
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Comparison of two Graphical User Interfaces : XView and Motif

Gillard, Serge

Award date:
1991

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/6011612c-aad3-48b9-a633-b87f3ee883c0

Facultés Umvenitaires Notre-Dame de la.Paix

I.nstit:at d' l.m' mmatique

Rue G111mlgagnage, 21, B-5000 NAMUR (Be1gium)

Compariso.n of two Graplrical User Interfaces:

XView and Motif

Serge GILLARD

Promoteur: Prof esseut· BaudouiJl Le CharHer

Mémoit-ept·éseJ1té eJ1 vue de 1' obteJ1tion

du titre de LlcenciéetMa.îtt·eenlnformatique

Année académique 1990-1991

ABSTilACT

This thesis first. of all presenrs the general principles of windowing

systems used on networked gmphical terminais. W e detail aft.erwards t.wo toolkit.s

(XView and Motif), or interface cre'.ation languages. Then we present. t.wo

versions of an application each of which uses one of these toolkits and we define

agenericinte.rfacecre.ationlanguagefromthe two specific one.s. A comparüron is

finally established bet.ween XView and Motif and is partiaUy based on these

application'>.

JtESUM.E

Ce mémoire présente tout d'abord les principes généraux des systèmes de

fenêtrage utilisés sur des terminaux graphiques connectés en rése.au. Nous

détaillons emmite deux boites à outils graphiques (XView et Motif) ou langages

de création d'interfaces. Nous présentons alors deux ve.rsions d'une application

utilisant. chacune un de ces "toolkits" et. nous définissott~ un langage gënériq ue de

ci·éation d'inteifaces 5,•ur base des deux langages 5.'flécifiques pt·ésentés. Une

compa1'aison e~tfina1ement établie eJJtre XView et Motif eJJ se basant JJotammem

sui· ces appJi cati oJJs.

Actnovledgements

W e would Hke to thank aU the people who helped us in the writ.ing of this thesis,

First of all, we wish to thank Bernard Geubelle from BIM, who gave us the

oppottunity for performing t.hat. traineeship. We would like to thank him for his helpful

guidance and for hls precious t.ime he devoted to our work.

lt. would be unfairt.o forget. a few people from BIM who occasionnruly helped us

for specific difficulties : Danny Backx, Thien:y Delhaye, Philippe Dromelet., Olivier

Dubois, Bernard Heuse and Peter Strich.

Wewouldlikeespeciallytothankourpromoter, Baudouin Le Chartier, who rend

our drafts and made many interesting comments, as well as his collaborator, Yves

Deville.

Table of Contents

lo.ttoduction. 1

Chapter l Priaciples of wiadowiag systems . 2
1. 1. Field of study and hardware requirements .. 2
1.2. Windowing systems ... 4

1. 2. 1. Definition of a window4
1. 2. 2. Definition of a windowing system 4
1.2.3. Types of windowing systems ... 4

1.2.3.1. Kernel-based windowing systems 4
1.2.3.2. Network-based windowing systems 4

1. 3. Graphical user interfaces .. 8
1.4. Completeexample ... 9
1. 5. Historical development. 11
1.6. Availableproducts ... 12

1.6.1. Window systems ... 13
1.6.1.1. The X Window System 13
1.6.1.2. NeWS .. 14
1.6.1.3. X/NeWS ... 16

1.6.2. Look and feel. ... 16
1.6.3. Toolkits .. 16

Chapter 2 XView and Open Look .. 18
2.1. XViewpackages ... 18

2. 1. 1. Nonvisual objects ... 19
2.1.1.1. GenericObject .. 19

2.1.1.2. Server ... 20
2.1.1.3. Screen .. 20
2.1.1.4. Drawable ... 20
2.1.1.S. Fullscreen .. 20
2.1.1.6. Cursor .. 2.1
2.1.1. 7. Font ... 21
2.1. 1.8. Serverimage ... 22
2.1.1. 9. Notifier ... 22

2.1.2. Visualobjects ... 2.2
2.1.2.1. Menu .. 22
2.1.2.2. Window .. 24
2.1.2.3. Subwindows ... 24
2.1.2.4. Tty .. 2.4
2.1.2.S. Panel .. 25
2.1.2.6. Textsw 26
2. 1. 2. 7. Canvas .. 2.6
2.1.2.8. Frame .. 28
2. 1. 2. 9. Scrollbar .. 29
2.1.2.10. Icon ... 30
2.1.2.11. Openwin .. 30
2.1.2.12. Notice ... 30

2.2. XViewprogrrunming .. 31
2.2.1. Xv init ... 31
2.2.2. Xv-create .. 32
2.2.3. xv-=_destroy .. 32
2.2.4. Xv find .. 33
2.2.5. XvJet ... 33

2.2.6. Xv set ... 34
2.2. 7. TheNotifier ... 34
2.2. 8. Structure of XView applications 35

Chapter 3 OSF/Motif and the Xt Intri.uics 37
3.1. Motifwidgets ... 37

3.1.1. Shell widgets .. 39
3.1.1.1. Shell .. 40
3.1.1.2. OvemdeShell .. 40
3.1.1.3. WMShell ... 40
3.1.1.4. VendorShell .. 40
3.1.1.5. TransientShell ... 40
3.1.1.6. TopLevelShell ... 41
3. 1. 1. 7. ApplicationShell ... 41
3.1. 1.8. Xm.MemiShell ... 41
3.1.1. 9. Xm.DialogShell .. 42

3.1.2. Displaywidgets ... 42
3.1.2.1. Core ... 43
3.1.2.2. XmPrimitive : 43
3.1.2.3. XmArrowButton .. 43
3.1.2.4. XmPushButton .. 44
3.1.2·.5. Xm.DrawnButton · 44
3.1.2.6. XmLabel ... 44
3.1.2. 7. XmScrollBar ... 44 ·
3.1.2.8. Xm.List 44
3.1.2. 9. XmSeparator ... 45
3.1.2.10. XmText ... 45
3.1.2.11. Xm.TextField ... 46
3.1.2.12. Xm.ToggleButton ... 46

3.1.3. Containerwidgets .. 46
3.1.3.1. XmManager .. 46
3.1.3.2. Xm.DrawingArea .. 47
3.1.3.3. Xm.Frame .. 47
3.1.3.4. Xm.MainWindow .. 47
3.1.3.5. XmRowColumn ... 47
3.1.3.6. XmScale .. 48
3.1. 3. 7. Xm.ScrolledWindow .. 48
3.1.3.8. XmPanedWindow .. 49

3. 1. 4. Dialog widgets ... 49
3.1.4.1. Xm.DialogShell .. 50
3.1.4.2. Xm.BulletinBoard ... 51
3.1.4.3. Xm.Form ... 51
3.1.4.4. XmMessageBox ... 52
3.1.4.5. XmSelectionBox .. 52
3.1.4.6. XmCommandBox ... 52
3.1.4. 7. XmFileSelectionBox .. 52
3.1.4.8. Dialogconveniencefunctions 53

3.1.5. Gadgets .. 55
3.1.6. Menu widgets ... 56

3.1.6.1. Pop-up menu systems 56
3.1.6.2. Pulldownmenu systems 57
3.1.6.3. Optionmenu systems 57
3.1.6.4. TheRowColumn widget 58

3. 2. Structure of a Motif application ... 58
3.2.1. Includeheaderfiles ... 58
3. 2. 2. Initialize the Xt Intrinsics .. 59
3.2.3. Createthewidgets .. 61

3. 2. 3. 1. Set up the arguments of the widget 61

3.2.3.2. Createandmanagethewidgets 62
3. 2. 3. 3. Add the callback routines for each widget .
.. 63
3.2.3.4. Realizethewidgets .. 64
3.2.3.5. Enterthemainloop ... 65

Chapter4 Aa application ... 66
4.1. Selectionoftoolkitcomponents ... 66

4. 1. 1. Container components ... 67
4.1.2. Text capabilities ... 67
4.1.3. Graphies capabiHties ... 67
4.1.4. Menus ... 67
4. 1. 5. Scrolling capabilities ... 68
4 .1. 6. Commands and choices ... 68
4.1. 7. Infonnations ... 68

4. 2. Description of the existing internai phone book 68
4. 3. An internat phone book application .. 69

4.3.1. Information manipulated by the application 69
4.3.2. Descriptionoftheapplication .. 70

4.3.2.1. Consulting .. 70
4.3.2.2. Updating .. 70
4.3.2.3.Quitting .. 71

4.3.3. Implementationoftheapplication 71
4.3.3.1. The main window .. 71
4.3.3.2. The Consultmenu ... 71
4.3.3.3. The Updatemenu ... 75
4.3.3.4.Quitting .. 76

4.4. TheMotifversionoftheapplication .. 77
4. 4 .1. Algorithm of main .. 77
4.4.2. Algorithm ofKill_cbproc ... 79
4.4.3. AlgorithmofKiH_ok_cbpr.oc ... 80
4.4.4. Algorithm of Keys_cbproc .. 80
4.4.5. AlgorithmofSearch_cbproc .. 81
4.4.6. Algorithm of Keys_info_proc ... 81
4.4. 7. AlgorithmofMove_cbproc .. 83
4.4.8. Algorithm ofQuit_cbproc ... 83
4.4.9. Algorithm ofQuit_ok_cbproc ... 83
4.4.10. AlgorithmofErase_cbproc .. 84
4.4.11. Algorithm ofChoice_cbproc ... 84
4.4.12. AlgorithmofAJlinfo_proc ... 84
4.4.13. Algorithmof Activities_proc ... 85
4.4.14. AlgorithmofSpecial_info_proc 85
4.4.15. AlgorithmofUpdate_cbproc .. 86
4.4.16. AlgorithmofCheck_cbproc ... 87
4.4.17. Algorithm of Insert_cbproc .. 87
4.4.18. Algorithmof Modify_cbproc .. 88
4.4.19. AlgorithmofDelete_cbproc .. 88

4.5. TheXViewversionoftheappli~ation .. 88
4.5.1. Algorithmofmain .. 88
4.5.2. Algorithm ofName_proc .. 90
4.5.3. AlgorithmofFirstname_proc ... 90
4.5.4. Algorithm of Specializ_proc ... 90
4.5.5. Algorithm of Keys_proc ... 90
4.5.6. AlgorithmofSearch_ntproc ... 91
4.5. 7. Algorithm of Keys_info_proc ... 92
4.5.8. AlgorithmofMove_ntproc .. 93
4.5.9. AlgorithmofErase_ntproc .. 94
4.5.10. Algorithm ofQuit_ntproc .. 94

4.5.11. Afgorithm ofChoice_ntproc ... 94
4.5.12. AfgorithmofAllinfo_proc ... 95
4.5.13. Algorithrnof Activities_proc ... 95
4.5.14. AlgorithmofSpecial_info_proc 95
4. 5. 15. Algorithm of Insert _proc ... 96
4.5.16. AlgorithmofModify_proc ... 96
4.5.17. AlgorithmofDelete_proc .. 96
4.5.18. Algorithm ofUpdate_proc ... 96
4. 5. 19. Algorithm of Check_ ntproc .. 98
4.5.20. Algorit.hmoflnsert_nt.proc ... 98
4.5.21. Algorithmof Modify_nt.proc ... 98
4.5.22. Algorithm of Delete_nt.proc ... 98
4.5.23. AlgorithmofKill_ntproc ... 99

4. 6. Comparison and generalization of the algorithms of the two
versions .. 99

4.6.1. Themainfunction ... 100
4.6.2. The-Keys submenu .. 102
4.6.3. TheSearchprocedure ... 103
4.6.4. The Keys_info_procprocedure 103
4.6.5. The Moveand Eraseprocedures 104
4.6.6. TheQuit.procedure .. 104
4. 6. 7. The Kill procedure ... 104
4.6.8. The Allinfo_proc and Activi.ties_procprocedures 105
4.6. 9. The Special_info_procprocedure 105
4.6.10. The Updatemenu .. 105
4. 6. 11. The Check, Insert, Modify and Delete procedures 106

Chapter 5 Comparison. of XView and Motif. 107
5. 1. Cont.ainercomponents .. 107
5.2. Textcapabilities .. 108
5. 3. Graphicscapabilities .. 109
5.4. Menus ... 109
5. 5. Scrollingcapabilities .. 109
5.6. Commandsandchoices ... 110
5. 7. Informations .. 111
5. 8. Miscellaneouscomponents ... 111
5. 9. Functions ... 111
5.10. Conclusion .. 112

Conclusion...................... 114

Bibliography
Annexes

A1 Motif applicationcode
A2 XView application code

List of figures

figure 1. 1. client-server model of a windowing system 5
figure 1. 2. structure of a GUI .. 8
figure 1. 3. complete example of windowing architecture 11
figure 1.4. thePostscriptimaging model .. 15
figure 1. 5. major possibilities offered by the X architectures 17

figure 2. 1. the XView class hierarchy . 19
figure 2.2. cursors ... 21
figure2.3. choiceitems .. 22
figure2.4. exclusive items .. 23
figure2.5. nonexclusiveitems .. 23

_ figure 2. 6. pop-up menu .. 23
figure 2. 7. panel items ... 25
figure 2. 8. property window .. 26
figure 2. 9. text subwindow ... 26
figure 2.10. canvas ... 27
figure2.11. atypicalframe ... 29
figure 2. 12. icons .. 30
figure 2.13. notice .. 30
figure2.14. event-drivenprogramming ... 35

figure 3. 1. basic widget class hierarchy ... 38
figure 3.2. Shell widget classes .. 39
figure 3. 3. display widget classes .. 42
figure 3.4. ArrowButton widgets .. 43
figure 3.5. List widgets .. 45
figure 3. 6. Text widget .. 45
figure 3. 7. ToggleButtons ... 46
figure 3. 8. containerwidget classes .. 47
figure 3. 9. RowColumn widget .. 48
figure3.10. Scalewidget .. 48
figure 3.11. PanedWindow ... 49
figure 3. 12. Dialog widget classes ... 50
figure 3.13. Form widget ... 51
figure 3. 14. Command widget .. 52
figure3.15. WarningDialogwidget ... 53
figure3.16. QuestionDialogwidget .. 54
figure 3. 17. FileSelectionBox widget .. 54
figure 3.18. Gadget classes ... 55
figure 3.19. top-level of a pop-up menu system .. 56
figure3.20. completepop-upmenusystem ... 56
figure 3. 21. pulldown menu system ... 57
figure 3. 22. top-level of an option menu system ... 57
figure 3.23. option menu system ... 57

figure 4. 1. the main window .. 71

figure 4.2. the Consult menu ... 72
figure 4. 3. a dialog window .. n
figure 4. 4. an error window .. 73
figure 4. 5. a complete information window ... 74
figure4.6. aninformationwindowfortheactivities ... 74
figure 4. 7. the Updatemenu .. 75
figure 4. 8. an update window .. 76
figure 4. 9. the confirmation window .. 77
figure 4. 1 O. widgets of the application' s main window 78
figure 4.11. widgets of a dialog window .. 80
figure 4. 12. widgets of an information window .. 82
figure4.13. widgetsof aninformationwindowfortheactivities 85
figure 4. 14. widgets of an update window .. 86
figure4.15. the objects of the application's main window 89
figure 4.16. the objects of adialog window .. 91
figure 4. 17. the objects of an information window .. 92
figure 4. 18. the abjects of an information window for the activities 96
figure 4. 19. the objects of an update window .. 97
figure 4. 20. generic representation of the main window 102

To myparents.

f 01·their generous ami com,ta.nt :-mppoit

tbroughout a11 these yeat-s ~-pent in coH ege

Introduction

This thesis is the realization of a traineeship at the BIM (Belgian Imtitut of Management.in

, Everberg, near Brussels). The idea was to establish a synthesized prese.ntation of many concepts

and tools related to windowing systems in order to study and compare two emerging interface

creationlanguages: XViewandMotif.

XView and Motif are competing atdiff erent levels on the field of graphical user interfaces :

the programming approach and the look and feel. Both toolkits have their supporters and their

detractors and until now itdoes not appear that XView or Motif is completely supplanting the other.

We shall especially consider the programming approach. We intend to show that they both have

theirownspecific charact.eristics, advantages, and disadvantages.

Anothergoalofthiswork.hasamoretheoreticalaspett. Theproblemis to determine a way

of expressing generic algorithms of applications in order to either produœ XView or Motif

applications. Nevertheless, the reader should n.ot expect to be able to write XView or Motif

applications atthe end of this thesis.

The first chapter presents principles and concepts of windowing systems, among which are

toolkits. The second and the third chapters detail two particular of these toolkits, XView and Motif.

Both chapters are divided in two parts : the first one deals with the graphical object. Many figures

illustrate the most interesting of them, in order to present at the same rune respectively the Open

Look. and the Motif look. & feel. The second part presents the functions that can be used to

manipulate these objects. Thefourth chapterpresents an application, its algorithms for the XView

and the Motif versions, and from them, defi.nes a generic language used to describe generic

algorithmsthatcanbeinstanciated to either an XView or a Motif one. The fifth chapter presents a

comparison of the two toolkits from a particularpoint of view: the programming approach.

C.6,pl6r 1
Principles of vindoving systems

The aim of the first chapteris to define the genernl frame for the next ones to be placed in.

However, this chapter also presents the necessary background for understanding further non­

specific readings on the subject.

_ As windowing systems are only a sma11 part of computer science, this chapter will first delimit the

field of study concerned with this wor.k and present the underlying requirements.

This field is quite new and still evolving, in comparison with other ones. Therefore, we sha11

respectively present basic concepts needed by the readerto understand the core of this work and the

terminology mo&tly used in technical literature.

Anhistorical partfollows and leads to a presentation of some current products related to the basic

conceptsdefinedbef ore.

1.1. field of pdy ud lludwue mpireaem

Network. computi.ng is the most recent stage in the evolution of computer systems.

The first systems a11owed batch processing in which only one user at a time could use the only

available machine. This limited system became more and more unacceptable because of

performance requirements. Time-sharing processing, a system to accomodate many users on a

single machine, was an initial response to such problems, yetit was still to be overtaken.

The development of microprocessors andnetworking gave birth to individual computers (PCs and

workstations) linked in a Local Area Network (LAN).

Such PC or workstalion networks are ca11ed workgroups. They take advantage of a shared

environment consisting mostly of printers and disks. But, as mentioned, such configurationsutilize

only one kind of computer : PCs or workstations.

2

The last step of this development is network computing . Unlike the workgroup mode!, the network.

model is based on heterogeneous comput.ers of many brands. lt. disti.nguishes between display

devices andcomputingdevices.

A tlisplny tlenœ allows the user to directly acœss a network., give commands to run an

application, and see theresult.s displayed. Gen.erally, a display device can be a standard t.ermi.nal, a

network display station, a PC, or a workstation.

A JJdWoltdiq,/'!,Ystali011 is a workstation-styie t.ermin.al onlydedicat.ed to 1ocally running a server.

This Servet' displays the result.s of an application run.ning on a remote host.. Except. for the standard

t.ermina.l, these devicesarebit-mapped displaydevicesthatallow graphie applications.

A bit-mapped disptay screen is made up of dot.s, or pixels (picture etements), each of which is

represented in memOIY by one or more bit.s. The image on the screen may theref ore be altered by

changing the value of these bit.s.

The COJllPllfÙ!r œi:iœ is the machine that runs the application. lt can be a "super" or "mini"

computer, amainfram.e, awork:stationoraPC, as long as it has the same communication protoco1

as the display devices.

The display and computing functions maybe held sim.ultaneouslybythe same machine.

Regardless of the fact that ail machines can be of different. types and can come from diff erent

vendors, with this system of networking the user can acœss any computer. Network computing

allows an application to run on another machine, according to the user' s needs and the capacities of

the network. devices. Many applications can runon diff erent. hosts and be displayed simultaneously

ona separat.e device.

Network. computing thus provides great fle:ribility. W indowing systems and user interfaces (whose

conœpt.swill be explainedlater) ensure this fle:ribility.

Moreover, windowing systems are based on the model of the deskt.op metaphor. lt allows the user

to work. just as someone sitting at a desk. At a desk, one can work with several sheet.s of paper,

each one for a specific purpose, modifying from time to time the positions of the sheets and the

order in wich they are piled. One can take a new sheet and fill it or change the contents of an

existing one. A sheet can be destroyed orfolded and set aside.

In windowing systems, such sheet.s of paper are windows.

3

1.2. Wiadowi•1 systems

This section will present certain windowing system concepts. However, the desired clearness may

be lacking at times, due to botb the generality in describing the various systems, and the variety of

terms resulting from the various viewpoints from which the systems can be described.

1. 2.1. DefuùtiQJl of a window

From the user's point of view, a window is a well-defined, typically rectangular se-:tion of the

screendedicated to a particular activity and containing t.exts and/orgraphs. Many types of windows

exist. Each type defines particular characteristics, among which is the activity allowed in this

window.

1.2.2. Defwition of a windowipg system

A windowing system is a union of hardware and software components that allows windows to be

displayed andmanipulat.ed ona bit-mappeddevice.

In the relat:ed litterature, the expression 'window system' has two meanings. An additional

expression 'windowing system' wil1 be introduced to diff erentiate these meanings : a window

system is only a part of a windowing system and will be discussed later.

1. 2. 3. Types of windowipg systems

Two types of windowing systems have been developped : kemd-lllised windowing systems and

.11t111YtJd-bast!d (also server-based or distribut.ed) windowing systems.

1.2.3.1. Kemel-based windowigg systems

In kernel-based windowing systems, only the display device direct!y connect.ed to the computer

running an applicationcan receive its output, including graphies and t.e:xtinf ormation. Kemel-based

windowing systems are typically used on stand-alone PCs and will not be discussed any furthet' ;

rather the focus will be on network-based windowing systems.

1.2. 3.2. Network-based windowing systems

Network-based windowing systems allow any dispJay device on the network to be the destination

of an application's output. In other words, an application may be running on a computer wbile

displaying its graphs and/ortexts on aremote display device on the network.

These systems are based on a client-server model and they are built according to the layered

architecture given in figure 1. 1. . The client- and serve.r sides correspond to the computing and

display devices respectively. Each layer of each side is a software component of the windowing

system.

Client side Server side

mouse keyboard screen

client ~,~
device-

dependent
toolkit layer

window window
system server

Network
..

figure 1.1. client-server mode! of a windowing system

Serverside

The server side of the model corresponds to the display device. To this device are connected two

inputdevices the user can utilize to internet with an application. These elements are a keyboard and

a pointing device which is generally a mouse (witb at least one but usually two or three buttons).

Attention should be paid to the expresion' wiotlow JH"m" ', or ' JH"m" '. There ace two important

diff erences between a window server and a traditional server on a network:

1. A server in this model is nota piece of hardware but a software.

2. lt does not exist on a unique place on the network but on each display device.

Moreover, the window server is always located on the display device, not on the computing

device, unless both devices be the same machine.

When a device is both a computing and a display deviœ, the application can be displayed on the

machine running it, and the network-based windowing system behaves, in this case, almost like a

5

ker.nel-basedo.ne. Whe.nanapplicatio.nis displayedon the machine ru.nn.i.ng it, clearly the server is

located on the computing device, as both parts of the client-server model aremerged.

The word 'server' is used in fact because it manages shared resources (the display and input

devices). lt receives requescs which tell it to petf orm operations on the graph and text elements

displayed o.n the device it controls. ln the opposite direction, the server collects events related to

these components and transmit them to the application that created them (an event is a kind of

internai signal produced by inputs and manipulations of windows. These inputs and manipulations

are possible than.ks to the keyboard and the pointing device).

A window server communicates both with clients by using a common protocol, and with input

devices and the screen due to a dePiœ-tlepemft,pt layer. The device-dependent layer bas to be

changed when an input device is changed, but the server is always of the same type for a given

window system.

Client side

The client side of the windowing system represents three levels of software components on a

computing device.

The upper level is the client level. Two types of clients exist, applications and window managers,

and are considered exactly in the same way by the server.

An DJ!JJliatli0/1 is written in a traditional programming language, usually the C language. The

application incorporates elements from a toolkit layered on the second level or from a window

system on the third level. These elements are mixed with the normal code.

A wimlow llUll1l!P'C is a client (thus software) directJ.y based on the window system layer. lts

goal is to arbitrate conflicting demands for the shared resources of the display device : screen

space, mouse, keyboard. lt manages the positions and sizes of ail windows and interlace

components appearing on the screen.

The window managerdeterminestwo impottanttb.ings.

1. lt decides whether the windows will be allowed to overlap or whet.her they must be tiled

side by side.

2. lt decides whether the keyboard f ocus will simply follow the pointer on the screen from

window to wi.ndow or whether the user must click a mouse button i.n a window to allow

input i.n this window.

6

As a window system generally does not impose any policy for realizing the desktop metaphor, a

window .manager compensates for this intentional lack of rules. lt can be said a window managoc

puts the deskt.op metaphor in concrete f orm by implementing such particular rules. An application

usually gives a window manager hints to specify how it would like its windows be treated.

However, the window manager is not obliged to follow them.

A fQo/kit provides an application with elements to create an interface. A toolkit consists of three

parts:

1. A set of prebuilt graphical ortextual interface components oftenref erred to as objects or

widgets (the word 'widget' is probably an abbreviation of 'window object').

2. A set of routines for creating and manipulating these objects on the screen.

3. A framework., which is a more abstract mechanism, which

a. defines the way of using objects and routines in an application code, that. is to

say defines a programming approach

b. allows the creation of new widgets

c. provides an internal dispatch loop, in order to get asynchronous inputs and

events related to particularobjects, and managing them.

Furtherchapterswill describe particulartoolkits ina more detailed way.

The window ~ is the core of the windowing system. lt. provides a low-level set of routines

used to implement the toolkits. An application can also directly call these routines, in order to

access 1ow-leve1 mechanisms. This is a means of improving performance, for e:x:ample. Such calls

. are sometimes necessarybecause no con-esponding function e:x:ists in thetoolkit, especiallyf or pure

graphie needs. However, using a toolkit. in an application brings the advantage of consistency

between ail objects and their behavior, whereas when it. directly calls the routines of the window

system, an application must itself ensure this consistency.

These routines are directly used by applications as rarely as possible because they are really not

convenient when compared to those provided bya toolkit..

They allow the communication across the network. to the server in a hardware-independent. and

network.-transparent way. They do this by conforming to the protocol defined by the window

system.

7

1. 3. Gnpmcal uer œtedaces

This section presents some relatively ambiguous terminology. The t:erms in.troduced here do not

refer to new concepts but rather give another, tfflricted point of view. Until now, we have

presented thewhole networkenvironment. This section particularlydeals with the description of the

interface of anapplicationrunning in such a system.

In a strict sense, a Grnpllica/User/tJt«[aœ (GUI) is what the user sees and uses on the screen.

According to Frank Hayes and Nick Baran in [Hay 89] , a graphical user interface is the union of

the following parts :

-a pointingdevice, typicallyamouse

-on-screenmenus thatcan appearor disappearunder pointing-device control

-windows that graphically display what the computer is doing

- icons that represent files, directories and so on

- dialog boxes, buttons, sliders, check boxes and many other graphical objects that let the

application be told what to do and how to do it

The first sense of GUI is thus essentially a set of graphical objects displayed on a screen.

The precisechoice of graphical objectsis madeby each particular GUI.

The second sense of a GUI is a structure corresponding to the client side of the client-server

model of windowing systems. Figure 1.2. shows this structure.

Client side

look&feel client ..
API .. toolkit

.. window
realization system

figure 1. 2. structure of a GUI

8

Each layer of this structure caracterizes one aspect of the GUI.

A loo.kandfeel ref ers to a client. A client may only have one look and f eel. This one defines the

visual aspect of ail objects displayed on the screen (how the user sees them). the way they can be

manipulated (how the user 'feels' them), and the way they react to inputs (how they 'feel' the

user). A look and feel is nothing more tban a specification and for the most part, is only based

uponsubjectiveideasandprinciples.

As it is a client, a window manager aiso bas a defined look and feel. However, the look of a

window manager only appears in the frame encapsulating windows created by an application. This

is especially easy to see when an application with a particular look and feel is controlled by a

window manager with anotber look and f eel. ln this case. it can be said which part of the interface

is brought by the application and which partis brought by the window manager.

An Applicati04ftwmnflll!lrlnlt.ifaœ (API) implements a particular look and feel by giving the

applicationprogrammera set of objects which follow the rules defined by this particular look and

f eel and a set.of routines to create and manipulate these objects.

lnother words, an APlis a toolkit. However, the meaning of 'API' is sometimes restricted to the

set of routines.

Many APls may exist that implement the same look and f eel but a particular API only implement.

one look and f eel.

The 1fflliZHliOJ1 layer represents the window system allowing the communication with the secver.

A particular API is only based on one reaiization layer. while the latter may be the base for many

APIS.

1.1. Coa,lete e:uaple

Figure 1. 3. shows a complete example of windowing architecture.

Six devices are connected in a LAN by a physicai link.. Device 6 is a display device, runs a window

server, whereas devices 1, 3, 4, and 5 are computing devices running clients (applications and

window managers). Devi.ce 2 acts at. the same time as a display device and as a computing device.

The logica1links join computing devices and their respective displaydevice(s). Ail clients of device

1 send their outputs to device 2. Ail clients of devices 4 and 5 do the same towards device 6, which

a11owclientsrunning on different devices to be displayed on the same display device. Device 3 is

connected to botb display devices at the same time. That allows a client to be displayed in many

places attbesametime.

9

Three clients runs on device 1 : an application layered on a toolltit, an application directly based on

the window system and a window manager. The number caracterizing a toolltit or a window

manager indicates the look and feel they implement For exam.ple, toolltit 1 allows the creation of

objects with look and f eel 1.

Application 3 is layered on toolkit 3 and is run and displayed on device 2. Even in such a case are

the window server and the window system necessruy. No particular implementationis foreseenf or

the case of a computer that isboth the computing and the display device of an application.

Four applications are displayed on device 2 : applications 1 and 2 running on device 1, application 3

running on device 2 and application 4 running on device 3. They ail are managed by window

manager 1 running on device 1. These applications use different toolkits, thus different look and

f eet are visible at the same time on the same screen. This example illu~ the fact that an

application with a particular look and f eel canbe managed by a window manager with another look

and feel.

At the other end of the LAN, application 4 is based on toolkit 1 and is running on device 3.

Applications isbased on toolkit 2 and is running on device 4. Both applications are displayed on

device 6 and are managed by window manager 2 running on device S.

Such a configuration is not fixed but can be changed by giving other command-line parameœrs
when invoking clients.

This figure represents a LAN. However, the same functionalities could be obtained in a Wide Are.t.

Network (W AN).

10

Device 1 Device 2

application 3
application 1 device-

application 2 window dependent
toolkit 3

toolk ît 1 manager 1 layer

window w1ndow
server system

window system
' ' ' ' ' ' ' ' ' ' •.•••..•.................. ~ ' ' '

' ' ' r•••
' ' ' ' . .
• .
• .
• • • 1

•
' •

Device 3 Device 4 Device 5 Device 6

application 4 application 5
window

device-

.......

toolk it 1

window
system

dependent
manager 2 toolkit 2 layer

window window window
system system server

.•...•. ···········~---···· . . ' •.••...•••••.........•........•.••

physical link

logical link

figure 1. 3. complete example of windowing architecture

. ...

The histoty of graphical user interfaces began fast. twent:.y years ago, in the seventies. The ooly

exifflng user interfaces available to access the capabilities of a computer was until then the simple

sequentialinterface. lrsfirstcharacteristic liesinitsname: 'sequential' means that. the simultaneous

executionandcontrolof many processes is not. possible. lt. second characteristic is the support-: a
character-based dispJay device.

