
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Abstract Interpretation of Prolog programs

Optimizations of an implementation

Englebert, Vincent; Roland, Didier

Award date:
1992

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/01e0a6bc-e7cf-4588-bae7-9786f959b0ee

Facultés Universitaires Notre-Dame de la P aix, Namur

Institut d'Informatique

Année académique 1991-1992

Abstract Interpretation
of Prolog programs:

Optimizations of
an implementation

Vincent ENGLEBERT
Didier ROLAND

Mémoi re présenté en vue de l'obtention du grade

de Licencié et Maître en Informatique

Abstract Interpretation of Prolog programs

Vincent ENGLEBERT- Didier ROLAND

Résumé du mémoire

L'interprétation abstraite de programmes Prolog est une technique d'analyse sta
tique de ces programmes réalisée dans le but de pouvoir améliorer les compila
teurs Prolog. Mais cette analyse est lourde, elle demande beaucoup de temps et
de mémoire. Partant d'un premier programme d'interprétation abstraite requérant
au moins une station de travail, nous avons implémenté plusieurs optimisations
dont deux retiennent particulièrement notre attention. La première est basée sur
une étude plus approfondie du déroulement de l'algorithme. La seconde est plus
générale et vise à cacher les opérations répétitives les plus longues. Ces optimisa
tions permettent d'avoir un gain de temps et de mémoire considérable, au point
de pouvoir exécuter le programme sur un ordinateur personnel. Enfin, deux autres
techniques, l'une basée sur la détection de structures strictement croissantes, l'autre
sur la réexécution de certains buts, permettent également d'obtenir des résultats
plus précis. Ce mémoire développe toutes ces optimisations et discute les résultats
obtenus sur deux domains différents, avec toute une batterie de programmes tests .

Abstract

Abstract interpretation of Prolog programs is a technique for static analysis of these
programs that is achieved in order to improve Prolog compilers. But this technique
is arduous, it consumes a lot of time and a lot of memory. On the basis of an
original abstract interpretation program that requires at least a workstation, we have
implemented several optimizations among which two especially retain our attention.
The first one is based on a thorough examination of the execution of the algorithm.
The second one is more general, it aims at caching the longest repetitive operations.
These optimizations allow a considerable gain of execution time and of rnemory
space and make possible to run the program on a persona! computer. Finally, two
other techniques, one based on the detection of strict ly increasing structures, the
other based on the reexecution of some goals, also allow to obtain more accurate
results. This report develop all these optimizations and discuss the results on two
different domains, with a series of test programs.

1

Contents

1 Abstract interpretation
1.1 Introduction . .
1.2 Fixpoint theory
1.3 Prolog
1.4 Abstract Interpretation of Prolog
1.5 Fixpoint Based Abstract Interpretation

2 Overview of the different algorithms
2 .1 Domains
2.2 Algorithms
2.3 Motivations for Abstract Interpretation .

3 Domains
3 .1 The Type domain

3.1.1 Unformal Presentation
3.1.2 Formal Presentation
3.1.3 Implementation .. .

3.2 The mode domain
3.2.1 Formal Presentation
3.2.2 Implementation

4 The original program
4.1 Goal Dependencies
4.2 The generic abstract algorithm
4.3 Foundations

4.3.1 Definition
4.3.2 The algorithm for the calculation of the foundations .

4.4 The original program
4.4.1 Abstract substitutions
4.4.2 Transitive closure of Possible Sharing
4.4.3 Sats
4.4.4 The dependency graph
4.4.5 The implementation .

2
2
3
5
6
9

11
11
11
12

15
15
15
16
20
22
23
25

32
32
33
35
36
36
37
37
37
39
39
40

CONTENTS

4.4.6 Abstract Unification
4.5 Hasse diagrams

4.5.l De-finition
4.5.2 The original search method
4.5.3 The new search method ..
4.5.4 Comparison between both search methods
4.5 .5 Implementation of Hasse diagrams

5 Clause prefix
5.1 Theoretical background .

5.1.l Motivation ..
5 .1.2 Formalization

5.2 Implementation . . .
5.2.1 Clauses
5.2.2 Clause prefixes

5.3 The result: Append ..

6 Caching
6.1 Introduction .
6.2 The Implementation

6.2.1 Memoization
6.2.2 Abstract Substitutions
6.2.3 Memory Cleaning .. .

6.3 Performances
6.3.l The Memory Manager For The Substitutions .
6.3.2 The Memoization Process

7 Experimental Evaluation
7.1 The Programs
7 .2 Computation Times . . .
7.3 Number of Abstract Operations
7.4 Time Distribution
7 .5 Memory Consumption
7 .6 Results on a Simpler Domain

8 Widening
8.1 The Suspended stack
8.2 The original widening .
8.3 The new widening . ..
8.4 Comparison between both tests

Il

41
42
43
44
44
47
50

52
52
52
52
56
56
59
61

63
63
63
63
66
67
69
69
69

71
71
72
75
76
79
80

84
85
85
86
87

CONTENTS

9 Reexecution
9.1 The transformation
9.2 lmplementation for the mode domain

9.2.1 Algorithm
9.2.2 Application

9 .3 lmplementation for the type domain .
9 .3 .1 Algori thm
9.3.2 Application
9.3 .3 Another Strategy .

9.4 Experimental Evaluations
9.4.1 Time Distribution .
9.4.2 Memory Consumption
9.4.3 Results Quality

10 What could be clone in the future?
10.1 Memory management ...
10.2 Concurrent programming .

11 Conclusion

A Results on the individual operations

l1l

89
89
90
90
93
93
93
94
94
96
97
99
99

103
. 103
. 104

105

109

List of Figures

1.1 Prolog code for APPEND 6
1.2 Normalized version of APPEND 6
1.3 Abstract transformation 10

3.1 Modes for the type domain 26
3.2 Data types of abstract substitutions for type domain in Pascal 27
3.3 Data types of abstract substitutions for type domain in C . . . 28
3.4 Abstract substitutions for the type domain 29
3.5 Data types of abstract substitutions for mode domain in Pascal. 30
3.6 Data types of abstract substitutions for mode domain in C 30
3.7 Abstract substitutions for the mode domain . . 31

4.1 The Generic Abstract Interpretation Algorithm
4.2 The calculation of the foundation
4.3 An example of Hasse diagram
4.4 SEARCH procedure
4.5 Original algorithm of SEARCH.
4.6 New algorithm of SEARCH ...
4.7 Two opposite pathological Hasse diagrams
4.8 Declarations for Hasse diagrams . ..

5.1 The Original Algorithm on append/3
5.2 The Algorithm with the Clause Prefix lmprovement
5.3 Declarations for Hasse diagrams
5.4 The Clause Prefix Algorithm on append/3

6.1 The Caching Algorithm on append/3
6.2 Memoization Procedure

·8.1 QSORT

9.1 A. mode ForwardPropagate's Algorithm.
9.2 B. mode ForwardPropagate's Algorithm .
9.3 C. mode ForwardPropagate's Algorithm.
9.4 A vicious circle
9.5 A. type ForwardPropagate's Algorithm

IV

34
38
43
45
46
48
49
51

53
57
60
62

64
70

88

91
92
93
94
95

LIST OF FIGURES V

9.6 B. type ForwardPropagate's Algorithm 96

List of Tables

7.1 Computation Times of the Algorithms and Percentages: Character
Version . 73

7 .2 Computation Times of the Algorithms and Percentages: Bit Version . 73
7.3 Percentage Gained By Using Characters on the Algorithms 74
7.4 Number of Abstract Operations on ail Programs for ail Algorithms 75
7 .5 Distribution of Computation Times for Caching . 77
7 .6 Distribution of Computation Time for Original 77
7.7 Distribution of Computation Time for Prefix 78
7.8 Percentage of Time Distribution Among the Abstract Operations in

Caching . 78
7.9 Percentage of Time Distribution Among the Abstract Operations in

Original . 79
7.10 Memory Consumption: Results with the Bit Representation of Sharing 80
7 .11 Memory Consumption: Results with the Character Representation of

Sharing . 81
7.12 Memory Consumption: Saving obtained by the Bit Representation . . 81
7.13 Computation Times and Percentages on the Small Domain: Bit Version 82
7.14 Computation Times and Percentages on the Small Domain: Charac-

ter Version . 83

9.1 Ratios between reexecution algorithm computation times for mode
and type domains . 97

9.2 Computation time for abstract interpreter with reexecution on the
mode domain and chars . 98

9.3 Computation time for abstract interpreter with reexecution on the
type domain and chars . 98

9.4 Memory consumption for the reexecution version with char imple-
mentation 101

9.5 Memory consumption for the reexecution version with bit implemen-
tation . 101

9.6 Quality with/without reexecution for mode and type domains 102
9.7 Comparison between the quality of MRA and TOA 102

A.1 Number of Operations on COMPARE 109

VI

LIST OF TABLES

A.2 Number of Operations on SMALLER
A.3 Number of Operations on EXTEND .
A.4 Number of Operations on ALTEST.
A.5 Number of Operations on ALIS ..
A.6 Number of Operations on ALVAR .
A.7 Number of Operations on AI...FUNC.
A.8 Number of Operations on EXTG .
A.9 Number of Operations on RESTRG
A.10 Number of Operations on EXTC .
A.11 Number of Operations on RESTRC
A.12 Number of Operations on UNION .

vn

. 110

. 110

. 111

. 111

. 112

. 112

. 113

. 113

. 114

. 114

. 115

Preface

Abstract interpretation is a prorrusmg technique for static analysis of computer
programs, and especially in logic programming. More and more people are studying
this technique and a few implementations are appearing. The team of researchers
of B. Le Charlier is working on it for a few years. A lot of work have already been
clone. Sorne implementations have already been realized. One of them have retain
our attention. It works weil, its results are incouraging, but it needs fast machines
with a big amount of rnernory. Our purpose, in this report, is to optimize that
version, to rnake it able to be run faster on srnailer cornputers.

Firstly, we present the theorical background underlying abstract interpretation.
A few words of introduction are based on [l]. Then an introduction to the fixpoint
theory is based on (18]. And finally, the introduction to normalized Prolog programs,
abstract interpretation and to the fixpoint based abstract interpretation of Prolog
programs has been written on the basis of [13].

In chapter 3, we present two dornains of values for objects handled by the abstract
interpretation algorithm. These dornains are extracted of [20].

Then cornes a description of the original program. Ail the de-finitions of fonctions
and ail the algorithms are those presented in [20, 13]. The original irnplernentation
is presented in [15]. The first part of the optimization was a translation of that
Pascal original version in C language. With that translation, a few optirnizations
have already been clone by both V. Englebert and D. Roland. Between ail these op
timizations, one is described more in detail by D. Roland because of the importance
of the data structure involved.

Then we get to the heart of the rnatter. The first genuine optimization, with
clause prefixes, has been realized by D. Roland. And, the second one, caching of
the rnost tirne consumming operations , has been achieved by V. Englebert. The
cornparison of ail the results obtained by these optimizations has been written by
both of thern in comrnon with P. Van Hentenryck. Two other techniques for an
increased accuracy of the results have been irnplernented too. Detection of increasing
structures has been clone by D. Roland and the reexecution of sorne sub-goals is the
work of V. Englebert.

The following articles are the main ones we used as the basis of the work:

• The PhD thesis of K. Musurnbu ([20]) is the theoretical basis for rnost of
other papers. It contains a detailed description of all the abstract fonctions

Vlll

IX

used for abstract interpretation of Prolog programs , a detailed description of
abstract domains and a detailed description of the basic algorithms for abstract
interpretation of Prolog programs, as well as ail the proofs of consistency of
the domains and the fonctions and correctness of the algorithms.

• "Efficient and Accurate Algorithms for the Abstract Interpretation of Prolog
Programs" ([13]), written by B. Le Charlier, K. Musumbu and P. Van Henten
ryck, contains, firstly, a very good and complete summary of the PhD thesis
of K. Musumbu and, secondly, new optimized algorithms with all their com
plexity analysis.

• "Experimental Evaluation of a Generic Abstract Interpretation Algorithm for
Prolog" ([15]), written by B. Le Charlier and P. Van Hentenryck contains a
complete description of the original program and a lot of results about its
efficiency and its accurateness.

People interested by the programs can contact Pascal Van Hentenryck by E-mail at
pvh~cs.brown.edu

Acknowledgments

First of ail, we would like to thank Pascal Van Hentenryck who invited us in Brown
University and who encouraged us in the work and Baudouin Le Charlier who
teached us a large amounts of things during five years and who made us share
the pleasure of programming with elegance. Our stay in Providence has been full
filled with a lot of good moments we had with Pascal Van Hentenryck and his wife,
with Susan Griswold Treter and Esther Rogers. We would like to thank all these
people too. And, last but not least, our parents and ail other people who supported
us during ail that time.

X

Chapter 1

Abstract interpretation

This chapter is a surnmary of the theoretical background about fixpoint theory and
abstract interpretation. Ali the ideas and definitions are extracted of [18, 13, 20].

1.1 Introduction

In the recent years, programmers have developped a number of techniques to analyse
their algorithms in order to improve them without changing the semantics. Among
these methods, one will require our attention in this paper: Abstract interpretation.
It is a static method which studies a program to infer some interesting properties
from its source without executing it.

The way of doing this consists of assigning to variables and arguments properties
on their possible values and, from them, to deduce properties on the result that
would be obtained with an execution. If we define a concrete domain as the set of
all values an abject can take in a given language, we can define an abstract domain
as a subset of the set of parts of the concrete domain. This subset is the reflect of
the properties we are interested in. For instance, all programming languages have an
integer type. The concrete domain corresponding to that type is a range of integers.
An abstract domain could be the following: {0, +, -, 0, any} where + stands for ail
strictly positive integers, 0 for the integer 0, - for all strictly negative integers, any
for any integer and 0 for no value at all .

In order to deduce properties on the result of a program, we need to redefine the
operations of the language for these abstract domains. For instance, let 's assume
that our language is able to perform simple arithmetics on integers. Wich one can
be redefined this way:

2

CHAPTER 1. ABSTRACT INTERPRETATION 3

+ 0 0 + - any
0 0 0 0 0 0
0 0 0 + - any

+ 0 + + any any
- 0 - any - any

any 0 any any any any

/ 0 0 + - any
0 0 0 0 0 0
0 0 0 0 0 any

+ 0 0 + - any
- 0 0 - + any

any 0 any any any any

Thus if we have defined an abstract domain and redefined ail the operations on
this one, then it seems sufficient to reexecute the program in this new context to
obtain the expected results. Unfortunaly no theoric frame allows to prove that the
program is correct or even that it ends.

The fixpoint theory gives a frame to the abstract interpretation and a tool as
well to compute the result. The fixpoint was first used to exprime recursive fonction
in lambda calculus but can also be useful in a lot of others domains like abstact
interpretation.

1.2 Fixpoint theory

The semantic of a Prolog program P can be defined as the least fixed point of a
transformation associated to P. First of ail let us define the fixpoint theory principles.

Let E be a set endowed with a partial order relation ::;.

a. a chain in (E, :s;) is an increasing sequence (xi)~0 verifying Xi :s; Xi+I Vi ~ O.

b. (E, :s;) is a cpo (complete partial order) if there exists a least element noted J_

and if all chains have a least upper bound noted LJ~=O Xn-

c. Let J : (E, ::;) ---+ (F, :s;) a fonction. J is monotonie iff

Vx,y E E x :s; y==> J(x) :s; J(y)

d. Let J: (E, :s;) ---+ (F, :s;) a fonction. fis continuous iff

• f is monotonie

• for every chain (ei)o, we have

00

f(LJ~ 0ei) = LJ J(ei)
i=O

CHAPTER 1. ABSTRACT INTERPRETATION

or, equivalently:

• for ail chain (ei)o, we have

00 00

LJJ(ei) exists ==> f(LJ~0 ei) = LJ f(ei)
i=O i=O

e. Let f : E --t E be a fonction. f has a fixed point iff :ly : y = f (y)

We can now present the Fixpoint Theorem:

Let (X,~) be a cpo. If the fonction f : X --t X is continuous then f
has a least fixpoint noted µ(!).

Note: µ(!) may be computed as LJ~0 fn(j_)

4

However the continuity property is required to insure the existence of the fixpoint,
this condition is not very hard. In english, the continuity expresses that a fonction
(in computer science context) defined on a functional domain invokes its argument
a finite number of times each time it has to compute a result.

f: (z+ --t z+) --t Xis continuous

iff

Yg E (z+ --t z+):JD f inite : f(g) = f(gn)

where 9D is the fonction g restricted to the subdomain D.
How can the fixpoint theory be useful? Let .C be a language and P E .C a

program. Although Pis a syntaxic object, its execution can generate an information.

For example: the information/ semantic associated to a fonctional pro
gram is a table of pairs (argument,result).

Let .C be the set of ail the informations produced by any program of .C and P the
semantic of the program P.

For example: the set of tables with ail possible values for the pairs
(argument,result).

Now let us suppose that it exists a transformation associated to the program P: Tp
defined as:

Tp: J:, --t J:,

which has the foilowing property:

Tp(P) = Pwhere Pis the least fixpoint

CHAPTER 1. ABSTRACT INTERPRETATION 5

then if C is a cpo and if Tp is continuous then P can be systematically computed as
00

The following sections will show how to build a such transformation automaticaly
from Prolog programs and how to build its abstract counterpart. Unfortunately, it
is impossible to compute systematically the exact least fixpoint for every program
as it is proved in program theory1 We may however approximate the least fixpoint.

1.3 Prolog

The fixpoint theory summarized in the previous section can be applied to logic pro
gramming and Prolog. The algorithm described later handles Prolog programs or,
more precisely, normalized Prolog programs. It is not a diffi.cult matter to translate
any Prolog program into its normalized version. The advantage of the normalized
form cornes from the fact that a substitution for a goal p/n is always expressed in
terms of variables X1 , . .. , Xn. This greatly simplifies all the traditionnal problems
encountered with renaming.

N ormalized Pro log programs are built from an ordered set of pro gram variables

{ X 1, X 2, ... , Xi, ... }

and is composed of clauses of the form

H: -B1 , ••• ,Bp

where H is the head and B1 , ... , Bp is the body. If a clause contains m variables,
these are necessarily X 1 , . .. ,Xm. Moreover, the head of the clause is an atom
p(X1 , ••• , Xn) where p is a predicate symbol of arity n, noted p/n. The subgoals in
the body of the clause are of the form:

• q(Xi1 , ••• , Xim) where i1 , ... , im are distinct indices

• Xi 1 = Xi 2 with i1 -=/: i2

• Xi 1 = f(Xi 2 , ••• , Xim) where fis a fonction of arity m - 1 and i1 , .. . , im are
distinct indices

The first form is called a procedure call. The second and third forms, called built
ins, enable to achieve unification. Additional built-in predicates (e.g. arithmetic
primitives) can be accommodated in the framework but are not discussed here for
simplicity.

Figure 1.1 and figure 1.2 respectively describe, as an example, a Prolog program
and its normalized translation. This program, APPEND/3, will be used throughout
this paper.

1 If the exact semantic can be computed then it is possible to determine if a program ends or
not, among other things. But this property is undecidable!

~ll~,~UJv
J_! ~v--1 tJv

CHAPTER 1. ABST CT INTERPRETATION

a pp end ([] , L , L) .
append ([HIT1] , L, [HIT2]) : -append (Tl, L, T2) .

append(X1 ,X2 ,X3) · -
X1 = [],

X3 = X2,
append (X1, X2, X3) · -

X1 = [X4 1 XsJ ,

Figure 1.1: Prolog code for APPEND

X3 = [X4 1 X6] ,
append(Xs,X2,X6).

Figure 1.2: Normalized version of APPEND

1.4 Abstract Interpretation of Prolog

6

It is now time to define abstract interpretation more precisely, with regard to Prolog.
First, it is necessary to define the concrete and asbtract domains and their respective
operations. Next, we will present the transformation we already spoke about.

Definition 1 Let PV be an infinite set of program variables. Let D be a subset
of PV. Then CSD = {0: V0 E 0,dom(0) = D and 0 is complete} is a cpo with
respect to set inclusion (CSD , Ç), where 0 is complete means V0 E 0 , 0 and 0' are
equivalent (:3a, a' such that 0 = 0' a and a' = 0a) implies that 0' E 0. 0 E CS D are
sets of Prolog program variables substitutions.

Definition 2 {ASD: D C PV /\ (ASD, ~) is a cpo} is the abstract domain. /3 E
ASD are abstract substitutions.

Definition 3 Let P be a normalized Prolog pro gram. Let 's denote sat a set of
abstract tuples, i.e. a set of tuples of the form (/3in, p, f3out) where /3in, f3out E AS D,

D being the set of pro gram variables appearing in the predicate p. S AT will be the
set of ail functionnal sat , i.e. all sats for which

V(/3,p), :3 at rnost one /3', noted sat(/3 ,p) , such that (/3 , p,{3') E sat

A correspondance between the abstract dornain and the concrete dornain can
now be established through a concretization fonction.

Definition 4 A concretization funct ion for an abstract dornain AS D is a monotonie
and continuous fonction Cc: ASD-----+ CSD where

CHAPTER 1. ABSTRACT INTERPRETATION 7

• monotonie means: V/31,/32,/31 Ç /32 , Vp for which sat(/31,p) and sat(/32 ,p) are
defined, sat(/31, p) Ç sat(/32, p)

• satis total iff sat(/3,p) is defined for ail (/3,p), p E P and /3 E ASv, D being
the set of program variables of p

• continuous means: if sat is total, monotonie and if any chain /31 , /32 , ... , f3n
satisfies:

00 00

sat(LJ {/3i}, p) = LJ { sat(f3i, p)}
i=l i=l

And lastly, abstract operations can be defined:

Definition 5 An abstract operation is a fonction ao: ASv1 x ... x ASvn ----+ ASv
consistent with respect to a concrete operation o : CS Di x ... x CS Dn ----+ CS D if
and only if

VB1 E AS ni, ... , f3n E ASvn : o(Cc(/31), ... , Cc(f3n)) Ç Cc(ao(/31, ... , f3n)).

An abstract semantics of the language can now be established by assigning to
each fonction an abstract counterpart.

ln Prolog, elements of C Sv are called concrete substitutions and elements of
ASv abstract substitutions. Figure 1.3 shows the abstract transformation. This
transformation uses a number of abstract operations:

• UNION {/31, ... , f3n} where /31 , ••. , f3n are abstract substitutions from the same
cpo: this operation returns an abstract substitution representing ail the sub
stitutions satisfying at least one f3i- It is used to compute the output of a
procedure given the outputs for its clauses.

• ALVAR(/3) where /3 is an abstract substitution on {X1 , X2 }: this operation
returns the abstract substitution obtained from (3 by unifying variables X 1 , X 2 .

It is used for goals of the form Xi = Xi in normalized programs .

• ALFUNC(/3, f) where /3 is an abstract substitution on {X1 , ... , Xn} and fis a
fonction symbol of arity n - l: this operation returns the abstract substitution
obtained from (3 by unifying X1 and f(X2 , ••• , Xn)- It is used for goals Xi1

f(Xi 2 , ••• , Xin) in normalized programs.

• EXTC (c, (3) where /3 is an abstract substitution on {X1 , ... , Xn} and c is a
clause containing variables {X1 , ... ,Xm} (m 2: n): this operation returns
the abstract substitution obtained by extending /3 to accommodate the new
free variables of the clause. It is used at the entry of a clause to include the
variables in the body not present in the head. ln logical terms, this operation,
together with the next operation, achieves the role of the existential quantifier.

CHAPTER 1. ABSTRACT INTERPRETATION 8

• RESTRC (c, ,B) where ,B is an abstract substitution on the clause variables { X 1 ,

... ,Xm} and {X1 , ... ,Xn} are the head variables of clause c (n ~ m): this op
eration returns the abstract substitution obtained by projecting ,B on variables
{Xi, ... , Xn}. It is used at the exit of a clause to restrict the substitution to
the head variables only.

• RESTRG(g, ,B) where ,Bis an abstract substitution on D = {Xi, ... , Xn}, and
gis a goal p(Xi1 , ••• ,Xim) (or Xi 1 = Xi2 or Xi 1 = f(Xi 2 , ••• ,Xim)): this
operation returns the abstract substitution obtained by

1. pro jecting ,B on { Xi1 , ••• , Xim} o btaining ,B';

2. expressing .B' in terms of {Xi, ... , Xm} by mapping xik to xk.

It is used before the execution of a goal in the body of a clause. The resulting
substitution is expressed in terms of {Xi, ... , Xm}, i.e. in the same way as
the input and output substitutions of p in the abstract domain.

• EXTG(g,,B,,B') where ,Bis an abstract substitution on D = {X1 , ... ,Xn},
the variables of the clause where g appears, g is a goal p(Xi1 , ••• , Xim) (or
Xi 1 = Xi2 or Xi 1 = f(Xi 2 , ••• ,Xim)) with {Xi1 , ••• ,Xim} Ç D and ,B' is an
abstract substitution on { X1 , ... , Xm} representing the result of p(X1 , ••• , Xn)
,B" where .B"=RESTRG(g,,B): this operation returns the abstract substitution
obtained by extending ,B to take into account the result ,B' of the goal g. It is
used after the execution of a goal to propagate the results of the goal on the
substitution for ail variables of the clause.

• EXTEND (,B, p, sat), given an abstract substitution /3, a predicate symbol p, and
a set of abstract tuples sat which does not con tain (/3, p) in its do main, returns
a set of abstract tuples sat' containing (/3,p) in its domain. Moreover the value
sat'(/3,p) is defined as the lub (i.e. the least upper bound) of all sat(/3',p) such
that ,B' ~ /3.

• ADJUST(,B,p, /3', sat), where /3' represents a new result computed for the pair
(/3,p), returns a sat' which is sat updated with this new result. More precisely,
the value of sat'(/3", p) for ail /3" ~ f3 is equal to lub{/3', sat(/3", p)} and all other
values are left unchanged. In the algorithm, we use a slightly more general
version of ADJUST which, in addition to the new set of abstract tuples, returns
the set of pairs (/3, p) the values of which have been updated.

All these definitions are extracted from [13]. They are the minimum required
to understand the following. For more complete and more general definitions, the
reader can refer to that article.

Note: We have spoken about "substitutions" and "abstract substitutions" as
two different things, the second ones being the abstraction of the first ones. ln the
following of this report, when no confusion is possible, the term "substitution"

CHAPTER 1. ABSTRACT INTERPRETATION 9

will sometimes be used in place of "abstract substitution" for the simplicity of
writing when used often. Anyway, when greek letters are used, () will always denote
substitutions, while a or (3 will always denote abstract substitutions.

1.5 Fixpoint Based Abstract Interpretation

A number of elements sat E SAT are monotonie, continuous and total. Let SCAT
be the set of those elements.

An abstract transformation TSAT : SCAT ---+ SCAT can then be defined
consistent with respect to the program P, using abstract fonctions defined on ASn
and SCAT (figure 1.3), assurning that,

• U D = {((3,p): /3 E ASn, D being the set of arguments of p E P},

• j_ = {((3,p,0): (/3,p) E UD}

Proposition 6 (SCAT, Ç) is a cpo.
Proof Let (sati)~0 be a chain in SCAT. Then

V(/3,p) E UD, sati(/3,p) Ç sati+i(/3,p)Vi 2: 0

Let us fix (3 and p and let us de-fine

fi= sati(/3,p) \fi 2: 0

(fi)~ 0 is a chain in SAn and since SAn is a cpo, LJ~ 0 fi exists and let us note
f = LJ~o fi• We build a new sat defined as

00

\/((3,p) E UD: sat(/3,p) = LJ sati(/3 ,p)

It is now clear that SC AT is a cpo.
D

i =O

The abstract interpretation of the program P is the search for the least fixpoint
of the associated abstract transformation T S AT: µ(T S AT), or, more precisely, of
a set of elements of µ(T SAT) that are relevant for the evaluation of a particular
query of P: (f3in,P)-

CHAPTER 1. ABSTRACT INTERPRETATION

TSAT(sat) = {((3,p,(3'): (/3,p) E AD and /3' = Tp(/3,p,sat)}

Tp(/3,p,sat) = UNION(/31, ... ,f3n)
where /3i = Tc(/3,ci,sat),

c1, ... , Cn are clauses of p.

