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Abstract 

English 

Oyster/Clam is an automated theorem prover based on Martin-Lof's construc

tive theory of types. Recent work has centred round the notion of proof plan to 

guide the search for proofs. Experiments with proof plans for finding proofs by 

induction, using heuristics adapted from the work of Boyer and Moore, have shown 

encouraging results. 

This work apply this approach to the data structure of fini te sets. A systematic 

approach is taken to building up the machinery needed to use such a theory, in 

the form of suitable tactics and a library of theorem. 

Français 

Oyster/Clam est un démonstrateur automatique de théorèmes basé sur la 

théorie constructive des types développée par Martin-Lof'. Les travaux récents 

ont été effectués autour de la notion de plan de preuve pour guider la recherche de 

démonstrations. Les expérimentations avec les plans de preuves dans la recherche 

de démonstrations par induction en utilisant une heuristique adaptée des travaux 

de Boyer et Moore ont donné des résultats encourageants. 

Ce travail applique cette approche à la structure de donnée des ensembles finis. 

Une approche systématique est prise pour fournir les mécanismes nécessaires à 

l'emploi d'une telle théorie sous forme de tactiques appropriées et d'une librairie 

de théorèmes. 
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Chapter 1 

Introduction 

Since the advent of Artificial Intelligence, huge efforts have been clone for the 

automatization of mathematical verification. Lot of systems exists today with 

variable performance. 

Our work is based on the Oyster/Clam system, developed at the University of 

Edinburgh by Pr. Alan Bundy and the group of mathematical reasoning [Horn 88], 

[van Harmelen 89]. This system is based on Martin-Lof's constructive theory of 

types developed as a formalisation of constructive mathematics [Martin-lof 79], 

[Martin-lof 73] . 

The first chapter will introduce intuitionistic theory of types which was orig

inally developed as a symbolism for the codification of constructive mathematics 

but which may be viewed also as a programming language. 

The second chapter describes the Oyster proof checker. Oyster is an interactive 

proof editor closely based on the Nuprl system [Constable et al. 86]. Proofs are 

constructed in a top-clown fashion by application of the rules of inference. The 

object-level logic is a version of Martin-Lëf's type theory while Prolog provides 

a language to write tactics. Since the object-level logic is constructive, terms of 

an enlarged ..\-calculus can be computed from complete proofs, and these so-called 
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extract terms can then be executed by application on appropriate inputs. 

Clam is a meta-level system built on top of Oyster in an attempt of turning 

the interactive proof editor into a fully automatic theorem proving system. To 

guide the search of proof, Oyster tactics are specified into methods. Methods are 

specifications in term of pre- and post-conditions. Giving a theorem, a search is 

clone at the meta-level using the methods for finding the tactics that should make 

up the proof. The result of that search is a tree of methods called proof-plan. 

The next chapters, refl.ect my work amid the mathematical reasoning group. 

The project consists to apply the approach of proof-plans to the data structure of 

finite sets using a systematic approach to build the machinery needed to use such 

a theory in the form of suitable tactics and a library of theorems. 

After a discussion about the representation we will give to the finite sets, we 

make the development of the theory culminate in proving the theorems needed to 

show that the power set with the inclusion relation makes up a Boolean algebra. 

We will try to give the first lines of a methodology for systematically providing 

the system the tools it needs to generate the proofs of theorems. 



Chapter 2 

The type theory 

2.1 Introduction 

This chapter is intended to give an overview of constructive type theory based on 

typed ,\-calculus. 

The elernents of the theory are types and the members of those types. A type is 

a collection of objects having similar structure. Henceforth in this chapter we will 

use capital letters to design a type and lower case letters to design the members. 

The proof of a theorem in constructive logic will implicitly give the way to 

construct an inhabitant of the corresponding type. We will show that this feature 

allows to interpret the constructive logic as a high-level programming language. 

The basic abjects are called terms, they are built using variables and opera

tors. The terms of the type theory underlying Oyster are those of the À-calculus 

( variables, abstractions and applications) and terms generated by extensions of 

the typed ,\-calculus ( type constructors, data constructors, constants, primitive 

recursion, list recursion and arithmetic fonctions). 

In our presentation, we assume that the reader is familiar with common syntac

tic notions such as substitution and variable-binding. We denote the simultaneous 

3 



CHAPTER 2. THE TYPE THEORY 4 

substitutions of the terms t; for the free occurrences of the variable x; in s by the 

term: 

2.2 Types 

A type is defined by designing a constant as type, and choosing a notation for its 

elements. These are the canonical expressions that are the canonical members of 

the type. The members of a type are the terms that have as value the canonical 

members of the type. To complete the definition of a type an equivalence relation 

on its members called the equality in that type is associated to the type. This 

equality is a three place relation : t = s in T. 

There is also an equivalence relation, T = S, on types called type equality and 

it is defined as follow : two types are equal if and only if they evaluate to equal 

canonical types. 

Here· are introduced the types of the theory. We use typewri ter font to signify 

actual Oyster syntax. The types are listed with their canonical and non canonical 

constants. 

The type theory underlying the Oyster system has the following basic types : 

• atom as in Prolog or Lisp, its canonical members are the denumerably many 

character strings written atom(' ... ') ; 

• pnat providing the natural numbers with Peano arithmetic. The canoni

cal elements are O and terms of the form s ( ... ) where s is the successor 

fonction on natural members. Finally we define the non canonical constant 

p_ind(x,a, [u,v,t]) where xis of type pnat, a and tare terms of type T 

and u,v are free variables in t, by the computation rules : 

p_ind(O, a, [u, v, t]) = a 
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p_ind( s(x ), a, [u, v, t]) = t[x ,p_ind( x, a, [u, v, t])/u, v] 

• void is an empty type, i.e. there are no members of void; 

• int is the type of integers. The canonical members are the integers in the 

common sense (.. . -2, -1, 0, 1, 2, ... ) There are non canonical con

structors for integers : the usual arithmetic operations. 

Oyster also embodies the following derived type concepts and set constructors; 

considering A and B as types: 

• A list is a type 

- its members are the empty list nil and non empty lists x: : y constructed 

from an element x of type A and a list y of type A list. The non canonical 

constant'list_ind(x,y,[u,v,w,z]), where xis of type A list, y and z of 

type T and u,v,w are free variables in z, is defined by the computation rules : 

lisLind(nil, y, [u, v, w, z]) = y 

lisLind(a :: b, y, [u, v, w, z]) = z[a, b, lisLind(b, y, [u, v, w, z])/u, v, w] 

• A # Bis a type 

- the cartesian product of types A and B has as members the ordered pairs 

a&b where ais of type A and b of type B. We defined the non canonical 

constant spread (s, [u, v, t]) where s is of type A # B, t is of type T and 

u,v are free variables in t, by means of the computation rule : 

spread( a&b, [u, v, t]) = t[a, b/u, v] 

• A \ B is a type 

- the disjoint union of types A and B. Its members have the form inl (a) 

where ais in A and inr(b), where b is in B. Given an element of A \ B, it 

must be possible to decide which component it is in. The decision operator 

has the form : decide (z, [u, f] , [ v, g]) and the computation rules are : 
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decide(inl(a), [u, f], [v, g]) = f[a/u] 

decide( inr( a), [u, f], [v, g]) = g[a/v] 

• A ~ B is a type 

6 

- the fonction types. Members are .À-terms of the form lambda(x,tx)where 

x is of type A and tx of type A ~ B. The application of a fonction will be 

noted f of a where fis any element of A ~ B and ais an element of A. 

• x: A # B is a type 

- the dependent product has as members the ordered pairs a&b such that ais 

an element of A and the second component, b, is an element of type B[a/x]. 

The non canonical constant spread (s, [u, v, t]) acts as for the cartesian 

product. 

• x : A ~ B is a type 

- the dependent fonction describes fonctions whose range type depends on 

the input. Members are .À-terms of the form lambda (x, tx) but the result 

type of tx may depend on the value of x. The application of a fonction will 

be noted f of a where fis any element of x: A ~ B and ais an element 

of A. 

• { x : A \ B} is a type 

- the set type has as members all values of x in type A which satisfy B. 

