ /
'/

V /
/j /

~
(/

--- /Y

~ Real t1me

0 Usertime

~ System t 1rne

0 Cpu time

0 -
2 3 4 5 6 7 8 9 10

Figure 5-22a
Nurnber of parallel processes

35
Measured overheads of PARF0R VS
------------------------------- ŒJ Real time

30

25

l'•
D
C
Q

!f. 20
'" -·-
E
C: ·- 15 "' Il,

E
1-

10

5

-- Mean distribution of the Syst em
time, User time, Cpu time and I Real time .

- - Number of parameters : 8

I
Il j

/ I
J V

...---, ~
V/

0 User t ime

~ Syst em t ime

GJ Cpu time

0 ---
2 3 4 5 6 7 8 9 10

Figure 5-22b
Nurnber of para 11 e 1 processes

5. 10 Tests wi th the SGEF A routine

5.1 o. 1 Genera 1 description of the tests

ln this section, we descr1be the tests made w1th the SGEFA routine. The
most important thing is not that the results are provided by SGEFA ; but
well that the SGEFA routine 1s a good example for demonstratlng what ls
practically possible w1th PARFOR. A slm1lar test is done for FORCE.

The test program w1th SGEFA was wrltten 1n 3 versions . The first version
1s parallelized at the 1nnermost level wlth the standard tools of PARFOR .
The second version 1s paralle11zed at a h1gher level. And the thlrd version
1s parallelized at the hlghest possible level 1n the PARFOR env1ronment .

Most of these tests have been made 1n 5 versions of PARFOR descr1bed
earl1er .

Eventually , a FORCE version of the parallelized program at the h1ghest
level was wr1tten and testsed , and the t1me results are compared w1th
those of the PARFOR env1ronment .

5.10.2 Scheme of the SGEFA routine

The SGEFA routine , in its sequential version , is structurated in the
following way :

Tests with the MX500

Do loop over the pivots

Search the absolute maximum value in the
column to find the new pivot .

Swap the pivot row into position

Take the reciprocal of the pivot

(
Reduce the non-pivot rows

End of loop over the pivots

5.10.3 Yarious parallelized versions within PARFOR

Particularities of the first parallelization

166

The first parallelized version of the PARFOR SGEFA program is done in its
innermost routines. This parallelization was done in a very similar way as
in the tests with LINPACK .

So , the calls to the subroutines in SGEFA remain unchanged , while the
subroutines themselves are parallelized . ln this way , the standard
interface of the subroutines is preserved, except that the subroutines
contain some common statements necessary for the parallel work
subroutines . The calls to the TASKIN PARFOR facility are made in the
subroutines that are parallelized, implying that a new parallel subroutine
must a 1 so be descri bed (the para 11 e 1 subrout i ne that i s ca 11 ed by the
TASKIN facility) .

Scheme of the first parallel algorithm

- _ _ __ _ _ _ ,

Tests with the MXS00

Do loop over the pivots

Call izaMAX to search the absolute maximum value

Call TASKIN with the parallel subroutine
and the parameters for each process

End izaMAX

Determine pivot and its inverse

Call SSCAL to compute the multipliers

Call TASKIN with the parallel subroutine
and the parameters for each process

End SSCAL

Row elimination with column indexing

Call SAXPY to modify the rows

Call TASKIN with the parallel subroutine
and the parameters for each process

End SAXPY

End row elimination

End loop over the pivots

Particularities of the second parallelization

189

ln the second version, the parallelization is made at a higher level . The
standard interface is lost . The subroutines are directly parallelized in the
body of 5GEFA, instead of inside the subroutines themselves . That is why
the standard interface of the subroutines called is lost . These subroutines
are replaced by the calculations of the boundaries for the parallel work ,

Tests with the MXS00 190

and a loop to call the TASKIN facility , the number of times that there are
parallel processes . Note that in this solution , the number of times that
the TASKIN facility is called , is not reduced. Only the number of calls to
subroutines is reduced . Each original call to a subroutine is replaced by a
loop over calculations of the boundaries , and over calls to the TASKIN
facility .

Scheme of the second parallel algorithm

Do loop over the pivots

Call T ASKIN with the parallel subroutine and the
parameters for each process to search the
absolute maximum value

Determine pivot and its inverse

Call T ASKIN with the parallel subroutine and the
parameters for each process to compute the
multipliers

Row elimination with column indexing

Cali T ASKIN with the parallel subroutine
and the parameters for each process to
modify the rows

End row elimination

End loop over pivots

Particularities of the third parallelization

The thirs parallelization of this algorithm is made at the higest level ,
implying that a minimal number of calls to the TASKIN facility is made .
The body of the SGEFA algorithm is still more reduced , and contains only
some initializations , and a loop to call the TASKIN fac i lity the same

Tests with the MX500 191

number of times that there are parallel processes . No parameters are
given to the parallel called subroutine, but instead, the shared memory is
extensively used . The various calculations related to the distribution of
the work among the processes are made in the parallel routine with shared
or private variables . The shared variables are known by all processes and
must be updated only in the sequential section of a barrier , but can be
readen at any time by all of them . The priva te variables are used for
defining the boundaries , for indexes , and so on . This kind of
parallelization uses FORTRAN barriers for the synchronization between the
processes . As we describe in chapters 2 and 3, the implementation of the
barriers in the PARFOR environment do not require any special hardware
locks , because we always consider that one of the processes is the driver
and the only one allowed to execute the sequential code of .the barrier .

This kind of parallelization, as we have seen in chapter 4, is the standard
way to program in the FORCE environment , whi le it is not the original
philosophy of PARFOR .

The third parallel algorithm is a derivation adapted for PARFOR , of the
original parallel algorithm drawn by professor H. JORDAN for its own
FORCE environment . The main difference resides in the critical sections
not available in PARFOR . However, we are sure that one of the parallel
processes keeps always the control of the others when executing the
barrier code .

From there, we can convert the critical sections into sequential code that
can be executed in the sequent i a 1 protected code of the barri er . 1 n f act ,
the only differences between the FORCE version and the PARFOR version
are the following :

- The FORCE version uses one critcal section . lt is converted to a loop
contre l led by the main process of a FORTRAN barrier in the PARFOR
environment .

