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Abstract

Abstract

The generalization/specialization abstraction structures offer a
powerful specification tool. This work first attempts to identify the
different facets of the concept, as far as conceptual database design is
concerned: indeed, generalization/specialization structures are part of
numerous (semantic) data models but there are many variations around the
definitions and the ways in which they are used. From this theoretical
analysis, we define a useful and consistent subset of these structures in
order to include them in an existing database design workbench based on the
entity—-relationship approach. The proposed construct, called the category,
is introduced in the workbench model; the existing processors are modified,
while new functions are proposed (a special care is given to transforma-
tions).

Keysawds: abstraction mechanism, CASE, conceptual modelling, database
design, database design workbench, entity-relationship approach, generali-
zation/specialization, semantic data model, transformation

Résumeé

Les structures d’abstraction de généralisation/spécialisation offrent
un puissant outil de spécification. Ce travail essaie d’'abord d’identifier
les différentes facettes de ce concept, au niveau de la construction
conceptuelle d'une base de données : en effet, les structures de générali-
sation/spécialisation font partie de nombreux modeéles de données (sémanti-
ques) mais il y a des variations a propos des définitions et de leurs
usages. A partir de cette analyse théorique, nous définissons un sous—
ensamble utile et cohérent de ces structures, de fagon & les inclure dans
un atelier de conception de bases de données existant basé sur 1’ approche
entité—association. La caonstruction proposée, appelée catégorie, est
introduite dans le modéle de données de 1l’'atelier; les processeurs existant
sont modifiés, tandis que de nouvelles fonctions sont proposées (les trans—
formations sont particuliérement étudiées).

Mots—clés: AGL, approche entité—association, atelier de conception de bases
de données, conception de base de données, généralisation/spécialisation,
mécanisme d’abstraction, modéle de données sémantique, modélisation concep—
tuelle, transformation
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« a

What kind of world are we creating with computers?
What kind of world do you want to live in?

How can you use computers, amongst other things,
to create that worlid?

Are you doing those things now? Or, at least, is
your work consistent with your desired world view?

Whatever you are doing now with computers, you are
changing your world. Is it for the better? »

(M. L. Brodie — 1988)
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Introduction

Background

Modelling is the major task in computer science. Such a task uses
abstractions to deal with the complexity of the real world, a model of
which computer application must be. We abstract from details, in order to
reduce that complexity and to keep only what is relevant to the applica-

tion.

Database management systems (DBMSs) are typically used for the mana-—
gement of data stored in the database which stand for 'facts’ in the
reality, the so—called Uhiverse of Discourse (LiaD). As every software
component, the databasé must be organized in a well-structured fashion.
This structure is explained in the database schema, in terms of the cons~
tructs of a data(base) model. Building this description is called database
design. A data model has to meet two different objectives: to record
technical information about the storage of data, but also the semantics of
the reality. The first objective has always been obvious, the importance of
the second emerged only in the early seventies. Other intermediate aims may
be stressed, for example, the user view of data. This multiplicity of

objectives leads to the introduction of hierarchies of descriptions.

The first level and the most critical one, called conceptual model-—
ling, aims at describing the semantics of data. Such specifications are
closer to human perception than to the computer aspects. Therefore concep—
tual models, i.e. database models used for conceptual modelling, have to

include structures matching with abstraction mechanisms used in buman mind.

The recent years have seen the emergence of computer-aided software
engineering (CASE) tools which are helping the designer to build software
components, according to different methodologies. In particular, the
database design workbenches offer one or several models and are tackling

different aspects of the design of a database.
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Objective and motivation

In this dissertation, we focus on the generalization/specialization
abstraction structures, trying to provide a theoretical study, but also

examining its integration in a database design workbench.

The generalization/specialization abstraction structures offer a
powerful specification tool, but also an implementation tool. The idea of
the generalization mechanism is to define a class of objects describing the
objects of other classes in avoiding details. The specialization mechanism
implies the definition of classes which are more specific than a given
class., We focus on its use in the conceptual phase of the design of a
database, although we also outline its interests in the whole development
of software and in three major areas of computer science (programming,
artificial intelligence and database) which have been confronted in the

recent years.

Currently, it is recognized that methodologies '‘need’ the use of
software tools. We integrate the generalization/specialization construct in
the model of TRAMIS, a database design workbench developed at the Institut
d’Informatique and marketed by Concis. This tool, based on the toolkit
approach, supports a single entity—relationship (E-R) model for all steps
of database design, and provides a user interface using windows. We
therefore study how a generalization/specialization construct can be incor-—
porated in the model (extending by the same way the E-R model), how
existing processors must be modified and what the new functions are, and

finally how that construct can be introduced in the user interface.

Related works

Generalization/specialization constructs are often quoted in the
literature. However no consensus seems to appear. Some studies [Coll 88]
[Hain 89d] [Hull 87b] [Peck 88] [Spac 89] have been devoted to their analy-
sis for semantic modelling, [Tour 86] study it for artificial intelligence,
and all works on object-oriented programming deal with it more or less

thoroughly.

On the other hand, studies on the problem of integration in a
database design is less proposed. Only papers explaining different database
design workbench philosophies are published. We didn't discover any
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‘methodological’ book stressing the process of developing or extending a

database design workbench.
Main ideas

From the theoretical analysis, we derive the main facets of generali-
zation/specialization structures, i.e. class inclusion dependencies and the

inheritance inference rules.

For the practical aspect, we emphasize that the construct should
provide a wuseful, minimal and consistent framework for generaliza-—
tion/specialization structures which is compliant to the ‘philosophy’ of
TRAMIS. Transformations are given a special care: we provide transformation
not only for the representation of categories by basic constructs, but also

for their manipulations.
Outline

In chapter 1, we present the concepts of abstraction mechanisms and
define the most frequently used mechanisms. AN overview of the generaliza-
tion/specialization mechanism during application development lifecycle, and
in three major fields of computer science is proposed too. Chapter 2
recalls some fundamental aspects of database design, especially at the
conceptual level. In chapter 3, we analyse, within the GER framework, the
different facets of generalization/specialization constructs of most data
models, trying to understand their usefulness and applicability. Chapter 4
overviews how generalization/specialization constructs fit in the data
modelling process: we explain bow and when generalization/specialization
should be introduced in a schema, and we briefly describe transformations
concerning them. Chapter 5 explains TRAMIS, the database design workbench
developed at the Institut d’Informatique. In chapter 6, we investigate the
problem of introducing a generalization/specialization construct in TRAMIS.
This construct, called the category, is explained as a component of the
TRAMIS model; we then analyse its impact on the different processors and
show how it can be integrated in the user interface. The conclusion is
concerned with a summary of the main results, with a discussion of our -
work, and with possible future researchs on the study of generaliza-
tion/specialization and on the development of workbenches. Appendix A
explains the reference example. In appendix B, we give an overview of the
GER model which is used as framework in the theoretical study. Appendix C
presents the principle of the monitoring of the TRAMIS user interface,
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while appendix D shows its monitoring when the generalization/spe—
cialization construct is introduced. In appendix E, we provide a set of ADL
algorithms working on the GAM schema of the specification database which

concern the proposed generalization/specialization construct.

Note to the reader

The reader is supposed to be acquainted with the E-R approach and
with the traditional relational model. We moreover assume that be is

familiar with database design problems.

When no consensus appears in the literature about a question, we

provide our viewpoint when necessary.

At the beginning of each chapter and paragraph, the reader may find a

summary of its contents.



Chaptexr 1

The
generalizationsspeciali=ation

abstraction mechanism

We present bere the abstraction mechanisms, and focus on one
mechanism, the generalization/specialization, trying to examine its appli-
cability and to study its usefulness in the software development lifecycle,
and in three major areas of computer science, namely artificial intelli-

gence, programming, and databases.

1.1. Abstraction mechanisms

Programming is one of the major tasks in computer science; by
programming, we mean conceiving a model of a certain part of the reality
according to a certain formalism. It is therefore interesting to have a
closer lock at the modelling process, and try to understand the mental

mechanisms involved in each modelling task better.

The basic process employed whereby a model of the reality is designed
is known abstraction [Davi 89]: it involves the selective emphasis of
details; the final result of applying abstraction is that the elaborated
model stands for, in a meaningful way, those aspects of reality being of
interest for the human ‘observer’. Abstraction is a mind-structuring
process in which one omits details about a fact, in order to reduce the
complexity of the real world, and so to be able to build an ‘operational’
model of it.

There are different kinds of abstraction mechanisms, leading to hie—
rarchies of abstractions, because there are too many details in the reality
for a single abstraction to be intellectually manageable [Smit 77]. Essen-—
tially there have been much work around four abstraction mechanisms [Boda
897 [Brod 81] [Brod 84a] [Codd 79] [Davi 891 [Hamm 813 [Hull 87b] [Matt 88]
[{Mylo 841 [Ridj 84] [Smit 771 [Sowa B4], at least in modelling techniques:

s classification;

» aggregation;
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s agsociation;

s generalization.
1.1.1. Four main abstraction mechanisms
A. Classification

The classification consists in the grouping of objects sharing common
characteristics into a class (also called set or type) over which uniform
conventions hold [Borg 841. It is a form of abstraction in which a collec-
tion of objects is considered as a higher level object class which is a
precise characterization of all properties shared by each object in the
collection. We say that an object is an instance of a class if it has the
properties defined in the class [Ridj 84]. Classification represents then
an Is—instance-of relation between an object and a class. By definition
[Boda 89], each instance inherits the properties of the classes. The

inverse is instanciation.

For example, an object class book that has properties title and ISBN
code may have as instance the object with property values On conceptual

modelling and O-387-70842-0.

This is a fundamental mechanism as it allows an economy in the des—
cription of the semantics: we can describe the modelled domain in inten-—
sion, and not in extension. It is encountered in many computer science
applications to identify, classify and describe objects in terms of object

classes [Ridj 841].

We may note that a class can be considered as an object itself, and
so belong to a class too (called a meta—class), and so on. The class
‘aspect’ is not an intrinsic property of an object, as explained in

[Hain 89d].

B. Aggregation

Aggregation consists in the treatment of a collection of Dbjécts as a
single concept [Borg 843. Therefore it implies that an object has compo-
nents as part of its structure that are themselves objects of interest in
the UoD. In other words, it is a form of abstraction in which a relation-
ship between component objects is considered as a higher level aggregate

object [Ridj 84]. This is the is—-part-of relation. Aggregation supports
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upward inheritance, i.e. the aggregate can receive the properties of its

components. Its inverse is disaggregation.

For instance, a company car may be the aggregate of component wheels,

engine, etc.

Aggregation is useful as an abstraction mechanism in that it gra-—
dually makes the composition of an object visible, and depicts how the
components which comprise the object relate to each other and to the object
as a whole [Davi 89]. It is also widely present in programming languages
and database models (where object identity ' has been introduced to

complete it).

Again, we may note that an aggregate object may itself be a component
object of ancther aggregate object.

C. Association

’ Association is a form of abstraction in which a collection of member
objects is considered as a higher level set object [Brod 81]. Association
(also called grouping) is based on the is-member—-of relation: this form of
classification relates the instances of a lower level type to the instances
of the higher level type containing classes to which the instances of the
lower level type do belong [Davi 89].

For example, the set trade-union is an association of employee

members.

It allows to create an abject set from members of a class which
verify a same criterion [Boda 89]. It is a less recognized mechanism.
According to [Ridj 84], it emphasizes set oriented design as a special case

of aggregation.
D. Generalization

Generalization consists in the extraction from one or more given
classes of a more general class that captures commonalities but suppresses
some of the detailed differences in the description of the given class
{Borg 84]. We may notice that it introduces an inclusion dependency: one or

several sets of abjects are considered, at a higher level of abstraction,

! The idea of object identity is that an object has an identity (that distinguishes this instance from all
other instances) and a substance (the properties that hold for the object and can be discovered by inves-
tigatipn of the object) [1ill 84],
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as a set which includes them. This is the is—a relation. The inverse is

called specialization. Inheritance is associated with generalization.

For instance, the person class may be a generalization of the author

and book reviewer classes.

We shall analyse it thoroughly in this work. It has been largely used
but there are many variations on the ideas. Incidentally, Smith and Smith
[Smit 77] felt the need to develop a philosophical position on the nature

and representation of generalizations.

A class which results from the generalization of other classes may

itself be generalized.

1.1.2. Hierarchies of abstractions

Actually, all abstractions are orthogonal in the sense that none of
them can be derived from others [Nava 88]. An object (or a class) can be a
manifestation of more than one abstraction provided that orthogonal nature
of abstractions. Classification is a relation between a class and its
instances, whereas aggregation, and association are used between classes to
‘characterize’ their instances, and generalization is typically for
classes. The class relations are the important ones for modelling. Any
class can simultaneously have aggregation, association, and generalization

relations with other classes.

All these mechanisms (classification/instanciation, aggregation/di-
saggregation, association/membership, generalization/specialization)
provide techniques for structure modelling. Modelling typically involves
the identification of relations of all objects (classes) relevant for the
field to modelize. They take advantage of property inbheritance, the main
richness of which is abstraction (suppression of details), modularization,
and consistency since essential properties of an object (or a class) are
defined once and are inberited in all relations in which it takes part.
Classification supports downward inheritance; aggregation and association
support upward inheritance in which properties of the components or members
are inherited by the aggregate or set. Generalization supports downward
inheritance in which all properties of a generic object class are inberited

by each specific object class (but also upward inheritance).
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1.2. The generalization/specialization abstraction

mechanism in software development lifecycle

It is a clear evidence that a successful software development metho—
dology has to employ as many as possible of the abstraction structures

mentioned above, in order to make the modelling task easier.

1.2.1. Software development lifecycle

It is generally recognized that the development of a software, or
more globally an information system, goes through different steps before it

is operational [Boda 89]. These steps are usually:

s the requirement analysis which is concerned with the ela—
boration of the definition of systems functionalities,
performances constraints, ...;

s the conceptual or functional analysis which develops a
functional solution but independent from any technical mediaj

v the design of the software architecture;

s the iImplementation and the testing.

1.2.2. Software development based on

generalization/specialization

Requirement analysis is largely recognized as being the most critical
step in the software lifecycle, since errors on this level may have disas-
trous effects on the subsequent development steps [Dard 89]. In that level,
both users and analysts cooperate to elaborate the requirements. As genera-
lization/specialization structures are largely used in the real world, they

will be useful too.

In the conceptual step, generalization hierarchies help the designer
to organize the process of gathering details and integrating them into a

consistent information system.

Generalization should be used as a cornerstone in designing data-
intensive applications [Borg 84]. Software specification methodologies can
combine stepwise refinement by decomposition with concept specialization in
arder to introduce the multitude of details typically associated with large
interactive systems [Borg 84]. We shall later analyse the database design
aspect, however it should be noted that generalization/specialization is
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useful in the 'application’ aspect? too. Indeed, in the development of the
software, we have to define software relations between software components
(modules). Among the different relations which are widely used [viam 88b],
the inheritance relation typically hides a generalization/specialization

structure.

On the implementation level, object—-oriented programming languages
are becoming more and more important, and they make a wide use of generali-
zation/specialization (see next paragraph) which enhances both reusability

and modularization, while reducing clerical errors.

1.3. BGeneralization/specialization in programming,

artificial intelligence, and database areas

At the very beginning of researches on data modelling, it has becomed
obvious that this area has a lot of common interests with knowledge repre-
sentation in artificial intelligence: models of the reality are important
for both database and artificial intelligence systems. For some time, it
has been a growthing work on the confrontation of these two approaches
(Mylo 82] [Sern 85], along with programming languages [Brod 80] [Brod 84a].
For instance, many of the concepts in semantic data models are derived from

research in two major areas in computer science [Afsa B86]:

s data abstraction ideas in programming languages (abstract
data types);

s knowledge representation concepts in artificial intelligence.

This work about generalization/specialization in database conceptual
modelling can certainly take profit from a survey about the exchange of

ideas among researchers who are concermned with:

s abstract data types and program specifications techniques, in
the programming language domain;

¢ knowledge representation, in the artificial intelligence
community

« conceptual (semantic) database modelling techniques in the

database sytems research area.

2 We follow the traditional database approach, where there is a distinction between datz and applications.
Ancther trend, namely the object-oriented approach, considers objects as the basic building blocksy in
this approach generalization/specialization plays an important role too,

10
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1.3.1. Generalization/specialization and object-oriented

programming
A. Object orientation

According to the object-oriented paradigm [Amer 871 [Duco 871 [Duco
891 [Halb 87] [Higg 891 [Meye 89], the world contains distinct objects.
Each object is an instance of a class or type. Thus, the world is described
in terms of abstract data types which are related to each other within
inheritance hierarchies. These objects have a state that can change over
time (for several of them). The state of an object is indicated by values
of its attributes. Each class contains the description of the attributes
which are given values for instance objects of that class. The desired
behaviour of objects forms a part of the object definition: object beha—
viour is defined in its methods. Objects have an identity within the system
and are manipulated through messages to which they respond by mapping the
message and its method which is then invoked. An object can accept or

reject a message sent to it.

Inheritance is a way of increasing re—use and enhancing modula-—
rization: if two or more objects of different types share some common pro-
perties or behaviour, a new type can be defined that contains the shared
properties or behaviour, and the original types are defined as subtypes of
the newly created type (called the supertype). On the other hand, if one
recognizes that some instances of a given type could share some specific
properties or behaviour, one or more new subtype(s) can be defined. Each
subtype inherits the properties and methods of its supertype(s). In addi-
tion it may add properties and methods that are unknown to the super-—
type(s). When a type inherits a method it can choose:

to inherit the described behaviour;
to refine that behaviour by replacing the inherited method by

its own;
to disallow the behaviour.

If a type is permitted to have only a single supertype, the system is
a single Inheritance system, otherwise it is a multiple inheritance system.
Note that multiple inberitance introduces several problems (inberitance and

naming conflicts, ...) [Duco 87] [Duco 8%9].

i1
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B. Generalization/specialization and objects

Amid the different features of object—oriented programming languages,
there is inbheritance (generally considered as a necessary, although not
sufficient, condition for a language to be considered object-oriented [Higg
891). Inheritance allows classes to share definitions with other classes,
and to make that commonality explicit. It is therefore a technique that
allows new classes to be built on the top of other less specialized classes
rather than be written from scratch. [Halb 87] discusses different ways to

use types and inheritance to structure programs.

Note that some types will have a set of instances, whereas others
will not. Types that are only intended to provide a common set of proper-
ties and operations for their subtypes, but which are not intended to have
instances of their own, are called abstract supertypes [Halb 87].

1.3.2. Generalization/specialization and artificial

intelligence
A. Knowledge representation and manipulation

Artificial intelligence is the study of knowledge representations and
their use in language, treasoning, learning, and problem-solving [Sowa 841].
In artificial intelligence systems, representation schemes are used for
representing semantics [Alte 90] [Brac 85] [Mylo 84]. One may classify the
representation schemes as follows [viam 88c]:

s standard and non standard logics;

s .production rules;

s structured objects (these representation techniques are
inspired from associative memory of human beings), i.e.
semantic networks [Brac 83] [Wood 75] and frames [Brac 89]
[Fike 85].

Knowledge is processed by means of strategies of searching and reaso—
ning [Alte 90]. Indeed, with conventional database systems, the user must
know what to ask for and what to do with results (they are passive,
although deductive databases are becoming more active); a knowledge-based
system keeps track of the meaning of the data and performs inferences to
determine what information is needed even when it has not been explicitely
requested (see [Brod 86] for a confrontation of these systems).

12
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In order to cobtain new information from existing one, the following

types of reasonings may be applied [viam 88c]:

» formal reasoning (or deductive);

s inductive (or by generalization) reasonings;
s reasoning by analogy;

s procedural reasonings

s reasoning by default.
B. Generalization/specialization in knowledge representation and reasoning

The structured objects representation schemes make a wide use of
inheritance because they reduce repetitions in descriptions and so reduce
the number of clerical errors: regularity is exploited by creating
abstractions classes. In semantic networks, a privileged relation, the is-a
relation [Brac 83], incorporates a strict inberitance mechanism (classes
are templates). Frames, on the other hand, consider classes as prototypes,
on which default inberitance can be applied [Borg 84]. With multiple
inheritance, especially if default inheritance and exceptions are allowed,
reasoning (which is part of artificial intelligence systems) has become
more difficult to deal with: numerous algorithms have been designed using
the shortest path reasoning, searching all inheritance paths or other

‘techniques’ (some of them have unpredictable behaviour) [Tour 86].
1.3.3. Generalization/specialization and databases
A. Database models

A database is a model of an evolving physical world; the state of
this model, at a given instant, represents the knowledge that has been
acquired from the world [Abri 74]. The data are organized into a structure

which is defined by the database schema.

A data(base) model is a collection of mathematically well-defined
constructs and integrity rules helping at the expression of static and
dynamic properties of data intensive applications [Brod 84b]. A data model
must have a commonly accepted (and useful) interpretation [Date 86].
Indeed, a data model is a formal system (i.e. a system in which a set of
precisely defined objects can be manipulated in accordance with, and only
in accordance with, a set of precisely defined rules, without any regard

for the real world interpretation of those objects and rules).

13
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Since their origin, data models are at the confluence of two distinct
necessities: the representation of the reality and the representation of
the internal structure of data (for software and hardware). The first group
contains representation models, while in the second group are the recording

models [More 80].

If we overview the history of data models, we may distinguish diffe—
rent distinct groups characterized by levels of abstractions within the

modelling formalism [Pott 89]:

v the ancestors, i.e. file systems;

s the traditional data models, i.e. the hierarchical group, the
network group [Hain 85] and the relational group [Codd 70]
[Delo B2] [Hain 88];

s the semantic data models.

Most traditional data models provide essentially means of represen—
ting data (they are computer-oriented or record-oriented). Semantic data
models, through the use of abstractions, allow the user to model and view
the data on many levels [Peck 88] (they are user—oriented or semantic—
oriented). Thus the objective of designing a semantic data model is to
design a higher—level database model that will enable the database designer
to naturally and directly incorporate more of the semantics of a database

inteo its schema [Hamm 811].

The paper of Peckham and Maryanski [Peck 88] surveys and compares a
representative sample of semantic data models ([Hull 87b] and (Hain 8%c]
propose the use of a pedagogical model for comparisons). These are analysed
for the presence of constructs representing the fulfillment of general

semantic modelling goals.

There are (at least) two philosophies in data modelling as to what
the real world consists of: just objects, or objects and relationships amid
them. In the first case, associations between cbjects have to be expressed
by general references, in the second one, a top—-level concept is available

[Ditt 90].

Chen’'s E-R model [Chen 76] is an early semantic data model that
unifies features of the traditional models and facilitates the incorpora-
tion of semantic information [Peck 88] by attempting to provide multiple

abstractions levels. Other semantic models are the binary models [Abri 74]

14
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[Fou 89] [Hain 74] [Hain 86a] and the extensions to the relational model
[Codd 79]. Other models follow the functional approach [Ship 817 or the
logical approach [Gall 89].

Currently much work is done on the design of new semantic models or

on the extensions of existing models.

Facilities for complex object modelling [Hull 87a] are nowadays
needed in several database applications like computer—aided design/com—
puter—aided manufacturing (CAD/CAM). Complex objects modelling concerns
structural object orientation, i.e. the ability to support structural
description of complex objects together with generic manipulation
operators, defined for all objects types [Pare 89]: the basic facility
needed for such modelling, beyond the concept of object itself, is the
ability to specify that an object is represented by a collection of infor-
mation, decomposable into components; each of these compdnents, in its

turn, may be represented by a collection of information, and so on.

The central result of semantic modelling research has been the deve—
lopment of powerful mechanisms for representing the structural aspects of
business data. In recent years, however, the attention of database desi-
gners has turned towards incorporating the behavioural or dynamic aspects
into modelling formalisms (influence of object-oriented programming) [Hull

87].

Another trend is towards hyper—semantic data models and deductive
databases. These models acquire knowledge in the form of artificial intel-
ligence concepts, together with concepts of semantic data models [Pott 89].
The hyper-semantic models are then user—oriented and they capture inferen-
tial relationships among real world concepts. They allow one to define
deductive databases that have the ability to deduce new facts from an
arbitrary set of facts and rules, to supersede fact—based database schemes.

B. Generalization/specialization constructs in database models

Generalization/specialization has been introduced in semantic models,
but also in implementation models (e.g. in object-oriented DBMSs).

The concepts of generalization/specialization, leading to subtype/su-

pertype hierarchies, are of particular importance, as far as conceptual

{3
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modelling is concerned [Hain 8%9c]. Developed mainly in semantic representa—
tion techniques, they have been adopted in the framework of semantic data
models.

As we shall analyze later, the main interests of these concepts are

the inberitance inference rules.

We may effectively distinguish three possible interests of generali-
zation/specialization constructs, as far as conceptual modelling is

concerned:

s to add more semantics about the UoD in schemataj
a to allow more schema flexibility;

s to allow more conciseness in schemata.

The first and pri@ordial interest is to allow the representation of
more semantics about the UoD in the conceptual schema., By definition of the
generalization/specialization mechanism, if we have a conétruct which
allows its representation in a schema, we are then able to represént the
same object of the UoD under different and complementary aspects, and to
deal with these multiple representations. An important remark is that if we
allow multiple representations of a same object in the schema, we must be
able to manage possible redundancies of representation, and to avoid any

contradiction.

The interest, is that it allows to have only one schema which can be
read by different persons, according to their viewpoints. Semantic relati-—
vism, i.e. the ability to view a same information in different ways. depen-—
ding on the context [Brod 81], is enhanced.

This construct is also used in order to obtain more concise schemata.
Generalization may be introduced in order to put together characteristics
belonging to several types in order to form another type. We already saw
the interest from a set of instances viewpoint, while we consider here a

type description point of view.

b) Generalization/specialization in implementation models

Generalization/specialization constructs are also used in the
database models of object-oriented DBMSs. Currently, there are concerns
about the real nature of such DBMSs and around their issues. As said by
Higgs in his survey [Higg 89], 'it is clear that the research community has
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not yet distilled out the essentials of an object-oriented database system

to everyone’'s satisfaction’.

The idea is to apply to database many of the ideas that had success
in programming languages (cf. 1.3.1), in order to achieve similar advances,
especially for applications coming from engineering, manufacturing, CASE,
CAD/CAM, knowledge—based systems, office automation ..., where current
database technology seems to fall short: the data model of traditional
DBMSs are not expressive enough to effectively model these applications
{Higg 89]. '

Dittrich brings clarification to the object-orientation in the
context of DBMSs, and presents issues in his paper [Ditt 90]. He presents a
list of features that an ideal object—oriented DBMS should have (according
to a number of researchers from six different schools): an object-oriented
DBMS is a DBMS with an object-oriented data model. An object-oriented data
model is a data model which has, among others, the following characteris—
tic: types (classes) can be organized into hierarchies and thus allow to
express that one type is considered as a subtype of another one, i.e. that
it is specified in more details (with respect to structures and operations)
than the supertype. Along with type hierarchies goes the concept of inheri-
tance in that a subtype inherit the properties (structures and operations)
from the supertype in addition to its proper ones. 0Of course, inheritance
propagates all the way to the top of the hierarchy if there are more than
just two levels. In summary, with types hierarchies and the inberitance
mechanism, more semantics can be expressed than without, it introduces an
additional modelling discipline (refinement), and it may save coding
efforts because operations of specific classes need not always to be reco—
ded. Closely connected are the concepts of overriding, overloading and late

binding.