Tc(/3,c,sat) = RESTRC(c,(3')
where (3' = n(EXTC(c,(3),b,sat),

b is the body of c.

n(/3, <>, sat) = (3
n(/3,g.gs,sat) = n(/33,gs,sat)
where /33 = EXTG(g, (3, /32),

/32 = sat(/31,P) if gis p(.. .)
AI _v AR(/31) if 9 is Xi = Xj
AI YU NC(/31, f) if gis Xi= f(.. .)

/31 = REST RG(g, (3)

Figure 1.3: Abstract transformation

10

Chapter 2

Overview of the different
algorithms

2.1 Domains

In the first chapter, we spoke about abstract interpretation. We said it is defined
on an abstract domain, elements of which are abstract substitutions, and we defined
abstract operations on this abstract domain. But, we did not define the domain
very precisely, that is, we did not say what the abstract substitutions look like. We
will define two different abstract domains in the next chapter. A first primitive one
will be defined in order just to study the modes of the terms of the substitutions
(for instance, assuming "X I t" is a binding of an abstract substitution, the mode of
the term t may be Ground, Var or Any). And a second, more complicated domain
will permit to describe the abstract substitutions more precisely. The terms of an
abstract substitution are described with their type (in fact a generalized form of the
mode with Ground, Var, NoVarNorGround, NoGround, NoVar , GroundOrVar
and Any) and their form (their functor, if we know it , their arity and all their
subterms).

With these domains, we will have everything we need to realize an abstract
interpretation algorithm.

2.2 Algorithms

A first abstract interpretation algorithm will be described. Implemented in Pascal,
translated in C with a few improvements, it will be the starting point of different
optimizations. The first one is an optimization based on the structure of a Prolog
program. Its goal is to avoid evaluation of clauses and of clause prefixes for which
we are sure the result is the same than the last time. The second one is more
independant of th~ The same idea could be used in a variety of programs.
It just consists in ~e most time consuming fonctions . When an operation

11

J

CHAPTER 2. OVERVIEW OF THE DIFFERENT ALGORITHMS 12

is performed, its result is stored. If the same operation must be clone a second time
or even more, its result is gotten back from the cache.

These two optimizations will be compared on the basis of their time consumption,
their memory consumption and the number of operations avoided.

The chapter "Widening" will then describe a source of lack of precision and a
way to avoid it. This lack of precision is due to a technique that permits to avoid
infinite loops. This technique can be refined to lose precision less often.

And finally, a last optimization for a better precision. It is based on the fact that
a clause is semantically equivalent if one of its subgoals is considered once or several
times but the abstract interpretation algorithm is more precise if some subgoals are
considered several times.

2.3 Motivations for Abstract Interpretation

To develop compilers for the Prolog language is a challenge if we expect performances
as good as for compilers designed for imperative languages. Abstract interpretation
can help these tools to generate a better code as it is shown in this section. Thus,
it is important that abstract compilers can run rapidly with a moderate memory
consumption.

The article [5] explains why the type and mode domains are useful to gain CPU
time when running Prolog program and to perform garbage collection. We present
here a brief overview of this article.

We suppose that the reader has a good knowledge of the Warren Abstract Ma
chine. A complete description of WAM can be found in [2].

The Mode Domain

The mode domain can be useful in two ways:

• To enhance clause indexing: the general strategy used by W AM based Prolog
compiler when they have to solve a goal is to try each clause associated to this
goal until unification is possible, then the goal is substituted by the body of
the clause inside the resolvent.

Here follows the sequence of WAM instructions normally produced
by a compiler: try Jne_else % try to unify the first clause else try
another
retry Jne_else

trusLme_else fail % try to unify this clause else the attempt fails

ln sorne cases, the compiler can generate code which reaches directly the good
clause without trying systematically these ones. It is the case for example in

CHAPTER 2. OVERVIEW OF THE DIFFERENT ALGORITHMS 13

the well-known program: append. For append it is suffi.cient that the gener
ated code tests a tag1to decide between both clauses, the only one which can
possibly be unified correctly. So a heavy unsuccessful unification attempt is
avoided.

append([],A,A).
append([A I As], B, [CI Cs]) :-append(As, B, Cs).

The list-tag's value([] or [1]) is sufficient to switch between both clauses when
the compiler knows that each call to append is made with (ground,ground,var).

• When unification is required, the compiler proceeds by a pattern matching
algorithm, it has to know if it proceeds in read-mode or write-mode context2 .If
the query term is known as being fully instantiated because abstract interpre
tation has computed its mode as grou en the write mode will never occur.
The compiler may then produce a e · aze code for operations get_structure
and unify _variable. ConcretelV'l,.1--;i.void one affectation in get_structure
and a swi tch redirection in unify _variable.

1 We use here the tag defined in the WAM {see [2, pp 39-44]). Briefly, a tag is an additional
information stocked with objects to indicate whether it is itself an object or a pointer to a more
complicated structure; if a list object is empty ([]) or a cons-list ([. 1 .]) ; ...

2While matching, the program has to check two expressions called query term and program
term. These terms (!(X, g(a, Y), ...) for example) have a flattened representation in memory.
These ones are composed of functors and of (un)instancied variables. The work begins in read
mode. A priori the query term can not get some additional information from the program term.
The problem is to determine if both expressions match or not . Sometimes at a certain point, the
procedure encounters a variable which can be specialized with a functor from the program term,
the procedure turns on write mode to build the new term.

Example: unification of

query term: f(X)

generates the code:

pro gram term: f(g(X))

geLstructure f /1 , X1 ? d d .1 . bl X rea mo e uni y_varia e 2

geLstructure g/1, X2 ' t d .1 . bl X wn e mo e uni y_varia e 3

with respect to the expression represented on the heap as:

1: STR 2

2: f/1

3: REF 3

CHAPTER 2. OVERVIEW OF THE DIFFERENT ALGORITHMS 14

The Type Domain

The type domain provides the same advantages as the mode domain. But in addition
an abstract substitution can indicate if a ground argument is composed or not and
what the main functor is. When two clauses are characterized by an argument for
which the type is di-fferent in the input substitution, it is su:fficient to test the tag
to switch between the two clauses.

Garbage Collection

An abstract interpretation using the type domain may help a compiler to do garbage
collection at the compile time by computing for each variable, the last point in a
clause which has updated it. So, when the compiler has to create a new variable,
it can use an old variable if this variable isn't updated by the next points in the
current clause.

Chapter 3

Domains

We present here both dornains used to evaluate the abstract interpreter. Each
section is composed of an unformal presentation followed by a formal presentation
(see (20]) and finally sorne details of the implementation.

3.1 The Type domain

This dornain was first defined in [20, pp II/65]1. We present here the essential
characteristics of this domain. Let us begin with an unformal presentation.

3.1.1 U nformal Presentation

We introduce here a brief overview of the abstract domain type. The abstract domain
contains patterns (i.e. for each subterm, the main functor and a reference to its
arguments is stored), sharing, same-value, and mode components.

The key concept in the representation of the substitutions in this dornain is
the notion of subterrn. Given a substitution on a set of variables, an abstract
substitution will associate the following information with each subterm:

• its mode (e.g. ground, var, ngv (i.e. neither ground nor variable));

• its pattern which specifies the main functor as well as the subterms which are
its arguments;

• its possible sharing with other subterms.

Note that the pattern is optional. If it is omitted, the pattern is said to be undefined.
In addition to the above information, each variable in the domain of the substitution
is associated to one of the subterms. Note that this information enables to express
that two arguments have the same value (and hence that two variables are bound
together). To identify the subterms in an unambiguous way, an index is associated

1This one contains also the proofs of monotonicity and consistency

15

CHAPTER 3. DOMAINS 16

to each of them. If there are n subterms, we make use of indices 1, ... , n. For
instance, the substitution

{X1 +---- t * V , X2 +---- V , X3 +----Yi\ []}

will have 7 subterms. The association of indices to them could be for instance

{(l, t * v), (2, t), (3, v), (4, v), (5, Yi\ []), (6, Yi), (7, [])}.

As mentioned previously, each index is associated with a mode taken from

{ l_ , ground , var , ngv , novar , gv , noground , any}.

In the above example, we have the following associations

{(1, ground), (2, ground), (3, ground), (4, ground), (5, ngv), (6, var), (7, ground)}.

The pattern component (possibly) assigns to an index an expression J(i1 , ... , in)
where J is a fonction symbol of arity n and i1 , ... , in are indices. In our example,
the pattern component will make the following associations

{ (1, 2 * 3), (2, t), (3, V), (4, V), (5, 6 \ 7), (7, []) } .

Finally the sharing component specifies which indices, not associated with a
pattern, may possibly share variables. We only restrict our attention to indices
with no pattern since the other patterns already express some sharing information
and we do not want to introduce inconsistencies between the components. The
actual sharing relation can be derived from these two components. In our particular
example, the only sharing is the couple (6, 6) which expresses that variable Yi shares
a variable with itself.

As the above representation may be difficult to visualize, we make use of a more
appealing representation in the following. For instance, a predicate f actorize(X1 ,

X 2 , X 3) instantiated by the above substitution will be represented as

J actorize(ground(l) : *(ground(2) : t , ground(3) : v) ,
ground(4) : v,
ngv(5): \(var(6) , ground(7) : []))

together with the sharing information {(6, 6)}. In the above representation, each
argument is associated with a mode, with an index (between parenthesis) , and with
an abstract subterm after the colon. The subterm uses the same representation.

3.1.2 Formai Presentation

Modes

The diagram (see figure 3.1) describes the modes used and the order is represented
by the transitive closure of this graph (a ~ b <==} b -+ a). Let Ty be the set of all the
modes Ty = {any , novar,gv ,noground,ground, ng~ , var , 1-}.

Let T be the set of all the Prolog terms and P() is the set of all subsets of its
arguments. The concretization fonction is defined as:

CHAPTER 3. DOMAINS

Cc: Ty -+ P(T)
ground { basics terms }
var { variables }
ngv the rest

and the last ones can be obtained from the :first ones:

Cc(LU B(t1, t2)) = Cc(t1) u Cc(t2)
Cc(GLB(t1, t2)) = Cc(t1) n Cc(t2)

Same Value

17

The same value component of an abstract substitution /3 defined on D is a partition
of D noted sv(/3). It expresses a relation between variables defined as:

The concretization of the same value component is defined as:

Cc: P(D)-+ CSn
sv { {Xi +--- ti}i I Vk, l sv(Xk, X,) =} tk = t,}

There is a partial order relation between same value components: let sv1, sv2 E

P(D) then
sv1::; sv2 {=} Vi , j: sv2(Xi,Xi)::::} sv1(Xi,Xj)

Musumbu prefers express it by a function 2 from the domain D to a finite subset
of N for commodity.

The Type Component

The type component is a fonction tP : { 1 ... p} -+ Ty - { J_}. Let us define

Tpp = { tP I tp : { 1 ... p} -+ Ty - { 1-}}

(X)

Tp= LJ Tpp
p=O

The concretization is defined as:

2 Musumbu defines sv: N--+ N . The link between both notations can be defined as:

sv(Xi, X;) ç::> sv(i) = sv(j)

CHAPTER 3. DOMAINS 18

CC : T Pp -------t TP
tp {(t1 , ... , tp) 1 t; E Cc(tp(i)) Vi E {l, .. . ,p}}

The set Tp is endowed with a partial order relation defined as:

tp : { 1, ... , p} -------t Ty - { _l}
Up' : { 1, ... , p'} -------t Ty - { _l}
uP, ~ tP ~ 3f: {l , ... ,p}-+ {l, ... ,p'} such that up,(J(i)) ~ tp(i)

Let us note that tP is defi.ned on {l, ... ,p} where pis a priori independant from
the domain of the abstract substitution. lndeed each abstract term is fl.attened and
some components may be shared by other terms. Next sections will clear ail that.

The Pattern Component

A pattern is a fonctor foilowed by its arguments: i1 , ... , i9 which are positive integers.
Let Fp be the set of ail the patterns where 1 ~ ii, ... , i9 ~ p. The pattern component
can now be defined as a partial fonction

f rm : { 1, ... , p} f--t Fp

where
Vi E {l, ... ,p} frm(i) = f(i1,••· ,iq) ==} i ~ i1, ... ,i9

We have spoken about optional components, for these cases:

frm(i) = undef

Let Frmp be the set of all the pattern components defined on { 1, ... , p}.
The concretization fonction is defined as:

Cc : Frmp -------t TP
frm {(t1 , ... , tp) : Vi E {l, ... ,p}

frm(i) = J(i1 , ... , iq) => t; = f(t; 11 ••• , t;q)}

where t;1 is the i;th component of Cc(Jrm).

We have also a partial order relation defined as:

f rm : { 1, ... , p} f--t Fp
f rm' : {l, ... , p'} f--t FP,
frm' ~ frm ~ 3g : {l, ... , p} -+ {l, ... ,p'} such that frm(i)
J(i1, ... , i9) ⇒ frm'(g(i)) = J(g(i1) , ... ,g(iq))

CHAPTER 3. DOMAINS 19

The Possible Sharing Component

The possible sharing, as in the mode domain, indicates if two abstract terms may
share some variables. Thus the possible sharing (ps) is a symetric relation defined
on { 1, ... , p} x { 1, ... , p}. Let us note P Sr, the set of ail these relations and P S =
U~o PSr,.
If frm is a pattern defined on {1, ... ,p} then psis compatible with frm iff

ps(i,j) ==} frm(i) = frm(j) = undef \:/i,j E {1, ... ,p}

ps was until now defined only for undefined subterms. ps can be extended to all
other subterms by computing its transitive closure: ps*

• ps(i,j) ==} ps*(i,j)

• frm(k) =f(... ,j, ...)andps*(i,j)==}ps*(k,i)\:/i,j,kE {l, ... ,p}

Let us note PSJrm the set of ail possible ps components compatible with the pattern
frm.
The concretization fonction is defined as:

Cc1 : PSp ----+ Tr>
ps {(t1, ... ,tr,}: Vi,j E {1, ... ,p}

var(ti) n var(tJ-/- 0 => ps(i,j)}

Cc2: PSjrm ----+ TP
ps {(t1 , ... , tr,) : Vi,j E {1, ... ,P} and frm(i) = frm(j) = undef

we have var(ti) n var(tJ-/- 0 => ps(i,j)}

PSr, and PSJrm are endowed with a partial order relation de:fined as:

If ps E PSr, and ps' E PSr,,
ps' :'.S ps <==>

:lg: {1, ... ,p}----+ {1, ... ,p'} such that
Vi,j E {1, ... ,p}: ps'(g(i),g(j)) => ps(i,j)

If frm and frm' are patterns defined on {1 , ... ,p} and {1 , ... ,p'}. If
ps E P S Jrm and ps' E P S Jrm' ps' '.S ps <==>

Vi,j E {1, ... ,p} and frm(i) = frm(j) = undef
ps' * (g(i),g(j)) => ps(i,j)

CHAPTER 3. DOMAINS 20

Abstract Substitutions

The abstract domain ASn is a subset of SV x Tp x Frm x PS. And the following
constraint must be satisfied:

(sv,tp,frm,ps) E ASn {=}

1. :lm, p E N : m ::; p and sv E SVm and tp E Tpp and
ps E PSJrm

2. ViE {1 , ... ,p} :frm(i)=f(i1,••·,in)===}

• tp(i)::; cons(f,tp(i1), ... ,tp(in))
• tp(i1), ... ,tp(in)::; extr(J,tp(i))

3. Vi : m ::; i ::; p : 3j E { 1, ... , p} : J rm (j) = J (... , i, ...)

Operations cons and extr are defined as:

cons(!, T1, ... , Tn) = T' {=}

T1, ... ,Tn E Ty
t1, ... , tn are all terms
J / n is a functor
Vi E {1, ... , n} ti E Cc(Ti) ⇒ f(t1, ... , tn) E Cc(T')

extr(T, J) = (T1, ... , Tn) {=}

T, T1, ... , Tn E Ty and J /n is a functor
t1, ... , tn are all terms
f(t1,••·,tn) E Cc(T) ⇒ (Vi E {l, ... ,n} ti E Cc(Ti))

3.1.3 Implementation

In the domain for study of types, we need to store:

• the type of each term and each subterm of the abstract substitution, (Ty com
ponent), note that types are, here, elements of the generalized mode domain
as presented in the chapter aboute types and in [20),

• the form of each term and the form of each subterm if defined, i.e. their
functor, their arity and the list of their subterms, (Jrm component),

• which terms have the same value (same type and same form), if there are some
(sv component),

• and for each pair of subterms, whether they may share variables together or
not, (ps component);

CHAPTER 3. DOMAINS 21

• we can also store ps*, the transitive closure of ps; it is discussed later in this
chapter.

In Pascal, the abstract substitutions were implemented as records. But, first of
ail, as Pascal needs static declarations we have to define the maximum size of each
structure. So we define a few constants3 and then the data types, as shown on figure
3.2

The field bottom is added for ease of use. It tells whether the abstract substitu
tion is ..l or not. If an abstract substitution is ..l then the boolean bottom is set to
true and ail other fields are undetermined. Else, bottom is set to f alse and ail fields
must be correctly set up, that is sizesv and sizefrm are well defined, as well as
sv[l] ... sv[sizesv], frm[l] ... frm[sizefrm] and ps[l, 1] .. . ps[sizefrm, sizefrm],
other elements of these arrays being undetermined. For an element frm[i] to be
well defined, both fields mode and form must be well defined as well as, if f orm
is set to true (that means the form of the subterm is defined) , f unctor, arity and
arg[l] ... arg[arity].

For example of use of that data type, let us code the following abstract substi
tution:

{NGV(l): f(Var(2), Var(2),Any(3)),Ground(4): a,

NGV(l)f: (Var(2), Var(2), Any(3))}, ps = {(2, 2), (3, 3)}

This substitution con tains three terms, sizesv = 3, and four subterms, si ze f rm = 4.
The subterms are coded the following way:

l. mode= NGV, form = true, functor = f, arity = 2, args[l] = 2, args[2] = 2

2. mode= Var, f orm = f alse

3. mode= Any, f orm = f alse

4. mode= Ground, form = true, functor = a, arity = 0

Since the first and the last terms are the first subterm and since the second term is
the fourth subterm, sv = (l, 4, 1). And, finally,

ps[i,j] = false, l ::; i,j::; 4, excepted ps[2, 2] = ps[3, 3] = true

When the implmentation is clone in C language, we can take advantage of the
dynamic allocation of variables, at the cost of ease of use due to manipulation of a
lot of pointers. Note too that psclose (ps*) disappears in the C version as explained
in the next chapter.

In C language, there is no boolean type, but it can be emulated with others.
The choice of the type to use is very important. Indeed, C language can handle

3 note that the values given here are the best suited for ail the tests, though it might be necessary
to change them. For instance , to run the program on CS (see chapter about results) , constant
'maxfrm ' must be set to 100

CHAPTER 3. DOMAINS
°1r:~-fa
e,, ù_} A~

22

bytes and bits of the bytes too. So it could be a good idea to use each bit of a
byte as a different boolean value. But, to read or to write a particular bit in a byte
involves some computations that do not exist when a byte is used in its whole for
a single boolean value. Thus, using bits leads to gain sorne mernory, but to lose
time in cornparison with bytes. Both methods have been implernented. With bytes
for better results in time for computers which have a lot of memory. With bits for
smaller computers, when computation time is not the main rnatter of the user. Ali
the results of the optimizations are given with respect to both methods.

The declarations in C language are shown in figure 3.3 and its graphical represen
tation is shown on figure 3.4. Note that teltps must be define as int to implernent
booleans with bits and as chars to implement booleans with bytes. psblocksize
is the nurnber of boolean values stored in one element of ps. A char is for one
boolean value (psblocksize = 1) and an int is for a group of 16 or 32 boolean values
(psblocksize = 16 or 32) depending of the machine on which the program is run.
Note too that a field psclose is present in the Pascal version and not in the C version.
This is explained in the next chapter.

To create a new abstract substitution is very simple in Pascal, just declare a
variable as pointer A tas, perform a new on that variable and use it. ln C, it is
rnuch more cornplicated. Indeed, an abstract substitution is made of several parts:
the basic part with bottom, sizesv, sizefrm, pointers to sv and frm and ps, the
sv part and the frm part that is a set of pointers to each form. Since ps vary in
length frorn one substitution to the other, its size must be calculated for each new
substitution as sizef rm2 elernents. Then, the size of the basic part is cornputed as

sizeof(tas) + (sizefrm2 - 1)/(psblocksize/sizeof(teltps))

where '-1' is due to the fact that the first element of psis already taken into account
with 'sizeof(tas)' (teltps ps[l]) and psblocksize/sizeof(teltps) is the number of
boolean values stored in one byte (1/1 = 1 with char, 32/4 = 8 with int) . A first
mernory allocation of that size is clone. Then, a second allocation of size

sizesv * sizeof(int)

is done for the sv part. A third allocation of size

sizety * sizeof(*tfrm)

must be done for the list of pointers to frm components. And finally, one more
allocation is necessary for each f rm component. These last ones are of size

sizeof(tfrm) + (arity - 1) * sizeof(int)

3.2 The mode domain

The mode domain focuses interest on the mode of variables. An abstract substitution
is implemented with three components:

CHAPTER 3. DOMAINS 23

• the mode

• the same value component to express that two variables have the same value.

• the possible sharing.

Although next sections present a more complete description of these components,
the reader can find an exhaustive specification in [20, 11/13].

(3.2.1 · Formal Presentation

Mode~ .

An abstract term is characterized by its mode namely: ground, var and any. Let us
define the concretization fonction which establishes the link between abstract and
concrete uni verse. Let E = {ground, var, any} be the set of modes. Cc is defined
as:

Cc: E ~ P(T)
ground{ t : t is a basic term}
var { v : v is a variable}
any T

where T is the set of ail the Prolog terms and P(T) is the set of ail the possible
partitions of T. E is endowed with a relation ~ defined as: ground ~ var ~ any.

A mode substitution defined on the set of variables D = { X 1 , ..• , Xn} is of the
foilowing form:

We define the set Sm(D) of all the mode substitutions as

The concretization fonction is defined as

Cc(a) = 0 if a= l.
{{Xi +- ti}i I ti E Cc(mi)} otherwise

Sm(D) is endowed with a partial order relation ~ defined as:

Va, /3 E Sm(D) : a~ /3 <=>
a= l. or
a= {Xi+- mi}i and /3 = {Xi +- pi}i and mi ~ Pi Vi

CHAPTER 3. DOMAINS 24

Same Value

The same value component may be defined the same way as for the type domain.

Possible Sharing

The possible sharing (ps) expresses that two abstract terms may eventually share a
variable. ln other words, when there is no "possible sharing" between two asbtract
terms, these ones can not share any variable. ps has a meaning only for abstract
terms which are not ground. ps is an element of P S defined as:

PS(D) ={X: X= P(Y) t\ Y ED}

where D is the domain of abstact terms.
The concretization fonction is defined as:

Cc: PS(D)----+ CSv
ps { {Xi +-- ti}i: var(ti) n var(tj)-/- 0 ⇒ ps(Xi, Xj)}

There is also a partial order relation defined as:

Asbtract Substitutions

We have now all the elements to define completely the abstract domain:

ASv = Sm(D) x P(D) x PS(D)

The concretization is defined as

Cc: ASv ----+ CSv
/3 = (8, sv,ps) Cc(8) n Cc(sv) n Cc(ps)

ASv is endowed with a partial order relation defined as:

(8, sv, ps) ~ (8', sv', ps') {=:::} 8 ~ 8' t\ sv ~ sv' t\ ps < l eqps'

Properties
AU the Cc fonctions are monotonie and (ASv , ~) is a cpo.

CHAPTER 3. DOMAINS 25

3.2.2 lmplementation

In the domain for the study of modes, we need to store:

• the mode of each variable in the domain of the abstract substitution,

• for each pair of terms, whether they have the same value or not,

• for each pair of terms, whether they may share variables together or not.

Figures 3.5 and 3.6 show the implementations of the data type for abstract substi-
tutions respectively in Pascal and in C. Figure 3.7 shows a graphical representation
of the C version. The presence of psclose in the Pascal version and its absence in
the C version is explained in the next section.

To create a new abstract substitution, as in the type domain, its easy in Pascal
and more complicated in C. But now, substitutions only have three parts: the basic
part, the mode part and the sv part. The second one is simple to obtain, it suffi.ces
to allocate a memory area of size

size * sizeof(int)

Then we could do the same for the ps part and we could do the same as with the type
domain for the basic part. That is, two memory allocations. But their is another
solution that makes possible to only do one memory allocation. The solution is to
append the sv part at the end of the basic part. So, to allocate memory, we must
do a request of size

sizeof(tas) + (size2 * 2 - l)/(psblocksize/sizeof(teltps))

where size2 is the number of element in one array, '*2' means that both arrays are
the same size, '-1' is for ps[l] that already appears in sizeof(teltps) and (psblocksize
/ sizeof(teltps)) is the number of boolean values stored in one byte. Then, in order
to be able to use the sv part, we have to calculate its address:

*SV= sizeof(tas) + (size2 - l)/(psblocksize/sizeof(teltps))

Each time we need to store something for each pair of terms or subterms, we
must store, assuming there are n terms or subterms, n 2 boolean values. It leads to
very big arrays, memory consuming.

In Pascal, as the size of the arrays must be known at compile time, it is manda tory
to estimate a maximum size for them. They must be big enough to store the biggest
object the program can handle during execution, and they must ail have the same
size, even if they are empty. Furthermore, Pascal can not use just one bit for a
boolean value, it always use at least one byte. Let us assume, for instance, that
the biggest abstract substitutions are 50 subterms long and that booleans are coded
on one byte. Then, a simple boolean array is 50 * 50 = 2500 bytes long. There
are at least one of them for each substitution. There can be several thousands of
substitutions created during one execution of the program. What a waste! In C
language, dynamic storage is permitted, i.e. arrays are just the size they really need
to be.

