
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Theory Development in an Automated Theorem Prover

Ricour, Stéphane

Award date:
1991

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/45344f69-3873-405e-99de-500dd9c90172

FACULTES
UNIVERSITAIRES
N.D. DE LA PAIX

NAMUR

INSTITUT D'INFORMATIQUE

Theory Development .
1n an

Automated Theorem Prover

par Stéphane RICOUR

Année académique 1990-1991

promoteur:

Professeur B. Le Charlier

Mémoire présenté en vue
de l'obtention du titre
de Licencié et Maître

en Informatique

Acknow ledgements

First of all I would like to express my gratefulness to Alan Smaill and David

Basin from the Edinburgh university department of artificial intelligence, who have

devoted a lot of their precious time to my education in Type Theory and in the

Oyster/Clam theorem prover. Without their advice and encouragements it should

have been impossible for me to achieve this work.

I wish also to thank Baudouin Le Charlier from the FUNDP, Namur, the pro

moter of my work. He gave me the opportunity to spend five months in Edinburgh

and helped me in the writing of this essay.

Next, we would like to thank our parents for their generous and constant

support shown throughout all these years spent in college.

Finally, I want to thank all the people who have been a great help to us,

although they have not been directly involved in the completion of this work. So,

we owe a great deal of gratitude to the Edinburgh DReaMers who helped to make

my stay in Edinburgh so delightful.

Abstract

English

Oyster/Clam is an automated theorem prover based on Martin-Lof's construc

tive theory of types. Recent work has centred round the notion of proof plan to

guide the search for proofs. Experiments with proof plans for finding proofs by

induction, using heuristics adapted from the work of Boyer and Moore, have shown

encouraging results.

This work apply this approach to the data structure of fini te sets. A systematic

approach is taken to building up the machinery needed to use such a theory, in

the form of suitable tactics and a library of theorem.

Français

Oyster/Clam est un démonstrateur automatique de théorèmes basé sur la

théorie constructive des types développée par Martin-Lof'. Les travaux récents

ont été effectués autour de la notion de plan de preuve pour guider la recherche de

démonstrations. Les expérimentations avec les plans de preuves dans la recherche

de démonstrations par induction en utilisant une heuristique adaptée des travaux

de Boyer et Moore ont donné des résultats encourageants.

Ce travail applique cette approche à la structure de donnée des ensembles finis.

Une approche systématique est prise pour fournir les mécanismes nécessaires à

l'emploi d'une telle théorie sous forme de tactiques appropriées et d'une librairie

de théorèmes.

11

Contents

1 Introduction 1

2 The type theory 3

2.1 Introduction . 3

2.2 Types .. 4

2.3 Uni verses 7

2.4 Term evaluation 7

2.5 Proposition as types 8

3 Oyster 10

3.1 Introduction . 10

3.2 Theorems and proofs 11

3.3 Term extraction . 12

3.4 The rule base . . 14

3.4.1 Constructors 14

3.4.2 selectors ... 16

3.4.3 Type formation . 17

3.5 Tactics 18

3.6 The definition mechanism 19

4 Clam 21

111

4.1 introduction .

4.2 Methods ...

4.3 Planners and Proof plans

4.4 Automatization of proofs by induction

21

22

23

23

5 Representation of the finite set theory 29

6

7

5.1 Introduction 29

5.2 Finite set as a new basic type 30

5.3 Building the finite set type as an abstraction of the existing types . 31

5.4 The language of the finite set theory

The power set as a Boolean algebra

6.1 Introduction
6.2 What is a Boolean algebra ? .

6.3 An induction principle over the finite sets

6.4 Rippling out the wave fronts

6.4.1 Set union

6.4.2 Set intersection

6.4.3 Set diff erence

6.5 Analysis of the results

6.5.1 Explanation of a plan generated by Clam

6.6 Analysis of the failures

Conclusion

34

39

39

40

42

43

46

47

48

49

49

50

55

A Proof plans generated by Clam 57

lV

List of Figures

2.1 propositions-as-types . 0 O O O O O o O 1 1 0 1 O O 1 1 1 o 1 1 1 1 1 1 O 9

5.1 proof of deLunion 36

5.2 basic definitions of the finite set theory . 37

5.3 other fonctions over the finite sets 38

6.1 scheme/5 for the set induction 44

6.2 Proof plan for the theorem 1.1 50

6.3 Proof of the theorem 1.1 51

A.l Proof plan for the theorem 1.1 58

A.2 Proof plan for the theorem 1.2 58

A.3 Proof plan for the theorem 2.1 59

A.4 Proof plan for the theorem 4.2' 59

A.5 Proof plan for the theorem 5.1 60

V

Chapter 1

Introduction

Since the advent of Artificial Intelligence, huge efforts have been clone for the

automatization of mathematical verification. Lot of systems exists today with

variable performance.

Our work is based on the Oyster/Clam system, developed at the University of

Edinburgh by Pr. Alan Bundy and the group of mathematical reasoning [Horn 88],

[van Harmelen 89]. This system is based on Martin-Lof's constructive theory of

types developed as a formalisation of constructive mathematics [Martin-lof 79],

[Martin-lof 73] .

The first chapter will introduce intuitionistic theory of types which was orig

inally developed as a symbolism for the codification of constructive mathematics

but which may be viewed also as a programming language.

The second chapter describes the Oyster proof checker. Oyster is an interactive

proof editor closely based on the Nuprl system [Constable et al. 86]. Proofs are

constructed in a top-clown fashion by application of the rules of inference. The

object-level logic is a version of Martin-Lëf's type theory while Prolog provides

a language to write tactics. Since the object-level logic is constructive, terms of

an enlarged ..\-calculus can be computed from complete proofs, and these so-called

1

2

extract terms can then be executed by application on appropriate inputs.

Clam is a meta-level system built on top of Oyster in an attempt of turning

the interactive proof editor into a fully automatic theorem proving system. To

guide the search of proof, Oyster tactics are specified into methods. Methods are

specifications in term of pre- and post-conditions. Giving a theorem, a search is

clone at the meta-level using the methods for finding the tactics that should make

up the proof. The result of that search is a tree of methods called proof-plan.

The next chapters, refl.ect my work amid the mathematical reasoning group.

The project consists to apply the approach of proof-plans to the data structure of

finite sets using a systematic approach to build the machinery needed to use such

a theory in the form of suitable tactics and a library of theorems.

After a discussion about the representation we will give to the finite sets, we

make the development of the theory culminate in proving the theorems needed to

show that the power set with the inclusion relation makes up a Boolean algebra.

We will try to give the first lines of a methodology for systematically providing

the system the tools it needs to generate the proofs of theorems.

Chapter 2

The type theory

2.1 Introduction

This chapter is intended to give an overview of constructive type theory based on

typed ,\-calculus.

The elernents of the theory are types and the members of those types. A type is

a collection of objects having similar structure. Henceforth in this chapter we will

use capital letters to design a type and lower case letters to design the members.

The proof of a theorem in constructive logic will implicitly give the way to

construct an inhabitant of the corresponding type. We will show that this feature

allows to interpret the constructive logic as a high-level programming language.

The basic abjects are called terms, they are built using variables and opera

tors. The terms of the type theory underlying Oyster are those of the À-calculus

(variables, abstractions and applications) and terms generated by extensions of

the typed ,\-calculus (type constructors, data constructors, constants, primitive

recursion, list recursion and arithmetic fonctions).

In our presentation, we assume that the reader is familiar with common syntac

tic notions such as substitution and variable-binding. We denote the simultaneous

3

CHAPTER 2. THE TYPE THEORY 4

substitutions of the terms t; for the free occurrences of the variable x; in s by the

term:

2.2 Types

A type is defined by designing a constant as type, and choosing a notation for its

elements. These are the canonical expressions that are the canonical members of

the type. The members of a type are the terms that have as value the canonical

members of the type. To complete the definition of a type an equivalence relation

on its members called the equality in that type is associated to the type. This

equality is a three place relation : t = s in T.

There is also an equivalence relation, T = S, on types called type equality and

it is defined as follow : two types are equal if and only if they evaluate to equal

canonical types.

Here· are introduced the types of the theory. We use typewri ter font to signify

actual Oyster syntax. The types are listed with their canonical and non canonical

constants.

The type theory underlying the Oyster system has the following basic types :

• atom as in Prolog or Lisp, its canonical members are the denumerably many

character strings written atom(' ... ') ;

• pnat providing the natural numbers with Peano arithmetic. The canoni

cal elements are O and terms of the form s (...) where s is the successor

fonction on natural members. Finally we define the non canonical constant

p_ind(x,a, [u,v,t]) where xis of type pnat, a and tare terms of type T

and u,v are free variables in t, by the computation rules :

p_ind(O, a, [u, v, t]) = a

CHAPTER 2. THE TYPE THEORY 5

p_ind(s(x), a, [u, v, t]) = t[x ,p_ind(x, a, [u, v, t])/u, v]

• void is an empty type, i.e. there are no members of void;

• int is the type of integers. The canonical members are the integers in the

common sense (.. . -2, -1, 0, 1, 2, ...) There are non canonical con

structors for integers : the usual arithmetic operations.