1 1

So was the situation when the Xerox's Palo Alto Research Center (PARC) started researches

grouped into many projects : Smalltalk:, Star, Cedar, ... These brought the first basic ideas of

GUis.

Among them were:

- bit-mapped displaydevices which became workstations

- pointing device (mouse)

- windows : well-defined sections of the screen, dedicated to particular types of activities

and able to be manipulated accordi.og to preciserules

- icons : smaU graphical representations of closed windows (tempomrily not used by the

user)
- direct manipulation of objects on the screen.

Sidelights onhistoly say that Steve Jobs (from Apple) once visited PARC, saw the Star system

and from it created the Macintosh in 1984. This new-style computtt was one of the first afttt Xerox

to bring on a broad public market the results of Xerox's researches. The Macintosh interface bas

been for a long time the GUl's reference whose defi.nition stands for a general definitionof GUis.

As the goal of Xerox's researches was not consistency through the management of a well-defined,

unique project, but explorations towards a11 directions, many ideas were developed (and were

sometimes in conflict with each other). This gave birth to many diff erent. products from Xerox and

from other companies influenced by Xerox's researches: Apple, Sun, Microsoft, to mention only a

few.

Many GUI exist, as shows the followi.og table. The most important components given here will be

presented further.

Lookandfeel OPEN LOOK OPEN LOOK OPEN LOOK Motif OPEN LOOK

Xt/ Xt+ Xt/OLIT XView Xt/Xm NDE

Realization X X X X NeWS

12

Look and feel OPEN LOOK NextStep MS-Windows Presentation Manager

API tNf NextStep MS-Windows Presentation Manager

ReaHzation NeWS Postscript MS-Windows Presentation Manager

1. 6.1. Window ~~ems

Two im.portantnetwork-based window systems arecompeti.ng: X andNeWS.

They have been merged in a unique window system: X/NeWS.

1.6.1.1. The X Window System

X Window System, commonly ref erred to as X, is a non-proprietary system developed in

collaboration with Digital F.quipment Corporation and other companies by MIT's project Athena

from 1984. The problem was the use of networked graphie work.ststions as a teaching aid for

students. The presence of diff erenthardware led to a hardware indepen.dent solution.

X takes its origins in the W windowing package developed at Stanford University. Severa! versions

have been achieved from X version 1 (Xt) to Xt0. X version 10 release 4 (X10R4) was the first.

basis for commercial products in 1986. Then other versions came, from XllRl in September

1987 to X11R4 inJanuary 1990.

Xl 1 should be stable for a few years, thus allowing the development of X applications. lt is

moreoverbecoming a de facto industry standard. However, Xis extensible, which means it is

possible to add new primitive operations to the window system. lts code includes a mechanism for

incorporating such extensions so that it will not be necessary to scan all lines of code to extend the

system.

Since Xl1R2, Xis controlled bythe X consortium, formed in January 1988: an association of

computer manufacturers, software bouses and universities. Software bouses and universities are

associate members which receive advance access to newreleffies.

The X Window System defines a network protocol and off ers a libnuy of low-level routines.

13

The X protocoJ

Theprotocolenablesthecommunicationbetweenclients and servers via messages built on this

protocol. They use this protocol even if they reside on the same machine. The X protocol

distinguishes between request messages on one band and event messages on the other band.

Rt'ljue.sâ messages are sent bythe application to the server.

An application can send a request message to the server by using routines from a library called

Xlib.

Etl!.JJI: messages are sent by the server to the application when the user interacts with the

application moving the mouse, pressing a mouse button or a keyboard key or using the window

manager. The server then detects that somethi.ng affecti.og the application happened and informs it

of thatfact.

The X libnuy

Xlib provides an application with a set of routines for generating and sending requests to a server

so thatthe application programmerdoes not have to dea1 with low-level protocol details.

Xlib off ers four kinds of primitives :

1. Normal calls generate most of the requests.

2. Convenience functions are a simpler and more efficient way of generating some of the

requests already provided by normal calls.

3. Service functions perform local operations without using the network. connection with

the server. Service functions thus generate no protocol requests.

4. lnformational macros and functions retum information about the display' s capabilities

used by the application. Such routines are vety important for developping portable

applications.

1.6.1.2. NeWS

NeWS stands for Network. Extensible Window System and bas been developped by Sun. It is an

operating system- and device independent system with a client-server foundation similar to that. of

X but it. is based on Postscript..

Postscriptisboth a descriptionlanguage and a programmiog language.

14

Postscript provides a device-independent standard for representing pages to be printed. Postscript

defines graphie operators. graphie objects and animaging model.

The graphies operators are used to create graphie objects and to control theirplacement.

The origin.alityof Postscriptas a descriptionlanguage is its paint-and-stencilùnaging model.

An imaging model is a set of rules incorporated in the design of a graphie S}7htem and ref ers to the

capabilities of this syg.:em and to the manipulation of the contents of a window. In NeWS. the

imaging model is based on lines, curves and stencils rather than pixels.

The Postscriptimaging model bas a vety abstract nature with respect to the objects it can produce.

An image is built by passing some paint through a stencil before being applied to the drawing

surface, as shown by figure 1.4 .. The paint conmts either of pure colored ink (including black

and white) or of a eomplex texture or image. The stencil determines a possibly complex shape with

lines and/or curves. This shape represents for the paint a passage through a bigger defined surface.

When superimposing the paint and the stencil, onlythe part of the paint corresponding to the shape

will be printed on the drawing surface.

figure 1. 4. the Postscript imaging model

The reader should not undersw.nd this explanation as the way of getti.ng a printed page from a

printer. This metaphor relate:d to a eoncrete process onlygives betterehances to catch the basic idea

of this imaging model.

lS

Postscriptasaproeramminalanguage

Postscript allows a page description generated by an application to be run by the Postscript.

interpreter located on the printtt-side. in order to produce the correspondiog printed page.

Ne WS extends the capabilities of the Postscript language so that the prinret' can be replaced by a

screen.

This extension of the Postscriptlanguage means thatimtœd of transmitting ail the data describing a

geometric figure. you only need to transmit the progrrun creating it. Such a method bas evident

advantages as far as data compressionis concerned.

1.6.1.3. X/NeWS

The workstation indusny recognizes X and NeWS as the only windowiog systems which could

become standards. Theywere evenrecently merged to provide a unique server. Xt 1/NeWS (also

known as X/NeWS) bas an X and a NeWS interface to communicate with both X and NeWS

clients, andanundemeathcommonlayer.

1.6.2. Lookandfeel

Two important look and f eel are in competition : Open Look and Motif.

Toavoidacommonmistake, thereadershouldkeepinmind that Open Lookis onlythe name of a

particuiar look and feel, not of a toolkit.

Motif is less restrictive in its meaning. lt first refers to a look and feel essentially based on the

Presentation Manager look and f eel but improved with the three-dimensional windows from the

Hewlett Packard' s New Wave GUI. ln its second meaning, Motif ref ers to a X toolkit, as explained

in the nextsection.

Otherlookandfeelare, forexample, Nextstep,PresentationManager, MS-Windows.

1.6.3. Toolltits

On top of X bas been developed the X Toolkit (with a capital 'T') known as Xt. Xt is currently

part of the X standard. It defines routines: the Xt lntrinsics, and a set of widgets: the X Athena

widgetset (Xaw) contributed to the X communityby Hewlett-Packard.

An X toolkit (note the small 't') is another set of widgets that can be used with the lntrinsics

insteadofXaw. However, afewbasicwidgetsaredefinedbytheX Toolkitand are used with any

X toolkit independently of the new set of widgets that are used. These toolkits often provide

16

supplementruy specific routines. In the field of X toolkits, the term 'widget' is generally used rather

than 'object'.

Motif OpenLook

Xaw Xm Xt+

Xt

Xlib

OpenLook.

XView

L&f

Toolltit

Window
system

figwe 1.5. majorpossibilltiesoffered bythe X architect\lreS

Two significative X toolltits exist:

Xm implements the Motif look and f eel . Itismostly ref erred to as Motif.

Xt+ implementsthe Open Look look and f eel

Xt+ was developped by AT &T.

OLIT (Open Look Intrinsics Toolkit) is the name of the same toolkit licensed by Sun which

needed an Open Look solution based on Xt for the US government.

XViewimplementstheOpen Look look and feel, too. But it is not exactly an X toolkit because it

lies directly on Xlib, not on Xt. One could say that the XView 'toolkit' is equivaient to Xt and Xt+

taken together.

XView bas been created by Sun to allow the migration of applications written with the Sun View

API in a kernel-based windowing environment (SunWindows) towards a network:-based

windowing one (X/NeWS).

NDE (NeWS Delopment Environment) is another Open Looktoolkit from Sun. It is based on the

NeWS part of X/NeWS and communicate via the POhtscriptlanguage.

The NeWS toolkit (tNt) is an experimental one.

In the following chapters, we shall only consider XView and Open Look

Motif and the Xt lntrinsics.

17

C./Jltpler 2
XViev ud Open Look

Thischapterismainlybasedon[Hell 90), [SUNl 90), and [SUN2 90). ln the first part,

we shall presentthe major characteristics of Open Look t.hrough the presentation of XView objects.

The secont part will present the basic principles of X.View programm.ing.

2.1. XView pctq:es

We said in the section l. 6. 3. that X.View is not exactly a toolk:it However, we will use that œrm

from tim.e totim.e, keeping inmind thatf ormerrestriction.

As do ail tooUrits, X.View bas predefined objects to be used for the creation of a GUI. These objects

are part of pack.ages. A pack.age is a set of related elements : an object, attribut.es and procedures.

A toolk:it bas some similarities with object-oriented languages and tberef ore the pack.ages compose

what is known as the X.View class hierarchy (figure 2. l.) . However, 2 pack.ages are not part of

thishierarchy: the Notifier and Notice packages.

XView distinguishes between visual and nonvisual abjects.

Visualabjectshavetheirownappearance: frames, panels, windows, scrollbars are visual abjects.

Nonvisual abjects have no own appearance but contain information used to display vii:.'Ual abjects.

Server, Screen and Fullscreen, for example, are nonvisual abjects.

Recause they are placed in a hierarchy, packages inherit iroperties f rom their parent class (aJso

called superclass). Thus the root class (the Generic Object package) contains some general

characteristics applicableto ail abjectswhereasotberpac.kagesdefine iroperties for themselves and

fortheirdescendants. The moreapac.kageisat aJow Jevel, the more it is specific. For example, a

text objectinherits general properti es f rom the window class but aJso hasits specifi c characteristics.

18

2.1. 1. Nonviwal abjects

Frame

Genenc
Object

Panel

figure 2. 1. the XView class hiernrchy

Nonvisua1 abjects do not contain. or are not subclass of windows. They are part of the XView class

hierarchyexceptfortheNotifierandNoticepackages.

These abjects aremostlyused internallyby XView ratherthandirectlyin an application.

2. 1. 1. 1. Generic Object

The GenericObjector XV_ Objectisthe root abject of the class hierarchy. lt contain.s certain basic

properties that a11 abjects share. Animtance of tbis abject can never be created for itself because it

bas no function, butis implied in the creation of an abject : after the creation of the root object., the

subclass of that abject is created, then the subclass of that subclass is created and so on until the

object class of the type of abjectdesired is created.

19

2.1.1.2. Server

The Server package is used to interact with an X server. An application begins by initializing the

XView mol.kit. Doing this, it especiaily opens a connection to the server specified in the D ISPLA Y

environment variable of the operating system or in the command-line options if any. The

initialization function returns a pointer to that server that will be used as the default server for the

whole application. That server is seen by XView as an X v _ ~ object. If the application must be

displayedon many displays, additional connections have to be made to the corresponding servers

by creating X v _ Server objectsfrom this server pack.age.

The first server object is thus created as a side-eff ect of the initi.alization function white the possible

supplemen.taryserverobjectsare created bythesimple creationfunction.

2.1.1.3. Screen

This package provides an Xv_Screen object representing the physical screen. Lik.e the server

object, this one is created by the initialization function and is then retrieved by the application. All

XView objects appearing on this screen are associated with the Xv_Screen object. Because a

display device may have many associated screens, many screen objects may be created, one for

each screen.

Connectiog to many screens should not be confused with connecting to many servers. A server is

attached to a display, thus controls many screens.

2, 1. 1.4, Drawable

The Drawable package is nota real package in itself. lt groups the Server Image and Window

packages.

2.1.1.5, Fullscreen

A Fullscreenobject ailows an applicationto force the end-user to perf orm certain operations bef ore

being able to go on using ail the capabilities of this application or of ail applications displayed on the

screen. For example, a user could be forced to fi.rst acknowledge the fact that an existing füe

already bas the name be wanted to give toits own one, bef ore giving it another name and saving it.

So the Fullscreen object is used to ask the user for an immediate response or to notify him of an

errer that occured.

An application generally do not directly use the fullscreen package. The Fullscreen package is

mostly used by the Notice package to implement its functionality.

20

Defining the events the user may cause and creating the fullscreen object bas the simple eff ect of

grabbingtheserverthatis to say to temporarily stop its normal working. When the user perform.s

one of these expected actions, the fullscreen object.is de.moyed and the application works normally

again.

2.1.1.6. Cursor

A cursor is an image appeari.ng on the screen to precisely locate the position of the pointer. Each

window may have its own cursor appearance but generally uses a default one.

When creating a cursor, two ways are possible. The first possibility is to create within the

application a server image that defines the aspect of the cursor. This server image is given to the

create function as the value of a particular cursor attribute. The second possibility is to give the

createfunctionthevalue of anot.her attribute. This attribute value consists of a predefined constant

representing an index into an array of XView predefined glyphs (see figure 2. 2.).

2.1.1. 7. Font

1

tlrs1
! ~,
.. ·5E==F3

•• •■~ 1

••
== 3 2
•• - -"t-
_ua__j_

figure 2.2. cursors

Î
----- ~ [.J .. -..

■■■ 1 Il ■■ ■■
== 1 == l'i ■1111 111111■■ ----- ■■-

L == = ::

t=:.. =-.. e= ·r---t - -••:1:::•• - : ____ l

------i5-------- -I"-._ Hot "-fini

The Font package deals with the manipulation of fonts. A fontis a character set with a particular

appearance. A fontis defined by its name or fam.ily (lucida, roman, courier, . . .) , its style (bold,

italic, bold_italic, ...)anditssizeorscale(10, 12, 14, 19points).

Many XView objects use predefined fonts, complying with the Open Look specifications. These

fonts have well-defined names, styles and sizes and therefore may not be changed. Many other

interface componentsin the contrru:y may use whatever font the programmer wishes.

Creating an object of type Xv _ Font means loadiog a font from the server and creating an XView

fontobjectassociated with thatfont.

21

2.1.1. 8. Serverimage

A server image is a graphie image stored on the X server. It can be used to create an icon or a

cursor, forexample.

2.1.1. 9. Notifier

The Notifier will be described in the second part of tbis chapter.

2. 1. 2. Vis:oal abjects

2.1.2.1. Mem:a

A menu by itself is a windowless abject. lt may be attached to abjects such as menu buttons,

scrollbars, text subwindows, for example. The user can activate it by pressing a mouse button

when the pointer is in such areas. Only at that moment, the menu is bound to a window in order to

bemadevisible.

A menu allows the userto make a choice from different.menu items. Different kinds of menu items

are possible :

1. Choice items

The user can select one and only one item in the menu. When the corresponding action bas

been pedormedandthemenu hasdisappeared,thatselectioniscompletelyforgotten.

2. Exclusive items

r■t,nN)

.~ ~,
Paste
Again
Undo

figure2.3. choiceitems

The user can choose one item, as be would do with choice items. The difference with

choice items is that the selection of an exclusive item is retained after the menu has

disappeared. Such items are used to determine non-transito,:ystates in an application.

22

3. NonexcJusive items

(J>"~~~e•·~y~ _(Urus11 '~J_
,-{/:{J

OD(Jô

& "~~~(-~)

figure 2.4. exclusive it:ems

Menus that have nonexclusive items allow the user to select one or many items that will

alsobe retainedlikeexclusive it:ems.

figure 2.5. nonex:clusive it:ems

AU menus are popped up when activated but pop-up menus are only one type of menus among

three types:

1. pop-up menus that are displayed at the pointer location when the user presses the menu

button of the mouse when the point:er is in a window

, ~ \1/orkspace

"Programs 1>)
'utllltles 1>

Properties ...
Exit

figure 2. 6. pop-up menu

23

2. pullright menus that are displayed as a menu to the right of a menu item in a menu (see

figure2.5.)

3. pulldown menus that are displayed below a menu button on a panel (see figure 2. 3.)

A pushpin can be used in some menus to pin up the menu so that it ce.mains visible until the user

closes it. (see figure 2. 3.)

2.1.2.2, Window

Manyobjectscontain windows in order to display themselves and to receive events. The window

class, like the generic object class, is a hidden class: a window object.is neverexplicitlycreatedbut.

an object. of a subclass of the window class is created.

XView provides a set of windows that includes subwindows and frames :

1. tty (terminal emulator)

2. panels

3. canvases

4. text. subwindows

5. frames

2.1.2.3. Subwindows

Subwindows never exit independently. They are always owned and maint.ained by a frame or

another window. They may not. own frames. They are co&trained to fit within the borders of the

frames to which they belong. Subwindows are tiled: tbey don't overlap. Subwindow types include

1. tty subwindows

2. panels

3. canvases

4. text. subwindows

2.1.2.4. Tty

The tty subwindow emulates a standard terminal with the only diff erenœ that the number of rows

and columns mayvmyfrom the 'normal' terminal.

24

2.1.2.5. Panel

The main function of a panel is to manage a variety of panel items (or ' controls '). It is a region of

a window where controls such as buttons and settings are displayed. The panel also controls the

arrangement of its co.o.trols in a horizontal or vertical f ashion. Co.o.trol areas within panes usually

contain varied combi.nations of the following controls:

1. buttons 6. menu buttons

2. abbreviated (menu) buttons 7. textfields

3. numericfields 8. exclusive and non-exclusive choice futs

4. check boxes 9. sliders

5. gauges 10. messages

The figure 2. 7. shows examples of panel items defined by Open Look.

Buttons

Menu buttons

Items

~ (Hawk ...) 1.~ 1
(lnsects 7) (i ►\61\§U'if.rtii (Platypus 1

Kangaroo
Koala

Command Item Opossom
Wlndow Item ...
Menu Item e>

Abbreviated buttons El El
Abbreviated menu buttons Marsupials: @) Platypus

Text field

Text field with scrolllng buttons

Multl-line text fleld

Numeric field with increment/
decrement buttons

Exclusive settings

Nonexcluslve settlngs

[!}me.il)

-------~
! French j German I English

Aquarium Dlsplavs: 1 Mlnnowj

! Whale i
! Dolphin!

l Tuna 1

Check boxes D Shoes

@" socks

Slider ---]====::::
Gauge Olsk UsaCJQ:

1 I 1 1 1 1 1 1
0 100

Read-only message Slze: 1997 bytes

figure 2. 7. panel items

25

Panels are used in many diff erent contexts:

property sheets (see figure 2. 8.)

notices (seefigure 2.13.)

menus (see figure 2.4.)

2.1.2.6. Textsw

'Œl [dit

(~I~(~

• ,m tttlffl!iz;,,jj l~':' Ali of lh<> beagles were ·
safely 111 lhc-lr kennels. The bdlS •
flew around the tower,
sque<1kl_~19 fra11llcc1lly. lr.·J

ron!: Œ<frll I Sam Serif I Typëïvrliill
sr,e, [ICITJ-16TïoJ

Style: ŒfüJ [jfü<[éitt1!iJ

[ilillu [jtrike Tilrougî1J

~ (Rescl-)

- ---------~--· -~- ~-·

,,.,.___ ___________ _,-_,

figure 2. 8. property window

The textsw package allows a user or client to display or edit a se.quence of ASCII characters. lt

provides many text editing capabilities from the basic insertion to complex operations such as

searching for andreplacing a string.

figure 2. 9. text subwindow

2.1.2. 7. Canvas

Canvases provide drawing surfaces for the results of Xlib graphies calls. The application can draw

on an area larger than the size of the visible window. The entire region is called the paint window.

26

The visible portion is called the view window. Views are split and joined generally by the user via

the attached scrollbars.

paint window --------t­
(contains graphie)

view window ----
(contains no
graphie. has

1
1

scrollbars) ,

I
I

I

canvas subwindow
(disptays union of view
window and paint window)

I

I

I

I

I
I

frame-----------
{contains canvas)

figure 2.10. canvas

Three types of windows are involved with the canvas object (see figure 2. 1 O.) :

1. a canvas subwindow that

is owned by a frame and

manages one or more views

2. one or more view windows that are the

27

visible portions of the paint window

3. one or more paint windows where

graphies and events (mouse/keyboru:d) take place (there is one paint window per

view window)

2.1.2.8. Frame

The first XView object to be created by an application is a frame. A frame is a container for other

windows. Its purpose is to manage the geomeuy and placement of subwindows that don't overlap

and are fixed within the boundaty of the frame.

The frame package provides the following capabilities

1. a communication path betweenthe application and the window manager

2. amechanism to receive input for the application

3. a visual containerforuserinterface objects

4. a method to group windows with related functionality

The frame package does notmanage

1. headers

2. title bars

3. footers

4. resize corners

These fourelements are managed by the window manager which takes as hints the value of some

attributes, for examlple: the string value of frame_ label, the boolean value off rame_ show_ header,

etc ...

The frame package does not manage events either. They are managed by the windows managed by

the frame.

There are two kinds of frames : base frames and pop-up frames

The base frame isthe application'smainframe.

Pop-up frames are typica1Jy used to perf orm one or more transientfunctions.

2R

There are diff erent JtiJlds of pop-up frames:

1. Commaod frames give operands and set parameters needed for a command. They are

implememed by a subframe containing only a panel. They are useful as heJp frames, or

propertyframes. They have a pushpinattribut.e.

2. Helpframes display help text f orthe object uoder the pointer. They are implemented by a

text subwindow within asubframe

3. Notices are used to confmn requests, to display messages and conditions (see figure
2.13.)

long-term message

1
lleslze corner • Œl E41t - lilo flle

"\

(Button) (Menu Button v)
.....,,__

♦
~ •

- Vertical scrollbar

0,-

OOIJD □- 1--- Horizontal scrollNr
~oter --r .,_ New document Page 1 -1

status and error message area state or mode message area

figure 2.11. a typical frame

2.1.2.9. Scrollbar

Scrollbw:s must be attached to a window. They are used to scroll through a document when. the 1ater

is too large to be seen entirely in the window. The scrollbar package .m.anages only the scrollbar

window and does not con.trot the win.dow to which it is attached. Because its function.ality is bound

to other objects, it is sometimes wrong.ly considered to be a property of tbese objects. Scrollbars

caa be oriented vertically or horizontally, except in some packages (in text subwindows, they are

vertical).

Scrollbars attached to canvases or text subwindows can be used to split views.

29

2.1.2.10. Icon

Aniconisasmall picture representingaclosed window. Awindow maybeclosed tosave space on

thescreenbutisstillactive, exceptforthefactthatitcannot.receiveinputfromthe user. An icon is

defined by a serverimage, like cursors.

figure 2. 12. icons

2.1.2.11. Openwin

Openwin is a hidden class which provides attributes for panel, canvas and text objects.

2.1.2.12. Notice

A notice is a pop-up window bound to notify the uStt that something went wrong and/or to ask a

question thatrequires animmediate response. Notices are useful t.o confirm important operations

that can not. be undone.

/~ ~~:-,,p
File Exists. overwrite it?

figure 2.13. notice

30

XViewisanattribute-valueAPI, which means it bas few funcci.on or procedure calls. The idea of

the XView API is to provide a smail number of functions and a large set of attributes. The

functions take as arguments a list of attribute-value pairs but generally only a smail part of the

whole set of attributres is used for this purpose. As the length of the arguments list is variable, the

last attribute-value pair is always followed by 'NULL'.

There arethree categoriesof attributes:

L Generic attributes are prefixed by 'xv _' and applyto ail XView objects

2. Common attributes are prefixed by 'xv-' and apply to many but not. ail objects

3. Specific attributes are prefixed by a package name (PANEL, FRAME, ...) and

applyto that package only.

The three categories of attributes maybe used togetherin a function call.

Some attributes have a boolean value to indicate wether or not the object can cause or come under

defin.ed actions such as resizin.g, repainting, ... Other ones contain information needed to perlorm

certaintasks. Otheratt.ributescaracterizethe appearaoceoftheobject.

Objects from ail packages can be created or manipulated using a few fonctions common to aJJ

packages : xv _ create, xv _ destroy, xv _fin.d, xv _get, xv _set.

A f ew other generic functions (prefixed by 'xv _') exist. They are less important.

Otherfunctions applyto specific packages and are p-efixed by the name of the package. They are

too various to be presented in asynthesized way. They deal with particular opera.tians.

2.2.1. Xv init

Thexv _ in.itfunct.ion petf ormsthree operations.

1. lt reruls any argument given when invoking the application: some are XView arguments, other

areapplicationarguments. Thefuncci.oncanbehaveintwo ways, according to the first attribute

value. ln the first case, it removes ail arguments that are XView-specific from thecommand-line

and returnsthe latter to the application. Such a cail looks like :

xv_wt (XV_OOT_AROC_PTR_ARGV, &:~, argv, NUtI.};

ln the second case, the command-line is returned unchanged to the application thatmust parse it
itself in order to distinguish the arguments specific to XView or to the application. ln this case,

xv init is called as follows :

31

xv_m (XVJNl'l'_ARGS, ~, ugv, NULL);

2. It establishes the connection with the server specified in the command-line options or with the

default server. Xv _ init opens aconnection to only one server. If the application must be used on

many displays devices, subsequent connections to the respective servers are created by creating

the same number of Server objects. (After the firn call to xv _init, subsequent calJs to that

function areignored).

3. It initializes the Notifier.

2.2.2. Xv create

The xv _ create function creates an instance of an objectand returns a handle to thatobject.

Fra.e f'mu;

Cmu = xv_emu { NULL, FRAME, NULL);

Potl:,ml;

J04l= XY_mttt (Crmt, PANEL,NULL);

Paael_itea)\lttoa;

httoa = XV _emu (Jaat}, p AHEL_BUTTON,

PAHELJ,ABEL_STRING, "Qù",

PANEL_NOTJFY_PROC, Qü,

NULL);

These lines of code first create the base frame of the application, then a panel in this frame and a

button in thispaneJ. The definition ofxv _ create is:

ThePANEL_NOTIFY_PROCattributeindicateswhichnotifyprocedurewillbeexecutedwhenthe

buttonisactivated.

2.2.3. Xv destroy

The xv _ destroy function destroys an instance of an object and a11 ones descended from it. The

correct way to quit an application is thus to destroy the application's base frame and to exit the

application.

That function returns the value XV_ OK if no errors occutred, or XV_ ER.ROR in the opposite case.

The quit notify procedure of the section 2. 2. 2. could use the xv _ destroy function in this way :

32

voi4 q'IJ.it 0
{

if{ xv_&estroy{ fmu) == XV_OK)

,'$ ËM]Wlllll f>+WlltN lwilttl·fM tlbtta't».I. «·IM ~m')· Jib'lr! du~ -"'

txi.t{O);

,~ pi' tM ,1/Jli,'W»ll ·'ft'

}

2.2.4. Xv find

The xv _ find functionfinds an instance of an object thatmeets certain criœria. If the object does not

exist, it creates it. The definition of the xv _find functionis the same as that of the xv _ create one :

XY' jm (OWJW / IH'Jdll/11 / 1 ~, Mtrihte-ftlVie Jm).

That function returns a handle to the existing object or to the newly created one. The use of this

function prevems from creating many instances of the same object. Such a comtraint exists for

exampJeforfonts:

Xv_Foll COil;

COil = xv jial (frm.t , FONT,

FONT_NAME, "fbœ4",

NULL);

In the example above, a font.named "füced" (and existing on almost ail servers) is created as child

of the base frame of the application.

2.2.5. Xv_,get

The xv _get function gets the value of one or many attribute(s) of an object.. Its definition is :

The function retums a value that is an opaque data type, as attributes may be of different types.

That is why that value must be f orced to the correct type by writing the latter bef ore the function

nrune.

In the following example, the xv _get functionis used to retrieve the value of the label of the button

created in section 2. 2.2.

33

là'Ml = (wr lllj XV _get (lii'lltto:a., P ANEL_LABELJn'RING) ;

2.2.6. Xv set

The xv _setfunctionsets the value of one or many attribute(s) of anobject

xv_stt (fmu,

FRAME_LABEL,

FRAME_SHOV _LABEL,

FRAME_NO _ CONFJRM,

NULL);

TRUE,

TRUE,

This functioncall sets three attributes of the frame created in section 2. 2. 2 ..

2. 2. 7. The Notifier

When programming a user interface with traditionai tools, the programmer bas to provide for a

main loop collecting ail input from the user. Such a taskimposes to test ail k:inds of events from the

keyboard or from the mouse. Etroneous and correct input must be distinguished and treated by the

application.

The Notifier is a proœss consisting of a loop dealing with the dispatching of events such as

keystrokes and mouse movements. The main control 1oop resides in the Notifier, not in the

application. Each component of an application receives only the events the user has directed

towards it. . This way of doiog is called event.-driven programming (see figure 2. 14.).

34

eall
~

Jt'OfffS eallhek
ctllhek 1<111t----.-------1 ~

procd.'ln

figure2.14. event-drivenprogramming

2.2.8. Slructureof XView applications

The genera1 structure of XView programs is :

1. Includebeaderfiles

35

Two types of include smtements are generally used. The order in which they appear is important

because variables and types defined in files of the first type may be used in files of the other type.

The first type of headet' files groups general files used in traditional C programs :

liM!hM < sttio.:..>

bl.w\e < striJli.h >

The second type groups XView header files. The first file contains declarations used by all

packages:

The following files ref erto particularpackages, for example:

bl• < :imn,lfrlJU.ll >

blw < mwl)mU. >

bl'\IM < xvint#ttxtsw.:.. >

2. lnitialize XViewusing xv _init

3. Create a top-level window (FRAME) to manage subwindows and other objects

4. Createthechildrenobjectstree

5. Call xv _main_ 1oop to mut the dispatching of events

36

c.,,_.s
OSFIMotif and the Xt lntrinsics

The gist of the third chapter originates from the OSF /Motif manuals : [OSFt 90], [OSF2

90], [OSF3 90], and [OSF4 90] and from some X Tool.kit manuals: [Nye2 90], [VoJS 90], and

[You89].

As we did in the second chapter, we will present here most of the Motif widgets. Moreover, as

widgets are only one side of the toolkit, we will present the programming approach of the Xt

lntrinsics, too.

3. l. Motif wiqets

Motif defines a lot of widget and gadget classes and allows the creation of new widget classes. The

meaning of 'widget' bas already been explained in the first chapter : a widget. is a graphical

component of a user interface. At first sight, gadgets are improved forms of widget.s. They will be

presentedlaterintbis chapter.

A widget class consists of the procedures and data applicable to ail widgets belonging to that. class.

These procedures and data can be inherited by subclasses. A widget is an instance of a widget

class.

A Re.svurc:e acts as an attribute of a widget. Resources determine the appe.aranceand functionality

of widgets. They are either specific to a particular widget class or directly inherited from the

superclass. This superclass may inherit resources from its superclass and transmit them. to its

child(ren).

