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Abstract Interpretation of Prolog programs 

Vincent ENGLEBERT- Didier ROLAND 

Résumé du mémoire 

L'interprétation abstraite de programmes Prolog est une technique d'analyse sta
tique de ces programmes réalisée dans le but de pouvoir améliorer les compila
teurs Prolog. Mais cette analyse est lourde, elle demande beaucoup de temps et 
de mémoire. Partant d'un premier programme d'interprétation abstraite requérant 
au moins une station de travail, nous avons implémenté plusieurs optimisations 
dont deux retiennent particulièrement notre attention. La première est basée sur 
une étude plus approfondie du déroulement de l'algorithme. La seconde est plus 
générale et vise à cacher les opérations répétitives les plus longues. Ces optimisa
tions permettent d'avoir un gain de temps et de mémoire considérable, au point 
de pouvoir exécuter le programme sur un ordinateur personnel. Enfin, deux autres 
techniques, l'une basée sur la détection de structures strictement croissantes, l'autre 
sur la réexécution de certains buts, permettent également d'obtenir des résultats 
plus précis. Ce mémoire développe toutes ces optimisations et discute les résultats 
obtenus sur deux domains différents, avec toute une batterie de programmes tests . 

Abstract 

Abstract interpretation of Prolog programs is a technique for static analysis of these 
programs that is achieved in order to improve Prolog compilers. But this technique 
is arduous, it consumes a lot of time and a lot of memory. On the basis of an 
original abstract interpretation program that requires at least a workstation, we have 
implemented several optimizations among which two especially retain our attention. 
The first one is based on a thorough examination of the execution of the algorithm. 
The second one is more general, it aims at caching the longest repetitive operations. 
These optimizations allow a considerable gain of execution time and of rnemory 
space and make possible to run the program on a persona! computer. Finally, two 
other techniques, one based on the detection of strict ly increasing structures, the 
other based on the reexecution of some goals, also allow to obtain more accurate 
results. This report develop all these optimizations and discuss the results on two 
different domains, with a series of test programs. 
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Preface 

Abstract interpretation is a prorrusmg technique for static analysis of computer 
programs, and especially in logic programming. More and more people are studying 
this technique and a few implementations are appearing. The team of researchers 
of B. Le Charlier is working on it for a few years. A lot of work have already been 
clone. Sorne implementations have already been realized. One of them have retain 
our attention. It works weil, its results are incouraging, but it needs fast machines 
with a big amount of rnernory. Our purpose, in this report, is to optimize that 
version, to rnake it able to be run faster on srnailer cornputers. 

Firstly, we present the theorical background underlying abstract interpretation. 
A few words of introduction are based on [l]. Then an introduction to the fixpoint 
theory is based on (18]. And finally, the introduction to normalized Prolog programs, 
abstract interpretation and to the fixpoint based abstract interpretation of Prolog 
programs has been written on the basis of [13]. 

In chapter 3, we present two dornains of values for objects handled by the abstract 
interpretation algorithm. These dornains are extracted of [20]. 

Then cornes a description of the original program. Ail the de-finitions of fonctions 
and ail the algorithms are those presented in [20, 13]. The original irnplernentation 
is presented in [15]. The first part of the optimization was a translation of that 
Pascal original version in C language. With that translation, a few optirnizations 
have already been clone by both V. Englebert and D. Roland. Between ail these op
timizations, one is described more in detail by D. Roland because of the importance 
of the data structure involved. 

Then we get to the heart of the rnatter. The first genuine optimization, with 
clause prefixes, has been realized by D. Roland. And, the second one, caching of 
the rnost tirne consumming operations , has been achieved by V. Englebert. The 
cornparison of ail the results obtained by these optimizations has been written by 
both of thern in comrnon with P. Van Hentenryck. Two other techniques for an 
increased accuracy of the results have been irnplernented too. Detection of increasing 
structures has been clone by D. Roland and the reexecution of sorne sub-goals is the 
work of V. Englebert. 

The following articles are the main ones we used as the basis of the work: 

• The PhD thesis of K. Musurnbu ([20]) is the theoretical basis for rnost of 
other papers. It contains a detailed description of all the abstract fonctions 

Vlll 



IX 

used for abstract interpretation of Prolog programs , a detailed description of 
abstract domains and a detailed description of the basic algorithms for abstract 
interpretation of Prolog programs, as well as ail the proofs of consistency of 
the domains and the fonctions and correctness of the algorithms. 

• "Efficient and Accurate Algorithms for the Abstract Interpretation of Prolog 
Programs" ([13]), written by B. Le Charlier, K. Musumbu and P. Van Henten
ryck, contains, firstly, a very good and complete summary of the PhD thesis 
of K. Musumbu and, secondly, new optimized algorithms with all their com
plexity analysis. 

• "Experimental Evaluation of a Generic Abstract Interpretation Algorithm for 
Prolog" ([15]), written by B. Le Charlier and P. Van Hentenryck contains a 
complete description of the original program and a lot of results about its 
efficiency and its accurateness. 

People interested by the programs can contact Pascal Van Hentenryck by E-mail at 
pvh~cs.brown.edu 
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Chapter 1 

Abstract interpretation 

This chapter is a surnmary of the theoretical background about fixpoint theory and 
abstract interpretation. Ali the ideas and definitions are extracted of [18, 13, 20]. 

1.1 Introduction 

In the recent years, programmers have developped a number of techniques to analyse 
their algorithms in order to improve them without changing the semantics. Among 
these methods, one will require our attention in this paper: Abstract interpretation. 
It is a static method which studies a program to infer some interesting properties 
from its source without executing it. 

The way of doing this consists of assigning to variables and arguments properties 
on their possible values and, from them, to deduce properties on the result that 
would be obtained with an execution. If we define a concrete domain as the set of 
all values an abject can take in a given language, we can define an abstract domain 
as a subset of the set of parts of the concrete domain. This subset is the reflect of 
the properties we are interested in. For instance, all programming languages have an 
integer type. The concrete domain corresponding to that type is a range of integers. 
An abstract domain could be the following: {0, +, -, 0, any} where + stands for ail 
strictly positive integers, 0 for the integer 0, - for all strictly negative integers, any 
for any integer and 0 for no value at all . 

In order to deduce properties on the result of a program, we need to redefine the 
operations of the language for these abstract domains. For instance, let 's assume 
that our language is able to perform simple arithmetics on integers. Wich one can 
be redefined this way: 

2 
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+ 0 0 + - any 
0 0 0 0 0 0 
0 0 0 + - any 

+ 0 + + any any 
- 0 - any - any 

any 0 any any any any 

/ 0 0 + - any 
0 0 0 0 0 0 
0 0 0 0 0 any 

+ 0 0 + - any 
- 0 0 - + any 

any 0 any any any any 

Thus if we have defined an abstract domain and redefined ail the operations on 
this one, then it seems sufficient to reexecute the program in this new context to 
obtain the expected results. Unfortunaly no theoric frame allows to prove that the 
program is correct or even that it ends. 

The fixpoint theory gives a frame to the abstract interpretation and a tool as 
well to compute the result. The fixpoint was first used to exprime recursive fonction 
in lambda calculus but can also be useful in a lot of others domains like abstact 
interpretation. 

1.2 Fixpoint theory 

The semantic of a Prolog program P can be defined as the least fixed point of a 
transformation associated to P. First of ail let us define the fixpoint theory principles. 

Let E be a set endowed with a partial order relation ::;. 

a. a chain in (E, :s;) is an increasing sequence (xi)~0 verifying Xi :s; Xi+I Vi ~ O. 

b. (E, :s;) is a cpo (complete partial order) if there exists a least element noted J_ 

and if all chains have a least upper bound noted LJ~=O Xn-

c. Let J : (E, ::;) ---+ (F, :s;) a fonction. J is monotonie iff 

Vx,y E E x :s; y==> J(x) :s; J(y) 

d. Let J: (E, :s;) ---+ (F, :s;) a fonction. fis continuous iff 

• f is monotonie 

• for every chain ( ei)o, we have 

00 

f(LJ~ 0ei) = LJ J( ei) 
i=O 
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or, equivalently: 

• for ail chain ( ei)o, we have 

00 00 

LJJ(ei) exists ==> f(LJ~0 ei) = LJ f(ei) 
i=O i=O 

e. Let f : E --t E be a fonction. f has a fixed point iff :ly : y = f (y) 

We can now present the Fixpoint Theorem: 

Let (X,~) be a cpo. If the fonction f : X --t X is continuous then f 
has a least fixpoint noted µ(!). 

Note: µ(!) may be computed as LJ~0 fn(j_) 

4 

However the continuity property is required to insure the existence of the fixpoint, 
this condition is not very hard. In english, the continuity expresses that a fonction 
(in computer science context) defined on a functional domain invokes its argument 
a finite number of times each time it has to compute a result. 

f: (z+ --t z+) --t Xis continuous 

iff 

Yg E (z+ --t z+):JD f inite : f(g) = f(gn) 

where 9D is the fonction g restricted to the subdomain D. 
How can the fixpoint theory be useful? Let .C be a language and P E .C a 

program. Although Pis a syntaxic object, its execution can generate an information. 

For example: the information/ semantic associated to a fonctional pro
gram is a table of pairs ( argument,result ). 

Let .C be the set of ail the informations produced by any program of .C and P the 
semantic of the program P. 

For example: the set of tables with ail possible values for the pairs 
( argument,result ). 

Now let us suppose that it exists a transformation associated to the program P: Tp 
defined as: 

Tp: J:, --t J:, 

which has the foilowing property: 

Tp(P) = Pwhere Pis the least fixpoint 
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then if C is a cpo and if Tp is continuous then P can be systematically computed as 
00 

The following sections will show how to build a such transformation automaticaly 
from Prolog programs and how to build its abstract counterpart. Unfortunately, it 
is impossible to compute systematically the exact least fixpoint for every program 
as it is proved in program theory1 We may however approximate the least fixpoint. 

1.3 Prolog 

The fixpoint theory summarized in the previous section can be applied to logic pro
gramming and Prolog. The algorithm described later handles Prolog programs or, 
more precisely, normalized Prolog programs. It is not a diffi.cult matter to translate 
any Prolog program into its normalized version. The advantage of the normalized 
form cornes from the fact that a substitution for a goal p/n is always expressed in 
terms of variables X1 , . .. , Xn. This greatly simplifies all the traditionnal problems 
encountered with renaming. 

N ormalized Pro log programs are built from an ordered set of pro gram variables 

{ X 1, X 2, ... , Xi, ... } 

and is composed of clauses of the form 

H: -B1 , ••• ,Bp 

where H is the head and B1 , ... , Bp is the body. If a clause contains m variables, 
these are necessarily X 1 , . .. ,Xm. Moreover, the head of the clause is an atom 
p(X1 , ••• , Xn) where p is a predicate symbol of arity n, noted p/n. The subgoals in 
the body of the clause are of the form: 

• q(Xi1 , ••• , Xim) where i1 , ... , im are distinct indices 

• Xi 1 = Xi 2 with i1 -=/: i2 

• Xi 1 = f(Xi 2 , ••• , Xim) where fis a fonction of arity m - 1 and i1 , .. . , im are 
distinct indices 

The first form is called a procedure call. The second and third forms, called built
ins, enable to achieve unification. Additional built-in predicates ( e.g. arithmetic 
primitives) can be accommodated in the framework but are not discussed here for 
simplicity. 

Figure 1.1 and figure 1.2 respectively describe, as an example, a Prolog program 
and its normalized translation. This program, APPEND/3, will be used throughout 
this paper. 

1 If the exact semantic can be computed then it is possible to determine if a program ends or 
not, among other things. But this property is undecidable! 
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a pp end ( [] , L , L) . 
append ( [HIT1] , L, [HIT2]) : -append (Tl, L, T2) . 

append(X1 ,X2 ,X3) · -
X1 = [], 

X3 = X2, 
append (X1, X2, X3) · -

X1 = [X4 1 XsJ , 

Figure 1.1: Prolog code for APPEND 

X3 = [X4 1 X6] , 
append(Xs,X2,X6). 

Figure 1.2: Normalized version of APPEND 

1.4 Abstract Interpretation of Prolog 

6 

It is now time to define abstract interpretation more precisely, with regard to Prolog. 
First, it is necessary to define the concrete and asbtract domains and their respective 
operations. Next, we will present the transformation we already spoke about. 

Definition 1 Let PV be an infinite set of program variables. Let D be a subset 
of PV. Then CSD = {0: V0 E 0,dom(0) = D and 0 is complete} is a cpo with 
respect to set inclusion (CSD , Ç), where 0 is complete means V0 E 0 , 0 and 0' are 
equivalent (:3a, a' such that 0 = 0' a and a' = 0a) implies that 0' E 0. 0 E CS D are 
sets of Prolog program variables substitutions. 

Definition 2 {ASD: D C PV /\ (ASD, ~) is a cpo} is the abstract domain. /3 E 
ASD are abstract substitutions. 

Definition 3 Let P be a normalized Prolog pro gram. Let 's denote sat a set of 
abstract tuples, i.e. a set of tuples of the form (/3in, p, f3out) where /3in, f3out E AS D, 

D being the set of pro gram variables appearing in the predicate p. S AT will be the 
set of ail functionnal sat , i.e. all sats for which 

V(/3,p), :3 at rnost one /3', noted sat(/3 ,p) , such that (/3 , p,{3') E sat 

A correspondance between the abstract dornain and the concrete dornain can 
now be established through a concretization fonction. 

Definition 4 A concretization funct ion for an abstract dornain AS D is a monotonie 
and continuous fonction Cc: ASD-----+ CSD where 
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• monotonie means: V/31,/32,/31 Ç /32 , Vp for which sat(/31,p) and sat(/32 ,p) are 
defined, sat(/31, p) Ç sat(/32, p) 

• satis total iff sat(/3,p) is defined for ail (/3,p), p E P and /3 E ASv, D being 
the set of program variables of p 

• continuous means: if sat is total, monotonie and if any chain /31 , /32 , ... , f3n 
satisfies: 

00 00 

sat( LJ {/3i}, p) = LJ { sat(f3i, p)} 
i=l i=l 

And lastly, abstract operations can be defined: 

Definition 5 An abstract operation is a fonction ao: ASv1 x ... x ASvn ----+ ASv 
consistent with respect to a concrete operation o : CS Di x ... x CS Dn ----+ CS D if 
and only if 

VB1 E AS ni, ... , f3n E ASvn : o(Cc(/31), ... , Cc(f3n)) Ç Cc(ao(/31, ... , f3n)). 

An abstract semantics of the language can now be established by assigning to 
each fonction an abstract counterpart. 

ln Prolog, elements of C Sv are called concrete substitutions and elements of 
ASv abstract substitutions. Figure 1.3 shows the abstract transformation. This 
transformation uses a number of abstract operations: 

• UNION {/31, ... , f3n} where /31 , ••. , f3n are abstract substitutions from the same 
cpo: this operation returns an abstract substitution representing ail the sub
stitutions satisfying at least one f3i- It is used to compute the output of a 
procedure given the outputs for its clauses. 

• ALVAR(/3) where /3 is an abstract substitution on {X1 , X2 }: this operation 
returns the abstract substitution obtained from (3 by unifying variables X 1 , X 2 . 

It is used for goals of the form Xi = Xi in normalized programs . 

• ALFUNC( /3, f) where /3 is an abstract substitution on {X1 , ... , Xn} and fis a 
fonction symbol of arity n - l: this operation returns the abstract substitution 
obtained from (3 by unifying X1 and f(X2 , ••• , Xn)- It is used for goals Xi1 

f(Xi 2 , ••• , Xin) in normalized programs. 

• EXTC (c, (3) where /3 is an abstract substitution on {X1 , ... , Xn} and c is a 
clause containing variables {X1 , ... ,Xm} (m 2: n): this operation returns 
the abstract substitution obtained by extending /3 to accommodate the new 
free variables of the clause. It is used at the entry of a clause to include the 
variables in the body not present in the head. ln logical terms, this operation, 
together with the next operation, achieves the role of the existential quantifier. 
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• RESTRC (c, ,B) where ,B is an abstract substitution on the clause variables { X 1 , 

... ,Xm} and {X1 , ... ,Xn} are the head variables of clause c (n ~ m): this op
eration returns the abstract substitution obtained by projecting ,B on variables 
{Xi, ... , Xn}. It is used at the exit of a clause to restrict the substitution to 
the head variables only. 

• RESTRG(g, ,B) where ,Bis an abstract substitution on D = {Xi, ... , Xn}, and 
gis a goal p(Xi1 , ••• ,Xim) (or Xi 1 = Xi2 or Xi 1 = f(Xi 2 , ••• ,Xim)): this 
operation returns the abstract substitution obtained by 

1. pro jecting ,B on { Xi1 , ••• , Xim} o btaining ,B'; 

2. expressing .B' in terms of {Xi, ... , Xm} by mapping xik to xk. 

It is used before the execution of a goal in the body of a clause. The resulting 
substitution is expressed in terms of {Xi, ... , Xm}, i.e. in the same way as 
the input and output substitutions of p in the abstract domain. 

• EXTG(g,,B,,B') where ,Bis an abstract substitution on D = {X1 , ... ,Xn}, 
the variables of the clause where g appears, g is a goal p(Xi1 , ••• , Xim) ( or 
Xi 1 = Xi2 or Xi 1 = f(Xi 2 , ••• ,Xim)) with {Xi1 , ••• ,Xim} Ç D and ,B' is an 
abstract substitution on { X1 , ... , Xm} representing the result of p(X1 , ••• , Xn) 
,B" where .B"=RESTRG(g,,B): this operation returns the abstract substitution 
obtained by extending ,B to take into account the result ,B' of the goal g. It is 
used after the execution of a goal to propagate the results of the goal on the 
substitution for ail variables of the clause. 

• EXTEND (,B, p, sat), given an abstract substitution /3, a predicate symbol p, and 
a set of abstract tuples sat which does not con tain (/3, p) in its do main, returns 
a set of abstract tuples sat' containing (/3,p) in its domain. Moreover the value 
sat'(/3,p) is defined as the lub (i.e. the least upper bound) of all sat(/3',p) such 
that ,B' ~ /3. 

• ADJUST(,B,p, /3', sat), where /3' represents a new result computed for the pair 
(/3,p), returns a sat' which is sat updated with this new result. More precisely, 
the value of sat'(/3", p) for ail /3" ~ f3 is equal to lub{/3', sat(/3", p)} and all other 
values are left unchanged. In the algorithm, we use a slightly more general 
version of ADJUST which, in addition to the new set of abstract tuples, returns 
the set of pairs (/3, p) the values of which have been updated. 

All these definitions are extracted from [13]. They are the minimum required 
to understand the following. For more complete and more general definitions, the 
reader can refer to that article. 

Note: We have spoken about "substitutions" and "abstract substitutions" as 
two different things, the second ones being the abstraction of the first ones. ln the 
following of this report, when no confusion is possible, the term "substitution" 
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will sometimes be used in place of "abstract substitution" for the simplicity of 
writing when used often. Anyway, when greek letters are used, () will always denote 
substitutions, while a or (3 will always denote abstract substitutions. 

1.5 Fixpoint Based Abstract Interpretation 

A number of elements sat E SAT are monotonie, continuous and total. Let SCAT 
be the set of those elements. 

An abstract transformation TSAT : SCAT ---+ SCAT can then be defined 
consistent with respect to the program P, using abstract fonctions defined on ASn 
and SCAT (figure 1.3), assurning that, 

• U D = {((3,p): /3 E ASn, D being the set of arguments of p E P}, 

• j_ = {((3,p,0): (/3,p) E UD} 

Proposition 6 (SCAT, Ç) is a cpo. 
Proof Let (sati)~0 be a chain in SCAT. Then 

V(/3,p) E UD, sati(/3,p) Ç sati+i(/3,p)Vi 2: 0 

Let us fix (3 and p and let us de-fine 

fi= sati(/3,p) \fi 2: 0 

(fi)~ 0 is a chain in SAn and since SAn is a cpo, LJ~ 0 fi exists and let us note 
f = LJ~o fi• We build a new sat defined as 

00 

\/((3,p) E UD: sat(/3,p) = LJ sati(/3 ,p) 

It is now clear that SC AT is a cpo. 
D 

i =O 

The abstract interpretation of the program P is the search for the least fixpoint 
of the associated abstract transformation T S AT: µ(T S AT), or, more precisely, of 
a set of elements of µ(T SAT) that are relevant for the evaluation of a particular 
query of P: (f3in,P)-
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TSAT(sat) = {((3,p,(3'): (/3,p) E AD and /3' = Tp(/3,p,sat)} 

Tp(/3,p,sat) = UNION(/31, ... ,f3n) 
where /3i = Tc(/3,ci,sat), 

c1, ... , Cn are clauses of p. 

Tc(/3,c,sat) = RESTRC(c,(3') 
where (3' = n(EXTC(c,(3),b,sat), 

b is the body of c. 

n(/3, <>, sat) = (3 
n(/3,g.gs,sat) = n(/33,gs,sat) 
where /33 = EXTG(g, (3, /32), 

/32 = sat(/31,P) if gis p( .. . ) 
AI _v AR(/31) if 9 is Xi = Xj 
AI YU NC(/31, f) if gis Xi= f( .. . ) 

/31 = REST RG(g, (3) 

Figure 1.3: Abstract transformation 

10 



Chapter 2 

Overview of the different 
algorithms 

2.1 Domains 

In the first chapter, we spoke about abstract interpretation. We said it is defined 
on an abstract domain, elements of which are abstract substitutions, and we defined 
abstract operations on this abstract domain. But, we did not define the domain 
very precisely, that is, we did not say what the abstract substitutions look like. We 
will define two different abstract domains in the next chapter. A first primitive one 
will be defined in order just to study the modes of the terms of the substitutions 
(for instance, assuming "X I t" is a binding of an abstract substitution, the mode of 
the term t may be Ground, Var or Any). And a second, more complicated domain 
will permit to describe the abstract substitutions more precisely. The terms of an 
abstract substitution are described with their type (in fact a generalized form of the 
mode with Ground, Var, NoVarNorGround, NoGround, NoVar , GroundOrVar 
and Any) and their form (their functor, if we know it , their arity and all their 
subterms). 

With these domains, we will have everything we need to realize an abstract 
interpretation algorithm. 

2.2 Algorithms 

A first abstract interpretation algorithm will be described. Implemented in Pascal, 
translated in C with a few improvements, it will be the starting point of different 
optimizations. The first one is an optimization based on the structure of a Prolog 
program. Its goal is to avoid evaluation of clauses and of clause prefixes for which 
we are sure the result is the same than the last time. The second one is more 
independant of th~ The same idea could be used in a variety of programs. 
It just consists in ~e most time consuming fonctions . When an operation 

11 
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is performed, its result is stored. If the same operation must be clone a second time 
or even more, its result is gotten back from the cache. 

These two optimizations will be compared on the basis of their time consumption, 
their memory consumption and the number of operations avoided. 

The chapter "Widening" will then describe a source of lack of precision and a 
way to avoid it. This lack of precision is due to a technique that permits to avoid 
infinite loops. This technique can be refined to lose precision less often. 

And finally, a last optimization for a better precision. It is based on the fact that 
a clause is semantically equivalent if one of its subgoals is considered once or several 
times but the abstract interpretation algorithm is more precise if some subgoals are 
considered several times. 

2.3 Motivations for Abstract Interpretation 

To develop compilers for the Prolog language is a challenge if we expect performances 
as good as for compilers designed for imperative languages. Abstract interpretation 
can help these tools to generate a better code as it is shown in this section. Thus, 
it is important that abstract compilers can run rapidly with a moderate memory 
consumption. 

The article [5] explains why the type and mode domains are useful to gain CPU 
time when running Prolog program and to perform garbage collection. We present 
here a brief overview of this article. 

We suppose that the reader has a good knowledge of the Warren Abstract Ma
chine. A complete description of WAM can be found in [2]. 

The Mode Domain 

The mode domain can be useful in two ways: 

• To enhance clause indexing: the general strategy used by W AM based Prolog 
compiler when they have to solve a goal is to try each clause associated to this 
goal until unification is possible, then the goal is substituted by the body of 
the clause inside the resolvent. 

Here follows the sequence of WAM instructions normally produced 
by a compiler: try Jne_else % try to unify the first clause else try 
another 
retry Jne_else 

trusLme_else fail % try to unify this clause else the attempt fails 

ln sorne cases, the compiler can generate code which reaches directly the good 
clause without trying systematically these ones. It is the case for example in 
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the well-known program: append. For append it is suffi.cient that the gener
ated code tests a tag1to decide between both clauses, the only one which can 
possibly be unified correctly. So a heavy unsuccessful unification attempt is 
avoided. 

append([],A,A). 
append([A I As], B, [CI Cs]) :-append(As, B, Cs). 

The list-tag's value([] or [ 1]) is sufficient to switch between both clauses when 
the compiler knows that each call to append is made with (ground,ground,var ). 

• When unification is required, the compiler proceeds by a pattern matching 
algorithm, it has to know if it proceeds in read-mode or write-mode context2 .If 
the query term is known as being fully instantiated because abstract interpre
tation has computed its mode as grou en the write mode will never occur. 
The compiler may then produce a e · aze code for operations get_structure 
and unify _variable. ConcretelV'l,.1--;i.void one affectation in get_structure 
and a swi tch redirection in unify _variable. 

1 We use here the tag defined in the WAM {see [2, pp 39-44]). Briefly, a tag is an additional 
information stocked with objects to indicate whether it is itself an object or a pointer to a more 
complicated structure; if a list object is empty ([]) or a cons-list ([. 1 .]) ; ... 

2While matching, the program has to check two expressions called query term and program 
term. These terms (!(X, g(a, Y), ... ) for example) have a flattened representation in memory. 
These ones are composed of functors and of (un)instancied variables. The work begins in read
mode. A priori the query term can not get some additional information from the program term. 
The problem is to determine if both expressions match or not . Sometimes at a certain point, the 
procedure encounters a variable which can be specialized with a functor from the program term, 
the procedure turns on write mode to build the new term. 

Example: unification of 

query term: f(X) 

generates the code: 

pro gram term: f(g(X)) 

geLstructure f /1 , X1 ? d d .1 . bl X rea mo e uni y_varia e 2 

geLstructure g/1, X2 ' t d .1 . bl X wn e mo e uni y_varia e 3 

with respect to the expression represented on the heap as: 

1: STR 2 

2: f/1 

3: REF 3 
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The Type Domain 

The type domain provides the same advantages as the mode domain. But in addition 
an abstract substitution can indicate if a ground argument is composed or not and 
what the main functor is. When two clauses are characterized by an argument for 
which the type is di-fferent in the input substitution, it is su:fficient to test the tag 
to switch between the two clauses. 