We may also note that [SuYS 86] proposes the use of generaliza-
tion/specialization for modelling partitioned and replicated databases in
distributed databases.

7



Chaptexr 2

Database des=sign

In this chapter, we recall a few concepts concerning database design.
These explanations aim at providing the reader with our point of view
(especially when no consensus appears or when different approaches are

possible).

2.1, Database design methodology

We shall first locate the database as a component of the information

system, and present the idea of design methodologies.
2.1.1. The information system and the database

The general model [Boda 89] of an information system is represented
in figure 2.1. We consider that an application receives inputs, provided by
its environment (i.e. a user or another application), and computes, accor-
ding to its specification, some outputs that are given to the environment.
This computation consumes ressources and there is interaction with the

database.

Let us precise the role of the database. Computer applications aim at
providing an enterprise with some automated work which can be of crucial
importance for that enterprise. Many of these applications interact with
the database, the memory of the information system. It consists in a col-
lection of data standing for information in the real world. We recognize

two roles of a database [Hain 8bal:

s it is a correct, a reliable model of a part of the real
worlds

s it must be an efficient data server.
2.1.2. Database design methodology

We have already mentioned that as any software 'component’, the
structure of the database must be known to the computer. The global user's

view of a database, i.e. its schema, is specified in terms of a database

18
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description and structuring formalism, called a data(base) model. The

process during which the database is built is called database design.

It is now recognized that information systems (and consequently data-
bases) are not built in an arbitrary way but rather according to a methodo—
logy (a survey of methodologies can be found in [Roll 89]). Bodart and
Pigneur [Boda 89] explain that any methodology is based on a set of models,
proposes different steps and rules which are working with the help of

software tools.

A. Design steps

One inherent problem in modelling any subset of the real world is the
difference between man’'s perception of the enterprise and the need of the
computer to organize data in a particular way, with efficient storage and

performance constraints.

This gave rise to modelling levels. [Hain 86a] provides an overview
of the evolution of these aspects. In this work, we consider that the

design of a database is organized as follows:

s the conceptual modelling step produces a conceptual schema
specifying semantic structures that the database will contain
in order to represent the UoDj;

s the logical modelling step aims at producing a schema
containing all the semantics expressed in the conceptual
schema, but describing the logical accesses needs of applica-
tion and being consistent with a DBMS;

» the physical design step produces a description of the

database which is both operational and efficient.

In this dissertation, we essentially focus on conceptual aspects (and
the transition towards logical design). They really important in the
database design process [Plet 8%].

B. Data models

In most methodologies, to each step corresponds a different model
(see chapter 1 for the survey of data models). For instance, conceptual
specifications are written with the E-R model, logical specifications use a
binary model, and the DBMS, physical schema is a relational schema. The
practical use of semantic data models has often been limited to the design
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of record-based schemata, i.e. the DBMS data models are typically record-
oriented. Therefore, high-level structures of user-oriented models expres-—
sed with a semantic model are mapped to record-oriented structures. Some
methodologies go directly from the conceptual model to the DBMS model which
is used for both the logical and physical steps [Berm 86] [Saka 831 [Teor
86] while others use an intermediate model for the logical step [Hain 86al.

Such design methodologies are essentially based on a well-defined set

of transformations used for these model mappings.

Hainaut devoted much work to transformations: [Hain 81] [Hain 86b]
[(Hain 87] [Hain 89a] [Hain 89b] [Hain 8%9c] [Hain 89d]. We take the follo—
wing definition of semantic preserving (or reversible) schema transforma-—
tions from [Hain 89b]: transforming a source schema produces a new schema
which has some sort of equivalence with the first one (we are interested in
a semantic equivalence), but satisfies some sorts of constraints the first
one does not meet. A reversible transformation transforms data without loss
nor noise in the database, i.e. so that an inverse transformation allows to
retrieve the initial state. Transformations concerning generalization/spe-

cialization structures will be analysed in subsequent chapters.
C. Computer—aided design

CASE tools are becoming important for the efficient management of all
steps of information systems lifecycles: they reduce the ‘clerical’ work
and facilitate coordination among persons concerned by the design (an

analysis may be found in [viam 821).

Currently, there are more and more database design workbenches. They
are either a component of a CASE tool [Cata B8], or subclasses of them
[Hain 89d]. While every software tool rests on a lifecycle model, some of
them compel the user with a rigid sequence of operations and others offer a
toolkit approach. Some of them are front-end tools only, while others go
through all steps of their lifecycle model. Some of them are 'traditional’
programs [Conc 90b] [Lepr 86] [Tuch 90], and others offer an expert system
approach [Bouz 84] [Bouz 86] [Bria 85] [Cive 88] [Mann 88] [Roll 86]

[Spri 88] [Stor 88].

In chapters S5 and 6, we shall be interested in an independent
database design workbench, based on the toolkit approach, going through all

steps of database design, and being a 'traditional’ program.
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2.2. Conceptual modelling

After having browsed the idea of database design, we explain here the
principle of the conceptual modelling phase. We first recall the "link’
between the UoD and the database to understand the conceptualization
process better. Then we say a few words on conceptual models, and we

overview the activities involved in the building of a conceptual schema.
2.2.1. The UoD and the database
A. The UaD

The UoD, as already mentioned, is a part of the real world which is
bertineﬂt to the application (i.e. we want to model). In our example, it
refers to a library*. We will assume, according to the object-association
philosophy, that the UoD contains individual components (the objects) which

are in relation with each others, and are characterized by properties.

If we were asked to explain the UaD or if we think about it, we
should certainly not quote all the objects and relations present at a given
time: we should, consciously or not, use abstraction mechanisms. In other
words, we structure our mind by introducing abstraction levels in order to
reduce the complexity of the real world. These abstraction mechanisms have
already been explained in chapter 1. However we have to precise that during
the conceptual modelling process for the description of structural
properties? of the real world, the classification mechanism has a ‘special’

role.
Indeed, the UoD is composed of two parts [Fouc 89]:

s the individual system, where objects are livings;

s the abstraction system, which contains the rules describing
the behaviour of objects (it has no physical existence in the
real world, it results only from a mental, abstraction

process) .
B. The database

The database (a part of the information system) can be defined as a

formal representation of the UoD.

t The following examples are taken from a coamon case study explained in appendix A,
2 This work focuses only on static aspects of inforsation aodelling, leaving aside query and manipulation
languages, and behavioural aspects,
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Of course, as we distinguished two parts in the UoD, we shall find
them in the database®:

s the conceptual schema is the result of the formalization of
the abstraction system;
s the occurrence schema* contains the representation of the

real facts (i.e. what is in the object system of the UcoD).

But we have to remark that the role of the abstraction system of the
UoD is to describe the objects and relations, while the conceptual schema
predetermines all possible states and transitions allowed in the occurrence

schema, according to rules which explain what is happening in the UoD.

Keep in mind too that we assume that a single fact in the UoD is
represented at one and only one place in the database (i.e. that each

object of the UoD maps-onto one and only one element in the occurrence
schema [Mcle 80]).

The conceptual schema describes the semantic structures of data (or
according to another interpretation, the structures of the UoD described by
data) [Hain 89d]. We assume that such a description is independent from any
‘technical media’ and easy to understand by ‘everybody’ (users, designers,

analysts, programmers). Indeed its objective is threefold:

» to help the user, the designer and the analyst to express
meaning of data, i.e. information, which is relevant to the
application (communication viewpoint)j

s to help the builders of the system organize data correctly
according to their semantics (computer application view—
point);

s to help give the users the precise definition of the informa-
tion they manipulate, and their conditions of use (exploita—

tion viewpoint).
2.2.2. The conceptualization or conceptual modelling process

The conceptual designer first acquires knowledge of facts (and
feasible facts) in the UoD by observation sessions, interviews, analysis of
documents, reverse engineering, ... Then, by abstraction, be will speak in

terms of classes and consistency rules. Finally there is the formalization

3 The dichotomy between classes and instances is an axiom in databases.
4 Dften, the occurrence schema is called the database.

2
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of that abstract knowledge (using a conceptual model) in order to build the
conceptual schema. In summary, we may distinguish three steps: observation,

abstraction and formalization.

In the following, we shall be interested in the formalization step,
i.e. the building of a conceptual schema, especially, with the idea of
building a conceptual model (more precisely enhancing the capabilities of
an existing one) in order to simplify the expression of abstractions in the

schema and so facilitate that formalization step.
2.2.3. Conceptual madels

Their aim is to be easier for the designer to draw ‘natural’ struc-—
tures and for the user to manipulate concepts that are already familiar for
him [Borg 85]. Our hypothesis is that the better a model is able to reflect
the abstraction processes, the closer the user’s way of thinking it will
follow and the easier it will be to use. Therefore semantic data models

(see chapter 1) should be used.

In the conceptual modelling phase it is especially important to
stress objects pertaining to the application domain, and to try to
eliminate as much as possible of the noise introduced by the constructs of
the specific model used or by its incapacity to express subtilities, neces—
sary for the enterprise [More 88].

2.2.4. Building a conceptual schema
They are different alternative schema design approaches [Nava 88b]:

-‘design of the entire schema as a single activity;

s design of a first schema, and obtention of the final result
schema by a process of schema refinement and restructuring;

s design of component schemata and then integration of these
schemata.

Other activities concern normalization [Boda 89] [Lenz 891 [Tard 88],
i.e. the checking of the completeness, consistency, stability, conciseness
of the conceptual schema, and view extraction (for documentation purposes)
[Bati 88] [Teor 89] [Urba 871 [Verm 83]. When extended constructs are
proposed, mappings towards basic concepts are often done (another approach

consists in the direct mapping of extended concepts in implementation
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models.constructs). View integration is studied, among others, in

[Bati 861, [Cive 88], [Mann 88], and [Nava 88b].

All these activities use three different ‘operators’: schema modifi-
cation, verification of a schema according to rules, and transformations of
schemata. They will be studied in this dissertation, as far as generaliza-

tion/specialization structures are concerned.

L



Chapter 3

Genersaslization/specimlization

structures Iin database models

In chapter 1, we saw that generalization/specialization is a powerful
abstraction mechanism, and among others, useful in a database conceptual
model. The aim of this chapter is to study the different constructs and
their related elements proposed in the literature about this mechanism.
This analysis will help us to define a generalization/specialization

construct for TRAMIS.

Indeed, much attention has been paid for generalization/specializa-
tion concepts during the last decade in data models. It is generally
recognized that Smith and Smith [Smit 77] introduced it in a data model.
Incidentally, in his paper introducing the E-R model [Chen 76], Chen hinted
at subsetting of entity types was possible. Codd proposed a generaliza-
tion/specialization construct in its extensions of the relational model
[Codd 79]. The generalization/specialization concepts are now available in
almost all data models in most cases as one or several constructs, but
sometimes as integrity constraints (see [Boda 89], for example) and with
more or less flexibility. There are actually many variations around both
their interpretation, the way they are used and the vocabulary, such that
the impression of unanimous consensus disappears as soon as one takes a
closer look on the different proposals; it then becomes difficult to get a
clear idea of what is the basic significance of the concept, and of what is

a particular choice among different possibilities [Spac 8%].

A few studies have been devoted to the generalization/specialization

concept:

s [Coll 88], [Hain B9d] and [Spac 8%9] study it as an extension
of an E-R model;
s in [Hull 87b] and [Peck 88], it is considered as one of the

characteristics of semantic data models.

The examples in the following are referring to the library UaD
explained in appendix A. The GER model {(outlined in appendix B) is used as

3
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a framework for the explanation of the generalization/specialization

concepts.

3.1. The generalization/specialization basic block:

the is—a relation

Before getting in more details about the is—-a relation, let us recall
the basic notion of generalization/specialization in data modelling as
explained in chapter 1. The constructs of generalization/specialization
allow everyone to specify that a class of objects contains the objects of
another class (inclusion dependency), and the first class describes them in
a more global, in a less precise way than the latter class does (details
avoidance). Such a mechanism allows the recording of abstraction levels in
the conceptual schema; they are often used in the conceptualization
process, and allow one. to master the numerous characteristics of an object
in the UoD (and so capture more semantics). Moreover, this allows some kind
of view 'reconciliation’: an object may be seen under one or anothber (non
contradictory) aspect, according to a viewpoint. Schema conciseness is

enhanced too when this mechanism is used.
3.1.1. The is—a relation
A. Definitions

Concepts for generalization/specialization in data models are most
frequently introduced, implicitly or not, through the is—a relation between
entity types. But the different works are based on rather different, intui-
tive or more formal, meanings of this relation [Hull 87b]. Therefore, we

would like to clarify a little by overviewing different definitions,

One of the most used definitions states that entity type ES is—a
entity type EG if entity domain of ES is a subdomain of EG entity domain:
the is-a relation is indeed an inclusion dependency [Hain 89d] [Spac 8%]
(Hull 87b] [Czed 90]. But these authors usually do not allow to say that ES
is—-a ES; however an inclusion dependency is reflexive. Therefore we think
that behind the inclusion dependency there is another characteristic of the

is—a relation: something we might call a more concrete relation.

And here, we follow Collart and Joris’ viewpoint [Coll 88]: the is-—a
relation is indeed the conjunction of an inclusion relation and the more

concrete relation. Note however that it is really difficult to formally

2
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define the more concrete relation, as it 'goes out’ of the formal system.
We might say that ES is more concrete than EG if it describes objects in a
more concrete way than EG does. [Davi 89] says that an is—-a relation can be
defined between two entity types where one type is the more general one,
and the other is the more specific ome. According to this approach, ES is-a

EG if:

a ES entity domain is a subdomain of EG entity domaing
¢« and the structural and behavioural properties described by ES
are more concrete, more specialized than those described by

EG.

Another approach takes a closer look at the more concrete relationg
they 'materialize’ it: ES is—a EG if ES entity domain is a subdomain of EG
entity domain, and all attributes and relationship of EG are also common to
ES [Berg 88] [Ceri 81]. They include in a definition what others use as an

inference rule (see the 1inheritance mechanism below).

In a similar direction, some authors propose an Is—a relation as a
type constructor: one creates subtypes to make them inherit (and depend
upon) the information from the supertype [Simo 89]. The focus is on the
type descriptive aspect. The key idea behind the use of the is—a relation-
ship is that types share information; avoiding duplication of that informa-—
tion seems to be an important factor in reducing the human cognitive load
as well as the use of processing ressources [Simo 89)]. Le and Peugeot [LePe
881 introduced an is—a relation defining only property inheritance (the

weak Iinheritance relation).

It might alsoc be interesting to quote the concepts of base entity
type and non base entity type, with concern to generalization/specializa-—
tion. A base entity type is defimed independently of all other types in the
conceptual schema; in our GER framework this means that their entity domain
is a basic one. They are mutually disjoint in that every entity is an ins-—
tance of exactly one base entity type. Of course, at some level of abstrac—
tion, all entities are members of entity domain ENTITIES. Non—base eﬁtity
types are defined in terms of other entity types by inter—-types relations:
their domain can be declared a subset of a constructed domain [Hamm 81].
The is—a relation is such an inter—type connection: specific entity types
arise then as derived types. Note that this approach puts in evidence a
top—down design of types [Qian 85].

,
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B. Example

In our reference example, the sentence 'Books, journal papers and
conference papers are particular kinds of publications’ typically hides
is—a relations. We can represent its semantics by entity types BOOK,
CONFERENCE _PAPER, JOURNAL _PAPER, and PUBLICATION; and by specifying that
BOOK is—a PUBLICATION, CONFERENCE_PAPER is-a PUBLICATION, JOURNAL_PAPER
i1s—a PUBLICATION, as depicted in schema 3.1t.

C. Discussion

In the following, we will use Collart and Joris’ definition. Indeed,
these two characteristics of the is—a relation let see the two main advan-—
tages of generalization/specialization (from the semantic viewpoint) [Coll

88]:

s an object of the real world may be described in different
manners under different viewpoints (as a consequence, this
introduces more dynamics in the model: an entity belongs to
one or another entity type, for instance by changing of
specific entity type);

s different abstraction levels are introduced into a conceptual

schema.

We must alsoc be aware that the Is—a relation is a higher order rela—

tion, not between individuals, but between types of individuals [Sowa 84].

Amid the is—a relations, some of them are '‘natural’, i.e. they relate
to the ‘essence’ of the entities, while others are ‘role depending’ because
they depend on accidental relationship to some other entities [Sowa 84]. We
can also consider is—a relations for “abbreviation purposes’ when they are
introduced in order to avoid the definition of a property valuable for

different entity types.
3.1.2. The is-a graph
A. Properties of the is—a relation

If we are considering the is—a relation, we may define the following

properties.

! Note the GER espression of is-a relations.
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a) Irreflexivity

The is-a relation between ES and EG is concerned by an inclusion
dependency: the domain of ES is included in the domain of EG. Sets theory
says that this relation is reflexive (A € A). But the definition of the
1s—a relation has a second ‘item’': the more concrete relation which is

irreflexive. Hence, the is—a relation is irreflexive.

B) Antisymmetricity

For the same reason, we cannot have E; is-a Ex and Ez is—-a E,. Thus,

the is-a relation is antisymmetrical.

‘c) Transitivity

Both set inclusion and the more concrete relations are transitive.
Suppose that Ei Is-a Ex Is—a Ex, then we also have E, Is-a Es; the latter
relation is non—primitive: it is deducible from the two other specified

relations. This is the first inferemce rule related to is-a relations.
B. Definitions
Before following, we shall precise our definitions:

s if ES 1is—a EG then ES is the specific entity type and EG is
the generic entity type?;

s if this relation is a primitive one, then ES is a direct
specific entity type of ES, and EG a direct generic entity
type of ES, otherwise they are respectively indirect specific
entity type and indirect generic entity type.

If ES is—a EG, and ES is—-a EGz, then ES is called a common specific
entity type of EG: and EGz. If ES, 1s—a EG and ESz is—-a EG, then EG is
called a caommon generic entity type of ES, and ESa.

C. Properties of the is—a graph

To conclude, we can say that the iIs—-a relation forms a strict partial
order. Therefore, the graph formed by all entity types of a schema and is—a

relations cannot include any cycle: it is an acyclic-directed graph.

2 In the literature, a specific entity type is also called subtype, specialization, child entity type,
subset, or subclass, Supertype, generalization, parent entity type, superset, or superciass are synonyas
for generic entity type,
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However it is not connected since there is not necessarily a relation
between each couple of entity types. The term hierarchy is often used
indiscriminately for any partial order [Sowa 8413. We have seen that the
is—a relation is transitive. It is customary to specify the primitive is-a
relations explicitely and view the relations due to transitivity as speci-

fied implicitely (as they do not bring more information).
D. Discussian

When introducing a new construct in a model, one has to defire it
(local aspect) and to precise the global combination rules. Several authors
do not explicitely state global rules, but imply them in the definition of
the underlying constructs (see [Hamm 81], for example). Let us now overview

some generally specified rules.

A first rule involves directed graphs. It is generally recognized
that a generic entity type may have several specific entity types, i.e.
multiple specialization is allowed. On the other hand, single ganeraljza—
tion (i.e. an entity type is the specialization of at most one generic
entity type) is often required for the simplicity of its management [Boda
89]: in such a case, the is—a graphs are trees. If multiple generalization
is allowed, we have to deal with 'general’ acyclic—directed graphs. For
example, one can use multiple generalization to specify that a literary
figure is both an author and a reviewer (see schema 3.2). To restrict to
single generalization is more restrictive in the sense that we are missing
a power of expression; however we shall see that it is sometimes possible
to specify with single generalization what is specified with multiple gene-
ralization. The drawback of multiple generalizations is that they may
introduce lots of ambiguities or contradictions in a graph. For instance,
we have seen that the is—a relation is transitive, and that transitive
links are not introduced into the schema. But what is really a transitive
1ink? Ey Is-a Ex, Ex I5—a Ex, Ex is—a Ea, and E, Iis-3 Ea, Es is-a Ea are
not redundant, especially if we agree that these two assertions are
relevant to two different viewpoints about the UoD. On the other hand, E1
is—a E3 is redundant with El1 is—a E2, E= is-a E3.

In certain models, it is required that the is—a hierarchy forms a
lattice, i.e. each schema has an entity type which is a common specific

entity type of all entity types (the absurd entity type, as no actual

S We shall also use it with that interpretation,
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entity could ever be an instance of that type, since it would be ‘every-
thing’, all at the same time), and a common generic entity type of all

entity types (the wuniversal entity type in the GER model).

2.2. Inheritance

As noted earlier, it may be the case that an entity belongs to more
than one entity type, i.e. when i1s-a relations are specified: entity types
do share entities. As a consequence, they can share descriptive informa-—

tion.
3.2.1. The inheritance inference rule

Since every occurrence of a specific entity type is also occurrence
of the generic entity type, that occurrence possesses values for the
characteristics (attributes, roles and relationship types) defimed in the
generic entity type; conversely, some occurrences of the generic entity
type have values for characteristics of the specific entity type. This
means that an entity type belonging to an is—a hierarchy possesses only
some of its characteristics; the others may be inferred from its participa—
tion to the hierarchy: they are inherited from another entity type. The
value for an entity e of ES for an inherited characteristic is simply the
value of e when it is viewed as a member of EG [Hamm 81]. For example,
schema 3.3 represents the fact that a publication is identified by its ISBN
code, 1s characterized by a title, a topic, and is written by authors; it
is also specified that a BOOK is a specific entity type of PUBLICATION.
Therefore, one can speak, thanks to inheritance, of the TITLE of a BOOK,
and that BOOKs are written by AUTHORs.

Such a mechanism is called inheritance. Inberitance is, by defini-
tion, the fact that one completes the description of a real object seen
through the generic or specific aspect by characteristics respectively
specific or generic. Inbheritance concerns the descriptive aspect (schema
design) but also access to information: at query time, one may access to
the information of an entity seen under the specific or generic aspect: In
conclusion, inheritance is a reading technique (at schema design time) and
a guery technigue (at manipulation time). We shall analyse now the reading

technique, which especially interests us.

With the explanation above, one understands easily that inberitance

allows the building of more concise schemata: it is not necessary to repeat

i
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attributes, for instance, of the generic entity type in the specific entity
type. Note that we may use this "tool’ as a modelling abbreviation techni-
que, more or less independently of any generalization/specialization consi-
deration. It also allows the building of schemata which are more flexible
(see below). As a consequence, the relevant characteristics of UoD objects
are not only described in one entity type but may be scattered amid entity

types belonging to a same is—a hierarchy.

Inberitance is a technique based on an inference rule: this is the
second rule, as far as generalization/specification constructs are

concerned.
3.2.2. Downward and upward inheritance
A. Definitions

In the literature, there are two tendencies about the inberitance

reading technigue:

e most of the authors present inheritance from the generic
entity type to the specific entity type, i.e. dowward
Inheritance (in most semantic data models, each attribute
defined on a generic entity type is automatically defined on
the specific entity type; it is also generally true that a
specific entity type may have attributes not shared by the
generic entity types [Hull 87b] [Saka 83]);

s a minority of authors also present upward inheritance from
the specific entity type to the generic entity type [Carb

- 80].

In most semantic models, inberitance inference is supported in an
anti-symmetrical form: characteristics of the generic entity type also
applies to instances of the specific entity type [LePe 88], but none of the
characteristics defined for the specific entity type are defined for an
instance seen as a generic entity. Other models (the FACT model, for
instance [Sacc 88]) support a less restrictive inference rule: all charac-—
teristics defined on any entity type to which an instance belongs are
defined for that instance no matter its current ‘role’ is. The latter rule
means that when the user or the reader of the schema 'selects’ a level of
abstraction, he may lose detail on the role but he does not lose informa-

tion.
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We propose to define two primitive inheritance operators: upward
inheritance and downward inheritance. To apply downward inheritance between
a generic entity type and a specific entity type consists (from the des-
criptive viewpoint) in completing characteristics of the specific entity
type by characteristics of the generic entity type. To apply upward inberi-—
tance between a specific entity type and a generic entity type consists in
putting characteristics of the specific entity type in the description of
the generic entity type (but optionality has to be specified since only

entities which also are specific possess values for these characteristics).

These operators can be combined to offer more complex inheritance
inferences; for instance sideway inheritance [Carb 80] [Coll 88] consists

in applying upward inheritance and then downward inheritance.

Let us now precise what may be inherited. We have seen that inberi-
tance consists in completing the definition of another entity type (belon—
ging to a same i1s—a hierarchy). Therefore, attributes and roles (and the
relationship in which they appear) may be inherited. Downward inherited
attributes keep their name (if no naming conflict arises), their properties
and domain of values, while roles keep their name and cardinalities, and
the relationship keep their name, their degree, their roles, and their
attributes. Note that key constraints are kept too. Elements inherited in
an upward fashion keep their characteristics too, except that the minimum
cardinality of an attribute or a role is set to zero, and that key

constraints are not standing [Coll 88].

B. Example

Let us consider schema 3.4 representing the fragment of our UaD
concerning persons, authors, reviewers and their characteristics. Downward
inheritance allows us to speak of the NAME of an AUTHOR. With upward
inheritance, we can consider the STIPEND of a PERSON (that attribute may
then take the null value). If we speak of the PUBLICATION written by a
REVIEWER, we apply sideway inheritance: only REVIEWERs who are also AUTHORs
have written a book (such instances may exist since no disjunction

constraint — see next paragraph — has been specified).
C. Discussion

Authors who reject upward inheritance argue that, if we are interes-

ted in an object in its generic form, this means that we ‘are’ on an
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abstraction level so that details from the specific entity type are not
relevant. Authors allowing both upward and downward inheritance argue that
no matter of the generic or specific approach of the object is, its desc—
ription should be as complete as possible. In this sense, upward inberi-
tance might be carefully applied {Coll 88]. Upward inheritance allows mofe
schema flexibility (the ‘view definition’ mechamism is enhanced) and is

useful in mapping and view integration activities of database design.

Usually, inheritance is presented as a side—effect, and is sometimes
included in the definition of the is-a relation itself. Another approach
consists in giving the designer (and the user) entire control about the
information he wants to specify and to see: inheritance applies only if
explicitely stated. This means that we separate descriptive phases from
manipulation phases, in such a way that the definition of an is-a relation
between two entity types is somewhat independent from the fact that someone
wants to see more or less information about these entity types. This ap—
proach seems to be simpler for users to understand and for designers to

implement (Spac 89].

It is straightforward that inberitance is transitive; therefore an

entity may inberit an inherited attribute of a generic entity type.