Oyster also embodies the following derived type concepts and set constructors;

considering A and B as types:

• A list is a type

- its members are the empty list nil and non empty lists x: : y constructed

from an element x of type A and a list y of type A list. The non canonical

constant'list_ind(x,y,[u,v,w,z]), where xis of type A list, y and z of

type T and u,v,w are free variables in z, is defined by the computation rules :

lisLind(nil, y, [u, v, w, z]) = y

lisLind(a :: b, y, [u, v, w, z]) = z[a, b, lisLind(b, y, [u, v, w, z])/u, v, w]

• A # Bis a type

- the cartesian product of types A and B has as members the ordered pairs

a&b where ais of type A and b of type B. We defined the non canonical

constant spread (s, [u, v, t]) where s is of type A # B, t is of type T and

u,v are free variables in t, by means of the computation rule :

spread(a&b, [u, v, t]) = t[a, b/u, v]

• A \ B is a type

- the disjoint union of types A and B. Its members have the form inl (a)

where ais in A and inr(b), where b is in B. Given an element of A \ B, it

must be possible to decide which component it is in. The decision operator

has the form : decide (z, [u, f] , [v, g]) and the computation rules are :

CHAPTER 2. THE TYPE THEORY

decide(inl(a), [u, f], [v, g]) = f[a/u]

decide(inr(a), [u, f], [v, g]) = g[a/v]

• A ~ B is a type

6

- the fonction types. Members are .À-terms of the form lambda(x,tx)where

x is of type A and tx of type A ~ B. The application of a fonction will be

noted f of a where fis any element of A ~ B and ais an element of A.

• x: A # B is a type

- the dependent product has as members the ordered pairs a&b such that ais

an element of A and the second component, b, is an element of type B[a/x].

The non canonical constant spread (s, [u, v, t]) acts as for the cartesian

product.

• x : A ~ B is a type

- the dependent fonction describes fonctions whose range type depends on

the input. Members are .À-terms of the form lambda (x, tx) but the result

type of tx may depend on the value of x. The application of a fonction will

be noted f of a where fis any element of x: A ~ B and ais an element

of A.

• { x : A \ B} is a type

- the set type has as members all values of x in type A which satisfy B.

Strictly speaking, members are ordered pairs a&b where ais an element of

type A and b an element of Ba, i.e. a proof that a satisfies the proposition

B. But the set constructor provides a mechanism for hiding information to

simplify computation. So members of a set type { x: A \ B}, are members

of A while the information that those members satisfy B is hidden.

• A / / / [x, y, B] is a type

CHAPTER 2. THE TYPE THEORY 7

- the quotient type builds a new type from the basic type A, usmg the

equivalence relation B over members of A. It can therefore be used to redefine

equality in type A.

2.3 Universes

Types are classified in uni verses forming a hierarchy. u (1) is the first uni verse

and contains all the basic types of the theory and types built using the above

mentioned type constructors.

In addition to the types in u(l), u(2) contains so-called large types, namely

u(l) and types built from it such as A --4 u(l), u(l) --4 u(l), A --4 (B --4 u(l))

and so forth.

The hierarchy of universes is cumulative. By cumulative we mean that the

universe u(i) is in universe u(i + 1) and that every element of u(i) is also an

element of u(i + 1).

Universes are themselves types and every type occurs in a universe. In fact A

is a type if and only if it belongs to a universe. Conversely all the elements of a

universe are types.

2.4 Term evaluation

The computation system is based on a lazy evaluation procedure. The closed terms

(this means terms without free variable) are either canonical or non canonical .

Each canonical term has itself as value (for instance the natural numbers). The

evaluation of non canonical terms cannot always succeed since there are terms

which have no canonical form. When a non canonical term evaluates, it is said to

be reducible. The evaluator successively chooses a non canonical subterm in ap

propriate form and replaces it with a term closer to canonical form. This process

CHAPTER 2. THE TYPE THEORY 8

of replacing such a term with another is called term reduction. A non canoni

cal reducible form is called a redex while the canonical term resulting from the

evaluation is called its contractum. As example for the list recursion combinator

lisLind,

lisLind(x, y, [u, v, w, z]) evaluates to the value of y if x evaluates to the empty

list, nil;

and evaluates to z[h, t, lisLind(t, y, [u, v, w, z])/u, v, w] if x evaluates to the non

empty list h :: t.

2.5 Proposition as types

What is maybe the most interesting feature of the type theory is the consideration

of the propositions as types. This consideration can be expressed as an isomor

phism between type theory and propositional logic. Proposition correspond to

types, proofs to lambda terms and theorems to types with inhabiting elements. In

intuitionistic logic, a proposition is true if and only if there is an evidence for it. In

terms of the type theory we have the notion of a type being inhabited where this is

true if and only if the type has at least one member. Specifically, a proposition is

a type inhabited by proofs of the proposition if it is valid, or are empty otherwise.

There is only one canonical element in these types : axiom, the most trivial proof.

The consideration of propositions as types enables to define higher-order logic

by means of the correspondences spelled by figure (2.1). For example to show that

the type A # B is inhabited one needs to find an inhabitant for the type A and

one for the type B. Considering propositions as types this is equivalent to show

an evidence for the proposition A and one for the proposition B so the cartesian

products acts precisely as the conjunction A /\ B.

CHAPTER 2. THE TYPE THEORY 9

Propositions Types

A V B AIE

A /\ B A#B

A ⇒ B A~ B

:3 X E A.B X: A# B

\:lx E A;B x:A ~ B

a = b E A a = b in A

Figure 2.1: propositions-as-types

Chapter 3

Oyster

3.1 Introduction

Oyster is a proof development system closely based on the Cornell Nuprl system

[Constable et al. 86] of which it is a Prolog reimplementation.

Oyster can be seen as the conjunction of two languages, the object language

which is the mathematical language of the system, and the metalanguage which

is a programming language to write proof-generating programs on assertion ex

pressed in the object language. The object language is the constructive theory

of types based on the work of Martin-Lof outlined in the previous chapter. The

metalanguage is Prolog as opposed to ML in the Nuprl system and it enables the

user to formalize proof techniques in the shape of Prolog programs called Tactics.

Oyster is a primitive kernel on which can be built other tools like a library sys

tem, a graphie interface and so on. Further more the almost unlimited complexity

that the tactics can reach could transform the system from a simple proof checker

into a powerful proof generator.

Since the object level logic is constructive, a proof of a theorem in the Oyster

system implicitly provides directions for constructing a witness of the truth of the

10

CHAPTER 3. OYSTER 11

theorem. These so called extract terms can then be executed by application on

appropriate inputs.

Subsequently in this chapter we will describe how to formalize theorems and

proofs in the system. ln that section our aim will be to show the working of the

system without entering all the details of the user interface. Readers interested

in this point will refer to the Oyster user manual [Horn 88]. Then we will explain

the concept of extract term and how Oyster can lead to program synthesis. The

presentation of the inference rules contained in the base rule will follow and the

last section of the chapter will concern the tactics.

3.2 Theorems and proofs

ln Oyster a theorem consists of a goal statement of the form:

H ⇒ G

where H is a hypothesis list and G is an assertion in the object-level logic; the ⇒

correspond to 1- or the sequent arrow.

We distinguish three kind of hypothesis :

• definitions are hypothesis of the form :

d(x, Y, ...) <==> tx,y, ...

where dis an arbitrary identifier; x, y, ... forma possibly empty parameter list

and tx,y, ... is any type theoretic term with free variable x, y, Definitions

can also be defined globally. The section 3.6 explains more in details the

definition mechanism.

• Assumptions are hypothesis of the form :

V: T

meaning that v is an inhabitant of type T.

CHAPTER 3. OYSTER 12

• The last kind of hypothesis are references to theorems. Those have the form

v:H==;,G

or v : H ==} G ext E

where H is a list hypothesis and G the goal of the theorem while E is the

extract tèrm derived from that proof. v is a local name for the theorem.

The aim of a proof is to show that the goal, G is inhabited by explicitly con

structing a member. This construction process might be characterized as stepwise

refinement proof yielding the extract term E which is guarantied to be a member

of G.

A proof is a finite tree whose nodes are pairs consisting of a sequent and a

rule name or a placeholder for a rule name. The sequent part is composed by an

hypothesis list an a goal. The sequent part of a child is entirely determined by

the sequent part and the rule name of the parent node. The rules specify a finite

number of subgoals needed to achieve the proof of the goal.