- The FORCE version has an implicit implementat ion of the barriers
with atomic locks, while the PARFOR vers ion uses only FORTRAN
statements .

Tests with the MX500 192

- The FORCE version does not need to compute explicitely the boundaries
of the work for each process . lt is calculated automatically by the
preprocessor . ln the PARFOR environment, these boundaries must be
explicitely calculated, and determined as a function of the process
identifier.

Scheme of the third paral lel algorithm (PARFOR version)

T/Je parai/el main program is built as follow :

1 nitial ize synchronization barri ers

Do for each para 11 e 1 process

Cali T ASKIN with the parallel routine and with
only as parameter, the identifier of the process

Direct call to the parallel routine

Call WAIT facility from PARFOR

End do loop

T/Je parai/el subroutfne fs buflt in t/Je followfnq wav :

do loop over the pivots

Search part of the pivot column for private maximum

Barrier code

Update the global maximum and record the pivot

End barrier code

Tests witn the MXSOO

Swap part of pivot row into position

Barrier code

Take the reciprocal of the pivot

End of barrier code

Reduce part of non pivot rows

Barrier code

reset global maximum

End of barrier code

End loop over pivots

Sc/Jeme of the t/Jird parai/el a/gorit/Jm (FORCE version)

The parallel algorithm is built in the fo llowing way:

Do loop over the pivots

Search part of pivot column for private maximum

Critical section

Update global maximum

End critical section

Barrier code

Record pivot when all processes have finished

End barri er code

193

7ests with the MXSOO

Swap part of pivot row into position

Barrier code

Take reciprocal of pivot

End of barrier code

Reduce part of non-pivot

Barrier code

Reset global maximum

End barri er code

End loop over pivots

5.10.4 Description of the result tables

194

The result tables provided conta in the same informations as it is the case
for the other tests . But for the present tests , we had tao many tests to
do , so we decided to suppress the line in the results , that provided the
comparison with the paralle 1 version of the algorithm executed as a
sequential program . This execution was interresting for measuring the
overheads introduced by the parallel version of t he algorithm , compared
with the original sequential execution.

7ests with the MXSOO

5.10,5 Scheme of the results

The measures for this kind of tests are taken in the following way:

lnitializations

Time(l,1)

do loop : i = t , ntimes

execute the sequential algorithm

loop: continue

Time(1,2)

1 nitia 1 izations

Time(2, 1)

Do loop2 : i = 1 , ntimes

execute the parallelized algorithm

loop2: continue

Time(2,2)

Computations and prints

5.10.6 Fixed parameters for the executions

The fixed parameters for the results are the following :

195

Tests with the MXSOO 196

Parameter I: Leadingdimension of t/Je matrix

This parameter corresponds to the stat ic enclosing matrix size fixed at
the compile time . This dimension corresponds to the maximum size of a
linear system that can be solved by the algorithm . This parameter has the
same meaning as the parameter of the same name that has been used in the
LINPACK tests

Parameter 2 : Matrix dimension

This parameter is the size of the linear system to be solved . This number
must be lower than the leading dimension .

Parameter 3 : Sequentia! execution number

This parameter is the number of execut ions of the sequential algorithm on
which the mean results provided in the tables are computed .

Parameter 4 : Para!!e.! execution number

This parameter is the number of executions of the parallel algorithm on
which the mean results provided in the tables are computed .

These parameters are valid for all results of the tables . We made vary
them in the following ranges :

Leading dimension
Matrix dimension
Sequ. exec. number
Para 11 . exec. number
Pro cesses

: 501
: 25 .. 500
: 3 or 1 , depending on the matrix size
: 3 or 1 , depending on the matrix size
: 1 .. 6

From the tables , we draw some graphies , showing the critical results .
Ali these results are available in the appendix 4 .

Tests with the MX500 197

5.10.7 Results of the tests with the first level of paralle)izatioo

The first version of the SGEFA algorithm was not used for the tests . The
main reason of this attitude is that this version was already extensively
used within the tests of the LINPACK benchmark . So , we know that the
results provided by the parallelization of this algorithm by this level, are
very bad . For more informations, refer to the section describing the tests
we made first with LINPACK .

5.10.8 Results of the tests with the second level
of p~rnllelizlltion

Tests with the version 1 of PARFOR

The graphies of figures 5-23 a & b provided show the bad performances of
PARFOR when the TASKIN facility is invoked very often for very small
parallel Jobs to perform .

The SGEFA calls very often the TASKIN facility for executlons of very
little jobs . so , these are the circumstances in which PARFOR has the
badest behaviour . This is confirmed by the curves showing that the
speedup is better when the slze of the matrlx (and thus the parallel task)
1s greater .

The graphies are nearly the same for the Real-time and the Cpu-time .

Tests with the MXS00 198

4,0

The SGEF A test
~ 51ze = 25

3,5
+ Machine MX500 with

6 processors
w 3,0 !;
r

• /\TT vniverse
+ PARFOR V 1 envir.

1
:J + closed session
û...
u 2,5
u.
C,

(.(J

!: 2,0 û...

+ Program SGEF AF
• 1 to 3 executions
+ Leading dim. 501

ŒJ 51ze = 100

w
Date : 21 Nov. 1987 z

CL
1,5

:J
0

Author : R NOEL

0 Size • 200
w
w
CL 1,0 u-,

0,5

1~ ~
r----. ~

~
1

I'----- i'--.. r---
~ ~ p----

~ s1ze = 400

0,0

2 3 4 5 6 7 8 g 10
Figure 5-23a

NUMBER OF PARALLEL PROCESSES

4,0

The SGEF A test
~ S!ze = 50

3,5
• M.lC/1 !ne MX50û W I tn

6 processors
w

3,0 L..