Garbage Collection 

An abstract interpretation using the type domain may help a compiler to do garbage 
collection at the compile time by computing for each variable, the last point in a 
clause which has updated it. So, when the compiler has to create a new variable, 
it can use an old variable if this variable isn't updated by the next points in the 
current clause. 



Chapter 3 

Domains 

We present here both dornains used to evaluate the abstract interpreter. Each 
section is composed of an unformal presentation followed by a formal presentation 
(see (20]) and finally sorne details of the implementation. 

3.1 The Type domain 

This dornain was first defined in [20, pp II/65]1. We present here the essential 
characteristics of this domain. Let us begin with an unformal presentation. 

3.1.1 U nformal Presentation 

We introduce here a brief overview of the abstract domain type. The abstract domain 
contains patterns (i.e. for each subterm, the main functor and a reference to its 
arguments is stored), sharing, same-value, and mode components. 

The key concept in the representation of the substitutions in this dornain is 
the notion of subterrn. Given a substitution on a set of variables, an abstract 
substitution will associate the following information with each subterm: 

• its mode (e.g. ground, var, ngv (i.e. neither ground nor variable)); 

• its pattern which specifies the main functor as well as the subterms which are 
its arguments; 

• its possible sharing with other subterms. 

Note that the pattern is optional. If it is omitted, the pattern is said to be undefined. 
In addition to the above information, each variable in the domain of the substitution 
is associated to one of the subterms. Note that this information enables to express 
that two arguments have the same value ( and hence that two variables are bound 
together). To identify the subterms in an unambiguous way, an index is associated 

1This one contains also the proofs of monotonicity and consistency 

15 
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to each of them. If there are n subterms, we make use of indices 1, ... , n. For 
instance, the substitution 

{X1 +---- t * V , X2 +---- V , X3 +----Yi\ []} 

will have 7 subterms. The association of indices to them could be for instance 

{(l, t * v), (2, t), (3, v), (4, v), (5, Yi\ [ ]), (6, Yi), (7, [ ])}. 

As mentioned previously, each index is associated with a mode taken from 

{ l_ , ground , var , ngv , novar , gv , noground , any}. 

In the above example, we have the following associations 

{(1, ground), (2, ground), (3, ground), ( 4, ground), (5, ngv ), (6, var), (7, ground)}. 

The pattern component (possibly) assigns to an index an expression J(i1 , ... , in) 
where J is a fonction symbol of arity n and i1 , ... , in are indices. In our example, 
the pattern component will make the following associations 

{ (1, 2 * 3), (2, t), (3, V), ( 4, V), (5, 6 \ 7), (7, [ ]) } . 

Finally the sharing component specifies which indices, not associated with a 
pattern, may possibly share variables. We only restrict our attention to indices 
with no pattern since the other patterns already express some sharing information 
and we do not want to introduce inconsistencies between the components. The 
actual sharing relation can be derived from these two components. In our particular 
example, the only sharing is the couple (6, 6) which expresses that variable Yi shares 
a variable with itself. 

As the above representation may be difficult to visualize, we make use of a more 
appealing representation in the following. For instance, a predicate f actorize(X1 , 

X 2 , X 3 ) instantiated by the above substitution will be represented as 

J actorize(ground(l) : *( ground(2) : t , ground(3) : v) , 
ground( 4) : v, 
ngv(5): \( var(6) , ground(7) : [] )) 

together with the sharing information {(6, 6)}. In the above representation, each 
argument is associated with a mode, with an index (between parenthesis) , and with 
an abstract subterm after the colon. The subterm uses the same representation. 

3.1.2 Formai Presentation 

Modes 

The diagram (see figure 3.1) describes the modes used and the order is represented 
by the transitive closure of this graph ( a ~ b <==} b -+ a). Let Ty be the set of all the 
modes Ty = {any , novar,gv ,noground,ground, ng~ , var , 1-}. 

Let T be the set of all the Prolog terms and P() is the set of all subsets of its 
arguments. The concretization fonction is defined as: 
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Cc: Ty -+ P(T) 
ground { basics terms } 
var { variables } 
ngv the rest 

and the last ones can be obtained from the :first ones: 

Cc(LU B(t1, t2)) = Cc(t1) u Cc(t2) 
Cc(GLB(t1, t2)) = Cc(t1) n Cc(t2) 

Same Value 

17 

The same value component of an abstract substitution /3 defined on D is a partition 
of D noted sv(/3). It expresses a relation between variables defined as: 

The concretization of the same value component is defined as: 

Cc: P(D)-+ CSn 
sv { {Xi +--- ti}i I Vk, l sv(Xk, X,) =} tk = t,} 

There is a partial order relation between same value components: let sv1, sv2 E 

P(D) then 
sv1::; sv2 {=} Vi , j: sv2(Xi,Xi)::::} sv1(Xi,Xj) 

Musumbu prefers express it by a function 2 from the domain D to a finite subset 
of N for commodity. 

The Type Component 

The type component is a fonction tP : { 1 ... p} -+ Ty - { J_}. Let us define 

Tpp = { tP I tp : { 1 ... p} -+ Ty - { 1-}} 

(X) 

Tp= LJ Tpp 
p=O 

The concretization is defined as: 

2 Musumbu defines sv: N--+ N . The link between both notations can be defined as: 

sv(Xi, X;) ç::> sv( i) = sv(j) 
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CC : T Pp -------t TP 
tp {(t1 , ... , tp) 1 t; E Cc(tp(i)) Vi E {l, .. . ,p}} 

The set Tp is endowed with a partial order relation defined as: 

tp : { 1, ... , p} -------t Ty - { _l} 
Up' : { 1, ... , p'} -------t Ty - { _l} 
uP, ~ tP ~ 3f: {l , ... ,p}-+ {l, ... ,p'} such that up,(J(i)) ~ tp(i) 

Let us note that tP is defi.ned on {l, ... ,p} where pis a priori independant from 
the domain of the abstract substitution. lndeed each abstract term is fl.attened and 
some components may be shared by other terms. Next sections will clear ail that. 

The Pattern Component 

A pattern is a fonctor foilowed by its arguments: i1 , ... , i9 which are positive integers. 
Let Fp be the set of ail the patterns where 1 ~ ii, ... , i9 ~ p. The pattern component 
can now be defined as a partial fonction 

f rm : { 1, ... , p} f--t Fp 

where 
Vi E {l, ... ,p} frm(i) = f(i1,••· ,iq) ==} i ~ i1, ... ,i9 

We have spoken about optional components, for these cases: 

frm(i) = undef 

Let Frmp be the set of all the pattern components defined on { 1, ... , p}. 
The concretization fonction is defined as: 

Cc : Frmp -------t TP 
frm {(t1 , ... , tp) : Vi E {l, ... ,p} 

frm(i) = J(i1 , ... , iq) => t; = f(t; 11 ••• , t;q)} 

where t;1 is the i;th component of Cc(Jrm). 

We have also a partial order relation defined as: 

f rm : { 1, ... , p} f--t Fp 
f rm' : {l, ... , p'} f--t FP, 
frm' ~ frm ~ 3g : {l, ... , p} -+ {l, ... ,p'} such that frm(i) 
J(i1, ... , i9 ) ⇒ frm'(g(i)) = J(g(i1) , ... ,g(iq)) 
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The Possible Sharing Component 

The possible sharing, as in the mode domain, indicates if two abstract terms may 
share some variables. Thus the possible sharing (ps) is a symetric relation defined 
on { 1, ... , p} x { 1, ... , p}. Let us note P Sr, the set of ail these relations and P S = 
U~o PSr,. 
If frm is a pattern defined on {1, ... ,p} then psis compatible with frm iff 

ps(i,j) ==} frm(i) = frm(j) = undef \:/i,j E {1, ... ,p} 

ps was until now defined only for undefined subterms. ps can be extended to all 
other subterms by computing its transitive closure: ps* 

• ps(i,j) ==} ps*(i,j) 

• frm(k) =f( ... ,j, ... )andps*(i,j)==}ps*(k,i)\:/i,j,kE {l, ... ,p} 

Let us note PSJrm the set of ail possible ps components compatible with the pattern 
frm. 
The concretization fonction is defined as: 

Cc1 : PSp ----+ Tr> 
ps {(t1, ... ,tr,}: Vi,j E {1, ... ,p} 

var(ti) n var(tJ-/- 0 => ps(i,j)} 

Cc2: PSjrm ----+ TP 
ps {(t1 , ... , tr,) : Vi,j E {1, ... ,P} and frm(i) = frm(j) = undef 

we have var(ti) n var(tJ-/- 0 => ps(i,j)} 

PSr, and PSJrm are endowed with a partial order relation de:fined as: 

If ps E PSr, and ps' E PSr,, 
ps' :'.S ps <==> 

:lg: {1, ... ,p}----+ {1, ... ,p'} such that 
Vi,j E {1, ... ,p}: ps'(g(i),g(j)) => ps(i,j) 

If frm and frm' are patterns defined on {1 , ... ,p} and {1 , ... ,p'}. If 
ps E P S Jrm and ps' E P S Jrm' ps' '.S ps <==> 

Vi,j E {1, ... ,p} and frm(i) = frm(j) = undef 
ps' * (g(i),g(j)) => ps(i,j) 
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Abstract Substitutions 

The abstract domain ASn is a subset of SV x Tp x Frm x PS. And the following 
constraint must be satisfied: 

(sv,tp,frm,ps) E ASn {=} 

1. :lm, p E N : m ::; p and sv E SVm and tp E Tpp and 
ps E PSJrm 

2. ViE {1 , ... ,p} :frm(i)=f(i1,••·,in)===} 

• tp(i)::; cons(f,tp(i1), ... ,tp(in)) 
• tp(i1), ... ,tp(in)::; extr(J,tp(i)) 

3. Vi : m ::; i ::; p : 3j E { 1, ... , p} : J rm (j) = J ( ... , i, ... ) 

Operations cons and extr are defined as: 

cons(!, T1, ... , Tn) = T' {=} 

T1, ... ,Tn E Ty 
t1, ... , tn are all terms 
J / n is a functor 
Vi E {1, ... , n} ti E Cc(Ti) ⇒ f(t1, ... , tn) E Cc(T') 

extr(T, J) = (T1, ... , Tn) {=} 

T, T1, ... , Tn E Ty and J /n is a functor 
t1, ... , tn are all terms 
f(t1,••·,tn) E Cc(T) ⇒ (Vi E {l, ... ,n} ti E Cc(Ti)) 

3.1.3 Implementation 

In the domain for study of types, we need to store: 

• the type of each term and each subterm of the abstract substitution, ( Ty com
ponent), note that types are, here, elements of the generalized mode domain 
as presented in the chapter aboute types and in [20), 

• the form of each term and the form of each subterm if defined, i.e. their 
functor, their arity and the list of their subterms, (Jrm component), 

• which terms have the same value (same type and same form), if there are some 
( sv component), 

• and for each pair of subterms, whether they may share variables together or 
not, (ps component); 
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• we can also store ps*, the transitive closure of ps; it is discussed later in this 
chapter. 

In Pascal, the abstract substitutions were implemented as records. But, first of 
ail, as Pascal needs static declarations we have to define the maximum size of each 
structure. So we define a few constants3 and then the data types, as shown on figure 
3.2 

The field bottom is added for ease of use. It tells whether the abstract substitu
tion is ..l or not. If an abstract substitution is ..l then the boolean bottom is set to 
true and ail other fields are undetermined. Else, bottom is set to f alse and ail fields 
must be correctly set up, that is sizesv and sizefrm are well defined, as well as 
sv[l] ... sv[sizesv], frm[l] ... frm[sizefrm] and ps[l, 1] .. . ps[sizefrm, sizefrm], 
other elements of these arrays being undetermined. For an element frm[i] to be 
well defined, both fields mode and form must be well defined as well as, if f orm 
is set to true ( that means the form of the subterm is defined) , f unctor, arity and 
arg[l] ... arg[arity]. 

For example of use of that data type, let us code the following abstract substi
tution: 

{NGV(l): f(Var(2), Var(2),Any(3)),Ground(4): a, 

NGV(l)f: (Var(2), Var(2), Any(3))}, ps = {(2, 2), (3, 3)} 

This substitution con tains three terms, sizesv = 3, and four subterms, si ze f rm = 4. 
The subterms are coded the following way: 

l. mode= NGV, form = true, functor = f, arity = 2, args[l] = 2, args[2] = 2 

2. mode= Var, f orm = f alse 

3. mode= Any, f orm = f alse 

4. mode= Ground, form = true, functor = a, arity = 0 

Since the first and the last terms are the first subterm and since the second term is 
the fourth subterm, sv = (l, 4, 1 ). And, finally, 

ps[i,j] = false, l ::; i,j::; 4, excepted ps[2, 2] = ps[3, 3] = true 

When the implmentation is clone in C language, we can take advantage of the 
dynamic allocation of variables, at the cost of ease of use due to manipulation of a 
lot of pointers. Note too that psclose (ps*) disappears in the C version as explained 
in the next chapter. 

In C language, there is no boolean type, but it can be emulated with others. 
The choice of the type to use is very important. Indeed, C language can handle 

3 note that the values given here are the best suited for ail the tests, though it might be necessary 
to change them. For instance , to run the program on CS (see chapter about results) , constant 
'maxfrm ' must be set to 100 
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bytes and bits of the bytes too. So it could be a good idea to use each bit of a 
byte as a different boolean value. But, to read or to write a particular bit in a byte 
involves some computations that do not exist when a byte is used in its whole for 
a single boolean value. Thus, using bits leads to gain sorne mernory, but to lose 
time in cornparison with bytes. Both methods have been implernented. With bytes 
for better results in time for computers which have a lot of memory. With bits for 
smaller computers, when computation time is not the main rnatter of the user. Ali 
the results of the optimizations are given with respect to both methods. 

The declarations in C language are shown in figure 3.3 and its graphical represen
tation is shown on figure 3.4. Note that teltps must be define as int to implernent 
booleans with bits and as chars to implement booleans with bytes. psblocksize 
is the nurnber of boolean values stored in one element of ps. A char is for one 
boolean value (psblocksize = 1) and an int is for a group of 16 or 32 boolean values 
(psblocksize = 16 or 32) depending of the machine on which the program is run. 
Note too that a field psclose is present in the Pascal version and not in the C version. 
This is explained in the next chapter. 

To create a new abstract substitution is very simple in Pascal, just declare a 
variable as pointer A tas, perform a new on that variable and use it. ln C, it is 
rnuch more cornplicated. Indeed, an abstract substitution is made of several parts: 
the basic part with bottom, sizesv, sizefrm, pointers to sv and frm and ps, the 
sv part and the frm part that is a set of pointers to each form. Since ps vary in 
length frorn one substitution to the other, its size must be calculated for each new 
substitution as sizef rm2 elernents. Then, the size of the basic part is cornputed as 

sizeof(tas) + (sizefrm2 - 1 )/(psblocksize/sizeof(teltps)) 

where '-1' is due to the fact that the first element of psis already taken into account 
with 'sizeof(tas )' (teltps ps[l]) and psblocksize/sizeof(teltps) is the number of 
boolean values stored in one byte (1/1 = 1 with char, 32/4 = 8 with int) . A first 
mernory allocation of that size is clone. Then, a second allocation of size 

sizesv * sizeof(int) 

is done for the sv part. A third allocation of size 

sizety * sizeof( *tfrm) 

must be done for the list of pointers to frm components. And finally, one more 
allocation is necessary for each f rm component. These last ones are of size 

sizeof(tfrm) + (arity - 1) * sizeof(int) 

3.2 The mode domain 

The mode domain focuses interest on the mode of variables. An abstract substitution 
is implemented with three components: 
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• the mode 

• the same value component to express that two variables have the same value. 

• the possible sharing. 

Although next sections present a more complete description of these components, 
the reader can find an exhaustive specification in [20, 11/13]. 

( 3.2.1 · Formal Presentation 

Mode~ . 

An abstract term is characterized by its mode namely: ground, var and any. Let us 
define the concretization fonction which establishes the link between abstract and 
concrete uni verse. Let E = {ground, var, any} be the set of modes. Cc is defined 
as: 

Cc: E ~ P(T) 
ground{ t : t is a basic term} 
var { v : v is a variable} 
any T 

where T is the set of ail the Prolog terms and P(T) is the set of ail the possible 
partitions of T. E is endowed with a relation ~ defined as: ground ~ var ~ any. 

A mode substitution defined on the set of variables D = { X 1 , ..• , Xn} is of the 
foilowing form: 

We define the set Sm(D) of all the mode substitutions as 

The concretization fonction is defined as 

Cc(a) = 0 if a= l. 
{{Xi +- ti}i I ti E Cc(mi)} otherwise 

Sm(D) is endowed with a partial order relation ~ defined as: 

Va, /3 E Sm(D) : a~ /3 <=> 
a= l. or 
a= {Xi+- mi}i and /3 = {Xi +- pi}i and mi ~ Pi Vi 
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Same Value 

The same value component may be defined the same way as for the type domain. 

Possible Sharing 

The possible sharing (ps) expresses that two abstract terms may eventually share a 
variable. ln other words, when there is no "possible sharing" between two asbtract 
terms, these ones can not share any variable. ps has a meaning only for abstract 
terms which are not ground. ps is an element of P S defined as: 

PS(D) ={X: X= P(Y) t\ Y ED} 

where D is the domain of abstact terms. 
The concretization fonction is defined as: 

Cc: PS(D)----+ CSv 
ps { {Xi +-- ti}i: var(ti) n var(tj)-/- 0 ⇒ ps(Xi, Xj)} 

There is also a partial order relation defined as: 

Asbtract Substitutions 

We have now all the elements to define completely the abstract domain: 

ASv = Sm(D) x P(D) x PS(D) 

The concretization is defined as 

Cc: ASv ----+ CSv 
/3 = (8, sv,ps) Cc( 8) n Cc(sv) n Cc(ps) 

ASv is endowed with a partial order relation defined as: 

( 8, sv, ps) ~ ( 8', sv', ps') {=:::} 8 ~ 8' t\ sv ~ sv' t\ ps < l eqps' 

Properties 
AU the Cc fonctions are monotonie and (ASv , ~) is a cpo. 
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3.2.2 lmplementation 

In the domain for the study of modes, we need to store: 

• the mode of each variable in the domain of the abstract substitution, 

• for each pair of terms, whether they have the same value or not, 

• for each pair of terms, whether they may share variables together or not. 

Figures 3.5 and 3.6 show the implementations of the data type for abstract substi-
tutions respectively in Pascal and in C. Figure 3.7 shows a graphical representation 
of the C version. The presence of psclose in the Pascal version and its absence in 
the C version is explained in the next section. 

To create a new abstract substitution, as in the type domain, its easy in Pascal 
and more complicated in C. But now, substitutions only have three parts: the basic 
part, the mode part and the sv part. The second one is simple to obtain, it suffi.ces 
to allocate a memory area of size 

size * sizeof( int) 

Then we could do the same for the ps part and we could do the same as with the type 
domain for the basic part. That is, two memory allocations. But their is another 
solution that makes possible to only do one memory allocation. The solution is to 
append the sv part at the end of the basic part. So, to allocate memory, we must 
do a request of size 

sizeof(tas) + (size2 * 2 - l)/(psblocksize/sizeof(teltps)) 

where size2 is the number of element in one array, '*2' means that both arrays are 
the same size, '-1' is for ps[l] that already appears in sizeof(teltps) and (psblocksize 
/ sizeof( teltps)) is the number of boolean values stored in one byte. Then, in order 
to be able to use the sv part, we have to calculate its address: 

*SV= sizeof(tas) + (size2 - l)/(psblocksize/sizeof(teltps)) 

Each time we need to store something for each pair of terms or subterms, we 
must store, assuming there are n terms or subterms, n 2 boolean values. It leads to 
very big arrays, memory consuming. 

In Pascal, as the size of the arrays must be known at compile time, it is manda tory 
to estimate a maximum size for them. They must be big enough to store the biggest 
object the program can handle during execution, and they must ail have the same 
size, even if they are empty. Furthermore, Pascal can not use just one bit for a 
boolean value, it always use at least one byte. Let us assume, for instance, that 
the biggest abstract substitutions are 50 subterms long and that booleans are coded 
on one byte. Then, a simple boolean array is 50 * 50 = 2500 bytes long. There 
are at least one of them for each substitution. There can be several thousands of 
substitutions created during one execution of the program. What a waste! In C 
language, dynamic storage is permitted, i.e. arrays are just the size they really need 
to be. 
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any 

novar gv noground 

ground ngv var 

Figure 3.1: Modes for the type domain 
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const 
maxsv = 50; 
maxfrm = 50; 
maxarity = 30; 

type 
mdg = (Bottom, Ground, Var,NGV, NoGround,NoVar, GV, Any); 
pfunctor = pointer; { a pointer to a structure representing a functor} 
tfrm = record 

mode: mdg; 
f orm : boolean; 
functor : pfunctor; 
arity : integer; 
args : array[l..maxarity)of integer 

end; 
tas= record 

bottom : boolean; 
sizesv : integer; 
sv : array[l..maxsv]of integer; 
sizef rm : integer; 
frm : array(l..maxfrm]of tfrm; 
ps : array[l..maxfrm,l..maxfrm]of boolean 
psc:ose : array[l..maxfrm,l..maxf rm)of boolean 

end; 

Figure 3.2: Data types of abstract substitutions for type domain in Pascal 

27 
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#define psblocksize ... / * l or 32 depending on teltps *f 

typedef short bool / * short or anything else *f 

28 

typedef enum {Bottom, Ground, Var,NGV,NoGround,NoVar, GV, Any} mdg 
typedef . .. teltps / * ' ... ' is either int or char * / 
typedef struct { 

int arity; 
mdg mode; 
bool form; 
pfunctor functor; 
int args[l]; 

} tfrm; 
typedef struct { 

bool bottom; 
int sizesv; 
Înt *SVj 

int sizefrm; 
tfrm *frm; 
teltps ps[l]; 

} tas; 

Figure 3.3: Data types of abstract substitutions for type domain in C 
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--- bottom 

int sizesv 

•sv 

int sizefrm 

tfrm •frm - int arity 

mdg mode 

teltps ps[][] bool form 

pfunctor functor 

-------- --- ----- ---- ----
int args[] 

-- ----- ------------- -- --

Figure 3.4: Abstract substitutions for the type domain 
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const 
maxsv = 50; 

type 
md = (Bottom, Ground, Var, Any, Top); 
tas= record 

size : integer; 
modes : array(l..maxsv]of md; 
sv : array[l..maxsv,l..maxsv]of boolean 
ps : array[l..maxsv,l..maxsv]of boolean 
psclose : array[l..maxsv,l..maxsv]of boolean 

end; 

Figure 3.5: Data types of abstract substitutions for mode domain in Pascal 

#define psblocksize ... / * l or 32 depending on teltps * / 

typedef enum {Bottom, Ground, Var, Any, Top} md 
typedef . .. teltps / * ' ... ' is either int or char * / typedef struct { 

int size; 
md *modes; 
teltps *SVj 
teltps ps[l]; 

} tas; 

Figure 3.6: Data types of abstract substitutions for mode domain in C 

30 
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- md 

md 

- int size md 

•modes md 

•sv md 

teltps ps[][] 

teltps sv[][] 

Figure 3.7: Abstract substitutions for the mode domain 



Chapter 4 

The original program 

We have presented so far what abstract interpretation is and the domains on which 
we will use it. In this chapter, we present the basic abstract interpretation algo
rithm and its implementation. The algorithm was first described in [13]. A first 
implementation is presented in [15] . It is written in Pascal. It has been translated 
in C and a few optimizations have been clone. We shall present both versions and 
all the optimizations. 

4 .1 Goal Dependencies 

In the first chapter, we defined all the operations necessary to design the algorithm. 
However, one of the main concerns in its design has been the detection of redundant 
computations. They may occur in a variety of situations. For instance, the value 
of a pair (a,q) may have reached its definitive value (the value of (a,q) is in the 
least fixpoint) and hence subsequent considerations of ( a, q) should only look up 
its value instead of starting a subcomputation. Another important case ( especially 
in logic programming) are mutually recursive programs. For those programs, we 
would like the algorithm to reconsider a pair (a, q) only when some elements which 
it is depending upon have been updated. In other words, keeping track of the goal 
dependencies may substantially improve the efficiency on some classes of programs. 

The algorithm includes specific data structures to maintain goal dependencies. 
We only introduce the basic notions here. They have been borrowed to [13]. 

Definition 7 A dependency graph is a set of tuples of the form ((/3,p), lt) where 
lt is a set {(a1,q1), ... ,(an,Qn)} (n ~ 0) such that, for each (/3,p), there exists at 
most one lt such that ((/3,p), lt) E dp . 

We denote by dp(f3,p) the set lt such that ((/3,p), lt) E dp if it exists. We also 
denote by dom( dp) the set of ail (/3, p) such that ( (/3, p), lt) E dp and by codom( dp) 
the set of all ( a, q) such that there exists a tuple ( (/3, p), lt) E dp satisfying ( a, q) E lt. 

32 
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The basic intuition here is that dp(/3, p) represents at some point the set of pairs 
which (/3, p) depends directly upon. To be complete, we need to define the transitive 
closure of the dependencies. 

Definition 8 Let dp be a dependency graph and assume that (/3, p) E dom( dp). 
The set trans_dp(/3, p, dp) is the smallest subset of codom( dp) closed by the two 
following rules: 

1. if (a,q) E dp(/3,p) then (a,q) E trans_dp(/3,p,dp); 

2. if (a,q) E dp(/3,p), (a,q) E dom(dp), and (a',q') E trans_dp(a,q,dp) then 
(a',q') E trans_dp(/3,p,dp). 

Now trans_dp(/3,p,dp) represents ail the pairs which, if updated, would require 
reconsidering (/3, p). (/3, p) will not be reconsidered unless one of these pairs is 
updated. 

We are now in position to specify the last three operations needed to present the 
algorithm: 

• REMDVE-.DP( modif ied, dp), where modif ied is a list of pairs ( a1, P1), ... , ( an,Pn) 
and dp is a dependency graph, removes from the dependency graph ail elements 
((a, q), lt) for which there is a (ai, qi)) E trans..dp(a, q, dp). 

• EXT...DP(/3,p, dp) inserts an element ((/3,p), 0) in dp; 

• ADD...DP(/3, p, a, q, dp) simply updates dp to include the dependency of (/3, p) 
wrt (a,q) (after its execution (a,q) E dp(/3,p). 

The algorithm makes sure that the elements (/3,p) that need to be reconsidered 
are such that (/3,p) ~ dom(dp). 

4.2 The generic abstract algorithm 

We are now in position to present the generic abstract interpretation algorithm 
([13]). The algorithm is composed of three procedures and is shown in Figure 4.1. 