The general shape of a node is :

sequent by rule name

1. subsequent 1

2. subsequent 2

n. subsequent n

3.3 Term extraction

Since Oyster embodies a constructive logic, proving the truth of an assertion in

the system is equivalent to showing that the type corresponding to the statement

CHAPTER 3. OYSTER 13

is inhabited, and proving that a type is inhabited in a constructive setting requires

that the user specify how an object of the type be built.

Implicitly associated with each proof is a term whose type is specified by the

main assertion being proved. That term can be used for synthesizing programs

corresponding to proofs. This so called extract term is refined top-clown during

the proof process.

For each rule of inference there is a constructor which links together the con

structions corresponding to the arguments of the major connective, the rule in

volves.

In any stage of the proof development it is possible to access the extract term

of the proof constructed so far. Open subgoals of the proof, if they have any

constructive significance, correspond to Prolog variables in the extract term.

There is a built-in evaluator for type theoretic terms, which allows the direct

execution of Oyster programs. The evaluation works as explained in the previ

ous chapter. It reduces gradually the non canonical terms so that they reach a

canonical form which is the result of the evaluation.

We can think of Oyster as being a program synthesizer since if we consider, in

constructive type theory, a programming problem as being a list of specifications,

then a proof that the specifications can be met defines an algorithm which solves

the problem. In other words, programs are synthesized from their specifications

by proving a theorem of the form:

V Input :.lOutput; spec(Input, Output)

where spec(lnput, Output) is a relationship between the input and the output

of the desired program.

CHAPTER 3. OYSTER 14

3.4 The rule base

Each type is associated with a collection of inference rules which can be used to

reason about the type. ln addition there is a collection of general rules concerned

with equality and substitution which apply to all types. For each type, T, there

are introductions and elimination rules. Essentially, Introduction rules generate

constructor terms as extracts and elimination rules generate destructors of the

appropriate type.

Our purpose in this section will not be to enumerate all those rules. For that

we refer the reader to the Oyster user manual [Horn 88]. But our objective is to

present a classification of the rules. The only rules that we will explicitly exhibit

are illustrations presented in the following refinement style.

H ⇒ T ext t by rule

H1 ⇒ T1 ext t1

The goal refined is shown at the top and each subgoal is shown indented un

derneath. Our illustrations will be taken amid the rules concerning the list types.

The rules are classified in two main categories : Constructors and Selectors. A

third category Type formation is added for reasons of perspicuity although strictly

speaking those rules should be considered as part of the constructors for universes.

3.4.1 Constructors

• reflnement and realisation rules : they describe the ways for straight

forward refinement of the proof. The main result in applying such a rule

is the refinement of the extract term of the top level goal, corresponding to

CHAPTER 3. OYSTER 15

the refinement step connected with the rule. We distinguish refinement rules

that produce an extract term that needs further refinements from realisation

rules that produces a complete extract term .

Examples:

H ⇒ A list ext nil by intro(at(i), nil)

⇒ A list in u(I)

is a realisation rule since nil is a canonical member of any well formed list

type.

H ⇒ A list ext B :: C by intro

⇒ A ext B

⇒ A list ext C

the list construction is a partial refinement over any list type. The head and

the tail are built in the subgoals.

• membership rules : they are applicable to goals of the form : A in T and

give the conditions under which a canonical object may be judged to inhabit

a canonical type. The extract term of such a proof will always be axiom

since such a goal has no computational meaning.

Example:

H ⇒ B :: C in A list by intro

⇒ B in A

⇒ C in A list

CHAPTER 3. OYSTER 16

The understanding of this membership rule is easy : to show that B :: C is

of type A list, we need to show that the head is of type A and the tail of

type A list.

• equality rules : these rules give the conditions under which abjects having

the same structural form may be judged to be equal. They thus applies to

goals of the form A= B in T.

Example:

H ⇒ A:: B = C :: D in T list by intro

⇒ A= C in T

⇒ B = D in T list

two lists are equal if they have the same head and the same tail.

3.4.2 selectors

• refinement and realisation rules : basically the elimination rules, they

exploit the properties of the type of a variable in the hypothesis list for

generating a selector construct which is able to handle the general case. The

other rules falling in this category are the decision rules.

Examples:

H, X : A list, H' ⇒ T ext lisLind(X, Tb, [U, V, W, Tu]) by elim(X, new[U, V, vV])

⇒ 71nil/X] ext n
U: A, V : A list, W : T[V/XJ ⇒ 71u,,v;xJ ext Tu

The elimination of a variable of a list type in the hypothesis list generates

a list induction term. The two subgoals correspond respectively to the base

and the step cases of the induction.

CHAPTER 3. OYSTER 17

• membership rules : these rules give the conditions under which a non

canonical object may be judged to inhabit a type.

Example:

H ⇒ lisLind(E, n, [X, Y, z, T]) in T[E/Z]

by intro(using(A list), over(Z, Tz), new[U, V, W])

⇒ E in A list

⇒ n in '.I1nil/Z]

U : A, V : A list, W : '.I1v1z1 ⇒ '.I1u.v,w;x,Y,z] in '.I1u,:V/Z]

A list induction term is of a given type '.l1E/Z], if you can supply a type

scheme, over(Z, Tz), such that '.I1Etz] is an instantiation of that type scheme

for E and the subterms of the induction term can be proven to be in the

corresponding instantiations, '.Z1nil/ZJ and '.I1u,:V/Z] and if you can predict the

type of the base term, E, using(Alist).

• equality rules : these rules are appropriate when there is a goal of the

form:

H ⇒ selector(E, ...) = E' in T.

They have as consequence a reduction of the selector term.

3.4.3 Type formation

As we explained these are constructor rules for universes. For the list types, we

have one refinement rule :

H ⇒ u(I) ext A list by intro(A list)

⇒ u(I) ext A

CHAPTER 3. OYSTER 18

expressing that A list is a refinement for any universe if A is a refinement for

the same universe. There is also a membership rule :

H =} A list in u(I) by intro

=} A in u(I)

A list is a type of universe level i, if A is a type of universe level i.

And there is also an equality rule :

H =} A list = B list in u(I) by intro

=} A = B in u(I)

two list types are equal if the corresponding base types are equals.

3.5 Tactics

Tactics are bits of Prolog code, containing Oyster commands and tacticals. Tacti

cals are special words derived from the original ML version of Oyster for specifying

how the combination of the instructions has to take place.

• repeat T tries to apply T on the given problem and recursively repeats it

on all the subproblems generated by T.

• Tor S applies T, and if it fails tries S.

• R then S applies R then S to all the subproblems generated by R.

• R then [S1 ... Sn] applies R first and then each S; to the corresponding sub

problem.

• complete T succeeds only if T applies and generates no new subgoals.

• try U always succeeds. If U applies, it is performed, if it does not, the

current goal is left unchanged.

CHAPTER 3. OYSTER 19

3.6 The definition mechanism

There are different ways to define new objects in Oyster. One of those ways is

to directly use the Oyster definition facility to associate the words of the theory

we want to define with the terms in the theory. This is clone using the predicate

<==> . For instance we could define the operation of concatenation of two lists

by:

concat(a,b) <==> lisLind(a,b,[h,t,v,h :: v])

the left hand sicle corresponds to the definiendum while the right hand sicle

corresponds to the definiens.

For complex definitions, however, it is possible to achieve a kind of abstrac

tion through a level of indirection. Instead of directly equating a display for

m with a term t, t is extracted from a theorem that contains type information

([D. Basin 90]).

We illustrate that method using again the example of the concatenation of two

lists. As we already said, building a proof of a given theorem in type theory means

constructing implicitly a witness of the type of the proposition to be proved and

that different proofs could provide different witness.

We will prove a theorem about lists so that the witness build within the proof

is the concatenation of the lists given as hypothesis.

The theorem to be proved is :

a : t list,

b: t list,

==> t list

To prove that theorem, it is enough to give whatever member of t list. But it

is building the right member, the member that corresponds to the concatenation

of lists a and b that we will achieve the abstraction that allows us to define the

CHAPTER 3. OYSTER 20

new concept. With that aim in view, we first refined the goal using the elimination

rule on a, elim(a).

a : t list,

b : t list,

==> t list ext lisLind(a, V,,, [U, V, W, ½) by elim(a)

1. t list ext V,,

2. U : t, V : t list, W : t list ==> t list ext v;

The application of the rule generates two subgoals corresponding to the base

and step cases of a list induction. While the extract term is a list induction term.

The values of the term for the base and step cases are build in the subgoals. Now

what remains to be clone is to introduce the right value to proof the subgoals so

that the induction term corresponds to the list concatenation.

The first subgoals corresponding to the base case of the induction is proved

using the rule intro(b). The second subgoal, corresponding to the step case is

proved with intro(U :: W).

After that we obtain an extract term corresponding to :

lisLind(a, b, [U, V, W, U :: W])

Now the concatenation of any two lists of type t list may be found using the

evaluation of the extract term. So if we call the theorem proved above Concate

nation, we define the operation of concatenate two lists as follow :

concat(x, y) <==> term_of Concatenation of x of y

This mechanism is convenient to inductively define fonctions. The top goal of

the theorem to be proved shows the origin and target domains of the fonction.