If a class has f ew resources, they will be described.

The basic class hierarchy structure is given below. The Core, Composite and Constraint classes are

provided by the X Toolkit. The Object and Rect.Obj classes are superclasses for windowless

37

widgets. The whole Core class provides support for win.dowed widgets. Composite widgets are

containers for any .number of child widgets. Constrai.nt widgets main.tain. additional state data for

their children, as for e:x:ample, constrain.ts on thechild's geometty.

r·····••·•···········•·~
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

~7

1
1

(lnmei)

.......................

&Mll Coistrmt

figure 3 .1. basic widget class hierarchy

Ail Motif widgetclasses are grouped in.to six categories :

1. Shell widget classes

2. Display widget classes

3. Contai.nerwidgetclasses

4. Dialogwidget classes

5. Gadget classes

6. Me.nu widget classes

38

3.1.1. Shell widgets

The term 'Shell' both represents one of the five categories of widget classes and a widget class of

that category. Widgets of the Shell category constitute the interface between the window manager

and other widgets. Each wi.ndow displayed on the screen is based on a Shell widget of the Shell

category. Shell widgets are invisible. Many diff erent Shell classes have been designed, according to

the child widgetsthey accept.

o~n

figure 3.2. Shell widgetclasses

Two important. types of Shell widgets exist : private and public ones. Shell, WMShell and

VendorShell widgets are private while the others are public.Private widgets m.ay not. be

in.stantiated. They are i.ntern.a1 and are not off ered to the interface designer. These widgets just

transmit their resources to subclasses. On the co.ntrar.y, public Shell widgets maybe used as normal

widgets(except.forthefactthat.theyarei.nvisible).

DialogShell widgets stand as an exception because they are semi-public. A DialogShell widget is

always created as part of a set of widgets, either direct1yby the programmer, as a public widget, or

intemallybyfunctions, asa privatewidget.

The X Toolkit provides seven Shell classes, while Motif defines three such classes. The Xt Shell

classes are : Shell, OverrideShell, WMShell, VendorShell, TransientShell, TopLevelShell and

39

ApplicationShell. The Motif-specific Shell classes are : VendorShell, XmMenuShell and

XmDialogShell.

3.1.1.1. Shell

Shell is the base Shell class. lt provides resources for a1l other Shell classes. This top-level widget.

only accepts one child.

3.1.1.2. OverrideShell

OverrideShell is a special Shell class bound to be ignored by the window manag« and th«efore is

used to create pop-up menus. OverrideShell adds no specific resources to the resources inherited

from its superclasses. It only changes the default value of two resources inhet'ited from the Shell

class:

1 . XmNoPm1.'deRetlirect is a boolean indicating if the shell is a temponuy widget to be

ignored by the window manag«. Its value in the Shell class is False and it switches to True

intheOverrideShell class.

2. ..YmNsnFtV11tler is a boolean indicating if the contents of this widget instance that

appear on the screen should be saved when particular conditions are satisfied. Its value

changesfrom Falseto True, too.

3.1.1.3. WMShell

WMShell defi.nes resources to be used by the window manager protoco1.

3.1.1.4. VendorShell

Ven.dorShell contains resources used by a specific window manager. Foreseen. by Xt., this class is

modifi.ed according to thevendor-specifi.c window manag«.

3.1. 1.5. TransientShell

TransientShell is used for shell widgets that. are managed by t.he window manager but cannot. be

iconified separatelyfrom the parent window.

This class only defines one new resource :

40

X111.N11·1111sie.JJlFor indicates the widget for which this TransientShell widget behaves lik.e a

pop-up child.

As does OverrideShell, TransientShell changes the Xm.Nstn·-eU11der shell resource value from

False to True. Moreover, the value of the Xm.NlnmsrPJ'JI resource inherited from WMShell

becomesTrue forTransientShell. That means that a widget instance of that class is transient and

must. therefore be considered in a special way by the window manager.

3.1.1.6. TopLeve1Shell

TopLeve1She11 is used to create a top-level window to which corresponds a set of windows. k

introduces three specific resources :

1. ..Ym.Niconic is a boolean that tells the window manager if the application must mut as

an icon or not.

2. ..Ym.Nico.nNlll11e specifies the name to be displayed in that icon.

3. Xm.NiconNlll11eE.acodiog specifies a property type that represents the encoding of the

XmNiconName string.

3.1.1. 7. ApplicationShe11

An application normally have one toplevel (root) window of class ApplicationShell. Possible

supplementru.ytoplevel windows are of class TopLevelShell and are created using another routine.

They can be considered the root of a second widget tree of the application.

ApplicationShell provides two specific resources:

1. Xm.Nqc counts the number of arguments given to the application by the user

2. Xm.Nnqrr,· contains these arguments

3.1.1.8. XmMenuSbell

XmMenuShell is the parent of menu panes and t.herefore is the basis for creating pop-up and

pulldown menus.

It bas a specific resource :

41

.Y.mNde.ft1ultFontList specifies a font list for its children. This list is only used when the

child widget has no own font list.

XmMenuShell also overri.des the XmMdlowS/JeU.llesize resource inherited from the Shell class.

That resource deals with geometty requests from children of the widget. lts value changes from

F aise to True.

3.1. L 9. XmDialoiShell

XmDialogShell is the Shell class used to create dialog windows. lt bas no specific resource but

changes the value of the ,.f'm.NdeJereR.esponse resource inherited from VendorShelL This resource

indicates what should be done when a delete message from the window manager is received.

3.1.2. Di5J1laywidgets

hlaliel

Xm. ToggleB'l.ttton

:~ X:ahshB\lltu

' ' ' . ,----------------------,
t J X:aCascwB\llto1. :

1 1 ·-- --- -............ -.. ---- -- __ ,

figure 3. 3. display widget classes

h.ArrowB1Jlton

Xm.List

Xm.Sepm.tor

hText

Xm. TextField

42

Motif uses particulardenominations. Alt widget.classes prese.nted in figure 3. 3. are display widget

classes exceptfor the Xm.CascadeButton. However, XmPrimitive and ail classes situated below it

areprimitiveclasses, including XmCascadeButton.

3.1.2.1. Core

The Core class is an Xt superclass that provides corn.mon resources needed by ail other classes,

such as x and y locations, height, width, window border width and so on.

3.1.2.2. XmPrimitive

XmPrimitive is a supporting superclass, too. lts resources essentially concem border drawing and

highlighting.

3.1.2.3. XmArrowButton

The Xm.AttowButton widget is a directional (left, right, up or down) arrow surrounded by a

border shadow. The selection of this button canmake the shadow move to give the appearance that.

the arrow button bas been pressed. When the button is unselected, it seems to be released.

The specific resources of this class ref er to the direction of the arrow and the clicking and callback

mechanisms.

Figure 3.4. shows a window with four ArrowButton widgets.

figure 3.4. ArrowButton widgets

43

3. 1.2.4. XmPushButton

The difference between Xm.ArrowButton and XmPushButton is the text label or the pixmap that

replaces the arrow. Both types of buttons are used to invoke actions (for example, run cancel,

stop, ...)

However, thedefaultbehaviorof a PushButton used in a menu depends of the type of this menu.

Examples of PushButton widgets can be seen infigure 3.15 ..

3.1.2.5. XmDrawnButton

The XmDrawnButton widget consists of a directional arrow surrounded by a border shadow. It can

give the appearance to be pushed or released, too.

3.1.2.6. XmLabel

As aninstantiable widget, XmLabel can contain textorgraphics.

As a superclass, XmLabel provides resources for button subclasses such as CascadeButton,

DrawnButton,PushButtonandToggleButton.

3. 1.2. 7. XmScrollBar

A ScroUBar widget is always combined with a widget containing data too large to be viewed in its

entirety. The viewable portion of the data is called the working area. ScroUBars can be placed

horizontally or vertically. A window may also have one ScrollBar of each type.

A ScrollBar consists of two arrows placed at each end of a rectangle. The rectangle is called the

scroll region and contains a smaller one called the slider. The datais scrolled either by clicking on

an arrow, selecting on the scroll region or dragging the slidet'. When an arrow is selected, the slidet'

within the scroll region is moved one step in the direction of the arrow. If the mouse button is held

down, the slider continues to move at a constant rate. The ratio of the slider size to the scroll region

size represents the ratio of the size of the visible data to the total size of the data.

Examples of ScrollBar widgets can be seen in figure 3. 6 ..

3. 1.2. 8. XmList

XmList allows the selection of one or more items from a 1ist of choices. The number of visible

choices is variable and a ScroUBar canbe added.

Such List widgets are presented in figure 3. 5.

44

3.1.2. 9. XmSeparator

The Separator widget is a separation line between widgets. lt can be placed horizontally or

vertically.

figure 3. S. List widgets

3.1.2.10. XmText

The Text widget provides a si.ngle-line or multiline texteditor with basic editing functionalities such

as creating or editing file, cutting and pasting text, and so on.

~1, , .•• _,,·;.,:· .. i'èc' >émedit6r:/~t~i':è;~~~t:"'':":t; .

. :fï1~ètdi~\-~~~ffü~:i±t~wf;;?~;1itïtŒ1
yet another line of text. Here is se ,I A,

text. Here is vet another line oi te :l
time for all gc:i'ocl men to corne to t ,_:_" 1
country. Tl1e qnick brown fox ju ; .
lazy clog. Now the same line all i '
THE QUICK BROWN FOX JTJMP '
L.-\ZY DOG. Four score ancl seVt: ··
our forefathers brought forth upon

.. . r
- ;, .• ' · •••1Tc• • .,••:,.,: , .,. • .;. ":

◄

figure 3.6. Text widget

45

3. 1.2.11. XmTextField

TextFietd doesthe same asTextf orsingte-line texts.

3. 1.2.12. XmTo_ateButton

The Togg1eButton widget consists of a text or graphies face wit:h an indicator placed to the 1eft of

the text or graphies. Toggle buttons are used for setting non-transitoty data in an application.

Diamond-shaped indicat.ors only allow one choice to be selected while square indicators a11ow

nonexdusive choices. The selected or unselected states of the button are indicated by an empty or

filled indicator as shows figure 3. 7 ..

figure3.7. ToggleButtons

3.1.3. Containerwi<faets

Container widgets are Composite widgets that provide applications with general 1ayout

functionalities. As Compositewidgets, containe.rwidgets canhave children.

Ail classes presented in figure 3.8. are container classes except for XmBulletinBoard. The ten

classes are manager classes.

3.1. 3.1. XmManager

The XmMrutagerclass is never instantiated as a widget, It is a superclass for other widget classes.

It supports the visual resources, graphies contexts, ... necessmy for the graphies mechanisms.

46

···························••..---~----,--------,

p••······· ············~
l XaB\1lletilBori l
' ' ~ •••••••••••••••••••••• J

fipe 3.8. containerwidgetclasses

3.1.3.2. XmDra.winwea

The DrawingArea widgeteasily adapts to a varietyof purposes, forexample displaying graphies.

3.1.3.3. XmFrame

The XmFrame widget is used to enclose a single child within a border drawn by XmFrame.

3.1.3.4. XmMainWindow

XmMain Window can be used as the primary window of an application. This widget can display a

menu bar, a command window, a work region, and scrollbars but these areas are optional.

3.1.3.5. XmRowColumn

The RowColumn widget is a general purpose manager that can contain any widget as a child. lt is

the basis for menus.

A RowColumn does not need to know how its children behave.

The children widgets can be laid out in rows or columns. Moreover. their layout must be one of the

following:

1. The children are packed together into rows or columns (see figure 3. 9.)

2. Bach child is placed in anidentically sized box: producing a symmetrical look

47

3. A specific layout (the current x and y positions of the children determine the location)

A RowColum.n must be created as a child of a Frame in order to have a three-dimensional shadow.

figure 3. 9. RowColum.n widget

3.1.3.6. XmSca1e

A Sca1e crui be eitherinput /output or only output.

ltallows

- rui application to indicate a value from a range of values, in the second case (only output)

- a user to input or modify a value from the same range, by adjustiog a slider to a position

along a line, in both cases

figure 3 .1 O. Scale widget

3.1.3. 7. XmScroUedWindow

The ScrolledWindow widget combines one or more scrollbars and a viewiog area to implementa

visible window onto ruiother larger data display. The visible part of the window crui be scrolled

through the larger display by using scrollbars.

48

3.1.3.8. XmPanedWindow

A PanedWindow lays out children in vertically tiled format. Children appea- from top to bottom.

The fint child inserted appears at the top of the PanedW indow and the last child at the bottom. The

PanedWindow widget grows to match the width of the widest child and ail other children are f orced

to this width.

Maximum and minimum sizes can be specified f oreach pane containing a child. The height. of each

pane can be changed at run-time within these limits, by dragging a small square box placed at the

bottom of the paneit modifies.

Figure 3. 11. shows a PanedWindow bef ore and after such a modification.

figure 3.11 PanedWindow

3.1.4. DialQg widgets

The dialog widgets are used to create Dialog widgets, also called Dialogs. (Note the small and

capit.alsletters).

A dialog widget is one of the seven widgets listed hereafter.

A Dialog includes a DialogShell, a Bulletin.Board, (or a subclass of Bulletin.Board, or another

container widget) and various children such as Label, PushButton, Text.

49

figure 3.12. Dialog widget. classes

Dialogs are used for interaction tasks such as displaying messages, setting properties and providing

selection from a list of items. They norm.ally ask a question or give the user some information

requiring a response. A Dialog can be modal or modeless. A modal Dialog stops the work session

and asks the user for some input. A modeless Dialog waits for input from the user but does not

interrupt interaction with any application. The modal character may be defined in many ways by

settiog the ... Ym.Nmmw~eresource of BulletinBoard to the appropriate value out of three :

1. XmDialog_ S:rstem_ Modal : means that. the Dialog must be responded to bef ore any

otherinteraction in any application.

2. XmDia.log_ App.lic01i011_ JIOt/JJ.I: means that the Dialog must be responded ro before

some other interactions in ancestors of the widget.

3. XmDialog_Full_App.liClllio11_Modal: means that: the Dialog must be responded to

bef ore some other interactions in the application.

3.1.4.1. XmDiaJogSheU

The Xm.DialogShell widgethas been presented as a widget of the Shell categor:y.

However, as it is the basis for a11 Dialogs, it can be seen in a sense like a dialog widget, too.

50

3.1.4.2. XmBuUetinBoard

BulletinBoard providessim.ple geometry management for children widgets. It does not impose the

position of its children but may refuse geometry requests that would make children overlap.

BulletinBoard is a base widget for most Dialogs but is a1so used as a general container widget.

3.1.4.3. XmForm

The Form widget provides a layout language used to establish spatial. relationships between its

children. Specific resources are used to specify attachments of the child' s sides t.o the Form.'s sides.

F orm maintains these relationships whenitis resized, new children are added or when its children

areresized, unmanagedordestroyed.

Figure 3.13. gives an example. The first ArrowButton on the left bas been positionned within the

Frame widget by means of three co.nstraints :

1. The top of the ArrowButton is set to 20 pixels under the top of the Form.

2. The diffi\D.ce between. the left sides of the Form. and the ArrowButton is ten percent of

the total width of the Form..

3. The distance between the left side of the Form. and the rightside of the ArrowButton is

thirty percent of the total width of the Form..

As the bottom side of the ArrowButton bas not been constrained, the height of that widget. is

maintained when the Form is resized. Anyway, the left and right sides move in order to maintain

the co.nstraints.

figure 3.13. Form. widget

51

3.1.4.4. XmMessageBox

Message Box is the base widget for providing information to the user. Three buttons are available :

OK, CANCEL, HELP but are not mandatory. This widget con.tains a message symbol and the

message itseJf.

3.1.4.5. XmSeJectionBox

The SelectionBox widgetis used to select an item from a 1ist of choices. lt con.tains a message, an

editable text field and a scrolling list of choices. Four buttons are available : OK, CANCEL,

APPL Y, HELP.

3.1.4.6. Xm.CommandBox

ln the OSF /Motif documentation, this widget is sometimes called Xm.Command, too.

XmCommand displays a command line input text field, a command line prompt. and a command

history mechanism. ltis similar to a SelectionBoxbut can also record selections in a history region.

This history regionis accessible and items can be selected from it..

Figure 3. 14. shows a CommandBox with a scrolled history region.

figure3.14. Command widget

3.1.4. 7. XmFileSe1ectionBox

A FileSlectionBox gives the user a way of selecting a file in any directory or subdirectory. lt. bas

five main areas:

52

1. An input text field for displaying and editing a directory mask used to select the files to

bedisplayed

2. Ascrollablelistoffilenames

3. A scrollable list of subdirectories

4. An input text field for displaying and editing a filename

5. Agroup of PushButtons: OK, FILTER, CANCEL,HELP

3.1.4.8. Dialog convenience functions

A Dialog can be created either by creating each of its widgets in turn or by using a Dialog

convenience function.

Dialog convenience fonctions allow the creation of group of widgets or gadgets by making just one

functioncall. Aconveniencefunctioncreatesa predetermined set of widgets and returns the parent

widget' s identifier. Dialog functions are of the form :

A Dialog convenience function instantiates a dialog widget as a child of a DialogShell to create a

convenience Dialog. For example, the QuestionDialog convenience function creates a DialogShell

and a Message Box and PushButtons as children of the DialogShell.

The following six convenience Dialogs (and functions) are based on the Message Box :

1. (XmCreate)WorkingDialog: tells the user a time-consuming operation is executing

and gives him the opportunity for cancelling it. The default symbol is a square with an

hourglass in it.

2. (XmCreate)Wfl.mingDialog : warns the user of the consequences of an action and

gives him the opportunity for cancelling it. The default symbol is an exclamation mark.

(see figure 3.16.)

figure3.15. WarningDialogwidget

53

3. (XmCreate)QuestionDialog: gets an answer from the user. The default symbol is a

question mark. (seefigure 3.15.)

figure3.16. QuestionDialogwidget

4. (XmCreate)lnformationDialog: givesinform.ationto the user. The default symbolisa

square with an ' i ' in it.

5. (XmCreate)ErrorDialog : warns the user of an invalid or potentially dangerous

condition. The default symbol is anhexagon with a band inside.

6. (XmCreate)MessageDialog: givesinformationto the user. Thereisno defaultsymbol.

Motif determines the number of PushButtons and the symbol to display for each Dialog, while the

message explaining the error . asking the question. or giving an information is given by the

application.

The other convenience Dialogs (and functions) are :

1. (XmCreate)FileSelectionBoxDialog is based on FileSelectionBox and allows the user

to select a file. (see fi21Jre 3. 17.)

, figure3.17. FileSelectionBoxwidget

54

2. (XmCreate)BulletinBoardDialog is based on BulletinBoard and is used f orinteractions

not supported by the standard Dialogs.

3. (XmCreate)SelectionBoxDialoe: is based on SelectionBox and allows the user to get a

selectionfrom a list.

4. (XmCreate)Form.Dialog is based on Form and is used for interactions not supported

by the standard Dialogs.

5. (XmCreate)PromptDialqg is based onSelectionBox and asks the user for a text input.

3.1.5. Gadgets

Gadgets provide for the most part the same functionalities as the equivalent widgets. The main

reason to define gadgets is to improve performance, both in ex:ecution time and data space. This

applies to both the application and server processes and mi ni mi7.es the amount of lostfunctionality.

The diff erence is so important between widgets and gadgets that these should be used whenevei'

possible.

Gadgets can be undentood as windowless widgets. They don't have any of the visual resourœs

found in the XmPrimitive class.

figure 3.18. Gadget classes

Motif provides thefollowing gadgets:

1. XmGadget (the superclass for other gadget classes)

2. XmArrow ButtonGadget

3. XmSeparatorGadget

55

4. XmLabelGadget

5. XmCascadeButtonGadget

6. XmPushButtonGadget

7. XmToggleBuuonGadget

3.1.6. Menu widgets

A menu system is a combination of widgets that produce the visual and interactive behavior of a

menu. The Motif menu system designates the set of all such menu systems.

Motif provides three types of menu systems :

1. pop-up menu systems

2. pulldown menu systems

3. option menu systems

AU menu systems are based on the RowColumn widget.

3. 1. 6. 1. Pop-up menu systems

A pop-up menu system simply appears at the pointer location when required by the user. lt consists

of aMenuPane generallycontaining PushButton, ToggleButtonand/orCascadeButton widgets.

figure 3.19. top-level of a pop-up menu system

figure 3.20. completepop-up menu system

56

In figure 3.19. , the top-level of the pop-up menu contains two CascadeButtons giving access

when required to pulldown cascading submenus in figure 3. 20.

3.1.6.2. Pulldown menu systems

A pulldown menu system consists of a MenuBar containing CascadeButtons. To each

CascadeButton is attached a pulldown MenuPane. This MenuPane may contain PushButtons,

ToggleButtons and/or CascadeButtons. Like in pop-up menu systems, PushButtons are used to

invoke actions (eut, run, save, ...) ToggleButons set data and CascadeButtons can give access to

pulldown submenu panes.

figure 3. 21. pulldown menu system

3. 1.6.3. Option menu systems

An option menu system consists of one or more Labels describing the sets of options. A

CascadeButton is placed to the right of each Label. lt can give access to a pulldown MenuPane

containing PushButtons and permanently contains a Label indicating the mostrecentoptlonselected

in the pulldown menu. Figure 3.22. shows the top-level of such a menu system and figure 3.23.

shows the whole first option menu.

figure 3.22. top-level of an option menu system

figure 3.23. option menu system

57

3.1.6.4. TheRowColwnn widget

The RowColumn widgetis the basis for most of the menu system components. lt. can behave lilœ a

menu bar. a pulldown menu pane, a pop-up menu pane or an option menu, according to the values

given to some of its resources. Convenience functions have been provided to easily create these

special versions of the RowColumn widget. When necessruy, t.hey first create a MenuShell widget.,

too. The Motif menu system is composed of the following widgets and convenience functions:

1. XmRowColumn (widget) 7. XmCascadeButton (widget and gadget)

2. XmCreateMenuBar(conveniencefunction) 8. Xm.Separator (widget. and gadget.)

3. Xm.CreateOptionMenu (conveniencefunction) 9. Xm.Label(widgetandgadget)

4. Xm.CreatePulldownMenu (convenience function) 10. XmToggleButton (widget and gadget.)

5. XmCreatePopMenu (convenience function) 11. XmPushButton (widget and gadget)

6. Xm.MenuShell (widget)

3.2. Stnctllre of a Motif application

This section explains the steps to follow to writ.e a Motif application on the base of the C language :

1. lnclude header files

2. lnitialize the Xt Intrinsics

3. Create the widgets

4. Realize the widgets

5. Enter the main loop

3.2.1. Include headerfiles

Three types of include statements are generally used. The order in which they appear is important

because variables and types defined in files of the first type may be used in files of both other types.

Similarly, variables and types defined in files of the second type may be used in files of the third

type.

The first type of header files groups general files used in tradition.al C programs :

#mcl\lM < stüo.11. >

hl\lM < stmg.k >

58

The second type refers to the X Toolkit. We explained in section 1.6.3. that an X toolkit is

composed of a set of routines, the Xt lntrinsics, and a specific set of widgets (the Motif widget set

in the case of the Motif toolkit). ln order to use these routines, the following statement must be

found in the code (rememberthat the X Toolkit, thusthe Intrinsics, are part of the X standard and

are to be found in the X 11 directocy) :

The firsttwoparts of the set of include statements arevirtuailythe sameforail applications.

The third one is the more likelyto change. ltrefers to the Motif toolkit. Only the first header file of

this type, Xm.h, is mandatocy in ail cases because it contai.ns definitions for ail Motif widgets. So

the ne:xt statementlooks like

No particular order must be taken into account for the following lines. One inclùde statement must

.- be added for each widget class used in the program, no matter if the widget is used one or many

times.

Thesestatements looklike

bl'd.• < hl JPJi6w .h >

For example : #include < Xm/BulletinB. h > includes the headerfile for the BulletinBoard widget..

3.2.2. lnitializetheXtlntrinsics

lt should now have become clear to the reader that a Motif application is first of ail an Xt

application, evenif it is a particular one depending of the widgetthat is used. That is why the object

of the initialization are the Xt lntrinsics and not the Motif toolkit

The initialization always occurs before any other call to an Xt function. lt is perf ormed by the

XtApplnitiolizefunction. That function requires many arguments and creates an application

conte:x:t, establishes the connection with the servet", analyses the command line given to ca11 the

application, and returns a shell widget to be used as the root widget of the application. A shell

widget accepts one child and is the interface betweenthat. child and the window manager.

59

Thenexttwolinesareanexampleof initialization.

Viagtt Phond,ook:

•
Pho:ri.e:book = XtApplnit:W.ize (&Appc , "test" , 0 , 0 , &~ , argv , 0 , àl , 0) ;

Phonebook is declared of type Widget, thus could be any widget. However, once it bas

been assigned a type, it can not change any more.

a. &Appc represents a pointer to an application context. Application contexts enable the

coexistence of several logical applications ina single address space.

b. "test' gives the class name of the application.

c. The nexttwo arguments are the options and number of options indicating how to parse

the command line. The initialization function uses and then rem oves ail arguments it can

recognize in the command line. It returns the application a cc.mm.and line with application­

specific arguments but no X or Xt specific arguments any more.

d. ~ is a pointer to the number of arguments in the command line.

e. m:gy is the command line itself. ~ and m:gy will be modified according to the third

and fourt.h arguments.

f. The seventh argument gives resources to be used if the resource file of the application

cannotberead.

g. mis an array of resources characterizing the Shell widgetto create.

h. The last argument indicates how many arguments have to be taken int.o accouru. in al.

XtApplnitialize is not the only initialization function.

The Xtlnitialize functionis a more simplefunctionthat callsthree other lntrinsics functions:

XtToolldt.Jilitialize just initializes the internais of the Xt Intrinsics

Xt:Ope.nJJispl,!Y opens a connection with the display server

Xt.AppCrenteS.llt'Jl creates a top-level shell for the application.

Instead of usiog the single Xtlnitialize function, the application may call these three functions

separately. In this case, if an application context is cre.ated (by a call to

XtCrente.ApplicotionC011left , it is used as an argument of the XtOpenDisplay and

XtAppCreateShell. If no application context.has beendefined, a default.one is used.

So, many ways are possible to initialize the lntrinsics. Calling a single function (Xtlnitialize or

XtApplnitialize) is an easier and probably a more efficient way to doit. than using many calls to Xt

60

functions. However, in this latter case, some customization is possible, as for example the choice

of the precise shell widget to use as the parent widget for the application.

3.2.3. Createthewidgets

The widgets created at this step will be the children and descendants of the top-level widget created

by the initialization function. The creation of a widget. involves three parts :

1. set up the arguments of the widget

2. create and manage the widget

3. add the callback routines for each widget

3.2.3.1. Setup the alluments of the widget

The arguments are pairs of resource names and values. They define characteristics of the widget. :

location, size, functionalities, ...

TheXt-SdA.tgfunctionis used to build an array with all arguments ref erring to the widget to create:

.Argel.(10);

»Stt.Arg (el (0), Xm.Nx, 234);

»Set.Arf (al (1), Xm.Ny, 35);

»Stt.Arg {el (2) , Xm.Nb.btlStriDi, strl) ;

The array al contains ten elements, each of which is of type Aqr. The predefined Arg type consists

of a string (corresponding to the resource name) and a value (corresponding to the resource

value). After the three calls to XtSetArg, the first three elements of al are three pairs of resource

names and values : the x and y locations and the string that will be displayed in the widget. The str 1

string variable must be of a particular type : the XmSmJwtype.

At this point, al maybe given as an argument to the create function of the widget.

Let us now suppose that the programmer want. , for any reason, to remove the set up of the XmNy

resource. Thatimpliesthatall subsequentstatementswill have to receive another ordering number.

In the code given above, the third one will change from ... (al (2) , ...) to ... (al (1) , ...).

Another way of setting the arguments makes iteasier to add or delete calls to XtSetArg .

.Arf al{20);

61

XtSetNV (d (n) , XmNx , 234) i n++ i

XtSetArg ("1 (n.) , Xm.Ny, 35) i 11.++ i

XtSetJve' ("1 (a), Xm:NlmJStrmg, str1) in.++ i

The ideaisto use anintegervariable index f orthe array, instead of acomtant.

Removing the second statement now causes no problem any more.

3.2.3.2. Createandmanagethewidgets

Ail Motif widgets can be created by means of a Motif convenience function or an Xt function.

1. Motif convenience functions

The Motif convenience functions looklike:

Keeping in mind the preceding sections, let us consider the following example :

V~t MB;

MB = XmCrttteM'è:n.\11,ar (Pho:ri.ellook , "Mè:n.kt'' , NULL , 0) ;

A Menu Bar is created as a child widget in the Phonebook Shell. MB is its nam.e. The widget is

created onlywith defaultresource values as no arguments are given to the creation functi.on. As the

value of the foutth argument is O, replacing the third one by al (the array conta1oing the arguments

that describe the Menu Bar widget) would produce the same result.

When necessary, the Motif convenience functi.ons create a parent Shell widget from the Shell

category as the parent of the desired widget.

2. T/JeXtctWlefuoclioo

The Xt function used to create a widget is :

62

The arguments are the same as those required by a Motif convenience function, except for the

widget class name. The information the latter brings to the Xt function is already available t.hrough

the name itself of the Motif f unction.

3. Af11111J,p. the wit!,f:els

BothXm.Create witlget and XtCreate Widgetf unctions create an unmanaged widget. A widget must

be managed by its parent. That means for example that the widget's parent must manage the size

and location of the widget and control input to the widget. Children can be laid out in rows and

columns while others will be grouped in scrollable lists.

To tell the widget's parent it must manage its child, the application must call the Xt function

Xt.AlillJJIJleCb.ild(widget) . ln this function, the widget given as argument is supposed to have

been created either by an Xm or by the Xt function.

XtManageChild is the only function that can manage a widget created by a Motif convenience

funtion.

The Intri.nsics off er two other functions to manage widgets :

1. XtawœAllllll!Te.rllflqrdcalls XtCreateWidget. and XtManageChild

2. Xt.AIDl1dlfeCb.i1drel1(list of widgets , number of widgets) takes as arguments widgets

created by XtCreate Widget.

The use of XtCreateManagedWidget is an advan.tage for the programmer. However, each time a

new managed child is added to the list of managed children of a widget, the latter must perf orm the

whole geometty management again. So, when many children of the same widget must be cre.ated

and managed, it is a more efficient way of doing it to create unmanaged children that will

simultaneously be managed by XtManageChildren.

3. 2. 3. 3. Add the callbac.k routines for each wigget.

Using a toolkit in an application allow to separate the code creating the user interface from the

applicationcode itself. That means thateachofthesetwopartscanbecreatedormodified without

looking atthe otherpart.

However, the interface and application codes need to communicate during the execution of the

whole code. The mechanism mostly used to 1ink. these two parts is called 'callbackmechanism' and

uses callback procedures. Another mechanism is based on' actions'. lt will not be described here.

63

Many widgets define one or more callback resources. A callback resource gives the list of callback

procedures that will be executed under precise conditions. For example, the ArrowButon widget

defines the following ones :

1. XmNactir-weCaUhack. list of callback procedures called when the ArrowButton is

activated. Activating a widgetmeans pressing and releasing a defined mouse button while

the pointer is inside the widget.

2. }{111NnrmQillb11ck: list of callback procedures called when the ArrowButton is armed.

