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Abstract. 

Most transport protocols that are currently used have been 
designed when the networking technology was still very poor. 
Their only requirement was to stream data between two computing 
equipments connected to a network of slow links. 

Since that period, the networking technology has radically 
evolved, mainly at the speed point of view. But the achievable 
end-to-end throughputs are often an order of magnitude lower 
than the bandwidth these networks provide: the popular transport 
protocols can be blamed for a severe lack of performance. 

The scope of this thesis is to analyze the transport 
protocols at the performance point of view. The first step will 
consist of the explanation of this lack of end-to-end 
throughput. And the second one will be the presentation of the 
actually proposed solutions, with an analysis of their merits. 

La plupart des protocoles de transport qui sont utilisés 
aujourd'hui ont été créés lorsque la technologie des réseaux 
informatiques était encore fort primitive. La seule fonction 
qui leur était attribuée était de transférer un flux de données 
entre deux équipements informatiques connectés à un réseau de 
lignes à basse vitesse. 

Depuis ce temps, la technologie des réseaux informatiques a 
beaucoup évolué, surtout au niveau des vitesses de transmission. 
Mais les vitesses de transmission de bout en bout restent bien 
inférieures à la bande passante de ces réseaux: un important 
manque de performances peut être reproché aux protocoles de 
transport couramment utilisés. 

Le propos de ce mémoire est d'analyser les protocoles de 
transport, du point de vue de leurs performances. Une première 
étape va consister à donner une explication à ce manque de 
vitesse de transmission de bout en bout. La seconde sera la 
présentation des solutions actuellement proposées, et l'analyse 
de leurs qualités respectives. 
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Introduction. 

Background. 

Most transport protocols that are nowadays used have been 
designed a very long time ago. TCP, for example, which is the 
standard transport protocol of the Department of Defense, was 
defined in 1975, already fifteen years ago. It is no surprise 
these protocols were defined according to the paradigms, the 
available means and the needs of that moment. 

The general model of computer systems consisted of a central 
mainframe interacting with its users via text terminals 
connected to a wide area network (WAN). This mainframe was very 
independent from its peers, only interacting with them through 
this WAN for sporadic file transfers. 

The purpose of these wide area networks is to connecta 
large amount of computing equipments distributed over a large 
geographical region. The technology they involved at that time 
was in fact very poor. The links they used were characterized 
by: 

- a relatively low reliability, 
- a very low capacity, with a bandwidth of 9600 bits 

per second, in general, but never exceeding 64 
kilobits per second. 

So the needs in the matter of transport protocols were not 
very constraining. Their only requirement was to allow a 
reliable transmission of a stream of bytes between two 
equipments. This functionality was sufficient to connect text 
terminals to central hosts, and to ensure background file 
transfers. 

But since that period, the technology has evolved. 
evolution conducted to the formulation of new paradigms 
computer science. And these new paradigms induced new 
requirements for the transport protocols. 

This 
for the 



Introduction 

The main evolution of the technology is the conception of 
the local area networks (LANs). The purpose of these LANs is to 
connecta median amount of computer equipments, which are 
geographically close one to the others. Their main 
characteristic is the bandwidth they offer: up to ten megabits 
per second. The technology ~f the WANs has also evolved, with 
the use of fast links, with a capacity reaching two megabits per 
second. Finally, massive developments are realized on optic 
fibres: these are expected to allow a hundred megabits per 
second networking capacity in a near future, and later a gigabit 
per second. 

This strong evolution of the networking capacity had an 
impact on the paradigms of the computer science. First, not 
only text terminals can be connected to a host, but also bitmaps 
ones. These terminals need to exchange a really more important 
amount of information with their host. Second, distributed 
computer systems can be designed. With this model, the hosts 
does no more sporadically interact: they do all the time, for 
the purpose of exchanging massive quantities of information, 
with real-time constraints. 

This new paradigm of computing equipments exchanging massive 
quantities of information with real-time constraints lead to a 
new requirement for the transport protocol. Beside the need for 
a reliable transmission of data, there is also a demand for a 
high throughput in this transmission. 

And the problem the computer scientists have to face today 
is: the transport protocols, which were designed for slow 
networks, do not actually achieve their high throughput 
requirement when they control a data transmission on a fast 
network. Or, expressed in other words, the improvements of the 
links bandwidth do not naturally lead to similar improvements at 
the transport level. 

The objective of this document. 

The objective of this document is to provide a comprehensive 
analysis of the capacity of the transport protocols to achieve 
high throughput. The only class of transport protocols of 
interest to this discussion is the one implemented over a 
network layer similar to IP. This kind of network layer only 
provides a minimal functionality of datagrams routing, on a 
best-effort basis. 

The first step, in the present analysis, is the presentation 
of this minimal network layer. It will highlight all the 
annoying characteristics the transport layer will have to face. 

2 



Trivial 

Solution 
Classical 
Solution 

Introduction 

lmproved 
Design 

- Figure 1 -
The progression of the solutions. 

Lightweight 
Transport 
Protocols 

lmproved 
lmplemen­

tations 

Smart 
Network 
Adapters 

A second step will introduce the description of a very 
simple transport protocol providing the functionality of 
reliable transmission of a stream of bytes. The purpose of this 
step is to present the basic aspects of a transport protocol. 

The next discussion will deal with the classical solution 
used by the current transport protocols. A first attempt will 
be made to explain their lack of throughput by an irrational 
utilization of the network bandwidth. 

An improved design for the transport protocols, which uses 
more efficiently the network layer, will then be described and 
analyzed. The conclusion of this analysis will be: the 
transport protocols can not achieve high throughput because they 
require too much computing resources. 

A first effort on correcting this situation will then be 
examined. It is known as the lightweight transport protocols 
concept, and consists of defining brand new protocols which are 
supposed to naturally lead to less computing overhead. The 
failure of this approach will be demonstrated. 

A solution allowing a real improvement of the throughput at 
the transport level will then be introduced. This solution 
consists of focussing on the implementation of the transport 
layer instead of its definition. Some of these implementation 
improvements will be discussed. It will be shown that this 
solution is not sufficient by itself, but indicates the right 
way for the subsequent investigations. 

Finally, the currently best conceived solution will be 
presented: the smart network adapters concept. It consists of 
moving a part of the transport protocol handling outside the 
host. This allows a hardware support that helps reaching very 
high end-to-end throughput. 

3 
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This progression inside the world of transport protocols 
solutions is depicted on figure 1. 

The methodoloqy of the presentation. 

Some kind of a methodology will be used to present each 
analyzed solution: 

- First, a concise presentation of the aims of the 
solution will delimit its scope. 
Second, the principles of this solution will be 
examined in depth, theoretically and/or using 
revealing case studies. 
Third, examples of the use of this solution will be 
introduced. 
Fourth, the results of the solution application will 
be mentioned, when they help the further discussion. 
Fifth, an analysis of this solution will be 
presented, to highlight its problems, failures, or 
merits. 

4 



1.1. The minimal network layer. 

Chapter I: 

An analysis of the minimal 

network layer. 

The minimal network layer ensures the connection of a set of 
computers which have to communicate. These computers will be 
referred to by the word 'hosts'. Each host is identified in the 
network by its 'network address 1 1. 

The minimal network layer connecting all the hosts only 
provides a minimal functionality: it routes short messages from 
an originating host to a destinating host, on a best-effort 
basis. These short messages, which have a maximal length, are 
generally referred to by the word 'datagrams'. 

The 'best-effort basis' is the main characteristic of the 
design of the minimal network layer. Its principle is that the 
basic functionality of datagram routing leads to a quality of 
service far from being perfect, but no effort of any kind is 
made to enhance this basic quality of service. Two important 
facts come from this principle: 

- The basic routing leads to some casual malfunctions 
that will be discussed in paragraphs I.4 to I.72. 
The network layer will not try to recover from these 
problems and will not warn the involved users of 
them, as it will even not try to detect them. 

- There will be no multiplexing done by the network 
layer. Each network agent will only serve one user. 
For now, there will be no more difference made 
between a host, its network agent, and the unique 
user of this network agent. 

1• The reader is pleased not to misread: the 'network address• is not any address of the network, but the 
~ddress of a host inside a network • 

• A short description of these malfunctions may be found in [NETBLT]. 

5 
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So here is the specification of the only service the network 
layer provides, that is to say N-DATA. It is a three phases 
service, with a REQUEST, an INDICATION and a CONFIRMATION 
primitives3 • Figure I.1 shows the usual chaining diagram of 
these service primitives: 

- A user of the network layer calls N-DATA.REQUEST to 
ask its network agent to transmit some data to 
another user of the network layer. The main 
parameters of a N-DATA.REQUEST call are the network 
address of the destinating host, and the data to be 
transmitted. 

- A network agent calls N-DATA.CONFIRMATION to tell a 
user which has issued a N-DATA.REQUEST the status of 
the datait wanted to be transmitted. The main 
parameter of a N-DATA.CONFIRMATION call is this 
status. It may only have one of the following 
meanings: 'data has been transmitted', or 'it is 
impossible to transmit data'. 

- A network agent calls N-DATA.INDICATION to tell its 
user that it has received some data from another 
user of the network layer. The main parameters of a 
N-DATA.INDICATION call are the network address of 
the originating host, and the data that have been 
received. 

1.2. Examples of minimal network services. 

Several examples of network layers providing a service close 
to the minimal one exist. The most popular one is undisputably 
the Internet Protocol (IP) 4 , in the Department of Defense (DOD) 
world. Nowadays, almost all computers are sold with an 
implementation of IP. The Open Systems Interconnection (OSI) 
model also defines such a network service: the Connection-Less 
Network Service (CLNS)s. 

I.3. Implementation of the minimal network layer. 

The more general implementation of the minimal network 
service described in paragraph I.1 can be provided by a mesh 
network of store-and-forward routers. These routers exchange 
datagrams, which are mainly composed of: 

- the network address of the host which originated the 
datagram, 

3, Here, only OS! notations and OS! terminology are used. But this is not the expression of the OS! 
?olution of the minimal network layer • 

• A complete description of IP can be found in [RFC-791]. 
s. A complete description of CLNS can be found in [ISO-8473]. 

6 
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User on Host A Network Layer User on Host B 

N-DATA.REQUEST(B,Data) 

N-DATA.CONFIRt.4ATION(Ok) 

N-DATA.INDICATION(A,Data) 

· Figure I. 1 · 
The usuel chaining diagram of the N·DATA service. 

- the network address of the host the datagram is 
destinated to, 

- the data to be delivered. 

The set of routers is organized as a mesh network. This 
means that each router is directly connected to an arbitrary set 
of other routers, without any more topological constraint than 
the basic one: connectivity. The connectivity constraint 
ensures that at least one route can be found between any two 
hosts. With the same idea of generality, there is no constraint 
defined for the characteristics of the links connecting 
neighbouring routers. 

This name of 'store-and-forward router' comes from the way 
they are designed. Each router manages a buffer space, using 
the First-In-First-Out (FIFO) model. Two processes have an 
access to this data structure: 

- The first process treats all the datagrams coming 
from the links the router is connected to. It just 
stores them in the buffer. 

- The second process treats each datagram stored in 
the buffer. It extracts the destination address of 
a datagram from its header, and from this address it 
computes which router it has to forward the datagram 
to. When a router is selected, the process 
transmits the datagram on the appropriate link, as 
soon as this last is ready to send. 

The network agent of each host is also a router, but with a 
slightly different routing algorithm than the one used in the 
normal routers. It must also detect the datagrams which are 

7 
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destinated toits local user. These datagrams are not to be 
forwarded to another router, but to be delivered to the local 
user. 

To offer a good routing service, the routers may exchange 
informations about the components of the network. The routing 
algorithm may take into account these parameters in its routing 
decision. So routing has a dynamic dimension: two consecutive 
datagrams, originated by a single host and destinated to another 
single one, may use different routes. 

For the purpose of analysing the inherent malfunctions in 
the minimal network service, it is interesting to modelize a 
router as a stochastic waiting-queue, as shown in the figure 
I.2. The clients will be the datagrams which corne from the 
links numbered 1 to N. On arrival, these clients enter a FIFO 
waiting-queue where they wait until they are serviced. This 
service is the routing decision and the forwarding to one of the 
outgoing links. 

In the same way, the route a datagram uses for going from an 
originating host to a destinating one can be modelized as a 
network of waiting-queues, as shown in figure I.3. A datagram 
travels from router to router, which can be modelized as 
waiting-queues, as it has just been shown. 

I.4. Datagrams are sometimes lost. 

In the preceding paragraph, a router has been modelized as a 
stochastic waiting-queue. The two main parameters of such a 
queue are its client's interarrival time distribution, and its 
service time distribution. From these two distributions, the 
stochastic theory allows to compute the distribution of another 

- Figure 1.2 -
The stochastic model of a router. 

Link 1 Link 1 

Link 2 Link 2 
Sto ng 

. . . . . . . . . . . . ............. 

Link N Link N 

8 



From User 
On Host A 

Network Agent 
Of Host A 

i 
0 

"" 

An analysis of the minimal network layer 

i 
0 

"" 

Router 

i f! - . 0 -s 
O 0 
,- "" 

- Figure 1.3 -
The stochastic model of a route. 

Network Agent 
Of Host B 

To User 
0n Host e 

random variable: the number of clients present in the waiting­
queue. From this distribution, it is fair to compute the 
probability of having more than a given number of clients 
present in the waiting-queue. The fact is: for any x, the 
probability of having more than x clients present in the 
waiting-queue is non-null. 

To illustrate this result, the following possible scenario 
can be imagined. A router is connected to a high-bandwidth 
link, as well as to a low-bandwidth one. For some period of 
time, datagrams are coming, using all the capacity of the fast 
link, and all of them are to be forwarded to the slow link. The 
longer this period of time is, the higher the number of stored 
datagrams is. 

The problem is that a router only handles a finite amount of 
buffer space, and thus can only store a finite number of 
datagrams. But it has just been shown the possibility that, at 
some moment, the router needs to store more than this amount of 
datagrams. The question is then: what must do the router when 
it receives a datagram and there is no available buffer space to 
store it? According to the best-effort basis concept, the 
router can solve this problem by straightforwardly discarding 
the datagram6. 

The consequence of this problem is described by the figure 
I.4. It represents another possible chaining diagram for the N­
DATA service. A user issued a N-DATA.REQUEST toits network 
agent. It was responded a N-DATA.CONFIRMATION. But the 
expected receiving user never received the associated N­
DATA.INDICATION. This is the problem of lost datagrams. 

6• Another solution is to drop one of the buffered datagrams, and add the incoming one to the end of the 
queue. But, any way, a datagram is Lost. 

9 
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User on Host A Network Layer User on Host B 

N-DATA.REQUEST{B,Doto} 

N-DATA.CONFIRMATION{ Ok) 

·· ... ______ j 

- Figure 1.4 -
The network layer sometimes drops datagrams. 

1.s. Datagrams are sometimes corrupted. 

As stated in the paragraph I.2, there is no constraint for 
the links connecting the routers. Sorne of them may implement an 
error recovery mechanism, and some of them may not. However, a 
link will always be characterized by its error-rate. This rate 
will be the residual error-rate of the recovery mechanism if the 
link implements such a mechanism, and the basic transmission 
error-rate of the physical layer in the opposite case. 

When a datagram cornes to a router, it is received by some 
device. The router has then to move the datagram from the 
receiving device toits main memory. When the routing decision 
has been taken, the datagram is moved from the main memory of 
the router to one of its sending devices. All these copy 
operations can also lead to errors, and so the routers will also 
be characterized by an error-rate. 

From all these error-rates, it is possible to compute an 
error-rate for the network layer. And it is likely that this 
rate will be non negligible. 

According to the best-effort principle, the network layer 
will not deal with this problem. The consequences of that fact 
is shown on figure I.5. It also represents another possible 
chaining diagram for the N-DATA service. A user issued a N­
DATA.REQUEST toits network agent with a given value for the 
data, and this user was responded a N-DATA.CONFIRMATION. But 
the receiving user received the corresponding N-DATA.INDICATION 
with another value for the data. This is the problem of 
corrupted datagrams. 

10 
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User on Host A 

N-DATA.REQUEST(B,Data} 

N-DATA.CONFlRMATION( Ok) 

Network Layer 

·•... "' ····· ... , 

- Figure I • 5 -

User on Host B 

N-DATA.INDICATION(A,Data'} 

The network layer sometimes corrupts datagrams. 

I.6. Dataqrams are sometimes duplicated. 

As stated in the preceding paragraph, some of the links 
connecting two routers may implement some error-recovery scheme. 
Such a link ensures its users that any message it is given is 
correctly delivered toits destinator. 

The problem is that the design of these error-recovery 
schemes7 sometimes leads the destinator to get two or more 
copies of the same message. And so, in the network, when a 
router forwards a datagram to another router, it is not 
impossible that the latter receives this datagram more than 
once. 

According to the best-effort principle, the network layer 
will not deal with this problem. The consequences of that fact 
is shown on figure I.6, where another possible chaining diagram 
for the N-DATA service is represented. A user issued a N­
DATA.REQUEST toits network agent, and was responded a N­
DATA.CONFIRMATION. But the destinating user received more than 
once the corresponding N-DATA.INDICATION. This is the problem 
of duplicated datagrams. 

7• In fact, it is often a link level retransmission on timeout scheme, which is also used at the transport 
level. Such a scheme will be discussed in the next chapter. 

11 
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User on Host A Network Layer User on Host B 

N-DATA.REQUEST(B,Doto} 

N-DATA.CONFIRMATION(Ok) 
······ ..... j 

·.•, ·. ·· ... 

N-DATA.INDICATION(A,Doto) 

N-DATA.INDICATION(A,Doto) 

- Figure I.6 -
The network layer sometimes duplicates datagrams. 

I.7. Datagrams are sometimes re-ordered. 

Another malfunction of the minimal network layer can be 
highlighted by analysing its latency characteristics. The 
latency of the network is the elapsed time between the moment a 
user issues a N-DATA.REQUEST and the moment the receiving user 
gets the corresponding N-DATA.INDICATION. 

In paragraph I.3, a route has been modelized as a network of 
stochastic waiting-queues. From the clients' interarrival time 
distributions, and the service time distributions of all these 
stochastic waiting-queues, the stochastic theory allows to 
compute the distribution of another random variable: the time a 
client spends in the stochastic network. 

Also in this paragraph I.3, it has been stated that the 
routing may have a dynamic dimension: the route a datagram uses 
to get from one user of the network layer to another one may 
change from time to time. And so the network of stochastic 
waiting-queues modelizing the route between two users of the 
network layer may also change from time to time. The 
consequence is that the distribution of the random variable 
describing the time a client spends in the stochastic network 
varies along time. 

The transposition in the minimal network layer of the 'time 
a client spends in the stochastic network' is nothing else than 
the 'network latency'. The network latency is thus modelized by 
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a random variable. The conclusion is then: the network latency 
varies along time. 

This fact has a very annoying consequence, as shown in 
figure I.7: a user issued two consecutive N-DATA.REQUESTs toits 
network agent, and was responded two N-DATA.CONFIRMATIONs. But 
the receiving user has got the N-DATA.INDICATION corresponding 
to the second N-DATA.REQUEST before it has got the one 
corresponding to the first N-DATA.REQUEST. This is the problem 
of datagrams re-ordering. 

I.e. conclusion. 

The minimal network layer only provides a single service to 
its users: the delivery, on a best-effort basis, of a datagram 
to another user. This best-effort basis leads to some problems 
which are: datagrams re-ordering, duplication, corruption, and 
loss. 

- Figure I. 7 -
The network layer sometimes re-orders datagrams. 

User on Host A Network Layer User on Host B 

N-DATA.REQUEST(B,Oata 1) 

N-OATA.CONFIRtAATION(Ok) 

N-DATA.REQUEST(B,Data2) 

N-OATA.CONFIRtAATION(Ok) 
'•' 

'":; ... 

