Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE  researchportal.unamur.be
DE NAMUK

THESIS / THESE

MASTER IN COMPUTER SCIENCE

Comparison of two Graphical User Interfaces : XView and Motif

Gillard, Serge

Award date:
1991

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025


https://researchportal.unamur.be/en/studentTheses/6011612c-aad3-48b9-a633-b87f3ee883c0

Faculiés Universitaires Notre-Dame de 1a Paix
Institet d'Informatique

Rue Grandgagnage, 21, B-5000 NAMUR (Belgium)

Comparison of two Graphical User Interfaces :
XView and Motif

Serge GILLARD

Promotenr: Professeur Baudouwin Le Charlier
Mémoire présenté en vue del'obtention
du titre de Licencié et Maitre en Informatique

Année académique 1990-1991



ABSTRACT

This thesis first of all presents the general principles of windowing
systems used on networked graphical terminals. We detail afterwards two toolkits
( XView and Motif ), or interface creation languages. Then we present two
versions of an application each of which uses one of these toolkits and we define
agenericinterface creationlanguage fromthe two specific ones. A comparison is
finally established between XView and Motif and is partially based on these
applications.

RESUME

Ce mémoire présente tout d'abord les principes généraux des systémes de
fenétrage utilisés sur des terminaux graphigues connectés en réseau. Nous
detaillons ensuite deux boites 4 outils graphiques ( XView et Motif ) ou langages
de création d'interfaces. Nous présentons alors deux versions d'une application
utilisant chacune un de ces "toolkits” et nous définissons un langage générigue de
création d'interfaces sur base des deuwx langages spécifiques présentés. Une
comparaison estfinalement établie entre X View et Motif en se basant notamment
sur cesapplications.



Acknowled gements

We would like to thank all the people who helped us in the writing of this thesis.

First of all, we wish to thank Bernard Geubelle from BIM, who gave us the
opportunity for performing that traineeship. We would like to thank him for his helpful
guidance and for his precious time he devoted to our work.

It would be unfair to forget a few people from BIM who occasionnally helped vs
for specific difficulties : Danny Backx, Thierry Delhaye, Philippe Dromelet, Olivier
Dubois, Bernard Heuse and Peter Strickx.

We would like especially to thank our promoter, Baudouin Le Charlier, who read
our drafts and made many interesting comments, as well as his collaborator, Yves
Deville.



Table of Contents

INErodUCHIOn ... 1
Chapter 1 Principles of windowing systems........ ... ... .o 2
1.1. Field of study and hardware requirements..............ooooeiviviiiinannn 2
1.2, Windowing SYSUEMS. ........c.iiuiininiiiiiiiiiiiii e 4
1.2.1. Definitionof a Window ..o, 4

1.2.2. Definition of a windowing system.................ooiii, 4

1.2.3. Types of windowing SyStems............coooviiiiiiiiniiiiininn. 4
1.2.3.1. Kernel-based windowing systems.......................... 4

1.2.3.2. Network-based windowing Systems.................co.eens 4

1.3. Graphicaluserinterfaces.............cocooiiiiiiiiiin 8
1.4. Completeexample ............ooiiiiiiiiiiiiiiic 9
1.5. Historical development...............oooooiiii i1
1.6, Available producCts ..o, 12
1.6.1. Window systems ...........o.oociiiiiiiiii 13
1.6.1.1. The X Window System ..............ooooiviiiiiinn 13

1.6.1.2. NeWS ..., 14

1.6.1.3. X/MNeWS ... 16

1.6.2. Lookandfeel.................oooiiin 16

1.6.3. ToolKItS ...oooviiiiiin 16
Chapter 2 XViewand Open Look ...... ... iiiiiiiiiiiiiiiiiiiiiaaa 18
2.1, XViewpackages............cooiiiiiiiii 18
2.1.1. Nonvisual ObJects.........ooviiiiiiiiiiii i 19
2.1.1.1. GenericObject.........cooooviiviiiiiiiii 19
2.1.1.2, SeIVer.....cooiiiiiiiiii 20

2,113, 80 n ..ot 20

2.1.1.4. Drawable..........coooiiiiiii e, 20

2115 Fullscreen ... 20

21106, CULSOE ...t 21

2117 Font. ..o, 21

2.1.1.8. Serverimage.........oooviiiiiiiiii 22

20,19, Notifier.......oooiiiiiiiii 22

212 Visual objects ..ot 22
212,01 Mefl. ..o 22

2.1.2.2. WINdOW ....ooiiiiiiiiiiii i 24

2.1.2.3. Subwindows...........o 24

2124 TEY (oo 24

21285 Panel...........oo 25

2.1.2.6. TeXISW......iiiiiiiiiiiiii i 26

2127 Canvas.... ..o 26

2,128, Frame.........coooiviiiiiiiii o, 28

2.1.2.9. Scrollbar.............coooi 29

2.1.2.10, TCOn.....oiiiiiiii 30

20211 Openwin ..., 30

2.1.2.12. NOUCE ..o 30

2.2, XVIew prografuming ... ........ooiuviiiiinitiiiiiiiaiiiaaiiae e ieas 31
2.2.10 XV AMHE. 31
222, XV OFeALE. ...ttt e 32

2.2.3. XV _destroy.....o.ooiiiiiiiiiii 32
224, Xv find. ..o, 33

2.2.5. KV _ oL i 33



2.2.6. KV SBl .ot e 34
2.2.7. TheNotifier ...........c.oociiiiiiiiiii 34
2.2.8. Structure of XView applications...............coooviiiiinninininn, 35
Chapter 3 OSF/Motif and the Xt Imtrinsics. ...l 37
3 L MOt WIGBEES ..ot e 37
31,1, Shell widgets.........ooovviiiiiii 39
L UL Shell oo, 40
3.1.1.2. OverrideShell ... 40
3113 WMShell ... 40
3.1.1.4. VendorShell...................coci 40
3.1.1.5. TransientShell .............cciiiiiiiiii 40
3.1.1.6. TopLevelShell ..................oooii 41
3.1.1.7. ApplicationShell ............oooiiiiiiiiii 41
3.1.1.8. XmMenuShell ........................... F P 41
3.1.1.9. XmDialogShell ..............cocoiiiii 42

3.1.2. Display widgets...........ocooiiiiiiiiiii 42
S L2.L Core.. i, 43
3.1.2.2. XmPrimitive ... ...l 43
3.1.2.3. XmArmrowButton .........ocoooni 43
3.1.2.4, XmPushButton...............ooiiiiii 44
3.1.2.5. XmDrawnButton...................... TP 44
3.1.2.6. XmLabel ....................... N 4
3.1.2.7. XmScrollBar...........oooooii [T 44
3128 XmList ..o, 44
3.1.2.9. XmSeparator.........oooiviiiiiiiiiiii e 45
31210 XmText ..o 45
31211 XmTextField ... 46
3.1.2.12. XmToggleButton.............. TR e 46

3.1.3. Container widgets ........ T e 46
3131 XmManager...........ocoi 46
3.1.3.2. XmDrawingArea...........c.ococovniiiii 47
3,133, XmFrame ..., 47
3.1.3.4. XmMainWindow.........ocoooiiiiiiiiiiii e 47
3.1.3.5. XmRowColumn............ccoiiviiiiii 47
3.1.3.6. XmScale.......oooiiiviiii 48
3.1.3.7. XmScrolledWindow...........ccocooiiiiiiiiiniinn 48
3.1.3.8. XmPanedWindow ...........c.ooiiiviniiin 49

3.1.4. Dialogwidgets..............cooviiiiiiiiiiiinnnns e, 49
3.1.4.1. XmDialogShell .................ocoiiiii 50
3.1.4.2. XmBulletinBoard ..................c.c 51
3.1.4.3. XmForm ... 51
3.1.4.4. XmMessageBox...................oo 52
3.1.4.5. XmSelectionBox .........oooviiiiiiiiii 52
3.1.4.6. XmCommandBoxX.............c..cooviiiiii 52
3.1.4.7. XmFileSelectionBoX................ocoiiiiinii 52
3.1.4.8. Dialog conveniencefunctions.......................oouvees 53

.15, GadgelS. ..o e 55
3.1.6. Menuwidgets......coooiiiiiiiiiiiiii i 56
3.1.6.1. Pop-upmenu Systems............cooviiiniiiiiniiinne. 56
3.1.6.2. Pulldown menusystems ...............coeeenininininenen. 57
3.1.6.3. OptionMenu SYSEMS. .......ooiiviriiiiiiiiinineiiennanen. 57
3.1.6.4. TheRowColumn widget....................oooiiiinnn, 58

3.2. Structure of a Motif application .............coociiiiiiiiiiiiiiii 58
3.2.1. Includeheaderfiles..............cccooiiiiiiiiiiiiiiiii 58
3.2.2. Initialize the Xt Inteinsics ..., 59
3.2.3. Createthewidgets....................ooiiin 61

3.2.3.1. Setupthe arguments of the widget ....................... 61



3.2.3.2. Create and managethe widgets............................ 62

3.2.3.3. Addthe callback routines foreach widget.
............................................................................ 63
3.2.3.4. Realizethewidgets.................covvvvninivnnnnnnn. 64
3.2.3.5. Enterthemainloop ............cocoooeiiinnnn, 65
Chapter4 Anapplication ........... ... 66
4.1. Selection of toolkitcomponents. ..................oooviiiiiin 66
4.1.1. Container cCoOmMPONeNtS ...........c.coouvviniriinnniiiiiiiiieniiinenn 67
4.1.2. Textcapabilities.....................oooiiiiiiii 67
4.1.3. Graphics capabilities .......................con 67
4.1.4. Menus...........oooiiiiiniii 67
4.1.5. Scrolling capabilities .....................con 68
4.1.6. Commands and ChOiCeS...............ooooviiiniiniini, 68
4.1.7. Informations ...........c.coeveiiiiiiiiniii 68
4.2. Description of the existing internal phonebook................................ 68
4.3. Aninternal phonebook application....................oooveiiiiiL 69
4.3.1. Information manipulated by the application....................... 69
4.3.2. Descriptionof theapplication ....................o.ooiiiinnnL, 70
4.3.2.1.Consulting ............covvviiiiiiiii 70
4.3.22.Updating .............oooeiiiiiiiii 70
4.3.2.3.QUitting. ... 71
4.3.3. Implementationof theapplication...........................o, 71
4.3.3.1. Themain Window..................cooviiiiinininn., 71
4.3.3.2. The Consultmenu ...............coooeiiinniniiinnnnn, 7
4.3.3.3. TheUpdatemenu .................c.covvevenenvniinnnnnn. 75
4.3.34.Quitting............oooiii 76
4.4. The Motif version of theapplication...................coooeiviiiiiiiiininnn, 77
4.4.1. Algorithmofmain..................coon 77
4.4.2, Algorithm of Kill _cbproc..................oooivi 79
4.4.3. Algorithmof Kill_ok_cbproc ...................oo, 80
4.4.4. Algorithm of Keys_cbproc..............oooeiviiiininn, &0
4.4.5. Algorithmof Search_cbproc..................... &1
4.4.6. Algorithm of Keys info proc..................ooo. 81
4.4.7. Algorithmof Move cbproc...................o 83
4.4.8. Algorithm of Quit_cbproc ................cooevviiiniiiniiinnn. a3
4.4.9. Algorithm of Quit_ok_cbproc.................cooveiiii 83
4.4.10. Algorithmof Erase_cbproc ................coooovviiiiiinniinn., &4
4.4.11. Algorithm of Choice_cbprac...................ooii, 84
4.4.12. Algorithm of Allinfo_proc ...................cooiiiin, &4
4.4.13. Algorithmof Activities_proc................ocoeeviiiiiniinin.. 85
4.4.14. Algorithmof Special_info_proc..........................onl, &5
4.4.15. Algorithmof Update_cbproc ..............coooeeiiiiiiiinn, 86
4.4.16. Algorithmof Check_cbproc ..., &7
4.4.17. Algorithm of Insert_cbproc...................coooiin 87
4.4.18. Algorithm of Modify cbproc................ooooviiiiiinin., 88
4.4.19. Algorithmof Delete_cbproc................ocoooeeiiini 88
4.5. The XView versionof theapplication.......................ll a8
4.5.1. Algorithmofmain..................co a8
4.5.2. Algorithmof Name_proc..............cocooviiinviiiiiinnnnin... 90
4.5.3. Algorithm of Firstname_proc ......................oi, 90
4.5.4. Algorithmof Specializ_proc................oooeeiiiii, 90
4.5.5. Algorithmof Keys proc............o..ooooviiiiiiinni, 90
4.5.6. Algorithmof Search_ntproc..............cooovvvviviiiinininin., 91
4.5.7. Algorithm of Keys_info proc.....................oo 92
4.5.8. Algorithmof Move_ntproc...........c.oooeevenviininiinininn. 93
4.5.9. Algorithm of Erase ntproc ...............ocooevviiiinii. 94
4.5.10. Algorithm of QUit_atproc .............cooovvviivininninin.. 94



4.5.11. Algorithm of Choice_ntproc.............ocovviiiiiiiin, 94
4.5.12. Algorithm of Allinfo_proc ..., 95
4.5.13. Algorithmof Activities proc...............cooiiiiiiiiiin. 95
4.5.14. Algorithm of Special_info_proc.............cocoviiin, 95
4.5.15. Algorithm of Insert_proc.................coiiiii, 96
4.5.16. Algorithm of Modify proc.............c..ooinnn, 96
4.5.17. Algorithmof Delete_proc ...............oco, 96
4.5.18. Algorithm of Update_proc............cocovviiiiniiiiiinnnn, 96
4.5.19. Algorithm of Check ntproc..............ocvviiiiiiiiinninn, 98
4.5.20. Algorithm of Insert_ntproc.............ooooiviviinn, 98
4.5.21. Algorithm of Modify ntproc.................coco 98
4.5.22. Algorithm of Delete_ntproc...........cc.oovviiiiiiiiiiiinnnn, 98
4.5.23. Algorithmof Kill ntproc................cocon 99
4.6. Comparison and generalization of the algorithms of the two
Az 03 Lo PSSP 99
4.6.1. Themainfunction ................oon 100
4.6.2. TheKeyssubmenu................oooiiii 102
4.6.3. The Searchprocedure............oooviiiiiiiinic 103
4.6.4. The Keys_info_procprocedure.....................cooi, 103
4.6.5. The Move and Erase procedures................coocovinnnnn, 104
4.6.6. The Quitprocedure...............cooiiiiiiiiiiiii 104
4.6.7. The Kill procedure. ..........cooiiiiiiiiiiiiiiiiiiii e 104
4.6.8. The Allinfo_proc and Activities_proc procedures............... 105
4.6.9. The Special_info_procprocedure...............coovvviiiiiinnnns 105
4.6.10. TheUpdatemenu ...................oinn 105
4.6.11. The Check, Insert, Modify and Delete procedures............... 106
Chapter 5 Comparisonof XViewand Moeif .. ... . .. .. . . .. ... 107
5.1, ContainercomMpPOnents ............ooviviiiiiiiiiniiiniiie e 107
5.2. Texteapabilities. .. ...t e 108
5.3. Graphicscapabilities ..o 109
S MEIUS. ... e 109
5.5.8crollingcapabilities ...............cocoi 109
5.6. Commandsand choiCes.................oociiin 110
S5.7.Informations. ... ....ooiiiii 1981
5.8. MiscellaneousComMPOnEntS . .......o.viiiiiiiii it anenes 111
SO FUNCHONS . ..ot 111
S.10. ConClusion. .......oooiiiiii 112
ComCIUSION. ... o iiiiireiiciiietiataane s 114
Bibliography
Annexes

AlMotifapplicationcode
A2 XView applicationcode



List of figures

figure 1.1. client-server model of a windowing system .................... 5
figure 1.2. structureof aGUI ... 8
figure 1.3. complete example of windowing architecture ..................., 11
figure 1.4. the Postscriptimagingmodel................oooi 15
figure 1.5. major possibilities offered by the X architectures....................... 17
figure2.1. the XView classhierarchy ..................coonn 19
fIgUre 2.2, CULSOLS ....iiiiiiiiii 21
figure2.3. choiCeitems. .. ... 22
figure2.4. eXCIUSIVEILEIMIS .. ...ttt 23
figure2.5. nONeXClUSIVEILEIMS. . ...t 23
figure 2.6, POP-UPMEMU .. ..ottt 23
figure2.7. panelitems........oooiiiiiiiiii 25
figure 2.8. property WindoW............ooiiiiiiiiiiiii 26
figure 2.9, text SUbWINAOW ........coiiiiiiiii 26
figure 2.10. CaNVAS. .. ..., 27
figure2.11. atypicalframe ...............ooiiin 29
figure 2,12, CONS ...t 30
figure2. 13, NOUCE. ... 30
figure2.14. event-driven programming ..........o.oooiviiiiiiiiiiiiiii . 35
figure 3.1. basic widgetclasshierarchy .................oo o 38
figure 3.2. Shell widgetclasses ................ooiiiiii 39
figure 3.3. display widgetclasses................cooiiiiiin 42
figure 3.4. ArrowButton Widgets ..............c.coi 43
figure 3.5, List widgets... ..o 45
figure 3.6, TextWidget.........cooiiiiiiiiii 45
figure3.7. ToggleButtons.................oi 46
figure 3.8. container widgetclasses.................ooo 47
figure 3.9. RowColumnwidget................oo 48
figure3.10. Scalewidget..............ooooiiiiiiiiii 48
figure 3.11. PanedWindow .................coii 49
figure 3.12. Dialog widgetclasses.................cocoiiiin 50
figure 3.13. Formwidget ............oooiiiiiiiii 51
figure3.14. Command widget................coooiiiiii 52
figure3.15. WarningDialogwidget....................oo 53
figure 3.16. QuestionDialogwidget................cooiiiii 54
figure3.17. FileSelectionBoxwidget................... 54
figure 3.18. Gadget Classes..........ooiiiiiiiiiii 55
figure 3.19. top-level of a pop-upmenu system...............oooiiin 56
figure 3.20. complete pop-Up MENU SYSLEML.......oiiiiiiiiiiiiii s 56
figure 3.21. pulldown menu System ...........ocoiiiiiiiiiiiiiiiii 57
figure 3.22. top-level of anoption meausystem ... 57
figure 3.23. oplioAMENU SYSLEM ... ... oottt 57

figured.1. the main Window...............oooiiiiiiiiiii 71



figure4.2. the Consultmenu ...............oo 72
figure 4.3, adialog WindoW ... ... 72
figure 4.4, anerror window ... 73
figure4.5. acomplete information Window............cociiiiiiiiiiiii 74
figure4.6. aninformation window forthe activities................coooiviiiiiiin . 74
figure4.7. the Update Menu .. ..o it e 75
figure 4.8. anupdate Window ... 76
figure4.9. the confirmation Window ..ottt 717
figure 4.10. widgets of the application's main window .............c...occoviiniin, 78
figure4.11. widgets of a dialog window...............cooiii B0
figure 4.12. widgets of an information window...................ccoc, 82
figure4.13. widgets of aninformation window for the activities .......................... 85
figure 4.14. widgets of anupdate window................... 86
figure4.15. theobjects of the application's main window..............ocooo, 89
figure 4.16. the objects of adialog Window ..............oocii 91
figure 4.17. the objects of an information Window ............ocoviiiiiiiiiin i, 92
figure 4. 18. the objects of aninformation window for the activities....................... 96
figure 4.19. the objects of anupdate window ..., 97
figure 4.20. generic representation of the main window ..., 102



To my parents,
for their generous and constant suppost
throughout all these yearsspentin callege




Introduction

This thesis is the realization of a traineeship at the BIM ( Belgian Institut of Management,in
* Everberg, near Brussels ). The idea was to establish a synthesized presentation of many concepts
and tools related to windowing systems in order to study and compare two emerging interface
creation languages: XView and Motif.

XView and Motif are competing at different levels onthe field of graphical user interfaces :
the programming approach and the look and feel. Both toolkits have their supporters and their
detractors and until now it does not appear that X View or Motif is completely supplanting the other.
We shall especially consider the programming approach. We intend to show that they both have
theirown specific characteristics, advantages, and disadvantages.

Another goal of this work has a more theoretical aspect. The problem is to determine a way
of expressing generic algorithms of applications in order to either produce XView or Motif
applications. Nevertheless, the reader should not expect to be able to write XView or Motif
applications at the end of this thesis.

The first chaptec presents principles and concepts of windowing systems, among which are
toolkits. The second and the third chapters detail two particular of these toolkits, X View and Motif.

Both chapters are divided in two parts : the first one deals with the graphical object. Many figures
illustrate the most interesting of them, in order to present at the same time respectively the Open
Look and the Motif look & feel. The second part presents the functions that can be used to
manipulate these objects. Thefourth chapter presents an application, its algorithms for the XView
and the Motif versions, and from them, defines a generic language used to describe generic
algorithms that can beinstanciated to either an XView or a Motif one. The fifth chapter presents a
comparison of the two toolkits from a particular point of view : the programming approach.



Chspier I
Principles of windowing systems

The aim of the first chapteris to define the general frame for the next ones to be placed in.
However, this chapter also presents the necessary background for understanding further non-
specific readingson the subject.

As windowing systems are only a small part of computer science, this chapter will first delimit the
field of study concerned with this work and present the underlying requirements.

This field is quite new and still evolving, in comparison with other ones. Therefore, we shall
respectively present basic concepts needed by the reader to understand the core of this work and the
terminology mostly used in technical literature.

Anhistorical partfollows and leads to a presentation of some current products related to the basic
conceptsdefinedbefore.

1.1. Field of stud b ireme

Network computing is the most recent stage in the evolution of computer systems.

The first systems allowed batch processing in which only one user at a time could use the only
available machine. This limited system became more and more unacceptable because of
performance requirements. Time-sharing processing, a system to accomodate many users on a
single machine, was an initial response to such problems, yet it was still to be overtaken.

The development of microprocessors and networking gave birth to individual computers ( PCs and
workstations ) linked ina Local Area Network (LAN ).

Such PC or workstation networks are called workgroups. They take advantage of a shared
environment consisting mostly of printers and disks. But, as mentioned, such configurations utilize
only one kind of computer : PCs or workstations.



The last step of this development is network computing . Unlike the workgroup model, the network
mode! is based on heterogeneous computers of many brands. It distinguishes between display
devices and computing devices.

A display device allows the user to directly access a network, give commands to run an
application, and see theresults displayed. Generally, adisplay device can be a standard terminal, a
network display station, a PC, or a workstation.

A petwork display stafion is a workstation-style terminal only dedicated tolocally running a server.
This server displays the results of an application running on a remote host. Except for the standard
terminal, these devicesarebit-mapped display devicesthatallow graphicapplications.

A bit-mapped display screen is made up of dots, or pixels ( picture elements ), each of which is
represented in memory by one or more bits. The image on the screen may therefore be altered by
changing the value of these bits.

The computing device is the machine that runs the application. It can be a “super” or “mini”
computer, a mainframe, a workstation or aPC, as long as it has the same communication protocol
asthe display devices.

The display and computing functions may be held simultaneously by the same machine.

Regardless of the fact that all machines can be of different types and can come from different
vendors, with this system of networking the user can access any computer. Network computing
allows an application to run on another machine, according to the uset’s needs and the capacities of
the network devices. Many applications can run on different hosts and be displayed simultaneously
onaseparate device.

Network computing thus provides great flexibility. Windowing systems and user interfaces ( whose
concepts will beexplained later ) ensure thisflexibility.

Moreover, windowing systems are based on the model of the desktop metaphor. It allows the user
to work just as someone sitting at a desk. At a desk, one can work with several sheets of paper,
each one for a specific purpose, modifying from time to time the positions of the sheets and the
order in wich they are piled. One can take a new sheet and fill it or change the contents of an
existing one. A sheet can be destroyed ot folded and set aside.

In windowing systems, such sheets of paper are windows.



1.2. Windowing systems

This section will present certain windowing system concepts. However, the desired clearness may
be lacking attimes, due to both the generality in describing the various systems, and the variety of
terms resulting from the various viewpoints from which the systems can be described.

.1. Definition of a win

From the user's point of view, a window is a well-defined, typically rectangular seztion of the
screen dedicated to a particular activity and containing texts and/or graphs. Many types of windows
exist. Each type defines particular characteristics, among which is the activity allowed in this
window.

1.2.2. Definition of a windowing system

A windowing system is a union of hardware and software components that allows windows to be
displayed and manipulated onabit-mapped device.

In the related litterature, the expression 'window system’ has two meanings. An additional
expression 'windowing system' will be introduced to differentiate these meanings : a window
system is only a part of a windowing system and will be discussed later.

1.2.3. of windowi ms

Two types of windowing systems have been developped : Leynetf-pased’ windowing systems and
setwork-based (also server-based or distributed ) windowing systems.

1.2.3.1. Kernel-based windowing systems

In kernel-based windowing systems, only the display device directly connected to the computer
running an application can receive its output, including graphics and textinformation. Kernel-based
windowing systems are typically used on stand-alone PCs and will not be discussed any further ;
rather the focus will be on network-based windowing systems.

1.2.3.2. Network-based windowing systems

Network-based windowing systems allow any display device on the network to be the destination
of an application's output. In other words, an application may be running on a computer while
displaying its graphs and/or texts on aremote display device onthe network.



These systems are based on a client-server model and they are built according to the layered
architecture given in figure 1.1. . The client- and server sides correspond to the computing and
display devices respectively. Each layer of each side is a software component of the windowing

system.
Client side Server side

mouse Keyboard screen

client \l/
device-
depandent
tootkit layer
window window
system server

Network

----------------

figure 1.1. client-server modef of a windowing system
Server side

The server side of the model corresponds to the display device. To this device are connected two
input devices the user can utilize to interact with an application. These elements are a keyboard and
a pointing device which is generally a mouse ( with at least one but usually two or three buttons ).
Attention should be paid to the expresion' mrmbw seyvey ', or '_seyver ' There are two important
differences between a window server and a traditional secver on a network :

1. Aserver in this model is not a piece of hardware but a software.
2. It does not exist on a unigue place on the network but on each display device.

Moreover, the window server is always located on the display device, not on the computing
device, unless bothdevices be the same machine.

When a device is both a computing and a display device, the application can be displayed on the
machine running it, and the network-based windowing system behaves, in this case, almost like a



kernel-based one. Whenan applicationis displayed on the machine running it, clearly the server is
located on the computing device, asboth parts of the client-server model are merged.

The word 'server’ is used in fact because it manages shared resources ( the display and input
devices ). It receives requests which tell it to perform operations on the graph and text elements
displayed on the device it controls. In the opposite direction, the server collects events related to
these components and transmit them to the application that created them ( an event is a kind of
internal signal produced by inputs and manipulations of windows. These inputs and manipulations
are possible thanks to the keyboard and the pointing device ).

A window server communicates both with clients by using a common protocol, and with input
devices and the screen due to a dewice-dependent layer. The device-dependent layer has to be
changed when an input device is changed, but the server is always of the same type for a given

window system.
Client side

The client side of the windowing system represents three levels of software components on a
computing device.

The upper level isthe clrear level. Two types of clients exist, applications and window managess,
and are considered exactly in the same way by the server.

An applicatron is written in a traditional programming language, usually the C language. The
application incorporates elements from a toolkit layered on the second level or from a window

system onthe third level. These elements are mixed with the normal code.

A wigdow manggeer 1s a client  thus software ) directly based on the window system layer. Its
goal is to arbitrate conflicting demands for the shared resources of the display device : screen
space, mouse, keyboard. It manages the positions and sizes of all windows and interface
components appearing onthe screen.

The window manager determinestwo importantthings.

1. It decides whether the windows will be allowed to overlap or whether they mustbe tiled
side by side.

2. It decides whether the keyboard focus will simply follow the pointer on the screen from
window to window or whether the user must click a mouse button in a window to allow

input in this window.



As a window system generally does not impose any policy for realizing the desktop metaphor, a
window manager compensates for this intentional lack of rules. It can be said a window manager
puts the desktop metaphor in concrete form by implementing such particular rules. An application
usually gives a window manager hints to specify how it would like its windows be treated.
However, the window manager is not obliged to follow them.

A (oolfar provides an application with elements to create an interface. A toolkit consists of three
parts:

1. Asetof prebuilt graphical or textual interface components often referred to as objects or
widgets ( the word 'widget' is probably an abbreviation of 'window object’ ).

2. Aset of routines for creating and manipulating these objects on the screen.

3. Aframework, which is a more abstract mechanism, which

a. defines the way of using objects and routines in an application code, that is to
say definesa programming approach

b. allows the creation of new widgets

c. provides an internal dispatch loop, in order to get asynchronous inputs and
events related to particularobjects, and managing them.

Further chapters will describe particulartoolkitsina more detailed way.

The wrndow system is the core of the windowing system. It provides a low-level set of routines
used to implement the toolkits. An application can aiso directly call these routines, in order to
access low-level mechanisms. Thisis a means of improving performance, for example. Such calls
_are sometimes necessary because no corresponding function existsin thetoolkit, especially for pure
graphic needs. However, using a toolkit in an application brings the advantage of consistency
between all objects and their behavior, whereas when it directly calls the routines of the window
system, an application must itself ensure this consistency.

These routines are directly used by applications as rarely as possible because they are really not
convenient when compared to those provided by a toolkit.

They allow the communication across the network to the server in a hardware-independent and
network-transparent way. They do this by conforming to the protocol defined by the window

system.



i.3. ical user interfaces

This section presents some relatively ambiguous terminology. The terms introduced here do not
refer to new concepts but rather give another, restricted point of view. Until now, we have
presented the whole network environment. This section particularly deals with the description of the
interface of an application running in sucha system.

In a strict sense, a_Griphitcal Useraterface ( GUI ) is what the user sees and uses on the screen.
According to Frank Hayes and Nick Baran in [ Hay 89 ], a graphical user interface is the union of
the following parts :

-apointing device, typically amouse

- on-screen menus that can appear or disappear under pointing-device control

- windows that graphically display what the computer is doing

- icons that represent files, directories and so on

- dialog boxes, buttons, sliders, check boxes and many other graphical objects that let the
application be told what to do and how todo it.

The first sense of GUl s thus essentially a set of graphical objects displayed ona screen.

The precisechoice of graphical objectsis made by each particular GUI.

The second sense of a GUI is a structure corresponding to the client side of the client-server
model of windowing systems. Figure 1.2. shows this structure.

Gul Client side
client
look &feel
API ——— toolkit
B window
rea] izalion system

--------------------

figure 1.2. structure of a GUI



Each layer of this structure caracterizes one aspect of the GUIL

A Jook and fee/ refersto a client. A client may only have one look and feel. This one defines the
visual aspect of all objects displayed on the screen (how the user sees them ), the way they can be
manipulated ( how the user 'feels’ them ), and the way they react to inputs ( how they ‘feel' the
user ). A look and feel is nothing more than a specification and for the most part, is only based
upon subjectiveideas and principles.