CHAPTER 3. DOMAINS 26

any

novar gv noground

ground ngv var

Figure 3.1: Modes for the type domain

CHAPTER 3. DOMAINS

const
maxsv = 50;
maxfrm = 50;
maxarity = 30;

type
mdg = (Bottom, Ground, Var,NGV, NoGround,NoVar, GV, Any);
pfunctor = pointer; { a pointer to a structure representing a functor}
tfrm = record

mode: mdg;
f orm : boolean;
functor : pfunctor;
arity : integer;
args : array[l..maxarity)of integer

end;
tas= record

bottom : boolean;
sizesv : integer;
sv : array[l..maxsv]of integer;
sizef rm : integer;
frm : array(l..maxfrm]of tfrm;
ps : array[l..maxfrm,l..maxfrm]of boolean
psc:ose : array[l..maxfrm,l..maxf rm)of boolean

end;

Figure 3.2: Data types of abstract substitutions for type domain in Pascal

27

CHAPTER 3. DOMAINS

#define psblocksize ... / * l or 32 depending on teltps *f

typedef short bool / * short or anything else *f

28

typedef enum {Bottom, Ground, Var,NGV,NoGround,NoVar, GV, Any} mdg
typedef . .. teltps / * ' ... ' is either int or char * /
typedef struct {

int arity;
mdg mode;
bool form;
pfunctor functor;
int args[l];

} tfrm;
typedef struct {

bool bottom;
int sizesv;
Înt *SVj

int sizefrm;
tfrm *frm;
teltps ps[l];

} tas;

Figure 3.3: Data types of abstract substitutions for type domain in C

CHAPTER 3. DOMAINS 29

--- bottom

int sizesv

•sv

int sizefrm

tfrm •frm - int arity

mdg mode

teltps ps[][] bool form

pfunctor functor

-------- --- ----- ---- ----
int args[]

-- ----- ------------- -- --

Figure 3.4: Abstract substitutions for the type domain

CHAPTER 3. DOMAINS

const
maxsv = 50;

type
md = (Bottom, Ground, Var, Any, Top);
tas= record

size : integer;
modes : array(l..maxsv]of md;
sv : array[l..maxsv,l..maxsv]of boolean
ps : array[l..maxsv,l..maxsv]of boolean
psclose : array[l..maxsv,l..maxsv]of boolean

end;

Figure 3.5: Data types of abstract substitutions for mode domain in Pascal

#define psblocksize ... / * l or 32 depending on teltps * /

typedef enum {Bottom, Ground, Var, Any, Top} md
typedef . .. teltps / * ' ... ' is either int or char * / typedef struct {

int size;
md *modes;
teltps *SVj
teltps ps[l];

} tas;

Figure 3.6: Data types of abstract substitutions for mode domain in C

30

CHAPTER 3. DOMAINS 31

- md

md

- int size md

•modes md

•sv md

teltps ps[][]

teltps sv[][]

Figure 3.7: Abstract substitutions for the mode domain

Chapter 4

The original program

We have presented so far what abstract interpretation is and the domains on which
we will use it. In this chapter, we present the basic abstract interpretation algo
rithm and its implementation. The algorithm was first described in [13]. A first
implementation is presented in [15] . It is written in Pascal. It has been translated
in C and a few optimizations have been clone. We shall present both versions and
all the optimizations.

4 .1 Goal Dependencies

In the first chapter, we defined all the operations necessary to design the algorithm.
However, one of the main concerns in its design has been the detection of redundant
computations. They may occur in a variety of situations. For instance, the value
of a pair (a,q) may have reached its definitive value (the value of (a,q) is in the
least fixpoint) and hence subsequent considerations of (a, q) should only look up
its value instead of starting a subcomputation. Another important case (especially
in logic programming) are mutually recursive programs. For those programs, we
would like the algorithm to reconsider a pair (a, q) only when some elements which
it is depending upon have been updated. In other words, keeping track of the goal
dependencies may substantially improve the efficiency on some classes of programs.

The algorithm includes specific data structures to maintain goal dependencies.
We only introduce the basic notions here. They have been borrowed to [13].

Definition 7 A dependency graph is a set of tuples of the form ((/3,p), lt) where
lt is a set {(a1,q1), ... ,(an,Qn)} (n ~ 0) such that, for each (/3,p), there exists at
most one lt such that ((/3,p), lt) E dp .

We denote by dp(f3,p) the set lt such that ((/3,p), lt) E dp if it exists. We also
denote by dom(dp) the set of ail (/3, p) such that ((/3, p), lt) E dp and by codom(dp)
the set of all (a, q) such that there exists a tuple ((/3, p), lt) E dp satisfying (a, q) E lt.

32

CHAPTER 4. THE ORIGINAL PROGRAM 33

The basic intuition here is that dp(/3, p) represents at some point the set of pairs
which (/3, p) depends directly upon. To be complete, we need to define the transitive
closure of the dependencies.

Definition 8 Let dp be a dependency graph and assume that (/3, p) E dom(dp).
The set trans_dp(/3, p, dp) is the smallest subset of codom(dp) closed by the two
following rules:

1. if (a,q) E dp(/3,p) then (a,q) E trans_dp(/3,p,dp);

2. if (a,q) E dp(/3,p), (a,q) E dom(dp), and (a',q') E trans_dp(a,q,dp) then
(a',q') E trans_dp(/3,p,dp).

Now trans_dp(/3,p,dp) represents ail the pairs which, if updated, would require
reconsidering (/3, p). (/3, p) will not be reconsidered unless one of these pairs is
updated.

We are now in position to specify the last three operations needed to present the
algorithm:

• REMDVE-.DP(modif ied, dp), where modif ied is a list of pairs (a1, P1), ... , (an,Pn)
and dp is a dependency graph, removes from the dependency graph ail elements
((a, q), lt) for which there is a (ai, qi)) E trans..dp(a, q, dp).

• EXT...DP(/3,p, dp) inserts an element ((/3,p), 0) in dp;

• ADD...DP(/3, p, a, q, dp) simply updates dp to include the dependency of (/3, p)
wrt (a,q) (after its execution (a,q) E dp(/3,p).

The algorithm makes sure that the elements (/3,p) that need to be reconsidered
are such that (/3,p) ~ dom(dp).

4.2 The generic abstract algorithm

We are now in position to present the generic abstract interpretation algorithm
([13]). The algorithm is composed of three procedures and is shown in Figure 4.1.

The top-level procedure is Procedure solve which, given an input substitution
f3in and a predicate symbol p, returns the set of abstract tuples sat containing
(/3in, p, f3out) belonging to the least fixpoint 1 and the final dependency graph. Given
the results, it is straightforward to compute the set of pairs (a, q) used by (/3, p),
their values in the fixpoint, as well as the abstract substitutions in any program
point.

Procedure solve_call receives as inputs an abstract substitution /3in, its associ
ated predicate symbol, a set suspended of pairs (a, q), sat, and a dependency graph

1 In the case of infinite domains, it is possible that the algorithm returns an upper approximation
to the least fixpoint due to our use of widening operations to guarantee termination.

CHAPTER 4. THE ORIGINAL PROGRAM

procedure solve(in flin ,p; out sat, dp)
begin

sat : = 0;
dp := 0;
solve_call (flin ,p, 0, sat, dp)

end

procedure solve_call(in flin ,p, suspended; inout sat ,dp)
begin

if (flin , p) ~ (dom(dp) U suspended) then
begin

if (flin ,p) ~ dom(sat) then
sat : = EX TEND (flin, p, sat) ;

repeat
flout : = J_;

EXT..DP(flin ,p,dp);
for i := 1 to m with c1, ... ,Cm clauses-of p do
begin

solve_clause (flin ,p, Ci, suspended U { (flin, p)} ,flaux, sat , dp) ;
flout : = UNION (fJout, flaux)

end;
(sat,modified) := ADJUST(flin,P, flout ,sat);
REMOVE...DP (modified, dp)

until (flin, p) E dom(dp)
end

end

procedure solve_clause(in flin ,p, c, suspended; out f3out; inout sat, dp)
begin

flext := EXTC(c,flin);
for i : = 1 to m wit h b1 , .. . , bm body-of c do
begin

flaux : = RESTRG (bi, flext) ;
switch (bi) of
case Xj = Xk:

f3int := ALVARCf3aux)
case Xj = f(.. .) :

/3int : = ALFUNC (flaux, f)
case q(.. .) :

solve_call(flaux ,q,suspended , sat,dp);
flint : = sat Cflaux , q) ;
if (flin ,P) E dom(dp) then

ADD...DP (flin ,p, flaux, q, dp)
end;
flext := EXTG(bi,flext,f3int)

end;
flout : = RESTRC (c, flext)

end

Figure 4.1: The Generic Abstract Interpretation Algorithm

34

CHAPTER 4. THE ORIGINAL PROGRAM 35

dp. The set suspended con tains ail pairs (a, q) for which a subcomputation has been
initiated and not been completed yet. The procedure is responsible to consider (or
reconsider) the pair (/3;n, p) and to update sat and dp accordingly. The core of the
procedure is only executed when (/3in,P) is not suspended and not in the domain
of the dependency graph. If (/Jin, p) is suspended, no subcomputation should be
initiated. If (/Jin, p) is in the domain of the dependency graph, it means that none
of the elements which it is depending upon have been updated. Otherwise, a new
computation with (/3in,P) is initiated. This subcomputation may extend sat if it is
the first time /Jin is considered. The core of the procedure is a repeat loop which
computes the best approximation of (/3in,P) given the elements of the suspended
set. Local convergence is attained when (/Jin, p) is in the domain of the dependency
graph. One iteration of the loop amounts to executing each of the clauses defining
p and computing the union of the results. If the result produced is greater or not
comparable to the current value of (/3in,P), then the set of abstract tuples is updated
and the dependency graph is also adjusted accordingly. Note that the call to the
clauses is clone with an extended suspended set since a subcomputation has been
started with (/3in,P)- Note also that, before executing the clauses, the dependency
graph has been updated to include (/3in,P) (which is guaranteed not to be in the
domain of the dependency graph at that point). (/3in,P) can be removed from the
domain of the dependency graph during the execution of the loop if a pair which it
is depending upon is updated.

Procedure solve_clause executes a single clause for an input pair and returns
an abstract substitution representing the execution of the clause on that pair. It
begins by extending the substitution with the variables of the clause, then executes
the body of the clause, and termina tes by restricting the substitution to the variables
of the head. The execution of a goal requires three steps:

• restriction of the current substitution f3ext to its variables giving f3aux;

• execution of the goal itself on f3aux producing /3int;

• propagation of its result /3int on f3ext·

If the goal is concerned with unification, the operations ALVAR and ALFUNC are
used. Otherwise, procedure solve_call is called and the result is looked up in sat.
Moreover, if (/3in, p) is in the domain of the dependency graph, it is necessary to
add a new dependency. Otherwise, it means that (/3in, p) needs to be reconsidered
anyway and no dependency must be recorded.

4.3 Foundations

The foundations are the true results of the abstract interpretation of a Prolog pro
gram P. They are sets of tuples (/3,p,/3') that extracted from the sats. These
elements are those for which the input abstract substitution is the abstraction of a

CHAPTER 4. THE ORIGINAL PROGRAM 36

substitution occuring during the execution of the analysed program. Indeed, when
analysing a program, approximated results due to suspended recursive calls can lead
to a number of tuples that would not appear if it was possible to obtain directly
the right result. Those tuples are "noise" in the sats and must be ignored in the
calculation of foundation. In this section, we define the foundations more precisely
and we explain the algorithm used to calculate them.

4.3 .1 Definition

Let us now define the foundations, as presented in [15).

Definition 9 The pair (/3, p) is based in sat iff V sat' such that sat' is total and
sat Ç sat', the computation of Tp(/3, p, sat') does not require values of sat' not
belonging to sat. ln that case, and in that case only, base(/3,p,sat) is the smallest
set D such that (/3,p) is based in sat ln-

Definition 10 The pair (/3,p) is founded in sat iff :lD: (/3,p) ED and V(a, q) E D:
(a,q) is based in sat ln- ln that case, and in that case only, foundation(/3,p,sat)
is the smallest set D such that (/3, p) is founded in sat ln-

For instance, let us assume p = APPEND/3 is studied with /3in = {Xi I Var,X2 I
Var, X 3 1 Gro }. The only resulting sat will only contain one tuple:

({X1 1 Var,X2 I Var,Xa I Gro},APPEND/3, {Xi I Gro,X2 1 Gro,Xa I Gro})

Let D be a set containing the only pair (f3ïn,p). Thus, sat ln= sat. The pair (f3ïn,P)
is based in sat because its evaluation calls only itself. It is founded in sat because
the only element of D ((f3in,P) itself) is based in sat ln- And D is the smallest
set such that (f3in, p) is founded in sat ln because, otherwise, D must be empty,
so is sat ln and nothing can be founded in the empty set. Hence, the foundation
of (f3ïn,APPEND/3) is that set D. That is, during execution of APPEND/3 with a
substitution for which f3in is an abstraction, ail calls of APPEND/3 are clone with
substitutions for which f3in is an abstraction too.

4.3.2 The algorithm for the calculation of the foundations

Let P, a program, be a set of predicates {Pi/ mi}, each of them being a set of clauses
of the form:

C = H(X1,X2, ... ,Xm): -B1,B2, ... ,BP

where His the head and Bk are subgoals (built-ins or procedure calls). Let us assume
that the predicate p/m of Pis called with f3 and that subgoal Bk leads to a recursive
(locally or mutually) call of p/m. When this recursive call occurs, its execution
is avoided and its best result so far, which is stored in the corresponding sat, is
returned. Ali BL k' > k, are then examined with an input substitution depending on

CHAPTER 4. THE ORIGINAL PROGRAM

that result. Let {/31 out, ... , /3L out} be a set of different outputs of Bk at subsequent
calls. Let us assume that Bk,, k' > k, is a procedure call. It is examined, at the
ith call, with an input substitution depending on /31 out, say /3Ln· Thus, the series
of calls to p/m will produce a list of tuples (/31,in, Bk,, /3l,out), • .. , (/3Ln, Bk, /3L,out)
which ail appear in the Hasse diagram of p/m.

But, in fact, only the last one, (/3Ln, Bk, /3k,out), is correct. Ail the previous ones
are present in the sats because of the suspension of the execution of the recursive
calls, but they do not have been improved and their result is false.

So, the algorithm for the calculation of the foundations is very similar to the
abstract interpretation algorithm. It suffi.ces to run it -a second time with the sats
calculated the first time because they contain the best approximation possible for
each pair (/3i, Pi). Hence, the good result is directly known and there is no more
reexamination in order to imrpove it and no more calculation of the UNION. Each
visited pair is part of the foundation. It is shown on figure 4.2 .

4.4 The original program

A first implementation of the program has been written by Pascal Van Hentenryck.
It is described in (15). The purpose of our work is to improve that program. Thus,
as it is a basis for the following, we need to understand it before working on it. This
section will describe some interesting aspects of the implementation of the program
to know for a better understanding of the optimizations.

This first implementation was written in PASCAL. But, it allows only static
allocation of memory. Soit has been translated in C language, which allows dynamic
allocation of memory. ln a first time, we will describe the most important data
structures used. From these, we can make some choices in order to minimize memory
size used by the program or to minimize the execution time. Then, we will explicit
the design of the program.

4.4.1 Abstract substitutions

Abstract substitutions are the most important structures manipulated by the pro
gram. They contain a lot of information and they are the most used data structures.
Thus, it is important to write them carefully. Two different abstract domains are
implemented. Each of them has its own abstract substitutions, different one from
the other. We already described their implementation in the previous chapter.

4.4.2 Transitive closure of Possible Sharing

ln the previous chapter, when we described the implementation of the abstract
substitutions, we underlined that the ps* component was included in the Pascal
versio _JJ,j......,,..,se field), but not in the C version. That is due to an in~sting
o 1 1zation ptimization. We now desbribe that improvement.

CHAPTER 4. THE ORIGINAL PROGRAM

procedure foundation(in f3in ,p , sat ; out f oundation)
begin

foundat ion := 0;
foundation _call (f3in ,p, 0, sat , dp, f oundation)

end

procedure foundation _call(in f3in ,p, suspended, sat; inout foundation)
begin

if (f3in , p) ~ (suspended U f oundation) t hen
begin

foundation := foundation U {(f3in, p,sat(f3in, P))};
for i : = 1 to m with C1 , • .. , Cm clauses-of p do

foundation _clause C.Bin ,p, Ci, suspended U {(f3in , p)}, sat) ;
end

end

procedure foundation _clause(in f3in ,p ,c , suspended,sat)
begin

f3ext := EXTC(c, f3in);
for i := 1 to m with b 1 , ... ,bm body-of c do
begin

f3aux : = RESTRG(bi , f3ext);

switch (bi) of
case Xj = Xk :

f3int : = ALVAR(f3aux)
case X j = f (. ..) :

f3int := ALFUNC(f3aux ,f)

case q(. . .) :
foundation _call(f3 0 ux , q,suspended , sat ,dp) ;
f3int : = sat Cf3aux , q) ;

end;

f3ext : = EXTG (bi , f3ext , f3int)
end

end

Figure 4.2 : The calculation of the foundation

38

CHAPTER 4. THE ORIGINAL PROGRAM 39

ps = {(ti, tj) J ti may share one or more variable with tj}

A more complete definition can be found in [20].
The transitive closure ps* of ps is calculated with the following rules:

• V(ti, tj) Eps, (ti, tj) Eps*

• Vi,j, k, (ti, tj) Eps* and (tj, tk) Eps*==> (ti, tk) Eps*

• ti = f(... , tj, ...)and(tk, tj) Eps==> (ti, tk) Eps

In the original program, both ps and ps* are stored in memory. When a proce
dure that modifies ps is over, ps* is recalculated. By that way, it is at disposal of
all procedures that need it.

The main goal we have in sight when translating the program from Pascal to
C Ü; to run it with less memory, in order to be able to use it with bigger Prolog
programs. So, a way of doing this is not to store ps* any more, but to calculate it
only when necessary.

The way ps and ps* are implemented is the following: for a substitution made of
n terms and subterms, there are n2 booleans, one for each pair (ti, tj), l ~ i,j ~ n
telling whether (ti, tj) Eps or not.

For example, let us suppose we have a substitution made of 20 terms (it is
common in all previous tests). And let us suppose, with search for speed in sight, ps
is implemented with chars to store the boolean values. Then it takes 202 = 400 bytes
of memory per substitution for ps as well as for ps*. If more than 100 substitutions
are created, we can really gain a lot of place by avoiding to store ps*.

ln fact, this little trick is much more interesting. Indeed, the program now
computes ps* much less times. With the first method, a ps* that is used several
times is computed only once, but there are also a lot of computation that are never
used. If we measure the time necessary for one test with both methods, we can note
a very big difference. ln fact, this improvement is responsible of a large part of the
percentage of the time won with prefix as well as with caching.

4.4.3 Sats

Ali the abstract substitutions are elements of sats. These sats take the form of Hasse
diagrams. But it is worth having a complete section to describe these diagrams in
detail, so it will be discussed later on.

4.4.4 The dependency graph

Another important data structure is the dependency graph described in the begining
of this chapter. It is not important in the sense of its size because it just contains a

CHAPTER 4. THE ORIGINAL PROGRAM 40

few references, just a few bytes, but in the sense of its utility. A bad implementation
of this graph could lead to very big amount of unnecessary computations as we shail
explain.

According to [15], the dependency graph is a set of pairs composed of a pair
(/3,p) and a set 1t of pairs (ai,qi) indicating that (/3,p) must be reconsidered if and
only if at least one (ai, qi) has been reconsidered. This was presented that way for
facility and beauty. But, it is more efficient to implement it in the opposite way,
namely, elements are a set lt' of pairs (ai, qi) associated to a pair (/3, p) where each
(ai, qi) is to be reconsidered if and only if (/3, p) is. Let us note dp' (/3, p) that set lt'.

Let us explain why the reverse method is the easiest.
Firstly, the creation of the graph. Procedure ADD...DP(/3,p,a,q,dp), as described

previously, adds a dependency (a,q) to dp(/3,p). But, to do that or to add (/3,p) to
dp(a, q) is exactly the same. So, no gain and no lost in creating the graph in reverse
sense.

Then, the use and the destruction of the graph. When the consideration of
the pair (/3,p) is over, ail the pairs depending on it must be reconsidered. So,
we need to find ail these pairs and mark them to 'to be reconsidered'. With the
first method, it is necessary to look at every pair (a, q) E dom(dp) and to check if
(/3,p) E dp(a, q). Ail pairs (a, q) verifying that condition must be marked. But we
don't only need to search all (a, q) such that (/3,p) E dp(a, q), we must mark all (a, q)
such that (/3,p) E trans_dp(a, q, dp), so we must redo the same recursively for each
(a,q) found. Note that there would be an infinite loop if 3(a,q) such that (a,q) E
trans_dp(a, q, dp). To avoid this problem, the searched elements are removed from
the graph when found, that is, if (/3, p) E dp(a, q) then dp(a, q) := dp(a, q)\ {(/3, p)}.
On the other hand, with the second method, it suffi.ces to mark all elements of
dp'(/3,p) and redo the same recursively for ail these elements. Note that we still
need to remove the marked elements from the graph, that is dp'(/3,p) = 0 when ail
its elements are marked and recursively examined. Hence, with the first method,
dp in its whole must be examined, possibly several times, but with the second
method, only trans_dp(/3, p, dp') must be examined. The theorical complexity is
0(n 2) in the first case and 0(n) in the second case. In case of a big pro gram
with few dependencies, the ratio of number of examined elements may be of several
thousands to one.

4.4.5 The implementation

The program of abstract interpretation runs in three phases. Firstly, a phase of
normalization of a Prolog program. Secondly, the abstract interpretation algorithm.
And lastly, the calculation of the foundation.

As described in a previous section, the program works with normalized Prolog
programs. But it is not very convenient for the user to write a program in a normal
ized way. So, the first phase during the execution of the program is a translation of
a standard Prolog program into its normalized form.

CHAPTER 4. THE ORIGINAL PROGRAM 41

The second part is the most important part of the execution. It is an implemen
tation of ail the algorithms and fonctions given so far, as well as the Hasse diagram
explain in the next section.

The implementation is clone in a top-clown fashion with different levels of proce
dures:

• First level: the generic algorithm: procedures s olve, solve_call and
solve_clause

• Second level: all abstract operations used by the first level: UNION, ALVAR,

AI...FUNC, ...

• Third level: a series of sophisticated fonctions for manipulation of data struc
tures, that is fonctions for manipulation of data structures like abstract sub
stitutions, Hasse diagrams, ... regarding their semantics; for instance, compar
ison of two substitutions (are they =, <, > or not comparable?), unification
of substitutions, search of an element in Hasse diagram, ...

• Fourth level: a series of fonctions for manipulation of data structures without
regard to their semantics, such as syntaxical comparison of abstract substi
tutions (are they equal byte per byte?), copy of an abstract substitution into
another, .. .

The implementation i odular, that is a procedures are gathered in different
files in fonction of thei purpose. For instan e, the three procedure of the abstract
interpretation algorit are together in o file. AU procedures concerning manipu
lation of the Hasse di grams (EXTEND ARCH, .. .) are in another file. A third file is
a set of procedures of u=.......,_,-- el for manipulation of abstract substitutions (uni
fication, comparison, . . .). A fourth one contains all the little tools for manipulation
of abstract substitutions (assigning, copying, printing, syntaxical comparison, . ..) .

And finally cornes the calculation of the foundation which is a simple implemen
tation of the algorithm shown in a previous section.

4.4.6 Abstract Unification

The fonction uact 1 ((3, i,j) unifies two undefined patterns (frm(i) and frm(j))
inside an abstract substitution ((3). Taking advantage of the fact that uact 1 can
modify directly its argument without creating a new substitution, the computation
of the new ps component was improved. The old algorithm was composed of three
subprocedures:

1. initialization of the result with values by default

2. computation of the new modes (Ty component)

3. computation of the new ps component

CHAPTER 4. THE ORIGINAL PROGRAM 42

This last point was itself composed of three parts:

• initializing the new ps to Jalse (psnew(i,j) = false Vi,j)

• transferring the old ps to the new one as:

pso1d(k, l) and }
Vk, l Tynew(k)-:/ ground and ===? PSnew(k, l)

Tynew(l) -:/ ground

• updating the new ps to take into account the following property:

PSo/d(k, i) V ps01d(k,j) and }
Vk, l PSo/d(l, i) V PS01d(l,j) and ===? PSnew(l, k)

Tynew(i) -:/ ground

In the new implementation, we work directly on f301d (f3old = f3new), Consequences
are that:

• subprocedure 1 can disapear

• subprocedure 2 updates also directly the ps component such that

ps(l, k) = J alse if (TYnew(l) = ground V Tynew(k) = ground)

• subprocedure 3 computes only two things:

PSo/d(k, i) V ps01d(k,j) and }
Vk, l: k, l (/ {i,j} PSo/d(l , i) V ps01d(l,j) and ===? PSnew(l , k)

Tynew(i) -:/ ground

Vk PSo/d(i, k) V PSo/d(j , k) {::} PSnew (i, k), PSnew(k , i) , PSnew(j , k) , PSnew (k , j)

We have eliminated so a double loop and a heavy initialization.

4.5 Hasse diagrams

As described previously, fonction EXTEND extends a set of abstract tuples. There is
one set for each p E P, say satp, Those sets are very important because they are
the ones which contain all the informations obtained by execution of the program.

CHAPTER 4. THE ORIGINAL PROGRAM 43

(T,p, ?)

~
(/31, P, /JD (/32, P, {J~) (/33, P, {J~)

1 1 1

(/34, P, /J~) (/Js, P, /J~) (/36, P, /J~)

V
(f31,p,{J~)

(..L,p,..L)

Figure 4.3: An example of Hasse diagram

4.5.1 Definition

These sats are organized as Hasse diagrams. There is one diagram for each predicate
p/n. They are organized in fonction of the abstract substitution /Jin· Two elements
of a dirgram (/31,p,/JD and (/32,p,{J~) are linked together if and only if one is the
father of the other.

Definition 11 (/31, p, /JD is a father of (/32, p, {J~), if

• /31 Ç /32

• there is no /33 such that (/33, p, {J~) exists and /31 Ç /33 and /33 C::: /32

Definition 12 Similarly, (/31, p, /JD is a son of (/32, p, {J~) iff (/32, p, /JD is a father of
(/31,P,/JD.

Definition 13 Let satp = { (betai, p, {J:) l 1 :::; i :::; n} be a sat containing n elements
and let (/J, p, {J') be an element of satp. Then,

Fathers({J,p,{J') = {(/Ji,p,{J:) 1 (/Ji,p,{J:) is a father of ({J,p,{J'), 1:::; i:::; n}

Sons({J,p,{3') = {(f3i,P,f3D 1 (f3i,P,f3D is a son of ({3,p,{3'), 1:::; i:::; n}

Ail elements in such a diagram have a common ancestor (T) and a common
descendant (.l). This is added for the ease of implementation.

Let us examine, for instance, the Hasse diagram shown on figure 4.3. It means
that:

CHAPTER 4. THE ORIGINAL PROGRAM 44

• ..L < /31 < {34 < /31 < T

• ..L < /31 < f3s < /32 < T

• ..L < /36 < {33 < T

• and the elements that are not in relation here above are not comparable, e.g.
/31 and /32 ca not be compared.

4.5.2 The original search method

Two fonctions must be performed on these diagrams: their extension, i.e. adding
an element to them, and the search for one element. The :first one is the operation
EXTEND we already spoke about. The second is the one we speak about in this
section. Note that this fonction is used by EXTEND in order to put the new entry in
its suitable place.

Let us name {31 , ... , f3n the input substitutions of the n tuples of the diagram
satP associated to the predicate p and (/3, p, ?) the element to search for. The first
searching method is to look at ail the elements of the diagram in a depth :first search
way. The search may be over for two reasons:

• we have found i such that f3i = {3,

• we are sure Vi, f3i -=1- {3.

In the later case, we need also to know where ({3,p, ?) can be placed, for use by
fonction EXTEND. That is, we need the sets

F = Fathers({3,p, ?)

S = Sons(/3,p, ?)

Figures 4.4 and 4.5 shows the original algorithm for fonction SEARCH(in ({3,p),
out found, (f3i,P,f3D, F, S) where found is a boolean value that is true if ({3,p, ?)
has been found in satp. ln that case, the tuple is set up correctly ((f3i, p, f3D =
({3,p,sat(/3,p))) and the sets F and Sare undefined. Else, if found is false, the
output tuple is undefined and F and S are the sets of all fathers and ail sons of
({3, p, ?). This procedure has a side effect. It suppresses the links between the
elements of F and their sons and between the elements of S and their fathers for
the ease of the later insertion of the (/3, p, ?). Note too that the implementation is
slightly more complicated to avoid visiting two times the same element.