Arming a widget means pressing a defined mouse button while the pointer is inside the

widget.

3. .Ym.NdismmQilllmck: list. of callback procedures called when the ArrowButton is

disarmed. Disarming a widget means pressing a defined mouse button white the pointer is

inside the widget (same definition as XmNarmCallback).

A callback procedure can be added to the list for a precise callback by means of the Xt function:

For example, if quit:._ button is a PushButton,

means that clicking on quit_ button will call quit._proc with the data argument.

Callback procedures must be defined this way (example of the quit-proc procedure) :

The first argument is the widget that caused the procedure to be called. The second argument is the

value passed as the last argument of XtAddCallback. The third argument is a widget-specific data

that the widget passes to the application. However, not all widgets define such a value, in which

case, call_dataissettoNULL.

3. 2. 3.4. Realize the widgets

Once the widgets have been created and managed, they have to be realized to be visible. The Xt

function

64

realizes (makes visible) the widget given as argument and ail its descendants. This widget is thus

normally the root widget created by the initialization function.

3.2.3.5. Enterthemainloop

Enteringthemain.loopmeanscalling Xt.A-ft1ù1üJop If anapplicationcontexthas been defined, that.

funct.ion is replaced by XtAppAl,unLoop(application_ context).

This loop is an Xt function indefinitely collecting events and dispatching them to the widgets.

These in turn will ca11 callback procedures. The mechanism is very similar to that of the XView

Notifier.

Events are caused by keystrokes, mouse buttons or pointer movements.

65

C/Nlpter 1
An application

This chapter is dedicated to a particular application : an internai phone book for B IM, the

firm where the traineeship related to this thesis took place.

The main goal of this application is to provide a support for the st.udy and the use of the two toolkits

presented in the previous chapters. In fact, the choice of the applicationhas no importance for itself.

First of all, we present the list of the minimal functionalities to be implemented by that application

and which components can be used, in order to have a base of comparison. We then describe the

existing internai phone book at the time of the traineeship. In the following section, the application

itself is described and we show how we expect to use the selected components. After that, the

algorithms of the XView and the Motif versions are presented. However, because of the vety

importantamountoftimeneededtomasterthem,thespecificimplementationproblemstheybrought

in addition to the typical difficulties of the C language could not be resolved in time. That's why

neither the XView version nor the Motif version of the application are fully implemented (see

annexes).

Anyway, their developments are significant enough to allow the presentation of the algorithms for

the two versions.

The chapter ends with the definition of a generic language bound to describe algorithms

independently of any of both toolkits.

4. 1. Selectioa of too.ltit compo.11.e.ats

Confronted to a wide set of objects and widgets, we decided to group them according to their

functionalities. We distinguish seven groups : container components, text capabilities, graphies

capabilities, menus, scrolling capabilities, comm.ands and choices, and informations. The choice of

those groups and their number (seven) is quite arbitraty and depends on no particular criteria.

However, we consider that these objects constitute the basic elements that can be found in an user

interface.

66

We selected in each group a f ew objects of both toolkits to be used in a specific implementation.

They are presented in the sections 4. 1. 1. to 4. 1. 7 ..

Aftera generic description of the application, we explain which components of the selection will be

used foreach functionof the application.

Then we present the specific algorithms and we show how we use the selected components. When

necessary, we show that the choice was not judicious and that. we had to use another object(s) or

widget(s).

4. 1.1. Container components

Containercomponents are used to enclose and manage children objects.

XView : Frame (for one or more children)

Panel (to accept panel items)

Motif: Xm.Frame (fora single child)

XmMain Window (as primary application's window)

Xm.PanedW indow (for verticallytiled children)

Xm.Form (maintain'> relationalships between children when resizing or adding children)

Xm.BulletinBoard (does not force positioning of children)

4. 1.2. Text capabilities

We consider here texts as inputs from the user.

XView: Textsw

Motif: Xm.TextField (for single-line fields)

Xm.Text(formultilinefields) ·

4.1.3. Graphies capabilities

These components are given for information only; they will not be used.

XView: Canvas

Motif: Xm.DrawingArea

Xm.Label (for texts or graphies)

4.1.4. Menus

67

XView : Menu (includes pop-up, pulldown and pulJrigbt menus and pushpins)

Motif: XmRowCoJumn (to be instanciated to one of the fo11owing types: pop-up menu, pulldown

menu, option menu or menubar)

4.1.5. Scrolling capabilities

XView : Scrollbar (can be used to split views in canvases)

Motif: XmScroJlBar

XmScrolledWindow

XmSelection Box (includes a scrolling list.of choices)

4.1.6. Comm.andsandchoices

XView: Panel (with particularitems)

Ttysw (terminal emulator)

Motif: XmCommand

XmPushButton

XmDrawnButton

XmList.

4. 1. 7. Informations

XView: Textsw

Notice

Motif: Xm.Scale

XmMessageBox

XmFileSelectionBox

XmScale

XmSelectionBox

XmToggleButton

4. 2. Descriptio.n. of the e:risti.q: io.tem.al pllo.11.e boot

BIM is located on three sites. Part of the staff work at the site 'Castle' in Everberg and about the

same numberof persons work atthe site 'Horizon' (about 70 persons). Only a few people (about

10 persons) work. at the site 'Two lions' which is very close to the Castle.

lnternaJ phone numbers at BIM can be found in two printed lists. The first list relates to 'Horizon'

and is structured as follows :

1. n.ame

2. firstname

3. internai phone number(three-digitnumbers)

68

4. initiais

The second füt concerns a.Il B IM and contains :

1. name

2. fifllt name

3. location character ('H' for 'Horizon'

'L' for 'Two Lions '

no characterfor C~t1e')

4. internai phone number

5. initiais

Phone numbers in the firstlist on1y allow communications inside the site. This is due to the fact that

you can't directl.y call someone working in one of the two other sites, but you have to use a public

phone numberto call the secretarythat will dispatch the call.

In the second list, phone numbers to Horizon are diff erent from those of the first list: they are four­

digit numbers.

Both lists are regularly brought up to date, printed, and distribured to all people.

As the firstlist is included in the second one, problems of consistency could appear. This is more

lik.ely to happen if diff erent persans update these lists.

A phone book application could clear such problems and could contain other interesting

information.

4. 3. An illtenal pfloae book a,plicatio.a

4.3.1. Information manipulated by the application

The database should contain the following data for all persons working at B IM :

1. name

2. firstname

3. initiais: the first letter of the name followed by the first letter of the christian name

4. phone number: all phone numbers are three-digit numbers except those that are used to

access the site 'Horizon' from the two others. Thus two phone numbers will be given

for each person working at 'Horizon' : a thre.e-digit one to be used inside the site and a

four digit number to be used from the two other sites.

5. location: the location is indicated by a character: 'H' for Horizon, 'L' for Two Lions

and no character for the Castle.

69

6. wockiroup : internai division of the firm ; examples of workgroups are ungETeam

(Unix group expert team), sdg (software development group), Sybase.

7. len:thof service

8. respon.sibilities or function in the company

9. activities; specialization

4. 3. 2. Description of the application

The application will provide two kinds of operations on the database: consulting and updating.

4.3.2.1. Consulting

The database will be consulted according to one of three keys : a name, a first name, or a

specialization. The usefulness of the name or of the first name as a key is quite clear. Using the

specialization as a key ailows to give the user the list of ail persons likely to solve bis problem.s in a

precisefield.

When the user bas introduced such a key, the information related to ail persons whose data match

the key is displayed. Complete or eut information can be provided. The complete information

con.sists of the nine fields of data described in section 4. 3. L The eut information only relates to the

fields 1 to 4. When the user gives a key value that corresponds to nobody, he is notified of that. fact.

Anotherway of consulting the database is to ask for a list. of informations. Two lists are available.

One list provides ail information contained in the database, that. is to say ail fields of data for all

persons. Thar. list thus provides a sequential access to the whole database. The second list is

composed of ail activities or specializations mentioned in the fields number nine of the database.

That. list is useful to find the exact denominat.ion of a specialization before using it as a key.

4.3.2.2. Updating

The applicationmanipulatesdata which are clearly subjectto changes. Therefore, it should provide

authorized users a way to update the database. The three tradition.al functions are off ered : the use.r

caninsert, modify, ordeletedata.

A password is not planned yet because the application will first be designed for a restricted use, not

for a public one (ail employees). Even in the lat.ter case, it does not mat.ter if some information is

wrong because the aim is to test such things as : ease of use, missing or unnecessmy functionalities,

presentation of the windows. of the information, ...

The pair (name , first name) is con.sidered as the identifier of a person.

70

4.3.2.3. Ouitting

For people who have never heard about a window manager, the application should give the user an

explicit and easy way of quitting it. Moreover, the user should be able to confirm or deny bis

choice.

4. 3. 3. lmplementationof the application

As was section 4.1., this section was written before programming the application. That is why

some components may be not well chosen.

4. 3. 3. 1. The main window

The three groups of operations of section 4.3.2. are typically represented in an application's main

window by three distinct buttons. The separation of these three elements clearly shows that the three

operations or groups of operations are completely diff erent.

We shall use an XView frame and a panel for one version and a Motif MainWindow and a

BulletinBoardfortheother. Thebuttonswillbepanelitembuttonsfor XView and PushButtons for

Motif. They will contain a corresponding label (an attribute of the XView button and a Label

widget).

With these elements, the application's main window should look lik.e figure 4. 1 ..

BIM l'Dlenw Pho~ liook

figure 4. 1. the main window

4.3.3.2. The Consultmenu

Whereas the three groups of operations are always shown in the main window, the diff erent

operations themselves are hidden and displayed as menus when required. That avoids confusing the

user that would otherwise have too manypossibilities presented at the same time.

The button labeled 'Consult' brings up a pulldown menu when activated. The Consult menu

consists of the options 'Keys' and 'Lists' which both refer to pullright menus (see figure 4.2.).

71

The objects that will be used for the Consult menu and submenus are the XView menu and the

Motif RowColumn with the correct attribute or resource values.

COllS\Ùt
First »Ae

I<eys . ··►

Lists . ··► .All i:DCo

figure 4. 2. the Consult menu

4.3.3.2. 1. The Keys submenu

Each option 'Nam.e', 'First nam.e', and 'Specialization' in the Keys menu gives rise to the sam.e

scenario:

1. A dialog window (figure 4. 3.) is created and asks the user for a name, a first name or a

specialization as a search key. The user bas two choices. The first one deals with complete

or eut information. The second one allows him eit.her to trigger the search with the given

key or to quit the option back to the main window, making the dialog win.dow disappear.

An 'Erase' button can be used to setthe inputtext field to blank.

' ' O Com.plete i:DCo
Q C\ll i:DCo

Ntm.e:

figure 4. 3. a dialog win.dow

To build this dialog win.dow, we shall use the following components :

72

Elements XView Motif

window frame and panel BulletinBoard

'Consult: Name' frameattribute XmLabel

buttons panel items (buttons) PusbButtons

choice panel item (exclusive choice) ToggleButtons

input field panel item (textfield) XmTextField

2.1. If the name, firstnrune orspecialization doesnotexhtin the database,

a. the dialog window remains unchanged and

b. an error window appears (figure 4.4.) . No further use of the application is

possible until the 'OK' button is selectecl, which causes the error winclow to

disappear. The input field in the dialog window is set to blank, ready for a new

request.

The JWl'l.è >1$1$1:1=4 .. •l .. l

~s D.Ot udst

figure 4. 4. an error window

W e shall use an XView notice or a Motif Message Box for the error window.

2.2. If the key refers to one or more persons, the eomplete information or the eut information is

displayed in an information window (figure 4. 5.) provided with three buttons. The buttons labeled

'Next' and 'Previous' then allow the navigation through the list of seleeted persans, in order to

display the information related to another person. Figure 4.5 presents a eomplete information

window. A eut information window would only eontain 4 data fields and would be smaller. The

dialog window is still available. with an input field set to blank. In ail cases, once the dialog

window bas been created, it remains visible until being released by the 'Quit' button.

No new eomponents are used here for the information window : except for the ToggleButtons, we

shall use the same objeets as those of the dialog window.

4.3.3.2.2. The Lists submenu

Two sorts of lists can be asked for :

73

1. Lht of aU information conuuned in the database

2. List of ail activitiesmentionedinthe datahasein thefieldsnumbernine

The option 'Ali info' directly gives riseto a complete information window similarto tbat presented

in the figure 4 .5. That inf onnation window allows the sequential access to the whole datahase.

The second list is useful when the user don't exactly know the precise denomination of an activity.

Tbat listis presented in an information window provided with a 'Quit' button and a scrollbar(figure

4.6.).

Nœe: .. .
First :nam.e :
hitials:
Phoae :D.\UD.:btr :
Locttioa:
Votitgro'1p :
LeJlith. of nl"ri&e :
Rts)OJ1Süilities :
Specializàtion{s) :

figure4.5. acomplete information window

Co:DSuk : Aotilities

.. .. Aotility 11
Activi.ty 12

Activi.ty 15

Activi.ty 22

figure 4. 6. an information window for the activities

74

This information window for the activities is provided with an XView scrollbar or a Motif

ScrollBar. The textual part of the window is an XView Textsw or a Motif Text.

4.3.3.3. The Updatemenu

The Update menu is based on the XView menu package or the Motif RowColumn lik.e the Consult

menu.

figure 4. 7. the Update menu

Ail update items ('lnsert', 'Modify' and 'Dele.te') of the Update menu make an update window

appear (figure 4.8.). Such a window is provided with a 'Check' button, an 'Erase button'. a

'Quit' button and one update button corresponding to the item selected in the update menu. lt is also

provided with nine labels placed before the nine input. text.fields of data already described.

The 'Check' button can be used to make the application detecting wether a person already exists in

the database. Such a way of doing is not mandator:y but can save the user the trouble of needlessly

typing in ail other related information.

Of course, after using that button, the user sti11 needs to use the updat.e button to perf orm the desired

operation

The user must explicitly dismiss the Update window so that multiple updates are perf ormed in an

easier way: you do not need to select an item in the update menu each time you wish to update the

database.

4.3.3.3.1. lnsertigg

The user first gives the name and first name, then be possibly gives the ot.her information and press

the insert button.

If the pair (name , first name) already exists in the database, an error window pops up and the user

has to tr:y with another name or to quit. Otherwise, he types in ail information.

75

Upùte: hmt

Nme:
First ~•:
hitws:
Phollè 11.Wll1'er :
Locttio:ri.:
Vol'kgroup :
Le~h of serviçe :
Re:s:p011.Sil>ilitie:s: :
Speçwiu.tioll{s) :

figure 4. 8. an update window

The Update window requires the sam.e objects as the inf orm.ation window (figure 4. 5.).

4.3.3.3.2. Modifyi.ng

The user gives the nam.e and first nam.e of the person whose data are not corect any more and press

the modifybutton.

If the pair (nam.e , first. nam.e) does not. exist in the database, an error window pops up and the user

bas to tty with another nam.e or to quit.

If it exists, ail information is displayed in the sam.e window and the user may edit it.

4.3.3.3.3.Deletigg

The user only nee.ds t.o give the nam.e and first nam.e of the person whose data must disappe.ar from

the list and press the delete button.

If the pair (nam.e , first nam.e) does not exist. in the database, an error window pops up and the user

bas to tty with another nam.e or to quit.

If itexists, ail information related to that personis deleted.

The error windows discussed in the last. three sections will be XView notices or Motif

Message Box.

76

4.3. 3.4. Quitting

The activation of the third button of the main window lets a confirmation window appear (figure

4. 9.). No further use of the application is then possible until one of two buttons is selected : 'Quit'

or 'Cancel'.

Do yov. \V'llt
to q\Ù.t?

figure 4. 9. the confirmation window

This confirmation window will be an XView notice or a Motif Message Box.

4. 4. The Motif version of tb.e application

This section presents and comments the algorithms of the internai phone book application written

withMotif.

The source file of the application begins with the declarations of the include files ref erring to the

widgets used.

Many widgets are then declared as global variables as do other data strucures.

Ail normal and callback procedures are declared ataglobal level, too.

The main function of that C program is then defined.

4. 4. 1. Algorithm of main

Thefunctionmaincreatesthe main window of the application, its menus and its submenus, opens

the application database and gives the control to the event.dispatcher.

In section 4. 3. 3. 1. , we planned to use a Main Window and a BulletinBoard to accept PushButtons

t.hat would give access to the Consult and Update menus. CascadeButtons must be used in.stead of

them because PushButtons cannot access menus. (Butthey can be used as menu items to perform

actions). As CascadeButtons have to be placed in a menu pane or in a Menu Bar, and because a

Menu Bar can be a child of a Shell, we do not use the Main Window and the BulletinBoard.

77

These problems are the typical difficulties we encountered when programming with Motif and

XView. Most of them are not mentioned in the manuals and we often had to tty man y possibilities

to f ind somethi.ng correct..

We thus placethree Cascade Buttons in a Menu Bar and the latter is a child of the top-level Shell. The

CascadeButtons call menus. The third one ('Quit') calls no menu. It can not be replaced by a

PushButton because a Menu Baronly accepts Cascade Buttons.

Instead of using a RowColumn, we pref er a convenience function for its simplicity

(XmCreatePullDownMenu)

Figure4.1 O. presents the tree of widgets created and theircallback procedures.

It is divided into three parts to be more readable.

.. ·•.
'• ..

COJIS _ cashtJi
. .

\. ··... : Kill o:broc
\-------, ······--~---,

•, Co:ns\\J.t_p~ Upüte~

Lists_clS:bUi

.
: Kèy:s cliproc.1

F _Nm.èJ\ISh_:btn.

.
L. ... Kèys cli1roc.2

SpecW.J\ISUtD.

.
L. .. Keys chproc .3

·• . ..
'• ..

Lists_sùpaM

.
t ... _Açtivitiès cbproo

l':nstttJ\ISUtD.

L Upù,tè chproo.1

Mo4ify _pvsh_htD.

.
:. ... Updffl chproo.2

Ddète_pl.lSUta

.
: Updt.te cJ,proq,3

figure 4. 1 O. widgets of the application' s main window

78

create atop-level shell (Phonebook) by means of an initializationfunction

create a menu bar (Menu Bar) in Phonebook

create two menu panes (Consult _pane and Upclate _pane) as chiJclren of Menu Bar

create two cascade buttons (Cons_ casbtn and Upd _ casbtn) as children of Menu Bar. Those

buttons are linked respectively with Con~'Ult _pane and Update _pane so that theit·

activation pulls clown the corresponcling menu.

create a cascade button (Quit_ casbtn) as child of MenuBar and declare its callback routine

Kill _ cbproc, to be called with the argumentPhonebook.

create two pulldown submenu panes (Keys_~1lbpane and Lhts_subpane) as chiJdren of

Consult _pane

create two cascade buttons (Keys _ casbtn and Lists _ casbtn.) as children of Consult:....pane.

These buttons are linked respectively with Keys _ subpane and Lists _ subpane. so that

theiractivation pulls rightthe corresponding submenu.

create three push buttons (Name _pushbtn., F _ Name _pushbtn, Special _pushbtn) as

children of Keys _ subpane and declare their callback routine Keys _ cbproc, to be

called with the respective argument value 1. 2 or 3.

create two push buttons (Allinf o _pushbtn and Acti _pushbtn) as children of Lists _ subpane

anddeclaretheirrespectivecallbackroutineAllinf o _proc andActivities _proc

create three push buttons (lnsert_pushbtn., Modif y _pushbtn and Delete _pushbtn) as

children of Update_pane and declare their callback routine Update_cbproc, to be

called with the respective argument value 1, 2 or 3.

call a function (lnit) that opens the file Phonefile standing for the database or creat.ing it if

it does not exist

call thefunctionMainLoop.

The so-called 1ink between a cascade button and its associated menu is created by giving the

ref erence of t.hat menu pane as the value of the resource XmNsubmenuld of the cascade button.

4.4.2. Algorithm ofKill cbproc

The function Kill _ cbproc creates a confirmation window used to confirm or cancel a request to quit

the application.

As foreseen in section 4. 3. 3 .4. , the confirmation window is based on a Message Box. However, we

use a convenience Dialog based on that widget, for its simplicity (see section 3. 1. 4. 8.).

create a question dialog box with a label 'Do you want to quit ?', a Cancel button and an

'OK' button with the callbackroutine Kill _ ok _ cbproc

79

4.4.3. AlgorithmofKill ok™cbproc

This procedure only consists of a function call.

exit the application

4.4.4. Algorithm of Keysmcbproc

The function Keys _ cbproc creates a dialog window as presented in figure 4. 3 .. lt receives a value

indicating the type of searchkey: 1 for 'name', 2 for 'firstname', 3 for 'specialization'.

The ToggleButtons and the label 'Consult: Name' are not.i.mplemented. The three other widgets are

those that were selected in section 4.3.3.2.1. . However, we need an additional Label widget to

place bef ore the input textfield.

Figure 4 .11. presents the tree of widgets created and theircallback procedures.

lt is followed by the algorithm.

Keys_buho

Choice_bt11.

.
: ... Eme cbproc

.
: Qù clip Î. .. Choice cllproc

figure 4. 11. widgets of a dialog window

create ashell: Keys _ shell

create a bulletin board (Keys _ bubo) in Keys _ shell

cre.ate a push button (Search _ btn) in Keys _ bubo and declare its associatedcallbackroutine

Search _ cbproc, to be called with an argument value corresponding to the type of

searchkey

create a push button (Erase _ btn) in Keys _ bubo and declare its ca11back routine :

Erase _ cbproc, to be called with the argument. value 1

create a push button (Quit_ btn) in Keys _ bubo and de.clare its associated callback routine :

Quit_ cbproc, to be called with the argument Keys _ shell

create toggle buttons(Choice _ btn) forthe complete inf ormation/cut.inf ormationchoice in

80

Keys _ bubo and declare its callbackroutine Choice _ cbproc

createtheinput textfield (Keys_txt)inKeys_bubo

if the argument valuepassed to Keys_cbproc = 1

thencreatetheinputlabel (Label)in Keys_bubo, withthe value "Name"

if the argument value passed to Keys _ cbproc = 2

then create the input label (Label) in Keys _ bubo, with the value "First Name"

if the argument value passed to Keys _ cbproc = 3

thencreatetheinputlabel (Label)inKeys_buba, withthe value "Specializatian"

4.4.5. AJgorithmofSearch cbproc

ThefunctionSearch_cbproctak.es as argument the type of search key and searches for all persans

whoseinformationmatchthesearchkey.

The same remarie asin section 4.4.2. applies here about the error window : we use a canvenience

Dialog (XmCreateMessageDialog) based an XmMessageBax (see section 3.1.4.8.).

get the value of the inputtext field Keys _ txt (that is to say the search key) in the character

array Search _ data

openPhonefile

readfüstline

while not EOF

read the foJlowing 8 Hnes

if (the search key is a name and Hne 1 equals ta Search _ data)

or (the search key is a first name and Jine 2 equals to Search _ data)

or (the search key is a specialization and Hne 9 equals to Search _data)

then copy the nine Hnes in the table Inf o

read nextline

closePhonefile

if no data matching Search _ data bas beenfound in.Phonefile

then create a message dialog box Error with the label 'Does not exist' and an 'OK'

button

else unmanage Keys _ shell

call Keys _inf o __proc

4.4.6. Algorit.hm of Keys info_J)roc

The function Keys _ inf o __proc _ creates a complete orcut.inf ormation window.

81

A BulletinBoard, PushButtons, and text fields are used as foreseen for an information window.

Label widgets have been added to the list of widgets, as in Keys _ cbproc.

Figure 4. 12. presents the tree of widgets created and their callback procedures.

It is followed by the algorithm.

füxt_:bt:n. Pt'tvio\lS _:bta Q\l.it_bt:n.

L.Move cbproc.1 L .. Move ~!IW,2 L. Q\l.it cbproc

figure 4. 12. widgets of an information window

create a shell: Keys _ inf o _ shell

create a bulletin board (Keys _info _ bubo) in Keys _ inf o _ she11

cre.ate a push button (Next _ btn) in Keys _ inf o _ bubo and declare its callback routine

Move _ cbproc to be called with the argument value 1

create a push button (Previous _ btn) in Keys _ inf o _ bubo and declare its callback routine

Move _ cbproc to be called with the argument value 2

create a push butt.on (Quit_ btn.) in Keys _ inf o _ bubo and declare its associated callback

routine Quit_ cbproc to be called with the argument Keys _ inf o _ shell

if complete _ inf o is true

then create nine labels (Labe11 to Labe19) in Keys _ inf o _ bubo corresponding to the

nine fields of data alreadydescribed

create nine input text fields (Keys_Name_txt to Keys_Special_txt) in

Keys _ inf o _ bubo corresponding to the nine fields of data already described

set the value of these nine input texr. fields to t.he first. nine lines of the table lnf o

created in Search _ cbproc

else create four labels (Labell to Label4) in Keys_info_bubo corresponding to the

four fields of data already described

create four input text fields (Keys _ Name _ txt to Keys _Phone_ txt) in

Keys _ inf o _ bubo corresponding to the four fields of data already de.scribe.d

82

set the value of these four input t.ext. fields to the first. four lines of the table lnfo

createdinSearch_cbproc

4.4. 7. AlgorithmofMove cbproc

The function Move _ cbproc displays the complete or eut information of another person in

Keys _ bubo according t.o the but.ton that. called it.

if the value received as argument= 1 and the index of the table lnf ois less than (size of the

table)- 1

thenincrementthe index of the table

if the value received as argument= 2 and the index of the table is greater than 0

then decrement the index of the table

if the index bas been modified

if complete _ inf o is true

then set the value of the nine input text fields Keys _ Name _ txt t.o Keys _ Special _ txt

to the nine values corresponding to the index in the table lnf o

else set the value of the four input text fields Keys _ Name _ txt. t.o Keys _Phone_ txt

t.o the four values corresponding to the index in the table lnf o

4 .4. 8. Algorithm of Quit cbproc

The function Quit_ cbproc creates a confirmation window used to confirm or cancel a request. to ki.11

a window of the application. except the main window.

As foreseen in section 4. 3. 3 .4 .• the confirmation window is bawd on a Message Box. However, we

use a convenience Dialog based on that. widget (see se.ction 3.1. 4. 8.).

creat.e a question dialog box with a label 'Do you want to quit?' a Cancel button and an

'OK' but.ton with the callback routine Quit_ ok _ cbproc, called with the window to

killasargument

4 .4. 9. Algorithm of Quit ok cbproc

This procedure only consists of a function call.

destroy the window passed as argument

83

4.4.1 O. Algorithm of Erase_cbproc

The function Erase _ cbproc canbe called from the dialog window created by Keys _ cbproc or from

the update window created by Update _ cbproc.

if the value received as argument= 1

then set Keys _ txt to blank.

if the value received as argument= 2

then set the nine input text fields of Update _ bubo to blank.

4. 4. 11. Afgorit.hm of Choice cbproc

if the Complete inf o option bas been selected

then set Complete _ inf o to true

if Cut info option bas been selected

thensetComplete_infotofalse

4.4.12. Algorithm of Allinfo_proc

ThefunctionA1Hnf o _proccopies the file Phonefile into the table Inf o and calls Keys _info _proc to

mak.eits contentdisplayed.

WeusehereaconvenienceDialog(Xm.CreateMessageDialog) based on XmMessageBox to create

an error window.

openPhonefile

read first line

white not EOF

read the following 8 lines

copy the nine lines in the table lnf o

read next.line

closePhonefile

if Phonefile is empty

then create a message dialog box Check_ msg with the label 'The phone bookis empty'

and with an 'OK' button

else call Keys _inf o _proc

84

4.4.13. Algorithmof Activities___proc

The function Activities _proc copies ail activities found in the line 9 for each person into the table

Activities and calls Special_info_proc to make them displayed.

The same remark as in. section 4. 4. 12. applies here aboutt.he error window.

openPhonefile

read firstlin.e

while not EOF

rend the following 8 lin.es

extract the specialization(s) mentioned in. the line 9 and copy them into the table

Activities

read nextline

closePhonefile

if the table is empty

then create a message dialog box Check_ msg with the label 'No specialization' and an

'OK' button

else call Special _info _proc

4.4.14. Ale:orithmofSpecial info..,proc

The function Special _ inf o _proc creates an information win.dow as presented in.figure 4. 6 ..

In this procedure, we would use a ScrolledWin.dow instead of a Text provided with a ScrollBar.

Sptc:w_:info _slièll

SpèC:W_il'lfo _b'IJ)Q

SpèC:W_Scr_ V Ç\dt_bt».

:.. .O\dt c:bproc

figure 4. 13. widgets of an information win.dow for the activities

create a shell : Special_ in.f o _ shell

create a bulletin. board (Special _ in.f o _ bubo) in. Special _ in.f o _ shell

85

cre.ate a push button (Quit_ btn) in Special _info _ bubo and declare its callback routine :

Quit:.... cbproc, to be called with the argument.Special _ info _ shell

cre.ate a scrolled window (Special_ Ser_ W) in Special _ inf o _ bubo

set the value of the text Special_info_txt to the table Activities created in

Activities _proc

4.4.15. Al~orithm of Update_cbpi:oc

The function Update _ cbproc creates an update window as presented in figure 4. 8 ..

Label widgets (placed bef ore the text fields) are used in addition ta those defined in section

4.3.3.3 ..

Upù.te_b\llio

Check_btn Erase_btn wett_bt11. Q'lù.t_l:itn

~ .. Cheçk cbproc ~-- .Eme cbproç ~ .. wert çbproç L .. Q'llit çbproç

Upd_fü.m.e_txt

Upd_Spedù_txt

figure 4. 14. widge.ts of an update window

create a shell: Update _ shell

create a bulletin board (Update _ bubo) in Update _ shell

create a push butt.on (Check_ btn) in Update _ bubo and declare its callback routine

Check_ cbproc

create a push button (Erase _ btn) in Upd.ate _ bubo and declare its callback routine

Brase_ cbproc to be called with the argument value 2.

create a push button (Quit:.... btn) in Update _ bubo and declare its callback routine

Quit_ cbproc tobe called with the argument Update _ shell

if the value received as argument by Update _ cbproc = 1

then create a push (Insert _ btn) button in Update _ bubo and declare its callback routine

Insert _ cbproc

if the value received as argument by Update _ cbproc = 2

86

then create a push button (Modify _ btn) in Update _ bubo and declare its callback

routine Modify _ cbproc

if the value received as argument by Update _ cbproc = 3

then create a push button (Delete _ btn) in Update _ bubo and declare its callback routine

Delete _ cbproc

createninelabels (Labell to Label9) in Update_bubo corresponding to the nine fields of

dataalreadydescribed

create nine input text fields (Upd_Name_txt to Upd_Special_txt) in Update_bubo

corresponding to the nine fields of data already described

4.4.16. AliorithmofCheckwcbproc

The function Check_ cbproc tests if the person identified by the name and first. name given in the

update window already exists in Phonefile or .not.

