
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Generalization/specialization abstraction structures

Theoretical study and integration in a database design workbench

Zeippen, Jean-Marc

Award date:
1990

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/ee87b024-d47c-4dc1-9c35-09160c0c6925

FACULTES

UNIVERSITAIRES

INSTITUT D'INFORMATIQUE

Generalization/specialization
abstraction structures

-
Theoretical study and integration in a

database design wor'kbench

Mémoire présenté sous la direction du
Professeur Jean-Luc HAINAUT

pour l'obtention du titre de
Licencié et Maitre en Inr or ma tique

Année académique 1989-1990

Abst:ra.ct

Abstract

The generalization/specialization abstraction structures offer a
po,,erful specification tool. This work first attempts to identify the
different facets of the concept, as far as conceptual database design is
concerned: indeed, generalization/specialization structures are part of
numerous (senantic) data rrodels rut there are many variations arOJnd the
definitions and the ways in which they are used. Fran this theoretical
analysis, we define a useful and consistent subset of these structures in
order to include them in an existing database design workbench based on the
entity-relationship approach. The proposed construct, called the category,
is introduced in the workbench rrodel; the existing processors are rrodified,
while new functions are proposed (a special care is given to transforma­
tions).

Keywords: abstraction mechanism, CASE, conceptual modelling, database
design, database design workbench, entity-relationship approach, generali­
zation/specialization, senantic data rrodel, transformation

Résumé

Les structures d'abstraction de généralisation/spécialisation offrent
un p..Jissant outil de spécification. Ce travail essaie d'abord d'identifier
les différentes facettes de ce concept, au niveau de la construction
conceptuelle d'une base de données: en effet, les structures de générali­
sation/spécialisation font partie de nanbreux rrodèles de données (sénanti­
ques) mais il y a des variations à propos des définitions et de leurs
usages. A partir de cette analyse théorique, na.is définissons un SOJs­
ensemble utile et cohérent de ces structures, de façon à les inclure dans
un atelier de conception de bases de données existant basé sur l'approche
entité-association. La construction proposée, appelée catégorie, est
introduite dans le modèle de données de l'atelier; les processeurs existant
sont modifiés, tandis que de nouvelles fonctions sont proposées (les trans­
formations sont.particulièrement étudiées).

l"bts--clés: PG...., approche entité-association, atelier de conception de bases
de dcrinées, conception de base de données, généralisation/spécialisation,
mécanisme d'abstraction, rrodèle de données sénantique, rrodélisation concep­
tuelle, transformation

i

•

•

•

•

Ac k.:n. o "W' 1 e d. g:m. e :n. t. a

I am particularly grateful to Professer Jean-Luc ~If\A.JT, praroter of
this dissertatiai, for the trust he put in me, for the freedon he let me,
and last tut not least, for the guidance and the advice he gave me . I take
this opportunity to offer him my deepest thanks •

I also thank his collaborators, Mario CADELLI and Bernard DEaJYPER,
for their explanatic:ns a, the ~IS database design workbench.

I would also like to thank all the people who welcomed and helped me
during my training (granted by the European CO'ETT program) in the VIA
group at Digital Equipnent Corporatic:n in Valbaine (France). I learned a
lot while working a, the DECdesign CASE tool and when teaching a database
design course; the experience I gained there helped me cc:nsiderably in the
realizatic:n of this work. A special thank to Philippe IXLS, my adviser
during these mcnths, for the technical abilities he gave me the opportunity
to learn.

I owe a great debt of thanks to my parents for caring for my educa­
tic:n, and still giving me full support during my university studies. I want
to thank my brother, my sister (who typed most of these pages), and the
other members of my family for being by my side when I needed.

I cannot forget the schoolteachers of my vi llage and the teachers of
the Institut Sainte-Marie of Arlc:n who helped me to broaden my minci. I
thank more especially Mr. Paul JEAN for his enttusiasm in Eng l ish teaching,
and for correcting the English of earlier drafts. I also acknONledge the
academic staff of the Facultés L..niversitaires f\btre-Dame de la Paix of
Narrur for bath the quality of their lectures and the pedagogical aspects of
university educatic:n.

Finally, I want ta thank all the other people who have more or less
cc:ntribJted ta this work .

ii

« • What kind of /t\lOrld rare /Ne crerating with cc:mputers?

• What kind of /t\lOrld do you want to live in?

• How c,an you use cc:mputers, r311'1CY7gst other things,
to crerate that /,\/Or]d?

• Are you doing those things now? Or, rat lerast, is
your /t\lOrk consistent w1.·th your desired world view?

• Whatever you rare doing now with ccrnputers, you rare
chranging your 1NOrld. ls it for the better? »

(M. L. Brodie - 1988)

iii

Corit.erit.s

In trodlc: tien . 1
Bac kgr-ound•... 1

D,apter 1

Objective and motivation•............................... 2
Related wor-ks .. 2
Main ideas•............................. 3
D..Jtline •.......•.. . 3
Note to the r-eader- 4

The generalizatic:n/specializatic:n abstractic:n mechanism 5

1.1. Abstractic:n mechanisms 5
1.1.1. Four- main abstraction mechanisms ..•..•...•....•.•.•... 6

A. Classification•.•.. 6
8. Aggr-egation••...... • . . •...................•..•... 6
C. Association•................................. 7
D. Gener-alization•... • •.•....•..•.............. 7

1. 1. 2. Hier-ar-chies of abstractions • ..• 8

1.2. The generalizatic:n/specializatic:n abstractic:n
mechanism in software developnEnt li fecycle 9
1.2.1. Software development lifecycle 9
1.2.2. Software development based on

gener-alization/specialization•......•.... 9

1.3. Generalizatic:n/specializatic:n in progranming,
artificial intelligence, and c:lëatabase areas 10
1.3.1. Gener-alization/specialization and object-or-iented

pr-ogr-arrvning .•.•.•.......................... • 11
A. Obj ec t or-ien ta tion ..•..•..........•.... 11
8. Gener-alization/specialization and abjects 12

1.3.2. Gener-alization/specialization and ar-tificial
inte 11 igence ...••••.•.•.•..............•........•.... 12

A. Knowledge r-epr-esentation and manip...,.lation•.•... 12
8. Gener-alization/specialization in knowledge

r-epr-esentation and r-eascning 13
1.3.3. Gener-alization/specialization and databases •••••••••• 13

A. Da ta base mcx:le 1 s . • . . . • • . . . • • • 13
8. Gener-alization/specialization constr-ucts in

da ta base mcx:le l s ..•.••....•.•...•...•. ••.• 15

D,apter 2
Da. ta base design . : . . . 18

2.1. Database design methadology 18
2.1.1. The information system and the database•....... 18
2.1.2. Database design methodology 18

A. Design steps•........... • .•....•....... 19
8. Data mcx:lel s ...•........................ 19
C. Camp...,.ter--aided design•....••.................... 20

2 • 2 • Cc:l,ceptua 1 f1Clde 11 ing . 21
2. 2. 1 • The L.JoD and the da ta base 21

A. The L.JoD ... 21

iv

_________________________________ __,C_ç,..n_tenh

Diapter 3

B. The da ta base 21
2.2.2. The conceptualization or conceptual modelling

process•.............................. 22
2.2.3. Conceptual models•.............. 23
2.2.4. BJilding a conceptual schema 23

Generalizatia,/specializaticn stn..ctures in
database models 25

3.1. The generalizaticn/specializaticn basic black:
the is-a relaticn 2h
3.1.1. The is-a relation...................... 26

A. Def ini tians••........................... 26
8. Example ... 28
C. Discussion .. 28

3.1.2. The is-a graph....................... 28
A. Properties of the is-a relation 28
8. Def ini tians ... 29
C. Properties of the is-a graph 29
D. Discussion .. 30

3. 2. Inheri tance . .. 31
3.2.1. The inheritance inference rule 31
3.2.2. Doi.,,nward and upNard inheritance 32

A. Def ini tians•.................................... 32
8. Example ... 33
C. Discussion .. 33

3.2.3. Redefinition and inhibition constraints 34
A. Def ini tians ; .. 34
8. Discussion .. 35

3.2.4. M.Jltiple inheritance 35
3.2.5. Specialization relationship inheritance 35

3.3. Class ca,straints . .. 36
3.3.1. Disjunction constraint 36

A. Def ini tian .. 36
8. Example ... 36
C. Discussion .• 36

3.3 •. 2. Covering constraint 37
A. Definition .. 37
8. Example•................ 37
C. Discussion ..•...................................... 37
D. Def ini tian•..•......•........... 38
E. Example•.............. 38

3.3.3. Partition constraint ...••.......................•.... 38
A. Def ini tian••..••..............•............. 38
8. Example•............................ 38

3.4. The generalizaticn/specializatia, criteria1 39
3.4.1. Semantic criterion•........................ 39
3.4.2. Database-defined specialization 39

A. Def ini tian .. 39
B. Example ... 40
C. Discussion .. 40

3.4.3. User-defined specialization 41
A. Definition 41
8. Example 41
C. Discussion .. 41

V

___________________________________ __,,Cg_nho.i!

3.5. Js-a cc:nstnJcts ... 41
3.5.1. The problem of defining a generali-

zation/specialization construct 42
3. 5. 2. Di fferent proposal s•...•.......•................ 43

A. The cluster of Smith and Smith•............. 43
8. The category of Sakai•.......•................. 43
C. Three types of generalization/speciali-

zation constructs•.•............•............. 43
D. The cluster of Davis and Bonnel 43
E. The subset hierarchy and the

generalization hierarchy 44
F. The subset hierarchy and the exclusive

(complete) generalization hierarchy 44
G. The i s-a in terconnec tian in SOM ~ 44

3.6. Another generalizatic:n/specializatic:n relatic:n:
the ITléJy-1::e-a relatic:n 44
3.6.1. The may-be-a r-elation 44
3.6.2. Class constraints•.••............................ 45
3.6.3. The may-be-a constructs •...........................•• 46

A. The alternative generalization• 46
8. The category .. 46
C. Simple generalization, alternative

generalization, multiple generalization,
selective gener-alization .•.......................... 46

3.7. Generalizatic:n/specializatic:n for
relatic:nship types and attritutes 47

Chapter 4
Generalizatic:n/specializatic:n
and database design activities 48

4.1. Introduc:tic:n of generalizatic:n/specializatic:n
cc:nstnx:ts in schefnata 48
4.1.1. Intersection between entity domains 49

A. Identical entity domains .•...........•.............• 49
8. Inclusion of a domain into another domain 50
C. Two or more domains are overlapping ..•.............. 50
D. Two or more disjoint domains•...•..•.•....•. 50

4. 1. 2. Descriptive con si der a tians•.•. 50
4.1.3. Global considerations•..............•. 50

4.2. Transformatic:ns caicerning generalizatic:n/spe-
cializatic:n cc:nstn.JCts 51
4.2.1. Elementary transformations •..•.••....•.•..........•.. 52

A. Representation of is-a relations by
r-elationship types •...•.•....•••..•.....•........... 52

8. Representation of the sole generic
enti ty type••......•...••.....•................. 53

C. Representation of the sole specific
enti ty types••.•............................... 54

4.2.2. Complex transfor-mations 55

Chapter 5
The ~IS database design workbench 56

5.1. ~IS architecture ... 56
5.1.1. User level explanations 56

vi

__________________________________ __\Contents

5.1.2. Technical level explanations 57

5.2. TRAMIS mcx:iel 5E3
5. 2 .1. User level expl anations 58

A. Schema .. 58
8. En ti ty type ... 58
C. Relationship type 59
D. Attribute ... 60
E. Identifier group 61
F. Textual descriptions 61
G. Technical note 61
H. Or ig in .. 61
I. Statistical aspects 62

5.2.2. Technical level explanations 63
A. The E-R schema of the

speci fication database 63
8. The GAM schema of the

speci f ication database 65

5.3. TRAMIS proc:essors ... 65
5.3.1. User level explanations 65

A. Management 66
8. Consultation 66
C. Transformation 66
D. Madel compliance checking 68
E. Production of executable descriptions 69
F. Reporting ... 69
G. Import/export 69

5.3.2. Technical level explanations 69

5.4. TRAMIS user interface and mcnitoring 70
5.4.1. User level explanations 70
5.4.2. Technical level explanations 71

Chapter 6
A generalizatic:n/specializatic:n cc:nstruc::t in TRAMIS:
the category ... 72

6.1. The category and TRAMIS architecture 72

6.2. The category in TRAMIS mcx:iel 73
6.2.1. User level explanations•.....••............. 73

A. The category .. 73
8. Inheritance ...•.....................•............... 76
C. Categories and naming conventions•.......... 77
D. Categories and statistical model•....•...... 77
E. Category and identifier group•............ 78
F. A new integrity canstraint:

the g 1 oba 1 card ina li ty•........... 78
6.2.2. Technical level explanations 79

6.3. The category and lRPMIS proc:essors 81
6. 3. 1. User level expl ana tians 81

A. Cansu 1 ta tian .. 81
8. Modifications 81
C. Category and model compliance checking 83
D. Category and import/export 83
E. Category and executable schema generation 84
F. Category and report generatian ·············~········84

vii

__________________________________ ___,C=ontents

G. Transformations of a category 85
6.3.2. Tecmical level explanations 92

6.4. The category in TRP4'1IS user interfac:e 93
6.4.1. User level explanations 93
6.4.2. Tecmical level explanations 93

CcJ,c lusia, ... 94
Main ideas .. 94
Other- works ... 95
Evaluation .. 95
Futur-e wor-k ... 96

References . I
List of references ... I
Classification of refer-ences XIV

Ac ra,yms . XVI I

Appendix A
Reference example ... A

Appendix B
The ŒR model ... C

Appendix C
Extrac:t of TRP4'11S user interface mcnitoring 6

Appendix D
Extrac:t of TRP4'1IS user interface mcnitoring including
the category .. K

Appendix E
Ail.. algorithns ca,cerning the category a

Addendum
A more canplete descriptia, of the Ail.. algorithns
ca,cerning the category ... R

viii

I :n. t :r ocl "1.2 c t :i o:n.

Background

Modelling is the major task in comp..iter science. Such a task uses

abstractia,s to deal with the complexity of the real world, a model of

which comp..iter application nust be. We abstract from details, in order to

reduce that complexity and to keep only what is relevant to the applica­

tion.

Database management systems (DEl'1Ss) are typically used for the mana­

gement of data stored in the database which stand for 'facts' in the

reality, the so-called Lhiverse of DiscCJLJrse (UoD). As every software

component, the database nust be organized in a i,.iell-structured fashion.

This structure is explained in the database scherna, in terms of the cons­

tructs of a data(base) model. Building this description is called database

design. A data model has to meet two different objectives: to record

techlical information about the storage of data, but also the semantics of

the reality. The first objective has always been obviOJs, the importance of

the second emerged only in the early seventies. Other intermediate aims may

be stressed, for example, the user view of data. This nultiplicity of

objectives leads to the introduction of hierarchies of descriptia,s.

The first level and the most cri tical one, called ccr,ceptual model­

ling, aims at describing the semantics of data. Such specifications are

closer to t-uman perception than to the comp..iter aspects. Therefore ca,cep­

tual models, i.e. database models used for conceptual modelling, have to

include structures matching with abstraction mechanisms used in h.Jman minci.

The recent years have seen the emergence of CCIITlputer-aided software

engineering (CASE) tools which are helping the designer to build software

components, according to different methodologies. In particular, the

database design 1NOrkbenches offer one or several models and are tackling

different aspects of the design of a database.

----------------------------------=In.tr._9J!!i_ç:Jion

Objective and motivation

In this dissertation, we focus on the generalization/spec:ialization

abstraction structures, trying to provide a theoretical study, b..it also

examining its integration in a database design workbench.

The generalization/specialization abstraction structures offer a

powerful speci fication tool, b..it also an implementation tool. The idea of

the generalization mechanism is to define a class of abjects describing the

abjects of other classes in avoiding details. The specialization mechanism

implies the definition of classes which are more specific than a given

class. We focus on its use in the conceptual phase of the design of a

database, although we also outline its interests in the whole development

of software and in three major areas of comp..1ter science (programming,

artificial intelligence and database) which have been confronted in the

recent years.

Currently, it is recognized that methodologies 'need' the use of

software tools. We integrate the generalization/specialization construct in

the model of TRAMIS, a database design workbench developed at the Institut

d'Informatique and marketed by Concis. This tool, based on the toolkit

approach, supports a single entity-relationship (E--R) model for al 1 steps

of database design, and provides a user interface using windows. We

therefore study how a generalization/specialization construct can be incor­

porated in the model (extending by the same way the E-R model), how

existing processors rrust be modified and what the new functions are, and

finally how that construct can be introduced in the user interface.

Related works

Generalization/specialization constructs are often quoted in the

literature. However no consensus seems to appear. Sane studies [Coll 88]

[Hain 89d] [1-lJll 87b] [Peck 88] [Spac 89] have been devoted to their analy­

sis for semantic modelling, [Tour 86] study it for artificial intelligence,

and all works on object-oriented programming deal with it more or less

thoroughly.

Oï the other hand, studies on the problem of integration in a

database design is less proposed. Oïly papers explaining different database

design workbench philosophies are p..1blished. We didn't discover any

2

_________________________________ _._,_lnu.trpduction

'methodological' book stressing the process of developing or extending a

database design workbench.

Main ideas

From the theoretical analysis, we derive the main facets of generali­

zation/specialization structures, i.e. class inclusic:n dependencies and the

inheritance inference rules.

For the practical aspect, we emphasize that the construct should

provide a useful, minimal and cc:ns.istent framework for generaliza­

tion/specialization structures which is compliant ta the 'philosophy' of

TRAMIS. Transformatic:ns are given a special care: we provide transformation

not only for the representation of categories by basic constructs, but also

for their manipulations.

Outline

In chapter 1, we present the concepts of abstraction mechanisms and

define the most frequently used mechanisms. Aï overview of the generaliza­

tion/specialization mechanism during application development lifecycle, and

in three major fields of computer science is proposed too. Chapter 2

recalls some fundamental aspects of database design, especially at the

conceptual level. In chapter 3, we analyse, within the GER framework, the

different facets of generalization/specialization constructs of most data

models, trying ta understand their usefulness and applicability. Chapter 4

overviews how generalization/specialization constructs fit in the data

modelling process: we explain how and when generalization/specialization

should be introc:luced in a schema, and we briefly describe transformations

concerning them. Chapter 5 explains TRAMIS, the database design workbench

developed at the Institut d'Informatique. In chapter 6, we investigate the

problem of introc:lucing a generalization/specialization construct in TRAMIS.

This construct, called the category, is explained as a component of the

TRAMIS model; we then analyse its impact on the different processors and

show how it can be integrated in the user interface. The conclusion is

concerned with a surrmary of the main results, with a discussion of our

work, and with possible future researchs on the study of generaliza­

tion/specialization and on the development of workbenches. Appendix A

explains the reference example. In appendix B, we give an overview of the

GER moc:lel which is used as framework in the theoretical study. Appendix C

presents the principle of the monitoring of the TRAMIS user interface,

3

_________________________________ _,Introduction

while appendix D shows its monitoring when the generalization/spe­

cialization construct is introduced. In appendix E, v..e provide a set of ADL

algorithms il\lQrking on the GAM schema of the specification database which

concern the proposed generalization/specialization construct.

Note to the reader

The reader is supposed to be acquainted with the E-R approach and

with the traditional relational model. We moreover assume that he is

familiar with database design problems.

When no consensus appears in the literature about a question, v..e

provide our viewpoint when necessary.

At the beginning of each chapter and paragraph, the reader may find a

summary of its contents.

4

Cha.pt.e:r 1

The

ge~e:ra.liza.t.io~/specia.liza.t.io~

a.b~t.:ra.ct.io~ ~echa.~is~

We present here the abstraction mechanisms, and focus on one

mechanism, the generalization/specialization, trying to examine its appli­

cability and to study its usefulness in the software development lifecycle,

and in three major areas of computer science, namely artificial intelli­

gence, programming, and databases.

1.1. Abstraction mechanisms

Programming is one of the major tasks in computer science; by

progranming, we mean conceiving a model of a certain part of the reality

according to a certain formalism. It is therefore interesting to have a

closer look at the modelling pr-ocess, and tr-y to under-stand the mental

mechanisms involved in each modelling task better-.

The basic process employed wher-eby a model of the r-eality is designed

is known abstraction [Davi 89]: i t invol ves the selecti ve emphasis of

details; the final r-esult of applying abstr-action is that the elabor-ated

model stands for-, in a meaningful way, those aspects of reality being of

inter-est for- the 1-uman 'obser-ver-'. Abstraction is a mind-structur-ing

pr-ocess in which one omits details about a fact, in or-der- to r-educe the

complexity of the real 1NOrld, and so to be able to build an 'oper-ational'

model of it.

Ther-e ar-e differ-ent kinds of abstr-action mechanisms, leading to hie­

rar-chies of abstr-actions, because ther-e ar-e tao many details in the r-eality

for- a single abstr-action to be intellectually manageable [Sinit 77]. Essen­

tially there have been much wor-k ar-ound four- abstr-action mechanisms [Bada

89] [Br-ad 81] [Br-ad 84a] [Codd 79] [Davi 89] [Hamm 81] [1-ull 87b] [Matt 88]

[Mylo 84] [Ridj 84] [Sinit 77] [Sowa 84], at least in modelling techniques:

• classification;

• aggr-egation;

5

ChaJllL.1.___ ______________ T=heJm.al.u.tli.Qal 1p1c i a I i z 1 .. U.11.0 m1ruJ.i9.!L.HC han i 11

■ association;

■ generalization.

1.1.1. Four main abstraction mechanisms

A. Classificatia,

The classificatic:n consists in the grouping of abjects sharing comnon

characteristics into a class (alsa cal led set or type) over which uni form

conventions hold [Borg 84]. It is a form of abstraction in which a collec­

tion of abjects is considered as a higher level abject class which is a

precise characterization of all properties shared by each abject in the

collection. We say that an abject is an instance of a class if it has the

properties defined in the class [Ridj 84]. Classification represents then

an is-1:nstance-of relation between an abject and a class. By definition

[Bada 89], each instance inherits the properties of the classes. The

inverse is instanciatic:n.

For example, an abject class book that has properties title and ISBN

code may have as instance the abject with property values Ch cc:nceptual

rnodel 1 ing and 0-387-90842-0.

This is a fundamental mechanism as it allows an economy in the des­

cription of the semantics: 1Ne can describe the model led domain in inten­

sion, and not in extension. It is encountered in many computer science

applications ta identify, classify and describe abjects in terms of abject

classes [Ridj 84].

We may note that a class can be considered as an abject itself, and

sa be long to a class too (called a meta-class), and sa on. The class

'aspect' is not an intrinsic property of an abject, as explained in

[Hain 89d].

B. Aggregaticn

Aggregation consists in the treatment of a collection of abjects as a

single concept [Borg 84]. Therefore it implies that an abject has compo­

nents as part of its structure that are themselves abjects of interest in

the UoD. In other words, it is a form of abstraction in which a relation­

ship between component abjects is considered as a higher level aggregate

abject [Ridj 84]. This is the is-part-of relation. Aggregation supports

6

kb.W!L~1 ______________ ~The_.Q.l!l.erJl.rntion/ueciiliu1ionib1traction 11chani11

upward inheritance, i.e. the aggregate can receive the properties of its

components. Its inverse is disaggregation.

For instance, a company car may be the aggregate of component wheels,

engine, etc.

Aggregation is useful as an abstraction mechanism in that it gra­

dually makes the composition of an abject visible, and depicts how the

components which comprise the abject relate ta each other and to the abject

as a whole [Davi 89]. It is also widely present in programming languages

and database models (where obJect identity 1 has been introduced to

complete it).

Again, we may note that an aggregate abject may i tsel f be a component

abject of another aggregate abject.

C. Associaticn

Association is a form of abstraction in which a collection of member

abjects is considered as a higher level set abject [Brod 81]. Association

(also called grouping) is based on the is-rnember-of r-elation: this form of

classification r-elates the instances of a lower- level type ta the instances

of the higher- level type containing classes ta which the instances of the

lower level type do belong [Davi 89].

For example, the set trade-union is an association of employee

members.

It allows ta cr-eate an abject set from member-s of a class which

verify a same criterion [Bada 89]. It is a less recognized mechanism.

According to [Ridj 84], it emphasizes set oriented design as a special case

of aggregation.

D. Generalizaticn

Generalization consists in the extraction from one or more given

classes of a more general class that captures corrvnonalities but suppresses

some of the detailed differences in the description of the given class

[Borg 84]. l,IJe may notice that it introduces an inclusion dependency: one or

several sets of abjects are considered, at a higher level of abstraction,

1 The idea of obiect identity is that an object has an identity (that distinguishes this instance fro1 all
other instances) and a substance (the properties that hold for the object and can be discovered by inves­
tigation of the object) [Zill 84],

7

Chapter 1, ______________ ~Ttlf . ..il!lillJJn1i.Qn/ spec iJ.U.ll.ÜOJI abs trac tio.o.._11c han i sa

as a set which includes them. This is the is-a relation. The inverse is

called spe.>eializatic:n. Inheritance is associated with generalization.

For instance, the persan class may be a generalization of the author

and book reviewer classes.

We shall analyse it thoroughly in this work. It has been largely used

but there are many variations on the ideas. Incidentally, Smith and Smith

[Smit 77] felt the need to develop a philosophical position on the nature

and representation of generalizations.

A class which results from the generalization of other classes may

itself be generalized.

1.1.2. Hierarchies of abstractions

Actual 1 y, al 1 abstractions are orthogc:nal in the sense that none of

them can be derived from others [Nava 88]. An abject (or a class) can be a

manifestation of more than one abstraction provided that orthogonal nature

of abstractions. Classification is a relation between a class and its

instances, whereas aggregation, and association are used between classes to

'characterize' their instances, and generalization is typically for

classes. The class relations are the important ones for modelling. Any

class can simultaneously have aggregation, association, and generalization

relations with other classes.

All these mechanisms (classification/instanciation, aggregation/di­

saggregation, association/membership, generalization/specialization)

provide techliques for structure modelling. Modelling typically involves

the identification of relations of all abjects (classes) relevant for the

field ta modelize. They take advantage of property inheritance, the main

richless of which is abstraction (suppression of details), modularization,

and consistency since essential properties of an abject (or a class) are

defined once and are inherited in all relations in which it takes part.

Classification supports downward inheritance; aggregation and associatiàn

support upward inheritance in which properties of the components or members

are inherited by the aggregate or set. Generalization supports downward

inheritance in which all properties of a generic abject class are inherited

by each specific abject class (but also upward inheritance).

8

Chalier 1 Th!._fflera.ü.zati0n/.spJcialization abstraction aechanisa

1.2. The ganaralization/specialization abstraction

machanism in software davalopment lifacycle

It is a clear evidence that a successful software development n-etho­

dology has to employas many as possible of the abstraction structures

mentioned above, in order to make the modelling task easier.

1.2.1. Software development lifecycle

It is generally recognized that the development of a software, or

more globally an information system, goes through different steps before it

is operational [Bada 89]. These steps are usually:

■ the requirement analysis which is concerned wi th the ela­

boration of the definition of systems functionalities,

performances constraints, ••• ;

■ the conceptual or functional analysis which develops a

functional solution but independent from any tecmical media;

■ the design of the software architecture;

■ the implementation and the testing.

1.2.2. Software development based on

generalization/specialization

Requirement analysis is largely reccignized as being the most critical

step in the software lifecycle, since errors on this level may have disas­

trous effects on the subsequent development steps [Dard 89]. In that level,

bath users and analysts cooperate to elaborate the requirements. As genera­

lization/specialization structures are largely used in the real IN□rld, they

will be useful too.

In the conceptual step, generalization hierarchies help the designer

ta organize the process of gathering details and integrating them into a

consistent information system.

Generalization should be used as a cornerstone in designing data­

intensive applications [Borg 84]. Software specification n-ethodologies can

combine stepwise refinement by decomposition with concept specialization in

order to introduce the nultitude of details typically associated with large

interactive systems [Borg 84]. We shall later analyse the database design

aspect, ho.Never it should be noted that generalization/specialization is

9

ChaRter 1,__ ______________ ~The _ _gjneralization/speçialization abstraction 1echanis1

useful in the 'application' aspect2 too. Indeed, in the development of the

software, we have ta define software relations between software components

(modules). Amang the di fferent relations which are widely used [vLam 88b],

the inheritance relation typically hides a generalization/specialization

structure.

Dl the implementation level, object-oriented programming languages

are becoming more and more important, and they make a wide use of generali­

zation/specialization (see next paragraph) which enhances bath reusability

and modularization, while reducing clerical errors.

1.3. Generalization/specialization in programming,

artificial intelligence, and database areas

At the very beginning of researches on data modelling, it has becomed

obvious that this area has a lot of ccmnon interests with knowledge repre­

sentation in artificial intelligence: models of the reality are important

for bath database and artificial intelligence systems. For sane time, it

has been a growthing work on the confrontation of these two approaches

[Mylo 89] [Sern 85], a long wi th programming languages [Brod 80] [Brod 84a].

For instance, many of the concepts in semantic data models are derived from

research in two major areas in computer science [Afsa 86]:

■ data abstraction ideas in programming languages (abstract

data types);

■ knowledge representation concepts in artificial intelligence.

This work about generalization/specialization in database conceptual

modelling can certainly take profit from a survey about the exchange of

ideas among researchers who are concerned with:

■ abstract data types and program specifications tecmiques, in

the progranming language domain;

■ knowledge representation, in the artificial intelligence

comrrunity;

■ conceptual (semantic) database modelling tecmiques in the

database sytems research area.

2 We folloN the traditional database approach, where there is a distinction between data and applications.
Another trend, na1ely the object-oriented approach, considers abjects as the basic building blocks; in
this approach generalization/specialization plays an i1portant role too,

10

Chapter 1 The generalization/specialization abstraction 1echanis1

1.3.1. Generalization/specialization and object-oriented

programming

A. Cl:>ject orientaticn

According to the object-oriented paradigm [A-ner 87] [D...ico 87] [D...ico

89] [Halb 87] [Higg 89] [Meye 89], the world contains distinct obJects.

Each abject is an instance of a class or type. Tt-us, the world is described

in terms of abstract data types which are related to each other within

inheritance hierarchies. These abjects have astate that can change over

time (for several of them). The state of an abject is indicated by values

of i ts attributes. Each class contains the description of the attributes

which are given values for instance abjects of that class. The desired

behaviour of abjects forms a part of the abject definition: abject beha­

viour is defined in its methods. Objects have an identity within the system

and are manipulated thra..igh mess.ages to which they respond by mapping the

message and its method which is then invoked. An abject can accept or

reject a message sent toit.

lnheritance is a way of increasing re-use and enhancing modula­

rization: if two or more abjects of different types share some comnon pro­

perties or behaviour, a new type can be defined that contains the shared

properties or behaviour, and the original types are defined as subtypes of

the newly created type (called the supertype). Ch the other hand, if one

recognizes that some instances of a given type could share some specific

properties or behaviour, one or more new sùbtype(s) can be defined. Each

subtype inherits the properties and methods of its supertype(s). In addi­

tion it may add properties and methods that are unkno,.,n to the super­

type(s). When a type inherits a method it can choose:

■ to inherit the described behaviour;

■ to refine that behaviour by replacing the inherited method by

its o,.,n;

■ to disallDAI the behaviour.

If a type is permitted to have only a single supertype, the system is

a single inheritance system, otherwise it is a rrultiple inheritance system.

Note that nultiple inheritance introduces several problems (inheritance and

naming conflicts, •••) [D...ico 87] [D...ico 89].

11

Ch1pttr l The g1ner1liz1ti0n/1pecializati0n abstraction 11ch1ni11

B. Generalizatia,/specializatia, and abjects

Amid the different features of object-oriented programming languages,

there is inheritance (generally considered as a necessary, al tho.Jgh not

sufficient, condition for a language to be considered obJect-oriented [Higg

89]). Inheritance all°"'5 classes to share definitions with other classes,

and to make that commonality explicit. It is therefore a technique that

allows new classes to be built on the top of other less specialized classes

rather than be written from scratch. [Halb 87] discusses different ways to

use types and inheritance to structure programs.

Note that some types will have a set of instances, whereas others

will not. Types that are cnly intended to provide a common set of proper­

ties and operations for their subtypes, but which are not intended to have

instances of their a,.,n, are called abstract S1..Jpertypes [Halb 87].

1.3.2. Generalization/specialization and artificial

intelligence

A. Knodedge representaticn and manip..tlatia,

Artificial intelligence is the study of knowledge representations and

their use in language, reasoning, leaming, and problem-solving [Sowa 84].

In artificial intelligence systems, representation schemes are used for

representing semantics [Alte 90] [Brac 85] [Mylo 84]. 07e may classify the

representation schemes as foll°"'5 [vLam 88c]:

■ standard and non standard logics;

■ .production rules;

■ structured abjects (these representaticn techniques are

inspired from associative memory of h.tman beings), i.e.

sem.antic networks [Brac 83] [Wood 75] and frames [Brac 89]

[Fike 85].

Knowledge is processed by means of strategies of searching and reaso­

ning [Alte 90]. Indeed, with conventional database systems, the user rrust

know what to ask for and what to do with results (they are passive,

altho.Jgh deductive databases are becoming more active); a knowledge-based

system keeps track of the meaning of the data and performs inferences to

determine what information is needed even when it has not been explicitely

requested (see [Brod 86] for a confrontation of these systems).

12

Ch®r 1~--------------~Th,e. gtoeral ization/ spJÇial i_zaUon_ab1traction aechani11

In order ta obtain new information from existing one, the following

types of reasonings may be applied (vLam 88c]:

■ formal reasoning (or deductive);

■ inductive (or by generalization) reasoning;

■ reasoning by analogy;

■ procedural reasoning;

■ reasoning by default.

B. Generalizaticn/specializaticn in knodedge representaticn and reasa,ing

The structured abjects representation schemes make a wide use of

inheritance because they reduce repetitions in descriptions and sa reduce

the number of clerical errors: regularity is exploited by creating

abstractions classes. In semantic networks, a privileged relation, the is-a

relation [Brac 83], incorporates a strict inheritance mechanism (classes

are templates). Frames, on the other hand, consider classes as prototypes,

on which default inheritance can be applied (Borg 84]. With multiple

inheritance, especially if default inheritance and exceptions are allowed,

reasoning (which is part of artificial intelligence systems) has become

more difficult ta deal with: numerous algorithms have been designed using

the shortest path reasoning, searching all inheritance paths or other

'techliques' (scrne of them have unpredictable behaviour) [Tour 86].

1.3.3. Generalization/specialization and databases

A. Database mcx:Jels

A database is a model of an evolving physical world; the state of

this model, at a given instant, represents the knowledge that has been

acquired from the world [Abri 74]. The data are organized into a structure

which is defined by the database schE!ma.

A data(base) rnodel is a collection of mathematically well-defined

constructs and integrity rules helping at the expression of static and

dynamic properties of data intensive applications [Brod 84b]. A data model

must have a convnonly accepted (and useful) interpretation [Date 86].

Indeed, a data model is a formal system (i.e. a system in which a set of

precisely defined abjects can be manipulated in accordance with, and only

in accordance with, a set of precisely defined rules, without any regard

for the real world interpretation of those abjects and rules).

13

Chijlte(J. _______________ _,_,The _generaliution/sp~cialization abstraction aech_anisa

Since their origin, data models are at the confluence of two distinct

necessities: the representation of the reality and the representation of

the intemal structure of data (for software and hardware). The first group

contains representaticn models, while in the second group are the recording

models [More 80].

If we overview the history of data models, we may distinguish diffe­

rent distinct groups characterized by levels of abstractions within the

modelling formalism [Pott 89]:

■ the ancestors, i.e. file systems;

■ the traditicnal data models, i.e. the hierarchical group, the

network group [Hain 85] and .the relational group [Codd 70]

[Delo 82] [Hain 88];

■ the semantic data models.

Most traditional data models provide essentially me.>ans of represen­

ting data (they are computer-oriented or record-oriented). Se/nantie data

models, through the use of abstractions, all0\111 the user to model and view

the data on many levels [Peck 88] (they are user-oriented or semantic­

oriented). Thus the objective of designing a semantic data model is to

design a higher-level database model that will enable the database designer

to naturally and directly incorporate more of the semantics of a database

into i ts schema [Hamm 81].