4.5.3 The new search method

We can see on figure 4.5 that we need to compare substitutions, f3k and /3, in both
procedures SEARCH_TOP ...DOWN and SEARCH..BOTTOM_UP. It suffi.ces to test if f3k ~ {3

CHAPTER 4. THE ORIGINAL PROGRAM

procedure SEARCH(in (/3,p); out found, (/3i,p,/3:), F, S);
begin

J ound:= J alse;
if f3 = T then begin

J ound:=true;
(/3i, P, /3D:=(T, p, sat(T, p));

end;
else begin

F:=0; S:=0;
SEARCH_TQP _DQWN((T ,p), (/3,p), found, F, (/3i,P,J3D);
if not found then

SEARCH--130TTQM_UP((1-,p), (/3,p), S)
end

end;

Figure 4.4: SEARCH procedure

45

and if /3 ~ /3k· If both tests are true, then they are equal. If just the first one is
true, then f3k < /3. And, if just the second one is true, /3k > /3. Else, they are not
comparable. Hence, to compare two substitutions, we need two tests and those are
very time consurning because of the complexity of the substitutions. The idea of
optirnization is to reduce the number of tests by doing each time only one of them
instead of two.

Let us examine the procedure SEARCH_TQPJ)OWN. With only one test, we can
know whether /3 ::; f3k or not. If yes, we stiil do not know whether /3 = f3k or /3 < /3k,
so we suppose /3 < f3k and we go deeper in the diagram to examine it. Else, we do
not do anything. Like in the original algorithm, when ail the sons of one f3k > /3
are smailer than /3 or not comparable to /3, that (/3k,p,/3',J is added to F. This is
procedure SEARCH_TOP J)QWN....AUX ~n figure 4.6. When the examination of the
diagram is over, we still do not k~hether /3 is in the diagram or not. But we
have the set F which contains elements greater than /3 and eventually /3 itself.

Proposition 14 The set F obtained by the procedure SEARCH_TOP J)QWN....AUX con
tains either (/3, p, ?) as only element or ail its fathers.

Proof Let us suppose that F contains n elements and that the input substitutions
of those elements are /3i, 1 ~ i ~ n. Ali these /3i are, by construction, greater or
equal to /3.

Let us suppose that one of them is equal to /3. By definition of the Hasse diagram,
there are no two equal /3i, so all the other ones must be greater than /3 . Let us suppose
there exists such another one, say /39. During the execution of the procedure, when
/39 ~ /3 is found, SEARCH_TOP J)QWN....AUX calls itself recursively in order to examine all

CHAPTER 4. THE ORIGINAL PROGRAM

procedure SEARCH_TQP ..DOWN(in (f3cur,P), (/3,p); inout found, F; out (/3i,P, /3D);
begin

deeper:=false
forall (fJk,P, {1',.) E Sons(f1cur,P, f1'cur) do

switch COMPARE(fJk, (1) of
case=:

f ound:=true;
({Ji, P, fJ:):=(fJk, P, /3',_);
return;

case>:
deeper:=true
SEARCH_TQP ..DOWN((/3k,P), (/3,p), found, F, (/3i,p,/3D);

case<:
Fathers(fJk, p, /3',.):= Fathers(/3k, p, /3',.)\ {(/3cur, P, /3~ur)};

end;
if not deeper then

F:=F U {(/3cur,P,/3'cur)}
end;

procedure SEARCH..BOTTQM_UP(in (/3cur,P), (/3,p); inout S)
begin

deeper:= f alse;
forall (/3k,P, /3',.) E Fathers(/3cur,P, f3~ur) do

switch COMPARE(/3k,/3) of
case<:

deeper:=true
SEARCH..BOTTQM_UP((/3k,P), (/3p), S);

case> :
S ons(/3k, p, /3',.):= S ons(/3k, P, /3',.) \ {(/3cur, P, /3~ur)};

end;
if not deeper then

S:=S U {(/3cur, P, /3~ur)}
end;

Figure 4.5: Original algorithm of SEARCH

46

CHAPTER 4. THE ORIGINAL PROGRAM 47

sons of (/39 ,p,/3;). Since it must be in F, none of its sons have an input substitution
greater or equal to /3. Then the execution of the recursive call is over and, back to
the examination of the sons of (/3, p, ?) , since we have gone deeper, (/3, p, ?) will not
be appended to F. It is in contradiction with the hypothesis. Hence, if the searched
element is in F, there can not be any other element in F.

Let us now suppose that ail /3;(1 ::; i::; n) are strictly greater than /3. The fact
that (/3;, p, /3:) E F means the procedure has not gone deeper than that element, that
is all sons of that element have an input substitution smaller or not comparable to
/3. So, there is no (a,p,a') in the Hasse diagram such that /3::; a ::; /3;. Hence,
every element of F is a father of (/3, p, ?) . And, finally, all fathers of (/3, p, ?) are
in F because the procedure stops its examination of the Hasse diagram when only
elements with an input abstract substitution smaller or not comparable to /3 are still
not examined, so all fathers have been checked. □

As a consequence, if F has more than one element, then we are sure /3 is not
among them. But, if F has only one elernent, we do not know anything. It is then
necessary to test the equality between the input substitution of that only element
of F, and /3.

For instance, let us search for (/3, p, ?) in the Hasse diagram shown on figure
4.3. If /35 < /3 < /32 then F = {(/32 ,p,/3~)}. If /3 < /35 , /3 < /36 and 1- < /3 then
F = {(/3s,P,/3~), (/36,P,/3~)}. And, if /3 = /3s, then F = {(/3s,P,/3~)}.

Procedure SEARCH...BOTIOM...DOWN can be modified the same way:
Thus, we have now won one half of the tests, we know whether (/3, p, ?) is present

in a Hasse diagram or not and we know both sets of its sons and its fathers. But the
side effect is not performed any more. Then, in SEARCH...BOTIQM_UP, when the first
test is not verified, the second test must be performed to determine whether /3k > /3,
in what case the side effect must be performed, or whether they canot be cornpared.
We still win on the number of tests, but no more the half. ln SEARCH_TOP ...DOWN, we
canot act the same way, since we do not know whether the elements appended to
F are the searched one or not. Hence, we must do that in the end, in the case we
are sure that the element is not in the diagram. We must examine all sons of every
element of F a second time in order to perform the second test and remove the link
between these elements of F and their sons that verify the test. The new procedures
SEARCH_TQP ..DOWN and SEARCH...BOTIOM_UP are shown on figure 4.6, procedure SEARCH
is unchanged.

4.5.4 Comparison between both search methods

Let us now examine these two methods on both pathological cases shown on figure
4.7. Those are the two possible extremes in the shape of a Hasse diagram. In the first
one, sath, all elements are in height, each element has one and only one father and
one and only one son, but 1- has a lot of ancestors and T has a lot of descendants.
In the second one, satw, all elements are in width, every element di-fferent of T or
1- is a son of T and a father of 1-. Let us suppose they both contain n elements.

CHAPTER 4. THE ORIGINAL PROGRAM

procedure SEARCH_TQP .J)ûWN(in (f3cur,P), (/3,p); inout found, F; out (/Ji, p, /JD);
begin

SEARCH_TQP _DOWN_AUX((/Jcur,P), (/3,p), F);
if #F = 1 then f* say F = {(fJF,P,fJF)} *f

if SMALLER-OR_EQUAL(/3,/JF) then begin
found:=true;
(/Ji, P, /3D:=(/3F, P, /3F);

end;
if not found then

forall (/3i, p, /3D E F do
forall (/3k,P,/3'tc) E Sons(/3i,P,/3D do

if SMALLER-OR-EQUAL(/3, /Jk) then
Fathers(/Jk, p, fJ'tc):= Fathers(/Jk, p, /31c)\ {(/Ji, p, /3:)};

end;

procedure SEARCH_TQP .J)ûWN_AUX(in (/Jcur,P), (/3,p); inout F);
begin

deeper:= f alse;
forall (/3k,P, /3'tc) E Sons(f3cur,P, f3~ur) do

if SMALLER-OR-EQUAL(/3, f3k) then begin
deeper:=true;
SEARCH_TOP .J)0WN_AUX((/3k,P), (/3p,P), F);

end;
if not deeper then

F:=F U {(/Jcur,P, /J~ur)};
end;

procedure SEARCH..BOTTOM_UP(in (f3cur,P), (/3,p); inout S)
begin

deeper:= f alse
forall (f3k,P,/3D E Fathers(f3cur,P,f3~ur) do

if SMALLER-OR-EQUAL(/Jk,/3) then begin
deeper:=true
SEARCH..BOTTOM_UP((/Jk, p), (/Jp,P), S)

end
else if SMALLER_QR_EQUAL(/Jk,/3) then

Sons(f3k, p, f31c):= S ons(fJk, P, /3D\ {(/3cur, P, f3~ur)};
if not deeper then

S:=S U {(/3cur,P, /J~r)};
end;

Figure 4.6: New algorithm of SEARCH

48

CHAP . THE ORI INAL PROGRAM 49

T
J.~JÎ) 1

~,t, •

T -• •
•
1

J_

Figure 4.7: Two opposite pathological Hasse diagrams

What if the searched element is present in the diagram? With the first method,
as we stop right when it is found, we shall look at ~ elements from both diagrams in
mean. Namely ~ x 2 = n tests"~". With the second method, ~ elements of sath will
be examined in mean with only one test "~". Then, one more test will be performed
to check the only element in F. That is ~ + 1 tests. But, ail the n elements of satw
will be examined with the first test. Hence, n + 1 test are performed.

And what if the searched element is not in the diagram? With the original
method, ~ elements of sath are examined on the average, and all n elements of satw
are examined. Moreover, this is clone twice, once with SEARCH_TOP -.DDWN and once
with SEARCH...BOTTOM_UP. Hence, respectively 2n and 4n tests "~" are performed.
With the new method, the numbeL--Q~es..i,_.s is exactly the same satw, but exactly
half of the tests are performed sath, that · n and 4n tests "~" are computed
respectively.

At the light of all th e figures, we can draw onclusions. The new search method
for an element in a H se diagram permits to each our goal of dividing the number
of tests by two, but only in some optim pathological cases like sath, when the
height of the diagra is maximum. it can also make no difference, or even be
worse than the origina ·n some other pathological cases, when the height
is minimum (=1).

And in practice? ln [15], statitics have been achieved about the shape of Hasse
diagrams appearing during evaluation of the programs we tested in the previous
chapters . Ali the average heights (including T and _!_) are ranging from 2.18 to 4.83
for an average number of elements (excluding appended T and J_) ranging from 1.21
to 6.56. That is, the diagrams are more or less "well organized", namely their height
is similar to their width. Moreover, these diagrams are not very big. So, we can hope
to win one or two tests "~" during each search, but it's not very significant. lndeed,
a few tests were achieved and no significant result appeared. On the other hand,
reexecution that was experimented in the previous chapter, leads to the creation of
more elements in the diagrams. So, with reexecution the new search may perhaps
become more interesting. But no test has been done to check that assumption.

CHAPTER 4. THE ORIGINAL PROGRAM 50

4.5.5 lmplementation of Hasse diagrams

Ali elements of a Hasse diagram are related to the same predicate. Moreover, we
always refer to a tuple in fonction of its predicate, but we never need to know to
which predicate a tuple is associated. So, to each representation in memory of a
predicate p, we associate a reference to its associated satp, but its not necessary
to store a refernece to p in the representation of a tuple of satP. Hence, a Hasse
diagram satp will be a set of pairs (/3in, f3out) instead of a set of tuples (/3in, p, f3out),

A sat always has at least two elements: (J_, _i) and (T, ?). Furthermore, each
element has fathers and sons, excepted (_i, _i) that has no son and (T, ?) that has
no father. Hence, a simple way of representing a satis to have just two references:
one to (_i, _i) and one to (T, ?). Ali other elements will be linked to these ones
by their relations father-son. As we do not know how many sons and how many
fathers an element of a diagram can have, we will implement these relationships
with linked lists of pointers. When a lattice is created, both pairs (_i, _i) and (T, ?)
are initialised and the first one is put in relation with the second one as its son.

As explained while we presented the dependency graph, each tuple must have a
boolean value that tells whether that particular tuple must be reconsidered or not.
By the way, to help to do statistics on the studied Prolog program, we can add a few
other boolean values that can tell whether the predicate is rec~ or not, locally
recursive or mutually recursive, ... It may be helpfl/1(1or reuse orth{ results by other
programs such as compilers. That was done in [1~. But it is just complementary
information and it is not necessary for the execution of the abstract interpretation
algorithm, so we will not speak about these complementary informations any more.

Lastly, we will add a pointer for the creation of the sets of fathers and sons by
procedure SEARCH. Thus, a set of sons is a linked list of elements of a sat. Let S
be the set. S is a pointer to the first element of the set. That elernent has pointer
to the second elernent and so on. To add an elernent to the list is easy, just copy
the pointer S in the new element of the set and make S point to that new element.
The same may be done for the set of fathers but, as an element of the set can not
be at the same time the father and the son of a new element, one pointer is enough
for both sets.

The declaration of the data types are shown on figure 4.8.

CHAPTER 4. THE ORIGINAL PROGRAM

struct srelationship{
node *parent;
struct srelationship *next;

};
typedef struct srelationship trelationship;

struct snode {

};

tas *betain;
tas *betaout;
short ToReconsider;
trelationship * f ather s;
trelationship *Sons;
struct snode *Set;

typedef struct snode tnode;

typedef struct {

};

tnode *top;
tnode *bottom;

Figure 4.8: Declarations for Hasse diagrams

51

Chapter 5

Clause prefix

The clause prefix technique is a rnethod for o tirnizing the generic abstract algorithrn
by execution of only the clauses that need t and even of only the parts of those
clauses that need it. Indeed, if we look at th execution of the original prograrn on
APPEND /3, figure 5.1, we can see that the sarn operation is done several tirnes. For
instance, the evaluation of the first clause is one three times, exactly the sarne.
And, in the second clause for which the execu ·on changes, both UNIF-FUN are
cornputed the same way. It is obvious that it wo ld be interesting to avoid those
redundant calculations.

In this chapter, we will describe and implernent a method to void these evalu
ations.

5.1 Theoretical background

5.1.1 Motivation

A predicate is reconsidered only if it is recursive (tail recursive, locally or mutually
recursive). And, in the original prograrn, every clause is reevaluated completely each
tirne the predicate is considered. But, the non-recursive clauses of the procedure
give the same result each time they are considered with the sarne input abstract
substitution. And if a clause is recursive1, ail the goals that corne before the first
recursive procedure call or the first goal that calls recursively that predicate are
unchanged. Hence, we airn to reconsider only the clauses that depend on an element
that has been updated, and only frorn the goal that depends on the updated element.

5.1.2 Formalization

The key idea of this optirnization is to modify the dependency graph. In the original
prograrn, the dependency graph just indicates that a predicate (say p1) depends on

1 A clause is said to be recursive if it belongs to a recursive procedure and it con tains a cal! to
that procedure, directly (locally recursive) or via a call to another procedure (mutually recursive).

52

CHAPTER 5. CLAUSE PREFIX

TRY CLAUSE 1
EXIT EXTC (Var(1),Var(2) ,Gro(3)) pa: (!,1)(2 ,2)
CALL UNIF-FUN (Var(l),Va.r(2),Gro(3)) ps: (1,1)(2,2)
EXIT UNIF-FUN (Gro(l) :0 ,Var(2),Gro(3)) ps: (2,2)
CALL UNIF- VAR (Gro(l):0,Va.r(2) ,Gro(3)) ps: (2,2)
EXIT UNIF-VAR (Gro(l) :0 ,Gro(2) ,G ro(2))
EXIT RESTRC (Gro(l):0,G ro(2) ,Gro(2))
EXIT UNION (Gro(l): 0 ,Gro(2),G ro (2))

EXIT CLAUSE l
TRY CLAUSE 2

EXIT EXTC (Va.r(l),Var(2),Gro(3),Var(4),Var(5),Var(6)) ps : (l,1)(2,2)(4,4)(5,5)(6,6)
CALL UNIF-FUN (Var(l),Var(2),Gro(3),Var(4),Var(5),Va.r(6)) ps: (l,1)(2,2)(4,4)(5,5)(6,6)
EXIT UNIF-FUN (Ngv(l): .(Var(2),Var(3)),Var(4},Gro(5),Var(2),Var(3),Var(6)) ps: (2,2)(3,3)(4,4)(6,6)
CALL UN IF-FUN (Ngv(l) :.(Var(2), Va.r(3)), Var(4),G ro(5), Var(2) , Var(3), Var(6)) ps: (2,2)(3,3)(4,4)(6,6)
EXIT UN IF-FUN (Ngv(l):.(G ro(2), Var(3)), Var(4) ,G ro(5): .(Gro(2) ,Gro(6)),Gro(2), Var(3),G ro(6)) ps : (3,3)(4 ,4)
CALL PRO-GOAL append(Var(l),Var(2),Gro(3)) ps : (l,!)(2 ,2)
EXIT PRO-GOAL append bollom
EXIT EXTG bollom
EXIT RESTRC bollom
EXIT UNION (Gro(l) :0,Gro(2),Gro(2))

EXIT CLAUSE 2
ADJUST
TRY CLAUSE l

EXIT EXTC (Var(l),Var(2),Gro(3)) ps: (l,1)(2,2)
CALL UNIF-FUN (Var(l),Var(2),Gro(3)) ps: (1,1)(2,2)
EXIT UNIF-FUN (Gro(!) :0 ,Va.r(2),Gro(3)) ps: (2,2)
CALL UNIF-VAR (Gro(l) :0 ,Var(2) ,Gro(3)) ps : (2 ,2)
EXIT UNIF-VAR (Gro(l):0,Gro(2),Gro(2))
EXIT RESTRC (Gro(l):0,Gro(2),Gro(2))
EXIT UNION (Gro(l):0,Gro(2),Gro(2))

EXIT CLAUSE l
TRY CLAUSE 2

EXIT EXTC (Va.r(l),Var(2),G ro(3), Var(4), Var(5),Var(6)) ps: (1 , l)(2 ,2)(4,4)(5,5)(6,6)
CALL UNIF- FUN (Var(l), Var(2),G ro(3), Var(4) , Var(5), Var(6)) ps: (!, 1)(2 ,2)(4,4)(5,5)(6,6)
EXIT UN IF-FUN (N gv(1) :.(Va.r(2), Var(3)) , Var(4),G ro(5), Var(2), Var(3), Va.r(6)) ps : (2,2)(3 ,3)(4 ,4)(6,6)
CA LL UN IF-FUN (N gv(l): .(Var(2), Va.r(3)),Var(4),G ro(5), Var(2), Var(3) ,Var(6)) ps : (2,2)(3,3)(4,4)(6,6)
EXIT UN IF-FUN (N gv(1): .(Gro(2), Va.r(3)), Var(4),G ro(5) :. (Gro(2),Gro(6)},G ro(2), Var(3),Gro(6)) ps: (3,3)(4,4)
CALL PRO-GOAL append(Va.r(!),Var(2) ,Gro(3)) ps: (l,1)(2,2)
EXIT PRO-GOAL append(Gro(l):0,Gro(2),Gro(2))
EXIT EXTG (Gro(l):.(Gro(2),G ro(3):0),G ro(4),G ro(5) : .(Gro(2),Gro(4)),G ro(2),G ro(3) :0,G ro(4))
EXIT RESTRC (G ro(l):.(Gro(2),Gro(3):0),Gro(4),G ro(5) :. (Gro(2) ,G ro(4)))
EXIT UNION (Gro(l),Gro(2),G ro(3))

EXIT CLAUSE 2
ADJUST
TRY CLAUSE l

EXIT EXTC (Var(l),Var(2),Gro(3)) ps: (l ,1)(2,2)
CALL UNIF- FUN (Var(l),Var(2),Gro(3)) ps: (l,1)(2 ,2)
EXIT UNIF-FUN (Gro(l) :0,Var(2) ,Gro(3)) ps: (2,2)
CALL UNIF-VAR (Gro(l) :0 , Var(2),Gro(3)) ps: (2 ,2)
EXIT UNIF- VAR (Gro(l) :0 ,Gro(2),Gro(2))
EXIT RESTRC (Gro(l):0,Gro(2),Gro(2))
EXIT UNION (Gro(l): 0 ,Gro(2),Gro(2))

EXIT CLAUSE l
TRY CLAUSE 2

EXIT EXTC (Va.r(l), Va.r(2) ,G ro(3), Var(4) , Var(5), Var(6)) ps: (1,1)(2 ,2)(4,4)(5,5)(6,6)
CALL UNIF-FUN (Var(l), Va.r(2) ,G ro(3), Va.r(4) , Var(5) , Var(6)) ps : (1, 1)(2 ,2)(4,4)(5,5)(6,6)
EXIT UNIF-FUN (N gv(l) :.(Var(2), Va.r(3)) , Var(4) ,G ro(5), Var(2) , Var(3) ,Var(6)) ps: (2 ,2)(3 ,3)(4,4)(6,6)
CA LL UN IF-FUN (N gv(l) : .(Var(2) , Va.r(3)) , Var(4) ,G ro(5), Var(2), Va.r(3). Var(6)) ps: (2 ,2)(3 ,3)(4,4)(6 ,6)
EXIT UN IF- FUN (N gv(l) :.(G ro(2), Var(3)), Var(4),G ro(5) :.(Gro (2),Gro(6)),G ro(2) , Var(3), G ro(6)) ps: (3 ,3)(4,4)
CALL PRO-GOAL append(Var(l),Var(2),Gro(3)) pa: (1 ,1)(2,2)
EXIT PRO-GOAL a.ppend(Gro(l),Gro(2),Gro(3))
EXIT EXTG (G ro(l) : .(Gro(2),G ro(3)),Gro(4) ,Gro(5):.(G ro(2) ,Gro(6)) ,G ro(2),Gro(3) ,G ro(6))
EXIT RESTRC (G ro(l) : .(Gro(2),G ro(3}) ,G ro(4) ,Gro(5) :. (G ro(2) ,Gro(6)))
EXIT UNION (Gro(l) ,Gro(2),Gro(3 })

EXIT CLAUSE 2

Figure 5.1: The Original Algorithm on append/3

53

CHAPT ER 5. CLAUSE PREFIX 54

another (say p2). We will add to the graph which clauses with predicate p1 depend
on p2 and for each of these clauses, the first goal that needs to be reconsidered. Since
a built-in never calls the procedure it belongs to, the reconsideration of a clause will
never begin at a built-in, only at a procedure call.

First, let us define what a clause prefix is.

Definition 15 Let c be a normalized clause and g1 , ... ,9m the successive procedure
calls in the body of c. Prefix i of clause c, say c[i], is simply clause c truncated after
procedure call 9i(l ~ i ~ m). The position (an integer) of the last goal of c[i]
in the clause c will be denoted by last(c[i]). To ease the presentation, we take
the convention that prefix 0, say c[0], will be the entire clause and last(c[0]) is
the position of the first goal, may be a built-in, in c. Let us denote nbproc(c[i])
the number of procedure calls in the clause c[i]. Note that last(c[i]), 1 < i ~ m
corresponds to the length of c[i] while last(c[0]) is always equal to 1.

Exemple:
Let c(...) : -bi, b2,g1, b3,g2, b4 be a normalized clause. We will consider the

following lines as prefixes of the clause c:

• c[2] = b1, b2,91, b3,g2

• c[0] = b1, b2,91, b3,g2, b4

Next, let us modify the definition of the dependency graph to include clauses
and clause prefixes.

Definition 16 A dependency graph dp is a set of tuples of the form ((/3, e), lt) where
e is a goal, a clause or a clause prefix and lt is a set { (a 1 , q1), ... , (an, qn) }(n 2 0)
such that, for each (/3, e), there exists at most one It such that ((/3, e), lt) E dp.

During the execution of a clause, only the prefixes a goal of which they depend
upon has been updated need to be reconsidered . The prefixes that can be avoided
are in the dependency graph. Other ones are removed by REMOVE_.DP, after
ADJUST at the end of the previous consideration. The index of such a first prefix
can be defined as

FP(/3,c) = min{i 1 (/3,c[i]) (/: dom(dp)(0 ~ i ~ nbproc(c))}

During the execution of a clause with substitution (3, let us name f3ext the current
substitution, namely the substitution which is the result of the previous goal and
the argument for the current goal. We will use logclaus e((J, c[i]) to represent the
value of f3ext before the execution of the goal last(c[i])(l ~ i ~ nbproc(c)).

AU the de-finitions given in the previous chapter can now be updated or general
ized to deal with clauses and clause prefixes and a few ones must be added.

CHAPTER 5. CLAUSE PREFIX 55

• EXTC(c,(3) is now used at the entry of a clause only if there is no prefix for
which the calculations can be avoided.

• G_ADDJ)P(in (3,p, c, i, a, q, inout dp) is a generalization of ADD_DP which
takes into account clauses and clause prefixes. lnformally speaking, this oper
ation updates the dependency graph for a goal p, the clause c in which the goal
appears, and ail the relevant clause prefixes (i.e. those including the procedure
call in position i).

procedure G_ADD_DP(in (3 , p, c, i, a, q, inout dp)
begin

ADDJ)P(/3,p, a, q, dp);
ADD_DP(/3, c, a, q, dp);
for k := i bf to nbproc(c) do

ADDJ)P(/3, c[k], a, q, dp)
end

• G-EXTJ)P(in (3,p, inout dp) will include clauses and clause prefi.xes too.

procedure G_EXT J)P(in (3, p, inout dp)
begin

EXT_DP(/3,p,dp);
for i := 1 to m with c1 , ... , Cm clauses of p do
begin

EXT J)P(/3, Ci, p);
for j := 0 to nbproc(ci) do

EXT J)P(/3, c[j],p)
end

end

• G_REMOVEJ)P(in modified, inout dp) is generalized in the sense that modi
fied is now a list of pairs (a1 , qi) where qi can either be a predicate, a clause
or a procedure call.

• G_EXTEND(in (3,p, inout sat) generalizes the operation EXTEND to initial
ize the prefixes.

procedure G_EXTEND(in (3,p, inout sat)
begin

EXTEND(/3, p, sat);
logclause(/3, c[O]) := EXTC(c, /3)

end

CHAPTER 5. CLAUSE PREFIX 56

• FIRST _pREFIX(,B, c) = (last(c[FP(,8, c)]), logclause(,B, c(FP(,8, c)])) is a fonc
tion defined in order to simplify the algorithm. It returns the first subgoal of
a clause to consider.

• MODIFIED_CLAUSES(,8,p) = {c 1 (,8,c) (/. dom(dp) and c is a clause of p}
is the set of ail clauses of procedure p to consider.

The new generic algorithm including clause prefixes is shown on figure 5.2

5.2 lmplementation

The implementation is an upgrade of the original program. It is easily clone with
a few modifications of the data types (elements of the Hasse diagrams, the de
pendency graph) and some changes in a few procedures (ADD_DP, REMOVE_DP,
SOLVE_CALL, SOLVE_GOAL, EXTEND). In this section, we shall explain those
transformations and discuss a few choices we had to do in order to obtain the best
possible result.

The implementation of the Hasse diagrams and the dependency graph in the
original program are explained in the previous chapter. We shall now extend them
in two phases. ln the first one, we will add clauses. The clause prefixes will corne
in the second phase. ln fact, the first phase is independent from the second one and
can be implemented alone.