....
+ ATT universe
+ PARFOR Vl envir . ~ Size = 100

1
...J
<l

+ closed session
w 2,5 Ct'.

u. + Program SGEF A.F
C,

l"

ù..'.
2,0

+ 1 to 3 execut ions
• Leading dim. 501

0 S!ze = 200

w
r Date : 21Nov. 1987
z

1,5
û...
:J

Author : R NOEL

~ Size • 400
c.,
w
w
û... 1,0
l'•

0,5 ~ ~ i'--,_

\ ""

Ï'--. r---.
~ t:-- r--

r---
0,0

2 3 4 5 6 7 8 g 10

Figure 5-23b
NUMBER OF PARALLEL PROCESSES

7ests with the MX500 199

Tests with the version 2 of PARF0R

ln this section , with the same program and the same measurements as in
the previous section , we can observe a simi lar behaviour of PARF0R ,
except that some results are positive when the granularity of the parallel
task is increased . For sizes less than 100 , it is never usefull to run a
program with more than 1 process .

Anyway , for greater sizes , the speedup is greater than 1 . So , if we
increase the size of the parallel job, there is a tendency for the curves to
become linear.

Because the test program is the same , we can think that this increase of
performances is due to the modified PARF0R environment .

The graphies on figures 5-24 a & b are nearly the same for the Real-Ti me
and the Cpu-time .

Tests with the version 5 of PARF0R

The same program parallelized in the same way , executed in this last
version of PARF0R , provides better results . The graphies of figures 5-25a
& 5-25b show that the influence of the PARF0R implementation is very
high in this kind of parallelization. The costs of the calls to TASKIN are
reduced (as we have seen in the serie of tests concerning the overheads) ,
and this is easely visible on the performance point of vue .

The performances are however still better for large sizes of the parallel
subrout i nes .

7ests with the MXSOO 200

4,0
The SGEF A test 0 Slze = 25

3,5
+ Machine MX500 with

6 processors
U.I 3,0 :::
1-

1
::,

-,- - - >-- ·--->--- • ATT universe
+ PARFOR V2 envir.
+ closed session

ŒJ Size = 50

o..
u 2,5
u. + Program SGEF AF
0

lC,

I: 2,0 œ

+ 1 to 3 executions
+ Leading dim. 501

G Stze = 100

w
1-

z

o.. 1,5
::,
0
w
w
o.. 1,0 l')

0,5

L.--- r---- Date : 20 Nov. 1987

/ r---...... Author : R NOEL

t .__
~__

K ~ i--
~~

~ ~ t--~
"-.., ----.. ~

'--- r--

0 Size a 200

~ Size = 400

~,

0,0

2 3 4 5 6 7 8 9 10
Figure S-24a

NUMBER OF PARALLEL PROCESSES

4,0
The 5GEF A test ŒJ S1ze = 50

3,5
• r1achlne ï'\r500 wit~,

6 processors
w

3,0 I:
1-

+ ATT universe
+ PARFOR V2 envir.

~ Size = 100
1

_J + closed session
<'.l
w 2,5 û'.

u.
Cl

l')
I: 2,0
ù:'.

+ Program SGEF AJ
+ 1 t o 3 executions
+ Leading dim. 501

0 s1ze = 200

w
1-

z
1,5

o..
::,
0
w
w
(L. 1,0
lO

0,5

.---- .___ Date 20 Nov. 1987

/ f---..-... Author R NOEL

;; r---, r---, --
j~ ~ :--------
~

._______,
.....___ ~

' - r---

~ Size a 400

0,0

2 3 4 5 6 7 8 9 10

Figure S-24b
NUMBER OF PARALLEL PROCES5ES

1es1s with the MX500 201

4,0
The SGEF A test 0 stze = 25

3,5
• Machine MXSOO with

6 processors
w 3,0 ..,..

1-

• ATT universe
• PARFOR VS envir. ~ Size = 50

1
:) • closed session
o..
u 2,5
Li..
0

r_r,
r: 2,0 ,:,:
w
1-

- 1,5
û..
:)
C,
w
w
Cl. 1,0 L'l

0,5

c • Program SGEF A.F

)V -------..... • 1 to 3 execut ions
• Leading dim. 501

,0· Date : 7 Dec. 1987 ------, ..___ Author : R. NOEL

li, ~ ' .----
~___

~
~
~

~
~ ~ L

--i..__,

0 Stze = 100

0 Size c 200

~ Size = 400

0,0

2 3 4 5 6 7 B 9 10

Figure 5-25a
NUMBER OF PARALLEL PROCESSES

4,0
The SGEF A test

~ Size = 50
3 c-, ,· 1--

• Machine MXSOO with
6 processors

~ 3,0 --
1-

• A TT uni verse
• PARFOR VS envir. 0 Size = 100

1

...J
•1

• closed sessi on
w

2,5 û..

Li..
0

IJ)

û.'.
2,0

w
1-

z
1,5

~ - ' ù
w
w
c,_ 1,0 cr,

• Program SGEF A.F

/
--....

+ 1 to 3 executi ons
I + Leading dim. 501

0 Date : 7 Dec. 1987

Author : R NOEL ..___

) ~ " V-

'~ i'-............
~ ----....

ï-----_ ,___

0 Size = 200

~ Size c 400

0,5

0,0

2 3 4 5 6 7 8 9 10

Figure 5-25b
NUMBER OF PARALLEL PROCESSES

Tests with the MXS00 202

Conclusion for this second level

These results show that this level of parallelization is not very different
from the first Jevel . The main difference is located in the number of
intermediate calls to subroutines , which is reduced . But this reduction
does not affect in a very large way the results, because the extra-calls of
the first level , eventually , are not very expensive compared to the more
critical time consumption of the TASKIN facility .

This second level of parallelization is very sensible to the costs of the
TASIN facility . This is due to the multiple calls that are made to this
tool , and that is the r eason why we try to reduce the cpu-time of the calls
toTASKIN .

The tests we built show that the calls to the T ASKIN facility remain very
expensive in a parallel program . This is the reason why we try to avoid
them as most as possible . This reduction of the cal ls to the TASKIN
facility is done in the third level of parallelization . We discuss the
results of ths third method in the next sub-section .

5, 10,9 Results of the tests with the third Jevel
of para1lelization

Tests with the version 1 of PARFOR

The first graphie (figure 5-26a) shows immediate ly that this third leve l
of parallelization of a PARFOR program is far better for our SGEFA
program . The cpu curve shows that the speedup is quasi linear according
to the number of processes that are used to run the para l le l program .