The top-level procedure is Procedure solve which, given an input substitution 
f3in and a predicate symbol p, returns the set of abstract tuples sat containing 
(/3in, p, f3out) belonging to the least fixpoint 1 and the final dependency graph. Given 
the results, it is straightforward to compute the set of pairs ( a, q) used by (/3, p), 
their values in the fixpoint, as well as the abstract substitutions in any program 
point. 

Procedure solve_call receives as inputs an abstract substitution /3in, its associ
ated predicate symbol, a set suspended of pairs (a, q), sat, and a dependency graph 

1 In the case of infinite domains, it is possible that the algorithm returns an upper approximation 
to the least fixpoint due to our use of widening operations to guarantee termination. 
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procedure solve(in flin ,p; out sat, dp) 
begin 

sat : = 0; 
dp := 0; 
solve_call ( flin ,p, 0, sat, dp) 

end 

procedure solve_call(in flin ,p, suspended; inout sat ,dp) 
begin 

if (flin , p) ~ (dom( dp) U suspended) then 
begin 

if (flin ,p) ~ dom(sat) then 
sat : = EX TEND (flin, p, sat) ; 

repeat 
flout : = J_; 

EXT..DP( flin ,p,dp); 
for i := 1 to m with c1, ... ,Cm clauses-of p do 
begin 

solve_clause ( flin ,p, Ci, suspended U { (flin, p)} ,flaux, sat , dp) ; 
flout : = UNION (fJout, flaux) 

end; 
(sat,modified) := ADJUST(flin,P, flout ,sat); 
REMOVE...DP (modified, dp) 

until (flin, p) E dom( dp) 
end 

end 

procedure solve_clause(in flin ,p, c, suspended; out f3out; inout sat, dp) 
begin 

flext := EXTC(c,flin); 
for i : = 1 to m wit h b1 , .. . , bm body-of c do 
begin 

flaux : = RESTRG ( bi, flext ) ; 
switch (bi) of 
case Xj = Xk: 

f3int := ALVARCf3aux ) 
case Xj = f( .. . ) : 

/3int : = ALFUNC ( flaux, f) 
case q( .. . ) : 

solve_call( flaux ,q,suspended , sat,dp); 
flint : = sat Cflaux , q) ; 
if ( flin ,P) E dom(dp) then 

ADD...DP ( flin ,p, flaux, q, dp) 
end; 
flext := EXTG(bi,flext,f3int) 

end; 
flout : = RESTRC ( c, flext ) 

end 

Figure 4.1: The Generic Abstract Interpretation Algorithm 

34 
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dp. The set suspended con tains ail pairs ( a, q) for which a subcomputation has been 
initiated and not been completed yet. The procedure is responsible to consider ( or 
reconsider) the pair (/3;n, p) and to update sat and dp accordingly. The core of the 
procedure is only executed when (/3in,P) is not suspended and not in the domain 
of the dependency graph. If (/Jin, p) is suspended, no subcomputation should be 
initiated. If (/Jin, p) is in the domain of the dependency graph, it means that none 
of the elements which it is depending upon have been updated. Otherwise, a new 
computation with (/3in,P) is initiated. This subcomputation may extend sat if it is 
the first time /Jin is considered. The core of the procedure is a repeat loop which 
computes the best approximation of (/3in,P) given the elements of the suspended 
set. Local convergence is attained when (/Jin, p) is in the domain of the dependency 
graph. One iteration of the loop amounts to executing each of the clauses defining 
p and computing the union of the results. If the result produced is greater or not 
comparable to the current value of (/3in,P), then the set of abstract tuples is updated 
and the dependency graph is also adjusted accordingly. Note that the call to the 
clauses is clone with an extended suspended set since a subcomputation has been 
started with (/3in,P)- Note also that, before executing the clauses, the dependency 
graph has been updated to include (/3in,P) (which is guaranteed not to be in the 
domain of the dependency graph at that point). (/3in,P) can be removed from the 
domain of the dependency graph during the execution of the loop if a pair which it 
is depending upon is updated. 

Procedure solve_clause executes a single clause for an input pair and returns 
an abstract substitution representing the execution of the clause on that pair. It 
begins by extending the substitution with the variables of the clause, then executes 
the body of the clause, and termina tes by restricting the substitution to the variables 
of the head. The execution of a goal requires three steps: 

• restriction of the current substitution f3ext to its variables giving f3aux; 

• execution of the goal itself on f3aux producing /3int; 

• propagation of its result /3int on f3ext· 

If the goal is concerned with unification, the operations ALVAR and ALFUNC are 
used. Otherwise, procedure solve_call is called and the result is looked up in sat. 
Moreover, if (/3in, p) is in the domain of the dependency graph, it is necessary to 
add a new dependency. Otherwise, it means that (/3in, p) needs to be reconsidered 
anyway and no dependency must be recorded. 

4.3 Foundations 

The foundations are the true results of the abstract interpretation of a Prolog pro
gram P. They are sets of tuples (/3,p,/3') that extracted from the sats. These 
elements are those for which the input abstract substitution is the abstraction of a 
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substitution occuring during the execution of the analysed program. Indeed, when 
analysing a program, approximated results due to suspended recursive calls can lead 
to a number of tuples that would not appear if it was possible to obtain directly 
the right result. Those tuples are "noise" in the sats and must be ignored in the 
calculation of foundation. In this section, we define the foundations more precisely 
and we explain the algorithm used to calculate them. 

4.3 .1 Definition 

Let us now define the foundations, as presented in [15). 

Definition 9 The pair (/3, p) is based in sat iff V sat' such that sat' is total and 
sat Ç sat', the computation of Tp(/3, p, sat') does not require values of sat' not 
belonging to sat. ln that case, and in that case only, base(/3,p,sat) is the smallest 
set D such that (/3,p) is based in sat ln-

Definition 10 The pair (/3,p) is founded in sat iff :lD: (/3,p) ED and V(a, q) E D: 
(a,q) is based in sat ln- ln that case, and in that case only, foundation(/3,p,sat) 
is the smallest set D such that (/3, p) is founded in sat ln-

For instance, let us assume p = APPEND/3 is studied with /3in = {Xi I Var,X2 I 
Var, X 3 1 Gro }. The only resulting sat will only contain one tuple: 

({X1 1 Var,X2 I Var,Xa I Gro},APPEND/3, {Xi I Gro,X2 1 Gro,Xa I Gro}) 

Let D be a set containing the only pair (f3ïn,p). Thus, sat ln= sat. The pair (f3ïn,P) 
is based in sat because its evaluation calls only itself. It is founded in sat because 
the only element of D ((f3in,P) itself) is based in sat ln- And D is the smallest 
set such that (f3in, p) is founded in sat ln because, otherwise, D must be empty, 
so is sat ln and nothing can be founded in the empty set. Hence, the foundation 
of (f3ïn,APPEND/3) is that set D. That is, during execution of APPEND/3 with a 
substitution for which f3in is an abstraction, ail calls of APPEND/3 are clone with 
substitutions for which f3in is an abstraction too. 

4.3.2 The algorithm for the calculation of the foundations 

Let P, a program, be a set of predicates {Pi/ mi}, each of them being a set of clauses 
of the form: 

C = H(X1,X2, ... ,Xm): -B1,B2, ... ,BP 

where His the head and Bk are subgoals (built-ins or procedure calls ). Let us assume 
that the predicate p/m of Pis called with f3 and that subgoal Bk leads to a recursive 
(locally or mutually) call of p/m. When this recursive call occurs, its execution 
is avoided and its best result so far, which is stored in the corresponding sat, is 
returned. Ali BL k' > k, are then examined with an input substitution depending on 
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that result. Let {/31 out, ... , /3L out} be a set of different outputs of Bk at subsequent 
calls. Let us assume that Bk,, k' > k, is a procedure call. It is examined, at the 
ith call, with an input substitution depending on /31 out, say /3Ln· Thus, the series 
of calls to p/m will produce a list of tuples (/31,in, Bk,, /3l,out), • .. , (/3Ln, Bk, /3L,out) 
which ail appear in the Hasse diagram of p/m. 

But, in fact, only the last one, (/3Ln, Bk, /3k,out), is correct. Ail the previous ones 
are present in the sats because of the suspension of the execution of the recursive 
calls, but they do not have been improved and their result is false. 

So, the algorithm for the calculation of the foundations is very similar to the 
abstract interpretation algorithm. It suffi.ces to run it -a second time with the sats 
calculated the first time because they contain the best approximation possible for 
each pair (/3i, Pi). Hence, the good result is directly known and there is no more 
reexamination in order to imrpove it and no more calculation of the UNION. Each 
visited pair is part of the foundation. It is shown on figure 4.2 . 

4.4 The original program 

A first implementation of the program has been written by Pascal Van Hentenryck. 
It is described in (15). The purpose of our work is to improve that program. Thus, 
as it is a basis for the following, we need to understand it before working on it. This 
section will describe some interesting aspects of the implementation of the program 
to know for a better understanding of the optimizations. 

This first implementation was written in PASCAL. But, it allows only static 
allocation of memory. Soit has been translated in C language, which allows dynamic 
allocation of memory. ln a first time, we will describe the most important data 
structures used. From these, we can make some choices in order to minimize memory 
size used by the program or to minimize the execution time. Then, we will explicit 
the design of the program. 

4.4.1 Abstract substitutions 

Abstract substitutions are the most important structures manipulated by the pro
gram. They contain a lot of information and they are the most used data structures. 
Thus, it is important to write them carefully. Two different abstract domains are 
implemented. Each of them has its own abstract substitutions, different one from 
the other. We already described their implementation in the previous chapter. 

4.4.2 Transitive closure of Possible Sharing 

ln the previous chapter, when we described the implementation of the abstract 
substitutions, we underlined that the ps* component was included in the Pascal 
versio _JJ,j......,,..,se field), but not in the C version. That is due to an in~sting 
o 1 1zation ptimization. We now desbribe that improvement. 
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procedure foundation(in f3in ,p , sat ; out f oundation ) 
begin 

foundat ion := 0; 
foundation _call ( f3in ,p, 0, sat , dp, f oundation ) 

end 

procedure foundation _call(in f3in ,p, suspended, sat; inout foundation ) 
begin 

if ( f3in , p) ~ ( suspended U f oundation) t hen 
begin 

foundation := foundation U {(f3in, p,sat(f3in, P))}; 
for i : = 1 to m with C1 , • .. , Cm clauses-of p do 

foundation _clause C.Bin ,p, Ci, suspended U {( f3in , p )}, sat ) ; 
end 

end 

procedure foundation _clause(in f3in ,p ,c , suspended,sat) 
begin 

f3ext := EXTC(c, f3in ); 
for i := 1 to m with b 1 , ... ,bm body-of c do 
begin 

f3aux : = RESTRG(bi , f3ext ); 

switch (bi ) of 
case Xj = Xk : 

f3int : = ALVAR(f3aux ) 
case X j = f ( . .. ) : 

f3int := ALFUNC(f3aux ,f) 

case q( . . . ) : 
foundation _call( f3 0 ux , q,suspended , sat ,dp ) ; 
f3int : = sat Cf3aux , q) ; 

end; 

f3ext : = EXTG ( bi , f3ext , f3int ) 
end 

end 

Figure 4.2 : The calculation of the foundation 
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ps = {(ti, tj) J ti may share one or more variable with tj} 

A more complete definition can be found in [20]. 
The transitive closure ps* of ps is calculated with the following rules: 

• V(ti, tj) Eps, (ti, tj) Eps* 

• Vi,j, k, (ti, tj) Eps* and (tj, tk) Eps*==> (ti, tk) Eps* 

• ti = f( ... , tj, ... )and(tk, tj) Eps==> (ti, tk) Eps 

In the original program, both ps and ps* are stored in memory. When a proce
dure that modifies ps is over, ps* is recalculated. By that way, it is at disposal of 
all procedures that need it. 

The main goal we have in sight when translating the program from Pascal to 
C Ü; to run it with less memory, in order to be able to use it with bigger Prolog 
programs. So, a way of doing this is not to store ps* any more, but to calculate it 
only when necessary. 

The way ps and ps* are implemented is the following: for a substitution made of 
n terms and subterms, there are n2 booleans, one for each pair (ti, tj), l ~ i,j ~ n 
telling whether (ti, tj) Eps or not. 

For example, let us suppose we have a substitution made of 20 terms (it is 
common in all previous tests). And let us suppose, with search for speed in sight, ps 
is implemented with chars to store the boolean values. Then it takes 202 = 400 bytes 
of memory per substitution for ps as well as for ps*. If more than 100 substitutions 
are created, we can really gain a lot of place by avoiding to store ps*. 

ln fact, this little trick is much more interesting. Indeed, the program now 
computes ps* much less times. With the first method, a ps* that is used several 
times is computed only once, but there are also a lot of computation that are never 
used. If we measure the time necessary for one test with both methods, we can note 
a very big difference. ln fact, this improvement is responsible of a large part of the 
percentage of the time won with prefix as well as with caching. 

4.4.3 Sats 

Ali the abstract substitutions are elements of sats. These sats take the form of Hasse 
diagrams. But it is worth having a complete section to describe these diagrams in 
detail, so it will be discussed later on. 

4.4.4 The dependency graph 

Another important data structure is the dependency graph described in the begining 
of this chapter. It is not important in the sense of its size because it just contains a 
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few references, just a few bytes, but in the sense of its utility. A bad implementation 
of this graph could lead to very big amount of unnecessary computations as we shail 
explain. 

According to [15], the dependency graph is a set of pairs composed of a pair 
(/3,p) and a set 1t of pairs (ai,qi) indicating that (/3,p) must be reconsidered if and 
only if at least one (ai, qi) has been reconsidered. This was presented that way for 
facility and beauty. But, it is more efficient to implement it in the opposite way, 
namely, elements are a set lt' of pairs ( ai, qi) associated to a pair (/3, p) where each 
(ai, qi) is to be reconsidered if and only if (/3, p) is. Let us note dp' (/3, p) that set lt'. 

Let us explain why the reverse method is the easiest. 
Firstly, the creation of the graph. Procedure ADD...DP(/3,p,a,q,dp), as described 

previously, adds a dependency (a,q) to dp(/3,p). But, to do that or to add (/3,p) to 
dp( a, q) is exactly the same. So, no gain and no lost in creating the graph in reverse 
sense. 

Then, the use and the destruction of the graph. When the consideration of 
the pair (/3,p) is over, ail the pairs depending on it must be reconsidered. So, 
we need to find ail these pairs and mark them to 'to be reconsidered'. With the 
first method, it is necessary to look at every pair (a, q) E dom(dp) and to check if 
(/3,p) E dp(a, q). Ail pairs (a, q) verifying that condition must be marked. But we 
don't only need to search all (a, q) such that (/3,p) E dp(a, q), we must mark all (a, q) 
such that (/3,p) E trans_dp(a, q, dp), so we must redo the same recursively for each 
(a,q) found. Note that there would be an infinite loop if 3(a,q) such that (a,q) E 
trans_dp(a, q, dp). To avoid this problem, the searched elements are removed from 
the graph when found, that is, if (/3, p) E dp( a, q) then dp( a, q) := dp( a, q)\ {(/3, p)}. 
On the other hand, with the second method, it suffi.ces to mark all elements of 
dp'(/3,p) and redo the same recursively for ail these elements. Note that we still 
need to remove the marked elements from the graph, that is dp'(/3,p) = 0 when ail 
its elements are marked and recursively examined. Hence, with the first method, 
dp in its whole must be examined, possibly several times, but with the second 
method, only trans_dp(/3, p, dp') must be examined. The theorical complexity is 
0( n 2 ) in the first case and 0( n) in the second case. In case of a big pro gram 
with few dependencies, the ratio of number of examined elements may be of several 
thousands to one. 

4.4.5 The implementation 

The program of abstract interpretation runs in three phases. Firstly, a phase of 
normalization of a Prolog program. Secondly, the abstract interpretation algorithm. 
And lastly, the calculation of the foundation. 

As described in a previous section, the program works with normalized Prolog 
programs. But it is not very convenient for the user to write a program in a normal
ized way. So, the first phase during the execution of the program is a translation of 
a standard Prolog program into its normalized form. 
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The second part is the most important part of the execution. It is an implemen
tation of ail the algorithms and fonctions given so far, as well as the Hasse diagram 
explain in the next section. 

The implementation is clone in a top-clown fashion with different levels of proce
dures: 

• First level: the generic algorithm: procedures s olve, solve_call and 
solve_clause 

• Second level: all abstract operations used by the first level: UNION, ALVAR, 

AI...FUNC, ... 

• Third level: a series of sophisticated fonctions for manipulation of data struc
tures, that is fonctions for manipulation of data structures like abstract sub
stitutions, Hasse diagrams, ... regarding their semantics; for instance, compar
ison of two substitutions (are they =, <, > or not comparable?), unification 
of substitutions, search of an element in Hasse diagram, ... 

• Fourth level: a series of fonctions for manipulation of data structures without 
regard to their semantics, such as syntaxical comparison of abstract substi
tutions ( are they equal byte per byte?), copy of an abstract substitution into 
another, .. . 

The implementation i odular, that is a procedures are gathered in different 
files in fonction of thei purpose. For instan e, the three procedure of the abstract 
interpretation algorit are together in o file. AU procedures concerning manipu
lation of the Hasse di grams (EXTEND ARCH, .. . ) are in another file. A third file is 
a set of procedures of u=.......,_, ......... ...-- el for manipulation of abstract substitutions (uni
fication, comparison, . . . ). A fourth one contains all the little tools for manipulation 
of abstract substitutions ( assigning, copying, printing, syntaxical comparison, . .. ) . 

And finally cornes the calculation of the foundation which is a simple implemen
tation of the algorithm shown in a previous section. 

4.4.6 Abstract Unification 

The fonction uact 1 ((3, i,j) unifies two undefined patterns (frm(i) and frm(j)) 
inside an abstract substitution ((3). Taking advantage of the fact that uact 1 can 
modify directly its argument without creating a new substitution, the computation 
of the new ps component was improved. The old algorithm was composed of three 
subprocedures: 

1. initialization of the result with values by default 

2. computation of the new modes (Ty component) 

3. computation of the new ps component 
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This last point was itself composed of three parts: 

• initializing the new ps to Jalse (psnew(i,j) = false Vi,j) 

• transferring the old ps to the new one as: 

pso1d(k, l) and } 
Vk, l Tynew(k)-:/ ground and ===? PSnew(k, l) 

Tynew( l) -:/ ground 

• updating the new ps to take into account the following property: 

PSo/d(k, i) V ps01d(k,j) and } 
Vk, l PSo/d(l, i) V PS01d(l,j) and ===? PSnew(l, k) 

Tynew( i) -:/ ground 

In the new implementation, we work directly on f301d (f3old = f3new), Consequences 
are that: 

• subprocedure 1 can disapear 

• subprocedure 2 updates also directly the ps component such that 

ps(l, k) = J alse if (TYnew(l) = ground V Tynew(k) = ground) 

• subprocedure 3 computes only two things: 

PSo/d(k, i) V ps01d(k,j) and } 
Vk, l: k, l (/ {i,j} PSo/d(l , i) V ps01d(l,j) and ===? PSnew(l , k) 

Tynew( i) -:/ ground 

Vk PSo/d( i, k) V PSo/d(j , k) {::} PSnew ( i, k ), PSnew( k , i) , PSnew(j , k) , PSnew ( k , j) 

We have eliminated so a double loop and a heavy initialization. 

4.5 Hasse diagrams 

As described previously, fonction EXTEND extends a set of abstract tuples. There is 
one set for each p E P, say satp, Those sets are very important because they are 
the ones which contain all the informations obtained by execution of the program. 
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(T,p, ?) 

~ 
(/31, P, /JD (/32, P, {J~) (/33, P, {J~) 

1 1 1 

(/34, P, /J~) (/Js, P, /J~) (/36, P, /J~) 

V 
(f31,p,{J~) 

(..L,p,..L) 

Figure 4.3: An example of Hasse diagram 

4.5.1 Definition 

These sats are organized as Hasse diagrams. There is one diagram for each predicate 
p/n. They are organized in fonction of the abstract substitution /Jin· Two elements 
of a dirgram (/31,p,/JD and (/32,p,{J~) are linked together if and only if one is the 
father of the other. 

Definition 11 (/31, p, /JD is a father of (/32, p, {J~), if 

• /31 Ç /32 

• there is no /33 such that (/33, p, {J~) exists and /31 Ç /33 and /33 C::: /32 

Definition 12 Similarly, (/31, p, /JD is a son of (/32, p, {J~) iff (/32, p, /JD is a father of 
(/31,P,/JD. 

Definition 13 Let satp = { ( betai, p, {J:) l 1 :::; i :::; n} be a sat containing n elements 
and let (/J, p, {J') be an element of satp. Then, 

Fathers({J,p,{J') = {(/Ji,p,{J:) 1 (/Ji,p,{J:) is a father of ({J,p,{J'), 1:::; i:::; n} 

Sons({J,p,{3') = {(f3i,P,f3D 1 (f3i,P,f3D is a son of ({3,p,{3'), 1:::; i:::; n} 

Ail elements in such a diagram have a common ancestor (T) and a common 
descendant ( .l). This is added for the ease of implementation. 

Let us examine, for instance, the Hasse diagram shown on figure 4.3. It means 
that: 
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• ..L < /31 < {34 < /31 < T 

• ..L < /31 < f3s < /32 < T 

• ..L < /36 < {33 < T 

• and the elements that are not in relation here above are not comparable, e.g. 
/31 and /32 ca not be compared. 

4.5.2 The original search method 

Two fonctions must be performed on these diagrams: their extension, i.e. adding 
an element to them, and the search for one element. The :first one is the operation 
EXTEND we already spoke about. The second is the one we speak about in this 
section. Note that this fonction is used by EXTEND in order to put the new entry in 
its suitable place. 

Let us name {31 , ... , f3n the input substitutions of the n tuples of the diagram 
satP associated to the predicate p and (/3, p, ?) the element to search for. The first 
searching method is to look at ail the elements of the diagram in a depth :first search 
way. The search may be over for two reasons: 

• we have found i such that f3i = {3, 

• we are sure Vi, f3i -=1- {3. 

In the later case, we need also to know where ({3,p, ?) can be placed, for use by 
fonction EXTEND. That is, we need the sets 

F = Fathers({3,p, ?) 

S = Sons(/3,p, ?) 

Figures 4.4 and 4.5 shows the original algorithm for fonction SEARCH(in ({3,p), 
out found, (f3i,P,f3D, F, S) where found is a boolean value that is true if ({3,p, ?) 
has been found in satp. ln that case, the tuple is set up correctly ( (f3i, p, f3D = 
({3,p,sat(/3,p))) and the sets F and Sare undefined. Else, if found is false, the 
output tuple is undefined and F and S are the sets of all fathers and ail sons of 
({3, p, ?). This procedure has a side effect. It suppresses the links between the 
elements of F and their sons and between the elements of S and their fathers for 
the ease of the later insertion of the (/3, p, ?). Note too that the implementation is 
slightly more complicated to avoid visiting two times the same element. 

4.5.3 The new search method 

We can see on figure 4.5 that we need to compare substitutions, f3k and /3, in both 
procedures SEARCH_TOP ...DOWN and SEARCH..BOTTOM_UP. It suffi.ces to test if f3k ~ {3 
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procedure SEARCH(in (/3,p); out found, (/3i,p,/3:), F, S); 
begin 

J ound:= J alse; 
if f3 = T then begin 

J ound:=true; 
(/3i, P, /3D:=(T, p, sat(T, p )); 

end; 
else begin 

F:=0; S:=0; 
SEARCH_TQP _DQWN((T ,p), (/3,p), found, F, (/3i,P,J3D); 
if not found then 

SEARCH--130TTQM_UP((1-,p), (/3,p), S) 
end 

end; 

Figure 4.4: SEARCH procedure 
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and if /3 ~ /3k· If both tests are true, then they are equal. If just the first one is 
true, then f3k < /3. And, if just the second one is true, /3k > /3. Else, they are not 
comparable. Hence, to compare two substitutions, we need two tests and those are 
very time consurning because of the complexity of the substitutions. The idea of 
optirnization is to reduce the number of tests by doing each time only one of them 
instead of two. 

Let us examine the procedure SEARCH_TQPJ)OWN. With only one test, we can 
know whether /3 ::; f3k or not. If yes, we stiil do not know whether /3 = f3k or /3 < /3k, 
so we suppose /3 < f3k and we go deeper in the diagram to examine it. Else, we do 
not do anything. Like in the original algorithm, when ail the sons of one f3k > /3 
are smailer than /3 or not comparable to /3, that (/3k,p,/3',J is added to F. This is 
procedure SEARCH_TOP J)QWN....AUX ~n figure 4.6. When the examination of the 
diagram is over, we still do not k~hether /3 is in the diagram or not. But we 
have the set F which contains elements greater than /3 and eventually /3 itself. 

Proposition 14 The set F obtained by the procedure SEARCH_TOP J)QWN....AUX con
tains either (/3, p, ?) as only element or ail its fathers. 

Proof Let us suppose that F contains n elements and that the input substitutions 
of those elements are /3i, 1 ~ i ~ n. Ali these /3i are, by construction, greater or 
equal to /3. 

Let us suppose that one of them is equal to /3. By definition of the Hasse diagram, 
there are no two equal /3i, so all the other ones must be greater than /3 . Let us suppose 
there exists such another one, say /39. During the execution of the procedure, when 
/39 ~ /3 is found, SEARCH_TOP J)QWN....AUX calls itself recursively in order to examine all 
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procedure SEARCH_TQP ..DOWN(in (f3cur,P), (/3,p); inout found, F; out (/3i,P, /3D); 
begin 

deeper:=false 
forall (fJk,P, {1',.) E Sons(f1cur,P, f1'cur) do 

switch COMPARE(fJk, (1) of 
case=: 

f ound:=true; 
({Ji, P, fJ:):=(fJk, P, /3',_); 
return; 

case>: 
deeper:=true 
SEARCH_TQP ..DOWN((/3k,P), (/3,p), found, F, (/3i,p,/3D); 

case<: 
Fathers(fJk, p, /3',.):= Fathers(/3k, p, /3',.)\ {(/3cur, P, /3~ur)}; 

end; 
if not deeper then 

F:=F U {(/3cur,P,/3'cur)} 
end; 

procedure SEARCH..BOTTQM_UP(in (/3cur,P), (/3,p); inout S) 
begin 

deeper:= f alse; 
forall (/3k,P, /3',.) E Fathers(/3cur,P, f3~ur) do 

switch COMPARE(/3k,/3) of 
case<: 

deeper:=true 
SEARCH..BOTTQM_UP((/3k,P), (/3p), S); 

case> : 
S ons(/3k, p, /3',.):= S ons(/3k, P, /3',.) \ {(/3cur, P, /3~ur)}; 

end; 
if not deeper then 

S:=S U {(/3cur, P, /3~ur)} 
end; 

Figure 4.5: Original algorithm of SEARCH 
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sons of (/39 ,p,/3;). Since it must be in F, none of its sons have an input substitution 
greater or equal to /3. Then the execution of the recursive call is over and, back to 
the examination of the sons of (/3, p, ?) , since we have gone deeper, (/3, p, ?) will not 
be appended to F. It is in contradiction with the hypothesis. Hence, if the searched 
element is in F, there can not be any other element in F. 