As it is a client, a window manager also has a defined look and feel. However, the look of a
window manager only appears in the frame encapsulating windows created by an application. This
is especially easy to see when an application with a particular look and feel is controlled by a
window manager with another look and feel. In this case, it can be said which part of the interface
is brought by the application and which part is brought by the window manager.

An Application Frogramming Inferfice ( APl ) implements a particular look and feel by giving the
applicationprogrammera set of objects which follow the rules defined by this particular look and

feel and a set of routinesto create and manipulate these objects.

In other words, an APlis a toolkit. However, the meaning of 'API' is sometimes restricted to the
set of routines.

Many APIs may exist that implement the same look and feel but a particular API only implement
one look and feel.

The realization tayer represents the window system allowing the communication with the server.
A particular AP1 is only based on one realization layer, while the latter may be the base for many
APls.

1.4. Complete example

Figure 1.3. showsa complete example of windowing architecture.

Six devices are connected in a LAN by a physical link. Device 6is a display device, runs a window
server, whereas devices 1, 3, 4, and 5 are computing devices running clients ( applications and
window managers ). Device 2 acts at the same time as a display device and as a computing device.
Thelogical links join computing devicesand their respective display device(s). All clients of device
1 send their outputs to device 2. All clients of devices4 and 5 do the same towards device 6, which
allow clientsrunning on different devices to be displayed on the same display device. Device 3 is
connected to both display devices at the same time. That allows a client to be displayed in many
placesatthesametime,



Three clients runs on device 1 : an application layered on a toolkit, an application directly based on
the window system and a window manager. The number caracterizing a toolkit or a window
manager indicates the look and feel they implement. For example, toolkit | allows the creation of
objects with look and feel 1.

Application 3 is layered ontoolkit 3 and is run and displayed on device 2. Even in such a case are
the window server and the window system necessary. No particular implementationis foreseen for
the case of a computer that isboth the computing and the display device of an application.

Four applications are displayed on device 2 : applications 1 and 2 running on device 1, application 3
running on device 2 and application 4 running on device 3. They all are managed by window
manager 1 running on device 1. These applications use different toolkits, thus different look and
feel are visible at the same time on the same screen. This example illustrates the fact that an
application with a particular look and feel canbe managed by a window manager with another look
and feel.

At the other end of the LAN, application 4 is based on toolkit 1 and is running on device 3.
Application 5 isbased on toolkit 2 and is running on device 4. Both applications are displayed on
device 6 and are managed by window manager 2 running on device 3.

Such a configuration is not fixed but can be changed by giving other command-line parameters
when invoking clients.

This figure represents a LAN. However, the same functionalities could be obtained in a Wide Area
Network ( WAN).

10



11

Device 1 Device 2
application 1 device- | APPIication 3
application 2| Window et oolkit 3
toolkit 1 manager | aver
. server system
window system
} Device3 Device 4 Device 5 Device 6
application 4 application 5 , device-
E menceer 2 dopendent
Pl toolkit 1 toolkit 2 age ayer
t| window window window window
i | system system system server

——  physical link
.......... logical link

figure 1.3. complete example of windowing architecture
1.5. Historical de ment

The history of graphical user interfaces began fast twenty years ago, in the seventies. The only
existing user interfaces available to access the capabilities of a computer was until then the simple
sequential interface. Itsfirst characteristic liesinitsname : 'sequential’ means that the simultaneous
executionand control of many processes is not possible. It second characteristic is the support : a
character-based display device.



So was the situation when the Xerox's Palo Alto Research Center ( PARC ) started researches
grouped into many projects . Smalltalk, Star, Cedar, ... These brought the first basic ideas of
GUIs.

Among them were :

- bit-mapped display devices which became workstations

- pointing device ( mouse )

- windows : well-defined sections of the screen, dedicated to particular types of activities
and able tobe manipulated according to preciserules

- icons : small graphical representations of closed windows ( temporarily not used by the
user )

- direct manipulation of objects on the screen.

Sidelights on history say that Steve Jobs ( from Apple ) once visited PARC, saw the Star system
and from it created the Macintosh in 1984. This new-style computer was one of the first after Xerox
to bring on a broad public market the results of Xerox's researches. The Macintosh interface has
been for a long time the GUI's reference whose definition stands for a general definition of GUIs.

As the goal of Xerox's researches was not consistency through the management of a well-defined,
unique project, but explorations towards all directions, many ideas were developed ( and were
sometimes in conflict with each other ). This gave birth to many different products from Xerox and
from other companies influenced by Xerox's researches : Apple, Sun, Microsoft, to mention only a
few.

1.6. Available wcts

Many GUI exist, as shows the following table. The most important components given here will be
presented further.

Lookandfeel OPENLOOK OPENLOOK OPENLOOK Motif OPEN LOOK

APl Xt/ Xe+ Xt/OLIT XView Xt/ Xm NDE

Realization X X X X NeWS

12



Lookandfeel OPENLOOK NextStep MS-Windows Presentation Manager
API tNT NextStep  MS-Windows Presentation Manager
Realization NeWs Postseript  MS-Windows  Presentation Manager

1.6.1. Window systems

Two important network-based window systems are competing : X and NeWS .
They have been merged in a unique window system : X/NeWS.

1.6.1.1. Th i S

X Window System, commonly referred to as X, is a non-proprietary system developed in
collaboration with Digital Equipment Corporation and other companies by MIT's project Athena
from 1984. The problem was the use of networked graphic workststions as a teaching aid for
students. The presence of different hardware ledto a hardware independent solution.

Xtakes its origins in the W windowing package developed at Stanford University. Several versions
have been achieved from X version 1 ( X1 ) to X10. X version 10 release 4 ( X10R4 ) was the first
basis for commercial products in 1986. Then other versions came, from X11R1 in September
1987 to X11R4 in Janvary 1990.

X11 should be stable for a few years, thus allowing the development of X applications. It is
moreover becoming a de facto industry standard. However, X is extensible, which means it is
possible to add new primitive operations to the window system. Its code includes a mechanism for
incorporating such extensions so that it will not be necessary to scaa all lines of code to extend the

system.

Since X11R2, X is controlled by the X consortium, formed in January 1988 : an association of
computer manufacturers, software houses and universities. Software houses and universities are
associate members which receive advance accessto new releases.

The X Window System defines a network protocol and offers a library of low-level routines.

13



The X protocol

The protocol enables the communication between clients and servers via messages built on this
protocol. They use this protocol even if they reside on the same machine. The X protocol
distinguishes between request messages on one hand and event messages on the other hand.

KReguesty messages are sent by the application to the server.
An application can send a request message to the server by using routines from a library called
Xlib.

Lveqr messages are sent by the server to the application when the user interacts with the
application moving the mouse, pressing a mouse button or a keyboard key or using the window
manager. The server then detects that something affecting the application happened and informs it
of that fact.

The X library

Xlib provides an application with a set of routines for generating and sending requests to a server
so that the application programmer does not have to deal withlow-level protocol details.
Xlib offers four kinds of primitives :

1. Normal calls generate most of the requests.

2. Convenience functions are a simpler and more efficient way of generating some of the
requestsalready provided by normal calls.

3. Service functions perform local operations without using the network connection with
the server. Service functions thus generate no protocol requests.

4. Informational macros and functions return information about the display’s capabilities
used by the application. Such routines are very important for developping portable
applications.

1.6.1.2. NeWS
NeWS stands for Network Extensible Window System and has been developped by Sun. It is an

operating system- and device independent system with a client-server foundation similar to that of
X but it is based on Postscript.

Postscript isboth a desctiption language and a programming language.

14



15

Postscript asa descriptionlanguage

Postscript provides a device-independent standard for representing pages to be printed. Postscript
definesgraphic operators, graphic objects and animaging model.
Thegraphics operators are used to create graphic objects and to control their placement.

Theoriginality of Postscript asa description language is its paint-and-stencil imaging model.
An imaging model is a set of rules incorporated in the design of a graphic system and refers to the
capabilities of this system and to the manipulation of the contents of a window. In NeWS, the
imaging model is based on lines, curves and stencils rather than pixels.
The Postscript imaging model has a very abstract nature with respect to the objects it can produce.
An image is built by passing some paint through a stencil before being applied to the drawing
surface, as shown by figure 1.4. . The paint consists either of pure colored ink ( including black
and white ) or of a complex texture or image. The stencil determines a possibly complex shape with
lines and/or curves. This shape represents for the paint a passage through a bigger defined surface.
When superimposing the paint and the stencil, only the part of the paint corresponding to the shape
" willbe printed on the drawing surface.

“ed.

figure 1.4. the Postscript imaging model

The reader should not understand this explanation as the way of getting a printed page from a
printer. This metaphor related to a concrete process only gives better chances to catch the basic idea
of this imaging model.



Postscript as a programming language

Postscript allows a page description generated by an application to be run by the Postscript
interpreter located on the printer-side, in order to producethe corresponding printed page.

NeWS extends the capabilities of the Postscript language so that the printer can be replaced by a
screen.

This extension of the Postscript language means thatinstead of transmitting all the data describing a
geometric figure, you only need to transmit the program creating it. Such a method has evident
advantages as far as data compression is concerned.

The wotkstation industry recognizes X and NeWS as the only windowing systems which could
become standards. They were even recently merged to provide a unique server. X11/NeWS ( also
known as X/NeWS ) has an X and a NeWS interface to communicate with both X and NeWS
clients, and anunderneath common layer.

.2, Look and feel
Two important look and feel are in competition : Open Look and Motif .

To avoid a common mistake, the reader should keep in mind that Open Look is only the name of a
particular look and feel, not of a toolkit.

Motif is less restrictive in its meaning. It first refers to a look and feel essentially based on the
Presentation Manager look and feel but improved with the three-dimensional windows from the
Hewlett Packard’s New Wave GUI. In its second meaning, Motif refers to a X toolkit, as explained
inthe nextsection.

Other look and feel are, for example, Nextstep, Presentation Manager, MS-Windows.

1.6.3. Toolkits

On top of X has been developed the X Toolkit ( with a capital 'T' ) known as Xt. Xt is currently
partof the X standard. It defines routines : the Xt Intrinsics, and a set of widgets : the X Athena
widget set ( Xaw ) contributed to the X community by Hewlett-Packard.

An X toolkit ( note the small 't' ) is another set of widgets that can be used with the Intrinsics
instead of Xaw. However, a few basic widgets are defined by the X Toolkit and are used with any
X toolkit independently of the new set of widgets that are used. These toolkits often provide

16



supplementary specific routines. In the field of X toolkits, the tecm 'widget' is generally used rather
than 'object’.

Motif OpenLook OpenLook L&F
Xaw Xm Xt+
XView Toolkit
Xt
Xlib Window
system

figure 1.5. major possibilities offered by the X architectures
Two significative X toolkits exist :

Xm implementsthe Motif look and feel . It is mostly referred to as Motif.
Xt+implementsthe Open Look look and feel

Xt+ was developped by AT&T.
OLIT ( Open Look Intrinsics Toolkit ) is the name of the same toolkit licensed by Sun which
needed an Open Look solution based on Xt for the US government.

XViewimplementsthe Open Look look and feel, too. But it is not exactly an X toolkit because it
lies directly on Xlib, not on Xt. One could say that the XView ‘toolkit’ is equivalent to Xt and Xt+
taken together.

XView has been created by Sun to allow the migration of applications written with the SunView
APl in a kernel-based windowing environment (SunWindows ) towards a network-based
windowing one (X/NeWS).

NDE(NeWS Delopment Environment ) is another Open Look toolkit from Sun. It is based on the
NeWS part of X/NeWS and communicate viathe Postscript language.

The NeWS toolkit ( tNt ) is an experimental one.

In the following chapters, we shall only consider  XView and Open Look
Motif and the Xt Intrinsics.



This chapter is mainly based on [Hell 90], [SUN1 90], and [SUN2 90]. In the first part ,
we shall present the major characteristics of Open Look through the presentation of X View objects.
The secont part will present the basic principles of XView programming.

" 2.1 i C

We said in the section 1.6.3. that XView is not exactly a toolkit. However, we will use that term
from timetotime, keeping in mind that former restriction.

As do all toolkits, XView has predefined objects to be used for the creation of a GUI. These objects
are part of packages. A packageisa set of related elements : an object, attributes and procedures.
Actoolkit has some similarities with object-oriented languages and therefore the packages compose
what is known as the XView class hierarchy ( figure 2.1. ). However, 2 packages are not part of
thishierarchy : the Notifier and Notice packages.

XView distinguishes between visual and nonvisual objects.

Visual objects havetheir own appearance . frames, panels, windows, scrollbars are visual objects.
Nonvisual objects have no own appearance but contain information used to display visval objects.
Server, Screen and Fullscreen, for example, are nonvisual abjects.

Because they are placed in a hierarchy, packages inherit properties from their parent class ( also
called superclass ). Thus the root class ( the Generic Object package ) comtains some general
characteristics applicabletoall objects whereasother packagesdefine properties for themselves and
for their descendants. The more a packageisat a low level, the more it is specific. For example, a
text objectinherits general properties from the window class but also hasits specific characteristics.

18



Generic

Object
- G
Server l Screen ! Cursor (Drawable) Fuliscreenl Font III Menu !
- :
Server Window

Image

Frame | Tty (Openwin) I Scrollbar Icen
e e
Text Canvas

Panet

figure2.1. the XView class hierarchy

2.1.1. Nonvisual objects

Nonvisual objects do not contain or are not subclass of windows. They are part of the XView class
hierarchy except for the Notifier and Notice packages.
These objects are mostly used internally by XView rather than directly in an application.

2.1.1.1. GenericObject

The Generic Object or XV_Objectisthe root object of the class hierarchy. It contains certain basic
propertiesthat all objects share. Aninstance of this object can never be created for itself because it
has no function, butis implied in the creation of an object : after the creation of the root object, the
subclass of that object is created, then the subclass of that subclass is created and so on until the
object class of the type of object desired is created.



2.1.1.2. Server

The Server package is used to interact with an X server. An application begins by initializing the
XView toolkit. Doing this, it especially opens a connection to the server specified in the DISPLAY
environment variable of the operating system or in the command-line options if any. The
initialization function returns & pointer to that server that will be used as the default server for the
whole application. That server is seenby XView as an Xv_Server object. If the application mustbe
displayed on many displays, additional connections have to be made to the cotresponding servers
by creating Xv_Secver objectsfrom this server package.

The first server object is thus created as a side-effect of the initialization function while the possible
supplementary server objectsare created by thesimple creation function.

2.1.1.3. Screen

This package provides an Xv_Screen object representing the physical screen. Like the server
object, this one is created by the initialization function and is then retrieved by the application. All
XView objects appearing on this screen are associated with the Xv_Screen object. Because a
display device may have many associated screens, many screen objects may be created, one for
each screen.

Connecting to many screens should not be confused with connecting to many servers. A server is
attached to a display, thus controls many screens.

2.1.1.4 Drawable

The Drawable package is not a real package in itself. It groups the Server Image and Window
packages.

2.1.1.5. Fullscreen

AFullscreenobject allowsan applicationto force the end-user to perform certain operations before
being able to goon using all the capabilities of this application or of all applicationsdisplayed on the
screen. For example, a user could be forced to first acknowledge the fact that an existing file
already has the name he wanted to give to its own one, before giving it another name and saving it.
So the Fullscreen object is used to ask the user for an immediate response or to notify him of an
error that occured.

An application generally do not directly use the fullscreen package. The Fullscreen package is
mostly used by the Notice package to implement its functionality.

20



Defining the events the user may cause and creating the fullscreen object has the simple effect of
grabbing the server that is to say to temporarily stop its normal working. When the user performs
one of these expected actions, thefullscreen object is destroyed and the application works normally

again.
2.1.1.6. Cursor

A cursor is an image appearing on the screen to precisely locate the position of the pointer. Each
window may have its own cursor appearance but generally uses a default one.

When creating a cursor, two ways are possible. The first possibility is to create within the
application a server image that defines the aspect of the cursor. This server image is given to the
create function as the value of a particular cursor attribute. The second possibility is to give the
create functionthe value of another attribute. This attribute value consists of a predefined constant
representing an index into an array of XView predefined glyphs ( see figure2.2. ).

Z
Eaomm
[ EmtsEzBAn
-
;

N
H N Har <

figure 2.2. cursors
2.1.1.7. Font

The Font package deals with the manipulation of fonts. A font is a character set with a particular
appearance. A font is defined by its name or family (lucida, roman, courier, ... ), its style ( bold,
italic, bold_italic, ... yand its size or scale ( 10, 12, 14, 19 points ).

Many XView objects use predefined fonts, complying with the Open Look specifications. These
fonts have well-defined names, styles and sizes and therefore may not be changed. Maay other
interface componentsin the contrary may use whatever font the programmer wishes.

Creating an object of type Xv_Font means loading a font from the server and creating an XView
font object associated with that font.

21



2.1.1.8. Serverimage

A server image is a graphic image stored on the X server. It can be used to create an icon or a
cursor, forexample.

2.1.1.9. Notifier

The Notifier will be described in the second part of this chapter.

2.1.2. Visual abjects

2.1.2.1. Menu

A menu by itself is a windowless object. It may be attached to objects such as menu buttons,

scrollbars, text subwindows, for example. The user can activate it by pressing a mouse button

whenthe pointer isin such areas. Only at that moment, the menu is bound to a window in otder to
" bemadevisible.

A menu allows the user to make a choice from different menu items. Different kinds of menu items
are possible :

1. Choice items
The user can select one and only one item in the menu. When the corresponding action has
been performed and the menu hasdisappeared, that selectionis completely forgotten.

Lcan o)

0

<

Copy

Paste
Again
Undo

figure2.3. choice items

2. Exclusiveitems

The user can choose one item, as he would do with choice items. The difference with
choice items is that the selection of an exclusive item is retained after the menu has
disappeared. Such items are used to determine non-transitory statesin an application.



23

(Pattern v) (Mﬁ@ (Brush 7)
0
MO ,_.‘7"\.

" -
B oy e

(] () VA

N

.
4

figure2.4. exclusiveitems

3. Nonexclusive items
Menus that have nonexclusive items allow the user to select one or many items that will

also be retained like exclusive items.

(File v) @B
- R
Cut
Copy
Past(~ T
Regiq -

frorn
[Underline ]
[_Overstrike |

figure2.5. nonexclusive items

All menus are popped up when activated but pop-up menus are only one type of menus among
threetypes:

1. pop-up menus that are displayed at the pointer location when the user presses the menu

button of the mouse when the pointer is in a window

.~ Workspace

Programs >
utilities [
Properties...
Exit

figure 2.6. pop-up menu



2. pullright menus that are displayed as a menu to the right of a menu item in a menu ( see
figure2.5.)
3. pulldown menus that are displayed below a menu button on a panel ( see figure2.3. )

A pushpin can be used in some menus to pin up the menu so that it remains visible until the user
closesit. ( seefigure2.3.)

2.1.2.2. Window

Many objectscontain windows in order to display themselves and to receive events. The window
class, like the generic object class, is a hidden class : a window objectis never explicitlycreatedbut
an object of a subclass of the window class is created.

XView provides a set of windows that includes subwindows and frames :

1. tty (terminal emulator )
2. panels

3. canvases

4. text subwindows

5. frames

2.1.2.3  Subwindows

Subwindows never exit independently. They are always owned and maintained by a frame or
another window. They may not own frames. They are constrained to fit within the borders of the
frames to which they belong. Subwindows are tiled : they don't overlap. Subwindow types include

1. tty subwindows
2. panels

3. canvases

4. text subwindows

2124 T

The tty subwindow emulates a standard terminal with the only difference that the number of rows
and columas may vary from the 'normal’ terminal.

24



2.1.2.5. Panel

The main function of a panel is to manage a variety of panel items ( or ' controls ' ). Itis a region of
a window where controls such as buttons and settings are displayed. The panel also controls the
arrangement of its controls in a horizontal or vertical fashion. Control areas within panes usually
contain varied combinations of the following controls:

1. buttons

2. abbreviated ( menu ) buttons
3. numericfields

4. check boxes

5. gauges

6. menu buttons

7. textfields

8. exclusive and non-exclusive choice lists
9. sliders

10. messages

The figure2.7. shows examples of panelitems defined by Open Look.

Buttons
Menu buttons

Items

Abbreviated buttons
Abbreviated menu buttons

Text field

Text fieid with scrotliing buttons
Multi-line text field

Numeric field with increment/
decrement buttons

Exclusive settings

Nonexclusive settings

Check boxes

Slider

Gauge

Read-only message

(Eagle) ((Hawk...)

EN

Marsupials & NGERTIO

Kangaroo
Koala
Opossom

Command item
window item...
Menu item o]

@«

Marsupials: [Z) Platypus

| IS

1234, [&v]

[French | German [English |

Agquarium Displays:

O shoes
& socks

Disk Usage: EEEmmmam — O
CF 1T
Q 100

Slze: 1997 bytes

figure2.7. panelitems

25



Panels are used in many different contexts :

property sheets ( see figure 2.8. )
naotices (seefigure2.13.)

menus ( see figure 2.4. )

Fages -
[z) Fdit

( Fllc v) (Vk‘w v) ( [dl\ v)
11 mas a ddrk and stormy.
[ILLI8 All of the beagles were
safely i thelr kennels. The bats
flew around the tower,

squeaklng frantically. ‘

o

.

k

Font: [Serif [Sans Seril | Typewriter ‘\
e

size: [8[1Z2] 16[20]
style: (oW [Underline

[allc ] [strike Through |}

Resel )

Y

figure 2.8. property window
The textsw package allows a user or client to display or edit a sequence of ASCII characters. It

provides many text editing capabilities from the basic insertion to complex operations such as
searching for and replacing a string.

v [

w ¥ ) [_Ldn a ) {Find v )

T —
blachness that waz following me,” &

nd here’s a piece of something .., ugh, [t is so
arsausting,” satd Unsolina, "Hhat is this auful
rurse that prevents b from being libe normal folbs?”

"He must be brave, and not let them Fnoe how
friglitened we really are.”

— R i Y |

figure2.9. text subwindow

2.1.2.7. Canvas

Canvases provide drawing surfaces for the results of Xlib graphics calls. The application can draw
on an area larger than the size of the visible window. The entire region is called the paint window.



27

The visible portion is called the view window. Views are split and joined generally by the user via
the attached scrolibars.

paint window
(contains graphic)

view window y
(contains no
graphic, has L
scrollbars) .
/7

4

canvas subwindow
(displays union of view
window and paint window}

frame
(contains canvas)

figure 2.10. canvas
Three types of windows are involved with the canvas object ( see figure2.10. ):

1. a canvas subwindow that
is owned by a frame and
manages one or more Views
2. one or more view windows that are the



visible portions of the paint window

3. one or more paint windows where
graphics and events ( mouse/keyboard ) take place ( there is one paint window per
view window )

2.1.2.8. Frame

The first XView object to be created by an application is a frame. A frame is a container for other
windows. Its purpose is to manage the geometry and placement of subwindows that don’t overlap
and are fixed within the boundary of the frame.

The frame package provides the following capabilities

1. acommunication path between the application and the window manager
2. amechanism toreceive inputfor the application

3. avisual container for user interface objects

4. a method to group windows with related functionality

The frame package does not manage

1. headers

2. titlebars

3. footers

4. resize corners

These fourelements are managed by the window manager which takes as hints the valve of some
attributes, for examlple: the string value of frame_label, the boolean value of frame_show_header,
etc. ..

The frame package doesnot manage events either. They are managed by the windows managed by
the frame.

There are two kinds of frames : base frames and pop-up frames

The base frame isthe application's main frame.
Pop-up frames are typically used to perform one or more transient functions.

28



There are different kinds of pop-up frames:

1. Command frames give aperands and set parameters needed for a command. They are
implemented by a subframe containing only a panel. They are useful as help frames, or
property frames. They have a pushpin attribute.

2. Helpframes display help text for the object under the pointer. They are implemented by a
text subwindow within a subframe

3. Notices are used to confirm requests, to display messages and conditions ( see figure

2.13.)
Long-term message
Resize corner ———of .
'@ Edit - Ho file 3
((8utton ) (Menu Button v )
L4
o Vertical scroilbar

—— a_a
amo, J _T1— Horizontal scrolfbar

Footer | New document Page 1 |

Status and error message area State or mode message area
figure2.11. atypical frame
2.1.2.9. Scrolibar

Scrollbars must be aitached to a window. They are used to scroll through a document when the later
is too lasge to be seen entirely in the window. The scrollbar package mansages only the scrolibar
window and does not control the window to which it is attached. Because its functionality is bound
to other objects, it is sometimes wrongly considered to be a property of these objects. Scrallbars
can becriented vertically or horizontally, except in some packages ( in text subwindows, they are
vertical).

Scrollbars attached to canvases ot text subwindows can be used to split views.



30

2.1.2.10. Icon
An iconis a small picture representing a closed window. A window may be closed to save space on

the screen butis still active, exceptfor the fact thatit can not receive input from the user. An icon is
defined by a serverimage, like cursors.

dbxtool CONSOLE

figure 2.12. icons
2.1.2.11. Openwin
i Openwin is a hidden class which provides attributes for panel, canvas and text objects.

2.1.2.12. Notice

A notice is a pop-up window bound to notify the user that something went wrong and/or to ask a
question that requires an immediate response. Notices are useful to confirm important operations
that can not be undone.

e

ﬁ;on '

File Exists. Overwrite it?

figure2.13. notice




2.2. XView programming

XViewis anattribute-value AP1, which means it has few function or procedure calls. The idea of
the XView API is to provide a small number of functions and a large set of attributes. The
functions take as arguments a list of attribute-value pairs but generally only a small part of the
whole set of attributres is used for this purpose. As the length of the arguments list is variable, the
last attribute-value pair is always followed by 'NULL'.

There arethree categoriesof attributes:

1. Generic attributes are prefixed by 'xv_' and apply to all XView objects

2. Common attributes are prefixed by 'xv-' and apply to many but not all objects

3. Specific attributes are prefixed by a package name ( PANEL, FRAME, ... ) and
applyto that package only.

The three categories of attributes may be used togetherinafunction call.

Some attributes have aboolean value to indicate wether or not the object can cause or come under
" defined actions such as resizing, repainting, ... Other ones contain information needed to perform

certaintasks. Otherattributescaracterizetheappearanceof theabject.

Objects from all packages can be created or manipulated vsing a few functions comman to all
packages: xv_create, xv_destroy, xv_find, xv_get, xv_set.

Afew other generic functions ( prefixed by 'xv_' ) exist. They are less important.

Other functions applyto specific packages and are prefixed by the name of the package. They are
too variousto be presented in a synthesized way. They deal with particular operations.

2.2.1. Xv_init

Thexv_initfonction performsthree operations.

1. Itreads any argument given when invoking the application : some are XView arguments, other
areapplication arguments. The function canbehaveintwo ways, according to the first attribute
value. Inthefirst case, it removesall arguments that are X View-specific from thecommand-line
and returnsthe latter tothe application. Sucha call lookslike :

xv_init ( XV_INIT_ARGC_PTR_ARGV, &arge, agy, NULL ) ;
In the second case, the command-lineis returned unchanged to the application that must parse it

itself in order to distinguish the arguments specific to XView or to the application. In this case,
xv_initis called as follows:

31



xv_init ( XV_INIT_ARGSH, arge, sgv, NULL } ;

2. It establishes the connection with the server specified in the command-line options or with the
default server. Xv_init opens a connection to only one server. If the application must be used on
many displays devices, subsequent connectionstotherespective servers are created by creating
the same mumber of Server abjects. ( After the first call to xv_init, subsequent calls to that
function areignored ).

3. Itinitializesthe Notifier.

2.2.2. Xv_create
Thexv_create function creates an instance of an objectand returns a handleto thatobject.

Frame frame ;

frame = xv_creste ( NULL, FRAME, NULL} ;

Pane] panel ;

prnel = xv_ereste [ frame, PANEL RULL ) ;

Panel_item buiton ;

bulton = xv_creste ( panel, PANEL _BUTTON,
PAHEL_LABEL STRING, "Quit”,
PANEL_ROTIFY_PROC, Quit,
RULL};

These lines of code first create the base frame of the application, then a panel in this frame and a
button in thispanel. The definition of xv_createis:

xv_creste [ OWBer [ov Javest ) | package, sttribwie-valve paks ).

ThePANEL_NOTIFY_PROC attributeindicates which notify procedure will be executed whenthe
buttonisactivated.

2.2.3. Xv_destro

The xv_destroy function destroys an instance of an object and all ones descended from it. The
correct way to quit an application is thus to destroy the application's base frame and to exit the
application.

That function returns the value XV_OK if no errors occurred, or XV_ERROR in the opposite case.
The quit notify procedure of the section 2.2.2. could use the xv_destroy function in this way :

32



void quit )
{
If ( %v_destroy { (rame ) == XV_OK)
& 220 polba ovvernd faliy e Ertrwtion of the applaiin Y Aoy e W
exi(0);
OF et o applawtion W
}

2.2.4. Xv find

The xv_find function finds an instance of an object that meets certain criteria. If the object does not
exist, it creates it. The definition of the xv_find functionis the same as that of the xv_create one :

xv_find ( owner [orpwrvnt ) , paokege, sttribute-value pairs J.

That function returns a handle to the existing object or to the newly created one. The use of this
" function prevents from creating many instances of the same object. Such a constraint exists for
example forfonts:

Zv Fout fon;

fort = xv_find ( frme , FONT,
FONT_NAME, “fixed",
RULL ) ;

In the example above, afont named "fixed" ( and existing on almost all servers ) is created as child
of thebase frame of the application.

The xv_get function gets the value of one or many attribute(s) of an object. Its definition is :
xv_get [ objeat |, sttvidude )

The function returns a value that is an opaque data type, as attributes may be of different types.
That is why that value must be forced to the correct type by writing the latter before the function
name.

In the following example, the xv_get functionis used to retrieve the valuve of the label of the button
created insection2.2.2.

33



char #label ;
1adel = {char ¥ xv_get ( button , PANEL_LABEL STRING);
2.2.6. Xv set

The xv_set function sets the value of one or many attribute(s) of an object

xv_set (frame,
FRAME_LABEL, “test”,
FRAME SHOW _LABEL, TRUE,
FRAME_NO_CONFIRM, TRUE,
NULL],;

This function call sets three attributes of the frame created in section2.2.2. .

2.2.7. TheNotifier

When programming a user interface with traditional tools, the programmer has to provide for a
main loop collecting all input from the user. Such a task imposes to test all kinds of events from the
keyboard or from the mouse. Erroneous and correct input must be distinguished and treated by the
application.

The Notifier is a process consisting of a loop dealing with the dispatching of events such as
keystrokes and mouse movements. The main control loop resides in the Notifier, not in the
application. Each component of an application receives only the events the user has directed
towards it. . This way of doing is called event-driven programming ( see figure 2. 14. ).