Chapter 4

Clam

4.1 introduction

In this chapter we will describe the Clam system conceived to transform Oyster

in an automated theorem prover. The key feature of this meta-level system is an

analysis of the tactics in order to guess when it is appropriate to apply a tactic and

what are the consequences of the application of that tactic. This goal is reached

by specifying the tactics in term of pre-conditions and post-conditions.

Those specifications of the tactics are called methods. Once tactics are specified

by methods, planners will then scan them in search of the applicable tactics. The

work of the planners will be to connect methods so that they make up a proof plan

for the theorem intended to be proved. If the tactics specified by the methods

chained in the proof plan are applied, there is great chance that it leads to a

proof of the theorem. But this is not guarantied in all the cases since methods

describe the main features of the tactics but are not a complete specification of

them. The reason for often deliberately writing methods with weak specifications

is that in this way the method acts as a heuristic operator which can capture the

essential specification of a tactic while leaving out the often expensive checks for

21

CHAPTER 4. CLAM 22

finer details.

Last but not least we will explain the application of the proof plan mechanis

m to proof by mathematical induction for which encouraging results have been

obtained.

4.2 Methods

Methods are specifications of tactics. As describe in (Bundy 88) a method is a

data structure with 6 slots :

• A name-.slot giving the method its name, and specifying the arguments to

the method.

• An input-.slot specifying the abject level formula to which the method is

applicable.

• A pre-condition.s-.slot specifying conditions that must be true for the method

to be applicable.

• A po.st-condition.s-.slot specifying conditions that will be true after the method

has applied successfully.

• An output-.slot specifying the object-level formulae that will be produced as

subgoals when the method has applied successfully.

• A tactic-.slot, giving the name of the tactic for which this method is a speci

fication.

A method and its corresponding tactic are said to be applicable if the goal to be

proved matches the input formula of the method and if the method's pre-conditions

hold for this sequent. When an applicable methods is found, the output-slot give

CHAPTER 4. CLAM 23

a schematic description of the resulting sequent of the tactic application and the

post-conditions specify further syntactic properties of those sequent.

Although it is possible to use arbitrary Prolog code in the formulation of the

pre- and post-conditions slots, a designated language for this purpose has been

created. This method language consists of a set of predicates and a set of logical

connectives. they are discussed in [van Harmelen 89].

4.3 Planners and Proof plans

The planners employs the methods in the search for a proof of a given Oyster

sequent. They firstly find an applicable method (i.e. a method with matching

input formula and true pre-conditions); then the planner compute the schematic

output formulae and post-conditions of this method, and finally find methods

applicable to these output formulae. This process is repeated until no unproven

formulae remains.

The process of proof plan construction as described above is not entirely free

from search: for a given sequent, more than one method may be applicable, and

the system must choose one of them. For the moment four planners are part of

Clam. They use different strategy for selecting an applicable method to a sequent.

The three first strategies are : depth fir.st, breadth fir.st and iterative deepening.

While the fourth strategy, be.si fir.st is the only one employing a heuristic search

strategy. In practice, the search at the meta-level is however small enough for the

depth-first planner to succeed without very much backtracking.

4.4 Automatization of proofs by induction

The proof plan technique is currently used for the automatic guidance of proofs

by mathematical induction.

CHAPTER 4. CLAM 24

The heuristic is based on the reconstruction of Boyer and Moore technique for

constructing induction formulas, the state of the art in inductive theorem proving

[Boyer & Moore 79].

By observing their own proofs and those of others, Robert Boyer and J. Moore

noticed that, when proving theorems about recursive fonctions, two basic methods

are available : a simple one in which rewrite rules derived from the recursive

definitions are used to symbolically evaluate the theorem to be proved and a more

complex one in which induction is used to divide the theorem into two simpler

theorems.

The problem when trying to prove a theorem by induction, is that we are faced

with a choice. There are often several induction schemata available, and each of

them can be used to induct on a different parameter.

Recur.sion analy.si.s is the name given to the process, embedded in the Boyer

and Moore theorem prover of analysing the recursive structure of a conjecture to

decide what form of induction to use to prove it.

When an induction schema is applied, it has for consequence that the induction

conclusion differ from the hypothesis by the insertion of induction terms in place of

the induction variable. Those expressions which appear in the induction conclusion

but not in the induction hypothesis, are called wave front.s.

The objective of an induction schem~ choice is well described by the charac

terisation of a "good" induction quoted in [Stevens 88] :

Thus we can characterise a "good" induction as one that we can

deduce in advance will allow the maximum number of recursive terms

in the conclusion to be eliminated.

As a refinement we can additionally stipulate that it leaves a mini

mum number of recursive terms that we can deduce will be difficult to

eliminate.

CHAPTER 4. CLAM 25

By recursive terms, one means instances of recursively defined terms.

That leads to a central idea of the proof plan, the tactic called rippling-out.

This tactic manipulates the induction conclusion to enable the induction hypoth

esis to be used in its proof.

rippling-out applies wave rules that will remove the wave fronts from the in

nermost position further out.

Let us first define what are wave rules and then exhibit their utilities by ex

ample. Wave rules are rewrite rules of the form :

where F,T and the Si are terms with distinguished arguments and T may be

empty, but F and the Si must not be. The Si are old wave fronts and T is the new

wave front. A wave front in a formula can be seen as a designated subterm of that

formula. This subterm itself contains a hole not part of the wavefront, called the

wave variable, the Ui in the general form.

We adopt the convention that wave fronts are noted by boxes , as above.

Application of a wave rule ripples some wave fronts out by one stage. Step

formulae of recursive definitions are always wave rules. In addition each theorem

that Oyster proves can be tested to see if it has the right form and, if so, it can

be stored as a wave rule for future use.

Let now illustrate that concept by the example picked in [Bundy et al 89b],

the proof of the associativity of + :

Vx,y,z; x+(y+z) = (x+y)+z

by successor induction on x. The recursive definition of + is :

Vu: pnat; {O + u = u}

Vv: pnat, Vw: pnat; {s(v) + w = s(v + w)}

The induction hypothesis is :

CHAPTER 4. CLAM 26

x+(y+z)=(x+y)+z (1)

where x, y, z represent skolem constants. While the induction conclusion is :

[ill X ŒJ +(y+ z) = (GJ X [I] +y)+ Z (2)

The induction term is s(x) and the [ill ... [2] constructor fonction is the wave

front. The step case of the recursive definition of+, namely

provide a wave rule to which rippling-out will apply. Repeated applications

of this rule to (2) ripples the two wave fronts to the outside of the left and right

terms of the induction conclusion.

[illxŒJ+(y + z) = c[illxŒJ+y) + z

[illx + (y + z)Œ]=[illx + y[TI+ z

[illx + (y + Z)ŒJ=GJ(X + y) + zŒJ (3)

When no forther rippling out is possible then the induction hypothesis can

often be used as a rewrite rule to produce an equation between two identical

terms (this is achieved by the tactic fertilization). Using it left to right on the

left hand side of the induction conclusion (3), it produces the equation :

GJ(x +y)+ zu]=GJ(x +y)+ zŒ]
which is readily proved .

The problem is thus to apply an induction schema that will allow the rippling

out tactic to succeed. Therefore, recursion analysis locates the recursive fonctions

in the conjecture. Each occurrence of a recursive fonction, F, with a variable, X,

in its recursive argument position, gives rise to a raw induction suggestion. The

induction variable is X. The induction schema suggested is the one dual to the

form of recursion used to define F.

In the previous example, the proof of :

CHAPTER 4. CLAM 27

x +(y+ z) = (x +y)+ z,

the first three occurrence of the recursive defined + give rise to an induction

suggestion. The recursive argument is twice x and oncey.

The dual induction schema corresponding to one step recursion is :

r 1- P(O) r, x' : pnat, P(x') 1- P(s(x'))

r,x: pnat 1- P(x)

How to choose which one should become the final induction suggestion ? The

application of the one step induction on x will have for consequence the substitu

tion of the two occurrences of x by s(x) in the induction conclusion that will look

like :

[ill X w +(y + Z) = (8] X w +y) + Z

In both cases, the recursive definition of + will match the term dominating the

occurrence of s(x). Allowing the rippling-out tactic to be used with the step case

of the definition as wave rule as we did above.

This is not the case when applying the one step induction on y. In the induction

conclusion :

x + ([illyŒ}+z) = (x+[ip;W) + z,

the term dominating the second occurrence of s(y), namely x + s(y) does not

match with the step case of the definition of +. The replacement of y by s(y)

in this case is said to be unsuitable and the induction suggestion is classified by

Boyer and Moore as fiawed. If unflawed inductions suggestions remain, the flawed

ones are rejected. So, in our example, the one step induction on xis finally chosen.