Let us now suppose that ail /3;(1 ::; i::; n) are strictly greater than /3. The fact 
that (/3;, p, /3:) E F means the procedure has not gone deeper than that element, that 
is all sons of that element have an input substitution smaller or not comparable to 
/3. So, there is no (a,p,a') in the Hasse diagram such that /3::; a ::; /3;. Hence, 
every element of F is a father of (/3, p, ?) . And, finally, all fathers of (/3, p, ?) are 
in F because the procedure stops its examination of the Hasse diagram when only 
elements with an input abstract substitution smaller or not comparable to /3 are still 
not examined, so all fathers have been checked. □ 

As a consequence, if F has more than one element, then we are sure /3 is not 
among them. But, if F has only one elernent, we do not know anything. It is then 
necessary to test the equality between the input substitution of that only element 
of F, and /3. 

For instance, let us search for (/3, p, ?) in the Hasse diagram shown on figure 
4.3. If /35 < /3 < /32 then F = {(/32 ,p,/3~)}. If /3 < /35 , /3 < /36 and 1- < /3 then 
F = {(/3s,P,/3~), (/36,P,/3~)}. And, if /3 = /3s, then F = {(/3s,P,/3~)}. 

Procedure SEARCH...BOTIOM...DOWN can be modified the same way: 
Thus, we have now won one half of the tests, we know whether (/3, p, ?) is present 

in a Hasse diagram or not and we know both sets of its sons and its fathers. But the 
side effect is not performed any more. Then, in SEARCH...BOTIQM_UP, when the first 
test is not verified, the second test must be performed to determine whether /3k > /3, 
in what case the side effect must be performed, or whether they canot be cornpared. 
We still win on the number of tests, but no more the half. ln SEARCH_TOP ...DOWN, we 
canot act the same way, since we do not know whether the elements appended to 
F are the searched one or not. Hence, we must do that in the end, in the case we 
are sure that the element is not in the diagram. We must examine all sons of every 
element of F a second time in order to perform the second test and remove the link 
between these elements of F and their sons that verify the test. The new procedures 
SEARCH_TQP ..DOWN and SEARCH...BOTIOM_UP are shown on figure 4.6, procedure SEARCH 
is unchanged. 

4.5.4 Comparison between both search methods 

Let us now examine these two methods on both pathological cases shown on figure 
4.7. Those are the two possible extremes in the shape of a Hasse diagram. In the first 
one, sath, all elements are in height, each element has one and only one father and 
one and only one son, but 1- has a lot of ancestors and T has a lot of descendants. 
In the second one, satw, all elements are in width, every element di-fferent of T or 
1- is a son of T and a father of 1-. Let us suppose they both contain n elements. 
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procedure SEARCH_TQP .J)ûWN(in (f3cur,P), (/3,p); inout found, F; out (/Ji, p, /JD); 
begin 

SEARCH_TQP _DOWN_AUX((/Jcur,P), (/3,p), F); 
if #F = 1 then f* say F = {(fJF,P,fJF)} *f 

if SMALLER-OR_EQUAL(/3,/JF) then begin 
found:=true; 
(/Ji, P, /3D:=(/3F, P, /3F ); 

end; 
if not found then 

forall (/3i, p, /3D E F do 
forall (/3k,P,/3'tc) E Sons(/3i,P,/3D do 

if SMALLER-OR-EQUAL(/3, /Jk) then 
Fathers(/Jk, p, fJ'tc):= Fathers(/Jk, p, /31c)\ {(/Ji, p, /3:)}; 

end; 

procedure SEARCH_TQP .J)ûWN_AUX(in (/Jcur,P), (/3,p); inout F); 
begin 

deeper:= f alse; 
forall (/3k,P, /3'tc) E Sons(f3cur,P, f3~ur) do 

if SMALLER-OR-EQUAL(/3, f3k) then begin 
deeper:=true; 
SEARCH_TOP .J)0WN_AUX((/3k,P), (/3p,P), F); 

end; 
if not deeper then 

F:=F U {(/Jcur,P, /J~ur)}; 
end; 

procedure SEARCH..BOTTOM_UP(in (f3cur,P), (/3,p); inout S) 
begin 

deeper:= f alse 
forall (f3k,P,/3D E Fathers(f3cur,P,f3~ur) do 

if SMALLER-OR-EQUAL(/Jk,/3) then begin 
deeper:=true 
SEARCH..BOTTOM_UP((/Jk, p), (/Jp,P), S) 

end 
else if SMALLER_QR_EQUAL(/Jk,/3) then 

Sons(f3k, p, f31c):= S ons(fJk, P, /3D\ {(/3cur, P, f3~ur)}; 
if not deeper then 

S:=S U {(/3cur,P, /J~r)}; 
end; 

Figure 4.6: New algorithm of SEARCH 
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Figure 4.7: Two opposite pathological Hasse diagrams 

What if the searched element is present in the diagram? With the first method, 
as we stop right when it is found, we shall look at ~ elements from both diagrams in 
mean. Namely ~ x 2 = n tests"~". With the second method, ~ elements of sath will 
be examined in mean with only one test "~". Then, one more test will be performed 
to check the only element in F. That is ~ + 1 tests. But, ail the n elements of satw 
will be examined with the first test. Hence, n + 1 test are performed. 

And what if the searched element is not in the diagram? With the original 
method, ~ elements of sath are examined on the average, and all n elements of satw 
are examined. Moreover, this is clone twice, once with SEARCH_TOP -.DDWN and once 
with SEARCH...BOTTOM_UP. Hence, respectively 2n and 4n tests "~" are performed. 
With the new method, the numbeL--Q~es..i,_.s is exactly the same satw, but exactly 
half of the tests are performed sath, that · n and 4n tests "~" are computed 
respectively. 

At the light of all th e figures, we can draw onclusions. The new search method 
for an element in a H se diagram permits to each our goal of dividing the number 
of tests by two, but only in some optim pathological cases like sath, when the 
height of the diagra is maximum. it can also make no difference, or even be 
worse than the origina ·n some other pathological cases, when the height 
is minimum ( =1 ). 

And in practice? ln [15], statitics have been achieved about the shape of Hasse 
diagrams appearing during evaluation of the programs we tested in the previous 
chapters . Ali the average heights (including T and _!_) are ranging from 2.18 to 4.83 
for an average number of elements ( excluding appended T and J_) ranging from 1.21 
to 6.56. That is, the diagrams are more or less "well organized", namely their height 
is similar to their width. Moreover, these diagrams are not very big. So, we can hope 
to win one or two tests "~" during each search, but it's not very significant. lndeed, 
a few tests were achieved and no significant result appeared. On the other hand, 
reexecution that was experimented in the previous chapter, leads to the creation of 
more elements in the diagrams. So, with reexecution the new search may perhaps 
become more interesting. But no test has been done to check that assumption. 
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4.5.5 lmplementation of Hasse diagrams 

Ali elements of a Hasse diagram are related to the same predicate. Moreover, we 
always refer to a tuple in fonction of its predicate, but we never need to know to 
which predicate a tuple is associated. So, to each representation in memory of a 
predicate p, we associate a reference to its associated satp, but its not necessary 
to store a refernece to p in the representation of a tuple of satP. Hence, a Hasse 
diagram satp will be a set of pairs (/3in, f3out) instead of a set of tuples (/3in, p, f3out), 

A sat always has at least two elements: (J_, _i) and (T, ?). Furthermore, each 
element has fathers and sons, excepted (_i, _i) that has no son and (T, ?) that has 
no father. Hence, a simple way of representing a satis to have just two references: 
one to (_i, _i) and one to (T, ?). Ali other elements will be linked to these ones 
by their relations father-son. As we do not know how many sons and how many 
fathers an element of a diagram can have, we will implement these relationships 
with linked lists of pointers. When a lattice is created, both pairs (_i, _i) and (T, ?) 
are initialised and the first one is put in relation with the second one as its son. 

As explained while we presented the dependency graph, each tuple must have a 
boolean value that tells whether that particular tuple must be reconsidered or not. 
By the way, to help to do statistics on the studied Prolog program, we can add a few 
other boolean values that can tell whether the predicate is rec~ or not, locally 
recursive or mutually recursive, ... It may be helpfl/1(1or reuse orth{ results by other 
programs such as compilers. That was done in [1~. But it is just complementary 
information and it is not necessary for the execution of the abstract interpretation 
algorithm, so we will not speak about these complementary informations any more. 

Lastly, we will add a pointer for the creation of the sets of fathers and sons by 
procedure SEARCH. Thus, a set of sons is a linked list of elements of a sat. Let S 
be the set. S is a pointer to the first element of the set. That elernent has pointer 
to the second elernent and so on. To add an elernent to the list is easy, just copy 
the pointer S in the new element of the set and make S point to that new element. 
The same may be done for the set of fathers but, as an element of the set can not 
be at the same time the father and the son of a new element, one pointer is enough 
for both sets. 

The declaration of the data types are shown on figure 4.8. 
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struct srelationship{ 
node *parent; 
struct srelationship *next; 

}; 
typedef struct srelationship trelationship; 

struct snode { 

}; 

tas *betain; 
tas *betaout; 
short ToReconsider; 
trelationship * f ather s; 
trelationship *Sons; 
struct snode *Set; 

typedef struct snode tnode; 

typedef struct { 

}; 

tnode *top; 
tnode *bottom; 

Figure 4.8: Declarations for Hasse diagrams 
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Chapter 5 

Clause prefix 

The clause prefix technique is a rnethod for o tirnizing the generic abstract algorithrn 
by execution of only the clauses that need t and even of only the parts of those 
clauses that need it. Indeed, if we look at th execution of the original prograrn on 
APPEND /3, figure 5.1, we can see that the sarn operation is done several tirnes. For 
instance, the evaluation of the first clause is one three times, exactly the sarne. 
And, in the second clause for which the execu ·on changes, both UNIF-FUN are 
cornputed the same way. It is obvious that it wo ld be interesting to avoid those 
redundant calculations. 

In this chapter, we will describe and implernent a method to void these evalu
ations. 

5.1 Theoretical background 

5.1.1 Motivation 

A predicate is reconsidered only if it is recursive (tail recursive, locally or mutually 
recursive). And, in the original prograrn, every clause is reevaluated completely each 
tirne the predicate is considered. But, the non-recursive clauses of the procedure 
give the same result each time they are considered with the sarne input abstract 
substitution. And if a clause is recursive1, ail the goals that corne before the first 
recursive procedure call or the first goal that calls recursively that predicate are 
unchanged. Hence, we airn to reconsider only the clauses that depend on an element 
that has been updated, and only frorn the goal that depends on the updated element. 

5.1.2 Formalization 

The key idea of this optirnization is to modify the dependency graph. In the original 
prograrn, the dependency graph just indicates that a predicate (say p1 ) depends on 

1 A clause is said to be recursive if it belongs to a recursive procedure and it con tains a cal! to 
that procedure, directly (locally recursive) or via a call to another procedure (mutually recursive). 
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TRY CLAUSE 1 
EXIT EXTC (Var(1),Var(2) ,Gro(3)) pa: (!,1)(2 ,2) 
CALL UNIF-FUN (Var(l),Va.r(2),Gro(3)) ps: (1,1)(2,2) 
EXIT UNIF-FUN (Gro(l) :0 ,Var(2),Gro(3)) ps: (2,2) 
CALL UNIF- VAR (Gro(l):0,Va.r(2) ,Gro(3)) ps: (2,2) 
EXIT UNIF-VAR (Gro(l) :0 ,Gro(2) ,G ro(2)) 
EXIT RESTRC (Gro(l):0,G ro(2) ,Gro(2)) 
EXIT UNION (Gro(l): 0 ,Gro(2),G ro (2)) 

EXIT CLAUSE l 
TRY CLAUSE 2 

EXIT EXTC (Va.r(l),Var(2),Gro(3),Var(4),Var(5),Var(6)) ps : (l,1)(2,2)(4,4)(5,5)(6,6) 
CALL UNIF-FUN (Var(l),Var(2),Gro(3),Var(4),Var(5),Va.r(6)) ps: (l,1)(2,2)(4,4)(5,5)(6,6) 
EXIT UNIF-FUN (Ngv(l): .(Var(2),Var(3)),Var( 4},Gro(5),Var(2),Var(3),Var(6)) ps: (2,2)(3,3)( 4,4)(6,6) 
CALL UN IF-FUN (Ngv( l ) :.(Var(2), Va.r(3 )), Var( 4 ),G ro(5 ), Var(2) , Var(3 ), Var(6)) ps: (2,2)( 3,3 )( 4,4 )(6,6) 
EXIT UN IF-FUN (Ngv(l ):.( G ro(2), Var(3)), Var( 4 ) ,G ro( 5 ): .( Gro(2) ,Gro( 6 )),Gro(2), Var(3 ),G ro(6)) ps : (3,3)( 4 ,4) 
CALL PRO-GOAL append(Var(l ),Var(2),Gro(3)) ps : (l,!)(2 ,2) 
EXIT PRO-GOAL append bollom 
EXIT EXTG bollom 
EXIT RESTRC bollom 
EXIT UNION (Gro(l) :0,Gro(2),Gro(2)) 

EXIT CLAUSE 2 
ADJUST 
TRY CLAUSE l 

EXIT EXTC (Var(l),Var(2),Gro(3)) ps: (l,1)(2,2) 
CALL UNIF-FUN (Var(l),Var(2),Gro(3)) ps: (1,1)(2,2) 
EXIT UNIF-FUN (Gro(!) :0 ,Va.r(2),Gro(3)) ps: (2,2) 
CALL UNIF-VAR (Gro( l) :0 ,Var(2) ,Gro(3)) ps : (2 ,2) 
EXIT UNIF-VAR (Gro(l):0,Gro(2),Gro(2)) 
EXIT RESTRC (Gro(l):0,Gro(2),Gro(2)) 
EXIT UNION (Gro(l):0,Gro(2),Gro(2)) 

EXIT CLAUSE l 
TRY CLAUSE 2 

EXIT EXTC (Va.r(l ),Var(2),G ro(3), Var( 4 ), Var( 5 ),Var(6)) ps: ( 1 , l )(2 ,2)( 4,4)( 5,5 )(6,6) 
CALL UNIF- FUN (Var( l ), Var(2 ),G ro(3), Var( 4 ) , Var( 5 ), Var(6)) ps: ( !, 1 )(2 ,2)( 4,4 )(5,5 )( 6,6) 
EXIT UN IF-FUN (N gv( 1 ) :.(Va.r(2), Var(3 )) , Var( 4 ),G ro( 5 ), Var(2), Var(3 ), Va.r(6 )) ps : (2,2)(3 ,3 )( 4 ,4 )(6,6) 
CA LL UN IF-FUN (N gv( l ): .(Var(2), Va.r(3 )),Var( 4 ),G ro( 5 ), Var(2 ), Var(3 ) ,Var(6 )) ps : (2,2)(3,3 )( 4,4 )( 6,6) 
EXIT UN IF-FUN (N gv( 1 ): .( Gro(2), Va.r(3 )), Var( 4 ),G ro( 5 ) :. ( Gro(2),Gro(6 )},G ro(2), Var(3 ),Gro(6)) ps: ( 3,3 )( 4,4) 
CALL PRO-GOAL append(Va.r(!),Var(2) ,Gro(3)) ps: (l,1)(2,2) 
EXIT PRO-GOAL append(Gro(l):0,Gro(2),Gro(2)) 
EXIT EXTG ( Gro(l ):.( Gro(2),G ro( 3):0),G ro( 4),G ro( 5 ) : .( Gro(2),Gro( 4 )),G ro(2),G ro(3) :0,G ro( 4)) 
EXIT RESTRC ( G ro( l ):.( Gro(2),Gro( 3):0),Gro( 4 ),G ro( 5 ) :. ( Gro(2 ) ,G ro( 4))) 
EXIT UNION (Gro(l),Gro(2),G ro(3 )) 

EXIT CLAUSE 2 
ADJUST 
TRY CLAUSE l 

EXIT EXTC (Var(l),Var(2),Gro(3)) ps: (l ,1)(2,2) 
CALL UNIF- FUN (Var(l),Var(2),Gro(3)) ps: (l,1)(2 ,2) 
EXIT UNIF-FUN (Gro(l) :0,Var(2) ,Gro(3)) ps: (2,2) 
CALL UNIF-VAR (Gro( l) :0 , Var(2),Gro(3)) ps: (2 ,2) 
EXIT UNIF- VAR (Gro(l) :0 ,Gro(2),Gro(2 )) 
EXIT RESTRC (Gro(l):0,Gro(2),Gro(2)) 
EXIT UNION (Gro(l): 0 ,Gro(2),Gro(2)) 

EXIT CLAUSE l 
TRY CLAUSE 2 

EXIT EXTC (Va.r(l ), Va.r(2 ) ,G ro(3), Var( 4 ) , Var( 5 ), Var(6 )) ps: ( 1,1 )(2 ,2)( 4,4 )( 5,5 )(6,6) 
CALL UNIF-FUN (Var( l ), Va.r(2 ) ,G ro( 3 ), Va.r( 4 ) , Var( 5 ) , Var(6)) ps : (1, 1 )(2 ,2)( 4,4 )( 5,5 )( 6,6) 
EXIT UNIF-FUN (N gv( l ) :.(Var(2), Va.r(3 )) , Var( 4 ) ,G ro( 5 ), Var(2) , Var( 3 ) ,Var(6)) ps: (2 ,2)( 3 ,3 )( 4,4 )( 6,6) 
CA LL UN IF-FUN (N gv( l ) : .( Var(2 ) , Va.r(3 )) , Var( 4 ) ,G ro( 5 ), Var(2 ), Va.r(3 ). Var(6)) ps: (2 ,2)(3 ,3 )( 4,4)(6 ,6) 
EXIT UN IF- FUN (N gv(l ) :.( G ro(2), Var(3 )), Var( 4 ),G ro( 5 ) :.( Gro (2),Gro(6 )),G ro(2) , Var( 3 ), G ro(6)) ps: (3 ,3)( 4,4) 
CALL PRO-GOAL append(Var(l ),Var(2),Gro(3)) pa: (1 ,1)(2,2) 
EXIT PRO-GOAL a.ppend(Gro( l ),Gro(2),Gro(3)) 
EXIT EXTG ( G ro( l ) : .( Gro(2 ),G ro(3)),Gro( 4) ,Gro(5 ):.( G ro(2) ,Gro( 6 )) ,G ro(2),Gro(3 ) ,G ro(6 )) 
EXIT RESTRC ( G ro( l ) : .( Gro(2),G ro( 3}) ,G ro( 4 ) ,Gro( 5) :. ( G ro(2) ,Gro( 6))) 
EXIT UNION (Gro( l) ,Gro(2),Gro(3 }) 

EXIT CLAUSE 2 

Figure 5.1: The Original Algorithm on append/3 
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another (say p2 ). We will add to the graph which clauses with predicate p1 depend 
on p2 and for each of these clauses, the first goal that needs to be reconsidered. Since 
a built-in never calls the procedure it belongs to, the reconsideration of a clause will 
never begin at a built-in, only at a procedure call. 

First, let us define what a clause prefix is. 

Definition 15 Let c be a normalized clause and g1 , ... ,9m the successive procedure 
calls in the body of c. Prefix i of clause c, say c[i], is simply clause c truncated after 
procedure call 9i(l ~ i ~ m). The position (an integer) of the last goal of c[i] 
in the clause c will be denoted by last( c[i]). To ease the presentation, we take 
the convention that prefix 0, say c[0], will be the entire clause and last( c[0]) is 
the position of the first goal, may be a built-in, in c. Let us denote nbproc( c[i]) 
the number of procedure calls in the clause c[i]. Note that last(c[i]), 1 < i ~ m 
corresponds to the length of c[i] while last( c[0]) is always equal to 1. 

Exemple: 
Let c( ... ) : -bi, b2,g1, b3,g2, b4 be a normalized clause. We will consider the 

following lines as prefixes of the clause c: 

• c[2] = b1, b2,91, b3,g2 

• c[0] = b1, b2,91, b3,g2, b4 

Next, let us modify the definition of the dependency graph to include clauses 
and clause prefixes. 

Definition 16 A dependency graph dp is a set of tuples of the form ((/3, e ), lt) where 
e is a goal, a clause or a clause prefix and lt is a set { ( a 1 , q1), ... , ( an, qn) }( n 2 0) 
such that, for each (/3, e), there exists at most one It such that ( (/3, e), lt) E dp. 

During the execution of a clause, only the prefixes a goal of which they depend 
upon has been updated need to be reconsidered . The prefixes that can be avoided 
are in the dependency graph. Other ones are removed by REMOVE_.DP, after 
ADJUST at the end of the previous consideration. The index of such a first prefix 
can be defined as 

FP(/3,c) = min{i 1 (/3,c[i]) (/: dom(dp)(0 ~ i ~ nbproc(c))} 

During the execution of a clause with substitution (3, let us name f3ext the current 
substitution, namely the substitution which is the result of the previous goal and 
the argument for the current goal. We will use logclaus e((J, c[i]) to represent the 
value of f3ext before the execution of the goal last(c[i])(l ~ i ~ nbproc(c)). 

AU the de-finitions given in the previous chapter can now be updated or general
ized to deal with clauses and clause prefixes and a few ones must be added. 
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• EXTC( c,(3) is now used at the entry of a clause only if there is no prefix for 
which the calculations can be avoided. 

• G_ADDJ)P(in (3,p, c, i, a, q, inout dp) is a generalization of ADD_DP which 
takes into account clauses and clause prefixes. lnformally speaking, this oper
ation updates the dependency graph for a goal p, the clause c in which the goal 
appears, and ail the relevant clause prefixes (i.e. those including the procedure 
call in position i). 

procedure G_ADD_DP(in (3 , p, c, i, a, q, inout dp) 
begin 

ADDJ)P(/3,p, a, q, dp); 
ADD_DP(/3, c, a, q, dp); 
for k := i bf to nbproc(c) do 

ADDJ)P(/3, c[k], a, q, dp) 
end 

• G-EXTJ)P(in (3,p, inout dp) will include clauses and clause prefi.xes too. 

procedure G_EXT J)P(in (3, p, inout dp) 
begin 

EXT_DP(/3,p,dp); 
for i := 1 to m with c1 , ... , Cm clauses of p do 
begin 

EXT J)P(/3, Ci, p); 
for j := 0 to nbproc(ci) do 

EXT J)P(/3, c[j],p) 
end 

end 

• G_REMOVEJ)P(in modified, inout dp) is generalized in the sense that modi
fied is now a list of pairs (a1 , qi) where qi can either be a predicate, a clause 
or a procedure call. 

• G_EXTEND(in (3,p, inout sat) generalizes the operation EXTEND to initial
ize the prefixes. 

procedure G_EXTEND(in (3,p, inout sat) 
begin 

EXTEND(/3, p, sat); 
logclause(/3, c[O]) := EXTC( c, /3) 

end 
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• FIRST _pREFIX(,B, c) = (last(c[FP(,8, c)]), logclause(,B, c(FP(,8, c)])) is a fonc
tion defined in order to simplify the algorithm. It returns the first subgoal of 
a clause to consider. 

• MODIFIED_CLAUSES(,8,p) = {c 1 (,8,c) (/. dom(dp) and c is a clause of p} 
is the set of ail clauses of procedure p to consider. 

The new generic algorithm including clause prefixes is shown on figure 5.2 

5.2 lmplementation 

The implementation is an upgrade of the original program. It is easily clone with 
a few modifications of the data types ( elements of the Hasse diagrams, the de
pendency graph) and some changes in a few procedures (ADD_DP, REMOVE_DP, 
SOLVE_CALL, SOLVE_GOAL, EXTEND). In this section, we shall explain those 
transformations and discuss a few choices we had to do in order to obtain the best 
possible result. 

The implementation of the Hasse diagrams and the dependency graph in the 
original program are explained in the previous chapter. We shall now extend them 
in two phases. ln the first one, we will add clauses. The clause prefixes will corne 
in the second phase. ln fact, the first phase is independent from the second one and 
can be implemented alone. 

5.2.1 Clauses 

To each predicate p/n of a Prolog program P is associated a sat: satp/n· satp/n 
is a set of tuples (.Bin, p, .Bout), where no two .Bm are equal and where .Bout is an 
approximation of the result of (.Bin,p). It is implemented as a Hasse diagram. To 
each element in the sats is associated a boolean value (ToReconsider that will be 
abreviated to tr in the following) which indicates whether the corresponding pair 
(,Bin, p) must be reconsidered or not. Now, we must know that for each clause of 
the procedure. Further more, we do not reconsider each clause anymore, but we 
still need to know the result of each of them. So, those results must now be stored. 
Thus, we add to each element of sat a list of pairs made of a boolean value and a 
substitution. There is one pair for each clause of p indicating whether this particular 
clause is to be reconsidered or not and containing the resulting substitution of the 
clause. Each element of a sat is now of the form: 

where n is the number of clauses with predicate p and (bi,,Bi) (1 :'.Si :'.Sn) are the 
pairs mentionned above. 