The advantages of characteristics inberitance (especially downward
inberitance) are abstraction, modularity and consistency, since all
essential characteristics of an entity are defined once and are inherited

when necessary.
3.2.3. Redefinition and inhibition constraints
A. Definitions

The downward default inberitance rule which applies in data models
can be precised [Coll 88] [Hamm B1] [LePe 88] [lLenz 83]: one may define
constraints which play a role of 'filter’' as they precise how the downward
inheritance operator applies. However these rules must be in accordance

with the default inheritance * approach:

s one may state that the values of an attribute for the
entities of the specific entity type belong to a subdomain of

4 The description of a spacific entity type cannot contradict what is specified in the generic entity type,

U
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the defined attribute domain (this is also worth for attribu-
tes of a relationship relation schema);

s« one may also restrict the cardinalities i—j of an attribute
or of a role, i.e. specify that for the specific entities,
these cardinalities are 1'~-j' such that 1 £ i’ et j' £ j3

s if an attribute or a role has a cardinality O—3 (1 £ j £ Ny,
then one may state that the role or the attribute are
inhibited by the specific entity type, i.e. entities of that
entity type have no value for that attribute or that role.

B. Discussion

Note however that in all cases, these constraints can be avoided by
putting the attributes/roles in the specific entity types definition (with

perhaps a lack of conciseness).
3.2.4. Multiple inheritance

Multiple inheritance is the mechanism by which entity types in an is—
a hierarchy are allowed to inherit characteristics from multiple higher
level entity types [Peck 88], i.e. multiple inheritance may occur when
multiple generalization is allowed. This is convenient for several applica-
tions, especially in the context of lifecycle support systems specifica-
tions [vilam 90], but it can be difficult to control for both the user and
the implementor. Problems arise when a specific entity type inberits a same
characteristic from two or more higher level entity types. For example
(schema 3.3), a LITERARY_FIGURE might inberit the ADDRESS attribute of
PERSON twice, i.e. via AUTHOR and via REVIEWER. And if we specify that this
attribute is inhibed by REVIEWER, we have a 'conflict’'. Such inheritance
conflicts (also naming conflicts) can be resolved by prohibiting multiple
generalization or by offering a built-in mechanism for handling conflicts

that may arise (for instance, precedence rules) [Borg 88] [Peck 88].
3.2.5. Specialization relationship inheritance

Some relationships between entity types seem to be specialization
structures; however an in-depth study shows that they are different
[(Hain 89d]. For example, we consider the entity type SOLID®, each
occurrence of which represents a geometric solid. It has a name and the

formula to compute its volume. We also consider the entity type

® Unfortunately, we have not bean able to find an adequate example in our library UaD.

35



Chapter 3 Beneralization/specialization structures in database models

MECHANICAL PART which represents elementary mechanical parts. We have that
each mechanical part is a solid, and therefore inherits the name and the
formula of the solid. However it is not a generalization/specialization
structure as defined previously; indeed several distinct mechanical parts
may be the same solid: the domain of MECHANICAL PART is not included in the
domain of SOLID. This relationship is an autonomous concept: it possesses
an inheritance mechanism and represents some kind of ‘specialization’
concept. It seems similar to the is-Instance—of relation (as a consequence,
types and meta-types live in the same schema). Such cases appear in CAD

databases and in decision support knowledge bases.

3.3. Class constraints

In order to capture more semantics about objects of the UoD, diffe—
rent constraints concerning the domain inclusion aspect of is-a relations

can be specified.
3.3.1. Disjunction constraint
A. Definition

Two or more specific entity types having a common generic entity type
are disjoint if their entity domains are disjoint. Assuming that ES., ES:,
very ESmay n 2 2, are (direct or indirect) specific entity types of entity
type EG, a subset ESisy ESim; +..y ESsn (1 £ 1y < iz < ... < iw £ n) Of
these specific entity types form a disjunction if for each 1 and j € {i.,
Izy sesy 1wty 1 <> j: ESe N ESy = (3.

B. Example

Books, journal papers and conference papers are different. Therefore,
we can specify a disjunction constraint between them (cf. schema 3.6). This
constraint does not stand between DB_BOOK and AI_BOOK which are specific
entity types of BOOK, as some books are both database and artificial intel-
ligence books.

C. Discussion

This definition is not restrictive at all, and is too general for
being of practical interest. If it is not carefully used, it might lead to
inconsistent specifications (for instance, if Ey Is-a Ez is-a Ex, the spe-

cification that E. and Ez form a disjunction is contradictory with the

3%
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definition of the i1s-a relation between E, and Ez). Therefore, in
order to reduce the complexity of specification management, simplification
rules have generally been defined. Frequently, a disjunction constraint is
always between direct specific entity types of a common generic entity
type. Another rule enforces the definition of maximal groups of disjoint
specific entity types in order to aveoid redundant information {[Coll 88]:
ESi1s ESi=y ..y ESsw form a maximal disjunction group if there is no other
specified group of disjoint specific entity types which is included in the
first group (two maximal groups may overlap). One may be more restrictive
(and simplify the reasoning) by imposing that all (direct) specific entity
types are disjoint, or none of them.

AN entity type cannot be a common specific entity type of two entity
types forming a disjunction, otherwise its domain is always empty. There—
fore, a sufficient condition for single generalization is that all (direct)
specific entity types.of a common generic entity type are disjoint (but

this condition is too restrictive with regard to UaD situations) [Coll 88].
3.3.2. Cavering constraint
A. Definition

Two or more specific entity types cover a common generic entity type
if the domain of the latter is the union of the specific entity types
domain. Assuming that ES;, ESz, ...; ESn, n 2 1, are (direct or indirect)
specific entity types of entity type EG, a subset ESs,, ESiz, ..., ESswn
(1 £ i3 < iz € 4.+ € i £ Nn) of these specific entity types form a cover if

B. Example

We may assume that the bocks, jourmal papers and conference papers
are the only kinds of publication in the library. Therefaore BOOK,
JOURNAL._PAPER and CONFERENCE _PAPER form a cover of PUBLICATION (schema
3.7). But AUTHOR does not cover PERSON, since there are many persons who do

not write publications.
C. Discussion

As for the previous constraint, we presented an overall definition.

For practical reason it is careful to restrict it to direct specific entity
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types. By analogy with the disjunction constraint, some authors [Coll 88]
propose to eliminate redundant, specifications by enforcing the specifica-
tion of minimal covering groups only: ESgi, ESi=, ..., ESiw form a minimal
covering group if there is not any other specified covering constraint
between a group of specific entity types which includes the first group
(two minimal groups may overlap). Again, a more restricting rule allows
only the specification of a covering constraint either on all specific

entity types, or none of them.

Note that a single specific entity type may cover its generic entity
type: it is a particular case where the domains are always equal but the
is—a relation has been specified to stress an abstraction (i.e. the more

concrete relation).
D. Definition

There is a constraint we did not encounter in the literature, but it
might be of interest: the cover of the intersection of two or more generic
entity types by a common specific entity type. Such a constraint states
that the intersection of the generic entity types domains is always equal
to the domain of that common specific entity type. Of course, this

constraint has a meaning only in case of multiple generalization.
E. Example

We have already seen that a LITERARY_FIGURE 1s—a AUTHOR and
LITERARY _FIGURE is-a REVIEWER. To represent that only literary figures may
be both authors and reviewers, we can specify that it covers their inter-

section (see schema 3.8).
3.3.3. Partition constraint
A. Definitiaon

A set of gpecific entity types which are both a disjoint and cover a
generic entity type form a partition of that generic entity type.

B. Example

If we combine schema 3.6 and 3.7, BOOK, JOURNAL_PAPER, and
CONFERENCE_PAPER form a partition of PUBLICATION.
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3.4. The generalization/specialization criterion

Often a textual description (or definition) describes the meaning and
contents of classes (with reference to the UoD); this class description
should be used to describe the specific nature of the entities that
constitute the class and to indicate their significance, their ‘role’ in
the UoD [Hamm 817 [Boda 8%]. Therefore it is also interesting to associate
to Is-a relations the viewpoint or criterion used to generalize or

specialize, as during the abstraction phase it is often quoted.
3.4.1. Semantic criterion

When we apply the generalization mechanism, we do it according to a
point of view, a criterion (which is a reference to the UoD). We call this

the upward criterion or generalization criterion.

On the other hand, when specializing we also use a criterion: it
specifies how entities of the generic entity type are 'distributed’ as
entities of the specific entity types. This criterion, i.e. the dowward

criterion or specialization criterion, can be a ‘direct’ reference to the

UoD (we say that it is manual or user—-defined); but it can alsc be a

reference to other information in the database. So we shall see that they

are two fundamental uses of 'subtyping’ in semantic models:

2 to form user—-defined specific types;

s to form derived specific types (the contents of such a
specific type can be derived from data stored elsewhere in
the schema, along with the definition of predicates).

3.4.2. Database—defined specialization
A. Definition

A specific entity type may be defined as subset of the generic entity
type satisfying a given selection criterion, called specialization crite—
rion or assignment criterion [Afsa 86] [King 81] [Peck 88]. These are
database-defined specific entity types. Under this aspect, the concept of
specific entity type is not far from that of view [LePe 88].

The criterion may be defined either upon a value taken by attributes
of the generic entity type (proper or inberited), or on the relationships
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that occurrences of the generic entity type have with occurrences of other

entity types. Specific entity types are then defined using predicates.
B. Example

In our reference UoD, we can define the BEST_SELLER entity type as a
specific entity type of BOOK, and specify that occurrences of the former
type are the books with SALES 2 10,000 (schema 3.9). It is also specified
that database bopoks are bocks the topic of which is DB while artificial
intelligence books have Al as topic. Incidentally, TORPIC is an inherited
attribute from PUBLICATION by BOOK.

C. Discussion

More simply, only one attribute is often declared; its domain
includes the values representing the specific entity types. This type of
attribute, by nature, need not be inherited to the specific entity types
[Saka B31. |

This approach is really towards type construction: new types are
constructed from other types by using attribute/relationship restrictions
on previously defined types. More precisely, given a base class, non base
classes are defined. In SDM [Hamm 81] for instance, a specific entity type
ES is defined by specifying a generic entity type EG and a predicate P on
the occurrences of EG; ES consists of just those occurrences of EG that
satisfy P. Predicate P can be defined on attributes of EG, indicating which
occurrences of EG are occurrences of ES. The usual comparison operators and

boolean connectivities are allowed.

Such derived data, in order to be supported, need the definition of a
language for specifying derivation rules. Often [Hamm 81], this language is
a variant of the first-order predicate calculus, extended to permit the
direct use of attributes names and set operators. In our GER framework,
these derivation rules can be expressed by algebraic operator (for

instance, the projection).

We may note that this predicate and class constraints are mutually
‘linked’. In [Schie 83], the disjunction and the covering constraints are

defined with regard to these predicates.
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2.4.3. User-defined specialization
A. Definition

We can define a specific entity type ES as a user—defined (or user—
controllable) specific entity type of EG. This means that ES containms at
all times only occurrences that are belonging to EG, but the definition of
its gpecific nature does not identify which occurrences of EG are in ES;
database users will have to add 'manually’ to and delete from ES (so long

as the specific entity type limitation is observed).
B. Example

In the library example, good books are identified by the end—user.
Therefore entity type GOOD_BOOK can be defined as a specific entity type of

BOOK which is user-controllable (i.e. no predicate is associated).
C. Discussion

The difference between a database-defined specific entity type and a
user—defined specific entity type is that the belonging to the former is
determined by other information in the database, while the membership to
the latter is directly and explicitely controlled by users.

Note that it is possible to simulate the effect of a user—-defined
specific entity type by an database-defined specific entity type. But this
would be a confusing and indirect method of capturing the semantics of the
UaD. In particular, there are cases where the method of determining
specific entity type membership is beyond the scope of the database schema
(e.g. by virtﬁe of being complex or because there is no such rule in the

UoD) [Hamm B811].

3.9. Is—~a constructs

After having analysed various facets of is—a relations, let us now
see how different autbors introduced generalization/specialization as

constructs of their models.

4
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3.5.1. The problem of defining a generalization/specialization

construct

The problem of the introduction of a generalization/specialization
construct in a model must typically try to reach a compromise betwsen two.
dangers [lLePe 88]:

s to apply strict rules compel the designer to ask himself
questions, and to be more rigorous in his study, but if these
rules are too rigid, be will not be able to describe all the
real world complexity;

s the absence of any construction rule may have as a result
that be builds hierarchies of is-a relations which are
redundant, unreadable, inconsistent and even difficult to
implement; semantics is perhaps easier to model (for an

expert designer, at least).

In several models, generalization/specialization is introduced with
‘simple’ iIs-a relations [Spac 89] [SuYS 86]. At a first sight it seems to
be the simplest solution, however if one wants to introduce disjunction or
covering constraints, it may introduce complexity: it is difficult to
manage the consistency of models where such constraints can appear between
each pair of specific (or generic) entity types. And it may be interesting
to group specific entity types which correspond to a same generaliza-—
tion/specialization criterion. Therefore some authors proposed ‘elaborated’
constructs which incorporate in a more or less restrictive and consistent
way the different generalization/specialization structures. In spite of the
lack of generality, these constructs however are more simple to manage and

to understand.

Historically, semantic models have used a single kind of is-a
constructs for both generalization and specialization purposes [Hull 88].
While many authors are more or less unaware of whether their construct is
for generalization or for specialization, more recent research however
provides constructs that favour the specification of is-a hierarchies in a
bottom—up fashion (i.e. the specific entity types are first described and
the definition of generic entity types follows) or in a top—down way (i.e.
the definition of specific entity types is based on their generic entity
type; specialization is used for top—down decomposition, where the most
general concepts are first recognized and their specific types are incre—

mentally designed [Qian 835]). As noted in [Davi 8%], the implied semantics
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of is-a relations in such models, where it seems depicted in only a single

direction, may lead to forget the specification of important constraints.

Some proposals have differentiated several kinds of is—a constructs,
and some incorporate more than one construct in the same model. The other
motivations for distinguishing kinds of iIs-a constructs stem from studies
on their update semantics, and from works on schema integration [Hull 87b].

Note that having too many concepts, may introduce a ‘choice problem’.
3.5.2. Different proposals

To give the reader an idea of some of these ‘elaborated’ constructs,
we shall now explain, with our vocabulary, several of them we consider

being ‘typical’. In chapter &6, we shall also propose a concept.
A. The cluster of Smith and Smith [Smit 77]

A cluster is defined as a group of specific entity types; it has a
name and a criterion. It is an intermediate concept between the generic

entity type and the specific entity types.
B. The category of Sakai [Saka 3]

A category functions as a node to separate entity types into
different levels of abstractions making up a hierarchy of different views

of objects. A derived attribute may be defined.
C. Three types of generalization/specialization constructs [Czed 90]

The first type involves exactly two entity types: the specific and
the generic entity type. The second type involves one generic entity type
and any number of specific entity types forming a covering. The third type
also involves a generic entity type and any number of entity types, but
they are forming a partition.

D. The cluster of Davis and Bonnel [Davi 89]

Davis and Bonnel allow one to use single is—a relations and to define
class constraints with cardinalities and inter-types constraints, but they
also define the concept of cluster which gives the ability to define
multiple hierarchies (which may intersect). To their opinion, having

multiple taxonomies provides some level of semantic relativism, allowing

X
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for some degree of subjectivity in how concepts in the schema are

structured.

E. The subset hierarchy and the generalization
hierarchy [Teor 846]

Teorey et al. make the distinction between specialization and

generalization:

s a subset hierarchy is defined between two entity types ES and
EG; it represents the is—a relation;
¢ a generalization hierarchy is formed by a generic entity type

and a set of specific entity types which form a partition.

F. The subset hietrarchy and the exclusive (complete) generalization
hierarchy [Berg 88]

The subset hierarchy is the same as Teorey’'s. A generic entity type
is an exclusive generalization of its specific entity types if the latter

are disjoint., The exclusive generalization is complete if it forms a

partition.

6. The is-a interconnection in SDM [Hamm 811

Hammer and Mc Leod typically emphasize top—down design of types. A
specific entity type is always defined in terms of another entity type: we
havé first to defime a generic entity type, and then specify the specific
entity types by ‘restriction’, i.e. using a predicate. The latter may be
usetr—controllable or database—defined.

3.6. Another generalization/specialization relation:
the may-bea relation

Relations for generalization/specialization have also been proposed

which do not involve all occurrences of the specific entity type.

3.6.1. The may-be-a relation

The is—a relation and its inclusion dependency are the cornerstone of
the generalization/specialization constructs in data models. But, as quoted
in [Spac 8%9], it has been largely advocated for exceptions to that funda-

mental class inclusion property; the famous is—a relation should sometimes
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be named 997 is—a relation. This relation has been called may—-be—a. We say
that an entity type ES may-be—a entity type EG if ES N EG <> {} is possible

and if ES is more concrete than EG.

For example, SHAREHOLDER may-be—a EMPLOYEE means that some sharebhol-
ders may be employees of the library.

The is—a relation is a special case of the may-be-a relation (ES is-a

EG => ES may—-be—a EG).
An inheritance mechanism is also associated with that relation.

We may note that often, if not always (with regard to the examples
used in the different descriptions of these concepts), the may-be—a rela-
tion hides a multidomain role*, i.e. this relation holds between entity
types because of their_participation to any role, and is not based on the

intrinsic nature of the entities.

Moreover, a may—-be—a relation can always be represented by an is-a

relation (if multiple generalization is allowed) [Coll 88]:

ES may-be—a EG <=> ES is—a E., ES is-a Ex, E, Is-a EG (where
E: contains entities belonging to ES N EG, and Ex contains

the other entities).
3.6.2. Class constraints

We can define class constraints for the may-be—a relation. If we have
that ES may-be—a EG,, ES may-be-a EGz, ..., ES may-be—a EG~, n 2 1, we can
specify that:

8 EGy1,y EGyzy eney EGs (1 £ ji <uv. <Jw £ n) are disjoint,
i.e. that for each 1 and j € {(Ja, Jz=y savy Juty 1 <> J:
EGyL N EGs; = @3
s ES is included in the union of EGya, «w. EGyw (L 2 Ji <.un <
jw £ n), i.e. that
Jw

ES €U EG;s.

R -

¢ A aultidomain role is defined on the union of entity types instead of on one entity type [Hain 89d],
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3.6.3. The may—be-a constructs

Generally, this relation has been introduced in a complex construct;
Spaccapietra et al. [Spac 8?] propose however both ‘basic’ is—a and
may—be—a relations in their model.

A. The altermative generalization [Codd 77]

Codd specifies that the usual concept of generalization hierarchy may
be increased by noting that an entity type may be generalized into two or
more alternative types, i.e. an entity of the first type belongs to any
entity type among these alternative types.

B. The category [Elma 85]

The category construct is a complex, hybrid concept [Coll 88] which

can have different objectives. Thus a category C is defined as follows:
C=Es [Ps] UEz [P2] U.., UE~ [Pa],

where P, 1 £ i £ n, is an optional predicate restricting E: domain, i.e.

specifying exactly those entities of E; that are members of the category C.
It allows the representation of:

s the ‘traditional’ inclusion dependency of is—a relation (ES =
EG [P1);

s the cover of the generic entity type by the specific entity
types (EG = ES, U ESz U... U ESA)3

s Codd’'s alternative generalization

(E = ESy [P11 U... U ES, [Pn]).

C. Simple generalization, alternative generalization, multiple
generalization, selective generalization [Roch 88]

Rochefeld and Morejon propose the integration of four generalizations

constructs in their extension of the Merise conceptual data model:

o the simple generalization allows one to define is—a
relations;

s the multiple generalization is used when a specific entity
type inherits from several types;
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s the alternative generalization represents the fact that an
entity type inherits exclusively from one of other entity
types;

» the selective generalization corresponds to Codd’'s

alternative generalization.

3.7. GBeneralization/specialization for relationship

types and attributes

The generalization/specialization structures as they have been
defined could be adapted for relationship types and attributes. The
interested reader may consult [Coll 88], where an in—depth analysis is

proposed. Note that only a few authors propose these concepts.

To our mind, it is better to avoid the introduction of generaliza-—
tion/specialization in this "“level’ in order not to complexify the model.
If is—a relations seem to be useful for attribute or relationship types,

one may then ‘promote’ them to entity types.

)



Chapter 4

Generaslization/specialization

and database design activities

After having presented the concepts of generalization/specialization,
we shall explain the 'interaction’ between different design activities in

the conceptual level and generalization/specialization constructs.

In chapter 2, we have seen that the concerned activities involve:

s the design of a subschemaj

s the integration of subschematas

s the mapping between schemata;

s the restructuration of a schema according to a user

viewpoint.

We have also seen that several rules and transformations are at the

very basis of these activities.

In this chapter, we shall see:

s the rules or guidelines for the construction of a schema with
generalization/specialization constructs;

s transformations which concern generalization/specialization.

4.1. Introduction of generalization/specialization

constructe in schemata

Informally speaking, Jis-a relations may be used in a conceptual

schema for two reasons [Hull 87b]:

s to represent one or more possible overlapping specific entity
types of an entity type;
s to form an entity type that contains the union (or is covered

by the union) of entity types already in the schema.
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Indeed, one may distinguish two approaches for the building of
schemata which include generalization/specialization constructs (of course,

one mix them according to circumstances):

s the first approach consists of course in introducing is-a
relations ‘on—-line’ when they are obvious in the UoD;

a the second approach lies under ‘a posteriori’ introduction of
generalization/specialization constructs (it consists

therefore in some kind of reorganization of schemata).

The second approach, especially, is part of the view intregation
process, but is also proposed in ‘single’ schema methodologies: in [Ceri
81] and [Teor 86], entity types are first designed and then generaliza-

tion/specialization hierarchies are introduced.

But what are the guiding ‘events’ for detecting the need of generali-
zation/specialization structures? Since the Is-a relation includes two
aspects, and is characterized by an inheritance mechanism, these ‘events’

may concern:

s inclusion dependencies or intersections between entity types
domains;

s descriptive aspect of the types.

For each pair of entity type, the designer can supply information
about these aspects. In the first approach, these aspects are taken
directly. The second approach allows to eliminate imperfections of the data
model (for instance, a relationship type of name IS_A may hide an is—a

relation).
4.1.1. Intersection between entity domains

One may detect four kinds of intersection information between entity

types domains:

s the two entity domains are the samej
s one is contained in the other;

s they are overlapping;

they are disjoint.

Note that the following considerations are valuable for schema

design, and some are more intended for schema integration.

Ll
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A. Identical entity domains

In this case, one entity type may be designed only, except if they

are representing two levels of abstraction in the UaD.
B. Inclusion of a domain into another domain

Then one can define an is—a relation from the included entity type
towards the other, if it means that one is more concrete than the other.

Attributes and relationship types are reorganized.

C. Two or more domains are overlapping

In that case, one cannot introduce is-a relations between them.
However it is perhaps worth specifying a common generic entity type, grou-
ping common characteristics, while the overlapping entity types keep their

own .
D. Two or more disjoint domains

It is perhaps possible to introduce them as disjoint specific entity
types of a newly created entity type. As for the previous case, one may

think about any covering constraint too.
4.1.2. Descriptive considerations

The analyzis of characteristics of entity types may allow one to

reorganize them, and create is—a relations.

When an entity type has attributes with minimum cardinality zero or
if it plays a role the cardinality of which is zero and if these zeros mean
that a value for these attributes/roles is not allowed for some occurren—
ces, then one may introduce two entity types. Another case may happen when
a '‘type’ attribute appears, or when an exclusion/inclusion/equality cons-—
traint exists between roles/attributes. In such cases, where only a few
values are allowed, these attributes/roles determine the existence of other

attributes/roles. A study of identifier constraints may be useful too.
4.1.3. Global considerations

One may, after the analysis, either create new generic entity type,
or create new specific entity types. However these additions are worth only

if they are significant in the UoD, i.e. if they bring semantic clarifica-
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tion. One thing one must be cautious of, is not to build networks of is-a
relations which might confuse the reader. To our mind, Is—a relations
should concern the proper nature of objects and not be concermed by their
role in relationships. The latter cases can usually be represented by

multidomain roles.

Depending on the model used, the consistency between constraints is

more or less difficult to verify.

One may also remark that is—a relations can replace reflexive rela—
tionship types (allowing them to capture more semantics) [Hain 89d] [Roch
88]. For example, if we are interested in recording the husband or the wife
of the persons recorded in the library database, a solution is to define a
reflexive relationship type attached to PERSON {(schema 4.1); however this
can also be expressed more precisely by is—a relations as proposed in

schema 4.2.

In summary, as remarked in [LePe 88], the concept of generaliza-

tion/specialization in a model allows one:

s to eliminate non significant, null values (and so, enhance
the comprebensiveness of a schema);

s to describe in a more precise way the different objects,
while keeping a schema easy. to understand;

s to model more contraints concerning relations between

objects.

4.2. Transformations concerning generalization/specia-
lization constructs

In chapter 2, we saw that transformations are useful tools in current
database design methodologies. Concerning the generalization/specialization
structures, we find in the literature different transformations to replace
them. One approach consists in the definition of mappings with constructs
of the implementation model, e.g. with relational constructs [Teor 86]
[Smit 77] [Elma 85] [Berm 8&] ([Kung 89] proposes to replace them by views)
or with CODASYL constructs [Elma 85] [Berm 85]. In another approach, gene—-
ralization/specialization constructs of an E-R schema are mapped to basic
E-R constructs [Berg 881 [Coll 88] [Hain 8%9d] [Spac 89] [Vigi 90]. Cther

transformations may be useful during the elaboration of a conceptual

i
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schema; however, we found only one paper [Mann 88] dealing with them, with

view integration concerns.

We shall explain the general principle of transformations replacing
generalization/specialization structures by basic GER constructs (in [Coll
88] they are studied for an E-R model). It is indeed too complex to detail
a transformation outside the context of a particular construct. In chapter
6, we properly define a set of transformations concerning the generaliza-~
tion/specialization construct we propose and also transformations available

for the design of schemata.

We assume that these transformations apply on a schema which is

correct.
4.2.1. Elementary transformations

Three possible transformations are proposed: the materialization of
is-a relation by relationship types, the representation of the sole generic
entity type, and the representation of the sole spécific entity types. The
transformations have to preserve the fact that entity types populations

‘intersect’, and also that entity types share some characteristics.

The simplest solution consists in performing these transformations on
a generic entity type and its (direct) specific entity type. However, as
class inclusion constraints can be specified between different specific
entity types, it does not work properly. It seems then better to consider a
generic entity type and all its (direct) specific entity types. In [Mark
891 the representation of multiple generalization by relational constructs

is examined: be considers a specific entity type and its generic entity

types.