The paper of Peckham and Maryanski [Peck 88] surveys and compares a

representative sample of semantic data models ([1-l.111 87b] and [Hain 89c]

propose the use of a pedagogical model for comparisons). These are analysed

for the presence of constructs representing the fulfillme.>nt of general

semantic modelling goals.

There are (at least) two philosophies in data modelling as ta what

the real world consists of: just abjects, or abjects and relationships amid

them. In the first case, asscx::iations between abjects have ta be expressed

by general references, in the second one, a tap-level concept is available

[Di tt 90].

Chen's E-R model [Chen 76] is an early semantic data model that

unifies features of the traditional models and facilitates the incorpora­

tion of semantic information [Peck 88] by attempting to provide rrultiple

abstractions levels. Other semantic models are the binary models [Abri 74]

14

Çmter .1~--------------~ThJ....il!!..eralization/specialiation abru:action 1ech1ni11

[Fou 89] [Hain 74] [Hain 86a] and the extensions to the relational model

[Codd 79]. Other models follow the functional approach [Ship 81] or the

logical approach [Gall 89].

Currently nuch 1NOrk is done on the design of new semantic models or

on the extensions of existing models.

Facilities for complex abject modelling [l-lill 87a] are nowadays

needed in several database applications like computer-aided design/con­

puter-aided manufacturing (CAD/CAM). Complex abjects modelling concerns

structural abject orientation, i.e. the ability to support structural

description of complex abjects together with generic manipulation

operators, defined for all abjects types [Pare 89]: the basic facility

needed for such model l ing, beyond the concept of abject i tsel f, is the

ability to specify that an abject is represented by a collection of infor­

mation, decomposable into components; each of these components, in its

turn, may be represented by a collection of information, and so on.

The central resul t of semantic modelling research has been the deve­

lopment of powerful mechanisms for representing the structural aspects of

business data. In recent years, l"lo.Never, the attention of database desi­

gners has turned towards incorporating the behavioural or dynamic aspects

into modelling formalisms (influence of object-oriented progranming) [l-lill

87].

Aïother trend is towards hyper-semantic data models and deductive

databases. These models acquire knowledge in the form of artificial intel­

ligence concepts, together with concepts of semantic data models [Pott 89].

The hyper-semantic models are then user-oriented and they capture inferen­

tial relationships amc:ng real 1NOrld concepts. They allow one to define

deductive databases that have the ability to deduce new facts from an

arbitrary set of facts and rules, to supersede fact-based database schemes.

B. Generalizatic:n/specializatic:n cc:nstn..icts in database mcx:lels

Generalization/specialization has been introduced in semantic models,

but also in implementation models (e.g. in object-oriented DBMSs).

a) Generalization/specialization in semantic model~

The concepts of generalization/specialization, leading to subtype/su­

pertype hierarchies, are of particular importance, as far as conceptual

15

C=h=a,._pt=a.,_r 1'------------------'-'Th,.,.1_,gµ,1,.,_,na..._r.,,,_a,,_,li...,.z.,._1t._.i""'on/ 1pac il li zatipn ab1 traction 11c h1n i 11

modelling is concemed [Hain 89c]. Developed mainly in senantic representa­

tion tect-niques, they have beerl adopted in the framework of senantic data

models.

As we shall analyze later, the main interests of these concepts are

the inheritance inference rules.

We may effectively distinguish three possible interests of generali­

zation/specialization constructs, as far as conceptual mcx:lelling is

concerned:

• to add more semantics al:x::ut the UoD in schemata;

• to alla,,.i more schema flexibility;

• to alla,,.i more conciseness in schemata.

The first and primordial interest is to alla,,.i the representation of

more semantics al:x::ut the UoD in the conceptual schema. By definition of the

generalization/specialization mechanism, if we have a construct which

alla,,.is its representation in a schema, we are then able to represent the

same abject of the UoD under different and complementary aspects, and to

deal with these rrultiple representations. P.n important remark is that if we

alla,,.i rrultiple representations of a same abject in the schema, we rrust be

able to manage possible redundancies of representation, and to avoid any

contradiction.

The interest, is that it alla,,.is to have only one schema which can be

read by different persans, according to their viewpoints. Se/nantie relati­

vism, i.e. the ability to view a same information in different ways, depen­

ding en the context [Brcx:I 81], is enhanced.

This construct is also used in order to obtain more concise schemata.

Generalization may be intrcx:luced in order to p..it together characteristics

belonging to several types in order to form another type. We already saw

the interest from a set of instances viewpoint, while we consider here a

type descripticn point of view.

b) Generalization/specialization in implementation models

Generalization/specialization constructs are also used in the

database mcx:lels of object-oriented DBMSs. Currently, there are concerns

al:x::ut the real nature of such DBMSs and around their issues. As said by

Higgs in his survey [Higg 89], 'it is clear that the research COfMUnity has

16

Chaphr 1 Ib• g1n1r1liz1ti0n/1ptei1liz1ti0n ab1tr1cti0n 11ch1ni11

net yet distilled a.1t the essentials of an object-oriented database system

to everyone's satisfaction'.

The idea is to apply to database many of the ideas that had success

in programming languages (cf. 1.3.1), in order to achieve similar advances,

especially for applications coming from engineering, manufacturing, CASE,

CAD/CPi'1, kna,.iledge-based systems, office autanation ••• , where current

database tecmology seems to fall short: the data moc::lel of traditional

DB'1Ss are not expressive ena.1gh to effectively moc::lel these applications

[Higg 89].

Dittrich brings clarification to the abject-orientation in the

ccntext of DB'1Ss, and presents issues in his paper [Ditt 90]. He presents a

list of features that an ideal object-oriented DB"IS should have (according

to a number of researchers from six different schools): an object-oriented

DB'1S is a DB"IS with an object-oriented data moc::lel. ~ object-oriented data

model is a data moc::lel which has, ama,g others, the folla,.iing characteris­

tic: types (classes) can be organized into hierarchies and thus allo,., to

express that cne type is ccnsidered as a subtype of another one, i.e. that

it is specified in more details (with respect to structures and operations)

than the super-type. Along with type hierarchies goes the concept of inheri­

tance in that a subtype inherit the properties (structures and operations)

from the super-type in addition toits proper ones. Of ca.1rse, inheritance

propagates all the way to the top of the hierarchy if there are more than

just two levels. In summary, with types hierarchies and the inheritance

mechanism, more semantics can be expressed than without, it introduces an

addi tional model ling discipline (ref inement) , and i t may save coding

efforts because operations of specific classes need net always to be reco­

ded. Closely connected are the concepts of overriding, overloading and late

binding.

We may also note that [SuYS 86] proposes the use of generaliza­

tion/specialization for modelling partitioned and replicated databases in

distributed databases.

17

Cha.pte:r 2

Da.ta.ha.set clets ig:n.

In this chapter, we recall a few concepts conceming database design.

These explanations aim at providing the reader with our point of view

(especially when no consensus appears or when different approaches are

possible).

2.1. Database design methodology

[.,Je shall first locate the database as a component of the information

system, and present the idea of design methodologies.

2.1.1. The information system and the database

The general model [Bada 89] of an informatic:n system is represented

in figure 2.1. [.,Je consider that an application receives inputs, provided by

i ts environment (i.e. a user or another application), and computes, accor­

ding toits specification, some outputs that are given to the environment.

This computation consumes ressources and there is interaction with the

database.

Let us precise the role of the database. Computer applications aim at

providing an enter-prise with some automated work which can be of crucial

importance for that enter-prise. Many of these applications interact with

the database, the memory of the information system. It consists in a col­

lection of data standing for information in the real world. [.,Je recognize

two r-oles of a database [Hain 86a]:

■ it is a correct, a reliable rncx:Jel of a par-t of the real

world;

• i t n-ust be an efficient data server.

2.1.2. Database design methodology

[.,Je have alr-eady mentioned that as any software 'component', the

structure of the database rrust be kno.,,,n to the computer. The global user's

view of a database, i.e. its schema, is specified in terms of a database

1B

D1tab111 ll.ll9D.

descr-iption and structuring formal ism, cal led a da ta(base) rncx:Jel. The

process during which the database is buil t is cal led database design.

It is now recognized that information systems (and consequently data­

bases) are not built in an arbitrary way b..Jt rather according ta a methodo-­

logy (a survey of methodologies can be fc:und in [Roll 89]). Bodart and

Pigneur [Bada 89] explain that any methodology is based on a set of rncx:Jels,

proposes different steps and rules which are working with the help of

software tool s.

A. Design steps

Oie inherent problem in modelling any subset of the real world is the

difference between man's perception of the enterprise and the need of the

computer ta organize data in a particular way, with efficient storage and

performance constraints.

This gave rise ta rncx:Jelling levels. [Hain 86a] provides an overview

of the evolution of these aspects. In this work, we consider that the

design of a database is organized as follows:

■ the cCT1ceptual rncx:Jelling step produces a conceptual schema

specifying semantic structures that the database will contain

in order ta represent the UoD;

■ the logical rncx:Jelling step aims at producing a schema

containing all the semantics expressed in the conceptual

schema, but describing the logical accesses needs of applica­

tion and being consistent with a DBMS;

■ the physical design step produces a description of the

database which is both operational and efficient.

In this dissertation, we essentially focus on conceptual aspects (and

the transition towards logical design). They really important in the

database design process [Plet 89].

B. Data madels

In most methodologies, ta each step corresponds a different model

(see chapter 1 for the survey of data models). For instance, conceptual

specifications are written with the E-R model, logical specifications use a

binary model, and the DBMS, physical schema is a relational schema. The

practical use of semantic data models has often been limited ta the design

19

Chal}ter J.__ ____________________________ _,D"-"a=hbase .design

of record-based schemata, i.e. the DBMS data models are typically record­

oriented. Therefore, high-level structures of user-oriented models expres­

sed with a semantic model are mapped ta record-oriented structures. Sore

methodologies go directly from the conceptual model to the DBMS model which

is used for both the logical and physical steps [Berm 86] [Saka 83] [Teor

86] while others use an intermediate model for the logical step [Hain 86a].

Such design methodologies are essentially based on a well-defined set

of transformations used for these model mappings.

Hainaut devoted rruch work to transformations: [Hain 81] [Hain 86b]

[Hain 87] [Hain 89a] [Hain 89b] [Hain 89c] [Hain 89d]. We take the follo­

wing definition of semantic preserving (or reversible) schema transforma­

tiens from [Hain 89b]: transforming a SOJrce schema produces a new schema

which has some sort of equivalence with the first one (we are interested in

a semantic equivalence), but satisfies some sorts of constraints the first

one does not meet. A reversible transformation transforms data without loss

nor noise in the database, i.e. so that an inverse transformation allows to

retrieve the initial state. Transformations concerning generalization/spe­

cialization structures will be analysed in subsequent chapters.

C. Ccmp.tter-aided design

CASE tools are becoming important for the efficient management of all

steps of information systems lifecycles: they reduce the 'clerical' work

and facilitate coordination among persans concerned by the design (an

analysis may be found in [vlam 82]).

Currently, there are more and more database design workbenches. They

are either a component of a CASE tool [Cata 88], or subclasses of them

[Hain 89d]. While every software tool rests on a lifecycle mode!, some of

them compel the user with a rigid sequence of operations and others offer a

toolkit approach. Sorne of them are front-end tools only, while others go

through all steps of their lifecycle model. Sore of them are 'traditional'

programs [Cane 90b] [Lepr 86] [Tuch 90], and others offer an expert system

approach [Bouz 84] [Bouz 86] [Bria 85] [Cive 88] [Mann 88] [Roll 86]

[Spri 88] [Star 88].

In chapters 5 and 6, we shall be interested in an independent

database design workbench, based on the toolkit approach, going through all

steps of database design, and being a 'traditional' program.

20

Çllilter ·=-2 ____________________________ ,,_,,_,0 t_m_u llnign

2.2. Conceptual modelling

After having browsed the idea of database design, we explain here the

principle of the conceptual modelling phase. We first recall the 'link'

between the UoD and the database ta understand the conceptualization

process better. Then we say a few words on conceptual models, and we

overview the activities involved in the building of a conceptual schema.

2.2.1. The UoD and the database

A. The lbD

The UoD, as already mentioned, is a part of the real world which is

pertinent ta the application (i.e. we want ta model). In our example, it

refers ta a library1 • We will assume, according ta the ob_ject-association

philosophy, that the UoD contains individual components (the abjects) which

are in relation with each others, and are characterized by properties.

If we were asked ta explain the UoD or if we think aboutit, we

should certainly not quote all the abjects and relations present at a given

time: we should, consciously or not, use abstraction mechanisms. In other

words, we structure our mind by introducing abstraction levels in order ta

reduce the complexity of the real world. These abstraction mechanisms have

already been explained in chapter 1. However we have ta precise that during

the conceptual modelling process for the description of structural

properties2 of the real world, the classification mechanism has a 'special'

r-ole.

Indeed, the UoD is composed of two parts [Fouc 89]:

■ the individual system, where abjects are living;

■ the abstraction system, which contains the rules describing

the behaviour of abjects (it has no physical existence in the

real world, it results only from a mental, abstraction

process).

B. The database

The database (a par-t of the information system) can be defined as a

formal r-epr-esentation of the UoD.

1 The following ex11ples are taken fro1 a co11on case study explained in appendix A,
2 This work focuses only on static aspects of infor1ation 1odelling, leaving aside query and 1anipulation

languages, and behavioural aspects,

21

,..,Ch-=a..,_pt,.,.e,._r ...,,2 ____________________________ ..ff.Dahbue delJ.Q.!1

Of course, as we distinguished two parts in the UoD, we shall find

them in the database3:

• the conceptu,al schem.a is the resul t of the formalization of

the abstraction system;

• the occurrence schem.3 4 contains the representation of the

real facts (i.e. what is in the abject system of the UoD).

But we have ta remark that the role of the abstraction system of the

UoD is ta describe the abjects and relations, while the conceptual schema

predetermines all possible states and transitions allowed in the occurrence

schema, according ta rules which explain what is happening in the UoD.

Keep in mind tao that we assume that a single fact in the UoD is

represented atone and only one place in the database (i.e. that each

abject of the UoD maps- onto one and only one element in the occurrence

schema [Mc:le 80]).

The conceptual schema describes the semantic structures of data (or

according ta another interpretation, the structures of the UoD described by

data) [Hain 89d]. We assume that such a description is independent from any

'technical media' and easy to understand by 'everybody' (users, designers,

analysts, programners). Indeed its objective is threefold:

• to help the user, the designer and the analyst to express

meaning of data, i.e. information, which is relevant to the

application (ccxrm..v,ic,ation viewpoint);

• to help the builders of the system organize data correctly

according to their semantics (canputer ,applic,ation view­

point);

• to help give the users the precise definition of the informa­

tion they manii:x..ilate, and their conditions of use (exploit,a­

tion viewpoint) •

2.2.2. The conceptualization or conceptual modelling process

The conceptual designer first acquires knowledge of facts (and

feasible facts) in the UoD by observation sessions, interviews, analysis of

documents, reverse engineering, ••• Then, by abstraction, he will speak in

terms of classes and consistency rules. Finally there is the formalization

3 The dichoto1y betNeen classes and instance, is an axio1 in databa1e1,
4 Often, the occurrence sche1a i1 called the datab11e,

22

Cl!apter 2 D1t1bu1 d11ign

of that abstract knowledge (using a conceptual model) in order to b.Jild the

conceptual schema. In SUITVTlary, we may distinguish three steps: observatic:n,

abstractic:n and formalizatic:n.

In the following, we shall be interested in the formalization step,

i.e. the b.Jilding of a conceptual schema, especially, with the idea of

b.Jilding a conceptual model (more precisely enhancing the capabilities of

an existing one) in order to simplify the expression of abstractions in the

schema and so facilitate that formalization step.

2.2.3. Conceptual models

Their aim is to be easier for the designer to draw 'natural' struc­

tures and for the user to manipulate concepts that are already familiar for

him [Borg 85]. OJr hypothesis is that the better a model is able to reflect

the abstraction processes, the closer the user's way of thinking it will

follow and the easier it will be to use. Therefore semantic data models

(see chapter 1) should be used.

In the conceptual model ling phase i t is especiall y important to

stress abjects pertaining to the application demain, and to try to

eliminate as muchas possible of the noise introduced by the constructs of

the specific model used or by its incapacity to express subtilities, neces­

sary for the enterprise [More 88].

2.2.4. Building a conceptual schema

They are different alternative schema design approaches [Nava 88b]:

■ design of the entire schema as a single activity;

■ design of a first schema, and obtention of the final result

schema by a process of schema refinernent t3l1d restructuring;

■ design of cc:mpcnent schemata and then integratic:n of these

schemata.

Other activities concern normalizatic:n [Bada 89] [Lenz 89] [Tard 88],

i.e. the checking of the completeness, consistency, stability, conciseness

of the conceptual schema, and view extractic:n (for documentation purposes)

[Bati 88] [Teor 89] [Urba 87] [Verm 83]. When extended constructs are

proposed, mappings towards basic concepts are often done (another approach

consists in the direct mapping of extended concepts in implementation

23

Ch@.J!ter 2,____ ___________________________ --=D=at,base_~sig_n

models constructs). View integraticn is studied, among others, in

[Bati 86], [Cive 88], [Mann 88], and [Nava 88b].

All these activities use three different 'operators': schema modifi­

cation, verification of a schema according ta rules, and transformations of

schemata. They will be studied in this dissertation, as far as generaliza­

tion/specialization structures are concerned.

24

Cha.pter 3

Ge~era.1iza.tio~/specia.1iza.tio~

str~ct~res i~ da.ta.be.se ~ode1s

In chapter 1, we saw that generalization/specialization is a powerful

abstraction mechanism, and among others, useful in a database conceptual

model. The aim of this chapter is to study the di fferent constructs and

their related elements proposed in the literature about this mechanism.

This analysis will help us to define a generalization/specialization

construct for TRAMIS.

Indeed, ,ruch attention has been paid for generalization/specializa­

tion concepts during the last decade in data models. It is generally

recognized that Smith and Smith [Smit 77] introduced it in a data model.

Incidentally, in his paper introducing the E-R model [Chen 76], Chen hinted

at subsetting of entity types was possible. Codd proposed a generaliza­

tion/specialization construct in its extensions of the relational model

[Codd 79]. The generalization/specialization concepts are now available in

almost all data models in most cases as one or several constructs, but

sometimes as integrity constraints (see [Bada 89], for example) and with

more or less flexibility. There are actually many variations around bath

their interpretation, the way they are used and the vocabulary, such that

the impression of unanimous consensus disappears as soon as one takes a

closer look on the different proposals; it then becomes difficult to get a

clear idea of what is the basic significance of the concept, and of what is

a particular choice among different possibilities [Spac 89].

A few studies have been devoted to the generalization/specialization

coocept:

■ [Coll 88], [Hain 89d] and [Spac 89] study i t as an extensioo

of an E-R model;

■ in [1-ull 87b] and [Peck 88], it is considered as one of the

characteristics of semantic data models.

The examples in the following are referring to the library LbD

explained in appendix A. The GER model (outlined in appendix 8) is used as

25

C..hiJl.ter .~3 ______________ ~G=e~neralization(jpecialization structures_in database 1odels

a framework for the explanation of the generalization/specialization

concepts.

3.1. The generalization/specialization basic block:

the is-a relation

Before getting in more details about the is-a relation, let us recall

the basic notion of generalization/specialization in data modelling as

explained in chapter 1. The constructs of generalization/specialization

allo.--J everyone to specify that a class of abjects contains the abjects of

another class (inclusion dependency), and the first class describes them in

a more global, in a less precise way than the latter class does (details

avoidance). Such a mechanism allows the recording of abstraction levels in

the conceptual schema; they are often used in the conceptualization

process, and al low one. to master the numerous characteristics of an abject

in the UoD (and so capture more semantics). Moreover, th~s allows some kind

of view 'reconciliation' : an abject may be seen under one or ano_ther (non

contradictory) aspect, according to a viewpoint. Schema conciseness is

enhanced too when this mechanism is used.

3.1.1. The is-a relation

A. Definitia,s

Concepts for generalization/specialization in data models are most

frequently introduced, implicitly or not, through the is-a relation between

entity types. But the different 1NOrks are based on rather different, intui­

tive or more formal, meanings of this relation [1-l..111 87b]. Therefore, we

would like to clarify a little by overviewing different definitions.

Che of the most used definitions states that entity type ES is-a

entity type EG if entity domain of ES is a subdomain of EG entity domain:

the is-a relation is indeed an inclusion dependency [Hain 89d] [Spac 89]

[1-l..111 87b] [Czed 90]. But these authors usually do not allow to say that ES

is-a ES; however an inclusion dependency is reflexive. Therefore we think

that behind the inclusion dependency there is another characteristic of the

is-a relation: something we might call a more cc:ncrete relation.

And here, we follow Collart and Joris' viewpoint [Coll 88]: the is-a

relation is indeed the conjunction of an inclusion relation and the more

cc:ncrete relation. Note however that it is really difficult to formally

26

Chapter __ 3 ______________ __,Generali.za.tion/special.iz.ation_.structures...in. d~ta.base . ..11odel.s

define the more cc:ncrete relation, as it 'goes out' of the formal system.

We might say that ES is more concrete than EG if it describes abjects in a

more concrete way than EG does. [Davi 89] says that anis-a relation can be

defined between two entity types where one type is the more general one,

and the other is the more specific one. According to this approach, ES is-a

EG if:

• ES entity domain is a subdomain of EG entity domain;

• and the structural and behavioural properties described by ES

are more concrete, more specialized than those described by

EG.

A.other approach takes a closer look at the more cc:ncrete relation;

they 'materialize' it: ES is-a EG if ES entity domain is a subdomain of EG

entity domain, and all attributes and relationship of EG are also coovnon ta

ES [Berg 88] [Ceri 81]. They include in a definition what others use as an

inference rule (see the inheritance mechan.ism below).

In a similar direction, some authors propose anis-a relation as a

type constructor: one creates subtypes to make them inherit (and depend

upon) the information from the supertype [Sima 89]. The focus is on the

type descriptive aspect. The key idea behind the use of the is-a relation­

ship is that types share information; avoiding duplication of that informa­

tion seems to be an important factor in reducing the human cognitive load

as well as the use of processing ressources [Sima 89]. Le and Peugeot [LePe

88] introduced anis-a relation defining only property inheritance (the

t,veak inheritance relation).

It might also be interesting to quote the concepts of base entity

type and nc:n base ent.ity type, wi th concem ta generalization/specializa­

tion. A base entity type is defined independently of all other types in the

conceptual schema; in our GER frarnei,,ork this means that their entity domain

is a basic one. They are rrutually disjoint in that every entity is an ins­

tance of exactly one base entity type. Of course, at some level of abstrac­

tion, all entities are members of entity domain ENTITIES. Non-base entity

types are defined in terms of other entity types by inter-types relations:

their domain can be declared a subset of a constructed domain [HafTYTl 81].

The is-a relation is such an inter-type connection: specific entity types

arise then as derived types. Note that this approach puts in evidence a

top-down design of types [Qian 85].

27

Chapttr.._,...3 _____________ -=6'-neraüzaticn/utciaü.uJign _1tructur11 in hhllue 10dels

B. E>cample

In our reference example, the sentence 'Books, journal papers and

conference papers are particular kinds of publications' typically hides

is-a relations. We can represent its semantics by entity types BCXJK,

CO\FEREI\CE_PAPER, JOJRNPL_PAPER, and PUBLICATI[l\J; and by specifying that

BCXJK is-a PUBLICATI[l\J, CO\FEREI\CE_PAPER is-a PUBLICATI[l\J, J~_PAPER

is-a PUBLICATI[l\J, as depicted in schema 3.11 •

C. Discussia,

In the following, we will use Collart and Joris' definition. Indeed,

these two characteristics of the is-a relation let see the two main advan­

tages of generalization/specialization (from the semantic viewpoint) [Coll

88]:

■ an abject of the real world may be described in different

manners under different viewpoints (as a consequence, this

introduces more dynamics in the model: an enti ty be longs to

one or another entity type, for instance by changing of

specific entity type);

■ different abstraction levels are introduced into a conceptual

schema.

We must also be aware that the is-a relation is a higher order rela­

tion, not between individuals, b.Jt between types of individuals [Sowa 84].

Amid the is-a relations, some of them are 'natural', i.e. they relate

to the 'essenc;:e' of the entities, 1"'hile others are 'role depending' because

they depend on accidenta! relationship to some other entities [Sowa 84]. We

can also consider is-a relations for 'abbreviation purposes' when they are

introduced in order to avoid the definition of a property valuable for

different entity types.

3.1.2. The is-a graph

A. Properties of the is-a relatia,

If we are considering the is-a relation, we may define the following

properties.

1 Note the GER eMpressicn cf is-a relations,

28

Chapter 3 61n1raliz1tion/1p1ciiliz1tion 1tructur11 in d&tib1111od1l1

a) Irreflexivity

The is-a relation between ES and EG is concerned by an inclusicn

dependency: the domain of ES is included in the domain of EG. Sets theory

says that this relation is reflexive (A ç A). Eut the definiticn of the

is-a relation has a second 'item': the more> ccncre>te> relation which is

irreflexive. Hence, the is-a relation is irre>fle>xive.

b) Antisymmetricity

For the same reason, we cannot have El. is-a E2 and E2 is-a El.. Tt-us,

the is-a relation is antisyrmetrical.

c) Transitivity

Bath set inclusion and the more> ccncre>te> relations are transitive.

Suppose that El. is-a E:;;: is-a E::s, then we also have El. is-a E"3; the latter

relation is non-primitive: it is deducible from the two other specified

relations. This is the first inference rule related to is-a relations.

B. Definitia,s

Before following, we shall precise o..ir definitions:

■ if ES is-a EG then ES is the specific entity type and EG is

the gene>ric entity type 2 ;

■ if this relation is a primitive one, then ES is a direct

specific entity type of ES, and EG a direct generic entity

type of ES, otherwise they are respectively indirect specific

entity type and indirect gene>ric entity type.

If ES is-a EGl. and ES is-a EG.:z, then ES is called a cc:mna, specific

entity type of EGl. and EG.:z. If ES1 is-a EG and ES:z is-a EG, then EG is

called a cawna, generic entity type of ESl. and ES:z.

C. Praperties of the is-a graph

To conclude, we can say that the is-a relation forms a strict partial

orde>r. Therefore, the graph fortred by all entity types of a schema and is-a

relations cannot include any cycle: it is an acyclic-directe>d graph.

2 ln th, lit1r1tur11 • sp,cific ,ntity typ, is 1110 c1ll1d 1ubtyp1, sp1ci1liz1tion, child ,ntity typ1,
subs1t1 or subcl1s1, Sup1rtyp1 1 g1n1r1liz1tion, parent 1ntity type, 1up1r11t, or supercl111 are synony11
for g,n1ric 1ntity typ1,

29

Ch■ pter 3 61n1raliz ■ tion/1p1ci ■ liz ■ tion 1tructur11 in dat ■ b■11 1od1l1

1-b-iever it is not coonected since there is not necessarily a relatioo

between each co...iple of enti ty types. The term hierarchy is often used

indiscriminatel y for any partial order [Sowa 84 }'. We have seen that the

is-a relation is transitive. It is customary to specify the primitive is-a

relations explicitely and view the relatioos due to transitivity as speci­

fied implicitely (as they do not bring more information).

D. Discussicn

When introducing a new construct in a model, one has • to def ine i t

(local aspect) and to precise the global combination rules. Several authors

do not explicitely state global rules, but imply them in the definition of

the underlying constructs (see [Hanm 81], for example). Let us nON overview

some generally specified rules.

A first rule involves directed graphs. It is generally recognized

that a generic entity type may have several specific entity types, i.e.

tTLJltiple specializaticn is allONed. 0, the other hand, single generaliza­

ticn (i.e. an entity type is the specialization of at most ooe generic

entity type) is often required for the simplicity of its management [Bada

89]: in such a case, the is-a graphs are trees. If multiple generalization

is allONed, we have to deal with 'general' acyclic-directed graphs. For

example, ooe canuse multiple generalization to specify that a literary

figure is both an author and a reviewer (see schema 3.2). Ta restrict ta

single generalization is more restrictive in the sense that we are missing

a power of expression; however we shall see that it is sometimes possible

to specify with single generalization what is specified with multiple gene­

ralization. The drawback of multiple generalizatioos is that they may

introduce lots of ambiguities or contradictions in a graph. For instance,

we have seen that the is-a relation is transitive, and that transitive

links are not introduced into the schema. ait what is really a transitive

link? E1 is-a E2, E2 is-a E3, E3 is-a ~, and E1 is-a Es, Es is-a ~ are

not redundant, especially if we agree that these two assertions are

relevant to two different viewpoints aba.Jt the UoD. 0, the other hand, El

is-a E3 is redundant wi th El is-a E2, E2 is-a E3.

In certain models, it is required that the is-a hierarchy forms a

lattice, i.e. each schema has an entity type which is a cœmon specific

enti ty type of al 1 enti ty types (the absurd ent.ity type, as no actual

3 Nt shall also us, it Nith that interpretation,

30

Ch•pur ___ 3"---------------------"Genera_l_ization/specialization ___ structures in _database __ 10del1

entity could ever be an instance of that type, since it wo...ild be 'every­

thing' , al 1 at the same time), and a ccmnon generic enti ty type of al 1

enti ty types (the univers.al entity type in the GER model).

3.2. Inheritanc:e

As noted earlier, it may be the case that an entity belongs to more

than one entity type, i.e. when is-a relations are specified: entity types

do share entities. As a consequence, they can share descriptive informa­

tion.

3.2.1. The inheritance inference rule

Since every occurrence of a specific entity type is also occurrence

of the generic enti ty type, that occurrence possesses values for the

characteristics (attributes, roles and relationship types) defined in the

generic entity type; conversely, some occurrences of the generic entity

type have values for characteristics of the specific entity type. This

means that an entity type belonging ta an is-a hierarchy possesses only

some of its characteristics; the others may be inferred from its participa­

tion ta the hierarchy: they are inherited from another entity type. The

value for an entity e of ES for an inherited characteristic is simply the

value of e when it is viewed as a member of EG [Hamn 81]. For example,

schema 3.3 represents the fact that a publication is identified by its ISBN

code, is characterized by a title, a tapie, and is written by authors; it

is also specified that a BOOK is a specific entity type of PIJBLICATICN.

Therefore, one can speak, thanks to inheritance, of the TITLE of a BOOK,

and that BOJKs are written by ALJTI-Œs.

Such a mechanism is called inheritance. Inheri tance is, by defini­

tion, the fact that one completes the description of a real abject seen

through the generic or specific aspect by characteristics respectively

specific or generic. Inheritance concerns the descriptive aspect (schema

design) but also access ta information: at query time, one may access ta

the information of an entity seen under the specific or generic aspect: In

conclusion, inheritance is a reading technique (at schema design time) and

a query technique (at manipulation time) • We shal 1 analyse now the reading

technique, which especially interests us.

With the explanation above, one understands easily that inheritance

allows the building of more concise schemata: i t is not necessary to repeat

31

Chaphr 3 61n1r1liz1tion/1p1cialization 1tructur11 in d1tab11110d1l1

attributes, for instance, of the generic entity type in the specific entity

type. f\bte that vE may use this 'tool' as a modelling abbreviation tecl"ni­

que, more or less independently of any generalization/specialization consi­

deration. It also allo,.is the building of schemata which are more flexible

(see below). As a consequence, the relevant characteristics of UoD objects

are not only described in one entity type but may be scattered amid entity

types belonging to a same is-a hierarchy.

Inheritance is a tecl"nique based on an inference rule: this is the

second rule, as far as generalization/specification constructs are

concerned.

3.2.2. Downward and upward inheritance

A. Definitia,s

In the literature, there are two tendencies abo..lt the inheritance

reading tecl"nique:

■ most of the authors present inheritance from the generic

entity type to the specific entity type, i.e. dow,ward

inheritance (in most semantic data models, each attribute

defined on a generic entity type is automatically defined on

the specific entity type; it is also generally true that a

specific entity type may have attributes not shared by the

generic entity types [1-ull 87b] [Saka 83]);

■ a minority of authors also present upw,ard inheritance from

the speci fic enti ty type to the generic enti ty type [Carb

80].

In most semantic models, inheritance inference is supported in an

anti-symnetrical form: characteristics of the generic entity type also

applies to instances of the specific entity type [LePe 88], but none G>f the

characteristics defined for the specific entity type are defined for an

instance seen as a generic entity. Other models (the FACT model, for

instance [Sacc 88]) support a less restrictive inference rule: all charac­

teristics defined on any entity type to which an instance belongs are

defined for that instance no matter its current 'role' is. The latter rule

means that when the user or the reader of the schema 'selects' a level of

abstraction, he may lose detail on the role but he does net lose informa­

tion.

32

ChiJ)ter_.3,.__ _____________ _,,_GeneraJization/u.ecialization_structuru .in .da.tabase __ aodels

We propose to define two primitive inheritance operators: upward

inheritance and do,,.nward inheritance. To apply dOWïward inheritance between

a generic entity type and a specific entity type consists (from the des­

criptive viBNpoint) in completing characteristics of the specific entity

type by characteristics of the generic entity type. To apply upward inheri­

tance between a specific entity type and a generic entity type consists in

putting characteristics of the specific entity type in the description of

the generic entity type (but optionality has to be specified since only

entities which also are specific possess values for these characteristics).

These operators can be combined to of fer more complex inheri tance

inferences; for instance sideway inheritance [Carb 80] [Coll 88] consists

in applying upward inheritance and then do,,.nward inheritance.

Let us now precise what may be inherited. We have seen that inheri­

tance consists in completing the defini tian of another enti ty type (belon­

ging to a same is-a hierarchy). Therefore, attributes and roles (and the

relationship in which they appear) may be inherited. Dow1ward inherited

attributes keep their name (if no naming conflict arises), their properties

and demain of values, while roles keep their name and cardinalities, and

the relationship keep their name, their degree, their roles, and their

attributes. Note that key constraints are kept too. Elements inherited in

an upward fashion keep their characteristics too, except that the minimum

cardinality of an attribute or arole is set to zero, and that key

constraints are not standing [Coll 88].

B. Example

Let us consider schema 3.4 representing the fragment of our UoD

conceming persans, authors, reviBNers and their characteristics. Dow,ward

inheritance allows us to speak of the NPi"E of an AUTI-Œ. With upward

inheritance, we can consider the STIPEND of a PERSCN (that attribute may

then take the null value). If we speak of the PUBLICATI()\J written by a

REVIE'-'ER, we apply sidBNay inheritance: only REVIE'-'ERs who are also AUTI-Œs

have written a book (such instances may exist since no disjunction

constraint - see next paragraph - has been specified).

C. Disc:ussia,

Authors who reject upward inheritance argue that, if we are interes­

ted in an abject in its generic form, this means that we 'are on an

C!!.1h,.,.a,,_pt..,,e.,_r,,3c.__ ______________ 6...,1..en'-L1wr i,.._l~i z'""'a'""ti..,.,· on./ sptc i a 1 i u tian s truc tur11 in da hbne 10d11s

abstraction level so that details from the specific entity type are not

relevant. Authors allo,,,ing both up.,,iard and dOWïward inheritance argue that

no matter of the generic or specific approach of the abject is, its desc­

ription should be as complete as possible. In this sense, up.,,iard inheri­

tance might be carefully applied [Coll 88]. Up.,,iard inheritance allows more

schema flexibility (the 'view definition' mechanism is enhanced) and is

useful in mapping and view integration activities of database design.

Usually, inheritance is presented as a side-effect, and is sometimes

included in the definition of the is-a relation itself. Priother approach

consists in giving the designer (and the user) entire control aba..lt the

information he wants to specify and to see: inheritance applies only if

explicitely stated. This means that we separate descriptive phases from

manipulation phases, in such a way that the defini tian of an is-a relation

between t1NO entity types is somewhat independent from the fact that someone

wants to see more or less information aba..lt these entity types. This ap­

proach seems to be simpler for users to understand and for designers to

implement [Spac 89].

It is straightforward that inheritance is transitive; therefore an

entity may inherit an inherited attribute of a generic entity type.

The advantages of characteristics inheri tance (especiall y dOWïward

inheritance) are abstraction, modularity and consistency, since all

essential characteristics of an entity are defined once and are inherited

when necessary.