Each element in the dependency graph (the one implemented, that is, the re
versed one) originally indicated what ( ai, qi) had to be reconsidered if the pair 
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procedure solve_call(in /Jin ,p, suspended; inout sat ,dp) 
begin 

if (/Jin ,p) ~ (dom(dp) U suspended) then 
begin 

if (/Jin ,p) ~ dom(sat) then 
sat := G..EXTEND(/Jin,p,sat); 

repeat 
f3out • - J_, 

SC := MODIFIED_c:LAUSES(/Jin,P); 

G...EXT.DP(/Jin ,p,dp); 

for all c E SC do 
begin 

solve....clause(/Jin ,p, c, suspended U { (/Jin ,p)} ,/Jau:,;, sat, dp); 

/Jout : = UNION (/Jout, /Jau:,;) 
end; 
(sat,modified) := ADJUST(/3in,P,/3out,Sat); 
REMOVE.DP(modi/ied, dp) 

until (/Jin ,p) E dom(dp) 
end 

end 

procedure solve_clause(in /Jin ,P, c, suspended; out f3out; inout sat,dp) 
begin 

(f,/Je:1:t) := FIRST...PREFIX(/Jin,c); 
for i : = / to m with b1, . .. , bm body-of c do 
begin 

/Jaux := RESTRG(bi,/Jext); 
switch (bi) of 
case X; = X1c: 

/3int := ALVAR(/Jau:,;) 
case X; = f( .. . ): 

/Jint := AI.FUNC(/Jaux,f) 
case q( .. . ) : 

logclause(f3in , c[i]) : = f3ext; 
solve_call(/Jaux, q, suspended, sat, dp); 
/3int : = sat (/Jaux, q) ; 
if (/Jin ,p) E dom(dp) then 

G..ADD.DP (/Jin ,p, c, i, /Jaux, q, dp) 
end; 
f3ext : = EXTG ( bi, /Je:1:t , /Jint) 

end; 
f3out . - RESTRC ( c, /Je:1:t) 

end 

Figure 5.2: The Algorithrn with the Clause Prefix Irnprovernent 
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(/3,p) to which it is associated is reconsidered. Now, the elements will contain some 
(ai, qi, Ci) where Ci is an integer identifying which clause of qi to reconsider. 

We can now update a few procedure to handle these new data. 

• The procedure ADD..DP just takes one more parameter, namely Ci and stores 
it with the others in the dependency graph. 

• The procedure REMOVE.DP, foreach element of the dependency graph ((/3,p), 
lt) for w hich the pair (/3, p) has been reconsidered, sets the boolean value tr of 
each (ai, qi) E lt to "to be reconsidered". It then destructs the graph. Now, 
for each ( ai, qi, Ci) E lt, it will also mark the boolean value corresponding to 
the clause Ci (bi) as "to be reconsidered". 

• The procedure EXTEND is slightly modified in order to correctly initialize the 
new boolean values. 

• The procedure SOLVE_CLAUSE is very slightly modified too. It just passes 
the indice of the clause to the procedure ADD_DP. 

• The procedure SOLVE_CALL is the one that is the most diffi.cult to change. 
ln fact, we tried two ways of implementing it. Let us consider a procedure p 
and its clauses Cj. To execute the clause p with the input abstract substitution 
/3 is to execute every Ci with the {3 and to calculate the UNION of all resulting 
abstract substitutions. We do not reconsider every clause any more, but it is 
still necessary to calculate the UNION. That's why we need to store the result 
of each clause. 

A fust way of doing this is still to look at every clause, each at its turn. If 
it must be reconsidered, it is clone and the UNION is calculated between the 
result and the UNION of the previous da ses. Else, the result previously 
stored is recalled and used to calculate the UNION. Hence, by that way, it is 
still necessary to calculate a great number of UNION operations. 

The second way makes it possible to reduce the number of UNION operations 
to calculate. It is based on the fact that the UNION operation, in the domains 
implemented, is "accumulative", namely the result of the operation is greater 
t~ its arguments, and that the algorithms converges in a growing way toward 
an-clement of µ(T SAT). It suffi.ces to compute the UNION between the results 
of the reconsidered clauses and the result of the previous consideration of (/3, p). 
Its main advantage is that it is not necessary to store the results of every clause 
any more. The sat's are then of the following form: 

(/3in, P, f3out, tr, { b1, • .. , bn}) 

Even if the second method is simpler, all the following has been clone with the 
first implementation but time measurements have been clone with the second 
one too and the precision of the dock is too weak to see a difference. 
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5.2.2 Clause prefixes 

In a second time, we will implement the notion of prefix and use it to reduce the 
number of computations in the evaluation of a clause. 

As explained in the previous section, we will only consider the prefixes that end 
with a procedure call. During the first consideration of a clause, it is not possible 
to know which prefixes could be avoided in the following reconsiderations. And, for 
the first procedure call to reconsider, it is necessary to know what the substitution 
calculated so far is. Thus, it is necessary to store the current abstract substitution 
before each l ast ( c[ il). 

Furthermore, when a procedure call arises, three steps are performed: the res
triction of the current substitution to the arguments of the call, the call in itself 
and the extension of the result to the variables of the clause. If a procedure call 
is the first considered of a clause, i.e. all the previous prefixes have been avoided, 
then the first step will be exactly the same as the previous time it was clone. It can 
be avoided too, simply by storing its result. So, for each prefix that begins with a 
procedure call, two substitutions are saved. It is necessary to keep the first one even 
if the second is sufficient for the call in order to compute the extension in the third 
step. 

Elements of sat's will now be of the form: 

(/3in,P, f3out, tr, {(b1, 91, {(/3l, /3? ), • • •, (/3f1 , /3t1 )} ), • • •, 

where ni is the number of procedure calls in clause i, 9i (l_ ~ i ~ n) (1 ~ 9i ~ ni) 
means that clause i must be reconsidered from prefix c[gi], f3f (l ~ i ~ n and 1 ~ j ~ 
ni) is the calculated substitution before the subgoal 9i and /3Ii (1 ~ i ~ n and 1 ~ 
j ~ ni) is the restricted substitution input of the subgoal 9i· 

The implementation of the new data type for those structures is shown on figure 
5.3. It is the ones presented in the previous chapter that are completed with linked 
lists to store informations for each clause and for each clause prefix. 

The dependency graph can now be completed to handle prefixes. An element of 
the set lt of an element of that graph is now of the form 

( O'.i, qi, Ci, 9i) 

where O'.i is the input substitution of the predicate qi, Ci is the particular clause to 
reconsider if ( ai, qi) is reconsidered and 9i is the subgoal of Ci to be reconsidered. 
When a pair (/3, p) is reexamined, ail the elements of its dependency graph are to be 
reconsidered too, i.e. the tr boolean value associated to (/3,p,sat(/3,p)) must be set 
to true, the boolean value bi associated to each clause Ci that must be reconsidered 
is set to true too and, 9i the indice of the first goal of the clause to reexamine must 
be set to the minimum of its current value and of the value stored in the element of 
the dependency graph. 
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struct srelationship [ 
node *parent; 
struct srelationship *next; 

}; 
typedef struct srelationship trelationship; 

struct sgoal { 

}; 

tas *betain; 
tas *betarestr; 
struct sgoal *next; 

typedef struct sgoal tgoal; 

struct sclause { 

}; 

short ToReconsider; 
int f irstgoal; 
tgoal *goals; 
struct sclause *next; 

typedef struct sclause tclause; 

struct snode { 
tas *betain; 
tas *betaout; 
short ToReconsider; 
tclause *clause; 
trelationship * f athers; 
trelationship *Sons; 
struct snode *Set; 

}; 
typedef struct snode tnode; 

typedef struct { 
tnode *top; 
tnode *bottom; 

}; 

Figure 5.3: Declarations for Hasse diagrams 
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For instance, let us assume the following is an element of the dependency graph: 

(({J,p), { ... , (a, q, c,g), .. . }) 

and let us assume the following is an element of satg: 

( O'.in, q, O'.out, tr, { ... , (b, g', {({J1, {J'1 ), ... , ({Jn, fJ'n)} ), .. •}) 

Then, when an examination of ({J,p) is over, that element of satg will become: 

( O'.in, q, O'.out, true, { ... , (true, min(g, g'), {((J1, (J'1 ), ... , ({Jn, (Jin)}), . .. } ) 

Procedures ADD_DP and REMOVK.DP can be updated easily in order to handle 
new data in the way described above. EXTEND must be modified to initialize 
correctly those new data. 

Procedure SOLVE-CLAUSE is changed too with the adjunction of an initiali
sation of the indice of first subgoal to consider and of the current substitution just 
before that subgoal with values stored in the sat. 

5.3 The result: Append 

Figure 5.4 displays the execution on the example we already looked at: APPEND/3. 

A simple comparison with the execution of the original program on the same test, 
as shown on figure 5 .1 , shows the obvious interest of this optimization. 
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TRY CLAUSE l 
EXIT EXTC (Va.r(l) ,Va.r(2),Gro(3)) ps: (1,1)(2 ,2) 
CALL UNIF-FUN (Va.r(l),Va.r(2),Gro(3)) ps : (1,1)(2,2) 
EXIT UNIF-FUN ( Gro(l) :0 ,Va.r(2) ,Gro(3)) ps: (2 ,2) 
CALL UNIF-VAR (Gro(l):0,Va.r(2),Gro(3)) ps : (2,2) 
EXIT UNIF-VAR (Gro(l) :0,Gro(2) ,Gro(2)) 
EXIT RESTRC (Gro(l):0 ,Gro(2) ,Gro(2)) 
EXIT UNION (Gro(l):0,Gro(2),Gro(2)) 

EXIT c;,AUSE 1 
TRY CLAUSE 2 

EXIT EXTC (Va.r(l),Va.r(2),Gro(3),Ya.r(4) ,Va.r(5),Va.r(6)) ps: (1,1)(2,2)(4,4)(5,5)(6,6) 
CALL UN IF-FUN (Va.r(l),Va.r(2),Gro(3), Va.r( 4) ,Va.r(5 ),Ya.r(6)) ps : (1,1)(2 ,2)( 4,4)(5 ,5)(6,6) 
EXIT UNIF-FUN (Ngv(l) :.(Va.r(2),Va.r(3)),Va.r( 4),Gro(5),Va.r(2),Va.r(3),Va.r(6)) ps : (2,2)( 3 ,3)( 4,4)(6 ,6) 
CALL UNIF-FUN (Ngv(l) :.(Va.r(2),Va.r(3)),Va.r( 4),Gro(S), Va.r(2),Va.r(3) ,Va.r(6)) ps : (2,2)(3 ,3 )( 4,4)(6 ,6) 
EXIT UN IF-FUN (N gv(l ):.( G ro(2), Va.r(3 )),Va.r( 4 ),Gro( 5 ): .( Gro(2) ,Gro(6)) ,Gro(2), Va.r(3 ) ,G ro(6)) ps: ( 3,3 )( 4,4 ) 
CALL PRO-GOAL a.ppend (Va.r(l),Va.r(2),Gro(3)) ps : (1 ,1)(2,2) 
EXIT PRO-GOAL a.ppend boltom 
EXIT EXTG boltom 
EXIT RESTRC boltom 
EXIT UNION (Gro(l): □,Gro(2),Gro(2)) 

EXIT CLAUSE 2 
ADJUST 
TRY CLAUSE 2 

EXIT PREFIX (Ngv(l): .(Gro(2), Va.r(3)),Ya.r( 4) ,Gro(5) :. (Gro(2) ,Gro(6)),G ro(2) , Va.r(3 ),Gro(6) ) ps : (3,3)( 4 ,4) 
CALL PRO-GOAL a.ppend (Va.r(l) ,Va.r(2),Gro(3)) ps: (1,1)(2 ,2) 
EXIT PRO-GOAL a.ppend (Gro(l):0,Gro(2 ),G ro(2)) 
EXIT EXTG ( Gro( l ): .(Gro(2),G ro( 3): □ ),Gro( 4 ),Gro( 5 ):. (Gro(2),Gro( 4 )),G ro(2) ,G ro(3): 0 ,G ro( 4)) 
EXIT RESTRC ( G ro( l ):.( Gro(2),G ro(3):0 ),G ro( 4),Gro( 5 ): .( Gro(2),Gro( 4))) 
EXIT UNION (Gro(l),Gro(2),Gro(3)) 

EXIT CLAUSE 2 
ADJUST 
TRY CLAUSE 2 

EXIT PREFIX (Ngv(l) :.( Gro(2), Va.r(3)),Va.r( 4),G ro(5 ):. (Gro(2) ,Gro(6 )) ,Gro(2),Va.r(3),Gro(6)) ps: (3,3)( 4,4) 
CALL PRO-GOAL a.ppend (Va.r(l) ,Va.r(2) ,Gro(3)) ps : (1,1)(2 ,2) 
EXIT PRO-GOAL a.ppend (Gro(l) ,G ro(2) ,Gro(3)) 
EXIT EXTG ( Gro(l ): .( Gro(2 ),Gro( 3)),Gro( 4 ),Gro( 5 ): .( Gro(2),Gro(6)),G ro(2) ,Gro(3 ),G ro(6)) 
EXIT RESTRC (Gro( l) :.( Gro(2),Gro(3)),G ro(4),G ro( 5):.(G ro(2),Gro(6))) 
EXIT UNION (Gro(l),G ro (2) ,Gro(3)) 

EXIT CLAUSE 2 

Figure 5.4: The Clause Prefix Algorithm on append/3 
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Chapter 6 

Caching 

6.1 Introduction 

During execution of SolveGoal, a lot of abstract operations are executed. Many of 
them are called with arguments already encountered. Obviously the result is the 
same if there is no sicle effect. The idea of the Caching optirnization is to memoize 
all abstract operations. So when the original algorithm computes a clause C, if C 
wasn't considered by the Prefix version then all asbtract operations which make up 
C have already been computed. So it's sufficient to find the result of each operation 
(previously stored in a table). Furthermore we can trap some operations in Caching 
normally computed in Prefix version. 

Thus~e s ould expect that Caching will be as good as Prefix. Unfortunately 
the mem · ~f n implies to rnaintain a table of all computed results a to look up 
this tabl cache an operation already encountered. Thus the me~ion causes 
a additional consumption of CPU tirne in cornparison with PrefiLJhen Prefix 
avoids simply an operation, Caching must (a) call a fonction , (b) detect that the 
result was already computed, and (c) return it. 

Figure 6.1 depicts the execution of the append/3 prograrn. As it can be noticed, 
all operations on the first clause as well as all operations up to the recursive call in 
the second clause are cached and therefore autornatically reused by the algorithrn. In 
this particular case, no further irnprovernent is brought by the caching irnprovement. 
However, in other prograrns, other results will be shared. 

6.2 The lmplementation 

6.2.1 Memoization 

For each abstract operation w we have a set Sw. If w is defined as: 
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CACHE~ 

CACHED 

CACHED 
CACHED 
CACHED 

CACHED 

CACHED 

CACHED 
CACHED 

CACHED 

CACHED 

CACHED 
CACHED 
CACHED 

C ACHED 

CACHED 

CACHED 
C ACHED 

TRY CLAUSE 1 
EXIT EXTC (Vu(l),Vu(2),Gro(3)) ps: {1,1)(2,2) 
CALL UN IF- FUN {Vu{l),Vu{2),Gro{3}) ps: {1,1}{2,2} 
EXIT UN IF-FUN (Gro(l) :[) ,Vu{2 ),G ro(3)) pa: (2,2} 
C ALL UNIF-VAR {Gro(l):[) ,Vu(2),Gro(3)) pa: (2,2) 
EXIT UNIF-VAR (Gro(l): [),Gro(2),Gro(2)) 
EXIT RESTRC (Gro( l) :[) ,Gro(2),Gro(2)) 
EXIT UNION (Gro(l) :() ,Gro(2),Gro(2)) 

EXIT CLAUSE l 
TRY CLAUSE 2 

EXIT EXTC (Vu(l),Var(2) ,Gro(3),Var(4),Vu(5) ,Va.r(6)) ps : (1 ,1)(2 ,2)(4,4)(5,5)(6,6) 
CALL UNIF-FUN (Vu(l),Va.r(2),Gro(3),Vu(4) ,Vu(5),Vu(6)) ps: (l,1)(2 ,2)(4,4)(5,5)(6,6) 
EXIT UN IF-FUN (Ngv(1):.(Vu(2),Vu(3)),Vu( 4) ,Gro(5), Vu(2),Va.r(3) ,Va.r(6)) ps: (2,2)(3,3)( 4,4)(6 ,6) 
CALL UN IF-FUN (Ngv{l) :.(Vu(2),Vu(3)),Vu( 4),G ro(5), Vu{2),Va.r(3),Var(6)) ps: (2,2)(3,3 )( 4,4)(6 ,6) 
EXIT UN IF-FUN (Ngv(l ):.(G ro(2) , Vu(3)} ,Va.r( 4) ,G ro(5) :.(Gro{2),Gro(6 )),G ro(2) , Va.r(3 ) ,G ro(6)) pa: {3,3)( 4 ,4) 
CALL PRO- GOAL a.ppend ( Va.r(l) ,Vu(2) ,Gro(3)) ps: {1,1)(2,2) 
EXIT PRO-GOAL a.ppend bo\\om 
EXIT EXTG bo\\om 
EXIT RESTRC bo\tom 
EXIT UNION (Gro(l) :[),Gro(2),Gro(2}) k ps: 

EXIT CLAUSE 2 
ADJUST 
TRY CLAUSE 1 

EXIT EXTC (Var(l),Va.r(2),Gro(3)) ps: (1,1)(2 ,2) 
CALL UNIF-FUN (Var{l) ,Va.r(2) ,Gro(3)) ps: ( 1,1)(2,2) 
EXIT UNIF-FUN (Gro{l):[) ,Va.r(2) ,Gro(3)) pa: (2,2) 
CALL UNIF-VAR (Gro(l):[),Var(2),Gro(3)) ps: (2,2) 
EXIT UNlF-VAR (Gro(l):[) ,Gro(2),Gro(2)} 
EXIT RESTRC (Gro(l):[) ,Gro(2),Gro(2)) 
EXIT UNION (Gro(1):[) ,Gro(2),Gro(2)) 

EXIT CLAUSE l 
TRY CLAUSE 2 

EXIT EXTC (Va.r(l),Va.r(2),Gro(3) ,Var(4) ,Var(5),Var(6 )) ps: (1,1)(2,2)(4,4)(5 ,5 )(6,6) 
CALL UN IF-FUN (Var(! ), Va.r(2) ,Gro(3), Va.r( 4), Va.r(5 ) ,Var(6)) pa: (1,1)(2 ,2)( 4,4)(5 ,5)(6 ,6) 
EXIT UN IF-FUN (Ngv(l) :.(Var(2),Var(3)), Va.r( 4) ,G ro(5) , Vu(2),Va.r(3 ),Vu(6)) ps: (2, 2)(3 ,3)( 4,4)(6,6) 
CALL UN IF-FUN (Ngv(l) :.(Vu(2),Va.r(3)),Vu( 4},Gro(5), Var(2),Va.r(3),Va.r(6 )) pa: (2,2)(3,3)( 4,4)(6 ,6) 
EXIT UN IF- FUN (Ngv(l ): .(Gro(2) , Va.r(3)), Var( 4),G ro(5):.(Gro(2),Gro(6 )),Gro(2), Va.r(3),G ro(6)} ps: (3,3)(4 ,4 ) 
RESTRG CACHED 
CALL PRO-GOAL append(Va.r(l),Va.r(2) ,Gro(3)) p1: (! ,1}(2,2) 
EXIT PRO-GOAL a.ppend(Gro(l) :[),Gro(2} ,Gro(2)) 
EXIT EXTG (Gro(l):. (Gro(2),Gro(3):[l),Gro( 4) ,G ro(5) :.(Gro(2),Gro( 4) ),G ro(2),G ro(3 ):( ),Gro( 4 )) 
EXIT RESTRC ( Gro( 1 ) :. ( Gro(2) ,G ro( 3):( l),Gro( 4 ) ,G ro( 5 ):.( Gro(2) ,Gro( 4 ))) 
EXIT UNION (Gro(l),Gro( 2),Gro(3)) 

EXIT CLAUSE 2 
ADJUST 
TRY C LAUSE 1 

EXIT EXTC (Va.r(l) ,Va.r(2) ,Gro(3)) ps: (1 ,1)(2,2) 
CALL UNIF-FUN (Va.r(l) ,Va.r(2),Gro(3)) ps: ( 1,1 )(2,2) 
EXIT UNIF-FUN (Gro(l) :[).Vu(2),Gro(3)) pa: (2,2) 
CALL UNIF-VAR (Gro(!) :[) ,Va.r(2) ,Gro(3)) ps: (2,2) 
EXIT UN IF- VAR (Gro(l) :[) ,G ro(2) ,Gro(2 )) 
EXIT RESTRC (Gro(l) :[) ,G ro(2 ),Gro(2}) 
EXIT UNION (Gro(l) :[) ,G ro(2),G ro(2)) 

EXIT CLAUSE 1 
TRY CLAUSE 2 

EXIT EXTC ( Va.r(l),Va. r(2),G ro(3),Va.r(4 ),Var(5),Va.r(6)) ps: (1, 1)(2,2)(4,4)(5,5)(6,6) 
CALL U N IF- FUN (Va.r(l ),Va.r(2 ),Gro(3), Va.r( 4 ),Var(5 ),Va.r(6)) ps: ( 1,1)(2 ,2)( 4,4)(5,5)(6,6) 
EXIT UNIF-FUN (Ngv(l) :.( Va.r(2) ,Va.r(3)), Va.r( 4 ),G ro(5), Var(2 ), Va.r(3),Va.r(6)) ps: (2,2)(3,3 )( 4,4)(6 ,6) 
CALL UN IF-FUN (Ngv(l) :.( Va.r(2) ,Va.r(3)), Va.r( 4},G ro(5), Var(2) ,Va.r(3 ),Va.r(6)) po: (2,2)(3,3)( 4,4)(6,6) 
EXIT UN IF-FUN (Ngv(l):.( Gro(2) , Var( 3 )) ,Va.r( 4 ),G ro(5):.( Gro(2),Gro(6)),G ro(2), Va.r(3 ),Gro(6)) ps: (3,3)( 4 ,4) 
RE STRG CACHED 
CALL PRO-GOAL a.ppend (Va. r(l),Var(2),G ro(3)) ps: ( 1,1)(2 ,2 ) 
EXIT PRO-GOAL a.ppend (G ro( l) ,G ro (2),G ro(3)) 
EXIT EXTG ( G ro{l ):.( Gro(2),G ro(3)),G ro( 4 ),G ro( 5 ):.( G ro(2), Gro(6 )),G ro(2} ,G ro( 3),Gro( 6)) 
EXIT RE STR C (Gro{l ):.(G ro(2 ),Gro(3)),G ro( 4},Gro(S ):.(G ro{2),G ro(6))) 
EXIT UNIO N {Gro(l),Gro(2),Gro(3)} 

EXIT CLAUSE 2 

Figure 6.1: The Caching Algorithm on append/3 



CHAPTER 6. CACHING 

then Sw is defined as part of 

( A1 X ... X An) X B 

The irnplernentation of each operator w is replaced by: 

let (a1, . . . , an) be the argument 
if :3 XE B: ((a1, ... ,an),X) E Sw 
then result +---- X 
else y := w(a1, ... , an) 

Sw := SwU {((a1,••·,an),y)} 
result := y 
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This definition ensures us that operator w is evaluated only once for each argument. 
The set Sw is implemented with a hash table. All the elernents that hash to 

the sarne slot are put in a linked list. To build the chain, we take cells from big 
overfl.ow tables allocated at the beginning of execution. This allows us to save time 
and memory by avoiding to break the memory space into little segments. When 
some arguments are substitutions, it may be very expensive to apply an equality 
test when looking for an element in tables. The solution is explained in the next 
chapter. The data type is the same for all sets even though arguments and results 
are different from one operator to another. Following definitions are necessary to 
understand how this is possible. 

Let n be the set of all operators that we wish to memoize. Let us define 

maxarity = max arity ( w) 
wEO 

cardo = UO 
if the arity of Wi is smaller than maxarity, we extend its domain with a set STU F F 
as many times as it is necessary to obtain an arity maxarity. STU F F is a set 
without importance that you can fix to N for instance. So each operator is defined 
now as: 

W : Af X • •. X A~axarity --+ Bw 

We define 
Doi = Ai1 + ... + Aicard0 Vi 1 ::; i ::; Cardo 

Co= BWJ + .. . + BWcardo 

We have now a generic operator I defined as: 

1 : Do1 X ... X Domaxarity --+ Co 

Soif a memoization process exists for,, we can systematically apply it to other 
operators. The disjoint union + is defined as union U except that if x E A+ B 
it is always possible to know if x E A or x E B . The disjoint union + may easily 
be implemented with a typecasting ( or a union data structure) in the C language. 
Thus the sets Sw may have the same definition for each operator. It allows us to 
use the same code for every operator without loss of time. 
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6.2.2 Abstract Substitutions 

ln the previous implementation, the comparison of two substitutions implies an 
exam of the content. This one requires an heavy computation which can be avoided 
if substitutions have an unique representation in memory. This property insures 
us that if x and y are two C-variables denoting substitutions, then we have the 
following property (using the C language notation, &x denotes the address where 
the content of x is stored) 

X == y =? &x == &y 

So we avoid a time consuming equality test at the time of looking for the presence 
of an argument in Sw. We compare only two pointers instead of two substitutions. 
We introduce here a definition: 

Definition 17 [Direct Substitution] a direct substitution is a pointer to a substi
tution that may be modified at any time by its creator only. Let D be the set of all 
possible direct substitutions. 

Let I C N be the set of all identifiers which are available. Let S be the set of 
all substitutions used at a time. S is defined as 

ScDxNxN 

where the first component is a pointer to a substitution, the second is a reference 
counter and the third an identifier (if s E S and s = ( a, b, i) then i denotes the real 
address of s in rnernory). 

When a procedure has to build a new substitution, it uses local rnemory to con
struct the substitution, then invokes the procedure N ewSubst in order to update 
the set S. N ewSubst returns an identifier referring to the substit~~- The proce
dure rnay destroy the substitution in local memory and continue ~work with the 
identifier. When a procedure has to destroy a substitution belonging to S, it calls 
RemoveSubst in order to update S. ln no way a procedure can modify directly a 
substitution belonging to S. 

When the program starts, S and / are initialized to 0 and N. NewSubstO and 
RemoveSubstO are respectively the constructor and destructor for the abstract sub
stitutions. Their definition are: 

The Constructor NewSubstO: D --+ D x N x N 

pre S = So 
I = Io 
let d be the argument 

post if :3( e, r, i) E S : e and d represent the same substitution 
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then S = So((d, r, i)--+ (d, r + 1, i)) 
else I = 10 - {j} where j E Io 

S = S0 U {(e, 1,j)} where e = copy(d) = 

Copy( •) returns a pointer to a copy of its argument. This operation consumes 
CPU time but it is necessary to maintain the integrity of the set S. 

The destructor RemoveSubstO: D x N x N----+ 0 

pre let ( d, r, i) the argument 
S= So 
( d, r, i) E S0 and r > 0 

post S = S0 ((d,r,i)--+ (d,r -1,i)) 
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The set S is implemented with a hash table. Its organization is the same as 
for memoization tables. When a reference counter becomes null, the substitution 
associated to this entry should be destroyed and the ceil should be extracted from 
the linked list. This policy impairs the performances of memoization. So cells with 
a null reference counter are let in the list and the substitution is not destroyed. 
Consequently unused substitutions may cause some problems when the available 
memory becomes critical. When it occurs it is necessary to release ail the ceils (and 
their substitutions) with a null reference counter. 