The related integrity constraints (redefinition, inbhibition, etc.)
have to be transformed too. We did not find any paper dealing with them in
a ‘general way’', due certainly to the complexity and the number of possible

combinations.
A. Representation of is—a relations by relationship types

This transformation is frequently proposed and seems to be the most
natural one. AN is—a relation is replaced by a 'special’ relationship type,
the aim of which is to put in correspondence entities representing a same

object of the UoD. The specific entity type plays a role of cardinmality

2



Chapter 4 Generalization/soecialization and database design activities

1-1*, while the generic entity type role is of cardinality O-1. Disjunction
constraints are represented by an integrity constraint specifying that an
entity of the generic entity type can be associated with at most one of the
concerned specific entity types (exclusion of roles). Covering constraints
are represented by an integrity constraint specifying that each entity of
the generic must be associated with at least one specific entity (existence

of roles)?,

Schema 4.4 shows the application of that transformation to schema 4.3

(previous page).

This transformation however introduces complexity in the management,

since an UoD object is represented in different places in the database.

B. Representation of the sole generic entity type

This transformation keeps only the generic entity type to which
attributes and roles of the specific entity types have been added (upward
inheritance). Attributes of the specific entity types are grouped in an
optional, compound attribute. Each inherited role becomes optional, too. A
new attribute is added to the generic entity type; it allows to detect the
specific ‘aspect’ of each entity. It is a '‘meta-attribute’; its domain of
values is the set of the names of the specific entity types. If the speci-
fic entity types form a partition, then this attribute is simple and manda-
tory. If they do not cover the generic entity type, then it is optional. If
they are not disjoint, then it is repetitive. Note that equivalence cons-—
traints between values of that attributes and the inherited attributes/ro-
les must be specified, as shown in schema 4.5 (next page) which results

from the application of that transformation on schema 4.3.

This transformation presents a unique representation of the UoD
objects, however there are many integrity constraints which must be speci-
fied (note also that a key of a specific entity type becomes a partial key®
in the generic entity type).

t 1f we were replacing a may-be-a relation, that cardinality would be 0-1.
2 One could use the aultidomain role construct,
3 & partial %ey plays the role of key only for a subset of the instances of the entity type.

3
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C. Representation of the sole specific entity types

This transformation eliminates is—a relations by representing only
the specific entity types, after having applied downward inheritance of the
attributes/roles of the generic entity type. Each attribute of the generic
entity type is put in each entity type. The roles are replaced by multi-
domains roles*. Each key of the generic entity type becomes a global key.
This transformation is perfect for partitions but if the specific entity
types do not cover the generic entity type, a new entity type must be added
to represent entities which do not belong to any specific entity type. If
the specific entity types are not disjoint, then three scolutions can be
proposed to keep the idea that an UoD object may be ‘seen through’ several
specific entity types [Coll 881: '

v if the generic entity type has a key, then that key can be
stated as 'reference key’', i.e. it is a key declared on
several entity types which plays the normal role of key, but
if two entities of two different entity types have the same
value for the key, this means that they represent the same
object of the UoD;

1 another solution consists in defining a binary relationship
type for each possible intersection between two non disjoint
specific entity types; each entity type plays a role of
cardinality 0-1, and two entities are linked if they

represent a same object of the UoD (note that if we have n,

non disjoint specific entity types, n 2 2, we shall need C

=

relationship types).

a a final solution consists in producing new specific entity
types representing each possible intersection (2 by 2, 3 by
3, «-.uy N by n) between n specific entity types, n 2 2, (we

~

need £ C new entity types).

T 5

The result of the application of this transformation on schema 4.3

is shown in schema 4.6.

4 If pultidomain roles are not allowed, we can represent them by 'normal’ roles, as explained in the
footnote 8 of chapter & and presented in the following example {these transformations are also proposed in
[Vigi 901, for instance}.
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This transformation respects the principle of single recording of UaD
objects, but needs numerous integrity constraints as the precedent

technique.
4.2.2. Complex transformations

After the analysis of elementary transformations, one must consider
how they can be combined to eliminate Is-a relations from a schema. The

reader may refer to [Coll 88], and to chapter 6 for our generalization/spe-—

cialization construct.
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Chapter 5

The TRAMIS database design

workbench

In this chapter, we forget for a while the generalization/specializa-—
tion structures and enter the world of computer-aided software engineering.
We present TRAMIS, a database design workbench developed by the Institut
d’' Informatique and marketed by Concis. We first describe its architecture
and then explain its model: an E-R model. Afterwards we overview its
processors and the user-interface principle. For all these points we

provide two levels of explanation:

s a ‘user-oriented’ description stressing the aspects relevant
to TRAMIS users;

1 a technical description interesting for TRAMIS implementors.

In the latter type of descriptions, we try to provide an explanation
being precise enough for a ‘direct’ implementation, while leaving aside
details which might confuse too much and be impediment to the generality of
the text.

5.1. TRAMIS architecture
5.1.1. User level explanations

TRAMIS is an autonomous environment for the design of information
systems; this software tool belps the designer(s) of an information system
to analyse, design, and produce a correct, operational, and efficient

database.
TRAMIS is divided into two communicating components (see figure 5.1):

s TRAMIS/VIEW, a graphical specification tool for the design of
E-R conceptual schemataj
« TRAMIS/MASTER, the workbench providing the database designer

with assistance during all steps of the design of database.
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In the following, we focus only on TRAMIS/MASTER (henceforth, called
TRAMIS). A complete description may be found in [Conc 90a] and [Conc F0b].

The main methodological characteristics of TRAMIS are:

e a unique E-R model for conceptual, logical, physical and DBMS
schematas

* a design process based on manual, aided or automated schema
transformations;

s a forward engineering tool with statistical inference;

s permissive schemata elaboration with validations;

s the building by the user of its own models according to its
customized methodological approach.

The schema of the database under project is stored in the specifica-—
tion database. This database is organised for the recording of conceptual,
logical, and physical E-R schemata. TRAMIS has been designed under the
toolkit paradigm, following the database approach: functions of the work-
bench are performed by independent processors, working on the contents of
the gpecification database. Moreover, functions may be applied in any
order: in this sense, the tool is somewbat independent on any methodologi-
cal coloration. As a consequence, functional extensibility is easier:
adding a new function has no impact on the specification database, nor on
the existing functions. Adding a new concept, on the other hand, implies a
modification of the gpecification database and an update of the consequent

functions (this will be our job in next chapter).

The user interface is based on the Windows approach. According to the
object—orientéd user interface, the user selects an object; and he chooses
the function to be performed on that object (via a menu). Dialogues are
then the interaction point between the user’and the tool.

5.1.2. Technical level explanations

TRAMIS is running on personal computers in a Windows environment. It
has been implemented in C [Kern 843 [Plum 86] with the Microsoft Windows
toolkit [Petz 881 [Sacr 88]. The specification database is a CODASYL data-—
base [Hain 85].

7
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S5.2. TRAMIS model
5.2.1. User level explanations

TRAMIS is based on a single E-R model for all steps of database
design. Its constructs! are those of current E-R models (schema, entity
type, relationship type, attribute, identifier group), adapted with aspects
for logical and physical design (access key, reference group, space).
Because of their usefulness in a workbench, other constructs have been
added: static and dynamic guantifications, textual description and techni-

cal note, origin.

An approach offering a single model for defining conceptual schemata,
schemata with logical accesses, a relational or CODASYL optimized schema
for instance, offers the power of multi-models methods, while keeping the

simplicity and uniformity of mono-model approaches [Conc 90al.

As we are essentially concerned with conceptual aspects (according to
current methodologies), we shall not consider the other constructs (an

interested reader may consult [Conc 90al for a full explanation).

We do not claim to provide here an introduction nor a complete pre—
sentation of the E-R approach; for such the reader may consult other

references [Boda 879] [Chen 761 [Dols 881 [Vigi 901.

The current TRAMIS conceptual model (called the basic model) has the
following concepts: schema, entity type, relationship type and role,
attribute, identifier group, description, origin technical note, and static

statistics.
A. Schema

A schema describes how constructs are assembled. It contains mainly

entity types, relationship types and attributes. It has a name and a date.
B. Entity type

AN entity type represents a class of objects of the UoD?, perceived

as having their own existence. It is worth mentioning here that the classi-

* Conventionally, we say that a aodel has constructs which may be assembled according to some construction
rules. As a database design workbench rests under (a) model{s), we shall speak of the constructs of the
workbench, referring to the constructs of the model{s) it supports.

2 We distinguish between the cbject of the real world and the representation in the database.

B
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fication abstraction mechanism is at the basis of that definition; an
entity type encompasses both a class aspect and a type (descriptive)
aspect.

Each entity type has a name® and a short name identifying it within. a
conceptual schema, and is characterized by a date. A0 entity type is gra-—
phically represented by a rectangle, the head of which contains the name of
the entity type. For example figure 5.2 contains two entity types:
PUBLICATION and AUTHOR.

The population of an entity type is the set of entities (or occuren—
ces) belonging to that entity type at a given time. In the basic model,
populations of entity types are always disjoint, i.e. an entity belongs to
one and only one entity type. It is also worth mentioning that entities are

distinct and exist by themselves.
C. Relationship type

A relationship type represents a class of links between objects of
the reality. Each relationship type is characterized by a date, identified

within a conceptual schema by its name and its shortname.

A relationship type is defined between entity types (representing the
class of involved objects); each entity type plays a role in the relation-
ship type (this means that each relationship is a group of two or more
entities, each one playing a role in this group). At least two roles are
defined for each relationship type (the number of roles is called the
degree of the relationship type). An entity type may play many roles in a
single relationship type. Each role has a name which identifies it within
those of the relationship type (but it is allowed to give it the name of
the entity type). A relationship type is graphically represented by an
hexagon with a heading containing its name and linked to the participating
entity types by arcs labelled by the name of their roles, except if it is
the name of the entity type, in which case the name remains implicit. For
example (figure 5.3), relationship type WRITING between AUTHOR and
PUBLICATION represents that authors write publications.

The population of a relationship type is the set of relationships
belonging to that relationship type at a given time. Relationships belong
to one relationship type in the basic model.

3 In the following, we shall always denote constructs by their name,

by
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Each role is characterized by a cardinality constraint. This is a
couple of integers i—-j, where i 2 0 , j 2 1, j 2 i, specifying that each
entity plays from i to j times this rolej i and j are respectively called
the minimum cardinality and the maximum cardinality. The usual values for i
are O (in which case the role is said optional) and 1 (for a mandatory
role). When j denotes a number arbitrarily great, it is represented by
letter N. In the diagrams, the cardinality is put on the line of the role
(cf. figure 5.3).

D. Attribute

An attribute is the representation of a property common to the
objects of the UcD corresponding to an entity type, or to the links corres—-
ponding to a relationship type; for each instance of the entity type or of
the relationship type, it can take O, 1 or many values (not necessarily

distinct).

It is worth mentioning that an entity type or a relationship type may
have no attribute.

An attribute is associated with a cardinality constraint, i.e. a
couple of integers i-j (satisfying i 2 0, j 2 1, j 2 i) specifying that the
number of values associated to each occurrence is between i and j. When i =
0, the attribute is said optional; otherwise it is mandatory. When j = 1,
the attribute is simple; otherwise it is repetitive (its repetitivity is

fixed if i = j, and variable else).

An attribute may be constituted with component attributes. Such an
attribute is said compound. Otherwise, it is elementary. The components of
an attribute themselves may be compound or elementary. An attribute which
directly belongs to the entity type or relationship type is said of upper
level. An elementary attribute has a domain of values: it is the set of
possible values for that attribute; these values obey the same laws of
manipulation and have the same structure. They are characterized by their
type (or format) and eventually their length and number of decimals. In
TRAMIS, domain values are restricted to the following types: alphanumeric,

numeric, date, boolean.

Each attribute has a name identifying it among attribute of the rela-
tionship type or the entity type (for attributes of upper level) and
between the other components of a compound attribute. Graphically, we put
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the name of the attributes in the lower part of the entity type or rela-
tionship type graphics. Optional attributes are within parentheses and
their cardinality is put between brackets. The structure of a compound
attribute is indicated by an indentation at each level of decomposition.
Figure 5.4 presents the attributes of PERSON.

E. Identifier group

The idea of the identifier constraint* is that a certain amount of
information allows one to ‘practically’ identify an occurrence of an entity

type or relationship type among other occurrences of the population.

An identifier group of an entity type (or relationship type) is a
group of attributes and roles so that, given a value for these attribu-
tes/roles, there cannot exist more than one occurrence with this value.

Note that such a constraint is not necessarily specified.

. The identifier constraint is often graphically represented with an
underlined notation. For example, the entity type PUBLICATION is identified
by its ISBN_CODE (figure 5.95).

F. Textual descriptions

A textual description may be associated with each construct of the
schema. It is a free text introduced and modified by the designer. It is
aimed at describing, in natural language, the semantics of the described
construct. The text follows the construct during the design of the schema,

whatever transformations are performed on it.
6. Technical note

The technical note is a free text which may be associated with each
construct of TRAMIS. Both TRAMIS and the designer inscribe information
about transformations performed, as well as their technical reasons. They

are intended to the programmer and for further maintenance of the database.
H. Origin

When a conceptual construct is transformed, it is important to keep
trace of its origin. TRAMIS indicates by the origin property of a construct

the name of the construct it comes from, if any.

* This is the only integrity constraint, with cardinality, which is proposed to the user in version 1.01 of
TRAMIS conceptual model {the inclusion constraint is available in the latest version),

b
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I. Statistical aspects

The static quantifications description give statistical information
about the size of entity type or relationship type populations, and about
the length and frequency of attributes. This information can generally be
derived from observation of the UoD, and so recorded in the conceptual

schema.

The population average size Ne of the entity type E population is the
average number of occurrences of that entity type in the database in a

reference instant.

b) Average cardinality of a role

The average cardinality u.~ of a role r of a relationship type R is

the average number of occurrences of R in which entities play rocle r.
If cardinality of r is i.—j.~, then we have i~ £ gy~ £ j..

c) Population average size of a relationship tvype

The population average size Ne of relationship type R is the average
number of relationships of R in the database at a given time. Actually, if
r is a role of R played by entity type E, we have: Ne = .- X N=. This
property allows one to compute the average cardinality of roles when one of
them is known, since for each role ry (played by Ei) and r; (played by Ej),
we have: pes = Hes X Nz / Ney.o

d) Frequency of an attribute

If an attribute A has a cardinality ia—Jjas where ia < ja, its
frequency s is defined as the average number of values associated with
each entity, relationship, or compound father attribute. We have: ian £ pa £

Ja-

e) Average length of an attribute

For each alphanumeric attribute A, we may mention the average length

0a Of its values in the database.

82
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5.2.2. Technical level explanations

The specification database is the heart of TRAMIS. It records infor-
mation concerning the design of the database at every stage, in terms of

the constructs of TRAMIS model.

We shall now present the subschema of this database being interesting
for the integration of the G/S structures in TRAMIS. For a complete des—

cription, the reader may refer to [Hain 8&b].

Actually, the approach which guided the design of the specification
database tried to reach a compromise between the generality of the
concepts, allowing easier modifications, and precise definitions, offering
a detailed and explicit description of a particular schema [Hain 86b].
Here, we describe ~ avoiding unnecessary details - the particular, restric-
ted specification database schema used in version 1.01 of TRAMIS®: it
explains the conceptual model of the workbench as far as current methodolo-

gies and tools are concerned and present only what igs useful for the user.

The schema will be explained using an E-R model®. Following the
methodology developed in [Hain 86al, the GAM schema will then be derived.

A. The ER schema of the specification database

The specification database (figure 3.6) contains the description of
one. — in current version - information system (SYSTEM), identified by its
name (SYS_NAME); the description of data is recorded in one — restriction
of version 1.01 - schema (SCHEMA) attached to the SYSTEM, via SCH_OF_SYS.
In the SYSTEM, the SCHEMA is identified by its name (NAYE) and is characte—
rized by a date (DATE).

A SCHEMA may contain entity types (ENTITY_T) and relationship types
(LINK). Each ENTITY_T belongs to one schema via E_IN, as well as each LINK
via L_IN.

ENTITY_Ts of a SCHEMA are identified by their name (E_NAME) or by
their short name (SHORT_NAME). They are characterized by a date (DATE) and
the average size of their population (POPULATION)?.

3 For an easy reading, we took the liberty to modify certain constants or names.

& The E-R model used for the description of this (seta-}schema includes the multidosain role construct
{Hain 89d] (showing incidentally its interest),

7 This is a simplification for conciseness purposes.
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LINKs of a SCHEMA are identified by their name (L_NAME) or by their
short name (SHORT_NAME). They are characterized by a date (DATE), the
average size of their population (POPULATION) and their degree (DEGREE).

ENTITY Ts participating in a LINK play a role (ROLE) via E_ROLE; a
LINK is concerned by at least two ROLEs and at most four ROLEs — current
restriction — via L_ROLE (the DEGREE of a LINK equals the number of asso—
ciated ROLEs). Each LINK belongs to the SCHEMA of the ENTITY_Ts of its
ROLEs. ROLEs are played by one ENTITY_T and concern one LLINK. ROLEs are
characterized by their name (R_NAME), a minimal cardinality (MIN_CON) and a
maximal cardinality (MAX_CON); the conventional cardinality N will be
represented by value 79979. They have also an average cardinality (AVG_CON)
with MIN_CON £ AVG_CON £ MAX_CON.

A ENTITY_T or a LINK may have, via ATT_OF, attributes (ATTRIBUTE),
which may themselves have ATTRIBUTEs. ATTRIBUTEs are characterized by a
name (AT_NAME), a format (FORMAT), a maximal length (LENGTH), and by the
number of decimals for numerical values (DECIM). The current supported
values for FORMAT are Alphanumeric, Mumeric, Real, Date, Boolean, Compound.
Only ATTRIBUTEs with FORMAT = Compound may have ATTRIBUTEs. DECIM takes a
value only when FORMAT = AMumeric. ATTRIBUTEs have a minimal cardinality
(MIN_REP) and a maximal cardinality (MAX_REP); an illimited cardinality is
represented by the value 99999. Statistical aspects are their average
length (AVG_LENGTH) — O £ AVG_LENGTH £ LENGTH - and their average repeti-
tivity (AVG_REP) - MIN_REP £ AVG_REP £ MAX_REP. POSITION indicates the
position of an ATTRIBUTE in a given level.

Identifier groups of both ENTITY_Ts and LINKs are recorded in the
entity type ID_KEY_ORD, where the attribute TYPE is Id. They are linked to
their ENTITY_T or LINK via IKO_OF. An ID_KEY_ORD is composed of ATTRIBUTESs
and/or ROLEs (via COMPONENT). Attribute TYPE_O of COMPONENT indicates
(redundantly) if the component is an ATTRIBUTE (value Attr) or a ROLE
(value Role). The STATUS attribute of an ID_KEY_ORD indicates if it is a
primary (Prim) or a secondary (Sec) identifier. Each ENTITY_T or LINK has
only one primary identifier group. The position of the components is
recorded in SEQ_NBR. An identifier code (IKO_CODE) is associated with each
ID_KEY_ORD. Moreover, the following constraints are defined:

s if a COMPONENT of an ID KEY_ORD of an ENTITY_T or LINK is an
ATTRIBUTE, the latter belongs to that ENTITY_T or LINK;
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s if a COMPONENT of an ID_KEY_ORD of an ENTITY_T is a ROLE, the
latter is played by that ENTITY_T;

o if a COMPONENT of an ID_KEY_ORD of a LINK is a ROLE, the
latter belongs to that ENTITY_T.

The entity type PROPERTY is used to record, via PROP_OF, the origin
of a conceptual ‘construct’, i.e. an ENTITY_T, a LINK, or an ATTRIBUTE. The
attribute P_ROLE of PROPERTY takes the value Origin, the P_VALLE attribute
records the name of the origin, and TYPE contains its type.

Finally, almost each conceptual construct (SCHEMA, ENTITY_T, LINK,
ATTRIBUTE) may be associated, via DESCR_OF, with a textual description
(DESCRIPTION with attribute TYPE = Desc) and a technical note (DESCRIPTION
with attribute TYPE = Tech_n). Each DESCRIPTION is attached to a SYSTEM
through DESCR_IN (the DESCRIPTION of a construct must be attached to the
SYSTEM of that construct). The corpus of a DESCRIPTION is a free text of
any length (TEXT).

B. The GAM schema of the specification database

The GAM schema (figure 5.7) is obtained by application of 'traditio—
nal’ transformations described in [Hain 86a]. It is worth remembering that
figure 5.6 presents only aspects of a particular interpretation of the
schema; therefore certain relationship types without attribute in diagram
of figure 5.6. have been transformed to record types.

We assume that each link constitutes an access path, that the cons-
traints explained in the previous point have been correctly translated (but
space is lacking here to express them), and that attributes are translated
into items (they are not drawmn on the schema in order not to overload it).

5.3. TRAMIS processors

5.3.1. User level explanations

We have seen that independent tools are working on the specificqticn
database for the design of the database.

The main processors of TRAMIS are (figure 5.8, next page):

s management;

s consultation;

&3



Erratsa

We hope the reader will forgive us the following mistakes we missed

in spite of many proof-readings.

The following corrections have an impact on the '‘semantics’ of the

work:

s page 30, line 16: add 'direct’ before 'generic’;

2 page &4, line 22: replace 'repetitivity’ by ‘cardinality’;

s page 78, line 10: replace 'Nes:i’ by 'Ness';

s page 79, line B8: replace 'j 2 ¥ J..' by '1 2 ¥ 1.’ and suppress next line;
a page 84, line 30: replace "type’ by ‘types’;

s page B4, line 13: add ', the same cardinality, the same quantifications,

after 'components’;
page 88, line 14: replace " i1wmi’ BY 'imx'}
page J, line &6 & page O, line 25: replace "RELATIONSHIP® by "ENTITY';
page M, note 10: replace 'This menu 1s’ by 'The transformations for the
elimination of categories are’;
page O, lines 8 & 9: add '/removal’' after '‘Adding’.

Trying to reach perfection (because 'writing makes an exact man’ to

Bacon's mind), the following list presents corrections having a 'syntac—

tical’ impact, i.e. enhancing the quality of the English of the text:

page 2, line 13: replace 'database’ by 'databases’;

page 3, line 10: replace 'transformation’ by 'transformations’;
page 3, line 1l6: remove the ',

page 6, line 13: replace ‘classes’ by ‘class’;

page 10, line 12: replace ‘becomed’ by 'become’;

page 18, line 15: replace 'ressources’ by 'resources’;

page 18, line 27: add a ',' after 'that’;

page 19, line 27: add "are’ after 'They's

page 28, line 24: replace 'relationship’ by ‘relationships’;
page 36, line 21: replace '‘form’ by 'forms’;

page 37, line 21: replace 'domain’ by ‘domains’;

page 47, line 14: replace ‘attribute’ by 'attributes’
page 93, line 23: replace 'attributes’ by ‘attribute’
page &0, line 33: replace ‘attribute’ by 'attributes’
page 70, line 22: replace ‘are’ by ‘is’;
page 74, line 15: add a ',  after "type’;
O:
8:

e we

add ‘by’ after ‘expressible’;
replace 'identifiant’ by 'identifier’
: replace '‘constructs’ by ‘construct’
1: add ‘with’ after ‘compliant’;

: replace 'verified andj; statistical’ by ‘is verified and

1
page 76, line 1
page 76, line 1
page 80, line 7
3
4

-s

page 85, line
page 86, line
statistical ' ;
page 89, line 24: add ‘and’ after "type,’;

page 91, line 12: add ‘on’ after ‘applies’;

page 95, line 32: replace 'pratical’ by 'practical’;
page A, line 13: replace ‘above’ by ‘hereafter’.
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s transformation;

s model compliance checking;

s production of executable descriptions;
s reporting;

s import/export.

A. Management

We may distinguish two levels: the functions manipulating the speci-
fication database independently of its contents, and those which create,
update and delete the constructs. These operations are validated against a
certain degree of integrity (for instance, each relationship type has at
least two roles). But some temporary inconsistencies, which are typical to

incremental design, are allowed.
B. Consultation

This processor allows the selection of a schema Dr.an object, and the
consultation of its characteristics (for an entity type, for inétance, we
may consult its date, its origimn, its name, its short name, its attributes,
the roles it plays in relationship types, its groups, its statistical

aspects, its semantic description, and its technical note).
C. Transformation

A transformation is an operation which modifies a schema while
preserving a certain number of conceptual, statistical and technical
aspects. Preservation is guaranteed by the existence of an inverse
transformation allowing to retrieve the initial transformed schema. We have
seen (chapter 2) that they are at the basis of current design
methodologies. They are useful in a workbench for several reasons [Conc

0a]:

s model compliance (for example, obtain a CODASYL schema from
an E-R schema);
s production of efficient schemata;

s progressive elaboration of a conceptual schema.

Here follow some of the transformations that have been implemented in
TRAMIS and that are of interest as far as conceptual modelling is concerned

(other transformations are presented in [Conc 90al). We may remark that
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TRAMIS offers three modes of transformation uses:

s punctual transformations which consist in the application of
a transformation on one construct (the designer is given
entire control and TRAMIS ignore the objective);

s global transformations where a transformation is performed on
all the constructs on which it can be applied (the designer
has less control, although he may refuse a transformation,
but the transformation process is faster);

2 global transformations towards a model where TRAMIS automati-
cally applies all transformations on all objects non consis—
tent with a model, so that it becomes consistent (TRAMIS has

entire knowledge).

a) Transformation of a relationship type into entity type

A relationship type R is replaced by an entity type of name R and by
a binary relationship type Ry for each role r; of the original relationship
type. Cardinalities of entity type R in each R; are 1-1, while cardinali-
ties of the other roles are those of the original roles ri. Identifier
groups, textual description, statistics, technical notes and origins are

derived from the original structure.

At the conceptual level, such a transformation is useful for

‘promoting’ a relationship type.

b) Transformation of an attribute into entity type

An attribute A (of cardinalities i—j) of an entity type E is put in a
new entity type of name XE attached to E by a bimary relationship type; the
cardinality is deduced from the cardinality of A. The identifiers, textual
descriptions, technical notes statistics and origins are computed from the

original structure.

That transformation is useful during the design of the conceptual
schema when one sees that an attribute must have attributes or need to be
linked to different entity types.

c) Disagqregation of a compound attribute

A compound (non repetitive) attribute is replaced by its components,

while respecting naming conventions.

&7
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This transformation may be useful to promote components of a compound

attribute, or to restructure a compound attribute.

d) Aggregation of the attributes of a group

A collection of attributes is grouped to form a new compound
attribute.

This tranformation allows one to restructure the attributes of an

entity type or relationship type, or to modify the position of attributes.
D. Model compliance checking

When he feels it is necessary (according to the methodology be
follows), the designer may ask for model compliance checking of specifica-

tions.

A general design workbench has to take into account the different
models used in the steps of methodologies and variants for these models. It
has therefore to offer some kind of parametrization of the design process

according to the models used [Conc 90a].

As TRAMIS offers a single model, which ‘covers’' most of the models
offered today, others models can be defined by restricting TRAMIS model. We
saw that a model has a set of constructs and a set of rules specifying how
constructs may be assembled. A new model is then defined by a set of cons—
traints which limit the constructs available and their combination. For
example, a standard relational model may be defined by specifying the

following constraints:

each entity type has at least one attribute;
s there cannot exist any relationship type;
s an attribute cannot be repetitive;

» an attribute cannot be compound.