Strictly speaking, members are ordered pairs a&b where ais an element of 

type A and b an element of Ba, i.e. a proof that a satisfies the proposition 

B. But the set constructor provides a mechanism for hiding information to 

simplify computation. So members of a set type { x: A \ B}, are members 

of A while the information that those members satisfy B is hidden. 

• A / / / [x, y, B] is a type 



CHAPTER 2. THE TYPE THEORY 7 

- the quotient type builds a new type from the basic type A, usmg the 

equivalence relation B over members of A. It can therefore be used to redefine 

equality in type A. 

2.3 Universes 

Types are classified in uni verses forming a hierarchy. u ( 1) is the first uni verse 

and contains all the basic types of the theory and types built using the above 

mentioned type constructors. 

In addition to the types in u(l), u(2) contains so-called large types, namely 

u(l) and types built from it such as A --4 u(l), u(l) --4 u(l), A --4 (B --4 u(l)) 

and so forth. 

The hierarchy of universes is cumulative. By cumulative we mean that the 

universe u( i) is in universe u( i + 1) and that every element of u( i) is also an 

element of u(i + 1). 

Universes are themselves types and every type occurs in a universe. In fact A 

is a type if and only if it belongs to a universe. Conversely all the elements of a 

universe are types. 

2.4 Term evaluation 

The computation system is based on a lazy evaluation procedure. The closed terms 

(this means terms without free variable) are either canonical or non canonical . 

Each canonical term has itself as value (for instance the natural numbers). The 

evaluation of non canonical terms cannot always succeed since there are terms 

which have no canonical form. When a non canonical term evaluates, it is said to 

be reducible. The evaluator successively chooses a non canonical subterm in ap

propriate form and replaces it with a term closer to canonical form. This process 
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of replacing such a term with another is called term reduction. A non canoni

cal reducible form is called a redex while the canonical term resulting from the 

evaluation is called its contractum. As example for the list recursion combinator 

lisLind, 

lisLind(x, y, [u, v, w, z]) evaluates to the value of y if x evaluates to the empty 

list, nil; 

and evaluates to z[h, t, lisLind(t, y, [u, v, w, z])/u, v, w] if x evaluates to the non 

empty list h :: t. 

2.5 Proposition as types 

What is maybe the most interesting feature of the type theory is the consideration 

of the propositions as types. This consideration can be expressed as an isomor

phism between type theory and propositional logic. Proposition correspond to 

types, proofs to lambda terms and theorems to types with inhabiting elements. In 

intuitionistic logic, a proposition is true if and only if there is an evidence for it. In 

terms of the type theory we have the notion of a type being inhabited where this is 

true if and only if the type has at least one member. Specifically, a proposition is 

a type inhabited by proofs of the proposition if it is valid, or are empty otherwise. 

There is only one canonical element in these types : axiom, the most trivial proof. 

The consideration of propositions as types enables to define higher-order logic 

by means of the correspondences spelled by figure (2.1). For example to show that 

the type A # B is inhabited one needs to find an inhabitant for the type A and 

one for the type B. Considering propositions as types this is equivalent to show 

an evidence for the proposition A and one for the proposition B so the cartesian 

products acts precisely as the conjunction A /\ B. 
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Propositions Types 

A V B AIE 

A /\ B A#B 

A ⇒ B A~ B 

:3 X E A.B X: A# B 

\:lx E A;B x:A ~ B 

a = b E A a = b in A 

Figure 2.1: propositions-as-types 



Chapter 3 

Oyster 

3.1 Introduction 

Oyster is a proof development system closely based on the Cornell Nuprl system 

[Constable et al. 86] of which it is a Prolog reimplementation. 

Oyster can be seen as the conjunction of two languages, the object language 

which is the mathematical language of the system, and the metalanguage which 

is a programming language to write proof-generating programs on assertion ex

pressed in the object language. The object language is the constructive theory 

of types based on the work of Martin-Lof outlined in the previous chapter. The 

metalanguage is Prolog as opposed to ML in the Nuprl system and it enables the 

user to formalize proof techniques in the shape of Prolog programs called Tactics. 

Oyster is a primitive kernel on which can be built other tools like a library sys

tem, a graphie interface and so on. Further more the almost unlimited complexity 

that the tactics can reach could transform the system from a simple proof checker 

into a powerful proof generator. 

Since the object level logic is constructive, a proof of a theorem in the Oyster 

system implicitly provides directions for constructing a witness of the truth of the 

10 



CHAPTER 3. OYSTER 11 

theorem. These so called extract terms can then be executed by application on 

appropriate inputs. 

Subsequently in this chapter we will describe how to formalize theorems and 

proofs in the system. ln that section our aim will be to show the working of the 

system without entering all the details of the user interface. Readers interested 

in this point will refer to the Oyster user manual [Horn 88]. Then we will explain 

the concept of extract term and how Oyster can lead to program synthesis. The 

presentation of the inference rules contained in the base rule will follow and the 

last section of the chapter will concern the tactics. 

3.2 Theorems and proofs 

ln Oyster a theorem consists of a goal statement of the form: 

H ⇒ G 

where H is a hypothesis list and G is an assertion in the object-level logic; the ⇒ 

correspond to 1- or the sequent arrow. 

We distinguish three kind of hypothesis : 

• definitions are hypothesis of the form : 

d(x, Y, ... ) <==> tx,y, ... 

where dis an arbitrary identifier; x, y, ... forma possibly empty parameter list 

and tx,y, ... is any type theoretic term with free variable x, y, .... Definitions 

can also be defined globally. The section 3.6 explains more in details the 

definition mechanism. 

• Assumptions are hypothesis of the form : 

V: T 

meaning that v is an inhabitant of type T. 
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• The last kind of hypothesis are references to theorems. Those have the form 

v:H==;,G 

or v : H ==} G ext E 

where H is a list hypothesis and G the goal of the theorem while E is the 

extract tèrm derived from that proof. v is a local name for the theorem. 

The aim of a proof is to show that the goal, G is inhabited by explicitly con

structing a member. This construction process might be characterized as stepwise 

refinement proof yielding the extract term E which is guarantied to be a member 

of G. 

A proof is a finite tree whose nodes are pairs consisting of a sequent and a 

rule name or a placeholder for a rule name. The sequent part is composed by an 

hypothesis list an a goal. The sequent part of a child is entirely determined by 

the sequent part and the rule name of the parent node. The rules specify a finite 

number of subgoals needed to achieve the proof of the goal. 

The general shape of a node is : 

sequent by rule name 

1. subsequent 1 

2. subsequent 2 

n. subsequent n 

3.3 Term extraction 

Since Oyster embodies a constructive logic, proving the truth of an assertion in 

the system is equivalent to showing that the type corresponding to the statement 
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is inhabited, and proving that a type is inhabited in a constructive setting requires 

that the user specify how an object of the type be built. 

Implicitly associated with each proof is a term whose type is specified by the 

main assertion being proved. That term can be used for synthesizing programs 

corresponding to proofs. This so called extract term is refined top-clown during 

the proof process. 

For each rule of inference there is a constructor which links together the con

structions corresponding to the arguments of the major connective, the rule in

volves. 

In any stage of the proof development it is possible to access the extract term 

of the proof constructed so far. Open subgoals of the proof, if they have any 

constructive significance, correspond to Prolog variables in the extract term. 

There is a built-in evaluator for type theoretic terms, which allows the direct 

execution of Oyster programs. The evaluation works as explained in the previ

ous chapter. It reduces gradually the non canonical terms so that they reach a 

canonical form which is the result of the evaluation. 

We can think of Oyster as being a program synthesizer since if we consider, in 

constructive type theory, a programming problem as being a list of specifications, 

then a proof that the specifications can be met defines an algorithm which solves 

the problem. In other words, programs are synthesized from their specifications 

by proving a theorem of the form: 

V Input :.lOutput; spec(Input, Output) 

where spec(lnput, Output) is a relationship between the input and the output 

of the desired program. 
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3.4 The rule base 

Each type is associated with a collection of inference rules which can be used to 

reason about the type. ln addition there is a collection of general rules concerned 

with equality and substitution which apply to all types. For each type, T, there 

are introductions and elimination rules. Essentially, Introduction rules generate 

constructor terms as extracts and elimination rules generate destructors of the 

appropriate type. 

Our purpose in this section will not be to enumerate all those rules. For that 

we refer the reader to the Oyster user manual [Horn 88]. But our objective is to 

present a classification of the rules. The only rules that we will explicitly exhibit 

are illustrations presented in the following refinement style. 

