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Depth profiling of hybrid multilayers using ToF-SIMS: from model 

samples to photonic devices 

 

Abstract  

In diverse areas such as medicine, energy, aerospace or electronics, the technology around us 

is constantly growing in sophistication. To improve device performances, advanced materials are 

combined into thin films multilayers or to form complex 3D architectures.  

At the same time, the search for miniaturization pushes the device features to dimensions in the 

nanometer range, which confers a preponderant role to interfaces in the macroscopic behavior of 

devices. The understanding of complex phenomena taking place at thin films interfaces is mandatory 

to identify degradation mechanisms and also to rationally prevent or limit these effects. Therefore, 

methods for in-depth characterization need to be developed to implement strategies and to guide 

both the design and the processing conditions of thin film stacks; this would finally allow increasing 

both the device performance and lifetime. 

In this context, time-of-flight secondary ion mass spectrometry (ToF-SIMS) has shown its ability to 

provide in-depth molecular information, combining an extremely high detection limit and surface 

sensitivity, high mass and depth resolutions, and convenient lateral resolution to image 3D features. 

In this thesis work, ToF-SIMS surface and depth profile analysis is applied to investigate model and 

applied thin film architectures using different analysis and erosion ion beams conditions. In particular, 

the fundamental interaction mechanisms between ion beams and materials surfaces are highlighted 

by varying the nature, energy and size of the ion beam projectile. For hybrid (organic/inorganic) thin 

films, the sputtering and analysis beams conditions have been optimized to limit the materials 

modifications induced by the ion beam exposure while maintaining intense and characteristic (high 

mass fragments) molecular signals and reasonable sputtering yields (i.e. analysis time). 

On particularly challenging hybrid device architectures for OLEDs and solar cells applications, the 

results unambiguously show that low energy cesium ion beam (Cs+ at ~ 500 eV) and argon clusters ion 

beams (Arn
+) with reduced size (n~500 atoms) at a relatively high energy (~20 keV) are the most 

suitable conditions to perform depth profile analysis. 

 

 

 

  



 
 

 

  



 
 

Profilage ToF-SIMS de multicouches hybrides : de l’étude 

d’échantillons modèles aux dispositifs photoniques 

 

Résumé  

Dans des domaines aussi divers que la médecine, l’énergie, l’aérospatial ou l’électronique, la 

technologie qui nous entoure ne cesse de gagner en sophistication. Pour améliorer les performances 

des dispositifs, des matériaux innovants sont agencés en multicouches ou forment des architectures 

3D élaborées. 

Parallèlement, la recherche de miniaturisation nous amène à manipuler des structures de l'ordre du 

nanomètre, ce qui confère aux interfaces un rôle prépondérant dans le comportement macroscopique 

des dispositifs. La compréhension des phénomènes complexes se produisant aux interfaces des 

couches minces est indispensable pour identifier les mécanismes de dégradation et également pour 

prévenir ou limiter de manière rationnelle ces effets. Par conséquent, des méthodes de caractérisation 

en profondeur doivent être développées pour mettre en œuvre des stratégies et pour guider à la fois 

la conception et les conditions d’utilisation de ces structures, ce qui permettrait in fine d'augmenter 

les performances et la durée de vie du dispositif. 

Dans ce contexte, la spectrométrie de masse d’ions secondaires par temps de vol (ToF-SIMS) a montré 

sa capacité à fournir des informations moléculaires en profondeur, combinant une limite de détection 

et une sensibilité de surface extrêmement élevées, d’excellentes résolutions en masse et en 

profondeur, ainsi qu’une résolution latérale permettant d’effectuer de l’imagerie 3D. 

Dans ce travail, des analyses ToF-SIMS de surface et en profondeur sont appliquées pour étudier des 

assemblages de films minces modèles ou constituant des dispositifs réels, à l’aide de différentes 

conditions d’analyse et d’érosion. En particulier, les mécanismes fondamentaux d’interaction des 

faisceaux avec la surface sont mis en évidence en faisant varier la nature, l’énergie et la taille du 

projectile du faisceau d’ions. Les meilleurs paramètres d'analyse en vue de pulvériser des couches 

minces, organiques et hybrides organiques/inorganiques, sont ensuite étudiés. Ces paramètres idéaux 

permettent de limiter la modification du matériau induite par l'exposition au faisceau d'ions tout en 

maintenant des signaux moléculaires intenses et caractéristiques (fragments de grande masse) et des 

rendements de pulvérisation raisonnables (temps d'analyse réduit). 

Sur des architectures hybrides particulièrement complexes, telles que des OLED et des cellules solaires, 

les résultats montrent sans ambiguïté que les faisceaux d'ions césium de basse énergie (Cs+ à ~ 500 eV) 

et les clusters d'argon (Arn
+) de taille réduite (n ~ 500 atomes) à une énergie élevée (~ 20 keV) sont les 

conditions les plus appropriées pour effectuer une analyse de profilage en profondeur.  
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1 INTRODUCTION 

 

 

Organic and inorganic materials are combined in a growing number of modern devices 

applications. New and more complex combinations of materials, based on sophisticated hybrid 

organic/inorganic heterostructures, have been constantly developed to improve the device 

performance (Figure 1).  

Such hybrid heterostructures typically consist either in stacked organic and inorganic thin layers 

(multilayers) or in a composite layer in which inorganic nanomaterials (nanoparticles, 2D materials, 

etc.)  are embedded in an organic matrix. A large variety of technologies are concerned by the advent 

of hybrid materials: just to name a few, medicine, communication, cosmetics, aerospace, 

semiconductor industry and energy production and storage, which constitutes one of the most 

important challenges of our society. These innovative materials are expected to improve the 

performance of green technologies including solar cells, fuel cells, batteries to replace conventional 

energy sources based on oil, gas or nuclear fuels.  

In the semiconductors industry, small organic molecules and polymers have attracted intense and 

growing research in the last twenty years. When charges are injected into organic semiconductors, 

they show a conductive behavior,1 and these properties earned Shirakawa, Heeger, and McDiarmid 

the Nobel Prize in Chemistry in 2000. In modern electronic devices, organic semiconductors are 

typically combined with inorganic electrode materials (metals and conductive oxides). Since the 

beginning of this century, the numerous benefits provided by organic electronics, namely low-cost 

processing and simple deposition processes, malleability, transparency or tunable optical and electrical 

properties, have promoted their application in a multitude of state-of-the-art devices such as new 

generation solar cells,2 organic light-emitting diodes (OLEDs),3 organic field-effect transistors (OFETs)4 

and batteries.5  

Among these innovative materials, hybrid organo-lead halide perovskites have received interest from 

a growing scientific community.6 The peculiar crystalline structure of such perovskites, combining both 

metal and organic cations, makes it an ideal intrinsically-hybrid material. In the solar energy field, 

perovskite solar cells (PSCs) are considered the most promising technology, also because of the 

spectacular rise of their solar to power conversion efficiency (PCE). With a recent record of 22.6 %PCE7 

(starting from only 3.8 % in 20098) on small area devices, perovskite technology currently competes 

with silicon-based PV cells. The major limitation that prevents the wide distribution of PSCs on the 

market are the toxicity of some components such as lead and the poor intrinsic stability of the 
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perovskite material. The increase of the device performance and stability has brought to a progressive 

increase of the PSCs formulation complexity: many configurations and materials for hole and electron 

extraction layers have been combined and the chemical composition of perovskite has been finely 

engineered with multiple materials. This complexity requires investigating degradation phenomena 

taking place at the interfaces and within thin layers in order to further optimize the devices. 

 

 

Figure 1 - Example of structures found in hybrid organic/inorganic devices. Left: Perovskite solar cell 

[9] ; Right: OLED for display application [Source: https://oled.com/oleds/]. 

 

For solar cells and also many other photonics and organic electronics applications, there is an urgent 

need in further developing advanced characterization tools and protocols to understand more in 

depth, at the nanometer scale, degradation processes occurring at the interfaces. The development of 

new technologies opens opportunities and requires in parallel to develop and optimize analysis 

conditions using advanced characterization techniques. 

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-Ray Photoelectron Spectroscopy 

(XPS) coupled to ion beam depth profiling are versatile and complementary techniques to characterize 

the in-depth chemical and molecular composition of multilayers and to monitor the interfaces. Both 

techniques offer routine analysis of metal alloys, inorganic compounds, polymers or biological samples 

if the parameters are adequately chosen. In particular, ToF-SIMS presents an extremely high surface 

sensitivity and allows the molecular depth profiling of both organic and inorganic layers, with a depth 

resolution in the nanometer range. In a depth profile, molecular signals are displayed as a function of 

the ion beam sputtering time. Generally speaking, one expects steep rises and falls of molecular signal 

intensities at the interfaces. Conversely, blurred transitions are more difficult to interpret, because it 

can either indicate defects arising during the device processing, or degradation induced by some aging 

effect or a consequence of the ion beam bombardment during the analysis. To discriminate between 

these three effects, one should accurately design experiments, be aware of the sample preparation 

and be able to characterize the ion beam-surface interaction processes. This will greatly help the 

https://oled.com/oleds/
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differentiation of "real" degradation mechanisms from ion beam induced artifacts. This issue is 

addressed in Chapter 2 (Materials and Methods) when discussing practical aspects of ToF-SIMS i.e. the 

operating principles and a description of the different analysis modes.  

Amongst the large variety of analytical techniques, ToF-SIMS offers an excellent combination of surface 

sensitivity, molecular analysis capability and lateral resolution allowing for imaging. Complementary 

information is accessible with XPS analysis. A comparison between both techniques is given in this 

section. Besides the analysis techniques, the deposition process of thin layers affects the interpretation 

of the depth profiles, since the quality of the samples is an essential prerequisite for high-quality in-

depth analyses. This is the reason why we focus on the experimental deposition parameters and 

motivate the selection of the deposited materials. Finally, a data treatment method based on 

multivariate analysis (Principal Component Analysis, PCA) is briefly introduced. This last paragraph, 

although not exhaustive, should provide adequate fundamental aspects for the comprehension of 

results involving PCA treatment. 

Optimizing the depth profiling conditions, of course, requires mastering the parameters that influence 

the depth resolution and understand how this latter is measured. Chapter 3 is dedicated to depth 

profiling, along with a history of the existing ion sputtering sources and the sputtering mechanisms 

that are involved. A first insight is given to summarize the advantages and drawbacks associated with 

the different ion sources, for different materials (organic, inorganic), and the parameters which can be 

adjusted to optimize the sputtering conditions. Challenges regarding the in-depth molecular 

characterization of hybrid stacks are also discussed in the light of existing studies and analytical 

methods. 

Chapter 4 presents the results divided into four sections, each accounting for a specific publication. 

The busy reader can skip the introduction and experimental sections of the scientific papers, which 

contain a certain amount of redundancy with the main text. It is worth noticing that each article is an 

independent entity, with its own bibliography, while the references associated with the main text are 

sent back to Chapter 6. 

Section 4.1 assesses the depth profiling of organic materials using low energy Cs+. In particular, model 

samples that were already studied in previous works from our group, and for which the depth profiles, 

obtained with low-energy Cs+ and Ga+ beams were not successful (in a way that will be explained), 

have been analyzed with different analysis beam conditions and the parameters of the analysis gun 

are discussed. It appears that, more than the sputter gun parameters, the final depth resolution is 

strongly impacted by the analysis primary ions nature and fluence, despite the very low fluence when 

compared to the sputter gun. The results show that the best depth resolution achievable using Cs+ (less 

than 4 nm in our best conditions) competes with the ultimate resolution obtained when using Arn
+ 

clusters (4-5 nm)10,11.  
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After investigating organic model samples, Section 4.2 focuses on the study of hybrid model stacks 

made of metal thin layers (either gold or chromium) and amino acid layers deposited on a silicon 

substrate. We discuss key parameters such as the recoil depth, degradation rate and changes in 

erosion rates during the profile, depending on the metal (Au or Cr) and on whether the soft (organic) 

material is deposited on the top of or below the metallic layer. On such samples, notoriously difficult 

to depth profile, the Cs+ beam allows obtaining excellent depth resolutions. 