N-OATA.INDICATION(A,Oata2) 

N-OATA.INOICATION(A,Oata1) 
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so, for designing a transport layer with the functionality 
of point-to-point reliable transfer of a stream of data, there 
is a need to find some mechanisms which will detect these 
problems and which will recover from them. 
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Chapter II: 

A Trivial Solution. 

II.1. Aims of this solution. 

The aim of the trivial solution1 is to build a simple 
transport protocol providing the functionality of 'reliable end­
to-end user-data transmission', in spite of the problems of the 
minimal network layer that have been discussed in chapter I. 

II.2. Principles of this solution. 2 

• Dealing with multiplexing. 
' 

There will be a need to allow more than a single user of the 
transport layer in each host. The problem is that the network 
layer only allows a unique user in each host3 • 

The unique user of the network layer will in fact be the 
transport agent of the host. The latter will serve multiple 
users, that will be referred to by the word 'entities'. There 
will be a need to distinguish all the entities a transport agent 
serves. The easiest way to do this is to allocate to each 
entity an identifier local to the transport agent. This 
identifier is often referred to by the word 'port', and has 
often a numeric value. 

The service of the transport layer will thus be, for 
example, to transfer user-data from the entity on port 'ps' of 
host 'hs' to the entity on port 'pd' of host 'hd'. In this 
example: 

- 'hs' is the address of the host running the sending 
entity, 

1, The author does not want to use the word 'trivial' in its pejorative sense. He chose this word because 
of the name of the protocol il!l>lementing the trivial solution: the Trivial File Transfer Protocol, or 
~FTP. lnstead, in this context, 'trivial' means 'basic', or 'straightforward' • 

• A description of the trivial solution can be read in [NETBLT]. 
3, This has been discussed in paragraph 1.1. 
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- 'ps' is the port number of the sending entity, 
- 'hd' is the address of the hast running the 

destinating entity, 
- 'pd' is the port number of the destinating entity. 

To implement the service provided by the transport layer, 
the transport agents will have to exchange informations using 
datagrams. These datagrams are referred to by the expression 
'Transport Protocol Data Units', or TPDUs. 

At one moment, a transport agent will be involved in several 
user-data transfers. The problem is that when it sends a TPDU 
to another transport agent, or when it receives a TPDU from 
another one, the interaction with the network layer only 
involves this TPDU and the address of the peer transport agent. 
But this is not sufficient to identifies which transfer this 
TPDU concerns. So, each TPDU will include at least two fields: 

- the Source port field, which value is the port 
allocated to the sending entity, 

- the Destination port field, which value is the port 
allocated the destinating entity. 

• Dealing with the maximal length of the datagrams. 

Avery interesting functionality to provide to the entities 
is the transfer of data without any constraint on the data 
length. But the problem is that the transport agents will have 
to exchange TPDUs using datagrams, which have a fixed maximal 
length4 • 

The solution is the transport agent to split the user-data 
in several parts that fit the maximal datagram length. This is 
called the packetization of the user-data. So the transport 
agent of the sending entity sends a sequence of TPDUs, each 
containing a part of the user-data. These TPDUs will be 
referred to by the expression 'DATA-TPDUs'. They will be 
composed of the four following fields: 

- the Source port field, which value is the port 
allocated to the sending entity, 

- the Destination port field, which value is the port 
allocated to the destinating entity, 

- the Data field, which value is a part of the 
transferred user-data, 

- the Flags field5 , which each bit marks a particular 
boolean condition, as 'end-of-message 16 • 

The transport agent of the destinating entity rebuilds the user­
data from the parts it receives in the DATA-TPDU before 
delivering it to this destinating entity. 

4. This has been discussed in paragraph 1.1. 
5• For clarity reasons, this field will never be shown on the figures. 
6• This bit would only be set in the last DATA-TPDU of a user message. 
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• Dealing with datagrams re-ordering. 

An important problem of the minimal network layer is that it 
does not keep the sequence of datagrams7 • But, to rebuild the 
user-data from the parts it receives, the transport agent of the 
receiving entity needs to get the DATA-TPDUs in the same order 
the transport agent of the sènding entity delivered them to the 
network layer. 

Avery simple solution is this one: the transport agent of 
the sending entity only sends a DATA-TPDU containing a part of 
the user-data when it is sure that the transport agent of the 
destinating entity actually got the DATA-TPDU containing the 
preceding part of their user-data. 

But this solution leads to another problem: as the transport 
agent of the sending entity and the one of the destinating 
entity are not located in the same host, they do not share the 
same memory. So a transport agent can only get an information 
about another one if this last sends a TPDU containing the 
appropriate information to the former. 

Here is a scheme to make the described solution work. When 
the transport agent of the destinating entity receives a DATA­
TPDU, it sends a TPDU back to the transport agent of the sending 
entity, to allow the latter to transmit the next DATA-TPDU. 
This scheme is called the 'acknowledgement principle'. The TPDU 
the transport agent of the destinating entity sends back to the 
transport agent of sending one is referred to by the expression 
'ACK-TPDU'. An ACK-TPDU will be composed of the two following 
fields: 

- the Source port field, which value is the port 
allocated to the sending entity, 

- the Destination port field, which value is the port 
allocated to the destinating entity. 

The usual transfer of user-data by the transport layer is 
shown on figure II.1. The sending entity delivers some data to 
its transport agent and wants this data to be delivered to 
another entity. This data has to be packetized in three parts, 
that is to say Datal, Data2 and Data3. The transport agent of 
the sending entity transmits a first DATA-TPDU containing Datal 
to the transport agent of the destinating entity. The latter 
sends back a ACK-TPDU to the transport agent of the sending 
entity. When the transport agent of the sending entity has 
received this ACK-TPDU, the scenario described for Datal is 
repeated for Data2 and then for Data3. When the transport agent 
of the destinating entity has received the DATA-TPDU containing 
Data3, it is able tore-assemble the data the sending entity 
delivered toits transport agent, and sois able to deliver this 
data to the destinating entity. 

7• This has been discussed in paragraph 1.7. 
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- Figure I I. 1 -
Dealing with datagrams re-ordering. 

* Dealing with datagram loss. 
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The minimal network layer sometimes drops a datagram8 , 

without warning the sender or the expected receiver of that 
fact. So when a transport agent sends a TPDU to another one, it 
only knows that this TPDU was transmitted, but it does not know 
if it was actually received or not. On the other hand, when a 
transport agent is the expected receiver of a TPDU and when this 
TPDU is lost by the network layer, it does not even know that 
another transport agent tried to send it a TPDU. 

8• This has been discussed in the paragraph 1.4. 
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The only available information for a transport agent about 
this problem is the following one. When it receives a TPDU 
concerning the transfer of some user-data between two entities, 
it knows that the last TPDU it issued for that transfer was 
correctly received. All other information is only based on 
speculation. 

But there is an interesting speculation a transport agent 
can make: when it sends toits peer a TPDU concerning a transfer 
of user-data, it will receive a TPDU from the latter in a near 
future. When it sends a ACK-TPDU, the transport agent of a 
destinating entity cannot really speculate about the delay 
before it will get the next DATA-TPDU. As a matter of fact, the 
transport agent of the sending entity will only send this DATA­
TPDU when it has got the ACK-TPDU and it has data to send. But 
no transport agent can speculate about the delay before this 
last condition is fulfilled: it depends on the behaviour of the 
sending entity. on the other hand, the transport agent of the 
sending entity knows that its peer has no reason to delay the 
sending of a ACK-TPDU: it will transmit this TPDU as soon as it 
receives the corresponding DATA-TPDU. 

The detection of lost datagrams will thus be left to the 
transport agent of the sending entity. If, some reasonable time 
after it has delivered a DATA-TPDU to the network layer, it does 
not receive the corresponding ACK-TPDU, it can speculate that 
this DATA-TPDU or this ACK-TPDU has been lost by the network 
layer. And in this case, it has nothing else to do than 
retransmitting the lost DATA-TPDU. This scheme is referred to 
by the expression 'retransmission on timeout'. 

The most important question is now: what is a reasonable 
value for the timeout delay? For that matter, the story of a 
DATA-TPDU and its corresponding ACK-TPDU must be analysed: 

- The DATA-TPDU is routed from the transport agent of 
the sending entity to the transport agent of the 
destinating entity. This costs a network latency. 

- The DATA-TPDU is received by the transport agent of 
the destinating entity, an ACK-TPDU is built and 
delivered to the network layer. This costs a 
negligible amount of time. 

- The ACK-TPDU is routed from the transport agent of 
the destinating entity to the transport agent of the 
sending entity. This costs a network latency. 

- The ACK-TPDU is received by the transport agent of 
the sending entity. This also costs only a 
negligible amount of time. 

So the reasonable timeout delay will be the result of the sum of 
these four components. This sum is often referred to by the 
expression 'Round Trip Delay' or RTD. This name comes from the 
fact that it is nearly equal to the time a datagram would spend 
to go from a sending host to a rece1v1ng one and then another 
datagram to go back from the receiver to the sender. 
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The main problem is that the RTD is mainly composed of 
network delays, which have variable and unpredictable values9. 
The transport agent of the sending entity will have to use an 
estimation of this RTD as the timeout delay. A fair way to 
compute an estimation of the RTD is to take into account the 
measured values of RTD for a few past TPDU exchanges, and to 
assume that the RTD will only vary smoothly. 

An example of exchange between transport agents illustrating 
the retransmission on timeout is shown on figure II.2. The 
transport agent of the sending entity has just received the ACK­
TPDU corresponding to the latest DATA-TPDU it has transmitted. 
Soit sends the DATA-TPDU containing the next part of the user 
data. But this TPDU is lost by the network layer. When the 
timeout delay expires, the transport agent retransmits the lost 
DATA-TPDU. 

Transport 
Agsnt of 
Host 'HS' 

+' 
:::, 
0 
Q) 

E 
~ 

>-
0 
Q) 

0 

• Figure 11.2 • 
The retransmission on timeout principle. 

Network Layer 

PS PD Data 

PS PD Data 

PS PD 

9• This has been discussed in paragraph 1.7. 
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A trivial solution 

The annoying consequence of using a 'retransmission on 
timeout scheme' is that the transport agent of the sending 
entity sometimes transmits twice the same DATA-TPDU, even if 
there is no reason to doit. This happens in two cases: 

- when the estimation of RTD leads the timeout delay 
to be shorter than the actual RTD, 

- when a ACK-TPDU is lost. 

• Dealing with duplicated datagrams. 

When a transport agent delivers a TPDU to the network layer, 
it is not impossible that the destinating transport agent gets 
more than once the copy of this TPDU10 • Furthermore, as it has 
just been shown, the mechanism to recover from lost TPDUs 
sometimes leads the transport agent of the destinating entity to 
get several copies of the same DATA-TPDU. 

A simple solution to cope with this problem is to add a 
field to each exchanged TPDU, which value identifies the TPDU. 
A transport agent would then only treat the TPDUs with the 
expected identifier, and discard the other ones. 

A good identifier for a DATA-TPDU is the sequence number of 
the datait contains, relative to the user-data that is being 
transferred. A good identifier for a ACK-TPDU is the same 
identifier as the corresponding DATA-TPDU. 

Figure II.3 shows an exchange between two transport agents. 
The transport agent of the sending entity has just received a 
ACK-TPDU corresponding to the fourth part of the user-data. So 
it transmits a DATA-TPDU containing the fifth part of the user­
data. The transport agent of the destinating entity gets a 
first copy of this DATA-TPDU and sends back the corresponding 
ACK-TPDU. Then this transport agent gets another copy of the 
DATA-TPDU containing the fifth part of the user-data. But as it 
is expecting the sixth part, it discards this DATA-TPDU as a 
duplicate. 

• Dealing with datagram corruption. 

When a transport agent delivers a TPDU to the network layer, 
it is not impossible that the destinating transport agent gets a 
corrupted copy of this TPDU11 • In other words: when a transport 
agent gets a TPDU, it is not really sure that the value of each 
field of this TPDU is actually the one the sending transport 
agent expected to be received. 

10. This has been discussed in paragraph 1.6. 
11. This has been discussed in paragraph 1.5. 
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Dealing with duplicated TPDUs. 
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There will be only scarce problems if a control field is 
corrupted, as there will be a very little chance that the 
transport agent accepts such a corrupted TPDU. This transport 
agent can find: 

- that the mentioned destinating entity is not 
involved in any transfer at the moment, 

- that the mentioned destinating entity is currently 
involved in a transfer, but net with the mentioned 
sending entity, 

- that the identifier mentioned in the TPDU is not the 
expected one for the transfer between the mentioned 
sending and receiving entities. 

But if such a corrupted TPDU is accepted and treated as a 
correct one, the consequence is very annoying: the 
synchronization may be lost between the transport agents 
involved with this transfer of user-data. This can lead to 
discard correct TPDUs, to send TPDUs at a wrong time, or not to 
retransmit a lost TPDU. 

The problem of corrupted TPDUs is more clear when only the 
Data field of a DATA-TPDU is corrupted. There is no chance to 
discover this corruption with the existing mechanisms. So all 
these DATA-TPDUs with a corrupted Data field are accepted and 
treated. When this happens, the user-data which is re-assembled 
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and delivered to the destinating entity is not the one the 
sending entity delivered toits transport agent. But the 
transport layer has to offer a reliable user-data transfer! 

The solution to this problem is to add another field to each 
TPDU. The value of this field would be redundant with the 
content of the other fields of the TPDU. The receiving 
transport agent would then re-compute this redundant information 
from the value of the fields in the received TPDU. It would then 
check this re-computed redundant information against the one 
found in the received TPDU. If the specification of the 
redundant information is well chosen, there is a very little 
chance that there is a match when the received TPDU is 
corrupted. 

When a transport agent receives a corrupted TPDU, it may 
straightforwardly drop it. The lost TPDU recovery mechanism 
ensures that a correct version of this TPDU will be soon 
retransmitted. 

Avery popular redundant information is the sum of all the 
words the TPDU is composed of. This kind of redundant 
information is often referred to by the word 'checksum'. It 
gives rather good results, it is very easy to implement, and all 
other redundant informations which are function of the entire 
TPDU content need at least as much computing resource. For now, 
the redundant information will always be referred to using the 
word 'checksum' 12. 

Figure II.4 illustrates the checksum mechanism. The 
transport agent of the sending entity has just received the 
expected ACK-TPDU. Soit transmits the next DATA-TPDU. But the 
Data field of this TPDU is corrupted by the network layer. When 
the transport agent of the destinating entity receives this 
TPDU, the verification of the checksum fails, and the TPDU is 
discarded. When the timeout delay expires, the transport agent 
of the sending entity retransmits the DATA-TPDU. 

II.3. Example of the trivial solution. 

The Trivial File Transfer Protocol (TFTP) 13 , is not really a 
transport protocol, but an application layer protocol. This 
protocol is specified to rely on the transport protocol called 
User Datagram Protocol (UDP) 14 • UDP itself relies on IP, and 
only deals with multiplexing: its only service is similar to the 
minimal service of the network layer; but this service is 

12. ln fact, the checks1.111 is a so popular redundant information that all redundant informations used to 
check the integrity of datais also referred to as a 'checks1.111', even if its mechanism does not involve 
fgY s1.111mation • 

• A c~lete description of TFTP can be found in [RFC-783]. 
14• A c~lete description of UOP can be found in [RFC-768]. 
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Dealing with corrupted TPDUs. 

Tran■port 
Agent of 
Ho■t 'HD' 

provided between transport entities and not between hosts. So, 
in fact, TFTP has to deal with exactly the same problems as a 
transport protocol which relies on IP, except for the 
multiplexing point of view. And, just as it can be half seen 
from its name, it uses the trivial solution that as just been 
described. 

Diskless workstations and X-terminals often use TFTP to load 
the kernel of their operating system, at boot time: the driver 
of TFTP, as well as the driver of IP are simple enough to be 
firmware coded. 
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II.4. Analysis of the trivial solution. 

The aim of the trivial solution was to provide a given 
service, without any further consideration15. Soin this 
chapter, there has never been any attention paid to throughput 
considerations. And, as it can be easily imagined, the main 
problem of the trivial solution is its lack of throughput. 

To calculate the maximal theoretical throughput of the 
trivial solution, a particular case will be considered: 

- The two communicating entities are the only ones 
that exchange data. So all the available bandwidth 
of the network is dedicated to this user-data 
transfer. 
The topology of the network allows to find a route 
for this communication, which can afford a maximal 
bandwidth of BW before a datagram is lost, as a 
result to a router congestion. 
The maximal allowed length for the datagrams makes 
the DATA-TPDUs all have a length equal to DL. 

The sending transport agent sends a DATA-TPDU and then waits 
a RTD time to get an ACK-TPDU. To send the DATA-TPDU, it takes 
an amount of time equal to: 

Time to send a DATA-TPDU = 
DL 

BW 

so the sending transport agent transmits an amount of data equal 
to DL, during a time equal to (DL/BW)+RTD. So the throughput of 
the trivial solution is: 

DL 
Throughput = -------­

DL/ BW + RTD 

By using some elementary calculus, this formulais found to be 
equivalent to the following one: 

DL 
Throughput = * BW. 

DL+ RTD * BW 

15, This has been discussed in paragraph 111.1. 
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This last formula shows that, with the trivial solution, 
only a part of the available bandwidth is used. And the longer 
the RTD is, or the faster the network works, the shorter this 
partis. 

An extremely bad case would be a satellite network, where: 
- The maximal length of a datagram (DL) would be a few 

kilobytes. 
- The available bandwidth (BW) would be in the order 

of a hundred megabits per second. 
- the RTD would be in the range of the second. 

In this case, the trivial solution would only use about one ten 
thousandth of the available bandwidth. 

On the same idea, the trivial solution only uses the 
computing resource to receive ACK-TPDU, to react to timeouts, 
and to prepare DATA-TPDUs. And most of the time, it merely 
waits, i.e. it does not use CPU time. So the trivial solution 
only uses a very short part of the available CPU time. 

For short, the two main resources for communicating: 
- the network bandwidth for transmitting informations, 
- the computing resource for driving the protocol, 

are wasted when using the trivial solution. 

II.5. conclusion. 

It is possible to find simple mechanisms to correct the 
malfunctions of the minimal network layer, in a way to provide a 
transport service allowing a 'reliable end-to-end user-data 
transmission'. But these simple mechanisms do not allow to have 
a data transfer with a good throughput, mainly because a lot of 
resources are wasted when the transport agent of the sending 
entity waits the acknowledgement for a DATA-TPDU it has just 
transmitted. 

Nevertheless, it is interesting to carefully study this 
solution, as it introduces almost all basic mechanisms used by a 
transport layer relying on a minimal network layer. 

But there is a need to find better solutions, allowing a 
better throughput. And these solutions will have to focus on 
avoiding the sending transport agent to spend some time at doing 
nothing else than waiting for an event. 
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Chapter III: 

The classical solution. 

III.1. Aims of this solution. 

The aim of the classical solution1 is to be a quite simple 
solution for a transport layer to lead to a better throughput 
than the trivial solution. It will meet its throughput 
requirement by allowing the transport agent of the sending 
entity to continuously transmit DATA-TPDUs. And it will meet 
its simplicity prerequisite by having its design very close to 
the one of the trivial solution. 

III.2. Principles of the solution. 2 

• General principle. 

In the trivial solution, the reason why the transport agent 
of the sending entity spends time waiting for an ACK-TPDU is the 
need to deal with the network problem of datagrams re-ordering3 • 
In this trivial solution again, the network problem of datagrams 
duplication is solved by adding a sequence number to each TPDU4 • 

An interesting observation is the fact that this sequence 
number can also solve the network problem of datagrams re­
ordering. When the network layer delivers a DATA-TPDU to the 
transport agent of the receiving entity, the latter knows from 
the sequence number of this DATA-TPDU which part of the initial 
message it contains. So this initial message can be rebuilt, 
even if the DATA-TPDUs do not come to the transport agent of the 
receiving entity in the appropriate order. The conclusion is 

1. The author uses the expression 'classical solution' in reference to the fact that this solution is 
~urrently the most spread one, with the transport protocols TCP and TP-4 • 

• A description of the classical solution can be read in [NETBLT]. 
3• This has been discussed in paragraph 11.2, under the title "Dealing with datagrams re-ordering". 
4• This has been discussed in paragraph 11.2, under the title "Dealing with duplicated datagrams11 • 
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that there is no real need for the transport agent of the 
sending entity to wait for the acknowledgement of the previous 
DATA-TPDU before sending the next one. 