34



Applisation code Hotifisr

procedures

oall
Wotifier

._-“L l
call
appoprise
prosess callback
callback - procedwe

procedure

-f————

rdwn
to
spplisstion

figure2.14. event-driven programming

2.2.8. Suucture of X View applications

The general structure of XView programsis:

1. Include headerfiles




Two types of include statements are generally used. The order in which they appear is important
because variables and types defined in files of the first type may be used in files of the other type.
The first type of header files groups general files used in traditional C programs :

Hinelwde ¢ stdio k>
$inclvde < stringh >

The second type groups XView header files. The first file contains declarations used by all

packages:
finelude < Xviewixview.h>

Thefollowing filesreferto particular packages, for example:

#include < xviewilramed >
#inalude < wriewpanal h »
finolwde ¢ xviewltetswh >

2. Initialize XView using xv_init

3. Create a top-level window ( FRAME ) to manage subwindows and other objects
4. Createthe children objectstree

5. Callxv_main loop to start the dispatching of events

36



Chsplar 3
SEIMotif insic

The gist of the third chapter originates from the OSF/Motif manvals : [OSF1 90], [OSF2
90], [OSF3 90], and [OSF4 90] and from some X Toolkit manvals : [Nye2 90], [Vol5 90], and
[You 89].
As we did in the second chapter, we will present here most of the Motif widgets. Moreover, as
“widgets are only one side of the toolkit, we will present the programming approach of the Xt
Intrinsics, too.

3.1 if wi

Motif defines a lot of widget and gadget classes and allows the creation of new widget classes. The
meaning of 'widget' has already been explained in the first chapter : a widget is a graphical
component of a user interface. At firstsight, gadgets are improved forms of widgets. They will be
presented later inthis chapter.

A widget class consists of the procedures and data applicable to all widgets belonging to that class.
These procedures and data can be inherited by subclasses. A widget is an instance of a widget
class.

A Resoyrce acts as an attribute of a widget. Resources determine the appearanceand functionality
of widgets. They are either specific to a particular widget class or directly inherited from the
superclass. This superclass may inherit resources from its superclass and transmit them to its
child(ren).

If a class has few resources, they will be described.
The basic class hierarchy structure is given below. The Core, Composite and Constraint classes are
provided by the X Toolkit. The Object and RectObj classes are superclasses for windowless

37



38

widgets. The whole Core class provides support for windowed widgets. Composite widgets are
containers for any number of child widgets. Constraint widgets maintain additional state data for
their children, as for example, constraints on thechild's geometry.

P oome |
Cote _‘ RectO}j

s : |
Pl (oued) | XmGadget

| |

Composite XmPrimiive
[ ]
Hell Constraint

Ko Monsger

figure 3.1. basic widget class hierarchy

All Motif widget classes are grouped intosix categories:

1. Shell widget classes

2. Display widget classes
3. Container widget classes
4. Dialog widget classes

5. Gadget classes

6. Menu widget classes



3.1.1. Shell widgets

The term 'Shell’ both represents one of the five categories of widget classes and a widget class of
that category. Widgets of the Shell category constitute the intetrface between the window manager
and other widgets. Each window displayed on the screen is based on a Shell widget of the Shell
category. Shell widgets areinvisible. Many different Shell classes havebeen designed, according to
thechild widgetsthey accept.

8hell
Qveridafilall Whiithell
VendorShall
l
TopLevelShall TransientBhall
ApplissiioaSbell
Xm Menulikell ¥mDislogShall

figure 3.2. Shell widget classes

Two important types of Shell widgets exist : private and public ones. Shell, WMShell and
VendorShell widgets are private while the others are public.Private widgets may not be
instantiated. They are internal and are not offered to the interface designer. These widgets just
transmit their resources to subclasses. On the contracy, public Shell widgets may be used as normal
widgefs (except forthe factthat they areinvisible).

DialogShell widgets stand as an exception because they are semi-public. A DialogShell widget is
always created as part of a set of widgets, either directly by the programmer, as a public widget, or
internally by functions, asa private widget.

The X Toolkit provides seven Shell classes, while Motif defines three such classes. The Xt Shell
classes are : Shell, OverrideShell, WMShell, VendorShell, TransientShell, TopLevelShell and

39



ApplicationShell. The Motif-specific Shell classes are : VendorShell, XmMenuShell and
XmDialogShell.

3.1.1.1, Shell

Shell is thebase Shell class. It provides resources for all other Shell classes. This top-level widget
only acceptsone child.

3.1.1.2. OverrideShell

OverrideShell is a special Shell class bound to be ignored by the window manager and therefore is
used to create pop-up menus. OverrideShell adds no specific resources to the resources inherited
from its superclasses. It only changes the default value of two resources inhecited from the Shell
class:

1. XmNoverrideRedirect is a boolean indicating if the shell is a temporary widget to be
ignored by the window manager. Its value in the Shell class is False and it switches to True
inthe OverrideShell class.

2. XmNsavelnder is a boolean indicating if the contents of this widget instance that
appear on the screen should be saved when particular conditions are satisfied. Its value
changes from False to True, too.

3.1.1.3. WMShell
WDMShell defines resources to be used by the window manager protocol.
3.1.1.4. VendorShell

VendorShell contains resources used by a specific window manager. Foreseen by Xt, this class is
modified according to the vendor-specific window manager.

3.1.1.5. TransientShell
TransientShell is used for shell widgets that are managed by the window manager but cannot be

iconified separately from the parent window.
This class only defines one new resource :

40



XmNaanstentfor indicates the widget for which this TransientShell widget behaves like a
pop-upchild.

As does OverrideShell, TransientShell changes the XmAswrelader shell resource value from
False to True. Moreover, the value of the XmMransient resource inherited from WMShell
becomes True for TransientShell . That means that a widget instance of that class is transient and
must therefore be considered in a special way by the window manager.

3.1.1.6. TopLevelShell

TopLevelShell is used to create a top-level window to which corresponds a set of windows. It
introduces three specific resources:

1. XmMNiconic is a boolean that tells the window manager if the application must start as

an icon or not.
2. XmMNiconName specifies the name to be displayed in thaticon.

3. XmNiconNameEncodigg specifies a property type that represents the encoding of the
XmNiconName string.

3.1.1.7. ApplicationShell

An application normally have one toplevel (root) window of class ApplicationShell. Possible
supplementary toplevel windows are of class TopLevelShell and are created using another routine.
They canbe considered the root of a second widget tree of the application.

ApplicationShell provides two specific resources:

1. XmNage counts the number of arguments given to the application by the user
2. XmNargv contains these arguments

3.1.1.8 XmMenuShell

XmMenuShell is the parent of menu panes and therefore is the basis for creating pop-up and
pulldown menus.
It has a specific resource :

41



XmNdefavltFontl st specifies a font list for its children. This list is only used when the
child widget has no own font list.

XmMenuShell also overrides the XmNallowShaliResize resource inherited from the Shell class.
That resource deals with geometry requests from children of the widget. Its value changes from
Falseto True.

3.1.1.9. XmDialogShell

XmDialogShell is the Shell class used to create dialog windows. It has no specific resource but
changes the value of the XmNoelereResponse resource inherited from VendorShell. This resource
indicates what should be done when a delete message from the window manager is received.

3.1.2. Display widgets

Core
XmPrimitive
I
ZmLabel ZmAnmowBitton
XmToggleButton KmList
XmDrawnButton EmBerolibar
| XmPushButton ¥nSeparstor
o] noiin | —
XmTextField

figure 3.3. display widget classes



Motif uses particular denominations. All widget classes presented in figure 3.3. are display widget
classes except for the XmCascadeButton. However, XmPrimitive and all classes situated below it
areprimitiveclasses, including XmCascadeButton.

3.1.2.1. Core

The Core class is an Xt superclass that provides common resources needed by all other classes,
such as x and y locations, height, width, window border width and so on.

3.1.2.2. XmPrimitive

XmPrimitive is a supporting superclass, too. Its resources essentially concern border drawing and
highlighting.

3.1.2.3. XmArrowButton

* The XmArrowButton widget is a directional ( left, right, up or down ) arrow surrounded by a
border shadow. The selection of this button can make the shadow move to give the appearance that
the arrow button has been pressed. When the button is unselected, it seems to be released.

The specific resources of this class refer to the direction of the arrow and the clicking and callback
mechanisms.

Figure 3.4. shows a window with four ArrowButton widgets.

figure 3.4. ArrowButton widgets

43



3.1.2.4. XmPushButton

The difference between XmArrowButton and XmPushButton is the text label or the pixmap that
replaces the arrow. Both types of buttons are used to invoke actions ( for example, run cancel,
stop, ... )

However, the default behavior of a PushButton used in a menu depends of the type of this menu.
Examples of PushButton widgets can be seen in figure 3.15. .

3.1.2.5. XmDrawnButton

The XmDrawnButton widget consists of a directional arrow surrounded by a border shadow. It can
give the appearance to be pushed or released, too.

3.1.2.6. XmLabel

Asaninstantiable widget, XmLabel can contain textor graphics.
~ As a superclass, XmLabel provides resources for button subclasses such as CascadeButton,
DrawnButton,PushButtonand ToggleButton.

3.1.2.7. XmScrollBar

A ScrollBar widget is always combined with a widget containing data too large to be viewed in its
entirety. The viewable portion of the data is called the working area. ScrollBars can be placed
horizontally or vertically. A window may also have one ScrollBar of each type.

A ScrollBar consists of two arrows placed at each end of a rectangle. The rectangle is called the
scroll region and contains a smaller one called the slider. The data is scrolled either by clicking on
an arrow, selecting on the scroll region or dragging the slider. When an arrow is selected, the stider
within the scroll region is moved one step in the direction of the arrow. If the mouse button is held
down, the slider continues to move at a constant rate. The ratio of the slider size to the scroll region
size represents the ratio of the size of the visible data to the total size of the data.

Examples of ScrollBar widgets can be seen infigure 3.6. .

3.1.2.8 Xmlist

XmlList allows the selection of one or more items from a list of choices. The number of visible
choices is variable and a ScrollBar canbe added.
Such List widgets ate presented in figure 3.5.



3.1.2.9. XmSeparator

The Separator widget is a separation line between widgets. It can be placed horizontally or
vertically.

figure 3.5. List widgets
3.1.2.10. XmText

The Text widget provides asingle-line or multiline text editor with basic editing functionalities such
as creating ot editing file, cutting and pasting text, and so on.

F

File

vet another line of text. Here is sc
text. Here is yvet another line of te
time for all good men to come to t 2|
country. The quick brown fox ju 3

lazy dog. Now the same line alli ::

THE QUICK BROWN FOX JUMP =
LAZY DOG. Four score and seve:
our forefathers brought forth upon ;

figure 3.6. Text widget

45



3.1.2.11. XmTextField

TextField doesthe same asText for single-line texts.

3.1.2.12. XmToggleButton

TheToggleButtonwidget consists of a text or graphics face with an indicator placed to the left of
the text or graphics. Toggle buttons are used for setting non-transitory data in an application.
Diamond-shaped indicators only allow one choice to be selected while square indicators allow
nonexclusive choices. The selected or unselected states of the button are indicated by an empty or
filled indicator as shows figure 3.7. .

figure3.7. ToggleButtons

3.1.3. Container wi

Container widgets are Composite widgets that provide applications with general layout
functionalities. As Composite widgets, container widgets canhave children.

All classes presented in figure 3.8. are container classes except for XmBulletinBoard. The ten
classes are manager classes.

3.1. XmM

The XmManager class is never instantiated as a widget. It is a superclass for other widget classes.
It supports the visual resources, graphics contexts, ... necessary for the graphics mechanisms.

46



KmMauager
| XmBulltiBosd | XmRowColvma meroledVisdow
Lovrnnsvoremnnconnonnon 4
X MainWindow
Xm Drswinghres XmPazedWindow XmFrame Zmfloale

figure 3.8. container widget classes
3.1.3.2. XmDrawingArea
The Drawing Area widget easily adapts to a variety of purposes, forexample displaying graphics.

3.1.3.3. XmFrame

The XmFrame widget is used to enclose a single child within aborder drawn by XmFrame.
3.1.3.4. XmMainWindow

XmMainWindow can be used as the primary window of an application. This widget can display a
menu bar, acommand window, a work region, and scrollbars but these areas are optional.

3.1.3.5. XmRowColumn

The RowColumn widget is a general purpose manager that can contain any widget as a child. It is
the basis for menus.

A RowColumn does not need to know how its children behave.

The children widgets can be laid out in rows or columns. Moreover, their layout must be one of the

following :

1. The children are packed together into rows or columns ( see figure 3.9. )
2. Each child is placed in anidentically sized box producing a symmetrical look

47



3. Aspecific layout ( the cutrent x and y positions of the children determine the location)

ARowColumn must be created as a child of a Frame in order to have a three-dimensional shadow.

figure 3.9. RowColumn widget

3.1.3.6. XmScale

A Scale can be either input /output or only output.
Itallows

- an application to indicate a value from arange of values, in the second case ( only output )
- a user to input or modify a value from the same range, by adjusting a slider to a position
along aline, inboth cases

figure 3. 10. Scale widget

3.1.3.7. XmScrolledWindow

The ScrolledWindow widget combines one or more scrollbars and a viewing area to implementa
visible window onto another larger data display. The visible part of the window can be scrolled

through the larger display by using scrollbars.

48



3.1.3.8. XmPanedWindow

A PanedWindow lays out children in vertically tiled format. Children appear from top to bottom.
The first child inserted appears at the top of the PanedWindow and the last child at the bottom. The
PanedWindow widget grows to match the width of the widest child and all other children are forced
to this width.

Maximum and minimum sizes can be specified for each pane containing a child. The height of each
pane canbe changed at run-time within these limits, by dragging a small square box placed at the
bottom of the pane it modifies.

Figure 3.11. shows a PanedWindow before and after such a modification.

figure 3. 11 PanedWindow

3.1.4. Dialog widgets

The dialog widgets are used to create Dialog widgets, also called Dialogs. ( Note the small and
capitalsletters).

A dialog widget is one of the seven widgets listed hereafter.

A Dialog includes a DialogShell, a BulletinBoard, ( or a subclass of BulletinBoard, or another
container widget ) and various children such as Label, PushButton, Text.

49



KmBulletinRoard
KmYelectionBox an\less:g&kox XaFom
YaFil:BelationBox XaCommardBox

figure 3.12. Dialog widget classes

Dialogs are used for interaction tasks such as displaying messages, setting properties and providing
selection from a list of items. They normally ask a question or give the user some information
requiring a response. A Dialog can be modal or modeless. A modal Dialog stops the work session
~ and asks the user for some input. A modeless Dialog waits for input from the user but does not
interrupt interaction with any application. The modal character may be defined in many ways by
setting the X NdialogStyleresource of BulletinBoard to the appropriate value out of three :

\. XmDislog System Modal : means that the Dialog must be responded to before any
otherinteraction in any application.

2. XeDislog Application Modal: means that the Dialog must be responded to before
some other interactions in ancestors of the widget .

3. XeDralog Full Application Modsl : means that the Dialog must be responded to
before some other interactions in the application.

3.1.4.1. XmDialogShell

The XmDialogShell widget has been presented as a widget of the Shell category.
However, asit is the basis for all Dialogs, it can be seen ina sense like a dialog widget, too.

50



3.1.4.2. XmBulletinBoard

BulletinBoard providessimple geometry management for children widgets. It does not impose the
position of its children but may refuse geometry requests that would make children overiap.
BulletinBoard is a base widget for most Dialogs but is also used as a general container widget.

3.1.4.3. XmForm

The Form widget provides a layout language used to establish spatial relationships between its
children. Specific resources are used to specify attachments of the child's sides to the Form's sides.
Form maintains these relationships when it is resized, new children are added or when its children
areresized, unmanaged or destroyed.

Figure 3.13. gives an example. The first ArrowButton on the left has been positionned within the
Frame widget by means of three constraints :

1. The top of the ArcrowButton is set to 20 pixels under the top of the Form.

2. The distance between the left sides of the Form and the ArrowButton is ten percent of
the total width of the Form.

3. The distance between the left side of the Form and the right side of the ArrowButton is
thirty percent of the total width of the Form.

As the bottom side of the ArrowButton has not been constrained, the height of that widget is
maintained when the Form is resized. Anyway, the left and right sides move in order to maintain
the constraints.

figure 3.13. Form widget

51



3.1.4.4, XmMessageBox

MessageBox is the base widget for providing information to the user. Three buttons are available :
OK, CANCEL, HELP but are not mandatory. This widget contains a message symbol and the
message itself.

3.1.4.5. XmS , lectionBox

The SelectionBox widget is used to select an item from a list of choices. It contains a message, an
editable text field and a scrolling list of choices. Four buttons are available : OK, CANCEL,
APPLY, HELP.

3.1.4.6. XmCommandBox

In the OSF/Motif documentation, this widget is sometimes called XmCommand, too.
XmCommand displays a command line input text field, a command line prompt and a command
history mechanism. It is similar to a SelectionBox but can also record selections in a history region.
This history regionis accessible and items can be selected from it.

Figure 3. 14. shows a CommandBox with a scrolled history region.

figure 3. 14. Command widget

3.1.4.7. XmFileSelectionBox

A FileSlectionBox gives the user a way of selecting a file in any directory or subdirectory. It has
fivemain areas:

52



1. An input text field for displaying and editing a directory mask used to select the filesto
bedisplayed

2. Ascrollablelist of filenames

3. Ascrollable list of subdirectories

4. An input text field for displaying and editing a filename

5. Agroup of PushButtons : OK, FILTER, CANCEL,HELP

3.1.4.8. Dialog convenience functions

A Dialog can be created either by creating each of its widgets in turn or by using a Dialog
convenience function.

Dialog convenience functions allow the creation of group of widgets or gadgets by making just one
functioncall. A conveniencefunction createsa predetermined set of widgets and returns the parent
widget's identifier. Dialog functions are of the form :

XmCreste< Stulyrs Dialog.

A Dialog convenience function instantiates a dialog widget as a child of a DialogShell to create a
convenience Dialog. For example, the QuestionDialog convenience function creates a DialogShell
and a MessageBox and PushButtons as children of the DialogShell.

The following six convenience Dialogs ( and functions ) are based on the MessageBox .

1. (XmCreate )WorkingDialog : tells the user a time-consuming operation is executing
and gives him the opportunity for cancelling it. The default symbol is a square with an

hourglass init.

2. ( XmCreate)WarningDialog : warns the user of the consequences of an action and
gives him the opportunity for cancelling it. The default symbol is an exclamation mark.
(see figure 3.16. )

figure3.15. WarningDialog widget

53



3. (XmCreate)QuestionDialog : gets an answer from the user. The default symbol is a

question mark. ( seefigure3.15.)

figure3.16. QuestionDialog widget

4. (XmCreate)lnformationDialog : gives information to the user. The default symbol is a
square withan 'i'in it.

5. (XmCreate )ErrorDialog : warns the user of an invalid or potentially dangerous
condition. The default symbol is an hexagon with a hand inside.

6. (XmCreate)MessageDialog : gives information to the user. There is no default symbol.

Motif determines the number of PushButtons and the symbol to display for each Dialog, while the
message explaining the error , asking the question, or giving an information is given by the
application.

The other convenience Dialogs (and functions ) are :

1. (XmCreate)FileSelectionBoxDialog is based on FileSelectionBox and allows the user
to select afile. ( seefigure 3.17.)

 figure3.17. FileSelectionBox widget

54



2. (XmCreate)BulletinBoardDialog is based on BulletinBoard and is used forinteractions
not supported by the standard Dialogs.

3. (XmCreate)SelectionBoxDialog is based on SelectionBox and allows the user to get a
selection from alist.

4. (XmCreate )FormDialog is based on Form and is used for interactions not supported
by the standard Dialogs.

5. ( XmCreate)PromptDialog is based on SelectionBox and asks the user for a text input.

3.1.5. Gadgets

Gadgets provide for the most part the same functionalities as the equivalent widgets. The main
reason to define gadgets is to improve performance, both in execution time and data space. This
applies to both the application and server processes and minimizes the amount of lost functionality.
The difference is so important between widgets and gadgets that these should be used whenever
possible.

Gadgets can be understood as windowless widgets. They don't have any of the visual resources
found in the XmPrimitive class.

EnGadget
l
XuLadelGnlgat Xm AmowBtonGalget
|| XmCaseadeButonGadget XnSeparstorGalget
|| XmPushButtonGadgwt
| XmToggleBwtonGadget

figure 3.18. Gadget classes
Motif provides thefollowing gadgets :
1. XmGadget (the superclass for other gadget classes )

2. XmArrowButtonGadget
3. XmSeparatorGadget



56

4. XmLabelGadget

5. XmCascadeButtonGadget
6. XmPushButtonGadget

7. XmToggleButtonGadget

3.1.6. Menu widgets

A menu system is a combination of widgets that produce the visual and interactive behavior of a
menu. The Motif menu system designates the set of all such menu systems.
Motif provides three types of menu systems :

1. pop-up menu systems
2. pulldown menu systems
3. option menu systems

All menu systems are based on the RowColumn widget.

3.1.6.1. Pop-up menu systems

A pop-up menu system simply appears at the pointer location when required by the user. It consists
of aMenuPane generally containing PushButton, ToggleButton and/or CascadeButton widgets.

figure 3.19. top-level of a pop-up menu system

figure 3.20. complete pop-up menu system



57

In figure 3.19. , the top-level of the pop-up menu contains two CascadeButtons giving access
when required to pulldown cascading submenus in figure 3.20.

3.1.6.2. Pulldown menu systems

A pulldown menu system consists of a MenuBar containing CascadeButtons. To each
CascadeButton is attached a pulldown MenuPane. This MenuPane may contain PushButtons,
ToggleButtons and/or CascadeButtons. Like in pop-up menu systems, PushButtons are used to
invoke actions ( cut, run, save, ... ) ToggleButons set data and CascadeButtons can give access to
pulldown submenu panes.

figure 3.21. pulldown menu system
3.1.6.3. Option menu systems

An option menu system consists of one or more Labels describing the sets of options. A
CascadeButton is placed to the right of each Label. It can give access to a pulldown MenuPane
containing PushButtons and permanently contains a Label indicating the most recent optionselected
in the pulldown menu. Figure 3.22. shows the top-level of such a menu system and figure 3.23.
shows the whole first option menu.

figure 3.23. option menu system



58

3.1.6.4. The RowColumn widget

The RowColumn widget is the basis for most of the menu system components. It can behave like a
menu bar, a pulldown menu pane, a pop-up menu pane or an option menu, according to the values
given to some of its resources. Convenience functions have been provided to easily create these
special versions of the RowColumn widget. When necessary, they first create a MenuShell widget,
too. The Motif menu system is composed of the following widgets and convenience functions :

1. XmRowColumn ( widget ) 7. XmCascadeButton ( widget and gadget )
2. XmCreateMenuBar ( convenience function ) 8. XmSeparator ( widget and gadget )

3. XmCreateOptionMenu ( convenience function) 9. XmLabel ( widget and gadget )

4. XmCreatePulldownMenu ( convenience function ) 10. XmToggleButton (widget and gadget )
5. XmCreatePopMenu ( convenience function ) 11. XmPushButton ( widget and gadget )
6. XmMenuShell ( widget )

3.2. Structure of 2 Motif application

This section explains the steps to follow to write a Motif application on the base of the C language :

1. Include header files

2. Initialize the Xt Intrinsics
3. Createthe widgets

4. Realizethe widgets

5. Enter the main loop

3.2.1. Include header files

Three types of include statements are generally used. The order in which they appear is important
because variables and types defined in files of the first type may be used in files of both other types.
Similarly, variables and types defined in files of the second type may be used in files of the third

type.

The first type of header files groups general files used in traditional C programs :

Hinelude ¢ stdio h »
#include < stringh >



The second type refers to the X Toolkit. We explained in section 1.6.3. that an X toolkit is
composed of a set of routines, the Xt Intrinsics, and a specific set of widgets ( the Motif widget set
in the case of the Motif toolkit ). In order to use these routines, the following statement must be
found in the code ( remember that the X Toolkit, thus the Intrinsics, are part of the X standard and
are to be found in the X11 directory ) :

#include <X1lIntrinsies b >

The first two parts of the set of include statements are virtually the same for all applications.

The third one is the more likely to change. Itrefers to the Motif toolkit. Only the first header file of
this type, Xm.h, is mandatory in all cases because it contains definitions for all Motif widgets. So
the next statementlooks like

#inclvde <Xmt¥m b >

No particular order must be taken into account for the following lines. One include statement must
" be added for each widget class used in the program, no matter if the widget is used one or many
times.

Thesestatements looklike

#inelude <Xm! vzt b >
Forexample: #include<Xm/BulletinB.h > inctudesthe headerfile forthe BulletinBoard widget.
3.2.2. Initialize the Xt Intrinsics

It should now have become clear to the reader that a Motif application is first of all an Xct
application, evenif itis a particular one depending of the widget that is used. That is why the object
of the initialization are the Xt Intrinsics and not the Motif toolkit.

The initialization always occurs before any other call to an Xt function. It is performed by the
XtAppladtialize function. That function requires many atguments and creates an application
context, establishes the connection with the server, analyses the command line given to call the
application, and returns a shell widget to be used as the root widget of the application. A shell
widget accepts one child and isthe interface between that child and the window manager.

59



The nexttwo linesarean example of initialization.

Widget Phonebook:

Phonebock = XtAppInitialize [ &Appe, "test” , 0,0, &arge , &gy, 0,a4,0);

Phonebook is declared of type Widget, thus could be any widget. However, once it has
been assigned atype, it can not change any more.

a. &Appc represents a pointer to an application context. Application contexts enable the
coexistence of several logical applications in a single address space.

b. "test' givesthe class name of the application.

c. The nexttwo arguments are the options and number of options indicating how to parse
the command line. The initialization function uses and then removes all arguments it can
recognizeinthe command line. It returns the application a command line with application-
specific argumentsbut no X or Xt specific arguments any more.

d. &argc isa pointer to the number of arguments in the command line.

e. argv is the command line itself. argc and argv will be modified according to the third
and fourtharguments.

f. The seventh argument gives resoutrces to be used if the resource file of the application
cannotberead.

g. alisanarray of resources charactetizing the Shell widgetto create.

h. The last argument indicates how many arguments have to be taken into account in al.

XtApplnitialize is not the only initialization function.
The Xtlnitialize functionisa more simplefunctionthat callsthree other Intrinsics functions:

Xt Tooltatinitialize just initializes the intecnals of the Xt Intrinsics
XeOpenDisplay opens a connection with the display server
XedppCreateShell creates a top-level shell for the application.

Instead of using the single XtInitialize function, the application may call these three functions
separately. In this case, if an application context is created ( by a call to
XeCreateApplicationConte)yt , it is used as an argument of the XtOpenDisplay and
XtAppCreateShell. If no application context has been defined, adefault oneis used.

So, many ways are possible to initialize the Intrinsics. Calling a single function (XtInitialize or
XtApplnitialize ) is an easier and probably a more efficient way to do it than using many calls to Xt

60



functions. However, in this latter case, some customization is possible, as for example the choice
of the precise shell widget to use as the parent widget for the application.

3.2.3. Createthe widgets

The widgets created at this step will be the children and descendants of the top-level widget created
by the initialization function. The creationof a widget involvesthree parts:

1. setup the arguments of the widget
2. create and managethe widget
3. add the callback routines for each widget

3.2.3.1. Setup the arguments of the widget

The arguments are pairs of resource names and vatues. They define characteristics of the widget :
location, size, functionalities, . ..
The XzSev.Are function is used to build an array with all arguments referring to the widget to create:

Argal (107,

RAetdrg (41(0), XmNx, 234) ;
RSetdrg (21 (1), XaNy, 35);
RSetarg (1 (2] , XmNlabelString , strl) ;

The array al contains ten elements, each of which is of type Arz. The predefined Arg type consists
of a string ( cotresponding to the resource name ) and a value ( corresponding to the resource
value). After the three callsto XtSetArg, the first three elements of al are three pairs of resource
names and values : the x and y locations and the string that will be displayed in the widget. The strl
string variable must be of a particular type : the X Sarzgetype.

Atthis point, al may be given as an argument to the create function of the widget.

Let us now suppose that the programmer want , for any reason, to remove the set up of the XmNy
resource. Thatimpliesthat all subsequent statements will have to receive another ordering number.
Inthecodegivén above, the third one will change from ... (al(2),...) to... (al (1), ...).
Another way of setting the arguments makes it easier to add or delete calls to XtSetArg.

Argal(20);
Integer =0 ;

61



62
Xefletdrg (ol (n) , XKmNx, 234); n+4 ;
Refethrg (sl (n) , EmNy, 35]; o4+ ;

Kifethryg (ol (n) , ZmNlabelfitring , strl) ; 4+ ;

Theideaistouse aninteger variable index for the array, instead of a constant.
Removing the second statement now causes no problem any more.

3.2.3.2. Create and manage the widgets
All Motif widgets can be created by means of a Motif convenience function or an Xt function.
|, Mo conventence functions
The Motif convenience functionslook like :
XmCreate npded [ parent , Dame , arguments , nulmber of arguments ) ;
Keeping in mind the preceding sections, let us consider the following example :

Widget MB ;

MB = XmCreateMenvbar | Phonebook , “Mendsr , NULL ,0) ;
A MenuBar is created as a child widget in the Phonebook Shell. MB is its name. The widget is
created only with default resource values as no arguments are given to the creation function. As the
value of the fourth argument is 0, replacing the third one by al ( the array containing the arguments

that describe the MenuBar widget ) would produce the same result.

When necessary, the Motif convenience functions create a parent Shell widget from the Shell
category as the parent of the desired widget.

2. The Xeareste fugctron
The Xt function used to create a widget is:

ACreate¥idget { name , widget class name , parent , wguments , number of arguments | ;



The arguments are the same as those required by a Motif convenience function, except for the
widget class name. The information the latter brings to the Xt function is already available through
the nameitself of the Motif function..

3. Mangee the widgets

BothXmCreate wrgeer and XtCreateWidgetfunctions create anunmanaged widget. A widget must
be managed by its parent. That means for example that the widget's parent must manage the size
and location of the widget and control input to the widget. Children can be laid out in rows and
columns while others will be grouped in scrollable lists.

To tell the widget's parent it must manage its child, the application must call the Xt function
XeManageClhiddo( widget ) . In this function, the widget given as argument is supposed to have
been created either by an Xm or by the Xt function.

XtManageChild is the only function that can manage a widget created by a Motif convenience
funtion.

~ The Intrinsics offer two other functionsto manage widgets :

. XoCheateMangged Wideercalls XtCreateWidget and XtManageChild
2. XeMansggeChildren( list of widgets , number of widgets ) takes as arguments widgets
created by XtCreateWidget.

The use of XtCreateManagedWidget is an advantage for the programmer. However, each time a
new managed child is added to the list of managed children of a widget, the latter must perform the
whole geometry management again. So, when many children of the same widget must be created
and managed, it is a more efficient way of doing it to create unmanaged children that will
simultaneously be managed by XtManageChildren.

3.2.3.3. Add the callback routines for each widget.

Using a toolkit in an application allow to separate the code creating the user interface from the
application code itself. That means that each of these two parts can be created or modified without
looking atthe other part.