6.2.3 Memory Cleaning 

It's obvious that keeping unreferenced substitutions alive in memory is mandatory. 
This ensures us these two conditions: 

• a substitution result (an identifier) returned by me~n is always valid 

• when an_!~r matches with an other identifier stored among the arguments 
of a mer~on table, these two identifiers represent the same substitution. 

Now, this may cause an memory overflow which would not occur if unused sub
stitutions were destroyed. A call to a cleaning procedure when we detect a lack of 
memory solves this problem. But it's necessary to modify the memory management. 
We redefine Sas 

ScDxN x NxN 

where the fourth component is a magic number and the rest as before. The magic 
number helps us to garantee the integrity of the set S. When a substitution in S is 
modified, its magic number is incremented. So ail references to the old substitution 
can be detected and managed in consequence to avoid a conflict. 

The constructor is redefined as: NewSubstl : D ----+ D x N x N x N 
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pre let d the argument 
S = Sa 
l = la 

post if 3( e, r, i, m) E Sa : e and d represent the same substitution 
then S = Sa((e,r,i,m)-t (e,r + 1,i,m)) 

result= (e,r+l,i,m) 
else 3(!, s,j, m) Ela 

l = la - {(f,s,j,m)} 
S = Sa U {(d', l,j, m + 1)} where d' = copy(d) 
result= (d',1,j,m+l) 

lis here a set which collects ail unused tuples (and their identifiers). 
The destructor is redefined as: Removesubstl: D ----t D x N x N x N 

pre let (d, r, i, m) the argument 
8= Sa 
l = la 
(d,r,i,m) E Sa /\ r > 0 

post S = Sa((d, r, i, m) -t (d, r - 1, i, m)) 

The procedure Clean to remove ail unused substitutions is defined as: 

pre S = Sa 
l = la 
(d, r, i, m) El ⇒ r = 0 

post (d, r, i, m) ES{=> ((d, r, i, m) E Sa)/\ (r #- 0) 
(d,r,i,m) El{=> ((d,r,i,m) E Sa U la)/\ (r = 0) 
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The procedure Clean examines each entry of the hash table ( and the associated 
linked list ). Each cell whose reference counter is null, is removed from the hash 
table and the substitution is physically destroyed to release its memory space. It's 
very important to increase its magic number to prevent memoization to reuse a bad 
substitution. The memoize process must manage explicitly this magic number to 
verify if an identifier is valid or not. Now, a substitution is identified by its identifier 
(third component) inside a hash table and the magic number is needed to identify 
the substitution while the program runs. 

The memoization process bas to be rethought: 
Let' s define 

W : A1 X ... X An ----t B 

Then Sw is defined as 

(A1 X ... X An) X B X (!/ X -~· X N) 
m elements 
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where m (resp. p) is the numberof sets in (A1, .. . , An, B) (resp. (A1, ... , An)) repre
senting substitutions. Let (i1 , ... , ip) be the indexes of substitutions in (Ai, ... , An)
Let (a1 , ... , an) be the argument. Memoization is implemented as depicted in figure 
6.2 

6.3 Performances 

We shall examine each algorithm to discuss its performance and its implementation. 

6.3.1 The Memory Manager For The Substitutions 

The time consuming operations are the hash fonction and the search of a substitution 
in the hash table. Since the substitutions are represented in a unique way, the hash 
fonction may be computed directly on the bytes composing a substitution. If (bi)Ï 
are the n bytes composing the substitution 0 then 

hash(O)=hash((bi)ï)=bn xor 3 x hash((bi)f-1 ) if n ~ l 
0 otherwise 

The hash fonction is domain-specific and uses only worthwhile fields (mode, same 
value and pattern for the type domain). There is less than 30% of collisions. It is 
extremely fast to test if an entry in the hash table is equal to a substitution since 
two substitutions have the same representation. 

6.3.2 The Memo~zation Process _,, 
The search in a me~tion table is extremely fast. The hash fonction is the same 
as for substitutions.~ test the equality of two entries it's suflicient to test some 
integers. Substitutions (identifiers/pointers) returned by memoization are always 
valid except if some garbage collection is clone (procedure clean). 
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procedure( in a1 , ... , an,out X,in Yi, ... , Yn) 
begin 

if :l((a1, ... , an), X, (Yi, ... , Ym)) E Sw where X, 1-'i are unknown 
then begin 

if (magic(S,aj.) = 1-'i Vi E {1, ... ,p}) 
A(X is a substitution:::} magic(S, X)= Ym) 

then R := X 
else begin 

R := w(a1, ... , an) 
Zi := magic(S, ai.) Vi E {1, ... , p}) 
if R is a substitution 
then Zm := magic(S, R) 
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Sw := Sw(((a1,, .. ,an),X,(Yi, ... ,Ym))-+ ((a1, ... ,an),R,(Z1,••·,Zm))) 
end 

end 
else begin 

R := w(a1, ... , an) 
Zi := magic(S,ai.) Vi E {1, ... ,p}) 
if R is a substitution 
then Zm := magic( S, R) 
Sw := Sw U {((a1, ... , an), X, (Yi, ... , Ym))-+ ((a1, ... , an), R, (Z1, ... , Zm))} 

end 
result := R 

end 

magic(S, x) represents the magic number associated with x in the set S.The 
memoization process is, as previously explained, generic for ail cached operations. 

Figure 6.2: Memoization Procedure 
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Experimental Evaluation 

In this section, we report our experimental results on the optirnization techniques. In 
the following, we denote respectively by Pascal, Original, Prefix and Caching 
(Pa,Or,Pr,Ca for short) the original algorithm coded in Pascal, the original algo
rithm coded in C with a number of optimization techniques on the domain implemen
tation, the algorithm with the clause prefix improvement, and the algorithm with 
the caching improvement. The optimization techniques of Original over Pascal in
clude a lazy computation of the transitive closure of the sharing component (i.e. call 
by need) and a data-driven implementation (instead of a straightforward top-clown 
implementation) of various operations on substitutions (in particular the unification 
operation). 

Section 7.1 describes the programs used in the experiments. Section 7.2 describes 
the computation times of the algorithms. Section 7.3 describes the number of oper
ations on substitutions performed by each of the algorithms and the bit-ratios of the 
caches. Section 7.4 depicts the time distribution between control and abstract oper
ations as well as the time distribution among the various abstract operations, while 
Section 7.5 reports the memory consumption of the algorithms. Finally, Section 7.6 
gives the results on a simple abstract domain. 

7.1 The Programs 

The programs we use are hopefully representative of "pure" logic programs (i.e. 
without the use of dynamic predicates such as assert and retract ). They are 
taken from a number of authors and used for various purposes, from compiler writ
ing to equation-solvers, combinatorial problems, and theorem-proving. Hence they 
should be representative of a large class of programs. In order to accommodate the 
many built-ins provided in Prolog implementations and not supported in our current 
implementation, some programs have been extended with some clauses achieving the 
effect of the built-ins. Examples are the predicates to achieve input/output , meta
predicates such as setof, bagof, arg, and functor. The clauses containing as sert 
and retract have been dropped in the one program containing them (i.e. Syntax 
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error andli g ·n the reader program). ~ ~r 
72 

Tlie progra kalah is a program which plays the game of kalah. It is taken 
m (22) and · plements an alpha-beta search procedure. The program press is 

n equation- olver program taken from (22) as well. We use two versions of this 
terestin program. The first version is the standard version (press1) while the 

se version (press2) has a goal repeated in the program (i.e. a goal is executed 
twice in a clause). The two versions illustrate a fact often neglected in abstract 
interpretation. A more precise domain, although requiring a higher cost for the 
basic operations, might in fact be much more efficient since fewer elements in the 
domain are explored. The repetition of some goals in the Press program allows us to 
simulate a more precise domain (and hence to gain efliciency). The program es is a 
cutting-stock program taken from (23). It is a program used to generate a number of 
configurations representing various ways of cutting a wood board into small shelves. 
The program uses, in various ways, the nondeterminism of Prolog. The program 
Disj is taken from [9] and is the generate and test equivalent of a constraint program 
used to solve a disjunctive scheduling problem. This is also a program using the 
nondeterminism of Prolog. The program Read is the tokeniser and reader written by 
R. O'keefe and D.H.D. Warren for Prolog. It is mainly a deterministic program, with 
mutually recursive procedures. The program PG is a program written by W. Older 
to solve a specific mathematical problem. The program Gabriel is the Browse 
pro gram taken from Gabriel benchmark. The program Plan (PL for short) is a 
planning program taken from Sterling & Shapiro. The program Queens is a simple 
program to solve the n-queens problem. Peep is a program written by S.Debray to 
carry out the peephole optimization in the SB-Prolog compiler. It is a deterministic 
program. We also use the traditional concatenation and quicksort programs, say 
Append and Qsort (difference lists). 

7.2 Computation Times 

We give two versions of the computation times. Table 7.1 depicts the results with 
the sharing represented by characters (i.e. bytes) while Table 7 .2 depicts the results 
with the sharing represented by bits. The first four columns present the computation 
times in seconds while the last five columns present the improvement in percentage 
(i.e. P1-P2 denotes (P1-P2)/P1 ). 

As far as the character version is concerned, Caching produces an improvement 
of 58.42% compared to the original version in Pascal. Caching also produces an 
improvement of 28.31 % compared to the original version in C. Programs Read and 
Peep are those producing the least improvement ( 44.53% and 49.67%) while Disj 
and Kalah produce the best improvement (73.49% and 68.63%). Ali the times are 
below 10 seconds except Press1 and Read which require respectively 25.62 and 
25.37 seconds. Prefix is marginally faster than Caching. It produces an average 
improvement of 58.49% over the original implementation and 28.38% over the im-
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Program Pa Or Pr Ca Pa-Or Pa-Pr Or-Pr Pa-Ca Or-Ca 
Append 0.06 0.02 0.01 0.01 
Kalah 17.82 9.20 6.33 5.59 48.37 64.48 31.20 68.63 39.24 
Queens 0.37 0.22 0.15 0.16 40.54 59.46 31.82 56.76 27.27 
Press1 65.91 37.89 28.82 25.62 42.51 56.27 23.94 61.13 32.38 
Press2 19.52 11.53 8.65 8.36 40.93 55.69 24.98 57.17 27.49 
Peep 11.34 7.14 5.79 6.29 37.04 48.94 18.91 44.53 11.90 
CS 16.02 7.93 5.70 5.92 50.50 64.42 28.12 63.05 25.35 
Disj 12.26 6.75 3.03 3.25 44.94 75.29 55.11 73.49 51.85 
PG 1.79 1.11 0.86 0.76 37.99 51.96 22.52 57.54 31.53 
Read 50.41 30.26 24.42 25.37 39.97 51.56 19.30 49.67 16.16 
Gabriel 4.88 2.89 1.95 2.06 40.78 60.04 32.53 57.79 28.72 
Plan 1.26 0.71 0.59 0.60 43.65 53.17 16.90 52.38 15.49 
QSort 0.56 0.34 0.22 0.23 39.29 60.71 35.29 58.93 32.35 
Mean 42.21 58.49 28.38 58.42 28.31 

Table 7.1: Computation Times of the Algorithms and Percentages: Character Ver
s10n 

Program Pa Or Pr Ca ¼Pa-Or ¼Pa-Pr ¼Or-Pr ¼Pa-Ca ¼Or-Ca 
Append 0.06 0.03 0.02 0.02 
Kalah 17.82 13 .52 9.30 7.95 24.13 47.81 31.21 55.39 41.20 
Queens 0.37 0.30 0.18 0.18 18.92 51.35 40.00 51.35 40.00 
Press1 65 .91 53.03 40.52 34.68 19.54 38.52 23 .59 47 .38 34.60 
Press2 19.52 16.06 12.23 11.32 17.73 37.35 23 .85 42.01 29 .51 
Peep 11 .34 9.98 8.08 8.62 11.99 28.75 19 .04 23.99 13.63 
CS 16.02 11.67 8.49 8.43 27.15 47.00 27 .25 47 .38 27 .76 
Disj 12 .26 9.97 4.49 4.64 18.68 63 .38 54.96 62 .15 53.46 
PG 1.79 1.53 1.19 1.09 14.53 33.52 22.22 39.11 28.76 
Read 50.41 43 .36 35 .51 35 .82 13.99 29.56 18.10 28.94 17.39 
Gabriel 4.88 4.13 2.74 2.73 15.37 43.85 33.66 44.06 33.90 
Plan 1.26 0.99 0.80 0.78 21.43 36.51 19.19 38.10 21.21 
QSort 0.56 0.47 0.32 0.28 16.07 42.86 31.91 50.00 40.43 
Mean 18.29 41.70 28.75 44 .15 31.82 

Table 7.2: Computation Times of the Algorithms and Percen t ages: Bit Version 
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Program Original Pretix Caching 
Kalah 31.95 31.94 29.69 
Queens 26.67 16.67 11.11 
Pressl 28.55 28.87 26.12 
Press2 28.21 29.27 26.15 
Peep 28.46 28.34 27.03 
CS 32.05 32.86 29.77 
Disj 32.30 32.52 29 .96 
PG 27.45 27.73 30.28 
Read 30.21 31.23 29.17 
Gabriel 30.02 28 .83 24.54 
Plan 28.28 26.25 23 .08 
QSort 27.66 31.25 17.86 
Mean 29.32 28.81 25.40 

Table 7.3: Percentage Gained By Using Characters on the Algorithms 

proved implementation in C. Ali the programs are stili under 28 seconds and Prefix 
loses around 3 seconds on one of the big programs. 

As far as the bit version is concerned, Caching produces an improvement of 
44.15% over the Pascal implementation (Booleans are not coded as bits by the Pascal 
compiler) and 31.82% over the improved C implementation. Ali programs still run 
below 12 seconds except Press1 and Read which take respectively 34.68 and 35.82 
seconds. Prefix is slower with an average improvement of 41.70% over the Pascal 
implementation and an average of 28.75% over the improved C implementation. 

The results seem to indicate that the more costly the abstract operations, the 
more attractive caching will be. On our domain, the character implementation of 
sharing (which is the fastest) produces a gain of 0.07 % in favor of Prefix while the 
bit implementation produces a gain of 2.45 % in favor of caching. We discuss this 
result later in the paper in light of other results. 

The above results compare weli with the specialized algorithms of [25, 11). On 
Peep, Read and PG, their best programs achieve respectively 22.52, 60.18 and 3.25 
on a SUN 3/50. This means that our algorithm is respectively 3.89, 2.46, 4.27 times 
faster on a SPARC-1 (which is around 2-4 times faster). Moreover, our algorithms 
are executed on a more sophisticated and accurate domain than the one used in 
(25, 11]. ln particular, our domain also includes sharing and pattern information 
omitted in [25, 11). 

Table 7 .3 indicates the gain of using characters instead of hi ts on Original, 
Prefix and Caching for the sharing components. The improvement obtained is 
fairly consistent among the algorithms and is in general about 26-27%. 

ln short, the two improvements produce substantial gain in efliciency. Even after 
a gain of around 40% obtained by the C implementation by refining the abstract 
domain algorithms, they still produce an improvement of around 30%. Depending 
upon the implementation of the sharing component (to favor memory or speed), 
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Operation Or Pr Ca Ca eval ¼ Or-Pr ¼ Or-Ca ¼ Or-Ca eval 
COMPARE 7294 5994 3493 1736 17.82 52.11 76.20 
SMALLER 24840 20390 13329 8428 17.91 46.34 66.07 
EXTEND 3416 2370 3416 987 30.62 0.00 71.11 
ALTEST 934 565 934 462 39.51 0.00 50.54 
ALIS 513 303 513 240 40.94 0.00 53.22 
ALVAR 896 615 896 566 31.36 0.00 36.83 
AI..FUNC 13916 9086 13916 8208 34.71 0.00 41.06 
EXTG 4982 3879 4982 3334 22.14 0.00 33.08 
RESTRG 4982 2942 4982 2442 40.95 0.00 50.98 
EXTC 5170 3388 5170 3388 34.47 0.00 34.47 
RESTRC 5170 4325 5170 2704 16.34 0.00 47.70 
UNION 9068 8468 9068 5349 6.62 0.00 41.01 

Table 7.4: Number of Abstract Operations on ail Programs for ail Algorithms 

Caching is slower ( character version) or faster (bit version) than Prefix. Finally, 
the algorithm efficiency is at least as good as the best specialized tools available 
for these tasks, although it uses a more sophisticated domain and provides more 
accurate results (see [15] for details). 

7.3 Number of Abstract Operations 

To avoid considering the specificities of our implementation, we now give a more ab
stract view of the efficiency of the algorithms: the number of operations on abstract 
substitutions performed by the various algorithms. The results are summarized in 
Table 7.4 and depicted in detail in Tables A.l, A.2, A.3, A.4, A.5, A.6, A.7, A.8, 
A.9, A.10, A.11, A.12 given in the Appendix. 

Table 7.4 contains, for each abstract operation on all benchmark programs, the 
number of calls in algorithms Original, Prefix and Caching. CA eval also gives 
the number of calls in Caching which are really evaluated ( all the others being 
cached). Finally, it gives the percentage of operations saved for each of the improve
ments. Besicles the traditional operations such as RESTRG and EXTG, results are also 
given for COMPARE (i.e. comparing two substitutions and returning equal, smaller, 
greater, or not comparable), SMALLER (i.e. testing if a substitution is smaller than 
another substitution), ALTEST (i.e. the built-in arithmetic comparisons) and ALIS 
(i.e. the fonction is of Prolog). Note also that operation EXTG is only performed 
for procedure calls and is integrated into operations UNIF _FUNC and UNIF _vAR for 
built-ins. 

The ratio DR-PR indicates the percentage of calls saved for each of the operations 
by Prefix over the original algorithm. Ralf of the operations have a ratio of over 
30% reaching peaks of about 39% and 41 % for ALTEST and ALIS. The time con
suming operations UNIF _VAR, UNIF ..FUNC and EXTG dealing with unification achieve 
improvements of about 31, 34, and 22%. 
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The ratio OR-CA eval indicates the percentageof executed calls saved by Caching. 
These ratios are rnuch higher than in the case of Prefix including peaks of 76 and 
71 % for COMPARE and EXTEND and 36, 41, and 33% on the unification operations. 
This seerns to indicate and to confirm the results of our previous section that, the 
more costly the abstract operations, the more attractive will be Caching. When only 
unification instructions which are concerned (i.e. UNILVAR, UNIF ...FUNC, EXTG) are 
considered, Caching produces a 7% improvement over Prefix and a 36% improve
ment over Original. Given the overhead for handling the caches, this fits nicely 
with the results observed for computation times. 

The ratio OR-CA gives the number of calls to the operations spared by Caching. 
Caching basically calls the same operations as Original (but rnany of thern are 
trivially perforrned through caching) except in the case where sorne operations are 
called inside operations. This is true for SMALLER and COMPARE where the number 
of calls is substantially reduced. . 

The lowest improvement occurs for EXTG which was to be expected since this is 
the instruction executed just after a goal. Each time the output of an abstract tuple 
has been updated, EXTG has to be evaluated. On the other hand, EXTEND has the 
highest improvement which is not surprising since this is the operation performed 
first when an abstract tuple is considered. The rnost important differences between 
Caching and Prefix appear in operations UNION and RESTRC, no difference occurring 
in EXTC. The last result is easily explained since different clauses very often have 
a different number of variables in their normalized versions. The former result is 
explained by the fact that Pref ix has in fact little to offer for the above operations. 
For instance, RESTRC is only avoided when the whole clause is not reconsidered. 

As far as the individual tables are mentioned, a few facts deserve to be men
tioned. Read seerns to be very peculiar, mainly due to the fact that the program is 
highly mutually recursive and that the domain is not particularly adequate for the 
prograrn (see [15] for a discussion of this). As a consequence, it requires many ite
rations, exhibits excellent ratios for EXTEND, RESTRC, but rather lower improvements 
in general. Disj, on the other hand, has excellent ratios alrnost everywhere due to 
its tail-recursive nature (and its substitution-preserving property (see [14, 15])). 

7 .4 Time Distribution 

ln this section, we investigate the distribution of the computation time in various 
categories, including the abstract time (the time spent in the abstract operation), 
the control time (the total time - the abstract time), and the cache time (the time 
taken in managing the caches). 

Table 7 .5 describes the time distribution for caching. TT is the total time, TA the 
abstract tirne, TC the control time, and TH the cache time. TA is in fact a lower bound 
on the abstract time since an abstract operation is never reexecuted. Moreover , some 
of the operations (i.e. ADJUST and EXTEND) are not included. The reason is that, on 
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Program TT TA TC TH TA¼TT TC1/.TT TH1/.TT 
Kalah 5.59 5.03 0.56 0.23 90 10 4 
Queens 0.16 0.14 0.02 0.00 87 13 0 
Press1 25.62 22.48 3.14 2.37 88 12 9 
Press2 8.36 7.36 1.00 0.89 88 12 10 
Peep 6.29 5.70 0.59 0.57 90 10 9 
CS 5.92 5.60 0.32 0.32 94 6 5 
Disj 3.25 3.00 0.25 0.25 92 8 7 
PG 0.76 0.73 0.03 0.03 96 4 4 
Read 25.37 23.73 1.64 1.40 93 7 5 
Gabriel 2.06 1.80 0.26 0.16 87 13 8 
Plan 0.60 0.52 0.08 0.02 87 13 3 
Qsort 0.23 0.17 0.06 0.04 74 26 12 

Table 7.5: Distribution of Computation Times for Caching 

Program TT TA TC TA1/.TT TC1/.TT 
Kalah 9.22 8.89 0.33 96.42 3.58 
Queens 0.24 0.22 0.020 91.67 8.33 
Press1 38.21 37.44 0.77 97.98 2.02 
Press2 11.58 11.47 0.11 99.05 0.95 
Peep 7.17 7.15 0.02 99.72 0.28 
CS 7.09 7.09 0 100.00 0.00 
Disj 6.79 6.79 0 100.00 0.00 
PG 1.07 1.07 0 100.00 0.00 
Read 30.27 30.03 0.24 99.21 0.79 
Gabriel 2.96 2.88 0.08 97.30 2.70 
Plan 0.74 0.68 60 91.89 8.11 
Qsort 0.34 0.32 20 94.12 5.88 

Table 7.6: Distribution of Computation Time for Original 

the one hand, these operations contain suboperations that are included, and, on the 
other hand, much of the remaining time is spent in the updating of the set of abstract 
tuples which is best considered as control. The ratios TAY.TT, TCY.TT and THY.TT give 
the percentage of the total time spent in the abstract time, the control time, and 
the cache time. The results indicate that about 90% of the time is spent in the 
abstract operations. PG and CS are the most demanding in terms of abstract time, 
which is easily explained as they manipulate large substitutions and make relatively 
few iterations (especially CS). The results also indicate that the cache time takes a 
significant part of the control time, including 10% on Press2. However , assuming 
a no-cost irnplementation of the control part, only about 10 % can be saved on the 
computation times. This indicates that the room left for improvement is rather 
limited. 

Table 7.6 depicts the same results (except the cache time) for the original pro-
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Program TT TA TC TA¼TT TC¼TT 
Kalah 6.46 6.21 0.250 96.13 3.87 
Queens 0.15 0.12 0.030 80.00 20.00 
Press! 29.4 28.82 0.430 98.03 1.97 
Press2 8.85 8.45 0.400 95.49 4.51 
Peep 5.86 5.74 0.12 97.95 2.05 
Cs 5.87 5.67 0.2 96.60 3.40 
Disj 3.03 3.03 0.00 0.00 0.00 
Pg 0.86 810 0.05 94.19 5.81 
Read 25.12 24.73 0.39 98.44 1.56 
Gabriel 1.93 1.89 0.04 97.93 2.07 
Plan 0.56 0,52 0.04 92.86 7.14 
Qsort 0.23 0.2 0.03 86.96 13.04 

Table 7.7: Distribution of Computation Time for Prefix 

Program SMALLER AI-TEST AI-IS AI-VAR AI-FUXC EXTG RESTRG EXTC RESTRC UXIOX 
Kalah 0.38 2.17 3.31 0.57 38.72 45.23 0.85 1.79 1.98 5.00 
Queens 0.00 9.76 4.07 0.00 45.53 30.08 0.81 2.44 2.44 4.88 
Press! 1.33 1.11 1.60 0.53 42.72 41.44 1.33 2.26 1.86 5.81 
Press2 0.68 0.68 1.50 0.41 46.92 38.99 1.50 2.19 2.05 5.06 
peep 0.18 0.26 0.09 7.50 53.09 25.31 1.23 2.65 3.70 6.00 
CS 0.17 0.95 3.02 1.04 39.60 49.27 0.78 0.86 1.81 2.50 
Disj 0.32 0.10 1.16 0.10 58.05 36.06 0.84 1.16 1.16 1.06 
PG 1.37 0.14 4.93 1.37 41.37 40.14 1.51 2.47 2.33 4.38 
Read 0.66 3.01 0.16 2.10 45.76 38.01 1.24 1.85 1.11 3.05 
Gabriel 0.55 0.00 6.02 1.81 35.05 47.75 1.15 2.14 1.86 3.67 
Plan 1.93 2.12 0.00 0.19 28.52 53.56 2.50 2.50 3.08 5.59 
Qsort 0.00 1.23 0.00 6.17 24.69 56.17 1.85 2.47 2.47 4 .94 

Table 7 .8: Percentage of Time Distribution Among the Abstract Operations m 
Caching 

gram. It indicates that the control time is very low, only reaching 9 and 8 % for 
Queens and Plan but being lower than 3% in most cases. The negligible times for 
CS, Disj and PG may be explained by the fact that these programs are demanding 
in abstract time. Comparing those results with Caching , we observe that th con
trol time in Caching has grown significantly due to the cache time ( the rest of the 
control time being theoretically the same between Caching and Original ) . 