5.2.1 Clauses

To each predicate p/n of a Prolog program P is associated a sat: satp/n· satp/n
is a set of tuples (.Bin, p, .Bout), where no two .Bm are equal and where .Bout is an
approximation of the result of (.Bin,p). It is implemented as a Hasse diagram. To
each element in the sats is associated a boolean value (ToReconsider that will be
abreviated to tr in the following) which indicates whether the corresponding pair
(,Bin, p) must be reconsidered or not. Now, we must know that for each clause of
the procedure. Further more, we do not reconsider each clause anymore, but we
still need to know the result of each of them. So, those results must now be stored.
Thus, we add to each element of sat a list of pairs made of a boolean value and a
substitution. There is one pair for each clause of p indicating whether this particular
clause is to be reconsidered or not and containing the resulting substitution of the
clause. Each element of a sat is now of the form:

where n is the number of clauses with predicate p and (bi,,Bi) (1 :'.Si :'.Sn) are the
pairs mentionned above.

Each element in the dependency graph (the one implemented, that is, the re
versed one) originally indicated what (ai, qi) had to be reconsidered if the pair

CHAPTER 5. CLAUSE PREFIX 57

procedure solve_call(in /Jin ,p, suspended; inout sat ,dp)
begin

if (/Jin ,p) ~ (dom(dp) U suspended) then
begin

if (/Jin ,p) ~ dom(sat) then
sat := G..EXTEND(/Jin,p,sat);

repeat
f3out • - J_,

SC := MODIFIED_c:LAUSES(/Jin,P);

G...EXT.DP(/Jin ,p,dp);

for all c E SC do
begin

solve....clause(/Jin ,p, c, suspended U { (/Jin ,p)} ,/Jau:,;, sat, dp);

/Jout : = UNION (/Jout, /Jau:,;)
end;
(sat,modified) := ADJUST(/3in,P,/3out,Sat);
REMOVE.DP(modi/ied, dp)

until (/Jin ,p) E dom(dp)
end

end

procedure solve_clause(in /Jin ,P, c, suspended; out f3out; inout sat,dp)
begin

(f,/Je:1:t) := FIRST...PREFIX(/Jin,c);
for i : = / to m with b1, . .. , bm body-of c do
begin

/Jaux := RESTRG(bi,/Jext);
switch (bi) of
case X; = X1c:

/3int := ALVAR(/Jau:,;)
case X; = f(.. .):

/Jint := AI.FUNC(/Jaux,f)
case q(.. .) :

logclause(f3in , c[i]) : = f3ext;
solve_call(/Jaux, q, suspended, sat, dp);
/3int : = sat (/Jaux, q) ;
if (/Jin ,p) E dom(dp) then

G..ADD.DP (/Jin ,p, c, i, /Jaux, q, dp)
end;
f3ext : = EXTG (bi, /Je:1:t , /Jint)

end;
f3out . - RESTRC (c, /Je:1:t)

end

Figure 5.2: The Algorithrn with the Clause Prefix Irnprovernent

CHAPTER 5. CLAUSE PREFIX 58

(/3,p) to which it is associated is reconsidered. Now, the elements will contain some
(ai, qi, Ci) where Ci is an integer identifying which clause of qi to reconsider.

We can now update a few procedure to handle these new data.

• The procedure ADD..DP just takes one more parameter, namely Ci and stores
it with the others in the dependency graph.

• The procedure REMOVE.DP, foreach element of the dependency graph ((/3,p),
lt) for w hich the pair (/3, p) has been reconsidered, sets the boolean value tr of
each (ai, qi) E lt to "to be reconsidered". It then destructs the graph. Now,
for each (ai, qi, Ci) E lt, it will also mark the boolean value corresponding to
the clause Ci (bi) as "to be reconsidered".

• The procedure EXTEND is slightly modified in order to correctly initialize the
new boolean values.

• The procedure SOLVE_CLAUSE is very slightly modified too. It just passes
the indice of the clause to the procedure ADD_DP.

• The procedure SOLVE_CALL is the one that is the most diffi.cult to change.
ln fact, we tried two ways of implementing it. Let us consider a procedure p
and its clauses Cj. To execute the clause p with the input abstract substitution
/3 is to execute every Ci with the {3 and to calculate the UNION of all resulting
abstract substitutions. We do not reconsider every clause any more, but it is
still necessary to calculate the UNION. That's why we need to store the result
of each clause.

A fust way of doing this is still to look at every clause, each at its turn. If
it must be reconsidered, it is clone and the UNION is calculated between the
result and the UNION of the previous da ses. Else, the result previously
stored is recalled and used to calculate the UNION. Hence, by that way, it is
still necessary to calculate a great number of UNION operations.

The second way makes it possible to reduce the number of UNION operations
to calculate. It is based on the fact that the UNION operation, in the domains
implemented, is "accumulative", namely the result of the operation is greater
t~ its arguments, and that the algorithms converges in a growing way toward
an-clement of µ(T SAT). It suffi.ces to compute the UNION between the results
of the reconsidered clauses and the result of the previous consideration of (/3, p).
Its main advantage is that it is not necessary to store the results of every clause
any more. The sat's are then of the following form:

(/3in, P, f3out, tr, { b1, • .. , bn})

Even if the second method is simpler, all the following has been clone with the
first implementation but time measurements have been clone with the second
one too and the precision of the dock is too weak to see a difference.

CHAPTER 5. CLAUSE PREFIX 59

5.2.2 Clause prefixes

In a second time, we will implement the notion of prefix and use it to reduce the
number of computations in the evaluation of a clause.

As explained in the previous section, we will only consider the prefixes that end
with a procedure call. During the first consideration of a clause, it is not possible
to know which prefixes could be avoided in the following reconsiderations. And, for
the first procedure call to reconsider, it is necessary to know what the substitution
calculated so far is. Thus, it is necessary to store the current abstract substitution
before each l ast (c[il).

Furthermore, when a procedure call arises, three steps are performed: the res
triction of the current substitution to the arguments of the call, the call in itself
and the extension of the result to the variables of the clause. If a procedure call
is the first considered of a clause, i.e. all the previous prefixes have been avoided,
then the first step will be exactly the same as the previous time it was clone. It can
be avoided too, simply by storing its result. So, for each prefix that begins with a
procedure call, two substitutions are saved. It is necessary to keep the first one even
if the second is sufficient for the call in order to compute the extension in the third
step.

Elements of sat's will now be of the form:

(/3in,P, f3out, tr, {(b1, 91, {(/3l, /3?), • • •, (/3f1 , /3t1)}), • • •,

where ni is the number of procedure calls in clause i, 9i (l_ ~ i ~ n) (1 ~ 9i ~ ni)
means that clause i must be reconsidered from prefix c[gi], f3f (l ~ i ~ n and 1 ~ j ~
ni) is the calculated substitution before the subgoal 9i and /3Ii (1 ~ i ~ n and 1 ~
j ~ ni) is the restricted substitution input of the subgoal 9i·

The implementation of the new data type for those structures is shown on figure
5.3. It is the ones presented in the previous chapter that are completed with linked
lists to store informations for each clause and for each clause prefix.

The dependency graph can now be completed to handle prefixes. An element of
the set lt of an element of that graph is now of the form

(O'.i, qi, Ci, 9i)

where O'.i is the input substitution of the predicate qi, Ci is the particular clause to
reconsider if (ai, qi) is reconsidered and 9i is the subgoal of Ci to be reconsidered.
When a pair (/3, p) is reexamined, ail the elements of its dependency graph are to be
reconsidered too, i.e. the tr boolean value associated to (/3,p,sat(/3,p)) must be set
to true, the boolean value bi associated to each clause Ci that must be reconsidered
is set to true too and, 9i the indice of the first goal of the clause to reexamine must
be set to the minimum of its current value and of the value stored in the element of
the dependency graph.

CHAPTER 5. CLAUSE PREFIX

struct srelationship [
node *parent;
struct srelationship *next;

};
typedef struct srelationship trelationship;

struct sgoal {

};

tas *betain;
tas *betarestr;
struct sgoal *next;

typedef struct sgoal tgoal;

struct sclause {

};

short ToReconsider;
int f irstgoal;
tgoal *goals;
struct sclause *next;

typedef struct sclause tclause;

struct snode {
tas *betain;
tas *betaout;
short ToReconsider;
tclause *clause;
trelationship * f athers;
trelationship *Sons;
struct snode *Set;

};
typedef struct snode tnode;

typedef struct {
tnode *top;
tnode *bottom;

};

Figure 5.3: Declarations for Hasse diagrams

60

CHAPTER 5. CLAUSE PREFIX 61

For instance, let us assume the following is an element of the dependency graph:

(({J,p), { ... , (a, q, c,g), .. . })

and let us assume the following is an element of satg:

(O'.in, q, O'.out, tr, { ... , (b, g', {({J1, {J'1), ... , ({Jn, fJ'n)}), .. •})

Then, when an examination of ({J,p) is over, that element of satg will become:

(O'.in, q, O'.out, true, { ... , (true, min(g, g'), {((J1, (J'1), ... , ({Jn, (Jin)}), . .. })

Procedures ADD_DP and REMOVK.DP can be updated easily in order to handle
new data in the way described above. EXTEND must be modified to initialize
correctly those new data.

Procedure SOLVE-CLAUSE is changed too with the adjunction of an initiali
sation of the indice of first subgoal to consider and of the current substitution just
before that subgoal with values stored in the sat.

5.3 The result: Append

Figure 5.4 displays the execution on the example we already looked at: APPEND/3.

A simple comparison with the execution of the original program on the same test,
as shown on figure 5 .1 , shows the obvious interest of this optimization.

CHAPTER 5. CLAUSE PREFIX

TRY CLAUSE l
EXIT EXTC (Va.r(l) ,Va.r(2),Gro(3)) ps: (1,1)(2 ,2)
CALL UNIF-FUN (Va.r(l),Va.r(2),Gro(3)) ps : (1,1)(2,2)
EXIT UNIF-FUN (Gro(l) :0 ,Va.r(2) ,Gro(3)) ps: (2 ,2)
CALL UNIF-VAR (Gro(l):0,Va.r(2),Gro(3)) ps : (2,2)
EXIT UNIF-VAR (Gro(l) :0,Gro(2) ,Gro(2))
EXIT RESTRC (Gro(l):0 ,Gro(2) ,Gro(2))
EXIT UNION (Gro(l):0,Gro(2),Gro(2))

EXIT c;,AUSE 1
TRY CLAUSE 2

EXIT EXTC (Va.r(l),Va.r(2),Gro(3),Ya.r(4) ,Va.r(5),Va.r(6)) ps: (1,1)(2,2)(4,4)(5,5)(6,6)
CALL UN IF-FUN (Va.r(l),Va.r(2),Gro(3), Va.r(4) ,Va.r(5),Ya.r(6)) ps : (1,1)(2 ,2)(4,4)(5 ,5)(6,6)
EXIT UNIF-FUN (Ngv(l) :.(Va.r(2),Va.r(3)),Va.r(4),Gro(5),Va.r(2),Va.r(3),Va.r(6)) ps : (2,2)(3 ,3)(4,4)(6 ,6)
CALL UNIF-FUN (Ngv(l) :.(Va.r(2),Va.r(3)),Va.r(4),Gro(S), Va.r(2),Va.r(3) ,Va.r(6)) ps : (2,2)(3 ,3)(4,4)(6 ,6)
EXIT UN IF-FUN (N gv(l):.(G ro(2), Va.r(3)),Va.r(4),Gro(5): .(Gro(2) ,Gro(6)) ,Gro(2), Va.r(3) ,G ro(6)) ps: (3,3)(4,4)
CALL PRO-GOAL a.ppend (Va.r(l),Va.r(2),Gro(3)) ps : (1 ,1)(2,2)
EXIT PRO-GOAL a.ppend boltom
EXIT EXTG boltom
EXIT RESTRC boltom
EXIT UNION (Gro(l): □,Gro(2),Gro(2))

EXIT CLAUSE 2
ADJUST
TRY CLAUSE 2

EXIT PREFIX (Ngv(l): .(Gro(2), Va.r(3)),Ya.r(4) ,Gro(5) :. (Gro(2) ,Gro(6)),G ro(2) , Va.r(3),Gro(6)) ps : (3,3)(4 ,4)
CALL PRO-GOAL a.ppend (Va.r(l) ,Va.r(2),Gro(3)) ps: (1,1)(2 ,2)
EXIT PRO-GOAL a.ppend (Gro(l):0,Gro(2),G ro(2))
EXIT EXTG (Gro(l): .(Gro(2),G ro(3): □),Gro(4),Gro(5):. (Gro(2),Gro(4)),G ro(2) ,G ro(3): 0 ,G ro(4))
EXIT RESTRC (G ro(l):.(Gro(2),G ro(3):0),G ro(4),Gro(5): .(Gro(2),Gro(4)))
EXIT UNION (Gro(l),Gro(2),Gro(3))

EXIT CLAUSE 2
ADJUST
TRY CLAUSE 2

EXIT PREFIX (Ngv(l) :.(Gro(2), Va.r(3)),Va.r(4),G ro(5):. (Gro(2) ,Gro(6)) ,Gro(2),Va.r(3),Gro(6)) ps: (3,3)(4,4)
CALL PRO-GOAL a.ppend (Va.r(l) ,Va.r(2) ,Gro(3)) ps : (1,1)(2 ,2)
EXIT PRO-GOAL a.ppend (Gro(l) ,G ro(2) ,Gro(3))
EXIT EXTG (Gro(l): .(Gro(2),Gro(3)),Gro(4),Gro(5): .(Gro(2),Gro(6)),G ro(2) ,Gro(3),G ro(6))
EXIT RESTRC (Gro(l) :.(Gro(2),Gro(3)),G ro(4),G ro(5):.(G ro(2),Gro(6)))
EXIT UNION (Gro(l),G ro (2) ,Gro(3))

EXIT CLAUSE 2

Figure 5.4: The Clause Prefix Algorithm on append/3

62

Chapter 6

Caching

6.1 Introduction

During execution of SolveGoal, a lot of abstract operations are executed. Many of
them are called with arguments already encountered. Obviously the result is the
same if there is no sicle effect. The idea of the Caching optirnization is to memoize
all abstract operations. So when the original algorithm computes a clause C, if C
wasn't considered by the Prefix version then all asbtract operations which make up
C have already been computed. So it's sufficient to find the result of each operation
(previously stored in a table). Furthermore we can trap some operations in Caching
normally computed in Prefix version.

Thus~e s ould expect that Caching will be as good as Prefix. Unfortunately
the mem · ~f n implies to rnaintain a table of all computed results a to look up
this tabl cache an operation already encountered. Thus the me~ion causes
a additional consumption of CPU tirne in cornparison with PrefiLJhen Prefix
avoids simply an operation, Caching must (a) call a fonction , (b) detect that the
result was already computed, and (c) return it.

Figure 6.1 depicts the execution of the append/3 prograrn. As it can be noticed,
all operations on the first clause as well as all operations up to the recursive call in
the second clause are cached and therefore autornatically reused by the algorithrn. In
this particular case, no further irnprovernent is brought by the caching irnprovement.
However, in other prograrns, other results will be shared.

6.2 The lmplementation

6.2.1 Memoization

For each abstract operation w we have a set Sw. If w is defined as:

63

CHAPTER 6. CACHING 64

CACHE~

CACHED

CACHED
CACHED
CACHED

CACHED

CACHED

CACHED
CACHED

CACHED

CACHED

CACHED
CACHED
CACHED

C ACHED

CACHED

CACHED
C ACHED

TRY CLAUSE 1
EXIT EXTC (Vu(l),Vu(2),Gro(3)) ps: {1,1)(2,2)
CALL UN IF- FUN {Vu{l),Vu{2),Gro{3}) ps: {1,1}{2,2}
EXIT UN IF-FUN (Gro(l) :[) ,Vu{2),G ro(3)) pa: (2,2}
C ALL UNIF-VAR {Gro(l):[) ,Vu(2),Gro(3)) pa: (2,2)
EXIT UNIF-VAR (Gro(l): [),Gro(2),Gro(2))
EXIT RESTRC (Gro(l) :[) ,Gro(2),Gro(2))
EXIT UNION (Gro(l) :() ,Gro(2),Gro(2))

EXIT CLAUSE l
TRY CLAUSE 2

EXIT EXTC (Vu(l),Var(2) ,Gro(3),Var(4),Vu(5) ,Va.r(6)) ps : (1 ,1)(2 ,2)(4,4)(5,5)(6,6)
CALL UNIF-FUN (Vu(l),Va.r(2),Gro(3),Vu(4) ,Vu(5),Vu(6)) ps: (l,1)(2 ,2)(4,4)(5,5)(6,6)
EXIT UN IF-FUN (Ngv(1):.(Vu(2),Vu(3)),Vu(4) ,Gro(5), Vu(2),Va.r(3) ,Va.r(6)) ps: (2,2)(3,3)(4,4)(6 ,6)
CALL UN IF-FUN (Ngv{l) :.(Vu(2),Vu(3)),Vu(4),G ro(5), Vu{2),Va.r(3),Var(6)) ps: (2,2)(3,3)(4,4)(6 ,6)
EXIT UN IF-FUN (Ngv(l):.(G ro(2) , Vu(3)} ,Va.r(4) ,G ro(5) :.(Gro{2),Gro(6)),G ro(2) , Va.r(3) ,G ro(6)) pa: {3,3)(4 ,4)
CALL PRO- GOAL a.ppend (Va.r(l) ,Vu(2) ,Gro(3)) ps: {1,1)(2,2)
EXIT PRO-GOAL a.ppend bo\\om
EXIT EXTG bo\\om
EXIT RESTRC bo\tom
EXIT UNION (Gro(l) :[),Gro(2),Gro(2}) k ps:

EXIT CLAUSE 2
ADJUST
TRY CLAUSE 1

EXIT EXTC (Var(l),Va.r(2),Gro(3)) ps: (1,1)(2 ,2)
CALL UNIF-FUN (Var{l) ,Va.r(2) ,Gro(3)) ps: (1,1)(2,2)
EXIT UNIF-FUN (Gro{l):[) ,Va.r(2) ,Gro(3)) pa: (2,2)
CALL UNIF-VAR (Gro(l):[),Var(2),Gro(3)) ps: (2,2)
EXIT UNlF-VAR (Gro(l):[) ,Gro(2),Gro(2)}
EXIT RESTRC (Gro(l):[) ,Gro(2),Gro(2))
EXIT UNION (Gro(1):[) ,Gro(2),Gro(2))

EXIT CLAUSE l
TRY CLAUSE 2

EXIT EXTC (Va.r(l),Va.r(2),Gro(3) ,Var(4) ,Var(5),Var(6)) ps: (1,1)(2,2)(4,4)(5 ,5)(6,6)
CALL UN IF-FUN (Var(!), Va.r(2) ,Gro(3), Va.r(4), Va.r(5) ,Var(6)) pa: (1,1)(2 ,2)(4,4)(5 ,5)(6 ,6)
EXIT UN IF-FUN (Ngv(l) :.(Var(2),Var(3)), Va.r(4) ,G ro(5) , Vu(2),Va.r(3),Vu(6)) ps: (2, 2)(3 ,3)(4,4)(6,6)
CALL UN IF-FUN (Ngv(l) :.(Vu(2),Va.r(3)),Vu(4},Gro(5), Var(2),Va.r(3),Va.r(6)) pa: (2,2)(3,3)(4,4)(6 ,6)
EXIT UN IF- FUN (Ngv(l): .(Gro(2) , Va.r(3)), Var(4),G ro(5):.(Gro(2),Gro(6)),Gro(2), Va.r(3),G ro(6)} ps: (3,3)(4 ,4)
RESTRG CACHED
CALL PRO-GOAL append(Va.r(l),Va.r(2) ,Gro(3)) p1: (! ,1}(2,2)
EXIT PRO-GOAL a.ppend(Gro(l) :[),Gro(2} ,Gro(2))
EXIT EXTG (Gro(l):. (Gro(2),Gro(3):[l),Gro(4) ,G ro(5) :.(Gro(2),Gro(4)),G ro(2),G ro(3):(),Gro(4))
EXIT RESTRC (Gro(1) :. (Gro(2) ,G ro(3):(l),Gro(4) ,G ro(5):.(Gro(2) ,Gro(4)))
EXIT UNION (Gro(l),Gro(2),Gro(3))

EXIT CLAUSE 2
ADJUST
TRY C LAUSE 1

EXIT EXTC (Va.r(l) ,Va.r(2) ,Gro(3)) ps: (1 ,1)(2,2)
CALL UNIF-FUN (Va.r(l) ,Va.r(2),Gro(3)) ps: (1,1)(2,2)
EXIT UNIF-FUN (Gro(l) :[).Vu(2),Gro(3)) pa: (2,2)
CALL UNIF-VAR (Gro(!) :[) ,Va.r(2) ,Gro(3)) ps: (2,2)
EXIT UN IF- VAR (Gro(l) :[) ,G ro(2) ,Gro(2))
EXIT RESTRC (Gro(l) :[) ,G ro(2),Gro(2})
EXIT UNION (Gro(l) :[) ,G ro(2),G ro(2))

EXIT CLAUSE 1
TRY CLAUSE 2

EXIT EXTC (Va.r(l),Va. r(2),G ro(3),Va.r(4),Var(5),Va.r(6)) ps: (1, 1)(2,2)(4,4)(5,5)(6,6)
CALL U N IF- FUN (Va.r(l),Va.r(2),Gro(3), Va.r(4),Var(5),Va.r(6)) ps: (1,1)(2 ,2)(4,4)(5,5)(6,6)
EXIT UNIF-FUN (Ngv(l) :.(Va.r(2) ,Va.r(3)), Va.r(4),G ro(5), Var(2), Va.r(3),Va.r(6)) ps: (2,2)(3,3)(4,4)(6 ,6)
CALL UN IF-FUN (Ngv(l) :.(Va.r(2) ,Va.r(3)), Va.r(4},G ro(5), Var(2) ,Va.r(3),Va.r(6)) po: (2,2)(3,3)(4,4)(6,6)
EXIT UN IF-FUN (Ngv(l):.(Gro(2) , Var(3)) ,Va.r(4),G ro(5):.(Gro(2),Gro(6)),G ro(2), Va.r(3),Gro(6)) ps: (3,3)(4 ,4)
RE STRG CACHED
CALL PRO-GOAL a.ppend (Va. r(l),Var(2),G ro(3)) ps: (1,1)(2 ,2)
EXIT PRO-GOAL a.ppend (G ro(l) ,G ro (2),G ro(3))
EXIT EXTG (G ro{l):.(Gro(2),G ro(3)),G ro(4),G ro(5):.(G ro(2), Gro(6)),G ro(2} ,G ro(3),Gro(6))
EXIT RE STR C (Gro{l):.(G ro(2),Gro(3)),G ro(4},Gro(S):.(G ro{2),G ro(6)))
EXIT UNIO N {Gro(l),Gro(2),Gro(3)}

EXIT CLAUSE 2

Figure 6.1: The Caching Algorithm on append/3

CHAPTER 6. CACHING

then Sw is defined as part of

(A1 X ... X An) X B

The irnplernentation of each operator w is replaced by:

let (a1, . . . , an) be the argument
if :3 XE B: ((a1, ... ,an),X) E Sw
then result +---- X
else y := w(a1, ... , an)

Sw := SwU {((a1,••·,an),y)}
result := y

65

This definition ensures us that operator w is evaluated only once for each argument.
The set Sw is implemented with a hash table. All the elernents that hash to

the sarne slot are put in a linked list. To build the chain, we take cells from big
overfl.ow tables allocated at the beginning of execution. This allows us to save time
and memory by avoiding to break the memory space into little segments. When
some arguments are substitutions, it may be very expensive to apply an equality
test when looking for an element in tables. The solution is explained in the next
chapter. The data type is the same for all sets even though arguments and results
are different from one operator to another. Following definitions are necessary to
understand how this is possible.

Let n be the set of all operators that we wish to memoize. Let us define

maxarity = max arity (w)
wEO

cardo = UO
if the arity of Wi is smaller than maxarity, we extend its domain with a set STU F F
as many times as it is necessary to obtain an arity maxarity. STU F F is a set
without importance that you can fix to N for instance. So each operator is defined
now as:

W : Af X • •. X A~axarity --+ Bw

We define
Doi = Ai1 + ... + Aicard0 Vi 1 ::; i ::; Cardo

Co= BWJ + .. . + BWcardo

We have now a generic operator I defined as:

1 : Do1 X ... X Domaxarity --+ Co

Soif a memoization process exists for,, we can systematically apply it to other
operators. The disjoint union + is defined as union U except that if x E A+ B
it is always possible to know if x E A or x E B . The disjoint union + may easily
be implemented with a typecasting (or a union data structure) in the C language.
Thus the sets Sw may have the same definition for each operator. It allows us to
use the same code for every operator without loss of time.

CHAPTER 6. CACHING 66

6.2.2 Abstract Substitutions

ln the previous implementation, the comparison of two substitutions implies an
exam of the content. This one requires an heavy computation which can be avoided
if substitutions have an unique representation in memory. This property insures
us that if x and y are two C-variables denoting substitutions, then we have the
following property (using the C language notation, &x denotes the address where
the content of x is stored)

X == y =? &x == &y

So we avoid a time consuming equality test at the time of looking for the presence
of an argument in Sw. We compare only two pointers instead of two substitutions.
We introduce here a definition:

Definition 17 [Direct Substitution] a direct substitution is a pointer to a substi
tution that may be modified at any time by its creator only. Let D be the set of all
possible direct substitutions.

Let I C N be the set of all identifiers which are available. Let S be the set of
all substitutions used at a time. S is defined as

ScDxNxN

where the first component is a pointer to a substitution, the second is a reference
counter and the third an identifier (if s E S and s = (a, b, i) then i denotes the real
address of s in rnernory).

When a procedure has to build a new substitution, it uses local rnemory to con
struct the substitution, then invokes the procedure N ewSubst in order to update
the set S. N ewSubst returns an identifier referring to the substit~~- The proce
dure rnay destroy the substitution in local memory and continue ~work with the
identifier. When a procedure has to destroy a substitution belonging to S, it calls
RemoveSubst in order to update S. ln no way a procedure can modify directly a
substitution belonging to S.

When the program starts, S and / are initialized to 0 and N. NewSubstO and
RemoveSubstO are respectively the constructor and destructor for the abstract sub
stitutions. Their definition are:

The Constructor NewSubstO: D --+ D x N x N

pre S = So
I = Io
let d be the argument

post if :3(e, r, i) E S : e and d represent the same substitution

CHAPTER 6. CACHING

then S = So((d, r, i)--+ (d, r + 1, i))
else I = 10 - {j} where j E Io

S = S0 U {(e, 1,j)} where e = copy(d) =

Copy(•) returns a pointer to a copy of its argument. This operation consumes
CPU time but it is necessary to maintain the integrity of the set S.

The destructor RemoveSubstO: D x N x N----+ 0

pre let (d, r, i) the argument
S= So
(d, r, i) E S0 and r > 0

post S = S0 ((d,r,i)--+ (d,r -1,i))

67

The set S is implemented with a hash table. Its organization is the same as
for memoization tables. When a reference counter becomes null, the substitution
associated to this entry should be destroyed and the ceil should be extracted from
the linked list. This policy impairs the performances of memoization. So cells with
a null reference counter are let in the list and the substitution is not destroyed.
Consequently unused substitutions may cause some problems when the available
memory becomes critical. When it occurs it is necessary to release ail the ceils (and
their substitutions) with a null reference counter.