However, the interface and application codes need to communicate during the execution of the
whole code. The mechanism mostly used to link these two parts is called 'callback mechanism' and
uses callback procedures. Another mechanism isbased on 'actions’. It will not be described here.

63



Many widgets define one or more callback resources. A callback resource gives the list of callback
procedures that will be executed under precise conditions. For example, the ArrowButon widget

defines the following ones :

L. XmNactrvateCallback. list of callback procedures called when the ArrowButton is
activated. Activating a widget means pressing and releasing a defined mouse button while
the pointeris inside the widget.

2. XmNarmCalfback: list of callback procedures called when the ArrowButton is armed.
Arming a widget means pressing a defined mouse button while the pointer is inside the
widget.

3. XmNdisumCallback : list of callback procedures called when the ArrowButton is
disarmed. Disarming a widget means pressing a defined mouse button while the pointer is
inside the widget ( same definition as XmNarmCallback ).

A callback procedure can be added to the list for a precise callback by means of the Xt function :
SASKCwE | widget |, eallback resowve , callbask procedwre |, client data )

Forexample, if quit_button is a PushButton,
XrARCallbacke [ quit_button , XmNoctivateCallback , quit_proe , data )

meansthat clicking on quit_button will callquit_proc with the dataargument.
Callback procedures must be defined this way (example of the quit-proc procedure )

quit_proc { quit_dutton , client_data , call data)
The first argument is the widget that caused the procedure to be called. The second argument is the
value passed as the last argument of XtAddCallback. The third argument is a widget-specific data

that the widget passes to the application. However, not all widgets define such a value, in which
case, call dataissetto NULL.

3.2.3.4. Realizethe widgets

Once the widgets have been created and managed, they have to be realized to be visible. The Xt
function

SeRuedive FaGee ( witget )

64



realizes ( makes visible ) the widget given as argument and all its descendants. This widget is thus
normally the root widget created by the initialization function.

3.2.3.5. Enterthe main{oop

Entering the main loop means calling XtAanloop If an application context has been defined, that
function is replaced by XedppMainl ogp(application_context).

This loop is an Xt function indefinitely collecting events and dispatching them to the widgets.
These in turn will call callback procedures. The mechanism is very similar to that of the XView
Notifier.

Events are caused by keystrokes, mouse buttons or pointer movements.

65



Chapler 4
An application

This chapter is dedicated to a particular application : an internal phone book for BIM, the
firm where the traineeship related to this thesis took place.
The main goal of this application is to provide a support for the study and the use of the two toolkits

presented inthe previous chapters. In fact, the choice of the application has no importance for itself.

" First of all, we present the list of the minimal functionalities to be implemented by that application
and which components can be used, in order to have a base of comparison. We then describe the
existing internal phone book at the time of the traineeship. In the following section, the application
itself is described and we show how we expect to use the selected components. After that, the
algorithms of the XView and the Motif versions are presented. However, because of the very
important amountof time neededto master them, the specific implementation problemsthey brought
in addition to the typical difficulties of the C language could not be resolved in time. That's why
neither the XView version nor the Motif version of the application are fully implemented (see
annexes ).
Anyway, their developments are significant enough to allow the presentation of the algorithms for
the two versions.
The chapter ends with the definition of a generic language bound to describe algorithms
independently of any of both toolkits.

4.1. Selection of toolkit components

Confronted to a wide set of objects and widgets, we decided to group them according to their
functionalities. We distinguish seven groups : container components, text capabilities, graphics
capabilities, menus, scrolling capabilities, commands and choices, and informations. The choice of
those groups and their number ( seven ) is quite atbitrary and depends on no particular critetia.
However, we consider that these objects constitute the basic elements that can be found in an user
interface.

66



We selected in each group a few objects of both toolkits to be used in a specific implementation.

They are presented in the sections 4.1.1.to 4.1.7. .

Afterageneric description of the application, we explain which components of the selection will be
used for each function of the application.

Then we present the specific algorithms and we show how we use the selected components. When
necessary, we show that the choice was not judicious and that we had to use another object(s) or
widget(s).

4.1.1. Container components

Container components are used to enclose and manage children objects.

XView : Frame ( for one or more children )
Panel ( to accept panel items )
Motif: XmFrame ( for a single child )
XmMainWindow ( as primary application's window )
XmPanedWindow (for verticallytiled children)
XmPForm ( maintains relationalshipsbetween children when resizing or adding children )
XmBulletinBoard ( does not force positioning of children )

4.1.2. Text capabilities

We consider here texts as inputs from the user.

XView : Textsw
Motif: XmTextField (forsingle-line fields )
XmText (for multilinefields)

4.1.3. Graphics capabilities

These components are given for information only ; they will not be used.
XView : Canvas

Motif: XmDrawingArea

XmLabel ( for texts or graphics )

4.1.4. Menus

67



68

XView : Menu (includes pop-up, pulldown and pullright menus and pushpins )
Motif: XmRowColumn ( to be instanciated to one of the following types : pop-up menu, pulldown

menu, option menu or menubar )

4.1.5. Scrolling capabilities

XView : Scrollbar ( can be used to split viewsin canvases )
Motif: XmScrollBar

XmScrolledWindow

XmSelection Box ( includes a scrolling list of choices )

4.1.6. Commands and choices

XView : Panel ( with particular items )

Ttysw (terminal emulator )

Motif: XmCommand XmFileSelectionBox
XmPushButton XmScale
XmDrawnButton XmSelectionBox
XmList XmToggleButton

4.1.7. Informations

XView : Textsw
Notice

Motif: XmScale
XmMessageBox

4.2. Description of the existing internal phope book

BIM is located on three sites. Part of the staff work at the site 'Castle’ in Evetbetg and about the
same number of persons work at the site 'Horizon' ( about 70 persons ) . Only a few people (about
10 persons ) work at the site "Two lions' which is very close to the Castle.

Internal phone numbers at BIM canbe found in two printed lists. The first list relates to "Horizon'

and 1s structured as follows :

1. name
2. first name
3. internal phone number ( three-digit numbers )



4. initials
The second list concerns all BIM and contains :

1. name
2. first name
3. location character ( 'H' for 'Horizon'
‘L' for ‘Two Lions '
no character for Castle')
4. internal phone number
S. initials

Phone numbers in the first list only allow communications inside the site. This is due to the fact that
you can't directly call someone working in one of the two other sites, but you have to use a public
phone number to call the secretary that will dispatch the call. »

In the second list, phone numbers to Horizon are different from those of the first list : they are four-
' digit numbers.
Both lists are regularly brought up to date, printed, and distributed to all people.
As the first list is included in the second one, problems of consistency could appear. This is more
likely to happen if different persons update these lists.
A phone book application could clear such problems and could contain other interesting
information.

4.3. Ani hoge book lication

4.3.1. Information manipulated by the application
The database should contain the following data for all persons working at BIM :

1. name

2. firstname

3. initials: the first letter of the name followed by the first letter of the christian name

4. phonenumber : all phone numbers are three-digit numbers except those that are used to
accessthe site 'Horizon' from the two others. Thus two phone numbers will be given
for each person working at "Horizon' : a three-digit one to be used inside the site and a
four digit number to be used from the two other sites.

5. location: the location is indicated by a character : 'H' for Horizon, 'L’ for Two Lions
and no character for the Castle.

69



6. workgroup : internal division of the firm ; examples of workgroups are ungETeam
(Unix group expert team ), sdg ( software development group ), Sybase.

7. lengthofservice
8. responsibilities or function in the company

9. activities ; specialization

4.3.2. Descriptionof theapplication

The application will providetwo kinds of operations on the database : consulting and updating.

4.3.2.1. Consulting

The database will be consulted according to one of three keys : a name, a fitst name, or a
specialization. The usefulness of the name or of the first name as a key is quite clear. Using the
specialization as a key allows to give the user the list of all persons likely to solve his problems in a
precisefield.

~ When the user has introduced such a key, the information related to all persons whose data match
the key is displayed. Complete or cut information can be provided. The complete information
consists of the nine fields of data described in section4.3. 1. The cut information only relates to the
fields 1 to 4. When the user gives a key value that corresponds to nobody, he is notified of that fact.

Another way of consulting the database is to ask for a list of informations. Two lists are available.
One list provides all information contained in the database, that is to say all fields of data for all
persons. That list thus provides a sequential access to the whole database. The second list is
composed of all activities or specializations mentioned in the fields number nine of the database.
That list is useful to find the exact denomination of a specialization before using it as a key.

4.3.2.2. Updating

The application manipulatesdata which are clearly subjectto changes. Therefore, it should provide
authorized users a way to update the database. The three traditional functions are offered : the user
caninsert, modify, or delete data.

A password is not planned yet because the application will first be designed for a restricted use, not
for a public one ( all employees). Even in the latter case, it does not matter if some information is
wrong because the aim is to test such things as : ease of use, missing or unnecessary functionalities,
presentation of the windows, of the information, ...

The pair ( name , first name ) is considered as the identifier of a person.

70



4.3.2.3 Quitting
For people who have never heard about a window manager, the application should give the user an

explicit and easy way of quitting it. Moreover, the user should be able to confirm or deny his
choice.

4.3.3. Implementationof theapplication

As was section 4. 1., this section was written before programming the application. That is why
some components may be not well chosen.

4.3.3.1. The main window

The three groups of operations of section 4.3.2. are typically represented in an application’'s main
window by three distinct buttons. The separation of these three elements clearly shows that the three
operations or groups of operations are completely different.

* We shall use an XView frame and a panel for one version and a Motif MainWindow and a
BulletinBoard for the other. The buttons will be panel item buttons for XView and PushButtons for
Motif. They will contain a corresponding label ( an attribute of the XView button and a Label
widget).

With these elements, the application’s main window should look like figure4.1. .

BIM Internsal Phone hook

(o) (o) (=)

figure 4.1. the main window

4.3.3.2. The Consult menu

Whereas the three groups of operations are always shown in the main window, the different
operations themselves are hidden and displayed as menus when required. That avoids confusing the
user that would otherwise have too many possibilities presented at the same time.

The button labeled 'Consult’ brings up a pulldown menu when activated. The Consult menu
consists of the options 'Keys' and 'Lists' which both refer to pullright menus ( see figure 4.2. ).

71



The objects that will be used for the Consult menu and submenus are the XView menu and the

Motif RowColuma withthe correct attribute ot resource values.

Name
Consult First name
Keys Specializetion

Lists % | A} info

Antivities

figure4.2. the Consult menu

4.3.3.2.1. The Keys submenu

- Each option 'Name', 'First name’, and 'Specialization’ in the Keys menu gives rise to the same

scenario:

1. Adialog window (figure4.3. )is created and asks the user for a name, a first name ora
specialization as a search key. The user has two choices. The first one deals with complete
or cut information. The second one allows him either to trigger the search with the given
key or to quit the option back to the main window, making the dialog window disappear.
An 'Erase’ button can be used to set the input text field to blank.

Consult : Name

Lﬁemh] [ Erase J [ Quit J (O Complete info

@) Cut info

figure 4.3. adialog window

To build this dialog window, we shall use the following components :

72



73

Elements XView Motif

window frame and panel BulletinBoard
‘Consult : Name' frameattribute XmLabel
buttons panel items ( buttons ) PushButtons
choice panel item ( exclusivechoice) ToggleButtons
input field panel item (textfield ) XmTextField

2.1. If the name, first name or specialization does not exist in the database,
a. the dialog window remains unchanged and
b. an error window appears ( figure 4.4. ) . No further use of the application is
possible until the 'OK' button is selected, which causes the efror window to
disappear. The input field in the dialog window is set to blank, ready for a new

request.

The pame dekiiciliig
does pot exist

(or )

figure 4.4. an error window

We shall use an XView notice or a Motif MessageBox for the error window.

2.2. If the key refers to one or more persons, the complete information or the cut information is
displayed inan information window ( figure4.5. ) provided with three buttons. The buttons labeled
'Next' and 'Previous' then allow the navigation through the list of selected persons, in order to
display the information related to another person. Figure 4.5 presents a complete information
window. A cut information window would only contain 4 data fields and would be smaller. The
dialog window is still available, with an input field set to blank. In all cases, once the dialog
window hasbeen created, it remains visible until being released by the 'Quit’ button,

No new components are used here for the information window : except for the ToggleButtons, we
shall use the same objects as those of the dialog window.

4.3.3.2.2. The Lists submenu

Two sorts of lists can be asked for :



74

1. List of all information contained inthe database
2. List of all activities mentioned inthe databasein the fields number nine

The option ‘All info’ directly gives riseto a complete information window similar to that presented
inthefigure4.5. Thatinformation window allows the sequential accessto the whole database.
The second list is useful when the user don't exactly know the precise denomination of an activity.

That listis presented in an information window provided with a 'Quit’ button and a scrollbar (figure
4.6.).

Consult : Name : Information

() () ()

ImIHAJE & e
Phone pumber @ ...
Loestion | e
FORPOUP & (oo
Length of service : ..o,
Responsibilities @ ...
Specialization{s] : .....ccooviiiiiiiiinnnns

figure4.5. acomplete information window

Consult : Activities

(ou |

Astivity 11
Activity 12

Antivity 15

Activity 33

figure 4.6. an information window for the activities



This information window for the activities is provided with an XView scrollbar or a Motif
ScroliBar. The textual part of the window is an XView Textsw or a Motif Text.

4.3.3.3. The Update menu

The Update menu is based on the XView menu package or the Motif RowColumn like the Consult
menu.

Update

Incent

Modify

Delate

figure4.7. the Update menu

All update items ( 'Insert’, 'Modify' and 'Delete’ ) of the Update menu make an update window
appear ( figure 4.8. ). Such a window is provided with a 'Check’ button, an 'Erase button’, a
'Quit’ button and one update button corresponding to the item selected in the update menu. It is also
provided with nine labels placed before the nine input text fields of data already described.

The 'Check’ button can be used to make the application detecting wether a person already exists in
the database. Such a way of doing is not mandatory but can save the user the trouble of needlessly
typing in all other related information.

Of course, after using that button, the user still needs to use the update button to perform the desired
operation

The user must explicitly dismiss the Update window so that multiple updates are performed in an
easier way : you do not need to select anitem inthe update menu each time you wish to update the

database.

4.3.3.3.1. Insesting

The user first gives the name and first name, then he possibly gives the other information and press
theinsertbutton.

If the pair ( name , first name ) already exists in the database, an error window pops up and the user
has to try with another name or to quit. Otherwise, he typesin all information.



Update : Insert

() () (3m) ()

Phops DUl ber | ..oocininiininnnnnnnn.
Lotshion : ...
Workghoud | oo
Length of service @ ...
Responsibilities : ...
Specialization(s) @ ...

figure 4.8. anupdate window

The Update window requires the same objects as the information window ( figure4.5. ).

4.3.3.3.2. Modifying

The user gives the name and first name of the person whose data are not corect any more and press
the modify button.

If the pair ( name , first name ) does not exist in the database, an error window pops up and the user
has to try with another name or toquit.

If it exists, all information is displayed in the same window and the user may edit it.

4.3.3.3.3 De

The user only needs to give the name and first name of the person whose data must disappear from
the list and pressthe delete button.

If the pair ( name , first name ) does not exist in the database, an error window pops up and the user
has to try with another name or to quit.

If itexists, all information related to that personis deleted.

The error windows discussed in the last three sections will be XView notices or Motif
MessageBox.

76



77

4.3.3.4. Quitting

The activation of the third button of the main window lets a confirmation window appear (figure
4.9.). No further use of the application is then possible until one of two buttons is selected : 'Quit’
or 'Cancel'.

Do you want
to quit ?

(o) (o)

figure4.9. the confirmation window

This confirmation window will be an XView notice or a Motif MessageBox.

" 4.4. The Motif version of the application

This section presents and comments the algorithms of the internal phone book application written
withMotif.

The source file of the application begins with the declarations of the include files referring to the
widgets used.

Many widgets are then declared as global variables as do other data strucures.

All normal and callback procedures are declared ataglobal level, too.

The main function of that C program is then defined.

4.4.1. Algorithm of main

The function main createsthe main window of the application, its menus and its submenus, opens
the application database and givesthe control to the event dispatcher.

Insection4.3.3.1., we planned to use a MainWindow and a BulletinBoard to accept PushButtons
that would give access to the Consult and Update menus. CascadeButtons must be used instead of
them because PushButtons can not access menus. ( But they can be used as menu items to perform
actions ). As CascadeButtons have to be placed in a menu pane or in a MenuBar, and because a
MenuBar can be a child of a Shell, we do not use the MainWindow and the BulletinBoard.



These problems are the typical difficulties we encountered when programming with Motif and
XView. Most of them are not mentioned in the manuals and we often had to try many possibilities
tofind something correct.

We thus placethree CascadeButtons in a MenuBar and the latter is a child of the top-level Shell. The
CascadeButtons call menus. The third one ( 'Quit’ ) calls no menvu. It can not be replaced by a
PushButton because a MenuBar only accepts CascadeButtons.

Instead of using a RowColumn, we prefer a convenience function for its simplicity
(XmCreatePullDownMenu)

Figure4.10. presentsthe tree of widgets created and their callback procedures.

It is divided into three parts to be more readable.

Phonebook
MenuBar
I
[ | I
Cons_eashtn Upd_cashta Quit_casita
\ ... Kill_chproe
“| Consult_pane R Update_pane
Consult_pane Update_pane
| l || Inseit_pushhtn
Keys_cashta Lists_cashtn :

i ¢ Update_chproe,1
Keys_subpane Lists_subpane || Modify_push_bta
—| Name_pushbta ] Allinfo_pushbta Delate_pushbtn

E"“M‘l Alhﬂo_____mgc) _____ Update_chproe,3
|| F_Name push Ba| [ | Acti pushMa

{_ Keys cbproe,2 \ Astivities_chproe
| Special_pushhtn

g ... Keys cbproc,3

figure 4.10. widgets of the application's main window

78



create atop-level shell (Phonebook ) by means of an initialization function

create a menu bar ( MenuBar ) in Phonebook

create two menu panes ( Consult_pane and Update_pane ) as children of MenuBar

create two cascade buttons ( Cons_casbtn and Upd_casbtn ) as children of MenuBar. Those
buttons are linked respectively with Consult_pane and Update_pane so that their
activation pulls downthe corresponding menu.

create a cascade button (Quit_casbtn ) as child of MenuBar and declare its callback routine
Kill_cbproc, tobe called with the argument Phonebook.

create two pulldown submenu panes ( Keys_subpane and Lists_subpane ) as children of
Consult_pane

createtwo cascade buttons ( Keys_casbtn and Lists_casbtn ) as children of Consult_pane.
These buttons are linked respectively with Keys_subpane and Lists_subpane, so that
theiractivation pullsright the corresponding submenu.

create three push buttons ( Name pushbtn, F_Name pushbtn, Special _pushbtn ) as
children of Keys_subpane and declare their callback routine Keys_cbproc, to be
called with the respective argument value 1,2 or 3.

create two push buttons ( Allinfo_pushbtn and Acti_pushbtn) as children of Lists_subpane
anddeclaretheirrespectivecallbackroutineAllinfo procand Activities_proc

create three push buttons ( Insert_pushbtn, Modify_pushbtn and Delete_pushbtn ) as
children of Update_pane and declare their callback routine Update_cbproc, to be
called with therespective argument value 1,2 or 3.

call a function ( Init ) that opens the file Phonefile standing for the database or creating it if
it does not exist

callthefunction MainLoop.

The so-called link between a cascade button and its associated menu is created by giving the

reference of that menu pane as the value of the resource XmNsubmenuld of the cascade button.

4.4.2. Algotithm of Kill _cbproc

The function Kill_cbproccreates a confirmation window used to confirm or cancel a request to quit
the application.

As foreseen in section 4.3.3.4., the confirmation window is based on a MessageBox. However, we
use a convenience Dialog based on that widget, for its simplicity ( see section3.1.4.8.).

create a question dialog box with a label 'Do you want to quit ?', a Cancel button and an
'OK’ button with the callbackroutine Kill ok_cbproc

79



4.4.3. Algorithm of Kill_ok_cbproc

This procedure only consists of a function call.

exit the application

4.4.4. Algorithm of Keys_cbproc

The function Keys_cbproc creates a dialog window as presented in figure 4.3. . It receives a value
indicating the type of search key : 1 for 'name’, 2 for 'first name’, 3 for 'specialization’.

The ToggleButtons and the label 'Consult : Name' are notimplemented. The three other widgets are
those that were selected in section 4.3.3.2.1. . However, we need an additional Label widget to
placebeforetheinputtextfield.
Figure4.11. presents the tree of widgets created and their callback procedures.

Itis followed by the algorithm.

Keys_shell
1
Keys_bubo
[
l I l |
Search M Ersse_btn Quit_Ma Choige_btn
‘_ .. Bearch _cbproe Eme ehpros _Qg_@m Q_h_qx_ce_m
Label Keys_twt

figure4.11. widgets of a dialog window

create ashell : Keys_shell

create a bulletinboard ( Keys_bubo ) in Keys_shell

create a push button ( Search_btn)in Keys_bubo and declare its associated callbackroutine
Search_cbproc, to be called with an argument value corresponding to the type of
searchkey

create a push button ( Erase btn ) in Keys_bubo and declare its callback routine :
Erase_cbproc, to be called with the argument value 1

create a push button( Quit_btn }in Keys_bubo and declare itsassociated callback routine :
Quit_cbproc, tobe called withthe argument Keys_shell

create toggle buttons( Choice_btn )forthe complete information/cutinformationchoicein

80



Keys_buboanddeclareitscallbackroutine Choice_cbproc
create theinput text field ( Keys_txt ) in Keys_bubo
if the argument value passed to Keys_cbproc =1
then create the input label ( Label )in Keys_bubo, with the value "Name"
if the argument value passed to Keys_cbproc =2
then create the input label (Label ) inKeys_bubo, withthe value "First Name"
if the argument value passed to Keys_cbproc =3
then createthe input label (Label )inKeys_bubo, withthe value “Specialization”

4.4.5. Algorithm of Search_cbproc

Thefunction Search_chproctakes as argument the type of search key and searches for all persons
whoseinformation matchthe search key.

The same remark asin section 4.4.2. applies here about the error window : we use a convenience
Dialog ( XmCreateMessageDialog ) based on XmMessageBox (see section3.1.4.8.).

getthe value of the input text field Keys_txt (thatisto say the search key ) inthe character
array Search_data
openPhonefile
read firstline
while not EOF
read the following 8 lines
if (the search key is a name and line 1 equals to Search_data )
or ( the search key is a first name and line 2 equals to Search_data )
or (the search key is a specialization and line 9 equalsto Search_data )
then copy the nine linesin the table Info
read nextline
closePhonefile
if no datamatching Search_data has beenfound in Phonefile
then create a message dialog box Error with the label 'Does not exist' and an 'OK'
button
elseunmanageKeys_shell
call Keys_info_proc

4.4.6. Algorithm of Keys_info_proc

ThefunctionKeys_info_proc createsacomplete or cutinformation window.

81



A BulletinBoard, PushButtons, and text fields are used as foreseen for an information window,
Label widgets have been added to the list of widgets, asinKeys_cbproc.

Figure4.12. presents the tree of widgets created and their callback procedures.

Itis followed by the algorithm.

Keys_info_shell
[
Keys_info_dbude
[
i | !
Next_bhtn Previous_Mr Quit_hn

Lot

Ladel2 ——{ Keys_Special_twt

figure 4.12. widgets of an information window

createashell: Keys_info_shell
create a bulletin board ( Keys_info_bubo )inKeys_info_shell
create a push button ( Next btn ) in Keys_info_bubo and declare its callback routine
Move_cbprocto becalled withthe argument value 1
create a push button ( Previous_btn ) in Keys_info_bubo and declare its callback routine
Move_cbprocto be called with the argument value2
create a push button ( Quit_bta ) in Keys_info_bubo and declare its associated callback
routine Quit_cbproctobe called withtheargumentKeys_info_shell
if complete_info is true
then create nine labels ( Labell to Label9 ) in Keys_info_bubo corresponding to the
ninefields of data already described
create nine input text fields ( Keys Name txt to Keys_Special_txt ) in
Keys_info_bubo corresponding to the nine fields of data already described
setthe value of these nine input text fields to the first nine lines of the table Info
created in Search_cbproc
else create four labels ( Labell to Labeld ) in Keys_info_bubo corresponding to the
four fields of data already described
create four input text fields ( Keys Name txt to Keys Phone txt ) in
Keys_info_bubo corresponding to the four fields of data already described

82



set the value of these four input text fields to the first four lines of the table Info
createdinSearch_cbproc

4.4.7. Algorithm of Move_cbproc

The function Move_cbproc displays the complete or cut information of anmother person in
Keys_buboaccording tothe button that calledit.

if the value received as argument = 1 and the index of the table Info is less than (size of the
table) - 1
thenincrementthe index of thetable
if the value received as argument = 2 and the index of the table is greater than 0
thendecrementtheindex of thetable
if the index has been modified
if complete_info is true
then set the value of the nine input text fields Keys Name_txt to Keys_Special_txt
to the nine values corresponding to the index in the table Info
else set the value of the four input text fields Keys Name txt to Keys_Phone txt
to the four values corresponding to the index in the table Info

4.4.8. Alporithm of Quit cbproc

The function Quit_cbproc creates a confirmation window used to confirm or cancel a request to kill
a window of the application, except the main window.

As foreseen in section 4.3.3.4., the confirmation window is based on a MessageBox. However, we
use a convenience Dialog based on that widget ( see section3.1.4.8.).

create a question dialog box with a label 'Do you want to quit 7' a Cancel button and an
'OK’ button with the callback routine Quit_ok_cbproc, called with the window to
kill asargument
4.4.9. Algorithm of Quit_ok_cbproc

This procedure only consists of a function call.

destroy the window passed as argument

&3



84
4.4.10. Algorithm of Frase_cbproc

Thefunction Erase_cbproc canbe called from the dialog window created by Keys_cbproc or from
the update window created by Update_cbproc.

if the value received as argument = |
then set Keys_txttoblank
if the value received as argument =2
then set the nine input text fields of Update_bubo to blank

4.4.11. Algorithm of Choice_cbproc

if the Complete info option has been selected
thensetComplete_infototrue

if Cutinfo option has been selected
thenset Complete_infotofalse

4.4.12. Algorithm of Allinfo_proc

Thefunction Allinfo_proc copies the file Phonefile into the table Info and calls Keys info_procto
makeits contentdisplayed.

We use here aconvenience Dialog ( XmCreateMessageDialog ) based on XmMessageBox to create
an error window.

openPhonefile
read first line
while not EOF
read the following 8 lines
copy the nine lines in the table Info
read nextline
closePhonefile
if Phonefile is empty
then create a message dialog box Check_msg with the label "The phone book is empty’
and with an 'OK' button
else call Keys_info_proc



85

4.4.13. Algorithm of Activities_proc

The function Activities_proc copies all activities found in the line 9 for each person into the table
Activities and calls Special_info_proc to make them displayed.

The same remark asin section4.4.12. applies here about the error window.

openPhonefile
readfirstline
while not EOF
read the following 8 lines
extract the specialization(s) mentioned in the line 9 and copy them into the table
Activities
read nextline
closePhonefile
if thetable isempty
then create a message dialog box Check_msg with the label 'No specialization' and an
'OK’ button
else call Special_info_proc

4.4.14. Algorithm of Special_info_proc
The function Special_info_proc creates aninformation window as presented in figure 4.6. .

In this procedure, we would use a ScrolledWindow instead of a Text provided with a ScroliBar.

Hpecial info_shell
I

8pecial_info_buba
[
[ |
Hpecial Ber W Quit_han
.. Quit_edproe

figure4.13. widgets of aninformation window for the activities

createashell : Special_info_shell
createabulletinboard (Special_info_bubo)inSpecial_info_shell



86

create a push button ( Quit_btn ) in Special_info_bubo and declare its callback routine
Quit_cbproc, tobecalled withthe argumentSpecial_info_shell

create a scrolled window ( Special_Scr_ W )in Special_info_bubo

set the value of the text Special_info txt to the table Activities created in
Activities_proc

4.4.15. Algorithm of Update _cbproc
The function Update_cbproc creates an update window as presented infigure 4.8, .

Label widgets ( placed before the text fields ) are used in addition to those defined in section
4.3.3.3..

Update_shell
I
Update_bubo
]
{ ] I ]
Cheele_btn Erase_Mn Insert_btn Quit_Ma
! Check_chproe | Erase chproc | Inset chproe 1 Ouit chproe

| Labell i Upd_Name_txt

1
1 1
L] +

Ladel2 L— Upd Npecial tit

figure 4.14. widgets of an update window

createashell: Update_shell

create abulletin board (Update_bubo )inUpdate_shell

create a push button ( Check btn ) in Update bubo and declare its callback routine

Check_cbproc

create a push button ( Erase btn ) in Update bubo and declare its callback routine
Erase_cbprocto be called with the argument value?2

create a push button ( Quit_btn ) in Update bubo and declare its callback routine
Quit_cbproctobecalled withtheargumentUpdate_shell

if the value received asargument by Update_cbproc=1

then create a push ( Insert_btn ) button in Update_bubo and declare its callback routine
Insert_cbproc
if the value received asargument by Update_cbproc=2



then create a push button ( Modify bta ) in Update_bubo and declare its callback
routine Modify cbproc
if the value received asargument by Update_cbproc=3
then create a push button ( Delete_btn ) inUpdate_bubo and declare itscallback routine
Delete_cbproc
create ninelabels ( Labell to Label9 ) in Update_bubo corresponding to the nine fields of
dataalreadydescribed
create pine input text fields ( Upd_Name txt to Upd_Special_txt ) in Update_bubo
corresponding to the nine fields of dataalready described

4.4.16. Algorithm of Check cbproc

The function Check_cbproc tests if the person identified by the name and first name given in the
update window already exists in Phonefile or not.

Once again, aMessageBox iscreated viaa convenience Dialog.

getthe value of Upd Name_txtand Upd F _Name txt

if these values exist consecutively in Phonefile
then set the value of a string to 'Exists’

if these values do not exist consecutively in Phonefile
then set the value of a string to 'Does not exist’

create a message dialog box with a label which value is set to the preceding string and with
an 'OK’ button

4.4.17. Algorithm of Insert_cbproc

The function Insert_cbproc inserts the values of the nine input text fields of the update window into
Phonefile, unless the informatuion of the personidentified by the name and first name is already in
Phonefile.

getthe value of the nine input text fieldsUpd_Name_txttoUpd_F_Name txt
if the values of Upd_Name txttoUpd F Name txt exist consecutivelyin Phonefile
then set the value of a string to 'Exists'
create a message dialog box with a label which value is set to that preceding string
and with an 'OK’ button
if the values of Upd_Name_txttoUpd_F_Name txt do not exist consecutively in Phonefile
then insert the values of the nineinput text fields into the file Phonefile

87



4.4.18. Algorithm of Modify_cbproc

The name and algorithm of the function Modify_cbproc are meaningful enough. Moreover,the
modification becomes an insertion if the pair (name , first name ) does not exist in Phonefile.

getthe valueof the nine input text fieldsUpd Name_txttoUpd_F_Name txt
insert the values of these nine inputtext fields into thefile Phonefile

4.4.19. Algorithmof Delete_cbproc

The function Delete_cbproc is symmetrical to the function Insert cbproc.

getthe value of the two input text fields Upd_Name_txtand Upd_F_Name txt
if the values of Upd_Name txttoUpd F_Name_txt do not exist consecutively in Phonefile
then set the value of astring to 'Does not exist’
create a message dialog box with a label which value is set to that preceding string
and an 'OK’ button
if the values of Upd_Name_txttoUpd_F_Name_txt exist consecutively in Phonefile
then delete the nine corresponding lines in Phonefile

4.5. The XView version of the application

This section presents and comments the algorithms of the internal phone book application written

with XView.
However, most of the algorithms that follow have been deduced from a few ones, as the XView

applicationisnotfullyimplemented.