Partnerships with multiple research groups across Europe allowed disposing of state-of-the-art 

optoelectronic devices. Knowing that Cs+ constitutes a convenient erosion source for hybrid depth 

profiling, we applied these ions in Section 4.3 on complex organic light emitting diodes (OLEDs) 

multilayers. In parallel, we challenged a PCA-assisted procedure for the unsupervised localization of 

interfaces and identification of characteristic molecular peaks. This method proves to be fast, user-

independent and very efficient in differentiating layers, except when interfaces are excessively 

degraded. In this case, we proposed that the user has to consider a higher number of Principal 

Components (PCs). Also, the relatively high fragmentation induced by monatomic ion beam sputtering 

sometimes hinders discrimination between too similar organic molecules. 

In Section 4.4, the study of perovskite monolayers and perovskite solar cells brings a higher level of 

complexity. This intrinsically hybrid material (used in solar cells, LEDs or sensors) was deposited on a 

glass substrate and depth profiled using Cs, monoatomic Ar and Ar clusters in a wide range of cluster 

sizes and energies. We compare a variety of different sputtering conditions, in terms of the depth 

profile quality and propose optimized parameters, in order to keep the perovskite modification as low 

as possible. This is an essential prerequisite to safely identify degradation features. It appears that the 

best conditions are obtained with 500 eV Cs+ and small argon clusters with high energy per atom (Ar500
+ 

at 20 keV). 

Overall, this work discusses the challenges regarding the depth profiling of organic and hybrid samples 

and compares the performances of different ion sources. In particular, it draws the attention of the 

operator about the importance of both erosion and analysis beams parameters and guides him/her in 

the selection of optimized conditions (i.e. limit the damage induced by the beam, provide high sputter 

rates and maintain high intensities of molecular fragments). By progressively increasing the complexity 

of the studied systems (starting from simple organic model multilayers to thin metal layers deposited 

on amino acids, to full optoelectronic devices), we are now in a position to provide recommendations 

for the extraction of 3D information from complex hybrid systems. The present work also 

demonstrates that, thanks to their versatility, low-energy Cs and Ar clusters (whose size and energy 

can be easily tuned) allow investigating buried thin layers and interface effects in organic, inorganic 

and hybrid multilayers.  
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2 MATERIALS & METHODS 

2.1 TIME OF FLIGHT SECONDARY ION MASS SPECTROMETRY (TOF-SIMS) 

2.1.1 Basic operating principles 

Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a powerful surface analysis 

technique that provides a molecular identification of the first atomic layers of the sample. The surface 

is bombarded with primary ions that are back-scattered or implanted into the surface. The scattering 

cross-section, i.e. the probability of interaction between the projectile and the target decreases with 

the projectile incident energy like 1/E².12 In SIMS, the relatively low energy ranges (a few keV) 

compared to nuclear analysis techniques (usually, a few MeV) allows the incident ions to deliver a part 

of their energy to the target atoms. Following the example of billiard balls, this energy is then 

dissipated into the material through collision cascades. Eventually, some branches of this collision 

return to the surface, leading to the ejection of ionized and neutral fragments or molecules that are 

characteristic of the sample surface. When moving away from the impact point, where only small 

fragments are ejected, the energy that returns to the surface has dissipated and allows higher mass 

molecular fragments to be desorbed. Simultaneously, electrons and photons can be emitted from the 

surface following de-excitation processes (Figure 2).13  

 

 
 

Figure 2 – Primary ion bombardment in SIMS. The primary ions are backscattered or implanted in the 

surface. In this case, it gives rise to collision cascades and the ejection of neutral and ionized 

fragments. 
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A voltage of typically 2 kV, called extraction voltage, is set 1.5 millimeters above the sample (which is 

usually grounded) and the potential difference generates an electric field that accelerates the ionized 

fragments towards the analyzer column. These so-called secondary ions, representing only a small 

proportion of the ejected matter, constitute the only information collected by the technique, while 

neutral fragments and molecules stay in the chamber and are pumped or redeposited. This means that 

the signal intensity (output) depends on the ionization, and the ejection probabilities, making ToF-

SIMS a semi-quantitative technique. Indeed, for elemental secondary ions, the ionization is due to 

electron exchange between the ejected atom and the surface. This process can be dramatically 

affected by the chemical environment of the surface. It is for example well known that oxidation can 

vary the ionization yields by several orders of magnitude14. Molecular fragments are also subject to 

this matrix effect, despite different ionization mechanisms are involved15. Overall, the detected 

intensity IM of a species M is governed by this fundamental equation: 

 IM = α YM IP [M] η (1) 

Where α is the ionization probability, YM is the total yield of the species M (the number of sputtered 

particles M per primary ion), IP is the number of primary ions per second, [M] is the relative 

concentration of the fragment M in the sample and η is related to the transmission of the analyzer and 

the detector efficiency. Obviously, the intensity in the spectrum cannot be directly assimilated to the 

concentration. 

Under the effect of the electric field, secondary ions acquire a fixed kinetic energy (i.e. 2 keV) and travel 

through a drift region of a known length with a velocity that is characteristic of their mass (Figure 3).  

The Time of Flight (ToF) of each ion from the sample surface to the detector is recorded and a simple 

conversion allows for the mass calculation of molecular fragments following the relation:  

 
z. e. V =  

m. v²

2
=

m. (L/t)²

2
 

 
⇔  

m

z
=

2. e. V

(L/t)²
= 2. e. V

t²

L²
 

(2) 

where z.e stands for the ionic charge, V is the extraction potential and v denotes the velocity of a 

specific ion, which can be easily calculated, knowing the distance between the sample surface and the 

detector L and by measuring the time needed by this ion to reach the detector, t. 
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Figure 3 – Working principle of a time of flight detector.16 

 

The analysis source used in this work emits simultaneously Bi+ and small Bi clusters (Bi3
+, Bi5+, Bi7+). 

They all have the same energy, but different masses, resulting in different velocities, which in turn 

affects the mass resolution. In order to select a single species, one uses a Wien filter1, a mass selector 

constituted by an electric field crossed with a magnetic field. The particles are not deflected when the 

Coulomb’s law equals the magnetic force of Lorentz’s law, qE = qvB, thus v = E/B. In other words, by 

adjusting the values of E and B, it is possible to select a single species of analysis ions. The choice 

between monoatomic ions and small clusters is motivated by whether one needs to enhance the signal 

intensity or to preserve high mass intensities by decreasing the average energy per atom, respectively. 

Measuring times of flight implies that the analysis beam has to be pulsed. This is made possible by the 

chopper, in which a square signal voltage with a frequency of 5 kHz is applied to two deflection plates. 

Most of the time, when the voltage is set to Vmax or – Vmax, the beam is deflected out of the aperture, 

but every time the signal polarity is reversed (meaning every 100 µs), the beam passes through the 

aperture for 10 to 100 ns, giving the length of the primary pulse. Reducing the pulse length narrows 

the dispersion of the measured times of flight for fragments of the same mass and consequently, it 

increases the mass resolution. Beyond the chopper, the ions enter into the buncher, which is made of 

two plates that are both grounded when the pulse enters the zone in between them. When the pulse 

is located exactly between the plates, the rear plate is set to a positive voltage that accelerates the 

ions, the last ones being more accelerated than the first ones (Figure 4). This allows the reduction of 

the pulse length to a value of 1 ns and improves considerably the mass resolution. However, this 

broadens the kinetic energy distribution of the ions inside a pulse, implying they are not deflected the 

same way inside the optical focalization system (chromatic aberration). The diameter of the beam is 

thus negatively affected, and the lateral resolution is degraded. For this reason, when high lateral 

accuracy is needed, the buncher cannot be used, implying that the mass resolution is sensibly reduced. 

                                                           
1 This description refers to the equipment of a ToF-SIMS IV from ION-TOF (Münster, Germany) and differs for 
more recent tools. 

m/z 
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Practically, it is possible to partially workaround and find a trade-off between mass resolution and 

lateral resolution, as will be briefly explained in the next section.  

 

Figure 4 – Schematic of a buncher. 17 

 

Finally, localized charge effects arising from the intake of positive charge (and the ejection of ionized 

fragments and electrons) may spread the energy distribution of secondary ions or even deflect the 

primary beam, due to the buildup of a surface voltage. A flood gun is used to compensate this charge 

by flooding low-energy electrons over the surface. However, the topography (that affects the electric 

field and the distance traveled from the sample to the detector) and the initial kinetic energy 

distribution of the different species sputtered from the surface can also affect the times of flight. The 

mass resolution is thus badly degraded on uneven surfaces.  

In order to lessen the time of flight distribution of the ions with the same mass, a uniform electrical 

field curves the trajectory of the ions at the top of the analyzer column, in a so-called reflectron 

electrostatic mirror (Figure 5). 
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Figure 5 – Sketch of a reflectron ion mirror, placed at the top of the analyzer column.16 

 

This way, for the same mass, the most energetic ions travel a longer distance and reach the detector 

simultaneously with the other ions. Indeed, from the equation (2), we know that the time of flight is:  

 
𝑡 =  L . √

m

2. z. e. V
 

(3) 

We can also write that m=2.E.t²/L², where E is the energy attributed to every ion of charge z.e by the 

potential ΔV. Then the differential expression of the mass is:  

 
dm =  

4Et

L²
 dt +  

2t²

L²
 dE – 

4Et²

L³
 dL =  2m 

dt

t
 +  m 

dE

E
 –  2m 

dL

L
 

(4) 

The inverse of the mass resolution can thus be written by: 

 
 
Δm

m
=  2

Δt

t
 +

 ΔE

E
−  2

ΔL

L
 , 

(5) 

meaning that the parameters which are responsible for the mass resolution degradation are Δt and 

ΔE, the energy distribution of the secondary ions when they are emitted from the surface. The 

reflectron voltage is set at +- 25 V at the top of the detection column, allowing the most energetic ions 

to travel a longer distance. This additional ΔL impacts positively the mass resolution, i.e. reduces Δm/m 

and compensates for the degradation brought by the ΔE. 

 

2.1.2 ToF SIMS analysis modes 

As mentioned previously, ToF-SIMS allows molecular characterization of layers through the parallel 

detection of all the ionized fragments emitted from the surface. Practically, the analyzed surface is 

divided into pixels. A mass spectrum is acquired at each pixel (one pulse of Bin+ ions) and the primary 
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beam is rastered along the total area. This analysis mode is called Static SIMS (Figure 6a) and is 

considered as non-destructive, as long as the primary ion fluence does not exceed the static limit of 

1012 ions/cm² since the probability of the same target atom being bombarded twice is extremely low. 

Indeed, considering the typical atomic concentration of 1015 atoms/cm², only 0.1% of the atomic sites 

should be impacted. In these conditions, the information comes from the first atomic layers.  

Since each pixel is associated with a spectrum, we can map the information laterally, but as stated 

above, the lateral resolution is quite poor if the beam is bunched. Conversely, to achieve a lateral 

resolution of 100 nm, no bunching is allowed, so the length of the pulse has to be increased, thus 

sacrificing mass resolution. This so-called imaging mode (Figure 6b) also provides information that is 

limited to the topmost atomic layers. Using the “Burst Mode” however, a tradeoff between mass and 

lateral resolutions is possible: long non-bunched pulses can be chopped into several short pulses, 

which in the spectrum results in a multiplicity of peaks for each mass.18 The mass resolution is 

somewhat preserved, but the spectra get difficult to handle in case mass interferences are present. 