H ⇒ T ext t by rule 

H1 ⇒ T1 ext t1 

The goal refined is shown at the top and each subgoal is shown indented un

derneath. Our illustrations will be taken amid the rules concerning the list types. 

The rules are classified in two main categories : Constructors and Selectors. A 

third category Type formation is added for reasons of perspicuity although strictly 

speaking those rules should be considered as part of the constructors for universes. 

3.4.1 Constructors 

• reflnement and realisation rules : they describe the ways for straight 

forward refinement of the proof. The main result in applying such a rule 

is the refinement of the extract term of the top level goal, corresponding to 
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the refinement step connected with the rule. We distinguish refinement rules 

that produce an extract term that needs further refinements from realisation 

rules that produces a complete extract term . 

Examples: 

H ⇒ A list ext nil by intro( at( i), nil) 

⇒ A list in u(I) 

is a realisation rule since nil is a canonical member of any well formed list 

type. 

H ⇒ A list ext B :: C by intro 

⇒ A ext B 

⇒ A list ext C 

the list construction is a partial refinement over any list type. The head and 

the tail are built in the subgoals. 

• membership rules : they are applicable to goals of the form : A in T and 

give the conditions under which a canonical object may be judged to inhabit 

a canonical type. The extract term of such a proof will always be axiom 

since such a goal has no computational meaning. 

Example: 

H ⇒ B :: C in A list by intro 

⇒ B in A 

⇒ C in A list 
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The understanding of this membership rule is easy : to show that B :: C is 

of type A list, we need to show that the head is of type A and the tail of 

type A list. 

• equality rules : these rules give the conditions under which abjects having 

the same structural form may be judged to be equal. They thus applies to 

goals of the form A= B in T. 

Example: 

H ⇒ A:: B = C :: D in T list by intro 

⇒ A= C in T 

⇒ B = D in T list 

two lists are equal if they have the same head and the same tail. 

3.4.2 selectors 

• refinement and realisation rules : basically the elimination rules, they 

exploit the properties of the type of a variable in the hypothesis list for 

generating a selector construct which is able to handle the general case. The 

other rules falling in this category are the decision rules. 

Examples: 

H, X : A list, H' ⇒ T ext lisLind(X, Tb, [U, V, W, Tu]) by elim(X, new[U, V, vV]) 

⇒ 71nil/X] ext n 
U: A, V : A list, W : T[V/XJ ⇒ 71u,,v;xJ ext Tu 

The elimination of a variable of a list type in the hypothesis list generates 

a list induction term. The two subgoals correspond respectively to the base 

and the step cases of the induction. 
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• membership rules : these rules give the conditions under which a non 

canonical object may be judged to inhabit a type. 

Example: 

H ⇒ lisLind(E, n, [X, Y, z, T]) in T[E/Z] 

by intro( using(A list), over(Z, Tz ), new[U, V, W]) 

⇒ E in A list 

⇒ n in '.I1nil/Z] 

U : A, V : A list, W : '.I1v1z1 ⇒ '.I1u.v,w;x,Y,z] in '.I1u,:V/Z] 

A list induction term is of a given type '.l1E/Z], if you can supply a type 

scheme, over(Z, Tz ), such that '.I1Etz] is an instantiation of that type scheme 

for E and the subterms of the induction term can be proven to be in the 

corresponding instantiations, '.Z1nil/ZJ and '.I1u,:V/Z] and if you can predict the 

type of the base term, E, using(Alist). 

• equality rules : these rules are appropriate when there is a goal of the 

form: 

H ⇒ selector(E, ... ) = E' in T. 

They have as consequence a reduction of the selector term. 

3.4.3 Type formation 

As we explained these are constructor rules for universes. For the list types, we 

have one refinement rule : 

H ⇒ u(I) ext A list by intro(A list) 

⇒ u(I) ext A 
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expressing that A list is a refinement for any universe if A is a refinement for 

the same universe. There is also a membership rule : 

H =} A list in u(I) by intro 

=} A in u(I) 

A list is a type of universe level i, if A is a type of universe level i. 

And there is also an equality rule : 

H =} A list = B list in u(I) by intro 

=} A = B in u(I) 

two list types are equal if the corresponding base types are equals. 

3.5 Tactics 

Tactics are bits of Prolog code, containing Oyster commands and tacticals. Tacti

cals are special words derived from the original ML version of Oyster for specifying 

how the combination of the instructions has to take place. 

• repeat T tries to apply T on the given problem and recursively repeats it 

on all the subproblems generated by T. 

• Tor S applies T, and if it fails tries S. 

• R then S applies R then S to all the subproblems generated by R. 

• R then [S1 ... Sn] applies R first and then each S; to the corresponding sub

problem. 

• complete T succeeds only if T applies and generates no new subgoals. 

• try U always succeeds. If U applies, it is performed, if it does not, the 

current goal is left unchanged. 
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3.6 The definition mechanism 

There are different ways to define new objects in Oyster. One of those ways is 

to directly use the Oyster definition facility to associate the words of the theory 

we want to define with the terms in the theory. This is clone using the predicate 

<==> . For instance we could define the operation of concatenation of two lists 

by: 

concat(a,b) <==> lisLind(a,b,[h,t,v,h :: v]) 

the left hand sicle corresponds to the definiendum while the right hand sicle 

corresponds to the definiens. 

For complex definitions, however, it is possible to achieve a kind of abstrac

tion through a level of indirection. Instead of directly equating a display for

m with a term t, t is extracted from a theorem that contains type information 

([D. Basin 90]). 

We illustrate that method using again the example of the concatenation of two 

lists. As we already said, building a proof of a given theorem in type theory means 

constructing implicitly a witness of the type of the proposition to be proved and 

that different proofs could provide different witness. 

We will prove a theorem about lists so that the witness build within the proof 

is the concatenation of the lists given as hypothesis. 

The theorem to be proved is : 

a : t list, 

b: t list, 

==> t list 

To prove that theorem, it is enough to give whatever member of t list. But it 

is building the right member, the member that corresponds to the concatenation 

of lists a and b that we will achieve the abstraction that allows us to define the 



CHAPTER 3. OYSTER 20 

new concept. With that aim in view, we first refined the goal using the elimination 

rule on a, elim(a). 

a : t list, 

b : t list, 

==> t list ext lisLind(a, V,,, [U, V, W, ½) by elim(a) 

1. t list ext V,, 

2. U : t, V : t list, W : t list ==> t list ext v; 

The application of the rule generates two subgoals corresponding to the base 

and step cases of a list induction. While the extract term is a list induction term. 

The values of the term for the base and step cases are build in the subgoals. Now 

what remains to be clone is to introduce the right value to proof the subgoals so 

that the induction term corresponds to the list concatenation. 

The first subgoals corresponding to the base case of the induction is proved 

using the rule intro(b). The second subgoal, corresponding to the step case is 

proved with intro(U :: W). 

After that we obtain an extract term corresponding to : 

lisLind( a, b, [U, V, W, U :: W]) 

Now the concatenation of any two lists of type t list may be found using the 

evaluation of the extract term. So if we call the theorem proved above Concate

nation, we define the operation of concatenate two lists as follow : 

concat(x, y) <==> term_of Concatenation of x of y 

This mechanism is convenient to inductively define fonctions. The top goal of 

the theorem to be proved shows the origin and target domains of the fonction. 



Chapter 4 

Clam 

4.1 introduction 

In this chapter we will describe the Clam system conceived to transform Oyster 

in an automated theorem prover. The key feature of this meta-level system is an 

analysis of the tactics in order to guess when it is appropriate to apply a tactic and 

what are the consequences of the application of that tactic. This goal is reached 

by specifying the tactics in term of pre-conditions and post-conditions. 

Those specifications of the tactics are called methods. Once tactics are specified 

by methods, planners will then scan them in search of the applicable tactics. The 

work of the planners will be to connect methods so that they make up a proof plan 

for the theorem intended to be proved. If the tactics specified by the methods 

chained in the proof plan are applied, there is great chance that it leads to a 

proof of the theorem. But this is not guarantied in all the cases since methods 

describe the main features of the tactics but are not a complete specification of 

them. The reason for often deliberately writing methods with weak specifications 

is that in this way the method acts as a heuristic operator which can capture the 

essential specification of a tactic while leaving out the often expensive checks for 
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finer details. 