3.2.3. Redefinition and inhibition constraints

A. Definiticns

The do,.nward default inheritance rule which applies in data models

can be precised [Coll 88] [Harrvn 81] (LePe 88] [Lenz 85]: one may def ine

constraints which play arole of 'filter' as they precise ~ the do,.nward

inheritance operator applies. However these rules rrust be in accordance

with the default inheritance 4 approach:

■ one may state that the values of an attribute for the

entities of the specific entity type belong to a subdomain of

4 Th1 description of a sptcific entity type cannot contradict what is 1p1cifi1d in th, generic entity type,

34

Chapter l 81n1ralization/1p1cializ1tion 1tructurn..in datab111 10d1l1

the defined attribute demain (this is also worth for attribu­

tes of a relationship relation schema) ;

■ one may also restrict the cardinalities i-j of an attribute

or of arole, i.e. specify that for the specific entities,

these cardinalities are i'-j' such that i 1 i' et j' 1 j;

■ if an attribute or arole has a cardinality 0-j (1 i j i N),

then one may state that the role or the attribute are

inhibited by the specific entity type, i.e. entities of that

entity type have no value for that attribute or that role.

B. Discussia,

Note however that in all cases, these constraints can be avoided by

p.Jtting the attributes/roles in the specific entity types definition (with

perhaps a lack of conciseness).

3.2.4. Multiple inheritance

M.Jl tiple inheritance is the mechanism by which enti ty types in an is­

a hierarchy are all~ ta inherit characteristics from rrultiple higher

level entity types [Peck 88), i.e. rrultiple inheritance may occur when

rrultiple generalization is allONed. This is convenient for several applica­

tions, especially in the context of lifecycle support systems specifica­

tions [vLam 90], but it can be difficult to control for bath the user and

the implerrentor. Problems arise when a specific entity type inherits a same

characteristic from two or more higher level entity types. For example

(schema 3.5), a LI~Y_Fia.RE might inherit the ADDRESS attribute of

PERSCN twice, i.e. via~ and via REVIBIER. And if we specify that this

attribute is inhibed by REVIBIER, we have a 'conflict'. Such inheritance

cooflicts (also naming conflicts) can be resolved by prohibiting rrultiple

generalization or by offering a built-in mechanism for handling co,flicts

that may arise (for instance, precedence rules) (Borg 88) [Peck 88).

3.2.5. Specialization relationship inheritance

Sorne relationships betliEEl"l entity types seem to be specialization

structures; however an in-depth study shows that they are different

[Hain 89d]. For example, we consider the entity type SCl..!03, each

occurrence of which represents a geanetric solid. It has a narre and the

forrrula to comp.Jte its volume. We also consider the entity type

s Unf0rtunat1ly, NI havi not b11n ablt to find an 1d1quat1 1x11pl1 in our library UoD,

35

Ch.aphr 3 61n1r1liz1tion/1p1ci1liz1tion 1tructur11 in d.at1b111 10d1l1

l'E~ICA..._PART which represents elementary mechanical parts. We have that

each mechanical part is a solid, and therefore inheri ts the narre and the

fornula of the solid. f-b.Ever it is nota generalization/specialization

structure as defined previously; indeed several distinct mechanical parts

may be the sarre solid: the demain of l"ED,ONICTL_PART is not included in the

demain of SCLID. This relationship is an autonomous concept: it possesses

an inheritance mechanism and represents some kind of 'specialization'

concept. It seems similar to the is-instance-of relation (as a consequence,

types and meta-types live in the same schema). Such cases appear in CAD

databases and in decision support knowledge bases.

3.3. Class constraints

In order to capture more senantics about abjects of the UoD, diffe­

rent constraints concerning the demain inclusion aspect of is-a relations

can be speci f ied.

3.3.1. Disjunction constraint

A. Definiticn

Two or more specific entity types having a conmon generic entity type

are dis.Joint if their entity demains are disjoint. Assuming that ES.1., ES:?,

••• , ES..., n ~ 2, are (direct or indirect) specific entity types of entity

ty~ EG, a subset ESu, ES.1.::.:, ••• , ES.1.1<. (1 .i i.1. < i::.: < • • • < i._ .. .i n) of

these specific entity types form a dis.iuncticn if for each i and j e {i.1.,

i::.:, ••• , ii.-.}, i <> j: ES.1. n ES..1 = {}.

B. Example

Books, journal papers and ccnference papers are different. Therefore,

we can specify a disjuncticn ccnstraint between them (cf. schema 3.6). This

ccnstraint does not stand between DB_EOJK and AI_EOJK which are specific

entity types of EOJK, as some books are l:x:)th database and artificial intel­

ligence books.

C. Discussicn

This definiticn is not restrictive at all, and is too general for

being of practical interest. If it is not carefully used, it might lead to

inconsistent specifications (for instance, if E.1. is-a E2 is-a E3 , the spe­

cification that E.1. and E::.: forma disjuncticn is contradictory with the

36

Chaphr 3 61n1r1liz1tion/1p1ci1liz1tion 1tructur11 in d1tib11110d1l1

defini tien of the is-a relation between El. and E::d. Therefore, in

order to reduce the complexity of specification management, simplificaticn

rules have generally been defined. Frequently, a disjunctic:n ccnstraint is

always between direct specific entity types of a commc:::n generic entity

type. Another rule enforces the definiticn of maximal groups of disjoint

specific entity types in order to avoid redundant informaticn [Coll 88]:

ES.i.l., ESL::::, ••. , ESu., form a maximal disjuncticn group if there is no other

specified group of disjoint specific entity types which is included in the

first group (two maximal groups may overlap). Cl-le may be more restrictive

(and simplify the reasc:ning) by imposing that all (direct) specific entity

types are disjoint, or nc:ne of them.

An entity type cannot be a cc:mnon specific entity type of two entity

types forming a disjunctic:n, otherwise its demain is always empty. There­

fore, a sufficient ccnditicn for single generalizaticn is that all (direct)

specific entity types of a cc:mnon generic entity type are disjoint (but

this condition is toc restrictive with regard to UoD situaticns) [Coll 88].

3.3.2. Covering constraint

A. Definitia,

Two or more specific entity types cover a commc:::n generic entity type

if the demain of the latter is the union of the specific entity types

demain. Assuming that ESl., ES:.?, ... ' ES,.,, n ~ 1, are (direct or indirect)

speci fic enti ty types of enti ty type EG, a subset ESu, ESL::::, ••• , ES.i.1<.

(1 .i il. < i 2 < ••• < i..,_ .i n) of these specific entity types form a cover if

B. Example

.i.k
EG = U ES.i.

.i.-.i. l.

We may assume that the books, joumal papers and conference papers

are the only kinds of publication in the library. Therefore EIXJK,

J~_PPPER and aN=EREf\Œ_PPPER forma caver of PUB..ICATIO\J (sc:::hema

3. 7). But ~ does not caver PER8CJ',J, since there are many persc:ns who do

not write publications.

C. Discussia,

As for the previous constraint, we presented an overall definition.

For practical reasc:n it is careful to restrict it to direct specific entity

37

Chipter ... 3~--------------~Beneraliution/specialization._1,tructures_.,in database 1odeh

types. 8y analogy with the disjunction constraint, some authors [Coll 88]

propose to eliminate redundant, specifications by enforcing the specifica­

tion of minimal covering groups only: ESJ..1., ESJ.2 , ••• , ESJ...., forma minimal

covering group if there is not any other· speci fied covering constraint

between a group of specific entity types which includes the first group

(two minimal groups may overlap). Again, a more restricting rule allows

only the specification of a covering constraint either on all specific

entity types, or none of them.

Note that a single specific entity type may cover its generic entity

type: it is a particular case where the domains are always equal but the

is-a relation has been specified to stress an abstraction (i.e. the more

concrete relation).

D. Definiticn

There is a constraint we did not encounter in the literature, but it

might be of interest: the cover of the intersection of two or more generic

entity types by a common specific entity type. Buch a constraint states

that the intersection of the generic entity types domains is always equal

to the domain of that common specific entity type. Of course, this

constraint has a meaning only in case of rrultiple generalization.

E. Example

We have already seen that a LITERAAY_FIGLRE is-a ~TI-Œ and

LITERAAY_FIG...RE is-a REVIEl,l,ER. To represent that only literary figures may

be both authors and reviewers, we can specify that it covers their inter­

section (see schema 3.8).

3.3.3. Partition constraint

A. Definiticn

A set of specific entity types which are both a disjoint and cover a

generic entity type forma partition of that generic entity type.

B. Example

If we combine schema 3.6 and 3.7, BCXJK, JCl.A\JAL_pAPER, and

CO\FEREI\CE_PAPER form a partition of PUBLICATION.

38

Chap ter 3 Gener~ l.i.z a.Hon/ specia.l.i za tion ... struc tures .,in __ da.taba.se ... IIOQi.) ... $

3.4. The generalization/specialization criterion

Often a textual description (or definition) describes the meaning and

contents of classes (with reference to the UoD); this class description

should be used to describe the specific nature of the entities that

constitute the class and to indicate their significance, their 'role' in

the UoD [Ha/Ml 81] [Bada 89]. Therefore it is also interesting to associate

to is-a relations the viewpoint or criterion used to generalize or

specialize, as during the abstraction phase it is often quoted.

3.4.1. Semantic criterion

When we apply the generalization mechanism, we doit according to a

point of view, a criterion (which is a reference to the UoD). We call this

the upward criterion or generalization criterion.

On the other hand, when specializing we also use a criterion: it

specifies haN entities of the generic entity type are 'distributed' as

entities of the specific entity types. This criterion, i.e. the dow,ward

criterion or specialization criterion, can be a 'direct' reference to the

UoD (we say that it is manual or user-defined); but it can also be a

reference to other information in the database. So we shall see that they

are two fundamental uses of 'subtyping' in semantic models:

• to form user-defined specific types;

• to form derived specific types (the contents of such a

specific type can be derived from data stored elsewhere in

the schema, along with the definition of predicates).

3.4.2. Database-defined specialization

A. Definiticn

A specific entity type may be defined as subset of the generic entity

type satisfying a given selection criterion, called specialization crite­

n:on or assignment criterion [Afsa 86] [King 81] [Peck 88]. These are

database-defined specific entity types. Under this aspect, the concept of

specific entity type is not far from that of view [LePe 88].

The criterion may be defined either upon a value taken by attributes

of the generic entity type (proper or inherited), or on the relationships

39

Chuter ... 3,__ _____________ -==6ener a 1.i za U..o.n/ s»c: ia li zatiJms tr\lc: turis in da ta!lJ.n. iode li

that occurrences of the generic entity type have with occurrences of other

entity types. Specific entity types are then defined using predicates.

B. Example

In our reference UoD, we can define the BEST_SELLER entity type as a

specific entity type of BCXJK, and specify that occurrences of the former

type are the books with SPLES ~ 10,000 (schema 3.9). It is also specified

that database books are books the tapie of which is DBwhile artificial

intelligence books have ~Jas tapie. Incidentally, TDPIC is an inherited

attribute from PUBLICATION by BCXJK.

C. Discussia,

More simply, only one attribute is often declared; its domain

includes the values representing the specific entity types. This type of

attribute, by nature, need not be inherited to the specific entity types

[Saka 83].

This approach is really towards type construction: new types are

constructed from other types by using attribute/relationship restrictions

on previously defined types. More precisely, given a base class, non base

classes are defined. In SDM [HanYn 81] for instance, a specific entity type

ES is defined by specifying a generic entity type EG and a predicate Pon

the occurrences of EG; ES consists of just those occurrences of EG that

satisfy P. Predicate P can be defined on attributes of EG, indicating which

occurrences of EG are occurrences of ES. The usual comparison operators and

boolean connectivities are allowed.

Such derived data, in order to be supported, need the definition of a

language for specifying derivation rules. Often [HanYn 81], this language is

a variant of the first-order predicate calculus, extended to permit the

direct use of attributes names and set operators. In our GER framework,

these derivation rules can be expressed by algebraic operator (for

instance, the projection).

l,<Je may note that this predicate and class constraints are mutually

'linked'. In [Schie 83], the disjunction and the covering constraints are

defined with regard to these predicates.

40

c ...,h,...a~pt...,,e.,_r-"3 ______________ s 1 n tr..,,,a liaU.o.11l.uKii.linti0n 1tructur11 io databue 10deh

3.4.3. User-defined specialization

A. Definiticn

l,IJe can define a specific entity type ES as a user-defined (or user­

cc:ntrollable) specific entity type of EG. This means that ES contains at

all times only occurrences that are belonging to EG, b....lt the definition of

its specific nature does not identify which occurrences of EG are in ES;

database users will have to add 'manually' to and delete from ES (so long

as the spec if ic en ti ty type limitation i s observed) •

B. Example

In the library example, good bcx:>ks are identified by the end-user.

Therefore entity type GOJD_BCXJK can be defined as a specific entity type of

BCXJK which is user-controllable (i.e. no predicate is associated).

C. Discussia,

The difference between a database-defined specific entity type and a

user-defined specific entity type is that the belonging to the former is

determined by other information in the database, while the membership to

the latter is directly and explicitely controlled by users.

l\lote that it is possible to sinulate the effect of a user-defined

specific entity type by an database-defined specific entity type. B.Jt this

WOL1ld be a confusing and indirect method of capturing the semantics of the

UoD. In particular, there are cases where the method of determining

specific entity type membership is beyond the scope of the database schema

(e.g. by virtue of being complex or because there is no such rule in the

UoD) [Hartvn 81].

3.5. 1•-• constructs

After having analysed various facets of is-a relations, let us no.,J

see ho.,J different authors introduced generalization/specialization as

constructs of their models.

41

C.._.h,.,..a.,_,pt..._e,._r ·""3 _____________ _,6,,,,,1,.,_,,ner1.U.ution/1pecii!...UJ..tion structures in dahbne m.ù.J.

3.5.1. The problem of defining a generalization/specialization

construct

The problem of the introduction of a generalization/specialization

construct in a mcx:lel IT"USt typicall y try to reach a compromise between two.

dangers [LePe 88):

• to apply strict rules compel the designer to ask himself

questions, and to be more rigorous in his study, but if these

rules are toc rigid, he will net be able to describe all the

real world complexity;

• the absence of any construction rule may have as a result

that he builds hierarchies of is-a relations which are

redundant, unreadable, inconsistent and even difficult to

implement; semantics is perhaps easier to mcx:lel (for an

expert designer, at least).

In several mcx:lels, generalization/specialization is introduced with

'simple' is-a relations [Spac 89) [SuYS 86). At a first sight it seems to

be the simplest solution, however if one wants to introduce disjunction or

covering constraints, it may introduce complexity: it is difficult to

manage the consistency of mcx:lels where such constraints can appear between

eac h pair of spec if ic (or generic) en ti ty types. And i t may be in teres ting

to group specific entity types which correspond to a same generaliza­

tion/specialization criterion. Therefore some authors proposed 'elaborated'

constructs which incorporate in a more or less restrictive and consistent

way the different generalization/specialization structures. In spite of the

lack of generality, these constructs hawever are more simple to manage and

to understand.

Historically, senantic mcx:lels have used a single kind of is-a

constructs for both generalization and specialization purposes (1-ull 88).

While many authors are more or less unaware of whether their construct is

for generalization or for specialization, more recent research however

provides constructs that fava.&r the specification of is-a hierarchies in a

bottom-up fashion (i.e. the specific entity types are first described ànd

the definition of generic entity types follows) or in a top-dC)l/l,f"'I way (i.e.

the definition of specific entity types is based on their generic entity

type; specialization is used for top-do-n decomposition, where the most

general concepts are first recognized and their specific types are incre­

mental 1 y designed [Qian 85)) • As noted in [Davi 89), the implied semantics

42

Chufil_,3'--------------=s,.,,_.ne.ul.i.ullo.nL.mtii.Uuwn 1tructur11 in databa1110d1h

of is-a relations in such models, where it seems depicted in only a single

direction, may lead to forget the specification of important constraints.

Sorne proposals have differentiated several kinds of is-a constructs,

and some incorporate more than one construct in the same model. The other

motivations for distinguishing kinds of is-a constructs stem from studies

on their update semantics, and from works on schema integration (1-ul 1 87b].

Note that having too many concepts, may introduce a 'choice problem'.

3.5.2. Different proposals

To give the reader an idea of some of these 'elaborated' constructs,

we shall now explain, with our vocabulary, several of them we consider

being 'typical'. In chapter 6, we shall also propose a concept.

A. The cluster of Smith and Smith [Smit 77]

A cluster is defined as a group of specific entity types; it has a

name and a criterion. It is an intermediate concept between the generic

entity type and the specific entity types.

B. The category of Sakai [Saka 83]

A category functions as anode to separate entity types into

different levels of abstractions making up a hierarchy of different viev.is

of abjects. A derived attribute may be defined.

C. Ttree types of generalizaticn/specializaticn ccnstn.JCts [Czed 90]

The first type involves exactly two entity types: the specific and

the generic entity type. The second type involves one generic entity type

and any number of specific entity types forming a covering. The third type

also involves a generic entity type and any number of entity types, but

they are forming a partition.

D. The cluster of Davis and EbTiel [Davi 89]

Davis and Bonnel allow one to use single is-a relations and to define

class constraints with cardinalities and inter-types constraints, but they

also define the concept of cluster which gives the ability to define

rrultiple hierarchies (which may intersect). To their opinion, having

rrultiple taxonomies provides some level of semantic relativism, allowing

43

Seneral.ization/s_gecializ.ation .. structures .in .. database 1odel1

for some degree of subjectivi ty in how concepts in the schema are

structured.

E. The subset hierarchy and the generalizatia,

hierarchy [Teor 86]

Teorey et al. make the distinction between specialization and

generalization:

■ a subset hierarchy is defined between two entity types ES and

EG; it represents the is-a relation;

■ a generalization hierarchy is formed by a generic entity type

and a set of specific entity types which forma partition.

F. The subset hierarchy and the exclusive (complete) generalizaticn

hierarchy [Berg 88]

The subset hierarchy is the same as Teorey's. A generic entity type

is an exclusive generalization of its specific entity types if the latter

are disjoint. The exclusive generalization is complete if it forms a

partition.

G. The is-a interccrviectia, in Sll'1 [Hanm 81]

Hammer and Mc Leod typically emphasize top-da.,.,in design of types. A

specific entity type is always defined in terms of another entity type: we

have first to define a generic entity type, and then specify the specific

entity types by 'restriction', i.e. using a predicate. The latter may be

user-controllable or database-defined.

3.6. Another ganeralization/specialization relation:

the mayœ a r e 1 a t ion

Relations for generalization/specialization have also been proposed

which do not involve all occurrences of the specific entity type.

3.6.1. The may--1::e-a relation

The is-a relation and i ts inclusion dependency are the cornerstone of

the generalization/specialization constructs in data models. But, as quoted

in [Spac 89], it has been largely advocated for exceptions ta that funda­

mental class inclusion property; the famous is-a relation should sometimes

44

Chapjer)c_ ____________ ___,Seneral.ization/ui.ec.ialization. Slli!.Ctures .in_database_1odels

be named 997. is-a relation. This relation has been cal led may-be-a. We say

that an enti ty type ES may-be-a enti ty type EG if ES n EG <> {} is possible

and if ES is more concrete than EG.

For example, 51-MEI-O_DER may-be-a El"PLOYEE means that some sharehol­

ders may be employees of the library.

The is-a relation is a special case of the may-be-a relation (ES is-a

EG => ES may-be-a EG).

A. inheritance mechanism is also associated with that relation.

We may note that often, if not always (with regard ta the examples

used i_n the di fferent descriptions of these concepts), the may-be-a rela­

tion hides a multidomain role6, i.e. this relation holds between entity

types because of their participation ta any role, and is not based on the

intrinsic nature of the entities.

Moreover, a may-be-a relation can always be represented by anis-a

relation (if multiple generalization is allowed) [Coll 88]:

ES may-be-a EG <=> ES is-a E1., ES is-a E:.:, E1. is-a EG (where

E1. contains entities belonging ta ES n EG, and E:.: contains

the other enti ties) •

3.6.2. Class constraints

We can define class constraints for the may-be-a relation. If we have

that ES may-be-a EG1., ES may-be-a E~, ••• , ES may-be-a EG,.,, n z. 1, we can

specify that:

• EG.11., EG.12, ••• , EG.11-·. (1 S. j1, < ••• <ji., S. n) are disjoint,

i.e. that for each i and je {j1., j2, ••• , jk}, i <> j:

EG1. n EG.1 = <Zl;

• ES is included in the unic:n ofEG.11., ••• EG.11<. (1 S. j1, < ••• <

jk S. n), i.e. that

.11<.
ES~ U EG.1 •

.:J mn_j i

6 A 1ultido1ain role is defined on the union of entity types instead of on one entity type [Hain 89d],

45

Chilter _3"--_____________ _.GeneraUation/.s11ec.ialization. struc.tures in d•tabase .10dels

3.6.3. The may-be-a constructs

Generally, this relation has been introduced in a complex construct;

Spaccapietra et al. [Spac 89] propose however bath 'basic' is-a and

may-be-a relations in their model.

A. TtE alternative generalizaticn [Codd 79]

Codd specifies that the usual concept of generalization hierarchy may

be increased by noting that an entity type may be generalized into t1NO or

more alternative types, i.e. an entity of the first type belongs to any

entity type among these alternative types.

B. TtE category [Elma 85]

The category construct is a complex, hybrid concept [Coll 88] which

can have different objectives. Thus a category C is defined as follows:

where P1 , 1 sis n, is an optional predicate restricting E1 domain, i.e.

specifying exactly those entities of E1 that are members of the category C.

It allows the representation of:

• the 'traditional' inclusion dependency of is-a relation (ES=

EG [PJ);

• the cover of the generic entity type by the specific entity

types (EG = ES1 U E~ U ••. U ESn);

•.Codd's alternative generalization

(E = ES1 [P1J U ••. U ESn [PnJ).

C. Simple generalizaticn, alternative generalizaticn, nultiple

generalizaticn, selective generalizaticn [Rcx:h 88]

Rochefeld and Morejon propose the integration of four generalizations

constructs in their extension of the Merise conceptual data model:

• the simple generalization allows one to define is-a

relations;

• the multiple generalization is used when a specific entity

type inherits from several types;

46

■ the alternative generalization represents the fact that an

entity type inherits exclusively fra'Tl one of other entity

types;

■ the selective generalization corresponds ta Codd's

alternative generalization.

3.7. Generalization/specialization for relationship

types and attributes

The generalization/specialization structures as they have been

defined could be adapted for relationship types and attributes. The

interested reader may consult [Coll 88], where an in-depth analysis is

proposed. Note that only a few authors propose these concepts.

To our minci, it is better to avoid the introduction of generaliza­

tion/specialization in this 'level' in order not to ca'Tlplexify the moclel.

If is-a relations seem to be useful for attribute or relationship types,

one may then 'pra'TlOte' them to entity types.

47

Cha..pter 4

Ge~era..1iza..tio~/specia..1iza..tio~

a..~d da.ta.ha.se desig~ a..cti~ities

After having presented the concepts of generalization/specialization,

we shall explain the 'interaction' between different design activities in

the conceptual level and generalization/specialization constructs.

In chapter 2, we have seen that the concerned activities involve:

■ the design of a subschema;

■ the integration of subschemata;

■ the mapping between schemata;

■ the restructuration of a schema according to a user

viewpoint.

We have also seen that several rules and transformations are at the

very basis of these activities.

In this chapter, we shall see:

■ the rules or guidelines for the construction of a schema with

generalization/specialization constructs;

■ transformations which concern generalization/specialization.

4.1. Introduction of generalization/specialization

constructs in schemata

Informally speaking, is-a relations may be used in a conceptual

schema for two reasons [f-l.111 87b]:

■ to represent one or more possible overlapping specific entity

types of an entity type;

■ to form an entity type that contains the union (or is covered

by the union) of enti ty types already in the schema.

48

Chapter 4 61n1ralizatlon/1peciall~atiQn and database design activitie,

Indeed, one may distinguish two approaches for the building of

schemata which include generalization/specialization constructs (of course,

one mix them according to circumstances):

■ the first approach consists of course in introducing is-a

relations 'on-line' when they are obvious in the UoD;

• the second approach lies under 'a posteriori' introduction of

generalization/specialization constructs (it consists

therefore insane kind of reorganization of schemata).

The second approach, especially, is part of the view intregation

process, but is also pro!X)sed in 'single' schema methodologies: in [Ceri

81] and [Teor 86], enti ty types are first designed and then generaliza­

tion/special ization hierarchies are introduced.

But what are the guiding 'events' for detecting the need of generali­

zation/specialization structures? Since the is-a relation includes two

aspects, and is characterized by an inheritance mechanism, these 'events'

may concern:

■ inclusion dependencies or intersections between entity types

demains;

• descriptive aspect of the types.

For each pair of entity type, the designer can supply information

aboût these aspects. In the first approach, these aspects are taken

directly. The second approach allows to eliminate imperfections of the data

model (for instance, a relationship type of name IS_A may hide anis-a

relation).

4.1.1. Intersection between entity demains

0,e may detect four kinds of intersection information between entity

types demains:

■ the two entity demains are the same;

■ one is contained in the other;

■ they are overlapping;

■ they are disjoint.

Note that the following considerations are valuable for schema

design, and sane are more intended for schema integration.

49

61n1r1liz1tion/1p1ciilization 1nd d1taba11..d11ign activiti11

A. Identical enti ty demains

In this case, c::ne entity type may be designed c::nly, except if they

are representing two levels of abstractic::n in the UoD.

B. lnclusia, of a demain into another danain

Then one c an def ine an i s-a re 1 a tien f rom the inc 1 uded en ti ty type

tONards the other, if it means that c::ne is more cc::ncrete than the other.

Attrib..Jtes and relatic::nship types are reorganized.

C. Two or mor-e danains are overlapping

In that case, c::ne cannot introduce is-a relatic::ns between them.

f-lo,.iever it is perhaps worth specifying a cc::mnon generic entity type, grou­

ping cc::mnon characteristics, while the overlapping entity types keep their

a-.n.

D. Two or mor-e disjoint demains

It is perhaps possible to introduce them as disjoint specific entity

types of a newly created entity type. As for the previous case, one may

think about any covering constraint tao.

4.1.2. Descriptive considerations

The analyzis of characteristics of entity types may allow c::ne to

reorganize them, and create is-a relatic::ns.

When an entity type has attributes with mininum cardinality zero or

if it plays arole the cardinality of which is zero and if these zeros mean

that a value for these attrib..Jtes/roles is not allowed for some occurren­

ces, then c::ne may introduce two entity types. A'iother case may happen when

a 'type' attribute appears, or when an exclusic::n/inclusic::n/equality cc::ns­

traint exists between roles/attrib..Jtes. In such cases, where c::nly a fe.,.,

values are allowed, these attrib..Jtes/roles determine the existence of other

attrib..Jtes/roles. A study of identifier cc::nstraints may be useful tao.

4.1.3. Global considerations

Die may, after the analysis, either create ne.,., generic entity type,

or create ne.,., specific entity types. f-lo,.iever these additic::ns are worth c::nly

if they are significant in the UoD, i.e. if they bring semantic clarifica-

50

Chapttr 4 81n1r1liz1tion/1g1ci1liz1tion and ditib111 d11ign 1ctiviti11

tien. Die thing ene 1TUst be cautiOJs of, is not to ruild networks of is-a

relatiens which might confuse the reader. To OJr mind, is-a relatiens

shOJld concern the proper nature of objects and not be concemed by their

role in relationships. The latter cases can usually be represented by

1TUltidomain roles.

Depending en the model used, the consistency between constraints is

more or less difficult to verify.

Die may also remark that is-a relations can replace reflexive rela­

tic:nship types (allowing them to capture more senantics) [Hain 89d] [Roch

88]. For example, if we are interested in recording the husband or the wife

of the persons recorded in the library database, a solution is to define a

reflexive relationship type attached to PERSCN (schema 4.1); however this

can also be expressed more precisely by is-a relations as proposed in

schema 4.2.

In surrmary, as remarked in [LePe 88], the cc:ncept of generaliza­

tion/specialization in a model allows ene:

• to eliminate non significant, null values (and so, enhance

the cO'llprehensiveness of a schema);

• to describe in a more precise way the different objects,

while keeping a schema easy to understand;

• to model more contraints conceming relations between

objects.

4.2. Tranaformation• conc•rning ;•neralization/•p•cia­

lization construct•

In chapter 2, we saw that transformatia,s are useful tools in current

database design methodologies. Ca,ceming the generalizatiai/specializatic:n

structures, we find in the literature different transformatic:ns to replace

them. Die approach ca,sists in the definition of mappings with caistructs

of the implementation ,rodel, e.g. wi th relatiaial constructs [Teor 86]

[Slnit 77] [Elma 85] [Berm 86] ([Kung 89] proposes to replace them by views)

or with CODASYL cc:nstructs [Elma 85] [Berm 86]. In another approach, gene­

ralization/specialization constructs of an E-R schema are mapped to basic

E-R constructs [Berg 88] [Coll 88] [Hain 89d] [Spac 89] [Vigi 90]. Other

transformatiais may be useful during the elaboratic:n of a conceptual

C=h=a_pt=•~r,4'--------------------"'6...,tn""t'-'--r a,._,l"'-i,,,,u...._t,,,,io..,,n,....,/ s,..p"'"tc,,_,i"'-a....,l i,.,,_a, tion and da hbnt dtsign ac ti v iti 11

schema; hoNever, we found only one paper [Mann 88] dealing with them, with

view integration concerns.

We shall explain the general principle of transformations replacing

generalization/specialization structures by basic GER constructs (in [Coll

88] they are studied for an E-R model). It is indeed tao complex to detail

a transformation outside the context of a particular construct. In chapter

6, we properly define a set of transformations concerning the generaliza­

tion/specialization construct we propose and also transformations available

for the design of schemata.

We assume that these transformations apply on a schema which is

correct.

4.2.1. Elementary transformations

Three possible transformations are proposed: the materialization of

is-a relation by relationship types, the representation of the sole generic

entity type, and the representation of the sole specific entity types. The

transformations have to preserve the fact that entity types populations

'intersect', and also that entity types share some characteristics.

The simplest solution consists in performing these transformations on

a generic entity type and its (direct) specific entity type. 1-b,.Jever, as

class inclusion constraints can be specified between different specific

entity types, it does not work properly. It seems then better to consider a

generic entity type and all its (direct) specific entity types. In [Mark

89] the representation of rrultiple generalization by relational constructs

is examined: he considers a specific entity type and its generic entity

types.

The related integrity ccnstraints (redefiniticn, inhibition, etc.)

have to be transformed toc. We did net find any paper dealing with them in

a 'general way', due certainly to the complexity and the number of possible

combinations.

A. Represa,tatia, of is-a relaticns by relatiaiship types

This transformation is frequently proposed and seems to be the most

natural one. Aï is-a relation is replaced by a 'special' relationship type,

the aim of which is to put in correspondence entities representing a same

abject of the UoD. The specific entity type plays arole of cardinality

Cha_pte.~r~4 ______________ G.ene.ralization/specia.liza.tion __ and .database .. destgn_act.iv.~.t.ies

1-1 1 , while the generic entity type role is of cardinality 0-1. Disjunction

constraints are represented by an integrity constraint specifying that an

enti ty of the genedc enti ty type can be associated wi th at most one of the

concerned specific entity types (exclusion of roles). Covering constraints

are represented by an integrity constraint specifying that each entity of

the generic must be associated with at least one specific entity (existence

of roles) 2 •

Schema 4.4 shows the application of that transformation to schema 4.3

(previous page).

This transformation however introduces complexity in the management,

since an UoD abject is represented in different places in the database.

B. Represaitaticn of the sole generic entity type

This transformation keeps only the generic entity type to which

attributes and roles of the specific entity types have been added (upward

inheritance). Attributes of the specific entity types are grouped in an

optional, compound attribute. Each inherited role becomes optional, tao. A

new attrib.Jte is added to the genedc enti ty type; i t al lows to detect the

specific 'aspect' of each entity. It is a 'meta-attrib.Jte'; its domain of

values is the set of the names of the specific entity types. If the speci­

fic entity types forma partition, then this attribute is simple and manda­

tory. If they do not caver the generic entity type, then it is optional. If

they are not disjoint, then it is repetitive. Note that equivalence cons­

traints between values of that attributes and the inherited attrib.Jtes/ro­

les must be specified, as shown in schema 4.5 (next page) which results

from the application of that transformation on schema 4.3.

This transformation presents a unique representation of the UoD

abjects, however there are many integrity constraints which must be speci­

fied (note also that a key of a specific entity type becomes a partial key3

in the generic entity type).

1 If we were replacing a aay-be-a relation, that cardinality would be 0-1,
2 One could use the aultidoaain role construct,
3 A partial key plays the role of key only for a subset of the instances of the entity type,

53

Cha.11.ter .. ~4--·····•········-···········---------'Generalizati.on/specializ.ation_ .. and .. database ... desiq_n.acti.vities

C. Representatiai of the sole specific entity types

This transformation eliminates is-a relations by representing only

the specific entity types, after having applied downward inheritance of the

attributes/roles of the generic entity type. Each attribute of the generic

entity type is put in each entity type. The roles are replaced by multi­

domains roles4
• Each key of the generic entity type becomes a global key.

This transformation is perfect for partitions but if the specific entity

types do not caver the generic entity type, a new entity type must be added

to represent entities which do not belong to any specific entity type. If

the specific entity types are not disjoint, then three solutions can be

proposed to keep the idea that an UoD abject may be 'seen through' several

specific entity types [Coll 88]:

• if the generic entity type has a key, then that key can be

stated as· 'reference key', i.e. it is a key declared on

several entity types which plays the normal role of key, but

if two entities of two different entity types have the same

value for the key, this means that they represent the same

abject of the UoD;

• another solution consists in defining a binary relationship

type for each possible intersection between two non disjoint

specific entity types; each entity type plays arole of

cardinality 0-1, and two entities are linked if they

represent a same abject of the UoD (note that if we have n,
n

non disjoint specific entity types, n 1 2, we shall need C

relationship types).

• a final solution consists in producing new specific entity

types representing each possible intersection (2 by 2, 3 by

3, ••• , n by n) between n specific entity types, n 1 2, (we
n n

need L C new entity types).

The result of the application of this transformation on schema 4.3

is shown in schema 4.6.

4 If 1ultidomain roles are not allowed, we can represent the1 by 'noria!' roles, as explained in the
footnote 8 of chapter ô and presented in the following exa1ple (these transforaations are also proposed in
[Vigi 90], for instance),

54

ChaRter .. 4 ______ _ ··········-·-···-··········--Genera l_i ut.ion/ spec_ia I i za.ti.on .. and._ da tabase_.desi.91L.ac ti v.i t ies

This transformation respects the principle of single recording of UoD

abjects, but needs nurnerous integri ty constraints as the precedent

tecmique.

4.2.2. Complex transformations

After the analysis of elementary transformations, one rrust consider

hON they can be combined ta eliminate is-a relations from a schema. The

reader may refer ta [Coll 88], and ta chapter 6 for our generalization/spe­

cialization construct.

55

The TRAHIS d~t~b~~e de~ig~

~orkbe~ch

In this chapter, we forget for a while the generalization/specializa­

tion structures and enter the world of computer-aided software engineering.

We present TRPMIS, a database design workbench developed by the Institut

d'Informatique and marketed by Corlcis. We first describe its architecture

and then explain its model: an E-R model. Afterwards we overview its

processors and the user-interface principle. For all these points we

provide two levels of explanation:

■ a 'user-oriented' description stressing the aspects relevant

to TRPMIS users;

■ a technical description interesting for TRPMIS implementors.

In the latter type of descriptions, we try to provide an explanation

being precise enough for a 'direct' implementation, while leaving aside

details which might confuse too much and be impediment to the generality of

the text.

5.1. TRAMIS architecture

5.1.1. User level explanations

TRAMIS is an autonomous environment for the design of information

systems; this software tool helps the designer(s) of an information system

to analyse, design, and produce a correct, operational, and efficient

database.

TRPMIS is divided into two comrrunicating components (see figure 5.1):

■ TRPMIS/VIEW, a graphical specification tool for the design of

E-R conceptual schemata;

■ TRPMIS/MASTER, the workbench providing the database designer

with assistance during all steps of the design of database.

Ç_b_ij!JH ,,_5 _____________________,_,_The_ TRANIS (ahbase desi_gn workbenxh

In the follDNing, i....e focus only on TRAMIS/t1ASTER (henceforth, called

TRAMIS). A complete description may be found in [Cane 90a] and [Cane 90b].