The other way to fulfill the double requirement of mass and lateral resolutions is to delay the extraction 

after the primary ions impact.19–21 In delayed extraction mode, the ejected matter forms a cloud above 

the surface that expands in the absence of an electric field. Then, when the extractor voltage is set, 

the ions that are further from the extractor experience a higher potential difference, thus undergoing 

the effect of the acceleration for a longer time, than ions with a higher velocity that almost reach the 

analyzer column. In these conditions, the time of flight depends less on the pulse length.  

 

Figure 6 – Analyses modes with ToF-SIMS. (a) Surface spectrometry or static SIMS, (b) surface 

imaging, (c) depth profiling. [Source: https://www.iontof.com] 

 

For in-depth analysis, an erosion gun is used alternately with the analysis gun. The matter ejected 

during the sputtering process is not analyzed; during this phase, the previously rastered surface is 
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removed and a "fresh" surface deeper into the sample is dug up for the next analysis cycle. This last 

3D depth-profiling mode (Figure 6c) will be the focus of our attention. Alternating two different guns 

for the analysis and erosion phases corresponds to the so-called dual beam experiment. This offers 

some major advantages with respect to a dynamic SIMS experiment:  

- The pulsed beam allows the time of flight detection and thus the parallel detection of all 

fragments and allows the user to reconstruct results retrospectively.  

- Despite very low currents involved for the pulsed analysis beam, high sputter yields are 

ensured by the erosion beam.  

- Each beam can raster a different area, which means that one can select a smaller analysis area, 

avoiding the detection of fragments coming from the borders.  

- It offers the possibility to focus the analysis beam while keeping the erosion beam defocused 

and thus limiting the induced roughness. In addition, high lateral (3D) resolution imaging is 

possible with highly focused analysis beams. 

 

In dual beam analyses, two different approaches can be used: 1) the interlaced mode where both 

beams are used quasi-simultaneously and 2) the non-interlaced mode that we used for most of the 

studies of this work. In the non-interlaced mode, at least one analysis cycle is completed before the 

erosion gun is set on. The final spectrum will thus consist in the integration of n mass spectra (where 

n is equal to the squared number of pixels) built up at each pulse between two sputtering phases. For 

example, if we chose 128 pixels, 128x128 pulses of 100 µs will hit the raster surface, leading to an 

analysis cycle time of 1.64 s (128x128x10-4). The analysis is followed by the sputtering cycle whose 

length can be set independently.  

The non-interlaced mode is particularly recommended for the study of insulating samples because it 

allows a longer charge compensation interval since the flood gun is in use during the whole sputtering 

cycle. It is possible to select any integer number of analysis cycles, which increases the signal intensity. 

However, even if the analysis beam current is much lower than the erosion beam one, the energy 

involved is much greater (25 keV vs. 500 eV). We previously demonstrated that the bismuth rastering 

should be limited to one frame.22 Similarly, one should favor Bi3+ instead of Bi+, since it improves 

dramatically the depth profile quality. The influence of the analysis primary ions on depth resolution 

will be demonstrated hereafter. Moreover, limiting the Bin+ impacts relative to the sputtering ions ones 

is the main interest of the non-interlaced mode. 
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2.2 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 
 

The aim of this section is not to provide an exhaustive description of the XPS technique, but 

rather to demonstrate its complementarity with TOF-SIMS and to draw up an inventory of the 

advantages and drawbacks of each technique.  

Photoelectron spectroscopy is a technique that allows the chemical, elemental and quantitative 

characterization of a material surface. The sample is irradiated with X-Rays that transfer their energy 

to core electrons, so that characteristic photoelectrons are ejected from the material surface and their 

kinetic energy denoted Ek below, is measured by an analyzer. Knowing the energy of the initial photon 

(here, for the X-Ray from Al Kα Eph = 1486.7 eV), the electron binding energy, Eb, is simply deduced by 

the relation: 

 Eb = Eph – (Ek + φsp), (6) 

where φsp stands for the work function of the spectrometer. The binding energy of an electron from a 

specific orbital is characteristic of the chemical element and is also affected by the local bonding 

environment of the atom. 

The XPS survey spectrum consists of the number of electron counts detected as a function of the 

deduced binding energy. The number of electrons detected can be related to the surface atomic 

composition, through the known atomic sensitivity factors, making XPS a quantitative technique (with 

~1% accuracy). However, no detection of hydrogen nor helium is possible, imaging is limited because 

of the difficulty in focalizing X-rays,  and the XPS technique is about 1000 times less sensitive than ToF-

SIMS (see detection limit values in Table 1). 

The XPS signal is representative of the first 10 nm under the material surface (assumed homogeneous) 

and can be possibly coupled to an ion beam sputtering for depth profiling. In our lab, the two XPS 

spectrometers are equipped with an Ar sputtering gun. On the ESCALAB spectrometer, both 

monoatomic Ar+ and Arn
+ clusters sources can be selected either to clean off the surface contamination 

or to obtain in-depth information. Like for ToF-SIMS, a flood gun provides the charge compensation of 

insulating surfaces. 

 

ToF-SIMS XPS 

Semi-quantitative Quantitative 

Molecular characterization Elemental and chemical characterization 

Information depth: first atomic layers ~1 nm Information depth: ~10 nm 

lateral resolution: 100 nm 10 µm (3 µm in 2D imaging mode) 

Detection limit: 1 ppm Detection limit: 0.1 at.% 
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Detection of hydrogen No detection of hydrogen 

Destructive Nearly non-destructive 

Might be tricky for the occasional user Rather quick to learn 

Time-consuming data processing Fast data treatment 

Table 1 - Comparison of the characteristics of ToF-SIMS and XPS analyses. 

2.3 DEPOSITION TECHNIQUES 
 

In this work, organic and inorganic materials were deposited using different techniques that are 

depicted hereafter. 

2.3.1 Resistive evaporation of organic thin films 

Combinations of tyrosine and phenylalanine were deposited on silicon substrates using resistive 

evaporation. Both materials were extensively studied in the past by our group and were chosen in the 

present work to allow a direct comparison with former scientific papers from our lab.23–25 It is 

particularly true in Section 4.1 where delta multilayers are studied. These two amino acids present 

very similar chemical structures (Figure 7) so that a molecular analytical technique is required to 

differentiate them. Thanks to their relatively low mass (181 uma for tyrosine and 165 uma for 

phenylalanine), entire molecules can be detected despite the fragmentation induced by low energy 

cesium. It is worth noticing that tyrosine and phenylalanine are reticulating polymers, which makes 

their depth profiling potentially very challenging, but highlight the free-radical scavenging properties 

of cesium instead.  

 

Figure 7 – Chemical structures of tyrosine and phenylalanine. 

 

During resistive evaporation, the material to be deposited is heated in vacuum, which causes its 

sublimation before it condensates on the substrate about 15 cm above the crucible. The material can 

either take the form of a resistive wire or be contained in a tungsten crucible that offers a higher 

amount of material (and allows thicker coatings). In both cases, a large electric current induces heat 
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by Joule effect. In our case, a crucible was used, since the amino acids that were evaporated take the 

form of powders. The tool is a Cressington Evaporation Supply LT 1500 308R (Watford, UK). 

As will be developed in the next section, the roughness of the film can strongly affect the general 

course of the depth profiles. In order to maximize the confidence about the flatness of the coating, 

and ensure its purity and uniformity, operating pressures were as low as 10-7 mbar, despite it is already 

possible to work at a pressure of 10-5 mbar. Also, the powders were meticulously compacted inside 

the crucible, with particular attention for the levelness of the top surface. 

For the evaporation of phenylalanine and tyrosine, ideal temperatures of 220-250°C and 330-360°C, 

respectively, were controlled using a thermocouple on the crucible. Those temperatures are chosen 

to avoid hopping of the powder, while maintaining convenient deposition rates, in this case between 

0.5 and 1 nm/s. Indeed, higher deposition rates reduce the risk of impurities inclusion and therefore 

ensures a higher quality of the coating. The temperature threshold can vary as a function of the 

quantity of powder, but also whether the powder is fresh or has already been heated during previous 

evaporation. 

The layer thickness was measured in the chamber by a quartz microbalance, that was calibrated 

beforehand by measuring the thickness of each material on silicon by ellipsometry (EP-5 ellipsometer 

from Semilab-Sopra, analyses performed by Dr. Sébastien Mouchet) and by surface profilometry 

(Dektak). Also, the roughness was measured by AFM, giving values in the range of 1 nanometer (Figure 

8). The films’ thickness of ~100 nm was chosen to minimize the error on the thickness measurement 

introduced by the quartz microbalance while ensuring a reasonably low depth profile analysis time. 

 

Figure 8 – AFM measurements of the roughness on Tyrosine and Phenylalanine coatings of ~100 nm 

deposited on silicon. 
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2.3.2 Physical Vapor Deposition (PVD) of metal layers 

In order to prepare hybrid model samples, analyzed in Section 4.2, gold and chromium layers were 

grown by physical vapor deposition (PVD) and more specifically by magnetron sputtering 

(schematically explained in Figure 9) and were associated with tyrosine in model organic-inorganic 

multilayers. Chromium was chosen because of its reactivity. We thought it could be interesting to study 

the interaction between organic layers and these highly reactive atoms. Conversely, gold is an inert 

metal, that was associated with an organic compound and depth profiled in a reference work from 

Winograd’s group26, and on which we build our feasibility study.  

We first tried to deposit gold by thermal evaporation, but PVD, although being a slower process, 

resulted in higher homogeneity, since the formation of islands could be avoided. The thickness plays a 

major role in the homogeneity of the layer since films shallower than 10 nm exhibit uneven coverage 

of the surface.27,28 On the other hand, in order to guarantee reasonable analysis times, the metallic 

layer should not be too thick. 

During magnetron sputtering, an inert gas (in our case Ar) is injected in the chamber, with pressures 

ranging between 5.10-3 and 5.10-1mbar. Through the application of a magnetic field, electrons are 

trapped near the target cathode, where they collide with argon atoms and trigger a cold plasma by 

ionizing these atoms. The fact that electrons are magnetically confined increases the ionization 

efficiency, allowing reducing the amount of incorporated gas. In turn, these energetic Ar+ ions collide 

with the negatively charged target and cause the ejection of the material to be deposited. The 

substrate is located about 50 mm under the target. 

The tool is a Quorum Q150 T E/S from Quorum Technologies (Laughton, UK) from which sputter targets 

were also purchased. DC voltage is typically comprised between 100 and 300 V, and currents of 20 and 

120 mA were used for Au and Cr, respectively. Once again, the layer thickness was controlled with a 

Quartz microbalance and calibrated with a profilometer. 
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Figure 9 – Schematic representation of magnetron sputtering deposition.29 

 

2.4 PRINCIPAL COMPONENT ANALYSIS 
 

The present section is not intended to provide an exhaustive theory about Principal Component 

Analysis (PCA), but rather to assist the reader in understanding the data treatment performed in 

Section 4.3. 

PCA denotes a multivariate analysis that aims at compressing data by mathematically removing 

redundant dimensions, i.e. by limiting the number of variables. The initial huge amount of correlated 

variables are transformed through an orthogonal linear transformation into a smaller subset of 

uncorrelated variables, in a new coordinate system (see Figure 10). This allows rapidly highlighting the 

main differences between a large number of observations, i.e. peaks intensities in the case of ToF-SIMS 

spectra. 