Last but not least we will explain the application of the proof plan mechanis

m to proof by mathematical induction for which encouraging results have been 

obtained. 

4.2 Methods 

Methods are specifications of tactics. As describe in (Bundy 88) a method is a 

data structure with 6 slots : 

• A name-.slot giving the method its name, and specifying the arguments to 

the method. 

• An input-.slot specifying the abject level formula to which the method is 

applicable. 

• A pre-condition.s-.slot specifying conditions that must be true for the method 

to be applicable. 

• A po.st-condition.s-.slot specifying conditions that will be true after the method 

has applied successfully. 

• An output-.slot specifying the object-level formulae that will be produced as 

subgoals when the method has applied successfully. 

• A tactic-.slot, giving the name of the tactic for which this method is a speci

fication. 

A method and its corresponding tactic are said to be applicable if the goal to be 

proved matches the input formula of the method and if the method's pre-conditions 

hold for this sequent. When an applicable methods is found, the output-slot give 
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a schematic description of the resulting sequent of the tactic application and the 

post-conditions specify further syntactic properties of those sequent. 

Although it is possible to use arbitrary Prolog code in the formulation of the 

pre- and post-conditions slots, a designated language for this purpose has been 

created. This method language consists of a set of predicates and a set of logical 

connectives. they are discussed in [van Harmelen 89]. 

4.3 Planners and Proof plans 

The planners employs the methods in the search for a proof of a given Oyster 

sequent. They firstly find an applicable method (i.e. a method with matching 

input formula and true pre-conditions ); then the planner compute the schematic 

output formulae and post-conditions of this method, and finally find methods 

applicable to these output formulae. This process is repeated until no unproven 

formulae remains. 

The process of proof plan construction as described above is not entirely free 

from search: for a given sequent, more than one method may be applicable, and 

the system must choose one of them. For the moment four planners are part of 

Clam. They use different strategy for selecting an applicable method to a sequent. 

The three first strategies are : depth fir.st, breadth fir.st and iterative deepening. 

While the fourth strategy, be.si fir.st is the only one employing a heuristic search 

strategy. In practice, the search at the meta-level is however small enough for the 

depth-first planner to succeed without very much backtracking. 

4.4 Automatization of proofs by induction 

The proof plan technique is currently used for the automatic guidance of proofs 

by mathematical induction. 
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The heuristic is based on the reconstruction of Boyer and Moore technique for 

constructing induction formulas, the state of the art in inductive theorem proving 

[Boyer & Moore 79]. 

By observing their own proofs and those of others, Robert Boyer and J. Moore 

noticed that, when proving theorems about recursive fonctions, two basic methods 

are available : a simple one in which rewrite rules derived from the recursive 

definitions are used to symbolically evaluate the theorem to be proved and a more 

complex one in which induction is used to divide the theorem into two simpler 

theorems. 

The problem when trying to prove a theorem by induction, is that we are faced 

with a choice. There are often several induction schemata available, and each of 

them can be used to induct on a different parameter. 

Recur.sion analy.si.s is the name given to the process, embedded in the Boyer 

and Moore theorem prover of analysing the recursive structure of a conjecture to 

decide what form of induction to use to prove it. 

When an induction schema is applied, it has for consequence that the induction 

conclusion differ from the hypothesis by the insertion of induction terms in place of 

the induction variable. Those expressions which appear in the induction conclusion 

but not in the induction hypothesis, are called wave front.s. 

The objective of an induction schem~ choice is well described by the charac

terisation of a "good" induction quoted in [Stevens 88 ] : 

Thus we can characterise a "good" induction as one that we can 

deduce in advance will allow the maximum number of recursive terms 

in the conclusion to be eliminated. 

As a refinement we can additionally stipulate that it leaves a mini

mum number of recursive terms that we can deduce will be difficult to 

eliminate. 
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By recursive terms, one means instances of recursively defined terms. 

That leads to a central idea of the proof plan, the tactic called rippling-out. 

This tactic manipulates the induction conclusion to enable the induction hypoth

esis to be used in its proof. 

rippling-out applies wave rules that will remove the wave fronts from the in

nermost position further out. 

Let us first define what are wave rules and then exhibit their utilities by ex

ample. Wave rules are rewrite rules of the form : 

where F,T and the Si are terms with distinguished arguments and T may be 

empty, but F and the Si must not be. The Si are old wave fronts and T is the new 

wave front. A wave front in a formula can be seen as a designated subterm of that 

formula. This subterm itself contains a hole not part of the wavefront, called the 

wave variable, the Ui in the general form. 

We adopt the convention that wave fronts are noted by boxes , as above. 

Application of a wave rule ripples some wave fronts out by one stage. Step 

formulae of recursive definitions are always wave rules. In addition each theorem 

that Oyster proves can be tested to see if it has the right form and, if so, it can 

be stored as a wave rule for future use. 

Let now illustrate that concept by the example picked in [Bundy et al 89b], 

the proof of the associativity of + : 

Vx,y,z; x+(y+z) = (x+y)+z 

by successor induction on x. The recursive definition of + is : 

Vu: pnat; {O + u = u} 

Vv: pnat, Vw: pnat; {s(v) + w = s(v + w)} 

The induction hypothesis is : 
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x+(y+z)=(x+y)+z (1) 

where x, y, z represent skolem constants. While the induction conclusion is : 

[ill X ŒJ +(y+ z) = ( GJ X [I] +y)+ Z (2) 

The induction term is s( x) and the [ill ... [2] constructor fonction is the wave 

front. The step case of the recursive definition of+, namely 

provide a wave rule to which rippling-out will apply. Repeated applications 

of this rule to (2) ripples the two wave fronts to the outside of the left and right 

terms of the induction conclusion. 

[illxŒJ+(y + z) = c[illxŒJ+y) + z 

[illx + ( y + z )Œ]=[illx + y[TI+ z 

[illx + (y + Z )ŒJ=GJ( X + y) + zŒJ (3) 

When no forther rippling out is possible then the induction hypothesis can 

often be used as a rewrite rule to produce an equation between two identical 

terms ( this is achieved by the tactic fertilization ). Using it left to right on the 

left hand side of the induction conclusion (3), it produces the equation : 

GJ(x +y)+ zu]=GJ(x +y)+ zŒ] 
which is readily proved . 

The problem is thus to apply an induction schema that will allow the rippling

out tactic to succeed. Therefore, recursion analysis locates the recursive fonctions 

in the conjecture. Each occurrence of a recursive fonction, F, with a variable, X, 

in its recursive argument position, gives rise to a raw induction suggestion. The 

induction variable is X. The induction schema suggested is the one dual to the 

form of recursion used to define F. 

In the previous example, the proof of : 
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x +(y+ z) = (x +y)+ z, 

the first three occurrence of the recursive defined + give rise to an induction 

suggestion. The recursive argument is twice x and oncey. 

The dual induction schema corresponding to one step recursion is : 

r 1- P(O) r, x' : pnat, P(x') 1- P(s(x')) 

r,x: pnat 1- P(x) 

How to choose which one should become the final induction suggestion ? The 

application of the one step induction on x will have for consequence the substitu

tion of the two occurrences of x by s( x) in the induction conclusion that will look 

like : 

[ill X w +(y + Z) = ( 8] X w +y) + Z 

In both cases, the recursive definition of + will match the term dominating the 

occurrence of s( x ). Allowing the rippling-out tactic to be used with the step case 

of the definition as wave rule as we did above. 

This is not the case when applying the one step induction on y. In the induction 

conclusion : 

x + ([illyŒ}+z) = (x+[ip;W) + z, 

the term dominating the second occurrence of s(y ), namely x + s(y) does not 

match with the step case of the definition of +. The replacement of y by s(y) 

in this case is said to be unsuitable and the induction suggestion is classified by 

Boyer and Moore as fiawed. If unflawed inductions suggestions remain, the flawed 

ones are rejected. So, in our example, the one step induction on xis finally chosen. 

As explained above, recursion analysis is restricted to using rewrite rules based 

on the step formula of recursive definitions to "ripple out" the wave fronts occurring 

in the induction conclusion. 
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This technique has been extended in various ways. Both, the rippling-out tactic 

and the notion of wave rule have been expanded. 