This statement is the basis of the classical solution. As 
soon as it has some data ready to be transmitted, the transport 
agent of the sending entity would continuously transmit the 
corresponding DATA-TPDUs. On the other hand, the transport 
agent of the receiving entity would rebuild this data by looking 
at the sequence numbers of the incoming DATA-TPDUs. 

Figure III.1 illustrates this solution. Entity A requests 
its transport agent to deliver the message Data to entity B. 
This message Data has to be split into three parts, say Datal, 
Data2 and Data3. These three parts are enclosed in DATA-TPDUs 
with appropriate sequence numbers, and these DATA-TPDUs are 
transmitted to the transport agent of B, using the network 
layer. For some obscure reason, the DATA-TPDU with sequence 
number 1 is delayed by the network layer, but the two remaining 
DATA-TPDUs are quickly delivered to their destinator5 • The 
transport agent of entity B can still completely rebuild the 
message Data, and deliver the latter to entity B. 

Transport 
Agent of 
Host 'HS' 

- Figure 111 . 1 • 
Dealing with datagrams re-ordering. 
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s. The possibility of such a phenomenon was discussed in paragraph 1.7. 
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The classical solution 

But this solution can not be applied "as-is": 
- The acknowledgement scheme has to be reconsidered, 

for implementation and performance reasons. 
- There is a need to keep the transport agent of the 

sending entity from transmitting too much DATA-TPDUs 
in a too short period of time. 

* The problem of acknowledgements. 

For the acknowledgement and retransmission on timeout 
mechanisms, the closest extension of the trivial solution to the 
new one would be this one: 

- For each transmitted DATA-TPDU, an ACK-TPDU with the 
same sequence number is expected. 

- As soon as this ACK-TPDU is received, the DATA-TPDU 
is acknowledged. 

- If this ACK-TPDU is not received within some period 
of time, the DATA-TPDU is retransmitted and the 
corresponding ACK-TPDU is once again expected6. 

There is a problem of resource consumption. First, for each 
transmitted DATA-TPDU, a separate ACK-TPDU must travel on the 
network. This consumes a non-negligible part of the network 
bandwidth. But one can easily imagine a scheme where a single 
ACK-TPDU would acknowledge several DATA-TPDUs. This would lead 
to less network traffic. Second, for each transmitted DATA­
TPDU, the transport agent of the sending entity must set up a 
timer which would start the retransmission procedure after the 
timeout period. In many operating systems, the number of such 
timers is a constraint. 

There is also a problem of performance. It comes from 
timers handling by the operating system. Three basic operations 
are related to timers: 

- a process sets up a timer, 
- a timer expires and starts a process which executes 

a procedure, 
- a process cancels a timer; 

and in most operating systems, the fact is that the two first 
operations are quickly performed, but the last one consumes 
quite a lot processing time. And each time a DATA-TPDU is 
acknowledged, its associated timer must be cancelled! Thus 
expecting a separate acknowledgement for each transmitted DATA­
TPDU consumes a non-negligible part of the CPU time, which could 
have been used to prepare the next DATA-TPDUs to be transmitted. 

6• If this retransmission occurs too many times for the same DATA-TPDU, the transport agent may infer that 
there is a problem with the network layer, and thus can take some exceptional measures. 
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• cumulative acknowledgements. 

It is clear that each separate DATA-TPDU has to be actually 
acknowledged, even if no separate ACK-TPDU is generated by the 
transport agent of the receiving entity. So the semantic of the 
information included in an ACK-TPDU must change. In the trivial 
solution, the identifier of the ACK-TPDU was the sequence number 
of the DATA-TPDU it acknowledges7 • In the classical solution, 
the identifier of the ACK-TPDU is a threshold sequence number; 
and all DATA-TPDUs with a sequence number less or equal to this 
threshold are acknowledged by this ACK-TPDU. This scheme is 
often referred to as the 'cumulative acknowledgement'. 

It must be noted that, at a semantic point of view, the 
cumulative acknowledgement scheme is insensitive to the network 
layer problems discussed at paragraphs I.4 to I.7: 

- When an ACK-TPDU is lost, the next one acknowledges 
at least the same DATA-TPDUs. 
When an ACK-TPDU is corrupted, it is discarded by 
the transport agent of the sending entity, and the 
next one acknowledges at least the same DATA-TPDUs. 
When an ACK-TPDU is duplicated, the extra copy 
acknowledges exactly the same DATA-TPDUs as the 
original one. 
When two consecutive ACK-TPDUs are swapped by the 
network layer, the second received ACK-TPDU 
acknowledges DATA-TPDUs that where already 
acknowledged by the first received one. 

Many schemes can be imagined to choose the proper time for 
the transport agent of the receiving entity to issue an ACK­
TPDU. Here comes some examples: 

- every time a given number of DATA-TPDUs have been 
received since the latest ACK-TPDU was issued, 

- when a given amount of time has elapsed since the 
latest DATA-TPDU was received8 , 

- periodically, 
- a composite of previous schemes. 

• Retransmission on timeout. 

Even when using the cumulative acknowledgement scheme, the 
retransmission on timeout mechanism could be used "as-is" in the 
classical solution. The only difference is that, on reception 
of an ACK-TPDU, several timers would sometimes have to be 
cancelled. But this scheme would lead to use a timer for each 
DATA-TPDU, a situation which must be avoided, as shown earlier. 

7. This has been discussed in paragraph 11.2, under the title 11Dealing with duplicated datagrams 11 • 
8• This allows the transport agent of the receiving entity not to transmit ACK·TPDUs while receiving a 
burst of DATA·TPDUs. 
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An analysis of what would happen with this undesirable 
scheme when a DATA-TPDU is lost can help find a better solution. 
When this situation occurs, the timer associated with this DATA­
TPDU expires, and the retransmission procedure starts. At this 
moment, none of the subsequent DATA-TPDUs are acknowledged, 
otherwise the lost DATA-TPDU would also be acknowledged. A 
problem cornes from the conjunction of two facts: 

- The acknowledgement for the retransmitted DATA-TPDU 
and the subsequent ones will corne at least one RTD9 
later. 

- Several DATA-TPDUs were also transmitted within the 
RTD following the first transmission of the lost 
DATA-TPDU. 

The consequence is that the timers associated with these DATA­
TPDUs are very likely to expire, without any regard to their 
state at the transport agent of the receiving entity point of 
view. 

Figure III.2 illustrates this analysis with a possible 
scenario for a transfer of data from entity A to entity B. The 
transport agent of A transmits the DATA-TPDUs with sequence 
numbers 1 to 5. The DATA-TPDU with sequence number 1 is 
correctly received by the transport agent of B, which responds a 
ACK-TPDU numbered 1. The DATA-TPDU with sequence number 2 is 
lost by the network layer and the DATA-TPDUs with sequence 
numbers 3 to 5 are well delivered to the transport agent of B. 
From this moment, no ACK-TPDU with a number higher than 1 can be 
transmitted, as the DATA-TPDU with sequence number 2 has not 
been delivered. After some period of time, the timer associated 
to the DATA-TPDU with a sequence number 2 expires, and this 
DATA-TPDU is retransmitted. This latest DATA-TPDU is finally 
delivered to the transport agent of B, which can then respond a 
ACK-TPDU numbered 5. But before this ACK-TPDU is delivered to 
the transport agent of A, the timers associated to DATA-TPDUs 
with sequence numbers 3 and 4 have also expired, and these DATA­
TPDUs have been retransmitted. 

There is an easy solution to get a similar behaviour with a 
single timer at the transport agent of the sending entity end. 
This single timer is to be associated to the non-acknowledged 
DATA-TPDU with the lowest sequence number. The transport agent 
of the sending entity reacts to timer expiration and to incoming 
ACK-TPDUs as described in figure III.3. The most interesting 
rule is the first one: when the timer expires, the transmission 
of DATA-TPDUs restarts from the first non-acknowledged one, for 
retransmitting it as well as all subsequent DATA-TPDUs. It is 
from this fact that this retransmission on timeout scheme is 
sometimes referred to by the expression 'go-back-N scheme'. 

9. This has been discussed in paragraph 11.2, under the title "Dealing with datagram loss11 • 
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- Figure 111. 2 -
The retransmission on timeout scheme 

with a timer associated to each DATA-TPDU. 
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Figure III.4 illustrates this go-back-N scheme with the same 
initial scenario as in figure III.2. The transport agent of A 
transmits the DATA-TPDUs with sequence numbers 1 to 5. The 
DATA-TPDU with sequence number 1 is correctly received by the 
transport agent of B, which responds a ACK-TPDU numbered 1. The 
DATA-TPDU with sequence number 2 is lost by the network layer 
and the DATA-TPDUs with sequence numbers 3 to 5 are well 
delivered to the transport agent of B. From this moment, no 
ACK-TPDU with a number higher than 1 can be transmitted, as the 
DATA-TPDU with sequence number 2 has not been received. After 
some period of time, the timer expires, and so the transport 
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Event Action to perform 

Timer expires Next <- Ack . 
' Reset timer . 
' 

ACK-TPDU with number Num is Nothing to perform . 
' received and Num <= Ack 

ACK-TPDU with number Num is Ack <- Num . 
' received and Ack < Num <= Next Reset timer . 
' 

ACK-TPDU with number Num is Ack <- Num . 
' received and Next < Num Next <- Num . 
' Reset timer . 
' 

- Ack is the highest sequence nllli:>er of the acknowledged DATA-TPDUs. 
- Next is the sequence nllli:>er of the next DATA-TPDU to be transmitted. 

- Figure 111.3 -
Rules of the go-back·N scheme. 

agent of A retransmits DATA-TPDUs with sequence numbers 2 and 
higher. When the DATA-TPDU with sequence number 2 is delivered 
to the transport agent of B, an ACK-TPDU numbered 5 is 
transmitted. When the transport agent of A receives this ACK­
TPDU, it stops its transmission as the next DATA-TPDU to be 
transmitted, the one with sequence number 6, is not yet ready. 
It is clear that the traffic of TPDUs is very similar to the one 
in the figure III.2. 

An important question is the choice of the timeout delay to 
use for the timer. It is harder to compute than in the trivial 
solution case. Not only the RTD must be taken into account, but 
also the strategy the transport agent of the receiving entity 
uses for choosing when to transmit ACK-TPDUs. The difficulty is 
even worse when applying the third rule of figure III.3. In 
this case, there is a need to set up a timer associated to a 
DATA-TPDU that has been transmitted "some time ago". 

* The SOS region concept. 

Between the moment the transport agent of the sending entity 
transmits a DATA-TPDU and the moment it receives the 
corresponding acknowledgement, this DATA-TPDU is said to have 
its state 'out-of-synchronization'. This expression only means 
that during this period of time, the transport agent of the 
sending entity does not know the status of this DATA-TPDU at the 
destinating transport agent point of view. 
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The go-back-N scheme. 
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The set of all DATA-TPDUs which state is 'out-of­
synchronization' is often referred to as the 'state out-of­
synchronization region', abbreviated as the 'SOS region'. 

In the trivial solution, we could have said that the SOS 
region was the unique DATA-TPDU which has been transmitted but 
has not yet been acknowledged. In the classical solution, this 
SOS region is far much larger: it consists of the sequence of 
all DATA-TPDUs which have been transmitted by the transport 
agent of the sending entity, and for which an acknowledgement is 
waited for. So this sos·region is identified by two numbers: 
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- the sequence number of the first transmitted-but­
not-yet-acknowledged DATA-TPDU, 

- the sequence number of the last transmitted-but-not­
yet-acknowledged DATA-TPDU10 • 

The SOS region length must be large enough to allow 
continuous transmission of DATA-TPDUs: this is the aim of the 
classical solution. 

* The transmission window. 

The length of the SOS region must be bound, as each DATA­
TPDU in the SOS region consumes the memory resource of the 
transport agents of both sending and receiving entities: 

- The data the transport agent of the sending entity 
includes in a DATA-TPDU must be remembered as long 
as this DATA-TPDU remains in the SOS region, as this 
data has to be included in all the retransmissions 
of this DATA-TPDU. 

- The data a DATA-TPDU includes must be copied into 
the buffer space of the transport agent of the 
receiving entity until this entity 'consumes' this 
data. 

There is no real memory problem at the transport agent of 
the sending entity point of view. Each data the sending entity 
delivers toits transport agent is stored in the memory, and 
this memory can be locked until the datait contains leaves the 
SOS region. 

On the other hand, the available buffer space for the 
transport agent of the receiving entity to store incoming data 
is a real constraint. If the transport layer were allowing a 
DATA-TPDU to come to the transport agent of the receiving entity 
when there is no more space to store its data part, this data 
would have to be dropped and the DATA-TPDU retransmitted later. 

Such a situation is depicted in figure III.5. The transport 
agent of A transmits the DATA-TPDUs with sequence numbers from 1 
to 4. But the transport agent of B has only got available 
buffer space for three DATA-TPDUs. Soit can only store the 
data from DATA-TPDUs with sequence numbers from 1 to 3, and then 
it has to drop the DATA-TPDU with sequence number 4. 

So there is a need to bind the length of the SOS region. 
This can be done by defining a 'transmission window' inside 
which the SOS region will be allowed to grow. This transmission 
window will be identified by two numbers: the sequence numbers 
of the first and the last DATA-TPDUs it contains11. 

10 • Another equivalent solution is to identify the SOS region using the sequence nurber of its first DATA· 
ÎPDU and its length. 
1• Another equivalent scheme to identify the transmission window is to use the sequence of its first 

DATA·TPDU and its length. 
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Transport Transport 
Agent of Network Layer Agent of 
Host 'HS' Host 'HD' 

Content of Buffer 
1 1 1 1 

PS PD' 1 Data 1 Crc 1 

PS PD 2 Data 2 Crc 2 1 Data, 1 

PS PD 3 Data 3 Crc 3 1 Data, h>am,! 

PS PD 4 Data 4 Crc 4 1 °""'• 1 llobl, 1 °""'• 1 

- Figure II I. 5 -
The loss of a DATA-TPDU due to a lack 

of buffering space. 

• Transmission authorizations. 

1 °""'' 1 llobl, l 11a1a, 1 

The major problem is that the available buffer space at the 
transport agent of the receiving entity end is an information 
the transport agent of the sending entity can not guess. So the 
former will have to feed back the latter with one more 
information: the highest DATA-TPDU sequence number it can 
accept. An interesting way to send this number is to include it 
in a new field of the ACK-TPDU. 

As this number authorizes the transport agent of the sending 
entity to transmit DATA-TPDUs until a given sequence number, it 
is referred to by the expression 'transmission authorization'. 

As this new ACK-TPDU carries more information than a bare 
acknowledgement, it will be referred to by the expression 
' CONTROL-TPDU' . 

Figure III.6 illustrates the transmission authorization 
scheme. First the transport agent of B warns the transport 
agent of A that: 

- the DATA-TPDUs with sequence numbers lower or equal 
to O have been well received, 

- there is an available buffer space for the DATA­
TPDUs with sequence numbers lower or equal to 3. 
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On reception of this CONTROL-TPDU, the transport agent of A 
starts transmitting DATA-TPDUs with sequence numbers form 1 to 
3. After a period of time, the transport agent of B has got 
some more free buffering space for two DATA-TPDUs, and soit 
transmits a CONTROL-TPDU with a transmission authorization of 5. 
As at this moment, DATA-TPDUs with sequence numbers 1 and 2 were 
received, the acknowledgement value of this CONTROL-TPDU is 2. 
on reception of this TPDU, the transport agent of A starts 
transmitting DATA-TPDUs with sequence numbers form 4 to 5. 

• Recapitulation. 

There are problems of resource consumption and performance 
with a direct extension of the trivial solution with the 
transport agent of the sending entity continuously transmitting 
DATA-TPDUs. These have been solved by introducing the 
cumulative acknowledgements and go-back-N schemes. 
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There is no need to transmit DATA-TPDUs when the transport 
agent of the receiving entity has got no buffer space to store 
their data part. The transmission of such DATA-TPDUs is avoided 
by using the mechanisms of the transmission window and the 
window authorization. 

III.3. Examples of the classical solution. 

This classical solution is used by the standard transport 
protocol of the DOD world: the Transmission Control Protocol 
(TCP) 12 . This transport protocol is implemented on top of IP. 
Nowadays, almost all computers are sold with a version of 
TCP/IP. 

The principles of this solution are also used by the 
Transport Protocol, class 4 (TP-4) of the connection-oriented 
OSI stack13. 

III.4. Results of the classical solution. 

Many tests of implementations of TP4/CLNS and TCP/IP have 
been carried out on various equipments, ranging from personal 
computers to workstations and mainframes, connected to LANs14. 
The results of the throughput measurements of these examples of 
the classical solution are the basis on which the merits of the 
solutions described in the subsequent chapters will be 
discussed. 

For the TP4/CLNS case, the measured throughput generally 
ranges from seven hundred kilobits per second to one megabit per 
second, over a ten megabits per second Ethernet or token bus 
local area network. 

For the TCP/IP implementations, the results roughly vary 
from one to three megabits per second, over a ten megabits per 
second Ethernet local area network. 

III.5. Analysis of the classical solution. 

There are some problems with the classical solution, in case 
of TPDU loss. When a TPDU is lost, the retransmission timer 

12. A COlll)lete description of TCP can be found in [RFC-793]. 
13. A cOlll)lete description of TP-4 can be found in [IS0-8073]. 
14• The detailed results of these tests.may be read in [PERFORMANCES]. 
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expires after the timeout delay. At this moment, the 
transmission restarts from the first non-acknowledged DATA-TPDU. 
The next CONTROL-TPDU cornes at least one RTD later. And, within 
this RTD time, DATA-TPDUs are retransmitted whether there were 
already correctly received or not. So for a single lost TPDU, 
there can be several unneeded DATA-TPDUs retransmission, leading 
to poor effectiveness. 

This problem of effectiveness is also shown on figure III.4. 
height DATA-TPDUs have been transmitted by the transport agent 
of A. But in fact only six of them were really required for an 
effective transfer: 

- the first transmission of the DATA-TPDUs with 
sequence numbers from 1 to 5, 

- the retransmission of the DATA-TPDU with sequence 
number 2. 

A numerical value of the effectiveness of this transfer can be 
computed as the ratio of the amount of required DATA-TPDUs by 
the amount of actually transmitted DATA-TPDUs. In this case, 
this effectiveness measurement would be 6/8, or 75%. 

Two different kinds of effectiveness can be analysed: 
- the local effectiveness, concerning the DATA-TPDUs 

inside the SOS region at the moment the TPDU is 
lest, 

- the global effectiveness, concerning the transfer of 
the entire data. 

The local effectiveness is mainly function of the rate of DATA­
TPDUs emission and the RTD value. The minimum amount of 
retransmitted DATA-TPDUs is in fact the product of these two 
values. The global effectiveness will be mainly function of the 
rate of TPDU losses and the local effectivenesses when these 
TPDUs are lost. 

It is interesting to analyse the origins of TPDUs loss, and 
the impact of the different classes of loss on the global 
effectiveness of the transfer. Two reasons for loosing TPDUs 
were already encountered in the trivial solution: first, the 
network layer sometimes drops a TPDU15 , when one of its routers 
in congested; second, a transport agent discards a TPDU when the 
latter fails the integrity checking16 • But in the classical 
solution, a third reason for loosing TPDUs appears, as the 
result of three facts: 

A transport agent may continuously receive TPDUs. 
- Each TPDU requires some processing time to be 

treated. 
- Processing time is a finite resource, 

These lead to a threshold on the rate of TPDU treatment. And 
when a transport agent receives TPDUs faster than it can treat 
them, it has nothing else to do than dropping some of them. An 

15. This has been discussed in the paragraph 1.4. 
16 • This has been discussed in paragraph 11.2, under the title 11Dealing with datagram corruption". 
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example of such a situation would be materialised by an entity 
running on a very fast host and transferring data to an entity 
running on a very slow host. 