Data are first arranged into a matrix, as follows: rows are samples (here, SIMS spectra) and columns 

are variables (here peak intensities). Let us call this matrix X and build its covariance matrix, cov(X); 

 
𝑐𝑜𝑣(𝑋) =

𝑋𝑇𝑋

𝑚 − 1
 

(7) 

After application of the eigenvalue equation, 
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 𝑐𝑜𝑣(𝑋) 𝑝𝑖 = λ𝑖 𝑝𝑖, (8) 

the eigenvalues of cov(X), λ𝑖, are determined and sorted by increasing values. The eigenvectors, 𝑝𝑖, 

are called the loadings and are simply the coefficients of the linear combination connecting the initial 

variables. 

 

Figure 10 – choice of a new coordinate system, based on the orientation of the largest amount of 

variance in the dataset. 

 

Let us consider 𝑝1, the eigenvector associated with the highest eigenvalue. Then, X can be decomposed 

as followed: 

 𝑋 = 𝑡1𝑝1
𝑇 + 𝐸 (9) 

𝑡1𝑝1
𝑇 is the first principal component (PC1) and accounts for the highest possible variance in the data 

while the residuals, E, contains the amount of variance that is not captured by the latter. The vector 𝑡1 

contains the scores of PC1. Scores can be graphically seen as the projection on the new axis and 

describe the similarities or differences between samples, while the loadings describe which peaks 

account for the differences between samples. 

This procedure is repeated on the residuals matrix n times, progressively removing the variance of the 

previous principal components and explaining the maximum proportion of the remaining variance. The 

number of iterations, n, stands for the number of principal components one needs to consider, with 

regards to the desired expressed variance. 

 𝑋 = 𝑡1𝑝1
𝑇 + ⋯ + 𝑡𝑛𝑝𝑛

𝑇 + 𝐸 (10) 

 

As previously mentioned, the principal components are linear combinations of the original variables 

weighted by their contribution to explaining the variance in a particular orthogonal dimension. The 

procedure removes covariance between different dimensions (off-diagonal elements of the covariance 
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matrix, mathematically forced to be uncorrelated) and strengthens the variances, that are the diagonal 

elements. Thereby, PCA transformation accounts to diagonalize the covariance matrix.  

Preprocessing the data is essential to ensure that the variance in the dataset is not related to external 

factors, such as the instrument. Data is thus normalized (for example by the total intensity or a selected 

peak) and mean-centered (by subtracting the mean of each column to the column). In our case, the 

preprocessing treatment includes a wavelet transformation that allows noise removal thus data 

compression, as will be explained in Chapter 4. 
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3 DEPTH PROFILING: STATE OF THE ART 

 

3.1 FUNDAMENTAL ASPECTS OF DEPTH PROFILING 
 

Depth profiling, i.e. the alternation of surface analysis and ion beam sputtering, can provide for 

the 3D characterization of multilayers, which allows probing interface phenomena, layers composition 

and eventually the migration of atomic and molecular species. We already stressed the interest for 

applying depth profile analysis to optoelectronic devices to highlight structure-to-properties 

correlation or to investigate aging/failure mechanisms and rationally propose solutions to increase the 

materials stability. In parallel, there is also an increasing demand for developing analytical tools to 

determine the depth distribution of molecular species in or interacting with biological systems.  

In our approach, the first and key step is to prepare reliable model samples, that present a high 

reproducibility in terms of flatness and homogeneity (see paragraph C in “Materials and Methods”). 

Achieving such a high control on state-of-the-art photonic devices is not always possible, because most 

of the samples were made in collaboration with external research institutes, involving long travel 

distance and time before the analysis was performed. Moreover, ideally sharp interfaces are not 

always associated with more efficient devices!  

The second step is to perform a rigorous and systematic comparison of different depth profile 

conditions on the same sample (ABA), or of the same settings on different sample architectures (ABA, 

BAB, etc.), for example organic thin layers deposited on metals and metals on organics, in order to find 

the best conditions, as “gentle” as possible, while ensuring reasonable sputtering yield.  

The fragmentation rate, the variation of sputtering yields, the roughness before and after the analysis 

or the depth resolution are the main indicators that need to be taken into consideration to directly 

compare different setup conditions.  

For clarity, let us first define three key parameters for depth profiling: the depth resolution (and how 

it is calculated), the useful yield and the sputtering yield. 

The depth resolution can be as the broadening of the measured profile with respect to the depth 

distribution. Practically, it can be defined as the interval between 16% and 84% of the maximum 

intensity of the rising signal when crossing a planar interface30. Delta layers analysis can give a more 

complete insight into the intrinsic depth resolution. The obtained profile of delta layers is a convolution 

of the ideal profile (a box function as narrow as possible) with a response function. This response 

function itself, according to the Mixing-Roughness-Information depth model (or MRI),31 is a 

convolution between a growing exponential, accounting for the information depth, a Gaussian, 
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characteristic of the interface roughness (natural or induced) and a decreasing exponential, taking into 

account the atomic mixing length. The contribution of the atomic mixing might be substantial for 

inorganic shallow layers but is assumed negligible in organic materials, given the large size of 

molecules. The information depth using ToF-SIMS is known to be less than one nanometer32. The depth 

resolution is then mainly governed by the roughness at the interface (which can sometimes be reduced 

by rotating the sample during the profile33). 

The useful yield, not to be confused with the sputtering yield, is the number of detected ions 

(parameter IM in equation (1)) normalized on the number of atoms that are ejected from the sample 

surface.  

The sputtering yield, Y, is defined as the number of atoms ejected per primary ion and is therefore 

expressed in [atoms/ion]. It can be calculated following this expression: 

 Y = (d.A.ρ.NA .n/M) / (I.t/e) (11) 

The numerator represents the number of atoms emitted: d is the film thickness, A is the sputtering 

beam raster and ρ.NA.n/M is the number of atoms per unit volume (volumetric mass density of the 

target ρ, Avogadro number NA, number of atoms per molecule n, divided by the molar mass of the 

target M). The denominator stands for the number of incident ions (erosion beam current I, duration 

of sputtering t divided by the electronic charge e). The sputtering yield is influenced by the penetration 

depth into the surface. When the implantation depth, which can be schematically seen as the damaged 

layer, is reduced, the energy is deposited closer to the surface and the probability of fragments ejection 

is higher. The parameters that impact the penetration depth are related to the properties of the 

primary ions (nature, energy, incidence angle) and the properties of the sample itself (density of the 

surface, binding energy, crystallinity, temperature).  

A sufficiently high sputtering yield constitutes a key-parameter for achieving successful depth profiling 

for three main reasons: (i) it helps to avoid damage accumulation, as the sputtering beam is supposed 

to remove the volume affected by beam-induced modifications during the previous cycle, generated 

by both analysis and erosion guns (Figure 11). Generally, the sputtered depth (measured easily, or 

calculated if the sputtering yield is known) must imperatively be more than half of the damaged depth 

(possibly accessible through simulations). It ensures that a fixed depth is not altered by two 

consecutive analysis cycles. 
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Figure 11 – Comparison of sputtered and damaged depth. To ensure that damages do not 

accumulate, the erosion beam must remove at least half of the damaged depth. 

 

For the study of inorganic layers, a parameter R was introduced to determine whether the analysis 

beam-induced damage has to be taken into account. The parameter R is defined as the proportion of 

atoms that are ejected by the sputtering beam compared to the ones ejected by the analysis beam.34 

It is expressed by the ratio between the sputter rates of the erosion and analysis beams Rsp and Ran, 

respectively, that are in turn proportional to I.Y / A, where I stands for the current, Y for the sputtering 

yield and A for the raster area: 

 
𝑅 =  

I𝑠𝑝 . Y𝑠𝑝 /A𝑠𝑝

I𝑎𝑛 . Y𝑎𝑛 /A𝑎𝑛
 

(12) 

 

In inorganics, in order to neglect the mixing effect from the analysis beam, R should be at least 100,34 

meaning that only 1% of the ejected atoms are sputtered by the analysis beam. Practically, a ratio in 

the range of few hundreds guarantees a good profile quality, even if this value may strongly depend 

on the primary ions and sample characteristics35. This implies to find a tradeoff between the count rate 

and the depth resolution. Similar reasoning has been conducted for organic samples. This will be 

exposed in the next section. (ii) Besides, a variation of the sputtering yield inside a layer can denote 

ion beam degradation, typically by cross-linking, carbonization (for organic layers) or by preferential 

sputtering. (iii) Finally, when profiling hybrid multilayers, the difference between the sputtering yields 

of organic and inorganic thin layers can induce a certain number of artifacts that will be discussed in 

Section 3.3. 

Depth profiling being a destructive and highly perturbing analysis, in order to reveal and differentiate 

intrinsic thin layers properties from the modifications induced by the analysis (involving the ion beams 

bombardment), the effects from the profiling process must be investigated and minimized in order to 
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leave the sample as "undisturbed" as possible. While interactions of the ion beam with the surface 

cannot be avoided, they can be limited by choosing the energy and nature of the primary ions. This 

involves an accurate and rational choice of the analysis parameters and conditions, which should be 

adapted to the sample. 

3.2 DEPTH PROFILING OF ORGANIC MATERIALS: INFLUENCE OF THE PRIMARY IONS  
 

Since the ’70s, atomic ion beams have been used for the in-depth characterization of inorganic 

materials by SIMS. So far, high-energy monoatomic ion species such as Ga+, Ar+ or Xe+ have 

demonstrated to provide a rapid (convenient sputter yields) and accurate (depth resolution around 1 

or 2 nanometers) analysis of embedded inorganic layers.36 This property is of particular interest for the 

analysis of electronic devices. However, when considering organic samples, the molecular information 

is rapidly lost (drop of molecular signals) because the amount of energy carried by primary ions induces 

the break of covalent bonds, finally altering the chemical structure. This limitation led the scientific 

community to conclude that ToF-SIMS was not a suitable technique for organic depth profiling. 

Conventional monatomic sources, such as Ga+ (70 amu) and Ar+ (40 amu) are low-mass projectiles, 

which penetrate deeply into materials and result in a weak ejection probability; consequently, many 

impacts are needed to sputter a fixed amount of matter. Increasing the primary ion mass allows 

increasing its stopping power under the material's surface. In other words, this leads to a lower 

deposition depth of the projectile energy and thereby to higher ejection probability and ion yield. This 

was the initial motivation when starting to work with gold and bismuth (197 and 209 amu, 

respectively), and subsequently with small clusters  Aun
+ 37  and Bin+, with n = 3, 5 or 7 atoms, in which 

the energy is evenly distributed between the constituting atoms. It is worth noticing that the size of 

Au3
+ corresponds approximately to the interatomic spacing in the bulk material. 

This strategy led to a sensible increase of the secondary ion yield, however for many organic 

compounds, this was still not sufficient for ejecting high-mass fragments. Detecting entire molecules 

involves overwhelming many issues related to the difficulty to desorb high-mass molecules, to ionize 

them or to prevent their fragmentation or other chemical reactions such as cross-linking.  