As explained above, recursion analysis is restricted to using rewrite rules based

on the step formula of recursive definitions to "ripple out" the wave fronts occurring

in the induction conclusion.

CHAPTER 4. CLAM 28

This technique has been extended in various ways. Both, the rippling-out tactic

and the notion of wave rule have been expanded.

The most important development was the extension of the technique so that

the rippling-out tactic is able to use other rewrite rules than the only step formulae

of recursive definitions : all the wave rules known by Clam can be used.

Then the notion of wave rule was extended by the introduction of: multi-wave

rules, conditional wave rules, rippling-sideways and rippling on hypothesis.

Those extensions to the rippling-out tactic for guiding inductive proofs are

explained in [Bundy et al 89b]. Here we will only give a short overview of the

conditional wave rules since they will be used in our search of proofs for some

finite set theory propositions.

Conditional wave rules are rules of the form :

< condition > ~ LH S ⇒ RH S ,

where LH S ⇒ RH S is a wave rule.

Note the use of~ for implication and ⇒ for rewriting.

The conditional wave rules should be grouped so that the conditions are com

plementary. So it will be possible to use the rules after dividing the proof in two

parts using the condition and i ts negation.

Chapter 5

Representation of the finite set

theory

5.1 Introduction

After we described in the first three chapters the Oyster / Clam environment for

automated proof guidance, our intent will now be the application of the machinery

of proof plans to a new data structure, that of finite sets.

Development of a new theory in the Oyster / Clam system can be handled along

different lines.

We will consider two different approaches : On one hand we will envisage the

addition of a new basic type and the extension of the rule base, This approach will

only be introduced; the reader will find a complete discussion about the addition of

a basic type representing the finite sets in the work of Paul Chisholm [Chisholm].

On the other hand we will try to build the finite set theory as an abstraction of

the existing types by the mean of the definition mechanism.

This last approach, as the other one, should allow us to experiment the ma

chinery of proof plans applied to the new data structure but this approach will

29

CHAPTER 5. REPRESENTATION OF THE FINITE SET THEORY 30

also allow us to eval the power of expressiveness of Oyster.

5.2 Finite set as a new basic type

Building a new basic type representing the finite sets could be done in a similar

way as the list types. The first thing to do is to define the primitive constants

required : f set, 0, • and f seLind. f seLind is a non-canonical constant and has

the computation rules :

f seLind(0, y, [u, v, w, z]) y

f seLind(a • b, y, [u, v, w, z]) z[a, b, lisLind(b, y, [u, v, w, z])/u, v, w]

meaning that f seLind(s, y, [u, v, w, z]) evaluates to y ifs evaluates to the empty

set. And ifs evaluates to a non-empty set,a • b, f seLind(s, y, [u, v, w, z]) has the

valuez[a, b, lisLind(b, y, [u, v, w, z])/u, v, w].

In order to define a type whose abjects are finite sets, we require a type from

which the members of the sets are drawn. Once we have such a type, let say A,

we can define the type of finite sets of abjects of type A.

We will denote that type :

f set(A)

The canonical abjects of the finite set type f set(A) are:

the empty set , 0,

and the non empty sets : x • y

(• denoting the set insertion) provided that x is an element of type A and y,

a set of type A f set.

It is now necessary to prescribe under what conditions two canonical abjects

are equal:

1. 0 and 0 are equal canonical abjects off set(A).

CHAPTER 5. REPRESENTATION OF THE FINITE SET THEORY 31

2. a• s and b • t are equal canonical abjects of fset(A) provided a= b in A and

s = t in f set(A).

3. a• s and a• a• s are equal canonical abjects of fset(A) provided a in A and

s in f set(A).

4. a• b • s and b •a• s are equal canonical abjects of fset(A) provided a in A,

b in A and s in f set(A).

We showed above how to form canonical abjects of f set(A), and when two

abjects are equal. See [Chisholm] for a complete listing of the formal rules of the

type and their justifications.

5.3 Building the finite set type as an abstraction

of the existing types

In this section our aim will be to build our theory on the top of the existing ones.

We used the built in types and types constructors of Oyster as well as the definition

mechanism to create a level of abstraction in the language that will allow us to

speak in the terms of the finite set theory.

The abstraction is achieved by linking the specific vocabulary of the finite set

theory language with definitions in term of the built-in types and type constructors.

The verification of the finite set theory axioms will then allow us to state if the

built representation is a representation of the finite sets theory.

It is worthwhile to note that even in the case of adding a new basic type, it is

necessary to make a choice of representation. But the choice does not take place

at the same level of abstraction. In the case of a new basic type, we need to decide

on a Prolog representation of the new structure (Prolog, since Oyster is written

CHAPTER 5. REPRESENTATION OF THE FINITE SET THEORY 32

in Prolog), while in this case we need to set up the theory on the higher level of

abstraction offered by Oyster / Clam.

There is a large choice of possible representations to build finite set theory

within the type theory. In related works, lists without redundancy and strictly

ordered lists are used. But it is also possible to imagine a representation based on

simple lists without any other restriction.

The characteristic of the representation that will allow us to decide which one

seems to be the most appropriate, is how will be expressed the equality between

two finite sets so that the rules for reasoning about equality (the general equality

rule, the rewrite rule, introduction rules for equality of non canonical members)

can be applied to it.

The first thing to decide is either if we want to keep one of the basic equalities

or if want to define a new one. To keep one of the basic equalities means to choose

a representation such that the equality between two sets has the same truth values

as the equality between the underlying type used to define the finite set type. On

the other hand define a new equality means the use of quotient types.

Let see what are the consequences of that choice. At the first glance, it seems

to be more comfortable to use quotient types and so be able to use the most

natural way to formulate the equality between two sets. We mean that two sets

are equal if and only if they have the same members. Moreover this should allow

a considerable latitude in the choice of the representation. The definition :

fset(T) <==> T list///[x,y,(Ve: T; (e Ex --t e E y)/\ (e E y --t e Ex))]

represents the finite sets by list without any restriction and defined the equality

as explained above. But this mechanism is, in fact, not as easy of use as it seems.

lndeed the use of a quotient type to define finite sets will oblige us, each time we

want to define a fonction on them, to show that the operation respects the new

CHAPTER 5. REPRESENTATION OF THE FINITE SET THEORY 33

equality relation. If we have the quotient type :

A///[x, y, E],

in order to define a fonction :

f : A/// [X' y' E] ~ B

one must show that the operation respects E, that is, E(x, y) implies f (x) =
f(y) in B.

The alternative to the use of a quotient type is to keep a basic equality. ln that

case, the choice is confined to the representation of the finite sets by strictly ordered

lists without redundancy. Indeed it is necessary that each set has one and only one

list representation. For instance the representation of the finite sets by ordered

lists with redundancy is unsuitable : the sequent 1 • 2 • 3 • nil = l • 2 • 2 • 3 • nil

is clearly false in term of lists even if both lists stands for the same set {1, 2, 3}.

So only the representation of finite sets by strictly ordered lists answers the

purpose that two sets are equal if and only if the lists they hide are also equal. But

such a representation must also exist for all the sets, i.e. we need to find distinct

ordered list to represent each set. This implies that for all the types of elements

on which we want to build sets, we can define a strict order. Is this possible ?

A negative answer would mean that the representation is too restrictive and only

characterize a part of the finite sets theory. Happily this is not the case since

whatever the type of the element is, the lexicographie order on the representation

of the elements will provide the relation we are looking for (given the finiteness of

the represen tation).

We will adopt this last representation to develop our theory. The price to pay

will be a heaviness in the representation .

CHAPTER 5. REPRESENTATION OF THE FINITE SET THEORY 34

5.4 The language of the flnite set theory

In order to forma type whose objects are finite sets, we require a type from which

the members of the sets are drawn. But since we chose to represent the finite sets

by strictly ordered lists without redundancy, this type from which the members

are drawn must be defined with such a relation. Remember that a strict order is

a relation, --<, satisfying the following properties :

irreflexivity: Vx; ,x --< x

transitivity: Vx \/y Vz; (x --< y) /\ (y --< z) -+ (x --< z)

And if we add that the order must be total, we obtain the definition of the

type with its relation :

ordered_type <==> t: u(l) /\

:3 r : t -+ t -+ u(l) /\

V x,y E t; r(x,y) V r(y,x) V x =y/\

Vx,y,z Et; r(x,y) /\ r(y,z)-+ r(x,z)/\

V x E t; ,r(x,x)

This definition is made up of three components : a type, t, belonging to the

first universe, then a relation on the members of that type and the properties of

the relation so that it is a strictly order on the elements of t. All the sets we will

deal with, must have their members drawn from such a type accompanied by a

strictly ordered relation.

Now we can define the type of the elements from which we will draw the

members of our sets. Since the logical conjunction corresponds to the cartesian

product in Type Theory, members of ordered_type will be ordered pairs. The type

of the members of the finite set will thus be the first component of a t of type

ordered_type.