When the loss of TPDUs comes from the discarding of a 
corrupted TPDU, there is no real problem, as this can be 
considered as an unusual event. It leads to a momentary poor 
effectiveness, but on the long term, it has no impact on the 
global effectiveness of the data transfer. 

The true problem cornes when TPDUs are lost due to congestion 
of one router of the network layer, or to the congestion of the 
transport agent of the receiving entity. In this case, the 
transport layer reacts to the congestion by restarting the data 
transmission from the failing DATA-TPDU. But this does not 
solve the congestion problem in any way, and it is very likely 
that another TPDU will soon be lost due to congestion, and so 
on, and so on: this is an endless loop. And thus all along the 
time, the global effectiveness of the transfer will stay low. 

Dr. Van Jacobsen has imagined a solution to this problem. 
In his scheme, the transport agent of the sending entity does 
not retransmit the entire transmission window after a timeout, 
but instead it only retransmits the first failing DATA-TPDU. 
When this DATA-TPDU gets acknowledged, the two next 
unacknowledged DATA-TPDUs are retransmitted, then a group of 
four DATA-TPDUs, and so on until the entire transmission window 
can be transmitted at once. This scheme is known as the 'slow­
start algorithm' 17. The name of this scheme cornes from the fact 
that it is also interesting to use it for the very first DATA­
TPDUs of the data transfer. 

The conclusion of this analysis is that there is no way to 
achieve an optimal end-to-end throughput with the classical 
solution. If there is no congestion resolution scheme present, 
all the network bandwidth can be used, but sometimes with poor 
efficiency. On the other hand, all simple congestion avoidance 
schemes will be similar to Dr. Jacobsen's one, in the sense that 
they will keep the transmission window small, thus preventing 
the transport agent of the sending entity from continuously 
transmitting DATA-TPDUs. Thus a simple congestion avoidance 
scheme will lead to a waste some part of the network bandwidth. 

III.6. Conclusion. 

The classical solution meets its requirements, in the sense 
that it is a simple solution to improve the throughput of the 
trivial solution. Except for the transmission window one, all 
concepts are only evolutions of those used in the trivial 

17• The interested reader may refer to [TCP-2] for a COff1:)lete description of the slow-start algorithm. 
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solution. These two characteristics of simplicity and good 
throughput have lead this solution to be the currently most used 
one, with TCP and TP-4. 

The further problem is that this classical solution only 
offers a good throughput, but not an optimal throughput. With a 
congestion resolution scheme, some resources are wasted because 
they are not used; and without such a scheme, some resources are 
also wasted because they are mis-used. 

so there is a need to find another solution for the 
transport layer design, which use all the available resources, 
but in a more effective way. 
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Chapter IV: 

An improved design. 

1v.1. Aims of the improved design. 

The aim of this improved design is to enhance the classical 
solution, in a way to allow a better end-to-end1 throughput. 
This will be achieved by meeting both following goals: 

- to have a high transmission rate between the 
transport agents of the sending and the receiving 
entities, 

- to have a high global effectiveness in this 
transmission. 

As shown in its analysis, the classical solution can only meet 
one of these goals at a time. It is very uncommon for it to 
meet both of them, especially when the network latency is long, 
when the network is heavy loaded, or when this network 
frequently corrupts datagrams2 • 

The high transmission rate between both transport agents 
will be achieved by: 

- never stopping the transport agent of the sending 
entity transmitting DATA-TPDUs before it has reached 
the end of its transmission window, 

- making the transmission authorizations reflecting 
only buffering capacities of the transport agent of 
the receiving entity. 

From the analysis of the classical solution, it is rather 
manifest that the high global effectiveness requirement will be 
achieved by: 

upgrading the local effectivity when a DATA-TPDU is 
lost, 

- keeping low the rate of DATA-TPDU losses. 

1. In other words: entity·to·entity. 
2. See paragraph 111.5. 
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IV.2. Prinoiples of the improved design.3 

* The seleotive aoknowledgement meohanism. 

In the go-back-N scheme, the problem of poor local 
effectiveness when a DATA-TPDU is lost is due to the unneeded 
retransmission of several DATA-TPDUs. This comes from the fact 
that, with a cumulative acknowledgement, the transport agent of 
the receiving entity does not send any information toits peer 
about the state at its end of the DATA-TPDUs inside the "non­
acknowledged part" of the transmission window. 

On the very opposite, one could imagine a scheme where each 
CONTROL-TPDU the transport agent of the receiving entity 
transmits toits peer carries a list of all DATA-TPDUs it has 
received so far. This acknowledgement mechanism is referred to 
as the 'selective acknowledgement' mechanism. 

One problem with the selective acknowledgement scheme is the 
choice of the implementation of this list of received DATA­
TPDUs. This implementation must lead to: 

- a concise representation of the list, for an 
effective use of the available network bandwidth, 

- an easy handling of this list by both transport 
agents, for an effective use of the available 
computing resource. 

Two good compromises for such an implementation are: 
- the list of all ranges of the sequence numbers of 

received DATA-TPDUs, 
- the sequence number of the first missing DATA-TPDU, 

the sequence number of the last received DATA-TPDU, 
and a bitmap describing the state of all DATA-TPDUs 
within the range defined by this pair of sequence 
numbers. 

But there are other more annoying problems with this scheme. 
The first one is the choice, for the transport agent of the 
receiving entity, of the right moment to transmit the CONTROL­
TPDU carrying the selective acknowledgement. And the second one 
is the choice, for the transport agent of the sending entity, of 
the right moment to retransmit a non-acknowledged DATA-TPDU. 

* The inadequaoy of the retransmission on timeout soheme. 

With a separate timer associated to each transmitted DATA­
TPDU, at the transport agent of the sending entity end, a 
retransmission on timeout scheme may be handled with ease. The 
timeout delay would be chosen in respect to the current 
estimation of the RTD, as well as to the scheme used for the 
CONTROL-TPDUs transmission decision. But this solution is 

3• A c°""lete description of the i""roved design may be read in [NETBLT]. 
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totally inadequate, as handling a separate timer for each 
transmitted DATA-TPDU would consume too much processing time on 
the host running the transport agent of the sending entity4 • 

It is possible to imagine an extension of the go-back-N 
scheme which would use selective acknowledgements. A timer 
would be associated to the first non-acknowledged DATA-TPDU, and 
all the rules described in figure III.4 would be used5 , with the 
only difference that the process responsible for the 
transmission of the DATA-TPDUs would skip all acknowledged ones. 
But this scheme mainly leads to two annoying problems. 

- First, the transport agent of the receiving entity 
regularly transmits CONTROL-TPDUs, which have a 
respectable size. This can consume a non negligible 
part of the network bandwidth. 

- Second, when applying the third rule of figure 
III.4, it is very hard to compute an appropriate new 
timeout delay, as it depends on the moment a 
previous DATA-TPDU was transmitted. 

So, for using a selective acknowledgement scheme, there is a 
need for other retransmission mechanisms than the classic 
retransmission on timeout one. 

• The periodic resynchronization scheme. 

An interesting substitute solution is to alternate periods 
of DATA-TPDU transmission and periods of state 
resynchronization. When using this scheme, it is up to the 
transport agent of the sending entity to take all decisions 
involving this state resynchronization. 

First, the transport agent of the sending entity chooses 
some point in the data stream to be transmitted. Such a point 
is called a 'resynchronization point'. Then DATA-TPDUs are 
transmitted until this point is reached. But during this 
period, no acknowledgement at all is generated, and sono DATA­
TPDU retransmission is carried out. 

When the resynchronization point is reached, the DATA-TPDU 
transmission stops and the resynchronization procedure is 
performed. The latter consists of the transport agent of the 
sending entity to: 

- ask the transport agent of the receiving entity for 
an acknowledgement, 

- to retransmit all the non-acknowledged DATA-TPDUs, 
- to repeat the two preceding steps until all DATA-

TPDUs before the resynchronization point are 
acknowledged. 

4• Such a problem was already encountered in paragraph 111.2. 
5• With NlJII C0rr4)Uted from the content of the CONTROL-TPDU. 
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When both transport agents are resynchronized, the transport 
agent of the sending entity chooses the next resynchronization 
point, and the next DATA-TPDU transmission period starts. 

Figure IV.1 illustrates this mechanism. The transport agent 
of entity on port 'ps' of host 'hs' transmits a message to the 
transport agent of entity on port 'pd' of host 'hd'. This 
message has to be split into four DATA-TPDUs, which have 
sequence numbers from 6 to 9. DATA-TPDUs with sequence numbers 
6 and 9 are correctly transmitted, but DATA-TPDUs with sequence 
numbers 7 and 8 are lost by the network layer. A request for 
resynchronization is associated to the DATA-TPDU with sequence 
number 9. So, on reception of this DATA-TPDU, the transport 
agent on hast 'hd' transmits a CONTROL-TPDU mentioning, among 
other things, the list of all DATA-TPDUs to be retransmitted 
(that is to say, those with sequence numbers 7 and 8). So the 
transport agent of host 'hs' retransmits both missing DATA­
TPDUs, with an other request for retransmission associated to 
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the DATA-TPDU with sequence number 8. Then a CONTROL-TPDU 
stating that all DATA-TPDUs have been correctly received is 
transmitted by the transport agent of host 'hd'. 

The step where the transport agent of the sending entity 
asks its peer an acknowledgement is worth a detailed analysis. 
The fact that the transport àgent of the sending entity requests 
an acknowledgement is an information that must be transferred, 
in a TPDU, to the transport agent of the receiving entity6. The 
problem is that this TPDU is subject to all network problems 
described in paragraphs I.4 to I.7, and so the principles of the 
trivial solution7 must be applied. In fact the TPDU carrying 
the request for an acknowledgement will have to be retransmitted 
on timeout until the acknowledgement itself is receiveda. 

An important issue is the choice of the synchronization 
point. As a matter of fact, when the transport agent of the 
sending entity reaches such a point in the strict application of 
the above scheme, there is no more new DATA-TPDUs transmitted 
before all preceding DATA-TPDUs are acknowledged. Soit can be 
interesting to choose as a synchronization point a 'natural' 
one: that is to say a point where the transport agent of the 
sending entity would have stopped transmitting DATA-TPDUs. 
There are two such natural points: 

- the end of the transmission window, 
- the end of a user message9 • 

But in fact, there is no real reason to stop the DATA-TPDU 
transmission while a resynchronization takes place. And so when 
a resynchronization point is reached, the transport agent of the 
sending entity may perform two simultaneous tasks: 

- to resynchronize all DATA-TPDU preceding the 
resynchronization point, 

- to transmit DATA-TPDUs until the next 
resynchronization point. 

And with this new evolution of the solution, some more arbitrary 
resynchronization points may also be chosen. 

• The retransmission on demand scheme. 

Another interesting substitute solution is often referred to 
as the 'retransmission on demand' scheme. Here are its 
principles. 

The transmitted sequence of DATA-TPDUs is no more considered 
by both transport agents as a simple sequence of DATA-TPDUs, but 

6. This could be done by raising a flag, say <RESYNC>, in the Flags fields of the lest transmitted DATA· 
tPDU; or by issuing some king of special purpose packet, say RESYNC·TPDU • 

• They have been discussed in paragraph 11.2. 
8• After a given nuii>er of unsuccessful retransmissions, the transport agent of the sending entity may 
aecide that there is a problem with the network layer and may start an exceptional procedure • 

• Assuming that there is often a significant delay between the deliveries of two successive user messages 
to the transport layer, for a single data stream. 
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as a sequence of blocks of DATA-TPDUs. This is implemented with 
a new identifying scheme for the DATA-TPDUs, where each DATA­
TPDU is identified by the two following numbers: 

- the sequence number of the block the DATA-TPDU 
belongs to, 

- the sequence number of the DATA-TPDU, relative to 
the block it belongs to. 

So, in each transmitted DATA-TPDU, the former sequence number 
field is replaced by two new fields which respective values are 
those just described. Furthermore, for the transport agent of 
the receiving entity to exactly know the content of each 
transmitted block, all DATA-TPDUs also indicate in one of their 
fields the number of DATA-TPDUs their block is composed of. 

In its segmentation of the transmitted data stream into 
blocks, the transport agent of the sending entity always ensures 
that it will be able to transmit all the DATA-TPDUs of any block 
in a single burst. A good policy which conforms to this 
constraint is to separate each user messages from the others. 
So a single user message could be eut into a sequence of fixed 
length blocks and a last block for the remaining part of the 
message. 

Figure IV.2 shows an example of this kind of packetization. 
Entity A delivered its transport agent a message which is 
destinated to entity B. This message is to be packetized into 
seven DATA-TPDUs, and the protocol specifies the maximal block 
size to be four DATA-TPDUs. So the message to be transmitted is 
divided into two blocks: the first block contains the first four 
DATA-TPDUs, and the second block the three remaining ones. on 
this diagram, the fields of the DATA-TPDUs are expressed in the 
following order: 

- the source and destination port fields, 
- the block sequence number field, 
- the block size field, 
- the DATA-TPDU sequence number field, relative to the 

block, 
- the data field, 
- the checksum field. 

The detection of lost DATA-TPDUs can then be performed by 
the transport agent of the receiving entity. The latter can be 
aware of the fact that no DATA-TPDU within a block is lost when 
it receives the last missing DATA-TPDU that belongs to this 
block. On the other hand, it is also able to detect that a 
DATA-TPDU is lost within a block when the two next conditions 
meet: 

- it has no yet received that DATA-TPDU, 
- it has not received any DATA-TPDU of that block for 

'a long time'. 
This comes from the fact that the transport agent of the sending 
entity transmits all DATA-TPDUs of a block in a single burst: so 
all these DATA-TPDUs are due to be received by the transport 
agent of the receiving entity in a 'short' period of time. In 
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fact, an adequate value for the 'long time' mentioned above can 
be estimated in regard to the following statement: the preceding 
received DATA-TPDU of that block may have been transmitted by 
the network layer with a short latency, and the expected one may 
have been transmitted with a long latency. So this 'long time' 
has only to take into account the estimation of the variations 
in the network latency. And, as it had to be done in the RTD 
case, this estimation is to be based on measures of preceding 
values of these variations. 

When all DATA-TPDUs of a block are received, or when the 
timer associated to this block expires, the transport agent of 
the receiving entity transmits a selective acknowledgement for 
that block (not for the entire stream). At the transport agent 
of the sending entity end, when a selective acknowledgement for 
a block is received, all DATA-TPDUs marked as missing in that 
block are retransmitted, in a single blast. The same algorithm 
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may be repetitively used to detect DATA-TPDUs which get lost 
during a retransmission and to request once again their 
retransmission, until all DATA-TPDUs of that block are correctly 
received. 

The fact that the transport agent of the sending entity 
immediately retransmits missing DATA-TPDUs on reception of a 
selective acknowledgement can be viewed as the response to a 
request for the retransmission of these DATA-TPDUs. This is the 
reason why this scheme is referred to as the 'retransmission on 
demand' principle. 

This retransmission on demand principle is illustrated by 
figure IV.3. For the communication between entity on port 'ps' 
of hast 'hs' and the entity on port 'pd' of host 'hd', the 
transport agent of host 'hs' has just received a transmission 
authorization for the black with sequence number one. This 
block consists of four DATA-TPDUs, with relative sequence 
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numbers from one to four. On the first transmission of the 
entire block, only DATA-TPDUs with relative sequence number one 
and four are received, and the two other DATA-TPDUs are lost by 
the network layer. After some delay, the timer associated to 
this block at the receiving end expires, and so the transport 
agent of host 'hd' transmits a CONTROL-TPDU carrying a request 
for the retransmission of DATA-TPDUs two and three from the 
block with sequence number one. On reception of this TPDU, the 
transport agent of 'hs' immediately retransmit these two DATA­
TPDUs, which this time are correctly delivered to the transport 
agent of host 'hd'. As soon as the latter has received these 
DATA-TPDUs, it transmits a CONTROL-TPDU carrying the 
acknowledgement for the entire block with sequence number one. 
For the CONTROL-TPDUs of this figure, only their acknowledging 
partis explicitly represented: a first field indicates which 
block the CONTROL-TPDU acknowledges, and a second one is a 
bitmap reflecting which DATA-TPDUs of that block were actually 
received. 

This scheme works very well when at least one DATA-TPDU of 
every block is received by the transport agent of the receiving 
entity. But there is a problem if no DATA-TPDU of a given block 
is received. In this case, the transport agent of the receiving 
entity does not even know that the DATA-TPDUs of that block were 
transmitted, and soit is notable to transmit any demand for 
the retransmission of the entire block. This problem is solved 
by using the retransmission on timeout scheme at the block 
level: if, some time after the last DATA-TPDU of a block is 
transmitted, no acknowledgement for that block is received, the 
transport agent of the sending entity retransmits the entire 
block. 

But there is an other problem coming with the above 
solution, as one of the following statements is true when the 
timer for the retransmission on timeout of the entire block 
expires: 

- No DATA-TPDU of that block was received during the 
preceding transmission of the block. 

- The selective acknowledgement the transport agent of 
the receiving entity delivered to the network layer 
got lost. 

It is rather evident that the probability of the loss of the 
single TPDU carrying the acknowledgement is far much higher than 
the probability of the loss of all DATA-TPDUs used to transmit 
the block10. The worse case arises from the loss of an 
acknowledgement requesting no retransmission at all: the entire 
block has been correctly received, but it is entirely 
retransmitted. The conclusion is that the retransmission on 
demand scheme is very sensitive to the loss of CONTROL-TPDUs. 

10, Ass1.111ing that a block consists of several DATA·TPDUs. 
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so, to meet the requirements of the improved design11, there 
is a need for implementing supplementary mechanisms alongside 
the retransmission on demand scheme: 

- to enhance the chance of delivery of CONTROL-TPDUs, 
- to moderate the unneeded retransmissions in case of 

CONTROL-TPDU loss. 

* The flow control between transport agents. 

The above mechanisms dealt with upgrading the local 
effectiveness of the TPDUs exchange in case of DATA-TPDU loss. 
The second objective is to lower the rate of TPDUs loss. 

It has been shown that a high rate of TPDUs loss is caused 
by some congestion12: 

- of the route between both transport agents, 
- of a transport agent itself. 

This congestion occurs when a transport agent transmits TPDUs 
faster than a threshold rate, which can be referred to as the 
'congestion rate'. This congestion rate can be defined as the 
maximal rate at which the network and the peer transport agent 
can treat DATA-TPDUs. In fact, the problem of lowering the rate 
of TPDUs loss is a problem of congestion avoidance, and this 
problem of congestion avoidance is a problem of flow control 
between transport agents: the transport agent of the sending 
entity must be required not to transmit DATA-TPDUs with a higher 
rate than the congestion one. 

In the classical solution, the only mechanism limiting the 
transmission of TPDUs is the transmission window13 one. But it 
is not sufficient: a transmission window only binds the amount 
of DATA-TPDUs to be transmitted, and not the rate at which they 
can be transmitted. It can be objected that the transmission 
authorizations are received by the transport agent of the 
sending entity with a given rate, and so that this rate of 
window authorization reception indirectly limits the 
transmission rate. This deduction is quite approximate, and to 
be more accurate, the transmission authorizations bind the 
average rate of DATA-TPDUs transmission, but not any instant 
rate. And nothing prevents from pitches in the transmission 
rate, with instant transmissions rates far higher than the 
congestion one. 