The quest for analyzing biological samples using ToF-SIMS triggered intense research directed to the 

enhancement of the molecular sensitivity. To that end, the winning strategy was to further enlarge the 

size of polyatomic primary ions.2 

                                                           
2 This comment concerns the erosion source. Bin+ ions, like Ga+ are produced using a liquid metal ion 

gun technology and therefore provide highly focused beams. This justifies their use as analysis primary 

ions in dual beam experiments, even though they create more damage. 
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It is only in 1998 that Gillen et al. successfully performed depth profiles for the first time, using the 

polyatomic ions SF5
+on various organic materials.38 This paved the way for what would later be a 

prolific research field of organic depth profiling with ToF-SIMS, and in particular about the 3D imaging 

in biological and pharmaceutical research.18,39–41 Since this first breakthrough, a large variety of cluster 

sources have been released. In 2003, C60
+ (720 amu) demonstrated its ability to extract information 

from organic compounds42 and polymer systems beyond the static limit43 with secondary ion yields 

much larger than when using SF5
+ and Au3

+.44,45 Despite the fact that great performances were 

established on a wide range of samples, including cellulose, biopolymers (that couldn’t have been 

depth profiled hitherto using SF5+)46 and even metals like gold47 and Ni-Cr multilayers,48 some issues 

remained. In particular, C60
+ was not suitable for cross-linking polymers, such as polystyrene49 and a 

high roughness could develop on silicon due to carbon deposition occurring faster than what the 

sputter rate allows to remove, for energies under 12 keV.48 

The advantage of cluster sources lays in the fact that, unlike atomic primary ions whose sputtering 

mechanism can be simplistically explained by a binary collisional model (analogously to billiard balls 

undergoing elastic collisions), clusters bombardment involves non-linear collective processes, similar 

to a meteor hitting the ground (Figure 12), as stressed by numerous molecular dynamics (MD) 

simulations.50–56 MD simulations help to predict experimental data and in turn, experiments bring 

precious information to refine theoretical model regarding complex ionization and ejection processes. 

In these models, it was shown that the kinetic energy is equally distributed between the atoms 

constituting the cluster. As soon as the cluster reaches the surface, its loosely-bound atoms 

disaggregate and release a high amount of energy to atoms from the first nanometers, ensuring a 

reduced penetration depth (and interlayer mixing), together with high sputter yields, which is helpful 

in limiting the ion beam induced damage accumulation through the profile. For example, on a silver 

substrate57 and on PMMA,49 it was shown that bombarding with C60
+ instead of Ga+ allowed increasing 

the yields. From Figure 12, one can see that a single C60
+ impact apparently causes more damage than 

Ga+. However, during a C60
+ profile, the total surface damage is lower compared to monoatomic ions: 

since the Ga+ primary ions exhibit a much lower sputtering yield because of their sensibly higher 

implantation depth, the high fluence that is thus required with Ga sputtering leads to strong damage 

accumulation.   

In 2002, an argon gas cluster ion beam (Arn
+ GCIB) was applied for the first time as primary ion source 

for ToF-SIMS depth profiling of a Ta film deposited on Si.50 These large clusters (up to few thousands 

of atoms, singly ionized) are formed through the adiabatic expansion of high-pressure argon gas into 

vacuum. Increasing Ar cluster size limits the fragmentation and damage accumulation compared to 

C60
+, leading to the ejection of heavier molecular fragments. This is a fundamental asset for the analysis 

of organic samples, as demonstrated by Ninomiya et al., who successfully depth-profiled polymers 
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(namely, PMMA, PS, and PC) using Ar700
+ at 5.5 keV58. Molecular information can be potentially 

retained over depths up to 15 µm, thanks to the high “cleanup” efficiency demonstrated by clusters59. 

However, the useful yield obtained with Arn
+ clusters might not be higher than with C60

+ since, at a 

given energy, the ionization efficiency was found to decay linearly with the argon cluster size (n).60  

 

 

 

Figure 12 – Direct comparison of the sputtering processes involved under 15 keV C60
+ and Ga+ 

bombardment of a silver substrate (cross-sectional view). Taken from reference [57]. 
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Practically, the possibility to vary independently the cluster size and its energy increases the versatility 

of this beam but also its complexity. Whether it is the total kinetic energy, E, the number of Ar atoms, 

n or the energy per atom, E/n, all these three parameters affect the fragmentation, the sputter rate, 

and the damage accumulation.61,62 Some research papers advocate that low energy and large cluster 

size should reduce the mixing length, and therefore are supposed to improve the depth resolution.63 

Other works recommend increasing the sputter yield by increasing the energy and/or decreasing the 

size, in order to limit the induced roughness and the resolution degradation due to the damage 

accumulation.64–66 To Cheng et al., successful depth profiles are obtained using a large cluster size, 

together with high energies.67 This should provide large sputtering yields and small damaged layer 

thickness, which is supported by an erosion model relying on three distinct fluxes: (i) Fsupply, the intact 

molecules progressively supplied by the bulk from depths greater than the altered layer thickness, as 

the sample is etched; (ii) Fsputter, the decrease of the number of those intact molecules after their 

ejection during the sputtering and (iii) Fdamage, the loss of intact molecules due to their beam-induced 

degradation. The variation of the concentration of intact molecules contained in the altered layer, Cs, 

as a function of the primary ion fluence, f, is expressed as an equilibrium between the three fluxes67,68: 

 dC𝑆

df
=  𝐹𝑠𝑢𝑝𝑝𝑙𝑦 − 𝐹𝑠𝑝𝑢𝑡𝑡𝑒𝑟 − 𝐹𝑑𝑎𝑚𝑎𝑔𝑒 =  

𝑌C𝐵

𝑑
−

𝑌C𝑆

𝑑
− 𝜎𝐷C𝑆 

(13) 

In this equation, Y is the sputtering yield, CB stands for the concentration of molecules in the bulk, d is 

the thickness of the altered layer and σD is defined as the damage cross-section. 

This equilibrium, the “result of the competition between the creation of primary beam damage and its 

removal by sputtering”, as described by Gillen69, has been validated experimentally on Irganox delta 

layers70, on tetraglyme films35, or on trehalose using C60
+.67,71 

 

Besides the increase of the sputtering yield by increasing the size/mass of the projectile, it can be seen 

from the equation (1) that the secondary ion intensity of a species M, IM, can also be enhanced by 

promoting the ionization probability, α.   

An alternative approach to enhance sensitivity is to increase the ionization, instead of increasing the 

yield. It appears that using low-energy (less than 1000 eV) Cs+ or O+ as erosion source fulfills this 

task.72,73 Cesium is an alkali metal and sits in the first column of the periodic table. It is the most 

electropositive non-radioactive chemical element. Unlike Ar+ or Xe+, the reactivity of cesium definitely 

constitutes its main asset. Indeed, low energy cesium ions implanted during the sputtering cycle are 

rapidly neutralized in the materials, where they can react with free radicals generated by the ionic 

bombardment. Negatively charged fragments M- are formed and are then ejected, during the following 

analysis cycle, as summarized by the reaction equation  
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 M + Cs  M- + Cs+ (14) 

where M is a molecule or a radical. This equation accounts for the increase of negative ionization 

probability but explains, in addition, the major role played by Cs as a free radical scavenger.74 This 

explains why ionic bombardment with Xe+, although these ions have a mass similar to cesium, induce 

chemical bonds breaking, generation of free radicals leading to cross-linking and eventually 

graphitization on polystyrene (PS), polycarbonate (PC)74 or phenylalanine.75 In the event of damage 

accumulation, both molecular signal intensities and sputter rates are affected. In contrast, constant 

molecular in-depth intensities and sputter yields were observed with Cs+, proving its free-radical 

quenching properties.75–77  

The major drawback of Cs+ ions is the relatively high fragmentation rate, either under the effect of 

ionic bombardment at higher energies (when the energy is increased to more than 500 eV, the 

molecular signals of PC decrease drastically74); or following reaction of oxygen-containing molecules 

with reactive cesium ions. For this latter reason, Xe+ demonstrated better results on trehalose, than 

Cs+ at the same energy. Depth profiling with Cs+ is generally performed only in the negative polarity, 

but MCsn
+ clusters may also be collected in the positive polarity.16,77 

Still with the aim of enhancing ionization efficiency, another strategy consists in the injection of a 

reactive gas in the analysis chamber. For example, ambient oxygen shows an increase of the positive 

ionization probability as a function of the oxygen partial pressure.78 Similar results were obtained with 

nitric oxide gas dosing79, water vapor injection80 or deposition of neutral Cs at the surface.81,82 

 

Considering the recent developments on etching sources, ToF-SIMS offers an in-depth molecular 

characterization with a sensitivity and a lateral resolution that is currently unachievable from any other 

technique68. However, it is worth mentioning that other techniques can be efficiently applied for 

depth-profiling experiments including XPS and radiofrequency pulsed glow discharge - time of flight 

mass spectrometry (rf-PGD-ToFMS). The latter allowed detecting organic fragments and discriminating 

various polymers (PMMA, PS, PAMS, and PET)83. Derived from GD‐OES (that only provides elemental 

information about organic and polymeric materials), rf-PGD-ToFMS uses a pulsed discharge, which 

decreases the power transmitted to the surface and preserves small organic fragments. Like ToF-SIMS, 

a depth resolution in the nanometer range and a limit of detection in the ppm can be achieved. More 

recently, rf-PGD-ToFMS also offered an interesting study of the elemental distribution inside 

perovskite layers, contributing to identifying diffusion phenomena.84  
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3.3 DEPTH PROFILING OF HYBRID ORGANIC-INORGANIC SYSTEMS, THE CURRENT CHALLENGE 
 

When profiling inorganic layers, polyatomic ions typically show sputtering yields that are two or 

three orders of magnitude lower than what it is commonly observed on organic layers.85 

This sputtering yield difference may lead to considerable artifacts during the depth profiling of hybrid 

samples. This is commonly observed in optoelectronic devices, in which organic multilayers are usually 

covered with metallic electrodes. Namely, residual metallic atoms are implanted in the soft organic 

underlayer, their sputter rate drops, increased fragmentation of organic molecules is observed and the 

in-depth resolution is progressively degraded.26,86  

Different strategies have been tested in order to achieve the in-depth characterization of hybrid 

samples using SIMS.  

Cumpson and Portoles measured the sputter rate of variable-size Ar clusters on a wide range of 

materials. The sputtering yield gap existing between organic and inorganic materials (called the 

“selectivity”) is concluded as an asset to probe buried hybrid interfaces87: the drop of the sputter yield 

at the organic/inorganic interface ensures not digging into the underlying inorganic material and 

avoiding atomic mixing. Once the organic layer is removed by Ar clusters, one can switch to XPS analysis 

with angular resolution to explore the harder underlayer. The recommended energy per atom is 

comprised between 3 and 9 eV/atom since it combines reasonable etching rate in the organic layer 

while avoiding the removal of inorganic materials. However, no solution is given in case the inorganic 

layer is deposited on the top of the organic layer.  

At LIST, Philipp et al. examined hybrid model multilayers, composed of organic compounds capped 

with a silver overlayer. These samples present a clear interest for optoelectronic devices. If only atomic 

information is required, dynamic Secondary Ion Mass Spectrometry can be used.88 Unlike ToF-SIMS, 

dynamic SIMS uses a continuous, focused primary ion beam, which enhances the sensitivity (parts per 

million to parts per billion) and makes it ideal for the elemental detection of trace impurities, but 

impedes the acquisition of molecular information. The primary ions are 250 eV to 1 keV Cs+. In the 

same paper, the authors also suggest that peeling off the silver layer before the analysis of the organic 

layer allows discriminating between the beam-induced diffusion and the diffusion occurring during the 

deposition process.  

A similar approach is investigated at CEA, in Grenoble, where Langer et al. studied hybrid profiling with 

both Cs+ and Ar cluster ions. They have shown that switching from 2 keV Cs+ to 5 keV Ar5000
+ clusters 

during the depth profiling at the interface between inorganic and organic layers is not the optimal 

solution (unpublished). Indeed, at such energy, cesium ions alter the integrity of the organic underlayer 

during the depth profiling of the inorganic top layer. They proposed a method based on three steps: 

(i) the inorganic layer is sputtered using Cs+; then, (ii) elsewhere on the sample, the inorganic layer is 
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mechanically removed, exposing the organic material and finally, (iii) a molecular analysis is performed 

under the removed electrode by using argon clusters. 