The most important development was the extension of the technique so that 

the rippling-out tactic is able to use other rewrite rules than the only step formulae 

of recursive definitions : all the wave rules known by Clam can be used. 

Then the notion of wave rule was extended by the introduction of: multi-wave 

rules, conditional wave rules, rippling-sideways and rippling on hypothesis. 

Those extensions to the rippling-out tactic for guiding inductive proofs are 

explained in [Bundy et al 89b]. Here we will only give a short overview of the 

conditional wave rules since they will be used in our search of proofs for some 

finite set theory propositions. 

Conditional wave rules are rules of the form : 

< condition > ~ LH S ⇒ RH S , 

where LH S ⇒ RH S is a wave rule. 

Note the use of~ for implication and ⇒ for rewriting. 

The conditional wave rules should be grouped so that the conditions are com

plementary. So it will be possible to use the rules after dividing the proof in two 

parts using the condition and i ts negation. 



Chapter 5 

Representation of the finite set 

theory 

5.1 Introduction 

After we described in the first three chapters the Oyster / Clam environment for 

automated proof guidance, our intent will now be the application of the machinery 

of proof plans to a new data structure, that of finite sets. 

Development of a new theory in the Oyster / Clam system can be handled along 

different lines. 

We will consider two different approaches : On one hand we will envisage the 

addition of a new basic type and the extension of the rule base, This approach will 

only be introduced; the reader will find a complete discussion about the addition of 

a basic type representing the finite sets in the work of Paul Chisholm [Chisholm]. 

On the other hand we will try to build the finite set theory as an abstraction of 

the existing types by the mean of the definition mechanism. 

This last approach, as the other one, should allow us to experiment the ma

chinery of proof plans applied to the new data structure but this approach will 
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also allow us to eval the power of expressiveness of Oyster. 

5.2 Finite set as a new basic type 

Building a new basic type representing the finite sets could be done in a similar 

way as the list types. The first thing to do is to define the primitive constants 

required : f set, 0, • and f seLind. f seLind is a non-canonical constant and has 

the computation rules : 

f seLind(0, y, [u, v, w, z]) y 

f seLind(a • b, y, [u, v, w, z]) z[a, b, lisLind(b, y, [u, v, w, z])/u, v, w] 

meaning that f seLind(s, y, [u, v, w, z]) evaluates to y ifs evaluates to the empty 

set. And ifs evaluates to a non-empty set,a • b, f seLind(s, y, [u, v, w, z]) has the 

valuez[a, b, lisLind(b, y, [u, v, w, z])/u, v, w]. 

In order to define a type whose abjects are finite sets, we require a type from 

which the members of the sets are drawn. Once we have such a type, let say A, 

we can define the type of finite sets of abjects of type A. 

We will denote that type : 

f set(A) 

The canonical abjects of the finite set type f set(A) are: 

the empty set , 0, 

and the non empty sets : x • y 

( • denoting the set insertion) provided that x is an element of type A and y, 

a set of type A f set. 

It is now necessary to prescribe under what conditions two canonical abjects 

are equal: 

1. 0 and 0 are equal canonical abjects off set(A). 
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2. a• s and b • t are equal canonical abjects of fset(A) provided a= b in A and 

s = t in f set(A). 

3. a• s and a• a• s are equal canonical abjects of fset(A) provided a in A and 

s in f set(A). 

4. a• b • s and b •a• s are equal canonical abjects of fset(A) provided a in A, 

b in A and s in f set(A). 

We showed above how to form canonical abjects of f set(A), and when two 

abjects are equal. See [Chisholm] for a complete listing of the formal rules of the 

type and their justifications. 

5.3 Building the finite set type as an abstraction 

of the existing types 

In this section our aim will be to build our theory on the top of the existing ones. 

We used the built in types and types constructors of Oyster as well as the definition 

mechanism to create a level of abstraction in the language that will allow us to 

speak in the terms of the finite set theory. 

The abstraction is achieved by linking the specific vocabulary of the finite set 

theory language with definitions in term of the built-in types and type constructors. 

The verification of the finite set theory axioms will then allow us to state if the 

built representation is a representation of the finite sets theory. 

It is worthwhile to note that even in the case of adding a new basic type, it is 

necessary to make a choice of representation. But the choice does not take place 

at the same level of abstraction. In the case of a new basic type, we need to decide 

on a Prolog representation of the new structure ( Prolog, since Oyster is written 
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in Prolog), while in this case we need to set up the theory on the higher level of 

abstraction offered by Oyster / Clam. 

There is a large choice of possible representations to build finite set theory 

within the type theory. In related works, lists without redundancy and strictly 

ordered lists are used. But it is also possible to imagine a representation based on 

simple lists without any other restriction. 

The characteristic of the representation that will allow us to decide which one 

seems to be the most appropriate, is how will be expressed the equality between 

two finite sets so that the rules for reasoning about equality ( the general equality 

rule, the rewrite rule, introduction rules for equality of non canonical members) 

can be applied to it. 

The first thing to decide is either if we want to keep one of the basic equalities 

or if want to define a new one. To keep one of the basic equalities means to choose 

a representation such that the equality between two sets has the same truth values 

as the equality between the underlying type used to define the finite set type. On 

the other hand define a new equality means the use of quotient types. 

Let see what are the consequences of that choice. At the first glance, it seems 

to be more comfortable to use quotient types and so be able to use the most 

natural way to formulate the equality between two sets. We mean that two sets 

are equal if and only if they have the same members. Moreover this should allow 

a considerable latitude in the choice of the representation. The definition : 

fset(T) <==> T list///[x,y,(Ve: T; (e Ex --t e E y)/\ (e E y --t e Ex))] 

represents the finite sets by list without any restriction and defined the equality 

as explained above. But this mechanism is, in fact, not as easy of use as it seems. 

lndeed the use of a quotient type to define finite sets will oblige us, each time we 

want to define a fonction on them, to show that the operation respects the new 
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equality relation. If we have the quotient type : 

A///[x, y, E], 

in order to define a fonction : 

f : A/// [X' y' E] ~ B 

one must show that the operation respects E, that is, E( x, y) implies f ( x) = 
f(y) in B. 

The alternative to the use of a quotient type is to keep a basic equality. ln that 

case, the choice is confined to the representation of the finite sets by strictly ordered 

lists without redundancy. Indeed it is necessary that each set has one and only one 

list representation. For instance the representation of the finite sets by ordered 

lists with redundancy is unsuitable : the sequent 1 • 2 • 3 • nil = l • 2 • 2 • 3 • nil 

is clearly false in term of lists even if both lists stands for the same set {1, 2, 3}. 

So only the representation of finite sets by strictly ordered lists answers the 

purpose that two sets are equal if and only if the lists they hide are also equal. But 

such a representation must also exist for all the sets, i.e. we need to find distinct 

ordered list to represent each set. This implies that for all the types of elements 

on which we want to build sets, we can define a strict order. Is this possible ? 

A negative answer would mean that the representation is too restrictive and only 

characterize a part of the finite sets theory. Happily this is not the case since 

whatever the type of the element is, the lexicographie order on the representation 

of the elements will provide the relation we are looking for (given the finiteness of 

the represen tation). 

We will adopt this last representation to develop our theory. The price to pay 

will be a heaviness in the representation . 
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5.4 The language of the flnite set theory 

In order to forma type whose objects are finite sets, we require a type from which 

the members of the sets are drawn. But since we chose to represent the finite sets 

by strictly ordered lists without redundancy, this type from which the members 

are drawn must be defined with such a relation. Remember that a strict order is 

a relation, --<, satisfying the following properties : 

irreflexivity: Vx; ,x --< x 

transitivity: Vx \/y Vz; (x --< y) /\ (y --< z) -+ (x --< z) 

And if we add that the order must be total, we obtain the definition of the 

type with its relation : 

ordered_type <==> t: u(l) /\ 

:3 r : t -+ t -+ u(l) /\ 

V x,y E t; r(x,y) V r(y,x) V x =y/\ 

Vx,y,z Et; r(x,y) /\ r(y,z)-+ r(x,z)/\ 

V x E t; ,r(x,x) 

This definition is made up of three components : a type, t, belonging to the 

first universe, then a relation on the members of that type and the properties of 

the relation so that it is a strictly order on the elements of t. All the sets we will 

deal with, must have their members drawn from such a type accompanied by a 

strictly ordered relation. 