This curve shows the first good results obtained with the PARFOR
envi ronment . For this application, where the size of a parallel job is very
little , we can observe that the speedup follows the curve that we
expected to see . The speedup is l inear unt i 1 the execut ions with 4
processes . After that , it is st i 11 increasing for most of the curves , but
there is a tendency to a certain stabilization .

We can make a distinct ion between 2 k inds of curves on this graphie .

1ests with the MXS00

w
I:
l

i
::,
o..
u
I.J..
0

tr,
I:
Ct'.
LL' .--
z

o..
::i
0
w
w
CL
trJ

w
,:

l
i

_J

<l
w
ù::

I.J..
0

Ul
L
œ
w
1-

z

û..
::,
C,
w
w
o..
tr,

4,0-r---r---r----.----~---l

The SGEF A test

3,5-;----t---t-----+--+---+---l
• Machine MX500 with

b prc,cessors
3, 0 -;----t---t-----+--+---+---l + ATT un iver se

+ PARFOR V 1 envir.
+ closed session

+ Program EXTSGEF AF
+ 1 to 3 executions

2, o ,---t---t-h.,__,.---+-----,1----1 + Leading dim. 50 1

Date 18Nov.1987

1,5 -t---+--rF-+_::,,.~--+---+--1 Author : R NOEL

0,0-;-----t----+----+----+----+----+---+---+----l

2 3 4 5 6 7 8 g 10

NUMBER OF PARALLEL PROCESSES

4,0-.----,-----.---,--,,---,---1

The SGEF A test

3,5-+---+--~-----i-----,1----1
+ Machine MX500 with

6 processors
3, O -+----+--+---+-----4>------,1----1 • ATT un iverse

2,5-+---+--+--#--,L--+---,...q_---1

+ PARFOR V 1 envir.
• closed session

+ Program EXTSGEF AF
+ 1 to 3 execut ions

2, o -+-----+-~....,,_----1,.,__---1--1----i • Lead i ng di m. 50 1

Date 18 Nov. 1987

1 ,5 -+----+-+----,,f---i----11---1----l Author : R NOEL

0,0-+----+--+---t-----,,---1---l----1----+--~

2 3 4 5 6 7 8 g 10

NUMBER OF PARALLEL PROCESSES

203

[!'] Slze = 25

~ Size = 50

G Slze = 100

GJ Size - 200

ŒJ Size = 400

Figure 5-26a

~ s1ze = 50

~ Size = 100

ŒJ Slze = 200

ŒJ Size - 400

Figure 5-26b

Tests with the MX500 204

First , the curves drawn for the executions of the algorithm with a matrix
size of 50 to 200 . These curves show a relatively good behaviour of
PARF0R . The speedup is quasi linear . The stabilization for the executions
with more than 4 processes can be explained by the fact that the machine
on which the tests are made , disposes of only 6 processors . But in a Unix
environment , even if a user is working alone on the system , some
processes , part of the system are still running periodically . lt implies
that , when a parallel program is executed with a number of parallel
processes close to the number of available processors , some processors
are not immediately available , involving some delays for the user
processes, having in turn an influence on the time consumption of the user
program .

This is true for the real-time of the parallel program, but in this level of
parallelization , it is also true for the cpu-time partially determined by
the waiting times at the synchronization barriers . There , the parallel
processes are waiting in a busy loop involving unusefull time wasting that
can not be avoided . This leads immediately to a direct conclusion that
such a parallel program should never be executed with a number of
processes that is greater than the available number of processors . That i s
also the reason why we limited our tests to executions with as a maximum
6 processes, although it was pefectly correct to use more.

Concerning th is first serie of curves, we can also notice that the speedup
for the execution with 1 process is not 1 . The reason of this is that the
comparisons are based on the timings of the sequential algorithm , and not
on the timing of the parallel algorithm executed with 1 process . We
discussed this subject earlier . Note that taking this assumption into
account , it is very clear on the graphie , that the factor of the speedup is
approximately equal to the number of processes that execute the program .
This means a very good behaviour of PARF0R .

Secondly, the curves drawn for the executi ons of the algorithm with little
matrix sizes , and large matrix sizes . These curves show a relative ly bad
behaviour of PARF0R for executions wi t h more than 3 processes .

For the little matrix sizes, it seems that the size fo the parallel code is
tao little compared to the number of operations that are necessary to
manage these parallel processes . This imp l ies that most of the time is

1ests with the MXSOO 205

spent in the synchronization barriers , wasting such a way the effective
user time . This involves a drastic diminution of the performances when
the number of parallel processes increases . This phenomenon is relatively
similar to the one we discovered in the second type of parallelization with
the TASKIN routine . lt is the problem of granularity which appears again
at a lower level .

For the large matrix size (400) , we have a very strange curve for which
we have no reasonable explanation until now . The speedup is not too bad
until 3 processes, but then it is stabilized.

lt seems very strange that the speedup is so bad , despite the large
parallel work assigned to each process . This behaviour goes to the
opposite direction with the results we had until now . Perhaps it is a
problem of the algorithm , but this would be strange too because the
algorithm is independent of such a factor .

One possibility to explain this strange behaviour would be the following :
some extra-mechanisms could be automatically called, like paging of the
memory , inactivation of the local cache memories , and so on , because of
the size of the matrix . But these things are difficult to certify . What
could be done to prove it , is to execute the program many limes with
increasing sizes until the moment at which we can observe large
degradations in the performances of the algorithm . But this was not done
because of the costs that such tests involve in terms of time .

The curve that is provided for the real-time has nearly the same scheme
as the curve provided for the cpu-time . This behaviour can be considered
as "normal" because we always use a number of calls to TASKIN which is
the same as the number of processes , which in turn , is less or equal to
the number of processors. We describe in chapter 3 the influences and the
relations between these factors .

Tests with version 2 of PARFOR

ln these tests , with the same program and the same measurements as in
the previous case , we can observe a simi lar behaviour of PARFOR . The
curves of figures S-27a & 5-27b show that the performances of this level

7ests with the MXSOO 206

of programming are independent of the implementation of the TASKIN
facility and the way the messages are sent to the parallel processes .