Another methodology consists of the preliminary bombardment of the surface with high energy, finely 

focused Ga+ beam, milling the sample for the fabrication of a cross-section. This processing technique, 

called Focused Ion Beam (FIB-milling), induces important damage at the surface that needs to be 

removed by subsequent Ar clusters sputtering. The surface of the cross-section is then ready for static 

SIMS imaging, providing relevant 3D chemical information89. This was applied by Iida et al.90 on a 

polycarbonate matrix loaded with glass fibers, after an unsuccessful attempt of depth profiling with 

Ar2500
+ at 20 keV. 

Recently, a 20 keV C60
+ beam was applied successfully on full perovskite solar devices, showing its 

ability to sputter both organic materials and silver electrodes91. They highlighted three mechanisms 

supposedly responsible for the poor efficiency and stability of the cell: a small degradation of the silver 

electrode into the HTM, as well as a strong migration of Li+ ions across the perovskite and ETM, and an 

inter-diffusion between perovskite and TiO2. However, it was previously mentioned that C60
+ is not a 

suitable source for the study of cross-linking polymers and suffers from strong artifacts on silicon. It is 

claimed that C60
+ profiling is incompatible with a good depth resolution on semiconductors48 since the 

high energies required to depth profile them increases the implantation depth. 

 

Most of these strategies to profile hybrid stacks are rather tedious since they involve the combination 

of several beams, or even several techniques, or delicate sample preparation. Some of these methods 

require samples with planar interfaces. In the following chapter, we will demonstrate that using low 

energy Cs+ ions or small argon clusters with high energy (so, with relatively high energy-per-atom) as 

erosion source aims at simplifying the depth profiling of hybrid samples, by giving the opportunity to 

perform the analysis with only one set of parameters. Molecular information can be obtained within 

reasonable analysis times, with no need to pre-process the sample. The sputter rates are rather similar 

on organics and inorganics (only a factor of 5.5 between the sputter rates of gold and tyrosine for Cs), 

which limits the topography development during the analysis. However, it is worth noticing that the 

relatively high fragmentation rate during Cs sputtering somewhat reduces the useable mass range, and 

this might hinder the discrimination between very similar organic molecules, as will be seen in the 

study of OLEDs structures presented hereafter. We will assess the potential of low-energy cesium for 

the depth profiling of hybrid structures in Sections 4.2 to 4.4 and of Ar500
+ in Section 4.4. 
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4 RESULTS 

 

4.1 ORGANIC MULTILAYERS DEPTH PROFILING USING LOW ENERGY CESIUM: THE INFLUENCE OF THE 

ANALYSIS BEAM 
 

Previous studies from our group on phenylalanine/tyrosine multilayers provided only poor 

depth resolutions using Ga+ as analysis primary ions and 500 eV Cs+ as erosion source. In 2012, the 

gallium source installed on the ToF-SIMS instrument was replaced with a bismuth gun. As mentioned 

before, the use of Bi instead of Ga, and even more of small clusters Bin+ (n=3, 5, 7), enhances the 

sputtering yield, since Bi ions are three times heavier than Ga ions. This restrains the damaged depth 

and extends the useable mass range. 

Before starting the analysis of more complex samples, one has to validate that high depth resolutions 

can be obtained on organic materials using Cs+ sputtering ions. To that end, similar amino acids 

multilayers were depth profiled using low energy cesium and bismuth primary ions, with two different 

fluences of bismuth, and compared to results previously obtained with gallium. We compared two sets 

of parameters as a function of the fluence/cycle (expressed in ions/cm²), instead of the parameter R 

discussed in the previous chapter. Actually, the methodology is similar (since the fluence is contained 

in the expression of Y), but better suited for the analysis of organic layers, in accordance with Brison 

et al.35 Indeed, on organics, determining experimentally the sputtering yield of the analysis beam is 

very challenging because the surface is rapidly damaged and the yields drop under the effect of 

graphitization and cross-linking. 

While, the initial aim of this work is to investigate the depth resolution reachable using Cs, I am fully 

aware that a more systematic study would greatly strengthen the message about the influence of the 

analysis beam fluence, nature (Bi5+ and Bi7+) and energy, which is argued as a key parameter to explain 

the dramatic effect of the analysis beam. 

The paper below shows that: 

- Low energy Cs has the capability to achieve high depth resolutions on organic delta layers;  

- The analysis beam parameters have to be selected carefully since they affect significantly the 

depth profile quality; 

- In the conditions tested, halving the analysis fluence improved the depth resolution by ~1nm. 
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4.2 HYBRID MODEL SAMPLES DEPTH PROFILING WITH LOW ENERGY CS – FEASIBILITY STUDY 
 

The previous paragraph validated the capacity of low-energy Cs to efficiently depth-profile 

organics, displaying high molecular fragments intensities and excellent depth resolution. The goal of 

the next paper is to go further and to determine if Cs source could be suitable for providing in-depth 

molecular information about hybrid samples, in an easy, fast and reliable way. We synthesized model 

samples made of gold or chromium and tyrosine and analyzed them in order to understand the 

sputtering mechanisms involved, such as recoil depth, modification of the etching rate or 

fragmentation. We show that hybrid multilayers can be depth-profiled with moderate degradation 

using cesium ions. 

The favorable effect of Cs sputtering was also observed by Edwards et al. on polymer loaded with 

inorganic nanoparticles.92 They compare the performances of 500 eV Cs+, 10 keV Ar3000
+ and 20 keV 

Ar1000
+ for the depth profiling of polycarbonate (PC), and PC combined with different types of inorganic 

nanocomposites. In particular, on PC with inclusions of graphene oxide decorated by Fe3O4 

nanoparticles, they noticed an alteration of the polymer under Ar clusters bombardment. Conversely, 

low energy Cs+ allowed maintaining constant molecular intensities, indicating that no damage 

accumulation occurred in these conditions. However, a higher topography developed in the polymer 

reference sample under Cs+ bombardment, which confirms the superiority of large Ar clusters for the 

depth profiling of polymers. 

The following scientific paper assesses the feasibility of depth profiling a hybrid sample comprising a 

metallic overlayer and constitutes, to our knowledge, the first successful attempt of this type using 

ToF-SIMS. While this feasibility study does not aim at providing a detailed discussion on the chemical 

interaction processes between amino acids and metals, we feel that some interesting features should 

be pinpointed. 

(i)               In the profiles below, the fluctuations of the signal intensities near the interfaces is 

attributed to a variation of the Cs concentration, due to abrupt changes in sputtering yield, 

leading to Cs pileup at the interface The matrix effect related to the change in the surface 

composition (i.e. enhanced negative ionization) could explain this phenomenon. Also, gold 

was proved to impact the positive ionization probability27,28 and it is conceivable that the 

negative ionization probability could be affected as well, even if this is not reported in the 

literature. 

(ii)             On the chromium/tyrosine systems, a strong signal of chromium oxide appears in response 

to a strong reactivity of the metal with ambient oxygen and oxygen contained in the 

tyrosine layer. More surprisingly, a high signal of Cr2
- is observed in the middle of the layer, 
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despite the small thickness of the chromium layer (10 nm). We suspect different oxidation 

states of the Cr atoms directly in contact with the organic layer or with the atmosphere, 

than the ones inside the metal layer. XPS measurement might shed light on this issue. 

(iii)           The signal of SiO2
- is monitored to localize the interface with the substrate. Interestingly, 

the intensity of this signal increases at the extreme surface of the samples, and at the 

interfaces, except in the case of the gold layer deposited on tyrosine. Diffusion of the 

silicon substrate through the layer is highly improbable, but we cannot completely reject 

the possibility of uneven coverage of the substrate. However, we assume that the intensity 

should present a plateau in that case. We suspect contamination with 

polydimethylsiloxane (PDMS) while transferring the sample for the PVD chamber, to the 

evaporation facility. The possibility of a mass interference is a priori excluded. 
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4.3 DEPTH PROFILING OF HYBRID OLED STACKS – VALIDATION OF W-PCA AUTOMATED DATA 

TREATMENT 
 

Organic materials, which are usually considered as insulators, can behave like semiconductors, or even 

like conductors if charges are injected, either by doping with selected ions (I, Br or Cl for example) or 

by application of an electrical potential difference across the material. The organic materials can 

consist of small organic molecules or intrinsically conductive polymers, such as phthalocyanine (p-type 

material) or perylene (n-type).93 These polymers present delocalized electrons in conjugated π-orbitals 

that can have high mobility when the material is doped. The lowest unoccupied molecular orbital 

(LUMO) is equivalent to the conduction band in inorganic semiconductors, and the valence band is 

replaced by the highest occupied molecular orbital (HOMO). The many benefits provided by these so-

called organic semiconductors i.e. reduced manufacturing costs, flexibility or tunable electrical 

properties (depending on the doping level and the voltage value), draw attention from scientists and 

industrials.  

In most modern devices, these organic semiconductors are combined with inorganic oxides or metallic 

electrodes to form multilayers in the nanometer or micrometer range. Given the small dimensions, the 

behavior of the devices is governed by interface phenomena. Highlighting them is therefore critical to 

develop a clear understanding of how the devices can be improved. 

The ability of low energy cesium to maintain a molecular signal with depth, with convenient sputter 

rates on both organics and inorganics, and therefore to depth profile efficiently model hybrid samples 

promotes the use of ToF-SIMS to study state-of-the-art optoelectronic devices, in order to understand 

the degradation mechanisms at the interfaces and improve their performances. A few successful 

analyses of applied samples were performed using low energy Cs: for example, degradation 

mechanisms were counteracted in perovskite solar cell 94–97 or surface modifications were detected 

and located in organic thin film transistors (OTFT)98 and memory devices99. 

Light Emitting Devices (LEDs) have currently replaced most of the incandescent bulbs but they are also 

found in cell phone displays and for signal transmission through optical fibers. A LED is a p-n junction 

biased with an electrical potential (Figure 13). The electric field drives the charge carriers to the 

junction, where an electron can recombine with a hole, and release energy radiatively by the emission 

of a photon. Electrical energy is converted into light.  
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Figure 13 - Working principle of a LED. An electrical bias injects electrons in the conduction band of 

the n-type material while withdrawing them (thus injecting holes) from the valence band of the p-

type material. A photon is emitted when charge carriers recombine at the junction. 

[Source: https://en.wikipedia.org/wiki/Light-emitting_diode] 

 

In organic-LEDs (OLEDs, Figure 14), the inorganic emissive layer is replaced by an organic 

semiconductor and is usually combined to a conductive layer in order to favor the charge injection and 

avoid charge recombination at the opposite electrode. These two layers are surrounded by the anode, 

(usually ITO, that is transparent and conductive), where electrons are withdrawn from the HOMO of 

the organic layer, and the cathode (in general aluminum or calcium), where electrons are injected into 

the LUMO.100  

 

Figure 14 – Working principle of an OLED. Electrical power is converted into light through the 

recombination of hole-electron pairs in the emissive organic layer. 
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The paper below presents the study of rather complex OLED structures, as a first attempt to 

characterize applied full devices using ToF-SIMS. Therefore, we initiated a collaboration with Dr. 

Manuel Auer-Berger and Prof. Emil List-Kratochvil, who provided us with these samples. OLED stacks 

are composed of successive polymer layers (up to four layers) deposited on ITO and capped with an 

aluminum electrode. Molecular in-depth information can be obtained for each layer, either organic or 

inorganic. In addition, it appeared that those challenging OLED multilayers also presented an interest 

for our colleagues from the University of Catania (Italy), Prof. Nunzio Tuccitto and Prof. Antonino 

Licciardelllo, who developed a PCA-automated procedure to identify the interfaces depths and provide 

the characteristic peaks of each layer. More than validating the analysis feasibility, we evaluated the 

ability of this unsupervised procedure to provide a reliable characterization of hybrid multilayers. More 

details about PCA can be found above, in Section 2.4. 
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Figure S1. Pseudospectrum reconstruction of the ToF-SIMS profile on OLED A: (a) layer 4 

(ITO) from m/z 0 to 750 u; (b) layer 5 (boron-implanted glass) from m/z 0 to 600 u; (c) layer 

6 (glass substrate) from m/z 0 to 600 u. 
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Figure S2. Pseudospectrum reconstruction from layer 1 (Al cathode) from OLED B. 