An illustration of this problem is depicted on figure IV.4. 
A transport agent receives, every five seconds, a transmission 
authorization for thirty DATA-TPDUs. But nothing prevents it 
from transmitting these thirty DATA-TPDUs within a single second 
and than waiting for four seconds. The left graph shows the 
progression of the amount of transmitted DATA-TPDUs, in function 

11. These requirements have been discussed in paragraph IV.1. 
~~- This has been discussed in paragraph 111.5 • 

• This has been described in paragraph 111.2. 
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of the elapsed time. The right graph shows the instant 
transmission rate, in function of the elapsed time. In both 
graph, dashed lines represent what could have been expected, and 
solid lines represent what can really happen. 

A primitive aspirant as a solution to the above problem is 
based on the following consideration: an instant transmission 
rate is nothing else than an average transmission rate 
calculated for an infinitesimal period of time14 • So, a 
solution, for the transport agent of the receiving entity to 
control the flow of DATA-TPDUs its peer transmits, would be to 
send shorter transmission authorizations at a higher rate. 

But this solution is not satisfying for two reasons. First, 
it would boost the traffic of CONTROL-TPDUs. This interferes 
with all the efforts made to lower this traffic, which consumes 
a considerable part of the available network bandwidth for a 
non-effective purpose. Second, it would only control the flow 
between transport agents for the first transmission of the DATA­
TPDUs, and would not help during the retransmission of missing 
ones. As a matter of fact, the transmission authorizations only 
deal with the DATA-TPDUs to be transmitted for the first time, 
and all the ones to be retransmitted corne as a supplement. This 
is sometimes referred to as an 'out-of-band retransmission'. 

14 • The instant transmission rate can be viewed as the derivative of the amount of transmitted DATA·TPDUs, 
function of the elapsed time. 
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• The rate-based flow-control. 

The primitive solution described above indicates at least 
one requirement for a good flow control between transport 
agents: the transport agent of the sending entity must 
explicitly use a rate control mechanism when transmitting DATA­
TPDUs. Furthermore, it must transmit all DATA-TPDUs using the 
chosen rate, whether these DATA-TPDUs are transmitted for the 
first time or not. This is sometimes referred to as the 'in­
band retransmission' mechanism. 

Now, as the transport agent of the sending entity explicitly 
controls its transmission rate, the transport agent of the 
receiving entity can have an easy control on this transmission 
rate. It can do so by only telling its peer the rate at which 
it wants the DATA-TPDUs to be transmitted. This information can 
be carried in a new field of the CONTROL-TPDUs the transport 
agent of the receiving entity transmits toits peer15. At the 
other end, the transport agent of the sending entity would 
choose as its transmission rate the one mentioned in the last 
CONTROL-TPDU it received. 

The next question for the transport agent of the receiving 
entity is then: what is the appropriate transmission rate to 
expect? The theoretical response is: a rate which is lower than 
the congestion rate, but very close toit. But the problem is 
that the transport agent of the receiving entity does not know 
the value of this congestion rate. A good practical response to 
the question is to dynamically adjust the transmission rate 
using the two following rules: 

- when DATA-TPDUs are regularly lost, decrease the 
transmission rate, 

- if no DATA-TPDU has been lost for a while, increase 
the transmission rate. 

The justification of the first rule is: DATA-TPDUs are regularly 
lost when the transmission rate is higher than the congestion 
one, so the expected transmission rate has to be decreased. The 
reason of the second rule is: no DATA-TPDU is lost when the 
transmission rate is lower than the congestion one, and so 
increasing the expected transmission rate makes it closer to the 
congestion one. The application of these two rules makes the 
transmission rate vary just below the congestion rate, as shown 
on figure IV.5. 

The set of all these elements, that is to say: 
- using an explicit transmission rate for transmitting 

DATA-TPDUs, 
- performing in-band retransmission of lost DATA­

TPDUs, 

15 • This information cen be expressed as the transmission rate itself (an amount of packets per period of 
time), or as the 'inter·TPDU gap' (en amount of time). 
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- making the transmission rate lower than the 
congestion rate, but close toit, 

is often referred to as the 'rate-based flow control' mechanism. 

There is a major problem when implementing this transmission 
rate. The transport agent of the sending entity will have to 
wait for a little period of time between each DATA-TPDU 
transmission operation. It will have to do so by using a timer 
of the operating system. And the problem is that the required 
delays are often smaller than the granularity of those operating 
system driven timers. 

To circumvent this annoying problem, most transport 
protocols implementing rate-based flow-control do not control 
the transmission rate of isolated DATA-TPDUs, but the 
transmission rate of short bursts of DATA-TPDUs. So, the 
information to control the transmission rate, which is included 
in each CONTROL-TPDU the transport agent of the receiving entity 
transmits toits peer, is composed of two values: 

- the burst size, expressed as a quantity of DATA­
TPDUs, 

- the burst transmission rate, expressed as the 
quantity of bursts to be transmitted each period of 
time, or expressed as a delay between each burst 
transmission. 

For example, here is a situation where a transport agent has 
found that: 

- it can treat a thousand DATA-TPDUs every second; 
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- it has buffering capacity for ten DATA-TPDUs16; 
- bursts of ten DATA-TPDUs can be transmitted by the 

network layer, without leading to any congestion 
situation. 

Instead of instructing its peer to transmit a thousand DATA­
TPDUs every second, it can instruct the latter to transmit a 
hundred of bursts of ten DATA-TPDUs every second. The advantage 
is that the transport agent of the sending entity will be 
allowed to use timers with a granularity in the range of a 
hundredth of a second instead of a thousandth of a second. 

IV.3. Examples of the improved design. 

The three main examples of transport protocols using this 
improved solution are NETBLT, VMTP and XTP. They all corne from 
the DOD world. 

• NETBLT and the improved design. 

Historically, the NETwork BLock Transfer protocol (NETBLT) 17 
was the first transport protocol for which the improved design 
was implemented. In fact, NETBLT was the first transport 
protocol explicitly designed for bulk data transfer, using 
network routes with very long latencies and/or heavy loaded 
networks. 

NETBLT uses the selective retransmission on demand scheme. 
It views the data stream to be transmitted as a sequence of 
blocks of DATA-TPDUs. Each block of DATA-TPDUs is known as a 
'buffer' in the articles about this transport protocol. The 
receiving NETBLT transport agent transmits its transmission 
authorizations on the buffer basis: when there is buffering 
space for a new buffer, a special purpose CONTROL-TPDU known as 
'GO(NJ 1 1s, is transmitted to the peer NETBLT transport agent. 
The positive acknowledgement for all the DATA-TPDUs of a single 
buffer is known as a 'OK(NJ', and the demand for the 
retransmission of some DATA-TPDUs of a buffer is known as a 
'RESEND[NJ'. 

NETBLT uses the rate-based flow control mechanism, at the 
burst level. In each CONTROL-TPDU is included a 'burst size' 
and a 'burst rate' values. 

16. A buffer for storing received DATA-TPDUs between the moment they are received and the moment they can 
be treated, not the buffer for storing data between the moment a DATA-TPDU is treated and the moment its 
y,ta part is delivered to the destinating entity • 

• A description of NETBLT design may be read in [NETBLT], and the specification of this protocol may be 
i8und in [RFC-998] • 

• N is the sequence nurber of this buffer. 
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NETBLT uses a very ingenious scheme to deal with the high 
sensitivity to CONTROL-TPDUs loss. It could be described as a 
cumulative acknowledgement scheme with high redundancy in 
transmission. All CONTROL-TPDUs (Gos, OKs and RESENDs mixed up) 
have got increasing sequence numbers. Each DATA-TPDU contains a 
field reflecting the higher sequence number of the received 
CONTROL-TPDUs. And each time a new CONTROL-TPDU is to be 
transmitted, all non-acknowledged ones are retransmitted, all 
packed into a single large CONTROL-TPDU. 

• VMTP and the improved design. 

The Versatile Message Transaction Protocol (VMTP} 19 is a 
transaction-oriented transport protocol, especially designed for 
the implementation of the client/server model. 

In VMTP, the communication between two entities is 
asymmetric, with a client entity having a sequence of 
transactions with a server entity. This transaction model is 
depicted in figure IV.6. Each transaction is composed of a 
'request' message generated by the client entity and destinated 
to the server one, and a 'response' message transmitted back to 
the client entity20 • One of the requirements of VMTP is that 
these messages must be transmitted with a high throughput. This 

- Figure IV.6 -

The transaction IIIOdel of VMTP. 

1 

1 Request 1 
1 

Client Server 

.,.._-----1l Response 1 
1 

19• The specification of VMTP may be read in [RFC-1045]. 
20 • This is the basic IIIOdel of a transaction in VMTP. Other IIIOdels exist, such a transaction with a 
request but no response, or the server a group of entities instead of a single one, etc. 
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last point of view motivated its creators to use the improved 
design described in this chapter. 

Each message may be up to four megabytes large, and is 
viewed by VMTP as a sequence of 'packets groups'. Each packets 
group is sixteen kilobytes long, except the last one, which may 
be shorter. Each such packets group may be transmitted as 
several DATA-TPDUs, simply called 'packets'. 

The acknowledging scheme is quite a bit elaborate, with many 
implicit acknowledgements, cumulative acknowledgements and 
retransmission on demand. The simplest case occurs when no 
packet at all is lost: in this case there is no CONTROL-TPDU 
transmitted for acknowledgement purpose. Instead, the 
acknowledgement is implicit, in the sense that the next 
message21 acknowledges the entire current one. On the other 
hand, when some packets of a packets group are missing, the 
receiving VMTP transport agent requests their retransmission, 
just as it has been described in the preceding paragraph. The 
only difference is that a request for the retransmission of some 
packets of a packets group also acknowledges all the preceding 
packets groups. And so this request is interpreted by the 
sending VMTP transport agent as some kind of 'selective-go-back­
N': the requested packets are retransmitted, as well as all 
subsequent packets groups. 

The justification of such an acknowledging scheme is that in 
the context of the transaction model, most of the messages are 
expected to be shorter than sixteen kilobytes. In this 
particular case, every message is transmitted as a single 
packets group, and so the acknowledging scheme virtually becomes 
a bare retransmission on demand one. 

VMTP also uses the rate-based flow control scheme. But it 
uses the basic approach of that strategy: the transmission deals 
with the packets, and not with bursts of packets. Each request 
packet mentions the expected inter-packet gap for the 
corresponding response message, and each response packet 
mentions the expected inter-packet gap for the next request 
message. 

Also, VMTP makes no effort to insure the delivery of 
requests for retransmission. Instead, it minimizes the traffic 
overhead in case of loss of such a request. When the 
retransmission timer of the sending VMTP transport agent 
expires, only one packet of the first non-acknowledged packets 
group is retransmitted, with a particular bit set in the Flags 
fields. The bit is referred to as the 'APG bit' 22 • On reception 
of this packet, the receiving VMTP transport agent immediately 
transmits back the adequate retransmission 

21, The response corresponding to a request, or the next request following a response. 
22 • For Acknowledge Packet Group bit. 
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request23 • on reception of this request only, the sending VMTP 
transport agent actually starts a possible retransmission. 

* XTP and the improved design. 

The express Transfer Protocol (XTP) 24 is a brand new 
general-purpose transport protocol for the DOD world. The goal 
of its creators is to make this protocol the successor of TCP. 
For that reason, XTP addresses all the questions raised by the 
use of TCP. And soit implements many new functionalities and 
its design has the aim of high throughput for data transfer. It 
is no surprise that XTP includes the improved design. 

XTP uses the rate-based flow control. It does so just as 
NETBLT: the receiving XTP transport agent computes an expected 
transmission rate for short bursts of DATA-TPDUs. And each 
CONTROL-TPDU it transmits toits peer includes a burst size and 
a burst rate values. 

XTP also uses the periodic resynchronization scheme, with 
selective acknowledgements and retransmissions. When it has a 
user message ready to be transmitted, and some transmission 
authorization to transmit it, it starts the transmission of all 
DATA-TPDUs of that message. In the last DATA-TPDU of the 
message, a special bit is set25 . on reception of this DATA­
TPDU, the resynchronization takes place as described in this 
chapter. 

IV.4. Results of the improved design. 

The creators of NETBLT have already implemented and tested 
an implementation of their transport protocol. The main problem 
is that this implementation uses as underlying hardware: 

- not extremely fast computers: PC-ATs, 
- a very poor Ethernet adapter, with only a single 

transmission register, used for both emission and 
reception. 

The consequence of the use of such an Ethernet adapter is that 
many datagrams get lost, as it becomes deaf to the network while 
it has a datagram ready to be transmitted. 

Nevertheless, the results of NETBLT sound very good, with a 
measured throughput varying in the range 1.1 to 1.8 megabits per 
second26. That is quite satisfying, in comparison to the 

23 • A positive acknowledgement is then generated as a 'retransmit no packet from the packets group nl.llber 
~'• where N is the sequence nl.lrber of the last received packets group. 
4• A coq>rehensive specification of XTP may be read in [XTP-1]. 

25. ln the XTP articles, this bit is referred to as the <SREQ> bit, for Synchronize REQuest. 26 . The interested reader may find in [PERFORMANCE] the commented results of these throughput 
measurements. 
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results of TCP, one to three megabits per second, for 
implementations running in far better hardware environments. 

NETBLT has also been tested in a large range of difficult 
network conditions27 • An example of such a difficult condition 
is: 

- the sending and the receiving NETBLT transport 
agents are located on two separate LANs, 

- these two LANs are connected by IP routers 
communicating via a satellite channel. 

This environment leads to a very long RTD. The results of these 
tests show that NETBLT behaves very well on these extreme 
conditions: there is no drastic drop for the measured end-to-end 
throughput. 

The results of VMTP are of no interest to the current 
chapter, as this transport protocol also uses the solution 
described in the next chapter: VMTP is in fact a lightweight 
transport protocol. 

Just the same comment can be made about XTP: it is also a 
lightweight transport protocol. Furthermore, this protocol has 
been so recently defined that there is not yet any working 
implementation of it. And so, there is not yet any throughput 
measurements carried out for XTP. 

So the following analysis of the improved design is only 
based on NETBLT results. 

IV.5. Analysis of the improved design. 

From its principles, the improved solution does not restrain 
itself in the use of the available network bandwidth. 
Nevertheless, the end-to-end throughput is measured far below 
the network bandwidth. 

It has already been stated earlier in this document that the 
throughput of the transport layer is dependant of the most 
constraining resource from two limited ones: 

- the bandwidth of the network connecting the 
communicating hosts, 

- the processing capacity of the communicating hosts. 
And the available network bandwidth is nota constraint. 

The conclusion of all these observations is: the available 
computing resource of communicating hosts is the real constraint 
for the transport layer to achieve high throughput. 

27• The COIJlllete description of these tests, and their results can be read in [RFC-1030]. 
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IV.6. Conclusion. 

The improved design really helps the throughput not to 
drastically decline in the case of very long network latency and 
in the case of near congested networks. On the other hand, it 
leads to almost no improvement in the favourable cases. The 
reason is: the throughput of the transport layer is in fact only 
limited by the computing capacity of the communicating hosts. 

so, in a way to improve the throughput of the transport 
layer, there is a real need to find solutions that rationalize 
the use of the available processing resource. 
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v.1. Aims of this solution. 

Chapter v: 

The liqhtweiqht transport 

protocols concept. 

The aim of the lightweight transport protocols concept is to 
provide new protocol designs, which can 'naturally' lead to 
implementations requiring less computing resources for each 
transmitted TPDU. As it has been shown in the preceding 
chapter, only such implementations allow high end-to-end 
throughputs. 

The lightweight transport protocols try to meet their aim by 
being much simpler than the classical ones. This protocol 
simplification can come from: 

- the simplification of the associated state 
machinery, 

- the restriction on the number of different TPDUs 
types, 

- the use of a common format for each TPDUs types. 

An interesting analogy can be made with the RISC1 processors 
technology. These processors only offer a simple instructions 
set to the program designers. But the creators of this kind of 
processors expect that this simplicity can allow very fast 
implementations. This situation is also true for the 
lightweight transport protocols: their creators believe their 
simplicity to vouch for very fast implementations. 

v.2. First case study: VMTP. 

A first case, which study is very interesting in the scope 
of the lightweight transport protocol concept, is the design of 

1. Reduced Instruction Set C~ter. 

61 



The lightweight transport protocols concept 

VMTP2 • It is a very innovative one, that rejects all 
traditional layering principles with a massive use of recursion. 
And it is this recursion technique that leads to a minimum 
number of TPDU types, and to a simple state machinery. 

VMTP uses two basic TPDU types when handling the normal 
condition for a transaction between a client entity and a server 
entity. The first TPDU type is the 'request packet', used for 
the transmission of a request from the VMTP transport agent of 
the client entity to the one of the server entity. The second 
TPDU type is the 'response packet', used for the transmission of 
a response from the VMTP transport agent of the server entity to 
the one of the client entity. 

* The early versions of VMTP. 

In the early versions of VMTP, six more TPDU types where 
used, for handling all exceptional situations. And the only 
existence of these numerous TPDU types was leading to a pretty 
complex state machinery. 

A first example of such a TPDU type was the one used for 
requesting the selective retransmission of some TPDUs from a 
request or a response. In the VMTP terminology, it was known as 
the 'retransmission-request packet'. An error recovery is quite 
a natural aspect of any transport protocol. So the existence of 
this 'retransmission-request packet' had no real impact on the 
complexity of the state machinery of VMTP. Nevertheless, this 
TPDU type existed, and so the VMTP transport agents had to 
implement a function identifying and processing such particular 
TPDUs. 

The second example of these extra TPDUs types has an 
annoying impact on the complexity of the protocol state 
machinery. These TPDUs types are linked to the addressing 
scheme used by VMTP. The latter is quite uncommon, due to the 
fact that VMTP addresses are totally independent of network (IP) 
addresses3. 

When using such addresses, there is a need for an address 
resolution scheme. It must allow any VMTP transport agent to 
bind any VMTP address to the IP address of the corresponding 
VMTP transport agent. 

For this purpose, there were two special TPDUs types in the 
early versions of VMTP: the 'entity-information-request packet' 
and the 'entity-information-response packet'. When a client 
entity delivers a request toits VMTP transport agent, and when 

2• VMTP has been briefly described in paragraph IV.3, under the title 'VMTP and the iq>roved design'. lts 
~aq>lete specification may be read in [RFC-1045] • 

• ln VMTP, the transport address is no more c~sed of a network address and a local discriminant. lt 
is an iq>rovement 
of those fixing TCP's lack of functionality. 
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this request is destinated to a server entity this transport 
agent does not know the corresponding network address of4, the 
following procedure was executed: an 'entity-information­
request' was multicasted to the group of all VMTP transport 
agents5 , until an 'entity-information-response' was received. 
The originating network address of this response was in fact the 
searched network address, as only the VMTP transport agent of 
the server entity could have transmitted this response. 

The use of this address resolution scheme, and so the use of 
these two special purpose TPDU types, leaded to a more complex 
state machinery for the transport agent of a client entity. 
This complexity is depicted by figure V.1: the first state of a 
transaction is 'sending request' or 'sending entity-information­
request', according to the fact that the transport agent knows 
or does not know the IP address of the server entity. There is 
a first little state machinery associated to the need for a 
retransmission on timeout of the entity-information-request 

- Figure V.1 • 
The c~lexity of the early VMTP state machinery. 
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4• On the other hand, a VMTP transport agent always knows which network address to transmit a response to, 
~s this network address cornes with the associated request • 

• VMTP is built over the 111.1lticast extension of IP. This network protocol is similar to IP, except for 
the fact that a destinating network address can be a 'hosts group address'. ln this case, the network 
layer tries, also on a best-effort basis, to deliver a copy of this datagram to each host which is a 
member of the destinating group. Multicast·IP is specified in [RFC-1030]. 
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packet until the corresponding entity-information-response is 
received, and then the basic state machinery associated to the 
handling of the basic VMTP transaction. 

* The lightweight versions of VMTP. 