This behaviour is quite normal , because this way of programming the
algorithm implies only the number of times a TASKIN call , that there are
paralle 1 processes . The amount of time spent in the T ASKIN faci 1 ity is
reduced to a fixed value undependent of the matrix size , and thus , to a
minimum . And the modifications made in its implementation do quasi not
affec_t the timing results of the algorithm .

This is why this third method of programming in the PARFOR environment
appears to be the best solution. The implication is that PARFOR can also
be performant for small granularity parallel programs , if they are
parallelized in such a way , with barriers when the synchronizations are
necessary , and with shared memory as the mean of communications
between the processes .

Tests with the versions 4 and 5 of PARFOR

The same remarks from the PARFOR environment 3 are still valuable for
the results provided by the same program executed with the versions 4 and
5 of the PARFOR . The differences in the implementation of PARFOR do
affect in a very little and constant way , the results of the algorithm
under test . This affection is negligible compared to the execution time of
the algorithm .

Sorne variations can be observed on the curves (figures 5-28 & 5-29) .
But these are very little , and can be considered as acceptable statistic
variations .

1ests with the MX500 207

4,0

The SGEF A test 0 s1ze = 25
3,5

• l'i2(:timE: MXSOO with
6 processors

;::! 3,0
t-

1

=· a..
u 2,5
LL
c ,

l'l
~ 2,0 ü.'.
w
t-

z -
1,5

il. -.
0
w
w
a.. 1,0 l'l

0,5

• ATT universe

/ • PARFOR V2 envir.
• closed session

/

~ / • Program EXTSGEF AF

/) • 1 to 3 execut ions

/
• Leading dim. 501

J Date : 19 Nov. 1987
~ Author : R. NOEL

/; ~
,__,.,,.

~_

f V '

ŒJ Size = 50

G s1ze = 100

GJ Size - 200

ŒJ 51ze = 400

0,0

2 3 4 5 6 7 8 9 10

Figure 5-27a
NUMBER OF PARALLEL PROCESSES

4,0

The SGEF A test
~ s1ze = 50

3,5

_, • 112ct-ii ne MX500 w:th
6 processors

w
~ 3,0
t-

1
_J

4
w 2,5 ù::

LL
0

Ul
r:: 2,0
Q'.
w
t-

z
1,5

û.
:J
.::.,
w
w
û. 1,0
l(J

0,5

• ATT universe

/~ • PARFOR V2 envir.
• closed session

b1 \ • Program EXTSGEF AF
• 1 to 3 execut ions

/ • Leading dim. 501

/; / Date 19 Nov. 1987
Author : R. NOEL

/; ~ ~ 1\ •

1/} V ~ ~

G Size = 100

GJ Size = 200

ŒJ Size s 400

0,0 i 1

1 1
2 3 4 5 6 7 8 9 10

Figure 5-27b
NUMBER OF PARALLEL PROCESSES

Tests with the MX500

w
!:
l

i
::,
ù.
u

(J)

I:
et:
w
1-

z

o..
::,
0
w
w
o..
lCJ

w
I:
1-

1 _,
<l
w
ù:'.

LL
0

Ul
!:
ù:'.
w
1-

z:

ù.

=· 0
w
w
ù.
((1

4,0

3,5

3,0

2,5

2,0

1,5

1,0

0,5

0,0

4,0

3,5

3,0

2,5

2,0

1,5

1,0

0 ,5

0,0

The SGEF A test

' • Machine MXSOO wi: 11
6 processor s

• ATT universe

V + PARFOR V4 envir.

/ • closed session

j ~
___. • Program EXTSGEF AF

• 1 to 3 execut ions
• Leading dim. 50 1

j
✓

•• Date : Nov. 1987

~ Author : R NOEL

/; ï ~

1r--o
'~ ,____, ~

~
V "\

2 3 4 5 6 7 8 9 10

NUMBER OF PARALLEL PROCESSES

The SGEF A test

! '
• Mac'1 inf> MXSOO with

6 processors

• A TT un iverse

~ • PARFOR V4 env i r .

/ • closed session

V • Program EXTSGEFAF

/ • 1 to 3 execut ions

• Leading dim. 501

/; I Date : 30 Nov. 1987

Author : R NOEL

I •-

J !/ -,""
~ V ~r~. "

2 3 4 5 6 7 8 9 10

NUMBER OF PARALLEL PROCESSES

208

0 s1ze = 25

ŒJ Size = 50

ŒJ Size = 100

0 Size • 200

~ 5ize = 400

Figure 5-28a

ŒJ Size = so

ŒJ Size = 100

ŒJ Stze = 200

ŒJ Size ~ 400

Figure 5-28b

1ests with the MXS00 209

4,0
The SGEF A test 0 stze = 25

3.5
; r·1achin1, r1xso:, wltl\

6 processors
w 3,0 r:
t-

1

=· a.
u 2,5
LL.
0

v,
I: 2,0 0:
w
t-

:z -
1,5 a.

:J
0
w
w
o. 1,0 l ()

0,5

+ ATT universe

/ + PARFOR VS envir.

/ + closed session

/ / + Program EXTSGEF AF

) - • 1 to 3 executions
+ Leading dim. 501

A
if

Date : 28 Nov. 1987
~

Author : R NOEL

-----(f ---11

/; (/ --~
:~ /

ŒJ Size = 50

~ Size = 100

0 Size • 200

~ Size = 400

0,0

2 3 4 5 6 7 8 9 10

Figure 5-29a
NUMBER OF PARALLEL PROCESSES

4,0
The SGEF A test ŒJ Size = 50

3,5
+ Machine MXSOO with

w
3,0 I:

t-
1

.J
<[
w

2,5 c,:

I.!...
0

ln
r:: 2,0 c,:
w
t-

z - 1,5
a.
=· G
w
w
û. 1,0 (_()

0,5

/' 6 processors
+ ATT universe

} K + PARFOR VS envir.
• closed session

/ ~ \ + Program EXTSGEF AF
+ 1 to 3 execut ions
+ Leading dim. 50 1

/; / 28 Nov. 1987 Date
Author : R NOEL

/ j ------~

t / ~ r------

~ Size = 100

0 Stze = 200

ŒJ Size E 400

0,0

2 3 4 5 6 7 8 g 10
Figure 5-29b

NUMBER OF PARALLEL PROCESSES

Tests with the MXSOO 210

Tests with the FORCE environment

The FORCE environment provides tools that are relatively different from
those provided by PARFOR . FORCE is actually considered as " the state of
the art " for parallel programming in FORTRAN like languages , while
PARFOR is just barn some months ago .