The main methodological characteristics of TRAMIS are:

■ a unique E-R model for conceptual, logical, physical and DENS

schemata;

■ a design process based on manual, aided or automated schema

transformations;

■ a forward engineering tool with statistical inference;

■ permissive schemata elaboration with validations;

■ the bJilding by the user of its own models according toits

customized methodological approach.

The schema of the database under project is stored in the speci fica­

tion database. This database is organised for the recording of conceptual,

logical, and physical E-R schemata. TRAMIS has been designed under the

toolkit paradigm, following the database approach: functions of the work­

bench are performed by independent processors, working on the contents of

the specification database. Moreover, functions may be applied in any

order: in this sense, the tool is somewhat independent on any methodologi­

cal coloration. As a consequence, functional extensibility is easier:

adding a new function has no impact on the specification database, nor on

the existing functions. Adding a new concept, on the other hand, implies a

modification of the specification database and an update of the consequent

functions (this will be our job in next chapter).

The user interface is based on the WindCJ1.NS approach. According to the

object-oriented user interface, the user selects an abject; and he chooses

the function ta be performed on that abject (via a menu). Dialogues are

then the interaction point between the user and the tool.

5.1.2. Technical level explanations

TRAMIS is running on persona! computers in a Windows environment. It

has been implemented in C [Kern 84] [Plum 86] with the Microsoft WindDNs

toolkit [Petz 88] [Sacr 88]. The specification database is a CODASYL data­

base [Hain 85].

57

Chaphr 5 _____________ The JRAKIS ... da.tabase desig_n .. workbench

5.2. TRAMIS model

5.2.1. User level explanations

TRAMIS is based on a single E-R model for all steps of database

design. Its constructs1 are those of current E-R models (schema, entity

type, relationship type, attribute, identifier group), adapted with aspects

for logical and physical design (access key, reference group, space).

Because of their usefulness in a workbench, other constructs have been

added: static and dynamic quantifications, textual description and techni­

cal note, origin.

A-1 approach offering a single model for defining conceptual schemata,

schemata with logical accesses, a relational or CODASYL optimized schema

for instance, offers the power of multi-madels methods, while keeping the

simplicity and uniformity of mono-model approaches [Cane 90a].

As we are essentially concerned with conceptual aspects (according ta

current methodologies), we shal 1 not consider the other constructs (an

interested reader may consult [Cane 90a] for a full explanation).

We do not claim ta provide here an introduction nor a complete pre­

sentation of the E-R approach; for such the reader may consult other

references [Bada 89] [Chen 76] [Dols 88] [Vigi 90].

The current TRAMIS conceptual model (cal led the basic model) has the

following concepts: schema, entity type, relationship type and rqle,

attribute, identifier group, description, origin technical note, and static

statistics.

A. Schema

A se hema desc ri bes how cons truc ts are assemb 1 ed • I t con tains main 1 y

entity types, relationship types and attributes. It has a na.me and a date.

B. Entity type

A-1 entity type represents a class of abjects of the Uo02, perceived

as having their ow, existence. It is worth mentioning here that the classi-

............................... ---·----
1 Conventionally, we say that a 1odel has constructs which ;ay be asse1bled according to soie construction

rules, As a database design workbench rests under (a) 1odel(s), we shall speak of the constructs of the
workbench, referring to the constructs of the ;odel(s) it supports,

2 We distinguish between the object of the real world and the representation in the database,

58

Çhapter --=--5 _____________________ ..:.=,The TRANIS database design 11prkbençn

fication abstraction mechanism is at the basis of that definition; an

entity type encompasses bath a class aspect and a type (descriptive)

aspect.

Each entity type has a name 3 and a short name identifying it within, a

conceptual schema, and is characterized by a date. An entity type is gra­

phical ly represented by a rectangle, the head of which contains the name of

the entity type. For example figure 5.2 contains two entity types:

PUBL I CATI [J\J and AUTI-Œ.

The population of an entity type is the set of entities (or occuren­

ces) belonging to that entity type at a given time. In the basic model,

populations of entity types are always disjoint, i.e. an entity belongs to

one and only one entity type. It is also worth mentioning that entities are

distinct and exist by themselves.

C. Relaticnship type

A relationship type represents a class of links between abjects of

the reality. Each relationship type is characterized by a date, identified

wi thin a conceptual schema by i ts name and i ts shortname.

A relationship type is defined betl.Neen entity types (representing the

class of involved abjects); each entity type plays arole in the relation­

ship type (this means that each relationship is a group of two or more

entities, each one playing arole in this group). At least two roles are

defined for each relationship type (the number of roles is called the

degree of the re 1 a tionshi p type) • An en ti ty type may p 1 ay man y ro 1 es in a

single relationship type. Each role has a namewhich identifies it within

those of the relationship type (but it is allowed to give it the name of

the entity type). A relationship type is graphically represented by an

hexagon with a heading containing its name and linked to the participating

entity types by arcs labelled by the name of their roles, except if it is

the name of the entity type, in which case the name remains implicit. For

example (figure 5.3), relationship type 1,1,RITII\G between AUTI-Œ and

PUBLICATI[J\J represents that authors write publications.

The population of a relationship type is the set of relationships

belonging to that relationship type at a given time. Relationships belong

to one relationship type in the basic model.

3 In the foll011in9, 111 shall al111y1 denote con1truct1 by their na11,

59

Ch1pttr ~ Tht TRA"IS d1t1b111 d11ign Norkbtnch

Each role is characterized by a cardinality caistraint. This is a

couple of integers i-j, where i ~ 0, j ~ 1, j ~ i, specifying that each

entity plays from i to j times this role; i and j are respectively called

the minirrum cardinality and the maxirrum cardinality. The usual values for i

are O (in which case the role is said optiaial) and 1 (for a mandatory

role). When j denotes a number arbitrarily great, it is represented by

let ter N. In the diagrams, the cardinali ty is put on the line of the role

(cf. figure 5.3).

D. Attril::ute

An attribute is the representation of a property cc:mno, to the

abjects of the UoD correspcnding to an entity type, or to the links corres­

pcnding to a relationship type; for each instance of the entity type or of

the relationship type, it can take O, 1 or many values (not necessarily

distinct).

It is worth mentioning that an entity type or a relationship type may

have no attribute.

An attribute is associated with a cardinality caistraint, i.e. a

couple of integers i-j (satisfying i ~ O, j ~ 1, j ~ i) specifying that the

number of values associated to each occurrence is between i and j. When i =

o, the attribute is said optiaial; otherwise i t is m,andatory. When j = 1,

the attribute is simple; otherwise it is repetitive (its repetitivity is

fixed if i = j, and variable else).

An attribute may be constituted with compcnent attributes. Such an

attribute is said cc:rnpound. Otherwise, i t is elementary. The compcnents of

an attribute themselves may be compound or elementary. An attribute which

directly bela-,gs to the entity typa or relationship type is said of upper

level. An elementary attribute has a dan,ain of values: it is the set of

possible values for that attribute; these values obey the same laws of

manipulation and have the same structure. They are characterized by their

type (or format) and eventually their length and number of decimals. In

TRAMIS, demain values are restricted to the following types: alphanumeric,

numeric, date, boolean.

Each attribute has a name identifying it among attribute of the rela­

tionship type or the enti ty type (for attributes of upper level) and

between the other compcnents of a compound attribute. Graphically, we put

Charur ~' ____________________ ...,_T=he,_TRfl"IS databa1e dulgn 11orkbench

the name of the attributes in the lo,,,er part of the entity type or rela­

tic::nship type graphies. Optional attributes are within parentheses and

their cardinality is put between brackets. The structure of a compo..ind

attribute is indicated by an indentatic::n at each level of decompositic::n.

Figure 5.4 presents the attributes of PERSCJ\I.

E. Identifier gn:1.1p

The idea of the identifier constraint4 is that a certain amount of

information allows one to 'practically' identify an occurrence of an entity

type or relationship type ama-,g other occurrences of the population.

An identifier group of an entity type (or relationship type) is a

group of attributes and roles so that, given a value for these attribu­

tes/roles, there cannot exist more than one occurrence with this value.

Note that such a constraint is not necessarily specified.

The identifier constraint is often graphically represented with an

underlined notation. For example, the entity type PUBL.ICATIŒ-J is identified

by its IS8'J_CODE (figure 5.5).

F. Textual descriptia,s

A textual descripticn may be associated wi th each construct of the

schema. I t is a free text introduced and mocli f ied by the designer. I t is

aimed at describing, in natural language, the sanantics of the described

construct. The text follows the construct during the design of the schema,

whatever transformations are performed on it.

G. Tectnical note

The teclrlical note is a free text which may be associated wi th each

construct of TRAMIS. Bath TRAMIS and the designer inscribe informatic::n

al:x:lut transformatic::ns performed, as well as their tednical reasons. They

are intended to the prograrrmer and for further maintenance of the database.

H. Origin

When a conceptual construct is transformed, it is important to keep

trace of its origin. TRAMIS indicates by the origin property of a construct

the name of the construct it cames from, if any.

4 Thi1 is the only integrity constraint, 11ith cardinality, 11hich is proposed to the user in ver1ion 1,01 of
TRA"IS conceptual 1odel (the inclusion constraint i1 available in the late1t version),

61

ÇJliphr 5,__ ___________________ __,The .TRAHI S. dahbauqesi.gn_workbench

I • Statistical aspects

The static quantificatic:ns description give statistical information

about the size of entity type or relationship type populations, and about

the length and frequency of attrib....ltes. This information can generally be

derived from observation of the UoD, and so recorded in the conceptual

schema.

a) Population average si ze of an en ti ty tyge_

The fX)p..1latic:n average size Ne: of the enti ty type E population is the

average number of occurrences of that entity type in the database in a

reference instant.

b) Average cardinality of arole

The average cardinality µr of arole r of a relationship type Ris

the average number of occurrences of R in which entities play role r.

If cardinality of ris ir-jr, then we have ir s µr s jr.

c) E,gpulation average size of a relationship typ_g_

The fX)P-Jlatic:n average size ~ of relationship type Ris the average

number of relationships of R in the database at a given time. Actually, if

ris arole of R played by entity type E, we have:~= µr * Ne:. This

property allCJ!.NS one to compute the average cardinality of roles when one of

them is kna.-n, since for each role ri (played by Ei) and rJ (played by EJ),

we have: µrJ =µri* Ne:i / Ne:J•

d) E.reguency of an attribute

If an attrib....lte A has a cardinality iA-jA, where iA < jA, its

frequency ~ is defined as the average number of values associated with

each entity, relationship, or compound father attrib....lte. We have: iA s µAs

ê.) Average length of an attribute

For each alphanumeric attrib....lte A, we may mention the average length

crA of its values in the database.

1,2

Cha_pter __ 5,c__ ___________________ __,The JR_rull S data base. desll!l.J•J!I..kbench

5.2.2. Technical level explanations

The specification database is the heart of TRAMIS. It records infor­

mation concerning the design of the database at every stage, in terms of

the constructs of TRAMIS model.

We shall now present the subschema of this database being interesting

for the integration of the G/S structures in TRAMIS. For a complete des­

cription, the reader may refer to [Hain 86b].

Actually, the approach which guided the design of the specification

database tried ta reach a compromise between the generality of the

concepts, allowing easier modifications, and precise definitions, offering

a detailed and explicit description of a particular schema [Hain 86b].

Here, we describe - avoiding unnecessary details - the particular, restric­

ted specification database schema used in version 1.01 of TRAMIS5 : it

explains the conceptual model of the workbench as far as current methodolo­

gies and tools are concerned and present only what is useful for the user.

The schema will be explained using an E-R modelb, FollD.Ning the

methodo 1 ogy deve 1 oped in [Hain 86a] , the GAM sc hema wi 11 then be deri ved.

A. The E-R schema of the specificatiai database

The specification database (figure 5.6) contains the description of

one. - in current version - information system (SYSTEM), identified by its

name (SYS_NAl"E); the description of data is recorded in one - restriction

of version 1.01 - schema (SD-EMA) attached ta the SYSTEM, via 50-t_OF_SYS.

In the SYSTEM, the SCI-EMA is identified by its name (NAl"E) and is characte­

rized by a date (DATE).

A SCI-EMA may contain entity types (ENTITY_T) and relationship types

(LINK). Each ENTITY_T belongs to one schema via E_IN, as well as each LINK

via L_IN.

ENTITY_Ts of a SCI-EMA are identified by their name (E_NAl"E) or by

their short name (51-0RT_NAl"E). They are characterized by a date (DATE) and

the average size of their population (PCPLLATICX\J) 7 •

5 For an easy reading, we took the liberty to 1odify certain constants or na■es,

b The E-R iode! used for the description of this (1eta-)sche1a includes the 1ultido1ain role construct
[Hain 89d] (showing incidentally its interest),

7 This is a si1plification for conciseness purposes,

63

Cha_pter J"----------.. ·····················-········-···-····--··------............. Jhe .. JRAMIS databasede,ign workbench

LINKs of a SCI-EMA are identified by their name (L_NAl"E) or by their

short name (9-ŒT_NAl"E). They are characterized by a date (DATE), the

average size of their population (P(FlLATICJ\J) and their degree (DEGREE).

ENTITY_Ts participating in a LINK play arole (ROLE) via E_RO..E; a

LINK is concerned by at least two RCLEs and at most four RO..Es - current

restriction - via L_RCLE (the DEGREE of a LINK equals the number of asso­

ciated ROLEs). Each LINK belongs to the SCHEMA of the ENTITY_Ts of its

RCLEs. ROLEs are played by one ENTITY_T and concern one LINK. RCLEs are

characterized by their name (R_NAl"E), a minimal cardinality (MIN_CON) and a

maximal cardinality (MAX_CON); the conventional cardinality Nwill be

represented by value 99999. They have also an average cardinality (AVG_CClN)

with MIN_CON s AVG_CON s MAX_CCJN.

An ENTITY_T or a LINK may have, via ATT_OF, attributes (ATTRIBUTE),

which may themselves have ATTRIBIJTEs. ATTRIBUTEs are characterized by a

name (AT_NAl"E), a format (FCRMAT), a maximal length (LEf\ETH), and by the

number of decimals for numerical values (DECIM). The current supported

values for FORMAT are Pllphanumeric, N...Jmeric, Real, Date, Boolean, CDITlpound.

Only ATTRIBIJTEs with FORMAT= Compound may have ATTRIBIJTEs. DECIM takes a

value only when FCRMAT = N...imeric. ATTRIBUTEs have a minimal cardinality

(MIN_REP) and a maximal cardinality (MAX_REP); an illimited cardinality is

represented by the value 99999. Statistical aspects are their average

length (AVG_LENGTH) - 0 s AVG_LENGTH s LEf\ETH - and their average repeti­

tivity (AVG_REP) - MIN_REP s AVG_REP s MAX_REP. POSITION indicates the

position of an ATTRIBUTE in a given level.

Identifier groups of bath ENTITY_Ts and LINKs are recorded in the

entity type ID_KEY_CRD, where the attribute TYPE is Id. They are linked to

their ENTITY_T or LINK via IKO_CF. An ID_KEY_CRD is composed of ATTRIBUTEs

and/or RCLEs (via COVPCX\ENT). Attribute TYPE_□ of CO"'IPCl\ENT indicates

(redundantly) if the component is an ATTRIBUTE (value Plttr) or a ROLE

(value Role). The STATUS attribute of an ID_KEY_ORD indicates if it is a

primary (Prim) or a secondary (Sec) identifier. Each ENTITY_T or LINK has

only one primary identifier group. The position of the components is

recorded in SEQ_NBR. An identifier code (IKO_CODE) is associated with each

ID_KEY_CRD. Moreover, the following constraints are defined:

■ if a CCl"POI\ENT of an ID_KEY_CRD of an ENTITY_T or LINK is an

ATTRIBIJTE, the latter belongs to that ENTITY_T or LINK;

64

Chaptt"-r _,,5 _____________________ T.!,.ChC!!.t _,_T!..!.!RA.!.!..!N_..,I S'-l!.!da..._t.._.ab~Hulc...,dulL!li._.g!!...n ..!!.110!!.!.r...!!..k bl!.!•~ncil..!.!h

• if a CO"FCJ\ENT of an ID_KEY_œD of an ENTITY_T is a RCl..E, the

latter is played by that ENTITY_T;

• if a CO"FCJ\ENT of an ID_KEY_œo of a LINK is a RCLE, the

latter belongs to that ENTITY_T.

The entity type PRCPERTY is used to record, via PRCP_a=, the origin

of a conceptual 'construct', i.e. an ENTITY_T, a LINK, or an ATTRIBUTE. The

attribute P_RCLE of PRCFERTY takes the value Drigin, the P_Vpt_LE attribute

records the name of the origin, and TYPE contains its type.

Finally, almost each conceptual construct (~, ENTITY_T, LINK,

ATTRIBUTE) may be assoc:iated, via CE:SCR_a=, with a textual description

(CE:SCRIPTIO\J wi th attribute TYPE = Desc) and a technical note (CE:SCRIPTIO\J

wi th attribute TYPE = Tech_n) • Each CE:SCRIPTIO\J is attachec:I to a SYST81

through CE:SCR_IN (the CE:SCRIPTIO\J of a construct rrust be attachec:I to the

SYST81 of that construct). The corpus of a CE:SCRIPTIO\J is a free text of

any length (TEXT).

B. 1re~ schema of tre specificatic:n database

The~ schema (figure 5.7) is obtained by application of 'traditio­

nal' transformations described in [Hain 86a]. It is worth remembering that

figure 5.6 presents only aspects of a particular interpretation of the

schema; therefore certain relationship types withc:ut attribute in diagram

of figure 5.6. have been transformed to record types.

We assume that each link constitutes an access path, that the cons­

traints explained in the previous point have been correctly translated (but

space is lackîng here to express them), and that attributes are translated

into items (they are not drav.n on the schema in order not to overload i t) •

~.3. TRAMIS procassors

5.3.1. User level explanations

We have seen that independent tools are working on the specific~tion

database for the design of the database.

The main processors of TRpt,IIS are (figure 5.8, next page):

• management;

• consultation;

65

Erra.ta..

I.AJe hope the r-eader will for-give us the following mistakes we missed

in spite of many pr-oof-readings.

The following corr-ections have an impact on the 'semantics' of the

wor-k:

■ page 30, line 16: add 'dir-ect' befor-e 'generic';
■ page 64, line 22: r-eplace 'r-epetitivity' by 'car-dinality';
■ page 78, line 10: r-eplace 'Ne:sï' by 'Ne:s3 ';

■ page 79, line 8: replace 'j ?. L jk' by 'i ?. L ii.·.' and suppr-ess next line;
■ page 84, line 30: replace 'type' by 'types';
■ page 86, line 13: add ', the same cardinality, the same quantifications,

' after- 'components';
■ page 88, line 14: r-eplace ,i_i, by 'i-2';

■ page J, line 6 & page O, line 25: replace 'RELATIONSHIP' by 'ENTITY';
■ page M, note 10: replace 'This menu is' by 'The transfor-mations for the

elimination of categories are';
■ page O, lines 8 & 9: add '/removal' after- 'Adding'.

Trying to reach perfection (because 'wr-iting makes an exact man' to

Bacon's minci), the following list presents corrections having a 'syntac­

tical' impact, i.e. enhancing the quality of the English of the text:

■ page 2, line 13: replace 'database' by 'databases';
■ page 3, line 10: replace 'transformation' by 'transfor-mations';
■ page 3, line 16: remove the',';
■ page 6, line 13: replace 'classes' by 'class';
■ page 10, line 12: replace 'becomed' by 'become';
■ page 18, line 15: r-eplace 'ressources' by 'resources';
■ page 18, line 27: add a ',' after 'that';
■ page 19, line 27: add 'ar-e' after 'They';
■ page 28, line 24: replace 'relationship' by 'relationships';
■ page 36, line 21: replace 'for-m' by 'for-ms';
■ page 37, line 21: r-eplace 'domain' by 'domains';
■ page 47, line 14: r-eplace 'attribute' by 'attributes';
■ page 53, line 23: r-eplace 'attributes' by 'attribute';
■ page 60, line 33: replace 'attr-ibute' by 'attr-ibutes';
■ page 70, line 22: r-eplace 'ar-e' by 'is';
■ page 74, line 15: add a',' after 'type';
■ page 76, line 10: add 'by' after 'expr-essible';
■ page 76, line 18: replace 'identifiant' by 'identifier';
■ page BO, line 7: replace 'constr-ucts' by 'construct';
■ page 85, line 31: add 'with' after 'compliant';
■ page 86, line 4: replace 'verified and; statistical' by 'is verified and

statistical' ;
■ page 89, line 24: add 'and' after 'type, ' ;
■ page 91, line 12: add 'on' after 'applies';
■ page 95, line 32: r-eplace 'pratical' by 'practical';
■ page A, line 13: replace 'above' by 'hereafter-'.

C.!w!ter __ 5. ____________________ ~The TRANIS .ditabau design .. workbench

■ transfarmatian;

■ madel campliance checking;

■ production of executable descriptions;

■ reporting;

■ import/export.

A. Management

We may distinguish t1NO levels: the functions manipulating the speci­

ficatian database independently of its contents, and thase which create,

update and delete the constructs. These aperations are validated against a

certain degree of integrity (far instance, each relationship type has at

least t1NO roles). But same temporary incansistencies, which are typical ta

incremental design, are allawed.

B. Ccnsultatia,

This pracessar allows the selection of a schema or an abject, and the

consultation of its characteristics (far an entity type, far instance, we

may consult its date, its origin, its name, its short name, its attributes,

the rales it plays in relationship types, its groups, its statistical

aspects, its semantic description, and its technical note).

C. Transfonnatia,

A transformation is an operation which modifies a schema while

preserving a certain number of conceptual, statistical and technical

aspects. Preservation is guaranteed by the existence of an inverse

transformation allawing ta retrieve the initial transfarmed schema. We have

seen (chapter 2) that they are at the basis of current design

methadalogies. They are useful in a 1NOrkbench far several reasans [Cane

90a]:

■ madel campliance (far example, abtain a CODASYL schema from

an E-R schema);

■ production of efficient schemata;

■ progressive elabaration of a conceptual schema.

Here fallow some of the transformations that have been implemented in

TRAMIS and that are of interest as far as conceptual madelling is cancerned

(other transformations are presented in [Cane 90a]). We may remark that

ChiJ!h.L?c...-___________________ __,The. TRAHIS dahbase deli9.!1.11Drkben~h

TR~IS offers three modes of transformation uses:

■ punctual tra.nsformatic:ns which consist in the application of

a transformation on one construct (the designer is given

entire control and TR~IS ignore the objective);

■ global transformatic:ns where a transformation is performed on

all the constructs on which it can be applied (the designer

has less control, although he may refuse a transformation,

but the transformation process is faster);

■ global transformatic:ns towards a mode] where TRAMIS automati­

cally applies all transformations on all abjects non consis­

tent with a model, so that it becomes consistent (TR~IS has

entire kna,..iledge).

a) Transforma tian of a re 1 a tionshi p type in to en ti ty tyQ..~

A relationship type Ris replaced by an entity type of name Rand by

a binary relationship type Ri for each role ri of the original relationship

type. Cardinalities of entity type R in each Ri are 1-1, while cardinali­

ties of the other roles are those of the original roles ri• Identifier

groups, textual description, statistics, tectnical notes and origins are

derived from the original structure.

At the conceptual level, such a transformation is useful for

'promoting' a relationship type_

b) Transformation of an attribute into entity typ~

An attr.ibute A (of cardinalities i-j) of an entity type E is put in a

new entity type of name XE attached to E by a binary relationship type; the

cardinality is deduced from the cardinality of A. The identifiers, textual

descriptions, tectnical notes statistics and origins are computed from the

original structure.

That transformation is useful during the design of the conceptual

schema when one sees that an attribute must have attributes or need to be

linked to different entity types.

c) Disaqq_reqation of a compound attribute

A compound (non repetitive) attribute is replaced by its components,

while respecting naming conventions.

67

Ç_haQtec-"-5 _____________________,Th=-e .TRANIS database design workbenç.!J.

This transformation may be useful ta promote components of a compound

attribute, or ta restructure a compound attribute.

d) Aqqreqation of the attributes of a qroup

A collection of attributes is grouped ta forma ne\N compound

attr-ibute.

This tranformation allows one ta restructure the attributes of an

entity type or relationship type, or ta modify the position of attributes.

D. l"bdel canplianc:e checking

When he feels it is necessary (according ta the methodology he

follows), the designer may ask for model compliance checking of specifica­

tions.

A general design workbench has ta take into account the different

models used in the steps of methodologies and variants for these models. It

has therefore to offer some kind of parametrization of the design process

according ta the models used [Cane 90a].

As TRAMIS offers a single model, which 'covers' most of the models

offered today, others models can be defined by restricting TRAMIS model. We

saw that a model has a set of constructs and a set of rules specifying haN

constructs may be assembled. A ne\N model is then defined by a set of cons­

traints which limit the constructs available and their combination. For

example, a standard relational model may be defined by specifying the

following constraints:

• each entity type has at least one attribute;

• there cannot exist any relationship type;

• an attribute cannot be repetitive;

• an attribute cannot be compound.

TRAMIS offers a set of standard models. Others can be defined by the

user with a language for the expression of constraints (see appendix 3 of

[Cane 90a]); these constraints are stored in a text file accessible from

TRAMIS.

TRAMIS offers functions for the diagnostic of the specification

against these constraints. Transformations are used ta make a schema

compliant.

68

Chiphr_-"S _____________________ _,_T""h c.....!..U!TRANIS dihbiH d11ign 11orkb1nch

E. Pn:xtuctia, of executable desc:riptic:ns

A se hema may be tr ans 1 a ted in the da ta def in i tian 1 anguage of a da ta

management system (DMS) (either a DB"S, or a file manager). If the transla­

tion cannot include all the aspects of the schema, because of limitations

of the DMS, TRPtMIS generates descriptions or procedures for the validations

of these integrity constraints.

F. Feporting

Di fferent aspects of the speci fications can be reproduced on reports.

Currently, TRPtMIS offers three types of documentations:

• a detailed report;

• a global report;

• a complementary report of generation.

The latter, for the implementation, corresponds to validations of

integrity constraints after generation. The detailed report presents all

the specifications in five chapters: the schema, the entity types, the

relationship types, the spaces (not studied here) and index of attributes.

The global report presents statistics on the global schema.

G. Import/export

A textual specification language, called JS.. (Inforrn.atic:n System

Specificatic:n L,anguage) allows the description of the specifications in a

text file. This guarantees upward compatibility of specifications along

TRPtMIS evolution, and an opening towards other systems.

The incremental loader allONS the integration in a same repository of

different subsets of specifications of a sarre schema. The selective

unloader allows the generation of (a part of) the specifications of a

schema in a file of ISL format.

5.3.2. Technical level explanations

We have already said that the tools are working on the specification

database.

In the fol lowing, we shall concentra te onl y on the algori trms working

directly on the specification database. This simplification has been

introduced for the ease of explanation and understanding; moreover it is

o9

Cb_al}ter .,5,__ ___________________ __,Tbe _TRAHIS database .. desi911. __ woctbtnch

more interesting as the user might ignore TRAMIS l(jl,-\j level, techiical

issues, which are not really interesting for the understanding of the

logics of the procedures. The reader rrust be aware that the implemented

architecture is efficient, as the most frequently used abjects of the spe­

cification database are maintained in memory during a TRAMIS session.

Moreover, an access module, in the sense of [Hain 86a], has been

designed for the development of the tCXJl [Hain 89c]: its data mcxlel is a

subset of the GPM, its primitives are also those of ADL and the composition

rules are reduced to the mininum, thanks to the explicit notion of referen­

ce to a record (for each access function, there is an access to the first

element verifying a condition, and another to the next element).

We shall not present here any algorithm. Indeed, we prefer to

present, in next chapter, the mcxlified functions with regard to the newly

introduced generalization/specialization construct.

5.4. TRAMIS user interface and monitoring

5.4.1. User level eMplanations

TRPMIS interface fol lCll,-\IS the Window Icc:n /'1ouse Pul 1-do,,n menu (WJW)

paradigm, but has only active texts. The different constructs and the

schema are presented through specialized windows: the windCll,-\IS ENTITY,

RELATIONSHIP, ATTRIBUTE, GRO...P, CCJ"PO\ENT (of a group), etc. Each wind(jl,-\j

has a menu bar corresponding to operations which may be applied on cons­

tructs of that type. Each aspect of the constructs are described in a

subwindow of the principal window.

The monitoring (figure 5.9) works as follCll,-\/5: according to the

object-oriented principle of TRPt1IS user interface, the user chCXJses an

abject (which then becomes the current abject), and then selects - in a

menu - a function to be performed on that current abject. TRPMIS functions

are grouped into classes [Cane 90a]:

■ the global functions are working on the database schema;

■ the functions of detailed elaboration are performed on

constructs of that schema (entity type, relationship type,

...) .

70

kh~J!J__,,_,_er.....!<.-5 ___________________ __,The TRAKIS databue _d_niguorkbench

Appendix C contains a diagram explaining how monitoring is going on,

(only the relevent menus are presented). We use the standard terminology

(sunmarized in [Prov 89]) for interactive abjects.

5.4.2. Technical level explanations

All human interface interaction is let ta Windows. The user level

explanation will be sufficient in this text.

71

Cha.pter B

A g~~~ra.liz~tio~/specia.liza.tio~

co~str~ct i~ TRAHIS:

the ca.tegory

In this chapter, we explain our choices concerning the definition of

a generalization/specialization construct into TRAMIS: the category1 •

The idea of the generalization mechanism is to define a class of

abjects containing the abjects of another class; the first class describes

the abjects in a less precise way than the latter does, i.e. it avoids some

details. O. the other hand, the specialization mechanism implies the defi­

nition of classes which are 'more concrete' than a given class; the abjects

of the first classes are included in the latter. The generalization/specia­

lization mechanism allows then the introduction of abstraction levels, in

order to master the numerous characteristics of an abject of the UoD: we

can describe it under one or another aspect, according to our viewpoint.

We shal 1 now describe how this construct fi ts into TRAMIS arc hi tec­

ture, model, processors, and user interface.

6.1. The category and TRAMIS architecture

We tried to define a construct which is:

■ minimal, i.e. the category contains only the elements which

have to be there, so that we èan speak of a generaliza­

tion/specialization construct;

■ cc:nsistent, i.e. providing a unified approach to generaliza­

tion/specialization;

■ useful, i.e. powerful enough for a specialist but also easy

to understand and to use by non-specialist, and using

structures as 'natural' as possible.

Our choices have also been guided by the fol lowing · constraint': the

transparency of the integration into TRAMIS, i.e. someone who is not

1 The reader is pleased not to confuse with El ■sari's category [Elia 85],

72

Ch1pttr 0 A g1n1raliz1tion/1p1cializ1tion con1truct in TRANIS1 th, cat,gory

interested in the is-a extensions should be able to ignore them when

working with TRAMIS.

A restricted model is net necessary a handicap. Indeed the simplicity

to learn and use are important toc. Moreover a restricted number of cons-·

tructs reduces the problem of the representation choice. A.d if a model

becomes toc complex, the consistency of specifications is more difficult te

define [Hain 89d].

Let us add that, as we are 'implementing' the model in a workbench,

we tried to reach a compromise between usefulness, and development and user

learning effort 'price te pay'. Cur compromise runs as follows. We introdu­

ced only what co..ild be transformed with as less new constraints as

possible. A survey of the possible transformations te basic E-R constructs

shc:xNed that we need at least the concept of global cardinali ty (see below),

in default of the rrultidomain role. Therefore we restricted the introduced

constructs (and functions) to those which can be replaced by TR~IS

constructs and/or the global cardinality constraint, but no more.

6.2. The category in TRAMIS modal

Let us no.-J define this construct as a cc·· ·--:nent of TR~IS model.

6.2.1. User level explanations

A. The category

a) Def in i tien

We define the category of an entity type EG as a gro..ip of (direct)

specific enti ty types ES1., ES:z, ••• , ES,.,, n ~ 1, of that enti ty type

(referred as the generic entity type). Remind that ES is a specific entity

type of EG, or EG is a generic entity type of ES, or more simply, ES is-a

EG if pop(ES) C pop(EG) and ES is more ccncrete than EG (where pop(E) is

the population of entity type E).

A category may also be characterized by class inclusicn ccnstraints:

• a disJuncticn ccnstraint speci fies that the speci fic enti ty

types are disjoint, i.e. for each i and je {1, 2, .•• , n},

i <> j: pop(ES~) n pop(ESJ) = {};

73

C =h=•~pt..,,e.,_r _,6'--___________ ,.,.A ...,g=,n=•"'"""r 1..,l=i=u,...t_,,_,,_,i oo/ 1p1c ii li a tion con, truc t in TRAl1 I SI t h.Llll.f.~D'.

■ a covering cc:nstraint speci fies that the specific enti ty

types caver their generic entity type, i.e.
,..,

pop(EG) = U pop(ESi) •
.1.-.1.

If both disjunction and covering constraints are specified, we say

that the speci fic entity types form a parti tien of the generic entity type.

If there is only a disjunction constraint, they forma disJunctic:n, and if

only a covering constraint is specified, they form a cover.

An enti ty type is al lowed to possess (i.e. to be the generic entity

type of) only one category - single criteric:n specializatic:n - of any

number of specific entity types - 1TX.Jltiple specializatic:n - and to belong

to (i.e. to be specific entity type of) only one category - single genera­

lizatic:n -. Of course, specific and generic entity types are belonging to

the same schema. As explained in chapter 3, the is-a relation is transiti­

ve. Therefore, specific entity types of an entity type belonging to the

category of another entity type, are also specific entity types of the

latter: we speak in this case of indirect speci fic enti ty types (and

indirect generic enti ty type).

b) Pro_perties

We have also seen that the is-a relation is irreflexive and antisym­

metrical; this implies that an entity type cannot belong toits category,

nor to a category of one of its (direct or indirect) specific entity types.

In consequence, the is-a relations implied by categories in TRAMIS model

form an acyclic-directed graph; and as only single generalization is

allowed, we deal with trees.

c) Nota tians

In this text, we shall use the following notation to represent a

category of the entity type EG which is composed of specific entity types

ES.1., E~, ••• , ES,.,, n ~ 1:

CAT (ES.1., E~, ••• ,ES,.,-> EG).

The graphical representation is presented in figure 6.1 (cic indica­

tes the class inclusion constraints if any, i.e. D for disjunction, C for

caver, P for partition) .

74

Chapter O,___ __________ __,_,_A _qewalization/specialization construct ,.in TRANIS1_ tJte categqa

d) Remark

We do not provide a descriptive text for the categories, in order not

ta confuse the user about where senantics is ta be p...it: we assume that

senantic expressions about the generalization/specialization 'process'

represented by the category are recorded either in the description of the

generic entity type, or in the description of specific entity types. TRPMIS

will not support any specialization assignement criterion, i.e. the condi­

tion on the entities of the generic entity type for their belonging to a

speci fic enti ty type. Note however, that the user can record this cri te-

r ion, in an informal way, in the description of each specific entity type,

for instance.

e) Discussion

Could this generalization/specialization construct have been simpler?

Allowing only one specific entity type per generic entity type would have

been tao restrictive as it is quite common ta specialize an entity type in

several specific entity types. If class constraints were not introduced, we

would lose tao much senantics, as explained in [Davi 89] for instance.

Could it have been more complex? Of course, but we argue that with this

construct which sounds clear and simple, we are able to model lots of

cases. Let us now overview how more complex structures may be represented.

We restricted to one category per generic entity type. As a conse­

quence, we cannot directly represent different specializations (under

different criteria). BL.it we may doit by an indirect way. For example, if

we want ta specialize books on their content basis, but also on their sales

basis, we can do as presented in figure 6.2, i.e. to create intermediate

entity types.

We compel all the specific entity types to be disjoint/covering or

none of them. Doing so, we need not to care about the complex notions of

maximal covering and minimal disjonction (see chapter 3). Using the same

artifice as in the previous example, it is possible ta precise class

inclusion constraints between only certain specific entity types, while

being sure than there is no problen of consistency.