 

Figure S3. Pseudospectrum reconstruction of layer 2 (Ca) from OLED B. 
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Figure S4. Pseudospectrum reconstruction of layer 3 (TAZ) from OLED B. 

 

 

 

Figure S5. Pseudospectrum reconstruction of layer 4 (BCPO:FIrpic) from OLED B. 
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Figure S6. Pseudospectra from layer 5 (PEDOT:PSS) from OLED B. The layer 5B 

corresponds to the indium degraded interface. 
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Figure S7. Pseudospectrum of layer 6 (ITO) from OLED B. 

 

 

 

Figure S8. Pseudospectrum of layer 7 (Glass substrate) from OLED B. 
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Figure S9. Scores plot from the fifth principal component (PC5) values obtained for the 

OLED B. It highlights the presence of an interface at about 770 sputter cycles (7700 s). 

 

2001000μm
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Figure S10. ToF-SIMS YZ cross-section reconstruction, showing a flat interface between 

ITO and PEDOT:PSS. The green layer stands for PEDOT:PSS (C8H7SO3
-), the red layer for 

ITO (In3O3
-) and the blue layer for glass substrate (Si3O6

-) 

 

 

Figure S11. Scores plot from the eight first principal components obtained for the OLED A. 

It highlights the presence of the diffusing Ca layer (third segment from the left). 
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4.4 DEPTH PROFILING OF HYBRID PEROVSKITE LAYERS AND SOLAR CELLS – CONDITIONS 

OPTIMIZATION 

 

After conclusive results about the ability of cesium to extract molecular information from hybrid 

applied samples, we wanted to extend our expertise to state-of-the-art devices, in order to answer 

issues at the forefront of technological development. This has been made possible through a 

collaboration with the group of Prof. Aldo di Carlo, at the C.H.O.S.E. Laboratory in Rome. In particular, 

they provided us with new-generation perovskites solar cells, on which Cs+ bombardment could 

unambiguously highlight degradation features and refine their processing design101. We compared the 

performances of reference solar cells and engineered ones, in which graphene nanoflakes and 2H-

MoS2 layer were added at the interfaces. Gold and iodine diffusions could be avoided in the engineered 

device, leading to better preservation of the perovskite layer and therefore better retention of the 

Power Conversion Efficiency (PCE). More details can be found in the scientific paper added in the 

Annex II.  

However, despite excellent results on hybrid optoelectronic devices, a grey area remains regarding the 

influence of cesium ions on the final depth profile, yet an essential aspect to discriminate between 

“real” degradation pathways and irradiation-induced damage. Following discussions in conferences 

and scientific meetings, we had the intuition that using small clusters at high energy could combine 

convenient sputtering yields in inorganic layers while maintaining a sufficiently low fragmentation rate 

on organics. On organic photovoltaic heterojunctions, Mouhib et al. already demonstrated the 

superiority of 10 keV Ar1700
+ over 500 eV Cs+. In our case, however, the presence of a metallic electrode 

in the full device portends the necessity to increase the energy per atom, either by increasing the total 

energy or decreasing the size, whereas Mouhib advised against increasing the energy per atom over 6 

eV/at. 

The ideal conditions to achieve high-quality depth profiles were assessed on a state-of-the-art 

perovskite layer and a full solar cell (i.e. including the metallic electrode) using Cs+, monoatomic Ar+, 

and Arn
+ cluster ions, for different energies and cluster sizes. Depth-profiles obtained with Ar-GCIB 

were acquired on an SPM-SIMS combined tool at IMEC (Leuven), with the collaboration of Dr. Valentina 

Spampinato and Dr. Alexis Franquet. The best results were obtained with 500 eV Cs+ and 20 keV Ar500
+. 

When using argon clusters, high energies per atom are required in order to avoid preferential 

sputtering of organic fragments and damage accumulation, as exposed in the article below. But first, 

let us briefly recall the working principle of a solar cell and contextualize the enthusiasm surrounding 

perovskites. 
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As opposed to LEDs, in solar cells, a light-harvesting active layer absorbs light from the sun to generate 

hole-electron pairs. The carriers are then separated and transported to the electrodes, where a voltage 

is generated, delivering enough power to supply electrical devices (Figure 15). Generally, a solar cell is 

composed of a light absorber, in which charge recombination should be avoided. This layer is 

surrounded by charge carrier transport layers, which ensure the injection of the holes to the cathode 

(usually metallic) and the electrons to the anode (usually a transparent oxide), respectively. The role 

of these two electrodes is to maintain a good carrier extraction.  

 

Figure 15 – Schematic representation of an organic solar cell. In contrast to LEDs, the absorption of a 

photon can generate an electron-hole pair in the optically active layer. Charges are then transported 

to the cathode and anode, where they take part in the current. 

 

The light-harvesting layer traditionally consists in an inorganic semiconductor, in general silicon. 

However, like for OLEDs, this material can be replaced by an inexpensive organic layer. More recently, 

hybrid perovskites absorber crystals have emerged. With their high absorption coefficient enabling 

ultrathin films of around 500 nm to absorb the complete visible solar spectrum and diffusion lengths 

for both holes and electrons of over one micrometer.102,103 they open the perspective of foldable, 

lightweight solar panels, with low-cost deposition techniques.  

Perovskites are intrinsically hybrid crystals with a structure ABX3 (see Figure 16), where A stands for 

cations (cesium, methylammonium denoted MA, formamidinium denoted FA and/or rubidium), B 

stands for metals in a 2+ valence state (lead and/or tin) and X is for negatively charged halides (chlorine, 

iodine and/or bromine).104 Mixing A, B and X constituents allows the band gap to be tuned from 1.15 

eV to 3.06 eV, leading to the high complexity of the materials.  

It is worth noticing that the complexity brings high efficiency but impedes the stability, and vice-versa. 

For example, single-cation perovskites present high yields but are also highly unstable under 

temperature or humidity conditions. The advent of triple cations structures enables reproducible films 
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deposition that is less sensitive to the processing parameters. A stabilized efficiency exceeding 22% 

was reached under these conditions.105 

 

Figure 16 – Structure of a triple cations perovskite. 

 

Recently, efforts have been made to increase efficiency while improving stability. Some quadruple 

cations perovskites showed an efficiency of 21.6% during 500 hours106. This requires a rationally 

designed architecture, the selection of stable materials, along with an optimized deposition process. 

Again, this is made possible by the in-depth detection of the aging effects since the performances were 

shown to strongly depend on the interfaces.94 
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5 CONCLUSION AND PERSPECTIVES 

 

The development of modern optoelectronic devices such as solar cells and OLEDs requires to 

fabricate more and more complex hybrid organic/inorganic multilayers. Their macroscopic device 

behavior is governed by nanoscale phenomena taking place in layers and interfaces, which are 

increasingly more complex and numerous. In order to improve the device performance, there is an 

urgent need for better identifying in-depth degradation mechanisms to propose rational solutions.  

For this purpose, ToF-SIMS is a suitable analysis technique, providing the 3D molecular distribution of 

both organic and inorganic materials, with unprecedented depth and lateral resolutions. Nonetheless, 

while primary ions based on large clusters, and in particular Ar GCIBs, have shown their ability to 

preserve intense and fairly intact molecular signals, and to provide high sputtering yields on organic 

materials, the erosion rate can be unfortunately reduced up to three orders of magnitude for inorganic 

thin layers. Such a high differential sputtering effect leads to the generation of artifacts during the 

study of hybrid samples: practically, it can lead to induced roughness, inorganic atoms injection inside 

the soft material, increasing fragmentation of organic semiconductors, preferential sputtering of the 

organic fragments, etc.  

In order to ensure a more reliable identification of the intrinsic materials alterations affecting the 

devices performances and stability, one should carefully select the experimental parameters in order 

to limit the beam-induced modifications during depth profile analysis. 

The dual beam operation mode, allowing for individually optimizing the erosion beam and analysis 

beam conditions is advisable to obtain good profiles since both guns can significantly influence the 

final depth profile accuracy. From the obtained results we can identify best-practice recommendations 

for both ion beams. 

 

(i) Choice of the erosion beam conditions 

Large Arn
+ clusters (n>1000 atoms) are identified as the best choice for organic thin layers. As 

it was previously demonstrated in many studies, they provide high rates, while preserving the 

chemical structure of fragile organic (and possibly biological) materials. The possibility of 

varying both the energy (few keV to tens of keV) and size (from ~100 to 2000 atoms) of Ar-

GCIB makes it a very versatile source; however, the results will critically depend on this 

complex energy/size selection. Namely, to profile inorganic materials, the cluster size should 

be kept below ~300 atoms and the energy above 10 keV. 

Alternately, to Ar GCIBs, we explore the ability of low-energy cesium sputter source to depth 

profile hybrid multilayers. Cs allows avoiding difficult sample pre-treatments (such as electrode 
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removal) and changing the ion beam parameter during the full stack analysis. In model 

Tyr/gold/Tyr hybrid multilayers, the amino acid layer sputtering yield is found to be unchanged 

before and after crossing the metal layer; furthermore, the ratio between the two sputtering 

yields is moderate (5.5). This ratio sensibly increases (17) when gold is replaced by chromium. 

When profiling the Tyr/Cr/Tyr structure, the Tyr sputtering yield is reduced by a factor of three 

after crossing the inorganic layer. Moreover, in both organic and hybrid model samples, a 

depth resolution as high as 4 nm is measured.  

The fragmentation by Cs beam sometimes hinders the differentiation between too similar 

organic molecules, as it was shown for Poly-TPD and BCPO:FIrpic. In order to limit that effect, 

I would recommend not increasing the Cs ion beam energy above 1 keV when profiling organic 

layers. This is in agreement with previous (unsuccessful) attempts to depth profile conductive 

polymers using 2 keV Cs+ (J.-P. Barnes group at CEA).107 The Cs beam ensures high-intensity 

molecular signals thanks to the increase of the negative ionization probability. This allowed 

using cesium sputtering to profile a broad range of applied materials, to identify defects in 

next-generation perovskite solar cells. 

ToF-SIMS depth profiling with low-energy Cs was applied to investigate, in a comparative way, 

solar aged Interface-engineered PSCs. For the study of such complex hybrid materials, 20 keV 

Ar500
+ clusters resulted also as suitable sputtering conditions. The relatively high energy-per-

atom value in small-size energetic Ar clusters allows to have similar erosion rates on hard and 

soft materials and to prevent damage accumulation during the profile. These properties are 

also achieved with monatomic Cs beam thanks to its peculiar chemical reactivity.  

 

(ii) Choice of the analysis beam conditions 

In parallel to the erosion beam, the analysis beam also influences dramatically the quality of 

the depth profile. This was attributed to its high energy (25-30 keV) compared to the erosion 

beam (~1 keV), despite the fact that the involved currents are much lower. Therefore, if an 

accurate identification of molecular signals is required, the relative fluence should be kept as 

low as possible by reducing the number of frames, reducing the Bi current, increasing the 

analysis raster size and increasing the sputtering time per cycle.  