TRAMIS offers a set of standard models. Others can be defined by the
user with a language for the expression of constraints (see appendix 3.of
[Conc 90al); these constraints are stored in a text file accessible from
TRAMIS.

TRAMIS offers functions for the diagnostic of the specification
against these constraints. Transformations are used to make a schema

compliant.
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E. Production of executable descriptions

A schema may be translated in the data definition language of a data
management system (DMS) (either a DBMS, or a file manager). If the transla—
tion cannot include all the aspects of the schema, because of limitations
of the DMS, TRAMIS generates descriptions or procedures for the validations
of these integrity constraints.

F. Reporting

Different aspects of the specifications can be reproduced on reports.
Currently, TRAMIS offers three types of documentations:

¢ a detailed report;
s a global report;

s a complementary report of generation.

The latter, for the implementation, corresponds to validations of
infegrity constraints after generation. The detailed report presents all
the gpecifications in five chapters: the schema, the entity types, the
relationship types, the spaces (not studied here) and index of attributes.
The global report presents statistics on the global schema.

G. Import/export

A textual specification languaqe, called I8 (Information System
Specification Language) allows the description of the specifications in a
text file. This guarantees upward compatibility of specifications along

TRAMIS evolution, and an opening towards other systems.

The incremental loader allows the integration in a same repository of
different subsets of specifications of a same schema. The selective
unloader allows the generation of (a part of) the specifications of a
schema in a file of ISL format. '

5.3.2. Technical level explanations

We have already said that the tools are working on the specification

database.

In the following, we shall concentrate only on the algorithms working
directly on the specification database. This simplification has been

introduced for the ease of explanation and understanding; moreover it is

&9
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more interesting as the user might ignore TRAMIS low level, technical
issues, which are not really interesting for the understanding of the
logics of the procedures. The reader must be aware that the implemented
architecture is efficient, as the most frequently used objects of the spe-

cification database are maintained in memory during a TRAMIS session.

Moreover, an access module, in the sense of [Hain Bbal, has been
designed for the development of the tool [Hain 8%9c]: its data model is a
subset of the GAM, its primitives are also those of ADL and the composition
rules are reduced to the minimum, thanks to the explicit notion of referen-
ce to a record (for each access function, there is an access to the first

element verifying a condition, and another to the next element).

We shall not present bere any algorithm. Indeed, we prefer to
present, in next chapter, the modified functions with regard to the newly

introduced generalization/specialization construct.

5.4. TRAMIS user interface and monitoring
5.4.1. User level explanations

TRAMIS interface follows the Window Icon Mouse Pull-—down menu (WIMP)
paradigm, but has only active texts. The different constructs and the
schema are presented through specialized windows: the windows ENTITY,
RELATIONSHIP, ATTRIBUTE, GROUP, COMPONENT (of a group), etc. Each window
has a menu bar corresponding to operations which may be applied on cons—
tructs of that type. Each aspect of the constiructs are described in a

subwindow of the principal window.

The monitoring (figure 5.9) works as follows: according to the
object-oriented principle of TRAMIS user interface, the user chooses an
object (which then becomes the curremt object), and then selects — in a
menu — a function to be performed on that current object. TRAMIS functions

are grouped into classes [Conc 90a]:

a the global functions are working on the database schemaj

s the functions of detailed elaboration are performed on
constructs of that schema (entity type, relationship type,
ceeda

10
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Appendix C contains a diagram explaining how monitoring is going on,
{only the relevent menus are presented). We use the standard terminology

(summarized in [Prov 8%]) for interactive obJjects.

5.4.2. Technical level explanations

All human interface interaction is let to Windows. The user level

explanation will be sufficient in this text.

n
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A generali=zsation//specialization
constract in TRAMIS -
the category

In this chapter, we explain our choices concerning the definition of

a generalization/specialization construct into TRAMIS: the category*.

The idea of the generalization mechanism is to define a class of
objects containing the objects of another class; the first class describes
the objects in a less precise way than the latter does, i.e. it avoids some
details. On the other band, the specialization mechanism implies the defi-
nition of classes which are '‘more concrete’ than a given class; the objects
of the first classes are included in the latter. The generalization/specia—
lization mechanism allows then the introduction of abstraction levels, in
order to master the numerous characteristics of an object of the UaoD: we

can describe it under one or another aspect, according to our viewpoint.

We shall now describe how this construct fits into TRAMIS architec—

ture, model, processors, and user interface.

6.1. The category and TRAMIS architecture
We tried to define a construct which is:

e minimal, i.e. the category contains only the elements which
have to be there, so that we can speak of a generaliza-—
tion/specialization construct;

s consistent, i.e. providing a unified approach to generaliza-
tion/specialization;

a useful, i.e. powerful enough for a specialist but aiso easy
to understand and to use by non—specialist, and using

structures as ‘natural’ as possible.

Our choices have also been quided by the following ‘constraint’: the

transparency of the integration into TRAMIS, i.e. someone who is not

! The reader is pleased not to confuse with Elmsari's category [Elsa 83).

72



Chapter & A generalization/specialization construct in TRAMIS: the category

interested in the is-a extensions should be able to ignore them when
working with TRAMIS,

A restricted model is not necessary a handicap. Indeed the simplicity
to learn and use are important too. Moreover a restricted number of cons—
tructs reduces the problem of the representation choice. And if a model
becomes too complex, the consistency of specifications is more difficult to
define [Hain 89d].

Let us add that, as we are 'implementing’ the model in a workbench,
we tried to reach a compromise between usefulness, and development and user
learning effort 'price to pay’' . Our compromise runs as follows. We introdu—
ced only what could be transformed with as less new constraints as
possible. A survey of the possible transformations to basic E-R constructs
showed that we need at least the concept of global cardinality (see below),
in default of the multidomain role. Therefore we restriéted the introduced
constructs (and functions) to those which can be replaced by TRAMIS

constructs and/or the global cardinality constraint, but no more.

6.2. The category in TRAMIS model
Let us now define this construct as a coent of TRAMIS model.

6.2.1. User level explanations

A. The category
a) Definition

We define the category of an entity type EG as a group of (direct)
specific entity types ES,, ESz, ..., ESny, n 2 1, of that entity type
(referred as the generic entity type). Remind that ES is a specific entity
type of EG, or EG is a generic entity type of ES, or more simply, ES is-a
EG if pop(ES) € pop(EG) and ES is more concrete than EG (where pop(E) is
the population of entity type E).

A category may also be characterized by class inclusion constraints:

« a disjunction constraint specifies that the specific entity
types are disjoint, i.e. for each 1 and j € (1, 2, ..., N},
i <> j: pop(ESy) N pop(ESy) = (233
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s a covering constraint specifies that the specific entity

types cover their generic entity type, i.e.

pop(EG) = U pop(ESi).

ES L8

If both disjunction and covering constraints are specified, we say
that the specific entity types form a partition of the generic entity type.
If there is only a disjunction constraint, they form a disjunction, and if

only a covering constraint is specified, they form a cover.

An entity type is allowed to possess (i.e. to be the gemeric entity
type of) only one category - single criterion specialization — of any
number of specific entity types — multiple specialization — and to belong
to (i.e. to be specific entity type of) only one category - single genera—
Jization ~. Of course, specific and generic entity types are belonging to
the same schema. As explained in chapter 3, the is—a relation is transiti-
ve., Therefore, specifig entity types of an entity type belonging to the
category of another entity type, are alsoc specific entity types of the
latter: we speak in this case of Indirect specific entity types'(and

indirect generic entity type).

We have also seen that the i1s—a relation is irreflexive and antisym—
metrical; this implies that an entity type cannot belong to its cateqory,
nor to a category of one of its (direct or indirect) specific entity types.
In consequence, the is—a relations implied by categories in TRAMIS model
form an acyclic~directed graph; and as only single generalization is

allowed, we deal with trees.
c) Notations

In this text, we shall use the following notation to represent a
category of the entity type EG which is composed of specific entity types
ES:, ES2y s0sy ESmy n 2 1:

CAT (ESi, ESzy ..., ESn —> EG).

The graphical representation is presented in figure 6.1 (cic indica-
tes the class inclusion constraints if any, i.e. D for disjunction, C for

cover, P for partition).

1L
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We do not provide a descriptive text for the categories, in order not
to confuse the user about where semantics is to be put: we assume that
semantic expressions about the generalization/specialization 'process’
represented by the category are recorded either in the description of the
generic entity type, or in the description of specific entity types. TRAMIS
will not support any specialization assignement criterion, i.e. the condi-
tion on the entities of the generic entity type for their belonging to a
specific entity type. Note however, that the user can record this crite—
rion, in an informal way, in the description of each specific entity type,

for instance.

Could this generalization/specialization construct have been simpler?
Allowing only one specific entity type per generic entity type would have
been too restrictive as it is quite common to specialize an entity type in
several specific entity types. If class constraints were not introduced, we
would lose too much semantics, as explained in [Davi 89] for instance.
Could it bave been more complex? Of course, but we argue that with this
construct which sounds clear and simple, we are able to model lots of

cases. Let us now overview how more complex structures may be represented.

We restricted to one category per generic entity type. As a conse-
guence, we cannot directly represent different specializations (under
different criteria). But we may do it by an indirect way. For example, if
we want to specialize books on their content basis, but also on their sales
basis, we can.do as presented in figure 6.2, i.e. to create intermediate

entity types.

We compel all the specific entity types to be disjoint/covering or
none of them. Doing so, we need not to care about the complex notions of
maximal covering and minimal disjonction (see chapter 3). Using the same
artifice as in the previous example, it is possible to precise class
inclusion constraints between only certain specific entity types, while

being sure than there is no problem of consistency.

We prohibit multiple generalization for the simplicity of the manage-
ment of the workbench; also because multiple generalization is not always

obvious for the user. However several authors argue that it becomes useful

Ik
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in different applications. It is therefore a possible extension (if
asked by the users). Note that in many cases, multiple generalization is
introduced more for inheritance conveniences than for class constraints
modelling purposes. In this case, we can promote the common specific entity
type in the same generalization level as its generic entity types, and .
materialize property inberitance. Multiple generalization is suppressed, we

keep the class inclusion aspects (but we loose conciseness in the schema).

The specialization criterion can only be represented in an informal
way. This is another possible extension, bowever this ‘constraint’ seems to
be a special case of redundant information, expressible integrity

constiraints.

As explained in chapter 3, we do not consider may-be—a relations as
‘real’ generalization/specialization constructs. Therefore, they are not

introduced.
B. Inberitance

a) Definition

Inheritance is the way by which entity types can share their
descriptive aspects (i.e. attributes, roles, relationships, and identifiant
groups). We describe two basic inheritance ‘operators’': upward inheritance
and downward inheritance (cf. chapter 3). They are applied oh a couple of

generic and specific entity types and they can concern:

s an attribute with its characteristics;
s a role with its characteristics;

s a group with its components.

Inherited characteristics are called inherited; the others are called
proper if misunderstanding may arise. Keep in mind that inherited
characteritics of an entity type may be inberited or proper characteristics
of its direct generic entity type. These two operators may be combined to
allow more powerful inberitance inferences, for example sideway

inheritance.

b) Remark

In the next paragraph, we shall see that downward inheritance is

supported for consultation purposes, and both downward and upward

L]
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inheritance are supported in transformations (these transformations will

‘materialize’ inheritance).

We did not introduce redefinition nor inhibition constraints, because
they would require the introduction of many other constraints in TRAMIS.
However a textual description of them is possible: for instance, one might

add them in the description of an attribute.
C. Categories and naming conventions

We keep the existing naming conventions; however this may lead to the
fact that a proper attribute and an inherited attribute may have a same
name: if this situation arises, the user must be aware of it (but there is
no confusion for TRAMIS processors). Keeping these conventions will be
useful in case of any integration of inbibition and redefinition

constraints.
D. Categories and statistical model

By definition of the is—a relation, populations of entities have
intersections. As a consequence, the model of static statistics, i.e. the
average size of the population of entity types, has to verify certain
constraints. The static aspects are explained here, while dynamic aspects

will be explained with TRAMIS processors, as they are deeply tight.

One thing the reader has to be conscious of is that the population
average sizes of entity types are not necessarily specified for each entity
type of the project databasej therefore, the following equations? have to
deal with unspecified population:

(EQs) for each category CAT(ES:, ES=z, ..., EB~ => EG), n
Negs £ Nem, 1 £ i £ ng
(EQ=) for each category CAT(ES), ESz, ..., ES, -> EG), n 2 2,

v
[y
-

forming a disjunction,

z NESJ.SNEG;

a. mm A,

iv

(EQ=) for each category CAT(ES., ESz, ..., ES, —> EB), n i,

2 In the following, we shall refer to them as the statistical equations,
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forming a cover,

2 Nes: 2 Nes.

i, 1

As a consequence of (EQz) and (EQ=), for each category CAT(ES:, ESa,

vesy ESe —> EG), n 2 2, forming a partition:

(EQa) £ Nesi = Nes.
Lo

4,

In the latter case, two inference® rules can be applied:

(IR4) if Nas;_, NES’.E.‘, eer Nega are Specified, then Nes

is obtained by T Negs:

Je=i

(IR:_“) lf ‘\éslg [\15525 * ey NESJ—.‘L’ NESJ-O-J., LECEY ] NEB:-\
and Nea are specified then Nes: is obtained by

Nee = Z Ness.

EX 5N
[ b2 8

We have to be aware that some N may no be specified. Therefore, we
assume that during the evaluation of equations, a missing Ne is replaced by
the sum of the Ng of its direct specific entity types (and so forth recur—
sively); and when the result of these 'assignments’ always gives an unspe—
cified value then ‘unspecified’ 1s assumed being eguivalent to zero in
equations (EQy) and (EQx), to @ for equation (EQ=x), and equation (EQ.) is

replaced by equations (EQz) and (EQx).
E. Category and identifier group

Due to the inberitance mechanism, an identifier group of an entity

type is composed of the proper and the inherited attributes/roles.
F. A new integrity constraint: the global cardinality

In the next paragraph, we shall need a new integrity constraint in
order to be able to preserve semantics of generalization/specialization
when it is represented by basic concepts. We propose to define it here, as

it will be part of the model.

3 In. the following, we shall refer to them as the statistical inference rules,
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The global cardinality* i-j, 0 £ i, 1 £ j, i %2 j, for a group of
roles and/or attributes of an entity type E specifies that each entity of E
has to be associated with at least i values for these attributes and/or

roles, and at the most j.

We may note that if a global connectivity i-j is defined on the group
of n attributes/roles, n 2 2, with cardinalities i3~js, ...y in~Jn, then we

must have that:

s« for each 1., 1 £ k £ n, J 2 i..
6.2.2. Technical level explanations

How can we represent the category construct in TRAMIS specification
database? As already stated, the specification database about which we
proposed a particular interpretation in chapter 5 has been designed with
two objectives: generality and precision of the concepts. Actually, a
construct of generalization/specialization has already a representation in
the specification database schema. But the proposition of [Hain 86b]
specifies that a more detailed study is necessary and that it will probably

lead to modifications of the proposed subschema.

The interpretation of the subschema of figure 6.3 is as follows. If
an ENTITY_T represents a generic entity type, its specific entity types are
classified in groups of subtypes (G_OF _SUBTYPE) via GST, defined by a
criterion (CRITERION). The specific entity types corresponding to a same
criterion are attached to the G_OF_SUBTYPE by relationship type SUBTYPE. A
G_OF_SUBTYPE is also characterized by a name (GST_NAME), the indication
that the population of the generic entity type contains, is strictly equal
or is contained in the union of specific entity types populations
(COVERING), the indication that specific entity types are disjoint or not
(EXCLUSIVE), and parameters of free interpretation (PARAM1, PARAMZ). ‘
Relationship type SUBTYPE is characterized by the indication that the
specific entity type is strictly included or not in the generic entity type

“ It will be another group, according to TRAMIS ‘vocabulary’.
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_(TOTAL), and by parameters of free interpretation (PARAML, PARAMZ).

Moreover, it is assumed that:

u an ENTITY_T cannot be (directiy or indirectly) a SUBTYPE of
itself;

s all ENTITY_Ts attached via GST and via SUBTYPE to a
G_OF_SUBTYPE belong to the same SCHEMA.

The category constructs fits quite well in this schema, altbough we

shall restrict it, because:

» as we consider only is—a relations, TOTAL is always equal to
true;

s as only one generic entity type is allowed per entity type,
cardinality of ENTITY_T in the SUBTYPE relationship type is
0-1; ’

s 'free’' parameters are not necessary;

s the attribute CRITERION is not used;

s as only one category is allowed per entity type, GST_NAME
brings no information;

s moreover the cardinality of ENTITY_T in GST is 0-1.

We obtain then the following subschema (figure 6.4). COVERING
indicates if the category contains a covering constraint or not, and
EXCLUSIVE stateg if the specific entity types are disjoint or not. The two

constraints specified here above are always standing.

Moreover, we have to ‘modify’ the representation of identifier
groups. Indeed, thanks to the inheritance mechanism, an identifier group
may contain (downward) inherited roles/attributes. The less expensive
solution consists in allowing a group to concern direct and inberited
attributes/roles. This implies a8 modification of a constraint which was
verified by a procedure (see previous chapter). Moreover, with this
solution, it is quite easy to introduce extensions such as inhibition and

redefinition constraints.

The global cardinality constraint will be represented by an
ID_ KEY_ORD (see chapter 5), where the TYPE is Glob-card. Parameters PARAML
and PARAMZ are used to record respectively the minimum global cardinality
and the maximum global cardimnality. The latters bave to verify the

‘equations’ relating them to "local’ cardinalities (see 6.2.1).
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The corresponding GAM subschema is easily derived (see figure 6.93).
Note however that we keep SUBTYPE as a record type, because we want to use
the already defined access module.

6.3. The category and TRAMIS processors

In this paragraph we explain how the processors are modified or

receive new functionalities in order to deal with the category.
6.3.1. User level explanations
A. Consultation

As explained in the previous paragraph, we shall apply automatically
downward inberitance for consultation purposes. More precisely, an ON/OFF
button is introduced. If this button is ON, then when cohsulting the attri-
butes, the groups, and the relationship types concerning an entity type, we
see not only the proper characteristics, but also the inherited characte—
ristics from all generic entity types, i.e. the characteristics (proper and
inherited) from the generic entity type are inherited by the specific
entity type.

We can also consult the category of each entity type, and ‘'its’ is-a
hierarchy (i.e. its generic entity types). For the category, we can consult

the class inclusion constraints.
B. Modifications

We must add new functions and modify existing ones.

This function consists in adding an is—a relation between two
existing entity types, i.e. ES is—a EG, and if the generic entity type has
no other specific entity type, its category is first created without any
class inclusion constraint. In case of partition, statistics inference

rules are applied.

It is however assumed that:

s ES does not belong to any category;
s EG is not a (direct or indirect) specific entity type of ES;

s gtatistical equations are verified.

8
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b) Suppression of an is—a relation

This function consists in the removal of an iIs-a relation existing
between two entity types, and consequently the deletion of the category if
the generic entity type has then no more specific entity type. Since a
group may contain inherited attributes/roles, they are suppressed from

these groups.

c) Modification of the class inclusion constraints of a

category

This function modifies class inclusion constraints of a category.
Statistical equations must be verified however. If the category forms then

a partition, statistical inference rules are applied.

d) Update of the population of an entity tvpe

The new population has to verify statistical equations; moreover,

statistical inference rules may be applied.

e) Deletion of an entity type

In current version of TRAMIS, an entity type can be suppressed only

if it plays no (proper) role in a relationship type.

If that entity type is in an is—a hierarchy, its specific entity
types become direct specific entity types of its generic entity type. If
attributes of that entity type are belonging to groups of some specific
entity types, they are suppressed from these groups (note that this camnot
happen for roles).

f) Deletion of an attribute

If that attribute belongs to a group, it must be deleted from the

group in which it belongs (eventually from a group of a specific entity

type) .

g) Deletion of a role

If that role belongs to a group, it must be deleted from the group in
which it belongs (eventually from a group of a specific entity type).
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h) Adding components toc a group

A group may contain not only proper attributes/roles but also

attributes/roles which are inherited from the generic entity type (if any).

C. Cateqgory and model compliance checking

TRAMIS has

a single model which is a superset of the models the user

and designer may encounter in practise. Therefore, it is useful to be able

to define other models by enforcing restrictions.

Here are the set of constraints restricting the concept of category:

(Cs)

(Ca)

(Cs)
(Cs)

<mind>j <max>j;
An entity type possesses from <min> to <{max> categories.
Currently, <min> = O and <max> = 1.
<min>j; <max>j
An entity type belongs to at least <min> categories and at
most <max> categories per generic entity type. Currently,
<min> = 0 and <max> = 1.
<min>; <max>s
An entity type belongs to at least <min> categories and
at most <max> categories of different entity types.
Currently, <min> = 0 and <max> = 1.
<mind>j <max>;
A category contains from <min> to <max> specific entity
types. Currently, <min> = 1 and <max> = N,
Each category must include the disjunction constraint,

Each category must include the covering constraint.

D. Category and import/export

The import and export processes must take into account the concept of

category, which has already been defined in ISL syntax (see appendix 2 of

[Conc 90al); a modified version is as follows:

s ET-def::= entity—-type ET-name ET-shortname;

[origin object-name] [date date]
[is—in CATEGDRY-namel® - - *
CATEGORY-def*® - -+ description®- -*
GROUP-defe - - *
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s CATEGORY—-def::= categories [coveringl] [exclusive]
specific spec-ET-deft- -*
end categories

s gpec-ET—def::= ET-name.

The definition of a group is modified as follows:

s GROUP-def::= group GROUP-CODE;
[id] [primary] [key]
[glob—card Min Max]
RELATION-block® - « *
[GR—comp—block]
STAT-block® - - *
ACTION-block® - - *
end—group

s Min:= integer from 0 to 99999

» Max:= integer from 1 to 99999.

The loader and the unloader have to take these specifications into

account.

E. Category and executable schema generation

Since all generation rules for DBMSs data definition languages are
defined on the basic E-R model, and since is—a relations cannot be transla-—
ted 'directly’ in most current DBMSs, we assume that before code genera-—
tion, all is—a relations have already been translated into basic E-R
concepts. Therefore that processor need not to be modified, except that

procedures are generated for global cardinality groups.

F. Category and report generation

The reporting function about an entity type shows now the following

new elements:

s the category of that entity type (with the class inclusion
constraints and the name of the specific entity types); .

s the name of its generic entity types

s if the automatic inheritance button is ON, the inherited

attributes, roles and identifier groups are presented too.



Chapter & A generalization/specialization construct in TRAMIS: the category

Moreover, the attribute index shows now all pages in which the
attributes appear:

s where they are defined;
s where they are inherited (if the imnberitance button is ON).

The global cardinality constraints are shown as the other groups.
G. Transformations of a category
Transformations may be useful for different purposes:

s in the database design mapping process to eliminate
categories from a schema, and obtain a basic E-R schemaj

s in the schema drawing ptrocess.
The functions explained. here may be of interest for these 'processes’.

We shall develop transformations for the elimination of categories
from a schema. There are mainly three ways to suppress a category of a
generic entity type, as already mentioned in chapter 4. We can apply the
upward inheritance mechanism, and represent the is-a semantics by keeping
only the generic entity type; conversely, we can apply downward inheritance
and keep only the specific entity types. Finally, we can simply represent
the is-a relations of a category by relationship types. After the
presentation of elementary transformations, we present also the global
transformations®. The other transformations are typically useful for an ‘a

posteriori’ introduction of categories, and for schema reorganization.
Before presenting these new transformations, we must precise that:

» we assume that they are not applied on schemata containing
‘non conceptual’ constructs;

s the transformations explained in chapter 5 work properly even
i1f there are categories in the schema;

s the latter transformations must consider the global

cardinality groups too.

All transformations must, by definition, provide both syntactical
correctness (i.e. the schema obtained after transformation of a schema

conpliant the model is still compliant to the model, here the E-R model)

3 Transformation towards models are not presented here,

8



Chapter & A gengralization/specialization construct in TRAMIS: the cateaory

and semantic equivalence. In the following, syntactical correctness will be
verified (although, naming conventions could be mistreated; in this case,
we assume that the user is asked to enter a 'good’ name). Semantic equiva-—

lence verified and; statistical aspects are also preservedét.

a) Transformation consisting in grouping entity tvpes in a

cateqory of a new entity type

This transformation consists in the creation of an entity type
considered as the generic entity type of a group of entity types, say ES,,
ESzy «.+y ES~y n 2 1, (which do not belong to any category). Moreover,
upward attribute/role inheritance is applied for the common
attributes/roles proposed by the user. Attributes are caomon if they have
the same type, the same length, the same number of decimals, the same
number of components and if their components are common. Roles are common
if they have the same cardinality, i1f their relationship type have the same
degtree, if the other roles are defined on the same entity types and their
cardinality is O-N (or a global cardinality is defined on them). The
category of the newly created entity type forms a partition composed of
ES:, ES=; ..., ESA. These upward inberited attributes/roles include in
their technical note and description what was contained in the technical
note and description of the correspondant attributes/roles. In the
technical note of EG, it is noticed that it results from that transforma-—

tion. Statitistic inference rules are applied for that new category.

Its inverse transformation consists in representing a category by the
sole specific entity types (see below). This transformation is useful when

several existing entity types must be generalized (see chapter 4).

This transformation applies on a category CAT(ES:, ESz, ...s ESn —>
EG), n 2 1, forming a partition’. The category and the generic entity type
EG are removed. Each attribute of EG is inherited by each specific entity

& This justifies that the preconditions of certain transformations are 'heavy', as far as statistical
aspects are concerned. If one prefers a less vigorous approach, he may ‘'drop’ the aspects concerning
statistics in the preconditions (and record statistical information in the technical notes).

7 11 the specific entity types did not cover the generic entity type, we would need the creation of an
‘artificial’ specific entity types (containing entities which do not belong to specific entity types), It
the specific entity types were not disjoint, we would need additional constraints to represent possible
overlapping specific entity types, as explained in paragraph 4.2,

8
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type. The roles played by EG are replaced by a multidomain roles® played by
ES:, ES=y ..., and ES~. The generic entity type cannot have any identifier
group’; the global cardinality groups are inberited by each specific entity
type. The technical note (and origin) of inberited attributes and relation—
ship types concerned by the inherited roles contain an annotation of that
transformation. Each specific entity type ‘receives’ the description of EG,
and its technical note. If EG belonged to a category, it is replaced by its
specific entity types ES;, ESz, ..., ES5. in this category. This transforma-
tion is not allowed 1if the average size of EG is specified,_while the
average population sizes of the specific entity types!® are not specified.