The text file of the application begins with the declarations of the include files referring to the
packages used.

Many objects are then declared as global variables as do other data structures.

All normal and callback procedures are declared ataglobal level, too.

The main function of that C program is then defined.

4.5.1. Algorithm of main

Thefunction main createsthe main window of the application, its menus and its submenus, opens
the application database and givesthe control to the Notifier. The attribute XV_KEY _DATA isused

88



in an object to associate data with that object. The notify procedure of that object automatically
receives the handle tothe object and the associated datacan beretrieved by a callto xv_get.

As foreseen in section 4.3.3.1., we use a frame, a panel, panel buttons and menus to create the
main window of theapplication.

Phonebook
Phoneb_panel
[ |
Consult Update Quit
hutton button hutton
L‘{Consu]x_menu il Updite_menu t---Kill_stproe
Insert
Ry 1 Item
tem {...Insert ntproc
Modify
| [Lises e
item \ ... Modify ntproe
Delste
—1 item
i___geme Diproe
Keys Lists
item item
*--{ Keys_submenu Lists_submexnu
Mame
—1 item
y Allinfo
i... Hame_uiproc ] item
First name i Allinfo_atproe
—1  item
T Activities
i... Firstuame ntproe L item
Bpecialization ?,_,,Aetivities Dtproc
— item
. #pecializ_ntproe

figure4.15. the abjects of the application's main window



90

call the initialization function

create abaseframe : Phonebook

create asubmenu ( Keys_submenu ) with three items and declare the procedures they call :
'Name' and Name_proc, 'First name’ and Firstname_proc, 'Specialization’ and
Specializ_proc

create a submenu ( Lists_submenu ) with two items and declare the procedures they call :
'Allinfo'and Allinfo_proc, 'Activities' and Activities_proc.

create a menu ( Consult_menu ) with two items and declare their respective pullrignt
menus: 'Keys' and Keys_submenu , 'Lists’ and Lists_submenu

create a menu ( Update_menu ) with three items and declare the procedures they call :
'Insert’ and Insert_proc, 'Modify’ and Modify_proc, 'Delete’ and Delete_proc

create a panel (Phoneb_panel ) within Phonebook

create a button with the label 'Consult' in Phoneb_panel and declare its menu :
Consult_menu

create a button with the label "Update' in Phoneb_panel and declare its menu :
Update_menu

create a button with the label 'Quit’ in Phoneb_panel and declare its callback routine :
Kill ntproc

call a function ( Init ) that opens the file Phonefile standing for the database or creating it if
it does not exist

call the function mainioop.

4.5.2. Algorithm of Name_proc

call the function Keys_proc with the argument value 1

4.5.3. Algorithm of Firstname_proc

call the function Keys_proc with the argument value 2

4.5.4. Algorithm of Specializ_proc

call the function Keys_proc withthe argument value 3

4.5.5. Algorithm of Keys_proc

The function keysproc creates a dialog window as presented in figure 4.3. . It receives a value
indicating the type of search key : 1 for 'Name', 2 for 'First name’, 3 for "Specialization'.



All objects precisedinsectiond.3.3.2. 1. areimplemented, exceptforthe exclusive choice.

Keys_frame
Keys_pamel
f ]

Bearch Erase Quit

button bujton button

L. Bearch Iiptoe ‘.. Erase LProe ’---Quix Liprog
Choige KQ?S_U(’.’
button
"...Choise_ntpros

figure 4.16. the objects of a dialog window

createaframeKeys frame

create a panel ( Keys_panel )in Keys_frame

create a button with the label 'Search’ in Keys_panel, declare its notify procedure
Search_ntproc and set the attribute XV_KEY _DATA of that button to the value
indicating the type of search key

create a button with the label 'Erase’ in Keys panel, declare its notify procedure
Erase_ntproc and set theattribute XV_KEY_DATAof thatbuttonto1

create a button with the label 'Quit' inKeys_panel, declare its notify procedure Quit_ntproc
and set the attribute XV_KEY DATA of thatbutton tothe valueKeys_frame

create the complete information/cut information choice in Keys_panel and declare its
callbackroutine Choice_ntproc

create an input text ( Keys_txt )inKeys_panel

if the valuereceived as argument by Keys_proc = 1 set the value of the text label to ‘Name'

if the valuereceived as argument by Keys proc =2 set the value of the text label to 'First

name

if the value received as argument by Keys_proc = 3 set the value of the text label to

‘Specialization'

4.5.6. Algorithm of Search_ntproc

The function Search_ntproc searches for all persons whose information match the search key.

91



getin the character array Search_data the value of the input text field Keys_txt ( thatis to
say the searchkey )
get in Search_key the value of the attribute XV_KEY DATA of the button that called
Search_cbproc
open Phonefile
readfirstline
while not EOF
read the following 8 lines
if ( Search_key = 1 and line 1 equals to Search_data )
or ( Search_key =2 and line 2 equals to Search_data )
or ( Search_key = 3 and line 9 equals to Search_data )
then copy the nine lines in the table Info
read nextline
closePhonefile
if no datamatching Search_data has beenfound in Phonefile
then create a notice Error with the label 'Does not exist' and an 'OK' button
else destroy Keys_frame
call Keys_info_proc

4.5.7. Algorithm of Keys_info_proc

Thefunction Keys_info_proc creates acomplete or cut information window.

The objects created in an information window are shown in figure4.17.

Keys_info_frame
l
Keys_info_panel
l ]
Next Previous Quit
bhutton button button

L.Move ntproc,1| --Mowe mtmoel  “--Quit miproe

— Keys_Name_tit

¥
]

1]

L] Keys_Special twt

figure 4.17. the objects of an information window

92



createaframe: Keys info_frame
create apanel (Keys_info_panel )inKeys_info_frame
create a button ( with the label 'Next' ) in Keys_info_panel, declare its notify procedure
Move_ntproc and set theattribute XV_KEY_DATA of thatbuttonto 1
create a button ( with the label 'Previous' )in Keys_info_panel, declare its notify procedure
Move_ntproc and set the attribute XV_KEY DATA of thatbuttonto2
create a button ( with the label 'Quit’ ) in Keys_info_panel, declare its notify procedure
Quit_ntprocandsettheattribute XV_KEY DATAtothe valueKeys_info_frame
if complete_info is true
then create nine input text fields ( Keys Name txt to Keys Special txt ) in
Keys_info_panel corresponding to the nine fields of data already
described
set the labels of these nine input text fields to the values 'Name' to
'Specialization’
set the value of these nine input text fields to the first nine lines of the table Info
createdinSearch_ntproc
else create four input text fields ( Keys Name txt to Keys Phone txt ) in
Keys_info_panel corresponding to the four fields of data already
described
set the labels of these four input text fields to the values 'Name' to 'Phone
number’
set the value of these four input text fields to the first four lines of the table Info
created in Search_cbproc

4.5.8. Algorithm of Move_ntproc

The function Move_ntproc displays the complete or cut information of another person in
Keys_info_panel according to the button that called it : the 'Next' or the 'Previous’ button

get in Direction the value of the attribute XV_KEY_DATA of the button that called
Move_atprocif Direction = | and the index of the table Info is less than (size of the
table)- 1
thenincrement theindex of thetable
if Direction =2 and the index of the table is greater than 0
thendecrementtheindex of thetable
if the index has been modified
thenif Complete_infoistrue

93



then set the value of the nine iput text fislds Keys Name bt 12
Keys_Special_txttothe nine values corresponding to the index in the
tablelnfo

else set the value of the four input text fields Keys Name txt to

Keys_Phone_tx to the four values corresponding to the index in the
tablelafo

4.5.9. Algorithm of Erase_ntproc

The function Erase_ntproc canbecalled from the dialog window created by Keys_proc or from the
update window created by Update_proc.

get in Window the value of the attribute XV_KEY DATA of the button that called
Erase ntproc

if Window =1
then set Keys_txttoblank

if Window =2
then set the nine input text fields of Update_panel to blank

4.5.10, orithm of Quit ntproc

The function Quit_ntproc creates a confirmation window used to confirm or cancel a request to kill
awindow of the application, except the main window.

create a notice with a label 'Do you want toquit 7' a'Cancel’ button and an 'OK’ button
if the ‘OK’ button is selected
then get in Window the value of the attribute XV_KEY_DATA of the button that called
Quit_ntproc
destroy Window

4.5.11. Algorithm of Choice_ntproc

if the Complete info option has been selected
thensetComplete_infototrue

if Cut info option has been selected
thenset Complete_infotofalse

94



4.5.12. Algorithm of Allinfo_proc

ThefunctionAllinfo_proc copies the file Phonefile into the table Info and calls Keys_info_proc to
make its content displayed.

openPhonefile
read firstline
while not EOF
read the following 8 lines
copy the nine linesin the table Info
read nextline
closePhonefile
if Phonefile is empty
then create a notice with the label 'The phone book is empty' and an'OK' button
else call Keys_info_proc

' 4.5.13. Algorithmof Activities proc

The function Activities_proc copies all activities found in the line 9 for each person into the table
ActivitiesandcallsSpecial_info_proctomakethemdisplayed.

openPhonefile
read firstline
while not EOF

read the following 8 lines

extract the specialization(s) mentioned in the line 9 and copy them into the table

Activities

read nextline
closePhonefile
if thetable isempty

then create a notice with the label 'No specialization’ and an'OK' button
else call Special_info_proc

4.5.14. Algorithm of Special_info_proc

The function Special_info_proc creates aninformation window as presented infigure 4.6.
The tree of objects of that window is given in figure 4. 18.

95



Bpecis]l_info_frame

I

Bypecial_info_pamel

l I l

Bpecial info bt -1 Berollbay Quit
button

*--Quit_ntproc

figure4.18. the objects of aninformation window for the activities

create a frame Special_info_frame

createapanel(Special_info_panel )inSpecial_info_frame

create a button with the label 'Quit’ in Special_info_panel, declare its notify procedure
Quit_ntprocandsettheattribute XV_KEY DATA tothevalue Special_info_frame

create a text subwindow Special_info_txt in Special_info_panel

create a scrollbar attached to Special_info_txt

set the value of Special_info_txt to the value of the table Activities created in
Activities_proc ‘

4.5.15. Algorithm of Insert_proc

call Update_proc with the argument value 1

4.5.16. Algorithm of Modify_proc

call Update_proc with the argument value2

4.5.17. Algorithm of Defete_proc

call Update_proc with the argument value 3

4.5.18. Algorithm of Update_proc

' The function Update_proc creates an Update window as presented in figure4.8. .

96



Update_frame

I

Updste_panel

Check Erase Insert Quit
button burton buiton button

“-Chek ptproc | --Erase mtpros  --Jusent_niproe ---Quit_mipro

— Upd_Hame_tt

]
]
I
I3

L} Upd Special txt

figure 4.19. the abjects of anupdate window

create a frame Update_frame

create a panel Update_panel

create a button with the label 'Check’ in Update_panel and declare its notify procedure
Check_ntproc

create a button with the label 'Erase’ in Update panel, declare its notify procedure
Erase_ntproc and set theattribute XV_KEY_ DATA of thatbutton tothe value2

create a button with the label 'Quit’ in Update_panel, declare its notify procedure
Quit_ntproc and set the attribute XV_KEY DATA of that button to the
valve Update_frame

if the value received asargument by Update_ntproc= 1
then create a button with the label 'Insert’ in Update_panel and declare its notify
procedure Insert_ntproc

if the value received as argument by Update_ntproc =2
then create a button with the label ‘Modify' in Update_panel and declare its notify
procedure Modify_ntproc

if the value received as argument by Update_ntproc =3
then create a button with the label ‘Delete’ in Update_panel and declare its notify
procedure Delete_ntprac

create nine input text fields ( Upd_Name txt to Upd_Special txt ) in Update_panel
corresponding to the nine fields of dataalready described

set the labels of these nine input text fields to the values 'Name' to 'Specialization’

97



98

4.5.19. Algorithm of Check_ntproc

The function Check_ntproc tests if the person identified by the name and first name given in the
update window already exists in Phonefile or not.

getthe value of Upd Name txtandUpd_F_Name_txt

if these values exist consecutively in Phonefile
then set the value of a string to 'Exists’

if these valuesdo not exist consecutively in Phonefile
then set the value of a string to 'Does not exist'

create a notice with a label which value is set to the preceding string and with an 'OK'’
button

4.5.20. Algorithm of Insert_ntproc -

The function Insert_ntproc inserts the values of the nine input text fields of the update window into
Phonefile, unless the information of the person identified by the name and first name is already in
Phonefile.

- getthe value of the nine input text fieldsUpd_Name_txttoUpd_F_Name_txt
if the values of Upd Name wtxttoUpd F_Name txtexist consecutivelyin Phonefile
then set the value of a string to 'Exists’
createa notice with a label which value is set to that preceding string and an 'OK’
button
if the values of Upd_Name txttoUpd F_Name_txt do not exist consecutively in Phonefile
then insert the values of the nineinput text fields intothe file Phonefile

The name and algorithm of the function Modify_ntproc are meaningful enough. Moreover,the
modification becomes an insertion if the pair (name , first name ) does not exist in Phonefile.

get the value of the nine input text fieldsUpd_Name_txtto Upd_F_Name _txt

insert the values of these nine input text fields into thefile Phonefile

4522, orithm of Del

The function Delete_ntproc is symmetrical to the function Insert_stproc.



getthe value of the twoinput text fields Upd_Name_mxtand Upd_F_Name_txt
if the values of Upd_Name_txttoUpd_F_Name_txt donot exist consecutively in Phonefile
then set the value of astring to 'Does not exist'
createanotice with a label which value is set to that preceding string and an ‘OK'
button
if the values of Upd_Name txttoUpd F_Name txt exist consecutively in Phonefile
then delete the nine corresponding lines inPhonefile

4.5.23. Algorithm of Kill _ntproc

The function Kill _ntproc creates a confirmation window used to confirm or cancel a request to quit
theapplication.

create a notice with a label 'Do you want toquit ?' a 'Cancel’ button and an 'OK’ button
if the 'OK’ button is selected
then exit the application

4.6. Compaerison and generalization of the slgorithms of the two versions

This section only generalizes those algorithms that deal with graphical objects, with the aim of
producing toolkit-independent algorithms to be instanciated toa Motif oran XView application.
Thegenericalgorithms presented here will sometimes look likean XView or a Motif one, but there
is often no other way of expressing them.

We shall use three specific termsto write generic algorithms : 'create, 'attach, and 'refer’.

The term 'create’ represents the creation of an object or a group of objects. It includes the
management or the realization of these objects when necessary. That term thus stands for
xv_create(), for XmCreate Widger () , for XtCreateManagedWidget(), or for XtCreateWidget()
followedby XtManageChild().

The term ‘attach’ represents alink between objects. This link can be a parental link, or a functional
link. A parental link exists for example between a button and the container object that is its parent
and containsit. A functional link canbe created betweenabutton or an item, and a menu by means
of aresource or an attribute. A scrollbar can be attached to a window, too.



The term 'refet’ introduces the callback procedure of an object and possibly gives the value with
which that procedure iscalled. That value is an argument value for Motif and an XV_KEY_DATA
value for XView.

Generic algorithms written with these three 'functions’ will always need to be transformed,
completed or reduced by the programmer in order to be instanciated to one of the two toolkits,
according to the comments given for each of them.

4.6.1. The main function

The initialization and the creation of the main window ( a toplevel shell ) are performed by Motif in
one functioncall while XView needstwo statements.

The menus and submenus of the main window are created in the Motif program in a top-down way:
from the menubar to the push buttons of the submenus. The components of these menus conform in
_ that way to the normal order of creation of widgets : a widgetis created , then another one is created
as a child of the first widget, considered as the parent widget.

However, aparticularity of Motif menu systems has to be shown. As Keys_casbtn gives access to
the submenu Keys (containing Name pushbthn, F_name pushbta and Special pushbta ), one
could think that Keys_subpaneis a child widget of Keys_casbta. In fact, Keys_subpane is a child
widget of Consult_pane as do Keys_casbtn and a functional link exists between Keys_casbtn and

Keys_subpane.
The same remark can be made for other components  see figure 4.10. ).

XView reverses the order of creation of those objects. This is due to the fact that submenus are
referenced by attributes of the menus. Thus submenus must be created before menus.

Another difference lies in the fact that Motif places the three top-level buttons of the menu in a
specific menu component(MenuBar) while XView places them in a general object (Phoneb_panel)
able to contain many kinds of panel items. ( seefigure. 2.7.).

Such considerations lead us to give the following generic algorithm of the function main :

create the submenu Keys
refer the procedure Keys with theappropriate value
createthe submenu Lists
referthe procedure All_info
refertheprocedureActivities

100



createthemenuConsult_menu

attach the submenu Keysto the menu Consult_memu

attach the submenu Liststo thememu Consult_menu
createthemenu Update_menu

referthe procedure Update _proc with the appropriate value
createthe buttonConsult_btn

attach the menu Consult_menutothe button Consult_btn
createthebuttonUpdate_btn

attachthe menuUpdate_menutothebuttonUpdate _btn
createthebuttonQuit_btn

referthe procedure Quit_proc with the appropriate value
createthe board Main

attachthe button Consult_bta tothe board Main

attachthe buttonUpdate_btatothe board Main

attachthe button Quit_bta to theboard Main
createthe window Main

attach the board Main to the window Main

However, that algorithm is tightly bound to the X View algorithm because of the order of creation of
theobjects.

In some cases, two specific algorithms ( for XView and for Motif ) of the same procedure differ
too much to allow the definition of a generic algorithm. Such a sitvation occurs in our application
with the main function, where the main window is created. The menus and submenus attachedto
that window are created in different ways, as explained above.

Insuch a case, instead of giving the programmer the order of creation of the objects, we give him a
representation of the final set of widgets with their relationships, as in figure 4.20. . From that
figure, he then decides which objects and which functions he will use.

101



Main window
I | I
Consuk Updsie Quit
meny oftion option
I l b o
Coneull T ---Quit_proe
BN Tenu
| l 1 Tuset
Keys Lists 1 option
Benu menu ;
t...Insert pro¢
Name .
| option | Allinfo Modify
y option —1 option
"~ Name_proc ] ) ' ;
-~ Allinfo_pro¢ b Modify proc
|| F_pame Activities
option 1 option || Delete
i i option
“--Frsme proc “--- Acli proe :
' ==~ Delete_proe
Bpecial
option
- §pee_proc

figure4.20. generic representation of the main window

The use of such generic representations can be generalized to all algorithms, evenif a simplegeneric
algorithm wouldbe sufficient.

4.6.2. The Keys submenu

As XView allows no data to be directly associated with a notify procedure, another mechanism must
be used to transmit a value to a procedure : the XV_KEY_DATA attribute. However, this attribute
can not be used with the menu items because the latter are themselves defined like attributes of the
menu. So, whereas Motif calls a general procedure ( Keys_cbproc ) with an argument value
indicating the type of search key, XView must go through specific procedures ( Name proc,
Firstname_procand Specializ_proc)to transmit that key value.

Thus the difference between the two implementations of the submenu Keys is the set of three
intermediary specific procedures needed by X View, but the procedures Keys_cbproc for Motif and
Keys_proc for XView themselves are very similar. The former creates abulletin board in ashell and
the latter creates the equivalent objects : a panel in a frame. The bulletin board and the panel both
accept buttonsand textfields. For the Motif toolkit, the 1abels placed before the input text fields and
these text fields are diferent widgets. Butfor XView, such a label is only an attribute of a text field.

102



The generic algorithm for the creation of the dialog window will be :

create awindow
create a supportfor other objects
createaSearchbutton

refer the Search procedure with the appropriate value
createan Erasebutton

refer the Erase procedure with the appropriate value
createa Quitbutton

refer the Quit procedure with the appropriate value
createaComplete/Cutinformation choice

refer the Choice procedure with the appropriate value
createaninput textfield
if the search key is aname

then set the label of the text field to the value ‘Name'
if the search key is a first name

then set the label of the text field to the value 'First name'
if the search keyis aspecialization

then set the label of the text field to the value 'Specialization’

4.6.3. The Search procedure
The procedures Search_cbprocand Search_ntproc differs inthree points :

1. The procedure Search_ntproc needs to get the value of the attribute XV_KEY_DATA
of the button that called this procedure, while the procedure Search cbproc
automatically receives it as argument.

2. If no desired data has been found in Phonefile, Search_cbproc creates a message box,
whileSearch_ntproccreatesanotice.

3. Hf some data has been found, a shell is destrayed in the Motif version, and a frame is
destroyed in the XView version.

4.6.4. The Keys_info_proc procedure

Once again, we find in the two versions of the same pracedure same similarities. On one side, a
bulletin board is created in a shell and onthe other side, a panel is created in a frame. A few buttons
are created and declare their callback or notify procedures. The neccesary values passed to these

103



procedures are either argument values ( Motif ) or values for the attribute XV_KEY DATA
(XView). The differencebetween the text fields of the two toolkits still appearsin these procedures.
Thegenericalgorithmis:

create a window
create a support for other objects
create a Nextbutton
refer the Nextprocedure with the appropriate value
createa Previousbutton
refer the Previous procedure with the appropriate value
createa Quitbutton
referthe Quit procedure with the appropriate value
if Complete_infoistrue
then create the nine text fields with the corresponding labels
set the value of the text fields to the value of the table Info created inthe
procedureSearch
else create the four text fields with the corresponding labels
set the value of the text fieldsto the value of the table Info created in the
procedureSearch

4.6.5. The Move and Erase procedures

The only difference between the two versions of the procedures Move and Erase is the use of the
auributeXV_KEY_DATA.

4.6.6. The Quit pracedure

The differencebetween Quit_cbprocand Quit_ntprocisthe creation of a question dialog box in the
former and the creation of a notice in the latter, in addition to the use of the attribute
XV_KEY DATA.

Moreover, XView does not need to call another function to kill a window when this request has
been confirmed by the user.

4.6.7. TheKill procedure

The same remarks can be made for the procedure Kill than for the procedure Quit, except for the
fact that no attribute XV_KEY DATA is used because that procedure only deals with the main
window Phonebook.

104



4.6.8. The Allinfo_proc and Activities_proc procedures

The two pracedures Allinfo_proc and the two procedures Activities_proc_differ in one point : the
creation of a message dialog box or of a notice.

4.6.9. The Special_info_proc procedure

The procedures Special_info_proc presents the typical differences : a bulletin board is created as
child widget of a shell on one side, a panel is created as a child object of a frame on the other side.

The use of the attribute XV_KEY DATA is still to observe. A particularity must be mentioned :

Motif offers a scrolled text widget but the equivalent X View object does not exist. It must be created
by attaching a scrollbarto atext object. Keeping thatfact inmind, the generic algorithmis:

create awindow
create a support for other objects
createa Quitbutton
referthe Quit procedure with the appropriate value
createascrolledtext
set the value of the text to the value of thetable Activities created in the procedure
Activities_proc

4.6.10. The Update menu

The menu Update calls for the same remarks than the submenu Keys. Because the XView menu
items 'Insert’ 'Modify' and 'Delete’ declare notify procedures that can not directly receive
arguments, three intermediary specific routines are used to acces the procedure Update with the
correct value of argument. The generic algorithm of the procedure Update is:

create awindow
create a suppott for other objects
create aCheck button

refer the Check procedure with the appropriate value
create an Erasebutton

refer the Erase procedure with the appropriate value
createaQuitbutton

refer the Quit procedure with the appropriate value
if the value received as argument = |

then create an Insert button

105



106

refer the Insert procedure
if the value received as argument =2
thencreate a Modify button
refer the Modify procedure
if the value received as argument =3
thencreateaDeletebutton
refer the Delete procedure
createthe nine textfields with the corresponding fabels

4.6.11, The Check, Insert, Modify and Delete procedures

The two versions of the procedures Check, Insert, Modify and Delete only differ in one point : one
creates amessage dialog box and the other createsa notice.




Chepler 3
Comparison of XView and Motif

The fifth chapter goes on one step beyond the mete presentation of the two toolkits. Its aim
is to draw a parallel between most of their elements. However, even if a widget is said to be the
equivalent of a package, they always differ insome way.

The structure of this chapter is partially based on the seven groups we presented in section 4. 1. :
container components, text capabilities, graphics capabilities, menus, scrolling capabilities,
commands and choices, and informations. We also discuss miscellaneous components and
functions.

3.1. Costaiser components

In a few words, we can say that Motif offers a greater choice of components than XView.
However, this choice can sometimes confuse the programmer. The two main components are the
XView frame and panel andthe Motif TopLevelShell and BulletinBoard.

With the expression ‘containet component’, we mean the first or second object created at the
creation of a window, in order to enclose and manage children objects.

The first object created to obtain a window is a frame (X View) or a widget of the category Shell
(Motif).

For the user, a frame is a visible object that can be manipulated, whereas a shell is an invisible
widget. From the programmer point of view, a frame is also different from a shell. XView only has
one type of frame while Motif offers ApplicationShell and TopLevelShell. ApplicationShell is
created by the initialization function and TopLevelShell is used for subsequent toplevel shells.
The classes XmMenuShell and XmDialogShell shiould be related to other XView packages.

Thus an XView programmer has no choice whereas a programmer new to Motif could hesitate

between all types of shells, including those that are not mentioned here.

107



Frames and shells themselves often need another container component that will typically accept
command objects such as buttons, choices, ...

The XView package Panel defines a container  panel ) and all the panel items. These panel items
mustbe explicitly positioned inthe panel.

Motif proposes many widgets. The principal ones are listed below :

1. XmFrame accepts asingle child

2. XmMainWindow can be used as the primary application’s window. It is provided with
optional elements : a menu bar, a command window, 2 work region and scroflbars.

3. XmPanedWindow is used for vertically tiled children

4. XmBulletinBoard does not force positioning of children

5. XmRowColumn specify the layout of its children in a vertically or horizontally fashion. It
s also the basis of menu systems.

6. XmForm is an interesting widget because of its definition of spatial relationships

As far as the user is concerned, two Motif widgets present interesting properties : the
* PanedWindow and Form widgets. The different panes of a PanedWindow can be resized, as
explained in section3. 1.3.8. When resized, a Form maintains the special relationships between its
children ( seesection3.1.4.3.).
No XView object has such possibilities.

For the programmer, the use of a panel isquite easy : it can only be a child of a frame. When the
programmer has to deal with Motif widgets, some problems may arise. Some combinations of
widgets are not possible or do not produce the expected effect.

5.2. Textcapabilities

Motif and XView are quite similar as far as text capabilities are concerned : they both offer a
multilineandasingle-linetextcomponents.

Few XView or Motif components are directly concerned with texts. XView defines the package
Textsw that corresponds to the XmText widget. They are both provided with basic editing
capabilities and a vertical scrollbar. The XmText widget has a supplementary horizontal scrolibar
while the XView text subwindow offers a few other menu options. Both XmText and Textsw are
concerned withmultiline fields.

Single-line text fields are handled by the Panel_text panel item of XView and by the XmTextField
widget.

108



A particularity for the programmer : the XView panel item is easier to use because it incorporates a
label attribute while the Motif equivalent is a label widget distinctfrom the XmTextField widget.
Moreover, the user will appreciate the scrolling buttons that appear at each end of the X View text
field ( panel item ) when the input text is too long for that object.

3.3. Graphicscapabilities

The XmDrawingArea widget seems to be the only one concerned with the display of graphical
output. The package that corresponds to it is Canvas.

5.4. Menus

XView provides an easy-to-use menu package whereas Motif menu systems are quite complicated.
However, except forthe Motif option menu, their possibilities are not really different.

In order to allow the creation of‘menus, Motif defines two classes of widgets ( XmMenuShell and
XmRowColumn ) and many convenience functions. The programmer should be able to use these
two basic widgets or the convenience functions to create menu systems.

The XView programmer necessarily has to consider the Menu package.

Asexplainedinsection4.5. 1. , programmers will immediately see the main difference between the
XView and Matif ways of creating menus : the order of creation of the elements of the menu is not
thesame.

Another difference liesin the fact that menu items are declared in XView as attributes of the menu
pane while Motif declares them as separate widgets. The consequence of this is that the XView
code is more compact than its Motif counterpart. However, Motif allowsthe callback procedureof a
menu item to be called with adefined value, which isimpossible with XView.

From a user point of view, both toolkits offer pop-up, pulldown and pullright menus. In addition to
them, Motif also has an option menu while X View proposes exclusive and non-exclusive choicesin
menus. XView also allows the use of pushpins to fix menu panes on the screen, and to dismiss
them when they are not used any more.

It is not clear whether Motif also offers exclusive and non-exclusive choices in menus.

3.5. Scrolling capabilities

It must be noted about scrolling capabilities that Motif offers more built-in components provided
with scrolibars than XView.

109



110

XView providesthe Scrollbar package. That object isindependent and must be attached to canvases
or text subwindows. It can be used to split them in two or more work regions.

The scrollable panel package is a panel with a scrollbar already attached to it. Such a panel can
acceptmore items then it could do otherwise.

The XmScrollBar widget is the Motif equivalent of the XView scrollbar. However, a difference
exist in the way they canbe used. Both components look the same except for the fact that the slider
of the XView scrollbar is directly surrounded by two buttons attached to it and containing an arrow.
Pressing a defined mouse button while the pointer is over one of these buttons makes the slider and
the two buttons move until the mouse button is released. This way of moving the slider is not
possible with XmScrollBar. Moreover, during this movement, the pointer stays on the arrow
button that is to say near the slider and the other button. This allows aquick change of direction.
The XmScrolledWindow is used to frame other components. It is provided with scrollbars in order
to scroll the visible area. The XmSelectionBox and XmFileSelectionBox widgets are other built-in
applications of scrolling facilities.

The XmList widget can be made scrollable when necessary. The XView counterpartisimplemented
by the Panel_listpanel item.

5.6. Commands snd choices

Commands and choices are not easy to compare because of the variety of objects and the fact that all
components do not necessarily exist in both toolkits.

What we meanby 'commands and choices' is illustrated by the following Motif widgets:

XmCommand
XmPushButton
XmArrowButton
XmScale
XmToggleButton

Exceptthe Tty subwindow bound to receive commands like a standard terminal, XView provides
noequivalent for XmCommand.