On amino acids delta layers, the depth resolution increased by ~20 % (~1 nm) when halving 

the bismuth fluence. In addition, the results were significantly improved when replacing Ga+ 

primary ion with Bi+, and even more with Bi3+, testifying the importance of the primary ion 

species. The vast majority of modern instruments exploit Bi analysis source since these ions 

proved their superiority over the previously used Ga sources. The size of the small cluster Bin
+ 

should be selected considering the trade-off between the current (increasing the count rate) 
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and the penetration depth (damage rate). For example, compared to Bi+, Bi3+ ions provide 

higher molecular intensities on organic layers, however, the signal from elemental traces in 

inorganic bulks is lower because of the lower current.  

 

On the perspectives, for amino acid delta layers, or on model hybrid multilayers, I would carry a 

systematic study of the influence of the energy, size or raster size associated with the analysis beam. 

This would give an insight on the ultimate depth resolution that can be achieved using cesium 

sputtering ions when the fluence of the analysis gun is kept to a minimum. 

It would also be important to further challenge the capacities of ToF-SIMS by considering an even 

higher level of device complexity; for example, polymers could be replaced by biological films, that are 

more sensitive to fragmentation and for which high-mass ions identification is usually required. This 

might possibly tilt the balance in favor of Ar clusters. The imaging capability of different ion sources, 

and in particular the final lateral resolution should be also investigated more in-depth by realizing 

model samples with controlled buried 3D features.  

To our knowledge, no systematic comparison of Cs, Ar clusters and C60 were performed on state-of-

the-art solar cells so far. This would allow refining the recommendations regarding the best conditions 

for the accurate in-depth characterization of those devices. Such experiments are being conducted in 

collaboration with IMEC. 
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In this report, cesium surface layers formed by Cs+ ion bombardment on Silicon and Phenylalanine (Phe) 

samples were analyzed by TOF-MEIS and ToF-SIMS. Si wafers were bombarded with 500 eV Cs+ ions, 

then were subsequently bombarded with 5 different Cs+ fluences corresponding to the transient and 

equilibrium regimes. The Phe layers were evaporated on Si wafers, up to 100 nm thickness. The samples 

were subsequently bombarded at 4 different fluences. For Phe, TOF-MEIS shows the formation of a 

sharp Cs surface layer of ~0.5 nm thickness, on which the peak height increases with Cs+ ion 

bombardment and a long Cs tail builds up, penetrating deep into the subsurface. For Si, a similar Cs 

surface peak forms but it saturates quickly compared to Phe.  

 

*corresponding authors 

 

Keywords: ToF-MEIS, MEIS, ToF-SIMS, SIMS, Cesium, depth profiling, silicon, phenylalanine 
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1. Introduction 

Low energy cesium has been applied in SIMS for decades to depth profile inorganics [1], such as 

semiconductors, mainly owing to the strong negative ionization enhancement produced by the surface 

or implanted Cs atoms. More recently, very low energy (<500 eV) Cs+ has been applied successfully on 

a ToF-SIMS instrument on organic samples (polymers and organic solids) [2,3], on which molecular 

information is largely preserved, along with a high negative ion yield. In both cases, the amount of Cs 

that is actually left at the surface and its depth distribution, or internal depth profile, are key parameters 

to better understand SIMS depth profiles. The fast change in Cs surface concentration in the very 

beginning of depth profiles is also useful to assess ion signal changes in the transient regime.  

Several groups have attempted to measure the Cs surface concentration on Silicon surfaces, by means 

of XPS [4,5], AES [6], RBS [4] and MEIS [7], in situ or ex situ. There is however a large scattering in 

the published data, probably due to differing experimental conditions (energy, incidence, polarity, 

extraction field), so that it is hard to draw a general conclusion out of published data. In this study, we 

have used ToF-MEIS to probe the internal Cs depth profile in Si at the steady state, but also in the 

transient phase, which has not been published before. The internal profile was also measured, for the 

first time, on an organic layer (Phenylalanine).  

 

2. Experimental 

Two types of materials were loaded with cesium: one naturally oxidized SiO2/Si(100) surface and a 100 

nm layer of Phenylalanine (Phe) evaporated onto a (100) silicon wafer. The Si samples were then 

sputtered at the University of Namur with 500 eV Cs+ ions at a 45° incidence in a ToF-SIMS IV 

instrument from ION-TOF GmbH (Münster, Germany), with a 28.9 nA beam current within a (500 x 

500) µm² raster size, for 5 different sputtering times (2, 4, 6, 10 and 20 s) corresponding to ion fluences 

ranging from 1.5x1014 ions.cm-2 to 1.5x1015 ions.cm-2. The Phe samples were sputtered with a 28.2 nA, 

500 eV Cs+ beam, within a (500 x 500) µm² raster size, for 6, 20, 60 and 400 s, corresponding to ion 

fluences ranging from 4.2x1014 ions.cm-2 to 2.8x1016 ions.cm-2. No extraction field was applied during 

the sputtering phase to limit Cs redeposition [8]. The Cs loaded samples were subsequently transferred 

ex-situ to the DGIST institute, were they were analyzed by ToF-MEIS with 80 keV (Si samples) or 90 

keV (Phe samples) He+ ions at a 90° scattering angle. The analysis times for each spectrum were 30 

minutes and the beam current was 100 pA, without secondary electron suppression. 

 

3. Results and discussion 

a. Si samples 

The MEIS spectra obtained in a channeling direction for the five Cs craters in Si (2 – 20 s) are displayed 

in Fig. 1. The Cs, Si and O peaks are observed resp. at 74, 59 and 48 keV. The Cs peak intensity is 

clearly rising for the shortest Cs sputtering times (2-10s). The MEIS spectrum obtained for 10 s Cs 

sputtering was simulated with a model adjusting the Si, Cs and O concentration on stacked layers. The 

best fit was obtained with a 2.8 nm SiO2 layer on top of Si, with 3 at.% Cs concentration at the extreme 

surface (0.5 nm layer). The Cs in the model is mostly present in the SiO2 layer and does not extent below 

4 nm. For this profile, the total Cs fluence was 7.2x1014 ions.cm-2 and the estimated implanted Cs content 

is 3.0x1014 at.cm-2. In Fig. 2, the total deposited Cs, calculated from the MEIS Cs peak area, is plotted 

as a function of the Cs+ fluence. The solid line represents the 100% Cs retention rate. The Cs retention 

rate is close to 100% for the two first data points (2 and 4 s), but it saturates very rapidly to a relatively 

low level around 3x1014 at.cm-2. The data also seem to indicate that the deposited Cs is slightly lower 

for the longest sputtering time (20 s), for which the native oxide layer has been sputtered away. This 

suggests that the Cs surface concentration is lower on Si than on SiO2, which is not unexpected since 

oxygen could hold Cs more efficiently [9,10]. Wittmaack [11] has explained the very short transient by 
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a fast relocation of Cs atoms to the surface as adatoms. Vandervorst et al. uses the low sublimation 

energy of cesium to explain its preferential departure that leads to lower cesium contents and limited Cs 

adsorption on metals and semiconductors [10]. The inset in Fig. 2 shows the SiO2
- and 29Si- ToF-SIMS 

signals (in dual beam with Bi3
+ as analysis beam), with the same fluence scale. There is a good 

correlation between the deposited Cs amount as measured with MEIS and the SiO2
- signal, which is not 

surprising as Cs is mostly responsible for the negative ionization within the transient region.  

The low surface Cs content at saturation is in excellent accordance with data published by van der Heide 

et al [4], who measured the implanted Cs content onto Si in situ, with XPS and RBS. They found a 

4x1014 at.cm-2 Cs content with RBS, and a 4 at.% Cs with XPS, for 1 keV Cs+ at 60° incidence. Moreover, 

their data indicate an increase of the Cs surface concentration with the Cs+ energy, so that it is not 

surprising to measure a slightly lower Cs content in our experiment carried out at 500 eV. 

One should remember that the samples were exposed several days to the atmosphere prior analysis with 

ToF-MEIS. The adsorbed Cs is certainly immediately oxidized when exposed to atmospheric oxygen. 

Both diffusion and oxidation might modify the internal depth profile but not the Cs content. Our estimate 

of the retention rate should therefore be realistic. 

b. Phe samples 

The MEIS spectra acquired on the four Cs craters on Phe are shown in Fig. 3. A strong Cs surface peak 

is detected at 83 keV, with the intensity rising as a function of the Cs+ fluence, indicating a rising surface 

concentration. Another important observation is the buildup of a strong subsurface contribution for 

higher fluences (at 60 s and 400 s). The spectra at 60 s and 400 s were simulated by a model of stacked 

layers with varying concentrations of H, C, O, N and Cs. The best model obtained for 400 s sputtering 

is shown in Fig. 4. A strong surface peak, with ~7 at.% Cs concentration is observed at the extreme 

surface (< 0.5 nm), followed by a long tail extending as far as 65 nm, which is well beyond the expected 

implantation range of 500 eV Cs+ into Phe, estimated from SRIM simulation as 4 nm. For a total fluence 

of 2.81x1016 ions.cm-2, the retained Cs content is estimated as 1.4x1015 at.cm-2 from the simulation, with 

~1014 at.cm-2 in the surface peak and 1.3x1015 at.cm-2 in the subsurface region. The relatively large 

amount of subsurface Cs located far away from the implantation range, along with the roughly 

exponential decay of the Cs internal profile, suggest a strong diffusion of the implanted Cs into the bulk. 

Cesium diffusion in the bulk of an organic material (para-sexiphenyl) was already shown by Koch et al 

[12] using Ultra-violet Photoemission Spectroscopy on a synchrotron beam line.  

On the simulation performed on the 60 s sputtering crater (4.23x1015 ions.cm-2 fluence), a strong surface 

peak is again observed, with ~7 at.% Cs concentration and ~1014 at.cm-2 content. The subsurface Cs 

content is estimated to be 5x1014 at.cm-2. Therefore, the surface Cs concentration appears to saturate 

around 7 at.%, as no changes occur from 60 s to 400 s, but a large amount of Cs diffuses far into the 

bulk even when the surface steady state is reached, increasing the retained Cs content. This is 

summarized in Fig. 5. showing the retained Cs content as a function of the Cs+ fluence. No saturation is 

reached even when the surface concentration is saturated, due to strong Cs diffusion away from the 

surface.  

 

4. Conclusions 

On the SiO2/Si samples, the Cs surface content saturates very rapidly to a low value around 3x1014 at.cm-

2, which is estimated as 3 at.% Cs surface concentration. The saturation occurs before 10 s of sputtering 

(fluence of 7x1014 ions.cm-2). The Cs was found only at the extreme surface but this may result from 

diffusion occurring during the sample transfer. On the Phenylalanine surface, a surface Cs saturation 

was reached, with 7 at.% Cs surface concentration, but the total Cs content in the sample did not reach 

saturation even for the highest fluences. This is due to a strong Cs diffusion from the surface to the bulk, 

extending as far as 50-100 nm. 
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Figure 1. ToF-MEIS spectra obtained with 80 keV He+ at a 90° scattering angle, on SiO2/Si surfaces 

sputtered with 500 eV Cs+ during 2 s, 4 s, 6 s, 10 s and 20 s. 
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Figure 2. Cs retention as a function of the 500 eV Cs+ fluence on SiO2/Si surfaces, as measured by ToF-

MEIS. 
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Figure 3. ToF-MEIS spectra obtained with 90 keV He+ at a 90° scattering angle, on a Phenylalanine 

layer sputtered with 500 eV Cs+ during 6 s, 20 s, 60 s and 400 s. 
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Figure 4. Simulated depth-profiles extracted from the ToF-MEIS spectrum obtained with 90 keV He+ 

at a 90° scattering angle, on a Phenylalanine layer sputtered with 500 eV Cs+ during 400 s. 
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Figure 5. Cs retention as a function of the 500 eV Cs+ fluence on a Phenylalanine layer, as measured by 

ToF-MEIS. 
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