Now we can define the type of the elements from which we will draw the 

members of our sets. Since the logical conjunction corresponds to the cartesian 

product in Type Theory, members of ordered_type will be ordered pairs. The type 

of the members of the finite set will thus be the first component of a t of type 

ordered_type. 
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elem(t) <==> spread(t, [a,-, a]) 

where _ is equivalent to the Prolog anonymous variable. 

The type of the fini te sets on the type elem( t), will be a subset of the lists 

of elem( t), the strictly ordered lists. That property of the lists, we mean to be 

strictly ordered is verified by means of a theorem 'is_ordered' so that we obtain 

the definition using the subset constructor : 

fset(t) <==> {s: elem(t) list 1 ((term of is_ordered) of t) of s} 

The figures 5.2 and 5.3 show the definitions that make up the language. In 

order to simplify the notation, from now on we will omit when unnecessary the 

reference type and use a more common notation. Thus we will write a U b instead 

of set-union( t,a,b ), a n b instead of set inter( t,a,b ), and so on using the classical 

notations of the set theory. 

To define the concepts we quite often employed the definition mechanism ex

plain in 3.6. For instance, we define the union of two sets by : 

A U B <==> term-of def _union 

where deLunion is a theorem whose statement is : 

A: f set -+ B: f set -+ fset 

This statement does not contain much information. It only tells us that the 

union is a fonction that, given two sets, gives another set. The works consists of 

building the proof that produces the witness corresponding to the union of A and 

B. 

So all the computational information will corne from the proof construction. 

The figure 5.1 shows the complete proof of the theorem deLunion. 

We will use different proofs of the same theorem, giving different witness to 

define fonctions that have the same origin and target domains, like the sets inter

section, diff erence and so on. 
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x f set 

y f set 

1- f set 

1. 1- f set 

by elim( x) 

by intro(y) 

1- y in f set by intro 

2. vl : fset 

e : elem 

1- f set 

1- true 

by intro(e • vl) 

1- eevlinfset 

ext lisLind( x, Tb, [U, V, W, Tu]) 

ext y 

ext e • vl 

Figure 5.1: proof of deLunion 



CHAPTER 5. REPRESENTATION OF THE FINITE SET THEORY 37 

• ordered_type <==> t: u(l) /\ 

r : t ~ t ~ u(l) /\ 

\;/ x,y E t; r(x,y) V r(y,x) V x =y/\ 

\;/ x,y,z E t; r(x,y) /\ r(y,z) ~ r(x,z) /\ 

\;/ x E t; ,r(x,x) 

• elem(t) <==> spread(t, [a,-, a]) 

• fset(t) <==> {s: elem(t) list I term of is_ordered of t of s} 

• emptyset <==> nil 

• a• s : 

seLinsert(t, a, s) <==> term_of(def _insertion)of t of a of s 

Figure 5.2: basic definitions of the finite set theory 
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• choose(s) <==> lisLind(s,void,[x,-,-,x]) 

• rest(s) <==> lisLind(s,nil,[-,x,-,x]) 

• card(s) <==> lisLind(s,O,[-,-,v,v+l]) 

• a - s 

seLdelete(t,a,s) <==> term_of(def _deletion)of t of a of s 

• sl U s2 : 

seLunion(t, sl, s2) <==> term_of(def _union )of t of sl of s2 

• sl n s2 : 

seLinter(t, sl, s2) <==> term_of(def _intersection)of t of sl of s2 

• sl \ s2 : 

seLdif(t, sl, s2) <==> term_of(def _dif f erence )of t of sl of s2 

• sl C s2 : 

seLinclude(t, sl, s2) <==> term_of(def _inclusion)of t of sl of s2 

Figure 5.3: other fonctions over the finite sets 



Chapter 6 

The power set as a Boolean 

algebra 

6.1 Introduction 

In the previous chapter we discussed a formalism for reasoning about finite set 

theory. What we want now to do, is to apply the proof plan approach for inductive 

proofs of finite sets properties. With this aim in view, we make the development 

of the theory culminate in a proof that the partially ordered set < PS(X), Ç >, 

where P S( ... ) stands for the power set, for all non empty finite sets X, is a Boolean 

algebra where the maximum element is the set X, the minimum element is the 

empty set 0 and complementation corresponds to set theoretic complementation. 

What we will try to do is use a systematic approach giving Clam a library of 

theorems needed to prove the Boolean algebra properties of< PS(X), Ç>. An 

interesting point of our work will be our attempt to foresee the needs for proving 

a whole class of theorems. 

This point is crucial in the development of Clam, since in case of success it 

will be possible to draw the first lines of a methodology of the development of 
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theories more systematic than the extension of the libraries incremently, theorem 

by theorem. 

But firstly we will introduce the notion of Boolean algebra and the theorems 

that will make up our objective. 

6.2 What is a Boolean algebra ? 

In this section we will briefly introduce Boolean algebras. The point is the presen

tation of the problem, i.e. the theorems we want Clam to prove. For a complete 

discussion about that topic, we refer to [Bell & Slomson, 69]. 

We define a Boolean algebra as follow. A Boolean algebra (:J is an algebraic 

structure, say (:J = < B, V,/\,,, 0, 1 > satisfying the propositions : 

• Vx,y E B· 
' 

X V y y V X 

X /\ y y /\ X 

• Vx,y,z E B; 

X V (y V z) (x V y) V z 

X /\ (y /\ z) - (x /\ y) /\ z 

• Vx,y E B· 
' 

(x V y) /\ y) y 

(x /\ y) V y) y 

• Vx E B· 
' 

X V •X - 1 

X /\ ,x 0 
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• Vx,y,z E B; 

(x V y) /\ z - (x /\ z) V (y /\ z) 

(x /\ y) V z (x V z) /\ (y V z) 
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Applying the theoretical definition to the power set, we obtain the algebraic 

structure : 

< PS(s),u,n,.,0,s > where sis a non empty set and, is the set theoretic 

complementation with respect to s. It is a Boolean algebra only if we can prove 

the properties : 

• Vx,y E PS(s); 

X LJ y y LJ X 1.1 

X n y y n X 1.2 

• Vx,y,z E PS(s); 

X LJ (y u z) (x u y) u z 2.1 

X n (y n z) (x n y) n z 2.2 

• Vx,y E PS(s); 

(x u y) n y) y 3.1 

(x n y) u y) y 3.2 

• Vx E PS(s); 

X LJ •X s 4.1 

X n ,x - 0 4.2 

• Vx,y,z E PS(s); 

(x u y) n z (x n z) u (y n z) 5.1 

(x n y) u z (x u z) n (y u z) 5.2 
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Those ten properties will make up the set of theorems of which we want Clam 

to find a proof. However for reasons of simplification in the representation, we will 

generalise those properties. 

Properties 1.1 and 1.2 are in fact particularisation of the commutativi ty of 

the set's union and intersection while properties 2.1 and 2.2 are particularisation 

of the associativity of those operations on the sets. So we will prove them in the 

most general case without burden oneself with extra hypothesis the same reasoning 

holds for the four properties 3.1, 3.2, 5.1 and 5.2. 

For the set complementation, we also simplify both properties by firstly re

placing the complement of x by the difference : s / x (by applying the definition of 

complementation). Then keeping only one extra hypothesis, that x is a subset of 

s. So 4.1 and 4.2 become : 

Vs,x E fset; 

xCs-+xU(s\x) 

xcs-+xn(s\x) 

s 

0 

4.1' 

4.2' 

6.3 An induction principle over the finite sets 

The section What is a Boolean algebra ? outlined some theorems, properties of the 

finite sets. We want now Clam to construct proof plans to proof those theorems. 

The proof we want Clam to construct are proof by induction following the proof 

strategy explained in 3.4 A utomatization of proofs by induction. With this aim in 

view, we will try in this section and in the next one to provide the system with 

the tools it needs to build those proof plans. 

First of all of course, we must provide Clam with an induction schema for the 

finite sets. To ensure the soundness of this new schema, the theorem justifying 

the scheme has to be proved. We build this proof interactively in Oyster. So we 
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first proved the theorem : 

V</> : (!set ~ u(l)), 

</>(0), 

Vs : f set, Ve : elem, </>(s) ~ </>(e • s); 

~ V t : f set; </>(t) 
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To make Clam able to deal with that new induction schema, we need now to 

write a method describing that schema. 