The XmPushButton plays the same role as the panel_button panel item.

The XmScale widget can be used in input/output or output only mode. The first case is handled in
XView by a slider while a gauge acts as an XmScale in output only mode. ( As output component,
the gauge is considered asan information component ).

The XmToggleButton widget isrepresented in XView by exclusive and non-exclusive choices.

The equivalent of XmArrowButton is an abbreviated button.



XView offers afew objects that do not exist in Motif ( see section 2.7. ):
Numeric fields can be provided with increment/decrement buttons. Theses buttons are used to
quicklyincrement or decrementthe numeric input field until the desired value bereached.

Check boxesare only another presentation for the nonexclusive choices.

As it can be seen, both toolkits offer objects that do not exist in the other one but XView has more
of them.

5.7. Informations

XView provide information to the user by means of two panel items ( gauges and read-only
messages ) and notices ( see figure 2.13. ).

The Motif equivalent of the gauge is the XmScale widget discussed in section 5. 6.

The XmMessageBox widget and its associated Dialogs ( sections 3.1.4.4. and 3.1.4.8. ) provide
the same functionalities as the XView notice. However, they are more adapted to particular
situations.

3.8. Miscellaseous components

Other Motif widgets are presented in chapter 3 and have no direct counterpart.
The shell classes can not be compared in a one-to-one way with XView objects.
The XmSeparator widgetis a pretty way of separating widgets but is not an essential (mandatory)

element in windows.

Some X View packages are specific to that toolkit, too.

The Generic Object package isequivalentto the Core class. The server, screen, fullscreen, cursor,
font, server image and notifier packages have no equivalent in terms of Motif widgets classes.

The existence of them ( at least the server and notifier packages ) is to be related to the fact that
Motif relies on the Xt Intrinsics while X View has to include such functionalities.

Motif apparently provides no equivalent for the Tty and icon packages of XView.

5.9. Functioss

The most important XView and Xt functionsrelated tothe creation, manipulation and destruction of
objects and widgets have been presented in order to make the reader understand how the toolkits are
used to display graphical components on a screen. Clearly, not al functions could be discussed.
Many other functions exist : functions specific to particular packages in the case of XView, Xt

functions, and Motif conveniencefunctions.

111



Mainly three differences must be brought up when comparing the two sets of functions.

1. The initialization of the toolkit and the creation of the main window are performed by
Motif in one function call while XView needs two statements. Asthe creation of the main
window always follows theinitialization of the toolkit, the Xt/Motif solution seems to be
better.

2. When all objects have been created, both toolkits call a main loop function. In addition to
that, a Motif program also needs to manage the widgets ( possibly by using a unique
functioncall with XtCreateManagedWidget ), and to realize them ( by realizing the main
window ). The XView toolkit does not have 'manage’, unmanage', or 'realize’ function.
However, besides the xv_destroy function, an attribute ( xv_show ) allows an object to
be displayed or undisplayed.

3. Motif convenience functions have no equivalent in XView. With a unique functioncall,
complex graphical componentsbuilt with many widgets canbe created.

5.10. Conclusion

Although XView and Motif present evident similarities due to their intrinsic nature of X based
toolkit, the reader will have understood that there are also many differences betweenthem.
Programs written with XView or Motif typically consist of a main function creating the main
window of the application and its children directly accessible. That function ends with the call to the
main loop function. Callback procedures referred to by objects created in the main function are
defined after the main function. They consist either of pure application code ( without any use of the
X, Xt, Motif, or XView libraries ), or create new windows.

Whereas X View is an attribute-value toolkit, Motif offers more widgets. Moreover, it sometimes
provides many widgets for almost identical uses. For example, many Motif Dialogs correspond to
the XViewnotice.

From a general point of view, Motif seems to privilege the initiative of the programmer by an
enlarged choice of widgets and functions. One consequence can be a more performant resulting
application. However, thatadvantage canonly be reachedby experienced programmers.

In comparison to Motif, XView appears to be more concise and more easy to learn. XView also
implementsa more pleasant look and feel.

112



113

Finally, itis not possible to say which toolkit should be preferred. XView must be used to easily
migrate SunView applications to the X world. Motif can be chosen when an Xt based solution is

aeeded.



Conclusion

As conclusion to this thesis, we shall stand back from the work that led to that report.
Before the traineeship that was the support for this thesis, we almost kuew nothing about
windowing systems and graphical user interfaces. The first goal was to learn to use such systems
on workstations in an Unix environment. Then we began to refresh our knowledge of the C
programming language which is used in XView and Motif.

Withthis prerequisite knowledge, we began to discover and study the Mot language, as
the simultaneous study of the two toolkits was not to advice.

A perfect comparison would require to almost master XView and Motif. However,
reaching such a level needs much time. In [ Mik, 90 ], page 44, Alan Gibbons, an indusiry
consultant for AT&T Bell Labs says about the learning curve of X programming :

' Evewfor programmers alresdyvexpersenced fon Unix snd C, e aveesge seems o be
about three to siy momths for the bastes, and even logger for learning about: Mol
Cpen Look, orother toolkats '

These considerations should explain some incomplete aspects in the presentation or
comparison of the two toolkits.

Inspite of that, we reached many goals.

We presented a synthesis about windowing systems and a description of the two
toolkits. In the introduction, we said that XView and Motif are competing at two levels : the
programming approach and the look and feel. As foreseen, we especially considered the first

aspect. We also discussed at times the user point of view.

114



Animportant part of this thesis is devoted to a generic language describing the creation of
user interfaces inatoolkit-independent way. A few concepts havebeen introduced and we showed

that some difficulties in describing an interface in that way can be solved by using figures.

In the last chapter, we presented a comparison of XView objects and Motif widgets that is

essentially based on the effective applicationsthat we wrote and run.

115



[Hal 87]

[Hay 89]

[Hell 90]

[Hoe 88]

[Hoe 91]

{Jon 89]
[Ker 78]

[Man 87]

[Mar 88]

[Mik 90]

[Nyel 90}

[Nye2 90]

[OSF1 90}

Bibliography

Hal L. Stern, Comparison of Window Systems, &¥7F% , November
1987, pp 265-272.

Frank Hayes and Nick Baran, A Guide to GUls, AF7F, July 1989, pp
250-257.

The Definitive Guides to the X Window System, O'Reilly & Associates,
Inc : Volume seven : Dan Heller, XView Programming Manual = dx
OPEN LOOK Tooflar for X111, 1990,

Tony Hoeber, Open Look Design Goals, Suw 7echnology Automn
1988, pp 63-75.

Tony Hoeber, Face to face with Open Look, 5#¥Y7E December 1988, pp
286-296.

Oliver Jones, Introduction to the X Window System, Prentice-Hall, 1989.
Brian W. Kernighan, Dennis M. Ritchie : The C Programing language,
Prentice-Hall |, 1978.

NeWSManual, Sun Microsystems, 1987,

Ralph R. Swick and Mark S. Ackerman Project Athena MIT, The X
Toolkit : More Bricks for Building User-Interfaces -or- Widgets For Hire,
to be presented atthe srarer /288 Lisezry, Dallas, Texas.

Steven Mikes, The realitiesof X, Loy Wordd Conpexyrraty 1990, pp 43-
46.

The Definitive Guides to the X Window System, O'Reilly & Associates,
Inc : Volume one : Adrian Nye, Xlib Programming Manual /v seysrow £/
1990.

The Definitive Guides to the X Window System, O'Reilly & Associates,
Inc : Volume four : Adrian Nye, and Tim O'Reilly, X Toolkit Intrinsics
Programming Manual /br reyazonr /7, 1990

Open Software Foundation, OSF/Motif Programmer's Guide, Revision
1.1, 1990.




[OSF2 90] Open Software Foundation, OSE/Motif Programmer's Reference,

Revision 1.1, 1990,

[OSF3 90] Open Software Foundation, OSF/Motif Style Guide, Revision 1.1,

1990.

[OSF4 90} Open Software Foundation, OSF/Motif User's Guide, Revision 1.1,

[Ove 87]
[Pap 90]
[Post]
[Rad 88]
[Rei 88]

[Sch 90]

1990.

NeWSTechnicalOverview, Sun Microsystems, 1987,

Sun Technology Papers, Sun Microsystems, 1990, pp 195-224.
Postscript Tutorial and Cookbook ( Internal documentation of BIM ).
David Radoff, A new look for Unix, Lz Hordd July 1988 pp 66-70.
The Definitive Guides to the X Window System, (O'Reilly & Associates,
Inc : Volume three : Tim O'Reilly, Valerie Quercia, and Linda Lamb, X
Window System User's Guide, 1988,

Chris Schoettle Unix System Laboratories Burope, Open Look - A
Consistent Approach to a GUI Architectwre, £LZ/GN  Vol. 10 No. 3
Autumin 1990, pp 66-70.

[SUN1 90} OPEN LOOK Graphical User Interface ApplicationStyle Guidelines, Sun

Microsystems Inc and AT&T, Addison Wesley Publishing Company Inc,
1990,

[SUN2 90] OPEN LOOK Graphical User Interface Functional Specification, Sun

[Ver 90]

[Vol5 90]

[Whi 90]

[You 89)

Microsystems Inc and AT&T, Addison Wesley Publishing Company Inc,
1989,

AlainVermeiren, The X Window System and NCD X Terminals, BIM
NETWORK PRODUCTS & SERVICES, July 1990.

The Definitive Guides to the X Window System, O'Reilly & Assaciates,

Inc: Valume five : X Toolkit Intrinsics Reference Manual for version 7.1,
1990.

Open Windows Version 2 White Papers, July 1990, Sun Microsystems,
Inc.

Douglas A. Young, X Window Systems, Programming and Applications
with Xt Prentice-Hall, 1989, '




EXE




Al. Motf Application Code



DECLARATIONS

#include <stdio.h>
#include <string.h>
#include <X11/Intrinsic.h>
tinclude <Xm/Xm.h>
#include <Xm/PushB.h>
#include <Xm/Form.h>
#include <Xm/CascadeB.h>
#include <Xm/BulletinB.h>
#include <Xm/MessageB.h>
#include <Xm/RowColumn.h>
#include <Xm/DialogS.h>
#include <Xm/TextF.h>
#include <Xm/Text.h>
#include <Xm/PanedW.h>
#include <Xm/ScrollBar.h>
#include <Xm/Label.h>
#include <Xm/List.,h>
#include <Xm/ToggleB.h>
#include <Xm/ToggleBG.h>

XtAppContext AppC;
Widget Phonebook,

Keys_shell,Keys txt,

Keys display_shell,

Keys Name_txt, Keys F Name txt, Keys Initials txt,
Keys Phone txt, Keys Location_txt, Keys Workgroup txt,
Keys_Service_ txt, Keys Respons_txt,

Keys_Special_ txt,

Special_info_shell,

Update shell,

Upd_Name_txt, Upd F Name txt, Upd Initials_txt,
Upd_Phone_txt, Upd_ Location_txt, Upd Workgroup txt,
Upd_Service_txt,Upd Respons_txt, Upd Special txt;

Arg alll0];
int ac;

FILE *fopen (), *fpl, *fp2;

char linel(80],1ine2{80],1ine3(80],11ine4[80]},11ine5(80},
1ine6(80],1ine7{80],1ine8(80],1ine9(80],1ine(80};

char name(80],f name[80],Search_datal80];

char text value[5000];

int nbmax,nelem;

struct Check_data_ type

{

char name[80];

char £ name(80]; ‘

} Check_data,Delete_data;



struct Update_data_type
{
char name [80];
char £ name[80];
char initials(80];:
char phone{80];
char location([80];
char workgroup(80];
char service([80];
char respons([801;
char special(80];
} Insert_data,Modify data;

char table(200]1({9](80];

void Init{();

void Keys cbproc();
void Set_info_cbproc();
void Search cbproc();
void GetString();

void Adaptl();

int Find{();

void Settable():;

void Erase_cbproc();
void Keys display_info();
void Move_cbproc();
void Lists_cbproc();
void Allinfo_proc();
void Activities_proc();
void Special_info proc
void Adapt2():

void Update_cbproc();
void Check cbproc():
int Check{(};

void Insert_cbproc();
void Insert();

void Modify cbproc();
void Modify();

void Delete cbproc();
void Delete proc();
void Kill cbproc();
void Kill ok_cbproc();
void Quit cbproc();
void Quit ok cbproc();

/************k*****************************************************A************/

2 main(argc,argv)

main(argc, argv)

int argc;

char *argvl[]:

{

Widget Menubar, Cons casbtn, Consult_pane, Keys casbtn,
Keys_subpane, Name_pushbtn, F_Name pushbtn, Special pushbtn,
Lists casbtn, Lists subpane, Allinfo pushbtn,Acti pushbtn,
Upd_.casbtn, Update_pane, Insert pushbtn, Modify pushbtn,
Delete_pushbtn, Quit casbtn;

Phonebook = XtInitialize("test","test class",NULL,0,&argc,argv);
Init{);

/* create a menubar in the main window */



Menubar=XmCreateMenuBar (Phonebook, "Menubar",NULL, 0} ;
XtManageChild {(Menubar);

/* create 2 pulldown menu panes attached to the menubar */

Consult_pane=XmCreatePulldownMenu (Menubar, "Consult_pane",NULL,0);
Update_pane =XmCreatePulldownMenu (Menubar,"Update pane",NULL, 0);
XtManageChild (Consult pane);
XtManageChild (Update pane);

/* create 2 cascade buttons : Consult and Update */
/* 1 push button : Quit in the menubar */
ac = 0;

XtSetArg(al(ac],XmNsubMenuld, Consult pane); act++;
Cons_casbtn=XmCreateCascadeButton (Menubar, "Consult",al,ac);
XtManageChild (Cons _casbtn);

ac = 07

XtSetArg(allac],XmNsubMenuld, Update pane); ac++;
Upd_casbtn=XmCreateCascadeButton (Menubar, "Update",al, ac);
XtManageChild (Upd_casbtn);

ac = 0y

Quit_casbtn=XmCreateCascadeButton (Menubar, "Quit",al,ac);
XtAddCallback (Quit_ casbtn,XmNactivateCallback,Kill cbproc,Phonebook);
XtManageChild (Quit casbtn);

/* create 2 pulldown submenus in Consult pane */

Keys subpane=XmCreatePulldownMenu(Consult pane, "Keys subpane",NULL, 0);
Lists_subpane=XmCreatePulldownMenu(Consult_ pane,"Lists_subpane",NULL,0);
XtManageChild (Keys subpane});

XtManageChild (Lists_subpane);

/* create 2 cascade buttons in Consult pane : Keys and Lists */

ac = 0;

XtSetArg(allac],XmNsubMenuld,Keys_subpane); ac++;

Keys casbtn=XmCreateCascadeButton(Consult_pane,"Keys",al,ac);
XtManageChild (Keys_casbtn);

ac = 0;

XtSetArg(allac],XmNsubMenuld,Lists_subpane); ac++;

Lists casbtn=XmCreateCascadeButton(Consult_pane, "Lists",al,ac);
XtManageChlld(Llsts casbtn);

/* create 3 push buttons in Keys subpane */

ac = 0;
Name_pushbtn=XmCreatePushButton (Keys_subpane, "Name",al, ac);
XtAddCallback (Name_pushbtn,XmNactivateCallback,Keys cbproc, 1)
XtManageChild {Name_pushbtn)-;

ac = 0;

F Name_pushbtn=XmCreatePushButton(Keys_subpane,"First name",al,ac);
XtAddCallback(F Name pushbtn,XmNactivateCallback,Keys cbproc,2};
XtManageChlld(F_Name”pushbtn),

ac = 0;

Special pushbtn=XmCreatePushButton(Keys_ subpane,"Specialization",
al,ac);

XtAddCallback (Special pushbtn,XmNactivateCallback,Keys cbproc,3);

XtManageChild{Special pushbtn);

/* create 2 push buttons in Lists subpane */

ac = 0;
Allinfo_pushbtn=XmCreatePushButton{(Lists_ subpane,"All info",al,ac);
XtAddCallback (Allinfo_ pushbtn,XmNactivateCallback,Lists cbproc,1};

XtManageChild (Allinfo_pushbtn);



ac = 0;

Acti pushbth=XmCreatePushButton(Lists_subpane,"Activities",al,ac);
XtAddCallback (Acti pushbtn, XmNactivateCallback,Lists cbproc,2);
XtManageChild (Acti_pushbtn);

/* create 3 push buttons in Update pane : Insert, Modify and Delete */

ac = 0y

Insert_pushbtn=XmCreatePushButton(Update pane,"Insert “,al,ac);
XtAddCallback (Insert pushbtn, XmNactivateCallback,Update cbproc,1};
XtManageChild (Insert_pushbtn);

ac = 0y

Modify pushbtn=XmCreatePushButton (Update pane,"Modify ",al,ac);
XtAddCallback (Modify pushbtn, XmNactivateCallback,Update_cbproc,2);
XtManageChild (Modify pushbtn);

ac = 0;

Delete pushbtn=XmCreatePushButton (Update pane,"Delete ",al,ac);
XtAddCallback (Delete pushbtn,XmNactivateCallback,Update cbproc, 3);
XtManageChild (Delete pushbtn);

/* main loop */

"XtRealizeWidget (Phonebook) ;
XtMainLoop () ;

} /* end of main */

void Init()

void-Init ()
{
fpl=fopen("phonefile", "r");
if (£pl==NULL)
{
fpl=fopen ("phonefile", "w");
fclose(fpl);
}i

} /* end of Init */

void Keys_cbproc(w,client_data,call_data)

void Keys_cbproc(w,client_data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call data;
{
Widget Keys bubo, Search_btn, Btnl, BtnZ,
Clear btn, Quit btn, Label, RowCol;
int keys;

if (client_data==1) keys=1;
if (client_data==2) keys=2;
if (client_data==3) keys=3;

/* create -a shell in Keys cbproc */

ac = 0y

XtSetArg(al [ac],XmNheight,120); ac++;

XtSetArg(allac),XmNwidth, 340); ac++;

Keys_shell=XtCreateManagedWidget ("Keys_shell",
topLevelShellWidgetClass,Phonebook,al, ac);



/* create the form in Keys cbproc */

Keys_bubo=XtCreateManagedWidget ("Keys_form",
xmBulletinBoardWidgetClass,Keys_shell, NULL,0);

/* create the search button in Keys cbproc */

ac = 0;

XtSetArg(allac},XmNlabelString, XmStringCreate ("Search",
XmSTRING DEFAULT CHARSET)}); ac++;

XtSetArg(aliac],XmNx,10); act++;

XtSetArg({al[ac],XmNy, 20); ac++;

Search btn=XtCreateManagedWidget ("Search btn",
xmPushButtonWidgetClass,Keys_bubo,al,ac);

XtAddCallback (Search btn,XmNactivateCallback, Search cbproc, keys);

/* create the erase button in Keys cbproc */

ac = 0;

XtSetArg(al(ac),XmNlabelString, XmStringCreate ("Erase ",
XmSTRING DEFAULT CHARSET)); act+;

XtSetArg(allac],XmNx, 70); ac++;

XtSetArg(alfac],XmNy,20); ac++;

Erase_btn=XtCreateManagedWidget ("Erase_btn",
xmPushButtonWidgetClass, Keys_bubo,al,ac);

XtAddCallback (Erase_btn,XmNactivateCallback,Erase cbproc,1);

/* create the quit button in Keys cbproc */

ac = 0;

XtSetArg(al{ac],XmNlabelString, XmStringCreate (" Quit ",
XmSTRING DEFAULT CHARSET)); ac++;

XtSetArg({allac),XmNx,130); ac++;

XtSetArg(allac],XmNy,20); act+;

Quit_btn=XtCreateManagedWidget ("Quit_btn",
xmPushButtonWidgetClass, Keys bubo, al, ac);

XtAddCallback {(Quit_btn,XmNactivateCallback,Quit cbproc,Keys_shell);

/* create the complete/cut info choice in Keys cbproc */

/* XtSetArg(al[0],XmNx,190);

XtSetArg(alll], XmNy,20);

XtSetArg(al (2], XmNradioAlwaysOne, True);

XtSetArg(al[3], XmNradioBehavior,True);

RowCol=XtCreateManagedWidget ("RowCol", xmRowColumnWidgetClass,
Keys bubo,al,4);

ac = 0;

XtSetArg(allacl,XmNx,190); act+;

XtSetArg(al [ac], XmNy, 30}); ac++;

XtSetArg(allac],XmNset, True); ac++;

Btnl=XtCreateManagedWidget ("Cut info v,
xmToggleButtonWidgetClass, RowCol,al, ac);
ac = 0;

XtSetArg(allac], XmNx, 190); ac++;
XtSetArg(allac],XmNy,40); act+;
XtSetArg(allac],XmNset,False); ac++;
Btn2=XtCreateManagedWidget ("Complete info",
xmToggleButtonWidgetClass, RowCol,al,ac); */

/* create the input label in Keys cbproc */



ac = 0y
XtSetArg(allac],XmNx,10); ac++; /* common to */
XtSetArg(allac],XmNy,81); ac++;/* all labels */
1f (keys==1)
{
XtSetArg(al(acl,XmNlabelString,
XmStringCreate ("Name", XmSTRING DEFAULT CHARSET));

ac+t++;
}
if (keys==2)
{
XtSetArg(allacl,XmNlabelString,
XmStringCreate ("First Name",XmSTRING_DEFAULT CHARSET));
ac++;
}
if (keys==3)

{
XtSetArg(al{ac],XmNlabelString,
XmStringCreate ("Specialization",
XmSTRING DEFAULT_CHARSET)}) ;
act++;
}
Label=XtCreateManagedWidget ("Label", xmLabelWidgetClass,Keys bubo, al, ac);

/* create the input text field in Keys cbproc */

ac = 0;

XtSetArg{allac],XmNx, 125); ac++;
XtSetArg(allac],XmNy, 75); act+;
XtSetArg(allacl,XmNcolumns,30); ac++;
XtSetArg(allac]),XmNshadowThickness, 1)} ac++;
XtSetArg(alfac],XmNmaxLength, 80); ac++;
XtSetArg(al[ac],XmNeditMode,XmSINGLE_LINE_EDIT); act++;
Keys_txt=XtCreateManagedWidget ("Keys txt",

xmTextWidgetClass, Keys _bubo,al, ac);

} /* end of Keys cbproc */

void Set_info_cbproc(w,client_data,call_data)

void Set _info_cbproc(w,client_data,call data)
Widget w;

int client data;

XmAnyCallbackStruct *call data;

{

} /* end of Set info cbproc */

void Search_cbproc(w,client_data,call_data)

void Search cbproc(w,client data,call data)
Widget w;

int client_data;

XmAnyCallbackStruct *call data;

{

Widget Check _msg;

int 1, £f;

XmString strl,str2;

GetString(Search data,Keys_txt);



fpl=fopen ("phonefile","r");
i=0;
while (fgets{linel, 80, fpl) !=NULL)
{
fgets(line2,80, fpl);
fgets(line3, 80, fpl);
fgets(line4, 80, fpl);
fgets(line5,80, fpl);
fgets(line6,80, fpl);
fgets(line7,80, fpl);
fgets (1line8,80, fpl);
fgets(line9, 80, fpl);
if (((client_data==1)&& (strcmp(linel, Search_data)==0))
I'"((client_data==2)&& (strcmp(line2, Search_data)==0))
I'IF'{(client_data==3) && ((f=Find {1ine9, Search data))==1)))
{
Settable(i,0,1linel);
Settable (i, 1,1line2);
Settable(i,2,1line3);
Settable i, 3,1lined);
Settable (i, 4,1line5);
Settable(i,5,1ine6);
Settable (i, 6,Xine7);
Settable(i,7,1line8);
Settable (i, 8,1ine9);
i++;
}i
i
fclose (fpl);

nbmax=1i;

1f (nbmax==0)
{
ac = 0;
strl=XmStringCreate ("Does not exist", XmSTRING DEFAULT_ CHARSET);
XtSetArg(allac],XmNdialogType, XmDIALOG MESSAGE); ac++;
XtSetArg(allac],XmNmessageString,strl); ac++;

str2=XmStringCreate ("Continue", XmSTRING_DEFAULT CHARSET);
XtSetArg(allac]),XmNokLabelString,str2); ac++;
XtSetArg{allac],XmNdialogStyle, XmDIALOG_APPLICATION_MODAL) ;

ac++;

Check_msg=XmCreateMessageDialog(Phonebook, "Check _msg",al, ac);

XtUnmanageChild (XmMessageBoxGetChild (Check msg,
XmDIALOG_HELP_BUTTON)) ;

XtUnmanageChild (XmMessageBoxGetChild (Check msgq,
XmDIALOG_CANCEL_BUTTON) )

XtManageChild (Check _msg);

yi

if (nbmax>200)
nbmax=200;
if (nbmax>0)
{
XtUnmanageChild (Keys_shell);
nelem=0;
Keys display_info();
}

} /* end of Search cbproc */



void GetString( ptr,w)

void GetString(ptr,w)
char *ptr;
Widget w;
{
char *templ,*temp2;
int i;
temp2 = ptr;
templ = XmTextGetString(w);
for (i=1;i<=80;i++)
*ptr++ = *templ++;
" Adaptl (temp2);

} /* end of GetString */

void Adapti(data_pointer)

void Adaptl(data_pointer)
char *data pointer;
“
int 1i;
i=1;
while ((*data_pointer!=7\0")
&& (*data_pointer!=‘\n’)
&& (1<=79))
{
data pointert++;
i++;
}
*data pointer++='\n’;
*data_pointer='\0';

)} /* end of Adaptl */

2 int Find(str,substr)

int Find({str, substr)
char *str;

char *substr;

{

int found;

if (*str==*substr)
if (*str=="\0")
found=1;
else {
str++;
substr++;
found=Find(str, substr);
}
else if (*str=='\0")
found=0;
else {
str++;
found=Find(str, substr);
}i



return(found) ;

} /* end of Find */

3 void Settable(i,],line)

void Settable (i, j,line)
int i;
int j;
char *line;
{
int k;

k=0;

while (*line!="\0")
if (*line!='\n’)
table (i) [j] [k++] = *{(line++);
else line++;

table[1)[j] [k++]1='\0";

printf ("$s\n",table[1][j]};

} /* end of Settable */

4 void Erase_cbproc(w,client_data,call_data)

void Erase_cbproc(w,client data,call_data)
Widget w;
int client_data;
XmAnyCallbackStruct *call data;
{
if {client_data==1)
{
XmTextSetString (Keys txt,"");
RE;
if (client data==2)
{
XmTextSetString (Upd Name_ txt,"");
XmTextSetString (Upd F_Name_txt,"");
XmTextSetString(Upd Initials txt,"");
XmTextSetString (Upd Phone_txt,"");
XmTextSetString (Upd Location_txt,™");
XmTextSetString (Upd_Workgroup_txt,"");
XmTextSetString (Upd_Service txt,"");
XmTextSetString (Upd Respons_txt,"");
XmTextSetString (Upd Special txt,"");
}i

} /* end of Erase cbproc */

5 void Keys_display_info( )

vold Keys_display_info{)
{
Widget Keys_info bubo,Next btn,Previous_btn,Quit btn,
Labell, Label2,Label3, Labeld,Label5, Label6,Label’7, Label8, Labeld;

/* create a shell in Keys display info */



ac = 0;

XtSetArg(al[ac],XmNheight,470); ac++;

XtSetArg{al[ac]),XmNwidth, 650} ; ac++;

Keys_display shell=XtCreateManagedWidget ("Keys display shell™,
topLevelShellWidgetClass,Phonebook,al, ac);

/* create the bulletin board in Keys display info */

Keys info bubo=XtCreateManagedWidget ("Keys info bubo",
xmBulletinBoardWidgetClass,Keys display shell,NULL,0);

/* create the Next button in Keys_ display info */

ac = 0;

XtSetArg(alfac],XmNlabelString, XmStringCreate ("Next™,
XmSTRING DEFAULT CHARSET)); ac++;

XtSetArg{allac],XmNx,10); ac++;

XtSetArg(allac],XmNy,20); act++;

Next_ btn=XtCreateManagedWidget ("Next_btn",
xmPushButtonWidgetClass, Keys_info bubo, al, ac);

XtAddCallback (Next btn,XmNactivateCallback,Move cbproc,1);

/* create the Previous button in Keys_display info */

ac = 0;
XtSetArg(allac), XmNlabelString, XmStringCreate ("Previous",
XmSTRING DEFAULT CHARSET)); ac++;

XtSetArg{allac], XmNx,60); ac++;

XtSetArg(allac],XmNy,20); act++;

Previous_btn=XtCreateManagedWidget ("Previous_btn",
xmPushButtonWidgetClass,Keys info bubo,al,ac);

XtAddCallback (Previous_btn,XmNactivateCallback,Move cbproc,2);

/* create the quit button in Keys display info */

ac = 0;

XtSetArg{al[ac],XmNlabelString,XmStringCreate (" Quit ",
XmSTRING_DEFAULT CHARSET)); ac++;

XtSetArg(allac],XmNx,155); ac++;

XtSetArg(alfac],XmNy,20); act+;

Quit_ btn=XtCreateManagedWidget ("Quit_btn",
xmPushButtonWidgetClass,Keys info bubo,al, ac);

XtAddCallback (Quit btn, XmNactivateéCallback,Quit_cbproc,

Keys display_shell);
/* create the name label in Keys display info */

ac = 0;
XtSetArg{al [ac),XmNx,10); ac++; /* common to all labels */
XtSetArg(allac],XmNy,76); ac++;

XtSetArg(allac],XmNlabelString,

XmStringCreate ("Name",XmSTRING DEFAULT CHARSET)); act+;

Labell=XtCreateManagedWidget ("Labell", xmLabelWidgetClass,

Keys info bubo,al,ac);
/* create the first. name label in Keys display info-*/

ac = 0;
XtSetArg(al[ac],XmNx,10); ac++; /* common to all labels */
XtSetArg(al[ac],XmNy,116); ac+t++;

XtSetArg(allac],XmNlabelString,

XmStringCreate ("First Name", XmSTRING DEFAULT CHARSET));

act++;
Label2=XtCreateManagedWidget ("Label2", xmLabelWidgetClass,

Keys_info_bubo,al,ac);
/* create the initials label in Keys display_info */



ac = 0;
XtSetArg(al[ac],XmNx,10); ac++; /* common to all labels */
XtSetArg(allac],XmNy,156); ac++;
XtSetArg(al [ac],XmNlabelString,
XmStringCreate("Initials",XmSTRINGﬂDEFAULT_CHARSET));
act+;
Label3=XtCreateManagedWidget ("Label3", xmLabelWidgetClass,
Keys_info bubo,al,ac);
/* create the phone label in Keys display info */

ac = 0;
XtSetArg({allac],XmNx,10); act+;
XtSetArg(allac],XmNy, 196); ac++;

XtSetArg(al[ac],XmNlabelString,

XmStringCreate ("Phone number",
XmSTRING DEFAULT_ CHARSET)); act+;