CHAPTER 5. REPRESENTATION OF THE FINITE SET THEORY 35

elem(t) <==> spread(t, [a,-, a])

where _ is equivalent to the Prolog anonymous variable.

The type of the fini te sets on the type elem(t), will be a subset of the lists

of elem(t), the strictly ordered lists. That property of the lists, we mean to be

strictly ordered is verified by means of a theorem 'is_ordered' so that we obtain

the definition using the subset constructor :

fset(t) <==> {s: elem(t) list 1 ((term of is_ordered) of t) of s}

The figures 5.2 and 5.3 show the definitions that make up the language. In

order to simplify the notation, from now on we will omit when unnecessary the

reference type and use a more common notation. Thus we will write a U b instead

of set-union(t,a,b), a n b instead of set inter(t,a,b), and so on using the classical

notations of the set theory.

To define the concepts we quite often employed the definition mechanism ex

plain in 3.6. For instance, we define the union of two sets by :

A U B <==> term-of def _union

where deLunion is a theorem whose statement is :

A: f set -+ B: f set -+ fset

This statement does not contain much information. It only tells us that the

union is a fonction that, given two sets, gives another set. The works consists of

building the proof that produces the witness corresponding to the union of A and

B.

So all the computational information will corne from the proof construction.

The figure 5.1 shows the complete proof of the theorem deLunion.

We will use different proofs of the same theorem, giving different witness to

define fonctions that have the same origin and target domains, like the sets inter

section, diff erence and so on.

CHAPTER 5. REPRESENTATION OF THE FINITE SET THEORY 36

x f set

y f set

1- f set

1. 1- f set

by elim(x)

by intro(y)

1- y in f set by intro

2. vl : fset

e : elem

1- f set

1- true

by intro(e • vl)

1- eevlinfset

ext lisLind(x, Tb, [U, V, W, Tu])

ext y

ext e • vl

Figure 5.1: proof of deLunion

CHAPTER 5. REPRESENTATION OF THE FINITE SET THEORY 37

• ordered_type <==> t: u(l) /\

r : t ~ t ~ u(l) /\

\;/ x,y E t; r(x,y) V r(y,x) V x =y/\

\;/ x,y,z E t; r(x,y) /\ r(y,z) ~ r(x,z) /\

\;/ x E t; ,r(x,x)

• elem(t) <==> spread(t, [a,-, a])

• fset(t) <==> {s: elem(t) list I term of is_ordered of t of s}

• emptyset <==> nil

• a• s :

seLinsert(t, a, s) <==> term_of(def _insertion)of t of a of s

Figure 5.2: basic definitions of the finite set theory

CHAPTER 5. REPRESENTATION OF THE FINITE SET THEORY 38

• choose(s) <==> lisLind(s,void,[x,-,-,x])

• rest(s) <==> lisLind(s,nil,[-,x,-,x])

• card(s) <==> lisLind(s,O,[-,-,v,v+l])

• a - s

seLdelete(t,a,s) <==> term_of(def _deletion)of t of a of s

• sl U s2 :

seLunion(t, sl, s2) <==> term_of(def _union)of t of sl of s2

• sl n s2 :

seLinter(t, sl, s2) <==> term_of(def _intersection)of t of sl of s2

• sl \ s2 :

seLdif(t, sl, s2) <==> term_of(def _dif f erence)of t of sl of s2

• sl C s2 :

seLinclude(t, sl, s2) <==> term_of(def _inclusion)of t of sl of s2

Figure 5.3: other fonctions over the finite sets

Chapter 6

The power set as a Boolean

algebra

6.1 Introduction

In the previous chapter we discussed a formalism for reasoning about finite set

theory. What we want now to do, is to apply the proof plan approach for inductive

proofs of finite sets properties. With this aim in view, we make the development

of the theory culminate in a proof that the partially ordered set < PS(X), Ç >,

where P S(...) stands for the power set, for all non empty finite sets X, is a Boolean

algebra where the maximum element is the set X, the minimum element is the

empty set 0 and complementation corresponds to set theoretic complementation.

What we will try to do is use a systematic approach giving Clam a library of

theorems needed to prove the Boolean algebra properties of< PS(X), Ç>. An

interesting point of our work will be our attempt to foresee the needs for proving

a whole class of theorems.

This point is crucial in the development of Clam, since in case of success it

will be possible to draw the first lines of a methodology of the development of

39

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 40

theories more systematic than the extension of the libraries incremently, theorem

by theorem.

But firstly we will introduce the notion of Boolean algebra and the theorems

that will make up our objective.

6.2 What is a Boolean algebra ?

In this section we will briefly introduce Boolean algebras. The point is the presen

tation of the problem, i.e. the theorems we want Clam to prove. For a complete

discussion about that topic, we refer to [Bell & Slomson, 69].

We define a Boolean algebra as follow. A Boolean algebra (:J is an algebraic

structure, say (:J = < B, V,/\,,, 0, 1 > satisfying the propositions :

• Vx,y E B·
'

X V y y V X

X /\ y y /\ X

• Vx,y,z E B;

X V (y V z) (x V y) V z

X /\ (y /\ z) - (x /\ y) /\ z

• Vx,y E B·
'

(x V y) /\ y) y

(x /\ y) V y) y

• Vx E B·
'

X V •X - 1

X /\ ,x 0

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA

• Vx,y,z E B;

(x V y) /\ z - (x /\ z) V (y /\ z)

(x /\ y) V z (x V z) /\ (y V z)

41

Applying the theoretical definition to the power set, we obtain the algebraic

structure :

< PS(s),u,n,.,0,s > where sis a non empty set and, is the set theoretic

complementation with respect to s. It is a Boolean algebra only if we can prove

the properties :

• Vx,y E PS(s);

X LJ y y LJ X 1.1

X n y y n X 1.2

• Vx,y,z E PS(s);

X LJ (y u z) (x u y) u z 2.1

X n (y n z) (x n y) n z 2.2

• Vx,y E PS(s);

(x u y) n y) y 3.1

(x n y) u y) y 3.2

• Vx E PS(s);

X LJ •X s 4.1

X n ,x - 0 4.2

• Vx,y,z E PS(s);

(x u y) n z (x n z) u (y n z) 5.1

(x n y) u z (x u z) n (y u z) 5.2

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 42

Those ten properties will make up the set of theorems of which we want Clam

to find a proof. However for reasons of simplification in the representation, we will

generalise those properties.

Properties 1.1 and 1.2 are in fact particularisation of the commutativi ty of

the set's union and intersection while properties 2.1 and 2.2 are particularisation

of the associativity of those operations on the sets. So we will prove them in the

most general case without burden oneself with extra hypothesis the same reasoning

holds for the four properties 3.1, 3.2, 5.1 and 5.2.

For the set complementation, we also simplify both properties by firstly re

placing the complement of x by the difference : s / x (by applying the definition of

complementation). Then keeping only one extra hypothesis, that x is a subset of

s. So 4.1 and 4.2 become :

Vs,x E fset;

xCs-+xU(s\x)

xcs-+xn(s\x)

s

0

4.1'

4.2'

6.3 An induction principle over the finite sets

The section What is a Boolean algebra ? outlined some theorems, properties of the

finite sets. We want now Clam to construct proof plans to proof those theorems.

The proof we want Clam to construct are proof by induction following the proof

strategy explained in 3.4 A utomatization of proofs by induction. With this aim in

view, we will try in this section and in the next one to provide the system with

the tools it needs to build those proof plans.

First of all of course, we must provide Clam with an induction schema for the

finite sets. To ensure the soundness of this new schema, the theorem justifying

the scheme has to be proved. We build this proof interactively in Oyster. So we

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA

first proved the theorem :

V</> : (!set ~ u(l)),

</>(0),

Vs : f set, Ve : elem, </>(s) ~ </>(e • s);

~ V t : f set; </>(t)

43

To make Clam able to deal with that new induction schema, we need now to

write a method describing that schema.

This method is shown in the figure 6.1. This is written in the method language

and needs some explanations.

The description of an induction schema is given in occurrences of the predicate

scheme/5 . The first argument is the schema name, seLinsert (T ,A, X), the

second is the variable to induce on,Var:fset.

The schema maps the sequent H==>G into a list of base cases [HBase==>GB]

and a list of step cases [[A:elem,X:fset,H1:IndHyp IHBase]==>GS] that will be

produced by induction on Var .

6.4 Rippling out the wave fronts

The application of the induction schema will makes appear wave fronts in the

induction conclusion.

Recursion analysis will then looks for wave rules able to ripple out those wave

fronts as previously explained (cfr 4.4).