Once again, a Message Box is created via a convenience Dialog.

get the value ofUpd _ Name _ txt and Upd _ F _ Name _ txt

if these values existconsecutively in Phonefile

then set the value of a string to 'Exists'

if these values do not exist consecutivelyin Phonefile

then set the value of a string to 'Does not exist'

create a message dialog box with a label which value is set to the preceding string and with

an 'OK' button

4 .4. 17. Algorithm of lnsert cbproc

The function lnsert _ cbproc inserts the values of the nine input. text fields of the update window into

Phonefile, unless the inf ormatuion of the personidentified by the name and first name is already in

Phonefile.

get the value of the nine input. text fields Upd _ Name _ txt to Upd _ F _ Name _ txt

if the values of Upd _ Name _ txt to Upd _ F _ Name _ txt exist consecutively in Phonefile

then set the value of a string to 'Exists'

create a message dialog box with a label which value is set to that. preceding string

and with an 'OK' button

if the values of Upd _ Name _ txt to Upd _ F _ Name _ txt do not exist consecutively in Phonefile

then insert the values of the nine input text. fields into the file Phonefile

87

4.4.18. Aliorithmof Modify cbproc

The name and algorithm of the function Modify _ cbproc are me.ruùngful enough. Moreover ,the

modification becomes an insertion if the pair (name , fi.rst name) does not exist in Phonefile.

get the value of the nine input text fields Upd _ Name _ txt to Upd _ F _ Name _ txt

insert. the values of these nine inputtext fields into the file Phonefile

4.4.19. AlaorithmofDelete™cbproc

The function Delete _ cbproc is symmetrical to the function 1nsert _ cbproc.

get the value of the two input textfields Upd _ Name _ txt and Upd _ F _ Name _ txt

if the values of Upd _ Name _ txt. to Upd _ F _ Name _ txtdo not. exist consecutively in Phonefile

then set the value of a string to 'Does not exist'

create a message dialog box with a label which value is set to t.hat preceding string

and an 'OK' button

if the values of Upd _ Name _ t.xt to Upd _ F _ Name _ t.xt exist. consecutively inPhonefile

then delete the nine corresponding lines inPhonefile

4.S. The XView version. of the application.

This section presents and comments the algorithms of the internai phone book application written

withXView.

However, most of the algorithms that follow have been deduced from a few ones, as the XView

applicationisnotfullyimplemented.

The text file of the application begins with the declarations of the include files ref erring to the

packages used.

Many objects are then declared as global variables as do otherdata structures.

A11 normal and callback procedures are declared at.aglobal level, too.

The main function of that C program is then defined.

4.5.1. Al~orithm of main

Thefunctionmaincreatesthe main window of the application, its menus and its submenus, opens

the application database and gives the control to the Notifier. The attribute XV_ KEY_ DATA is used

88

in an object to associate data with that object. The notify procedure of that object automatically

receives the handle to the object and the associated data can be retrieved by a call to xv _get.

As foreseen in section 4.3.3.1., we use a frame, a panel. panel buttons and menus to create the

mainwindow of the application.

.
'
i •• Cons\Üt_m.e:o.v.

.

Lists
item.

Pholl.ebook

.

.
; ... Kill :ritproc

~ ••• Moaüy :o.tproc

Delete
itea .

: ... _ Del§te :ritiiroc

t.. Keys _sùm.en.u :. • • Lists _sùmnu

Nm.e
item

; ... Nm.e rdproc

L .. First:wri.e rdproc

Specwization
item.

: ••• Specwiz rdproe

.
;. ... AlliDCo :ritproc

Activities
itent

L .. Activities :ritproc

figure4.15. theobjects oftheapplication'smainwinclow

89

caJ1 the initiaJization function

create a base frame: Phonebook

create a submenu (Keys _ submenu) with three items and declare the procedures they call :

'Name' and Name_proc, 'First name' and Firstname_proc, 'Specialization' and

SpeciaJiz_proc

create a submenu (Lists _ submenu) with two items and declare the procedures they call :

'Allinfo'andAllinfo_proc, 'Activi.ties' andActivi.ties_proc.

create a menu (Consult_menu) witb two items and declare their respective pullrignt.

menus: 'Keys' and Keys_submenu, 'Lists' and Lists_submenu

create a menu (Update _ menu) with three items and declare the procedures they call :

'lnsert' and lnsert _proc, 'Modify' and Modify _proc, 'Delete' and Delete _proc

create a panel (Phoneb _panel) within Phonebook

create a button with the label 'Consult' in Phoneb _panel and declare its menu

Consult menu

create a button with the label 'Update' in Phoneb _panel and declare its menu :

Update_menu

create a button with the label 'Quit' in Phoneb _panel and declare its callback routine :

Kill _ nt.proc

call a function (Init) that opens the file Phonefile standing for the database or creating it if

it does not exist

call the function mainloop .

4.5.2. AlgorithmofName,..proc

call the function Keys _proc with the argument. value 1

4.5.3. Algorithmof Firstn.amewproc

call the function Keys _proc with the argument. value 2

4 .5. 4. Algorithm of Specializ,..proc

call the function Keys _proc with the argument. value 3

4.5.5. Algorithmof Ken.,proc

The function keysproc creates a dialog window as presented in figure 4.3 .. lt receives a value

indicating the type of search key: 1 for 'Name', 2. for 'First. name', 3 for 'Specialization'.

90

AH objectsprecisedinsection4.3.3.2.1. areimplemented, exceptfortheexclu~vechoice.

Keys_panel

Semh Erase
)'UttOll.)'UttOll.

' '
: .. ,Semh 11.tiroc ; .. Eme 11.tiroc

Choice
)'Uttor,, .
' '. · -Choice 11.tproc

.
: •• -Q\li.t 11.t)l'O(I

Keys_txt

figure 4 .16. the abjects of a dialog window

createaframe Keys _frame

create a panel (Keys _panel) in Keys _frame

create a button with the label 'Search' in Keys_panel, declare its notify procedure

Search_ntproc and set the attribute XV _KEY _DATA of that button to tl1e value

indicating the type of search key

create a button with the label 'Erase' in Keys_panel, declare its notify proceclure

Erase _ ntproc and set the attribute XV_ KEY_ DATA of that button to 1

create a button with the label 'Quit' in Keys _{Yan.el, declare its notify procedure Quit:... ntproc

and set the attribute XV_ KEY_ DATA of thatbutton to the value Keys _ frame

cre.ate the complete inf ormation/cut information choice in Keys _panel and declare its

callbackroutine Choice _ ntproc

create an input text (Keys _ txt) in Keys _panel

ifthevaluereceîved as argumentby Keys_pi-oc= 1 set the value of the textlabe1 to 'Name'

if the valuereceîved as argument by Keys _proc = 2 set the value of the text 1abe1 to 'Fi~t

name'

if the value received as argument by Keys_proc = 3 set the value of the text label to

'Specialization'

4.5.6. At~orithm ofSearch ntproc

The function Search _ ntproc searches for all persons whose information match the search key.

91

get in the character array Search _ data the value of the input text field Keys _ txt (that is to

say the search key)

get. in Search _ key the value of the attribute XV_ KEY_ DATA of the button that called

Search _ cbproc

open Phonefile

read first line

while not EOF

read the following 8 lines

if (Search _ key = 1 and line 1 equals to Search _data)

or (Search _ key = 2 and line 2 equals to Search _ data)

or (Search _ key = 3 and line 9 equals to Search _data)

then copy the nine lines in the table lnfo

read nextline

closePhonefile

if no data matching Search _ data has beenfound in Phonefile

then create a notice Errorwith the label 'Does not exist' and an 'OK' button

else destroy Keys _ frame

call Keys_info_proc

4.5. 7. Algorithm ofKe~ info__proc

The function Keys _ inf o _proc creat.es a complete or eut.information window.

The objects created in an information window are shown in figure 4. 17.

Ke-ys _:ill.fo _pml

Ptuio\\S
liuttOll.

• 1 •

L,Mo'ft Illproc.1 L-Mow Ilt);t'Oc,1 L.Q\Ùl Iltproc

Kt-ys _Nou_ tllt

figure 4.17. the objects of an information window

92

createaframe: Keys_info_frame

create a panel (Keys _ inf o _panel) in Keys _info _frame

create a button (with the label 'Next') in Keys _inf o _panel, declare its notify procedure

Move _ntproc and set the attribute XV_ KEY_ DATA of that button to 1

create a button (with the label 'Previous') in Keys _ info _panel, declare its notifyprocedure

Move _ nt.proc and set the attribute XV_ KEY_ DATA of thatbutton to 2

create a button (with the label 'Quit') in Keys_info_panel, declare its notify procedure

Quit_ntprocandsettheattributeXV_KEY_DATAtothevalueKeys_info_frame

if complete_info is true

then create nine input text fields (Keys _ Name _ txt to Keys _ Special _ txt) in

Keys _ inf o _panel corresponding to the nine fields of data already

described

set the labels of these nine input tex:t fields to the values 'Name' to

'Specialization'

set the value of these nine input text fields to the first nine lines of the table Inf o

createdinSearch _ ntproc

else create four input text fields (Keys _ Name _ txt to Keys _Phone_ txt) in

Keys_info_panel corresponding to the four fields of data alre.ady

described

set the labels of these four input text fields to the values 'Name' to 'Phone

number'

set the value of these four input textfields to the firstfour lines of the table Info

created in Search_ cbproc

4.5.8. AlgorithmofMovewntproc

The function Move _ ntproc displays the complete or eut information of another person in

Keys _ inf o _panel according to the button that called it: the 'Next' or the 'Previous' button

get in Direction the value of the attribute XV_ KEY_ DATA of the button that called

Move_ntprocifDirection= 1 andtheindexofthetable Info is 1ess than (size of the

table)-1

thenincrementthe index of the table

if Direction = 2. and the index of the table is greater than 0

thendecrement.the index of the table

if the index has been modified

thenif Complete _inf ois true

93

then set the value of the trine input text fields Keys_Name_txt ro

Keys _ Special _ txt to the nine values corresponding to the index in the

tablelnfo

else set the value of the four input text fields Keys_Name_txt to

Keys_Phone_tx t.o the four values corresponding to the index in the

tablelnfo

4. 5. 9. Algot'itllm of Erase ntproc

The function Erase _ ntproc can be called from the dialog window created by Keys _proc or from the

update window created by Update _proc.

get in Window the value of the attribute XV_KEY_DATA of the but.ton thatcalled

Erase _ ntproc

if Window = 1

then set Keys _ txt to blan.k

if Window =2

then set the nine input. textfields ofUpdate _panel to blan.k

4. 5. 10. Algorithm of Quit_ntproc

The function Quit_ntproc creates a confirmation window used to confirm or cancel a request. to kill

a window of the application, except the main window.

crem:e a notice with a label 'Do you want toquit ?' a 'Cancel' but.ton and an 'OK' but.ton

if the 'OK' but.ton is selected

thenget in W indow the value of the attribute X.V_ KEY_ DATA of the button that called

Quit_ ntproc

destroyWindow

4.5.11. Al~orithmofChoice ntproc

if the Complete inf o optionhas been selected

thenset Complete _ inf o to true

if Cut inf o option has been selected

thenset.Complete_infotofalse

4.5.12. AliOt'ithm of Allinfo_proc

ThefunctionAllinfo _proc copies the file Phonefile into the table lnfo and calls Keys _info _proc to

make its content displayed.

openPhonefile

read first line

while not EOF

read the following 8 lines

copy the nine lin.es in the table lnf o

read next.line

closePhonefile

if Phonefile is empty

t.hen create a notice with the label 'The phone book is empt.y' and an 'OK' but.ton

else call Keys _inf o _proc

4.5.13. Alg-orithmof Activities_proc

The function Activi.ties _proc copies ail activities fourui in the line 9 for each person into the table

ActivitiesandcallsSpecial_info_proctomakethemdisplayed.

openPhonefile

read first. line

while not EOF

read the following 8 lines

extract the specialization(s) ment.ioned in the line 9 and copy t.hem into the table

Activities

read nextline

closePhonefile

if the table is empty

thencreate a notice with the label 'No specialization' and an 'OK' but.ton

else call Special _inf o _proc

4.5.14. Algorit.hmofSpecial info__proc

The function Special _ inf o _proc creates aninf ormation window as presented in figure 4. 6.

The tree of objects of that window is given in figure 4. 18.

95

Sptcw_:info _frt:m.t

Sptcw_il'lfo _pil!P.1

Sptcw_il'lfo _txt • • • •• seromw
' ' ~. ·Q'Uit l'ltproc

figure4.18. the objectsof anüûormationwindow for the activities

create a frame Specia1_üûo_frame

createa panel (Special _ üûo _panel) inSpecial_ inf o _ frame

create a button with the label 'Quit' in Special_info_panel, declare its notify procedure

Quit_ntprocandsettheattributeXV _KEY_DATAtothevalueSpecial_info_fram.e

create a text subwindow Special_info_txt in Special_info_panel

create a scrollbar attached to Special _ inf o _ net

set the value of Special_info_txt to the value of the table Activities created in

Activities_proc

4.5.15. Algodthm of Insert_oroc

call Update _procwith the argwnent value 1

4.5.16. Algorithm of Modify_oroc

call Update_procwith theargwnentvalue2

4.5.17. Algodthm ofDelete_proc

call Update _proc with the argwnent value 3

4.5.18. Algodthm ofUpdate_proc

The function Update _proc creates an Update window as presented in figure 4. 8 ..

96

Ch.tek
b\l.tton

Upüte_pan.el

Upd_Sptcw_tld:

wert
bwton
• 1

: ••. !Jastrt ntproe : .. -Q1Jit ltp

figure 4.19. the abjects of an update window

create a frame Update _frame

create a panel Update _panel

create a button with the label 'Check' in Update_panel and declare its notify procedure

Check_ ntproc

create a button with the label 'Erase' in Update_panel, declare its notify procedure

Brase_ ntproc and setthe attribute XV_ KEY_ DATA of thatbutton to the value 2.

create a button with the label 'Quit' in Update_panel, declare its notify procedure

Quit_ ntproc and set the attribute XV_ KEY_ DATA of that button to the

value Update_frame

if the value received as argument by Update _ ntproc = 1

then create a button with the label 'lnsect.' in Update_panel and declare its notify

procedurelnsert_ntproc

if the value received as argument by Update _ ntproc = 2

then create a buuon with the label 'Modify' in Update _panel and declare its notify

procedure Modify _ntproc

ifthevaluereceived asargumentby Update_ntproc = 3

then create a buuon with the label 'Delete' in Update_panel and cleclare its notify

procedure Delete _ntproc

create nine input text. fields (Upd_Name_txr. to Upd_Special_txt.) in Update_panel

corresponding to the nine fields of data already described

set the labels of these nine input text fields to the values 'Name' to 'Specialization'

97

4.5.19. AieorithmofCheck_ntproç

The function Check_ n.tproc tests if the person identified by the nam.e and first nam.e given in the

update window already exists in Phonefile or not.

get the value ofUpd _ Name _ txt and Upd _ F _ Name _ txt

if thesevalues existconsecutively in Phonefile

then set the value of a string to 'Exists'

if these values do not exist consecutivetyin Phonefile

then set the value of a string to 'Does not exist'

create a notice with a label which value is set to the preceding string and with an 'OK'

button

4.5.20. Algorithmoflnsert ntproc

The function Insert _ n.tproc inserts the values of the nine input ten fields of the update window into

Phonefile, untess the information of the persan identified by the name and first name is already in

Phonefile.

get the value of the nine input ten fields Upd _ Name _ txt to Upd _F _ Name _ txt

ifthevaluesofUpd_Name_txttoUpd_F_Name_txtexistconsecutivetyinPhoneftle

then set the value of a string to 'Exists'

createa notice with a label which value is set to that preceding string and an 'OK'

button

ifthevaluesofUpd_Name_txttoUpd_F_Name_txtdonotexistconsecutivelyinPhonefile

theninsert the values of the nineinput ten fields intothe file Phonefile

4.5.21. Algorithmof M~ mproç

The name and atgorithm of the function Modify_ntproc are meaningful enough. Moreover,the

modification becomes an insertion if the pair (name , first name) does not existinPhonefile.

getthevalueofthenineinputtenfieldsUpd_Name_txttoUpd_F_Name_tn

insert the values of these nine inputten fields into theftle Phonefile

4.5.22. Algorithm of Delete nt_proc

The function Delete _ n.tproc is symmetrical to the function Insert _ n.tproc.

98

get the value of the two input text fields Upd _Name _ txt and Upd _ F _ Name _txt

if the values of Upd _Name _ txt to Upd _ F _Name _txt do not exist consecutively in Phonefile

then set the value of a string to 'Does not exist'

createanoticewithalabelwbich value is set to that preceding string and an 'OK'

button

if the values of Upd _ Name _ txt to Upd _ F _ Name _ txt exist consecutively in Phonefile

thendelete the nine corresponding 1ines inPhonefile

4.5.23. AlgorithmofKill ntproc

The function Kill _ ntproc ~ a confirmation window used to confirm or cancel a request to quit.

the application.

create a notice with a label 'Do you want toquit. ?' a 'Cancel' button and an 'OK' button

if the 'OK' button is selected

then exit. the application

4.6. Coapmsoa ud 1e.11.eraliutioa of tlae at,oritlaas of tlae two version

This section only generalizes those algorithms that deal with grapbical objects, wit.h the aim of

producing toolkit-independentalgorithms to be iostanciated toa Motif oran X.View application.

Thegenericalgorithmspresentedherewillsometimeslooklikean X.View or a Motif one, but there

is often no other way of expressing them.

We shall use three specific termsto write generic algorithms : 'create, 'attacli, and 'refer.

The term 'create' represents the creation of an object or a group of objects. It includes the

management or the realization of these objects when o.eœssaiy. That term thus stands for

xv _ create(), for XmCreate "14(« 0 , for XtCreateManagedWidget(), or for XtCreateWidget()

followedby XtManageChild().

The term 'attach' represents alink between objects. This 1ink can be a parental link, or a functional

link. A parental link exists for ex:ample between a button and the container object that is its parent

and contains it.. A functional link canbe created betweena button or an item, and a menu by means

of a resource or an attribute. A scrollbar can be attached to a window, too.

99

The term 'refer' introduces the callback procedure of an object and possibly gives the value with

which that procedure is called. That value is an argument value for Motif and an X.V_ KEY _DATA

value for XView.

Generic algorithms written with these three 'fu.nctions' will always need to be transformed,

completed or reduced by the programmer in order to be in.stanciated to one of the two toolkits,

according to the comments givenfor each of them.

4.6.1. Themain.fu.nction

The i.nitializationand the creation of the main window (a top1eve1 shell) are perf ormed by Motif in

one functioncall while X.View needs two statements.

The menus and submenus of the main window are created in the Motif program. in a top-down way:

from the menubar to the push buttons of the submenus. The components of these menus conform in

that way to the normal order of creation of widgets : a widget is created , then another one is created

as a child of the first widget, considered as the parent widget

However, a particularity of Motif menu systems bas to be shown. As Keys _ casbtn. gives access to

the submenu Keys (cont.aining Name_pushbthn, F_name_pushbtn. and Special_pushbtn.), one

couldthinkthatKeys_subpaneis a child widget of Keys_casbtn.. In fact, Keys_subpane is a child

widget of Consult_pane as do Keys _ casbtn. and a functional 1ink exists between Keys _ casbtn. and

Keys _ subpane.

Thesameremarkcanbemadeforothercomponents(seefigure4.10.).

X.View reverses the order of creation of those objects. This is due to the fact that submenus are

ref erenced by attributes of the menus. Thus submenus must be created bef ore menus.

Anotherdifferencelies in the fact that Motif places the three top-level buttons of the menu in a

specificmenu component(MenuBar)while XView places them in a general object (Phoneb _panel)

ableto contain.manykin.dsof panel items. (seefigure. 2.7.).

Such considerations lead us to give the following generic aJgorithm of thefunction main:

create the submenu Keys

refer theprocedure Keys with the appropriate value

create the submenu Lists

refertheprocedureAll _ info

refertheprocedureActivities

100

createthemenuConsult menu

attach the submenu Keysto the menu Consult _ menu

attach thesubmenu Llststothemenu C.onsult menu

createthemenu Update_menu

ref erthe procedure Update __proc with the appropriate value

createthebuttonConsutt btn

attach the menu Consu1t menu to the button Consult btn - -
createthebuttonUpdate_ btn

attach the menu Update _menu tothebuttonUpdate _ btn

createthebuttonQuit_ btn

referthe procedure Quit_proc with the appropriate value

createthe board Main

attach the button Consutt btn to the board Main

attach the button Update _ btnto the board Main

attach the button Quit_ btn to the board Main

create thewindow Main

attach the board Main to the window Main

However, that atgorithm is tight1y bound to the XView atgorithm because of the order of creation of

theobjects.

In some cases, two specific atgorithms (for XView and for Motif) of the same procedure diff er

too much to allow the definition of a generic a1gorithm. Such a situation occurs in our application

with the main function, where the main window is created. The menus and submenus attached to

that window arecreated in diff erent ways. as exptained above.

Insuch a case, in.stead of givingtheprogrammertheorderof creationof the objects, we give him. a

representation of the final set of widgets with their retationships, as in figure 4.20 .. From that

figure. be then decides which objects and which functions he will use.

101

Const.üt
:m.éfl.'U.

Nœe
optio:a

F_lWll.é

optio:a

Allillto
optior,.

'
~---Allillfo m

Mi'Yities
optio:a

' ' ' ' ·---•FJWleJroe • Acti..JYOÇ

SptcW
optioa

Moiify
optioit.

Déléte
optio11. .
~--Deléte p

figure 4. 20. generic represen.tation of the main window

The use of such generic representations can be generali.zed to all algorithms, evenif a simplegeneric

algorithm wouldbe sufficient.

4.6.2. The Keyssubmenu

As XView allows no data to be directly associated with a notify procedure, another mechanism must

be used to transmit a value to a procedure : the XV_ KEY_ DATA attribute. However, this attribute

can not be used with the menu items because the latter are themselves defined lik.e attributes of the

menu. So, whereas Motif calls a general procedure (Keys_cbproc) with an argument value

indicating the type of search key, XView must go through specific procedures (Name_proc,

Firstname _proc and Specializ _proc)to transmit that lœyvalue.

Thus the diff erence between the two implemen.tations of the submenu Keys is the set of three

intermediaryspecificproceduresneededbyXView, but the procedures Keys_cbproc for Motif and

Keys _proc for XView themselves are vety similar. The former creates a bulletin board in a shell and

the latter creates the equivalenr objects : a panel in a frame. The bulletin board and the panel both

accept buttons and textfields. For the Motif toolkit, the labels piaced before the input text fields and

these text fields are diferent widf;ets. But for XView, such a label is only an attribute of a textfield.

102

The generic a1gorith.m f orthe creation of the dialog window wil1 be:

create a window

create a supportf or other abjects

create aSearch button

ref erthe Search procedure with the appropriate value

create anErase button

ref ertbe Eraseprocedure with the appropriatevalue

createaQuitbutton

ref erthe Quit procedure with the appropriatevalue

createaComplete/Cutinformationchoice

refertheChoiceprocedurewiththeappropriatevalue

create aninput textfie1d

if the searchkeyis aname

then set the label of the text field to the value 'Na.me'

if the search key is afirstname

tben set the label of the text field to the value 'Firstname'

if the search keyis a specialization

thenset the label of the textfield to the value 'Specialization'

4. 6. 3. The Search procedure

The procedures Search _ cbproc and Search _ ntproc diff ers inthree points :

1. The procedure Search _ ntproc needs to getthe value of the attribute XV_ KEY_ DATA

of the button that cal1ed this procedure, while the procedure Search _ cbproc

automatical1y receives it as argument.

2. If no desired data bas been found in Phonefüe, Search _ cbproc creates a message box,

whileSearch _ ntproc createsanotice.

3. If some datahas beenfound, ashell is destroyed in the Motif version, and a frame is

destroyed in the XView version.

4.6.4. The Keys info_ttocprocedure

Once again, we find in the two versions of the sa.me procedure some similarities. On one side, a

bulletin board is created in a shell and on the other side. a panel is created in aframe. A f ew buttons

are created and declare their callback or notify procedures. The neccesary values passed to these

103

procedures are either argument values (Motif) or values for the attribute XV_ KEY_ DATA

(XView). The diff erence between the text fields of the two toolkits still appears in these procedures.

The generic algorithm is :

ct'e'ate a window

create a support.for other objects

create a Nextbutton

ref erthe Next procedure with the appropriate value

create a Previous button

ref erthe Previous procedure with the appropriate value

cre.atea Quitbutton

ref er the Quit procedure. with the appropriate value

if Complete _ inf ois true

thencreatetheninetextfieldswiththecorrespondinglabels

set the value of the text fields to the value of the table lnfo created in the

procedure.Search

else create the fourtext fields with the corresponding labels

set the value of the text fields to the value of the table lnf o created in the

procedure.Search

4.6.5. The Moveand Eraseprocedures

The only diff erence between the two versions of the procedure.s Move and Erase is the use of the

attributeXV KEY DATA. - -

4.6.6. TheQwtprocedure

The diff erence betwe.en Quit_ cbproc and Quit_ ntproc is the creation of a question dialog box in the

former and the creation of a notice in the latter, in addition to the use of the attribute

XV KEY DATA. - -
More.over, XView does not. need to call another function to kill a window when this request bas

been confirm.ed bythe user.

4.6.7. TheKillprocedure

The sam.e remarks can be made for the procedure. Kill than for the procedure. Quit, except for the

fact that no attribute XV_ KEY_ DATA is used because that procedure only deals with the main

window Phonebook.

104

4.6.8. The Allinfo__proc and Activities__procprocedut·es

The two procedures Allinfo _proc and the two procedures Activities _proc_differ in one point : the

creationofamessagedialog box or of a notice.

4.6.9. The Special_info_orocprocedure

The procedures Special _inf o __proc presents the typical diff et'ences : a bulletin board is created as

child widget of a sheU on one side, a panel is created as a child object of a frame on the other sicle.

The use of the attribute XV_ KEY_ DATA is ~till to observe. A particuJarity mu~t be mentioned :

Motif off ers ascrolled text widget but the equivalent XView abject does not exi~t. Itmust be createcl

by attaching ascrollbarto atextobject. Keeping thatfactinmind, thegeneric algorithmis:

create a window

create a support for other abjects

createaQuitbuuon

ref erthe Quit procedure with the appropriate value

creat.eascrolledtext

set the value of the text to the value of the table Activities created in the procedure

Activities _proc

4.6.10. The Updatemenu

The menu Update calls for the same remarks than the submenu Keys. Because the XView menu

items 'lnsert' 'Modify' and 'Delete' declare notify procedures that can not directly receive

arguments, three intermediary specific routines are used to acces the procedure Update with the

correct value of argument.. The generic algorithm of the procedure Update is:

create a window

create a supportfor other objects

create a Check button

referthe Check procedure with the appropriate value

create anErase button

ref erthe Erase procedure with the appropriate value

createaQuitbutton

ref erthe Quit procedure with the appropriate value

if the value received as argument= 1

then create an Insert button

105

ref er the Insert procedure

if the value received as argument= 2

then create a Modify button

refer the Modify proceclure

if the value received as argument= 3

then create aDeletebutton

referthe Deleteprocedure

createthe ninetextfieldswith thecorresponclinglahels

4. 6.11. The Check, Insert, Modify and Delete procedures

The two versions of the proceclures Check, Insett, Modify and Delete only cliff er in one point : one

creates amessage clialog box and the other creates a notice.

106

C/NtplP..r S
Comparison of XViev and Motif

The fifth chapter goes on one step beyond the mere presentation of the two toolk:its. lts aim

is to draw a parallel between most of their elements. However, even if a widget is said to be the

equivalent of a package, they always differ insome way.

The structure of this cbapter is parti.ally based on the seven groups we presented in section 4. 1. :

container components, t.ext capabilities, graphies capabilities, menus, scrolling capabilities,

commands and choices, and informations. We also discuss miscellaneous components and

functions.

S. l . Coatai.a.er- com.pone.o.ts

ln a few words, we can say that Motif offers a greater choice of components than XView.

However, this cboice can sometimes confuse the programmer. The two main components are the

XView frame and panel and the MotifTopLevelShell and BulletinBoard.

W ith the expression 'container component' , we mean the first or second object created at the

creation of a window, in orderto enclose and manage children objects.

The first object created to obtai.n. a window is a frame (XView) or a widget of the cat.egory Shell

(Motif).

For the user, a frame is a visible object that can be manipulated, whereas a shell is an invisible

widget. Prom the programmer point of view, a frame is also diff erent from a shelL XView only bas

one type of frame while Motif off ers ApplicationShell and TopLevelSbell. ApplicationShell is

creat.ed by the initialization function and TopLevelShell is used for subsequent toplevel sbells.

The classes XmMenuShell and XmDialogShell should be related to other XView packages.

Thus an XView programmer bas no cboice whereas a programmer new to Motif could besitate

between a1l types of sbells, including those that are notmentioned here.

107

Frames and shells themselves often need another container component that will typically accept.

command objects such as buttons, choices, ...

The XView packuge Panel defines a container (panel) and ail the panel items. These panel items

mustbeexplicitlypositionedinthepanel.

Motif proposes many widgets. The principal ones are list.ed below :

1. XmFrame accepts a single child

2. XmMainWindow can be used as the primary application's window. lt is provided with

optional elements : a menu bar, a command window, a work region and scrollbars.

3. XmPanedWindow is used for vertically tiled children

4. XmBulletinBoard does not force positioning of children

5. XmRowColumn specify the layout of its children in a vertically or horizontally fashion. lt

is also the basis of menu systems.

6. XmForm is an interesting widget because of its definition of spatial relationships

As far as the user is concerned, two Motif widgets present interesting properties : the

PanedWindow and Form widgets. The different panes of a PanedWindow can be resized, as

explained in section3. 1. 3. 8. When resized, a Form maintains the special relationships between its

children(seesection3.1.4.3.).

No XView objecthas such possibilities.

For the programmer, the use of a panel isquite easy: it can only be a child of a frame. When the

programmer has to deal with Motif widgets, some problems may arise. Some combinations of

widgets are not possible or do not produce the expected eff ect.

S.2. Tencapabilities

Motif and XView are quite similar as far as text capabilities are concerned : they both offer a

multilineandasingle-linetextcomponents.

Few XView or Motif components are directly concerned with texts. XView defines the package

Textsw that corresponds to the XmText widget. They are both provided with basic editing

capabilities and a vertical scrollbar. The XmText widget bas a supplementary horizontal scrollbar

whiletheXViewtext.subwindow offers a few other menu options. Both XmText and Textsw are

concerned withmultiline fields.

Single-line textfields are handled by the Panel_ text panel item of XView and by the XmTextField

widget.

108

A particularityfor the programmer: the XView panel item is easier to use because it incorporates a

label attribute while the Motif equivalentis a label widgetdistinctfrom the XmTextField widget.

Moreover, the user will appreciate the scrolling buttons that appear at each end of the XView text.

field (panel item) when the input text. is too long for that object.

5. 3. Graphies capabilities

The XmDr-awingArea widget seems to be the only one concerned with the display of gr-aphical

output. The package that corresponds toit is Canva'>.

SA. M.e.11.us

XView provides an easy-to-use menu package whereas Motif menu systems are quite complicated.

However,exceptfortheMotifoptionmenu,theirpossibilit.iesarenotreallydifferent.

" ln order to allow the creation of menus, Motif defines two classes of widgets (XmMenuShell and

XmRowColumn) and many convenience functions. The programmer should be able to use these

two basicwidgets or the conveniencefunctionsto create menu systems.

The XView programmer necessarily bas to considerthe Menu package.

As explained in section 4 .5. 1. , programmers will immediately see the main diff erence between the

XView and Motif ways of creating menus: the order of creation of the elements of the menu is not

thesame.

Another diff erence lies in the fact that menu items are declared in XView as attributes of the menu

pane while Motif declares them as separate widgets. The consequence of this is that the XView

code is more compact thanits Motif counterprut. However, Motif allows the callback procedure of a

menu item to be called with a defined value, which is impossible with XView.