The inverse of this transformation is the previous one. It is
essentially used for the removal of is—a constructs from a schema. Note
that this representation of generalization/specialization constructs should
be avoided when relationship types are defimed on EG, in order not to have

to deal with global cardinalities.

c) Transformation of a cateqory to include the covering

This transformation applies on a category CAT(ES., ESz, ..., ES, —>
EG), n 2 1, which does not include the covering consfraint. It consists in
the creation of a new entity type OTHER_EG, specified as belonging to that
category, and in the modification of the category to include the covering
constraint. The name, the shortname, the description, the technical note,
and the origin of this new entity type are derived from characteristics of

EG. If the modified category forms a partition, then statistic inference

rules are applied, i.e. the population average size Nomer_ee Of OTHER EG

9 Indeed, since the construct of multidomain role is not in TRAMIS basic model, the replacement by a
sultidomain role is actually a replacement by the replacement of a multidomain role, i.e, by
sultiplication of relationship types [Coll 88].

Biven a relationship type R of degree n, n 2 2, where:
1 the role r is multidomain role played by Eoy E=y 0y Em (M2 2}
1 the other concerned entity types are EE., EE=, .+4y EEq—21,
To elininate that multidomain role, we replace R by a relationship types Riy Rz, +vsy R, Each Rs
{1 ¢i ¢ ») is a 'copy’ of R, except thats
t the multidosain role r is replaced by a role ro played by E+ (its cardinality is that
of r}j
v the roles of each EEy {f ¢ j ¢ n-1) in Ra, Rz, ...R~ are concerned by a global
cardinality, the values ot which are those of the cardinality of €E5 in R,

9 Dtherwise, we need the introduction of a new integrity constraint, i.e, the global identifier constraint.
Let 1. be an identifier group of entity type E+ (1 & i ¢ n), If a global identifier constraint is
specified on (Ta, 1=y «ouy Im) for (Ex, €=y 444y Ex) then given a value for 1. {1 £ 1 ¢ n) there is at
the most one entity of Ex U Ex U... E~ with that value.

10 8o we are sure to keep the statistical aspects,

L
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is given by Nevrern_se = Nee — 2 Nes: if the latters are specified,

doumd,

otherwise it is unknown.

The reverse transformation consists simply in the deletion of
OTHER_EG and in the removal of the covering constraint. This transformation
may be useful in order to meet the precondition of other transformation
(for instance, the previous one), or to be compliant with a restricted

model which asks for categories with the covering constraint.

d) Transformation of a category to include the disjunction

constraint

This transformation applies on a category CAT(ES:, ESz, ..., ES, —>
EG), n 2 2, which does not include the disjunction constraint (and for

which the average sizes of population are not specified)!!. The specific

entity type cannot have identifier groups'?. It consists in the creation of

2 C new entity types, specified as specific entity types of EG, and in

dmei £
the modification of the category so that it includes the disjunction

™

constraint. The C first entity types represent ES: N ES;, 1 and j

-

€ {1, 2, 2.y N}, 1 <> j (this is specified in the technical note).
The attributes, roles!® and groups of these entity types are those of ES.

added to those of ESs;. The C next entity types represent ES; N ES,; N E.,

=
i, jand k € {1, 2, ...y N}, 1 <> j, 1 <> ky 3 <> k (this is specified in
the technical note). The attributes, roles and groups of these entity types
are those of ES; added to those of ES; and ES.... The name and shortname
are derived from the original structure. Their origin is EG, i.e. the
entity type to which the category belongs. The average population sizes are
let unspecified.

The inverse transformation is to delete the newly created entity
types and to remove the disjunction constraint. This transformation may be

useful in order to meet the precondition of other transformation, or to be

t4 8o we can preserve statistical equivalence,

12 8o we do not need the introduction of global identifiers.

13 Thig means that roles are replaced by multidosain roles, i.e. a role of ES+y ! $ 1 £ ny is replaced by &
sultidosain role played by ES: and the new entity types representing ES« A ESy, ES. 0 ESy R EBwy +uy
and ES. N ES= N ... A EBm.
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compliant with a restricted model asking for categories with the disjunc-—

tion constraint.

an entity type according to a set of optional

roles/attributes

Given an entity type E without any category, and given a set of
optional roles/attributes (belonging to no group), two entity types E; and
E- are created which belong to a newly created category forming a partition
of E. E; contains the attribute(s)/role(s) of that set (which become
mandatory), while Ex contains entities of E with no value for the
attribute(s)/role(s) of that set. This is specified in their technical

note. Their origin is E. Their average population size is let unspecified.

The inverse transformation consists in the representation by the
generic entity type (see below). It is useful when we see that a set of
optional attributes/roles of an entity type 'hides’' the existence of
specific entities (see chapter 4), i.e. a 'mull’ value for these

attributes/roles means 'does not exist’ (and not ‘unknown’ ).

f) Representation of a category by the generic entity type

This function applies on a category CAT(ES:, ES=z, ..., ES~ —> EBG),
n 21, the specific entity types of which possess at the most one mandatory
role-or only attributes'* and do not belong to any category!® nor possess
any identifier groupt*. The category and the specific entity types are
deleted. The possible role of a specific entity type is put in the generic
entity type, becomes optional; its name is changed to the name of the
specific entity type, the technical note of its relationship type contains
an annotation of that transformation: entities of the generic entity type
playing this role are those of the corresponding specific entity type. The
possible attributes of a specific entity type are grouped in the generic
entity type into a new optional and simple attribute which has the name of
the specific entity type it represents (this is noted in its technical

note), i.e. entities having a value for that compound attribute are those

14 This restriction has been introduced in order to avoid the introduction of too many integrity
constraints, The attribute or the role can represent by itself the specific aspect of the generic
entities,

3 Because only one category is allowed per entity type, categories cannot be ‘inherited’,

&6 8o we need not to deal with partial identifier groups, i.e, with an identifier for only a subset of the
entities of the entity type,
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of the specific entity type it represents., If specific entity types do not
have any attribute nor role, they are represented in the generic entity
type by a boolean attribute with their mame (this is noted in its technical
note). In the last two cases, the frequency of the new attribute is given
by Negss: / Nes, where ES;, 1 £ 1 £ n, is the concerned specific entity type
(therefore, if Nes: is specified, Nes must also be specified in order to
keep statistical information). The technical note and the description of
the specific entity types are added to the technical note and description,
respectively, of the generic entity typej; the latter contains also an
annotation of the transformation. If there is only one specific entity type
covering the generic entity type, then the role or attribute representing
it becomes mandatory. If more than two specific entity types form a
disjﬁnction, then we specify a global cardinality O-1 concerning the
roles/attributes which represent them. If they form a cover, then we
specify a global cardinality 1-n concerning the roles/attributes which
represent them. And if they form a partition, then we specify a glaobal

cardinality 1i-1 concerning the roles/attributes representing them.

This transformation is another way to suppress is-—a relations from a
schema. It is essentially intended for situations when specific entity

types have only a few proper characteristics.

entity tvpe

Given an entity type E which does not have a category with class
constraints and given one or several optional attribute(s)/role(s), a new
specific entity type is created (the cateqory is created if it is its first
specific entity type) which contains that (these) optional attribu-
te(s)/role(s). If they belong to a group, the latter is inherited by the
newly created entity type. The technical note of that entity type contains

an annotation of this transformation, and its origin is EG.

This transformation is useful to represent multiple criterion.
specialization, as explained in 6.2.1. The inverse transformation is

presented hereafter.
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h) Transformation consisting in the suppression of a specific

entity type

Considering an entity type EG for which a category exists but without
any class constraint, given a specific entity type (for which the average
population size is not specified) with optional attributes/roles, that
specific entity type is deleted (and consequently the category, if it is
the last specific entity type). Its attributes/roles are put in the generic
entity type. Its groups are also inherited by the generic entity type.

This transformation is the inverse of the precedent one, and another

alternative to the representation by the generic entity type.

1) Representation of a cateqgory by relationship types

This function applies a category CAT(ES., ESz, ..., ES~ —> EG),
n 2 1, Each is-a link between EG and ES, (1 £ 1 £ n) is replaced by a rela—
tionship type Ry between EG and ES:. ES; plays a role of cardinality 1-1.
If there is only one specific entity type with the covering constraint,
then the cardinality of the role played by EG is 1-1 tooj; otherwise, its
cardinality is O-1. If there are at least two specific entity types:

2 if they form a disjunction, then a global cardinality O-1 is
specified between these new roles played by EG;

s if they form a cover, then a global cardinality 1-n is
specified between these new roles played by EG;

s if they form a partition, then a global cardinality 1-1 is
specified between these new roles played by EG.

The origin of each new relationship Rs type is EG (meaning that they
come from the elimination of its category). Their technical note contains
the fact they represent an is—a relation. Statistics of the relationship
types are obtained from population of the concerned entity types, as
explained in chapter 5. This transformation is the last altermative for the
elimination of is-a relations from a schema. The inverse transformation
consists in replacing the relationship types by the is-a relations of a
category; the global cardinalities are replaced by the corresponding class
constraints. It seems to be the most ‘natural’ one, however it implies that

UoD objects are represented in different, disjoint entity types (see 4.2).
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This transformation aims at progressively eliminating is—a relations
from the schema by representing only the specific entity types. It proceeds
in a top—down fashion i.e. starting from entity types which do not belong
to a category (in order to keep trace of the hierarchy in the structure of
the entity types attributes). Due to the precondition of the corresponding
elementary transformation it may be possible that some categories cannot be

transformed in this way.

k) Global transformation: representation of the categories by

the spole generic entity types

This transformation progressively eliminates is—a relations from the
schema by keeping only the generic entity types. It proceeds in a bottom—up
way, i.e. starting from entity types which do not possess a category (in
order to keep trace of the hierarchy in the structure of the entity types
attributes). Due to the precondition of the corresponding elementary
transformation it may be possible that some categories cannot be

transformed in this way.

1) Global transformation: representation of the categories by

relationship types

This transformation progressively eliminates the is-a relations from

a schema: they are replaced by relationship types.

6.3.2. Technical level explanations

On this level, we are interested in the design of the main algorithms
(presented in appendix E); they are written in ADL [Hain Bbal and are
working on the GAM schema of the specification database where the category
construct is represented. The choice of this language was obvious since we
are working on a GAM schema. We however restrict ourselves to the
primitives which are provided by the access module implemented in TRAMIS
(cf. 5.3.2). These algorithms are consistent to the virtual DMS constituted
by the access module. We tried, of course, to reduce the number of accesses

to the database.
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6.4. The category in TRAMIS user interface
6.4.1. User level explanations
How does the category fit in user interface of TRAMIS?

Our objective was to make a 'transparent’ concept'’, so that only
users interested in it will see it: it 1s a 'secondary’ construct.
Appendix D contains the modifications of the current user interface
monitoring (explained in appendix C). We see that these modifications are
minor, except the fact transformations are defined in the ENTITY menu. Note
also that the user can specify the generic entity type of the current
entity type, or specify the specific entity type(s) of the current entity
type.

6.4.2. Technical level explanations

As explained in chapter 3, we assume that user level explanations are

sufficient here.

17 This choice is guided by current remarks on TRAMIS, which is considered as relatively complex... due to
the richness of its concepts,

A
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Main ideas

In this dissertation we studied generalization/specialization

abstractions structures.

After the recall of what is an abstraction mechanism, we overviewed
how these structures fit during the development of software, and compared
their impact on three major areas in computer science, namely programming
lénguages, artificial intelligence and databases. We particularly emphasi-
zed that generalization/specialization is used, along with its inheritance
mechanism, for enhancing reusability of programs. Knowledge representation
and knowledge manipulation are based on the generalization/specialization
inferences, either strict inheritance, or default inberitance. Conceptual
models but also implementation models (of object-oriented DBMSs) can profit
from generalization/specialization in the perspective of capturing more

semantics about the UoD.

Then, after a review of database design concepts, we thoroughly
analysed, within a common framework (the GER model), how generaliza-—
tion/specialization structures have been introduced in semantic data

models. The main elements are:

s the Is—a relation between entity types (also proposed for
relationship types and attributes) which records the abstrac—
tion mechanism used in the cognitive process;

e inheritance which allows for characteristics sharing amid
types, and consequently enhances schema flexibility and
conciseness;

s class constraints which specify how classes intersect;

s the criteria (and the possibility to include derived
information);

s the may-be—-a relation.

We have also overviewed how these elements have been combined in
several models. We then confronted database design activities and generali-—
zation/specialization structures. That analysis aimed at providing us with

a better idea of what can be used in any model.

%
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From that study, we derived a subset and integrated it in TRAMIS, a
database design workbench. That integration has been conducted at different

levels (and for two kinds of readers, i.e. a user and an implementor):

in TRAMIS architectures
in TRAMIS model;

in TRAMIS processors;

in TRAMIS user interface.

Other works

Analysis of generalization/specialization concepts have already been
done (see, for example, [Coll 88], [Hain 8%9d] or [Spac 87]). We decided to
provide such a study, stressing elements which were not analysed previously
(the criteria, for example), and comparing with artificial intelligence and
programming languages concepts. That study was also necessary for helping

us to define the subset to be integrated in the workbench.

On the other hand, we did not find any paper on the problem of inte-
grating a new construct in a database design workbench. However, our
experience showed us that this task is for many reasons far from being
obvious. If we need not think about the general framework, as it is the
case when we start from scratch, it is however difficult in the sense that

we have to be compliant with the existing.
Evaluation

The process of including a construct into a model (or the definition
of a new model) is subject to criticism. Integrating it in a workbench adds
further difficulties. The important thing is to propose a concept being
really closed to mind structuring structures. That was our aim. We tried to
provide a construct being consistent, minimal, useful (easy to understand

and to use).

As explained in these pages, we defined the category construct as a
consequence of both a theoretical study, which emphasized the different
elements proposed in the literature, and also practical considerations,
i.e. constraints related to TRAMIS (and its acceptance in the 'pratical

world’ ). How did we manage it?

On the one hand, we started by overviewing the different concepts of
generalization/specialization. We then studied TRAMIS. We saw that these
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concepts were relatively easy to integrate in the TRAMIS model. Then,
because most current DBMSs cannot deal with extensions like the gemeraliza-
tion/specialization constructs, we analysed how extended constructs can be
mapped to basic ones. This put in evidence a large number of integrity
constraints we tried to classify (global identifier, partial identifier,
global cardinality, ...), but alsoc the difficulty of the algorithms (for
multiple generalization, for example). AN evaluation of the impact of the
introduction of nmew integrity constraints in TRAMIS (by amalyzing how they
can be incorporated in the model, how they go through the existing
transformations, and how code can be generated) helped us to decide several
restrictions on both elements of the generalization/specialization
construct (for example, we eliminated the redefinition/inhibition
constraints of inheritance, and the specialization criterion) and on the
transformations (for example, the representation by the generic entity type
has been simplified). We finally arrived to the proposed category construct
and the set of functions working on it (note that several existing

functions needed to be modified too).

On the other hand, we undertook a small-scale field study, namely
during the teaching of an one-week database design course to DEC engineers.
We introduced them to the basic E-R approach but we also explained a gene-—
ralization/specialization construct (which was a superset of the category).
We saw, through exercises, that the proposed construct was knowledgeable.
However, that field study aspect should be broadened, because:

s if we saw that the minimal subset was all right, we cannot
argue that database designers will find it sufficient!;
s the field study concerned a generalization/specialization

construct ‘outside’ the ‘world of TRAMIS'.
Future work

A field study concerning the evaluation of the generalization/specia—
lization in TRAMIS will probably lead to an improvement of our proposals.
Such a field study should ‘define’ different classes of users. It seems
that an ‘a posteriori’ study is only worth, as far as the user interface
problem is concerned, at least. That study could include an evaluation of
TRAMIS itself, as well as an evaluation of E-R-based methodologies. Indeed,

looking at an experience on teaching in the industry and university,

t 1f we had done that analysis, we do not however think that its integration within TRAMIS was possible for
the reasons mentioned before (i.e, constraints of TRANIS).

9%
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Nijssens [Nijs 86] argues that there is a need to exchange experience of
teaching conceptual schema design as it gradually becomes part of the core
of computer science. So few scientific (or at least systematic) studies
have been carried out and reported concerning experiences of using methodo—

logies on realistic, practical cases [Bube 87].

Model enhancement is a never—ending task. We proposed a minimal
subset for generalization/specialization. Some designers will perbaps need
extensions to the category. But in case of extensions, two questions should

be addressed:

s why this extension?

s what is the original contribution of it?

Among the mechanisms which could extend the expressive power of a schema
are certainly the integrity constraints and derived schema components

aspects of generalization/specialization.

We restricted ourselves to static, structural aspects of generaliza-
tion/specialization in our study arguing that only them are used in TRAMIS.
We stressed their semantic power of expression. We did not analyse the
‘application’ aspect, nor the manipulation languages [Czed 0] [Spac 89]
(Zani 89]. They should be analysed if manipulations aspects are considered

in subsequent versions of TRAMIS.

We studied the use of generalization/specialization for database
design, considering that DBMSs are mot able to deal with them. Current
researchs focus on object-oriented DBMSs, as explained in chapter 1. Such
DBMSs are able to record certain generalization/specialization constructs.
We think that current methodologies should be adapted then. Approaches
using the DBMS model for the logical step will not need lots of modifica-
tions. On the other hand, approaches introducing an intermediate model,
like the GAM, will have to extend it. In TRAMIS, this will imply the

analysis of access and update actions on the category.

The development tasks proposed in chapter 2 were intended for a new
information system. But in the future, adaptation of existing information
systems will play a more proeminent role, as there will be more and more
existing ones. The reorganization work will be more and more important. As

different softwares are built in different ways, an approach to combine
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them is to rebuild (or build?) the conceptual schema. And there,

generalization/specialization may help too, as a reverse engineering tool.

During the analysis of the transformation of the generalization/spe-—
cialization structures into basic E-R constructs, we were confronted with
the need of integrity constraints (in order to keep the semantics of the
‘extended’ concepts of generalization/specialization). In our mind, a
systematic study, trying to identify the most freguent ones and so provide
a 'framework’ for integrity constraints, will be of benefit for the expres-—
sion power of the E-R model. This work is certainly worth writing a disser-—

tation.

From these observations, we conclude that our contribution to the
analysis of generalization/specialization structures in computer—aided
database design could be extended in order to '‘manage’ the modelling tasks

of computer science still better...
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Appendix A

Reference example

This example has been adapted from [Peck 88] and serves as a running
example throughout the text. Using a consistent example for the explanation
of the concepts allows for easier understanding as examples are from a same
UoD. We do not claim that this example is a comprebensive description of
all aspects of a 'real world’ database. Its role is essentiaily
pedagogical: therefore only elements essentials for our illustrating
purpose are presented. Some variations on this UoD are made along the
different chapters.

The UoD of this example is a library. We present its description in a
more or less structured, textual form: one may consider the statements
above as the results of interviews and analysis of documents concerning the

library.

The statements expressing UoD semantics (and assumed self-explaining)

are:

s a publication has a title, a topic, an ISBN code, and is
written by authors;

s authors have a name, a stipend and may write many
publications;

s a journal paper is characterized by the volume and the number
of the journal in which it appeared;

» books, journal papers and conference papers are particular
kinds of publicationss

» a book 1s characterized by a number of sales, a topic, and a
price; it has been written by one or several authors and is
published by one publishing companys

s a best—seller is a book with a number of sales larger than
10,0003

s a publishing company has a name and publishes any number of
books s

s a person has a name, an address, and a posible phone number;

s a reviewer is a personj



Appendix A

Reference example

persons may borrow books and for each borrowing a due—date is
registered;

books are often reviewed by a reviewer (this link is
characterized by a date and a rating)

a literary figure is both an author and a reviewer;

the set of database books contains all books with topic = DB,
the topic of artificial intelligence books is AI, database.
books are characterized by the data model used;

some books are both database and artificial intelligence
books ;

the set of good books is a subset of books and is identified
by the end-user;

all research books are good books, but there are good books
of no concern for research;

a publication is identified by its ISBN code.



Apprendix B

The GER model

In order to put in evidence the different facets of the
generalization/specialization concepts, we use the GER (Generic Entity-—
Relationship) model as it has been designed for being a formal framework in
which models based on the object-association philosophy, i.e. in which the
real world is perceived as a collection of objects which are in association

with each other, may be described, compared, and cross—translated.

The following definitions give a precise but intuitive perception of
the GER model. For more information, consult [Hai 8%9c], from which the
following text has been adapted.

B.1. Entity domains

An entityt is an element of the wniversal entity domain called
ENTITIES. Entities are created and can be deleted. At any given time, all
entities are distinct. A new entity domain Ez can be defined so that each
of its elements, at any time, belongs to entity domain E; (Ex: Ei). Ex is
called a subdomain of Ey and Ei a superdomain of Exz. If Ex is explicitly
declared as a subdomain of Ei, it is a direct subdomain of Ei, and the
latter is also a direct superdomain of Ex. Note that if Ex is a subdomain
of Ex and Exz is a direct subdomain of E., then Ex is a subdomain of Ei. An
entity domain can be a subdomain of more than one superdomain. A direct
subdomain of the universal entity domain is called a basic entity domain.
An entity domain can be declared a subset of a constructed domain obtained
by applying the traditional relational operators (powerset, union,
intersection, difference and projection). Entity domains are given distinct
names. At any time, an entity can enter or leave a subdomain of its basic
entity domain. The latter, homewer, is unique and fixed during the life of
the entity. All (past, present, future) entities that are in an entity
domain are said to be of a given entity type. That type is defined by all
the structural and behavioural properties that are common to its entities.

It is given the name of its domains by which it is denoted. We must always

1 It is used to represent a UoD object,
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have in mind that an entity type includes two ‘aspects’': the domain, class
or set aspect and the type aspect. The type formally defines the structure
of its instances, its schema (intensional description), while the class is
the set of all instances at a given time (extensional description). For
example, schema B.l1 presents two entity types (their entity domain is a

basic one).

B.2. Value domains

A value is any permanent symbol that can be stored, transmitted and
processed in a manual or automated information processing system?. A value
has a type which defines the set of possible values, the properties and the
processing rules of the values. A value domain is a named set of values of
a given type. There exist predefined basic value types, namely integer,
real, character, string, date, etc. The basic value domain of a basic type
is the set of all the possible values of that type. A new value domain can
be defined as a subset of an existing one or as a subset of a constructed
value domain. The legal constructors are the relational cartesian, powerset
and list constructors. A simple value domain is either a basic value domain
or a subset of simple value domain. Constructed value domains are called
complex value domains. Schema B.2 presents a sample of value domains useful

in our reference example.

B.3. Entity relation schemata

An entity relation schema is the descriptive relation schema that
define the attributes (E-R meaning) of the entity type. The described
entity type is a GER attribute of the entity relation schema. That
attribute is called the described entity attribute and is based on the
described entity domain. It is the primary key of the relation schema. One
suggests the specific syntax desc—of—£ for a descriptive entity schemata of
entity type E. However, more than one descriptive relation schema can be
defined for each entity type (with ad-hoc naming conventions). For example,

schema B.3 presents the description of a book.

2 It is used to represent a property of the UsD.
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B.4. Relationship relation schemata

A relationship is an aggregate of at least two entities and/or
relationships, together with any number of values. Any relationship belongs
to a relationship type that is defined by all the structural and
behavioural properties that are conmon to its relationships. A relationship
relation schema ® describes the roles and the E-R attributes of the
relationship type. At least two GER attributes must be defined on entity
domains. Its name 1is that of the relationship type described. Note that
cardinality constraint i—j of each role has been limited to the most useful
values, 1.e. 1 =0 or i, and j = 1 or o. These values can be losslessly
translated into key and identity constraints (see below). Considering the
cardinality constraint i—-j of role r. played by entity type E. in
relationship type R:

w i =1 is equivalent to E. = Rlr.1, and 1 = 0 when that
constiraint does not standj
o« j =1 is equivalent to the specification of r. as a key of R,

and j = o when that constraint does not stand.

For example, schema B.4 expresses that authors write at least one

publication and that a publication is written by one or several authors.

B.5. Constraints
B.5.1. Key constraints

Ay entity and relationship relation schema has at least one key. A
component of a key is an attribute, or an attribute of a cartesian
attribute, or an element of a powerset attribute. When possible, a key is
specified by the underlined notation (the ISBN_CODE in schema B.3, for

example).
B.5.2. Inclusion and identity constraints

One can define inclusion (€) and Identity (=) constraints between any

two entity sets, value set or relations (see schema B.4). Traditional

3 ¥e do not use the concise notation for functional relationship types proposed in [Hain 59:].

E
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relational notations can be used. Keep in mind that:

s entity sets are entity domains or projections of entity
relation schemata, of relationship relation schemata or of
algebraically constructed relation schemataj

s value sets are defined by projection of entity relation
schemata, of relationship relation schemata or of
algebraically constructed relation schemataj

s relations are entity relation schemata, relationship relation

schemata or algebraically constructed relation schemata.




Apperndix C

Extract of TRAMIS user

interface monitoring

This appendix explains the monitoring of TRAMIS user interface
(version 1.01) by showing how the different interactive objects (Windows
approach) appear during a working session. Actually, the current interface
is in French but we took the liberty to translate it in English. Moreover
only the aspects which are relevant will be presented (namely those
concerning conceptual aspects). It is more especially intended for the

readers acquainted with TRAMIS user interface.

GLOBAL window

GLOBAL menu

Elaborate Detailed design of the current
schema
==> ENTITY window

Transform
Global Global transformations of the
current schema
Toward models Transformations of the current
schema towards a model
Produce
Conformity Model compliance checking
Generation Production of external descriptions
Report
Complete Production of a detailed report on

the complete schema
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Partial Production of a detailed report on an
object
Global Production of a global report on the

current schema

Schema Consultation and modification of schemata

Load Loading of external descriptions

ENTITY window

ENTITY Menu

Consult ‘

Complete B} Choice of the ATTRIBUTE,
RELATIONSHIP and GROUP subwindows
for the presentation of the current
entity type (by default)

Structure Choice of the ATTRIBUTE subwindow

Neighbouring Choice of the RELATIONSHIP subwindow

Groups Choice of the GROUP subwindow

Description Consultation of the description of
the current entity type

Note Consultation of the technical note
of the current entity type

Static statistics Consultation of the static
statistics of the current entity
type

Modify

Characteristics Modification of the characteristics
of the current entity type
==> MODIFY_ENTITY_CHARACTERISTICS

dialogue box

Description Modification of the description of

the current entity type
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Note

Create
Entity type
Relationship type

Delete

Quit

Modification of the technical note
of the current entity type

Creation of a new entity type
Creation of a new relationship type
Deletion of the current entity type

Return to the global menu and window

==> GLOBAL window

MODIFY_ENTITY_CHARACTERISTICS Dialogue box

Fields

Name

Short name
Date
Origin
Population

Buttons

oK

Cancel

Exceptions

Name invalid or absent!

Short name invalid or absent!

Name already used!

Short name already used!

Invalid date!

Invalid population average size!