The FORCE SGEFA version that we tested on our machine was written and
provided to us by professor H. Jordan . We did not modify anything in this
parallel algorithm. We have only modified the enclosing program in such a
way that the timing results are provided in the same standard tables we
proposed for the PARFOR environment.

The results provided on the graphies show very good performances for the
SGEF A routine. 1 n f act , because of the phi losophy of the FORCE
environment , a FORCE program has necessary the same structure that we
described for the third method of parallelizat ion within PARFOR . For this
reason , even if FORCE provides many tools for parallel programming, the
performances of a program can not be very different from the
performances provided by PARFOR . The main differences that remain
between the SGEFA program written in FORCE and the SGEFA program
written in PARFOR are explained in the section describing the third level
of parallelization . Mostly , FORCE makes extensive uses to hardware
facilities . But this is implicit for the FORCE user , which only wri te
macros for the preprocessor .

Then, the results are no more dependent of the environment, but well of
the use or not of the hardware facilities . If they are used , because of
their specificity to the machine , they must increase the performances of
a program that makes use of them against the same program that do not
use these funct ions .

Tests wi1h the MX500

w
r::
1-

1

=· û.
u
LL
0

tr,
:i:::
ü:'.
w
1-

z -
(l_

=· 0
w
w
(l_
t r,

w
r::
l

i
...J
<!
w
Ci:

LL
0

tf)

r::
ü:'.
w
1-

z

û.
::,
0
w
w

The SGEF A test

3,5--t----t---+---+---+---+----I

3,0

2,5

2,0

1,5

1,0

0,5

0,0

• t1aüdne MX500 with
6 processors

-i---+----+---+--+--++-----1 • A TT universe
• FORCE Environment
• closed session

• Program SGEF AFRC
• 1 to 3 executions

-i---+----+------.+-r----+------1 • Lead i ng di m. 500

Date 16 Nov. 1987
Author : R NOEL

-+---+---,,'-,4-,L-....,..--4---f-----l

2 3 4 5 6 7 8 9

NUMBER OF PARALLEL PROCESSES

10

The SGEF A test

3,5 -1---+----+----+----+---t---i
• Machine MX500 with

6 processors

3,0--+---+---+----+----+---4~ • ATT universe
• FORCE env i ronment
• closed session

2,5--+---+----+-----+f----t---i
• Program SGEF AFRC
• 1 to 3 execut ions

2,0 - t---+----+-i1--!r-----+---+------i • L ead i ng di m. 500

Date 16 Nov. 1987

l ,5 -+-----+-----.<-+-----t---<--<
Author : R NOEL

Üi 1 , 0 -;---~~...,...-------t------t----1--r--t---r-----1

0,0--t---+----+--+---+---t---<r--r--t-----i

2 3 4 5 6 7 8 9 10

NUMBER OF PARALLEL PROCESSES

211

ŒJ S1ze = 25

ŒJ Size = 50

ŒJ Size = 100

0 Size a 200

ŒJ Size = 400

Figure 5-30a

ŒJ s1ze = 50

~ Size = 100

0 Si ze = 200

~ Size a 400

Figure 5-30b

Tests with the MX500 212

Conclus ion for this third level

As we have seen, this third level of parallel programming seems to be the
best way to program in PARFOR . The curves show that the speedup is
nearly always good , despite of some exceptions that we can explain or
not. This way of programming requires additionnai tools that can be
directly implemented in FORTRAN, perticulary the barriers that allow an
easy way for synchronizations . These barriers seem to be sufficient for
many parallel programs , but are expensive in terms of time consumpt ion.
The curves for the same FORCE program are better than the curves for
PARFOR . But this is mainly due t o the fact that FORCE uses hrdware
atom ic locks, while PARFOR not .

The main characterist ic of this way of programming is that we can real ly
say that it is parallel programming . The most important things in a
parallel program are not the calls to the TASKIN routine , but well the
synchronizat ions between the processes .

Chapter 6

Sorne final words as conclusion

6 .1 Introduction

ln this work , we studied concepts , bath for the starting point of the
development of the PARFOR environment, and for programming within this
environment. We also made some comparisons with the FORCE environment
- that we had first ta adapt ta our UNIX system - and its concepts.

At the beginning of this study , after the first tests , we were
disappointed at the view of the results . They were rather bad . But further
tests more elaborated allowed us to reconsider the implementation on
some specific points , ta increase the speed of the parallelized
applications, and eventually, get better results .

The tests we made were essentially concentrated on benchmark programs,
and this could be considered as a restriction ta the results that we got .
However, the LINPACK application which was the base of our work, is a
complete scientific application , but still compact , compared ta some
others . An extention of this work could be the parallelization of larger
applications ta confirm the results we have , for very large parallel
programs .

Some final words as conclusion 214

6.2 A future for PARFOR?

The main hope concerning this study , is that the t ime spent to this
project is not spent "just for bui lding one another of these multiple tries
in FORTRAN-like parallel computing languages" . We can already confirm
that, this project is continuing in collaboration with the TU München, and
another student , trying to adapt PARFOR in another context (VAX clusters
environment) . The PARFOR environment , is also developped for the
B52000 machines in another team of our department . The key words for
the futur of PARFOR remain SIMPLICITY and PERFORMANCES .

Simplicity for the user to have the possibility to modify its applicat ions
with a low number of tools .

Performances for the applications to gain in time when executed within
this parallel system .

6 .3 My persona l experi ment

Anyway , 1 found very interesting to work in this area of parallel
programming , and interesting to discover practical di fficulties that
parallel programs involve . But in all cases, 1 found and realized that the
parallel programming is always more complicated than the traditionnal
sequential programming , leading to a greater time in trying to find a
parallel solution to a given algorithm , and to a longer time in debugging a
program that includes parallelism.