6.2.3 Memory Cleaning

It's obvious that keeping unreferenced substitutions alive in memory is mandatory.
This ensures us these two conditions:

• a substitution result (an identifier) returned by me~n is always valid

• when an_!~r matches with an other identifier stored among the arguments
of a mer~on table, these two identifiers represent the same substitution.

Now, this may cause an memory overflow which would not occur if unused sub
stitutions were destroyed. A call to a cleaning procedure when we detect a lack of
memory solves this problem. But it's necessary to modify the memory management.
We redefine Sas

ScDxN x NxN

where the fourth component is a magic number and the rest as before. The magic
number helps us to garantee the integrity of the set S. When a substitution in S is
modified, its magic number is incremented. So ail references to the old substitution
can be detected and managed in consequence to avoid a conflict.

The constructor is redefined as: NewSubstl : D ----+ D x N x N x N

CHAPTER 6. CACHING

pre let d the argument
S = Sa
l = la

post if 3(e, r, i, m) E Sa : e and d represent the same substitution
then S = Sa((e,r,i,m)-t (e,r + 1,i,m))

result= (e,r+l,i,m)
else 3(!, s,j, m) Ela

l = la - {(f,s,j,m)}
S = Sa U {(d', l,j, m + 1)} where d' = copy(d)
result= (d',1,j,m+l)

lis here a set which collects ail unused tuples (and their identifiers).
The destructor is redefined as: Removesubstl: D ----t D x N x N x N

pre let (d, r, i, m) the argument
8= Sa
l = la
(d,r,i,m) E Sa /\ r > 0

post S = Sa((d, r, i, m) -t (d, r - 1, i, m))

The procedure Clean to remove ail unused substitutions is defined as:

pre S = Sa
l = la
(d, r, i, m) El ⇒ r = 0

post (d, r, i, m) ES{=> ((d, r, i, m) E Sa)/\ (r #- 0)
(d,r,i,m) El{=> ((d,r,i,m) E Sa U la)/\ (r = 0)

68

The procedure Clean examines each entry of the hash table (and the associated
linked list). Each cell whose reference counter is null, is removed from the hash
table and the substitution is physically destroyed to release its memory space. It's
very important to increase its magic number to prevent memoization to reuse a bad
substitution. The memoize process must manage explicitly this magic number to
verify if an identifier is valid or not. Now, a substitution is identified by its identifier
(third component) inside a hash table and the magic number is needed to identify
the substitution while the program runs.

The memoization process bas to be rethought:
Let' s define

W : A1 X ... X An ----t B

Then Sw is defined as

(A1 X ... X An) X B X (!/ X -~· X N)
m elements

CHAPTER 6. CACHING 69

where m (resp. p) is the numberof sets in (A1, .. . , An, B) (resp. (A1, ... , An)) repre
senting substitutions. Let (i1 , ... , ip) be the indexes of substitutions in (Ai, ... , An)
Let (a1 , ... , an) be the argument. Memoization is implemented as depicted in figure
6.2

6.3 Performances

We shall examine each algorithm to discuss its performance and its implementation.

6.3.1 The Memory Manager For The Substitutions

The time consuming operations are the hash fonction and the search of a substitution
in the hash table. Since the substitutions are represented in a unique way, the hash
fonction may be computed directly on the bytes composing a substitution. If (bi)Ï
are the n bytes composing the substitution 0 then

hash(O)=hash((bi)ï)=bn xor 3 x hash((bi)f-1) if n ~ l
0 otherwise

The hash fonction is domain-specific and uses only worthwhile fields (mode, same
value and pattern for the type domain). There is less than 30% of collisions. It is
extremely fast to test if an entry in the hash table is equal to a substitution since
two substitutions have the same representation.

6.3.2 The Memo~zation Process _,,
The search in a me~tion table is extremely fast. The hash fonction is the same
as for substitutions.~ test the equality of two entries it's suflicient to test some
integers. Substitutions (identifiers/pointers) returned by memoization are always
valid except if some garbage collection is clone (procedure clean).

CHAPTER 6. CACHING

procedure(in a1 , ... , an,out X,in Yi, ... , Yn)
begin

if :l((a1, ... , an), X, (Yi, ... , Ym)) E Sw where X, 1-'i are unknown
then begin

if (magic(S,aj.) = 1-'i Vi E {1, ... ,p})
A(X is a substitution:::} magic(S, X)= Ym)

then R := X
else begin

R := w(a1, ... , an)
Zi := magic(S, ai.) Vi E {1, ... , p})
if R is a substitution
then Zm := magic(S, R)

70

Sw := Sw(((a1,, .. ,an),X,(Yi, ... ,Ym))-+ ((a1, ... ,an),R,(Z1,••·,Zm)))
end

end
else begin

R := w(a1, ... , an)
Zi := magic(S,ai.) Vi E {1, ... ,p})
if R is a substitution
then Zm := magic(S, R)
Sw := Sw U {((a1, ... , an), X, (Yi, ... , Ym))-+ ((a1, ... , an), R, (Z1, ... , Zm))}

end
result := R

end

magic(S, x) represents the magic number associated with x in the set S.The
memoization process is, as previously explained, generic for ail cached operations.

Figure 6.2: Memoization Procedure

Chapter 7

Experimental Evaluation

In this section, we report our experimental results on the optirnization techniques. In
the following, we denote respectively by Pascal, Original, Prefix and Caching
(Pa,Or,Pr,Ca for short) the original algorithm coded in Pascal, the original algo
rithm coded in C with a number of optimization techniques on the domain implemen
tation, the algorithm with the clause prefix improvement, and the algorithm with
the caching improvement. The optimization techniques of Original over Pascal in
clude a lazy computation of the transitive closure of the sharing component (i.e. call
by need) and a data-driven implementation (instead of a straightforward top-clown
implementation) of various operations on substitutions (in particular the unification
operation).

Section 7.1 describes the programs used in the experiments. Section 7.2 describes
the computation times of the algorithms. Section 7.3 describes the number of oper
ations on substitutions performed by each of the algorithms and the bit-ratios of the
caches. Section 7.4 depicts the time distribution between control and abstract oper
ations as well as the time distribution among the various abstract operations, while
Section 7.5 reports the memory consumption of the algorithms. Finally, Section 7.6
gives the results on a simple abstract domain.

7.1 The Programs

The programs we use are hopefully representative of "pure" logic programs (i.e.
without the use of dynamic predicates such as assert and retract). They are
taken from a number of authors and used for various purposes, from compiler writ
ing to equation-solvers, combinatorial problems, and theorem-proving. Hence they
should be representative of a large class of programs. In order to accommodate the
many built-ins provided in Prolog implementations and not supported in our current
implementation, some programs have been extended with some clauses achieving the
effect of the built-ins. Examples are the predicates to achieve input/output , meta
predicates such as setof, bagof, arg, and functor. The clauses containing as sert
and retract have been dropped in the one program containing them (i.e. Syntax

71

~&Y~ ~ ~ &~ P\,O~ ~

""" L~.LL .L ~ ..,,,,v~ n,
CHAPTER 7. EXPERIAiE,\A~ EEJ'.ATION

error andli g ·n the reader program). ~ ~r
72

Tlie progra kalah is a program which plays the game of kalah. It is taken
m (22) and · plements an alpha-beta search procedure. The program press is

n equation- olver program taken from (22) as well. We use two versions of this
terestin program. The first version is the standard version (press1) while the

se version (press2) has a goal repeated in the program (i.e. a goal is executed
twice in a clause). The two versions illustrate a fact often neglected in abstract
interpretation. A more precise domain, although requiring a higher cost for the
basic operations, might in fact be much more efficient since fewer elements in the
domain are explored. The repetition of some goals in the Press program allows us to
simulate a more precise domain (and hence to gain efliciency). The program es is a
cutting-stock program taken from (23). It is a program used to generate a number of
configurations representing various ways of cutting a wood board into small shelves.
The program uses, in various ways, the nondeterminism of Prolog. The program
Disj is taken from [9] and is the generate and test equivalent of a constraint program
used to solve a disjunctive scheduling problem. This is also a program using the
nondeterminism of Prolog. The program Read is the tokeniser and reader written by
R. O'keefe and D.H.D. Warren for Prolog. It is mainly a deterministic program, with
mutually recursive procedures. The program PG is a program written by W. Older
to solve a specific mathematical problem. The program Gabriel is the Browse
pro gram taken from Gabriel benchmark. The program Plan (PL for short) is a
planning program taken from Sterling & Shapiro. The program Queens is a simple
program to solve the n-queens problem. Peep is a program written by S.Debray to
carry out the peephole optimization in the SB-Prolog compiler. It is a deterministic
program. We also use the traditional concatenation and quicksort programs, say
Append and Qsort (difference lists).

7.2 Computation Times

We give two versions of the computation times. Table 7.1 depicts the results with
the sharing represented by characters (i.e. bytes) while Table 7 .2 depicts the results
with the sharing represented by bits. The first four columns present the computation
times in seconds while the last five columns present the improvement in percentage
(i.e. P1-P2 denotes (P1-P2)/P1).

As far as the character version is concerned, Caching produces an improvement
of 58.42% compared to the original version in Pascal. Caching also produces an
improvement of 28.31 % compared to the original version in C. Programs Read and
Peep are those producing the least improvement (44.53% and 49.67%) while Disj
and Kalah produce the best improvement (73.49% and 68.63%). Ali the times are
below 10 seconds except Press1 and Read which require respectively 25.62 and
25.37 seconds. Prefix is marginally faster than Caching. It produces an average
improvement of 58.49% over the original implementation and 28.38% over the im-

CHAPTER 7. EXPERIMENTAL EVALUATION 73

Program Pa Or Pr Ca Pa-Or Pa-Pr Or-Pr Pa-Ca Or-Ca
Append 0.06 0.02 0.01 0.01
Kalah 17.82 9.20 6.33 5.59 48.37 64.48 31.20 68.63 39.24
Queens 0.37 0.22 0.15 0.16 40.54 59.46 31.82 56.76 27.27
Press1 65.91 37.89 28.82 25.62 42.51 56.27 23.94 61.13 32.38
Press2 19.52 11.53 8.65 8.36 40.93 55.69 24.98 57.17 27.49
Peep 11.34 7.14 5.79 6.29 37.04 48.94 18.91 44.53 11.90
CS 16.02 7.93 5.70 5.92 50.50 64.42 28.12 63.05 25.35
Disj 12.26 6.75 3.03 3.25 44.94 75.29 55.11 73.49 51.85
PG 1.79 1.11 0.86 0.76 37.99 51.96 22.52 57.54 31.53
Read 50.41 30.26 24.42 25.37 39.97 51.56 19.30 49.67 16.16
Gabriel 4.88 2.89 1.95 2.06 40.78 60.04 32.53 57.79 28.72
Plan 1.26 0.71 0.59 0.60 43.65 53.17 16.90 52.38 15.49
QSort 0.56 0.34 0.22 0.23 39.29 60.71 35.29 58.93 32.35
Mean 42.21 58.49 28.38 58.42 28.31

Table 7.1: Computation Times of the Algorithms and Percentages: Character Ver
s10n

Program Pa Or Pr Ca ¼Pa-Or ¼Pa-Pr ¼Or-Pr ¼Pa-Ca ¼Or-Ca
Append 0.06 0.03 0.02 0.02
Kalah 17.82 13 .52 9.30 7.95 24.13 47.81 31.21 55.39 41.20
Queens 0.37 0.30 0.18 0.18 18.92 51.35 40.00 51.35 40.00
Press1 65 .91 53.03 40.52 34.68 19.54 38.52 23 .59 47 .38 34.60
Press2 19.52 16.06 12.23 11.32 17.73 37.35 23 .85 42.01 29 .51
Peep 11 .34 9.98 8.08 8.62 11.99 28.75 19 .04 23.99 13.63
CS 16.02 11.67 8.49 8.43 27.15 47.00 27 .25 47 .38 27 .76
Disj 12 .26 9.97 4.49 4.64 18.68 63 .38 54.96 62 .15 53.46
PG 1.79 1.53 1.19 1.09 14.53 33.52 22.22 39.11 28.76
Read 50.41 43 .36 35 .51 35 .82 13.99 29.56 18.10 28.94 17.39
Gabriel 4.88 4.13 2.74 2.73 15.37 43.85 33.66 44.06 33.90
Plan 1.26 0.99 0.80 0.78 21.43 36.51 19.19 38.10 21.21
QSort 0.56 0.47 0.32 0.28 16.07 42.86 31.91 50.00 40.43
Mean 18.29 41.70 28.75 44 .15 31.82

Table 7.2: Computation Times of the Algorithms and Percen t ages: Bit Version

CHAPTER 7. EXPERIMENTAL EVALUATION 74

Program Original Pretix Caching
Kalah 31.95 31.94 29.69
Queens 26.67 16.67 11.11
Pressl 28.55 28.87 26.12
Press2 28.21 29.27 26.15
Peep 28.46 28.34 27.03
CS 32.05 32.86 29.77
Disj 32.30 32.52 29 .96
PG 27.45 27.73 30.28
Read 30.21 31.23 29.17
Gabriel 30.02 28 .83 24.54
Plan 28.28 26.25 23 .08
QSort 27.66 31.25 17.86
Mean 29.32 28.81 25.40

Table 7.3: Percentage Gained By Using Characters on the Algorithms

proved implementation in C. Ali the programs are stili under 28 seconds and Prefix
loses around 3 seconds on one of the big programs.

As far as the bit version is concerned, Caching produces an improvement of
44.15% over the Pascal implementation (Booleans are not coded as bits by the Pascal
compiler) and 31.82% over the improved C implementation. Ali programs still run
below 12 seconds except Press1 and Read which take respectively 34.68 and 35.82
seconds. Prefix is slower with an average improvement of 41.70% over the Pascal
implementation and an average of 28.75% over the improved C implementation.

The results seem to indicate that the more costly the abstract operations, the
more attractive caching will be. On our domain, the character implementation of
sharing (which is the fastest) produces a gain of 0.07 % in favor of Prefix while the
bit implementation produces a gain of 2.45 % in favor of caching. We discuss this
result later in the paper in light of other results.

The above results compare weli with the specialized algorithms of [25, 11). On
Peep, Read and PG, their best programs achieve respectively 22.52, 60.18 and 3.25
on a SUN 3/50. This means that our algorithm is respectively 3.89, 2.46, 4.27 times
faster on a SPARC-1 (which is around 2-4 times faster). Moreover, our algorithms
are executed on a more sophisticated and accurate domain than the one used in
(25, 11]. ln particular, our domain also includes sharing and pattern information
omitted in [25, 11).

Table 7 .3 indicates the gain of using characters instead of hi ts on Original,
Prefix and Caching for the sharing components. The improvement obtained is
fairly consistent among the algorithms and is in general about 26-27%.

ln short, the two improvements produce substantial gain in efliciency. Even after
a gain of around 40% obtained by the C implementation by refining the abstract
domain algorithms, they still produce an improvement of around 30%. Depending
upon the implementation of the sharing component (to favor memory or speed),

CHAPTER 7. EXPERIMENTAL EVALUATION 75

Operation Or Pr Ca Ca eval ¼ Or-Pr ¼ Or-Ca ¼ Or-Ca eval
COMPARE 7294 5994 3493 1736 17.82 52.11 76.20
SMALLER 24840 20390 13329 8428 17.91 46.34 66.07
EXTEND 3416 2370 3416 987 30.62 0.00 71.11
ALTEST 934 565 934 462 39.51 0.00 50.54
ALIS 513 303 513 240 40.94 0.00 53.22
ALVAR 896 615 896 566 31.36 0.00 36.83
AI..FUNC 13916 9086 13916 8208 34.71 0.00 41.06
EXTG 4982 3879 4982 3334 22.14 0.00 33.08
RESTRG 4982 2942 4982 2442 40.95 0.00 50.98
EXTC 5170 3388 5170 3388 34.47 0.00 34.47
RESTRC 5170 4325 5170 2704 16.34 0.00 47.70
UNION 9068 8468 9068 5349 6.62 0.00 41.01

Table 7.4: Number of Abstract Operations on ail Programs for ail Algorithms

Caching is slower (character version) or faster (bit version) than Prefix. Finally,
the algorithm efficiency is at least as good as the best specialized tools available
for these tasks, although it uses a more sophisticated domain and provides more
accurate results (see [15] for details).

7.3 Number of Abstract Operations

To avoid considering the specificities of our implementation, we now give a more ab
stract view of the efficiency of the algorithms: the number of operations on abstract
substitutions performed by the various algorithms. The results are summarized in
Table 7.4 and depicted in detail in Tables A.l, A.2, A.3, A.4, A.5, A.6, A.7, A.8,
A.9, A.10, A.11, A.12 given in the Appendix.

Table 7.4 contains, for each abstract operation on all benchmark programs, the
number of calls in algorithms Original, Prefix and Caching. CA eval also gives
the number of calls in Caching which are really evaluated (all the others being
cached). Finally, it gives the percentage of operations saved for each of the improve
ments. Besicles the traditional operations such as RESTRG and EXTG, results are also
given for COMPARE (i.e. comparing two substitutions and returning equal, smaller,
greater, or not comparable), SMALLER (i.e. testing if a substitution is smaller than
another substitution), ALTEST (i.e. the built-in arithmetic comparisons) and ALIS
(i.e. the fonction is of Prolog). Note also that operation EXTG is only performed
for procedure calls and is integrated into operations UNIF _FUNC and UNIF _vAR for
built-ins.

The ratio DR-PR indicates the percentage of calls saved for each of the operations
by Prefix over the original algorithm. Ralf of the operations have a ratio of over
30% reaching peaks of about 39% and 41 % for ALTEST and ALIS. The time con
suming operations UNIF _VAR, UNIF ..FUNC and EXTG dealing with unification achieve
improvements of about 31, 34, and 22%.

CHAPTER 7. EXPERIMENTAL EVALUATION 76

The ratio OR-CA eval indicates the percentageof executed calls saved by Caching.
These ratios are rnuch higher than in the case of Prefix including peaks of 76 and
71 % for COMPARE and EXTEND and 36, 41, and 33% on the unification operations.
This seerns to indicate and to confirm the results of our previous section that, the
more costly the abstract operations, the more attractive will be Caching. When only
unification instructions which are concerned (i.e. UNILVAR, UNIF ...FUNC, EXTG) are
considered, Caching produces a 7% improvement over Prefix and a 36% improve
ment over Original. Given the overhead for handling the caches, this fits nicely
with the results observed for computation times.

The ratio OR-CA gives the number of calls to the operations spared by Caching.
Caching basically calls the same operations as Original (but rnany of thern are
trivially perforrned through caching) except in the case where sorne operations are
called inside operations. This is true for SMALLER and COMPARE where the number
of calls is substantially reduced. .

The lowest improvement occurs for EXTG which was to be expected since this is
the instruction executed just after a goal. Each time the output of an abstract tuple
has been updated, EXTG has to be evaluated. On the other hand, EXTEND has the
highest improvement which is not surprising since this is the operation performed
first when an abstract tuple is considered. The rnost important differences between
Caching and Prefix appear in operations UNION and RESTRC, no difference occurring
in EXTC. The last result is easily explained since different clauses very often have
a different number of variables in their normalized versions. The former result is
explained by the fact that Pref ix has in fact little to offer for the above operations.
For instance, RESTRC is only avoided when the whole clause is not reconsidered.

As far as the individual tables are mentioned, a few facts deserve to be men
tioned. Read seerns to be very peculiar, mainly due to the fact that the program is
highly mutually recursive and that the domain is not particularly adequate for the
prograrn (see [15] for a discussion of this). As a consequence, it requires many ite
rations, exhibits excellent ratios for EXTEND, RESTRC, but rather lower improvements
in general. Disj, on the other hand, has excellent ratios alrnost everywhere due to
its tail-recursive nature (and its substitution-preserving property (see [14, 15])).

7 .4 Time Distribution

ln this section, we investigate the distribution of the computation time in various
categories, including the abstract time (the time spent in the abstract operation),
the control time (the total time - the abstract time), and the cache time (the time
taken in managing the caches).

Table 7 .5 describes the time distribution for caching. TT is the total time, TA the
abstract tirne, TC the control time, and TH the cache time. TA is in fact a lower bound
on the abstract time since an abstract operation is never reexecuted. Moreover , some
of the operations (i.e. ADJUST and EXTEND) are not included. The reason is that, on

CHAPTER 7. EXPERIMENTAL EVALUATION 77

Program TT TA TC TH TA¼TT TC1/.TT TH1/.TT
Kalah 5.59 5.03 0.56 0.23 90 10 4
Queens 0.16 0.14 0.02 0.00 87 13 0
Press1 25.62 22.48 3.14 2.37 88 12 9
Press2 8.36 7.36 1.00 0.89 88 12 10
Peep 6.29 5.70 0.59 0.57 90 10 9
CS 5.92 5.60 0.32 0.32 94 6 5
Disj 3.25 3.00 0.25 0.25 92 8 7
PG 0.76 0.73 0.03 0.03 96 4 4
Read 25.37 23.73 1.64 1.40 93 7 5
Gabriel 2.06 1.80 0.26 0.16 87 13 8
Plan 0.60 0.52 0.08 0.02 87 13 3
Qsort 0.23 0.17 0.06 0.04 74 26 12

Table 7.5: Distribution of Computation Times for Caching

Program TT TA TC TA1/.TT TC1/.TT
Kalah 9.22 8.89 0.33 96.42 3.58
Queens 0.24 0.22 0.020 91.67 8.33
Press1 38.21 37.44 0.77 97.98 2.02
Press2 11.58 11.47 0.11 99.05 0.95
Peep 7.17 7.15 0.02 99.72 0.28
CS 7.09 7.09 0 100.00 0.00
Disj 6.79 6.79 0 100.00 0.00
PG 1.07 1.07 0 100.00 0.00
Read 30.27 30.03 0.24 99.21 0.79
Gabriel 2.96 2.88 0.08 97.30 2.70
Plan 0.74 0.68 60 91.89 8.11
Qsort 0.34 0.32 20 94.12 5.88

Table 7.6: Distribution of Computation Time for Original

the one hand, these operations contain suboperations that are included, and, on the
other hand, much of the remaining time is spent in the updating of the set of abstract
tuples which is best considered as control. The ratios TAY.TT, TCY.TT and THY.TT give
the percentage of the total time spent in the abstract time, the control time, and
the cache time. The results indicate that about 90% of the time is spent in the
abstract operations. PG and CS are the most demanding in terms of abstract time,
which is easily explained as they manipulate large substitutions and make relatively
few iterations (especially CS). The results also indicate that the cache time takes a
significant part of the control time, including 10% on Press2. However , assuming
a no-cost irnplementation of the control part, only about 10 % can be saved on the
computation times. This indicates that the room left for improvement is rather
limited.

Table 7.6 depicts the same results (except the cache time) for the original pro-

CHAPTER 7. EXPERIMENTAL EVALUATION 78

Program TT TA TC TA¼TT TC¼TT
Kalah 6.46 6.21 0.250 96.13 3.87
Queens 0.15 0.12 0.030 80.00 20.00
Press! 29.4 28.82 0.430 98.03 1.97
Press2 8.85 8.45 0.400 95.49 4.51
Peep 5.86 5.74 0.12 97.95 2.05
Cs 5.87 5.67 0.2 96.60 3.40
Disj 3.03 3.03 0.00 0.00 0.00
Pg 0.86 810 0.05 94.19 5.81
Read 25.12 24.73 0.39 98.44 1.56
Gabriel 1.93 1.89 0.04 97.93 2.07
Plan 0.56 0,52 0.04 92.86 7.14
Qsort 0.23 0.2 0.03 86.96 13.04

Table 7.7: Distribution of Computation Time for Prefix

Program SMALLER AI-TEST AI-IS AI-VAR AI-FUXC EXTG RESTRG EXTC RESTRC UXIOX
Kalah 0.38 2.17 3.31 0.57 38.72 45.23 0.85 1.79 1.98 5.00
Queens 0.00 9.76 4.07 0.00 45.53 30.08 0.81 2.44 2.44 4.88
Press! 1.33 1.11 1.60 0.53 42.72 41.44 1.33 2.26 1.86 5.81
Press2 0.68 0.68 1.50 0.41 46.92 38.99 1.50 2.19 2.05 5.06
peep 0.18 0.26 0.09 7.50 53.09 25.31 1.23 2.65 3.70 6.00
CS 0.17 0.95 3.02 1.04 39.60 49.27 0.78 0.86 1.81 2.50
Disj 0.32 0.10 1.16 0.10 58.05 36.06 0.84 1.16 1.16 1.06
PG 1.37 0.14 4.93 1.37 41.37 40.14 1.51 2.47 2.33 4.38
Read 0.66 3.01 0.16 2.10 45.76 38.01 1.24 1.85 1.11 3.05
Gabriel 0.55 0.00 6.02 1.81 35.05 47.75 1.15 2.14 1.86 3.67
Plan 1.93 2.12 0.00 0.19 28.52 53.56 2.50 2.50 3.08 5.59
Qsort 0.00 1.23 0.00 6.17 24.69 56.17 1.85 2.47 2.47 4 .94

Table 7 .8: Percentage of Time Distribution Among the Abstract Operations m
Caching

gram. It indicates that the control time is very low, only reaching 9 and 8 % for
Queens and Plan but being lower than 3% in most cases. The negligible times for
CS, Disj and PG may be explained by the fact that these programs are demanding
in abstract time. Comparing those results with Caching , we observe that th con
trol time in Caching has grown significantly due to the cache time (the rest of the
control time being theoretically the same between Caching and Original) .

Table 7.7 depicts the same results (except the cache time) for Prefix. It indi
cates, as expected, that the control times are almost always smaller then those of
Caching and greater than those of Original. Also the control times are much doser
to Original than to Caching,

Table 7 .8 depicts the distribution of the abstract time among the abstract op
erations for Caching. It clearly indicates that the most time-consuming operations
are UNIF ..FUNC and EXTG confirming some of the results of the previous section. For

CHAPTER 7. EXPERIMENTAL EVALUATION 79

Program SMALLER ALTEST ALIS ALVAR AI....FUliC EXTG RESTRG EXTC RESTRC UliIOli
Kalah 0.79 1.01 3.37 0.56 39.06 46.91 1.23 1.01 1.80 4.26
Queens 4.35 8.70 4.35 0.00 52.17 17.39 4.35 4.35 0.00 4.35
Press1 1.71 0.61 1.92 0.67 48.29 36.79 1.25 1.60 1.84 4.73
Press2 1.08 0.36 2.24 0.72 52.96 33.75 1.26 1.89 1.62 4.13
Peep 0.56 0.14 0.00 7.05 58.11 23.55 0.85 1.83 2.82 5.08
CS 0.26 0.51 3.32 0.77 48.59 41.05 0.64 1.28 1.41 2.17
Disj 0.29 0.00 1.75 0.15 67.45 27.45 1.02 0.73 0.44 0.73
PG 0.94 0.00 6.60 1.89 49.06 33.96 0.94 1.89 0.94 3.77
Read 0.87 2.11 0.20 1.91 49.41 37.76 1.51 1.98 1.21 3.05
Gabriel 0.70 0.00 7.37 3.16 41.75 39.30 1.05 1.75 2.11 2.81
Plan 1.52 1.52 0.00 1.52 36.36 46.97 3.03 1.52 3.03 4.55
Qsort 3.23 0.00 0.00 12.90 38 .71 35.48 3.23 0.00 3.23 0.23

Table 7.9: Percentage of Time Distribution Among the Abstract Operations m
Original

Caching, operations UNIF -.FUNC and EXTG take more than 80% of the time except for
Queens (75%). Operation UNION seems to be the next most demanding operation,
but far behind the above two operations.