From a user point. of view, both toolkits off er pop-up, pulldown and pullright menus. ln addition to

them, Motif also bas an option menu while XView proposes exclusive and non-exclusive choices in

menus. XView also allows the use of pushpins to fix menu panes on the screen, and to dismiss

them when they are not used any more.

lt is not clear whether Motif also off ers exclusive and non-exclusive choices in menus.

S.S. Suolliqcapabilities

lt must. be noted about scrolling capabilities that Mot.if off ers more built-in components provided

with scrollbars than XView.

109

XView providesthe Scrollbarpackage. Thatobjectisindependentandmust be attached to canvases

or text subwindows. lt can be used to sptit them in two or more work regions.

The scrollable panel package is a panel wit.h a scrollbar already attached to it. Such a panel can

accept.more items then itcould do ot.herwise.

The XmScrollBar widget is the Motif equivalent of the XView scrollbar. However, a difference

existin the waythey canbe used. Bot.h components lookt.he same except.for the fact that the slider

of the XView scrollbar is directly surrounded by two buttons attached toit and containing an arrow.

Pressing a defined mouse button while the pointer is over one of these buttons makes the slider and

the two buttons move until the mouse button is released. This way of moving the slider is not

possible with XmScrollBar. Moreover, during this movement, the pointer stays on the arrow

button that is to say near the slider and the other button. This allows a quick change of direction.

The XmScrolledWindow is used to frame other components. It is provided with scrollbars in order

to scroll the visible area. The XmSelectionBox and XmFileSelectionBox widgets are other built-in

applications of scrolling facilities.

The XmList. widget can be made scrollable when necessruy. The XView counterpart is implemented

by the Panel_listpanel item.

5.6. Com..11uu1.ds ud choices

Commands and choices are not easy to compare because of the variety of objects and the fact that all

components do notnecessarilyexistin both toolkits.

What we mean by 'commands and choices' is illustrated by the following Motif widgets :

XmCommand

XmPushButton

XmArrowButton

XmScale

XmToggleButton

Except.the Tty subwindow bound to receive commands like a standard terminal, XView provides

no equivalentf or XmCommand.

The XmPushB utton plays the same role as the panel_ button panel item.

The XmScale widget can be used in input/output or output only mode. The first case is handled in

XView by a slider while a gauge acts as an XmScale in output only mode. (As output. component,

the gauge is considered as an information component).

The XmToggleButton widgetisrepresented inXView byexclusive and non-exclusive choices.

The equivalent of XmArrowButton is an abbreviat.ed button.

110

XView offers afew objects thatdonotexi~tin Motif (see section 2. 7.):

Numeric fields can be provided with increment/decrement buttons. Theses buttons are used to

quic.klyincrement ordecrementthe numericinputfield unti1 thedesired value be reached.

Check boxes are only another presentation f orthe nonexclusive choices.

As it can be seen, both toolkits offer objects that do not exist. in the other one but XView has more

ofthem.

5. 1. Woc.m.mtio.ns

XView provide information t:o the user by means of two panel items (gauges and re.ad-only

messages) and notices (see figure 2.13.).

The Motif equivalent of the gauge is the XmScale widget discussed in section 5. 6.

The XmMessageBox widget and its associated Dialogs (sections 3.1.4.4. and 3.1.4.8.) provide

the same functionalities as the XView notice. However, they are more adapt.ed to particular

situations.

5. 8. Miscellu.eous co.mpon.e.ats

Or.ber Motif widgets are presented in chapter 3 and have no direct counterpart.

The shell classes can not be compared in a one-t:o-one way with XView objects.

The XmSeparator widgetis a pretty way of separating widgets but. is not an essential (mandatory)

element in windows.

Sorne XView packages are specific t:o that t:oolkit, too.

TheGenericObjectpackageisequivalentto the Core class. The server, screen, fullscreen, cursor,

font, server image and notifier packages have no equivalent. in terms of Motif widgets classes.

The existence of them (at least the server and notifier packages) is to be related to the fact that.

Mot.if relies on the Xt lntrinsics while XView bas to include such functionalities.

Motif apparently provides no equivalent for the Tty and icon packages of XView.

5. 9. Fu.RCtio.ns

The most important XView and Xt functions related to the creation, manipulation and destruction of

objects and widgets have been presented in order to malœ the reader understand how the toolkits are

used to display graphical components on a screen. C1early, not al functions could be discussed.

Many other functions exist : functions specific to particular packages in the case of XView, Xt.

functions, and Motif conveniencefunctions.

1 1 1

Mainly three diff erences mu~t be brought up when compai-ing the two sets offunctions.

1. The initialîzation of the toolkit and the creation of the main wîndow are perf onned by

Motif in one function ca11 while XVîew needs two statements. As the creation of the main

window alwaysfollowstheinitialization ofthetoolkit, the Xt/Motif solution seeins to be

better.

2. When all objects have been created, both toolkits call a main loop f unction. ln addition to

that, a Motif program. also needs to manage the widgets (possibly by using a unique

functioncall with XtCreateManagedWidget), and to realize them (by realizing the m~ùn

window). The XView toolkitdoes nothave 'manage', unmanage', or 'realize' function.

However, besides the xv _ destroy function, an attribute (xv _show) allows an object to

be displayed or undisplayed.

3. Motif convenience fonctions have no equivalent in XView. With a unique functioncall,

complex graphlcal components built withmany widgets can be created.

5.10. Conclusion.

Although XView and Motif present evident similarities due to their intrinsic nature of X based

toolkit, the readerwillhave understoodthat.t.here are also manydifferences betweenthem.

Programs written with XView or Motif typically consist of a main function creating the main

window of the application and its children directly accessible. Thatfunction ends with the ca11 to the

main loop function. Callback procedures ref erred to by objects created in the main fonction are

defined after the main function. They co11~st either of pure application code (without any use of the

X, Xt, Motif. or XView libraries), or create new windows.

Whereas XView is an attribut.e-value toolkit, Motif off ers more widgets. Moreover, it sometimes

provides many widgets for almost identical uses. For example, many Motif Dialogs correspond to

the XViewnotice.

From a general point of view, Motif seems to privilege the initiative of the programmer by an

enlarged choice of widgets and functions. One consequence can be a more performant resulting

application. However, thatadvantage can onlybe reachedby experienced program.mers.

ln comparison to Motif, XView appears to be more concise and more easy to learn. XView also

implements a more plem,antlook and f eel.

112

Finally, itis not possible to say which toolkit should be preferred. XView must be used to e.asily

migrate Sun View applications to the X world. Motif can be chosen when an Xt based solution is

needed.

113

Conclusion

As conclusion to this thesis, we shall stand back from the work that led to that report.

Before the tt-aineeship tbat was the support for this thesis, we almo!.t knew nothing about

windowing sy5tems and graphical user interfaces. The fir.,t goal was to leam to use such 5)7!.tems

on workstations in an Unix envimnment. Then we began to refresh our knowledge of the C

programming language which is used in XView and Motif.

Withthis prerequisite knowledge, we began to discover and study the Motif language, as

the simultaneous study of the two toolkits was not. to advice.

A perlect comparison would require to almost master X.View and Motif. However,

reaching such a 1evel needs much time. ln [Mik., 90], page 44, Alan Gibbons, an industty

consultant. for AT &T Bell Labs says about. the 1earnîng curve of X programming:

' En!JJl'or pr01,rrmt1metY1ilm1tf;.vexpet:ieJ1c.w ÙJ Unix ,md C. t/Je ,1r-·mt41t> seems fiJ be

11/Jout t/Jœe to sir montôs l'or t/Je /J11St'cs, n.nd eFw lollfp.Y for letll1ll'og 11/Jout A,fotit;

Open. look. orotôertoolJ:ilY '.

These considerations should explain some incomplete aspects in the presentation or

comparison of the two toolkits.

lnspite ofthat, wereached manygoals.

W e presented a synthesis about windowing systems and a description of the t.wo

t.oolkits. ln the introduction, we said that XView and Motif are competing at. t.wo levels : the

programming approach and the look and feeL As foreseen, we especially considered the first

aspect. We also discussed at times the user point of view.

114

An important part.of this thesis is devoted to a generic language describing the creation of

user interfaces in a toolkit-independent way. A few concepts have been introduced and we showed

that some difficulties in describing an interface in that way can be solved by using figures.

In the last chapter, we presented a comparison of XView objects and Motif widgets that is

essentiallybawl on the effective applications that we wrote and run.

1 1 S

Bibliography

[Hal 87] Hal L. Stern, Comparison of \Vindow Systems, ElYTE , Novembft'

1987, pp 2.65-2.n.

[Hay 89] Frank Hayes and Nick Baran, A Guide to GUis, B rTE, July 1989, pp

250-257.

fHell 90] The Definitive Guides to the X Window System, O'Reilly & A">Sociates,

Inc : Volume seven : Dan Heller, XView Progrnmming Mnnual An

OPEN LCX}K Too/J:it for .XI 1, 1990.

[Hoe 88] ToJ1y Hoeber, Open Look Design Goals, ,._<,w1 Tec./wology Autwnn

1988, pp 63-75.

[Hoe 91] TonyHoeber, FacetofacewithOpenLook, BYTE December 1988, pp

286-296.

IJon 89] Oliver- Jones, Introduction to the X Window System, Prentice-Hall, 1989.

[Ker 78] Brian W. Kernighan, Dennis M. Ritchie : The C Programing h1.11&·uag·e,

Prentice-Hall, 1978.

[Man87] NeWSManual, Sun Microsystems, 1987.

[Mar 88] Ralph R. Swick and Mark S. Acker-man Project Athena MIT, The X

Toolkit: More Bricks for Building User-Interfaces-or- Widgets For Hire,

to be presented atthe winrer 1.9.!i/J llreni.r, Dallas, Texas.

[Mik 90] StevenMikes, ThereiûitiesofX, llni.rW'orldC'onn~tin'l;.r 1990, pp 43-

46.

fNye1 90] The Definit.ive Guides to the X Window System, O'Reilly & A'isocü1.tes,

Inc: Volume one : Adrian Nye, Xlib Programming Manual for r--H·sr011 f l

1990.

fNyel. 90] The Definit.ive Guides to the X \Vindow System, O'Reilly & A'isociates,

Inc : Volume four : Adrian Nye, and Tim O'Reilly, X Toolkit. Intrinsic~'>

Programming Man.ual for r-·H31'on 11, 1990.

IOSFl 90] Open Software Foundation, OSF/Motif Prog·rammer-'s Guide, Revision

L l, 1990.

fOSF2 90] Open Software Foundation, OSF/Motif Programmer's Referenœ,

Revision 1. 1, 1990.

LOSF3 90] Open Software Foundation, OSF/Mot.if Style Guide, Revision L L
1990.

lOSF4 90] Open Software Foundation, OSF/Motif User's Guide, Revision L 1,

1990.

LOve 87] NeWSTechnicn1Overview, Sun Microsystems, 1987.

[Pnp 90] Sun TechnologyPapers, Sun Microsystems, 1990, pp 195-224.

[Post] Postscript Tutorial and Cookbook (lnte.rnal documentation of B IM).

[Rad 88] DavidRadoff, A newlook for Unix, llnù.- U·«ld July 1988 pp 66-70.

lRei 88] The Definitive Guides to the X Window System, O'Reilly & A"isocintes,

Inc: Volume three: Tim O'Reilly, Valerie Quercia, and Linda Lamb, X

Window Sy5tem Uset·'s Guide, 1988.

[Sch 90] Clu-is Schoettle Unix Sy5tem Lahorat.01-ies Ew·ope, Open Look - A

Consi5tent Approac11 to a GUI Architectw·e. EUUON Vol. 10 No. 3

Autwnn 1990, pp 66-70.

LSUN 1 90] OPEN LOOK Graphical Use.r Inte.rfaœ ApplicationStyleGuidelines, Sun

Microsystems Inc and AT &T, Addison Wesley Publishing Company Inc,

1990.

LSUN2 90] OPEN LOOK Graphical User Interface Functioruû Specification, Sun

Microsystems Inc and AT &T, Addison Wesley Publishing Company Inc,

1989.

[Ver 90] Alain Vermeiren, The X Window System and NCD X Termi.nal"i, BIM

NETWORK PRODUGfS & SERVICES, July 1990.

[Vo15 90] The Definitive Guides to the X Window Sy5tem, O'ReiHy & Associates,

Inc: VoJwnefive: XTool.kitintrinsicsRefet·enceMiurnal /or ve/''sto1.111,

1990.

[Whi 90] Open Windows Version 2 White Papers, July 1990, Sun Microsystems,

Inc.

[You 89) Douglas A Young, X Window Systems, Programmi.QB· and Applications

with Xt, Prentice-Hall, 1989.

ANNEXES

A 1. Motif Auplica.tion Code

1 DECLARATIONS
#include <stdio.h>
#include <string.h>
#include <Xll/Intrinsic.h>
#include <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/Form.h>
#include <Xm/CascadeB.h>
#include <Xm/BulletinB.h>
#include <Xm/MessageB.h>
#include <Xm/RowColumn.h>
#include <Xm/DialogS.h>
#include <Xm/TextF.h>
#include <Xm/Text.h>
#include <Xm/PanedW.h>
#include <Xm/ScrollBar.h>
#include <Xm/Label.h>
#include <Xm/List.h>
#include <Xm/ToggleB.h>
#include <Xm/ToggleBG.h>

XtAppContext AppC;
Widget Phonebook,

Keys shell,Keys_txt,

Keys_display_shell,
Keys Name txt, Keys F Name txt, Keys Initials txt,
Keys=Phone txt, Key;_LocatÎon_txt, Keys_Workgroup_txt,
Keys_Service_txt, Keys_Respons_txt,
Keys Special txt,

Special info_shell,

Update_shell,
Upd_Name_txt, Upd_F_Name txt, Upd Initials txt,
Upd_Phone_txt, Upd_Location_txt, Upd Workgroup txt,
Upd_Service_txt,Upd_Respons_txt, Upd=Special_txt;

Arg al[l0);
int ac;

FILE *fopen(),*fpl,*fp2;

char linel [80), line2 [80), line3 [80), line4 [80), lineS [80),
line6[80),line7[80),line8[80),line9[80),line[80);

char name[80),f_name[80),Search_data[80];

char text value[S000];

int nbmax,nelem;

struct Check data_type
{

char name[80);
char f name[80);

} Check=data,Delete data;

1

struct Update_data_type
{
char name[B0];
char f name[B0];
char initials[BO];
char phone[B0];
char location[B0];
char workgroup[B0];
char service[B0];
char respons[B0J;
char special[B0];

-} Insert_data,Modify_data;

char table [200] [9] [80] ;.

void
void
void
void
void
void
int
void
void
void
void
void
void
void
void
void
void
void
int
void
void
void
void
void
void
void
void
void
void

Init();
Keys_cbproc ();
Set_info_cbproc();
Search cbproc();
GetString ();
Adaptl();
Find {);
Settable();
Erase_cbproc{);
Keys_display_info();
Move_cbproc();
Lists_cbproc{);
Allinfo_proc ();
Activities_proc();
Special info_proc
Adapt2();
Update cbproc();
Check_cbproc();
Check();
Insert cbproc();
In sert O;
Modify cbproc();
Modify();
Delete cbproc();
De1ete_proc();
Kill cbproc () ;
Kill-ok cbproc();
Quit_cbproc ();
Quit_ok cbproc();

/**/

2 main(argc,argv)

2

main(argc,argv)
int argc;

{

char *argv[];

Widget Menubar, Cons_casbtn, Consult_pane, Keys_casbtn,
Keys_subpane, Name_pushbtn, F_Name_pushbtn, Special_pushbtn,
Lists_casbtn, Lists_subpane, Allinfo_pushbtn,Acti_pushbtn,
Upd.casbtn, Update pane, Insert pushbtn, Modify pushbtn,
Delete_pushbtn, Quit_casbtn; - -

Phonebook = Xtlnitialize("test","test_class",NULL,0,&argc,argv);

Init{);

/* create a menubar in the main window */

Menubar=XmCreateMenuBar(Phonebook,"Menubar",NULL,O);
XtManageChild(Menubar);

/* create 2 pulldown menu panes attached to the menubar */

Consult_pane=XmCreatePulldownMenu(Menubar,"Consult_pane",NULL,O);
Update pane =XmCreatePulldownMenu(Menubar,"Update pane",NULL,0);
XtManageChild (Consult P.ilne); -
XtManageChild(Update_pane);

/* create 2 cascade buttons : Consult and Update
/* 1 push button : Quit

ac= O;

*/
in the menubar */

XtSetArg(al[ac),XmNsubMenuid,Consult pane); ac++;
Cons_casbtn=XmCreateCascadeButton(Menubar,"Consult",al,ac);
XtManageChild(Cons_casbtn);

ac = O;
XtSetArg(al[ac),XmNsubMenuid,-Update pane); ac++;
Upd_casbtn=XmCreateCascadeButton(Menubar,"Update",al,ac);
XtManageChild(Upd_casbtn);

ac = O;
Quit casbtn=XmCreateCascadeButton(Menubar,"Quit",al,ac);
XtAddCallback(Quit_casbtn,XmNactivateCallback,Kill_cbproc,Phonebook);
XtManageChild(Quit casbtn);

/* create 2 pulldown submenus in Consult_pane */

Keys subpane=XmCreatePulldownMenu(Consult pane,"Keys subpane",NULL,O);
Listi subpane=XmCreatePulldownMenu(Consult pane,"Lists subpane",NULL,0);
XtManageChild(Keys subpane); - -
XtManageChild(Listi_subpane);

/* create 2 cascade buttons in Consult_pane : Keys and Lists */

ac= O;
XtSetArg(al[ac),XmNsubMenuid,Keys_subpane); ac++;
Keys casbtn=XmCreateCascadeButton(Consult pane,"Keys",al,ac);
XtManageChild(Keys_casbtn); -

ac= O;
XtSetArg(al[ac),XmNsubMenuid,Lists subpane); ac++;
Lists casbtn=XmCreateCascadeButton(Consult pane,"Lists",al,ac);
XtManageChild(Lists_casbtn); -

/* create 3 push buttons in Keys_subpane */

ac = O;
Name pushbtn=XmCreatePushButton(Keys subpane,"Name",al,ac);
XtAddCallback (Name_pushbtn, XmNactivateCallback, Keys _cbproc, 1)-;
XtManageChild(Name_pushbtn);

ac= O;
F Name pushbtn=XmCreatePushButton(Keys subpane,"First name",al,ac);
XtAddCallback(F_Name_pushbtn,XmNactivateCallback,Keys_cbproc,2);
XtManageChild (F_Name_pushbtn) ;.

ac= O;
Special pushbtn=XmCreatePushButton(Keys subpane,"Specialization",

al,ac); -
XtAddCallback(Special pushbtn,XmNactivateCallback,Keys cbproc,3);
XtManageChild(Special=pushbtn); -

/* create 2 push buttons in Lists_subpane */

ac= O;
Allinfo pushbtn=XmCreatePushButton(Lists subpane,"All info",al,ac);
XtAddCallback(Allinfo_pushbtn,XmNactivateCallback,Lists_cbproc,l);
XtManageChild (Allinfo_pushbtn);

3

ac= O;
Acti pushbU1=XmCreatePushButton (Lists subpane, "Act-i vities", al, ac) ;
XtAddCallback(Acti_pushbtn,XmNactivateCallback,Lists_cbproc,2);
XtManageChild(Acti_pushbtn);

/* create 3 push buttons in Update_pane : Insert, Modify and Delete */

ac= O;
Insert_pushbtn=XmCreatePushButton(Updat~_pane,"Insert ",al,ac);
XtAddCallback(Insert pushbtn,XmNactivateCallback,Update cbproc,1);
XtManageChild(Insert=pushbtn); -

ac= O;
Modify_pushbtn=XmCreatePushButton (Update_pane, "Modify ", al, ac).;
XtAddCallback(Modify pushbtn,XmNactivateCallback,Update cbpro.c,2);
XtManageChild(Modify=pushbtn); -

ac= O;
Delete pushbtn=XmCreatePushButton(Update pane,"Delete ",al,ac);
XtAddCallback(Delete_pushbtn,XmNactivateCallback,Update_cbproc,3);
XtManageChild(Delete_pushbtn);

/* main loop */

·xtRealizeWidget(Phonebook);
XtMainLoop () ;

} /* end of main*/

void lnit()

void- Ini t ()
{

fpl=fopen("phonefile","r");
if (fpl==NULL)

{
fpl=fopen("phonefile","w");
fclose(fpl);

} ;

/* end of Init */

void Keys_cbproc(w,client_data,call_data)

4

void Keys_cbproc(w,client data,call_data)
Widget w;

{

int client_data;
XmAnyCallbackStruct *call_data;

Widget Keys bûbo, Search btn, Btnl, Btn2,
Clear_btn, Quit __ btn, Label, RowCol;

int keys;

if (client_data==l) keys=l;
if (client data==2) keys=2;
if (client=data==3) keys=3;

/* create a shell in Keys_cbproc */

ac= O;
XtSetArg(al[ac),XmNheight,120); ac++;
XtSetArg(al[ac),XmNwidth, 340); ac++;
Keys shell=XtCreateManagedWidget("Keys shell",

topLevelShellWidgetClass,Phonebook,al,ac);

/* create the form in Keys_cbproc */

Keys_bubo=XtCreateManagedWidget("Keys_form",
xmBulletinBoardWidgetClass,Keys_shell,NULL,0);

/* create the search button in Keys_cbproc */

ac= 0;
XtSetArg(al[ac),XmNlabelStilng,XmStringCreate("Search",

XmSTRING DEFAULT CHARSET)); ac++;
XtSetArg(alÎao-J ,XmNx, 10); ac++;
XtSetArg (al [·ac J , XmNy, 20) ; ac++;
Search_btn=XtCreateManagedWidget("Search_btn",

xmPushButtonWidgetClass,Keys_bubo,al,ac);
XtAddCallback(Search_btn,XmNactivateCallback,Search_cbproc,keys);

/* create the erase button in Keys_cbproc */

ac= 0;
XtSetArg(al[ac),XmNlabelString,XmStringCreate("Erase ",

XmSTRING_DEFAULT_CHARSET)); ac++;
XtSetArg(al[aë],XmNx,70); ac++;
XtSetArg(al [ac) ,XmNy,_20); ac++;
Erase_btn=XtCreateManagedWidget("Erase_btn",

xmPushButtonWidgetClass,Keys_bubo,al,ac);
XtAddCallback (Erase_btn, XmNactivateCallback, Erase_cbproc, 1);

/* create the quit button in Keys_cbproc */

ac = 0;
XtSetArg(al[ac),XmNlabelString,XmStringCreate(" Quit",

XmSTRING DEFAULT CHARSET)); ac++;
XtSetArg(al[ac),XmNx,130); ac++;
XtSetArg(al[ac),XmNy,20); ac++;
Quit_btn=XtCreateManagedWidget("Quit_btn",

xmP.ushButtonWidgetClass, Keys bubo, al, ac);
XtAddCallback(Quit_btn,XmNactivateCallback,Quit_cbproc,Keys_shell);

/* create the complete/cut info choice in Keys_cbproc */

/* XtSetArg(al[0J,XmNx,190);
XtSetArg (an 1), XmNy, 20);
XtSetArg(a1[2J,XmNradioAlwaysOne,True);
XtSetArg(al[3),XmNradioBehavior,True);
RowCol=XtCreateManagedWidget("RowCol",xmRowColumnWidgetClass,

Keys_bubo,al,4);
ac= 0;
XtSetArg(al[acJ,XmNx,190); ac++;
XtSetArg(al[ac),XmNy,30); ac++;
XtSetArg(al[ac),XmNset,True); ac++;
Btnl=XtCreateManagedWidget("Cut info ",

xmToggleButtonWidgetClass,RowCol,al,ac);
ac= 0;
XtSetArg(al[ac),XmNx,190); ac++;
XtSetArg(al[ac),XmNy,40); ac++;
XtSetArg(al[ac),XmNset,False); ac++;
Btn2=XtCreateManagedWidget("Complete info",

xmToggleButtonWidgetClass,RowCol,al,ac); */

/* create the input label in Keys_cbproc */

5

ac= O;
XtSetArg(al[ac],XmNx,10); ac++; /* common to */
XtSetArg(al[ac],XmNy,81); ac++;/* all labels*/
if (keys==l)

(

}

XtSetArg(al[ac],XmNlabelString,
XmStr ingCreate ("Name", XmSTRING _DE FAULT CHARSET)) ;

ac++;

if (keys==2)
{

}

XtSetArg(al[ac],XmNlabelString,
XmStringCreate("First Name",XmSTRING_DEFAULT_CHARSET));

ac++;

if (keys==3)
{

XtSetArg(al[ac],XmNlabelString,
XmStringCreate("Specialization",

XmSTRING_DEFAULT_CHARSET));
ac++;

l
Label=XtCreateManagedWidget("Label",xmLabelWidgetClass,Keys_bubo,al,ac);

/* create the input text field in Keys_cbproc */

ac= ·o;
XtSetArg(al[ac],XmNx,125); ac++;
XtSetArg(al[ac],XmNy,75); ac++;
XtSetArg(al[ac],XmNcolumns,30); ac++;
XtSetArg(al[ac],XmNshadowThickness,1); ac++;
XtSetArg(al[ac],XmNmaxLength,80); ac++;
XtSetArg (al [ac], XmNeditMode, XmSINGLE L·INE EDIT); ac++;
Keys_txt=XtCreateManagedWidget("Keys=txt 11

-;

xmTextWidgetClass,Keys_bubo,al,ac);

} /* end of Keys_cbproc */

void Set_info_cbproc(w,client_data,call_data)

void Set info cbproc(w,client data,call data)
Widget w; - - -
int client_ data;
XmAnyCallbackStruct *call_data;

{
} /* end of Set info_cbproc */

v.oid Search_cbproc(w,client_data,call_data)

6

void Search_cbproc(w,client_data,call_data)
Widget w;

{

int client data;
XmAnyCallbackStruct *call_data;

Widget Check_msg;
int t, f;
XmString strl,str2;

GetString(Search_data,Keys_txt);

fpl=fopen("phonefile","r");
i=O;
while(fgets(linel,BO,fpl) !=NULL)

{
fgets(line2,BO,fpl);
fgets(line3,80,fpl);
fgets(line4,BO,fpl);
fgets(line5,BO,fpl);
fgets(line6,~0,fpl);
fgets(line7,BO,fpl)·;
fgets(lineB,80,fpl);
fgets(line9,BO,fpl);
if (((client_data==l)&&(strcmp(linel,Search_data)==O))

1·r1(client data==2)&&(strcmp(line2,Search data)==O))
rr1 (client=data==3) && ((f=Find (1ine9, Search_data)) ==l)))

Settable(i,O,linel);
Settable(i,l,~ine2);
Settable(i,2,line3);
Settableli,3,line4);
Settable(i,4,line5);
Settable(i,5,line6);
Settable(i,6,line7);
Settable(i,-7,lineB);
Settable(i,B,line9);
i++;

} ;
} ;

fclose(fpl);

nbmax=i;
if (nbmax==O)

{

ac = O;
strl=XmStringCreate("Does not exist",XmSTRING DEFAULT CHARSET);
XtSetArg(al[ac],XmNdialogType,XmDIALOG_MESSAGE); ac++;
XtSetArg(al[ac],XmNmessageString,strl); ac++;

s·tr2=XmStringCreate ("Continue", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[ac],XmNokLabelString,str2); ac++;

XtSetArg(al[ac),XmNdialogStyle,XmDIALOG_APPLICATION_MODAL);
ac++;

Check_msg=XmCreateMessageDialog(Phonebook,"Check_msg",al,ac);
XtUnmanageChild(XmMessageBoxGetChild(Check_msg,

XmDIALOG_HELP_BUTTON));
XtUnmanageChild(XmMessageBoxGetChild(Check_msg,

XmDIALOG_CANCEL_BUTTON))·;
XtManageChild(Check_msg);

} ;

if (nbmax>200)
nbmax=200;

if (nbmax>O)
{
XtUnmanageChild(Keys_shell);
nelem=O;
Keys_display_info();

}

/ * end o·f Search _ cbproc * /

7

void GetString(ptr,w)

void GetString(ptr,w)
char *ptr;

{
Widget w;

char *templ,*temp2;
inti;

temp2 = ptr;
templ = XmTextGetString(w);
for (i=l;i<=80;i++)

*ptr++ = *templ++;
Adaptl (temp2) ;

} /* end of GetString */

void Adapt1(data_pointer)

void Adaptl(data_pointer)
char *data_pointer;

{

inti;

i=l;
while ((*data pointer!='\0')

&& (*data=po±·nter ! '\n')
&& (i<=79))

data_pointer++;
i++;

*data_pointer++='\n';
*data_pointer='\0';

). /* end of Adaptl */

2 int Find(str,substr)

8

int Find(str,substr)
char *str;

{
char *substr;

int found;

if (*str==*substr)
if (*str=='\0')

found=l;

}

else {
str++;
substr++·;
found=Find(str,substr);

else if (*str=='\0')
found=O;

else {
str++;
found=Find(str,substr);

} ;

return (found);

} /* end of Find */

3 void Settable(i,j,line)

void Settable(i,j,line)
inti;

{

int j;
char *line;

int k;

k=O;
while (*line!='\0')

if (*line!='\n')
table[i] [j] [k++] = *(line++);
else line++;

table[i] [j] [k++]='\0';
pr.intf("%s\n",table[i] [j]);

} /* end of Settable */

4 void Erase_cbproc(w,client_data,call_data)

void Erase cbproc(w,client data,call data)
Widget w; - - -

{

int client_data;
XmAnyCallbackStruct *call_data;

if ~client_data==l)
{

XmTextSetString(Keys_txt,"");
) i

if (client_data==2)
{

XmTextSetStringjUpd Name txt,"");
XmTextSetString(Upd=F_Name_txt,"");
XmTextSetString(Upd Initials txt,"");
XmTextSetSt-ring (Upd-Phone txt, "");
XmTextSetString(Upd-Location txt,"");
XmTextSetString (Upd-Workgroup txt, '"');
XmTextSetString(Upd-Service txt,"");
XmTextSetString(Upd=Respons=txt,"");
XmTextSetString(Upd_Special_txt,"");

} ;

/* end of Erase_cbproc */

5 void Keys_display_info()

void Keys_display_info()
{

Widget .Keys info bubo,Next btn,Previous btn,Quit btn,
Labell,Labe12,Label3,Label4,Label5,Label6-;-Label7,Label8,Label9;

/* create a shell in Keys_display_inio */

9

10

ac= 0;
XtSetArg(al[ac],XmNheight,470); ac++;
XtSetArg(al[ac],XmNwidth,650); ac++;
Keys display shell=XtCreateManagedWidget("Keys display shell",

topLevelShellWidgetClass,Phonebook,al,ac); - -

/* create the bulletin board in Keys_display_info */

Keys info bubo=XtCreateManagedWidget("Keys info bubo",
xmBulletinBoardWidgetClass,Keys_display_shell,NULL,O);

/* create the Next button in Keys_display_info */

ac= O;
XtSetArg(al[ac],XmN1abelString,XmStringCreate("Next",

XmSTRING_DEFAULT_CHARSET)); ac++;
XtSetArg(al [ac] ,XmNx, Iü); ac++;
XtSetArg(al[ac],XmNy,20); ac++-;
Next btn=XtCreateManagedWidget("Next btn",

xmPushButtonWidgetClass, Keys_info=bubo, a-1, ac);
XtAddCallback(Next_btn,XmNactivateCallback,Move_cbproc,l);