This method is shown in the figure 6.1. This is written in the method language 

and needs some explanations. 

The description of an induction schema is given in occurrences of the predicate 

scheme/5 . The first argument is the schema name, seLinsert (T ,A, X), the 

second is the variable to induce on,Var:fset. 

The schema maps the sequent H==>G into a list of base cases [HBase==>GB] 

and a list of step cases [[A:elem,X:fset,H1:IndHyp IHBase]==>GS] that will be 

produced by induction on Var . 

6.4 Rippling out the wave fronts 

The application of the induction schema will makes appear wave fronts in the 

induction conclusion. 

Recursion analysis will then looks for wave rules able to ripple out those wave 

fronts as previously explained ( cfr 4.4). 

Most of the wave fronts generated will have one of the forms : 

Given s 1 and s 2 of type f set and e of type elem, 

[0si[2J~s2 
or 



CHAPTER 6. THE POWER SET AS A BOOLEAN ALGEBRA 

scherne(set_insert(T,A,X), 

Var:fset, 

H==>G, 

[HBase==>GB] , 

[[A:elern,X:fset,H1:IndHyplHBase]==>GS]) ·-

add_to_hyp(Var:fset,H,HBase), 

rnatrix(Vs,Grn,G), append(Vs,HBase,VsHBase), 

free([A,X,H1],VsHBase), 

del_elernent(Var:fset,Vs,OVs), 

wave_fronts(set_insert(T,A,X),[[J-[[3]]] ,Stepîerrn), 

replace_all(Var,ernptyset,Grn,GB1), 

rnatrix(OVs,GB1,GB), 

replace_all(Var,X,Grn,IndHyp1), 

rnatrix(OVs,IndHyp1,IndHyp), 

replace_all(Var,StepTerrn,Grn,GS1), 

rnatrix(0Vs,GS1,GS). 

Figure 6.1: scheme/5 for the set induction 
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where ~ stands for a fonctions over sets, thus U, n, \, ... 

So we will now check those fonctions, trying in each case to find wave rules 

able to deal with such wave fronts. 

As previously explained, the wave rules maybe step formula of a recursive 

definition or theorems having the right form recognized by the system. 

In the explanation of the definition mechanism in section 3.6 we did not speak 

about recursive definitions. In fact what was described there is only how to make 

correspond a new syntactic form to a sequent in type theory. 

The recursive definitions are made by giving the base and step formulae of the 

definitions as theorems (independently of the syntactic definition given as explain 

in 3.6). Clam contains a mechanism of recognition that help it to identify recursive 

definitions. 

For instance to give a recursive definition of the set union we just need to 

provide Clam with both theorems : 

Vx : f set; 

l-0Ux-x 

and 

Vx,y : fset, 

Ve : elem; 

1-~xŒ]uy =0 U yŒJ 

As for the induction schema, to preserve the soundness of the system the 

theorems justifying the recursive definitions and the other wave rules have to be 

prove. In fact we first prove the theorem and then , when loading it in the system, 

Clam recognize it as a wave rule. 
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The following subsections will checked the different fonctions on sets we are 

concerned with in ordered to provide recursive definitions and other wave rules 

that can be guessed if we assume an induction on their arguments. 

6.4.1 Set union 

A recursive definition of union is obtained by means of the theorems : 

Vx : fset; 

f- 0 LJ X 

and 

Vx,y : f set, 

Ve : elem; 

X 

An induction over the first argument suggests the wave rule : 

Vx,y : fset, 

Ve : elem; 

f- [B xŒ]u y = 8 x u y ŒJ 

6.1 

6.2 

But this corresponds to the step formula of the recursive definition, so we do 

not need to add it. While an induction over the second argument suggests the 

wave rule: 

Vx,y : fset, 

Ve : elem; 

f- X LJ [By ŒJ=E] X LJ yŒJ 6.3 
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6.4.2 Set intersection 

In this case we need an extension of the original wave rules, the conditional wave 

rules as we described them in section 4.4. Also the steps formulae of the recursive 

definition will make up a complementary set of conditional wave rules. 

So the recursive definition of the set 's intersection will be made up of the three 

theorems: 

Vx : f set: 

f- 0 n X 

Vx,y : f set, 

Ve : elem; 

0 

f- e E y ~ 1 ( e• 1 x[I n y = B x n y [] 

Vx,y : f set, 

Ve : elem; 

f- , e E y ~ 1 ( e• 1 x[I n y = [l x n y[! 

7.1 

7.2 

7.3 

Again the step formulae of the recursive definition, give the wave rules sug

gested by an induction over the first argument. Another couple of wave rules are 

necessary to deal with an induction over the second argument : 

Vx,y : fset, 

Ve : elem; 

f- e E x ~ xn ~ yŒ] = B x n yŒ] 

Vx,y : f set, 

Ve : elem; 

f- , e Ex ~ xn ~ yŒ] = [] x n y Œ] 

7.4 

7.5 
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6.4.3 Set difference 

Again we need conditional wave rules to recursively define the notion of set's 

difference The recursive definition of the set's difference will be made up of the 

three theorems : 

Vx : f set; 

f- 0 \ X 

Vx,y : fset, 

Ve : elem; 

Vx,y : fset, 

Ve : elem; 

0 8.1 

8.2 

f- -, e E y -+ ~ X w \ y = 8 X \ y w 8.3 

Again the step formulae of the recursive definition, give the wave rules sug

gested by an induction over the first argument. Another couple of wave rules are 

necessary to deal with an induction over the second argument : 

Vx,y : fset, 

Ve : elem; 

f-- e Ex -+ x\ ~ yŒJ = 1 e - ( 1 x \ Y ŒJ 

Vx, y : f set, 

Ve : elem; 

f- ,e E X -+ X \ ( e • y) (x \ y) 

8.4 

8.5 
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6.5 Analysis of the results 

By means of the induction schema and the wave rules introduced in the previous 

sections we directly obtain Clam to prove the theorems : 1.1, 1.2, 2.1, 4.2' and 

5.1. An explanation of the proof plan obtained for theorem 1.1 is given here after. 

The reader will find the other proof plans generated by Clam in the appendix A. 

6.5.1 Explanation of a plan generated by Clam 

The first theorem we wanted to proof was the commutativity of the set's union ( 

theorem 1.1) : 

Vx,y E f set; 

X LJ y y LJ X 1.1 

The figure 6.2 shows the proof plan found by Clam for this theorem. The figure 

6.3 is an outline of the proof conjecture. 

Formulae are sequent of the form H 1- G, where 1- separates the list of 

hypothesis, H, from the goal G. The first sequent is the statement of the theorem 

to be prove. 

The ( sub )methods selected to rewrite the goal are indicated in parenthesis . 

Only newly introduced hypothesis are written in successive sequent; so each new 

goal is inheriting all the hypothesis of the parents goals in the proof. 

Ind...straLI (for induction strategy,) is a super-method for guiding almost the 

whole of the proof. It is defined by combining the submethods induction, base 

,ripple _out and fertilize. Ripple_out itself is a super-methods which is responsible 

for the repeated application of wave rules to ripple out the wave fronts to the 

outermost position. 
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ind_strat_I(set_insert(t,v0,v1),x:fset(t)) then 

[ind_strat_I(set_insert(t,v0,v1),y:fset(t)) then 

[tautology( ... ), 

tautology( ... ) 

J ' 
tautology( ... ) 

J 

Figure 6.2: Proof plan for the theorem 1.1 
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The ind..straLI method applies the heuristic of recursion analyses to select 

the induction schema and then to ripple out the wave fronts. The proof of the 

commutativity of set's union is obtained by induction on x. A second induction, 

on y, is necessary to proof the base case while the proof of the step case is obtained 

by rippling out the wave fronts with the help of the wave rules. 

6.6 Analysis of the failures 

This section is dedicated to the explanation of the proof 2.2. We will show how it 

is possible to provide Clam with more tools that will help it to solve the problems 

it reaches when trying to prove some of the theorems. 

The global vision of the theory allows to find properties useful in the search of 

proofs but often theorems need hints that can not be deduced from that approach. 

That is why at the end it is still necessary to look each case and find what we have 

to add to finally obtain the proof. 