We prohibit multiple generalization for the simplicity of the manage­

ment of the workbench; also because multiple generalization is not always

obvious for the user. However several authors argue that it becanes useful

75

ChiP.hr 6"--__________ __,_,_Ag_enera.lization/sp1tialization construct iJl]'RAH!S1 Jhe .. cahQ.!IO.

in different applications. It is therefore a possible extension (if

asked by the users). Note that in many cases, mt.lltiple generalization is

introduced more for inheritance conveniences than for class constraints

modelling purposes. In this case, we can promote the common specific entity

type in the same generalization level as its generic entity types, and

materialize property inheritance. MJltiple generalization is suppressed, we

keep the class inclusion aspects (but we loose conciseness in the schema).

The specialization criterion can only be represented in an informa!

way. This is another possible extension, however this 'constraint' seems to

be a special case of redundant information, expressible integrity

constraints.

As explained in chapter 3, we do not consider may-be-a relations as

'real' generalization/specialization constructs. Therefore, they are not

introduced.

B. Inl"Eri tance

a) Definition

Inheritance is the way by which entity types can share their

descriptive aspects (i.e. attributes, roles, relationships, and identifiant

groups). We describe two basic inheritance 'operators': upward inheritance

and dD/,\11ward inheritance (cf. chapter 3). They are applied on a couple of

generic and specific entity types and they can concern:

■ an attribute with its characteristics;

■ arole with its characteristics;

■ a grOJp with its components.

Inherited characteristics are called inherited; the others are called

proper if misunderstanding may arise. Keep in minci that inherited

characteritics of an entity type may be inherited or proper characteristics

of its direct generic entity type. These two operators may be combined to

allow more powerful inheritance inferences, for example sideway

inheritance.

b) Remark

In the next paragraph, we shall see that d~ward inheritance is

supported for consultation purposes, and bath downward and upward

76

Chij1Jer .. ~ô ___________ ___,AgtOHalliation/spe.c.,iaJ~zatioruonstl1lct in.J.8.ANIS1 the categor1

inheritance are supported in transformations (these transformations will

'materialize' inheritance).

c) Discussion

We did not introduce redefinition nor inhibition constraints, because

they would require the introduction of many other constraints in TRAMIS.

However a textual description of them is possible: for instance, one might

add them in the description of an attribute.

C. Categories and naming cawa,ticns

We keep the existing naming conventions; however this may lead to the

fact that a proper attribute and an inherited attribute may have a same

name: if this situation arises, the user must be aware of it (but there is

no confusion for TRAMIS processors). Keeping these conventions will be

useful in case of any integration of inhibition and redefinition

constraints.

D. Categories and statistical f!Ddel

By defini tian of the is-a relation, populations of enti ties have

intersections. As a consequence, the model of static statistics, i.e. the

average size of the population of entity types, has ta verify certain

constraints. The static aspects are explained here, while dynamic aspects

will be explained with TRAMIS processors, as they are deeply tight.

One thing the reader has to be conscious of is that the population

average sizes of entity types are not necessarily specified for each entity

type of the project database; therefore, the following equations2 have to

deal with unspecified population:

(EQ1) for each category CAT(ES1, ES:.:' ... ' ES,., - > EG) , n 2- 1,

Ne.eu. S. Ne.G' 1 S. i S. n;

(E(k) for each category CAT(ES1, ES:.:, ... ' ES,., -> EG), n ~ 2,

forming a disjunction,
n

L Ne.s.1. S. Ne.G ;
.i. "'" .1.

(E~) for each category CAT(ES1, ES:.:, ... ' ES,., - > EG) , n ~ 1,

2 In the folloNing, we shall refer to the• as the statistical equations,

n

Chapte=r~6~ _______ _ --~Aqener a.l üa.tion/ speci a l.i.za tion. construc.t . ..in_JRAHI S:. the c a teqory

... '

forming a caver,
n

L Ne:su. ~ Ne:ca •
:1. ""' .1.

As a consequence of (EQ2) and (E~), for each category CAT(ES1 , E~,

ES,..,-> EG), n ~ 2, forming a partition:

n

(EQ4) 2:'. Ne:s~ = f\le:ca •
. i. ""' .1.

In the latter case, two inference3 rules can be applied:

n

is obtained by L Ne:sJ;
J-i

and Ne:œ are specified then Ne:s~ is obtained by
n

We have to be aware that some Ne: may no be specified. Therefore, we

assume that during the evaluation of equations, a missing Ne: is replaced by

the sum of the Ne: of its direct specific entity types (and so forth recur­

sively); and when the result of these 'assignments' always gives an unspe­

cified value then 'unspecified' is assumed being equivalent to zero in

equations (EQi) and (EQ2), to oo for equation (EQ3), and equation (EQ4) is

replaced by equations (EQ2) and (EQ3).

E. Category and identifier grcup

Due to the inheritance mechanism, an identifier group of an entity

type is composed of the proper and the inherited attributes/roles.

F. A 1142W integrity ccnstraint: the global cardinality

In the next paragraph, we shall need a new integrity constraint in

order to be able to preserve semantics of generalization/specialization

when it is represented by basic concepts. We propose to define it here, as

it will be part of the made!.

·••·········•·ff•· _ . .,_, , __ _
3 In. the following, we shall refer to the• as the statistical inference rules,

78

Chapte=r_6,,__ ________ ·-···········A. .. .9.eneral.ization/sQec.iali.zati.on .. con.struct....i.n .. JRAMIS: ... the categ_pry

The global cardinality 4 i-j, Os i, 1 s j, i s j, for a group of

roles and/or attributes of an entity type E specifies that each entity of E

has to be associated with at least i values for these attributes and/or

roles, and at the most j.

We may note that if a global connectivity i-j is defined on the group

of n attributes/roles, n ~ 2, with cardinalities ii-ji, .•. , in-jn, then we

must have that:

n
1 j 2: ~ jk;

k-i

1 i 2: min ik;
i.:!ik . .:!in

■ for each i1-,., 1 5 k s n, j 2: i"'.

6.2.2. Technical level explanations

How can we represent the category construct in TRAMIS specification

database? As already stated, the specification database about which we

proposed a particular interpretation in chapter 5 has been designed with

two objectives: generality and precision of the concepts. Actually, a

construct of generalization/specialization has already a representation in

the specification database schema. But the proposition of [Hain 86b]

specifies that a more detailed study is necessary and that it will probably

lead to modifications of the proposed subschema.

The interpretation of the subschema of figure 6.3 is as follows. If

an ENTITY_T represents a generic entity type, its specific entity types are

classified in groups of subtypes (G_OF_SUBTYPE) via GST, defined by a

criterion (CRITERIO\I). The specific entity types corresponding to a same

criterion are attached to the G_OF_SUBTYPE by relationship type SUBTYPE. A

G_OF_SUBTYPE is also characterized by a name (GST_NAl"E), the indication

that the population of the generic entity type contains, is strictly equal

or is contained in the union of specific entity types populations

(COVERING), the indication that specific entity types are disjoint or not

(EXCLUSIVE), and parameters of free interpretation (P~AM1, P~AM2).

Relationship type SUBTYPE is characterized by the indication that the

specific entity type is strictly included or not in the generic entity type

.................................. , ___ _
4 It will be another group, according to TRANIS 'vocabulary',

79

Chapter .~6 ____________ A .. senera_liz_ation/specialization ___ cons_tructjnJRAHIS: the _category

(T0TPL), and by parameters of free interpretation (PARAM1, PARAM2).

Moreover, it is assumed that:

• an ENTITY_T cannot be (directly or indirectly) a SUBTYPE of

itself;

• all ENTITY_Ts attached via GST and via SUBTYPE to a

G_OF_SUBTYPE belong to the same 50-EMA.

The category constructs fits quite well in this schema, although we

shall restrict it, because:

■ as we consider only is-a relations, T0TPL is always equal to

true;

■ as only one generic entity type is allowed per entity type,

cardinality of ENTITY_T in the SUBTYPE relationship type is

0-1;

■ 'free' parameters are not necessary;

■ the attribute CRITERION is not used;

■ as only one category is allowed per entity type, GST_NAME

brings no information;

■ moreover the cardinality of ENTITY_T in GST is 0-1.

We obtain then the following subschema (figure 6.4). COVERING

indicates if the category contains a covering constraint or not, and

EXCLUSIVE states if the specific entity types are disjoint or not. The two

constraints specified here above are always standing.

Moreover, we have to 'modify' the representation of identifier

groups. Indeed, thanks to the inheritance mechanism, an identifier group

may contain (d0W1ward) inherited roles/attributes. The less expensive

solution consists in allowing a group to concern direct and inherited

attributes/roles. This implies a modification of a constraint which was

verified by a procedure (see previous chapter). Moreover, with this

solution, it is quite easy to introduce extensions such as inhibition and

redefinition constraints.

The global cardinality constraint will be represented by an

ID_KEY_ffiD (see chapter 5), where the TYPE is Glob-card. Parameters PARAM1

and PARAM2 are used to record respectively the minirrum global cardinality

and the maximum global cardinality. The latters have ta verify the

'equations' relating them ta 'local' cardinalities (see 6.2.1).

80

ChaJ!.ter _b ___________ ~A. _q_eneraliz.ation/sJJjCialization__ç_onstruct in_ TRANIS:_ the ... categ_o;y

The corresponding GAM subschema is easily derived (see figure 6.5).

Note however that we keep SUBTYPE as a record type, because we want to use

the already defined access module.

6.3. The category and TRAMIS processors

In this paragraph we explain how the processors are modified or

receive new functionalities in order to deal with the category.

6.3.1. User level explanations

A. Ccnsultatia,

As explained in the previous paragraph, we shall apply automatically

downward inheritance for consultation purposes. More precisely, an Cl\1/CFF

button is introduced. If this button is Cl\l, then when consulting the attri­

butes, the groups, and the relationship types concerning an entity type, we

see not only the proper characteristics, but also the inherited characte­

ristics from all generic entity types, i.e. the characteristics (proper and

inherited) from the generic entity type are inherited by the specific

entity type.

We can also consult the category of each entity type, and 'its' is-a

hierarchy (i.e. its generic entity types). For the category, we can consult

the class inclusion constraints.

B. ltidificatiais

We rrust add new functions and modify existing ones.

a) Insertion of an is-a relation

This function consists in adding an is-a relation between two

existing entity types, i.e. ES is-a EG, and if the generic entity type has

no other specific entity type, its category is first created without any

class inclusion constraint. In case of partition, statistics inference

rules are applied.

It is however assumed that:

■ ES does not belong to any category;

■ EG is nota (direct or indirect) specific entity type of ES;

■ statistical equations are verified.

81

Cha!lter 6~----------~A ... _generalizah .. on/s~ci.@.li zat_ion constru~t _in_JRANlS1. the ... cah.9.9.n'.

b) Sugpression of an is-a relation

This function consists in the removal of anis-a relation existing

bet\Neelï two enti ty types, and consequently the deletion of the category if

the generic entity type has then no more specific entity type. Since a

group may contain inherited attribJtes/roles, they are suppressed from

these groups.

c) Modification of the class inclusion constraints of a

catego_ry

This function modifies class inclusion constraints of a category.

Statistical equations must be verified hoAever. If the category forms then

a partition, statistical inference rules are applied.

d) ~pda te of the popul a tian of an en ti ty typ...§_

The new population has to verify statistical equations; moreover,

statistical inference rules may be applied.

e) Deletion of an entity type_

In current version of TRAMIS, an entity type can be suppressed only

if it plays no (proper) role in a relationship type.

If that entity type is in anis-a hierarchy, its specific entity

types become direct specific entity types of its generic entity type. If

attribJtes of that entity type are belonging to groups of some specific

entity types, they are suppressed from these groups (note that this cannot

happen for roles) •

f) Deletion of an attribute

If that attribJte belongs to a group, it must be deleted from the

group in which it belongs (eventually from a group of a specific entity

type).

g) Deletion of arole

If that role belongs to a group, it must be deleted from the group in

which it belongs (eventually from a group of a specific entity type).

82

ÇJJ.!P..llr fi"------------~A ... ge11e_raliutio.nbpEJalizati_on __ construct .in .. TRAHIS: the ___ çategm

h) Adding components to a qroup

A group may contain not only proper attributes/roles but also

attributes/roles which are inherited from the generic entity type (if any).

C. Category and model cc:mpliance checking

TRAMIS has a single model which is a super-set of the models the user

and designer may encounter in practise. Therefore, it is useful to be able

to define other models by enforcing restrictions.

Here are the set of constraints restricting the concept of category:

(C.1.) <min>; <max>;

An enti ty type possesses from <min> to <max> categodes.

Currently, <min>= 0 and <max>= 1.

(G...:) <min>; <max>;

An entity type belongs to at least <min> categodes and at

most <max> categories per generic entity type. Currently,

<min>= 0 and <max>= 1.

(C3) <min>; <max>;

An entity type belongs to at least <min> categories and

at most <max> categodes of di fferent enti ty types.

Currently, <min>= 0 and <max>= 1.

(C4) <min>; <max>;

A category contains from <min> to <max> specific entity

types. Currently, <min> = 1 and <max> = N.

(Ce) Each category 1Wst include the disjunction constraint.

(C.) Each category 1Wst include the covering constraint.

D. Category and import/export

The import and export proc:esses nust take into account the concept of

category, which has already been defined in ISL syntax (see appendix 2 of

[Cane 90a]); a modified version is as follows:

• ET-def::= entity-type ET-name ET-shortnarre;

[origin abject-narre] [date date]

[is-in CATEGORY-name]•::> · · .1.

CATEGORY-def0 • • .1. description°· · *
GRQ..P-defO • " *

83

Chap1er.....,b=-------------~A ...9.enera.lization/sl}et.ialization construct_in __ TRAHIS1 _the cah_gory

■ CATEGCRY-def::= categories [covering] [exclusive]

specific spec-ET-def1 • •*

end categories

■ spec-ET-def::= ET-narre.

The definition of a group is modified as follows:

■ GRO...P-def: : = group GRO...P-CODE;

[id] [primary] [key]

[glob-card Min Max]

RELATI[J\J-block'::, · · *
[GR-camp-black J

STAT-block0
• • *

ACTI[J\J-block0
• • *

end-group

■ Min:= integer from Ota 99999

■ Max:= integer from 1 ta 99999.

The loader and the unloader have ta take these specifications into

account.

E. Category and executable schema generaticn

Since all generation rules for DBMSs data definition languages are

defined on the basic E-R model, and since is-a relations cannot be transla­

ted 'directly' in most current DBMSs, we assurre that before code genera­

tion, all is-a relations have already been translated into basic E-R

concepts. Therefore that processor need not ta be modified, except that

procedures are generated for global cardinality groups.

F. Category and ..-ep::::,rt generaticn

The reporting function about an enti ty type shows now the fol lowing

new elerrents:

■ the category of that entity type (with the class inclusion

constraints and the narre of the specific entity types);•

■ the narre of its generic entity type;

■ if the automatic inheri tance button is ON, the inheri ted

attributes, roles and identifier groups are presented tao.

84

Moreover, the attribute index shows now all pages in which the

attributes appear:

■ where they are defined;

■ where they are inheri ted (if the inheri tance but ton is O\J).

The global cardinality constraints are sho,-.n as the other groups.

G. Transfonnatia,s of a cateçJory

Transformations may be useful for different purposes:

■ in the database design mapping process to eliminate

categories from a schema, and obtain a basic E-R schema;

■ in the schema drawing process.

The functions explained.here may be of interest for these 'processes'.

We shall develop transformations for the elimination of categories

from a schema. There are mainly three ways to suppress a category of a

generic entity type, as already mentioned in chapter 4. We can apply the

upward inheritance mechanism, and represent the is-a semantics by keeping

only the generic entity type; conversely, we can apply downward inheritance

and keep only the specific entity types. Finally, we can simply represent

the is-a relations of a category by relationship types. After the

presentation of elementary transformations, we present also the global

transformations5 • The other transformations are typically useful for an a

posteriori' introduction of categories, and for schema reorganization.

Before presenting these new transformations, we must precise that:

■ we assume that they are not applied on schemata containing

'non conceptual' constructs;

■ the transformations explained in chapter 5 work properly even

if there are categories in the schema;

■ the latter transformations must consider the global

cardinality groups tao.

All transformations must, by definition, provide bath syntactical

correctness (i.e. the schema obtained after transformation of a schema

compliant the model is still compliant to the model, here the E---R model)

s Transforaation towards aodels are not presented here,

85

ChaRhr __ 1,'---__________ _,_,_A_gtoeraliutioolsJlec.iJJization ___ con1truct . .inTRAKIS: the cat_e_gor_y_

and semantic equivalence. In the follo,.iing, syntactical correctness will be

verified (althaugh, naming conventions could be mistreated; in this case,

we assume that the user is asked to enter a 'gcx:x:i' name). Se!nantic equiva­

lence verified and; statistical aspects are also preserved6 •

a) Transformation consisting in grouping entity types in a

category of a new entity tyP§

This transformation consists in the creation of an entity type

considered as the generic entity type of a group of entity types, say ESi,

E~, ••• , ESn, n ~ 1, (which do not belong to any category). Moreover,

upward attribute/role inheritance is applied for the commc:::n

attributes/roles proposed by the user. Attributes are cc:mnon if they have

the same type, the same length, the same number of decimals, the same

number of components and if their components are common. Roles are CCYIYl"D1

if they have the same cardinality, if their relationship type have the same

degree, if the other roles are defined on the same entity types and their

cardinality is 0-N (or a global cardinality is defined on them). The

category of the newly created entity type forms a partition composed of

ESi, E~, ••. , ESn, These upward inherited attributes/roles include in

their technical riote and description what was contained in the technical

note and description of the correspondant attributes/roles. In the

technical note of EG, it is noticed that it results from that transforma­

tion. Statitistic inference rules are applied for that new category.

Its inverse transformation consists in representing a category by the

sole specific entity types (see below). This transformation is useful when

several existi8g entity types rrust be generalized (see chapter 4).

b) Representation of a category by the speci fic enti ty tyQ_ê..~

This transformation applies on a category CAT(ESi, E~, ••• , EBn ->
EG) , n ~ 1, forming a parti tion7 • The category and the generic enti ty type

EG are removed. Each attribute of EG is inherited by each specific entity

6 This justifies that the preconditions of certain transfor1ations are 'heavy', as far as statistical
aspects are concerned. If one prefers a less vigorous approach, he aay 'drop' the aspects concerning
statistics in the preconditions (and record statistical inforaation in the technical notes),

7 If the specific entity types did not cover the generic entity type, we would need the creation of an
'artificial' specific entity types (containing entities which do not belong to specific entity types), If
the specific entity types were not disjoint, we would need additional constraints to represent possible
overlapping specific entity types, as explained in paragraph 4,2,

CJJ.ub.L~'------------....,A .9J.O'-r a 1 ü a tj on/ spec i a 1 ü a tJ on construct .. Jo T~AHlli.J he. c a tew1

type. The roles played by EG are replaced by a rrultidomain roles9 played by

ESi, ES:?, ••• , and ESn• The generic entity type cannot have any identifier

group9 ; the global cardinality groups are inherited by each specific entity

type. The tect-nical note (and origin) of inherited attributes and relation­

ship types concerned by the inherited roles contain an annotation of that ·

transformation. Each specific entity type 'receives' the description of EG,

and its tect-nical note. If EG belonged ta a category, it is replaced by its

specific entity types ESi, ES2 , .•• , ESn in this category. This transforma­

tion is not allowed if the average size of EG is specified, while the

average population sizes of the specific entity types10 are not specified.

The inverse of this transformation is the previous one. It is

essential 1 y used for the removal of is-a constructs from a schema. Note

that this representation of generalization/specialization constructs should

be avoided when relationship types are defined on EG, in order not ta have

ta deal with global cardinalities.

c) Transforma tian of a ca te_ggry ta inc 1 ude the caver ing

ç on s t rai 8 .. t.

This transformation applies on a category CAT(ESi, ES:?, .•• , ESn ->
EG), n ~ 1, which does not include the covering constraint. It consists in

the creation of a new entity type OTI-ER_EG, specified as belonging ta that

category, and in the modification of the category ta include the covering

constraint. The name, the shortname, the description, the tect-nical note,

and the origin of this new entity type are derived from characteristics of

EG. If the modified category forms a partition, then statistic inference

rules are applied, i.e. the population average size No-n-eR_e:œ of OTI-ER_EG

a Indeed, since the construct of 1ultido1ain role is not in TRAHIS basic 1odel, the replace1ent by a
1ultido1ain role is actually a replace1ent by the replace1ent of a 1ultido1ain role, i.e. by
1ultiplication of relati0n1hip types [Coll BB],
Siven a relationship type R of degree n, n? 2, where:

• the role r is 1ultidoaain role played by Ei, E2, ... , Em (1 ? 2);
• the other concerned enti ty types are EEi, EE2, , • , , EEn-i,

To eli11inate that 1ultido1ain role, we replace R by • relationship types Ri, b, ... , Rm, Each R1.
(1 H i 1) is a 'copy' of R, except thati

1 the 1ultido1ain role ris replaced by arole r1. played by E1. (its cardinality is that
of rl;

a the roles of each EE..1 (1 i j i n-1) in Ri, R2, ... Rn are concerned by a global
cardinality, the values of which are those of the cardinality of EE..1 in R,

9 0therwise, we need the introduction of a new integrity constraint, i,e, the global identifier constraint.
Let I1. be an identifier group of entity type E1. (1 i i i n), If a global identifier constraint is
specified on (Ii, b, , .. , Inl for (Ei, b, ... , En) then given a value for I1. (1 i i in) there is at
the 11ost one entity of Ei U b U ... En with that value,

10 So we are sure to keep the statistical aspects,

B7

Chap1er ___ 6,,_ __ -------~A .uneralization/speci@liz;tion __ construct_ in __ TRA"IS1 __ the __ cahgory

is given by No-r1-ER_e:œ = ~

otherwise it is unknOWï.

M

L Ne:ai if the latters are specified,
:L•u.1.

The reverse transformation consists simply in the deletion of

OTHER_EG and in the removal of the covering constraint. This transformation

may be useful in order ta meet the precondition of other transformation

(for instance, the previous one), or ta be compliant with a restricted

model which asks for categories with the covering constraint.

d) Transformation of a category ta include the disjunction

cons t r a_i n_t_

This transformation applies on a category CAT(ESi, E~, ... ' ES,..,->

EG), n L 2, which does not include the disjunction constraint (and for

which the average sizes of population are not specified) 11 • The specific

entity type cannot have identifier groups12 • It consists in the creation of
M M

L C new entity types, specified as specific entity types of EG, and in
i-l. i

the modification of the category sa that it includes the disjunction
M

constraint. The C first entity types represent ESi n ES.J, i and j

e {1, 2, ••• , n}, i <> j (this is specified in the tecmical note).

The attributes, roles13 and groups of these enti ty types are those of ES.i.
M

added ta those of ES.J • The C next enti ty types represent ESi n ES.J n E~--,
3

i, j and k E {1, 2, ••• , n}, i <> j, i <> k, j <> k (this is specified in

the tecmical note). The attributes, roles and groups of these enti ty types

are those of ESi added ta those of ES.J and ESk••· The name and shortname

are derived from the original structure. Their origin is EG, i.e. the

entity type to which the category belongs. The average population sizes are

let unspecified.

The inverse transformation is ta delete the newly created entity

types and ta remove the disjunction constraint. This transformation may be

useful in order to meet the precondition of other transformation, or ta be

11 So we can preserve statistical equivalence,
12 So Ne do not need the introduction of global identifier&,
13 This aeans that roles are replaced by 1ultido1ain roles, i,e, arole of ESi, 1 i i i n, is replaced by a

1ultido11ain role played by ES.i. and the new entity types representing ESi n ES.J, ESi n ES.J n ES~--, .. ,,
and ES i O Eb n , .. 0 ES,..,,

88

Chapt.tr.6,___ __________ _,.,_A-eneral.iZjtion/specialization coutruct.Jn ... TRAHI.it the categp..a

compliant with a restricted model asking for categories with the disjunc­

tion constraint.

e) Transformation consisting in the creation of a partition of

an entity type according to a set of optional

C.Q.1.~?.. / a t t r i l:l.~.t.ê .. ?..

Given an entity type E without any category, and given a set of

optional roles/attributes (belonging to no group), two entity types Ei and

E2 are created which belong to a newly created category forming a partition

of E. Ei contains the attribute(s)/role(s) of that set (which become

mandatory), while E2 contains entities of E with no value for the

attribute(s)/role(s) of that set. This is specified in their technical

note. Their origin is E. Their average population size is let unspecified.

The inverse transformation consists in the representation by the

generic entity type (see below). It is useful when we see that a set of

optional attributes/roles of an entity type 'hides' the existence of

specific entities (see chapter 4), i.e. a 'null' value for these

attributes/roles means 'does not exist' (and not 'unkno\.,\f"I').

f) Represen ta tian of a ca tegor.y by the gener ic en ti ty ty_pe_

This function applies on a category CAT(ESi, E~, .•• , ESn -> EG),

n ~ 1, the specific entity types of which possess at the most one mandatory

role·or only attributes14 and do not belong to any category1 s nor possess

any identifier group1b. The category and the specific entity types are

deleted. The possible role of a specific entity type is put in the generic

entity type, becomes optional; its name is changed to the name of the

specific entity type, the technical note of its relationship type contains

an annotation of that transformation: entities of the generic entity type

playing this role are those of the corresponding specific entity type. The

possible attributes of a specific entity type are grouped in the generic

entity type into a new optional and simple attribute which has the name of

the specific entity type it represents (this is noted in its technical

note), i.e. entities having a value for that compound attribute are those

14 This restriction has been introduced in order to avoid the introduction of too aany integrity
constraints, The attribute or the role can represent by itself the specific aspect of the generic
entities,

1 s Because only one category is allowed per entity type, categories cannot be 'inherited',
lb So we need not to deal with partial identifier groups, i.e, with an identifier for only a subset of the

entities of the entity type,

89

~huter .. ~6 __________ ---'A'-'---qeneralization/specialization_construct in __ TRANI..S.Llli cah~ry_

of the specific entity type it represents. If specific entity types do not

have any attribute nor role, they are represented in the generic entity

type by a boolean attribute with their name (this is noted in its tect-nical

note). In the last two cases, the frequency of the new attribute is given

by Ne:su. / ~, where ES.1., 1 s i s n, is the concerned specific entity type

(therefore, if Ne:s.1. is specified, Ne:œ must also be specified in order to

keep statistical information). The tect-nical note and the description of

the specific entity types are added to the technical note and description,

respectively, of the generic entity type; the latter contains also an

annotation of the transformation. If there is only one specific entity type

covering the generic entity type, then the role or attribute representing

it becomes mandatory. If more than two specific entity types forma

disjunction, then we specify a global cardinality 0-1 concerning the

roles/attributes which represent them. If they forma caver, then we

specify a global cardinality 1-n concerning the roles/attributes which

represent them. And if they forma partition, then we specify a global

cardinality 1-1 concerning the roles/attributes representing them_.

This transformation is another way to suppress is-a relations from a

schema. It is essentially intended for situations when specific entity

types have only a few proper characteristics.

g) Transformation consisting in the creation of a specific

entity type_

Given an entity type E which does not have a category with class

constraints and given one or several optional attribute(s)/role(s), a new

speci fic enti ty type is created (the category is created if i t is i ts first

specific entity type) which contains that (these) optional attribu­

te(s)/role(s). If they belong to a group, the latter is inherited by the

newly created entity type. The tect-nical note of that entity type contains

an annotation of this transformation, and its origin is EG.

This transformation is useful to represent multiple criterion

specialization, as explained in 6.2.1. The inverse transformation is

presented hereafter.

90

Cha.9..ter _6,,__ _______________________ A ___ .9.eneral iz_ation/sl}ecial ization .. construc_t .. in .. TRANIS: Jhe __ categ_!H:Y.

h) Transformation consistinq in the suppression of a specific

entity typ_ê_

Considering an entity type EG for which a category exists but without

any class constraint, given a specific entity type (for which the average

population size is not specified) with optional attributes/roles, that

specific entity type is deleted (and consequently the category, if it is

the last specific entity type). Its attributes/roles are put in the generic

entity type. Its gro..Jps are also inherited by the generic entity type.

This transformation is the inverse of the precedent one, and another

alternative to the representation by the generic entity type.

i) Representation of a cateqory by relationship tyP§'~

This function applies a category CAT(ES~, E~, ••• ,ES,,-> EG),

n ~ 1. Each is-a link between EG and ESi (1 sis n) is replaced by a rela­

tionship type Ri between EG and ESi. ESi plays arole of cardinality 1-1.

If there is only one specific entity type with the covering constraint,

then the cardinality of the role played by EG is 1-1 tao; otherwise, its

cardinality is 0-1. If there are at least t1,<JQ specific entity types:

■ if they forma disjunction, then a global cardinality 0-1 is

specified between these new roles played by EG;

■ if they forma caver, then a global cardinality 1-n is

specified between these new roles played by EG;

■ if they forma partition, then a global cardinality 1-1 is

specified between these new roles played by EG.

The origin of each new relationship Ri type is EG (meaning that they

cane from the elimination of its category). Their technical note contains

the fact they represent anis-a relation. Statistics of the relationship

types are obtained from population of the concemed entity types, as

explained in chapter 5. This transformation is the last alternative for the

elimination of is-a relations from a schema. The inverse transformation

consists in replacing the relationship types by the is-a relations of a

category; the global cardinalities are replaced by the corresponding class

constraints. It seems to be the most 'natural' one, ho.Never it implies that

UoD abjects are represented in different, disjoint entity types (see 4.2).

91

ÇJJjpter ... P~----------~A qeneraljzatJ,on/speciaUzation construct in.JRAN!S1 the. categoa

j) Global transformation: representation of the cateqories by

the sole spec if ic en ti ty typJ=s

This transformation aims at progressively eliminating is-a relations

from the schema by representing only the specific entity types. It proc:eeds

in a top-doi,,,n fashion i.e. starting from entity types which do not belong

to a category (in order to keep trace of the hierarchy in the structure of

the entity types attributes). Due to the precondition of the corresponding

elementary transformation it may be possible that some categories cannot be

transformed in this way.

k) Global transformation: representation of t~ê. cateqories by

the sole _generic enti ty typ_ê..~

This transformation progressively eliminates is-a relations from the

schema by keeping only the generic entity types. It proceeds in a bottom-up

way, i.e. starting from entity types which do not possess a category (in

order to keep trace of the hierarchy in the structure of the entity types

attributes). Due to the precondition of the corresponding elementary

transformation it may be possible that some categories cannot be

transformed in this way.

1) Global transformation: representation of the cateqories by

relationship types

This transformation progressively eliminates the is-a relations from

a schema: they are replaced by relationship types.

6.3.2. Technical level explanations

Oï this level, we are interested in the design of the main algorithms

(presented in appendix E); they are written in ADL [Hain 86a] and are

working on the GAM schema of the specification database where the category

construct is represented. The choice of this language was obvious since we

are working on a GAM schema. We ho.Never restrict ourselves to the

primitives which are provided by the access module implemented in TRAMIS

(cf. 5.3.2). These algorithms are consistent to the virtual DMS constituted

by the access module. We tried, of course, to reduce the number of accesses

to the database.

92

Çnut.H..J~---------------.9.lineral_ization/suc.ialiation_coni_trru .. in_ TRANIS1 Jhe cate;__ory_

ô.4. The category in TRAMIS user interface

6.4.1. User level explanations

How does the category fit in user interface of TRAMIS?

Our objective was to make a 'transparent' concept17 , so that only

users interested in it will see it: it is a 'secondary' construct.

Appendix D contains the modifications of the current user interface

monitoring (explained in appendix C). We see that these modifications are

minor, except the fact transformations are defined in the ENTITY menu. Note

also that the user can specify the generic entity type of the current

entity type, or specify the specific entity type(s) of the current entity

type.

6.4.2. Technical level explanations

As explained in chapter 5, we assume that user level explanations are

sufficient here.

17 This choice is guided by current re1arks on TRANIS, which is considered as relatively co1plex ••• due to
the richnesa of its concepts.

93

Carie 1-u.s iori

Main ideas

In this dissertation we studied generalization/specialization

abstractions structures.

After the recall of what is an abstraction mechanism, we overviewed

how these structures fit during the development of software, and compared

their impact on three major areas in computer science, namely programming

languages, artificial intelligence and databases. We particularly emphasi­

zed that generalization/specialization is used, along with its inheritance

mechanism, for enhancing reusability of programs. Knowledge representation

and knowledge manipulation are based on the generalization/specialization

inferences, either strict inheritance, or default inheritance. Conceptual

models b..Jt also implementation models (of object-oriented DBMSs) can profit

from generalization/specialization in the perspective of capturing more

semantics about the UoD.

Then, after a review of database design concepts, we thoroughly

analysed, within a corrmon framei.,,JOrk (the GER model), how generaliza­

tion/specialization structures have been introduced in semantic data

models. The main elements are:

• the is-a relation between entity types (also pro!X)sed for

relationship types and attributes) which records the abstrac­

tion mechanism used in the cognitive process;

• inheritance which allows for characteristics sharing amid

types, and consequently enhances schema flexibility and

conciseness;

■ class constraints which specify how classes intersect;

■ the criteria (and the IX)SSibility to include derived

information) ;

■ the may-be-a relation.

We have also overviewed how these elements have been combined in

several madels. We then confronted database design activities and generali­

zation/specialization structures. That analysis aimed at providing us with

a better idea of what can be used in any model.

94

____________________________________ __,Conclusion

Fr-am that study, we der-ived a subset and integr-ated it in TRAMIS, a

database design wor-kbench. That integr-ation has been conducted at differ-ent

levels (and for- two kinds of r-eader-s, i.e. a user- and an implementor-):

■ in TRAMIS ar-chitectur-e;

■ in TRAMIS model;

■ in TRAMIS pr-ocessor-s;

■ in TRAMIS user- inter-face.

Other works

Analysis of gener-alization/specialization concepts have alr-eady been

done (see, for- example, [Coll 88], [Hain 89d] or- [Spac 89]). We decided to

pr-ovide such a study, str-essing elements which wer-e not analysed pr-eviously

(the cr-iter-ia, for- example), and compar-ing with ar-tificial intelligence and

pr-ogr-amming languages concepts. That study was also necessar-y for- helping

us to define the subset to be integr-ated in the wor-kbench.

On the other- hand, we did not find any paper- on the pr-oblem of inte­

gr-ating a new constr-uct in a database design wor-kbench. Ho,,iever-, our­

exper-ience sho.Ned us that this task is for- many r-easons far- fr-om being

obvious. If we need not think about the gener-al fr-amewor-k, as it is the

case when we star-t fr-om scr-atch, it is however- difficult in the sense that

we have to be compliant with the existing.

Evaluation

The pr-ocess of including a constr-uct into a model (or- the definition

of a new model) is subject to cr-iticism. Integr-ating it in a wor-kbench adds

fur-ther- difficulties. The impor-tant thing is to pr-opose a concept being

r-eally closed to minci str-uctur-ing str-uctur-es. That was our- aim. We tr-ied to

pr-ovide a constr-uct being consistent, minimal, useful (easy to under-stand

and to use).

As explained in these pages, we defined the categor-y constr-uct as a

consequence of bath a theor-etical study, which emphasized the differ-ent

elements pr-oposed in the liter-atur-e, and also pr-actical consider-ations,

i.e. constr-aints r-elated to TRAMIS (and its acceptance in the 'pr-atical

wor-ld'). How did we manage it?

On the one hand, we star-ted by over-viewing the differ-ent concepts of

gener-alization/specialization. We then studied TRAMIS. vJe saw that these

95

-------------------------------------'Conchlsion

concepts were relatively easy to integrate in the TRAMIS model. Then,

because most current DBMSs cannot deal with extensions like the generaliza­

tion/specialization constructs, we analysed how extended constructs can be

mapped to basic ones. This put in evidence a large number of integrity

constraints we tried to classify (global identifier, partial identifier,

global cardinality, •.•), but also the difficulty of the algorithms (for

multiple generalization, for example). An evaluation of the impact of the

introduction of new integrity constraints in TRAMIS (by analyzing how they

can be incorporated in the model, how they go through the existing

transformations, and how code can be generated) helped us to decide several

restrictions on both elements of the generalization/specialization

construct (for example, we eliminated the redefinition/inhibition

constraints of inheritance, and the specialization criterion) and on the

transformations (for example, the representation by the generic entity type

has been simplified). We finally arrived to the proposed category construct

and the set of functions working on it (note that several existing

functions needed to be modi fied too).

On the other hand, we undertook a small-scale field study, namely

during the teaching of an one-week database design course to DEC engineers.

We introduced them to the basic E-R approach rut we also explained a gene­

ralization/specialization construct (which was a superset of the category).