Name of the current entity type

Short name of the current entity type
Date of the current entity type
Origin of the current entity type
Average size of the population of the
current entity type

Modification of the current entity type
==> ENTITY Menu

or

Exception

Cancelling of the modification

==> ENTITY Menu
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ENTITY Active texts

The name of a relationship type in the RELATIONSHIP subwindow
==> This relationship type becomes current and the RELATIONSHIP window is
presented

The name of an entity type in the RELATIONSHIP subwindow
==>» This entity type becomes current and the RELATIONSHIP window is
presented

The name of an attribute in the ATTRIBUTE subwindow
==> This attribute becomes current and the ATTRIBUTE window is presented

Any area of the ATTRIBUTE subwindow
==> Detailed design of an attribute — the ATTRIBUTE window is presented

The name of a group in the GROUP subwindow
==>» This group becomes the current and the GROUP window is presented

Any area of the GROUP subwindow
==> Detailed design of a group — the GROUP window is presented

The name of a component in the GROUP subwindow
==> This component becomes current and the COMPONENT window is presented
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Extract of TRAMIS user
interface monitoring including

the category

This appendix explains the modifications of the monitoring of TRAMIS
user interface (see appendix C) when the proposed category construct is
introduced.

GLOBAL window

GLOBAL menu

Elaborate Detailed design of the current
schema
==> ENTITY window
Transform
Global Global transformations of the

Toward models

current schemat
Transfqrmations of the current

schema towards a model

Produce
Conformity Model compliance checking
Generation Production of external descriptions?
Report
Complete Production of a detailed report on

the complete schemad®

t Three new transformations are proposed for the elimination of categories from a schess,
2 The category is another aspect proposed for the generation (of ISL descriptions),
3 The user is asked for the application of ‘automatic' downward inheritance in the report,

K
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Partial Production of a detailed report on
object*
Global Production of a global report on the

current schemad
Schema Consultation and modification of schemata®

Load Loading of external descriptions’

ENTITY window

ENTITY Menu

Consult

Complete - Choice of the ATTRIBUTE,
RELATIONSHIP and GROUP subwindows
for the presentation of the current
entity type (by default)

Structure Choice of the ATTRIBUTE subwindow

Neighbouring Choice of the RELATIONSHIP subwindow?

Groups Choice of the GROUP subwindow

Description Consultation of the description of
the current entity type

Note Consultation of the technical note
of the current entity type

Static statistics Consultation of the static
statistics of the current entity
type

Inheritance ‘Automatic’ application of downward
inheritance?

4 The user is asked for the application of 'automatic’ downward inheritance in the report.

3 The repart contains the nusber of categories of the schema (if any).

& The summarized statistics contains the number of categories of the schema (if any).

7 The category is another aspect proposed for the loading (of ISL descriptions),

® This subwindow alsc presents the (direct and indirect) generic entity types, and the (direct) specific
entity types of the current entity type, with the class inclusion constraints.

7 1f this itea is chosen, then the inherited attributes, roles, relationship types and groups are presented
in the ATTRIBUTE, RELATIONSHIP, and GROUP subwindows respectively, 1t is available only if the current
entity type is in an is—a hierarchy,
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Modify
Characteristics Modification of the characteristics
of the current entity type
==> MODIFY_ENTITY_CHARACTERISTICS
dialogue box
Description Modification of the description of
the current entity type
Note Modification of the technical note
of the current entity type
Create
Entity type Creation of a new entity type
Relationship type Creation of a new relationship type
Delete Deletion of the current entity type
Transform Elementary ransformations concerning the
categoryt
New generic Transformation of point 6.3.1.6G.a
New partition Transformation of point 6.3.1.G.e
New specific Transformation of point 6.3.1.G.g
Covering Transformation of point 6.3.1.6.c
Disjunction Transformation of point 6.3.1.6G.d
In generic Transformation of point 6.3.1.G.h
By specific . Transformation of point 4.3.1.6.b
By generic Transformation of point 6.3.1.G.f
By relationship types Transformation of point 6.3.1.6.1
Quit Return to the global menu and window

==> GLOBAL window

MODIFY_ENTITY_CHARACTERISTICS Dialogue box

Fields
Name Name of the current entity type
Short name Short name of the current entity type

0 This menu item is available only if the current entity type is in an is-a hierarchy.
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Date Date of the current entity type

Origin Origin of the current entity type

Population Average size of the population of the
current entity type

Buttons

0K Modification of the current entity type
==> ENTITY Menu
or
Exception

Cancel Cancelling of the modification
==> ENTITY Menu

Is-a Modification of
generalization/specialization
characteristics of current entity type
==> MODIFY_IS_A_CHARACTERISTICS
dialogue box

Exceptions

Name invalid or absent!
Short name invalid or absent!
Name already used!

Short name already used!

Invalid date!

Invalid population average size!t!

MODIFY_IS_A_CHARACTERISTICS Dialogue box

Fields

Genetic

List boxes

Specific

New specific

Name of the generic entity type (if any)

List of the names of the specific entity
types

List of the name of possible new specific
entity types

4 A population average size is also invalid if it does not verify the statistical equations,

N
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New generic

Buttons

Remove generic
Remove specific
Add generic

Add specific
Covering
Disjunction

0K

Cancel

Exceptions

List of the name of possible new generic

entity types

Removal of the generic entity type
Removal of a specific entity type
Adding of a new generic entity type
Adding of a new specific entity type
Adding of the covering constraint
Adding of the disjunction constraint
Modification of the current entity type
==> MODIFY_ENTITY_CHARACTERISTICS
dialogue bax

or

Exception

Cancelling of the modification

==> MODIFY_ENTITY_CHARACTERISTICS
dialogue box

Statistical equations are not verified !

ENTITY Active texts'?

The name of a relationship type in the RELATIONSHIP subwindow
==> This relationship type becomes current and the RELATIONSHIP window is

presented

The name of an entity type in the RELATIONSHIP subwindow
==> This entity type becomes current and the RELATIONSHIP window is

presented

The name of an attribute in the ATTRIBUTE subwindow
==> This attribute becomes current and the ATTRIBUTE window is presented

12 hen the automatic inheritance button is ON, the different subwindows contain the name of the generic
entity types from which the ‘characteristics’' are inherited, These names are active texts too.

0



Appendiy D Extract of TRAMIE user interface sonitoring including the catagory

Any area of the ATTRIBUTE subwindow
==)» Detailed design of an attribute - the ATTRIBUTE window is presented

The name of a group in the GROUP subwindow

==> This group becomes the current and the GROWF window is presented
Any area of the GROUP subwindow

==> Detailed design of a group — the GROUP window is presented

The name of a component in the GROUP subwindow A
==> This component becomes current and COMPONENT window is presented
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Actually, this appendlx descrlbes an example of the ADL algori&hms
for the functlons 5pec1f1ed in chapter 6. The addendum contains a more
complete descrlptlon of these algorithms. They are working on the GAM
vschema -of the specxflcatlon database (flgure E.1). We use ADL prlmltlves

o g e r ;
canslstent [Haln Béa] wlth the aeeess module of TRAMIS. gy~ ~ s w
f o A”’:’ e 3;" B f(:' ‘ !
R
. o ) . s
Algorithm E.l - R
procedure CreateIsa (var Es, Eg. record—-var) j '
S N
{ wn @
Specif.: 'mw,y . . : §

P . 1

This algorithm lmplements the ifunction specified* in 6.3.1.B.a!texthe

ENTITY_Ts Es (the specific enflty type) and Eg (the generig -entity. type)
which are assumed verifying its precqndltlon e =aw“xrﬂ.d

} " 'w;%;,.,zw iy L E O P
begin
Cat:= G_OF SUBTYPE(GST_E: Eg);
VIR if Cat () t"'Eﬁ G e e ae -;;

o create Cat‘“’G OF SUB¢VE§((“ COVERING = false)
“and (3 EXCLUSIVE = false))

endlf;

create Subt:= SUBTYPE((ST_E: Es) and (ST_GST: Cat));

if COVERING(: Cat) and EXCLUS_IVE( t&t) then O
{ - e ek W R i ¥ MEEE . e et comm u»A "} 3 4 °
Apply the statistical 1nference rules for the category of Eg
K . w”
StatInfer(Eq) L ) 5

endif; - . R

end;

t When the specifications of chapter & are sufficient for a precise understanding, i.e. when the
‘translation’ in terss of the BAM schema is obvious, we do not provide a new specification in GAN teras,

8






FACULTES
'UNIVERSITAIRES
N.D. DE LA PAIX

INSTITUT D'INFORMATIQUE

Generalization/specialization
abstraction structures

Theoretical study and integration in a
database design workbench

Jean-Ware ZEIPPEN

- Addendum -

Mémoire présenté sous la direction du
Professeur Jean-Luc HAINAUT
pour I'obtention du titre de
Licencié et Maitre en Informatique

Année académique 1989-1990






Addendum

A more complete description of
the ADL algorithms concerning

the category

This addendum completes the appendix E. It presents the main
interesting ADL algorithms (and their specifications?®) for the functions
specified in chapter 6, i.e. those concerning ‘directly’ the categories and
presenting a few difficulties. These algorithms are working on the GAM
schema of the specification database (see figure E.1, page Q). They are
consistent with [Hain B86al the access module of TRAMIS.

Algorithms for the modifications

Algorithm E.1

procedure Createlsa (var Es, EQ: record-var);

{

Specification:

s Precondition:
« ENTITY_T Es does not belong to a category
*» Eg is not a (direct or indirect) specific ENTITY_T
of Es
+« Statistical eguations are verified (when
considering that Es is—a Eqg)

s« Effect:
*» This algorithm implements the function specified
in 6.3.1.B.a (p. B1) to the ENTITY_ Ts Es and Eq
3
begin

Cat:= G_0OF SUBTYPE(GST_E: Eg);
if Cat = () then
create Cat:= G_OF_SUBTYPE((: COVERING = false)
and (: EXCLUSIVE = false));
endifs
create Subt:= SUBTYPE((ST_E: Es) and (ST_GST: Cat));

+ When the specifications of chapter & are sufficient for a precise understanding, we keep ther in natural
language in order to sake the reading easier,
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if (COVERING(: Cat) and EXCLUSIVE(: Cat)) then
{
Apply the statistical inference rules for the category of Eg
2
StatInfer(Eg);
endif;
end;

Algorithm E.2

procedure ModifyCic (var Eg: record-var; Cover, Disji: boolean);
{
Specification:

s Precondition:
* Eg is an ENTITY_T with a category Cat
» Statistical equations are always verified when
EXCLUSIVE(: Cat) = Disj and COVERING(: Cat)

= Cover
s Effect:
* This algorithm implements the function specified
in 6.3.1.B.c (p. 82) for Cat
3
begin

Cat:= G_0OF_SUBTYPE(GST_E: Eg);

modify Cat((: COVERING = Cover) and (: EXCLUSIVE = Disj));

if Cover and Disj then
{
Apply the statistical inference rules for the category of Eg
3
Statinfer(Eqg);

endify

end;

Algorithm E.3

procedure Suppresslsa (var Es, Eg: record—var)
{
Specification:

» Precondition:
« Es is a direct specific ENTITY_T of Eg (the
generic ENTITY_T)

o Effect:
* This algorithm implements the function specified
in 6.3.1.B.b (p. B82) for Es and Eg
)
begin
{

Suppress the Is-a relation and suppress the category if Es is the sole
specific entity type

3

Subt:= SUBTYPE((ST_E: Es))g
delete Subt;

{

Suppress inherited roles/attributes from groups of Es and of its
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specific entity types if any
}
newlist(ListSpec); { This list contains the ENTITY_Ts to check for the
presence of attributes/roles inherited from
Eg in their group }?
newllst(LlstGen), { This list contains the ENTITY_Ts from which
roles/attributes can always be inherited 3}
addlist(ListSpec, Es);
E:= Es
while E <> () do
removelist(ListSpec, E);
addlist(ListGen, E);
{
Verify the groups of E
3
Gr:= first(ID_KEY_ORD(IKO EL: E));
while Gr <> () do
Co:= first (COMPONENT(C_IKO: Gr)}s
while Co <> () do
if TYPE_O(: Co) = "Attr’ then
At:= ATTRIBUTE(RA_C: Co)3
Ent:= ENTITY_T(EL_AT: At);
if not inlist(ListGen, Ent) then
delete Co;
endif;
else { TYPE_O = 'Role’ }
Ro:= ROLE(RA_C: Co);
Ero:= E_ROLE(ER_R: Ro);
Ent:= ENTITY_T(E_ER: Ero);
if not inlist(ListGen, Ent) then
delete Cos
endif;
endif;
Co:= next (COMPONENT(C_IKO: Gr));
endwhile
Gr:= next(ID_KEY_ORD(IKO EL: E));
endwhiles
{
Find the specific ENTITY_Ts of E
3
Cat:= G_OF _SUBTYPE(GST_E: E);
1if Cat O () then
Subt:= first(SUBTYPE(ST_GST: Cat));
while Subt <> () do
Ent:= ENTITY_T(E_ST: Subt);
addlist(ListSpec, Ent);
Subt:= next(SUBTYPE(ST_GST: Cat));
endwhile
endif;
{

2 We assume that the following functions for the management of lists are predefined:

newlist(L)s init an empty list L;

addlist{L, E): add the element E to the list L

removelist(L, E}: remove the elesent E from the list Lj

inlist{L, E): returns true if £ is in the list L, false otherwise;

firstlist{L): returns the first elesent of the list L

nextlist(L) 3 returns the elesent following (the last obtained element) of the list Lj
copylist{Li, L2)s copy the list L2 in the list L1,

1
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Next ENTITY_T to be checked

3
E:= firstlist(ListSpec);
endwhiles;
end;

Algorithmes for the transformations

Algorithm E.4

procedure NewGenericET (var ListSpec: list-record-var
Name: char(30);
ShortName: char(7));

{

Specification:

s Precondition:
* ListSpec is a (non empty) list of ENTITY_Ts of a
same SCHEMA which do not belong to a category
* Name (resp. ShortName) is not the name (resp.
short name) of an ENTITY_T of the schema

s Effect:
* This algorithm implements the transformation
specified in 6.3.1.6.a (p. 86)

)
begin

{

Create the generic entity type and its category

3

Schi= SCHEMA(S_E: firstlist(ListSpec));
create Eg:= ENTITY_T((: E_NAME = Name)
and (: SHORTNAME = ShortName)
and (E_S: Sch))s;
create Cat:= G_OF_SUBTYPE((: COVERING = true) and (: EXCLUSIVE = true)
and GST_E: Eg));
Es:= firstlist(ListSpec);
while Es <> () do
create Subt:= SUBTYPE((ST_GST: Cat) and (ST_E: Es))j;
Es:= nextlist(ListSpec);

endwhile;

épply the statistical inference rules for the category of Eg
étatlnfer(Eg);

&pdate the technical note of Eg

3

Sys:= SYSTEM(SYS5_SCH: Sch)j
create Descri:= DESCRIPTION((DESCR_SYS: Sys)
and (: TYPE = ‘Techn_n')
and (: TEXT = Texts));
create DesrOf:= DESCR_OF ((DO_DESCR: Descr) and (DO_0OBJ: Eg));
{

3 The velue of Text is: 'This entity type results from the grouping of its specific entity types,’

]
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Upward inheritance of common attributes
}
ObtainCommonAttributes(ListAttr, AttrName, Anotherlne)4;
while AnotherOne do
CommonAttr:= first{ListAttr);
modify CommonAttr((: AT_NAME = AttrName) and (AT_EL: Eg));
removel ist(ListAttr, CommonAttr);
OtherAdttr:= firstlist(ListAttr);
while OtherAttr <> () do
{
Transfer the description/technical note of OtherAttr in that of
CommonAttr } TransferDescTechOtherAttr; (
b
{
delete OtherAttr;
OtherAttr:= firstlist(ListAttr);
endwhile;
ObtainCommonAttributes(ListAttr, AttrName, AnotherOne);
endwhile
{
Upward inberitance of common relationship types
b
ObtainCommonRTs (ListRT, RTName, RTShortName, AnotherOne)®;
while AnotherOne do
CommonRT:= firstlist(ListRT);
modify CommonRT((: L_NAME = AttrName)
and (: SHORT_NAME = RTShortName));
Ro:= first(ROLE(R_L: CommonRT));
while Ro <> () do
Ero:= E_ROLE(ER_R: Ro);
Ent:= ENTITY_T(E_ER: Ero);
if Ent inlist(ListSpec) then
modify Erc(ER_E: Eg);
endif;
Ro:= next(ROLE(R_L: CommonRT) )
endwhile;
removelist(ListRT, CommonRT);
DtherRT:= firstlist(ListRT);
while OtherRT <> () do

{
Transfer the description/technical note of OtherRT in that of

CommonRT } TransferDescTechNOtherRT; {

3

{

delete 0OtherRT;

OtherRT:= firstlist(ListRT);

endwhiles
ObtainCommonRTs(ListRT, RTName, RTShortName, AnotherOne);
endwhile
end;

4 11 AnotherDne then ListAttr contains the list of common attributes {proposed by the user) to be inherited
by Eg in the attribute of name AttrNape {not present in Eg)y ListAttr is eapty otherwise,

5 11 AnotherOne then ListRT contains the Jist of comson relationship types (proposed by the user) to be
inherited by Eg with the name RTName (not present as a relationship type name of the schema) and the short
nase RTName (not present as & relationship type short name of the schema}j ListRT is empty otherwise, It
is assumed that the roles of these relationship types are not component of groups (simplification),

V
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Algorithm E.S

procedure RepresSpecificET (var Eg: record-var);

{
Specification:

» Precondition:
* Eg has a category forming a partition
» Eg has no group (simplification)
+ The average population sizes of Eg and of and its
specific entity types are all specified or none of
them are specified

e Effect:
* This algorithm implements the transformation
specified in 6.3.1.6.b {(pp. 86-87)
3
begin

Schi:= SCHEMA(S_E: EQ)s
Sys:= SYSTEM(SYS_SCH: Sch)js
Cat:= G_OF_SUBTYPE(GST_E: Eg)s
{
Copy of the attributes of Eg in each specific ENTITY_T and cresation of a
work list containing these ENTITY_Ts
3
newlist(ListSpec);
Subt:= first(SUBTYPE(ST_GST: Cat))
while Subt <> () do
Es:= ENTITY_T(E_ST: Subt);
addlist(ListSpec, Es);
Att:= first(ATTRIBUTE(AT_EL: Eg));
while Att <& ()
CopyAttr(Att, Es);
Att:= next(ATTRIBUTE(AT_EL: Eg));
endwhile;
Subt:= next(SUBTYPE(ST_BST: Cat));
endwhile;
{
Copy of the roles and relationship types of Eg in the specific ENTITY_Ts
of ListSpec
3
Ero:= first(E_ROLE(ER_E: Eg)};
while Ero < () do
Ro:= ROLE(R_ER: Ero);
Li:= LINK(L_R: Ro);
Copybink{L.i, Ro, ListSpec);
{
Delete the copied LINK
3
delete Lij
Ero:= first(E_ROLE(ER_E: Eqg);
endwhile
{
Copy of the description/technical note of Eg in each specific ENTITY_T
and deletion of it
Y
FindDescrTechN(Eg, Descr, TechN);
Es:= firstlist(ListSpec);
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while Es <> () then
FindDescrTechN(Es, DescrEs, TechNEs);
if Descr <> () then
if DescrEs <> () then
modify DescriEs(: TEXT = Textt);
else
create DescrEs:= DESCRIPTION((: TYPE = ‘Descr’)
and (DESCR_SYS: Sys)
and (: TEXT = Text'));
create DescrOf:= DESCR_OF ((DO_DESCR: DescrEs)
and (DO_OBJ: Es));
endifs
endif;
if TechN <> () then
if TechNEs <> () then
modify DescrEs(: TEXT = Text®)s
else
create TechNEs:= DESCRIPTION((: TYPE = ‘Tech_n’)
and (DESCR_SYS: Sys)
and (: TEXT = Text?));
create Descr0f:= DESCR_OF((DO_DESCR: TechNEs)
and (DO_OBJ: Es));
endif;
endif;
Es:= nextlist(ListSpec);
endwhile;
if Descr <> () then
delete Descr;
endif;
if TechN <> () then
delete TechN;
endifs
{
Replace Eg by its specific ENTITY_Ts in the category to which it belongs
if any
3
SubtEg:= SUBTYPE(E_ST: Eg)
if SubtEg <> () then
CatEg:= G_0OF_SUBTYPE(GST_ST: Subtkg);
Es:= firstlist(ListSpec)s
while Es <> () do
create SubtEs:= SUBTYPE((ST_GST: CatkEg) and (ST _E: Es));
Es:= nextlist(ListSpec);
endwhile
endif;
{
Delete Eg and its ‘characteritics’
)
delete Eqg;
end;

The value of Text is: TEXT{: DescrEs) + 'Description of * + E_NAHE(: Eg) + *t' + TEXT(: Descr)
The value of Text ist 'Description of ' + E_NAME(: Eg) + "3’ + TEXT(: Descr)

The value of Text ies TEXT(: TechNEs) + ‘Technital note of ' + E_NANE(s Eg) + 3" + TEXT(: TechN)
The value of Text is: 'Technical note of ' + E_NAME(: Eg) + "t' + TEXT{: TechN)

0 L ~ Ll
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Algorithm E.&

procedure CoveringCategory (var Eg: record-var);
{
Specification:

s Precondition:
* Eg has a category for which the covering
constraint is not specified

s Effect:
 This algorithm implements the transformation
specified in 6.3.1.6.c (pp. 87-88)
3
begin

Sch:= SCHEMA(S_E: Eqg)s
Sys:= SYSTEM(S5YS_SCH: Sch)gs
Cat:= G_OF_SUBTYPE(GST_E: Eg)s
modify Cat(: COVERING = true)s;
DefaultETName('OTHER® + E_NAME(: Eg), Name)!°;
Defaul tETShortName (*OTHER® + SHORT_NAME(: Eg), ShortName)il;
create OtherEg:= ENTITY_T ((E_S: Sch)
and (: E_NAME = Name)
and (: SHORT_NAME = ShortName));
create Subt:= SUBTYPE ((ST_E: Othertg) and (ST_BST: Cat));
{
Update the origin of Otherkg
3
create Oriq:= PROPERTY((PROP_O: Othertqg)

‘ and (: P_ROLE = ‘Origin’)
and (: P_VALLE = E_NAME(: EQ))
and (: TYPE = "ENTITY_T'));

{
Update the technical note of OtherEg
3
create TechN:= DESCRIPTION((: TYPE = ‘Tech_n")
and (DESCR _SYS: Sys)
and (: TEXT = Text'?));
create DescrOf:= DESCR_OF ((DD_DESCR: TechNEs)
and (DO_0BJ: OtherEg));
{
Apply statistical inference rules
H
if (COVERING(: Cat) and EXCLUSIVE(:Cat)) then
StatInfer(Eg);
endif;
end;

0 DefaultETName (NI, N2) returns in N2 the value of NI if NI is a possible nawe for an ENTITY_T of the
SCHEKA; otherwise, N2 contains & 'correct’ name proposed by the user,

1t Defaul tETShortName(Nl, N2) returns in N2 the value of NI if NI is a2 possible short name for an ENTITY T
of the SCHEMAy otherwise, N2 contains a ‘correct’ short name proposed by the user,

12 The value of Tent iss 'This entity type has been introduced to cover ' + E_NAME(: Eg) +

Y



Addendus A more conplete description of the ADL alaorithes concerning the catesory

Algorithm E.7

procedure DisjCategory (var Eg: record-—var)j
{ .
Specification:

s Precondition:

* The ENTITY_T Eg has a category which does not

include the
disjunction constraint

* The average population sizes of its direct
specific ENTITY _Ts are not specified

*» The direct specific ENTITY_Ts play no role
and do not have any group (simplification)

» Effect:
* This algorithm implements the transformation
specified in 6.3.1.G.d (pp. 88-89)
3
begin

Sch:= SCHEMA(S E: Eqg);
Sys:= SYSTEM(DESCR_SYS: Sch)s
Cat:= G_0OF_SUBTYPE(GST_E: Eg)s
modify Cat(: EXCLUSIVE = true);
newlist(InterlList);
Subt:= first(SUBTYPE(ST_GST: Cat)j
while Subt <> () do
Es:= ENTITY_T(E_ST: Subt);
E:= firstlist(InterList);
newlist(InterlListBis);
while E <> () do

{
Create the ENTITY_T representing the 'intersection’ of Es and E (note

that the latter represents another intersection)
2
DefaultETName (SHORT_NAME(: Es) + SHORT_NAME(: E), Name);
Defaul tETShortName (SHORT_NAME(: Es)[1..2]
+ SHORT_NAME(: E)[1..2], ShortName);
create NewE:= ENTITY_T ((E_S: Sch)
and (:E_NAME = Name)
and (:SHORTNAME = ShortName) )
create Subt:= SUBTYPE ((ST_E: NewE) and (ST_GST: Cat));
{
Update the origin of NewE
3
create Orig:= PROPERTY((PROP_O: Newk)
and (: P_ROLE = "Origin’)
and (: P VALUE = E_NAME(: Eqg))
and (: TYPE = '"ENTITY_T"));

Update the technical note of NewE
create TechN;= DESCRIPTION((: TYPE = 'Tech_n’)

and (DESCR_SYS: Sys)
and (: TEXT = Textis);

13 The value of Text ist 'This entity type has been introduced to have disjoint specific entity types of
+ E_NAME{: Eg) + ', It represents the Intersection of ' + E_NAME(: Es) + ' and " + E_NAME(: E) + ',

1
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create Descr0Of:= DESCR_OF ((DO_DESCR: TechN)
and (DO_OBJ: NewE));
{
Copy of the attributes of E in NewE
2
Att:= first(ATTRIBUTE(AT _EL: E));
while Att <& ()
CopyAttr(Att, NewE);
Att:= next(ATTRIBUTE(AT_EL: E));
endwhile;
{
Copy of the attributes of Es in Newk
3
Att:= first(ATTRIBUTE(AT_EL: Es))j
while Att < ()
CopyAttr(Att, NewE);
Att:= next(ATTRIBUTE(AT_EL: Es));
endwhile;
{
}
addlist(InterlistBis, NewE);
E:= nextlist(Interlist);
endwhile
addlist(InterlList, Es);
copylist(Interlist, InterlListBis);
Subt:= next (SUBTYPE(ST_GST: Cat));
endwhile
end;

Algorithm E.8

procedure PartitionET (var E: record-vari

var ListAttr, ListRole: list—record—var);
{
Specification:

» Precondition:
« E does not have a category
« ListAttr is the set of optional attributes
« ListRole is the set of optional roles

s Effect:
This algoritbm implements the function specified in
6.3.1.G.e (p. 89)