Table 7.7 depicts the same results (except the cache time) for Prefix. It indi
cates, as expected, that the control times are almost always smaller then those of 
Caching and greater than those of Original. Also the control times are much doser 
to Original than to Caching, 

Table 7 .8 depicts the distribution of the abstract time among the abstract op
erations for Caching. It clearly indicates that the most time-consuming operations 
are UNIF ..FUNC and EXTG confirming some of the results of the previous section. For 
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Program SMALLER ALTEST ALIS ALVAR AI....FUliC EXTG RESTRG EXTC RESTRC UliIOli 
Kalah 0.79 1.01 3.37 0.56 39.06 46.91 1.23 1.01 1.80 4.26 
Queens 4.35 8.70 4.35 0.00 52.17 17.39 4.35 4.35 0.00 4.35 
Press1 1.71 0.61 1.92 0.67 48.29 36.79 1.25 1.60 1.84 4.73 
Press2 1.08 0.36 2.24 0.72 52.96 33.75 1.26 1.89 1.62 4.13 
Peep 0.56 0.14 0.00 7.05 58.11 23.55 0.85 1.83 2.82 5.08 
CS 0.26 0.51 3.32 0.77 48.59 41.05 0.64 1.28 1.41 2.17 
Disj 0.29 0.00 1.75 0.15 67.45 27.45 1.02 0.73 0.44 0.73 
PG 0.94 0.00 6.60 1.89 49.06 33.96 0.94 1.89 0.94 3.77 
Read 0.87 2.11 0.20 1.91 49.41 37.76 1.51 1.98 1.21 3.05 
Gabriel 0.70 0.00 7.37 3.16 41.75 39.30 1.05 1.75 2.11 2.81 
Plan 1.52 1.52 0.00 1.52 36.36 46.97 3.03 1.52 3.03 4.55 
Qsort 3.23 0.00 0.00 12.90 38 .71 35.48 3.23 0.00 3.23 0.23 

Table 7.9: Percentage of Time Distribution Among the Abstract Operations m 
Original 

Caching, operations UNIF -.FUNC and EXTG take more than 80% of the time except for 
Queens (75%). Operation UNION seems to be the next most demanding operation, 
but far behind the above two operations. 

Table 7 .9 depicts the distribution of the abstract time among the abstract oper
ations for Original. The results indicate once again that the most time-consuming 
operations are UNIF-.FUNC and EXTG. The results are also almost similar to those of 
Caching. Other operations have somewhat différent ratios due to the fact that the 
unification takes most of the time. 

7.5 Memory Consumption 

Tables 7.10 and 7.11 depict the memory consumption of the three programs when 
bits and characters are used for representing the sharing component respectively. 
The before field gives the memory requirement before abstract interpretation, i.e. it 
includes the data structures necessary for parsing and compiling the Prolog programs 
as well as the sizes of the hash tables in the case of Caching. The max field gives 
the maximum memory requirement during the execution of the program. The most 
memory demanding program is Press 1. It requires 279 kilobytes for Original, 1057 
for Prefix and 2952 for Caching. In average, Prefix requires 2.35 more memory 
than Original but reaches peaks of 4.35 and 3.79 on Read and Press which are the 
most time consuming programs as well. Caching requires around 9.33 more memory 
than original in average and reaches a peak of 13.49 on Read. 1 Caching requires 
around 4 times as much memory as Pref ix but the ratios are lower on the most 
demanding programs (2.79 on Press1 and 3.10 on Read. 

When characters are used, Press1 requires 324, 1314, and 3831 kilobytes for 

1The high r;:i.tios on Qsort and Queens are not significant since the initialization takes most 
memory. 
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Program Original Pre!ix Caching Pr/Or Ca/Or Ca/Pr 
be!ore max max be!ore 11ax 

Append 2 4 5 148 152 
Kalah 56 125 244 204 723 1.95 5.78 2.96 
Queens 6 12 18 152 182 1.5 15.1 10.11 
Press1 82 279 1057 231 2952 3.79 10.58 2.79 
Press2 84 176 450 233 1194 2.55 6.78 2.65 
Peep 108 145 388 258 1197 2.67 8.25 3.08 
CS 42 96 172 190 586 1.79 6.1 3.4 
Disj 34 61 120 181 431 1.96 7.06 3.59 
PG 13 32 61 159 272 1.9 8.5 4.45 
Read 91 210 913 240 2834 4.35 13.49 3.1 
Gabriel 26 57 123 173 412 2.16 7.22 3.34 
Plan 16 35 66 163 247 1.88 7.05 3.74 
Qsort 5 12 21 151 190 1.75 15.83 9.04 
Mean 2.35 9.33 4.04 

Table 7.10: Memory Consumption: Results with the Bit Representation of Sharing 

Original, Prefix and Caching. In average, Prefix requires 2.46 more memory 
than Original but 4.85 and 4.05 more on Read and Press1. Caching requires 8.84 
times as much memory as Original in average and reaches peaks of 16.11 on Read. 2 

Caching requires 3.85 more memory than Prefix and 2.91 and 3.33 on Press! and 
Read. 

Table 7.12 depicts the percentage of memory saved by using bits instead of 
characters to represent the sharing component. The average saving are respectively 
21, 22 and 19 % for Original, Pref ix, and Caching. 

7.6 Results on a Simpler Domain 

In this section, we report some experimental results on a simpler domain, i.e. the 
mode domain of [20) which is a reformulation of the domain of [4] . The domain 
could be viewed as a simplification of the domain discussed so far where the pattern 
information has been omitted and the sharing has been simpli:fied to an equivalence 
relation although all operations are in fact significantly different. The operations 
are much simpler but the loss of accuracy is significant. Nevertheless the efficiency 
results illustrate the potential of the improvements even in unfavorable conditions. 

Tables 7.13 and 7.14 depict the efficiency results for the three programs with the 
bit and character representations of the sharing. For the bit version, Prefix reduces 
the computation by 28% compared to Original while Caching produces a 26% im
provement. The improvements still remain significant, given that the improvements 
of Prefix and Caching on the sophisticated domain were respectively 28% and 31 %. 
For the character version, there is now a much larger difference in efficiency between 

2 Note that the average is only better because of the initialization effec t . 
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Program Original Prefix Caching Or/Pr Or/Ca Pr/Ca 
before max max before max 

Append 2 13 14 148 162 
Kalah 56 149 309 204 983 2.07 6.54 3.18 
Queens 6 22 28 152 195 1.27 8.86 6.96 
Press1 82 324 1314 231 3831 4.05 11.82 2.91 
Press2 84 201 547 233 1525 2.72 7.58 2.78 
Peep 108 157 453 258 1457 2.88 9.88 3.21 
CS 42 121 234 190 860 1.93 7.10 3.67 
Disj 34 70 156 181 578 2.22 8.25 3.70 
PG 13 45 80 159 315 1.77 7 3.93 
Read 91 237 1144 240 3820 4.82 16.11 3.33 
Gabriel 26 70 150 173 502 2.14 7.17 3.34 
Plan 16 46 82 163 275 1.78 3.97 3.35 
Qsort 5 21 32 151 207 1.52 9.85 6.46 
Mean 2.46 8.84 3.85 

Table 7 .11: Memory Consumption: Results with the Character Representation of 
Sharing 

Program Original Prefix Caching 
append 69.23 64.29 6.17 
kalah 16.11 21.04 26.45 
queens 45.45 35.71 6.67 
press1 13.89 19.56 22.94 
press2 12.44 17.73 21.70 
peep 7.64 14.35 17 .84 
CS 20.66 26.50 31.86 
disj 12.86 23 .08 25.43 
PG 28 .89 23 .75 13.65 
read 11.39 20.19 25 .81 
gabriel 18.57 18.00 17.93 
plan 23 .91 19.51 10.18 
qsort 42 .86 34.38 8.21 
Mean 21.2?, 22 .82 19.06 

Table 7.12: Memory Consumption: Saving obtained by the Bit Representation 
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Program OR PR CA PR-OR CA-OR 
Append 0.02 0.02 0.04 
Kalah 2.60 1.81 1.88 0.30 0.28 
Queens 0.18 0.14 0.15 0.22 0.17 
Press1 6.08 4.08 4.26 0.33 0.30 
Press2 6.17 4.23 4.31 0.31 0.30 
Peep 5.54 3.86 4.03 0.30 0.27 
CS 9.92 7.76 7.29 0.22 0.27 
Disj 3.68 2.09 2.20 0.43 0.40 
PG 0.48 0.38 0.40 0.21 0.17 
Read 5.92 4.25 4.45 0.28 0.25 
Gabriel 1.26 0.88 0.94 0.30 0.25 
Plan 0.37 0.30 0.34 0.19 0.08 
Qsort 0.32 0.23 0.20 0.28 0.37 
Mean 28.21 25 .91 

Table 7.13: Computation Times and Percentages on the Small Domain: Bit Version 

Prefix and caching. Prefix now brings around 29% improvement while Caching 
only improves Original by 6%. Note also that the computation times are signif
icantly reduced compared to the sophisticated domain, ail times being less than 8 
seconds. 

These results indicate the potential of the improvements even on srnall and simple 
domains. It also gives us a first confirmation that the sirnpler the abstract domain, 
the more interesting Prefix becomes. 
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Program OR PR CA PR-OR CA-OR 
Append 0.01 0.02 0.02 
Kalah 1.91 1.41 1.94 0.26 -0.02 
Queens 0.15 0.08 0.14 0.47 0.07 
Press1 4.72 3.10 4.12 0.34 0.13 
Press2 4.74 3.19 4.37 0.33 0.08 
Peep 4.22 2.91 4.04 0.31 0.04 
CS 7.40 5.83 6.95 0.21 0.06 
Disj 2.72 1.57 2.27 0.42 0.17 
PG 0.39 0.29 0.39 0.26 0.00 
Read 4.52 3.28 4.42 0.27 0.02 
Gabriel 0.96 0.69 0.93 0.28 0.03 
Plan 0.29 0.25 0.29 0.14 0.00 
Qsort 0.25 0.19 0.21 0.24 0.16 
Mean 29.45 6.15 

Table 7.14: Computation Times and Percentages on the Small Domain: Character 
Version 



Chapter 8 

Widening 

In this chapter and the next one, we will try two other techniques. Contrary to both 
previous methods, these ones are not optirnizations. They are two experimentations 
that must lead to improvement of the precision of the results. The first one is a 
mean to detect strictly increasing chains. The second one is reexecution of the goals 
of a clause. In this chapter, we present the ideas underlying the widening. But, this 
technique alone is not sufficient to obtain an interesting gain. So, it will be used 
together with reexecution, in the next chapter. 

The widening is a method to insure the terrnination of the algorithm. Indeed, if 
the domain is finite, in the worst possible case, all the possibilities must be exarnined, 
but it can always be clone, soon or later. But, if the domain is infinite, there can arise 
a process of creation of a term of strictly increasing length that would inevitably 
lead to an infinite loop. The principle used is the one presented by P. Cousot and R. 
Cousot in [7]. It consists in widening the doubtful substitutions in some less precise 
ones with no more strictly increasing chains. 

For a chain to increase strictly, it must be each time more and more precise, that 
is, each time smaller and smaller. So, if the input substitution for a new call is made 
greater or equal than the input substitutions of ail the previous calls, there can not 
be any infinite loop. But the greater the substitution, the more important the loss 
of precision. Hence, we need the smaller abstract substitution which is greater than 
both the new one and the greatest of all the previous ones. That is, we need the 
UNION of these two substitutions. 

Definition 18 The widening is a fonction W: ASn x ASn --t ASn, D being a set 
of program variables, satisfying: 

• V sequence /31, /32, . .. , /3i, ... (f3k E AS D), the sequence a1, a2, ... , ai, .. . , a1 = 
/31, ai+I = W(ai,,Bi+i), is not decreasing; 

We will examine two dia-. ..--~~ 
m [15]) and then 

ing methods. A first primitive one (presented 
s the mode domain does not take care of 
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structures (just Ground, Variable or Any, no matter the form of the terms), it is 
a finite domain and this experimentation is not relevant for it. It just concerns the 
type domain. · Firstly, for a better understanding, we shall present the suspended 
stack. Then, the original implementation of the widening and the new one. And 
finally, a comparison between both methods. 

8.1 The Suspended stack 

The suspended stack contains a number of pairs (/3,p) for which execution is sus
pended. Namely, pairs for which consideration has begun and for which the consid
eration of other pairs is needed. Their evaluation is suspended the time necessary 
for the execution of these other pairs. For example, consider the following predicate: 

p( •) : - · · • , q1 ( •), · · · , q2 ( •), · · · 

where " ... " represent built-ins. When it is examined with input substitution /3, it 
needs the result of (/3', q1 ) and of (/3", q2) where /3' is the result of the first built-ins 
and /3" is the result of all the preceding goals. The execution of (/3, p) is suspended 
a first time during evaluation of (/3', q1 ) and then a second time during evaluation of 
(/3", q2). Thus, during these two evaluations, the pair (/3, p) belongs to the suspended 
stack. But, outside of those calculations, (/3, p) can not be in the stack. Let us note 
that, although useless, (/3, p) can be in the stack during evaluation of built-ins too. 
lt is implemented that way for simplicity. Indeed, we then have to add (/3,p) to the 
stack only once at the begining of its computation and remove it once at the end. 

When a predicate is called, the stack is examined in search for it, the last entered 
element the first examined. If it is found, that means the call is a recursive one that 
will definitely lead to an infinite loop. But, if the input substitution is widenned, it 
is either equal to a previous suspended one or greater than all the previous ones. If 
equal, the execution is avoided and the temporary result is gotten back. If greater, 
we know there is no problem and we can go on with the execution of the call. 

8.2 The original widening 

The original widening, presented in [15], is a very simple one. It consists in system
atically widening ail input substitutions of recursive calls . 

Let us examine a recursive call of a procedure p. Let us denote /31 the greatest 
substitution so far in input of p and /32 the input substitution of the new call. A 
simple cornparison can be performed between them. Different cases may arise: 

• /32 = /31 : the UNION is the same. As (/31 ,p) is suspended, sois (/32,P) which is 
not refined. 

• /32 < /31 : the UNION is (31 and ((31 , p) is suspended, so not examined. 
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• /32 > /31 : the UNION is /32 and (/32,P) is examined. 

• otherwise: the UNION must be computed and (UNION(/31 ,/32),p) is examined. 

Note that /31 the greatest of ail (/3i, p) in the stack is easy to find. lndeed, as 
pairs appended to the stack are always computed as a UNION of the previous ones, 
the greatest is surely the last one with predicate p in the stack. 

8.3 The new widening 

The new method is a slightly more complicated one. Its purpose is to widen substi
tutions only when it is necessary. The basic idea is to detect the creation of stictly 
increasing structures and to widen only substitutions taht contain such structures. 

Definition 19 A term t is an instance of a term t' iff 

• neither t nor t' have a form, that is, we know nothing more than their type, 

• t is of the form f ( ... ) and t' has no form, 

• or t and t' both have the same functor, the same arity and all subterms of t 
are instances of their corresponding subterm in t'. 

For example, let t = J(X) and t' = f(g(X)). Then, t' is an instance of t because 
they both have the same functor f of arity 1 and X is an instance of g(X) because 
X has no form and g( x) has a functor. 

Definition 20 A term t is said to be a part of a term t' iff 

• t' is an instance of t, 

• or t' is of the form J(t") where f is any functor and t is a part of t". 

Definition 21 Let us denote /31 , ..• , f3k the input substitutions of all the previous 
calls to the procedure p and /3 the new one. Then, the creation of a strictly increasing 
structure occurs iff, :31, 1 ::; l ::; k such that for each binding of /31 (say X I t) that is 
different of its counterpart in /3 (say X' 1 t'), tisa part of t'. 

If a strictly increasing structure creation is detected with that test, then an infi
nite loop can be avoided by widening the substitution and examining (UNION(/31, /3), p) 
instead of (/3, p). But, if no strictly increasing structure is detected in the input sub
stitution of a recursive call, then no widening is clone. 

Note that, with this test, all (/3i,P) , 1 ::; i::; k may be examined if necessary and 
not just the pair with the greatest /3i- So, the suspended stack could just be seen as 
a suspended set. 
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8.4 Comparison between both tests 

The big difference between those two methods is a gain in precision. Indeed, in the 
original one the UNION operation is computed more often than in the new one. It is 
due to the fact that it is clone, in the second method, only when a strictly increasing 
structure creation is detected but every time in the original method. 

For instance, let us examine1 the execution of the test QSORT (figure 8.1) already 
used in the previous chapters. Let us assume it is called qsort/2(Ground(l), Var(2)). 
Then, qsort/3 is directly called with 

/31 = { ( Ground(l ), V ar(2), Ground(3) : []} 

which is examined. Later on, a first recursive call to qsort/3 occurs with 

/32 = {Ground(l), Var(2), Var(3)} 

With the original method, widening occurs and 

UNION(/31 ,/32 ) = {Ground(l), Var(2),GV(3)} 

is used instead of /32 • But, with the new method, as /31 is not part of /32 , no widening 
is necessary and qsort/3 is examined with /32 • ln fact, the final result is exactly the 
same with both methods. But, it may become very interresting if we examine all 
elements in the sats and use them to do specialisations. 

1 We ask the reader to believe what we say. The length of the verbose of execution of that test 
make it impossible to include it in this report . 
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qsort(S,Sorted) :
qsort(S,Sorted, 0). 

partition([] ,F, [], []). 
partition([FIT] ,P, [FIS] ,B) ·

F <= P, 
partition(T,P,S,B). 

partition([FIT] ,P,S,[FIB]) ·-
F > P, 
partition(T,P,S,B). 

qsort ( [] , X, X) . 
qsort([FIT] ,Res,Tail) ·

partition(T,F,S,B), 
qsort(S,Res,Others), 
Others = [F I Rest], 
qsort(B,Rest,Tail). 

split(T,F,T,T). 

Figure 8.1: QSORT 
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Reexecution 

The "Reexecution" aims to improve the precision of the results. The chosen tech
nique is to transform the program1 to another one whose concrete semantics is 
unchanged with respect to the SLD-resolution. However, this transformation reor
ganizes the program atoms so that the algorithm may find a more accurate result ( a 
smaller fixpoint). In the next sections, we first explain the transformation, next the 
algorithm for the mode domain and for the type domain. The last section discusses 
some results ( cpu-time,memory, . .. ) about the two implementations. 

This work was realized at last so this one was partially achieved. We present 
here the first results. 

9.1 The transformation 

As transformation, we choose to place a copy of some atoms at the end of the 
clauses. It doesn't change the semantics of the programs as proven in the following 
proposition: 

Proposition 22 Let P be a normalized Prolog program. P = { Ci} where Gis are 
the clauses of P. 
If Ci= p(Xi, ... ,Xn): -91,92, ... ,9m 
If P' = P(Ci ~ C/) 
whereCf=91 ,92 , ••• ,9m,9i1 , ••• ,9ir Vi1 , . .. ,ir E {l, .. . ,m} 
Then P and P' have the same semantics. 
Proof We know that the semantics computed as the least fi.xpoint of the transforma
tion TSCT is equivalent to the SLD-resolution (13, pp 9- 10). Since the SLD-resolution 
doesn't depend on the computation rule (19, pp49-55), hence Cf can again be rewrit
ten as: 

1 In this section, we designate the Prolog program by the word "program" and the abstract 
interpreter by "algorithm". 
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where ai= 9i,9i if i E {i1, .. . , ir} 
ai = 9i otherwise. 

For example: 

ci - p( •) : - 91, 92, 93. 

c: = p(•) : - 91,92,93,92· 
cr - p(.) : - 91' 92' 92' 93. 

C:' = p(•) : - 91,a,92,/3,92,,,93. 
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Let be /3 the result substitution after the call to 92 with the input substitution 
a. It's obvious that the second call to 92 with the same argument will be success
ful. Hence, /3 is equal to I and we may omit the second occurrence of 92 • By 
generalization to the other cases, we can see that CI' is equivalent to Ci. □ 

Corollary 1 Let P = { Ci} be a pro9ram and its clauses. 
Then the semantics of P is unchan9ed if some atoms are repeated many times and 
anywhere in a clause. 

In this implementation, the Prolog program isn't transformed directly as depicted 
previously. The algorithm is adapted to behave as if the program is modified. In 
the original algorithm, before calling the fonction RestrC , SolveClause has already 
treated each atom once. So it's sufficient to reexecute the interesting atoms. This 
operation is done by calling the fonction ForvardPropagate just before the call to 
RestrC. 

We have not yet explained why this technique improve the results quality, or 
how this technique is implemented. These aspects are covered by the next sections. 

9.2 Implementation for the mode domain 

9.2.1 Algorithm 

The basic idea for the mode domain is to reexecute each atom until the current 
substitution can't be improved any more. At a given time, during the reexecution, 
the substitution can lose precision. So, to avoid this, we take systematically the glb 
2 of the substitution computed until now and the one obtained after the last goal 

2 glb is the fonction "greater least bound" defined as: 

glb(a, /3) = î' {==} î' ~ a and î' ~ /3 
and 0 ~ a ===> 0 ~ î' 
and 0 ~ /3 ===> 0 ~ î' 
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procedure SolveClause( in /3in,p,c,suspended; out f3outi inout sat,dp) 
begin 

end 

f3ext := EXTC( c,f3in)i 
for i := 1 to m with b1 , ... ,bm body-of c do 
begin 

f3aux := RESTRG(bi,f3ext)i 
switch ( bi) of 
case X 1 = Xk: 

/3int := ALVAR(f3aux) 
case X1 = f( .. . ): 

f3int := ALFUNC(f3aux,f) 
case q( .. . ): 

SolveGoaI(f3aux,q, suspended,sat,dp ); 
f3int := sat(f3aux,q); 
if (/3in,P) E dom( dp) do 

ADD..DP(/3in,P,f3aux,q,dp) 
end; 
f3ext := EXTG(bi,f3ext,f3int) 

end; 
ForwardPropagate(/3;n,f3ext, sat, dp, c,p, suspended) 
f3out := RESTRC( c,f3ext) 

where V(g) is the set of ail the variables encountered in the goal g. For example: 
V(r(X1,Xs,X3)) = {X1,X3,Xs}. 

Figure 9.1: A. mode ForwardPropagate's Algorithm 
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encountered. We have, in fact, to chose between two abstract substitutions. The 
best solution is to take the glb of bath. So, we extract the best information of bath 
substitutions in a new one. The algorithm of SolveGoal is unchanged. The reader 
can find the algorithm of ForwardPropagate in the figures 9.1, 9.2, 9.3. 

The dependence of the goals on the variables permits to reconsider some goals 
when their arguments have been modified. When the domain is finite, it's easy to 
prove that the dependence isn 't a vicious circle. 

Proposition 23 The fonction ForwardPropagate ends if the domain is finite. 
Proof 
Let i be the index of /3ext at the point ◊ 1. 
The demonstration is made by induction on the value of /3ext at the point ◊ 1. The 
value of /3ext decreases each time the point ◊ 1 is reached. A fini te domain insures 
us then that the program ends. Otherwise: 
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procedure ForwardPropagate(in: .Binl, inout: .Bin2, sat, dp 
in: C,p, suspended) 
%% let C = p(X1,• . . ,Xn) : - 91,·· ·,9m• 

begin 
S := Ui=l, ... ,m V(gi) 
.Bext := .Bin2 
while .Bext f .l and S f 0 do 
begin 

{◊1} E := 0 
for i = 1 to m do 
begin 

if V(gi) n S f 0 do 
begin 

end 
end 

{◊2} S := E 
end 

Call(.Binl, .Bext, g, suspended,p, dp, sat, .Bout) 
.81 := glb(,8,.Bout) 
E :=EU {X: Xis a variable /\ X,81 f X.Bext} 
.Bext := .B f 

.Bin2 := .Bext 
end 

Remark: X a f X ,8 denotes that the mode of variable X is different between the bath 
abstract substitutions a and ,8. 

Figure 9.2: B. mode ForwardPropagate's Algorithm 
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procedure Call(in: /3in, f3ext, g, suspended,p inout: dp, sat, out: f3out) 

begin 

end 

/3aux := ~estrg(g, /3ext) 
switch (g) of 

case Xj = Xk : /3out := ALVAR(/3aux) 
case Xj = f( .. . ): /3out := ALFUNC(/3aux, f) 
case q( .. . ): SolveGoal(/3aux, q, suspended, sat, dp) 

/3out := sat(/3aux, q) 
if (/3in,P) E dom(dp) do 

ADD...DP(/3in,P,/3aux,q,dp) 
/3out := EXTG(g, f3ext, /3out) 

Figure 9.3: C. mode ForwardPropagate's Algorithm 
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Since the glb operation insures us that f3extj+i is less or equal to f3extj, thus 

f3extj+i = f3extr Between the j th and (j + l)th loop, the algorithm is passed 
througout the point ◊2. Hence Si+i = 0 and the program ends. D 

9.2.2 Application 

To understand why the reexecution technique improves the results with the mode 

domain, let us see a small example. 

p(X1): -Xi= [X2 J X3],X2 = l,X3 = 2. 
?p( var) ----t p(ground) 

For this program, the original mode-algorithm can't remember that X 2 and X 3 are 
both components of X1 . For this reason, this one can't deduce that X 1 is ground 
and returns any. With the reexecution, the mode-algorithm can be as good as the 
type-algorithm for this particular case. This technique corrects the mode domain 
"defect" brought to the fore by K. Musumbu in [20, pp II/53] . 

9.3 lmplementation for the type domain 

9.3.1 Algorithm 

The technique for the type domain is the same as for the mode domain except a few 
points: 
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• The type domain is sufficiently precise to neglect built-ins during reexecution. 
ln fact only calls executed with arguments become more precise after the 
computation must be reexecuted. 

• The type domain isn't finite. The algorithm can fall in a vicious circle by 
attempting to gain more and more precision on a variable as shown in figure 
9.4. For this reason, a mechanism must avoid such situations. 

X/ f variable --+ X/ f f variable --+ X/ f f f variable --+ f f f f .. . 

Figure 9.4: A vicious circle 

The type reexecution algorithm is described in figures 9.5, 9.6. To prevent a vi
cious circle due to infinite dependence3 , a stack memorizes all the input substitutions 
of calls. Before computing a call, the algorithm checks if widening occurs between 
the input substitution and one from the stack (fonction Detect ). If an infinite 
structure is detected, the call is skipped and forgotten until the end of reexecution. 

9.3.2 Application 

ln the following program, 

p(X1, X2) : -g(X1, X2),X1 = [). 
g(X1,X2): -Xi= l,X2 = [X3 1 X4). 
g(X1, X2) : -X2 = 1. 

when gis called with {Xif var(l), X2/var(2)}, the abstract interpreter doesn't know 
again that only one of both clauses is interesting ( the second one because the first 
one should fail). Thus, the result of g( var(l ), var(2)) is g( Gv(l ), N ovar(2)) which 
is the UNION of the results of both clauses. But when the UNION is computed, 
precision is lost! The reexecution allows to remember that X 1 is ground and has a 
functor [] different from 1 when g is called for a second time. So only the second 
clause is examined and precision is gotten back. The result is { Xi/ Ground(l) : 
[), X2/ Ground(2) : 1} . 