We saw, through exercises, that the proposed construct was knowledgeable.

However, that field study aspect should be broadened, because:

• if we saw that the minimal subset was all right, we cannot

argue that database designers will find it sufficient1 ;

• the field study concerned a generalization/specialization

construct 'outside' the 'world of TRAMIS'.

Future work

A field study concerning the evaluation of the generalization/specia­

lization in TRAMIS will probably lead to an improvement of our proposals.

Such a field study should 'define' different classes of users. It seems

that an a posteriori' study is only worth, as far as the user interface

problem is concerned, at least. That study could include an evaluation of

TRAMIS itself, as well as an evaluation of E-R-based methodologies. Indeed,

looking at an experience on teaching in the industry and university,

1 If we had done that analysis, we do not however think that its integration within TRANIS was possible for
the reasons 1entioned before (i,e, constraints of TRANIS),

____________________________________ __,Conclus.ion

Nijssens [Nijs 86] argues that there is a need ta exchange experience of

teaching conceptual schema design as it gradually becomes part of the core

of computer science. Sa few scientific (or at least systematic) studies

have been carried out and reported concerning experiences of using methodo­

logies on realistic, practical cases [Bube 87].

Madel enhancement is a never-ending task. We proposed a minimal

subset for generalization/specialization. Sorne designers will perhaps need

extensions ta the category. But in case of extensions, two questions should

be addressed:

• why this extension?

• what is the original contribution of it?

Among the mechanisms which could extend the expressive power of a schema

are certainly the integrity constraints and derived schema components

aspects of generalization/specialization.

We restricted ourselves ta static, structural aspects of generaliza­

tion/specialization in our study arguing that only them are used in TRAMIS.

We stressed their semantic power of expression. We did not analyse the

'application' aspect, nor the manipulation languages [Czed 90] [Spac 89]

[Zani 89]. They should be analysed if manipulations aspects are considered

in subsequent versions of TRAMIS.

We studied the use of generalization/specialization for database

design, considering that DBMSs are notable to deal with them. Current

researchs focus on object-oriented DBMSs, as explained in chapter 1. Such

DBMSs are able to record certain generalization/specialization constructs.

We think that current methodologies should be adapted then. Approaches

using the DBMS model for the logical step will not need lots of modifica­

tions. Ch the other hand, approaches introducing an intermediate model,

like the GAM, will have to extend it. In TRAMIS, this will imply the

analysis of access and update actions on the category.

The development tasks proposed in chapter 2 were intended for a new

information system. But in the future, adaptation of existing information

systems will play a more proeminent role, as there will be more and more

existing ones. The reorganization work will be more and more important. As

different softwares are built in different ways, an approach ta combine

97

______________________________________ __,Conclusion

tt-em is ta r-ebuild (or build?) the conceptual sct-ema. And there,

gener-alization/specialization may help tao, as a reverse engineering tool.

During the analysis of the tr-ansfor-mation of the generalization/spe­

cialization str-uctures into basic E-R constructs, we wer-e confr-onted with

the need of integr-ity constr-aints (in or-der- to keep the semantics of the

'extended' concepts of generalization/specialization). In our- minci, a

systematic study, trying ta identify the most frequent ones and sa pr-ovide

a 'fr-amewor-k' for- integr-ity constraints, will be of benefit for- the expres­

sion power- of the E-R model. This wor-k is cer-tainly wor-th wr-iting a disser-­

tation.

Fr-am these observations, we conclude that our- contr-ibution ta the

analysis of generalization/specialization str-uctur-es in computer--aided

database design could be extended in or-der- to 'manage' the modelling tasks

of computer- science still better- .••

98

Referer.1.ces

List of references

[Abri 74]

[Afsa 86]

[Alte 90]

[Amer 87]

[Aria 86]

[Bane 87]

[Bati 82]

[Bati 86]

[Bati 88a]

Abrial, J. R., "Data semantics" in Klimbie, J. W., Koffeman,
K. L. (eds.), Database management, North-+lolland, 1974,
pp. 1-60

Afsamanesh, H., Mc Leod, D., "A framev,,,ork for semantic
database models" in [Aria 86], pp. 149-168

Altenkrueger, D. E., "KBMS: aspects, theory and
implementation", Information Systems, vol. 15, nr. 1, 1990,
pp. 1-7

America, P., "Inheritance and subtyping in a parallel object­
oriented language" in [Bezi 87], pp. 234-242

Ariav, G., Clifford, J. (eds.), New directions for database
systems, Ablex Publish. Corp., Norwood, New Jersey, 1986,
269 p.

Banerjee, J., Cho..!, H.-T., Garza, J.F., Kim, W., Woelk, D.,
Bal lou, N., Kim, H.-J., "Data model issues for object­
oriented applications" in Stonebraker (ed.), Readings on
database systems, pp. 445-456

Batini, C., Lenzerini, M., Santucci, G., "A computer-aided
methodology for conceptual database design", lnformaticn
Systems, vol. 7, nr. 3, 1982, pp. 265-280

Batini, C., Lenzerini, M., Navathe, S. B., "A comparative
analysis of methodologies for database schema integration",
PCt1 Comp.;ting Surveys, vol. 18, nr. 14, December 1986,
pp. 323-363

Batini, C. (ed.), Entity-relationship approach: a bridge to
the user, Proceedings of the 7th International Conference on
Entity-Relationship, North-+lolland, Amsterdam, 525 p.

___________________________________ _..,_,R.,,_ef,_,,_erences

[Bati 88b]

[Batr 90]

[Berg 88a]

[Berg 88b]

[Berm 86]

[Bezi 87]

[Blah 88]

[Boda 89]

[Borg 84]

[Borg 85]

[Borg 88]

Batini, C., Di Battista, G., "A methodology for conceptual
documentation and maintenance", Information Systems, vol. 13,
nr. 3, 1988, pp. 297-318

Batra, D., Hoffer, J. A., Bostrom, R. P., "Comparing
representations with relational and EER models",
Corinunications of the ACM, vol. 33, nr. 2, February 1990,
pp. 126-139

Bergamaschi, S., Bonfatti, F., Cavazza, L., Sartori, C.,
Tiberio, P., "Relational data base design for the intensional
aspects of a knowledge base", InformatJ:on Systems, vol. 13,
nr. 3, 1988, pp. 245-256

Bergamaschi, S., Cavedoni, L., Sartori, C., Tiberio, P., "O.
taxonomie reasoning in the E/R environment" in [Bati 88a],
pp. 301-312

Berman, S., "A semantic data modelas the basis for an
automated database design tool", Information Systems,
vol. 11, nr. 2, 1986, pp. 149-165

Bez i vin, J. (ed.) , Eca:P '87: European con ference on objec t­
or iented progranming, Springer, Berlin, 1987, 273 p.

Blaha, M. R., Premerlani, W. J., Rumbaugh, J. E., "Relational
database design using an object-oriented methodology",
Corinunications of the ACM, vol. 31, nr. 4, April 1988,
pp. 414-427

Bodart, F., Pigneur, Y., Conception assistée des systémes
d'information - ~thode, modèles, outils, Masson, Paris,
1989, 302 p.

Borgida, A., Mylopoulos, J., Wang, H. K. T., "Generaliza­
tion/specialization as a basis for software specification" in
[Bro 84a], pp. 87-114

Borgida, A., "Features of languages for the development of
information systems at the conceptual level", IEEE Softw.are,
vol. 2, nr. 1, January 1985, pp. 63-72

Borgida, A., "Modeling class hierarchies with contradictions"
in Bor al , H. , Larson, P. -A. (eds.) , Proceedings of the SI&-rJD
international conference on management of data, PCM, 1988,
pp. 434-443

Il

[Bouz 84]

[Bouz 86]

[Brac 83]

[Brac 85]

[Brac 89]

[Bria 85]

[Brod 80]

[Brod 81]

[Brod 84a]

[Brod 84b]

[Brod 86]

[Bube 87]

ef r n ei_

Bouzegho....lb, M., Gardarin, G., "The design of an expert system
for database design" in Gardarin, G., Gelenbe, E. (eds.), New
appl icatic:ns of databases, Academic Press, London, 1984,
pp. 203-223

Bouzegho....lb, M., Metais, E., "SECS!: an expert system approach
for database design" in [Kugl 86], pp. 251-257

Brachman, R. J., "What IS-A is and isn't: an analysis of
taxonomie links in semantic networks", IEEE Cornp...Jter, 1983

Brachman, R. J., Levesque, H. J., Reading in knowledge
representatic:n, Morgan Kaufmann Publ., Los Al tas, Cali fomia,
1985, 571 p.

Brachman, R. J., Schmolze, J. G., "An overview of the KL-Q\E
knowledge representation system" in [Mylo 89], pp. 207-2'2!7

Briand, H., Habrias, H., Hue, J.-F., Simon, Y., "Expert
system for translating an E-R into databases" in [Chen 85]
pp. 199-206

Brodie, M. L., "Data abstraction, databases and conceptual
modelling", sunvnary of Brodie, M. L., Zilles, S. N. (eds.),
Proceedings of the workshop c:n data abstractic:n, databases
and cc:nceptual model ling, ACM, 1980, pp. 105-108

Brodie, M. L. , "Association: A database abstraction for
semantic modelling" in [Chen 81a], pp. 583-608

~rodie, M. L., Mylopoulos, J., Sctmidt, J. W. (eds.), 01
cc:nceptual modelling - Perspectives fran artificial
intelligence, databases, and programming languages,
Springer-Verlag, New York, 1984, 503 p.

Brodie, M. L., "0, the development of data models" in [Bro
84a], pp. 19-48

Brodie, M. L., Mylopoulos, J., "Knowledge bases and
databases: semantic vs. computational theories of
information" in [Aria 86], pp. 186-218

Bubenko, J. A., "Information analysis and conceptual
modeling" in [Pard 87], pp. 141-192

III

___________________________________ _.,,,R~ferences

[Carb 80)

[Cata 88)

[Ceri 81]

[Chen 76]

[Chen 81a]

[Chen 81b]

[Chen 83)

[Chen 85]

[Cive 88]

[Codd 79)

[Coll 88]

[Cane 90a]

Carbonnel, J. G., "Default reasoning and inheritance
mechanisms on type hierarchies" in Proceedings of the ACt1
SIG/'fJD conference on the management of data, ACM, 1980,
pp. 107-109

Catarci, T., Ferrara, F. M., "CFTIM_ER: an automated tool for
supporting the logical design within a complete CASE
environment" in [Bati 88a], pp. 231-246

Ceri, S., Pelagatti, G., Bracchi, G., "Structured methodology
for designing static and dynamic aspects of data base
applications", Information Systems, vol. 6, nr. 1, 1981,
pp. 31-45

Chen, P. P.-S., "The entity-relationship model - Toward a
uni fied view of data", ACt1 Transactions on Database Systems,
vol. 1, nr. 1, March 1976, pp. 9-36

Chen, P. P.-S. (ed.), Entity-relationship approach to
information rnodeling and analysis, ER Institute, 1981

Chen, P. P.-S., "A preliminary framework for entity­
relationship models" in [Chen 81a], pp. 19-28

Chen, P. P.-S., "ER - A historical perspective and futures
directions" in [DaJa 83], pp. 71-77

Chen, P. (ed.), Entity-relationship approach: the use of E-R
concepts in knowledge representation, North-Holland, 1985

Civelek, F. N., Dogac, A., Spaccapietra, S., "An expert
system approach to view definition and integration" in
[Bati 88a], pp. 97-117

Codd, E. F., "Extending the database relational model to
capture more meaning", ACt1 Transactions on Database Systems,
vol. 4, nr. 4, April 1979, pp. 397-434

Collart, N., Joris, M., Etude théorique et pratique
d'extensions au rnodéle entité-association, Master Thesis,•
Institut d'Informatique, FlJ\IDP, Namur, 1988

Concis, FlJ\IDP, TRAMIS, un atelier de conception de bases de
données - Manuel de référence version 1. O, November 1990

IV

[Cane 90b]

[Czed 90]

[Dar-d 89]

[Date 86]

[DaJa 83]

[Davi 89]

[Delo 82]

[DiBa 89]

[Ditt 90]

[Daga 81]

[Dols 88]

References.

Concis, Présentation tectnique de TRPl1IS, Ar-genteuil, January
1990

Czedo, B., Elmasr-i, R., Rusinkiewicz, M., Embley, D. W., "A
gr-aphical data manipulation language for- an extended entity­
r-elationship mode!", IEEE Canp...1ter, vol. 23, nr-. 3,
Mar-ch 1990, pp. 26-36

Dar-denne, A., Delcour-t, B., Dubisy, F., van LamsllEE'r-de, A.,
The KAOS proJect: knowledge acquisition in autanated
specification of software, Resear-ch Paper-, Institut
d'Infor-matique, FLNF, Namur-, 1989

Date, C. J., Relational database - Selected writings,
Addison-wesley, 1986

Davis, C. G., Jajodia, S., Ng, P. A., Yeh, R.T. (eds.),
Entity-relationship approach to software engineering, ER
Institute, Elsevier- Science Publisher-s B. V., Nor-th-l-lolland,
1983

Davis, J. P., Bonne!, R. D., "1'1odeling semantics with concept
abstr-action in the EPtRL data mode!" in Proceedings of the 8th
International Conference on Entity-Relationship, 1989,
pp. 102-117

Delobel, C., Adiba, M., Bases de données et systèmes
relationnels, Bor-das, Par-is, 1982, 449 p.

Di Battis ta, G., Lenzer-ini, M., "A deductive method for­
enti ty-r-elationship modelling" in Alpes, P. M. G.,
Wieder-hold, G. (eds.) Proceedings of the 15th International
Conference on Very Large Data Bases, Kaufmann, Palo Alto,
Califomia, 1989, pp. 13-21

Di ttr-ich, K., "Object-or-iented database systems: the next
miles of the mar-athon", Information Systems, vol. 15, nr-. 1,
1990, pp. 161-167

Dogac, A., Chen, P. P.-S., "Entity-r-elationship model in the
ANSI/SPARC fr-amewor-k" in [Chen 81a], pp. 361-378

Dols, P., Data bases conception and logical design, Dr-aft
Cour-se Suppor-t, Digital Equipment Cor-por-ation, Maynar-d,
August 1988

V

-----------------------------------~R-~ferences

[Duco 87]

[Duco 89]

[Elma 85]

[Equi 87]

[Falk 89]

[Fike 85]

[Fouc 89]

[Gall 89]

[Hain 74]

[Hain 81]

[Hain 85]

Ducournau, R., Habib, M., "Oï some algori thns for l'/Ul tiple
inheri tance in object-oriented programming" in [Bezi 87],
pp. 243-252

Ducournau, R., Habib, M., "La/'/Ultiplicitéde l'héritage dans
les langages à objets", Tectnique et Science Informatiques,
vol. 8, nr. 1, 1989, pp. 41-62

Elmasri, R., Weeldreyer, J., Hevner, A., "The category
concept: an extension ta the entity-relationship model", Data
& Kn01Nledge Engineering, vol. 1, nr. 1, 1985, pp. 75-116

Equipe Bases de Données, Ccncepticn d'une base de dcnnées -
Eléments ~thodologiques, Institut d'Informatique, Fl.J\JDP,
Narrur, March 1987

Falkenberg, E. D., Lindgreen, P. (eds.), Informaticn system
cCY1cepts: an in-depth analysis, Proceedings of the IFIP TC 8/
v.G 8.1 Working Conference, Elsevier Science Publishers B. V.,
North Holland, 1989, 357 p.

Fikes, R., Kehler, T., "The role of frame-based
representation in reasoning", CanrrunicatiCY1s of the ACM,
vol. 28, nr. 9, September 1985, pp. 904-920

Fauche, J .-J., "NIAM, une approche originale et cohérente du
système d'informations, Journ'Almin, Fl.J\JDP, Narrur, nr. 11,
June 1989, pp. 23-32

Gallaire, H., Minker, J., Nicolas, J.-M., "Logic and
databases: a deductive approach" in [Mylo 89], pp. 231-247

Hainaut, J .-L., Lecharlier, 8., "An extensible semantic model
of data base and its data language" in Informaticn Processing
74, IFIP, North-Holland, 1974, pp. 1026-1030

Hainaut, J .-L., "Theori tical and practical tools for data
base design" in Zaniolo, C., Delobel, C. (eds.), Proceedings
of the 7th Internaticnal Ccnference en Very Large Data Bases,
1981, pp. 216-224

Hainaut, J.-L., IntroductiCYI aux systèmes de gesticn de bases
de dcnnées CODASYL 71, Institut d'Informatique, FLNDP, Na/'/Ur,
October 1985, 48 p.

VI

[Hain 86a]

[Hain 86b]

[Hain 86c]

[Hain 88]

[Hain 89a]

[Hain 89b]

[Hain 89c]

[Hain 89d]

[Halb 87]

[Harrvn 81]

[Higg 89]

[f-l.111 87a]

Refere ç_u

Hainaut, J .-L., Ccnceptù:n ass.istée des appl.ications
informatiques - 2. Ccnception de la b.3se de données, col 1.
Méthode+ Progra.nvnes, Masson, Paris, 1986, 224 p.

Hainaut, J .-L., Schénas de la b.3se des spécifications
(Deuxième version), Database Design Workbench Project -
Specification SPEC-86/7-SPEC-86/8-4, Institut d'Informatique
FlNDP, Namur, Ptugust 1986

Hainaut, J.-L., Introduction aux out.ils généraux de
développement de 1 'atelier (Première version), Database
Design Workbench Project - Specification SPEC-86/8-1,
Institut d'Informatique FL.I\JDP, Namur, Ptugust 1986

Hainaut, J.-L., Introduct.ion à la tf-léorie relat.ionnelle des
bases de données, Draft Course Support, Institut
d'Informatique, FlNDP, NamJr, March 1988

Hainaut, J .-L., Decomposition of irreducible data b.3se
schemata, Research Paper, Institut d'Informatique, FL.I\JDP,
NamJr, January 1989, 17 p.

Hainaut, J .-L., Semantic equivalence of data b.3se schemata -
~ new family of forrnal tools, Research Paper, Institut
d'Informatique, FU\IDP, Namur, June 1989, 18 p.

Hainaut, J .-L., "A generic enti ty-relationship model" in
[Falk 89], pp. 109-138

Hainaut, J. -L. , Bases de données et b.3ses de connaissances en
gestion des organisations, Syllabus of the 5th AFŒT Ptutumn
Scool of Databases, Port Barcarès, France, November 1989,
121 p.

Halbert, P. C., O'Brien, P. D., "Using types and inheritance
in object-oriented languages" in [Bezi 87], pp. 20-31

Harrvner, M., Mc:Leod, D., "Database description with SDM, a
semantic database model", ACt1 Transact.ion on Datab.3se
Systems, vol. 6, nr. 3, March 1981, pp. 351-386

Higgs, B. J., ObJect-oriented database systems, Digital
Equipment Corporation, Maynard, February 1989, 30 p.

f-l.111, R. , "A survey of theori tical research on typed complex
database abjects" in [Pard 87], pp. 193-256

VII

____________________________________ __uR,,_ef/JUerences

[1-l.Jll 87b]

[Kern 84]

[King 84]

[Kugl 86]

[Kung 90]

[LePe 88]

[Lenz 85]

[Lepr 86]

[Ling 85]

[Mann 88]

[Mark 89]

[Matt 88]

1-l.Jll, R., King, R., ''Seinantic databasemodeling: survey,
applications, and research issues", ACM Comp..1ting SUrveys,
vol. 18, nr. 3, September 1987, pp. 201-260

Kernighan, B. W., Ri tchie, D. M., Le langage C,
Buffenoir, T. (trad.), Masson, Paris, 1984, 213 p.

King, R., Mc:Leod, D., "A unified model and methodology for
conceptual database design" in [Bra 84a], pp. 313-327

Kugler, H.-J. (ed.), Infortnt3tic:n processing 86, IFIP,
Elsevier Science Publishers B. V., North-Holland, 1986

Kung, C., "0bject subclass hierarchy in SQL: a simple
approach", Ct:::rrm_Jnicatic:ns of the PCt1, vol. 33, nr. 7,
July 1990, pp. 117-125

Le, F., Peugeot, C., "Quelques problèmes liés à
l'introduction du concept de généralisation/spécialisation
dans le modèle entité-relation", Modèles et Bases de Données,
nr. 10, July 1988, pp. 3-16

Lenzerini, M., "SERM: semantic enti ty-relationship model" in
[Chen 85], pp. 270-277

Lepr~tre, S., La méthode I~ et son outil logiciel associé sur
micro-ordinateur, Syllabus of the AFŒT Days on Database
Management Systems on Micro-computers, La Rochelle, France,
1986

Ling, T. W., "A normal form for E-R diagrams" in [Chen 85],
pp. 24-35

Mannino, M. V., Navathe, S. B., Efelsberg, W., "A rule-based
approach for merging generalization hierarchies", Infortnt3tic:n
Systems, vol. 13, nr. 3, 1988, pp. 257-272

Markowitz, "Oï the correctness of representing extended
enti ty-relationship structure in the relational model" in
Proceedings of ACM SIGMJD cc:nference en the management of
data, 1989, pp. 430-439

Mattos, N. M., "Abstraction concepts: the basis for data and
knowledge modeling" in [Bati 88a], pp. 331-350

VIII

___________________________________ __,_,R~ef,._,erences

[M::Le 80]

[Meye 89]

[Mylo 84]

[Mylo 89]

[Nava 86]

[Nava 88a]

[Nava 88b]

[Nijs 86]

[Pard 87]

[Pare 87]

[Pare 89]

[Pate 90]

M:: Lecxl, D., Smith, J. M., "Abstraction in databases" in
Prcx::eedings of the PCt1 SiêJt'CJD conference on the management of
data, ACM, 1980, pp. 19-25

Meyer, B., Eiffel: an introduction, TR-E1-3/GI, Interactive ·
Software Engineering Inc., 1989, 14 p.

Mylopoulos, J., Levesque, H. J., "An overview of knowledge
representation" in [Bro 84a], pp. 3-18

Mylopoulos, J., Brodie, M. L. (eds.), Readings in articial
intelligence & databases, Kaufmann, Los Altos, California,
1989, 688 p.

Navathe, S. B., Elmasri, R., Larson, J., "Integrating user
views in database design", IEEECanputer, vol. 19, nr. 1,
January 1986, pp. 50-61

Navathe, S. B., Pil lalamarri, M. K., "CŒR: toward making the
E-R approach object-oriented" in [Bati 88a], pp. 56-76

Navathe, S. B., Conceptual and logical database design,
Slides of the 7th International Conference on Entity­
Relationship Approach, Rome, Italy, November 1988

Nijssens, G. M., "0, experience wi th large-scale teaching and
use of fact-based conceptual schemas in industry and
university" in Steel, T. B., Meersman, R. (eds.), Database
semantics, DS-1 IFIP Proceedings, Elsevier, North-Holland,
1986, pp. 189-204

Paredaens, J • (ed.) , Da tabases, Academic Press, London, 1987

Parent, C., Spaccapietra, S., "Lh modèle et une algèbre pour
les bases de données de type E/R", Tectniques et Sciences
Informatiques, vol. 6, nr. 5, pp. 435-456

Parent, C. , Spaccapietra, S. , "About enti ties, complex
abjects and object-oriented data models" in [Falk 89],
pp. 193-224

Patel-Schneider, P. F., "Practical, object-based knowledge
representation for knowledge-based systems", Information
Systems, vol. 15, nr. 1, 1990, pp. 9-19

IX

[Peck 88]

[Petz 88]

[Pion 88]

[Plet 89]

[Plum 86]

[Pott 89]

[Prov 89]

[Qian 85]

[Ridj 84]

[Roch 88]

[Roll 86]

[Roll 89]

Refere ces

Peckham, J., Maryanski, F., "Semantic data models", ACM
Canp..1ting Surveys, vol. 20, nr. 3, September 1988,
pp. 153-198

Petzold, C., Progranming WINDàvs, Microsoft Press,
Washington, 1988, 852 p.

Pionnier, J., "Réflexions sur certaines impossibilités de
représentation de la réalité des données par le symbolisme du
modèle entité-association", Modèles et Bases de données,
nr. 8, February 1988, pp. 31-35

Pletch, A., "Conceptual modeling in the classroom", ACM
SIGM:JD RECCRIJ, vol. 18, nr. 1, March 1989, pp. 74-80

Plum, T., Le langage C - Intrcx:Juction à la programnation, M.
Rousseau (trad.), coll. Intermicro, Prentice-Hall/Inter­
Editions, Paris, 1986, 337 p.

Patter, W. D., Trueblood, R. P., Eastman, C. M., "Hyper­
semantic data modeling", Data & Knowledge Engineering,
vol. 4, nr. 1, July 1989, pp. 69-90

Provost, I., Les obJets interactifs, Institut d'Informatique,
FLNDP, Nam.Jr, 1989

Qian, X., Wiederhold, G., "Data definition facility of
CRITIAS" in [Chen 85], pp. 46-55

Ridj anov ic , D. , Brod ie, M. L. , 11 01 the design and
specification of database transactions" in [Bra 84a],
pp. 277-306

Rochfeld, A., Morejon, J., "l"ERISE : L.ne méthode en mouvement
- Extensions au modèle conceptuel des données", Modèles et
Bases de Dcnnées, nr. 8, February 1988, pp. 37-56

Ra 11 and, C. , Proix , C. , "An expert system approac h ta
information system design" in [Kugl 86], pp. 241-250

Rolland, C., Méthodes et CJUtils d'aide à la conception des
systèmes d'information - Evolution et perspectives, Syllabus
of the Conference on New perspectives in database, L.niversity
of Geneva, September 1990

X

-----------------------------------~R~.~ill

[Rous 84]

[Sacc 88]

[Sacr 88]

[Saka 83]

[Schi 83]

[Sern 85]

[Ship 81]

[Shla 88]

[Sima 89]

[Smit 77]

[Smi t 80]

[BD.Na 84]

Roussopoulos, N., Yeh, R. T., "Pn adaptable methodology for
database design", IEEE Canputer, vol. 17, nr. 5, May 1984,
pp. 64-80

Sacco, G. M., "The FACT model: a semantic data model for
complex databases", Information Systems, vol. 13, nr. 1,
1988, pp. 1-11

Sacré, B., Prograrrmation sous WINIXJAS, Institut
d'Informatique, FLN)P, Narror, April 1988

Sakai, H., "Entity-relationship approach to logical database
design" in [DaJa 83], pp. 155-187

Schiel, U., "Pn abstract introduction to the temporal
hierarchic data model (Tl-1'1)" in Schkolnick, M., Thanas, C.
(eds.), Proceedings of the 9th International Conference on
Very Large Data Bases, 1988, pp. 322-330

Sernadas, A., Sernadas, C., "The use of E-R abstractions for
knONledge representation", in [Chen 85], pp. 224-231

Shipman, D. W., "The functional data model and the data
language DAPLEX", ACM Transactions on Database Systems,
vol. 6, nr. 1, March 1981, pp. 140-173

Shlaer, S., Mellor, S., Ob.iect-oriented systems analysis
Modeling the 111/0rld in data, Yourdon Press, 1988, 144 p.

Simovici, D. A., Stefanescu, D. C., "Formal semantics for
database schemas", Information Systems, vol. 14, nr. 1, 1989,
pp. 65-77

Smith, J. M., Smith, D. C. P., "Database abstraction:
aggregation and generalization", ACM Transactions on Database
Systems, vol. 2, nr. 2, June 1977, pp. 105-133

Smith, D. C. P., Smith, J. M., "Conceptual data base design"
in Infotech state of the art report on data design, 1980

BD.Na, J.F., Conceptual structures: information processing in
mind and ma.chine, Addison-wesley, Reading, Massachusetts,
1984, 469 p.

XI

___________________________________ __!.lR5..!_erenc@i

[Spac 89]

[Spri 88]

[Ston 89]

[Stor 88]

[SuSY 86]

[Tabo 88]

[Tard 89]

[Teor 86]

[Teor 89]

[Tour 86]

[Tuch 90]

Spaccapietra, S., Parent, C., Yetognon, K., Abaidi, M. S.,
"Generalizations: a forma! and flexible approach" in Prakash,
N. (ed.), Management of Data, Proceedings of C0'1AD'89,
Mc Graw Hill, 1989, pp. 100-117

Springsteel, F. N., Ch.Jang, P.-J., "ERDDS: the intelligent E­
R-based database design system" in [Bati 88a], pp. 211-230

Stonebraker, M., "Future trends in database systems", IEEE
Transacticns a, Knowledge and Data Engineering, vol. 1,
nr. 9, March 1989, pp. 33-44

Storey, V. C., Goldstein, R. C., "A methodology for creating
user views in database design", PCM Transactic:ns en Database
Systems, vol. 13, nr. 3, September 1988, pp. 305-338

Su, S. Y .. W., "Modeling integrated manufacturing data with
SAM*", IEEE Computer, vol. 19, nr. 1, January 1986, pp. 34-49

Tabourier, Y., "Du modèle entité-relation à un véritable
réseau sémantique", Modèles et Bases de Dc:nnées, nr. 9,
June 1988, pp. 3-32

Tardieu, H., Rochfeld, A., Coletti, R., La méthode f'ERJSE -
Tome 1 - Principes et outils, Les Editions d' Organisation,
Paris, 1989

Teorey, T. J., Yang, D., Fry, J. P., "A logical design
methoclology for relational databases using the extended
entity-relationship model", PCM Computing Surveys, vol. 18,
nr. 2, June 1986, pp. 197-222

Teorey, T. J., Weir, G., Bolton, D. L., Koenig, J. A., "ER
model clustering as an aid for user conm.inication and
documentation in database design", Carm.Jnicatic:ns of the PCM,
vol. 32, nr. B, August 1989, pp. 975-987

Touretzki, D. S., The mathematics of inheritance systems,
Pitman, London, 1986

Tucherman, L., Casanova, M. A., Furtado, A. L., "The CHRIS
consultant - a tool for database design and rapid
prototyping", lnformaticn Systems, vol. 15, nr. 2, 1990,
pp. 187-195

XII

___________________________________ _,_,R.,,_eference.1

[Urba 87]

[Verm 83]

[Vigi 90]

[vLam 82]

[vLam 88a]

[vLam 88b]

[vLam 88c]

[vLam 90]

[Wagn 88]

[Wam 88]

[Wied 86]

Urban, S. D., Delcambre, L. M. L., "Perspectives of a
semantic schema" in Proceedings of the 3rd internatienal
cenference en data engineering, IEEE, 1987, pp. 485-492

Vermeir, D., "Semantic hierarchies and abstractions in
conceptual schemata", Inforrnatien Systems, vol. 8, nr. 2,
1983, pp. 117-124

Vigier, P., Zeippen, J.-M., Ccnceptual and logical database
design, Draft Course Support, Digital Equipement Corporation,
Maynard, April 1989

van Lansweerde, A., "Les outils d'aide au développement de
logiciels - Ln aperçu des tendances actuel les" in Proceedings
JIIA B2, Paris, 1982

van Lamsweerde, A., Delcourt, B., Delor, E., Schayes, M.-C.,
Champagne, R. , "Gener-ic 1 i fecyc le support in the PL.MA
environment", IEEE Transactiens en Software Engineering, June
88, pp. 720-741

van Lamsweerde, A., Méthodologie de développement de
logiciels, Courses Notes, Institut d'Informatique, FLNDP,
Narrur, 1988

van Lamsweerde, A., Tectniques d'intelligence artificielle,
Course Notes, Institut d'Informatique, FLNDP, Narrur, 1988

van Lamsweerde, A., "Active software abjects in a kno.-iledge­
based lifecycle support environment" to appear in Meyer, B.,
Mandrioli, D. (eds.), ObJect-oriented programming and other
.advanced design tecf-niques, Springer-Verlag, 1990

Wagner, C. F., "Implementing abstraction hierarchies" in
[Bati BBa], pp. 267-282

Warnant, G., Eléments de rnodélisatien du dialogue d'une
applicatien interactive, Research Paper, Institut
d'Informatique, FLNDP, Narrur, 1988

Wiederhold, G., "Views, abjects and databases", IEEE
Canputer, vol. 19, nr. 12, December 1986, pp. 37-44

XIII

------------------------------------'=f _[!!_illi

[Wood 75]

[Vaur 89]

[Zani 83]

[Zill 84]

l,l,loods, W. A. , "What' s in a l ink: foundations for semantic
networks" in Bobrow D. G., Col lins, A.M. (eds.),
Representation and understanding: studies in cognitive
science, New York, Academic Press, 1975, pp. 35-82 (also in
[Brac 85] pp. 217-242)

Vourdon, E. , /'1cx:Jern Structured Anal ysis, Prentice-Hal 1,
Englewcxx:l Cliffs, N. J., 1989, 672 p.

Zaniolo, C., "The database language GEM" in Proceedings of
the ACt1 SI&vDD conference on management of da·ta, 1983,
pp. 207-217

Zil les, S. N., "Types, algebras and model ling" in [Brod 84a],
pp. 441-450

Classification of references

• Artificial intelligence - Programming - Databases

[Bane 87] [Berg 88a] [Brod 80] [Brod 84a] [Brod 86] [Chen 85]
[Gall 89] [Matt 88] [Mylo 89] [Pott 89] [Sern 85] [Bo.Na 84]
[vlam 90] [Zill 84]

■ Prograrrvning - Prograrrvning languages

• 0bject-oriented prograrrvning

[Amer 87] [Bezi 87] [Borg 88] [Duco 87] [Duco 89]
[Halb 87] [Meye 89]

• Windows programming

[Petz 88] [Prov 89] [Sacr 88]

• C language

[Kern 84] [Plum 86]

■ Artificial intelligence - Knowledge representatic:n and processïng

[Alte 90] [Brac 83] [Brac 85] [Brac 89] [Dard 90] [Fike 85]
[Mylo 84] [Pate 90] [Tour 86] [vlam 88c] [l,l,lood 75]

XIV

• Databases

[Aria 86] [Pard 87] [Sima 89] [Wied 86]

• DBMSs - Object-oriented DBMSs

[Ditt 90] [Higg 89] [Stan 89]

• Data(base) models - Semantic data models

[Abri 74] [Afsa 86] [Batr 90] [Berm 86] [Fouc 89]
[Gall 89] [Hain 74] [Hain 89c] [Hamm 81]
[1-ull 87a] [1-ull 87b] [Lepr 86] [Pare 89]
[Peck 88] [Qian 85] [Sacc 88] [Schi 83] [Ship 81]
[SuYS 86]

• l\let1,<1,0rk models

[Hain 85] [Vigi 90]

• Relational models

[Codd 79] [Date 86] [Hain 88]
[Hain 89c] [Kung 90] [Vigi 90]

• E-R approach

• Software development - CASE

[Bati 88a] [Berg 88b] [Bada 89]
[Chen 76] [Chen 81a] [Chen 83]
[Chen 85] [Coll 88] [Czed 90]
[DaJa 83] [Davi 89] [DiBa 89]
[Daga 81] [Elma 85] [Hain 89c]
[Hain 89d] [LePe 88] [Lenz 85]
[Ling 85] [Nava 88b] [Pare 87]
[Pion 88] [Roch 88] [Saka 83]
[Spac 89] [Tabo 88] [Tard 89]
[Teor 86] [Teor 89] [Vigi 90]
[Zani 83]

• Information system and development methodologies

[Boda 89] [Bube 87] [Fouc 89] [Kugl 86] [Roll 86] [Roll 89]
[Tard 89] [Your 89]

• Software engineering

[Borg 84] [DaJa 83] [vLam 88b]

• Software engineering environments

[vLam 82] [vLam 88a] [vLam 90]

XV

• Database design

[Bati 88b] [Blah 88] [Ceri 81] [Dols 88] [Equi 87] [Hain 87]
[Hain 86a] [Nava 88b] [Ridj 84] [Rous 84] [Saka 83]
[Star 88] [Teor 86] [Teor 89] [Urba 87] [Verm 83] [Vigi 90]

• Conceptual modelling - Conceptual models

[Bada 89] [Borg 85] [Brod 80] [Brod 81] [Bube 87]
[King 84] [Ling 85] [Nijs 86] [Plet 89] [Roch 88]
[Shla 88] [Smit 80] [So,.Ja 84] [Tard 89] [Verm 83]
[Your 89]

• Schema transformation

[Hain 81] [Hain 86a] [Hain 89a] [Hain 89b]
[Hain 89d] [Mark 89]

• Schema integration

[Bati 86] [Cive 88] [Mann 88] [Nava 86]

• Database design workbenches

[Bati 82] [Berm 86] [Bouz 84] [Bouz 86] [Bria 85] [Cata 88]
[Cive 88] [Roll 86] [Spri 88] [Tuch 90]

• TRAMIS

[Cane 90a] [Cane 90b] [Hain 86b] [Hain 86c]

• Abstraction mechanisms

[Bada 89] [Brod 80] [Brod 81] [Brod 84a] [Codd 79] [Davi 89]
[Harrvn 81] [1-ull 87b] [Matt 88] [McLe 80] [Mylo 84] [Nava 88a]
[Ridj 84] [Smit 77] [Verm 83]

• Generalization/specialization - Inheritance

[Amer 87] [Bana 87] [Berg 88b] [Borg 84] [Borg 88] [Brac 83]
[Carbo 80] [Duco 87] [Duco 89] [Elma 85] [Halb 87] [Kung 90]
[LePe 88] [Mann 88] [Nava 88a] [Smi t 77] [Spac 89] [Tour 86]
[Vigi 90] [Wagn 88]

XVI

Ac :r ori. ym.s

AIL

CAD/CPl1

CAEE

09'6

IMj

E-R

~

ŒR

19-

lti)

Wil"P

Ac:cess algorithm Description Language

Computer-Aided Design/Computer-Aided Manufacturing

Computer-Aided S:::>ftware Engineering

Data Base Management System

Data Management System

Entity-R:lationship

·Generalized Ac:cess M::x:lel

Generic Entity-R:lationship

Information system Specification Language

Lhiverse of Discourse

Window lcon ltluse Pull-dcw, menu

XVII

App e:n.d. :i.x. A

Refere:n.ce e.x.~~p1e

This example has been adapted from [Peck 88] and serves as a running

example throughout the text. Using a consistent example for the explanation

of the concepts allo.Ns for easier understanding as examples are from a same

UoD. We do not claim that this example is a comprehensive description of

all aspects of a 'real world' database. Its role is essentially

pedagogical: therefore only elements essentials for our illustrating

purpose are presented. Sorne variations on this L.loD are made along the

different chapters.