A significant simplification of VMTP cornes from a single 
remark: each exceptional situation is solved by having some kind 
of a transaction with the VMTP transport agent of the peer 
entity, or with the group of all VMTP transport agents. 

Soit is very helpful to consider that there is a special 
VMTP entity associated to each VMTP transport agent. This 
entity, in the VMTP terminology, is referred to as the 'VMTP 
manager'. Its characteristic is that it is the only entity 
which have an access to the data structures of its local VMTP 
transport agent. 

The transport service of VMTP is then provided in the 
following fashion. The VMTP transport agents insure the 
handling of normal transactions, only using the 'request packet' 
and the 'response packet'. They handle all unusual situations 
by simply calling their local VMTP manager. The VMTP managers 
perform the handling of these exceptions, by: 

- having transactions ones with the others, 
- by manipulating the data structures of their local 

VMTP transport agent. 

This situation is quite strange, as it totally violates all 
the basic layering concepts, as shown on figure V.2. The 
transport layer provides its service: 

by having its transport agents communicating using a 
transport layer protocol, 

- by using the network layer service, 
- by using the transport layer service through a 

customized RPC presentation (this is the recurrent 
aspect of VMTP). 

Furthermore, a VMTP manager is a user of this transport layer; 
but it does not consider the latter as a black-box: it even 
manipulates its internal data structures. 

The substitution of the former 'retransmission-request 
packet' is performed as follows. When a VMTP transport agent 
finds its the proper time to ask for the retransmission of some 
packets of this message, it simply calls its VMTP manager. The 
latter then has a transaction with the VMTP manager local to the 
sending VMTP transport agent. This transaction simply asks this 
VMTP manager to make its local VMTP transport agent retransmit 
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- Figure V.2 -
The use of recursion by the VMTP protocol. 

the missing packets6 • It does so by updating the state 
information for that message, and by sending a signal to the 
VMTP transport agent. The retransmission is then performed. 

This is represented in figure V.3: 
(1) The client entity 'C', running on host 'HC', requests its 
VMTP transport agent to have a transaction with the server 
entity 'S', and delivers the appropriate request message. 
(2) The VMTP transport agent of host 'HC' transmits this request 
message to the VMTP transport agent of host 'HS', where the 
entity 'S' runs. 
(3) The VMTP manager of host 'HS' requests the VMTP manager of 
host 'HC' to make its local VMTP transport agent retransmits the 
missing parts of the last request message from entity 'C' to 
entity 'S'. 
(4) The VMTP transport agent of host 'HC' retransmits these 
missing parts of the request message to the VMTP transport agent 
of host 'HS'. 
(5) The VMTP transport agent of host 'HS' delivers the request 
message to entity 'S'. 
(6) The entity 'S' delivers the corresponding response message 
toits local VMTP transport agent. 
(7) The VMTP transport agent of host 'HS' transmits this 
response message to the VMTP transport agent of host 'HC'. 
(8) The VMTP transport agent of host 'HC' delivers the response 
message to entity 'C'. 

6• This transaction uses one of the optional models of VMTP transactions: the datagram one, where a 
request is transmitted once and then never retransmitted, and where there is no expected response. 

65 



The lightweight transport protocols concept 

Client 
Entity 'C' 

CD 
~ 
.................... 

\ ................... @ ... 

VMTP 
Manager 

VMTP 
Transport 

Agent 

Network 

Host 'HC' 

- Figure V.3 -
The retransmission requests in VMTP. 
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The substitution of the former address resolution protocol 
occurs as follows. When a VMTP transport agent has to transmit 
a request to a server entity it does not know the IP address of, 
it simply asks it toits local VMTP manager. To provide this 
information, the latter has a transaction7 with the entire group 
of VMTP managers, requesting all the information concerning the 
searched server entity. The unique response comes from the VMTP 
manager local to the VMTP transport agent servicing this entity. 
And the originating IP address of this response is in fact the 
IP address of the above server entity. 

This is represented in figure V.4: 
(1) The client entity 'C', running on host 'HC', requests its 
VMTP transport agent to have a transaction with the server 
entity 'S', and delivers the appropriate request message. 
(2) The VMTP manager of host 'HC' requests the group of all VMTP 
managers for the informations about entity 'S'. This is done 
using a VMTP request message. 
(3) The VMTP manager of host 'HS' responds these informations, 
using a VMTP response message. 

7. This transaction uses one of the optional models of VMTP transactions: the rrulticast with only one 
response expected one, where the request is rrulticasted to a group of server entities and then 
retransmitted on timeout, until a response cornes from one of these server entities. 

66 



Client 
Entity 'C' 

q) 
! 
'· ·· ............. .. 

\··················®·· 

VMTP 
Manager 1 

The lightweight transport protocols concept 

VMTP 
Transport 

Agent 

Network 

VMTP 
Transport 

Agent 

Server 
Entity 'S' 

® 
l 
1 

..................... 

•···®·················/ 

VMTP 
Manager 

....................... 1 ................ ----H-i >---E-------+-+----···················· .................. _ 
1 

_ .................. l······ .. ········ .. ··---1-+------+----{ 

Host 'HC' Host 'HS' 

• Figure V.4 · 
The acldress resolution scheme of VMTP. 

(4) The VMTP transport agent of host 'HC' transmits this request 
message to the VMTP transport agent of host 'HS' (as host 'HS' 
runs 'S'). 
(5) The VMTP transport agent of host 'HS' delivers the request 
message to entity 'S'. 
(6) The entity 'S' delivers the corresponding response message 
toits local VMTP transport agent. 
(7) The VMTP transport agent of host 'HS' transmits this 
response message to the VMTP transport agent of host 'HC'. 
(8) The VMTP transport agent of host 'HC' delivers the response 
message to entity 'C'. 

From the description of these two examples, the essential 
characteristics of the lightweight design of VMTP can be pointed 
out. The VMTP managers exchange messages with exactly the same 
semantic as the one of the messages the VMTP transport agents 
exchanged in the earlier versions of the protocol. But the 
underlying objects to transport these messages have moved from 
special purpose packets to the basic request and response ones. 
In fact, in the new design of VMTP, all protocol handling is 
realized with these two basic TPDU types. Furthermore, these 
two TPDU types have exactly the same format, with the same 
fields, which have the same semantic. They can only be 
distinguished thanks to the value of a single bit in the header, 

67 



The lightweight transport protocols concept 

indicating the packet type. Soit can be considered that there 
is a single TPDU type, with two variants: 

- the first variant, which is transmitted from the 
VMTP transport agent of a client entity to the one 
of a server entity, is the request packet, 

- the second variant, which is transmitted in the 
opposite direction, is the response packet. 

A consequence of this reduction of the quantity of TPDU 
types is a radical simplification of the VMTP state machinery. 
As a matter of fact, some special purpose TPDU types incurred 
some new states and state transitions8 • In the lightweight 
version of VMTP, these special purpose TPDU types have been 
replaced by embedded transactions. And so their associated 
parts in the VMTP state machinery have vanished: they are in 
fact handled by other occurrences of this simplified VMTP state 
machinery. 

V.3. A second case study: XTP. 

An other interesting transport protocol, in the scope of the 
lightweight transport protocols study, is the case of XTP9. The 
service this protocol provides is far more traditional than the 
one VMTP offers: it transports user messages on a full-duplex 
connection established between two entities. Even if this 
situation does not lead to quite obvious simplifications, the 
creators of XTP claim this transport protocol is a lightweight 
one. 

First of all, all XTP-PDUs types have the same layout 
composed of three parts: 

- the common header, which is twenty-four bytes long, 
- the segment, which is a multiple of height bytes 

long, 
- the common trailer, which is sixteen bytes long. 

As they names indicate, the common header and the common trailer 
have exactly the same format for all XTP-PDUs types. A single 
field in the common header, called the CMD field, has got a 
value identifying the type of a XTP-PDU. Only the content of 
the remaining part of this XTP-PDU is function of its type: the 
segment. 

Second, an important aspect of XTP is the length of all 
parts of a XTP-PDU. They are alla multiple of height bytes. 
This is very interesting for the implementation purpose. All 
three XTP-PDU parts are aligned at height bytes boundaries1°. 

8• An exllff1)le, depicted by figure V.1, has been described earlier in this paragraph. 
9• XTP was briefly described in paragraph IV.3, under the title "XTP and the new design". An overview of 
f3is protocol can be read in [XTP-2], and its COl1l)lete specification can be found in [XTP-3] • 

• So the segment part may sometimes be ended with some padding bytes to reach the next eight bytes 
boundary. 
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So they are handled by efficient softwares, even when the host 
uses a processor with general-purpose registers up to sixty­
four bits. 

A counter-example will illustrate the importance of this 
aspect of XTP. If the parts of the XTP-PDU were aligned on two 
bytes boundaries, for example, there would be some problems with 
the implementation destinated to some processors. As a matter 
of fact, some thirty-two bits processors11 can only read or 
write: 

- four bytes long words which are aligned on four 
bytes boundaries, 

- two bytes long words which are aligned on two bytes 
boundaries, 

- one byte long words which are aligned on one byte 
boundaries. 

For processing the TPDUs with this processor, only sixteen bits 
long registers can be used, as the parts of the TPDUs are 
aligned on two bytes boundaries. Such an implementation misses 
the chance of using the thirty-two bits long registers, which 
would allow faster computing, as they would incur about half as 
much interactions with the memory. 

V.4. Results of the solution. 

* The results of VMTP. 

Sorne throughput measurements have been carried out for VMTP. 
Their results are very interesting for the analysis that will be 
done in the next paragraph. 

The tested implementation of VMTP uses a ten megabits per 
second Ethernet LAN, and may be executed on a large range of 
computers, from workstations to mainframes. The results of the 
throughput measurements roughly vary between two and four and a 
half megabits per second12. 

* The results of XTP. 

There are no available throughput measurements for the 
protocol XTP so far. The reason of that fact is quite simple: 
at the current time, no implementation of this protocol is 
operative. 

11 . Sorne RISC (Reduced Instruction Set C~ter) processors for instance). 12 . The coq,lete results of these measurements can be read in [PERFORMANCE]. 
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v.s. Analysis of the lightweight protocols concept. 

The results that have been announced in the preceding 
paragraph lead to some comments. 

There is an undisputable throughput improvement, from TCP to 
VMTP. In general, TCP implementations allow throughputs ranging 
from one to three megabits per second, and VMTP ones allow 
throughputs ranging from two to four and a half megabits per 
second. Furthermore, it must be pointed out that VMTP 
implementations are still very young in comparison to those of 
Tcp13. So the throughput breakthrough between these transport 
protocols is likely to become more and more radical. 

On the other hand, it must also be noticed that, at this 
point, VMTP uses two solutions that TCP does not: 

- VMTP uses the improved design, 
- VMTP is a lightweight transport protocol. 

And, in the throughput improvement from TCP to VMTP, it is very 
difficult, if not impossible, to evaluate the benefit introduced 
by the sole lightweight protocol concept. 

But, eventually, a concluding observation is that even for a 
lightweight transport protocol, all the available network 
bandwidth is not yet used to transfer user messages. so, in 
other words, such protocols also lead to implementations 
consuming too much computing resources. 

V.6. conclusion. 

The lightweight transport protocol concept meets its aims, 
as it helps reducing the processing overhead. Nevertheless, 
this reduction is really notas important as it could be 
expected: the end-to-end throughput remains far beyond the 
underlying network bandwidth. The only explanation of this half 
failure is: the computation overhead does not corne from the 
protocol processing itself, but from the processing of functions 
which are peripheral to the protocol processing. 

So, to design a really fast implementation of a transport 
agent, there is a need to focus with more care on these 
peripheral functions than in the transport protocol definition. 

13. TCP is now about fifteen years old, but the latest versions of VMTP specifications are quite recent. 

70 



Chapter VI: 

Optimized implementations. 

VI.1. Aims of the solution. 

The aim of the optimized implementations is to reach higher 
throughputs with a transport protocol without changing its 
design. As the key constraint is the available processing time 
for handling exchanged TPDUs, the solution is to focus on the 
implementation of the transport agents, for the purpose of 
optimizing it. 

Two general tendencies exist in optimization: the macro­
optimization and the micro-optimization. 

The aim of micro-optimization is to look for the best 
implementation of an algorithm, once the algorithm has been 
chosen. The procedure to realize it is to search for the best 
data structure to handle, and the best program to compute the 
algorithm. The most important aspect of this process is that 
every detail must be reviewed, even the deepest one. 

A characteristic of micro-optimization is that it must take 
into account all the interesting distinctive features of the 
underlying computing system. Because of this property of 
'subordination to the actual machine', the micro-optimization 
aspect will not be discussed in this document. 

The aim of macro-optimization is to look for the most 
appropriate algorithm to realize a given task. At this level, 
the decisions are not based on 'machine-dependant' issues, but 
often on conclusions read in the theory of the algorithmic 
complexity. This is the tendency of implementation optimization 
that is discussed in this chapter. 
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VI.2. Some optimization principles. 

Here cames an analysis of some of the most representative 
macro-optimization principles. The aim is not to be exhaustive, 
but to show that there is a great difference between a 
traditional implementation of the specification of a transport 
protocol and an optimized one. 

In fact, only three such optimization principles are 
analyzed here. They are the 'template header caching', the 
'fast TCB look-up' and the 'packet prediction'. 

• The template header caching principle. 

This first analyzed macro-optimization principle concerns 
the emission of DATA-TPDUs, and has as aim to avoid redundant 
computing. Furthermore, it does not only involve the 
implementation of the transport agent, but the one of the 
network agent as well, or to be more exact it influences the 
cooperation between these two pieces of software1 • 

The general algorithm used to emit a part of a user message 
into a DATA-TPDU is the following one: 

- prepare a DATA-TPDU, by filling in all its fields 
with the appropriate values, 

- deliver this DATA-TPDU to the network layer. 
Avery dumb implementation of the transport agent would use this 
algorithm right to the letter. It would build the new DATA-TPDU 
in some free memory space, by computing in sequence the value of 
each of its fields and storing the results at the appropriate 
memory locations. It would then deliver this newly built DATA­
TPDU toits network agent, mentioning the memory location of 
that DATA-TPDU as well as the network address of the destinating 
transport agent. 

For a slightly better implementation, one could notice that 
a non-negligible part of the TPDU header is common to all 
emitted DATA-TPDUs. For example, the Source Port and 
Destination Port fields2 are the same for all DATA-TPDUs of a 
given connection3. The value of the Flags field is also common 
to almost all DATA-TPDUs: it only changes in some of them to 
reflect some exceptional conditions such as 'this is the end of 
the message' or 'an acknowledgement is requested'. In most 
transport protocols there is also a field mentioning the version 
number of the protocol, and another one indicating the TPDU 

1• A comprehensive description of this principle may be read in [TCP-11, in its eighth section, named 
110Utput processing: an implementation trick". 
2• They are sometimes transport addresses instead of port nuibers in newer transport protocols such as 
rTP. This has been discussed in the preceding chapter • 

• For the remaining part of this docunent, the word 'Connection' will be used in its general sense. lt 
can be an explicitly established comection in the case of connection-oriented transport protocols, or an 
implicit connection for two entities regularly exchanging messages using a connection-less transport 
protocol. 
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type. The value of these fields are obviously constant for all 
emitted DATA-TPDUs. In fact, only two fields vary from DATA­
TPDU to DATA-TPDU: the sequence number and the checksum ones, 
and all the other ones are either constant or only vary in some 
exceptional conditions. 

So a rational implementation of the specification of the 
transport protocol must take this aspect into account. For each 
connection, a template header could be computed and then stored 
in the data structures of the transport agent. In this 
template, all the constant fields could be initialized with 
their appropriate value, and all the fields that only vary from 
timè to time could be initialized with their default value. The 
DATA-TPDU preparation step would then be replaced by the 
following ones: 

- Block-copy the template header into the new DATA­
TPDU. 

- Complete the new DATA-TPDU by filling the non­
initialized fields, and by overriding those which 
value must be different from the default one. 

It is rather clear that the second algorithm is faster than 
the first one. Initializing a field with a constant value can 
be viewed as moving that value from one memory location to the 
other. So initializing in sequence all fields with a constant 
value can be viewed as moving in sequence several parts of the 
memory. But all these parts have very little lengths: eight or 
sixteen bits in most cases, very sporadically thirty-two bits. 
If the processor of the machine uses general-purpose registers 
of sixteen, thirty-two or even sixty-four bits, a single copy 
instruction of the block-copy operation can thus move several 
field values at once: this is faster than separately moving 
them. 

This optimization only becomes really interesting if its 
underlying reasoning is also applied more deeply, namely: to the 
network layer. As a matter of fact, the work of the network 
layer is: 

- to prepare a datagram, which consists of adding a 
header to the TPDU, 

- to take a routing decision, which consists of 
choosing one of the local link layer agents and a 
destinating address on that link, 

- to deliver the destinating address and the datagram 
to the chosen link layer agent. 

For a given connection between two entities, the minimal 
aspect of the network layer ensures that most of the fields of 
the added header have the same values for all transmitted TPDUs. 
Some of these fields only vary from time to time, according to 
the routing decision, for example. These routing decisions 
themselves are also due to give the same results for long 
sequences of TPDUs. So using the traditional model of the 
transport agent delivering a sequence of TPDUs to the network 
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agent, each one independent from the others, leads to some 
processing overhead. It would be interesting to cache, for each 
connection the transport agent handles, the information the 
network agent computes, for the purpose of not recomputing it 
for each transmitted TPDU of that connection. But the problem 
is that the minimal network ~ayer does not know this concept of 
connection. 

The solution to circumvent this problem is to redefine the 
physical interface between the transport agent and the network 
agent. The logical interface between these two modules is 
composed of the N-DATA.REQUEST and N-DATA.CONFIRMATION 
services4 • In traditional implementations of the network agent, 
both services are mapped to a single function, say NetSend. 
Here is what the specification of this function looks like: 

Function header: 
- NetSend{NAdr,Data,Status). 

Input parameters: 
- NAdr, a network address, 
- Data, an array of bytes. 

Output parameters: 
- Status, an integer. 

Specification: 
- Netsend tries to send the content of Data to the 

host with the network address NAdr. If it manages 
to send the appropriate datagram, Status is set to 
TRANSMITTED; in the opposite case, Status is set to 
FAILED. 

A more interesting implementation of the network agent would 
offer two separate functions, say NetTemplate and NetFastsend. 
Here is what their specifications could look like: 

Function header: 
- NetTemplate(NAdr,Template). 

Input parameters: 
- NAdr, a network address, 

output parameters: 
- Template, a compound data structure. 

Specification: 
- NetTemplate saves in Template the template network 

header and the routing decision for all datagrams 
that would have to be transmitted to the host with 
the network address NAdr, as well as a timestamp. 

Function header: 
NetFastsend(NAdr,Template,Data,Status). 

Input parameters: 
- NAdr, a network address, 
- Template, a compound data structure, 
- Data, an array of bytes. 

4• This has been discussed in paragraph 1.1. 
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output parameters: 
- Template, a compound data structure, 
- Status, an integer. 

Specification: 
- NetFastSend first verifies if the information 

contained in Template is still valid5 • If it is not 
the case, Template is recomputed. NetFastSend then 
tries to send the content of Data into a datagram 
built using the template header saved in Template, 
and using the routing decision also saved in 
Template. If it manages to send the appropriate 
datagram, Status is set to TRANSMITTED; in the 
opposite case, Status is set to FAILED. 

From these specifications, it is clear that a call to the 
function Netsend, or a call to the function NetTemplate followed 
by a call to the function NetFastsend have just the same result. 
And it is also clear that the algorithm: 

NetSend(hd,tpdul); 
NetSend(hd,tpdu2); 
Netsend(hd,tpdu3); 

and the algorithm: 

NetTemplate(hd,template); 
NetFastSend(template,tpdul); 
NetFastSend(template,tpdu2); 
NetFastsend(template,tpdu3); 

are also equivalent for their results, but with the second one 
faster than the first. so, a very good optimization of the 
transport agent is to implement it over a network agent 
providing functions equivalent to NetTemplate and NetFastSend. 
For each transport connection, the appropriate template could be 
stored in the data structures of the transport agent, and this 
template used for each TPDU transmission. 