9.3.3 Another Strategy 

We have introduced the reexecution without special attention to the order used to 
choose the goals. ln this strategy, ail the goals are reexecuted by entire sequence. 
Another possibility is to reexamine each goal since the first clause's goal each time 
a goal is reexecuted. The following example illustrates both techniques: 

3 a variable becorning more and more precise 
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procedure SolveClause( in /3;n,P,c,suspended; out f3outi inout sat,dp) 

begin 
... exactly the same algorithm as for the mode domain ... 

end 

ForwardPropagate(in: /3inl, inout: /3in2,sat,dp, in: C,p,suspended) 

%% let C = p(XI,···,Xn) : - •··,91 ,···,9m,···· 
% % g;s are ail the calls of this clause. 
% % The " ... " represent built-ins. 
begin 

S := Ui=l, ... ,m V(g;) 
stack := 0 
R; := true 'v i E {1, ... , m} 
f3ext := /3in2 
w hile /3ext -/- .l and S -/- 0 do 
begin 

E :=0 
for i = 1 to m do 
begin 

if V(g;) n S -/- 0 and R; do 
begin 

if Detect(g;,/3ext,stack) do 
R; := false 

else 
push(g; ,/3ext ,stack) 
Call(/3inl, f3ext, g, suspended,p, dp, sat, f3out) 
/3 J := glb(/3, f3out) 
E :=EU {X: Xis a variable Â X/31-/- Xf3extl 
f3ext := /31 

end 
end 
S := E 

end 

/3in2 := f3ext 
end 

Figure 9.5: A. type ForwardPropagate's Algorithm 
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procedure Call(in: f3in,f3ext,g,suspended,p inout: dp,sat, out: f3oud 

begin 
f3aux := Restrg(g,f3ext) 
q( .. . ): SolveGoal(f3aux, q, suspended, sat, dp) 
f3out := sat(f3aux, q)x 
if (f3ïn,P) E dom(dp) do 

ADD..DP(f3ïn,P,f3aux,q,dp) 
f3out := EXTG(g,f3ext,f3out) 

end 

function Detect(in: g,{3,stack)---t Boolean 

pre: 0 
post: return true {=} 3 (g,-y) E stack: {3 is an instance of gamma 

old version: 

Figure 9.6: B. type ForwardPropagate's Algorithm 

91,92,93,94, 91,92,93,94, 92,93' 92 ----.--- ---- .,____., .......,,,.,, 
SolveClause first second third 

reexecution 

new version: 91,92,93,94,91,91,91,92,91,92, 93 ,94,91,94 • 
----.--- '----v-' '----v-' .......,,,.,, '----v-' 

SolveClause 91 92 93 94 

Each time reexecution computes a goal, all the previous ones are again ex
amined if they share a modified variable with this one until the current sub
stitution becomes stable. Next, reexecution can examine the next goal and 
so on. 

As we have previously explained, our work was unachieved. This new 
strategy was not implemented so we will not discuss its results here. However, 
at the print time, Pascal Van Hentenryck has completely implemented that 
version and he discusses the results in [16]. We can already say that the 
new version is much faster that the old one with the biggest programs (2 to 
11 times faster) and gains a noticeable accuracy with the programs PG and 
Press1. However, with smaller programs, the old version seems to be faster 
but the computation times is only of a few seconds. 

9.4 Experimental Evaluations 

This section shows the results of the reexecution-algorithm. This one is the 
caching-version updated with the modifications described above. The Read 
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program can not be tested with the type domain because of a lack of memory 
4 

9.4.1 Time Distribution 

Figures 9.2 and 9.3 indicate computation times for the mode domain and the 
type domain. In the first table, programs Press1, Press2 and Read are the 
slowest with 23, 22 and 18 sec. In the second one, there are Kalah, press2 
and CS with 100, 80 and 42 sec. 

The table 9.1 shows the ratio between computation times for original and 
reexecution- algorithms. Ratios are majored by a factor 5 in the mode domain 
whereas in the type domain, ratios reach a peak of 18. It is probably due to the 
fact that type domain can gain in precision by two ways: either by changing 
variables mode or by modifying the pattern associated to a variable. In the 
first case, let us remember that the type domain has many more possible 
modes than the mode domain. 

Kalah Queens Press! Press2 Peep CS 
11 Mode 3.03 1.13 5.38 5.39 2.06 4 .87 
Il Type 17.91 2.94 1.63 5.07 2.90 13.60 

Disj Pg Read Gabriel Plan Qsort 
Il Mode 3.28 5.02 4.26 3.22 1.50 4.05 
Il Type 3.64 14.26 - 3.58 2.80 4.30 
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Table 9.1: Ratios between reexecution algorithm computation times for mode and 
type domains 

4 With the second strategy discssed above, the program Read is exected in less than 5 min tes. 
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Program TT TA TC+TH TT%TA TT%TC+TH 
Kalah 5.710 4.950 0.760 86.69 13 .31 
Queens 0.170 0.132 0.038 77.65 22 .35 
Press1 22.940 18.950 3.990 82.61 17.39 
Press2 23.260 19.210 4.050 82.59 17.41 
Peep 8.320 7.210 1.110 86 .66 13.34 
CS 35.520 33.720 1.800 94.93 5.07 
Disj 7.210 6.720 0.490 93 .20 6.80 
PG 2.010 1.665 0.345 82.84 17.16 
Read 18.950 15.390 3.560 81.21 18 .79 
Gabriel 3.030 2.409 0.621 79.50 20.50 
Plan 0.510 0.388 0.122 76 .08 23.92 
Qsort 0.810 0.623 0.187 76 .91 23.09 

TT comptation time 
TA comptation time or only abstract operations 
TC+TH captation time or the control algorithm and caching mechanism 
unit: sec. 
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Table 9.2: Computation time for abstract interpreter with reexecution on the mode 
domain and chars 

Program TT TA TC+TH TT%TA TT%TC+TH 
Kalah 100.100 95.320 4.780 95.22 4.78 
Queens 0.470 0.330 0.140 75.00 25 .00 
Press1 41.900 36.480 5.420 87.06 12.94 
Press2 42.420 37.370 5.050 88 .10 11 .90 
Peep 18.260 16.550 1.710 90 .64 9.36 
CS 80.510 76.110 4.400 94.53 5.47 
Disj 11.830 10.820 1.010 91.46 8.54 
PG 10.840 9.410 1.430 86 .81 13 .19 
Read not enough memory 
Gabriel 7.370 6.440 0.930 87.38 12.62 
Plan 1.660 1.444 0.216 86.99 13.01 
Qsort 0.990 0.789 0.201 79.70 20 .30 

TT comptation time 
TA comptation time or only abstract operations 
TC+TH captation time or the control algorithm and caching mechanism 
unit: sec. 

Table 9.3: Computation time for abstract interpreter with reexecution on the type 
domain and chars 
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9.4.2 Memory Consumption 

Tables 9.4 and 9.5 depict the memory consumption with the "reexecution" 
version. This algorithm sometimes requires up to 10 times more memory than 
the orignal algorithm with caching. The bit-implementation is very interest
ing for the bigger prograrns, so 42, 38 and 34% are gained with prograrns CS, 
Kalah, and Disj. The more demanding prograrns are CS, Press2, Press1 
and Kalah with 7316, 7050, 6942 and 5518 Kb (for char-implementation) and 
4329, 5168, 5968 and 3444 Kb (for bit-implementation) . 

The memory amount after compilation ( be fore column in tables) is higher 
for the mode domain. lndeed, this one requires to stock the variables depen
dance for ail the goals whereas type domain necessitates dependance only for 
calls. 

It is now necessary to precise some items: 
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1. We mean by "memory consumption" the space necessary to execute the algo
rithm with caching-mechanism. So an important memory amount is used to 
optimize the memoization performances. This space is not strictly necessary 
to the algorithm execution. So amounts in the tables are overestimations. 

2. The memory amounts are computed as the sum of ail the algorithm requests 
(malloc() ). So the memory required to manage the dynamic allocation is not 
posted. 

9.4.3 Results Quality 

The aim of reexecution is to improve the results quality. Let us see if this 
one is really improved by this technique. The global quality is computed 
as the UNION of ail the input substitutions for a same predicate found in 
foundations. lndeed, this information can be directly used in a optimized 
interpreter described in page 21. So it is pertinent to compare these results 
between different versions. 

comparison between original-version and reexecution-version 

Table 9.6 depicts improvement of quality for mode and type domains due 
to the reexecution technique. The only possible enhancement for the mode 
domain is a any becoming ground. As early described, the type domain can 
improve its substitutions in two ways: the mode and the pattern associated 
to each variable. The improvement essentially concerns the first possibility: 
the mode component. 

The mode domain takes the best advantage of the reexecution technique. 
A lot of results are unchanged in the type domain. How is it possible? ln 
fact, we have only examined the input substitutions of calls, many result 
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substitutions may have been improved but being pure result ( a substitution 
which is returned without being used as an input later), these ones are not 
discussed here. Other results do not belong to foundations, so they are not 
examined. 

Comparison between mode-reexecution and type-original 

Our aim is to see if the mode-reexecution algorithm (MRA5) is as good as type
original algorithm (TOA6 ) with respect to results quality and computation 
times. This comparison is suggested by K. Musumbu in [20, pp II/53]. The 
table 9.7 shows that MRA can sometimes be better in quality than TOA but 
with questionable performances. 

5 mode algorithm with reexecution implemented with chars and caching 
6 type algorithm without reexecution implemented with chars and without caching 
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modes types 
Program Before After Before After 
Append 333 257 330 376 
Kalah 589 918 478 5518 
Queens 354 386 341 466 
Press1 798 1918 578 6942 
Press2 814 1941 586 7050 
Peep 993 3103 677 4037 
CS 670 2079 519 7316 
Disj 516 964 429 1936 
Pg 383 531 359 2022 
Read 819 2672 void void 
Gabriel 463 770 400 1532 
Plan 414 457 373 704 
Qsort 348 416 338 520 

Before: memory consumption just after compilation 
After: memory consumption after execution 
unit: KiloByte 
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Table 9.4: Memory consumption for the reexecution version with char implementa
tion 

modes types 
Program Before After Before After 
Append 333 354 330 341 
Kalah 589 716 478 3444 
Queens 354 380 341 420 
Press1 798 1723 578 5968 
Press2 814 1741 586 5168 
Peep 993 2395 677 3277 
CS 670 1240 519 4239 
Disj 516 663 429 1289 
Pg 383 458 358 1470 
Read 819 2215 592 void 
Gabriel 463 675 400 1177 
Plan 414 449 373 603 
Qsort 348 389 338 460 

Before: memory consumption just after compilation 
After: memory consumption after execution 
unit: KiloByte 

Table 9.5: Memory consumption for the reexecution version with bit implementation 
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Kalah Queens Press! Press2 
Il Mode "' "' • ◊ 
Il Type ◊ ◊ "' ◊ 

Disj Pg Read Gabriel Plan 
11 Mode "' • • ◊ "' Il Type <:;:> <:;:> - • ◊ 

"' : a lot of any, ngv, . . . are become ground. 
• : quality doesn't change a lot . 
◊ : quality is unchanged . 
<::> : ail was already ground in the original version 

Peep CS 

"' "' • <:;:> 

Qsort 

"' • 

Table 9.6: Quality with/without reexecution for mode and type domains 

Program Quality Comment Ratio Valuation 
Kalah ~ any s are GV in type 1.61 better -
Queens = ail is ground 1.29 better 
Press! ~ anys is NOVAR in type 1.65 better -
Press2 < a lot of GROUfeD 0.50 very bad 

are any m mo e 
Peep > 2 ground are NOVAR in type 0.86 
CS < 2 any are GROUND in type 0.22 very bad 
DS - all is ground 0.94 bad -
PG < 9 any are GROUND in type 0.55 very bad 
Gabriel ~ any s become NOVAR in type 0.95 bad -
Plan ~ 1 any is NGV in type 1.39 better -
Qsort > 1 ground is ANY in type 0.42 

Quality : comparison between mode domain's quality and type domain . 
Ratio . T0A 's time 

· MRA's time 

Table 9.7: Comparison between the quality of MRA and TDA 
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Chapter 10 

What could be done in the 
future? 

From the starting Pascal program, we did so far a series of optimizations 
that ended with different C programs, all of them faster and less memory 
consuming or more precise. All these results are interesting, but most of them 
can be improved again. Here are a few ideas that could be implemented in 
the future. 

10.1 Memory management 

First of ail, an improvement could be clone in memory management. The 
standard ANS! "al)oc" functjons are good in the way memory is allocated, 
but they are slow. The better memory management fonctions we used are 
faster, but they allocate too much memory and a big amount of it is kept 
unused. Indeed, a memory manager has a large amount of memory at its 
disposal. When a request for memory arrives from the program, the memory 
manager must allocate a part of its ressource that has the requested size. And 
it must also get that memory back when the program has no use of it any 
more. So, the memory manager must have efficient procedures to handle all 
the requests and there are choices to do. If we want the memory management 
to take care of the least byte, it must be complicated and so slow. But, if 
we want it to be fast, a simpler management may be clone (for instance, 
the memory manager may allocate an amount of memory bigger than the 
requested one that is a multiple of a ceratin basic amount) with memory left 
unused as a result. 

The problem with those two methods is that they are two general methods 
that may suit to any program. With a good study of the problem, it may be 
possible to create memory allocation procedures more suitable to our needs. 
For instance, the dependency graph is made of a lot of elements which all have 
the same structure, and so the same size; they are allocated and disposed of 
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a lot of times. It could be a good idea to handle a stack of free ceils. But 
the problem is much more important with the substitutions that are much 
bigger, and of changing size. 

The garbage collector can be improved too. This one allows us to gain 
a big amount of memory but this one is fragmented in the sense that it is 
composed of a lot of small parts. But the GC can not use the fact that two 
contiguous free parts is in fact another bigger free one. Sometimes ( especiaily 
in the type domain) abstract substitutions gain more and more precision and 
thus more and more memory. Although ail old substitutions are destroyed, 
a memory problem can occur. A way to solve it, is to copy ail used memory 
parts in another place in a contiguous way ( secondary memory can eventuaily 
be used if there is not enough memory to do that). 

A lot of times, malloc () is used to create local object inside fonctions. 
These ones are destroyed systematically when the execution of the fonction 
is over. In fact a stack 1 is a natural way to manage such objects. It could be 
a good idea to proceed such a way both to gain time, memory and to limit 
memory fragmentation. 

10.2 Concurrent programming 

In procedure SOLVE_GOAL, when a predicate is examined, all its clauses are 
examined, each at its turn, and the UNION of their results is computed. It 
might be a good idea to examine all the clauses in parallel on different proces
sors. But, this could raise new problems. For instance, suppose a predicate 
is called and it is suspended. Does it mean that predicate is a recursive 
one for which a new subcomputation must not be started? Or does it mean 
the predicate (recursive or not) is already under examination from another 
clause; in that case the new subcomputation must be undertaken if inputs 
are different? Another problem is the sharing of global objets like lattices, 
Hasse diagrammes, dependency graphs. 

These are a few ideas, but there may be a lot of others ... 
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Conclusion 

Abstract lnterpretation, as we had already said, is an important tool to 
analyse statically Prolog programs and to improve performances of compilers. 
A basic interpreter had been developped by Pascal Van Hentenryck. This 
one was written in Pascal, it took a lot of time ( a average time of 22sec 
on our panel of tests) and consumed a very big amount of memory ( several 
megabytes with a peak of 20 megabytes for some programs). This program 
used the type domain defined in [20]. 

Our work was primarily to rewrite this interpreter in C. This language 
has a lot of interesting particularities which allow to improve general per
formances. This phase allows us to reexamine some crucial points of the 
algorithm like lattices, abstract unification, transitive closure, ... So, we have 
obtained a basic version of the algorithm in C wich was already faster than 
the old one. This version was yet improved in two ways: 

• caching applies the memoization principle on all important abstract opera
tors. So, a lot of computations were avoided. 

• prefix uses some particularities of the course of the interpreter with the Prolog 
language to avoid superfluous calculations. 

Both techniques have similar performances ( the average computation time 
is now below 9 seconds) and the required memory space is now 1.5 megabyte 
for the prefix version. Although the caching version still takes 4 megabytes 
in the worst case, this one is very simple to use and is the most promising 
for bigger programs and future use. 

The original algorithm was also modified in order to improve the quality 
of the analysis. First, the widening was refined, next, a reexecution strategy 
was implemented. Both techniques allow a sensible gain of accuracy with 
reasonnable computation times. 

A simpler domain was also used. AU the results were discussed previously. 
On this domain, prefix optimization is still interesting although the caching 
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performances are irnpaired because of the simplicity of the abstract operations 
and the need of tirne required by caching to manage its internai structures. 
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Appendix A 

Results on the individual 
operations 

Original Prefix Caching 
Program calls calls OR-PR calls eval ratio 
Append 6 6 0.00 4 1 4.00 
Kalah 325 268 17.54 168 95 1.77 
Queens 35 31 11.43 21 8 2.62 
Press1 2716 2245 17.34 1384 676 2.05 
Press2 869 710 18.30 483 221 2.19 
Peep 457 399 12 .69 218 61 3.57 
CS 188 172 8.51 108 43 2.51 
Disj 191 141 26 .18 84 43 1.95 
PG 105 97 7.62 62 39 1.59 
Read 1983 1561 21.28 725 425 1.71 
Gabriel 257 219 14.79 149 75 1.99 
Plan 95 89 6.32 51 28 1.82 
QSort 67 56 16.42 36 21 1.71 

OR-eval 
83 .33 
70 .77 
77.14 
75 .11 
74.57 
86 .65 
77.13 
77.49 
62.86 
78 .57 
70 .82 
70 .53 
68.66 

Table A. l: N umber of Operations on COMPARE 
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Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 8 8 0.00 8 5 1.60 37.50 
Kalah 858 678 20.98 522 241 2.17 71.91 
Queens 68 52 23.53 52 26 2.00 61.76 
Press1 8549 6775 20.75 4767 2953 1.61 65 .46 
Press2 1953 1533 21.51 1134 601 1.89 69 .23 
Peep 1396 1284 8.02 693 418 1.66 70 .06 
CS 468 408 12.82 354 175 2.02 62.61 
Disj 472 308 34.75 246 76 3.16 83 .90 
PG 211 193 8.53 169 95 1.78 54.98 
Read 9975 8429 15.50 4783 3510 1.36 64.81 
Gabriel 523 414 20.84 371 200 1.85 61.76 
Plan 249 227 8.84 171 92 1.86 63 .05 
QSort 110 81 26.36 59 36 1.64 67.27 

Table A.2: Number of Operations on SMALLER 

Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 1 1 0.00 1 1 1.00 0.00 
Kalah 170 118 30.59 170 71 2.39 58.24 
Queens 11 7 36 .36 11 7 1.57 36.36 
Press1 1065 711 33 .24 1065 348 3.06 67.32 
Press2 353 232 34.28 353 129 2.74 63 .46 
Peep 227 193 14.98 227 57 3.98 74.89 
CS 77 61 20 .78 77 45 1.71 41.56 
Disj 105 55 47.62 105 34 3.09 67 .62 
PG 35 29 17.14 35 22 1.59 37.14 
Read 1199 840 29.94 1199 191 6.28 84.07 
Gabriel 101 66 34.65 101 49 2.06 51.49 
Plan 49 43 12.24 49 26 1.88 46.94 
QSort 23 14 39.13 23 7 3.39 69.57 

Table A.3: Number of Operations on EXTEND 
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Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 0 0 0 
Kalah 81 47 41.98 81 41 1.98 49 .38 
Queens 12 6 50.00 12 6 2.00 50.00 
Press1 265 149 43.77 265 99 2.68 62 .64 
Press2 85 47 44.71 85 34 2.50 60 .00 
Peep 39 21 46.15 39 16 2.44 58.97 
CS 35 15 57.14 35 13 2.69 62.86 
Disj 6 4 33.33 6 3 2.00 50.00 
PG 7 3 57.14 7 1 7.00 85.14 
Read 383 262 31.59 383 241 1.59 37.08 
Gabriel 0 0 0 
Plan 15 9 40.00 15 6 2.50 60.00 
QSort 6 2 66.67 6 2 3.00 66.67 

Table A.4: Number of Operations on ALTEST 

Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 0 0 0 
Kalah 63 42 33.33 63 33 1.91 47.62 
Queens 4 2 50.00 4 2 2.00 50.00 
Press1 220 134 39.09 220 102 2.16 53.64 
Press2 79 43 45.57 79 35 2.26 55.70 
Peep 0 0 0 
CS 33 17 48.48 33 16 2.06 51.52 
Disj 16 6 62.50 16 5 3.20 68.75 
PG 20 12 40.00 20 9 2.22 55 .00 
Read 22 16 27.27 22 12 1.83 45.45 
Gabriel 56 31 44.64 56 26 2.15 53.57 
Plan 0 0 0 
QSort 0 0 0 

Table A.5: Number of Operations on ALIS 
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Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 3 1 66.67 3 1 3.00 66 .67 
Kalah 22 15 31.82 22 14 1.57 36 .36 
Queens 0 0 0 
Press1 210 121 42.38 210 102 2.06 51.43 
Press2 71 39 45.07 71 37 1.92 47.89 
Peep 203 175 13.79 203 167 1.22 17.73 
CS 12 6 50.00 12 6 2.00 50.00 
Disj 16 8 50 .00 16 8 2.00 50.00 
PG 13 7 46.15 13 6 2.17 53 .85 
Read 264 195 26.14 264 191 1.38 27.65 
Gabriel 55 32 41.82 55 24 2.29 56.36 
Plan 4 2 50.00 4 2 2.00 50.00 
QSort 23 14 39.13 23 8 2.88 65 .22 

Table A.6: Number of Operations on ALVAR 

Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 9 3 66 .67 9 3 3.00 66.67 
Kalah 605 376 37.85 605 335 1.81 44.63 
Queens 60 26 56.67 60 25 2.40 58.33 
Press1 4726 3042 35.63 4726 2534 1.87 46 .38 
Press2 1748 1154 33.98 1748 1016 1.72 41.88 
Peep 1531 1092 28.67 1531 1082 1.41 29 .33 
CS 528 252 52.27 528 248 2.13 53.03 
Disj 494 202 59.11 494 202 2.45 59.11 
PG 186 106 43 .01 186 93 2.00 50.00 
Read 3463 2503 27 .72 3463 2361 1.47 31.82 
Gabriel 411 235 42.82 411 222 1.85 45 .99 
Plan 98 68 30.61 98 66 1.48 32 .65 
QSort 57 27 52.63 57 21 2.71 63 .13 

Table A.7: Number of Operations on ALFUNC 
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Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 3 3 0.00 3 3 1.00 0.00 
Kalah 226 174 23 .01 226 151 1.50 33.19 
Queens 22 18 18.18 22 17 1.29 22 .73 
Press1 1669 1297 22.29 1669 1037 1.61 37.87 
Press2 577 449 22.18 577 389 1.48 32.58 
Peep 367 315 14.17 367 291 1.26 20.71 
CS 130 114 12.31 130 106 1.23 18.46 
Disj 149 99 33 .59 149 98 1.52 34.23 
PG 62 56 9.68 62 47 1.32 24 .19 
Read 1495 1122 24.95 1495 990 1.51 33.78 
Gabriel 173 138 20 .23 173 120 1.44 30.64 
Plan 67 61 8.96 67 56 1.20 16.42 
QSort 42 33 21.43 42 29 1.45 30.95 

Table A.8: Number of Operations on EXTG 

Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 3 1 66 .67 3 1 3.00 66 .67 
Kalah 226 128 43.36 226 115 1.97 49 .12 
Queens 22 10 54 .55 22 9 2.44 59.09 
Press1 1669 962 42 .36 1669 716 2.33 57 .10 
Press2 577 322 44.19 577 263 2.19 52 .69 
Peep 367 222 39.51 367 212 1.73 42 .23 
CS 130 76 41 .54 130 69 1.88 46 .92 
Disj 149 69 53 .69 149 68 2.19 54.36 
PG 62 38 38.71 62 29 2.14 53 .23 
Read 1495 945 36.79 1495 820 1.82 45.15 
Gabriel 173 98 43 .35 173 80 2.16 53 .76 
Plan 67 49 26 .87 67 44 1.45 34.33 
QSort 42 22 47 .62 42 16 2.63 61.90 

Table A.9: Number of Operations on RESTRG 
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Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 6 2 66 .67 6 2 3.00 66 .67 
Kalah 229 136 40.61 229 136 1.68 40.61 
Queens 29 13 55.17 29 13 2.23 55.17 
Press1 1835 1177 35.86 1835 1177 1.56 35.86 
Press2 701 458 34.66 701 458 1.53 34.66 
Peep 530 380 28 .30 530 380 1.39 28.30 
es 153 81 47.06 153 81 1.89 47.06 
Disj 124 64 48 .39 124 64 1.94 48.39 
PG 80 44 45 .00 80 44 1.82 45.00 
Read 1181 850 28.03 1181 850 1.39 28.03 
Gabriel 190 113 40.53 190 113 1.68 40.53 
Plan 78 56 28.21 78 56 1.39 28.21 
QSort 34 14 58.82 34 14 2.43 58.82 

Table A.10: Number of Operations on EXTC 

Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 6 4 33.33 6 4 1.50 33.33 
Kalah 229 182 20.52 229 156 1.47 31 .88 
Queens 29 21 27 .59 29 19 1.53 34.48 
Press1 1835 1512 17.60 1835 761 2.41 58 .53 
Press2 701 585 16.55 701 388 1.81 44.65 
Peep 530 473 24.39 530 411 1.29 22.45 
CS 153 119 22 .22 153 99 1.55 35.29 
Disj 124 94 24 .19 124 91 1.36 26 .61 
PG 80 62 22.50 80 47 1.70 41.25 
Read 1181 1027 13.04 1181 559 2.11 52.67 
Gabriel 190 153 19.47 190 106 1.79 44.21 
Plan 78 68 12.82 78 46 1.70 41.03 
QSort 34 25 26.47 34 17 2.00 50.00 

Table A.11: Number of Operations on RESTRC 
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Original Prefix Caching 
Program calls calls OR-PR calls eval ratio OR-eval 
Append 11 9 18.18 11 6 1.83 45.45 
Kalah 485 455 6.19 485 259 1.87 46.60 
Queens 58 50 13.79 58 29 2.00 50.00 
Press1 3266 3045 6.77 3266 2000 1.63 38.76 
Press2 1209 1140 5.71 1209 674 1.79 44.25 
Peep 711 676 4.92 711 522 1.36 26.58 
CS 324 290 10.49 324 157 2.06 51.54 
Disj 257 227 11.67 257 93 2.76 63.81 
PG 166 148 10.84 166 80 2.08 51.81 
Read 1993 1899 4.72 1993 1240 1.61 37.78 
Gabriel 360 322 10.56 360 176 2.05 51.11 
Plan 160 150 6.25 160 75 2.13 53.13 
QSort 68 57 16.18 68 38 1.79 44.12 

Table A.12: Number of Operations on UNION 