The UoD of this example is a library. We present its description in a

more or less structured, textual form: one may consider the statements

above as the results of interviews and analysis of documents concerning the

library.

are:

The statements expressing L.loD semantics (and assumed self-explaining)

■ a publication has a title, a tapie, an ISBN code, and is

written by authors;

■ authors have a name, a stipend and may write many

publications;

■ à jo.Jrnal paper is characterized by the volume and the number

of the journal in which it appeared;

■ books, jo.Jmal papers and conference papers are particular

kinds of publications;

■ a book is characterized by a number of sales, a tapie, and a

price; it has been written by one or several authors and is

published by one publishing company;

■ a best-seller is a book with a number of sales larger than

10,000;

■ a publishing company has a name and publishes any number of

books;

■ a persan has a name, an address, and a posible phone number;

■ a reviewer is a persan;

A

AppendiM ,.,_A ____________________________,R_,,_ef.=e_...,re..,,nc:.ce.._._e,,_,x1...,,1.,_pl=e

■ persons may barrow books and for each barrowing a due-date is

registered;

• books are often reviewed by a reviewer (this link is

characterized by a date and a rating)

• a literary figure is bath an author and a reviewer;

• the set of database books contains all books with tapie= DB,

the tapie of artificial intelligence books is AI, database

books are characterized by the data model used;

• some books are bath database and artificial intelligence

books;

• the set of good books is a subset of books and is identified

by the end-user;

• all research books are good books, but there are good books

of no concem for research;

• a publication is identified by its ISBN code.

B

Appe:n.d.ix:. B

The GER 10.odel

In order to p.Jt in evidence the different facets of the

generalization/specialization concepts, we use the GER (Generic Entity­

Relaticriship) modelas it has been designed for being a forma! framework in

which models based on the object-associatic:n philosophy, i.e. in which the

real world is perceived as a collection of abjects which are in association

with each other, may be described, compared, and cross-translated.

The following definitions give a precise but intuitive perception of

the GER mode 1. For more information, consul t [Hai 89c], from which the

following text has been adapted.

B.1. Entity demains

An ent.it-y is an element of the universal entity demain cal led

ENTITIES. Entities are created and can be deleted. At any given time, all

entities are distinct. A new entity domain E2 can be defined so that each

of its elements, at any time, belongs to entity domain Ei (E2: Ei)• E2 is

called a subdemain of Ei and Ei a superdcmain of E2. If E2 is explicitly

declared as a subdomain of Ei, it is a direct subdemain of Ei, and the

latter is also a direct superdcmain of E2. Note that if E::,: is a subdomain

of E2 and E2 i!? a direct subdomain of Ei, then E3 is a subdomain of Ei• An

entity domain can be a subdomain of more than one superdomain. A direct

subdomain of the universal entity domain is called a basic entity demain.

An entity domain can be dec:lared a subset of a constructed domain obtained

by applying the traditional relational operators (po.,Jerset, union,

intersection, difference and projectia.). Entity domains are given distinct

names. At any time, an entity can enter or leave a subdomain of its basic

entity domain. The latter, homev-Jer, is unique and fixed during the life of

the entity. All (past, present, future) entities that are in an entity

domain are said to be of a given entity type. That type is defined by all

the structural and behavioural properties that are common toits entities.

It is given the name of its domains by which it is denoted. We rrust always

1 lt is uaed to repr11ent a UoD 0bj1ct,

C

~pp1ndiM_ B=----------------------------------'T.1.!.!!he. SER 1odel_

have in minci that an entity type includes two 'aspects': the domain, class

or set aspect and the type aspect. The type formal ly defines the structure

of its instances, its schema (intensional description), while the class is

the set of all instances at a given time (extensional description). For

example, schema B.1 presents two entity types (their entity damain is a

basic one).

B.2. Value demains

A value is any permanent symbol that can be stored, transmitted and

processed in a manual or automated information processing system2. A value

has a type which defines the set of possible values, the properties and the

processing rules of the values. A value domain is a named set of values of

a given type. There exist predefined basic value types, namely integer,

real, character, string, date, etc. The basic value danain of a basic type

is the set of all the possible values of that type. A new value domain can

be defined as a subset of an existing one or as a subset of a constructed

value domain. The legal constructors are the relational cartesian, powerset

and list constructors. A simple value domain is either a basic value domain

or a subset of simple value domain. Constructed value domains are called

complex value domains. Schema B.2 presents a sample of value domains useful

in our reference example.

B.3. Entity relation schemata

An entity relaticn scherna is the descriptive relation schema that

define the attributes (E-R meaning) of the enti ty type. The described

entity type is a GER attribute of the entity relation schema. That

attribute is called the described entity attribute and is based on the

described entity domain. It is the primary key of the relation schema. 07e

suggests the specific syntax desc-of-E for a descriptive entity schemata of

entity type E. 1--b.,.,ever, more than one descriptive relation schema can be

defined for each entity type (with ad-hoc naming conventions). For example,

schema B.3 presents the description of a book.

2 It is used to represent a property of the UoD,

D

AAgend_ix B The SER 1od,l

B.4. Relationship relation schemata

A relationship is an aggregate of at least two entities and/or

relationships, together with any number of values. Pny relationship belongs

to a relationship type that is defined by all the structural and

behavioural properties that are common toits relationships. A relationship

relation schema 3 describes the roles and the E-R attributes of the

relationship type. At least two GER attributes must be defined on entity

domains. Its name is that of the relationship type described. Note that

cardinality constraint i-j of each role has been limited to the most useful

values, i.e. i = 0 or 1, and j = 1 or oo, These values can be losslessly

translated into key and identity constraints (see belON). Considering the

cardinality constraint i-j of role ri..: played by entity type E in

relationship type R:

■ i = 1 is equivalent to Ei.-. = R[ri.-.J, and i = 0 when that

constraint does not stand;

■ j = 1 is equivalent to the specification of ri., as a key of R,

and j = oo when that constraint does not stand.

For example, schema 8.4 expresses that authors write at least one

publication and that a publication is written by one or several authors.

B.5. Constraints

8.5.1. Key constraints

Pny entity and relationship relation schema has at least one key. A

component of a key is an attribute, or an attrib..ite of a cartesian

attrib..ite, or an element of a powerset attribute. When possible, a key is

specified by the underlined notation (the ISBN_CODE in schema 8.3, for

example).

8.5.2. Inclusion and identity constraints

Cne can define inclusion (S) and identity (=) constraints between any

two entity sets, value set or relations (see schema 8.4). Traditional

3 Ne do not u11 the conci11 notation for functional r1l1tion1hip type1 propo11d in [Hain 89c],

E

Appendix B The BER 1odel

relational notations can be used. Keep in mind that:

• entity sets are entity demains or projections of entity

relation schemata, of relationship relation schemata or of

algebraically constructed relation schemata;

• value sets are defined by projection of entity relation

schemata, of relationship relation schemata or of

algebraically constructed relation schemata;

■ relations are entity relation schemata, relationship relation

schemata or algebraically constructed relation schemata.

F

App e::n.ci :i.x:. C

E.x:.tr~ct of TRAHIS ~ser

:i~terf~ce ~o~:itor:i~g

This appendix explains the mcnitoring of TRAMIS user interface

(version 1.01) by showing how the different interactive abjects (Windo,.is

approach) appear during a working session. Actually, the current interface

is in French b....lt we took the liberty to translate it in English. Moreover

only the aspects which are relevant will be presented (namely those

concem'ing conceptual aspects). It is more especially intended for the

readers acquainted with TRAMIS user interface.

GLOBAL menu

Elaborate

Transform

Global

Toward models

Produce

Conformity

Generation

Report

Complete

GLOBAL window

Detailed design of the current

schema

=> ENTITY windo,.i

Global transformations of the

current schema

Transformations of the current

schema towards a model

Madel compliance checking

Production of extemal descriptions

Production of a detailed report on

the complete schema

8

~pJ!Ldix_C....__ _________________ __,,_,E, tract of JRAKIS .. .YH.r interJace .. 1011it0r in_q

Partial

Global

Schema

Load

ENTITY Menu

Consul t

Complete

Structure

Neighbouring

Groups

Description

Note

Static statistics

Modify

Characteristics

Description

Production of a detailed report on an

abject

Production of a global report on the

current schema

Consultation and modification of schemata

Loading of extemal descriptions

ENTITV window

Choice of the ATTRIBUTE,

RELATIONSHIP and GRCl..P sub.Nindows

for the presentation of the current

entity type (by default)

Choice of the ATTRIBUTE sub.Nindow

Choice of the RELATIONSHIP sub.Nindow

Choice of the GRCl..P sub.Nindow

Consultation of the description of

the current entity type

Consultation of the tecmical note

of the current entity type

Consultation of the static

statistics of the current entity

type

Modification of the characteristics

of the current entity type

==> t-ODIFV_ENTITV_CI-MACTERISTICS

dialogue box

Modification of the description of

the current enti ty type

H

M.l!.t!ldi.L,,,_C __________________ ..,,Exyact .. of TRAHIS us1r interf!R .. l.!IBitJlf" i.fl...9.

Note

Create

Entity type

Relationship type

Delete

G\Jit

Modification of the tecmical note

of the current enti ty type

Creation of a new entity type

Creation of a new relationship type

Deletion of the current entity type

Return to the global menu and window

==> GLOBAL windo,..i

MODIFV_ENTITV_CHARACTERISTICS Dialogue box

Fields

Name

Short name

Date

Origin

Population

B.Jtt.cns

OK

Cancel

Excepticns

Name invalid or absent!

Short name invalid or absent!

Name already used!

Short name already used!

Invalid date!

Invalid population average size!

Name of the current entity type

Short name of the current enti ty type

Date of the current enti ty type

Origin of the current entity type

Average size of the population of the

current entity type

Modification of the current entity type

==> ENTITY Menu

or

Exception

Cancelling of the modification

==> ENTITY Menu

Appjlldix C,__ _________________ __..E.,,_,_,___,~t~f TRAHIS user interface 10nitor.in..9.

ENTITY Active texts

The name of a relationship type in the RELATICT\JSHIP subwindow

==> This relationship type becomes current and the RELATICT\JSHIP window is

presented

The name of an entity type in the RELATIONSHIP subwindow

==> This entity type becomes current and the RELATICT\JSHIP window is

presented

The name of an attribute in the ATTRIBUTE subwindow

==> This attribute becomes current and the ATTRIBUTE window is presented

Any area of the ATTRIBUTE subwindow

==> Detailed design of an attribute - the ATTRIBUTE window is presented

The name of a group in the GRa.JP subwindow

==> This group becomes the current and the GRa.P window is presented

Any area of the GROLP subwindow

==> Detailed design of a group - the GRCl.JP window is presented

The name of a component in the GRClJP subwindow

==> This component becomes current and the CCJ"Pa\ENT window is presented

J

App en.cl :i...x: D

E.x:tr~ct of TRAHIS ~ser

:i..:n.terf~ce ~o:n.:i..tori:n.g

the c~tegory
in.Cl ~cl :i..:n.g

This appendix explains the modifications of the monitoring of TRAMIS

user interface (see appendix C) when the proposed category construct is

in troduced .

GLOBAL menu

Elaborate

Transform

Global

Taward models

Produce

Conformity

Generation

Repart

Complete

GLOBAL window

Detailed design of the current

schema

==> ENTITY window

Global transformations of the

current schema1

Transformations of the current

schema towards a madel

Madel campliance checking

Production of external descriptians2

Produc tian of a detai 1 ed repart an

the camplete schema3

1 Three new transfor1ations are proposed for the eliaination of categories fro1 a sche1a,
2 The category is another aspect proposed for the generation (of ISL descriptions),
3 The user is asked for the application of 'auto1atic' downward inheritance in the report,

K

Anendix D"--------------=Extr.Kt_ of TRAKIS u11rJnterhc, _1onitorin.9 includ~.o.g_Jhe cat_ew:y_

Partial

Global

Schema

Load

ENTITY Menu

Consul t

Complete

Structure

Neighbouring

Groups

Description

Note

Static statistics

Inheritance

Production of a detailed report on

object4

Production of a global report on the

current schema5

Consultation and modification of schemata6

Loading of external descriptions7

ENTITY window

Choice of the ATTRIBUTE,

RELATIONSHIP and GRO..P sut::iwindows

for the presentation of the current

entity type (by default)

Choice of the ATTRIBUTE subwindow

Choice of the RELATIONSHIP subwindow8

Choice of the GRŒ..P subwindow

Consultation of the description of

the current enti ty type

Consultation of the tecmical note

of the current enti ty type

Consultation of the static

statistics of the current entity

type

'Automatic' application of dC>1Anward

inheri tance'

4 The user is asked for the application of 'auto1atic' downward inheritance in the report,
s The report contains the nu1ber of categories of the sche1a (if any),
6 The su11arized statistics contains the nu1ber of categories of the sche1a (if any),
7 The category is another aspect proposed for the loading (of ISL descriptions),
8 This subwindow also presents the (direct and indirect) generic entity types, and the (direct) specific

entity types of the current entity type, with the class inclusion constraints,
' If this ite1 is chosen, then the inherited attributes, roles, relationship types and groups are presented

in the ATTRIBUTE, RELATIONSHIP, and GROUP subwindows respectively, It is available only if the current
entity type is in an is-a hierarchy,

L

AJ)pendix D Extract of TR.ANIS_µse_Linterface 1onitori119.....loJ.!Ydi.o.g_J.b.t___ç..!tftllI.ï

Modify

Characteristics

Description

Note

Create

Entity type

Relationship type

Delete

Transform

New generic

New partition

New specific

Covering

Disjunction

In generic

By specific

By generic

By relationship types

Quit

Modification of the characteristics

of the current entity type

==> l"ODIFY_ENTITY_Œ-!PtRACTERISTICS

dialogue box

Modification of the description of

the current entity type

Modification of the technical note

of the current entity type

Creation of a new entity type

Creation of a new relationship type

Deletion of the current enti ty type

Elementary ransformations concerning

category10

Transformation of point 6.3. 1.G.a

Transformation of point 6.3. 1.G.e

Transformation of point 6.3. 1.G.g

Transformation of point 6.3. 1.G.c

Transformation of point 6.3. 1.G.d

Transformation of point 6.3.1.G.h

Transformation of point 6.3.1.G.b

Transformation of point 6.3. 1.G. f

Transformation of point 6.3. 1.G. i

Return to the global menu and window

=> GLOBPL windo.N

MODIFY_ENTITY_CHARACTERISTICS Dialogue box

Fields

Name Name of the current enti ty type

Short name Short name of the current entity type

10 This aenu ite1 is available only if the current entity type is in an is·a hierarchy,

N

the

Affl.n.fu,D'-----------~E~xtract of TRANlS user..JJLtertace 10ni torin9....inçludin..9.._ the citeg_ory

Date

Origin

Population

Euttcns

OK

Cancel

Is-a

Excepticns

Name invalid or absent!

Short name invalid or absent!

Name already used!

Short name already used!

Invalid date!

Date of the current entity type

Origin of the current entity type

Average size of the population of the

current entity type

Mcx::lification of the current entity type

==> ENTITV Menu

or

Exception

Cancelling of the modification

==> ENTITV Menu

Mcx::lification of

generalization/specialization

characteristics of current entity type

==> l"ODIFY_IS_A_D-MACTERISTICS

dialogue box

Invalid population average size! 11

MODIFY_IS_A_CHARACTERISTICS Dialogue box

Fields

Generic

List boxes

Specific

New specific

Name of the generic enti ty type (if any)

List of the names of the specific entity

types

List of the name of possible new specific

enti ty types

11 A population average size is also invalid if it does not verify the statistical equations,

N

~.odiLD"--__________ .=,..Ext.ract. of _TRAHIS. user i[!Yrfact1011itorln_g includio.g__ the categoa

New gener-ic

aittcns

Remove generic

Remove specific

Add gener-ic

Add specific

Covering

Disjunctian

OK

Cane.el

Excepticns

List of the name of possible new generic

enti ty types

Removal of the generic entity type

Removal of a specific entity type

Adding of a new gener-ic entity type

Adding of a new specific entity type

Adding of the covering constr-aint

Adding of the disjunction constraint

Modification of the cur-r-ent entity type

==> 1'1JDIFY_ENTITY_CI-MACTERISTICS

dialogue box

or-

Exception

Cancelling of the modification

==> 1'1JDIFY_ENTITY_a-mACTERISTICS

dialogue box

Statistical equations ar-e not ver-ified

ENTITY Active texts12

The name of a relatianship type in the RELATICNSHIP subwindow

=> This r-elationship type becomes cur-rent and the RELATICNSHIP window is

pr-esented

The name of an entity type in the RELATICNSHIP subwindow

=> This entity type becomes cur-rent and the RELATICJ\JSHIP window is

pr-esented

The name of an attribute in the ATTRIBUTE subwindow

=> This attr-ibute becomes cur-r-ent and the ATTRIBUTE window is pr-esented

12 When the auto1atic inheritance button is ON, the different subwindows contain the na1e of the generic
entity types fro1 which the 'characteristics' are inherited, These na1es are active texts too,

0

A,.p..,p1,,_,_nd...,i=~ o'--_________,E ... x....,tr....,a=c t'-L.lof TR=AN l.s...B . .w.r..J.n ter fiQJJtn i tor ing inc l umJ .. J.b.Ll!tlila

Pny area of the ATTRia.JTE subwindON

=> Detailed design of an attrib.Jte - the ATTRIB.JTE window is presented

The name of a group in the GRa..P subwindow

=> This group becomes the current and the GRa..P window is presented

Pny area of the GRO..P subwindow

=> Detailed design of a group - the GRO..P window is presented

The name of a component in the ffiCl..P subwindow

==> This campaient becomes current and~ window is presented

p

I;' .. ;.•' ., ii . ~•"'fi_,.,.,. .. , __ -··--· --., ... , tl;~,f..-. !; \-' l .

ca.tegory ,·.·,;. ,_
'.'• V~ :._._.., ,.,..._,_ "."-::,,. • .,.. ,-, ,->H• •••,

i· ,l - '. H, ~

·•' o-'· ~:)~~_.~.,,.., .

Actual 1 y, this appendix.-de'scribes an example of the ADL algori-thns
,.,,.r" "'.

for the functions ~pecîfied in chapter 6. The addendum contains a more
~,,,., .,., ,4""

complete deséription of these algorithns. They are working on the GPi'1
,,., .• &-'"''

'Sc~·of the specification database (figure E.1).

~-~sistent [~iA,·86~] wi t~the- ac-<Eti~;~ule
\ 1,, .,

J

...... ... -., , ,,
,,

/
. ,. "' , , r

Algori th~-- E .1 , , ç,.,,_.,,
: __ ,,.._,..,,._tr<,,-,1 .. , _~

procedure Create!sa (var Es, Eg: record-var);
~./1,

{

SpeciL:
·-,

This algoritt-vn implements the_/unction specified1 in 6.3.1.B.aXto>the
ENT ITY _ Ts Es (the spec if ic en fi ty type) and Eg (the gener.iç enti-ty,. type,) ""
which are assumed verifying its prec.wdition. ___ ,,,~•· ;,~ •·!_;.;,) __ 1·:;:>~ __ ,, _
} . -~ ,,...,.«.t"t!•,>;•'-'"',.:,r,cV

begin
,.,...,.r,.. .. ,

: O)C :;•
, . .., .. ,.,_~);;', ,..-;.;

Cat:= G_CF _SUBTYPE(GST _E: Eg);
,,,if Cat = () then-, · ·· ·· · ~ 't

,- , ç reate Ca.t !~0 :G CF sû8'f.VPË ((,: COVER I f\G = fa 1 se)
.. , .. :,-. -~ - , ... - .. ~"-·and (: EXCLUSI\JE = false))

endif;
create Subt:= SUBTYPE((ST _E: Es) and (ST _GST: Cat));

if { COVERif\G(: Cat) and EX.~.~I~(=-?:?~_t_~ _ .. ,., .. _, ______ ~::::'.:: ... ;: ~'i\ cs.u/ 1!::_ ;., · i
Appl y the statistical inferencÉ?'·--,rules for the categor),'. o"t/Èg · · --- - ·

""'-,i ·:,,,.,_. '...,* ~ .-', ·~~·i. ~) .'.' J~;~--
.~ Statrnfer(Eg)

endif;

end;

1 When the specifications of chapter 6 are sufficient for a precise understanding, i.e. when the
'translation' in ter11 of the GAH sche11 i1 obvious, we do not provide a new specification in GAH teras,

Q

FACULTES

UNIVERSITAIRES

N.D. DE LA PAIX

INSTITUT D'INFORMATIQUE

Generalization/specialization
abstraction structures

Theoretical study and integration in a
database design workbench

- Addendum -

Mémoire présenté sous la direction du
Profes.seur Jean-Luc HAINAUT

pour l'obtention du titre de
Licencié et Maître en Informatique

Année académique 1989-1990

A ~ore co~p1ete descriptio~ of

the ADL ~1gorith~s co~cer~i~g

the

This addendum completes the appendix E. It presents the main

interesting ADL algorithms (and their specifications1) for the functions

specified in chapter 6, i.e. those conceming 'directly' the categories and

presenting a few difficulties. These algorithms are i,,,,arking on the GAM

schema of the specification database (see figure E.1, page Q). They are

consistent with [Hain 86a] the access module of TRpt,JIS.

Algorithms for the modifications

Algorithm E.1

procedure Createlsa (var Es, Eg: record-var);
{

Specification:

• Precondition:

■ Effect:

• ENTITY T Es does not belong to a category
• Eg is nota (direct or indirect) specific ENTITY_T

of Es
• Statistical equations are verified (when

considering that Es is-a Eg)

• This algorithm implements the function specified
in 6.3.1.B.a (p. 81) to the ENTITY_Ts Es and Eg

)

begin
Cat:= G_OF_SUBTYPE(GST_E: Eg);
if Cat = () then

create Cat:= G_OF_SUBTYPE((: COVERING = false)
and(: EXCLUSIVE= false));

endif;
create Subt:= SUBTYPE((ST_E: Es) and (ST_GST: Cat));

1 When the specifications of chapter b are sufficient for a precise understanding 1 we keep them in natural
language in order to make the reading easier,

R

A more_ co11pJeh desmpJion of the ADL al..9orith11s. concernin.Q. the __ catego.a

if (COVERING(: Cat) and EXD....USIVE(: Cat)) then
{

Apply the statistical inference rules for the category of Eg
)

Statlnfer-(Eg) ;
endif;

end;

Algorithm E.2

pr-ocedur-e ModifyCic (var- Eg: r-ecor-d-var-; Caver-, Disj: boolean);
{

Specification:

• Pr-econdition:

• Effect:

)

begin

• Eg is an ENTITY_T with a categor-y Cat
• Statistical equations ar-e always ver-ified when

EXD....USIVE(: Cat) = Disj and CO'v'ERII\X3(: Cat)
= Caver

• This algor-itt-Yn implements the function specified
in 6.3.1.8.c (p. 82) for- Cat

Cat:= G_CF _SUBTYPE(GST _E: Eg);
COC>dify Cat((: CO'v'ERII\E = Caver-) and(: EXD....L.JSIVE = Disj));
if Caver- and Disj then

{

Apply the statistical infer-ence rules for- the categor-y of Eg
)

Statlnfer-(Eg) ;
endif;

end;

Algorithm E.3

pr-ocedur-e Suppresslsa (var Es, Eg: r-ecord-var);
{

Specification:

• Pr-econdition:

• Effect:

}

begin
{

• Es is a direct specific ENTITY_T of Eg (the
generic ENTITY_T)

• This algoritt-Yn implements the function specified
in 6.3.1.B.b (p. 82) for Es and Eg

Suppress the is-a relation and suppress the category if Es is the sole
specific entity type
}

Subt:= SUBTYPE((ST_E: Es));
delete Subt;
{

Suppress inherited roles/attributes fr-om groups of Es and of its

s

B.!!!tto.d,.,,,u11"--_______ __,A_ more_ co11plete descripJion of the __ AD.L;J.gorith11s concernin_g_ the c_all9P.JJ.

specific entity types if any
)

newlist(ListSpec); { This list contains the ENTITY_Ts ta check for the
presence of attributes/roles inherited from

Eg in their group) 2

newlist(ListGen); { This list contains the ENTITY_Ts from which
roles/attributes can always be inherited)

addlist(ListSpec, Es);
E:= Es;
while E <>()do

removelist(ListSpec, E);
addlist(ListGen, E);
{

Verify the groups of E
)

Gr:= first(ID_KEY_ŒID(IKO_EL: E));
while Gr<>() do

Co:= first(CCX'-'ffi\ENT(C_IKO: Gr));
while Co<> () do

if TYPE_□(: Co)= 'Attr' then
At:= ATTRIBUTE(RA_C: Co);
Ent:= ENTITY_T(EL_AT: At);
if not inlist(ListGen, Ent) then

delete Co;
endif;

else {TYPE_□ = 'Role')
Ro:= ROLE(RA_C: Co);
Ero:= E_ROLE(ER_R: Ro);
Ent:= ENTITY_T(E_ER: Ero);
if not inlist(ListGen, Ent) then

delete Co;
endif;

endif;
Co:= next(CŒ'PCJ\JENT(C_IKO: Gr));

endwhile
Gr:= next(ID_KEY_ORD(IKO_EL: E));

endwhile;
{

Find the specific ENTITY_Ts of E
)

Cat:= G_OF_SUBTYPE(GST_E: E);
if Cat <> () then

Subt:= first(SUBTYPE(ST_GST: Cat));
while Subt <> () do

Ent:= ENTITY_T(E_ST: Subt);
addlist(ListSpec, Ent);
Subt:= next(SUBTYPE(ST_GST: Cat));

endwhile
endif;
{

2 We assume that the following functions for the management of lists are predefined:
1 newlist(L)1 init an empty list L;
1 addlist(L, E): add the element E to the list L;
1 removelist(L, E): remove the ele1ent E from the list L;
1 inlist(L, E): returns true if E is in the list L, false otherwise;
1 firstlist(L): returns the first eletent of the list L1
1 nextlist(L) : returns the element following (the last obtained element) of the list L;
1 copylist(L1, L2): copy the list L2 in the list Ll,

T

Addendu11~--------~A~111ore co11plete descru_tion 0UheflDL_tlwj.th11.Lconcerning the categm:y

Next ENTITY_T ta be checked
)

E:= firstlist(ListSpec);
endwhile;

end;

Algorithms for the transformations

Algorithm E.4

procedure New3enericET (var ListSpec: list-record-var
Name: char(30);
ShortName: char(7));

{

Specification:

• Precondition:

• Effect:

}

begin
{

• ListSpec is a (non empty) list of ENTITY_Ts of a
same 50-EMA which do not belong ta a category

• Name (resp. ShortName) is not the name (resp.
short name) of an ENTI TY _ T of the se hema

• This algoritt-Yn implements the transformation
specified in 6.3.1.G.a (p. 86)

Create the generic entity type and its category
}

Sch:= SCI--El'1(;(S_E: firstlist(ListSpec));
create Eg:= ENTITY_T((: E_NAME = Name)

and (: SHORTNAl"E = ShortName)
and (E_S: Sch));

create Cat:= G_CF_SUBTYPE((: CDv'ERING = true) and(: EXCLUSIVE= true)
and GST _E: Eg)) ;

Es:= firstlist(ListSpec);
while Es<> () do

create Subt:= SUBTYPE((ST_GST: Cat) and (ST_E: Es));
Es:= nextlist(ListSpec);

endwhile;
{

Apply the statistical inference rules for the category of Eg
)

Statlnfer(Eg);
{

Update the technical note of Eg
)

Sys:= SYSTEM(SYS_SD-1: Sch);
create Descr:= DESCRIPTIDN((DESCR_SYS: Sys)

and (: TYPE = 'Techn_n')
and (: TEXT = Text3));

create DesrOf:= DESCR_OF((DO_DESCR: Descr) and (DO_OBJ: Eg));
{

3 The value of Text is: 'This entity type results from the grouping of its specific entity types,'

u

Addend,.,,u,,_ll _________ -'-'-A more co11pJete desqiption of_ the ADL algorithais concerning.Jh~ catego..a

Up.,,,1ard inheritance of corrvnon attrib..Jtes
}

ObtainCommonAttrib..Jtes(ListAttr, Attr-Name, AnotherD.e) 4 ;

while AnotherD-le do
CommonAttr:= first(ListAttr);
modify CommonAttr((: AT_NPll"E = Attr-Name) and (AT_EL: Eg));
removelist(ListAttr, CommonAttr);
OtherAttr:= firstlist(ListAttr);
while OtherAttr <>()do

{

Transfer the description/tec:mical note of OtherAttr in that of
CommonAttr} TransferDescTec:hOtherAttr; {
}
{

delete OtherAttr;
OtherAttr:= firstlist(ListAttr);

endwhile;
ObtainCommonAttributes(ListAttr, Attr-Name, AnotherD.e);

endwhile
{

Upward inheritance of conmon relationship types
}

ObtainCommonRTs(ListRT, RTName, RTShortName, AnotherD-le)e;
while AnotherD-le do

CommonRT:= firstlist(ListRT);
modify CommonRT((: L_NPi"E = Attr-Name)

and (: SHCAT _NAl"E = RTShortName)) ;
Ra:= first(RO,_E(R_L: CamionRT));
while Ra<> () do

Ero:= E_RCLE(ER_R: Ra);
Ent:= ENTITY_T(E_ER: Ero);
if Ent inlist(ListSpec) then

modify Ero(ER_E: Eg);
endif;
Ra:= next(ROLE(R_L: CoovnonRT));

endwhile;
removelist(ListRT, CommonRT);
OtherRT:= firstlist(ListRT);
while OtherRT <>()do

{

Transfer the description/technical note of OtherRT in that of
CommonRT} TransferDescTec:hNOtherRT; {
}

{

delete OtherRT;
OtherRT:= firstlist(ListRT);

endwhile;
ObtainCommonRTs(ListRT, RTName, RTShortName, AnotherOne);

endwhile
end;

~ If AnotherOne then ListAttr contains the list of common attributes (proposed by the user) to be inherited
by Eg in the attribute of name AttrNa11e (not present in Eg); ListAttr is e,pty otherwise,

5 Jf AnotherOne then ListRT contains the list of common relationship types (proposed by the user) to be
inherited by Eg with the name RTNa11e (not present as a relationship type name of the schema) and the short
na~e RTName (not present as a relationship type short name of the sche11a); ListRT is eaipty otherwise, It
is assumed that the roles of these relationship types are not co;ponent of groups (simplification),

V

A,_,_,d=d=en=d=u""----------"""'A~more co11pjete desJ..!:iljion of the AJ)L al.g.QJithlls. concernfog_thLUllQ.QLY.

Algorithm E.5

proc:edure RepresSpecificET (var Eg: record-var);
{

Specification:

• Precondi tion:
• Eg has a category forming a partition
• Eg has no gro...ip (simpl i ·f icë:\tion)
• The average pop..1lation sizes of Eg and of and its

specific entity types are all specified or none of
them are specified

■ Effect:
• This algoritt-m implements the transformation

specified in 6.3.1.G.b (pp. 86-87)
}

begin
Sch:= SCH:::MA(S_E: Eg);
Sys:= SYSTEM(SYS_SD-1: Sch);
Cat:= G_OF _SUBTYPE(GST_E: Eg);
{

Copy of the attribJtes of Eg in each specific ENTITY_T and creation of a
work list containing these ENTITY_Ts
}

newlist(ListSpec);
Subt:= first(SUBTYPE(ST_GST: Cat));
while Subt <>()do

Es:= ENTITY_T(E_ST: Subt);
addlist(ListSpec, Es);
Att:= first(ATTRIBUTE(AT_EL: Eg));
while Att <> ()

CopyAttr(Att, Es);
Att:= next(ATTRIBUTE(AT_EL: Eg));

endwhile;
Subt:= next(SUBTYPE(ST_GST: Cat));

endwhile;
{

Copy of the roles and relationship types of Eg in the specific ENTITY_Ts
of ListSpec
}

Ero:= first(E_ROLE(ER_E: Eg);
while Ero<> () do

Ro:= RO,_E(R_ER: Ero);
Li:= LINK(L_R: Ro);
Copylink(Li, Ro, ListSpec);
{

Delete the copied LINK
}

delete Li;
Ero:= first(E_ROLE(ER E: Eg);

endwhile
{

Copy of the description/technical note of Eg in each specific ENTITY_T
and deletion of it
}

FindDescrTechN(Eg, Descr, TechN);
Es:= firstlist(ListSpec);

Adden,.,,d.,,_,u11,,__ ________ _,.,A_,,more cqw_~_te d~_~çrution of the ADL algorithms_J1)nce . .rnl.o.g _ _the categ.P..!:.Y.

while Es<> () then
FindDescr-Tect-N(Es, Descr-Es, Tect11\Es);
if Descr <> () then

if Descr-Es <> () then
rrcdi fy Descr-Es(: TEXT = Text!');

else
create Descr-Es:= DESCRIPTION((: TYPE = 'Descr')

and (DESCR_SYS: Sys)
and (: TEXT = Texf'));

create Descr-Of := DESCR_OF((OO_DESCR: Descr-Es)
and (DO_OBJ: Es));

endif;
endif;
if Tect-N <> () then

if Tecti\!Es <> () then
rrcdi fy Descr-Es(: TEXT = Texte);

else
create Tecti'JEs:= DESCRIPTION((: TYPE= 'Tech_n')

and (DESCR_SYS: Sys)
and (: TEXT = Tex fi)) ;

create Descr-Of:= DESCR_OF((DO_DESCR: Tecli\JEs)
and (DO_OBJ: Es));

endif;
endif;
Es:= nextlist(ListSpec);

endwhile;
if Descr <> () then

delete Descr;
endif;
if Tect-N <> () then

delete Tect-N;
endif;
{

Replace Eg by its specific ENTITY_Ts in the category to which it belongs
if any
}

SubtEg:= SUBTYPE(E_ST: Eg)
if SubtEg <> () then

CatEg:= G_OF_SUBTYPE(GST_ST: SubtEg);
Es:= firstlist(ListSpec);
while Es<> () do

create SubtEs:= SUBTYPE((ST_GST: CatEg) and (ST_E: Es));
Es:= nextlist(ListSpec);

endwhile
endif;
{

Delete Eg and its 'characteritics'
)

delete Eg;
end;

b The value of Text is: TEXT(1 DescrEs) + 'Description of'+ E_NAHE(: Eg) + '1' + TEXT(: Descr)
7 The value of Text is: 'Description of ' + E_NAHE(: Eg) + ':' + TEXT(: Descr)
0 The value of Text is: TEXT(: TechNEs) + 'Technical note of'+ E_NAHE(: Eg) + ':' + TEXT(: TechN)
9 The value of Text is: 'Technical note of ' + E_NAME(: Eg) + ':' + TEXT(: TechN)

Adde .. o.!ll!,l'I~ ---------~A~•=ore c.~u1plete desun.Uon .. _pf tl)e ADL algorithias conÇ,fül.i...!19.. the category

Algorithm E.6

proc:edure CoveringCategory (var Eg: record-var);
{

Specification:

• Precondition:
• Eg has a category for which the covering

constraint is not specified
• Effect:

}

• This algorithm implements the transformation
specified in 6.3.1.G.c (pp. 87-88)

begin
Sch:= SCHEMA(S_E: Eg);
Sys:= SYSTEM(SYS_~: Sch);
Cat:= G_OF_SUBTYPE(GST_E: Eg);
modi fy Cat (: COVERING = true);
DefaultETName('OTI-ER' + E_NAl"E(: Eg), Name) 10 ;

Def au 1 tETShortName (' □Tl-ER' + 51-ŒT _NAl"E (: Eg) , ShortName) 11
;

create OtherEg:= ENTITY_T ((E_S: Sch)
and (: E_NAl"E = Name)
and (: SI-ŒT _NPi"E = ShortName)) ;

create Subt:= SUBTYPE ((ST_E: OtherEg) and (ST_GST: Cat));
{

Update the origin of OtherEg
}

create Orig:= PRCPERTY((PRCP_O: OtherEg)

{

and (: P _RCLE = 'Origin')
and (: P _ VALUE = E_NPM=: (: Eg))
and(: TYPE= 'ENTITY_T'));

Update the tednical note of OtherEg
}

create TechN:= DESCRIPTION((: TYPE= 'Tech_n')
and (DESCR_SYS: Sys)

and (: TEXT = Text12)) ;

create Descr□f:= DESCR_OF((DD_DESCR: TechNEs)
and (DO_OBJ: OtherEg));

{

Apply statistical inference rules
}

if (COVERING(: Cat) and EXQUSIVE(:Cat)) then
Statlnfer(Eg);

endif;
end;

10 DefaultETNa~e(Nl, N2) returns in N2 the value of Nl if Nl is a possible na~e for an ENTITY_T of the
SCHEKA; otherwise, N2 contains a 'correct' name proposed by the user.