Why did Clam fail in the search for a proof of the set's intersection associativ

ity ? The theorem to prove is : 
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Vx f set, 

Vy f set; 

f- X LJ y = y LJ X (by induction on x) 

1. f- 0 u y = y u 0 (by base) 

f- y = y u 0 (by induction) 

1.1 f- 0 = 0 u 0 (by base) 

f- 0 = 0 (by tautology) 

f- true 

1.2. y = y u 0, 

e : elem, 

f- e•y e • y U 0 (by wave) 

f- e•y e • (y U 0) (byf ertilize) 

f- e•y e•y (by tautology) 

f- true 

2. X LJ y = y u x, 

e elem, 

f- e • X LJ y = y LJ e • X (by 2 * wave) 

f- e• (x u y) e• (y u x) (by f ertilize) 

f- e• (x u y) - e• (x u y) (by tautology) 

f- true 

Figure 6.3: Proof of the theorem 1.1 
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Vx,y,z E PS(s); 

x n (y n z) = (x n y) n z 

An induction on x will generate two subgoals : 

1. 1- 0 n (y n z) (0 n y) n z 

2. x n (y n z) (x n y) n z, 

e : elem, 

f- e • X n (y n Z) (e•x n y) n z 

The first subgoal will easily be proved using the base formula of the recursive 

definition of the set 's associativity. In its attempts to prove the second subgoal, 

Clam will try to apply wave rules to ripple out the wave fronts. Since the wave 

rules applicable are conditionals, the system <livides the proof into two cases cor

responding to the condition and its negation. Soto apply the wave rules 7.4 and 

7.5 to the left-hand sicle of the goal, the proof is <livide into two subparts one cor

responding to the hypothesis : e E (y n z) and the other one to the hypothesis 

-, e E (y n z). After that split, the wave rules 7.4 and 7.5 may be applied giving 

respectively the goals : 

2.1. e E (y n z ), 

f- e • ( X n (y n Z)) 

2.2 -, e E (y n z) 

(e•x n y) n z 

1- x n (y n z) = ( e • x n y) n z 

The same reasoning is now applied to ripple out the wave fronts in the right 

hand sicle of the goals. It will generate the goals : 

2.1.1 e E y, 

1- e • ( x n (y n z) - e • ( x n y) n z 
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2.1.2 ,e E y, 

f- e. (x n (y n z) (x n y) n z 

2.2.1 e E y, 

f-- x n (y n z) e • ( x n y) n z 

2.2.2 ,e E y, 

f-- x n (y n z) = (x n y) n z 

The goal 2.2.2 is now readily proved using the induction hypothesis. The goal 

2.1.2 does not contain any wave front that could be ripple out : in the left hand 

sicle, the wave front is in the outermost position while there is no more wave front 

in the right hand sicle. But in the goals 2.1.1 and 2.2.1, the left hand sicle still 

contains wave fronts that can be ripple out. So once again those goals will be 

<livide in two subgoals : 

2.1.1.1 e E z, 

f- e•(x n (y n z) e•((x n y) n z) 

2.1.1.2 ,e E z, 

f- e • (x n (y n z) (x n y) n z 

2.2.1.1 e E z, 

f-- X n (y n z) e • ((x n y) n z) 

2.2.1.2 ,e E z, 

f-- x n (y n z) ( x n y) n z 
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There is no difficulty to end the proofs of 2.1.1.1 and 2.2.1.2 using the induction 

hypothesis. Three goals are still not completely proved: 2.1.2, 2.1.1.2 and 2.2.1.1. 

But those three goals could be easily be proved by exploiting the contradiction in 

their hypothesis ( the reader will remember that the hypothesis are inherited from 

the parents goals). To show those contradictions here are the goals with the list 

of the hypothesis in question. 

2.1.2 e E (y n z), 

-, e E y, 

1- e • ( x n (y n z)) 

2.1.1.2 e E (y n z), 

,e E z, 

(x n y) n z 

1- e•(x n (y n z)) (x n y) n z 

2.2.1.1 -, e E (y n z), e E y, 

e E z, 

1- x n (y n z) = e • ((x n y) n z) 

This is what mis Clam to finish the proof of the set's intersection associativ

ity. To make Clam able to exploit those contradiction, we created a terminating 

method handling the hypothesis to end the proof. The soundness of the method 

is warrant after the proof of the theorem : 

Vx,y : fset, 

Ve : elem; 

1- e E (x n y) <==>(e E x)/\(e E y) 

With the help of this method for handling the contradiction in the hypothesis 

list, there is no more obstacle for Clam to fi.nd the proof. 



Chapter 7 

Conclusion 

In this work I tried to exploit the possibilities offered by Oyster/Clam system 

to develop new theories and generate proofs of theorems about those theories. I 

especially devoted my work to the application of the proof-plan methodology to 

inductive proofs, using recursion analysis. The two last chapters show encouraging 

results : given the induction schema over the sets and a set of wave rules, we obtain 

proof-plans leading to the complete proof of the theorems. This observation shows 

the efficiency of recursion analysis to catch the main structure of an inductive 

proof. 

But those results were not obtained effortless. The use of the definition mech

anism instead of developing a new basic type is heavy when we need to work on 

such defined terms. A comfortable notation often hides a complex structure. A 

good extension to this work should be the development of the finite set theory 

using a new basic type. 

A great part of the difficulty was in the proofs of the wave rules and the 

induction principle. This raises the question if the main part of the proofs is clone 

by Clam when it assembles those theorems together or, on the contrary, if the 

main partis already clone when those theorems are proved ( ... by the user). In the 
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second alternative, the advantage of Clam should be to avoid the user to have to 

rewrite the same part of proof each time he needs it but the "intelligence" of the 

system should be feeble. I will not answer this question, indeed I consider I don't 

have the knowledge the give a sensible solution. 



Appendix A 

Proof plans generated by Clam 
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ind_strat_I(set_insert(t,v0,v1),s1:fset(t)) then 

[ind_strat_I(set_insert(t,v0,v1),s2:fset(t)) then 

[tautology( ... ), 

tautology ( ... ) 

] ' 
tautology( ... ) 

] 

Figure A.l: Proof plan for the theorem 1.1 

induction(set_insert(t,v0,v1),s1:fset(t)) then 

[sym_eval([.]) then 

ind_strat_I(set_insert(t,v0,v1),s2:fset(t)) then 

] 

[tautology( ... ), 

tautology ( ... ) 

] ' 
casesplit([member(t,v0,s2)=>void,member(t,v0,s2)]) then 

[wave([1,1], [set_inter3,left]) then 

] 

wave([2,1] ,[set_inter6,left]) then 

strong_fertilize(v2), 

wave([1,1] ,[set_inter2,left]) then 

wave([2,1] ,[set_inter5,left]) then 

weak_fertilize(right,[.]) then 

tautology ( ... ) 

Figure A.2: Proof plan for the theorem 1.2 
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ind_strat_I(set_insert(t,v0,v1),s1:fset(t)) then 

[tautology( ... ), 

tautology ( ... ) 

J 

Figure A.3: Proof plan for the theorem 2.1 

induction(set_insert(t,v0,v1),s:fset(t)) then 

[sym_eval([ .. ]) then 

J 

tautology( ... ), 

casesplit([member(t,v0,s1)=>void,member(t,v0,s1)]) then 

[wave([2,1,1],[set_dif2,left]) then 

J 

wave([1,1] ,[set_inter3,left]) then 

strong_fertilize(v2), 

wave([2,1,1] ,[set_dif3,left]) then 

strong_fertilize(v2) 

Figure A.4: Proof plan for the theorem 4.2' 
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ind_strat_I(set_insert(t,v0,v1),s1:fset(t)) then 

[ tautology ( ... ) , 

casesplit([member(t,v0,s3)=>void,member(t,v0,s3)]) then 

[wave([1,1] ,[set_inter3,left]) then 

wave([2,2,1],[set_inter3,left]) then 

strong_fertilize(v2), 

J 

J 

wave([1,1] ,[set_inter2,left]) then 

wave([2,2,1],[set_inter2,left]) then 

wave([2,1] ,[set_union2,left]) then 

weak_fertilize(right,[.J) then 

tautology( ... ) 

Figure A.5: Proof plan for the theorem 5.1 
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