But there is a problem with the solution of storing the 
template transport header and the network template for each 
connection a transport agent handles. This can consume a large 
amount of memory. Soit would be more judicious to cache all 
this information only for the most active connections. A good 
cache management policy is the classical one, where only the 
information for the few most recently used connections is 
stored. 

This scheme of 'template header caching' has a very 
interesting property. It drastically reduces the consumption of 
the computing resource for the TPDUs emission. But in fact, it 

5• This can be done by COl11)8ring the timestamp of Template to the one associated to the lest modification 
of the routing informations. 
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is generally admitted that the main source of computing overhead 
is the TPDUs reception. This aspect is the concern of the two 
other schemes presented in this paragraph. 

• The 'fast TCB look-up' principle. 

For each active connection it handles, a transport agent 
must memorize some amount of information depicting the current 
state of this connection. This information relative to a 
connection is sometimes referred to as the 'transmission control 
block' , or TCB6. 

When a transport agent is delivered a new TPDU which 
successfully passes the checksum verification, it has to process 
this TPDU in regard to the current state of the corresponding 
connection. To do so, the transport agent first needs to locate 
the correct TCB in its data structures. It is clear that this 
TCB location has to be very fast. The 'fast TCB look-up' 
principle deals with the general organization of the TCBs table, 
with the purpose of meeting the preceding requirement7. 

Logically, each entry in the TCB table is identified by the 
active connection it describes; and a connection is identified 
by two communicating entities, a local one and a remote one. 
Thus in practice, each entry in the TCB table is identified by 
the transport addresses of this pair of entities8 • The TCB 
look-up consists, for a transport agent which has just been 
delivered a TPDU, to extract from the latter the transport 
addresses of the involved entities, and to retrieve the 
corresponding TCB in the TCBs table. 

It is manifest that the general organization of this TCBs 
table has an important effect on the amount of computing 
resources the location of a TCB requires. As this TCB look-up 
is a mandatory operation for each received TPDU, reducing its 
computing resource consumption also helps restricting the 
computing time associated to each received TPDU, and thus it 
helps increasing the rate at which a transport agent is able to 
treat TPDUs. 

The worst organization for a TCBs table is in fact no 
organization at all: a raw array of TCBs. In this case, the TCB 
look-up is sequential: the searched identifier is compared to 
the one of the first entry in the table, then to the one of the 
following entry in the table, and so on until a match is found. 
On average, half the entries of the TCBs table must be accessed 

6• At least in the TCP terminology. 
7• A COff1:>rehensive description of this principle may be read in [TCP-1], in its tenth section, named 
"Checksuns and TCBs: the missing steps". 
8• When a transport address is c~sed of a network address and a port nl.llber, the TCB identifier is 
reduced to the network address of the remote entity, its port nl.llber, and the port nl.llber of the local 
entity. 
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for each TCB look-up. This is a disaster for transport agents 
handling a large amount of connections. 

The first improvement cornes from the phenomenon of locality, 
which can be explained by this fact: the activity of a 
connection is far from being constant. This activity is in fact 
concentrated on periods following the transmission of a window 
authorization. And as a good transmission window policy 
requires the generation of a window authorization only when a 
substantial amount of buffering space is free at the transport 
agent of the receiving entity end9 , these periods of activity 
are few but intensive. For short, a connection is characterized 
by successions of periods with very low activity followed by 
short periods of very high activity. And for a transport agent 
handling a reasonably low number of connections, the periods of 
high activity of all connections corne in sequence. 

So there is a great chance that relatively long bursts of 
incorning TPDUs concerna single connection. Thus it is very 
interesting to have a TCBs table with the rnost recently used TCB 
sorted first. The look-up is once again sequential, but with 
the property that the first entry in the table is often the 
searched one. On the other hand, when the first TCB of the TCBs 
table does not match, half the table must be accessed, on 
average. 

This solution is only valuable for transport agents handling 
a reasonably low number of connections. The higher the nurnber 
of handled connections, the higher the probability that periods 
of high activity frorn different connections collide. In this 
case, the preceding solution becomes as slow as the 
unsophisticated sequential look-up. So there is a need to have 
a solution which allows a fast look-up for several arnongst the 
most active connections. 

The ideal solution for a fast TCB look-up is then to 
organize the TCBs table as a hashed table. This solution 
consists of splitting the content of the TCBs table in a set of 
subtables. Each TCB belongs to one of the subtables, according 
to the result of a 'hashing' function applied toits identifier. 
And each TCBs subtable is organized with its most recently used 
TCB sorted first. The TCBs look-up consists then to apply the 
same hashing function to the identifier of the searched TCB. 
The result of the previous computation identifies the subtable 
the searched TCB belongs to. This TCBs subtable is then 
sequentially looked-up. 

This solution is very fast for many reasons. First, if the 
hashing function is well chosen, there is a great chance that 
all the very active connections have their TCBs in separate 
subtables. In this case, the price to locate a TCB is the one 
paid for: 

9. J. Postel describes such a good transmission window policy for TCP, in [RFC-793]. 
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- the application of the hashing function, 
- the access to the first TCB of the corresponding 

TCBs subtable. 
Second, if the searched TCB is not one of the most recently 
used, the price to locate a TCB is the one paid for: 

- the application of the hashing function, 
- the access to half the entries of the corresponding 

TCBs subtable, on average. 

The conclusion is: a TCBs table organized as a hashed table, 
using a well chosen hashing function and composed of a 
reasonable number of subtables, is suited for a very fast look­
up. This is particularly true for transport agents handling a 
very large number of connections. 

* The 'header prediction' principle. 

The most interesting and promising improvement for the 
implementation of a transport agent is also connected to the 
TPDUs reception, and is often referred to as the 'header 
prediction' principle10. 

In a traditional implementation of the transport agent, a 
received TPDU is processed independently from the other ones, 
using the algorithm which is represented on figure VI.1, and 
which is composed of four main steps: 

- a verification of the checksum of the TPDU, 
- a look-up for the TCB associated to the TPDU, 
- a validation of the header of the TPDU, in regard to 

the content of the corresponding TCB11 , 
- the real processing of the TPDU, in regard to the 

content of the corresponding TCB. 
This last step may be more refined, by isolating the two 
fundamental logical steps it contains: 

- the choice of the action to undertake with the TPDU, 
that is to say, the choice of a subroutine, 

- the real undertaking of the chosen action, that is 
to say, the call to the chosen subroutine. 

In physical implementation of the above algorithm, all steps are 
not so clearly separated. For example, the validation of the 
TPDU header and the choice of the action to undertake with the 
TPDU are bath mixed up in a unique big 'decision tree', and the 
undertaking of the chosen action is not always implemented as a 
subroutine call. Nevertheless, this expression of the algorithm 
used to process received TPDUs is suitable for the following 
discussion. 

10. A talk on header prediction has been given by Dr. Kanakia in [SLIDES], referring to unpublished work 
ÎÎ Dr. Jacobsen • 

• lt is generally aânitted that a transport protocol implementation IIKJSt be •conservative•. This means 
that a transport agent is supposed to only transmit val id TPDUs, but is forbidden to suppose that the 
TPDUs it is delivered are all val id ones. 
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Reveive TPDU 

Volidote checksum 

Perform action 

- Figure VI.1 -
GNS of the traditional algorithm 

for the processing of received TPDUs. 

The problem with this kind of implementation is that it 
misses some opportunities of anticipation. The definition of a 
protocol leads to some 'highly probable' chainings of TPDUs. 
So, when a transport agent sends or receives a TPDU, it can 
sometimes predict what the next TPDU to be received for that 
same connection will look like, at least for its header part. 

Here is a non exhaustive list of such possible predictions: 
- When a transport agent has received a DATA-TPDU 

which is not the last one of the transmission 
window, it can assume that the next TPDU to be 
received will be the DATA-TPDU with the next 
sequence number. 

- When a transport agent has transmitted a CONTROL­
TPDU with a new transmission authorization, it can 
assume that it will soon receive the first DATA-TPDU 
of the new transmission window. 

- In the Go-Back-N scheme, when a transport agent has 
transmitted the last DATA-TPDU of its transmission 
window, it can assume that the next TPDU to be 
received will be the CONTROL-TPDU acknowledging all 
transmitted DATA-TPDUs. 

- In the retransmission on demand scheme, when a 
transport agent has transmitted the last DATA-TPDU 
of a block, it can assume that it will soon receive 
a positive acknowledgement for that block. 

- In the retransmission on demand scheme again, when a 
transport agent has transmitted a request for 
retransmission, it can assume that the next TPDU to 
be received is the first requested DATA-TPDU. 
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- In the periodic resynchronization scheme, when a 
transport agent has transmitted the request for 
resynchronization, it can assume that it will soon 
receive a positive acknowledgement for all DATA­
TPDUs that have been transmitted since the preceding 
resynchronization point. 

A more clever implementation of the transport agent can take 
all these predictions opportunities into account. Whenever it 
can assume that it will soon be delivered a given TPDU, a 
transport agent can actually compute what will be the header of 
that TPDU. It can also easily compute the location of the TCB 
associated to that predicted TPDU, as it is currently using it. 
Furthermore, the prediction itself also includes the action to 
undertake with the predicted TPDU. These three informations, 
that is to say the predicted header, its associated TCB and its 
associated action, can be stored in the data structures of the 
transport agent. 

The new algorithm for the processing of received TPDUs is 
shown on figure VI.2, where a new step is inserted between the 
checksum validation and the TCBs table look-up. The latter 
consists of scanning all TPDUs predictions. If the header of 
the received TPDU matches one of the predictions, the 

- Figure VI .2 -
GNS of the predicted algorithm 

for the treatment of received TPDUs. 

Reveive TPDU 

Validate checksum 

Perfonn action 
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corresponding saved action is undertaken, using the saved TCB 
location. On the other hand, if the header of the received TPDU 
does not match any prediction, the traditional algorithm is 
used. 

This header prediction algorithm is very valuable at the 
computing resource consumption point of view. This cornes from 
the following fact. When a received TPDU was predicted, the 
TCBs table look-up, the header validation and the action choice 
steps are no more executed, at the cost of a look-up in the 
header prediction table. And this look-up cost may be kept 
minimal by choosing a proper organization for this header 
prediction table. A hashed table, similar to the one of the 
TCBs table, is such a proper organization. By keeping this 
table reasonably short, the look-up is very fast. 

The problem with the header prediction principle is to purge 
all out-of-date predictions from the header prediction table. 
This purge operations are necessary, as a prediction can 
sometimes be erroneous and thus never be used, and as the header 
prediction table must be kept short. A good solution is to 
cache the predictions in a header prediction table with a fixed 
number of entries. When a new prediction has to be inserted in 
the table, a free entry is used, and when there is no more free 
entry in the table, the new prediction replaces the oldest one. 
So the erroneous predictions eventually get erased from the 
header prediction table, which only contains the freshest ones. 

Sorne experimentations of this header prediction principle 
have been carried out. They show that memorising one or two 
predictions for each connection leads to a quite good matching 
ratio12 • 

VI.3. Examples of the improved implementation. 

About all important transport protocols have now a version 
of their implementation which can be considered as an improved 
one. But these versions are still of experimental interest: 
none of them is yet commercially distributed. 

As this idea of improved implementation is in fact in 
competition with the lightweight design tendency, it is no 
surprise that it started with the improvement of the classical 
transport protocols implementations. The main one is the TCP 
implementation of Dr. Van Jacobsen. It must also be noticed 
that efforts were also made in the case of TP-4. 

12. This has been stated in [SLIDES], by Dr. Kanakia. 
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But, as the results were concluding for these classical 
solutions, these principles have also been extended to some 
implementations of VMTP, which also uses the lightweight 
transport protocol concept13. 

VI.4. Results of the improved implementations. 

In the case of TP-4, an improved implementation has been 
built and tested. The results show a non-negligible 
breakthrough in the measured throughput: 

- the normal implementations allowed end-te-end 
transmission rates in the range of seven hundred 
kilobits per second to one megabit per second, 

- the improved implementation allows end-to-end 
transmission rates in the range of one point eight 
to two point eight megabits per second. 

But the most interesting result cornes from the optimized TCP 
implementation of Dr. Van Jacobsen. It runs on Sun 3/60 
workstations connected by a ten megabit per second Ethernet LAN. 
The traditional implementation of TCP which is distributed with 
this machine is already considered as a very performing one, and 
allows an end-to-end throughput of three megabits per second. 
But the one of Dr. Jacobsen allows an end-te-end transfer rate 
of eight megabits per second, just in the same conditions. 

VI.5. Analysis of the improved implementation principle. 

The comparison of the results of the lightweight transport 
protocols with those of these improved implementations lead to 
the following observation: most improvements of the 
implementations of the transport agents that lead to a real 
throughput enhancement concern functions that can not be 
considered as part of the actual protocol computing. 

But this consideration does not mean that the lightweight 
transport protocol is totally useless. It is only insufficient. 
An illustration of that fact is the TCB look-up in the case of 
XTP. The association of the XTP-PDUs to their corresponding 
connection is not realized using any Source and Destination port 
fields, but using a unique field called the Key field. The only 
semantic of this field is: it must allow to identify which 
connection the XTP-PDU belongs to. And this identifying value 
could be the location of the corresponding TCB. Thus in XTP, 
there is no need for a fast TCB look-up, and there is no such a 
TCB look-up. This situation is depicted in figure VI.3. 

13. This has been discussed in the preceding chapter. 
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Entities A and B have a connection. The transport agent of A 
has stored the TCB of this connection in the entry number 14 of 
its TCBs table. The transport agent of Buses the entry number 
37 for the same purpose. So all XTP-PDUs the transport agent of 
A transmits to the transport agent of B have their key field set 
to 37, and all XTP-PDUs the transport agent of B transmits to 
the transport agent of A have their key field set to 14. 

But the interest of the improved implementations is that 
they show the limited responsibility of the protocol itself on 
the processing overhead. There are peripheral protocol­
independent functions that must also be optimized. 

VI.6. Conclusion. 

The improved implementations principle shows a real 
improvement in the end-to-end throughput. But it must also be 
noted that even these implementations do not use all the 
available network bandwidth. 
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The conclusion is: they are a first step towards really fast 
transport protocol implementations. The computing overhead must 
be more closely analyzed, in a way to find its real causes. New 
implementations must then be designed, with the aim to eliminate 
all the discovered sources of computing overhead. 



Chapter VII: 

The smart network adaptera. 

VII.1. Aims of the solution. 

The aims of the solution described in this chapter is to 
find implementation principles, for the transport agents of a 
transport protocol, which allow real high throughput. For this 
purpose, there will be no limitation at all on the nature of the 
proposed solutions: even hardware support will be studied. 

The two preceding chapters highlighted an important aspect 
of the ideal solution: it has to optimize the computing of the 
peripheral functions or to avoid the use of such functions when 
they can not be optimized. An audit of the computing overhead 
all these functions generate must be taken into account, in a 
way to choose the most important aspects to focus on. 

VII.2. Principles of the solution. 

* The sources of computing overhead. 

Figure VII.1 reports the audit of the TPDU processing time 
in the cases of two transport protocols: TCP and VMTP. These 
results lead to some comments that highlight the real sources of 
computing overhead. 

The first observation is: the processing time closely 
associated to the protocol driving accounts for only sixteen 
percents of the total TPDU processing time in the TCP/IP case, 
and for only eight percents in the VMTP case. All other entries 
reflect protocol-independent processing times. First, the 
measured reduction of the use of the processing resource for 
driving the protocol itself illustrates that VMTP is really a 
lightweight transport protocol. But these measurements also 
explains the failing of the lightweight transport protocol 
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concept to achieve really high throughput: changing the protocol 
definition only issues less than twenty percents of the 
computing overhead. 

The existence of the 'checksum' entry is inherent to the 
sequential aspect of the processing. On TPDU emission, the 
entire TPDU must be build, then its checksum must be computed, 
then it must be moved to the network layer. On TPDU reception, 
the entire TPDU has to be moved from the network layer, then its 
checksum must be verified, then it can be processed. With a 
possibility of parallelism, this entry can be suppressed, with 
the checksum being computed while the transfer to or from the 
network layer takes place. 

In fact, the two main reasons of computing resource 
consumption are: 

- the data movements, for thirty-five to forty 
percents of the total consumption, 

- the operating system calls, for twenty-five to 
thirty percents of the total consumption. 

In a very primitive implementation, the all user data has to 
be copied seven times to get from the source entity memory space 
to the destinating entity memory space. This is depicted in 
figure VII.2. The first copy occurs when the transport agent of 
the sending entity builds the DATA-TPDUs it has to transmit: the 
entire user message is progressively copied in the Data field of 
these DATA-TPDUs. The second copy occurs when the network agent 
of the sending host builds the datagrams it has to route: the 
DATA-TPDUs are copied into the body of these datagram. The 
third copy is caused by the network adapter, which implements on 
hardware the lower layers of the communication stack: the 
network agent of the sending host has to move all the datagrams 
it has to transmit into this network adapter. The fourth copy 
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is the transmission of the frames including the datagrams from 
the network adapter of the sending host to the one of the 
destinating host. The fifth copy is the one of all datagrams 
received by the network adapter of the destinating host to the 
memory space of the network agent of that same host. The sixth 
copy is the one of the TPDUs extracted from the received 
datagrams, from the network agent to the transport agent of the 
destinating host. The seventh and last copy is the one of the 
Data field of these TPDUs to the memory space of the destinating 
entity. 

Better implementations of this communication stack allow 
only five copies to transfer the user messages from the 
originating entity memory space to the destinating entity memory 
space. They avoid all unneeded copies of data inside the host 
memory using the 'chained buffers' techniques. But five copies 
are a minimum when working with network adapters only 
implementing the physical and link layers: 

- First, the datagrams to transmit over the network 
medium must be entirely built before transferring 
them to the network adapter: this incurs at least a 
copy of the user data inside the sending host 
memory. 

- Second, these datagrams must be transferred from the 
sending host memory to the sending host network 
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adapter, using some DMA1 facility, or block transfer 
bus protocol. 

- Third, these datagrams must be transferred in 
frames, from the network adapter of the sending host 
to the one of the destinating host. 

- Fourth, these datagrams must be transferred from the 
receiving network adapter to the destinating host 
memory. 

- Fifth, the user data part of the DATA-TPDU contained 
in these datagrams must be copied to the destinating 
entity memory space: this leads to at least one copy 
of the user data inside the destinating host memory. 

The important overhead incurred by the operating system 
functions can easily be explained. Sorne such functions are 
executed due to explicit calls from the software implementing 
the communication stack, for the use of timers for example. The 
problem is: the operating system is general-purpose. And so 
these functions are undoubtedly not optimized for their 
utilization by a communication stack·. But this not justifies 
such a computing overhead. 

The computing overhead due to the operating system mainly 
cornes from its implicit use. Several functionalities of the 
communicating stack must be implemented using processes that 
sleep until a given event occurs. Here are some examples: 

- a process responsible for the processing of incoming 
datagrams must sleep until the network adapter 
awakes it for the delivery of a new datagram, 

- a process responsible for the retransmission on 
timeout of a TPDU must sleep until its associated 
timer expires, 

- a process responsible for a rate controlled 
transmission of TPDUs must sleep between burst 
transmissions, waiting its associated timer to 
expire. 

The computing overhead problem cornes from the fact that another 
process is running at the time a process is awakened. Thus the 
operating system must execute a 'task-switching' to allow the 
process to react to the event that awakened it. The problem is: 
a task-switching operation is very time consuming2 • It is fair 
that the cost of most of these task-switchings is distributed 
over several TPDUs. But unfortunately, at least one context­
switching is necessary for each transmitted TPDU: the one 
awakening the process responsible of the processing of received 
TPDUs on the host of the receiving entity. 