3

begin

Sch:= SCHEMA(S E: E);
Sys:= SYSTEM(SYS_SCH: Sch)g
Defaul tETName(E_NAME(: E) + 1, Name);
Defaul tETShortName (SHORTNAME(: E) + ‘1’ , ShortName);
create El:= ENTITY_T ((E_S: Sch)

and (: E_NAME = Name)

and (: SHORT_NAME = ShortName));
DefaultETName (E_NAME(: E) + '2°, Name);
DefaultETShortName (SHORTNAME(: E) + '2', ShortName);
create E2:= ENTITY_T ((E_S: Sch)

and (: E_NAME = Name)

]
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and (3 SHORT_NAME = ShortName));

create Cat:= G_OF_SUBTYPE((GST_E: E) and (:COVERING = true)

and (:EXCLUSIVE = true));

create Subt:= SUBTYPE ((ST_E: E1) and (ST_BST: Cat));
create Subt:= SUBTYPE ((ST_E: E2) and (ST_BST: Cat))s

{

Transfer the optional attributes which become mandatory in E1

3

Pos:= 13

Att:= firstlist(ListAttr);

while Attr <> () do

modify Attr((AT_EL: E1) and (: MIN_REP = 1) and (: POSITION = Pos))j

Pos:= Pos + 13

Att:= nextlist(ListAttr);

endwhile

{

Transfer the optional roles which become mandatory in E1l (their AVG_CON

is supposed 2 1)
)

Ro:= firstlist(ListRole);

while Ro <> () do

modify Ro(: MIN_CON = 1))
Ero:= E_ROLE(ER_R: Ro);
modify Ero(ER_E: E1);

Ro:= nextlist(ListRole);

endwhile

{

Update the origin of E1

3

create Orig:= PROPERTY((PROP_O: E1)

{

and (: P_ROLE = ‘Origin’)
and (¢ P_VALLE = E_ NAME(: E))
and (: TYPE = ‘ENTITY_T'));

Update the technical note of E1

3

create TechN:= DESCRIPTION((: TYPE = 'Tech_n’)

and (DESCR_SYS: Sys)
and (: TEXT = Texti*));

create DescrOf:= DESCR_OF ((DO_DESCR: TechN)

{

and (DO_OBJ: E1));

Update the origin of EZ2

3

create Orig:= PROPERTY((PROP_O: E2)

and (: P ROLE = ‘Origin’)
and (: P_VALUE = E_NAME(: E))
and (: TYPE = "ENTITY_T'));

Update the technical note of EZ

create TechN:= DESCRIPTION((: TYPE = ‘Tech_n’)

and (DESCR_SYS: Sys)
and (: TEXT = Text'®));

14 The value of Text is: E_NAKE{: E1)} + ' contains the entities of * + E_NAME(: E) + ' having necessarily a
value for the attributes/roles contained now in this entity type,’
15 The value of Text is: E_NAME(: E2) + ' contains the entities of * + E_NAME(: E) + ' with no value for the

attributes/roles contained now in ' + E_NAME(y E1) + ')
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create DescrOf:= DESCR_OF ((DO_DESCR: TechN)
and (DO_0OBJ: EZ2));
end;

Algorithm E.9

procedure RepresGenericET (var Eg: record-var);

{
Specification:

» Precondition:

« Eg has a category, the specific entity types of
which possess at the most one mandatory role or
only attributes and do not belong to any category
nor possess identifier groups

* Either the average population sizes of Eg and its
specific entity types are specified or none of

them
Effect:
* This algorithm implements the function specified
in 6.3.1.G.f (pp. 89-90)
3
begin

Schi= SCHEMA(S_E: Eg);
Sys:= SYSTEM(SYS_SCH: Sch)j
Cat:= G_OF _SUBTYPE(GST_E: Eg);
{
Update the technical note of Eg
3
FindDescrTechN(Eg, Descr, TechN);
if TechN <> () then

modify TechN(: TEXT = TEXT(: TechN) + Textié);
else

create TechN:= DESCRIPTION((: TYPE = ‘Tech_n’)

and (DESCR_SYS: Sys)
and (: TEXT = Text’));
create DescrOf:= DESCR_OF ((DO_DESCR: TechN)
and (DD _OBJ: Eg));

if Descr <> () then

modify Descr{: TEXT = TEXT(: Descr) + Text'®);
else

create Descr:= DESCRIPTION((: TYPE = ‘Descr’)

and (DESCR_SYS5: Sys)
and (: TEXT = Text'?));
create DescrOf:= DESCR_OF ((DO_DESCR: Descr)
and (DO _0OBJ: Eg))s

endiTs;
{

3
Covi= COVERING(: Cat);

t¢ The value of Text is: ‘The specific entity types have been represented by the generic entity type.’

17 The value of Text is: 'The specific entity types have been represented by the generic entity type.’

18 The value of Text is: 'The descriptions of the specitic entity types {which have been represented by the
generic entity type} follow,’

17 The value of Text ist ‘The descriptions of the specific entity types (which have been represented by the
generic entity type) follow,’
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Disj:= EXCLUSIVE(: Cat)}
Subt:= first(SUBTYPE(ST_BST: Cat);
newlist(ListAttr); { List of the attributes representing the specific
entity types}
newlist(ListRole); { List of the roes representing the specific
entity types}
while Subt <> () do
Ess= ENTITY_T(E_ST: Subt);
if POPLLATION(: Es) <> NULL then { POPULATION(: Eg) is also specified }
AvgRep:= POPULATION(: Es) / POPULATION (: Eg);
endifs;
Ero:= E ROLE(ER E: Es);
if Ere <> () then
{
This specific ENTITY_T has only a mandatory role which is put in Eg
3
Ro:= ROLE(R_ER: Ero);
addlist(listRole, Ro)};
modify Ero(ER_E: Eg);
DefaultRoleName(Ro, E_NAME(: Es), Name)?2°;
modify Ro({: MIN_CON = 0) and (: R_NAME = Name)
and (: AVG_CON = AvgRep));
Li:= LINK(L_R: Ro)j
FindDescrTechN(Li, Descr, TechN);
if TechN < () then
modify TechN(: TEXT = TEXT(: TechN) + Text?');
else
create TechN:= DESCRIPTION((: TYPE = ‘Tech_n’)
and (DESCR_SYS: Sys)
and (: TEXT = Text?));
create DescrOf:= DESCR_OF ( (DO_DESCR: TechN)
and (DO_0OBJ: Li));

endif;
else
{
Find the next POSITION of attributes in Eg
3
Pos:= O3
At:= first(ATTRIBUTE(AT EL: Eq);
while At < () do
if POSITION(: At) > Pos then
Pos:= POSITION(: At)s
endif;
At:= next(ATTRIBUTE(AT EL: Eqg);
endwhiles;
Pos:= Pos + 1;
{
b
Attr:= first(ATTRIBUTE(AT_EL: Es};
if Attr = () then
{

20 PefaultRoleNase{Ro, NI, N2) returns in K2 the value of NI if Ni is & possible name for the role Ro of the
SCHEKA; otherwise, N2 conteins a ‘correct’ name proposed by the user,
2! The value of Text isy 'The role ' + R_NAME(: Ro) + ' representz the specific entity type which is now

represented by the generic entity type,’
22 The value of Text is: 'The role ' + R_NAME{: Ro) + ' represents the specific entity type which is non

represented by the generic entity type,’

iy
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No attribute in Es: a nmew boolean attribute is created in Eg

3
create AttrC:= ATTRIBUTE((AT_EL: Eg)
and (: AT_NAME = E_NAME(: Es))
and (: FORMAT = boolean)
and (: MIN REP = 0)
and (: MAX REP = 1)
and (: AVG_REP = AvgRep)
and (: POSITION = Pos);

addlist(ListAttr, AttrC);
create TechN:= DESCRIPTION((: TYPE = ‘Tech_n’)
and (DESCR_SYS: Sys)
and (: TEXT = Text®® ));
create DescrOf:= DESCR_OF ((DO_DESCR: TechN)
and (DO_OBJ: AttrC));

else

{

The attributes of Es are grouped in a new attribute of Eg

3

create AttrC:= ATTRIBUTE((AT_EL: Eg)
and (s AT_NAME = E_NAME(: Es))
and (: FORMAT = compound)
and (: MIN REP = 0)
and (: MAX_REP = 1)
and (: AVG_REP = AvgRep)
and (: POSITION = Pos);

addlist(ListAttr, AttrC);
create TechN:= DESCRIPTION((: TYPE = ‘Tech_n’)

and (DESCR_SYS: Sys)

and (: TEXT = Text®* ));
create DescrOf:= DESCR_OF ((DO_DESCR: TechN)

and (DO_0OBJ: AttrC));

Pos:= 13
while Attr <> () do
modify Attr((AT_EL: AttrC) and (: POSITION = Pos));
Pos:= Pos + 13
Attr:= next(ATTRIBUTE(AT_EL: Es)j
endwhile
endif;
endif;
{
Put the description/technical note of each specific entity type in that
of Eg ‘
3
FindDescrTectN(Es, Descris, TechNEs);
if DescrEs <> () then
modify Descr(: TEXT
delete DescrEs;
endif;
if TechNEs <> () then
modify TechN(: TEXT
delete TechNEs;
endif;

{

TEXT(: Descr) + TEXT(: DescrEs));

TEXT(: TechN) + TEXT(: TechhNEs));

23 The value of Text isy 'This attribute represents the specific entity type * + AT_NAME(: AttrC) + ' which
is now represented by the generic entity type.'

24 The value of Text isy 'This attribute represents the specific entity type ' + AT _NANE(: Attrl) + ' which
is now represented by the generic entity type.’
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Suppress Es and its ‘characteristics’ (the category is deleted if Es is
the last specific entity type)
3
delete Es;
{
b
Subt:= next(SUBTYPE(ST_GST: Cat);
endwhile
{
Representation of the class constraints by a global cardinality if more
than one specific entity type otherwise by a ‘simple’ cardinality
constraint
3
if (sizelist(ListRole) + sizelist(ListAttr)) = 1 then
Ar:= firstlist(ListRole);
if Ar = () then
Ar:= firstlist(ListAttr);
if Cov then
modify Ar(: MIN_REP = 1);
endif;
else
if Cov then
modify Ar((: MIN_CON = 1);
endify
endifs
else { At least two specific entity types }
{
Find the next available IKO_CODE of ID_KEY_ORD of Eg
3
Code:= O3
Tko:= first(ID_KEY _ORD(IKO EL: Eg));
while Iko <> () do
if IKO_CODE(: Iko) > Code then
Code:= IKO_CODE(: Iko);
endifs;
Tko:= next(ID_KeY ORD(IKO_EL: Eg))s
endwhile;
Code:= Code + 1;
{
3
if Cov then
if Disj then { The category formed a partition }
create GlobCard:= ID_KEY_ORD({: IKO_CODE = Code)
and (: TYPE = 'Glob_card’)
and (3 PARAML = 1)
and (: PARAMZ = 1)
and (IKO EL: Eg))s;
else { The category formed a cover }
create GlobCard:= ID_KEY ORD((: IKO_CODE = Code)
and (: TYPE = 'Glob_card’)
and (: PARAML = 1)
and (: PARAMZ = 99999)
and (IKO_EL: Eg))s
endif;
else
if Disj then { The category formed a disjunction 3}
create GlobCard:= ID_KEY_ORD((: IKO _CODE = Code)
and (: TYPE = 'Glob_card’)
and (: PARAML = 0)

FF
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and (: PARAMZ2 = 1)
and (IKO EL: Eg));
endif;
endif;
{
Update of the components
3
Nr:= 1;
Ro:= firstlist(ListRole);
while Ro <> () then
create Comp:= COMPONENT((C_IKO: BGlobCard} and (C_RA: Ro)
and (: TYPE = ‘Role’)
and (: SEQ_NBR = Nr));
Nre:= Nr + 13
Ro:= nextlist(ListRole);
endwhile
At:= firstlist(ListAttr);
while At <> () then
create Comp:= COMPONENT((C_IKO: GlobCard) and (C_RA: At)
and (: TYPE = 'Attr’)
and (: SEQ_NBR = Nr));
Nr:= Nr + 1;
At:= nextlist(ListAttr);
endwhile
endifs
end;

Algorithm E.9

procedure CreateSpecificET (var E: record-var

var ListAttr,

ListRole: list-record-var);
{

Specification:

s Precondition:
» E does not have a category for which
class inclusion constraints are specified

s Effect:
* This algorithm implements the transformation
specified in 6.3.1.G.g (p. 90)
3
begin
Sch:= SCHEMA(S_E: E)3

mon

Sys:= SYSTEM(SYS_SCH: Sch)s
DefaultETName(E_NAME(: E) + 17, Name);
Defaul tETShor tName (SHORT _NAME(:E) + "1°, ShortName);
create El:= ENTITY_T ((E_S: Sch)
and (: E_NAME = Name)
and (: SHOR_TNAME = ShortName) )

Cat:;= G _OF_SUBTYPE(GST_E: E)3
if Cat = () then { E1 will be the first specific ENTITY_T of E )

create Cat:= G_0OF SUBTYPE((GST_E: E) and (: COVERING = false)

and (: EXCLUSIVE = false));

endif;
create Subt:= SUBTYPE ((ST_E: E1) and (ST_GST: Cat));
{
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Transfer the optional attributes which stay optional in El (and also the
groups containing them)
H
Ni-z= 13
Att:= firstlist(ListAttr);
while Attr < () do
modify Attr((AT_EL: E1) and (: POSITION = Nr));
Comp:= first((COMPONENT(C_RA: Attr);
Code:= 1j
while Comp <> () do
Iko:= ID_KEY_ORD(IKO C: Comp)s
modify Iko((IKO El.: E1) and (: IKO_CODE = Code));
Comp:= next ((COMPONENT(C_RA: Attr)
Code:= Code + 1
endwhiles;
Att:= nextlist(ListAttr);
Nr:= N + 13
endwhile
{
Transfer the optional roles which stay optional in El1 (and also the
groups containing them)
}
Ro:= firstlist(ListRole);
while Ro <> () do
Ero:= E_ROLE(ER_R: Ro);
modify Ero(ER_E: El1);
Comp:= first((COMPONENT(C_RA: Ro);
while Comp <> () do
Tko:= ID_KEY_ORD(IKO_C: Comp);
modify Iko(IKO_EL: El);
Comp:= next ((COMPONENT(C_RA: Ro)j;
Code:= Code + 1;
endwhile;
Ro:= nextlist(ListRole);
endwhile
{
Update the origin of E1
1
create Orig:= PROPERTY((PRDOP_O: E1)
and (: P_ROLE = 'Origin’)
and (: P_VALUE = E_NAME(: E))
and (: TYPE = "ENTITY_T'));
{
Update the technical note of E1
3
create TechN:= DESCRIFPTION((: TYPE = “Tech_n")
and (DESCR_SYS: Sys)
and (: TEXT = Text?® ));

create DescrOf:= DESCR_OF ((DO_DESCR: Techih)
and (DO_OBJ: E1));
end;

2> The value of Text is: E_NAME(: Ef) + * contains the entities of ' + E_NAME(: E) + ' having eventually a
velue for the attributes/roles contained now in this entity type.’

H
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Algorithm E.10

procedure DeleteSpecificET (var Eg, Es: record-var);
{

Specification:

» Precondition:

» ENTITY_T Eg has a category for which
class inclusion constraints are not
specified

« ENTITY_T Es belongs to that category and
has only optional attributes/roles

» Effect:
* This algorithm implements the transformation
specified in 6.3.1.6.h (p. 91)
3
begin

Sch:= SCHEMA(S_E: E);

Sys:= SYSTEM(SYS_SCH: Sch)js

Cat:= G_OF_SUBTYPE(GST_E: E);

create Subt:= SUBTYPE ((ST_E: E1) and (ST_6GST: Cat));

{

Transfer the optional attributes of Es which stay optional in Eg
3

{

Find the nmext POSITION of attributes in Eg
}

Pos:= O3

At:= first(ATTRIBUTE(AT_EL: Eq);
while At <> () do
if POSITION(: At) > Pos then
Pos:= POSITION(: At);
endif;
At:= next(ATTRIBUTE(AT_EL: Eg)};
endwhiles
Pos:= Pos + 1;
{
Find the mext available IKO_CODE of ID_KEY_ORD of Eg
3
Code:= 03
Tko:= first(ID_KEY_ORD(IKO EL: Eg))s
while Iko <> () do
if IKO _CODE(: lko) > Code then
Code:= IKO_CODE(: Iko);
endif;
Tko:= mext(ID_KEY_ORD(IKO_EL: Eqg));
endwhiles
Code:= Code + 1;
{
3
Attr:= firstlist(ListAttr);
while Attr < () do
Defaul tAttName(Eg, AT _NAME(: Attr), Name)2¢:
modify Attr((AT EL: E1) and (: AT_NAME = Name) and (: POSITION = Pos));
Pos:= Pos + 13
Comp:= first((COMPONENT(C_RA: Attr);

26 DefaultAttName(E, NI, N2) returns in N2 the value of NI if NI is a possible name of an attribute of
ENTITY_T E; otherwise, N2 contains a 'correct’ name proposed by the user,
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while Comp <> () do
Iko:= ID_KEY_ORD(IKO_C: Comp) ;
modify Iko((IKO EL: E) and (IKO_CODE = Code));
Code:= Code + 1;
Comp:= next((COMPONENT(C_RA: Attr));
endwhile;
Att:= nextlist(ListAttr);
endwhile
{
Transfer the optional roles which stay optional in E1
3
Ro:= fisrtlist(ListRole);
while Ro <> () do
Ero:= E_ROLE(ER_R: Ro};
modify Ero(ER_E: E1);
Comp:= first((COMPONENT(C_RA: Ro);
while Comp <> () do
Iko:= ID_KEY_ORD(IKO C: Comp)s
modify Iko((IKO_EL: E1) and (IKO_CODE = Code));
Code:= Code + 1;
Comp:= next ((COMPONENT (C_RA: Ro);
endwhile;
Ro:= nextlist(ListRole);
endwhile
{
Update the technical note of Eg
3
if TechN < () then
modify TechN(: TEXT = TEXT(: TechN) + Text??);
else
create TechN:= DESCRIPTION((: TYPE = ‘Tech_n’)
and (DESCR_SYS: Sys)
and (: TEXT = Text?®));
create DescrOf:= DESCR_OF ((DO_DESCR: TechN)
and (DO_OBJ: Eg));
{
Delete Es (and the category if Es is its last SUBTYPE
3
delete Es;
end;

Algorithm E.11

procedure RepreslsaByRTs (var Eg: record-—var);
{

Specification:

¢ Precondition:
« Eg is an ENTITY_T with a category
» Eg has only "local’ components in its
aroups
e Effect:
* This algorithm implements the

27 The value of Text is: 'The specific entity types have been represented by the gemeric entity type.’
28 The value of Text is: 'The specific entity type ' + E_NAME(: Es) + * has been suppressed in Eg.’
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transformation specified in 6.3.1.06.1
(p. 91)
2
begin
Schi= SCHEMA(S_E: EqQ)s
Sys:= SYSTEM(SYS_SCH: Sch)j;
Cat:= B_OF_SUBTYPE(GST_E: Eg);
Cov:= COVERING(: Cat);
Disj:= EXCLUSIVE(: Cat);
Subt:= first(SUBTYPE(ST_GST: Cat);
newlist(ListSpec);
newlist(ListRole);
while Subt <> () do
Es:= ENTITY_T(E_ST: Subt);
create Erol:= E_ROLE(ER _E: Es);
create Ero2:= E_ ROLE(ER_E: Eg)s
create Rol:= ROLE((R_ER: Erol)
and (: R_NAME = ‘is-a’)
and (: MIN_CON = 1)
and (: MAX_CON = 1)
and (: AVG_CON = 1))}
if POPULATION(: Es) <> NULL and PORPULATION(: Eg) <> NULL

then

AvgCard:= POPLLATION(: Es) / POPULATION(: Eqg);
else

AvgCard:= NULL;
endif

create Ro2:= ROLE((R_ER: Ero?2)
and (: R_NAME = ‘may-be-a’)
and (: MIN_CON = O)
and (: MAX_CON = 1)
and (: AVG_CON = AvgCard));

onn

addlist(ListRole, Ro2);
Defaul tRTName (SHORT_NAME(Es) + "_ISA_° + SHORTNAME(: Eg), Name)?7;
Defaul tRTShortName(Namel1..7], ShortName)¥°;
create Li:= LINK((L_R: Rol) and (L_R: Ro2) and (L_5: Sch)
and (: L_NAME = Name)
and (: SHORT_NAME = ShortName)
and (: DEGREE = 2)
and (: POPULATION = POPULATION(: Es));

{

Update the origin of Li

3

UpdateOriginLis

{

Update the technical note of Li

3

UpdateTechNLi;

{

3

addlist{ListSpec, Es)

delete Subt;

Subt:= next(SUBTYPE(ST_(GST: Cat);
endwhile

29 DefaultRTNase(Ni, N2) returns in N2 the value of NI if Nl is a possible nase for a LINK of the SCHEMA;
otherwise, N2 contains & 'correct’ name proposed by the user.

30 Defaul tRTShortName (N1, N2} returns in N2 the value of N! if N1 is a possible short name for a LINK of the
SCHEMA; otherwise, N2 contains a 'correct’ name proposed by the user,
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{

Representation of the class constraints

b

if (sizelist(ListSpec) = 1 and Cover) then
Ro:= firstlist(ListRole);
modify Ro(: MIN_CON = 1);

else { At least two specific entity types }

{

Find the mext available IKO_CODE of ID_KEY_ORD of Eg
2

Code:= O3

Iko:= first(ID_KEY _DORD(IKO EL: Eg));
while Iko <> () do
if IKO CODE(: Iko) > Code then
Code:= IKO_CODE(: Iko);

endif;
Tko:= pext(ID_KEY_ORD(IKO_EL: Eg));
endwhiles;
Code:= Code + 1;
{
3
1f Cov then
if Disj then { The category formed a partition }
create GlobCard:= ID_KEY_ORD((: IKO_CODE = Code)
and (: TYPE = 'Glob_card’)
and (: PARAML = 1)
and (: PARAMZ = 1)
and (IKO_EL: Eg));
else { The category formed a cover }
create GlobCard:= ID_KEY_ORD((: IKO_CODE = Code)
and (: TYPE = 'Glob_card’)
and (: PARAML = 1)
and (: PARAMZ = 99999)
and (IKO EL: Eg))s
endif;
else
if Disj then { The category formed a disjunction ?}
create GlobCard:= ID_KEY_ORD((: IKO_CODE = Code)
and (: TYPE = 'Glob_card’)
and (: PARAML = 0)
and (: PARAMZ = 1)
and (IKO_EL: Eg));
endif;
endify
{
Update of the components
3
Nr:= 13

Ro:= firstlist(l.istRole);
while Ro <> () then
create Comp:= COMPONENT((C_IKO: GlobCard) and (C_RA: Ro)
and (: TYPE = 'Role’)
and (: SEQ NBR = Nr));
Nrs= Nr + 13
Ro:= nextlist(ListRole);
endwhile
endifs
end;
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‘Toolbox'’

Algorithm E.12

procedure Statlnfer (var Eg: record-var)s
{

Specification:

v Precondition:

« Eg is an ENTITY_T with a category forming
a partition

s Effect:
« The statistical inference rules (p. 78)
are applied on Eg
3
begin

if POPULATION(: Eg) <> NALL then
GenPop:= POPLLATION(: Eg)
NumberUnspecified:= O;

else
GenPop:= —13;
Numbertnspecified:= 13

endif;

Cat:= G_0OF_SUBTYPE(GST_E: Eg);

Subt:= first(SUBTYPE(ST_GST: Cat));

SpecPop:= 03

while (Subt <> ()) and (NumberUnspecified £ 1) do
Es:= ENTITY_T(E_ST: Subt);
if POPULATION(: Es) <> NULL then

SpecPop:= SpecPop + POPULATION(: Es)g

else
Spec:= Es;
NumberUnspecified:= NumberUnspecified + 1;
endif;
Subt:= next(SUBTYPE(ST_GST: Cat))s
endwhile;

if NumberUnspecified = 1 then
if GenPop <> =1 then
modify Spec(: POPULATION = GenPop — SpecPop);
else
modify Eg(: POPULATION = SpecPop);
endif;
endif;
end;

Algorithm E.13

procedure FindDescrTechN (var 0Obj, Descr, TechN: record-var);
{

Specification:

v Precondition:

» Obj is an ATTRIBUTE, an ENTITY_T, a LINK
or a SCHEMA
¢ Postcondition:

* Descr is the DESCRIPTION with TYPE =

i
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‘Descr’ associated with Obj, otherwise
Descr = ()
» TechN is the DESCRIPTION with TYPE =
‘Tech_n' associated with 0Obj, otherwise
TechN = ()
3
begin
Descri= ()3
TechN:= ()3
DescrOf:= first(DESCR_OF(DO_OBJ: Obj));
if DescrOf <> () then
De:= DESCRIPTION(DESCR_DO: DescrOf);
if TYPE(: De) = ‘Descr’ then

Descr:= De;

elee { TYPE = ‘Tech_n’ }
TechN:= Dej

endif;

DescrOf:= next(DESCR_OF(DO_0OBJ: 0Obj));
if DescrOf <> () then
:= DESCRIPTION(DESCR_DO: Descr0f);
if TYPE(: De) = 'Descr’ then
Descr:= Des
else { TYPE = '‘Tech_n' 3}
TechN:= De;
endif;
endif;
endif;
end;

Algorithm E.14

procedure Copylink (var Li, Ro: record-var
var ListEnt: list-record-var);

{

Specification:

s Precondition:
« Li is a LINK and Ro is a ROLE attached to Li
+ ListEnt contains ENTITY_Ts which are specific
ENTITY_Ts of the ENTITY_T playing the role Ro

» Effect:
« The role Ro is replaced by a multidomain role’!
concerning the ENTITY_Ts of ListEnt
« L1 is however not deleted
2

Algorithm E.15

procedure CopyAttr (var Att, Objy: record-var);
{

Specification:

s Precondition:
+ Att is an ATTRIBUTE
» Obj is either an ATTRIBUTE, an ENTITY_T or a LINK
« POSITION(: Att) and AT_NAMEZ(: Att) are supposed
acceptable for Obj

=t Actually, it is replaced by the replacement of a multidomain role {see footnote B, page 87).
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s Effect:
*» A copy of Att is created
and attached to Obj
b
begin

create A:= ATTRIBUTE( (AT_EL: 0Obj)

and (: AT_NAVME = AT _NAME(: Att))
and (: FORMAT = FORMAT(: Att))
and (: LENGTH = LENGTH(: Att))
and (: DECIM = DECIM(: Att))
and (: MIN_REP = MIN_REP(: Att))
and (: MAX_REP = MAX_REP(: Att))
and (: AVG_REP = AVG_REP(: Att))
and (: AVG_LENGTH = AVG_LENGTH(: Att))
and (: POSITION = POSITION(: Att)));
{
Copy of the description/technical note
)
CopyAttObjDescrTechN;

{ .
Copy of the component attributes if any
3
AttComp:= first(ATTRIBUTE(EL_AT: Att));
while AttComp <> () do
CopyAttr(AttComp, A)j;

endwhile

end;