/* create the Previous button in Keys_display_info */

ac= O;
XtSetArg(al[ac],XmNlabelString,XmStringCreate("Previous",

XmSTRING_DEFAULT_CHARSET)); ac++;
XtSetArg(al[ac],XmNx,60); ac++;
XtSetArg(al[ac],XmNy,20); ac++;
Previous_btn=XtCreateManagedWidget("Previous_btn",

xmPushBut tonWidgetCl·ass, Keys _info _bubo, al, ac) ;
XtAddCallback(Previous_btn,XmNactivateCallback,Move cbproc,2);

/* create the quit button in Keys_display_info */

ac= 0;
XtSetArg(al[ac],XmNlabelString,XmStringCreate(" Quit",

XmSTRING_DEFAULT_CHARSET)); ac++;
XtSetArg(al[ac],XmNx,155); ac++;
XtSetArg(alfac],XmNy,20); ac++;
Quit_btn=XtCreateManagedWidget("Quit_btn",

xmPushButtonWidgetClass,Keys_info_bubo,al,ac);
XtAddCallback (Qu-it btn, XmNactivatéCallback, Quit cbproc,

Keys display - she 11) ; -
/* create the name label in Keys_display_info */

ac= O;
XtSetArg(al[ac],XmNx,10); ac++; /* common to all labels*/
XtSetArg(al[ac],XmNy,76); ac++;

XtSetArg(al[ac],XmNlabelString,
XmStringCreate("Name",XmSTRING DEFAULT_CHARSET)); ac++;

Labell=XtCreateManagedWidget("Labell",xmLabelWidgetClass,
Keys info bubo,al,ac);

/* create the first .. name label in Keys_display_info·· * /

ac= O;
XtSetArg(al[ac],XmNx,10); ac++; /* common to all labels*/
XtSet"Arg (al [ac] , XmNy, 116) ; ac++;

XtSetArg(al[ac],XmNlabelString,
XmStringCreate("First Name",XmSTRING_DEFAULT CHARSET));

ac++;
Label2=XtCreateManagedWidget("Label2",xmLabelWidgetClass,

Keys info bubo,al,ac);
/* create the initials label in Keys display info */

ac= O;
XtSetArg(al[ac),XmNx,10); ac++; /* common to all labels*/
XtSetArg(al [ac] ,.XmNy, 156); ac++;

XtSetArg(al~ac],XmNlabelString,
XmStringCreate("Initials",XmSTRING_DEFAULT CHARSET));

ac++;
Labe1-3=XtCreateManagedWidget ("Label3", xmLabelWidgetClass,

Keys info bubo,al,ac);
/* create the phone label in Keys_display_info */

ac= O;
XtSetArg(al[ac),XmNx,10); ac++;
XtSetArg(al[ac],XmNy,196); ac++;

XtSetArg(al[ac),XmNlabelString,
XmStringCreate("Phone number",

XmSTRING_DEFAULT_CHARSET)); ac++;
Label4=XtCreateManagedWidget("Label4",xmLabelWidgetClass,

Keys_i·nfo_bubo, al, ac);

/* create the location label in Keys_display_info */

ac= O;
XtSetArg(al[ac),XmNx,10); ac++;
XtSetArg(al[ac),XmNy,236);- ac++;

XtSetArg(al[ac),XmNlabelString,
XmStringCreate("Location",XmSTRING_DEFAULT_CHARSET));

ac++;
Label5=XtCreateManagedWidget("Label5",xmLabelWidgetClass,

Keys_info_bubo,al,ac);

/* create the workgroup label in Keys_display_info */

ac= O;
·XtSetArg (al [ac J , XmNx, 10) ; ac++;
XtSetArg(al[ac),XmNy,276); ac++;

XtSetArg (al [ac), XmNl·abelString,
XmStr ingCreate ("Workgroup", XmSTRING _DEFAULT _ CHARS ET)) ;

ac++;
Label6=XtCreateManagedWidget("Label6",xmLabelWidgetClass,

Keys_info_bubo,al,ac);

/* create the service label in Keys display_info */

ac= O;
XtSetArg(al[ac),XmNx,10); ac++;
XtSetArg(al[ac),XmNy,316); ac++;

XtSetArg(al[ac),XmNlabelString,
XmStringCreate("Service",XmSTRING_DEFAULT CHARSET));

ac++;
Label7=XtCreateManagedWidget("Label7",xmLabelWidgetClass,

Keys_info~bubo,al,ac);

/* create the responsibilities label in Keys_display_info */

ac= O;
XtSetArg(al[ac),XmNx,10); ac++;
XtSetArg(al~ac),XmNy,356); ac++;

XtSetArg(al[ac),XmNlabelString,
XmStringCreate("Responsibilities",XmSTRING DEFAULT CHARSET)); ac++;

Label8=XtCreateManagedWidget("Label8",xmLabelWidg~tClass,
Keys_info_bubo, al,·ac);

/* create the specialization label in Keys_display_info */

11

12

ac= O;
XtSetArg(al[ac),XmNx,10); ac++;
XtSetArg(al[ac),XmNy,396); ac++;

XtSetArg(al[ac),XmNlabelString,
XmStringCreate("Specialization",

XmSTRING DEFAULT CHARSET)); ac++;
Label9=XtCreateManagedWidget("Label9",xmLabelWidgetCl-ass,

Keys_info_bubo,al,ac);

/* create the name input text field in Keys_display_info */

ac= O;
XtSetArg(al[acJ,XmNx,125); ac++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThickness,l); ac++;
-XtSetArg(al[ac),XmNeditable,False); ac++;

XtSet"Arg (al [ac), XmNy, 70)-; ac++;
Keys_Name_txt=XtCreateManagedWidget("Keys_Name_txt",

xmTextWidgetClass,Keys_info_bubo,al,ac);

/* create the first name input text field in Keys_display_info */

ac= O;
XtSetArg(al[ac),XmNx,125); ac++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThickness,1); ac++;
XtSet-Arg(al[ac),XmNeditable,False); ac++;

XtSetArg(al[ac),XmNy,110); ac++;
Keys F Name txt=XtCreateManagedWidget("Keys F Name txt",

xmTextWidgetClass,Keys_info_bubo,al,ac);- - -

/* create the initials input text field in Keys_display_info */

ac= O;
XtSetArg(al[ac),XmNx,125); ac++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThickness,1); ac++;
XtSetArg(al[ac),XmNeditable,False); ac++;

XtSetArg(al[ac),XmNy,150); ac++;
Keys Initials txt=XtCreateManagedWidget("Keys Initials txt",

xmTextWidgetClass,Keys_info bubo,al,ac); - -

/* create the phone input text field in Keys_display_info */

ac= O;
XtSetArg(al[ac),XmNx,125); ac++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac],XmNshadowThickness,1); ac++;
XtSetArg(al[acJ,XmNeditable,False); ac++;

XtSetArg(al[ac),XmNy,190); ac++;
Keys Phone txt=XtCreateManagedWidget("Keys Phone txt",

xmTextWidgetClass,Keys_-info_bubo,al,ac); -

/* create the location input text field in Keys_display_info */

ac= O;
XtSetArg(al[ac),XmNx,125); ac++;
XtSetArg(-al[ac],XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThickness,1); ac++;
XtSetArg(al[ac),XmNeditable,False); ac++;

XtSetArg(al[ac),XmNy,230); ac++;
Keys Location txt=XtCreateManagedWidget("Keys Location txt",

xmTextWidgetClass,Keys info_bubo,al,ac); - -

/* create the workgroup input text field in Keys display_info */

ac= 0;
XtSetArg(al[ac],XmNx,125); ac++;
XtSetArg(al[ac],XmNcolumns,80); ac++;
XtSetArg(al[ac],XmNshadowThickness,1); ac++;
XtSetArg(al[ac],XmNeditable,False); ac++;

XtSetArg(al[ac],XmNy,270); ac++;
Keys Workgroup txt=XtCreateManagedWidget("Keys Workgroup txt",

xmTextWidgetClass,Keys info_bubo,al,ac); - -

/* create the service input text field in Keys_display_info */

ac= 0;
XtSetArg(al[ac],XmNx,125); ac++;
XtSetArg (anac], XmNcolumns, 80); ac++;
XtSetArg(al[ac],XmNshadowThickness,1); ac++;
XtSetArg(al[ac],XmNeditable,False); ac++;

XtSetArg(al[ac],XmNy,310); ac++;
Keys_Service_txt=XtCreatèManagedWidget("Keys_Service_txt",

xmTextWidgetClass,Keys_info_bubo,al,ac);

/* create the responsibilities input text field in Keys_display_info */

ac= 0;
XtSetArg{al[ac],XmNx,125); ac++;
XtSetArg(al [ac].,XmNcolumns, 80); ac++;
XtSetArg(al[ac],XmNshadowThickness,1); ac++;
XtSetArg(al[ac],XmNeditable,False); ac++;

XtSetArg (al [ac], XmNy, 350)·; ac++;
Keys Respons txt=XtCreateManagedWidget("Keys Respons txt",

xmTextWidgetClass,Keys info_bubo,al,ac); - -

/* create the specialization input text Îield in Keys_display_info */

ac= 0;
XtSetArg(al[ac],XmNx,125); ac++;
XtSetArg(al[ac],XmNcolumns,80); ac++;
XtSetArg(al[ac],XmNshadowThickness,1); ac++;
XtSetArg(al[ac],XmNeditable,False); ac++;
XtSetArg(al[ac],XmNy,390); ac.++;
Keys Special txt=XtCreateManagedWidget("Keys Specia txt",

xmTextWidgetClass,Keys info_bubo,al,ac); -

/* set the value of the strings*/

XmTextSetString(Keys_Name_txt,table[0] [0]);
XmTextSetString(Keys F Name txt,table[0] [l]);
XmTextSetString(Keys=Initials_txt,table[O] [2]);
XmTextSetString(Keys Phone txt,table[0] [3]);
XmTextSetString(Keys=Location_txt,table[O] [4]);
XmTextSetString(Keys_Workgroup_txt,table[0] [5]);
XmTextSetString(Keys_Service_txt,table[0] [6]);
XmTextSetString(Keys Respons txt,table[0] [7]);
XmTextSetString(Keys=Special-txt,table[O] [8]);

} /* end of Keys_display_info */

13

6 void Move_cbproc(w,client_data,call_data)

void Move cbproc(w,client data,cal data)
Widget w; -

{

int client_data;
XmAnyCallbackStruct *call_data;

int changed;

changed=O;
if ((nelem<nbmax-1) && (client_data==l})

nelem++;
changed=l;

} ;
if ((nelem>O)&&(client_data==2))

{

nelem--;
changed=l;

} ;
if (changed==l)
{

XmTextSetString(Keys Name txt,table[nelem] [01);
XmTextSetString-(Keys -F Name txt, table [ne lem] [1 l} ;
XmTextSetString(Keys-Initials txt,table[nelem] [2]);
XmTextSetString(Këys-Phone txt,table[nelem] [3]);
XmTextSetString(Keys-Location txt,table[nelem] [4]);
XmTextSetString(Keys=Workgroup_txt,table[nelem] [5]);
XmTextSetString(Keys Service txt,table[nelem] [6]);
XmTextSetString(Keys=Respons=txt,table[nelem] [7]);
XmTextSetString(Keys Special txt,table[nelem] [8]);
} - -
/* end of Move */

7 void Lists_cbproc(w,client_data,call_data)

void Lists cbproc(w,client data,call data)
Widget w; - - -
int client_data;
XmAnyCallbackStruct *call_data;

{

if (client data==l) Allinfo proc();
if (client=data==2) Activities_proc();

} /* end of Lists_cbproc */

8 void Allinfo_proc()

14

void Allinfo_proc()
{
Widget Check_msg;
inti;
XmString strl,str2;

fpl=fopen("phonefile","r");
i=O;
while(fgets(linel,80,fpl) !=NULL)

(

fgets(line2,80,fpl);
fgets(line3,80,fpl);
fgets(line4,80,fpl);
fgets(lineS,80,fpl);
fgets(line6,80,fpl);
fgets(line7,80,fpl);
fgets(lineB,80,fpl);
fgets(line9,80,fpl);

Settable(i,O,linel);
Settable(i,l,line2);
Settable(i,2,line3);
Settable(i,3,line4);
Settable(i,4,lineS);
Settable(i,S,line6);
Set table (i, 6, line7);
Settable(i,7,line8);
Settable(i,8,line9);

i++;
} ;

fclose (fpl);

nbmax=i;
if (nbmax==O)

{

strl=XmStringCreate("The phonebook is empty",
XmSTRING_DEFAOLT_CHARSET);

ac= O;
XtSetArg(al[ac),XmNdialogType,XmDIALOG_MESSAGE); ac++;
XtSetArg(al[ac),XmNmessageString,strl); ac++;

str2=XmStringCreate("Continue", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[ac],XmNokLabelString,str2); ac++;

XtSetArg(al[ac),XmNdialogStyle,XmDIALOG_APPLICATION_MODAL);
ac++;

Check_msg=XmCreateMessageDialog(Phonebook,"Check_msg",al,ac);
XtUnmanageChild(XmMessageBoxGetChild(Check_msg,

XmDIALOG_HELP_BUTTON));
XtUnmanageChild(XmMessageBoxGetChild(Check_msg,

XmDIALOG_CANCEL_BUTTON));
XtManageChild(Check_msg);

} ;

if (nbmax>200)
nbmax=200;

if (nbmax>O)
(

Keys_display_info();
}

/* end of Allinfo_proc */

15

9 void Activities_proc()

16

void Activities_proc ()
{

Widget Check msg;
XmString strl,s.tr2;
char *value;
int i,j;

i=O;
value=text value;
fpl=fopen("phonefile","r");
while((fgets(linel,80,fpl) !=NULL)&&(i<=4998))

{
fgets(line2,80,fpl);
fgets(line3,80,fpl);
fgets(line4,80,fpl);
fgets(lineS,80,fpl);
fgets(line6,80,fpl);
fgets(line7,80;~pl);
fgets(line8,80,fpl);
fgets(line9,80,fpl);

Adapt2 (line9);

j=O;
while ((line9 [j] ! =' \n') && (i<=4 998))
(

if ((line9[j)==',')ll(line9(j]==';'))
*value++='\n';

else *value++=line9(j];
i++;
j++;

} ;
*value++=' \n';
i++;

) i
*value='\0';
fclose(fpl);

if (i==O)
(

strl=XmStringCreate("No specialization",
XmSTRING_DEFAULT_CHARSET);

ac= O;
XtSetArg(al[ac],XmNdialogType,XmDIALOG MESSAGE); ac++;
XtSetArg(al[ac],XmNmessageString,strl); ac++;

str2=XmStringCreate("Continue", XmSTRING DEFAULT CHARSET);
XtSetArg(al[ac],XmNokLabelString,str2); ac++; - -

XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_APPLICATION_MODAL);
ac++;

Check msg=XmCreateMessageDialog(Phonebook,"Check msg",al,ac);
XtUnmanageChild(XmMessageBoxGetChild(Check_msg, -

XmDIALOG HELP BUTTON));
XtUnmanageChild(XmMessageBoxGetChild(Check msg,

XmDIALOG CANCEL BUTTON));
XtManageChild(Check_msg);

} ;

if (i>O)
Keys_display_special();

} /* end of Activities_proc */

1 O void Adapt2(data_pointer)
void Adapt2(data pointer)
char *data_pointer;

f
while ((*data_pointer!='\0')

&&(*data pointer!='\n'))
data_pointer++;

*data_pointer='\n';

) /* end of Adapt2 */

11 void Special_info_proc()
void Special_info_proc()
{

Widget Special_info_bubo, Quit_btn,
Special info_txt;

/* create a shell in Special info_proc */

ac= 0;
XtSetArg(al[ac],XmNheight,200); ac++;
XtSetArg(al[ac),XmNwidth,225); ac++;
Special info shell=XtCreateManagedWidget("Special info_shell",

topLevelShellWidgetClass,Phonebook,al,ac);

/* create the bulletin board in Special info_proc */

Special_info_bubo=XtCreateManagedWidget("Special info bubo",
xmBulletinBoardWidgetClass,Special info shell,NULL,0);

/* create the quit button in Special_info_proc */

ac= 0;
XtSetArg(aL[ac),XmNy,10); ac++;
XtSetArg(al[ac),XmNx,30); ac++;
XtSetArg(al[ac),XmNlabelString,XmStringCreate(" Quit",

XmSTRING DEFAULT CHARSET)); ac++;
Quit btn~XtCreateManagedWidget("Quit btn",

xmPushButtonWidgetClass,Special info bubo,al,ac);
XtAddCallback(Quit_btn,XmNactivateCallback,Quit_cbproc,

Special info_shell);

/* create a text in Special info_proc */

ac= 0;
XtSetArg(al[ac],XmNy,40); ac++;
XtSetArg(al[ac),XmNx,30); ac++;
XtSetArg(al[ac),XmNheight,150); ac++;
XtSetArg(al[ac],XmNwidth,180); ac++;
XtSetArg(al[ac],XmNscrollBarPlacement,XmBOTTOM_LEFT); ac++;

XtSetArg(al[ac),XmNeditMode,XmMULTI LINE EDIT); ac++;
Special_info_txt=XmCreateScrolledText(Special info_bubo,

"Special info txt",al,ac);
XtManageChild(Special_info_txt);

XmTextSetEditable(Special info txt,False);
XmTextSetString(Special_info_txt,text_value);

) /* end of Special_info_proc */

17

12 void Update_cbproc(w,client_data,call_data)

18

void Update cbproc(w,client data,call data)

{

Widget w; - - -
int client_data;
XmAnyCallbackStruct *call_data;

Widget Update_bubo, Check_btn, Insert_btn, Modify_btn,
Delete btn, Clear btn, Quit btn,
Labell~Label2,Label3,Label4~Label5,Label6,Label7,Label8,Label9;

/* crea·te a shell in Update_cbproc */

ac= O;
XtSetArg(al[ac],XmNheight,470); ac++;
XtSetArg(al[ac],XmNwidth,650); ac++;
Update_shell=XtCreateManagedWidget("Update shell",

topLevelShellWidgetClass,Phonebook,al,ac);

/* create the bulletin board in Update_cbproc */

Update bubo=XtCreateManagedWidget("Update bubo",
xmBulletinBoardWidgetClass,Update shell,NULL,O);

/* create the check button in Update_cbproc */

ac= O;
XtSetArg(al[ac],XmNy,20); ac++;

XtSetArg(al[ac],XmNx,10); ac++;
XtSetArg(al[ac],XmNlabelString,XmStringCreate("Check",

XmSTRING.DEFAULT CHARSET)); ac++;
Check btn=XtCreateManagedWidget("Check btn",

xmPushButtonWidgetClass,Update bubo~al,ac);
XtAddCallback (Check_ btn, XmNacti vateCallback, Check cbproc, 1) ;

/* create the insert button in Update_cbproc */

ac= O;
XtSetArg (al [ac-], XmNy, 20); ac++;
XtSetArg(al[ac],XmNx,60); ac++; /* common to all update buttons */

if (client_data==l)
(
XtSetArg(al[ac],XmNlabelString,XmStringCreate("Insert",

XmSTRING_DEFAULT_CHARSET)); ac++;
Insert btn=XtCreateManagedWidget("Insert btn",

xmPushButtonWidgetClass,Update_bubo,al,ac);
XtAddCallback(Insert_btn,XmNactivateCa-llback,Insert cbproc,1);

}

/* .create the modify button in Update_cbproc */

if (client_data==2)
{
XtSetArg(al[ac],XmNlabelString,XmStringCreate("Modify",

XmSTRING DEFAULT CHARSET)); ac++;
Modify_btn=XtCreateManagedWidget("Modtfy_btn",

xmPushButtonWidgetClass,Update bubo,al,ac);
XtAddCallback(Modify_btn,XmNactivateCallback,Modify_cbproc,1);

}

/* create the delete button in Update_cbproc */

if (client_data==3)
(

XtSetArg(al[ac),XmNlabelString,XmStringCreate("Delete",
XmSTRING DEFAULT CHARSET)); ac++;

Delete btn=XtCreateManagedWidget("Delete btn",
xmPushButtonWidgetClass, Updat·e bubo, al, ac);

XtAddCallback(Delete_btn,XmNactivateCallback,Delete_cbproc,1);
l

/* create the erase button in Update_cbproc */

ac= O;
XtSetArg(al[ac),XmNy,20); ac++;
XtSetArg(al[ac),XmNx,60); ac++; /* common to all update buttons*/
XtSetArg(al[ac),XmNx,115); ac++;
XtSetArg(al[ac),XmNlabelString,XmStringCreate("Erase ",

XmSTRING_DEFAULT_CHARSET)); ac++;
E-rase btn=XtCreateManagedWidget("Erase btn",

xmPushButtonWidgetClass,Update_bubo~al,ac);
XtAddCallback(Erase_btn,XmNactivateCallback,Erase_cbproc,2);

/* create the quit button in Update cbproc */

ac= O;
XtSetArg (al t·ac), XmNy, 20); ac++;
XtSetArg(al[ac),XmNx,60); ac++·;/* common to all update buttons*/
XtSetArg(al[ac),XmNx,185); .ac++;
XtSetArg(al[ac),XmNlabelString,XmStringCreate(" Quit",

XmSTRING DEFAULT CHARSET)); ac++;
Quit btn=XtCreateManagedWidget("Quit btn",

xmPushButtonWidgetClass,Update bubo,al,ac);
XtAddCallback(Quit_btn,XmNactivateCallback,Quit_cbproc,Update_shell);

/* create the name label in Update_cbproc */

ac= O;
XtSetArg(al[ac),XmNx,10); ac++;
XtSetArg(al[ac),XmNy,76); ac++;

XtSetArg(al[ac),XmNlabelString,
XmStringCreate("Name",XmSTRING_DEFAULT CHARSET)); ac++;

Labell=XtCreateManagedWidget("Labell",xmLabelWidgetClass,Update_bubo,
al,ac);

/* create the first name label in Update cbproc */

ac= O;
XtSetArg(al[ac),XmNx,10); ac++;
XtSetArg(al[ac),XmNy,116); ac++;

XtSetArg(al[acJ,XmNlabelString,
XmStringCreate("First Name",XmSTRING_DEFAULT CHARSET));

ac++;
Label2=XtCreateManagedWidget("Label2",xmLabelWidgetClass,Update_bubo,

al,ac);
/* create the initials label -in Update_cbproc */

ac= O;
XtSetArg(al[ac),XmNx,10); ac++;
XtSetArg(al[ac),XmNy,156); ac++;

XtSetArg(al[ac),XmNlabelStrin.g,
XmStringCreate("Initials",XmSTRING_DEFAULT CHARSET));

ac++;
Label3=XtCreateManagedWidget("Label3",xmLabelWidgetClass,Update_bubo,

al, ac);
/* create the phone label in Update cbproc */

19

20

ac= O;
XtSetArg(al[ac],XmNx,10); ac++;
XtSetArg(al[ac],XmNy,196); ac++;

XtSetArg(al[ac],XmNlabelString,
XmStringCreate("Phone number",

XmSTRING DEFAULT CHARSET)); ac++;
Label4=XtCreateManagedWidget("Label4",xmLabelWidgetClass,Update_bubo,

al,ac);
/* create Ehe location label in Update_cbproc */

ac= O;
XtSetArg(al[ac],XmNx,10); ac++;
XtSetArg(al[ac],XmNy,236); ac++;

XtSetArg(al[ac),XmNlabelString,
XmStringCreate("Location",XmSTRING_DEFAULT CHARSET));

ac++;
Label5=XtCreateManagedWidget("Label5",xmLabelWidgetClass,Update bubo,

al,ac); -
/* create the workgroup label in Update_cbproc */

ac= O;
X-tSetArg(al[ac),XmNx,10); ac++;
XtSetArg(al[ac),XmNy,276); ac++;

XtSetArg(al[ac),XmNlabelString,
XmStringCreate("Workgroup",XmSTRING_DEFAULT_CHARSET));

ac++;
Label6=XtCreateManagedWidget("Label6",xmLabelWidgetClass,Update_bubo,

al,ac);
/* create the service label in Update_cbproc */

ac= O;
XtSetArg(al[ac],XmNx,10); ac++;
XtSetArg(al[ac],XmNy,316); ac++;

XtSetArg(al[ac],XmNlabelString,
XmStringCreate("Service",XmSTRING_DEFAULT_CHARSET));

ac++;
Label7=XtCreateManagedWidget("Label7",xmLabelWidgetClass,Update bubo,

al,ac); -
/* create the responsibilities label in Update_cbproc */

ac= O;
XtSetArg(al[ac],XmNx,10); ac++;
XtSetArg(al[ac],XmNy,356); ac++;

XtSetArg(al[ac],XmNlabelString,
XmStringCreate("Responsibilities",XmSTRING_DEFAULT CHARSET)); ac++;

Label8=XtCreateManagedWïdget("Label8",xmLabelWidgetClass,Update_bubo,
al,ac);

/*~reate the specialization label in Update_cbproc */

ac= O;
XtSetArg(al[ac],XmNx,10); ac++;
XtSetArg(al[ac],XmNy,396); ac++;

XtSetArg(al[ac],
XmNlabelString,XmStringCreate("Specialization",

XmSTRING DEFAULT CHARSET)); ac++;
Label9=XtCreateManagedWidget("Label9",xmLabelWidgetClass,Update bubo,

al, ac);
/* create the name input text field in Update_cbproc */

ac= O;
XtSetArg(al[ac),XmNx,125); ac++;
XtSe.tArg (al [ac]., XmNcolumns, 80); .ac++;
XtSetArg(al [ac) ,XmNshadowThickness, 1); ac++;

XtSetArg(al[ac],XmNy,70); ac++;
Upci_Name_txt=XtCreateManagedWidget("Upd_Name_txt",

xmTextWïdgetClass,Update_bubo,al,ac);

/* create the first name input text field in Update_cbproc */

ac= 0;
XtSetArg(al[ac),XmNx,125); ac++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThickness,1); ac++;

·xtsetArg(al [ac) ,XmNy, 110); ac++;
Upd F Name txt=XtCreateManagedWidget("Upd F Name txt",

xmT;xtWidgetClass,Update_bubo,al,ac); - - -

/* create the initials input .text field in Update_cbproc */

ac= 0;
XtSetArg(al[ac),XmNx,125); ac++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThickness,1); ac++;

XtSetArg(al[ac),XmNy,150); ac++;
Upd Initials txt=XtCreateManagedWidget("Upd Initials txt",

xmTextWidgetClass,Update_bubo,al,ac); - -

/* create the phone input text field in Update_cbproc-*/

ac= 0;
XtSetArg(al[ac),XmNx,125); ac++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThickness,1); ac++;

XtSetArg(al[ac),XmNy,190); ac++;
Upd Phone txt=XtCreateMa·nagedWidget ("Upd Phone txt",

xmTextWidgetClass,Update_bubo,al,ac);- -

/* create the location input text field in Update_cbproc */

ac= 0;
XtSetArg.(al[ac),XmNx,125); ac++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThickness,1); ac++;

XtSetArg(al[ac),XmNy,230); ac++;
Upd_Location_txt=XtCreateMana.gedWidget("Upd_Location_txt",

xmTextWidgetClass,Update_bubo,al,ac);

/* create the workgroup input text field in Update_cbproc */

ac= 0;
XtSetArg(al[ac),XmNx,125); ac++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThickness,1); ac++;

XtSetArg(al[ac),XmNy,270); ac++;
Upd_Workgroup_txt=XtCreateManagedWidget("Upd_Workgroup_txt",

xmTextWidgetClass,Update_bubo,al,ac);

/* create the service input text field ln Update_cbproc */

ac= 0;
XtSetArg (an ac) , XmNx, 12 5) ; ac++;
XtSetAr.g(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThlckness,1); ac++;

XtSetArg (alJac), XmNy, 310); ac++;.
Upd_Service_txt=XtCreateManagedWidget("Upd_Service_txt",

xmTextWidgetClass,Update_bubo;al,ac);

/* create the responsibilities input text field in Update_cbproc */

ac= 0;
XtSetArg (aL{ac) ,XmNx, 125); ac++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg(al[ac),XmNshadowThickness,1); ac++;

21

XtSetArg(al[ac],XmNy,350); ac++;
Upd Respons txt=XtCreateManagedWidget("Upd Respons txt",

xmTextWidgetClass,Update_bubo,al,ac); - -

/* create the specialization input text field in Update_cbproc */

ac= O;
XtSetArg(al[ac],XmNx,125); ac++;
XtSetArg(al[ac],XmNcolumns,80); ac++;
XtSetArg(al[ac],XmNshadowThickness,l); ac++;

XtSetArg(al[ac],XmNy,390); ac++;
Upd_Special_txt=XtCreateManagedWidget("Upd_Special_txt",

xmTextWidgetClass,Update_bubo,al,ac);

} /* end of Update_cbproc */

13 void Check~cbproc(w,client_data,call_data)

void Check cbproc(w,client data,call data)

{

Widget w; - - -

int client_data;
XmAnyCallbackStruct *call data;

Widget Check_msg;
int exist;
XmString strl,str2;

exist=Check();

if (exist==O)strl=XmStringCreate("Does not exist",
XmSTRING~DEFAULT_CHARSET);

if (exist==l) strl=XmStringCreate ("Exists", XmSTRING DEFAULT_CHARSET).;
if (exist==-l)strl=XmStringCreate("Not allowed",

XmSTRING_DEFAULT_CHARSET);

ac= O;
XtSetArg(al[ac],XmNdialogType,XmDIALOG_MESSAGE); ac++;
XtSetArg (al [ac] ,_XmNmessa.geStr ing, strl); ac++;.
str2=XmStringCreate("Continue", XmSTRING DEFAULT CHARSET);
XtSetArg(al[ac],XmNokLabelString,str2); ac++;
XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_APPLICATION_MODAL); ac++;

Check msg=XmCreateMessageDialog(Phonebook,"Check msg",al,ac);
XtUnmanageChild(XmMessageBoxGetChild(Check_msg, -

XmDIALOG_HELP_BUTTON));

XtUnmanageChild(XmMessageBoxGetChild(Check_msg,
XmDIALOG CANCEL BUTTON));

XtManageChild(Check_msg);

} /* end of Check_cbproc */

14 int Check()

22

int Check()
{
int i,exist;

GetString(Check_data.name,Upd_Name_txt);
G.etString (Check_data. f_name, Upd _F _Name_txt);

fpl=fopen("phonefile","r");
exist=O;

while ((exist==0)
&&(fgets(name,80,fpl) !=NULL)
&& (fgets (f_name, 80, fpl) !=NULL)

if ((strcmp(name,Check data.namê)==0)
&& (strcmp(f name,Check-data.f name)==0))

(- - -

exist=l;
}

else for (i=l; i<=7; i++) fgets (line, 80, fpl);
} ;

fclose(fpl);

if ((strcmp("\n",Check data.name)==0)
I" l"(strcmp ("\n", Check=data. f_name) ==0).) exist -1;

return(exist);

} /* end of Check*/

15 void lnsert_cbproc(w,client_data,call_data)

void Insert cbproc(w,client data,call data)

{

Widget w; - -
int client_data;
XmAnyCallbackStruct *call_data;

Widget- Check msg;
XmString strl,str2;
int exist;