11 DefaultETShortName(Nl, N2) returns in N2 the value of Nl if Nl is a possible short nar1e for an ENTITYJ
of the SCHEMA; otherHise, N2 contains a 'correct' short na1e proposed by the user,

12 The value of Text is: 'This entity type has been introduced to cover ' + E_NAME(: Eg) + ','

y

Mdï.odu=11 _________ ~A~111ore co11pJete !!.llillpJion of the ADL_al_g_orith1s concerningJhe J;J..fil.QIY

Algorithm E.7

procedure DisjCategory (var Eg: record-var);
{

Speci f ication:

• Precondition:
• The ENTITY _T Eg has a category which does not
include the

disjunction constraint
• The average population sizes of its direct

specific ENTITY_Ts are not specified
• The direct specific ENTITY_Ts play no role

and do not have any group (simplification)
• Effect:

}

begin

• This algorithm implements the transformation
specified in 6.3.1.G.d (pp. 88-89)

Sc:h: = SCI-EMA (S_E: Eg) ;
Sys:= SYSTEM(DESCR_SYS: Sch);
Ca t: = G_CF _SUBTYPE (GST _E: Eg) ;
modify Cat(: EXD.JJSI'v'E = true);
newlist(InterList);
Subt:= first(SUBTYPE(ST_GST: Cat);
while Subt <>()do

Es:= ENTITY_T(E_ST: Subt);
E:= firstlist(InterList);
newlist(InterListBis);
whi 1 e E <> () do

{

Create the ENTITY_T representing the 'intersection' of Es and E (note
that the latter represents another intersection)
}

Defaul tETName(Sf-ŒT _NAME(: Es) + s1-on_NAME(: E), Name);
DefaultETShortName(SHJRT_NPME(: Es)[1 .• 2]

+ Sf-ORT _NAME (: E) [1 .• 2), ShortName) ;
create NewE:= ENTITY_T ((E_S: Sch)

and (: E_NA/"E = Name)
and (: Sl--lORTNAME = ShortName)) ;

create Subt:= SUBTYPE ((ST_E: NewE) and (ST_GST: Cat));
{

Update the origin of NewE
}

create Orig:= PROPERTY((PROP_O: NewE)
and (: P_ROLE = 'Origin')

and (: P _VALUE = E_NAME(: Eg))
and (: TYPE = ' ENT ITY _ T')) ;

{

Update the technical note of NewE
)

create TechN:= DESCRIPTICN((: TYPE= 'Tech_n·)

······-········-··········---------

and (DESCR_SYS: Sys)
and (: TEXT = Text! 3) ;

13 The value of Text is: 'This entity type has been introduced to have disjoint specific entity types of '
+ E_NAME(: Eg) + ', lt repremts the intersection of ' + E_NAME(l Es) + ' and ' + E_NAME(: E) + ','

Adden=du=11 _________ A~mo=r~e co11plete descrJpJion oLib.e ADL algorith111s concerning the category

create Descr□f:= DESCR_CF((DO_DESCR: Tect-N)
and (DO_OBJ: NewE));

{

Copy of the attrib..Jtes of E in NewE
}

Att:= first(ATTRIBUTE(AT_EL: E));
while Att <> ()

CopyAttr(Att, NevE);
Att:= next(ATTRIBUTE(AT_EL: E));

endwhile;
{

Copy of the attritx..ites of Es in NevE
}

Att:= first(ATTRIBUTE(AT_EL: Es));
while Att <> ()

CopyAttr(Att, NevE);
Att:= next(ATTRIBUTE(AT_EL: Es));

endwhile;
{

}

addlist(InterListBis, NewE);
E:= nextlist(Interlist);

endwhile
addlist(InterList, Es);
copylist(InterList, InterListBis);
Subt:= next(SUBTYPE(ST_GST: Cat));

endwhile
end;

Algorithm E.B

procedure PartitionET (var E: record-var;
var ListAttr, ListRole: list-record-var);

{

Specification:

■ Precondition:
• E does not have a category
• ListAttr is the set of optional attributes
• listRole is the set of optional roles

• Effect:

}

This algorithm implements the function specified in
6.3.1.G.e (p. 89)

begin
Sch:= SCHEMA(S_E: E);
Sys:= SYSTEM(SYS_SCI-!: Sch);
DefaultETName(E_NAl"E(: E) + '1', Name);
Defaul tETShortName (Sl--ORTNAl"E (: E) + '1' , ShortName) ;
create E1:= ENTITY_T ((E_S: Sch)

and (: E_Nf'.è\ME = Name)
and (: Sf-ŒT _NAME = ShortName)) ;

DefaultETName(E_NAl"E(: E) + '2', Name);
DefaultETShortName(Sf-mTNAME(: E) + '2', ShortName);
create E2:= ENTITY_T ((E_S: Sch)

and (: E_NAl"E = Name)

AA

fül.dJ..f\du,--"'11 _________ ~A-•~ore coripjete descriRtion of thfAl)L algorithu concernj!li.J.he cat@ory

and (: 51-ŒT _NAl"E = ShortName)) ;
create Cat:= G_DF_SUBTYPE((GST_E: E) and (:COv'ERING = tr-ue)

and (:EXa..USI\JE = tr-ue));
create Subt:= SUBTYPE ((ST_E: El) and (ST_GST: Cat));
create Subt:= SUBTYPE ((ST_E: E2) and (ST_GST: Cat));
{

Transfer the optional attrib.Jtes which become mandatory in El
}

Pos:= 1;
Att:= firstlist(ListAttr);
while Attr <>()do

modify Attr((AT_EL: El) and(: MIN_REP = 1) and(: POSITION= Pos));
Pos:= Pos + 1;
Att:= nextlist(ListAttr);

endwhile
{

Transfer the optional roles which become mandatory in El (their AVG_CCJ\J
is supposed ~ 1)
}

Ro:= firstlist(ListRole);
while Ro <> () do

modify Ro(: MIN_CCJ\J = 1));
Ero:= E_ROLE(ER_R: Ro);
modify Ero(ER_E: El);
Ro:= nextlist(ListRole);

endwhile
{

Update the origin of El
}

create Orig:= PRCFERTY((PRCP_O: El)

{

Update the technical note of El
}

and(: P_ROLE = 'Origin')
and (: P _VALLE = E~(: E))
and(: TYPE= 'ENTITY_T'));

create TechN:= DESCRIPTI[l\J((: TYPE= 'Tech_n')
and (DESCR_SYS: Sys)
and (: TEXT = Text:-~)) ;

create Descr-Of:= DESCR_OF((DO_DESCR: TechN)
and (DO_OBJ: El));

{

Update the origin of E2
}

create Orig:= PROPERTY((PROP_O: E2)

{

Update the technical note of E2
}

and(: P_ROLE = 'Origin')
and (: P _VALUE = E_NAME(: E))
and(: TYPE= 'ENTITY_T'));

create TechN:= DESCRIPTION((: TYPE= 'Tech_n')
and (DESCR_SYS: Sys)
and (: TEXT = Text!- 5)) ;

1 ~ The value of Te1:t is: E_NAME(: E!) + ' contains the entities of ' + E_NAME(l E) + ' having necessarily a
value for the attributes/roles contained now in this entity type,'

15 The value of Text is: E_NAHE(: E2) + ' contains the entities of ' + E_NAHE(: E) + ' with no value for the
attributes/roles contained now in ' ~ E_NAME(1 E!) + ','

BB

Addendu=11 _________ ~A~•=o~re~comJ)1ete ... descripti_on of the ADL al_gorithAls concernin.9 the cati.QP.IY.

create DescrOf:= DESCR_CF((DO_DESCR: TechN)
and (DO_OBJ: E2));

end;

Algorithm E.9

proc:edure RepresGenericET (var Eg: record-var);
{

Specification:

• Precondition:
• Eg has a category, the specific entity types of

which possess at the most one mandatory role or
only attributes and do not belong to any category
nor possess identifier groups

• Either the average population sizes of Eg and its
specific entity types are specified or none of
them

Effect:

)

• This algorithm implements the function specified
in 6.3.1.G.f (pp. 89-90)

begin
Sch:= 50-EMA(S_E: Eg);
Sys:= SYSTEM(SYS_SCI-!: Sch);
Cat:= G_CF_SUBTYPE(GST_E: Eg);
{

Update the techïical note of Eg
}

FindDescrTechN(Eg, Descr, TechN);
if TechN <> () then

modi fy TechN(: TEXT = TEXT(: TechN) + Text1 6);

else
create TechN:= DESCRIPTICN((: TYPE = 'Tech_n')

and (DESCR_SYS: Sys)
and(: TEXT = Text! 1));

create DescrOf:= DESCR_OF((DO_DESCR: TechN)
and (DO_OBJ: Eg));

if Descr <> () then
modify Descr(: TEXT = TEXT(: Descr) + Text18);

else
create Descr:= DESCRIPTION((: TYPE= 'Descr')

and (DESCR_SYS: Sys)
and (: TEXT = Text! 9

)) ;

create DescrOf:= DESCR_OF((DD_DESCR: Descr)
and (DO_DBJ: Eg));

endif;
{

)

Cov:= COVERING(: Cat);

16 The value of Text is: 'The specific entity types have been represented by the generic entity type.'
17 The value of Text is: 'The specific entity types have been represented by the generic entity type,'
18 The value of Text is: 'The descriptions of the specific entity types (which have been represented by the

generic entity type) follow,'
19 The value of Text is: 'The descriptions of the specific entity types (which have been represented by the

generic entity type) follow,'

cc

ê.dd~.n=d=um~-------~A more_coripJete descripjion of the ADL algorithms concernin.9. the caruory

Disj:= EXa_USIVE(: Cat);
Subt:= first(SUBTYPE(ST_GST: Cat);
newlist(ListAttr); { List of the attribJtes representing the specific

enti ty types}
newlist(ListRole); { List of the roes representing the specific

entity types}
while Subt <>()do

Es:= ENTITY_T(E_ST: Subt);
if PCPLLATION(: Es) <> N...LL then { PCPLLATIO\l(: Eg) is also specified}

AvgRep:= PCPLLATION(: Es) / POPIJLATIO\l (: Eg);
endif;
Ero:= E_ROLE(ER_E: Es);
if Ero<> () then

{

This specific ENTITY_T has only a mandatory role which is p.Jt in Eg
}

Ro:= RCLE(R_ER: Ero);
addlist(listRole, Ro);
modify Ero(ER_E: Eg);
DefaultRoleName(Ro, E_NAl"E(: Es), Name) 20 ;

modi fy Ro ((: MIN_CO\l = 0) and (: R__NPJ"E = Name)
and(: AVG_CO\l = AvgRep));

Li:= LINK(L_R: Ro);
FindDescrTechN(Li, Descr, TechN);
if TechN <> () then

modify TechN(: TEXT = TEXT(: TechN) + Text2 1);

else
create TechN:= DESCRIPTIO\l((: TYPE = 'Tech_n')

and (DESCR_SYS: Sys)
and (: TEXT = Text2 2));

create Descr□f:= DESCR_OF((DD_DESCR: TechN)
and (DD_DBJ: Li));

endif;
else

{

Find the next POSITION of attributes in Eg
}

Pos:= O;
At:= first(ATTRIBUTE(AT_EL: Eg);
while At<> () do

if PDSITIO\l(: At)> Pos then
Pos:= POSITION(: At);

endif;
At:= next(ATTRIBUTE(AT_EL: Eg);

endwhile;
Pos:= Pos + 1;
{

}

Attr:= first(ATTRIBIJTE(AT_EL: Es);
if Attr = () then

{

20 DefaultRoleNa~e(Ro, Ni, N2) returns in N2 the value of N1 if Ni is a possible name for the role Roof the
SCHEKA; otherwise, N2 contains a 'correct' na~e proposed by the user.

21 The value of Text is: 'The role ' + R_NAHE(: Ro) + ' represents the specific entity type which is now
represented by the generic entity type.'

22 The value of Text is: 'The role ' + R_NAME(: Ro) + ' represents the specific entity type which is now
represented by the generic entity type,'

DD

~dd~ndul'l,__ ________ --'A~.IAore co11_pJete descrip1ion of the ADL al_gorithms concernio.g_Jlle CJh.9.PIY.

No attribute in Es: a new boolean attribute is created in Eg
)

create Attr-C:= ATTRIBUTE((AT_EL: Eg)
and (: AT_NAl"E = E_NAl"E(: Es))
and (: FCRMAT = boolean)
and (: MIN_REP = 0)
and (: MAX_REP = 1)
and (: AVG_REP = AvgRep)
and (: POSITIŒJ = Pos);

addlist(ListAttr, AttrC);
create Tect-1\J:= DESCRIPTICl\J((: TYPE = 'Tech_n')

and (DESCR_SYS: Sys)
and (: TEXT = Tex~ 3)) ;

create Descr0f := DESCR_CF ((DO_DESCR: Tect-1\J)

else
{

and (DO_0BJ: AttrC));

The attributes of Es are grouped in a new attribute of Eg
)

create Attr-C:= ATTRIBUTE((AT_EL: Eg)

addlist(ListAttr, AttrC);

and (: AT_~ = E_NAl"E(: Es))
and (: FCRMAT = compound)
and(: MIN_REP = 0)
and (: MAX_REP = 1)

and (: AVG_REP = AvgRep)
and(: POSITICl\J = Pos);

create Tect-1\J:= DESCRIPTICl\J((: TYPE = 'Tech_n')
and (DESCR_SYS: Sys)

and (: TEXT = Tex~ 4)) ;

create Descr0f := DESCR_OF((DO_DESCR: Tect-1\J)
and (DO_0BJ: AttrC));

Pos:= 1;
while Attr <> () do

modify Attr((AT_EL: AttrC) and(: POSITICl\J = Pos));
Pos:= Pos + 1;
Attr:= next(ATTRIBUTE(AT_EL: Es);

endwhile
endif;

endif;
{

Put the descriptior,/technical note of each specific entity type in that
of Eg
)

FindDescrTechN(Es, DescrEs, Techf\Es);
if DescrEs <> () then

modify Descr(: TEXT = TEXT(: Descr) + TEXT(: DescrEs));
delete DescrEs;

endif;
if TechNEs <> () then

modify TechN(: TEXT = TEXT(: TechN) + TEXT(: TechNEs));
delete TechNEs;

endif;
{

23 The value of Text is: 'This attribute represents the specific entity type ' + AT_NAHE(: AttrC) + ' which
is now represented by the generic entity type,'

2 ~ The value of Text is: 'This attribute represents the specific entity type ' + AT_NAHE(: AttrC) + ' which
is now represented by the generic entity type.'

EE

Addendu11. __________ ,.A_. 11ore colftp)ete descriillonJf the ADL_algorith11s concerning the categoa

Suppress Es and its 'characteristics' (the category is deleted if Es is
the last specific entity type)

}

delete Es;
{

}

Subt:= next(SUBTYPE(ST _GST: Cat);
endwhile
{

Representation of the class constraints by a global cardinality if more
than one specific entity type otherwise by a 'simple' cardinality
constraint
}

if (sizelist(ListRole) + sizelist(ListAttr)) = 1 then
Ar:= firstlist(ListRole);
if Ar :;;: () then

Ar:= firstlist(ListAttr);
if Cov then

modify Ar(: MIN_REP = 1);
endif;

else
if Cov then

modify Ar((: MIN_CCJ\J = 1);
endif;

endif;
else { At least two specific entity types}

{

Find the next available IKO_CODE of ID_KEY_ORD of Eg
}

Code:= O;
Iko:= first(ID_KEY _ORD(IKO_EL: Eg));
while Iko <> () do

if IKO_CODE(: Iko) > Code then
Code:= IKO_CODE(: Iko);

endif;
Iko:= next(ID_KEY_CRD(IKO_EL: Eg));

endwhile;
Code:= Code+ 1;
{

}

if Cov then
if Disj then { The category formed a partition}

create GlobCard:= ID_KEY_DRD((: IKO_CODE = Code)
and(: TYPE= 'Glob_card')

and (: PARAM1 = 1)
and (: PMAM2 = 1)
and (IKO_EL: Eg));

else { The category formed a cover}
create GlobCard:= ID_KEY_ORD((: IKO_CODE = Code)

and (:TYPE= 'Glob_card')
and(: PARAM1 = 1)

and(: PMAM2 = 99999)
and (IKO_EL: Eg));

endif;
else

if Disj then { The category formed a disjunction}
create GlobCard:= ID_KEY_ORD((: IKO_CODE = Code)

FF

and(: TYPE= 'Glob_card')
and(: PARAM1 = 0)

endif;
endif;
{

Update of the components
}

Nr:= 1;
Ro:= firstlist(ListRole);
while Ro <> () then

and (: P~AM2 = 1)
and (IKO_EL: Eg));

create Comp:= CO"PCX\JENT((C_IKO: GlobCard) and (C_RA: Ra)
and (: TYPE = 'Role')
and (: SEQ_NBR = Nr));

Nr:= Nr + 1;
Ra:= nextlist(ListRole);

endwhile
At:= firstlist(ListAttr);
while At<>() then

create Comp:= COfvpCNENT((C_IKO: GlobCard) and (C_RA: At)
and (:TYPE= 'Attr')
and (: SEQ_NBR = Nr));

Nr:= Nr + 1;
At:= nextlist(ListAttr);

endwhile
endif;

end;

Algorithm E.9

proc::edure CreateSpecificET (var E: record-var
var ListAttr,
ListRole: list-record-var);

{

Specification:

■ Precondition:

■ Effect:

}

begin
Sch:= SCHEMA(S_E: E);

• E does not have a category for which
class inclusion constraints are specified

• This algorithm implements the transformation
specified in 6.3.1.G.g (p. 90)

Sys:= SYSTEM(SYS_SCH: Sch);
DefaultETName(E_NAME(: E) + '1', Name);
DefaultETShortName(SHJRT_NAME(:E) + '1', ShortName);
create El:= ENTITY_T ((E_S: Sch)

and (: E _NAME = Name)
and (: SHOR_TNAME = ShortName));

Cat:= G_OF_SUBTYPE(GST_E: E);
if Cat = () then { El will be the fi,st specific ENTITY_T of E}

c,eate Cat:= G_OF_SLJBTYPE((GST_E: E) and (: CD\JERING = false)
and (:EXCLUSIVE= false));

endif;
c,eate Subt:= SUBTYPE ((ST_E: El) and (ST_GST: Cat));
{

6G

Addend=u=11 ________ __,_A~111o~r,e co11pJete descrip1ion of the ADL al.9orith1s concernin.9_ the categpry

Transfer the optianal attributes which stay optional in E1 (and also the
groups cantaining them)
}

Nr:= 1;
Att:= firstlist(ListAttr);
while Attr <>()do

modify Attr((AT_EL: El) and(: POSITION= Nr));
Camp:= first((COVPCl\ENT(C_RA: Attr);
Code:= 1;
while Camp<> () do

Iko:= ID_KEY_ORD(IKO_C: Comp);
modify Ika((IKO_EL: El) and(: IKO_CODE = Code));
Camp:= next((CD"PCJ\ENT(C_RA: Attr);
Code:= Code+ 1;

endwhile;
Att:= nextlist(ListAttr);
Nr:= Nr + 1;

endwhile
{

Transfer the aptianal rales which stay optianal in El (and alsa the
groups cantaining them)
}

Ra:= firstlist(ListRale);
while Ra<> () do

Ero:= E_RCLE(ER_R: Ro);
modify Ero(ER_E: El);
Camp:= first((CXJ"PCJ\ENT(C_RA: Ra);
while Camp<>() do

Ika:= ID_KEY_ORD(IKO_C: Camp);
modify Ika(IKO_EL: E1);
Camp:= next((C0'1PŒENT(C_RA: Ro);
Code:= Code+ 1;

endwhile;
Ra:= nextlist(ListRole);

endwhile
{

Update the origin of El
}

create Orig:= PRCPERTY((PROP_O: El)
and(: P_RŒ...E = 'Origin')

{

Update the technical note of El
}

and (: P _VALUE = E_NAl"E(: E))
and (:TYPE= 'ENTITY_T'));

create Tecfi\l:= DESCRIPTION((: TYPE= 'Tech_n')
and (DESCR_SYS: Sys)

and (: TEXT = Texfl- 5
)) ;

create DescrOf:= DESCR_OF((DO_DESCR: TechN)
and (OO_OBJ: E1));

end;

................ - - -.---
25 The value of Te>:t is: E_NAHE(: E1) +' contains the entities of ' + E_NAHE(: El+ ' having eventually a

value for the attributes/roles contained now in this entity type.'

HH

Adden=du=ri'----------'A~•ore coJ1Rlete descri_pjion of thLADL_algprith111s c..QncerniD.9 the catego..ry

Algorithm E.10

procedure DeleteSpecificET (var Eg, Es: record-var);
{

Specification:

■ Precondition:

■ Effect:

}

begin
Sch:= ~(S_E: E);

• ENTITY_T Eg has a category for which
class inclusion constraints are not
specified

• ENTITY_T Es belongs to that category and
has only optional attributes/roles

• This algorithm implements the transformation
specified in 6.3.1.G.h (p. 91)

Sys:= SYSTEM(SYS_SD-1: Sch);
Cat:= G_CF _SUBTYPE(GST_E: E);
create Subt:= SUBTYPE ((ST_E: E1) and (ST_GST: Cat));
{

Transfer the optional attributes of Es which stay optional in Eg
}

{

Find the next POSITION of attributes in Eg
}

Pos:= O;
At:= first(ATTRIBUTE(AT_EL: Eg);
while At<>() do

if POSITION(: At)> Pos then
Pos:= POSITION(: At);

endif;
At:= next(ATTRIBUTE(AT_EL: Eg);

endwhile;
Pos:= Pos + 1;
{

Find the next available IKO_CODE of ID_KEY_ORD of Eg
}

Code:= O;
Iko:= first(ID_KEY_ORD(IKO_EL: Eg));
while Iko <> () do

if IKO_CODE(: lko) > Code then
Code:= IKO_CODE(: Iko);

endif;
Iko:= next(ID_KEY_ORD(IKO_EL: Eg));

endwhile;
Code:= Code+ 1;
{

}

Attr:= firstlist(ListAttr);
while Attr <> () do

DefaultAttName(Eg, AT_NAME(: Attr), Name) 26 ;

modify Attr((AT_EL: El) and (: AT_NAME == Name) and (: POSITICN == Pos));
Pos:= Pos + 1;
Camp:= first((CO!"PONENT(C_RA: Attr);

26 DefaultAttNa~e(E, Nl, N2) returns in N2 the value of Nl if Ni is a possible name of an attribute of
ENTITY_T E; otherwise, N2 contains a 'correct' name proposed by the user,

Il

êMtnPu..,,11 _________ ,.,_A """111-=or..,,_e__,,coinJ,lete ~tscription of th~ @.LtlgQLÜh~s concernto.g .. Jhe cate.9p..r.Y.

while Camp<>() do
Iko:= ID_KEY_ORD(IKO_C: Camp) ;
modify Iko((IKO_El..: E) and (IKO_CODE = Code));
Code:= Code+ 1;
Comp:= next((CC:X"PONENT(C_RA: Attr-));

endwhile;
Att:= nextlist(ListAttr-);

endwhile
{

Transfer the optional roles which stay optional in El
}

Ro:= fisr-tlist(ListRole);
while Ro <>()do

Ero:= E_RŒ..E(ER_R: Ro);
modify Er-o(ER_E: El);
Comp:= fir-st((CCl"PO\JENT(C_RA: Ro);
while Comp <> () do

Iko:= ID_KEY_ORD(IKO_C: Camp);
modify Iko((IKO_El..: El) and (IKO_CODE = Code));
Code:= Code+ 1;
Camp:= next ((CCl"PC1\ENT (C_RA: Ro) ;

endwhile;
Ro:= nextlist(ListRole);

endwhile
{

Update the tecmical note of Eg
}

if TecrN <> () then
modify TecrN(: TEXT = TEXT(: Tecti\l) + Text!-7);

else
create Tecti\l:= DESCRIPTICl\l((: TYPE = 'Tech_n')

and (DESCR_SYS: Sys)
and (: TEXT = Texfl8));

c rea te Desc r□f : = DESCR _OF ((DO _DESCR: T ec ti\l)
and (DO_OBJ: Eg));

{

Delete Es (and the categor-y if Es is its last SUBTYPE
}

delete Es;
end;

Algorithm E.11

prcx:::edure Repr-esisaByRTs (var- Eg: recor-d-var);
{

Speci f ication:

• Precondition:

• Effect:

• Eg is an ENTITY_T with a category
• Eg has only 'local' components in its

gr-oups

• This algor-ithm implements the

···-···· .. --.. • ... ____ ,, ____ ,_,_, .. _,_ .. ,_,_ .. __________ _
27 The value of Text is: 'The specific entity types have been represented by the generic entity type,'
20 The value of Text is: 'The specific entity type ' + E_NAME(: Es) + ' has been suppressed in Eg,'

JJ

Addendul\,~--------~~m,ore comAlete d~scriptlon_oiJhUDL pJgori th.ms concernJ11g, the .. Uttgory

}

transformation specified in 6.3.1.G.i
(p. 91)

begin
Sch:= SCI-EMA(S_E: Eg);
Sys:= SYSTEM(SYS_SD-l: Sch);
Cat:= G_CF_SUBTYPE(GST_E: Eg);
Cov:= CCNERIN3(: Cat);
Disj:= EXCLUSIVE(: Cat);
Subt:= first(SUBTYPE(ST_GST: Cat);
newlist(ListSpec);
newlist(ListRole);
while Subt <>()do

Es:= ENTITY_T(E_ST: Subt);
create Ero1:= E_ROLE(ER_E: Es);
create Ero2:= E_RCLE(ER_E: Eg);
create Ro1:= RDLE((R_ER: Erol)

and (: R_NPME = 'is-a')
and(: MIN_CON = 1)
and (: MAX_CON = 1)

and(: AVG_CQ\J = 1));
if PCPLLATION(: Es) <> NLLL and POPLLATICN(: Eg) <> Nt.LL
then

AvgCard:=
else

AvgCard:=
endif

POPLLATICN(: Es) / PCPLLATICN(: Eg);

NJLL·
'

create Ro2:= RCLE((R_ER: Ero2)
and (: R_NAl"E = 'may-be-a')
and (: MIN_CQ\J = 0)
and(: MAX_CQ\J = 1)
and (: AVG_CO\J = AvgCard));

addlist(ListRole, Ro2);
Defaul tRTName(SI-IORT _~(Es) + '_ISA_' + SHORTNAl"E(: Eg), Name)29

;

Def au 1 tRTShortName (Name [1 •• 7] , ShortName) 30
;

create Li:= LINK((L_R: Rol) and (L_R: Ro2) and (L_S: Sch)
and(: L~ = Name)
and (: SHORT _NAME = ShortName)
and (: DEGREE = 2)
and (: POPULATION = PCPLLATION(: Es));

{

Update the origin of Li
}

UpdateDriginLi;
{

Update the technical note of Li
}

UpdateTechN...i;
{

}

addlist(ListSpec, Es);
delete Subt;
Subt:= next(SUBTYPE(ST GST: Cat);

endwhile

29 DefaultRTNate(Nl, N2) returns in N2 the value of Nl if Nl is a possible name for a LINK of the SCHEMA;
otherwise, N2 contains a 'correct' name proposed by the user.

30 DefaultRTShortName(Nl, N2) returns in N2 the value of Nl if Nl is a possible short name for a LJNK of the
SCHEMA; otherwise, N2 contains a 'correct' name proposed by the user,

KK

Addendu111, _________ --'A"--'-'-"11ore _co111pJete description of the ADL al_gorithms_ concerni.ng the category_

{

Representation of the class constraints
}

if (sizelist(ListSpec) = 1 and Caver) then
Ra:= firstlist(ListRole);
modify Ro(: MIN_CON = 1);

else { At least two specific entity types}
{

Find the next available IKO_CODE of ID_KEY_ORD of Eg
}

Code:= O;
Iko:= first(ID_KEY_ORD(IKO_EL: Eg));
while Iko <> () do

if IKO_CODE(: Iko) > Code then
Code:= IKO_CODE(: Iko);

endif;
Iko:= next(ID_KEY_ORD(IKO_EL: Eg));

endwhile;
Code:= Code+ 1;
{

}

if Cov then
if Disj then { The category formed a partition}

create GlobCard:= ID_KEY_ORD((: IKO_CODE = Code)
and(: TYPE= 'Glob_card')

and(: PARAM1 = 1)
and (: PARPMZ = 1)
and (IKO_EL: Eg));

else { The category formed a caver}
create GlobCard:= ID_KEY_ORD((: IKO_CODE = Code)

and(: TYPE= 'Glob_card')
and(: PARAM1 = 1)

and (: PAR~ = 99999)
and (IKO_EL: Eg));

endif;
else

if Disj then { The category formed a disjunction}
create GlobCard:= ID_KEY_ORD((: IKO_CODE = Code)

endif;
endif;
{

Update of the components
}

Nr:= 1;
Ro:= firstlist(ListRole);
while Ro <> () then

and(: TYPE= 'Glob_card')
and(: PARAM1 = 0)

and(: PARAM2 = 1)
and (IKO_EL: Eg));

create Comp:= COMPONENT((C_IKO: GlobCard) and (C_RA: Ro)
and(: TYPE= 'Role')
and (: SEQ_NBR = Nr));

Nr:= Nr + 1;
Ro:= nextlist(ListRole);

endwhile
endif;

end;

LL

Addendum A 111ore co11plete description of the ADL algorithfls concerning the catg.99..u_

'Toolbox'

Algorithm E.12

procedure Statlnfer (var Eg: record-var);
{

Specification:

■ Precondition:
• Eg is an ENTITY_T with a category forming

a partition
■ Effect:

}

• The statistical inference rules (p. 78)
are applied on Eg

begin
if PCPLLATION(: Eg) <> NLLL then

GenPop:= PCPLLATICX\l(: Eg)
Numberlhspecified:= O;

else
GenPop:= -1;
NJmberlhspecified:= 1;

endif;
Cat:= G_CF _SUBTYPE(GST_E: Eg);
Subt:= first(SUBTYPE(ST_GST: Cat));
SpecPop:= O;
while (Subt <> ()) and (Numberlhspecified 1 1) do

Es:= ENTITY_T(E_ST: Subt);
if PCFLLATICN(: Es)<> f\l.LL then

SpecPop:= SpecPop + PCFLLATICX\J(: Es);
else

Spec:= Es;
NumberUnspecified:= NJmberlhspecified + 1;

endif;
Subt:= next(SUBTYPE(ST_GST: Cat));

endwhile;
if NumberU.specified = 1 then

if GenPop <> -1 then
modi fy Spec (: POPULATION = GenPop - SpecPop) ;

else
modi fy Eg (: POPULATION = SpecPop) ;

endif;
endif;

end;

Algorithm E.13

procedure FindDescrTechN (var Obj, Descr, TechN: record-var);
{

Specification:

• Precondition:

• Postcondition:

• Obj is an ATTRIBUTE, an ENTITY_T, a LINK
or a SCHEMA

• Descr is the DESCRIPTION with TYPE=

éQ.Qtnd=u=11 _________ ~A more c911plete descrU!_.tion of the ADL a_lgori.thms.concerni..o.g __ the category

}

'Descr' assoc:iated with Obj, otherwise
Descr = ()

• TechN is the DESCRIPTIC]\J wi th TYPE =
'Tech_n' associated with Obj, otherwise
Tecli\J = ()

begin
Descr:= ();
TechN:= ();
DescrOf:= first(DESCR_OF(DO_OBJ: Obj));
if DescrOf <> () then

De:= DESCRIPTIC]\J(DESCR_DO: Descr□f);

if TYPE(: De) = 'Descr' then
Descr:= De;

else {TYPE= 'Tech_n' }
TechN:= De;

endif;
Descr□f:= next(DESCR_OF(DO_OBJ: Obj));
if DescrOf <> () then

De:= DESCRIPTIC]\J(DESCR_DO: DescrOf);
if TYPE(: De) = 'Descr' then

Descr:= De;
else { TYPE = 'Tech_n' }

Tecli\J:= De;
endif;

endif;
endif;

end;

Algorithm E.14

procedure CopyLink (var Li, Ro: record-var
var ListEnt: list-record-var);

{

Specification:

• Precondition:
• Li is a LINK and Rois a ROLE attached to Li
• ListEnt contains ENTITY_Ts which are specific

ENTITY_Ts of the ENTITY_T playing the role Ro
■ Effect:

• The role Rois replaced by a multidomain role31

concerning the ENTITY_Ts of ListEnt
• Li is however not deleted

}

Algorithm E.15

procedure CopyAttr (var Att, Obj: record-var);
{

Specification:

• Precondition:
•Attis an ATTRIBUTE
• Obj is either an ATTRIBUTE, an ENTITY_T or a LlJ\JK
• POSITION(: Att) and AT_~(: Att) are supposed

acceptable for Obj
---- ·--·-···

~
1 Actually, it is replaced by the replacement of a multido11ain role (see tootnote B, page 87),

NN

Addendu11 A more coriplete description of the ADL alggrithms concerning the catggg.u_

■ Effect:

}

• A copy of Attis created
and attached to Obj

begin
create A:= ATTRIBUTE((AT_EL: Obj)

{

and (: AT_NAME = AT_NAME(: Att))
and (: F~T = FORMAT(: Att))
and (: LENGTH = LENGTH (: At t))
and(: DECIM = DECIM(: Att))
and (: MIN_REP = MIN_REP(: Att))
and (: MAX_REP = MAX_REP(: Att))
and (: AVG_REP = AVG_REP(: Att))
and (: AVG_LENGTH = AVG_LENGTH(: Att))
and(: POSITION= POSITION(: Att)));

Copy of the description/technical note
}

CopyAttObjDescrTechN;
{

Copy of the component attributes if any
}

AttComp:= first(ATTRIBUTE(EL_AT: Att));
while AttComp <> () do

CopyAttr(AttComp, A);
endwhile

end;

00