Most of the wave fronts generated will have one of the forms :

Given s 1 and s 2 of type f set and e of type elem,

[0si[2J~s2
or

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA

scherne(set_insert(T,A,X),

Var:fset,

H==>G,

[HBase==>GB] ,

[[A:elern,X:fset,H1:IndHyplHBase]==>GS]) ·-

add_to_hyp(Var:fset,H,HBase),

rnatrix(Vs,Grn,G), append(Vs,HBase,VsHBase),

free([A,X,H1],VsHBase),

del_elernent(Var:fset,Vs,OVs),

wave_fronts(set_insert(T,A,X),[[J-[[3]]] ,Stepîerrn),

replace_all(Var,ernptyset,Grn,GB1),

rnatrix(OVs,GB1,GB),

replace_all(Var,X,Grn,IndHyp1),

rnatrix(OVs,IndHyp1,IndHyp),

replace_all(Var,StepTerrn,Grn,GS1),

rnatrix(0Vs,GS1,GS).

Figure 6.1: scheme/5 for the set induction

44

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 45

where ~ stands for a fonctions over sets, thus U, n, \, ...

So we will now check those fonctions, trying in each case to find wave rules

able to deal with such wave fronts.

As previously explained, the wave rules maybe step formula of a recursive

definition or theorems having the right form recognized by the system.

In the explanation of the definition mechanism in section 3.6 we did not speak

about recursive definitions. In fact what was described there is only how to make

correspond a new syntactic form to a sequent in type theory.

The recursive definitions are made by giving the base and step formulae of the

definitions as theorems (independently of the syntactic definition given as explain

in 3.6). Clam contains a mechanism of recognition that help it to identify recursive

definitions.

For instance to give a recursive definition of the set union we just need to

provide Clam with both theorems :

Vx : f set;

l-0Ux-x

and

Vx,y : fset,

Ve : elem;

1-~xŒ]uy =0 U yŒJ

As for the induction schema, to preserve the soundness of the system the

theorems justifying the recursive definitions and the other wave rules have to be

prove. In fact we first prove the theorem and then , when loading it in the system,

Clam recognize it as a wave rule.

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 46

The following subsections will checked the different fonctions on sets we are

concerned with in ordered to provide recursive definitions and other wave rules

that can be guessed if we assume an induction on their arguments.

6.4.1 Set union

A recursive definition of union is obtained by means of the theorems :

Vx : fset;

f- 0 LJ X

and

Vx,y : f set,

Ve : elem;

X

An induction over the first argument suggests the wave rule :

Vx,y : fset,

Ve : elem;

f- [B xŒ]u y = 8 x u y ŒJ

6.1

6.2

But this corresponds to the step formula of the recursive definition, so we do

not need to add it. While an induction over the second argument suggests the

wave rule:

Vx,y : fset,

Ve : elem;

f- X LJ [By ŒJ=E] X LJ yŒJ 6.3

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 47

6.4.2 Set intersection

In this case we need an extension of the original wave rules, the conditional wave

rules as we described them in section 4.4. Also the steps formulae of the recursive

definition will make up a complementary set of conditional wave rules.

So the recursive definition of the set 's intersection will be made up of the three

theorems:

Vx : f set:

f- 0 n X

Vx,y : f set,

Ve : elem;

0

f- e E y ~ 1 (e• 1 x[I n y = B x n y []

Vx,y : f set,

Ve : elem;

f- , e E y ~ 1 (e• 1 x[I n y = [l x n y[!

7.1

7.2

7.3

Again the step formulae of the recursive definition, give the wave rules sug

gested by an induction over the first argument. Another couple of wave rules are

necessary to deal with an induction over the second argument :

Vx,y : fset,

Ve : elem;

f- e E x ~ xn ~ yŒ] = B x n yŒ]

Vx,y : f set,

Ve : elem;

f- , e Ex ~ xn ~ yŒ] = [] x n y Œ]

7.4

7.5

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 48

6.4.3 Set difference

Again we need conditional wave rules to recursively define the notion of set's

difference The recursive definition of the set's difference will be made up of the

three theorems :

Vx : f set;

f- 0 \ X

Vx,y : fset,

Ve : elem;

Vx,y : fset,

Ve : elem;

0 8.1

8.2

f- -, e E y -+ ~ X w \ y = 8 X \ y w 8.3

Again the step formulae of the recursive definition, give the wave rules sug

gested by an induction over the first argument. Another couple of wave rules are

necessary to deal with an induction over the second argument :

Vx,y : fset,

Ve : elem;

f-- e Ex -+ x\ ~ yŒJ = 1 e - (1 x \ Y ŒJ

Vx, y : f set,

Ve : elem;

f- ,e E X -+ X \ (e • y) (x \ y)

8.4

8.5

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 49

6.5 Analysis of the results

By means of the induction schema and the wave rules introduced in the previous

sections we directly obtain Clam to prove the theorems : 1.1, 1.2, 2.1, 4.2' and

5.1. An explanation of the proof plan obtained for theorem 1.1 is given here after.

The reader will find the other proof plans generated by Clam in the appendix A.

6.5.1 Explanation of a plan generated by Clam

The first theorem we wanted to proof was the commutativity of the set's union (

theorem 1.1) :

Vx,y E f set;

X LJ y y LJ X 1.1

The figure 6.2 shows the proof plan found by Clam for this theorem. The figure

6.3 is an outline of the proof conjecture.

Formulae are sequent of the form H 1- G, where 1- separates the list of

hypothesis, H, from the goal G. The first sequent is the statement of the theorem

to be prove.

The (sub)methods selected to rewrite the goal are indicated in parenthesis .

Only newly introduced hypothesis are written in successive sequent; so each new

goal is inheriting all the hypothesis of the parents goals in the proof.

Ind...straLI (for induction strategy,) is a super-method for guiding almost the

whole of the proof. It is defined by combining the submethods induction, base

,ripple _out and fertilize. Ripple_out itself is a super-methods which is responsible

for the repeated application of wave rules to ripple out the wave fronts to the

outermost position.

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA

ind_strat_I(set_insert(t,v0,v1),x:fset(t)) then

[ind_strat_I(set_insert(t,v0,v1),y:fset(t)) then

[tautology(...),

tautology(...)

J '
tautology(...)

J

Figure 6.2: Proof plan for the theorem 1.1

50

The ind..straLI method applies the heuristic of recursion analyses to select

the induction schema and then to ripple out the wave fronts. The proof of the

commutativity of set's union is obtained by induction on x. A second induction,

on y, is necessary to proof the base case while the proof of the step case is obtained

by rippling out the wave fronts with the help of the wave rules.

6.6 Analysis of the failures

This section is dedicated to the explanation of the proof 2.2. We will show how it

is possible to provide Clam with more tools that will help it to solve the problems

it reaches when trying to prove some of the theorems.

The global vision of the theory allows to find properties useful in the search of

proofs but often theorems need hints that can not be deduced from that approach.

That is why at the end it is still necessary to look each case and find what we have

to add to finally obtain the proof.

Why did Clam fail in the search for a proof of the set's intersection associativ

ity ? The theorem to prove is :

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 51

Vx f set,

Vy f set;

f- X LJ y = y LJ X (by induction on x)

1. f- 0 u y = y u 0 (by base)

f- y = y u 0 (by induction)

1.1 f- 0 = 0 u 0 (by base)

f- 0 = 0 (by tautology)

f- true

1.2. y = y u 0,

e : elem,

f- e•y e • y U 0 (by wave)

f- e•y e • (y U 0) (byf ertilize)

f- e•y e•y (by tautology)

f- true

2. X LJ y = y u x,

e elem,

f- e • X LJ y = y LJ e • X (by 2 * wave)

f- e• (x u y) e• (y u x) (by f ertilize)

f- e• (x u y) - e• (x u y) (by tautology)

f- true

Figure 6.3: Proof of the theorem 1.1

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 52

Vx,y,z E PS(s);

x n (y n z) = (x n y) n z

An induction on x will generate two subgoals :

1. 1- 0 n (y n z) (0 n y) n z

2. x n (y n z) (x n y) n z,

e : elem,

f- e • X n (y n Z) (e•x n y) n z

The first subgoal will easily be proved using the base formula of the recursive

definition of the set 's associativity. In its attempts to prove the second subgoal,

Clam will try to apply wave rules to ripple out the wave fronts. Since the wave

rules applicable are conditionals, the system <livides the proof into two cases cor

responding to the condition and its negation. Soto apply the wave rules 7.4 and

7.5 to the left-hand sicle of the goal, the proof is <livide into two subparts one cor

responding to the hypothesis : e E (y n z) and the other one to the hypothesis

-, e E (y n z). After that split, the wave rules 7.4 and 7.5 may be applied giving

respectively the goals :

2.1. e E (y n z),

f- e • (X n (y n Z))

2.2 -, e E (y n z)

(e•x n y) n z

1- x n (y n z) = (e • x n y) n z

The same reasoning is now applied to ripple out the wave fronts in the right

hand sicle of the goals. It will generate the goals :

2.1.1 e E y,

1- e • (x n (y n z) - e • (x n y) n z

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 53

2.1.2 ,e E y,

f- e. (x n (y n z) (x n y) n z

2.2.1 e E y,

f-- x n (y n z) e • (x n y) n z

2.2.2 ,e E y,

f-- x n (y n z) = (x n y) n z

The goal 2.2.2 is now readily proved using the induction hypothesis. The goal

2.1.2 does not contain any wave front that could be ripple out : in the left hand

sicle, the wave front is in the outermost position while there is no more wave front

in the right hand sicle. But in the goals 2.1.1 and 2.2.1, the left hand sicle still

contains wave fronts that can be ripple out. So once again those goals will be

<livide in two subgoals :

2.1.1.1 e E z,

f- e•(x n (y n z) e•((x n y) n z)

2.1.1.2 ,e E z,

f- e • (x n (y n z) (x n y) n z

2.2.1.1 e E z,

f-- X n (y n z) e • ((x n y) n z)

2.2.1.2 ,e E z,

f-- x n (y n z) (x n y) n z

CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 54

There is no difficulty to end the proofs of 2.1.1.1 and 2.2.1.2 using the induction

hypothesis. Three goals are still not completely proved: 2.1.2, 2.1.1.2 and 2.2.1.1.