Bibliography

[Abstreiter] F Abstreiter
PARFOR: Paralleles FORTRAN: Entwurf des prototyps
Institut für lnformatik, TU München, 1987

[Abstreiter] F. Abstreiter
PARFOR - Paralleles FORTRAN: lmplementierung unter 8S2000.
Institut für lnformatik TU München, internes Papier , August 1987

[Anderson-Jensen 1 George A Andersen & E. Douglas Jensen
Computer interconnection structures : Taxonomy , characteristics
and examples.
Computing Surveys, vol. 7, n·.4, dec 1975, p 197-213

[Ardoni-Boccalatte-DiManzo] G. Adorni , A Boccalatte & M Di Manza
Evaluation of scheduling algori t hms in the multiprocessor
environment
Computer Performance volume 2 (1981) p 70 - 76

[Axelrod] Tim S. Axelrod
Effects of synchronization barriers on mul tiprocessors
performances
Parallel Computing volume 3 (1986) p 129- 140

[Bach 1 Maurice J. Bach
The design of the UNIX operating system
Prentice-Hall , 1986

[Ben Ari] Ben Ari M.
Princip les of concurrent programming
1982

8ibliography

[Benwe 11] Nicholas Benwe 11 , 1975
Benchmarking: Computer evaluation and measurement
John Wiley & Sons, 1975

[Brice J R. Brice
Benchmarking your benchmarks : A user ·s perspective
Computer Performance volume 4 (1983) p 73 - 79

[Browne] J . C. Browne
Framework for formulation and analysis of parallel computation
structures
Parallel Computing volume 3 (1986) p 1 - 9

[Brumfield] J. A. Brumfield

216

Operationnal response time formulas and their sensitivity to errors
Parallel Computing volume 3 (1986) p 93 - 110

[Buzbee] B. L. Buzbee
A stategy for vectorizati on
Parallel computing volume 3 (1986} p 187 - 192

[Bytheway] A. J. Bytheway
On the proper treatment of measurement data
Performance volume 1 (1980) p 28 - 36

[Calahan] O. A. Calahan
Task granularity studies on many-processor CRAY X-MP
Parallel Computing volume 2 (1985) p 109 - 118

[Carnevali-Sguazzero-Zecca] P. Carnevali, P. Sguazzero, V. Zecca
Microtasking on IBM multiprocessors
IBM J. Res. Develop. Vol . 30, N° 6 , november 1986

[Cavouras] J. C. Cavouras
Simulat ion of user processes
Computer Per formance volurne 2 (1981) p 192 - 195

8ibliography

[Chu-George] Eleanor Chu & Alan George
Gaussian eleimination with partial pivoting and load balancing
on a multiprocessor.
Parallel Computing volume 5 (1987) p 65 - 74

217

[Clausing-Hagstrom] J.A Clausing, R. Hadstrom, E.L. Lusk & RA Overbeek
A technique for achieving portability among multiprocessors:
lmplementation on the Lemur.
Parallel Computing volume 2 (1985) p 137 - 162

[Darema-Rogers] F. Darema - Rogers
Parallel applications development and performance
IBM Europe lnstitute, parallel computing, August 1986

[Denning] Peter J. Denning
Parallel computing and its evolution
Communications of the ACM, vol. 29, n· .12, dec 86, p 1163-1167

[Dongarra-87] ,..Jack .J Dongarra & Lennart Johnsson
Solving bancJed systems on a parallel processor
Parallel Computing volume 5 (1987) p 219- 246

[Dongarra-5ameh-5orensen) J.J. Dongarra , AH. Sameh , D.C. Sorensen
lmplementation of some concurrent al gorithms for matrix
factorization
Parallel Computing volume 3 (1986) p 25 - 34

[E.Allen] Frances E. Allen
Compiling for parallel i sm
IBM Europe lnstitute, parallel computing, August 1986

[Eichholz] Stefan Eichholz
Parallel programming with PARMOD
Institut für lnformatik TU München, August 1987

[Elisabeth-Hull-Donnen] M. Elisabeth, C. Hull and G. Donnen
Contextually communicating sequential processes : A software
engeneering environment
Software : Practice and Experience volume 16 (1986) p 845 - 864

Bibliography

[Faber-Lubeck-White] V. Faber, Olaf M. Lubeck , Andrew B. White, Jr
Superlinear speedup of an efficient sequential algorithm is
not possible
Parallel Computing volume 3 (1986) p 259 - 260

[Faber-Lubeck-White-87] V. Faber, Olaf M. Lubeck, Andrew B. White
Comments on the paper .. Parallel efficiency can be greater than
unity .
Parallel Computing volume 4 (1987) p 209 - 210

[Ferrari-Spadani] D. Ferrari & M. Spadani
Experimental computer performance eva luation

[Fisher] A J. Fischer
A multiprocessor implementation of occan

218

Software: Practice and Experience volume 16 (1986) p 875 - 892

[Frederickson-Jones-Smith] P. O. Frederickson, R. E. Jones & B. T. Smith
Synchronization and contrai of parallel algorithms
Parallel C9mputing volume 2 (1985) p 255 - 264

[Fuller] H. Fuller, K.Ousterhout
Multi-microprocessors: An overview and working examples
Proceedings of the IEEE , vol. 66 , n· .2 , february 1978, p 216- 228

[Gabriel] R. P. Gabriel , MIT press, 1985
Performance and evaluation of LISP systems
Prentice Hall , 1986

[Gait] J . Gait
A probe eff ect in concurrent programs
Software : Pract ice and Experience volume 16 (1986) p 225 - 233

[Gajski-Peir] Daniel D. Gajsky & Jih-Kwon Peir
Comparison of Five multiprocessor systems
Parallel Computing volume 2 (1985) p 265 - 282

8ibliography

[Gehani-Roome] N. H. Gehani and W. D. Roome
Concurrent C

219

Software : Practice and Experience volume 16 (1986) P 821 - 844

[Ghezzi] C. Ghezzi
Concurrency in programming languages: A survey
Parallel Computing volume 2 (1985) p 229 - 241

[G-Schmitt] Günter Schmitt
Fortran-Kurz technisch orient iert : Einführung in die
programmierung mit Fortran 77
München Wi en , 1 985

[Haring] G. Haring
Workload characterization at task level
Computer Performance vomume 3 (1982) p 61 - 72