GetString(Insert data.name,Upd Name txt);
GetString(Insert-data.f name,Upd F Name txt);
GetString(Insert-data.initials,Upd-Initials txt);
GetString(Insert-data.phone,Upd Phone txt);­
GetString(Insert=data.location,Upd_Location~txt);
GetString (I.nsert data. workgroup, Upd Workgroup txt);
GetString(Insert=data.service,Upd_Service_txt);
GetString(Insert data.respons,Upd Respons txt);
GetString(Insert=data.special,Upd=Special=txt);

exist=Check();
if (exist==0) Insert ();
if (exist==l)

(

}

strl=XmStringCreate("Exists",XmSTRING_DEFAULT CHARSET);
ac= 0;
XtSetArg(al[ac],XmNdialogType,XmDIALOG MESSAGE); ac++;
XtSetArg(al[ac],XmNmessageString,strl); ac++;
str2=XmStringCreate("Continue", XmSTRING DEFAULT CHARSET);
XtSetArg(al[acJ,XmNokLabelString,str2); ac++; -
XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_APPLICATION_MODAL);
ac++;

Check msg=XmCreateMessageDialog(Phonebook,"Check msg",al,ac);
XtUnmanageChild(XmMessageBoxGetChild(Check_msg, -

XmDIALOG HELP BUTTON));
XtUnmanageChild(XmMessageBoxGetChild(Check_msg,

-xmDIALOG CANCEL BUTTON));
XtManageChild(Check_msg);

/* end of Insert_cbproc */

23

fyoid Insert c)
int Ï'îsert::J;

24

f n t = f open (" ~) t) v ne f i 1 ~ " , " r ") :
fD2:fOpen("~hunetcmJ","J");

inserted=v;

'!,/ •11 le (f' IJ C t s (lin e 1 ' a(), f p 1) ! = :1 iJ L L)
{_ .

f O ~ t S (1 Ï [I e 2, 8:) 1 f l) 1) ;
faets(lineJ,31,fpl);
f1ets (line J, :'.J'.', fpl);
fq~t~c1ioe~,~o,~p1)f
fa et..., Cl 1. (le '..1 , o), r J 1.) ,
fqats(line7,Jn,fp1);
frJ';!tS (lined, :-Jf), f;:>1);
f,., 0 t ~ (l in e ·J , :J ,î , f l-' l) :

if C(((strcmµ(linel,Insert_data.name)>=O)
r. & (s t r c r'I ~ (l 1 1 î e 2 , I n s e r t _ '.j a t a • f- n a rn e) > O))

l l ((strcmuCl.1:ie1,Insert_1ata.name)>0)
&&Cstr-::!11;,(line2,Insert_data.f_name)>=O)))

"'~ C ir1Sèrte J::::'1))
{_

f P J ts (In se r t_:1 c.l t .-.1,. name, f ;:> 2) ;
fPJts(Insert_dat3.f_name,fµ2);
fp~ts(Insert-dat~.initial5ifP2);
fputsCrnsert_0ata.phone fPL);
fp1tsC!nsert-ddtcl.locat!on,fo2):
fPJts(Insert_Jata.Jork9roup,fp2);
fputsCinsert_d<ltd.serv1ce,fP2);
fPJtsCinsert_dat3.respons,fo2);
fPuts(Insert-datd.srecial,fp2);
insertc:J=1;

} Ï -
fPùtS(linel,fp2);
fputsCline2,fn2);
fputsClineJ,fp2);
f p 1.l t s Cl i !I e 1 , f p 2) ;
fc~ts(line5,fo2);
fPJts(lineG,fp2);
fPJts(line7,fP2);
fputs(line3,fp2);
fuuts(l1neJ,fp2);

} ;

if ~inserted==O)
{ .
fPJtsCinsert_dDta.name,fp2);
fputs(Insert-data.f-name 1fp2);
fputs(Insert_data.initia s~fp2);
fPutsCinsert_data.phone

1
fp~);

fPutsCinsert_data.locat on,fp2)•
fputs(Insert_data.workvroup,fp2~;
fputsCinsert_ctata.serv1ce,fp2);
f P .1ts CI nse rt_,.ia ta. re s pon s, fp2);
fputs(Insert_dat~.special,fp2);
insertel=1;

} ;

fclose(fpl);
fclose(fp2);

system("cp phonetemp phonefile");

} /* end of Insert */

17 void Modify _cbproc(w,client_data,call_data)

void Modify cbproc(w,client data,call data)
Widget w; - - -

int client_data;
XmAnyCallbackStruct *call_data;

{

_.Widget Check_msg;
XmString strl,str2;
int exist;

GetString(Modify data.name,Upd Name txt);
GetString(Modify-data.f name,Upd F Name txt);

-GetString(Modify-data.initials,Upd-Initials txt);
GetString(Modify=data.phone,Upd_Phone_txt);­
GetString(Modify data.location,Upd Location txt);
GetString(Modify=data.workgroup,Upd_Workgroup~txt);
GetString(Modify data,service,Upd Service-txt);
GetString(Modify=data.respons,Upd=Respons=txt);
GetString(Modify_data.special,Upd_Special_txt);

exist=Check();
if (exist==l) Modi~y();
if (exist==0)

{

strl=XmStringCreate("Does not exist",XmSTRING_DEFAULT_CHARSET);
ac= 0;
XtSetArg(al[ac],XmNdialogType,XmDIALOG_MESSAGE); ac++;
XtSetArg(al[ac],XmNmessageStrîng,strl); ac++;
str2=XmStringCreate("Continue", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[ac],XmNokLabelString,str2); ac++;
XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_APPLICATION_MODAL);
ac++;

Check_msg=XmCreateMessageDialog(Phonebook,"Check_msg",al,ac);
XtUnmanageChild(XmMessageBoxGetChild(Check_msg,

XmDIALOG HELP BUTTON));
XtUnmanageChild{XmMessageBoxGetChi1d(Check_msg,

XmDIALOG CANCEL BUTTON));
XtManageChild(Check_msg);

r
/* end of Modify_cbproc */

18 void Modify()

void Modify ()
{

int modified;

fpl=fopen("phonefile","r");
fp2=fopen("phonetemp","w");

modif ied=0;

25

while (fgets(linel,80,fpl) !=NULL)
{

fgets(line2,80,fpl);
fgets(line3,80,fpl);
fgets(line4,80,fpl);
fgets(lineS,80,fpl);
fgets(line6,80,fpl);
fgets (line7, 80, fpl);
fgets(lineB,80,fpl);
fgets(line9,80,fpl);

if ((strcmp(linel,Modify data.name)==O)
&&(strcmp(line2,Modify-data.f name)==O)

}

&&(modified==O)) - -

fputs(Modify_data.name,fp2);
fputs(Modify data.f name,fp2);
fputs(Modify=data.initials,fp2);
fputs(Modify data.phone,fp2);
fputs(Modify=data.location,fp2);
fputs(Modify_data.workgroup,fp2);
fputs(Modify_data.service,fp2);
fputs (Modify_d·ata. respons, fp2);
fputs(Modify data.special,fp2);
modified=l; -

else
fputs(linel,fp2);
fputs(line2,fp2);
fputs(line3,fp2);
fputs(line4,fp2);
fputs (line5, fp2) ;
fputs(line6,fp2);
fputs(line7,fp2)·;
fputs(line8,fp2);
fputs(line9,fp2);

} ;
} ;

fclose (fpl);
fclose(fp2);

system("cp phonetemp phonefile");

} /* end of Modify */

19 void Delete_cbproc(w,client_data,call_data)

26

void Delete_cbproc(w,client_data,call_data)
Widget w;

{

int client_data;
XmAnyCallbackStruct *call data;

Widget Check_msg;
XmString strl,str2;
int exist;

GetString(Delete_data.name,Upd_Name_txt);
GetString(Delete_data.f_name,Upd_F_Name_txt);

exist=Check();
if -(exist==l) Delete_proc ();
if (exist==O)

{

}

strl=XmStringCreate("Does not exist",XmSTRING_DEFAULT_CHARSET);
ac= O;
XtSetArg(al[ac],XmNdialogType,XmDIALOG_MESSAGE); ac++;
XtS·etArg (al [ac], XmNmessageString, strl); ac++;
str2=XmStringCreate("Continue", XmSTRING DEFAULT CHARSET);
XtSetArg(al[ac],XmNokLabelString,str2); ac++; -
XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_APPLICATION~MODAL);
ac++;

Check_msg=XmCreateMessageDialog(Phonebook,"Check_msg",al,ac);
XtUnmanageChild(XmMessageBoxGetChild(Check_msg,

XmDIALOG HELP BUTTON));
XtUnmanageChild(XmMessageBoxGetChild(Check_msg,

XmDIALOG_CANCEL_BUTTON));
XtManageChild(Check_msg);

/* end of Delete_cbproc */

20 void Delete_proc()

void Delete_proc()
{

int deleted;

fpl=fopen("phonefile","r");
fp2=fopen("phonetemp","w");

deleted=O;

while (fgets(linel,80,fpl) !=NULL)
{
fgets(line2,80,fpl);
fgets(line3,BO,fpl);
fgets(line4,BO,fpl);
fgets(lineS,80,fpl);
fgets(line6,BO,fpl);
fgets(line7,80,fpl);
fgets(lineB,80,fpl);
fgets(line9,BO,fpl);

if ((strcmp(linel,Delete data.name) !=O)
IT (strcmp (li ne 2, Delete_data. f_name) ! =O)
IT(deleted==l))

}

fputs(linel,fp2);
fputs(line2,fp2);
fputs(line3,fp2)~
fputs(line4,fp2);
Yputs(line5,fp2);
fputs(line6,fp2);
fputs(line7,fp2);
fputs (lineB, fp2);
fputs(line9,fp2);

else deleted=l;
} ;

fclose(fpl);
fclose(fp2);

27

system("cp phonetemp phonefile");

} /* end-of Delete */

21 void Kill_cbproc(w,client_data,call_data)

void Kill cbproc(w,client data,call data)
Widget w; - -

{

int client_data;
XmAnyCallbackStruct *call_data;

Widget Kill.confirm;
XmString strl,str2;

ac = 0;
XtSetArg(al[ac],XmNdialogType,XmDIALOG_QUESTION); ac++;

strl=XmStringCreate("Do you want to quit ?",XmSTRING DEFAULT CHARSET);
XtSetArg(al[ac],XmNmessageString,strl); ac++; - -

str2=XmStringCreate ("Quit", XmSTRING DEFAULT CHARSET).;
XtSetArg(al[ac],XmNokLabelString,str2); ac++;

XtSetArg(al[ac],XmNdialogStyle,XmDIALOG APPLICATION MODAL); ac++;
XtSetArg(al[ac],XmNokCallback,Kill_ok_cbproc); ac++;

Kill confirm=XmCreateQuestionDialog(Phonebook,"Kill confirm",al,ac);
XtUnmanageChild(XmMessageBoxGetChild(Kill_confirm, -

XmDIALOG HELP BUTTON));
XtManageChild(Kill=confirm);

} /* end of Kill_cbproc */

22 void Kill_ok~cbproc(w,client_data,call_data)

void Kill ok cbproc(w,client data,call data)
Widget w; - - -
int clie~t_data;
XmAnyCallbackStruct *call_data;

{

exit (0);

} /* end of Kill_ok_cbproc */

23 void Quit_cbproc(w,w_to_kill,call_data)

28

void Quit cbproc(w,w to kill,call data)
Widget w; - - -

{

Widget w_to_kill;
XmAnyCallbackStruct *call_data;

Widget Quit confirm;
XnïString strl,str2;

ac= 0;
XtSetArg(al[ac],XmNdialogType,XmDIALOG_QUESTION); ac++;

strl=XmStringCreate("Do you want to quit ?",XmSTRING DEFAULT CHARSET);
XtSetArg(al[ac),XmNmessageString,strl); ac++; - -

str2=XmStringCreate("Quit", XmSTRING_DEFAULT_CHARSET);
XtSetArg(al[ac],XmNokLabelString,str2); ac++;

XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_APPLICATION_MODAL); ac++;

Quit confirm=XmCreateQuestionDialog(Phonebook,"Quit confirm",alrac);
XtünmanageChild(XmMessageBoxGetChild(Quit_confirm, -

XmDIALOG HELP BUTTON));
XtAddCallback(XmMessageBoxGetChild(Quit_confirm,XmDIALOG_OK_BUTTON),
XmNactivateCallback,
Quit ok cbproc,
w to-kill);

XtManageChild(Quit_confirm);

} /* end of Quit_cbproc */

24 void Quit_ok:_cbproc(w,w_to_kill,call_data)

void Quit_ok_cbproc (w, w_to _kill, c·all_data)
Widget w;

{

Wîdget w_to_kill;
XmAnyCallbackStruct *call_data;

~xtDestroyWidget(w_to_kill);

} /* end of Quit_ok_cbproc */

/* END OF PROGRAM PHONEBOOK */

29

A2. XViev AJplication Code

1 DECLARATIONS

#include <string.h>
#include <stdio.h>
#include <xview/xview.h>
#include <xview/frame.h>
#include <xview/panel.h>
#include <xview/textsw.h>
#include <xview/notice.h>

void Init();
void Name_proc();
void Firstname_proc();
void Specializ_proc();
Keysproc();
void Search_ntproc();
void Search();
void Adaptl();
int Find();
void Settable();
void Erase_ntproc();
void Quit ntproc();
Allinfo_proc();
void Quit all ntproc();

void Activities_proc();
void Insert_proc();
void Modify_proc();
void Delete_proc();
void Next_ntproc();
void Previous_ntproc();

static Frame name frame O;
static Panel item-name_tpi;

static Frame fname frame 0
static Panel item fname tpi

static Frame spec_ frame = 0
static Panel item spec tpi -

static Frame allinfo frame = 0
static Panel item allinfo name - tpi
static Panel item allinfo fname tpi - -
static Panel item allinfo init tpi
static Panel item allinfo _phnum_tpi
static Panel item allinfo loc - tpi ;
static Panel item allinfo _wg_ tpi ;
static Panel item allinfo ser tpi ;

- -
static Panel item allinfo resp tpi

- - -
static Panel item allinfo _spec_ tpi

static Frame act frame 0

static Frame insert frame 0
static Panel item insert name tpi -
static Panel item insert fname tpi - -
static Panel item insert init tpi ; - -
static Panel item insert phnum tpi - -
static Panel item insert loc tpi ;

- -
static Panel item insert _wg_ tpi ; -
static Panel item insert ser tpi ;

- -
static Panel item insert resp tpi - -
static Panel item insert spec_ tpi

;
;

;

1

static Frame modify frame= 0;
static Panel item modify name tpi ;
static Panel-item modify=fname_tpi ·;
static Panel item modify_init_tpi ;
static Panel item modify_phnum_tpi
static Panel item modify loc tpi ;
static Panel-item modify-wg tpi;
static Panel item modify-se~ tpi ;
static Panel item modify=resp_tpi
static Panel item modify_sp~c_tpi

static Frame delete frame= 0 ;
static Panel item delete_name tpi
static Panel item delete_fname_tpi;
static Panel item delete init tpi;
static Panel-item delete=phnum_tpi
static Panel item delete loc tpi;
static Panel item·delete=wg_tpi;
static Panel item delete ser tpi ;
static Panel item delete=resp_tpi
static Panel item delete_spec_tpi

char t.able[3] [200] [9) [30];

char linel [30), line2 [30], line3 [30], line4 [30], lineS [30),
line6[30],line7[30],line8[30],line9[30],line[30];

int nbmax[3],nelem[3];

FILE *fopen(),*fpl,*fp2;

2 main (argc,argv)

2

main (argc,argv)
int argc;

{
char *argv[];

Frame mainframe;
Panel panel;
Menu menuconsult,menulists,menukeys,menuupdate;

xv_init (XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

mainframe = (Frarne)xv_create (NULL,FRAME,
FRAME_LABEL, "BIM Internal phone book",
NULL);

menukeys = (Menu)xv_create (NULL,MENU,
MENU_TITLE_ITEM, "Keys",
MENU_ACTION_ITEM, "Name", Name_proc,
MENU_ACTION_ITEM, "First name", Firstname proc,
MENU_ACTION_ITEM, "Specialization", Specializ_proc,
NULL);

menulists = (Menu)xv_create (NULL,MENU,
MENU TITLE ITEM, "Lists",
MENU-ACTION ITEM, "All info", Allinfo proc,
MENU=ACTION ITEM, "Activities", Activities_proc,
NULL);

-menuconsult = (Menu)xv_create (NULL, MENU,
MENU_TITLE_ITEM, "Consult",
MENU_PULLRIGHT_ITEM; "Keys", menukeys,
MENU_PULLRIGHT_ITEM, "Lists", menulists,
NULL);

menuupdate = (Menu)xv_create (NULL,MENU,
MENU_TITLE_ITEM, "Update",
MENU ACTION ITEM, "Insert", Insert proc,
MENU=ACTION=ITEM, "Modify", Modify =proc,
MENU_ACTION_ITEM, "Delete", Delete_proc,
NULL);

panel= (Panel)xv_create (mainframe, PANEL, NULL);

(void) xv_create (panel,PANEL_BUTTON,
PANEL_LABEL_STRING, "Consult",
PANEL_ITEM_MENU, menuconsult,
NULL);

(void) xv_create (panel,PANEL_BUTTON,
PANEL_LABEL_STRING, "Update",
PANEL_ITEM_MENU, menuupdate,
NULL);

(void) xv_create (panel,PANEL_BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, Qùit_all_ntproc,
NULL);

Init;

window fit(panel);
window-fit(mainframe);

xv main loop (mainframe);

) /* end of main*/

3 void lnit()

void Init()
{

fpl=fopen ("phobefile", "r");
if (fpl==NULL)

{

fpl=fopen("phonefile","w");
fclose (fpl);

} ;

) /* end of Init */

4 void Name_proc()

void Name_proc ()
{ Keys_proc(l);
}

5 void Firstname_proc()

void Firstname_proc()
{ Keys __ proc (2) ;
}

3

6 void Specializ_proc{)

void Specializ_proc()
{ Keys_proc (3);
}

7 Keys_proc {type)

4

Keys proc(type)
int-type;

Panel panel;
Frame frame;

Panel item tpi;

if ((type==l) & & (name frame! =0))

xv_set(name frame,XV_SHOW,TRUE);
return(0);

if ((type==2) && (fname frame!=0))

xv_set(fname frame,XV_SHOW,TRUE);
return(0);

if ((type==3) && (spec frame!=0))

xv_set(spec frame,XV_SHOW,TRUE);
return(0);

frame= (Frame)xv create (NULL,FRAME,
XV_SHOW, TRUE,

XV_KEY DATA, 22, type,
NULL);

panel= (Panel)xv_create (frame,PANEL,
XV KEY DATA, 22, type,

NULL);

xv_create (panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Search",
PANEL_NOTIFY_PROC, Search-ntproc,
PANEL_ITEM_X, 20,
PANEL__:,ITEM_Y, 20,

XV KEY DATA, 22, type,
NULL);

xv_create (panel, PANEL_BUTTON,
PANEL_LABEL_:_STRING, "Erase ",
PANEL_NOTIFY_PROC, Erase-ntproc,
PANEL_ITEM_X, 90,
PANEL_ITEM_Y, 20,

XV KEY_DATA, 22, type,
NULL);

xv create (panel, PANEL BUTTON,
PANEL LABEL STRING, 11 Quit",
PANEL-NOTIFY PROC, Quit ntproc,
PANEL-ITEM X~ 160, -
PANEL=ITEM=Y, 20,

XV KEY_DATA, 22, type,
NULL);

tpi = xv_create (panel, PANEL_TEXT,
PANEL_VALUE_DISPLAY_LENGTH, 30,
PANEL_ITEM_X, 20,
PANEL_ITEM_Y, 60,

NULL);
XV KEY_DATA, 22, type,

switch(type)

case 1 /* name */ :
xv set(frame,FRAME LABEL,"Consult : Name",NULL);
xv=set(tpi,PANEL_LABEL_STRING,"Name : ",NULL);
name frame= frame
name=tpi = tpi;
break;

case 2 /* firstname */ :
xv_set(frame,FRAME_LABEL,"Consult : Firstname",NULL);
xv_set(tpi,PANEL_LABEL_STRING,"Firstname : 11 ,NULL);
fname frame= frame
fname_tpi = tpi;
break;

case 3 /* specialization */ :
xv set(frame,FRAME LABEL,"Consult : Specializatlon",NULL);
xv=set(tpi,PANEL_LABEL_STRING,"Specialization : 11 ,NULL);
spec frame= frame
spec=cpi = tpi ;
break;

windo~.fit(panel);
window_fit(frame);

} /* end of Keys_proc */

8 void Search-ntproc(item, event)

void Search-ntproc(item, event)
Panel item item;
Event *event;

Frame frame;
Panel panel;
Panel item tpi;
int type,result;
char *key;

type= xv_get(item,XV KEY DATA,22);

switch(type)
(

case 1 /* name */ : key = (char *)xv_get(name_tpi,PANEL_VALUE);
search(key,1); break;
case 2 /* firstname */ : key = (char *)xv_get(fname tpi,PANEL_VALUE);

search(key,2);break;
case 3 /* specialization */ : key= (char *)xv_get(spec tpi,PANEL_VALUE);

search(key,3); break;

panel (Panel)xv~get(item,PANEL_PARENT_PANEL);

if (nbmax[type]=0)
result = notice_prompt(panel,NULL,
NOTICE_FOCUS_XY, event~x(event),event y(event),
NOTICE_MESSAGE_STRINGS, "No such value",NULL,
NOTICE_BUTTON_YES, "Continue",
NULL);

5

if (nbmax[type]>200)
nbmax[type)=200;

if (nbmax[type]>O)
{

nelem[type]=O;
}

/* end of Search_ntproc */

9 void Search(key,type)

6

void Search(key,type)
char *key;
int type;

int i,f;

fpl=fopen("phonefile","r");
i=O;
while(fgets(linel,80,fpl) !=NULL)

{

Adaptl (linel);

fgets(line2,80,fpl);
Adaptl (line2);

fgets(line3,80,fpl);
Adapt 1 (line.3) ;

fgets(line4,80,fpl);
Adapt 1 (line4) ;

fgets(lineS,80,fpl);
Adaptl (lineS);

fgets(line6,80,fpl);
Adaptl (line6);

fgets(line7,80,fpl);
Adaptl (line7);

fgets(lineB,80,fpl);
Adaptl (line8);

fgets(line9,80,fpl);
Adaptl (line9);

if (((type==l) && (strcmp (lin el ,key) ==O))
1 l((type==2)&&(strcmp(line2,key)==O))
11 ((type==3) && ((f=Find(line9, key))==1)))

Settable(type,i,O,linel);
Settable(type,i,1,line2);
Settable(type,i,2,line3);
Settable(type,i,3,line4);
Settable(type,i,4,lineS);
Settable(type,i,5,line6);
Settable(type,i,6,line7);
Settable(type,i,7,line8);
Settable(type,i,8,line9);
i++;

} ;
} ;

fclose (fpl);
nbmax[type]=i;

} /* end of Search */

1 O void Adapt1 (data_pointer)

void Adaptl(data_pointer)
char *data_pointer;

{

inti;

i=l;
while ((*data pointer!='\0')

&&(*data=pointer!='\n')
&& (i<31))

data_pointer++;
i++;

}

*data_pointer='\0';

) /* end of Adaptl */

11 int Find(str,substr)

int Find(str,substr)
char *str;

{
char *substr;

int found;

if (*str==*substr)
if (*str==' \0')

return(l);

}

else {
str++;
substr++;
found=Find(str,substr);

else if ((*str==' \0') !l'(*substr==' \0'))
return(0);

else {
str++;
found=Find(str,substr);

};

/* end of Find */

12 void Settable(t,i,j,line)

void Settable(t,i, j,line)
int t;

{

inti;
int j;
char *line;

irit k;

k=0;
while (*line!='\0')
table[t) [il [j) [k++) *line++;

table[t) [iHj) [k++)='\0';

} /* end of Settable */

7

13 void Erase_ntproc(button, event)

void Erase_ntproc(button, event)
Panel item button;
Event *event;

int type;

type= xv_get(button,XV_KEY_DATA,22);

switch(type)
{

case 1 /* name */ : xv set(name tpi,PANEL VALOE, 1111 ,NOLL);break;
case 2 /* firstname */-: xv set(fname tpi~PANEL VALOE, 1111 ,NOLL);break;
case 3 /* specialization */:xv set(spec tpi,PANEL VALOE, 1111 ,NOLL);break;
case 6 /* insert */ : - - -

xv _ set (insert_name _ tpi, PANEL_ VALUE, 1111
, NOLL) ;

xv set(insert fname tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(insert-init tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(insert-phnum tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(insert-loc tpi,PANEL VALOE; 1111 ,NOLL);
xv-set(insert-wg tpi,PANEL VALOE,"",NOLL);
xv-set(insert-ser tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(insert-resp tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(insert-spec-tpi,PANEL-VALOE, 1111 ,NOLL) ;break;

- case 7 /* modify */ : -
xv set(modify name tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(modify-fname tpi,PANEL VALOE,"",NOLL);
xv-set(modify-init tpi,PANEL VALOE,"",NOLL);
xv-set(modify-phnum tpi,PANEL VALOE, 1111 ,NOLL);
xv=set(modify=loc_tpi,PANEL_VALOE, 1111 ,NOLL);
xv set(modify wg tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(modify-ser tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(modify-resp tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(modify-spec-tpi,PANEL-VALOE, 1111 ,NOLL) ;break;

- case 8 /*.delete */ : -
xv set(delete name tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(delete-fname tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(delete-init tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(delete-phnum tpi,PANEL VALOE,"",NOLL);
xv-set(delete-loc tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(delete-wg tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(delete-ser tpi,PANEL VALOE, 1111 ,NOLL);
xv-set(delete-resp tpi,PANEL VALOE, 1111 ,NOLL);
xv=set(delete=spec=tpi,PANEL=VALOE, 1111 ,NOLL) ;break;

} /* end of Erase ntproc */

14 void Quit_ntproc(button, event)

8

void Quit_ntproc(button, event)

Panel item
Event

int type;
int act·ion

button;
*event;

type= xv_get(button,XV_KEY_DATA,22);
switch(type)

case
case
case
case
case
case
case
case

1
2
3
4
5
6
7
8

xv_destroy_safe(name_frame); name_frame = 0; break;
xv_destroy_safe(fname_frame); fname_frame = 0 ;break;
xv destroy safe(spec frame);spec frame=0; break
xv=destroy=safe(allinfo_frame);allinfo_frame=O; break
xv destroy safe(acti frame);acti frame=0; break;
xv-destroy-safe(insert frame);insert frame=0; break
xv-destroy-safe(modify-frame);modify-frame=O; break
xv=destroy=safe(delete-frame);delete=frame=O; break

/* end of Quit_ntproc */

15 Allinfo_proc()

Allinfo_proc ()
{

Panel panel;

if (allinfo frame !=0)

xv_set (allinfo_frame,XV_SHOW, TRUE);
return(0);

allinfo frame= (Frame)xv create (NULL,FRAME,
FRAME_LABEL, "Consult : All information",
xv· SHOW, TRUE,

- XV_KEY_DATA, 22, 4,
NULL);

panel= (Panel)xv_create (allinfo frame,PANEL,
XV_KEY_DATA, 22, 4,

NULL);

xv_create (panel, PANEL_BUTTON,
PANEL_LABEL_STRING, "Next",
PANEL_NOTIFY_PROC, Next_ntproc,
PANEL_ITEM_X, 20,
PANEL_ITEM_Y, 20,

XV KEY_DATA, 22, 4,
NULL);

xv_create (panel, PANEL_BUTTON,
PANEL LABEL STRING, "Previous ",
PANEL=NOTIFY_PROC, Previous_ntproc,
PANEL_ITEM_X, 80,
PANEL_ITEM_Y, 20,

XV KEY_DATA, 22, 4,
NULL);

xv create (panel, PANEL BUTTON,
PANEL_LABEL_STRING, "Quit",
PANEL_NOTIFY_PROC, Quit_ntproc,
PANEL_ITEM_X, 185,
PANEL_ITEM_Y, 20,

XV KEY_DATA, 22, 4,
NULL);

9

10

allinfo_name_tpi = xv_create (panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Name
PANEL_VALUE_DISPLAY_LENGTH, 30,
PANEL ITEM X, 20,
PANEL=ITEM=Y, 60,

XV KEY_DATA, 22, 4,
NULL);

Il ,

allinfo fname tpi = xv create (panel, PANEL_TEXT,
PANEL_LABEL_STRING, "First name
PANEL VALUE DISPLAY LENGTH, 30,
PANEL=ITEM_X, 20, -
PANEL_ITEM_Y, 90,

XV KEY_DATA, 22, 4,
NULL);

allinfo init tpi = xv create (panel,
PANEL LABEL-STRING, "Initials
PANEL=VALUE=DISPLAY_LENGTH, 30,
PANEL ITEM X, 20,
PANEL=ITEM=Y, 120,

XV KEY_DATA, 22, 4,
NULL);

PANEL_TEXT,
Il ,

allinfo phnum_tpi = xv_create (panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Phone number
PANEL_VALUE_DISPLAY_LENGTH, 30,
PANEL_ITEM_X, 20,
PANEL_ITEM_Y,. 150,

XV KEY_DATA, 22, 4,
NULL);

allinfo loc_tpi = xv_create (panel,
PANEL LABEL STRING, "Location
PANEL=VALUE=DISPLAY_LENGTH, 30,
PANEL ITEM X, 20,
PANEL=ITEM=Y, 180,

XV KEY_DATA, 22, 4,
NULL);

allinfo wg tpi = xv create (panel,
PANEL_LABEL_STRING-;- "Workgroup
PANEL VALUE DISPLAY LENGTH, 30,
PANEL=ITEM_X, 20, -
PANEL_ITEM_Y, 210,

XV KEY_DATA, 22, 4,
NULL);

allinfo ser_tpi = xv_create (panel,
PANEL LABEL STRING, "Service
PANEL=VALUE=DISPLAY~LENGTH, 30,
PANEL ITEM X, 20,
PANEL=ITEM=Y, 240,

XV KEY_DATA, 22, 4,
NULL);

PANEL_ TEXT,
" ,

PANEL_TEXT,
"

PANEL_ TEXT,
" I

·allinfo resp tpi = xv~reate (panel, PANEL TEXT,
PANEL_LABEL=STRING, "Responsibilities ",­
PANEL VALUE DISPLAY LENGTH, 30,
PANEL=ITEM_X, 20, -
PANEL_ITEM_Y, 270,

XV KEY_DATA, 22, 4,
NULL);

allinfo spec tpi = xv create (panel,
PANEL LABEL-STRING, "Specialization
PANEL=VALUE=DISPLAY_LENGTH, 30,
PANEL_ITEM_X, 20,
PANEL_ITEM_Y, 300,

XV_KEY_DATA, 22, 4,
NULL);

window fit(panel);
window=fit(allinfo_frame);

} /* end of Allinfo_proc */

16 void Activities_proc()

void Activities_proc()
{

}

17 void lnsert_ntproc()

void In~ert_ntproc()

18 void Modify _ntproc()

void Modify_ntproc ()

19 void Delete_ntproc ()

void Delete_ntproc()

20 void Next_ntproc()

void next_ntproc()
{

}

21 void Previous_ntproc()

void Previous_ntproc()
{
}

PANEL_TEXT,
" ,

11

22 void Quit_all_nt()

12

void Quit_all_nt()
{

exit{O);
}

/* END OF PROGRAM PHONEBOOK */