Table 7 .9 depicts the distribution of the abstract time among the abstract oper
ations for Original. The results indicate once again that the most time-consuming
operations are UNIF-.FUNC and EXTG. The results are also almost similar to those of
Caching. Other operations have somewhat différent ratios due to the fact that the
unification takes most of the time.

7.5 Memory Consumption

Tables 7.10 and 7.11 depict the memory consumption of the three programs when
bits and characters are used for representing the sharing component respectively.
The before field gives the memory requirement before abstract interpretation, i.e. it
includes the data structures necessary for parsing and compiling the Prolog programs
as well as the sizes of the hash tables in the case of Caching. The max field gives
the maximum memory requirement during the execution of the program. The most
memory demanding program is Press 1. It requires 279 kilobytes for Original, 1057
for Prefix and 2952 for Caching. In average, Prefix requires 2.35 more memory
than Original but reaches peaks of 4.35 and 3.79 on Read and Press which are the
most time consuming programs as well. Caching requires around 9.33 more memory
than original in average and reaches a peak of 13.49 on Read. 1 Caching requires
around 4 times as much memory as Pref ix but the ratios are lower on the most
demanding programs (2.79 on Press1 and 3.10 on Read.

When characters are used, Press1 requires 324, 1314, and 3831 kilobytes for

1The high r;:i.tios on Qsort and Queens are not significant since the initialization takes most
memory.

CHAPTER 7. EXPERIMENTAL EVALUATION 80

Program Original Pre!ix Caching Pr/Or Ca/Or Ca/Pr
be!ore max max be!ore 11ax

Append 2 4 5 148 152
Kalah 56 125 244 204 723 1.95 5.78 2.96
Queens 6 12 18 152 182 1.5 15.1 10.11
Press1 82 279 1057 231 2952 3.79 10.58 2.79
Press2 84 176 450 233 1194 2.55 6.78 2.65
Peep 108 145 388 258 1197 2.67 8.25 3.08
CS 42 96 172 190 586 1.79 6.1 3.4
Disj 34 61 120 181 431 1.96 7.06 3.59
PG 13 32 61 159 272 1.9 8.5 4.45
Read 91 210 913 240 2834 4.35 13.49 3.1
Gabriel 26 57 123 173 412 2.16 7.22 3.34
Plan 16 35 66 163 247 1.88 7.05 3.74
Qsort 5 12 21 151 190 1.75 15.83 9.04
Mean 2.35 9.33 4.04

Table 7.10: Memory Consumption: Results with the Bit Representation of Sharing

Original, Prefix and Caching. In average, Prefix requires 2.46 more memory
than Original but 4.85 and 4.05 more on Read and Press1. Caching requires 8.84
times as much memory as Original in average and reaches peaks of 16.11 on Read. 2

Caching requires 3.85 more memory than Prefix and 2.91 and 3.33 on Press! and
Read.

Table 7.12 depicts the percentage of memory saved by using bits instead of
characters to represent the sharing component. The average saving are respectively
21, 22 and 19 % for Original, Pref ix, and Caching.

7.6 Results on a Simpler Domain

In this section, we report some experimental results on a simpler domain, i.e. the
mode domain of [20) which is a reformulation of the domain of [4] . The domain
could be viewed as a simplification of the domain discussed so far where the pattern
information has been omitted and the sharing has been simpli:fied to an equivalence
relation although all operations are in fact significantly different. The operations
are much simpler but the loss of accuracy is significant. Nevertheless the efficiency
results illustrate the potential of the improvements even in unfavorable conditions.

Tables 7.13 and 7.14 depict the efficiency results for the three programs with the
bit and character representations of the sharing. For the bit version, Prefix reduces
the computation by 28% compared to Original while Caching produces a 26% im
provement. The improvements still remain significant, given that the improvements
of Prefix and Caching on the sophisticated domain were respectively 28% and 31 %.
For the character version, there is now a much larger difference in efficiency between

2 Note that the average is only better because of the initialization effec t .

CHAPTER 7. EXPERIMENTAL EVALUATION 81

Program Original Prefix Caching Or/Pr Or/Ca Pr/Ca
before max max before max

Append 2 13 14 148 162
Kalah 56 149 309 204 983 2.07 6.54 3.18
Queens 6 22 28 152 195 1.27 8.86 6.96
Press1 82 324 1314 231 3831 4.05 11.82 2.91
Press2 84 201 547 233 1525 2.72 7.58 2.78
Peep 108 157 453 258 1457 2.88 9.88 3.21
CS 42 121 234 190 860 1.93 7.10 3.67
Disj 34 70 156 181 578 2.22 8.25 3.70
PG 13 45 80 159 315 1.77 7 3.93
Read 91 237 1144 240 3820 4.82 16.11 3.33
Gabriel 26 70 150 173 502 2.14 7.17 3.34
Plan 16 46 82 163 275 1.78 3.97 3.35
Qsort 5 21 32 151 207 1.52 9.85 6.46
Mean 2.46 8.84 3.85

Table 7 .11: Memory Consumption: Results with the Character Representation of
Sharing

Program Original Prefix Caching
append 69.23 64.29 6.17
kalah 16.11 21.04 26.45
queens 45.45 35.71 6.67
press1 13.89 19.56 22.94
press2 12.44 17.73 21.70
peep 7.64 14.35 17 .84
CS 20.66 26.50 31.86
disj 12.86 23 .08 25.43
PG 28 .89 23 .75 13.65
read 11.39 20.19 25 .81
gabriel 18.57 18.00 17.93
plan 23 .91 19.51 10.18
qsort 42 .86 34.38 8.21
Mean 21.2?, 22 .82 19.06

Table 7.12: Memory Consumption: Saving obtained by the Bit Representation

CHAPTER 7. EXPERIMENTAL EVALUATION 82

Program OR PR CA PR-OR CA-OR
Append 0.02 0.02 0.04
Kalah 2.60 1.81 1.88 0.30 0.28
Queens 0.18 0.14 0.15 0.22 0.17
Press1 6.08 4.08 4.26 0.33 0.30
Press2 6.17 4.23 4.31 0.31 0.30
Peep 5.54 3.86 4.03 0.30 0.27
CS 9.92 7.76 7.29 0.22 0.27
Disj 3.68 2.09 2.20 0.43 0.40
PG 0.48 0.38 0.40 0.21 0.17
Read 5.92 4.25 4.45 0.28 0.25
Gabriel 1.26 0.88 0.94 0.30 0.25
Plan 0.37 0.30 0.34 0.19 0.08
Qsort 0.32 0.23 0.20 0.28 0.37
Mean 28.21 25 .91

Table 7.13: Computation Times and Percentages on the Small Domain: Bit Version

Prefix and caching. Prefix now brings around 29% improvement while Caching
only improves Original by 6%. Note also that the computation times are signif
icantly reduced compared to the sophisticated domain, ail times being less than 8
seconds.

These results indicate the potential of the improvements even on srnall and simple
domains. It also gives us a first confirmation that the sirnpler the abstract domain,
the more interesting Prefix becomes.

CHAPTER 7. EXPERIMENTAL EVALUATION 83

Program OR PR CA PR-OR CA-OR
Append 0.01 0.02 0.02
Kalah 1.91 1.41 1.94 0.26 -0.02
Queens 0.15 0.08 0.14 0.47 0.07
Press1 4.72 3.10 4.12 0.34 0.13
Press2 4.74 3.19 4.37 0.33 0.08
Peep 4.22 2.91 4.04 0.31 0.04
CS 7.40 5.83 6.95 0.21 0.06
Disj 2.72 1.57 2.27 0.42 0.17
PG 0.39 0.29 0.39 0.26 0.00
Read 4.52 3.28 4.42 0.27 0.02
Gabriel 0.96 0.69 0.93 0.28 0.03
Plan 0.29 0.25 0.29 0.14 0.00
Qsort 0.25 0.19 0.21 0.24 0.16
Mean 29.45 6.15

Table 7.14: Computation Times and Percentages on the Small Domain: Character
Version

Chapter 8

Widening

In this chapter and the next one, we will try two other techniques. Contrary to both
previous methods, these ones are not optirnizations. They are two experimentations
that must lead to improvement of the precision of the results. The first one is a
mean to detect strictly increasing chains. The second one is reexecution of the goals
of a clause. In this chapter, we present the ideas underlying the widening. But, this
technique alone is not sufficient to obtain an interesting gain. So, it will be used
together with reexecution, in the next chapter.

The widening is a method to insure the terrnination of the algorithm. Indeed, if
the domain is finite, in the worst possible case, all the possibilities must be exarnined,
but it can always be clone, soon or later. But, if the domain is infinite, there can arise
a process of creation of a term of strictly increasing length that would inevitably
lead to an infinite loop. The principle used is the one presented by P. Cousot and R.
Cousot in [7]. It consists in widening the doubtful substitutions in some less precise
ones with no more strictly increasing chains.

For a chain to increase strictly, it must be each time more and more precise, that
is, each time smaller and smaller. So, if the input substitution for a new call is made
greater or equal than the input substitutions of ail the previous calls, there can not
be any infinite loop. But the greater the substitution, the more important the loss
of precision. Hence, we need the smaller abstract substitution which is greater than
both the new one and the greatest of all the previous ones. That is, we need the
UNION of these two substitutions.

Definition 18 The widening is a fonction W: ASn x ASn --t ASn, D being a set
of program variables, satisfying:

• V sequence /31, /32, . .. , /3i, ... (f3k E AS D), the sequence a1, a2, ... , ai, .. . , a1 =
/31, ai+I = W(ai,,Bi+i), is not decreasing;

We will examine two dia-. ..--~~
m [15]) and then

ing methods. A first primitive one (presented
s the mode domain does not take care of

84

CHAPTER 8. WIDENING 85

structures (just Ground, Variable or Any, no matter the form of the terms), it is
a finite domain and this experimentation is not relevant for it. It just concerns the
type domain. · Firstly, for a better understanding, we shall present the suspended
stack. Then, the original implementation of the widening and the new one. And
finally, a comparison between both methods.

8.1 The Suspended stack

The suspended stack contains a number of pairs (/3,p) for which execution is sus
pended. Namely, pairs for which consideration has begun and for which the consid
eration of other pairs is needed. Their evaluation is suspended the time necessary
for the execution of these other pairs. For example, consider the following predicate:

p(•) : - · · • , q1 (•), · · · , q2 (•), · · ·

where " ... " represent built-ins. When it is examined with input substitution /3, it
needs the result of (/3', q1) and of (/3", q2) where /3' is the result of the first built-ins
and /3" is the result of all the preceding goals. The execution of (/3, p) is suspended
a first time during evaluation of (/3', q1) and then a second time during evaluation of
(/3", q2). Thus, during these two evaluations, the pair (/3, p) belongs to the suspended
stack. But, outside of those calculations, (/3, p) can not be in the stack. Let us note
that, although useless, (/3, p) can be in the stack during evaluation of built-ins too.
lt is implemented that way for simplicity. Indeed, we then have to add (/3,p) to the
stack only once at the begining of its computation and remove it once at the end.

When a predicate is called, the stack is examined in search for it, the last entered
element the first examined. If it is found, that means the call is a recursive one that
will definitely lead to an infinite loop. But, if the input substitution is widenned, it
is either equal to a previous suspended one or greater than all the previous ones. If
equal, the execution is avoided and the temporary result is gotten back. If greater,
we know there is no problem and we can go on with the execution of the call.

8.2 The original widening

The original widening, presented in [15], is a very simple one. It consists in system
atically widening ail input substitutions of recursive calls .

Let us examine a recursive call of a procedure p. Let us denote /31 the greatest
substitution so far in input of p and /32 the input substitution of the new call. A
simple cornparison can be performed between them. Different cases may arise:

• /32 = /31 : the UNION is the same. As (/31 ,p) is suspended, sois (/32,P) which is
not refined.

• /32 < /31 : the UNION is (31 and ((31 , p) is suspended, so not examined.

CHAPTER 8. WIDENING 86

• /32 > /31 : the UNION is /32 and (/32,P) is examined.

• otherwise: the UNION must be computed and (UNION(/31 ,/32),p) is examined.

Note that /31 the greatest of ail (/3i, p) in the stack is easy to find. lndeed, as
pairs appended to the stack are always computed as a UNION of the previous ones,
the greatest is surely the last one with predicate p in the stack.

8.3 The new widening

The new method is a slightly more complicated one. Its purpose is to widen substi
tutions only when it is necessary. The basic idea is to detect the creation of stictly
increasing structures and to widen only substitutions taht contain such structures.

Definition 19 A term t is an instance of a term t' iff

• neither t nor t' have a form, that is, we know nothing more than their type,

• t is of the form f (...) and t' has no form,

• or t and t' both have the same functor, the same arity and all subterms of t
are instances of their corresponding subterm in t'.

For example, let t = J(X) and t' = f(g(X)). Then, t' is an instance of t because
they both have the same functor f of arity 1 and X is an instance of g(X) because
X has no form and g(x) has a functor.

Definition 20 A term t is said to be a part of a term t' iff

• t' is an instance of t,

• or t' is of the form J(t") where f is any functor and t is a part of t".

Definition 21 Let us denote /31 , ..• , f3k the input substitutions of all the previous
calls to the procedure p and /3 the new one. Then, the creation of a strictly increasing
structure occurs iff, :31, 1 ::; l ::; k such that for each binding of /31 (say X I t) that is
different of its counterpart in /3 (say X' 1 t'), tisa part of t'.

If a strictly increasing structure creation is detected with that test, then an infi
nite loop can be avoided by widening the substitution and examining (UNION(/31, /3), p)
instead of (/3, p). But, if no strictly increasing structure is detected in the input sub
stitution of a recursive call, then no widening is clone.

Note that, with this test, all (/3i,P) , 1 ::; i::; k may be examined if necessary and
not just the pair with the greatest /3i- So, the suspended stack could just be seen as
a suspended set.

CHAPTER 8. WIDENING 87

8.4 Comparison between both tests

The big difference between those two methods is a gain in precision. Indeed, in the
original one the UNION operation is computed more often than in the new one. It is
due to the fact that it is clone, in the second method, only when a strictly increasing
structure creation is detected but every time in the original method.

For instance, let us examine1 the execution of the test QSORT (figure 8.1) already
used in the previous chapters. Let us assume it is called qsort/2(Ground(l), Var(2)).
Then, qsort/3 is directly called with

/31 = { (Ground(l), V ar(2), Ground(3) : []}

which is examined. Later on, a first recursive call to qsort/3 occurs with

/32 = {Ground(l), Var(2), Var(3)}

With the original method, widening occurs and

UNION(/31 ,/32) = {Ground(l), Var(2),GV(3)}

is used instead of /32 • But, with the new method, as /31 is not part of /32 , no widening
is necessary and qsort/3 is examined with /32 • ln fact, the final result is exactly the
same with both methods. But, it may become very interresting if we examine all
elements in the sats and use them to do specialisations.

1 We ask the reader to believe what we say. The length of the verbose of execution of that test
make it impossible to include it in this report .

CHAPTER 8. WIDENING

qsort(S,Sorted) :
qsort(S,Sorted, 0).

partition([] ,F, [], []).
partition([FIT] ,P, [FIS] ,B) ·

F <= P,
partition(T,P,S,B).

partition([FIT] ,P,S,[FIB]) ·-
F > P,
partition(T,P,S,B).

qsort ([] , X, X) .
qsort([FIT] ,Res,Tail) ·

partition(T,F,S,B),
qsort(S,Res,Others),
Others = [F I Rest],
qsort(B,Rest,Tail).

split(T,F,T,T).

Figure 8.1: QSORT

88

Chapter 9

Reexecution

The "Reexecution" aims to improve the precision of the results. The chosen tech
nique is to transform the program1 to another one whose concrete semantics is
unchanged with respect to the SLD-resolution. However, this transformation reor
ganizes the program atoms so that the algorithm may find a more accurate result (a
smaller fixpoint). In the next sections, we first explain the transformation, next the
algorithm for the mode domain and for the type domain. The last section discusses
some results (cpu-time,memory, . ..) about the two implementations.

This work was realized at last so this one was partially achieved. We present
here the first results.

9.1 The transformation

As transformation, we choose to place a copy of some atoms at the end of the
clauses. It doesn't change the semantics of the programs as proven in the following
proposition:

Proposition 22 Let P be a normalized Prolog program. P = { Ci} where Gis are
the clauses of P.
If Ci= p(Xi, ... ,Xn): -91,92, ... ,9m
If P' = P(Ci ~ C/)
whereCf=91 ,92 , ••• ,9m,9i1 , ••• ,9ir Vi1 , . .. ,ir E {l, .. . ,m}
Then P and P' have the same semantics.
Proof We know that the semantics computed as the least fi.xpoint of the transforma
tion TSCT is equivalent to the SLD-resolution (13, pp 9- 10). Since the SLD-resolution
doesn't depend on the computation rule (19, pp49-55), hence Cf can again be rewrit
ten as:

1 In this section, we designate the Prolog program by the word "program" and the abstract
interpreter by "algorithm".

89

CHAPTER 9. REEXECUTION

where ai= 9i,9i if i E {i1, .. . , ir}
ai = 9i otherwise.

For example:

ci - p(•) : - 91, 92, 93.

c: = p(•) : - 91,92,93,92·
cr - p(.) : - 91' 92' 92' 93.

C:' = p(•) : - 91,a,92,/3,92,,,93.

90

Let be /3 the result substitution after the call to 92 with the input substitution
a. It's obvious that the second call to 92 with the same argument will be success
ful. Hence, /3 is equal to I and we may omit the second occurrence of 92 • By
generalization to the other cases, we can see that CI' is equivalent to Ci. □

Corollary 1 Let P = { Ci} be a pro9ram and its clauses.
Then the semantics of P is unchan9ed if some atoms are repeated many times and
anywhere in a clause.

In this implementation, the Prolog program isn't transformed directly as depicted
previously. The algorithm is adapted to behave as if the program is modified. In
the original algorithm, before calling the fonction RestrC , SolveClause has already
treated each atom once. So it's sufficient to reexecute the interesting atoms. This
operation is done by calling the fonction ForvardPropagate just before the call to
RestrC.

We have not yet explained why this technique improve the results quality, or
how this technique is implemented. These aspects are covered by the next sections.

9.2 Implementation for the mode domain

9.2.1 Algorithm

The basic idea for the mode domain is to reexecute each atom until the current
substitution can't be improved any more. At a given time, during the reexecution,
the substitution can lose precision. So, to avoid this, we take systematically the glb
2 of the substitution computed until now and the one obtained after the last goal

2 glb is the fonction "greater least bound" defined as:

glb(a, /3) = î' {==} î' ~ a and î' ~ /3
and 0 ~ a ===> 0 ~ î'
and 0 ~ /3 ===> 0 ~ î'

CHAPTER 9. REEXECUTION

procedure SolveClause(in /3in,p,c,suspended; out f3outi inout sat,dp)
begin

end

f3ext := EXTC(c,f3in)i
for i := 1 to m with b1 , ... ,bm body-of c do
begin

f3aux := RESTRG(bi,f3ext)i
switch (bi) of
case X 1 = Xk:

/3int := ALVAR(f3aux)
case X1 = f(.. .):

f3int := ALFUNC(f3aux,f)
case q(.. .):

SolveGoaI(f3aux,q, suspended,sat,dp);
f3int := sat(f3aux,q);
if (/3in,P) E dom(dp) do

ADD..DP(/3in,P,f3aux,q,dp)
end;
f3ext := EXTG(bi,f3ext,f3int)

end;
ForwardPropagate(/3;n,f3ext, sat, dp, c,p, suspended)
f3out := RESTRC(c,f3ext)

where V(g) is the set of ail the variables encountered in the goal g. For example:
V(r(X1,Xs,X3)) = {X1,X3,Xs}.

Figure 9.1: A. mode ForwardPropagate's Algorithm

91

encountered. We have, in fact, to chose between two abstract substitutions. The
best solution is to take the glb of bath. So, we extract the best information of bath
substitutions in a new one. The algorithm of SolveGoal is unchanged. The reader
can find the algorithm of ForwardPropagate in the figures 9.1, 9.2, 9.3.

The dependence of the goals on the variables permits to reconsider some goals
when their arguments have been modified. When the domain is finite, it's easy to
prove that the dependence isn 't a vicious circle.

Proposition 23 The fonction ForwardPropagate ends if the domain is finite.
Proof
Let i be the index of /3ext at the point ◊ 1.
The demonstration is made by induction on the value of /3ext at the point ◊ 1. The
value of /3ext decreases each time the point ◊ 1 is reached. A fini te domain insures
us then that the program ends. Otherwise:

CHAPTER 9. REEXECUTION

procedure ForwardPropagate(in: .Binl, inout: .Bin2, sat, dp
in: C,p, suspended)
%% let C = p(X1,• . . ,Xn) : - 91,·· ·,9m•

begin
S := Ui=l, ... ,m V(gi)
.Bext := .Bin2
while .Bext f .l and S f 0 do
begin

{◊1} E := 0
for i = 1 to m do
begin

if V(gi) n S f 0 do
begin

end
end

{◊2} S := E
end

Call(.Binl, .Bext, g, suspended,p, dp, sat, .Bout)
.81 := glb(,8,.Bout)
E :=EU {X: Xis a variable /\ X,81 f X.Bext}
.Bext := .B f

.Bin2 := .Bext
end

Remark: X a f X ,8 denotes that the mode of variable X is different between the bath
abstract substitutions a and ,8.

Figure 9.2: B. mode ForwardPropagate's Algorithm

92

CHAPTER 9. REEXECUTION

procedure Call(in: /3in, f3ext, g, suspended,p inout: dp, sat, out: f3out)

begin

end

/3aux := ~estrg(g, /3ext)
switch (g) of

case Xj = Xk : /3out := ALVAR(/3aux)
case Xj = f(.. .): /3out := ALFUNC(/3aux, f)
case q(.. .): SolveGoal(/3aux, q, suspended, sat, dp)

/3out := sat(/3aux, q)
if (/3in,P) E dom(dp) do

ADD...DP(/3in,P,/3aux,q,dp)
/3out := EXTG(g, f3ext, /3out)

Figure 9.3: C. mode ForwardPropagate's Algorithm

93

Since the glb operation insures us that f3extj+i is less or equal to f3extj, thus

f3extj+i = f3extr Between the j th and (j + l)th loop, the algorithm is passed
througout the point ◊2. Hence Si+i = 0 and the program ends. D

9.2.2 Application

To understand why the reexecution technique improves the results with the mode

domain, let us see a small example.

p(X1): -Xi= [X2 J X3],X2 = l,X3 = 2.
?p(var) ----t p(ground)

For this program, the original mode-algorithm can't remember that X 2 and X 3 are
both components of X1 . For this reason, this one can't deduce that X 1 is ground
and returns any. With the reexecution, the mode-algorithm can be as good as the
type-algorithm for this particular case. This technique corrects the mode domain
"defect" brought to the fore by K. Musumbu in [20, pp II/53] .

9.3 lmplementation for the type domain

9.3.1 Algorithm

The technique for the type domain is the same as for the mode domain except a few
points:

CHAPTER 9. REEXECUTION 94

• The type domain is sufficiently precise to neglect built-ins during reexecution.
ln fact only calls executed with arguments become more precise after the
computation must be reexecuted.

• The type domain isn't finite. The algorithm can fall in a vicious circle by
attempting to gain more and more precision on a variable as shown in figure
9.4. For this reason, a mechanism must avoid such situations.

X/ f variable --+ X/ f f variable --+ X/ f f f variable --+ f f f f .. .

Figure 9.4: A vicious circle

The type reexecution algorithm is described in figures 9.5, 9.6. To prevent a vi
cious circle due to infinite dependence3 , a stack memorizes all the input substitutions
of calls. Before computing a call, the algorithm checks if widening occurs between
the input substitution and one from the stack (fonction Detect). If an infinite
structure is detected, the call is skipped and forgotten until the end of reexecution.

9.3.2 Application

ln the following program,

p(X1, X2) : -g(X1, X2),X1 = [).
g(X1,X2): -Xi= l,X2 = [X3 1 X4).
g(X1, X2) : -X2 = 1.

when gis called with {Xif var(l), X2/var(2)}, the abstract interpreter doesn't know
again that only one of both clauses is interesting (the second one because the first
one should fail). Thus, the result of g(var(l), var(2)) is g(Gv(l), N ovar(2)) which
is the UNION of the results of both clauses. But when the UNION is computed,
precision is lost! The reexecution allows to remember that X 1 is ground and has a
functor [] different from 1 when g is called for a second time. So only the second
clause is examined and precision is gotten back. The result is { Xi/ Ground(l) :
[), X2/ Ground(2) : 1} .

9.3.3 Another Strategy

We have introduced the reexecution without special attention to the order used to
choose the goals. ln this strategy, ail the goals are reexecuted by entire sequence.
Another possibility is to reexamine each goal since the first clause's goal each time
a goal is reexecuted. The following example illustrates both techniques:

3 a variable becorning more and more precise

CHAPTER 9. REEXECUTION

procedure SolveClause(in /3;n,P,c,suspended; out f3outi inout sat,dp)

begin
... exactly the same algorithm as for the mode domain ...

end

ForwardPropagate(in: /3inl, inout: /3in2,sat,dp, in: C,p,suspended)

%% let C = p(XI,···,Xn) : - •··,91 ,···,9m,····
% % g;s are ail the calls of this clause.
% % The " ... " represent built-ins.
begin

S := Ui=l, ... ,m V(g;)
stack := 0
R; := true 'v i E {1, ... , m}
f3ext := /3in2
w hile /3ext -/- .l and S -/- 0 do
begin

E :=0
for i = 1 to m do
begin

if V(g;) n S -/- 0 and R; do
begin

if Detect(g;,/3ext,stack) do
R; := false

else
push(g; ,/3ext ,stack)
Call(/3inl, f3ext, g, suspended,p, dp, sat, f3out)
/3 J := glb(/3, f3out)
E :=EU {X: Xis a variable Â X/31-/- Xf3extl
f3ext := /31

end
end
S := E

end

/3in2 := f3ext
end

Figure 9.5: A. type ForwardPropagate's Algorithm

95

CHAPTER 9. REEXECUTION

procedure Call(in: f3in,f3ext,g,suspended,p inout: dp,sat, out: f3oud

begin
f3aux := Restrg(g,f3ext)
q(.. .): SolveGoal(f3aux, q, suspended, sat, dp)
f3out := sat(f3aux, q)x
if (f3ïn,P) E dom(dp) do

ADD..DP(f3ïn,P,f3aux,q,dp)
f3out := EXTG(g,f3ext,f3out)

end

function Detect(in: g,{3,stack)---t Boolean

pre: 0
post: return true {=} 3 (g,-y) E stack: {3 is an instance of gamma

old version:

Figure 9.6: B. type ForwardPropagate's Algorithm

91,92,93,94, 91,92,93,94, 92,93' 92 ----.--- ---- .,____.,,,,.,,
SolveClause first second third

reexecution

new version: 91,92,93,94,91,91,91,92,91,92, 93 ,94,91,94 •
----.--- '----v-' '----v-',,,.,, '----v-'

SolveClause 91 92 93 94

Each time reexecution computes a goal, all the previous ones are again ex
amined if they share a modified variable with this one until the current sub
stitution becomes stable. Next, reexecution can examine the next goal and
so on.

As we have previously explained, our work was unachieved. This new
strategy was not implemented so we will not discuss its results here. However,
at the print time, Pascal Van Hentenryck has completely implemented that
version and he discusses the results in [16]. We can already say that the
new version is much faster that the old one with the biggest programs (2 to
11 times faster) and gains a noticeable accuracy with the programs PG and
Press1. However, with smaller programs, the old version seems to be faster
but the computation times is only of a few seconds.