[Hillis-Steele] W. Daniel Hilis & Guy L. Steele
Data parallel algorithms
Communications of the ACM, vol. 29, n· .12, dec 86, p 1170-1183

[H.F. Jordan] H. F. Jordan
Structuring parallel algorithms in an MIMD shared-memory
environment
Parallel Computing volume 3 (1986) p 93 - 110

[Hobfeld-Weider] F. Hosfeld & P. Weider
Parallele algorithmen
lnformatik-Spektrum (1983) , vol. 6, p 142 - 154

[Hockney-84] R. W. Hockney
MIMD computing in the USA 1984
Parallel Computing volume 2 (1985) p 119 - 136

[Hockney-86] R. W. Hockney
Parametrization of computer performance
IBM Europe lnstitute, parallel computing, August 1986

Bibliography

[Hornstein] J. Virgil Hornstein
Parallel processing attacks real-time world
Mini-Micro systems, december 86, p 65

[Horton-Turner] 1. A Horton and S. J. Turner
Using coroutines in Pascal
Software : Practice and Experience volume 16 (1986) p 45 - 61

[Hossfeld] F. Hossfeld
Strategies for parallelism in algorithms
IBM Europe lnstitute, parallel computing, August 1986

[Janssen] R. Janssen
A note on superlinear speedup
Parallel Computing volume 4 (1987) p 211 - 213

[Janssens-Annot-Goor] M.D. Janssens, J.K. Annot, A.J. Van de Goor
Adapt ing Uni x for a multiprocessor environment
Communications of the ACM, vol. 29, number 9, sep 86, p 895-901

[Johnstone] 1 an Johnstone
Strength in numbers
Unix Review , february 1986 , p 53 - 58

[Jones-Schwarz] Anita K. Jones & Peter Schwarz
Experience using multiprocessor systems - a status report
Computing Surveys, vol. 12, n· .2, june 1980, p 121 - 213

[Jordan-87-A 1 Harry F. Jordan
FORCE user·s manual
Department of electrical and computer engeneering , uneversity
of Colorado, .1987

[Jordan-87-B 1 Harry F. Jordan
The FORCE
Department of electrical and computer engeneering, uneversity
of Colorado, 1987

220

Bibliography

[Jordan-87-C] Harry F. Jordan, Norbert 5. Arenstorf
Comparing barrier algorithms
Department of electrical and computer engeneering, uneversity
of Colorado , 1987

[Jordan-87-D] Harry F. Jordan
lnterpreting parallel processor performance measurements
Department of electrical and computer engeneering, uneversity
of Colorado , November 1985

[Kerridge-Simpson] Jon Kerridge & Dan Simpson
Communicating parallel processes
Software: Practice and Experience volume 16 (1986) p 63 - 86

[Knight] A. J. Knight
Can measurement ever be justified ?
Performance volume 1 (1980) p 120 - 124

[Kogge] P. M. Kogge
Function-based computing and parallelism: A review
Parallel Computing volume 2 (1985) p 243 - 253

[Kutti] 5. Kutti
Taxonomy of parallel processing and definitions
Parallel Computing volume 2 (1985) p 353 - 359

[Manna-Pnueli] Z. Manna & A. Pnueli

221

Verification of concurrent programs : the temporal framework
International Lecture Seri es in Computer Science , 198? , p 215-273

[Morris-Roth] M. F. Morris, P. F. Roth
Tools and techniques : Computer performance evaluation
for effective analysis
1982

[0hbuchi] R. 0hbuchi
0verview of parallel processing research in Japan
Parallel Computing volume 2 (1985) p 219 - 228

Bibliograpny

[Parkinson-86] D. Parkinson
Parallel efficiency can be greater than unity
Parallel Computing volume 3 (1986) p 261 - 262

222

[Patrick-Reed-Voigt] Merrell L. Patr ick, Daniel A Reed, Robert G. Voigt
The impact of domain partitioning on the performance of a shared
memory multiprocessor .
Parallel Computing volume 5 (1987) p 211 - 217

[Pedersen] T. Pedersen
Process administration at a high level language
Software : Practice and Experience volume 16 (1986) p 303 - 333

[Reddi] A V. Reddi
Performance of pipeline and parallel architectures for
communication processors
Computer Performance volume 5 (1984) p 102 - 107

[Reed-Patrick] D. A Reed & M. L. Patrick
Parallel iterative solution of sparse linear systems : Models and
archi lectures
Parallel Computing volume 2 (1985) p 45 - 67

[Reiter] E. Reiter
Sorne new ideas for parallel algorithms on vector and
multiprocessors
California State University, Hagward, dec 1986

[Rettberg-Thomas] Randall Retlberg & Rober t Thomas
Content ion is no obslc.1cl c lu shared rnemory multiprocessing
Communications of the ACM, vol. 29, number 12, dec 86, p 1202-1212

[Sabatier] A Sabatier .
Le multibus et ses signaux
Micro-lnf ormatique , février 1979 , p 3 - 11

[Sequent] Sequent company
The balance 8000 parallel computer : Gui de to parallel
programming

Bibliography

[Siemens-C 1 Siemens AG
Programmiersprache für Fortgescrittene
Siemens München, version 3.0, Januar 1987

[Sonnenschein] M. Sonnenschein
An extention of the language C for concurrent programming
Parallel Computing volume 3 (1986) p 59 -71

[SPAB_T] SPAB_T
SW und HW Architektur der MX500
DST SP 5, Siemens AG, internes Dokument , August 1987

[Tandem] Tandem company
Les systèmes fault tolerant
Conférence donnée à Namur, avril 1987

[Terplan] K . Terplan
Real time performance management
Performance volume 1 (1980} p 16 - 21

[Van Lamsweerde] A Van Lamsweerde
Cours sur les systèmes répartis
FNDP Namur, Année accadémique 1986- 1987

[Wood] A M. Wood
The organization of parallel processing machines
Wopplot 83 : Parallel Processing 1983

[Yuba-Kashiwagi] Toshitsugu Yuba & Hiroshi Kashi waga
The Japanese national project for new generation supercomputing
systems
Parallel Computing volume 4 (1987) p 2 - 16

223