Labeld=XtCreateManagedWidget ("Label4d", xmLabelWidgetClass,

Keys info _bubo,al,ac);

/* create the location label in Keys display info */

ac = 0;
XtSetArg(allac],XmNx,10}; ac++;
XtSetArg(allac],XmNy,236); ac++;

XtSetArg(al[ac),XmNlabelString,

XmStringCreate ("Location",XmSTRING DEFAULT CHARSET));

act+;
Label5=XtCreateManagedWidget ("Label5",xmLabelWidgetClass,

Keys_info bubo,al,ac);

/* create the workgroup label in Keys display_info */

ac = 0;
“XtSetArg(allac],XmNx,10); ac++;
XtSetArg(allac],XmNy,276); ac++;
XtSetArg(al{ac),XmNlabelString,
XmStringCreate ("Workgroup", XmSTRING_DEFAULT CHARSET) );
ac++;
Label6=XtCreateManagedWidget ("Label6",xmLabelWidgetClass,
Keys info_bubo,al,ac);

/* create the service label in Keys display info */

ac = 0;
XtSetArg(alfac],XmNx,10); ac++;
XtSetArg{(allac],XmNy,316); ac++;
XtSetArg(al{ac),XmNlabelString,
XmStringCreate (“Service”, XmSTRING DEFAULT_ CHARSET)) ;
ac++;
Label7=XtCreateManagedWidget ("Label?7", xmLabelWidgetClass,
Keys_info_bubo,al,ac);

/* create the responsibilities label in Keys display info */

ac = 0;
XtSetArg(allac],XmNx,10); ac++;
XtSetArg({al fac],XmNy, 356); ac++;
XtSetArg(alac],XmNlabelString,
XmStringCreate ("Responsibilities", XmSTRING DEFAULT CHARSET)); ac++;
Label8=XtCreateManagedWidget ("Label8", xmLabelWidgetClass,
Keys_info_bubo,al,ac};

/* create the specialization label in Keys display info */

11



ac = 0;
XtSetArg{allac],XmNx,10); ac++;
XtSetArg(allac],XmNy,396); ac++;

XtSetArg(al[ac],XmNlabelString,

XmStringCreate ("Specialization",
XmSTRING DEFAULT_CHARSET)); ac++;

Label9=XtCreateManagedWidget ("Label 9", xmLabelWidgetClass,

Keys_info bubo,al,ac);

/* create the name input text field in Keys display info */

ac = 0;

XtSetArg(allacl,XmNx,125); act++;
XtSetArg(allac],XmNcolumns,80); ac++;
XtSetArg(aliac], XmNshadowThickness, 1} ; ac++;
-XtSetArg(al[ac],XmNeditable,False); ac++;

XtSetArg(allac),XmNy,70); act+;
Keys_Name_txt=XtCreateManagedWidget ("Keys Name_txt",
xmTextWidgetClass,Keys_info bubo,al, ac);

/* create the first name input text field in Keys display info */

ac = 0;

XtSetArg(allac],XmNx,125); ac++;
XtSetArg{allac],XmNcolumns,80); act+;
XtSetArg(allac],¥mNshadowThickness,1); ac++;
XtSetArg(alac],XmNeditable,False); ac++;

XtSetArg(allac),XmNy, 110); act+;
Keys F Name_txt=XtCreateManagedWidget ("Keys F Name_ txt",
xmTextWidgetClass,Keys info bubo,al,ac);

/* create the initials input text field in Keys display info */

ac = 0;

XtSetArg(allac],XmNx,125); ac++;
XtSetArg(allac],XmNcolumns,80}); act+;
XtSetArg(aliac],XmNshadowThickness,1); ac++;
XtSetArg(al[ac],XmNeditable,False); ac++;

XtSetArg(allfac],XmNy,150); ac++;
Keys Initials txt=XtCreateManagedWidget ("Keys_ Initials_txt",
xmTextWidgetClass, Keys _info bubo,al, ac);

/* create the phone input text fleld in Keys display info */

ac = 0y

XtSetArg(aliac),XmNx,125); ac++;
XtSetArg(allac],XmNcolumns,80); ac++;
XtSetArg({al(ac),XmNshadowThickness,1); ac++;
XtSetArg(alfac],XmNeditable,False); act++;

XtSetArg(allac]l,XmNy,190); ac++;
Keys Phone_txt=XtCreateManagedWidget ("Keys Phone_txt",
xmTextWidgetClass, Keys info bubo,al,ac);

/* create the location input text field in Keys display info */

ac = 0;

XtSetArg(allac],XmNx,125); ac++;
XtSetArg(alfac),XmNcolumns, 80); act++;
XtSetArg(al{ac],XmNshadowThickness,1); ac++;
XtSetArg(al[ac),XmNeditable,False); ac++t;

XtSetArg(allac),XmNy, 230); act++;
Keys Location txt=XtCreateManagedWidget ("Keys_Location_txt",
xmTextWidgetClass,Keys info bubo,al, ac);

/* create the workgroup input text field in Keys display info */

12



ac = 0;

XtSetArg(allac],XmNx,125); ac++;
XtSetArg(allac],XmNcolumns, 80); act+;
XtSetArg(alac],XmNshadowThickness, 1); ac++;
XtSetArg(allac]l,XmNeditable,False); ac++;

XtSetArg{allac],XmNy,270); actt;
Keys Workgroup_ txt=XtCreateManagedWidget ("Keys Workgroup txt",
xmTextWidgetClass,Keys info bubo,al,ac);

/* create the service input text field in Keys display_info */

ac = 0;

XtSetArg{al [ac],XmNx,125); ac++;
XtSetArg({allac],XmNcolumns, 80); act+;
XtSetArg(allac],XmNshadowThickness,1l); ac++;
XtSetArg(al [ac],XmNeditable,False); ac++;

XtSetArg(allac],XmNy,310); act+;
Keys Service_txt=XtCreateManagedWidget ("Keys Service_ txt",
xmTextWidgetClass, Keys_info bubo,al, ac);

/* create the responsibilities input text field in Keys display info */

ac = 0;

XtSetArg{al(ac],XmNx,125); ac++;
XtSetArg(allac),XmNcolumns, 80); ac++;
XtSetArg(allacl,XmNshadowThickness, 1); ac++;
XtSetArg(allac],XmNeditable,False); ac++;

XtSetArg(allac],XmNy, 350}; act+;
Keys Respons_txt=XtCreateManagedWidget ("Keys Respons_txt",
xmTextWidgetClass,Keys_info_bubo,al, ac);

/* create the specialization input text .field in Keys display info */

ac = 0;

XtSetArg(allac],XmNx,125); ac++;

XtSetArg(allac],XmNcolumns, 80); ac++;

XtSetArg(al(ac),XmNshadowThickness, 1); ac++;

XtSetArg(allac],XmNeditable,False); ac++;

XtSetArg(alfac],XmNy,390); act++;

Keys Special_txt=XtCreateManagedWidget ("Keys Special_txt",
xmTextWidgetClass, Keys info bubo,al,ac);

/* set the value of the strings */

XmTextSetString (Keys Name txt,table{0][0]);
XmTextSetString (Keys F Name txt,table[0][1]));
XmTextSetString (Keys Initials _txt,tablel0]([2]);
XmTextSetStrlng(Keys_Phone~txt table[0] [3]);
XmTextSetString (Keys Location_txt,table(0][4]);
XmTextSetString (Keys Workgroup txt,table[0]) {5]);
XmTextSetString (Keys Service txt,table(0][6]);
XmTextSetString (Keys Respons_txt,table([0][7]);
XmTextSetString (Keys Special txt,table(0][8]);

} /* end of Keys display info */



6 void Move_cbproc(w,client_data,call_data)

void Move cbproc(w,client_data,call data)
Widget w;

int client_data;

XmAnyCallbackStruct *call data;

{

int changed;

changed=0;
if ((nelem<nbmax-1l)&&(client_data==1})

{
nelem++;
changed=1;
}i

if ((nelem>0)&&(client data==2))
{
nelem——;
changed=1;
i

if (changed==1)

{
XmTextSetString(Keys Name txt,table[nelem][0])};
XmTextSetString{Keys_F_Name txt,tablel[nelem][1]);
XmTextSetString(Keys Initials_txt,table[nelem] [2]);
XmTextSetString (Kéys Phone_ txt,tablelnelem][3]);
XmTextSetString (Keys_Location txt,tablelnelem] (4]);
XmTextSetString (Keys Workgroup_ txt,table([nelem][5]);
XmTextSetString(Keys_Service txt,tablelnelem][6]);
XmTextSetString(Keys_Respons_txt,table([nelem] [7]);
XmTextSetString (Keys_ Special_ txt,table(nelem][8]);
}

} /* end of Move */

7 void Lists_cbproc(w,client_data,call_data)

void Lists_cbproc(w,client_data,call_data)
Widget w;

int client_data;

XmAnyCallbackStruct *call data;

{

if (client data==1) Allinfo_proc{();

if (client data==2) Activities proc();

} /* end of Lists cbproc */

8 void Allinfo_proc()

void Allinfo proc()
{

Widget Check_msg;
int i;

XmString strl,str2;

14



fpl=fopen ("phonefile™, "r"};

i=0;

while (fgets(linel, 80, fpl) !=NULL)
{
fgets(line2,80, fpl):;
fgets(line3, 80, fpl);
fgets(lined, 80, fpl);
fgets(line5,80, fpl);
fgets(line6,80, fpl);
fgets(line7,80, fpl);
fgets(line8,80, fpl);
fgets{line%,80, fpl);

Settable(i, 0, linel);
Settable(i,1,1line2);
Settable(i,2,1line3);
Settable (i, 3, lined);
Settable(i, 4, 1lineb);
Settable (i, 5, 1ine6);
Settable(i, 6, 1ine7);
Settable(i,7,line8);
Settable(i,8,1ine9);

i++;
Yi
fclose (fpl);

nbmax=1;

if (nbmax==0)
{
strl=XmStringCreate ("The phonebook is empty",

XmSTRING_DEFAULT CHARSET);
ac = 0;
XtSetArg(al{ac],XmNdialogType, XmDIALOG MESSAGE); ac++;
XtSetArg(aliac],XmNmessageString,strl); ac++;
str2=XmStringCreate ("Continue", XmSTRING DEFAULT CHARSET) ;
XtSetArg(al [ac],XmNokLabelString, str2); ac++;
XtSetArg(allac],XmNdialogStyle, XmDIALOG_APPLICATION MODAL) ;

act++;

Check_msg=XmCreateMessageDialog(Phonebook, "Check_msg",al,ac);
XtUnmanageChild (XmMessageBoxGetChild (Check msg,
XmDIALOG_ HELP_BUTTON)) ;
XtUnmanageChild (XmMessageBoxGetChild (Check msg,
XmDIALOG_CANCEL BUTTON));
XtManageChild (Check_msqg);
}i

if (nbmax>200)
nbmax=200;
if (nbmax>0)
{
Keys display info();
}

} /* end of Allinfo proc */

15



9 void Activities_proc()

16

void Activities proc()

Widget Check msg;

XmString strl,str2;

char *value;

int i, 3;

i=0;

value=text value;

fpl=fopen ("phonefile™, "r");

while ((fgets{linel, 80, fpl) !=NULL) && (1<=4998))

{
fgets(line2,80, fpl);
fgets(line3,80, fpl);
fgets(lined, 80, fpl);
fgets(line5,80, fpl);
fgets{line6,80, fpl);
fgets(line7,80,fpl);
fgets(line8,80, fpl);
fgets(line9,80, fpl);

Adapt2(line9);

3=0;
while((line9(j]!="\n’)&&(i<=4998))
{

if ((line9(ji==',") 11 (lined9(j]j==";"))

*value++='\n';

else *value++=1ine9([]];

i++;

J++;

bi
*value++='\n’;
i++;

}:

*value="\0";
fclose(fpl);

if (i==0)

{
strl=XmStringCreate ("No specialization",
XmSTRING DEFAULT CHARSET);
ac = 0;
XtSetArg(allac],XmNdialogType, XmDIALOG MESSAGE); ac++;
XtSetArg(al[ac],XmNmessageString,strl)? act++;
str2=XmStringCreate ("Continue", XmSTRING DEFAULT CHARSET);
XtSetArg(al [ac],XmNokLabelString,str2); act++;
XtSetArg(al(ac], XmNdialogStyle, XmDIALOG APPLICATION MODAL);
ac++;

Check msg=XmCreateMessageDialog(Phonebook, "Check msg",al,ac);
XtUnmanageChild (XmMessageBoxGetChild (Check_msg,
XmDIALOG_HELP BUTTON)) ;
XtUnmanageChild (XmMessageBoxGetChild (Check msg,
XmDIALOG_CANCEL BUTTON) ) ;
XtManageChild (Check msg);
}i

if (i>0)

-Keys_display_ special();

} /* end of Activities proc */



10 -void Adapt2(data_pointer)

void Adapt2(data pointer)
char *data_poinfer;
{,
while ((*data pointer!=7\0")
&& (*data pointer!="\n’))
data_pointe?++;
*data_pointer='\n‘’;

}) /* end of Adapt2 */

11 void Special_info_proc( )

void Special_info proc()

{

Widget Special info_bubo, Quit btn,
Special info txt;

/* create a shell in Special info proc */

ac = 0;

XtSetArg(allac],XmNheight,200); ac++;

XtSetArg(allac),XmNwidth, 225); act+;

Special info shell=XtCreateManagedWidget ("Special info_shell™,
topLevelShellWidgetClass,Phonebook,al, ac);

/* create the bulletin board in Special info proc */

Special info bubo=XtCreateManagedWidget ("Special info bubo",
xmBulletinBoardWidgetClass, Special info shell,NULL,O0);

/* create the quit button in Special info_proc */

ac = 0;

XtSetArg(allac],XmNy,10); ac++;

XtSetArg(allac],XmNx,30); act+;

XtSetArg{allac},XmNlabelString, XmStringCreate (" Quit ",
XmSTRING _DEFAULT CHARSET)); ac++;

Quit btn=XtCreateManagedWidget ("Quit btn",
xmPushButtonWidgetClass, Special info _bubo,al,ac);
XtAddCallback (Quit_btn, XmNactivateCallback,Quit_cbproc,

Special info_shell);

/* create a text in Special info _proc */

ac = 0;

XtSetArg(allac],XmNy,40); act+;

XtSetArg(allac],XmNx,30); act++;

XtSetArg(allac],XmNheight,150); ac++;

XtSetArg(allac],XmNwidth,180); ac++;

XtSetArg(allac]l,XmNscrollBarPlacement, XmBOTTOM LEFT); ac++;

XtSetArg(allac],XmNeditMode, XmMULTI_LINE EDIT); ac++;

Special info txt=XmCreateScrolledText (Special_ info bubo,
"Special info_txt",al,ac);

XtManageChildTSpecialMinfo_txt);

XmTextSetEditable (Special info txt,False);
XmTextSetString(Special info txt,text value);

} /* end of Special info_proc */



12 void Update_cbproc(w,client_data,call_data)

void Update cbproc(w,client data,call data)

Widget w;

int client_data;

XmAnyCallbackStruct *call data;

{

Widget Update bubo, Check btn, Insert_btn, Modify btn,
Delete_btn, Clear_btn, Quit_btn,
Labell,Label2,Label3,Labeld4, Label5,Label6, Label7,Label8, Label9;

/* create a shell in Update cbproc */

ac = 0;

XtSetArg(al{ac],XmNheight,470); ac++;

XtSetArg(al{ac],XmNwidth, 650); ac++;

Update_shell=XtCreateManagedWidget ("Update shell™,
topLevelShellWidgetClass,Phonebook,al, ac);

/* create the bulletin board in Update cbproc */

Update bubo=XtCreateManagedWidget ("Update bubo",
xmBulletinBoardWidgetClass,Update_shell,NULL,0);

/* create the check button in Update_cbproc */

ac = 0;
XtSetArg(al[ac],XmNy,20); ac+t++;

XtSetArg(al[ac],XmNx,10); ac++;

XtSetArg(allac],XmNlabelString, XmStringCreate ("Check",
XmSTRING DEFAULT CHARSET)); ac++;

Check_btn=XtCreateManagedWidget ("Check _btn",
xmPushButtonWidgetClass, Update bubo,al,ac);

XtAddCallback (Check_btn,XmNactivateCallback,Check cbproc,1);

/* create the insert button in Update cbproc */

ac = 0;
XtSetArg(allac]), XmNy,20); ac++;
XtSetArg(al[ac],XmNx,60); ac++; /* common to all update buttons

if (client data==1)

{

XtSetArg(alfac],XmNlabelString, XmStringCreate ("Insert",

XmSTRING DEFAULT CHARSET)); ac++;

Insert btn=XtCreateManagedWidget ("Insert btn",
xmPushButtonWidgetClass,Update_bubo,al, ac);

XtAddCallback(Insert btn,XmNactivateCallback, Insert_cbproc,1);

}

/* create the modify button in Update cbproc */

if (client_data==2)

{

XtSetArg(al[ac],XmNlabelString, XmStringCreate ("Modify",
XmSTRING DEFAULT CHARSET)); ac++;

Modify btn=XtCreateManagedWidget ("Modify btn",
xmPushButtonWidgetClass,Update bubo,al, ac);

XtAddCallback (Modify btn,XmNactivateCallback,Modify cbproc,1);

}

/* create the delete button in Update_cbproc */

18

*/



if (client_data==3)

{

XtSetArg(allac],XmNlabelString,XmStringCreate ("Delete",
XmSTRING_DEFAULT_ CHARSET)); ac++;

Delete_btn=XtCreateManagedWidget ("Delete btn",
xmPushButtonWidgetClass,Update bubo,al,ac);

XtAddCallback(Delete btn,XmNactivateCallback,Delete_cbproc,1);

}

/* create the erase button in Update cbproc */

ac = 0;
XtSetArg({alfac],XmNy,20); ac+t++;
XtSetArg(allac],XmNx,60); ac++; /* common to all update buttons */
XtSetArg(allac],XmNx,115); act++;
XtSetArg(al{ac),XmNlabelString, XmStringCreate ("Erase ",
XmSTRING DEFAULT CHARSET)); ac++;
Erase_btn=XtCreateManagedWidget ("Erase_btn",
xmPushButtonWidgetClass,Update bubo, al,ac);
XtAddCallback (Erase_btn,XmNactivateCallback,Erase cbproc, 2);

/* create the quit button in Update cbproc */

ac = 0;

XtSetArg(al fac),XmNy, 20); ac++;

XtSetArg(allac),XmNx,60); ac++; /* common to all update buttons */

XtSetArg{allac],XmNx,185); _ac++;

XtSetArg(all[ac],XmNlabelString, XmStringCreate (" Quit ",
XmSTRING DEFAULT_CHARSET)}); ac++;

Quit btn=XtCreateManagedWidget ("Quit btn",
xmPushButtonWidgetClass,Update bubo,al,ac);

XtAddCallback (Quit btn, XmNactivateCallback,Quit cbproc,Update shell);

/* create the name label in Update cbproc */

ac = 0;
XtSetArg(al[ac]l,XmNx,10); ac++;
XtSetArg{al[ac],XmNy, 76); act+;
XtSetArg(allac],XmNlabelString,
XmStringCreate ("Name" ,XmSTRING DEFAULT CHARSET)); ac++;
Labell=XtCreateManagedWidget ("Labell", xmLabelWidgetClass, Update bubo,
al,ac):;
/* create the first name label in Update cbproc */

ac = 0;

XtSetArg(allac],XmNx,10); ac++;

XtSetArg(al[ac],XmNy,116); ac++;
XtSetArg(al [ac],XmNlabelString,

XmStringCreate("First Name",XmSTRING DEFAULT CHARSET));
ac++;
Label2=XtCreateManagedWidget ("Label2", xmLabelWidgetClass, Update bubo,

al,ac);
/* create the initials label 4in Update cbproc */

ac = 0;
XtSetArg(al(ac],XmNx,10); ac++;
XtSetArg{allac],XmNy,156); ac++;
XtSetArg(al[ac],XmNlabelString,
XmStringCreate("Initials", XmSTRING DEFAULT CHARSET));
ac++;
Label3=XtCreateManagedWidget ("Label3", xmLabelWidgetClass, Update bubo,
al,ac);
/* create the phone label in Update cbproc */

19



ac = 0;
XtSetArg{al[ac],XmNx,10); ac++;
XtSetArg(al [ac],XmNy,196); act+;

XtSetArg(al[ac],XmNlabelString,

XmStringCreate ("Phone number",
XmSTRING_DEFAULT_ CHARSET)); ac++;

Labeld4=XtCreateManagedWidget ("Labeld4", xmLabelWidgetClass, Update bubo,

al,ac):;

/* create the location label in Update_cbproc */

ac = 0;
XtSetArg(al[ac],XmNx,10); ac++;
XtSetArg(al[ac],XmNy,236); ac++;
XtSetArg(al[ac],XmNlabelString,
XmStringCreate ("Location",XmSTRING DEFAULT_ CHARSET)) ;
ac++;
Labelb5=XtCreateManagedWidget ("Label5", xmLabelWidgetClass,Update bubo,
al,ac); -
/* create the workgroup label in Update cbproc */

ac = 0;
XtSetArg(allac),XmNx,10); ac++;
XtSetArg(al [ac] ,XmNy,276); ac++;
XtSetArg(allac],XmNlabelString,
XmStringCreate ("Workgroup", XmSTRING_DEFAULT CHARSET));
ac++;
Labelé=XtCreateManagedWidget ("Label6", xmLabelWidgetClass, Update_bubo,
al,ac);
/* create the service label in Update cbproc */

ac = 0;
XtSetArg(al [ac],XmNx,10); act++;
XtSetArg(al[ac],XmNy,316); ac++;
XtSetArg(al [ac]l,XmNlabelString,
XmStringCreate ("Service", XmSTRING DEFAULT CHARSET));
ac++;
Label7=XtCreateManagedWidget ("Label7", xmLabelWidgetClass,Update bubo,
al,ac);
/* create the responsibilities label in Update cbproc */

ac = 0;
XtSetArg(al [ac],XmNx,10); ac++;
XtSetArg(al [ac],XmNy,356); ac++;
XtSetArg(allac],XmNlabelString,
XmStringCreate ("Responsibilities",XmSTRING DEFAULT CHARSET)); ac++;
Label8=XtCreateManagedWidget ("Label8",xmLabelWidgetClass, Update_bubo,
al,ac);
/* create the specialization label in Update cbproc */

ac = 0;
XtSetArg(allac),XmNx, 10); act+;
XtSetArg(al [ac],XmNy, 396); ac++;
XtSetArg(alfac],
XmNlabelString, XmStringCreate ("Specialization",
XmSTRING DEFAULT CHARSET)); act+;
Label9=XtCreateManagedWidget ("Label9",xmLabelWidgetClass,Update bubo,
al,ac);
/* create the name input text field in Update cbproc */

ac = 0;

XtSetArg(al[ac],XmNx,125); ac++;

XtSetArg(al (ac],XmNcolumns, 80); .ac++;
XtSetArg(al [ac],XmNshadowThickness,1); ac++;

XtSetArg(al (ac],XmNy,70); ac++;
Upd Name_ txt=XtCreateManagedWidget ("Upd Name_ txt",
xmTextWidgetClass,Update bubo,al,ac);

20



/* create the first name input text field in Update cbproc */

ac = 0;

XtSetArg(al[ac],XmNx,125); ac++;

XtSetArg(al [ac],XmNcolumns, 80); ac++;
XtSetArg{al[ac],XmNshadowThickness,1l); ac++;

“XtSetArg(al [(ac],XmNy,110); ac++;
Upd_F_Name_txt=XtCreateManagedWidget ("Upd F_Name txt",
xmTextWidgetClass,Update_bubo,al,ac);

/* create the initials input text field in Update cbproc */

ac = 0;

XtSetArg(allac]},XmNx, 125); act++;
XtSetArg(al[ac],XmNcolumns, 80); ac++;
XtSetArg(allac],XmNshadowThickness,1}; ac++;

XtSetArg(allac],XmNy,150); act++;
Upd_Initials txt=XtCreateManagedWidget ("Upd Initials txt",
xmTextWidgetClass, Update bubo,al,ac);

/* create the phone input text field in Update cbproc.*/

ac = 0y

XtSetArg(allac],XmNx, 125); ac++;
XtSetArg(allac],XmNcolumns, 80); ac++;
XtSetArg(al[ac],XmNshadowThickness, 1) ; ac++;

XtSetArg(allac],XmNy,190); ac++;
Upd_Phone_txt=XtCreateManagedWidget ("Upd_Phone_txt",
xmTextWidgetClass,Update_bubo,al,ac);

/* create the location input text field in Update_ cbproc */

ac = 0;

XtSetArg(al[ac],XmNx,125); ac++;

XtSetArg{al [ac]l,XmNcolumns, 80); ac++;
XtSetArg(al [ac],XmNshadowThickness, 1) ; ac++;

XtSetArg(allac],XmNy,230); ac++;
Upd_Location_txt=XtCreateManagedWidget ("Upd Location_txt",
xmTextWidgetClass,Update bubo,al,ac);

/* create the workgroup input text field in Update cbproc */

ac = 0;

XtSetArg(allac],XmNx,125); ac++;
XtSetArg(al[ac],XmNcolumns, 80); act+;
XtSetArg{al [ac],XmNshadowThickness, 1); ac++;

XtSetArg(al{ac],XmNy,270); ac++;
Upd_Workgroup_txt=XtCreateManagedWidget ("Upd Workgroup txt",
xmTextWidgetClass,Update bubo,al,ac);

/* create the service input text field in Update cbproc */

ac = 0;

XtSetArg{alTlac),XmNx, 125); act++;
XtSetArg{allac],XmNcolumns,80); ac++;
XtSetArg(allac),XmNshadowThickness, 1); ac++;

XtSetArg(alfac],XmNy,310); ac++;
Upd_Service txt=XtCreateManagedWidget ("Upd_Service txt",
xmTextWidgetClass, Update bubo;al,ac);

/* create the responsibilities input text field in Update cbproc */

ac = 0;

XtSetArg(alfacl,XmNx,125); ac+t++;
XtSetArg(al[ac),XmNcolumns,80); ac++;
XtSetArg({allac],XmNshadowThickness, 1l); ac++;

21



XtSetArg(al{ac],XmNy, 350); ac++;
Upd_Respons_txt=XtCreateManagedWidget ("Upd Respons_txt",
xmTextWidgetClass, Update_bubo,al,ac);

/* create the specialization input text field in Update cbproc */

ac = 0;

XtSetArg(al[ac],XmNx, 125); ac++;
XtSetArg{aliac],XmNcolumns, 80); ac++;
XtSetArg(allac],XmNshadowThickness,1l); act++;

XtSetArg(allac],XmNy,390); ac++;
Upd_Special_ txt=XtCreateManagedWidget ("Upd Special txt",
xmTextWidgetClass,Update_bubo,al,ac);

} /* end of Update_cbproc */

13 void Check_cbproc(w,client_data,call_data)

void Check cbproc(w,client data,call_data)
Widget w;

int client data;

XmAnyCallbackStruct *call data;

{

Widget Check msg;

int exist;

XmString strl,str2;

exist=Check () ;

if (exist==0)strl=XmStringCreate("Does not exist",

XmSTRING -DEFAULT_ CHARSET);
1f (exist==1)strl=XmStringCreate ("Exists",XmSTRING DEFAULT CHARSET).;
if (exist==-1)strl=XmStringCreate ("Not allowed",

XmSTRING_DEFAULT_ CHARSET);

ac = 07

XtSetArg(al[ac],XmNdialogType, XmDIALOG MESSAGE) ; ac++;
XtSetArg(allac],XmNmessageString,strl); ac++;

str2=XmStringCreate ("Continue", XmSTRING DEFAULT CHARSET);
XtSetArg(allac],XmNokLabelString, str2); ac++;
XtSetArg(al[ac],XmNdialogStyle, XmDIALOG APPLICATION MODAL); ac++;

Check_msg=XmCreateMessageDialog (Phonebook, "Check msg",al,ac);
XtUnmanageChild (XmMessageBoxGetChild (Check msg,
XmDIALOG_HELP_BUTTON)) ;

XtUnmanageChild {(XmMessageBoxGetChild (Check msg,
XmDIALOG _CANCEL BUTTON));
XtManageChild (Check msg);

} /* end of Check cbproc */

14 int Check()

int Check()
{

int i,exist;

Getstring (Check_data.name,Upd Name_txt);
GetString(Check_data.f name,Upd F Name txt);

fpl=fopen ("phonefile™, "r");
exist=0;

22



while( (exist==0)
&& {(fgets (name, 80, fpl) !=NULL)
&& (fgets (f_name, 80, fpl) !=NULL) )
{
if ((strcmp(name,Check data.name)==0)
&& (strcmp (f_name,Check -data.f name)==0))
{
exist=1;
}
else for (i=1;i<=7;i++) fgets(line,80,fpl);
}i

fclose (fpl);

if ((strcmp("\n",Check data.name)==0)
I'I{strcmp ("\n",Check_data.f name)==0)) exist = -1;

return{exist) ;

} /* end of Check */

15 void Insert_cbproc(w,client_data,call_data)

void Insert cbproc(w,client_data,call data)
Widget w;

int client_data;

XmAnyCallbackStruct *call data;

{

Widget- Check msg;

XmString strl,str2;

int exist;

GetString(Insert_data.name,Upd Name txt);
GetString(Insert data.f name,Upd F_Name txt);
GetString(Insert_data.initials,Upd_Initials_txt});
GetString(Insert_data.phone,Upd Phone txt);
GetString(Insert data.location,Upd Location-txt);
GetString({Insert data.workgroup,Upd Workgroup_ txt);
GetString(Insert data.service,Upd_Service txt);
GetString(Insert data.respons,Upd_Respons_txt);
GetString{(Insert data.special,Upd Special txt);

exist=Check () ;

1f (exist==0) Insert{);

1f (exist==1)
{
strl=XmStringCreate ("Exists", XmSTRING DEFAULT CHARSET);
ac = 0;
XtSetArg(allac],XmNdialogType, XmDIALOG MESSAGE); ac++;
XtSetArg(al{ac),XmNmessageString,strl); ac++;
str2=XmStringCreate ("Continue"™, XmSTRING DEFAULT CHARSET) ;
XtSetArg(al[ac],XmNokLabelString, str2); ac++;
XtSetArg(al[ac],XmNdialogStyle,XmDIALOG_APPLICATION_MODAL);
ac++;

Check_msg=XmCreateMessageDialog(Phonebook, "Check_msg",al,ac);
XtUnmanageChild (XmMessageBoxGetChild (Check msg,
XmDIALOG HELP_BUTTON) ) ;
XtUnmanageChild (XmMessageBoxGetChild (Check msg,
"XmDIALOG CANCEL_BUTTON)) ¢
XtManageChild (Check_msg);
}

} /* end of Insert cbproc */

23



Lyo

24

i

d Insert()
int insertel;

én;:éoﬁen("ppunefile","r"):
fn2=fopen("phunetemp,"y");:

inserteds
while (f?cts(linel,ﬁﬂ £p1)1=00LL)

if

—~
=te
2

w
D

St

i

faets(line2,89, fpl);
faegts{line], 33,f91);
fdetsflin°g,?0,fp1):
fqets(lineb,;ﬂ,fpl%:
foets{linen,89,f01);
ﬁJets(linP7,30,fp1);
faets(lined,3n,£01);
fﬂets(lin@) 30, f0l);
1f (((({strcap(linel,Insert_ data.name )>=0)
Ga(stremu(linel,Insert.data,f-nane )>0))
It ((strecmp(iinel,Insert.data.namne )>03
&5 (stremp(line2, Insertodata, fename)>»=0)))
uu(%nscrtel==ﬂ))
friuts(insert.data.name,fp2);
fpuits{Insert.data. f-ﬂame,fQQJ:
fruts(Insert.data. lnltlala fp2):
fputs(Insertodata.phone. p2Y:
fpits(Insert. ddtd. ocati n,fp2);
tpits(insert. Jats.workgroup,ngJ;
fouts(Insert_data. service,£fp2);
dets(Insert_data respons,fDZ);
fputs(Insert.data.special, fpr2);
}insertej=1;
’ -
fputs(linel, fp2);
fputs(linel,sn2);
fputs(linel, £p2);
fputs(lined, fp2);
tnuts(liney,£n2);
frats(lines,£p2);
frdats(line7,£p2);
fputs(linel,fp2);
fvuts(lined,£p2);
’
rted==0)
fpdts(Insert.data.name, £p2);
fputs(Insert.data.f-namne, fp2);
£puts(Insert_data.initials, fp2);
fputs(Insert.data. hone Dé);
fputs(Insert_data.locati on,£fp2);
fouts(Insert_data.work roup,fp25;
fputs(Insert. data.serv ce,fp2);
fputs(Insert.iata.respons,£fn2);
fputs(Insert_data.speclal,fp2);
insertel=1;
'



}

fclose(fpl);
fclose(fp2);

system("cp phonetemp phonefile");

/* end of Insert */

17 void Modify_cbproc(w,client_data,call_data)

void Modify cbproc(w,client data,call data)

{

Widget w;
int client_data;
XmAnyCallbackStruct *call data;

Widget Check _msg;

XmString strl,str2;
int exist;

GetString(Modify data.name,Upd Name_ txt);
GetString(Modify data.f name,Upd F_Name txt);

“GetString(Modify data.initials,Upd Initials_txt);

}

GetString(Modify data.phone,Upd Phone txt};
GetString(Modify data.location,Upd_Location_txt);
GetString(Modify data.workgroup,Upd Workgroup_txt);
GetString (Modify data:service,Upd Service txt):
GetString(Modify data.respons,Upd Respons txt});
GetString(Modify data.special,Upd_Special txt);

exist=Check () ;

if (exist==1) Modify();

if (exist==0)
{
strl=XmStringCreate ("Does not exist",XmSTRING DEFAULT_CHARSET);
ac = 0;
XtSetArg(al{ac],XmNdialogType, XmDIALOG MESSAGE); ac++;
XtSetArg({allac],XmNmessageString, strl); ac++;
str2=XmStringCreate ("Continue", XmSTRING DEFAULT CHARSET) ;
XtSetArg(al [ac], XmNokLabelString, str2); ac++;
XtSetArg({allac),XmNdialogStyle, XmDIALOG_APPLICATION_ MODAL) ;
act+;

Check _msg=XmCreateMessageDialog (Phonebook, "Check_msg",al, ac);

XtUnmanageChild {XmMessageBoxGetChild(Check msg,
XmDIALOG_HELP_BUTTON) ) ;

XtUnmanageChild {XmMessageBoxGetChild (Check _msg,
XmDIALOG_CANCEL_BUTTON) ) ;

XtManageChild (Check _msg) ;

.