9.4 Experimental Evaluations

This section shows the results of the reexecution-algorithm. This one is the
caching-version updated with the modifications described above. The Read

96

CHAPTER 9. REEXECUTION

program can not be tested with the type domain because of a lack of memory
4

9.4.1 Time Distribution

Figures 9.2 and 9.3 indicate computation times for the mode domain and the
type domain. In the first table, programs Press1, Press2 and Read are the
slowest with 23, 22 and 18 sec. In the second one, there are Kalah, press2
and CS with 100, 80 and 42 sec.

The table 9.1 shows the ratio between computation times for original and
reexecution- algorithms. Ratios are majored by a factor 5 in the mode domain
whereas in the type domain, ratios reach a peak of 18. It is probably due to the
fact that type domain can gain in precision by two ways: either by changing
variables mode or by modifying the pattern associated to a variable. In the
first case, let us remember that the type domain has many more possible
modes than the mode domain.

Kalah Queens Press! Press2 Peep CS
11 Mode 3.03 1.13 5.38 5.39 2.06 4 .87
Il Type 17.91 2.94 1.63 5.07 2.90 13.60

Disj Pg Read Gabriel Plan Qsort
Il Mode 3.28 5.02 4.26 3.22 1.50 4.05
Il Type 3.64 14.26 - 3.58 2.80 4.30

97

Table 9.1: Ratios between reexecution algorithm computation times for mode and
type domains

4 With the second strategy discssed above, the program Read is exected in less than 5 min tes.

CHAPTER 9. REEXECUTION

Program TT TA TC+TH TT%TA TT%TC+TH
Kalah 5.710 4.950 0.760 86.69 13 .31
Queens 0.170 0.132 0.038 77.65 22 .35
Press1 22.940 18.950 3.990 82.61 17.39
Press2 23.260 19.210 4.050 82.59 17.41
Peep 8.320 7.210 1.110 86 .66 13.34
CS 35.520 33.720 1.800 94.93 5.07
Disj 7.210 6.720 0.490 93 .20 6.80
PG 2.010 1.665 0.345 82.84 17.16
Read 18.950 15.390 3.560 81.21 18 .79
Gabriel 3.030 2.409 0.621 79.50 20.50
Plan 0.510 0.388 0.122 76 .08 23.92
Qsort 0.810 0.623 0.187 76 .91 23.09

TT comptation time
TA comptation time or only abstract operations
TC+TH captation time or the control algorithm and caching mechanism
unit: sec.

98

Table 9.2: Computation time for abstract interpreter with reexecution on the mode
domain and chars

Program TT TA TC+TH TT%TA TT%TC+TH
Kalah 100.100 95.320 4.780 95.22 4.78
Queens 0.470 0.330 0.140 75.00 25 .00
Press1 41.900 36.480 5.420 87.06 12.94
Press2 42.420 37.370 5.050 88 .10 11 .90
Peep 18.260 16.550 1.710 90 .64 9.36
CS 80.510 76.110 4.400 94.53 5.47
Disj 11.830 10.820 1.010 91.46 8.54
PG 10.840 9.410 1.430 86 .81 13 .19
Read not enough memory
Gabriel 7.370 6.440 0.930 87.38 12.62
Plan 1.660 1.444 0.216 86.99 13.01
Qsort 0.990 0.789 0.201 79.70 20 .30

TT comptation time
TA comptation time or only abstract operations
TC+TH captation time or the control algorithm and caching mechanism
unit: sec.

Table 9.3: Computation time for abstract interpreter with reexecution on the type
domain and chars

CHAPTER 9. REEXECUTION

9.4.2 Memory Consumption

Tables 9.4 and 9.5 depict the memory consumption with the "reexecution"
version. This algorithm sometimes requires up to 10 times more memory than
the orignal algorithm with caching. The bit-implementation is very interest
ing for the bigger prograrns, so 42, 38 and 34% are gained with prograrns CS,
Kalah, and Disj. The more demanding prograrns are CS, Press2, Press1
and Kalah with 7316, 7050, 6942 and 5518 Kb (for char-implementation) and
4329, 5168, 5968 and 3444 Kb (for bit-implementation) .

The memory amount after compilation (be fore column in tables) is higher
for the mode domain. lndeed, this one requires to stock the variables depen
dance for ail the goals whereas type domain necessitates dependance only for
calls.

It is now necessary to precise some items:

99

1. We mean by "memory consumption" the space necessary to execute the algo
rithm with caching-mechanism. So an important memory amount is used to
optimize the memoization performances. This space is not strictly necessary
to the algorithm execution. So amounts in the tables are overestimations.

2. The memory amounts are computed as the sum of ail the algorithm requests
(malloc()). So the memory required to manage the dynamic allocation is not
posted.

9.4.3 Results Quality

The aim of reexecution is to improve the results quality. Let us see if this
one is really improved by this technique. The global quality is computed
as the UNION of ail the input substitutions for a same predicate found in
foundations. lndeed, this information can be directly used in a optimized
interpreter described in page 21. So it is pertinent to compare these results
between different versions.

comparison between original-version and reexecution-version

Table 9.6 depicts improvement of quality for mode and type domains due
to the reexecution technique. The only possible enhancement for the mode
domain is a any becoming ground. As early described, the type domain can
improve its substitutions in two ways: the mode and the pattern associated
to each variable. The improvement essentially concerns the first possibility:
the mode component.

The mode domain takes the best advantage of the reexecution technique.
A lot of results are unchanged in the type domain. How is it possible? ln
fact, we have only examined the input substitutions of calls, many result

CHAPTER 9. REEXECUTION

substitutions may have been improved but being pure result (a substitution
which is returned without being used as an input later), these ones are not
discussed here. Other results do not belong to foundations, so they are not
examined.

Comparison between mode-reexecution and type-original

Our aim is to see if the mode-reexecution algorithm (MRA5) is as good as type
original algorithm (TOA6) with respect to results quality and computation
times. This comparison is suggested by K. Musumbu in [20, pp II/53]. The
table 9.7 shows that MRA can sometimes be better in quality than TOA but
with questionable performances.

5 mode algorithm with reexecution implemented with chars and caching
6 type algorithm without reexecution implemented with chars and without caching

100

CHAPTER 9. REEXECUTION

modes types
Program Before After Before After
Append 333 257 330 376
Kalah 589 918 478 5518
Queens 354 386 341 466
Press1 798 1918 578 6942
Press2 814 1941 586 7050
Peep 993 3103 677 4037
CS 670 2079 519 7316
Disj 516 964 429 1936
Pg 383 531 359 2022
Read 819 2672 void void
Gabriel 463 770 400 1532
Plan 414 457 373 704
Qsort 348 416 338 520

Before: memory consumption just after compilation
After: memory consumption after execution
unit: KiloByte

101

Table 9.4: Memory consumption for the reexecution version with char implementa
tion

modes types
Program Before After Before After
Append 333 354 330 341
Kalah 589 716 478 3444
Queens 354 380 341 420
Press1 798 1723 578 5968
Press2 814 1741 586 5168
Peep 993 2395 677 3277
CS 670 1240 519 4239
Disj 516 663 429 1289
Pg 383 458 358 1470
Read 819 2215 592 void
Gabriel 463 675 400 1177
Plan 414 449 373 603
Qsort 348 389 338 460

Before: memory consumption just after compilation
After: memory consumption after execution
unit: KiloByte

Table 9.5: Memory consumption for the reexecution version with bit implementation

CHAPTER 9. REEXECUTION

Kalah Queens Press! Press2
Il Mode "' "' • ◊
Il Type ◊ ◊ "' ◊

Disj Pg Read Gabriel Plan
11 Mode "' • • ◊ "' Il Type <:;:> <:;:> - • ◊

"' : a lot of any, ngv, . . . are become ground.
• : quality doesn't change a lot .
◊ : quality is unchanged .
<::> : ail was already ground in the original version

Peep CS

"' "' • <:;:>

Qsort

"' •

Table 9.6: Quality with/without reexecution for mode and type domains

Program Quality Comment Ratio Valuation
Kalah ~ any s are GV in type 1.61 better -
Queens = ail is ground 1.29 better
Press! ~ anys is NOVAR in type 1.65 better -
Press2 < a lot of GROUfeD 0.50 very bad

are any m mo e
Peep > 2 ground are NOVAR in type 0.86
CS < 2 any are GROUND in type 0.22 very bad
DS - all is ground 0.94 bad -
PG < 9 any are GROUND in type 0.55 very bad
Gabriel ~ any s become NOVAR in type 0.95 bad -
Plan ~ 1 any is NGV in type 1.39 better -
Qsort > 1 ground is ANY in type 0.42

Quality : comparison between mode domain's quality and type domain .
Ratio . T0A 's time

· MRA's time

Table 9.7: Comparison between the quality of MRA and TDA

102

Chapter 10

What could be done in the
future?

From the starting Pascal program, we did so far a series of optimizations
that ended with different C programs, all of them faster and less memory
consuming or more precise. All these results are interesting, but most of them
can be improved again. Here are a few ideas that could be implemented in
the future.

10.1 Memory management

First of ail, an improvement could be clone in memory management. The
standard ANS! "al)oc" functjons are good in the way memory is allocated,
but they are slow. The better memory management fonctions we used are
faster, but they allocate too much memory and a big amount of it is kept
unused. Indeed, a memory manager has a large amount of memory at its
disposal. When a request for memory arrives from the program, the memory
manager must allocate a part of its ressource that has the requested size. And
it must also get that memory back when the program has no use of it any
more. So, the memory manager must have efficient procedures to handle all
the requests and there are choices to do. If we want the memory management
to take care of the least byte, it must be complicated and so slow. But, if
we want it to be fast, a simpler management may be clone (for instance,
the memory manager may allocate an amount of memory bigger than the
requested one that is a multiple of a ceratin basic amount) with memory left
unused as a result.

The problem with those two methods is that they are two general methods
that may suit to any program. With a good study of the problem, it may be
possible to create memory allocation procedures more suitable to our needs.
For instance, the dependency graph is made of a lot of elements which all have
the same structure, and so the same size; they are allocated and disposed of

103

CHAPTER 10. WHAT COULD BE DONE IN THE FUTURE?

a lot of times. It could be a good idea to handle a stack of free ceils. But
the problem is much more important with the substitutions that are much
bigger, and of changing size.

The garbage collector can be improved too. This one allows us to gain
a big amount of memory but this one is fragmented in the sense that it is
composed of a lot of small parts. But the GC can not use the fact that two
contiguous free parts is in fact another bigger free one. Sometimes (especiaily
in the type domain) abstract substitutions gain more and more precision and
thus more and more memory. Although ail old substitutions are destroyed,
a memory problem can occur. A way to solve it, is to copy ail used memory
parts in another place in a contiguous way (secondary memory can eventuaily
be used if there is not enough memory to do that).

A lot of times, malloc () is used to create local object inside fonctions.
These ones are destroyed systematically when the execution of the fonction
is over. In fact a stack 1 is a natural way to manage such objects. It could be
a good idea to proceed such a way both to gain time, memory and to limit
memory fragmentation.

10.2 Concurrent programming

In procedure SOLVE_GOAL, when a predicate is examined, all its clauses are
examined, each at its turn, and the UNION of their results is computed. It
might be a good idea to examine all the clauses in parallel on different proces
sors. But, this could raise new problems. For instance, suppose a predicate
is called and it is suspended. Does it mean that predicate is a recursive
one for which a new subcomputation must not be started? Or does it mean
the predicate (recursive or not) is already under examination from another
clause; in that case the new subcomputation must be undertaken if inputs
are different? Another problem is the sharing of global objets like lattices,
Hasse diagrammes, dependency graphs.

These are a few ideas, but there may be a lot of others ...

104

1 Although each objec t has to be created by calling a fon ction , all the local objects of a fonction
are destroyed at once

Chapter 11

Conclusion

Abstract lnterpretation, as we had already said, is an important tool to
analyse statically Prolog programs and to improve performances of compilers.
A basic interpreter had been developped by Pascal Van Hentenryck. This
one was written in Pascal, it took a lot of time (a average time of 22sec
on our panel of tests) and consumed a very big amount of memory (several
megabytes with a peak of 20 megabytes for some programs). This program
used the type domain defined in [20].

Our work was primarily to rewrite this interpreter in C. This language
has a lot of interesting particularities which allow to improve general per
formances. This phase allows us to reexamine some crucial points of the
algorithm like lattices, abstract unification, transitive closure, ... So, we have
obtained a basic version of the algorithm in C wich was already faster than
the old one. This version was yet improved in two ways:

• caching applies the memoization principle on all important abstract opera
tors. So, a lot of computations were avoided.

• prefix uses some particularities of the course of the interpreter with the Prolog
language to avoid superfluous calculations.

Both techniques have similar performances (the average computation time
is now below 9 seconds) and the required memory space is now 1.5 megabyte
for the prefix version. Although the caching version still takes 4 megabytes
in the worst case, this one is very simple to use and is the most promising
for bigger programs and future use.

The original algorithm was also modified in order to improve the quality
of the analysis. First, the widening was refined, next, a reexecution strategy
was implemented. Both techniques allow a sensible gain of accuracy with
reasonnable computation times.

A simpler domain was also used. AU the results were discussed previously.
On this domain, prefix optimization is still interesting although the caching

105

CHAPTER 11. CON CL US ION

performances are irnpaired because of the simplicity of the abstract operations
and the need of tirne required by caching to manage its internai structures.

106

Bibliography

[l] S. Abramski and C. Hankin. Abstract Interpretation of Declarative Languages.
Ellis Horwood Limited, West Sussex, England, 1987.

[2] Ait-kaci. Warren's Abstract Machine, A tutorial reconstruction. The MIT Press,
Cambridge, Massachusetts, 1991.

[3] P. Boizumault. Prolog, l'implantation. Etudes et Recherches en Informatique.
Masson, Paris, 1988.

[4] M. Bruynooghe. A Practical Framework for the Abstract lnterpretation of
Logic Programs. Journal of Logic Programming, 1990. (To Appear).

[5] M. Bruynooghe, G. Janssens, A. Marien, and A. Mulkers. The impact of ab
stract interpretation: an experiment in code generation.

[6] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer Verlag, New
York, 1981.

[7] P Cousot and R. Cousot. Abstract lnterpretation: A unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
ln Conf. Record of Fourth ACM Symposium on POPL, pages 238- 252, Los
Angeles, CA, 1977.

[8] K. De Bosschere and L. Wulteputte. Prolog implementation methods. Technical
report, Laboratorium voor Elektronica en Meettechniek, 1192.

[9] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving Large Combinatorial
Problems in Logic Programming. Journal of Logic Programming, 8(1-2):75-93,
1990.

[10] Ecole d'été de l'A.F.C.E.T. La Fiabilité des Programmes, 1978. Chapter 2
parag. 3.

[11] M. Hermenegildo, R. Warren , and S. Debray. Global Flow Analysis as a Prac
tical Compilation Tool. Journal of Logic Programming, 1991. To appear in the
Journal of Logic Programming (also published as Technical Report Computer
Science Dept, Universidad Politecnica de Madrid, Spain, 1991) .

107

BIBLIOGRAPHY 108

[12] B. Le Charlier. L'analyse statique des programmes par interprétation abstraite.
(To appear), 1992.

[13] B. Le Charlier, K. Musumbu, and P. Van Hentenryck. Efficient and Accurate
Algorithms for the Abstract Interpretation of Prolog Programs. Research Paper
RP-90/9, F.U.N.D.P., University of Namur, August 1990.

[14] B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A Generic Abstract
Interpretation Algorithm and its Complexity Analysis (Extended Abstract).
In Eighth International Conference on Logic Programming (ICLP-91), Paris
(France), June 1991.

[15] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. In Fourth IEEE International
Conference on Computer Languages (ICCL '92), San Fransisco, CA, April 1992.

[16) B. Le Charlier and P. Van Hentenryck. Reexecution in abstract interpretation
of prolog. (To appear), 1992.

[17] B. Le Charlier and P. Van Hentenryck. A universal top-clown fixpoint algorithm.
(To appear), 1992.

(18] C. Livercy. Theorie des programmes, pages 18-23. Dunod, 1978.

[19] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, New York,
1984.

[20] K. Musumbu. lnterpretation Abstraite de Programmes Prolog. PhD thesis,
University of Namur (Belgium), September 1990.

[21] P.J. Plauger. The Standard C Library. Prentice Hall, 1990.

[22] L. Sterling and E. Shapiro . The Art of Prolog: Advanced Programming Tech
niques. MIT Press, Cambridge, Ma, 1986.

[23] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro
gramming Series, The MIT Press, Cambridge, MA, 1989.

[24] P. Van Roy and A.M. Despain. High-performance logic programming with the
aquarius porlog compiler. Computer journal.

[25] R. Warren, M. Hermedegildo, and S. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Proc. of the Fifth International Conference on
Logic Programming, pages 684- 699, Seattle, WA, August 1988.

BIBLIOGRAPHY

[26] V. Englebert. B. Le Charlier. D. Roland and P. Van Hentenryck. Generir Ab
stract Interpretation Algorithms for P rolog: Two Optimizat ion Techniques
and Their Experimental Evaluation. Research Paper CS-91-67, Department
of Computer Science, Brown Univer ity, D cember 1991.

Appendix A

Results on the individual
operations

Original Prefix Caching
Program calls calls OR-PR calls eval ratio
Append 6 6 0.00 4 1 4.00
Kalah 325 268 17.54 168 95 1.77
Queens 35 31 11.43 21 8 2.62
Press1 2716 2245 17.34 1384 676 2.05
Press2 869 710 18.30 483 221 2.19
Peep 457 399 12 .69 218 61 3.57
CS 188 172 8.51 108 43 2.51
Disj 191 141 26 .18 84 43 1.95
PG 105 97 7.62 62 39 1.59
Read 1983 1561 21.28 725 425 1.71
Gabriel 257 219 14.79 149 75 1.99
Plan 95 89 6.32 51 28 1.82
QSort 67 56 16.42 36 21 1.71

OR-eval
83 .33
70 .77
77.14
75 .11
74.57
86 .65
77.13
77.49
62.86
78 .57
70 .82
70 .53
68.66

Table A. l: N umber of Operations on COMPARE

109

APPENDIX A. RESULTS ON THE INDIVIDUAL OPERATIONS 110

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 8 8 0.00 8 5 1.60 37.50
Kalah 858 678 20.98 522 241 2.17 71.91
Queens 68 52 23.53 52 26 2.00 61.76
Press1 8549 6775 20.75 4767 2953 1.61 65 .46
Press2 1953 1533 21.51 1134 601 1.89 69 .23
Peep 1396 1284 8.02 693 418 1.66 70 .06
CS 468 408 12.82 354 175 2.02 62.61
Disj 472 308 34.75 246 76 3.16 83 .90
PG 211 193 8.53 169 95 1.78 54.98
Read 9975 8429 15.50 4783 3510 1.36 64.81
Gabriel 523 414 20.84 371 200 1.85 61.76
Plan 249 227 8.84 171 92 1.86 63 .05
QSort 110 81 26.36 59 36 1.64 67.27

Table A.2: Number of Operations on SMALLER

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 1 1 0.00 1 1 1.00 0.00
Kalah 170 118 30.59 170 71 2.39 58.24
Queens 11 7 36 .36 11 7 1.57 36.36
Press1 1065 711 33 .24 1065 348 3.06 67.32
Press2 353 232 34.28 353 129 2.74 63 .46
Peep 227 193 14.98 227 57 3.98 74.89
CS 77 61 20 .78 77 45 1.71 41.56
Disj 105 55 47.62 105 34 3.09 67 .62
PG 35 29 17.14 35 22 1.59 37.14
Read 1199 840 29.94 1199 191 6.28 84.07
Gabriel 101 66 34.65 101 49 2.06 51.49
Plan 49 43 12.24 49 26 1.88 46.94
QSort 23 14 39.13 23 7 3.39 69.57

Table A.3: Number of Operations on EXTEND

APPENDIX A. RESULTS ON THE INDIVIDUAL OPERATIONS 111

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 0 0 0
Kalah 81 47 41.98 81 41 1.98 49 .38
Queens 12 6 50.00 12 6 2.00 50.00
Press1 265 149 43.77 265 99 2.68 62 .64
Press2 85 47 44.71 85 34 2.50 60 .00
Peep 39 21 46.15 39 16 2.44 58.97
CS 35 15 57.14 35 13 2.69 62.86
Disj 6 4 33.33 6 3 2.00 50.00
PG 7 3 57.14 7 1 7.00 85.14
Read 383 262 31.59 383 241 1.59 37.08
Gabriel 0 0 0
Plan 15 9 40.00 15 6 2.50 60.00
QSort 6 2 66.67 6 2 3.00 66.67

Table A.4: Number of Operations on ALTEST

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 0 0 0
Kalah 63 42 33.33 63 33 1.91 47.62
Queens 4 2 50.00 4 2 2.00 50.00
Press1 220 134 39.09 220 102 2.16 53.64
Press2 79 43 45.57 79 35 2.26 55.70
Peep 0 0 0
CS 33 17 48.48 33 16 2.06 51.52
Disj 16 6 62.50 16 5 3.20 68.75
PG 20 12 40.00 20 9 2.22 55 .00
Read 22 16 27.27 22 12 1.83 45.45
Gabriel 56 31 44.64 56 26 2.15 53.57
Plan 0 0 0
QSort 0 0 0

Table A.5: Number of Operations on ALIS

APPENDIX A . RESULTS ON THE INDNIDUAL OPERATIONS 112

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 3 1 66.67 3 1 3.00 66 .67
Kalah 22 15 31.82 22 14 1.57 36 .36
Queens 0 0 0
Press1 210 121 42.38 210 102 2.06 51.43
Press2 71 39 45.07 71 37 1.92 47.89
Peep 203 175 13.79 203 167 1.22 17.73
CS 12 6 50.00 12 6 2.00 50.00
Disj 16 8 50 .00 16 8 2.00 50.00
PG 13 7 46.15 13 6 2.17 53 .85
Read 264 195 26.14 264 191 1.38 27.65
Gabriel 55 32 41.82 55 24 2.29 56.36
Plan 4 2 50.00 4 2 2.00 50.00
QSort 23 14 39.13 23 8 2.88 65 .22

Table A.6: Number of Operations on ALVAR

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 9 3 66 .67 9 3 3.00 66.67
Kalah 605 376 37.85 605 335 1.81 44.63
Queens 60 26 56.67 60 25 2.40 58.33
Press1 4726 3042 35.63 4726 2534 1.87 46 .38
Press2 1748 1154 33.98 1748 1016 1.72 41.88
Peep 1531 1092 28.67 1531 1082 1.41 29 .33
CS 528 252 52.27 528 248 2.13 53.03
Disj 494 202 59.11 494 202 2.45 59.11
PG 186 106 43 .01 186 93 2.00 50.00
Read 3463 2503 27 .72 3463 2361 1.47 31.82
Gabriel 411 235 42.82 411 222 1.85 45 .99
Plan 98 68 30.61 98 66 1.48 32 .65
QSort 57 27 52.63 57 21 2.71 63 .13

Table A.7: Number of Operations on ALFUNC

APPENDIX A . RESULTS ON THE INDIVIDUAL OPERATIONS 113

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 3 3 0.00 3 3 1.00 0.00
Kalah 226 174 23 .01 226 151 1.50 33.19
Queens 22 18 18.18 22 17 1.29 22 .73
Press1 1669 1297 22.29 1669 1037 1.61 37.87
Press2 577 449 22.18 577 389 1.48 32.58
Peep 367 315 14.17 367 291 1.26 20.71
CS 130 114 12.31 130 106 1.23 18.46
Disj 149 99 33 .59 149 98 1.52 34.23
PG 62 56 9.68 62 47 1.32 24 .19
Read 1495 1122 24.95 1495 990 1.51 33.78
Gabriel 173 138 20 .23 173 120 1.44 30.64
Plan 67 61 8.96 67 56 1.20 16.42
QSort 42 33 21.43 42 29 1.45 30.95

Table A.8: Number of Operations on EXTG

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 3 1 66 .67 3 1 3.00 66 .67
Kalah 226 128 43.36 226 115 1.97 49 .12
Queens 22 10 54 .55 22 9 2.44 59.09
Press1 1669 962 42 .36 1669 716 2.33 57 .10
Press2 577 322 44.19 577 263 2.19 52 .69
Peep 367 222 39.51 367 212 1.73 42 .23
CS 130 76 41 .54 130 69 1.88 46 .92
Disj 149 69 53 .69 149 68 2.19 54.36
PG 62 38 38.71 62 29 2.14 53 .23
Read 1495 945 36.79 1495 820 1.82 45.15
Gabriel 173 98 43 .35 173 80 2.16 53 .76
Plan 67 49 26 .87 67 44 1.45 34.33
QSort 42 22 47 .62 42 16 2.63 61.90

Table A.9: Number of Operations on RESTRG

APPENDIX A. RESULTS ON THE INDIVID UAL OPERATIONS 114

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 6 2 66 .67 6 2 3.00 66 .67
Kalah 229 136 40.61 229 136 1.68 40.61
Queens 29 13 55.17 29 13 2.23 55.17
Press1 1835 1177 35.86 1835 1177 1.56 35.86
Press2 701 458 34.66 701 458 1.53 34.66
Peep 530 380 28 .30 530 380 1.39 28.30
es 153 81 47.06 153 81 1.89 47.06
Disj 124 64 48 .39 124 64 1.94 48.39
PG 80 44 45 .00 80 44 1.82 45.00
Read 1181 850 28.03 1181 850 1.39 28.03
Gabriel 190 113 40.53 190 113 1.68 40.53
Plan 78 56 28.21 78 56 1.39 28.21
QSort 34 14 58.82 34 14 2.43 58.82

Table A.10: Number of Operations on EXTC

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 6 4 33.33 6 4 1.50 33.33
Kalah 229 182 20.52 229 156 1.47 31 .88
Queens 29 21 27 .59 29 19 1.53 34.48
Press1 1835 1512 17.60 1835 761 2.41 58 .53
Press2 701 585 16.55 701 388 1.81 44.65
Peep 530 473 24.39 530 411 1.29 22.45
CS 153 119 22 .22 153 99 1.55 35.29
Disj 124 94 24 .19 124 91 1.36 26 .61
PG 80 62 22.50 80 47 1.70 41.25
Read 1181 1027 13.04 1181 559 2.11 52.67
Gabriel 190 153 19.47 190 106 1.79 44.21
Plan 78 68 12.82 78 46 1.70 41.03
QSort 34 25 26.47 34 17 2.00 50.00

Table A.11: Number of Operations on RESTRC

APPENDIX A. RESULTS ON THE INDNIDUAL OPERATIONS 115

Original Prefix Caching
Program calls calls OR-PR calls eval ratio OR-eval
Append 11 9 18.18 11 6 1.83 45.45
Kalah 485 455 6.19 485 259 1.87 46.60
Queens 58 50 13.79 58 29 2.00 50.00
Press1 3266 3045 6.77 3266 2000 1.63 38.76
Press2 1209 1140 5.71 1209 674 1.79 44.25
Peep 711 676 4.92 711 522 1.36 26.58
CS 324 290 10.49 324 157 2.06 51.54
Disj 257 227 11.67 257 93 2.76 63.81
PG 166 148 10.84 166 80 2.08 51.81
Read 1993 1899 4.72 1993 1240 1.61 37.78
Gabriel 360 322 10.56 360 176 2.05 51.11
Plan 160 150 6.25 160 75 2.13 53.13
QSort 68 57 16.18 68 38 1.79 44.12

Table A.12: Number of Operations on UNION