1• Direct Memory Access, which allows a device connected to the host bus (a network adapter, for exafl1)le) 
~o access the host memory concurrently with the host central processor • 

• At Leest in regard to the time needed to realize the protocol·related processing of a TPDU. 
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• The smart network adaptera principle3. 

To summarize the preceding analysis of the TPDU processing 
time audit, the main overhead associated to a TPDU transmission 
cornes from: 

- a data copy inside the host memory of the sending 
entity, 

- a task-switching inside the host of the receiving 
entity, 

- a data copy inside the host memory of the receiving 
entity. 

These three overhead components are in fact all related to a 
single functionality of the transport protocols: the 
packetization of user messages into several TPDUs. And their 
existence cornes from the fact that a host communicates with its 
network adapter on the TPDU basis or, for the purpose to be more 
accurate, on the datagram basis. If a host were communicating 
with its network adapter on the transport user message basis, 
all these overheads would immediately vanquish. 

But such a network adapter would have to be far more 
intelligent than the normal ones. If it realizes the 
packetization of the user messages, it has also to realize all 
the computing that cornes beyond this packetization: 

- It has to build the actual TPDUs, including their 
header and their checksum. 

- It has to encapsulate these TPDUs into correctly 
presented datagrams. 

- It has also to deliver these datagrams to the link 
layer part of the network adapter, with the correct 
destinating link level address. 

Furthermore, a transport agent is also designed to handle 
several simultaneous connections, soit may sometimes have to 
transmit several user messages from several different 
connections at the same moment. It would be totally unthinkable 
to enforce a sequential transmission of all these user messages. 
And thus it would be required for a network adapter realizing 
the user messages packetization to allow the simultaneous 
transmission of several user messages. The conclusion is: such 
a network adapter would also have to ensure the scheduling of 
datagram transmissions. This scheduling can be very complex for 
transport protocols using rate-based flow-control. 

This kind of network adapters, which: 
- packetize themselves the user messages, 
- realize some additional computing relative to the 

transport and network protocols, 
- realize some additional computing relative to the 

scheduling of the datagrams transmission, 
are referred to as the 'smart network adapters'. 

3• The justification of the need of these smart network adapters may be read in [NAB]. 
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Beyond the suppression of the computing overhead associated 
to the user message packetization by the host, the use of smart 
network adapters lead to many other enhancements. 

First, the additional functionalities these smart network 
adapters must ensure are no more provided by the host itself: 
some parallelization is incorporated to the protocol computing. 
This can clearly offer some performance improvements. 

Second, the adapter itself is totally dedicated toits task. 
Thus its design can be optimized in that direction. For 
example, it is up to this adapter to compute the checksum 
protecting the integrity of each transmitted TPDU. It has 
already been observed that this operation can be parallelized 
with the operation of delivering the datagram encapsulating such 
a TPDU to the link layer part of the adapter. 

Third, for a transport protocol defining some rate-based 
flow control, a smart network adapter can implement hardware­
driven timers with the appropriate resolution. This solution 
thus allows a transmission rate control at the TPDU level, 
instead of at the burst of TPDUs level, as it had to be done in 
the software implementations of the transport agents. 

This solution of using smart network adapters is a brand new 
one. And so there is not yet any stable solution in that 
matter. Two entirely dissimilar approaches are currently being 
studied, with VMTP and XTP. There are presented as case studies 
in the two next paragraphs. 

VII.3. A first case study: the NAB for the VMTP protocol. 

The first interesting smart network adapter to study is the 
Network Adapter Board {NAB). It has been designed to implement 
the VMTP protocol for the VMP computer, a multiprocessor to be 
operated using the V system4 • 

The strategical decisions for the design of this smart 
network adapter are the following ones: 

- the NAB has only to ensure the packetization and the 
transmission of the packets groups defined by the 
VMTP protocol5 • The remaining aspects of VMTP are 
to be implemented in the host itself. 

- the NAB has to operate a traditional processor to 
realize most its operations: there must only be 
minimal hardware developments for the realization of 
this board. 

4• A c°""rehensive description of the NAB can be read in [NAB]. 
5• The concept of packets group used by VMTP has been defined in paragraph IV.3, under the title 11VMTP and 
the iq,roved design". lts definition can also be read in [RFC-1045]. 

90 



The smart network adapters 

The motivation of the first decision is that the NAB device is 
to be shared by several processors. If toc many functionalities 
were defined for that board, there would be a risk that it 
becomes the bottle-neck of the system. The result of the second 
decision is a fast and easy development of the board, as well as 
an important aspect of adaptability: a NAB for an other 
transport protocol, or a NAB using an other LAN type, may be 
quickly developed, based on an existing NAB. 

To minimize the work performed by the NAB, the template 
header principle is used6 • The part of the VMTP transport agent 
which is performed in the host computes the template header to 
use when transmitting the packets group, as well as the link 
level destinating address. All these informations are 
transferred to the NAB with the data part of the packets group 
to transmit. The NAB packetizes this packets group into the 
appropriate VMTP packets, using the header template it was 
delivered. The only information the NAB has to add to this 
template header is the position of the Data field of the VMTP 
packet relative to the current packets group, and the 
appropriate checksum value. When a VMTP packet is ready, it is 
delivered to the link layer part of the NAB as well as the link 
level destinating address the NAB was given. 

All the logic associated to the handling of the state 
machinery of a VMTP transaction is coded in software performed 
by the host itself. The situation is also identical for the 
VMTP managers: they are also implemented in the host itself. In 
fact, the NAB can be logically viewed as a module defining two 
functions of the implementation of VMTP: 'SendPacketGroup()' and 
'ReceivePacketGroup()'. The physical operating of this NAB is 
realized using the Universal Network Device Interface Protocol 
(UNDIP)7. 

With UNDIP, the logical use of the function 
'SendpacketGroup()' is implemented by the transmission of a 
structured message to the NAB. This message is referred to as a 
Transmission Authorization Record or TAR. Its main fields are: 

- the template packet header to be used, 
- a description of the data to transmit in this packet 

group, roughly: a pointer to this data, 
- an interrupt mask. 

The semantic of two first mentioned fields is straightforward, 
from the description of the functionality of the NAB. The 
interrupt mask commands the NAB when to interrupt the host when 
sending the packet group. By requesting an interruption at the 
end of the packets group transmission, the transport agent can 
set up its timer for the retransmission on timeout of the entire 
packet group, for example. 

6• This concept has been discussed in paragraph Vl.2, under the title 11 tef1'4)late header caching". 
7• A c~rehensive description of this interface protocol can be read in [UNDIP]. 
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With UNDIP, the logical use of the function 
'ReceivepacketGroup()' is also implemented by the transmission 
of a structured message to the NAB. This message is referred to 
as a Reception Authorization Record or RAR. Its main fields 
are: 

- the template packet header of the TPDUs that belong 
to this packets group, 

- a description of the buffer where to store the data 
part of this packet group, roughly: a pointer to 
this buffer, 

- an interrupt mask. 
The semantic of the first two fields is quite clear: they 
describe which TPDUs to receive and where to store their data 
part. The interrupt mask commands the NAB when to interrupt the 
host during the reception of the described packets group. For 
example, a VMTP transport agent can expect an interruption on 
reception of the first TPDU of the described packets group and 
another one on reception of the last TPDU of this same packets 
group. The first interruption allows the VMTP transport agent 
to set up a timer expiring when there is no more chance that 
subsequent TPDUs of this packets group will be received. The 
second one allows the VMTP transport agent to cancel the 
preceding timer, and to process the now entirely received 
packets group. If this timer expires before the second 
interruption, the VMTP transport agent can cancel this RAR and 
start the retransmission on demand procedure for that packets 
group. 

The use of these RARs and other UNDIP structured messages 
provides a supplementary functionality to the NAB: it can play 
the role of a firewall between the network and its hast. In 
fact, the NAB only delivers its host the packets groups it was 
authorized to. The garbage TPDUs are dropped by the NAB, and so 
are also the TPDUs originating from unauthorized entities. In a 
traditional software implementation of a transport agent, the 
host must process all these TPDUs for taking the decision to 
drop them. And if the rate of reception of these unwelcome 
TPDUs were becoming too high, the transport agent would use all 
the available computing resource to reject these TPDUs: the 
normal activity of the hast would then be totally frozen. 

The architecture of the resulting board is depicted in 
figure VII.38. Its five main components are: 

- the adapter bus, 
- the central processor, 
- the buffer memory, 
- the host interface with its hast block copier, 
- the packet pipeline. 

The packet pipeline generates and checks the VMTP-level 
checksum. It also performs encryption and decryption9 of the 

8• This figure and its explanation corne from CNAB]. 
9• The reader is pleased to refer to CRFC-1045] to read the explanation of the existence of this 
functionality at the transport Level. 
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VMTP packets. These two operations are realized 'on-the-fly', 
while transferring the VMTP packets to or from the network. The 
hast interface ensures the communication between the hast memory 
and the buffer memory of the NAB. The communication between the 
hast memory and the hast interface is realized by the hast black 
copier, using a burst-transfer bus protocol when such a protocol 
exists for the hast bus. The buffer memory uses Video-RAM 
chips, which allow fast random access (60 ns), and to very fast 
sequential access (40 ns). This sequential access is used to 
exchange blacks of data with the hast interface and the packet 
pipeline10 • Finally, the on-board processor manages all the 
above devices and processes some functions associated to the 
protocol. 

VII.4. A second case study: the Protocol Engine of XTP. 

The second smart network adapter to be presented in this 
chapter is the Protocol Engine (PE) for the protocol XTP. This 
smart network adapter is to be built by a society named Silicon 
Graphies, Incorporated. In fact, this society is also the 
proprietary of the transport protocol XTP11 • 

10 • So, the nunber of copies of the user data was already lowered by the use of a smart network adapter, 
fnd furthermore the NAB ensures that the remaining copies are realized using the fastest existing means. 
1• An overview of the XTP/PE project can be read in [XTP-3]. 

93 



The smart network adapters 

The strategic decisions for the realization of XTP/PE are 
totally different from the ones that lead to the design of the 
NAB: 

- First, the XTP/PE must implement all functional 
aspects of XTP, in a way to entirely free the 
communicating hosts of transport protocol handling 
considerations. · 

- Second, The XTP/PE is not to be architectured as a 
special-purpose computer, but as a VLSI12 chip set. 

The justification of these two decisions is the requirement to 
allow the streaming of data at the raw network media rate. This 
requirement can only be met if the processing of a received 
packet can be achieved within the arrival time of the latter. 
The creators of the XTP/PE think this is only possible with the 
protocol entirely hard-coded in a VLSI chip set. 

The initial performance goal of this smart network adapter 
is in fact a throughput of a hundred megabits per second, which 
corresponds to the bandwidth of the FDDI optic fibre network. 
But the architecture of the XTP/PE has been chosen specifically 
for the ability to scale up to the one gigabit per second level. 

The general architecture of the XTP/PE smart network adapter 
is depicted in figure VII.4 13 . The MAC IF circuit develops an 
interface between the protocol engine subsystem and a MAC 
implementation. The BUS IF circuit is an interface between the 
protocol engine subsystem and the bus of its host. The BUF CNTL 

- Figure Vll.4 -
The architecture of the XTP/PE. 
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12 • Very Large Scale of lntegration. 
13• This figure and the corresponding explanation corne from [XTP-31. 
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circuit manages the data buffers, residing on DRAMs. To realize 
the processing of the packet within its arrival time, this 
circuit will have to access the DRAMs with a bandwidth three or 
four times that of the MAC IF circuit. The last circuit, PE 
CNTL, controls all the other ones, and contains the actual 
implementation of XTP. 

VII.S. The results of the smart network adaptera. 

There is not yet any operational implementation of any smart 
network adapters, as the idea is a very recent one. 
Nevertheless, very detailed simulations were realized for the 
NAB14 • 

A first interesting simulation of the NAB concerns the use 
of a MC68020 as the on-board processor. This is a widespread 
processor, providing a computing capacity of two mips15. The 
results show that an end-to-end throughput of about forty-five 
megabits per second can be expected. They also indicate that 
the rate of exchange of packets between two such NABs can reach 
ninety megabits per second. 

A second simulation supposed the NAB uses a AMD29000 as the 
on-board processor. The latter is less commonly used than the 
MC68020, but is far much faster, providing seventy mips as 
computing capacity. The results show that two NABs can then 
exchange packets with a rate of four hundreds and eight megabits 
per second. 

VII.6. Analysis of the smart network adapter concept. 

The results of the simulation of the NAB smart network 
adapter show that a very important improvement in the end-to-end 
throughput. As a matter of fact, a software implementation of 
VMTP allows a throughput ranging from two to four and a half 
megabits per second16 . And the NAB implementing VMTP with a 
widespread processor could offer a throughput that reaches 
forty-five megabits per second. This is an improvement by a 
factor of ten. 

So the smart network adapters seem to be the ideal solution 
to provide high throughputs for the transport protocol 
implementations. And the next question is: do all transport 
protocol fit an implementation using a smart network adapter 

14 • The results of these sinulations were presented in [SLIOE], by Or. Kanakia. 
15, Million of Instructions Per Second. 
16, This has been discussed in the paragraph V.4, under the title "the results of VMTP". 
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such as the NAB? Or, to be more accurate: cana NAB be designed 
for the classical transport protocol TCP? The response seems to 
be negative, mainly for two reasons. 

The first reason comes from the checksum computing. A non­
negligible ~ource of performance improvement, in the NAB, comes 
from some parallelization computing, expressed by the use of the 
packet pipeline. The latter generates and checks the checksum 
while it is transferring the packet to or from the network. But 
this pipeline can only be used for a protocol with a trailing 
checksum, and TCP has its checksum stored in the header. 

The second reason is a more definitive one. TCP is not 
specified to transmit a stream of user messages from an entity 
to another one, but a simple stream of bytes. Nevertheless, the 
entities using TCP logically exchange a stream of messages. In 
a software implementation of TCP, there is no problem with this 
situation: 

- TCP collects in a buffer the data to be transmitted 
for a given connection, 

- when a sufficient amount of datais present in this 
buffer, it is actually transmitted17, 

- TCP also offers a service toits users, enforcing 
the transmission of all the data present in the 
above buffer18. 

So, for a user to transmit its logical stream of messages, it 
delivers this stream of messages to TCP, but enforce each 
message transmission just after its delivery to the transport 
agent. It must be observed that the mechanism described above 
only exists for implementation purpose: the TCP carrying the 
last part of the data that have been 'pushed' has no identifying 
mark. 

But a smart network adapter has to interact with its host 
using data aggregates longer than the datagram, and smaller than 
the entire stream exchanged in a TCP connection. There is no 
problem on the sending end, as the above principle can also be 
used. But the real problem comes with the smart network adapter 
of the host of the destinating entity. It has no base to 
justify a decision to transmit toits host the datait has 
received so far for a given connection. For instance, after 
receiving a TCP packet, a smart network adapter must face the 
following dilemma: 

- it has to wait for the reception of the next TCP 
packet, in a way to have more data to transmit to 
its host in a single interaction, 

- it has to immediately transmit the received data to 
its host, as the reception of the next TCP packet 

17. If this datais inside the transmission window, of course. This has been discussed in paragraph 
~àl.2, under the title 11 the transmission window 11 • 

• This service is sometimes referred to as the 'push()' function. 

96 



The smart network adapters 

may depend on the processing of the data contained 
in the current one 19. 

And in fact, from the second consideration, the smart network 
adapter has to transmit the datait has received after each TCP 
packet reception. It is therefore of no use at all. 

To benefit from an implementation using a smart network 
adapter, the first and only requirement for a transport protocol 
is that it must define data aggregates which are bigger than the 
network datagram, but shorter than the entire connection 
content. This can be achieved by using the notion of user 
message, as in the XTP case, or the notion of packets group, as 
in the VMTP case. For the implementation of this smart network 
adaptor to be very performing, the layout of the exchanged TPDUs 
must be chosen with a great care. For example, the checksum 
must be the trailing information of each TPDU. 

VII.7. Conclusion. 

It is possible to design really fast implementations of a 
transport protocol. The solution is simply to move the 
packetization functionality onto a smart network adapter. 

The requirements for a transport protocol to allow such an 
implementation are very few, and really not constraining. But 
the situation is that the currently most used transport 
protocol, that is to say TCP, does not meet these basic 
requirements. 

19• This is the case when the currently received TCP packet contains the last part of a user message, 
which nust be responded by the destinating entity before the delivery of next user message, so before the 
next TCP packet can be received. 
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Conclusion. 

The first requirement of a transport protocol is to allow a 
reliable transmission of data. As this transport protocol is 
implemented over a network layer only providing a minimal 
functionality, it has to include mechanisms detecting and 
correcting the inherent annoying problems of such a network 
layer. 

Even when these mechanisms are chosen in a way to use the 
network layer with a satisfying efficiency, the end-to-end 
throughput allowed by the transport layer stays far away from 
the one of the network layer. This lead to the conclusion: the 
transport protocols are slow because they consume too much 
computing resource. 

Based on this observations, two solutions were proposed, 
both expecting a radical slash down of the TPDU time processing. 

The first solution dealt with redefining the transport 
protocols themselves. It is the lightweight transport protocol 
concept, which consists of specifying a transport protocol for 
it to 'naturally' lead to a fast implementation. The 
implementations of these protocols showed an improvement at the 
throughput point of view, but not so radical as expected. 

The second solution dealt with focussing on the 
implementation of the transport protocols without changing their 
definition. It consisted on finding the most appropriate 
strategy to implement each functionality the transport agents 
perform. These optimized implementations resulted to better 
improvements than the lightweight transport protocols concept. 

The comparison of the two preceding solutions indicated that 
two classes of functionalities can be separated in the transport 
agents computing: protocol-specific operations and protocol­
independent operations. And the better results of the second 
solution prove that it is more interesting to improve the 
computing of this second class of functionalities. 
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An audit of the TPDU processing time allowed the discovery 
of these very time consuming protocol-independent operations. 
The importance of the data movements and the operating system 
use were highlighted. The responsibility of these computing 
overheads was associated to the interaction of the host with its 
network adapter on the datag~am basis. These considerations 
lead to the expression of the real solution of the end-to-end 
throughput: the smart networks adapters. 

This solution consisted of moving a non-negligible part of 
the functionalities of the protocol handling outside the host, 
on the network adapter. This fact of moving these 
functionalities onto a special-purpose board authorized the 
design of very fast hardware-assisted implementations. 

Then the question of the influence of these solutions on the 
transport protocols specification was answered: there are very 
little requirements to allow an implementation using a smart 
network adapter. The only ones are in fact: 

- the need to transmit a stream of user messages, 
- the need to have a trailing checksum field in the 

transmitted TPDUs. 
At this point, it was also demonstrated that the currently most 
widespread transport protocol, TCP, can not benefit from an 
implementation using a smart network adapter, as it controls the 
transmission of a raw stream of bytes. 

A last interesting question to raise about this analysis of 
the performance of the transport protocols concerns the possible 
future trends. 

It is clear that a project such as the XTP/PE totally 
answers the end-to-end throughput question: it ensures the 
streaming of data at the raw network bandwidth. Likewise, the 
simulations of the NAB show that its performance is in direct 
relation with its computing capacity. So, the processor to use 
on a NAB can be chosen in respect to the expected end-to-end 
throughput. 

Soit is now time to wait for the response of the computer 
scientists to the availability of these very high end-to-end 
throughputs. Their new wishes will show the right direction for 
the subsequent researches in that matter. 

One of the most plausible evolution is a growing use of the 
new paradigm of the computer science: the widely distributed 
systems and the client/server model. If this happens, the 
concept of 'performance of a transport protocol' will also 
evolve. Beside the need of high throughput for the transfer of 
large user messages, there will be the requirement to allow the 
transfer of short user messages with a very low latency. 



Conclusion 

The problem is the contradiction between these two aspects. 
So the transport protocols are worth another analysis with this 
new idea in mind ... 
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