But those three goals could be easily be proved by exploiting the contradiction in

their hypothesis (the reader will remember that the hypothesis are inherited from

the parents goals). To show those contradictions here are the goals with the list

of the hypothesis in question.

2.1.2 e E (y n z),

-, e E y,

1- e • (x n (y n z))

2.1.1.2 e E (y n z),

,e E z,

(x n y) n z

1- e•(x n (y n z)) (x n y) n z

2.2.1.1 -, e E (y n z), e E y,

e E z,

1- x n (y n z) = e • ((x n y) n z)

This is what mis Clam to finish the proof of the set's intersection associativ

ity. To make Clam able to exploit those contradiction, we created a terminating

method handling the hypothesis to end the proof. The soundness of the method

is warrant after the proof of the theorem :

Vx,y : fset,

Ve : elem;

1- e E (x n y) <==>(e E x)/\(e E y)

With the help of this method for handling the contradiction in the hypothesis

list, there is no more obstacle for Clam to fi.nd the proof.

Chapter 7

Conclusion

In this work I tried to exploit the possibilities offered by Oyster/Clam system

to develop new theories and generate proofs of theorems about those theories. I

especially devoted my work to the application of the proof-plan methodology to

inductive proofs, using recursion analysis. The two last chapters show encouraging

results : given the induction schema over the sets and a set of wave rules, we obtain

proof-plans leading to the complete proof of the theorems. This observation shows

the efficiency of recursion analysis to catch the main structure of an inductive

proof.

But those results were not obtained effortless. The use of the definition mech

anism instead of developing a new basic type is heavy when we need to work on

such defined terms. A comfortable notation often hides a complex structure. A

good extension to this work should be the development of the finite set theory

using a new basic type.

A great part of the difficulty was in the proofs of the wave rules and the

induction principle. This raises the question if the main part of the proofs is clone

by Clam when it assembles those theorems together or, on the contrary, if the

main partis already clone when those theorems are proved (... by the user). In the

55

CHAPTER 7. CONCLUSION 56

second alternative, the advantage of Clam should be to avoid the user to have to

rewrite the same part of proof each time he needs it but the "intelligence" of the

system should be feeble. I will not answer this question, indeed I consider I don't

have the knowledge the give a sensible solution.

Appendix A

Proof plans generated by Clam

57

APPENDIX A. PROOF PLANS GENERATED BY CLAM

ind_strat_I(set_insert(t,v0,v1),s1:fset(t)) then

[ind_strat_I(set_insert(t,v0,v1),s2:fset(t)) then

[tautology(...),

tautology (...)

] '
tautology(...)

]

Figure A.l: Proof plan for the theorem 1.1

induction(set_insert(t,v0,v1),s1:fset(t)) then

[sym_eval([.]) then

ind_strat_I(set_insert(t,v0,v1),s2:fset(t)) then

]

[tautology(...),

tautology (...)

] '
casesplit([member(t,v0,s2)=>void,member(t,v0,s2)]) then

[wave([1,1], [set_inter3,left]) then

]

wave([2,1] ,[set_inter6,left]) then

strong_fertilize(v2),

wave([1,1] ,[set_inter2,left]) then

wave([2,1] ,[set_inter5,left]) then

weak_fertilize(right,[.]) then

tautology (...)

Figure A.2: Proof plan for the theorem 1.2

58

APPENDIX A. PROOF PLANS GENERATED BY CLAM

ind_strat_I(set_insert(t,v0,v1),s1:fset(t)) then

[tautology(...),

tautology (...)

J

Figure A.3: Proof plan for the theorem 2.1

induction(set_insert(t,v0,v1),s:fset(t)) then

[sym_eval([..]) then

J

tautology(...),

casesplit([member(t,v0,s1)=>void,member(t,v0,s1)]) then

[wave([2,1,1],[set_dif2,left]) then

J

wave([1,1] ,[set_inter3,left]) then

strong_fertilize(v2),

wave([2,1,1] ,[set_dif3,left]) then

strong_fertilize(v2)

Figure A.4: Proof plan for the theorem 4.2'

59

APPENDIX A. PROOF PLANS GENERATED BY CLAM

ind_strat_I(set_insert(t,v0,v1),s1:fset(t)) then

[tautology (...) ,

casesplit([member(t,v0,s3)=>void,member(t,v0,s3)]) then

[wave([1,1] ,[set_inter3,left]) then

wave([2,2,1],[set_inter3,left]) then

strong_fertilize(v2),

J

J

wave([1,1] ,[set_inter2,left]) then

wave([2,2,1],[set_inter2,left]) then

wave([2,1] ,[set_union2,left]) then

weak_fertilize(right,[.J) then

tautology(...)

Figure A.5: Proof plan for the theorem 5.1

60

Bibliography

[D. Basin 90]

[Bell & Slomson, 69]

[Boyer & Moore 79]

[Bundy 88]

[Bundy et al 89a]

[Bundy et al 89b]

D. Basin. Building Problem Solving Environments In

Constructive Type Theory. PhD thesis, Cornell Univer

sity, 1990.

J.-1. Bell & A.B. Slomson . Models and Ultraproduct

s : An introduction. North-Rolland American Elsevi

er,1969.

R.S. Boyer and J.S. Moore.A computational Logic. A

cademic Press, 1979. ACM monograph series.

A. Bundy. The use of explicit plans to guide induc

tive proofs. In 9th Conference on A utomated Deduction,

pages 110-120, Springer Verlag, 1988. Longer version

available as DAI Research Paper No.349 .

A. Bundy, F. van Harmelen and A. Smaill. Extensions

to the Rippling-out Tactic for Guiding Inductive Proof

s. Research paper 459, Dept. of Artificial Intelligence,

Edinburgh, 1989. Submitted to CADElO.

A. Bundy, F. van Harmelen, J. Hesketh and A. Smaill.

Experiments with proof plans for induction. In Journal

61

BIBLIOGRAPHY

[Chisholm]

[Constable et al. 86]

[van Harmelen 89]

[Horn 88]

62

of A utomated Reasoning, 1989. Earlier version available

from Edinburgh as Research paper n° 413.

Paul Chisholm.A theory of finite Sets in Constructive

Type Theory. Department of computer Science, Heriot

Watt University, Edinburgh.

Robert L. Constable et al. Implementing M athematic

s with the Nuprl Proof Development System. Prentice

Hall, 1986.

F. van Harmelen. The Clam Proof Planner, User Man

ual and Programmer Manual. Technical paper TP-4,

Dept. of Artificial Intelligence, Edinburgh, 1989.

C. Horn. The Nurprl Proof Development System. Work

ing paper 214, Dept. of Artificial Intelligence, Edin

burgh, 1988. The Edinburgh version of Nurprl has been

renamed Oyster.

[Manna & Waldinger, 85] Zohar Manna & Richard Waldinger. The logical basis

for computer programming. Addison-Weslay publishing

company, 1985.

[Martin-lof 79]

[Martin-lof 73]

Per Martin- lof. Constructive mathematics and com

puter programming. In 6th International Congress for

Logic, M ethodology and Philosophy of Science, pages

153-175, Hannover, August 1979. Published by North

Rolland, Amsterdam. 1982.

Per Martin- lof. An intuitionistic theory of types: pred

icative part. In Logic Colloquium 73, H.E. Rose and J.

BIBLIOGRAPHY

[Stevens 88]

63

C. Shepherdson, eds.North Rolland, Amsterdam. 1973,

pages 73-118.

Andrew Stevens. A rational recon.struction of Boyer and

Moore '.s technique for con.structing induction formula.s.

Research paper 360, Dept. of Artificial Intelligence, Ed

inburgh, 1989. Submitted to ECAI-88 CADE9.