/* end of Modify cbproc */

18 void Modify( )

void Modify ()

{

int modified;

fpl=fopen("phonefile"”, "xr");
fp2=fopen ("phonetemp", "w") ;

modified=0;

25



while (fgets(linel, 80, fpl) !=NULL)

{

fgets(line2,80, fpl);
fgets(line3,80, fpl);
fgets(lined, 80, fpl);
fgets(line5, 80, fpl);
fgets(line6,80, fpl);
fgets(line7,80, fpl);
fgets(line8,80, fpl);
fgets(1line9,80, fpl);

if ((strcmp(linel,Modify data.name)==0)
&& (strcmp(line2,Modify data.f name)==0)
&& (modified==0))

fputs (Modify data.name, fp2);
fputs(Modify data.f name, fp2);
fputs (Modify data.initials, fp2);
fputs(Modify data.phone, fp2);
fputs(Modify data.location, fp2);
fputs (Modify data.workgroup, fp2);
fputs (Modify data.service, fp2);
fputs (Modify data.respons, fp2);
fputs (Modify data.special, fp2);
modified=1;

}

else {
fputs(linel, £p2);
fputs{line2, fp2);
fputs(line3, £p2);
fputs(lined, fp2);
fputs(lineb, fp2);
fputs(line6, fp2);
fputs(line7, fp2);
fputs(line8, fp2);
fputs(line9, fp2);

Yi

}i

fclose (fpl);
fclose (£p2);

system("cp phonetemp phonefile");
} /* end of Modify */

19 void Delete_cbproc(w,client_data,call_data)

26

vold Delete cbproc(w,client data,call_data)
Widget w;

int client_data;

XmAnyCallbackStruct *call data;

{

Widget Check_msg;

XmString strl,str2;

int exist;

GetString(Delete_data.name,Upd Name_ txt);
GetString(Delete_data.f name,Upd F Name_txt);



exist=Check () ;

if {exist==1) Delete proc{();

if (exist==0)
{
strl=XmStringCreate ("Does not exist™, XmSTRING DEFAULT CHARSET);
ac = 0;
XtSetArg(al[ac],XmNdialogType, XmDIALOG MESSAGE); ac++;
XtSetArg(al(ac],XmNmessageString, strl); ac++;
str2=XmStringCreate ("Continue", XmSTRING DEFAULT_ CHARSET) ;
XtSetArg(alac],XmNokLabelString, str2); act++;
XtSetArg(al[ac],XmNdialogStyle, XmDIALOG_APPLICATION "MODAL) ;
ac++;

Check_msg=XmCreateMessageDialog(Phonebook, "Check msg",al,ac);

XtUnmanageChild (XmMessageBoxGetChild (Check msgqg,
XmDIALOG_HELP_BUTTON)) ;

XtUnmanageChild (XmMessageBoxGetChild (Check_msg,
XmDIALOG_CANCEL_BUTTON)) ;

XtManageChild (Check_msg);

}

} /* end of Delete cbproc */

20 void Delete_proc( )

vold Delete proc()

{
int deleted;

fpl=fopen ("phonefile","r");
fp2=fopen ("phonetemp™, "w") ;

deleted=0;

while (fgets(linel,80,fpl)!=NULL)
{
fgets(line2,80, fpl);
fgets(line3,80, fpl);
fgets(line4, 80, fpl);
fgets(line5,80, fpl);
fgets(line6,80, fpl);
fgets(line7,80, fpl);
fgets(line8,80, fpl);
fgets(line9,80, fpl);
if ((strcmp(linel,Delete_data.name) !=0)
I'I'(strcmp(line2,Delete data.f name) !=0)
I'I'{deleted==1))
fputs(linel, fp2);
fputs(line2, fp2);
fputs(line3, fp2) »
fputs(lined, fp2);
fputs(lineb, fp2);
fputs(lineé6, £p2);
fputs(line7, £p2):;
fputs(line8, fp2);
fputs{line9, fp2);
}
else deleted=1;

}:

fclose (fpl);
fclose (fp2);



21

system("cp phonetemp phonefile");
)} /* end.of Delete */

void Kill_cbproc(w,client_data,call_data)

void Kill cbproc(w,client data,call_data)
Widget w;

int client_data;

XmAnyCallbackStruct *call data;

{

Widget Kill .confirm;

XmString strl,str2;

ac = 0;
XtSetArg(allac],XmNdialogType, XmDIALOG QUESTION); ac++;

strl=XmStringCreate ("Do you want to quit 2", XmSTRING _DEFAULT_CHARSET) ;
XtSetArg(al(ac],XmNmessageString,strl); act++;

str2=XmStringCreate ("Quit", XmSTRING DEFAULT CHARSET);
XtSetArg(al[ac],XmNokLabelString,str2); act++;

XtSetArg{al[ac],XmNdialogStyle, XmDIALOG APPLICATION MODAL); ac++;
XtSetArg(allac],XmNokCallback,Kill ok _cbproc); ac++;

Kill confirm=XmCreateQuestionDialog(Phonebook,"Kill confirm",al,ac);

XtUnmanageChild (XmMessageBoxGetChild (Kill confirm,
XmDIALOG_HELP_BUTTON)) ;

XtManageChild (Kill confirm);

} /* end of Kill cbproc */

22 void Kill_ok_cbproc(w,client_data,call_data)

void Kill ok cbproc(w,client data,call_data)
Widget w;

int client data;

XmAnyCallbackStruct *call data;
o
exit (0);

} /* end of Kill ok cbproc */

23 void Quit_cbproc(w,w_to_Kkill,call_data)

28

void Quit cbproc{w,w_to_kill,call_data)
Widget w;

Widget w_to_kill;

XmAnyCallbackStruct *call_data;

{

Widget Quit_confirm;

XmString strl,str2;

ac = 0;
XtSetArg{al(ac],XmNdialogType, XmDIALOG QUESTION); act++;

strl=XmStringCreate ("Do you want to quit ?",XmSTRING DEFAULT CHARSET);
XtSetArg(allac],XmNmessageString,strl); act+;



str2=XmStringCreate ("Quit", XmSTRING DEFAULT CHARSET);
XtSetArg{al [ac],XmNokLabelString, str2); ac++;

XtSetArg(allac],XmNdialogStyle, XmDIALOG APPLICATION MODAL); ac++;

Quit_confirm=XmCreateQuestionDialog (Phonebock,"Quit confirm",al,ac);
XtUnmanageChild (XmMessageBoxGetChild (Quit confirm,
XmDIALOG_HELP_ BUTTON)) ;

XtAddCallback (XmMessageBoxGetChild (Quit_confirm, XmDIALOG OK_BUTTON),

XmNactivateCallback,

Quit_ok_cbproc,

w_to kill);
XtManageChild (Quit confirm);

} /* end of Quit cbproc */

24 void Quit_ok_cbproc(w,w_to_Kkill,call_data)

void Quit_ ok cbproc(w,w_to kill,call data)
Widget w;

Widget w_to kill;

XmAnyCallbackStruct *call data;

{
“AKtDestroyWidget (w_to_kill);

} /* end of Quit ok cbproc */
/* END OF PROGRAM PHONEBOOK */

29



A2 XView Application Code



DECLARATIONS

#include

#include <stdio.h>
#include <xview/xv

#include
#include
#include
#include

void Init();

void Name_proc();
void Firstname proc{);
void Specializ_proc();
Keysproc():
void Search_ntproc():;
void Search();
void Adaptl();
int Find{();

volid Settable();
void Erase ntproc();
void Quit_ntproc();
Allinfo_proc{);
void Quit_all ntproc();

<string.h>

iew.h>

<xview/frame.h>
<xview/panel.h>
<xview/textsw.h>
<xview/notice.h>

void Activities proc();
void Insert proc();
void Modify proc();
void Delete proc();
void Next ntproc();
void Previous ntproc{);

static
static

static
static

static
static

static
static
static
static
static
static
static
static
static
static

static

static
static
static
static
static
static
static
static
static
static

Frame name_
Panel item

Frame fname
Panel item

Frame spec_
Panel item

Frame allin
Panel item
Panel item
Panel item
Panel item
Panel item
Panel item
Panel item
Panel item
Panel item

Frame acti_

Frame inser
Panel _item
Panel item
Panel item
Panel item
Panel_ item
Panel item
Panel item
Panel item
Panel item

frame = 0 ;
name_tpi ;

_frame = 0 ;

fname tpi ;

frame = 0 ;
spec_tpil ;

fo frame = 0 ;
allinfo_name tpi ;
allinfo fname_tpi ;
allinfo init tpi ;
allinfo_phnum tpi ;
allinfo loc_tpi ;
allinfo wg tpi
allinfo_ser tpi ;
allinfo resp tpi ;
allinfo_spec_tpi ;

frame = 0 ;

t frame = 0 ;
insert_name_tpi ;
insert fname tpi ;
insert init tpi ;
insert phnum tpi ;
insert_loc_tpi ;
insert_wg tpi ;
insert_ser tpi ;
insert_resp tpi :
insert spec_tpi ;



static Frame modify frame = 0 ;
static Panel item modify name_ tpi ;
static Panel item modify fname_tpi -7
static Panel item modify init tpi ;
static Panel_item modify phnum tpi ;
static Panel_item modify loc_tpi ;
static Panel item modify wg tpi ;
static Panel item modify ser tpi ;
static Panel item modify resp_ tpi ;
static Panel item modify spec tpi ;

static Frame delete frame = 0 ;
static Panel item delete name_tpi ;
static Panel item delete_fname_ tpi ;
static Panel item delete_init tpi ;
static Panel item delete_phnum tpi ;
static Panel item delete loc_tpi ;
static Panel item delete_wg tpi ;
static Panel item delete_ser tpi ;
static Panel item delete_resp tpi ;
static Panel item delete_spec_tpil ;

char table([3][200]({9]1[301];

char 1inel{30],1ine2{30},1ine3(30]),1ined4[30]),1ine5{30],
1line6([30],1ine7{30],1ine8{30],1ine%9(30],1ine([30];

int nbmax[3],nelem(3];

FILE *fopen(),*fpl,*fp2;

main (argc,argv)

main (argc,argv)
int argc:
char *argvl(l;
{
Frame mainframe;
Panel panel;
Menu menuconsult,menulists,menukeys,menuupdate;

xv_init (XV_INIT ARGC PTR ARGV, &argc, argv, NULL);

mainframe = (Frame)xv_create (NULL, FRAME,
FRAME LABEL, "BIM Internal phone book",
NULL) ;

menukeys = (Menu)xv_create (NULL,MENU,
MENU_TITLE_ITEM, "Keys",
MENU_ACTION ITEM, "Name", Name_proc,
MENU ACTION_ ITEM, "First name", Firstname proc,
MENU_ACTION ITEM, "Specialization™, Specializ_proc,
NULL) ;

menulists = (Menu)xv_create (NULL,MENU,

MENU TITLE ITEM, "Lists",

MENU_ACTION_ ITEM, "All info", Allinfo_proc,

MENU ACTION_ ITEM, "Activities", Activities proc,
NULL) ;

-menuconsult = (Menu)xv _create (NULL, MENU,
MENU TITLE ITEM, "Consult",
MENU_PULLRIGHT_ ITEM, "Keys", menukeys,
MENU PULLRIGHT_ITEM, "Lists", menulists,
NULL) ;



menuupdate = (Menu)xv_create (NULL,MENU,
MENU_TITLE ITEM, "Update",
MENU_ACTION_ITEM, "Insert", Insert proc,
MENU_ACTION_ ITEM, "Modify", Modify proc,
MENU_ACTION_ITEM, "Delete", Delete proc,
NULL) ;

panel = (Panel)xv_create (mainframe, PANEL, NULL);

(void) xv_create (panel,PANEL_BUTTON,
PANEL_LABEL_STRING, "Consult",
PANEL_ITEM MENU, menuconsult,

NULL) ;

(void) xv_create (panel,PANEL_ BUTTON,
PANEL_LABEL_ STRING, "Update",
PANEL_ITEM MENU, menuupdate,

NULL) ;

(void) xv_create (panel,PANEL BUTTON,
PANEL LABEL STRING, "Quit",
PANEL_NOTIFY PROC, Quit_all ntproc,
NULL) ;

window fit (panel});
window fit (mainframe);

Init;
xv_main_loop (mainframe);

} /* end of main */

3 void Init()

vold Init ()
{
fpl=fopen ("phobefile", "r");
if (fpl==NULL)
{
fpl=fopen ("phonefile®,"w");
fclose(fpl);
Yi

} /* end of Init */

4 void Name_proc( )

void Name_proc/{)
{ Keys proc(l};
}

5 void Firsthame_proc( )

void Firstname proc()
{ Keys proc(2);
}



void Specializ_proc()

void Specializ proc()
{ Keys_proc(3);
}

Keys_proc (type)

Keys proc(type)
int type;
{
Panel panel;
Frame frame;
Panel item tpi;

if ((type==1) && (name_ frame!=0))
xv_set (name_frame, XV_SHOW, TRUE) ;

return(0);

}
if ((type==2) && (fname_frame!=0))
xv_set (fname_frame, XV_SHOW, TRUE) ;

return(0);

}
if ((type==3) && (spec_frame!=0)})

xv_set {spec_frame, XV_SHOW, TRUE) ;
return{(0);

frame = (Frame)xv create (NULL,FRAME,
XV_SHOW, TRUE,
XV _KEY DATA, 22, type,

NULL) ;

panel = (Panel)xv create (frame,PANEL,
XV_KEY_DATA, 22, type,

NULL) ;

XvV_create (panel, PANEL_BUTTON,
PANEL LABEL_ STRING, "Search",
PANEL_NOTIFY PROC, Search-ntproc,
PANEL ITEM X, 20,

PANEL “ITEM Y, 20,
XV_KEY_DATA, 22, type,
NULL) ;

xv_create (panel, PANEL BUTTON,
PANEL_LABEL STRING, "Erase ",

PANEL _NOTIFY_ PROC, Erase-ntproc,
PANEL ITEM X, 90,
PANEL ITEM Y, 20,

XV_KEY DATA, 22, type,
NULL) ;

Xv_create (panel, PANEL_ BUTTON,
PANEL LABEL_STRING, " Quit ",

PANEL NOTIFY PROC, Quit_ntproc,
PANEL ITEM X, 160,

PANEL ITEM Y, 20,

h " XV_KEY DATA, 22, type,

NULL) ;



tpi = xv_create (panel, PANEL_TEXT,
PANEL VALUE DISPLAY LENGTH, 30,
PANEL_ITEM X, 20,
PANEL_ITEM Y, 60,
XV_KEY DATA, 22, type,
NULL) ;

switch (type)

case 1 /* name */
xv_set (frame, FRAME LABEL, "Consult : Name",NULL);
xv_set (tpi, PANEL LABEL STRING,"Name : ",NULL);
name_frame = frame ;
name_tpi = tpi ;
break;

case 2 /* firstname */
xv_set (frame, FRAME LABEL, "Consult : Firstname",NULL);
xv_set (tpi,PANEL_LABEL STRING,"Firstname : ",NULL);
fname_frame = frame ;
fname tpi = tpi ;
break;

case 3 /* specialization */
xv_set (frame, FRAME LABEL, "Consult : Specialization",NULL);
xv_set (tpi, PANEL LABEL STRING,"Specialization : ",NULL);
spec_frame = frame ;
spec_tpi = tpi ;
break;

}

window. fit (panel};

window_fit (frame);

} /* end of Keys proc */

8 void Search-ntproc(item, event)

void Search-ntproc(item, event)
Panel item item;
Event *event;

Frame frame;
Panel panel;
Panel item tpi;
int type, result;
char *key;

type = xv_get (item, XV_KEY DATA, 22} ;

switch(type)
{

case 1 /* name */ : key = (char *)xv_get (name_tpi, PANEL_ VALUE);
search(key,1); break;
case 2 /* firstname */ : key = (char *)xv_get (fname_tpi,PANEL VALUE);

search(key, 2) ;break;
case 3 /* specialization */ : key= (char *)xv_get (spec_tpi,PANEL VALUE);
search(key, 3); break;
}

panel = (Panel)xv.get{item, PANEL PARENT PANEL);

if (nbmax|[type]l==0)
result = notice_prompt(panel, NULL,
NOTICE FOCUS_XY, event x(event),event y(event),
NOTICE MESSAGE_STRINGS, "No such value", NULL,
NOTICE BUTTON_YES, “Continue",
NULL) ;



if (nbmax|[type]>200}
nbmax [type]=200;
if (nbmax(type]>0)
{
nelem[typel=0;
}
} /* end of Search ntproc */

9 void Search(key,type)

void Search(key, type)
char *key;
int type;
{
int i,£;
fpl=fopen ("phonefile", “r");
i=0;
while (fgets(linel, 80, fpl) !=NULL)
{
Adaptl(linel) ;
fgets(line2,80, fpl});
Adaptl{line2);
fgets(line3, 80, fpl);
Adaptl(line3);
fgets(lined4, 80, fpl);
Adaptl (lined);
fgets(line5,80, fpl);
Adaptl (lineb);
fgets(line6,80, fpl);
‘Adaptl (line6) ;
fgets(line7,80, fpl};
Adaptl(line7);
fgets(line8,80, fpl);
Adaptl{line8);
fgets(line9,80, fpl);
Adaptl{line9);
if
.
s

((({type==1)&&(strcmp(linel, key)==0})
I'({type==2)&&{strcmp(line2, key)==0})
I'{{type==3)&& ({f=Find(line9, key) }==1}))

Settable (type,1,0,1linel);
Settable (type, i,1,1ine2);
Settable (type,i,2,1ine3);
Settable (type,i,3,1lined);
Settable (type,i,4,1ineb);
Settable (type, i,5,1ine6);
Settable (type,i,6,1line7);
Settable(type,i,7,1line8);
Settable (type,i,8,1ine9);
i++;
yi
}i
fclose (fpl);
nbmax [typel=i;

} /* end of Search */



10 void Adapti(data_pointer)

void Adaptl (data_pointer)
char *data_pointer;
{
int i;
i=1;
while ((*data_pointer!=\0")
&& (*data pointer!= \n’)
&& (i<31))
{
data_pointer++;
i++;
}
*data_pointer='\0’;

} /* end of Adaptl */

11 int Find( str,substr)

int Find(str, substr)
char *str;
char *substr;

{
int found;

if (*str==*substr)
if (*str=='\0")
return(l);
else {
str++;
substr++;
found=Find(str, substr);
}
else 1f ((*str=='\0'") || {*substr=="\0"))
return(0);
else {
str++;
found=Find(str, substr);
}i

} /* end of Find */

12 void Settable(t,i,j,line)

void Settable(t,1i, j,line)
int t;
int 1i;
int j;
char *line;
{
int k;
k=0;
while (*line!='\0")
table(t] [i][]] [k++]1=Fline++;
table (] [1}-{J] [k++]1="\0";

} /* end of Settable */



13 void Erase_ntproc( button, event)

void Erase_ntproc(button, event)

{

Panel item button;
Event *event;
int type;

type = xv_get (button,XV_KEY DATA,22);

switch(type)

{
case 1 /* name */ : xv_set (name_tpi, PANEL VALUE,"", NULL);break;
case 2 /* firstname */ : xv_set(fname tpi, PANEL VALUE, "",NULL) ;break;
case 3 /* specialization */:xv_set (spec tpi,PANEL _VALUE, "",NULL) ; break;

}
}

case 6 /* insert */
xv_set (insert name_tpi,PANEL_ VALUE,"", NULL);
xv_set (insert fname_ tpi,PANEL VALUE,"", NULL);
xv_set (insert init tpi,PANEL VALUE,"", NULL);
xv_set (insert phnum_tpi,PANEL VALUE,"", NULL);
xv_set (insert loc_tpi,PANEL_ VALUE,"", NULL);
xv_set (insert_wg tpi,PANEL VALUE,"", NULL);
xv_set (insert_ser tpi, PANEL _VALUE,"",NULL) ;
xv_set(lnsert_resp_tpl PANEL_VALUE,"“ NULL) ;
xv_set (insert_spec_tpi,PANEL_VALUE,"" NULL) ;break;

case 7 /* modify */
xv_set (modify name_tpi, PANEL_VALUE,"",NULL) ;
Xv_set (modify fname_ tpi,PANEL_VALUE,"",NULL);
xv_set(modify init tpi,PANEL_ VALUE,"", NULL);
xv_set (modify phnum tpi, PANEL _VALUE, "", NULL);
xv_set (modify loc_ tpi,PANEL VALUE " NULL),
xv_set (modify wg tpi, PANELHVALUE A NULL),
xv_set (modify ser tpi,PANEL VALUE,"",NULL);
xv_set (modify resp tpi, PANEL VALUE,"" NULL) ;
xv_set (modify spec_ tpi, PANEL_ VALUE,"",NULL) ;break;

case 8 /* delete */
xv_set (delete_name_tpi, PANEL VALUE, "", NULL);
xv_set (delete_ fname_ tpi, PANEL _VALUE,"",NULL);

XV set(delete init_tpi, PANEL VALUE e NULL),
xv_set (delete phnum tpi, PANEL VALUE,"" NULL) ;

Xv set(delete loc_tpi, PANEL VALUE,"",NULL);

xv_set (delete wg tpi,PANEL VALUE h NULL),

xv_set (delete_ser tpl PANEL _VALUE,"",NULL) ;

Xv_set (delete resp tpi, PANEL VALUE, "",NULL) ;

XV set(delete _spec_ tpi, PANEL VALUE, "",NULL) ;break;

/* end of Erase ntproc */

14 void Quit_ntproc(button, event)

void Quit_ ntproc(button, event)

{

Panel item button;
Event *event;
int type;

int action ;



type
switc
{

case
case
case
case
case
case
case
case

}
} /* end

= Xv_get (button, XV_KEY DATA, 22);

h(type)
1 xv_destroy safe(name_frame); name_frame = 0 ; break ;
2 xv_destroy_safe(fname_frame); fname_frame = 0 ;break ;
3 xv_destroy_safe(spec_frame);spec frame=0; break ;
4 xv_destroy safe(allinfo frame);allinfo frame=0; break ;
5 xv_destroy safe(acti_ frame);acti frame=0; break ;
6 : xv_destroy_safe(insert_frame);insert frame=0; break ;
7 : xv_destroy_safe(modify frame);modify frame=0; break ;
8 : xv_destroy_safe(delete_frame);delete frame=0; break ;

of Quit_ntproc */

15 Allinfo_proc()

Allinfo proc{(}

{
Panel p

allinfo

FRAME__

XV SHO
NULL) ;
panel =

NULL) ;

XV_crea

PANEL
PANEL_

PANEL

PANEL_

NULL);
XV_crea

PANEL

PANEL

PANEL_
PANEL,_

NULL) ;
XV_crea

PANEL
PANEL_
PANEL_
PANEL,_

NULL)

anel;

if (allinfo_frame!=0)

xv_set(allinfo frame, XV_SHOW, TRUE);
return(0);

}

_frame = (Frame)xv create (NULL, FRAME,
LABEL, "“Consult : All information",
W, TRUE,

XV_KEY DATA, 22, 4,

(Panel) xv_create (allinfo frame, PANEL,
XV_KEY DATA, 22, 4,

te (panel, PANEL BUTTON,
LABEL_ STRING, "Next",
NOTIFY PROC, Next ntproc,
ITEM X, 20,
ITEM_ Y, 20,

XV_KEY_DATA, 22, 4,

te (panel, PANEL BUTTON,
LABEL_STRING, "Previous ",
NOTIFY PROC, Previous_ntproc,
ITEM X, 80,
ITEM Y, 20,

XV_KEY DATA, 22, 4,

te (panel, PANEL BUTTON,
LABEL STRING, " Quit ",
NOTIFY PROC, Quit ntproc,
ITEM X, 185,
ITEM Y, 20,

XV_KEY DATA, 22, 4,



10

allinfo_name_tpi = xv_create (panel, PANEL_TEXT,
PANEL_ LABEL_ STRING, "Name ",
PANEL VALUE_DISPLAY LENGTH, 30,
PANEL ITEM X, 20,
PANEL ITEM Y, 60,
XV_KEY DATA, 22, 4,
NULL) ;

allinfo fname tpi = xv_create (panel, PANEL_ TEXT,
PANEL LABEL_STRING, "First name "
PANEL VALUE DISPLAY LENGTH, 30,
PANEL ITEM X, 20,
PANEL ITEM Y, 90,
XV_KEY DATA, 22, 4,
NULL) ;

allinfo init tpi = xv_create (panel, PANEL_ TEXT,
PANEL_LABEL_STRING, "Initials ",
PANEL VALUE DISPLAY LENGTH, 30,
PANEL ITEM X, 20,
PANEL_ITEM Y, 120,
XV_KEY DATA, 22, 4,
NULL) ;

allinfo phnum tpi = xv_create (panel, PANEL TEXT,
PANEL LABEL STRING, "Phone number ",
PANEL VALUE DISPLAY LENGTH, 30,
PANEL_ITEM X, 20,
PANEL_ITEM Y, 150,
XV_KEY DATA, 22, 4,
NULL) ;

allinfo loc _tpi = xv_create (panel, PANEL_ TEXT,
PANEL LABEL STRING, "Location ",
PANEL VALUE DISPLAY LENGTH, 30,
PANEL ITEM X, 20,
PANEL ITEM-Y, 180,

XV_KEY DATA, 22, 4,
NULL) ;

allinfo wg tpi = xv_create (panel, PANEL TEXT,
PANEL LABEL STRING, "Workgroup ",
PANEL VALUE DISPLAY LENGTH, 30,
PANEL ITEM X, 20,
PANEL_ITEM Y, 210,
XV_KEY DATA, 22, 4,
NULL) ;

allinfo _ser_tpl = xv_create (panel, PANEL TEXT,
PANEL_ LABEL_STRING, "Service ",
PANEL_VALUE DISPLAY  LENGTH, 30,
PANEL ITEM X, 20,
PANEL ITEM Y, 240,
XV_KEY DATA, 22, 4,
NULL) ;

-allinfo resp tpi = xv_ create (panel, PANEL TEXT,

PANEL LABEL STRING, "Responsibilities ",
PANEL VALUE DISPLAY LENGTH, 30,
PANEL_ITEM X, 20,
PANEL ITEM Y, 270,

XV_KEY DATA, 22, 4,
NULL) ;



16

17

18

19

20

21

allinfo spec_tpi = xv_create (panel, PANEL TEXT,
PANEL LABEL STRING, "Specialization ",

PANEL_VALUE_DISPLAY LENGTH, 30,
PANEL ITEM X, 20,
PANEL ITEM Y, 300,

XV_KEY DATA, 22, 4,
NULL) ;

window_fit (panel);
window fit(allinfo_frame);

} /* end of Allinfo_proc */

void Activities_proc()

void Activities proc ()
{
}

void Insert_ntproc( )

void Insert_ntproc{)

{
}

void Modify_ntproc()

void Modify ntproc()
{
}

void Delete_ntproc ()

void Delete ntproc()
{
}

void Next_ntproc()

void next_ntproc()
{
}

void Previous_ntproc( )

void Previocus_ntproc{)
{
}

"



22 void Quit_all_nt()

void Quit_all nt ()
{

exit (0);
}

/* END OF PROGRAM PHONEBOOK */

12




