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Nice Port-Hamiltonian systems are
Riesz-spectral systems ?

F.Lamoline ∗ J.J.Winkin ∗∗

∗University of Namur, Department of Mathematics and Namur
Institute for Complex Systems (naXys), Rempart de la vierge 8,
B-5000 Namur, Belgium (e-mail: francois.lamoline@unamur.be)
∗∗University of Namur, Department of Mathematics and naXys,

Rempart de la vierge 8, B-5000 Namur, Belgium (email:
joseph.winkin@unamur.be)

Abstract: It is shown that the class of infinite-dimensional nice port-Hamiltonian systems
including a large range of distributed parameter systems with boundary control is a subclass of
Riesz-spectral systems. This result is illustrated by an example of a vibrating string.

Keywords: Distributed-parameter system - Infinite-dimensional system - Exponential stability
- port-Hamiltonian system - Riesz basis - Riesz-spectral system

1. INTRODUCTION

The concept of Riesz basis is fundamental in system theory
and an extensive literature is devoted to it. Results regard-
ing controllability, stabilizability, their dual concepts and
stability are easily checkable for a large class of systems
whose dynamic generator has a Riesz basis of eigenvectors,
see (Curtain and Zwart, 1995). Furthermore, this concept
allows to describe the dynamics of a system under the
form of eigenfunction expansions of non-harmonic Fourier
series.

The class of port-Hamiltonian systems includes numerous
physical models, e.g. the wave equation, traveling waves,
the heat exchanger, the Timoshenko beam, diffusive tubu-
lar reactors. On the other hand, all these particular models
are known to be Riesz-spectral systems, see (Curtain and
Zwart, 1995), (Xu, 2005) and (Delattre et al., 2003) respec-
tively. This begs the question whether port-Hamiltonian
systems are Riesz-spectral. Important hints towards this
general result are available in the literature: see (Tretter,
2000) and (Villegas, 2007, Chapter 4). The objective of this
note is to prove this result, on the basis of these references,
for a specific subclass, viz. nice port-Hamiltonian systems
introduced in this extended abstract. This should be seen
as an attempt to the study of the Riesz-spectral property
of port-Hamiltonian systems. (Villegas, 2007, Chapter 4)
bears the marks of a thorough research and much material
is presented but, not everything is needed. In Section 3,

? This research was conducted with the financial support of F.R.S-
FNRS. François Lamoline is a FRIA Research Fellow under the grant
F 3/5/5-MCF/BC. This note presents research results of the Belgian
Programme on Interuniversity Poles of Attraction, initiated by the
Belgian State, the Prime Minister’s Office for Science, Technology
and Culture. The scientific responsibility rests with its authors.
The authors wish to thank Prof. H.J. Zwart from the University of
Twente and Eindhoven University of Technology and Dr. B. Dierolf
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some results are gathered from (Villegas, 2007, Chapter
4) and developed in a straightforward manner in order
to deduce the Riesz basis property from (Tretter, 2000,
Theorem 3.11). Further contributions are the authors’ will-
ingness of giving a clarification of (Villegas, 2007, Chapter
4), while being self-contained, and the tutorial aspect of
this note.

This extended abstract is organized as follows. First, we
introduce the class of systems under study. Then, we
establish the Riesz basis property for these systems. Next,
we prove the main result of this paper: the class of nice
port-Hamiltonian systems is a sub-class of Riesz-spectral
systems. Eventually, the theory is illustrated through an
example of a vibrating string.

2. PORT-HAMILTONIAN SYSTEM

We consider the port-Hamiltonian system definition intro-
duced in (Le Gorrec et al., 2005) and (Jacob and Zwart,
2012).

Definition 1. A port-Hamiltonian system is governed by a
PDE of the form
∂x

∂t
(ζ, t) = P1

∂

∂ζ
(H (ζ)x(ζ, t)) + P0(H (ζ)x(ζ, t)), (1)

where P1 ∈ Kn×n is invertible and self-adjoint (P ∗1 = P1),
P0 ∈ Kn×n is skew-adjoint (P ∗0 = −P0) and H ∈
L∞([a, b];Kn×n) is self-adjoint and satisfies mI ≤H (ζ) ≤
MI for a.e. ζ ∈ [a, b], for some constants m, M > 0
(K denotes the field of real or complex numbers). The
associated Hamiltonian E : L2([a, b];Kn) → K evaluated
along the trajectory x(t) is given by

E(x(t)) =
1

2

∫ b

a

x(ζ, t)∗H (ζ)x(ζ, t)dζ. (2)

These systems rely on the natural state space X :=
L2([a, b];Kn). The inner product



〈x1, x2〉 =
1

2

∫ b

a

x2(ζ)∗H (ζ)x1(ζ)dζ (3)

induces the norm ||x||X =
√
〈x, x〉, which makes the state

space L2([a, b];Kn) complete.

The boundary port-variables that are used to express the
boundary conditions related to the PDE of a physical
system like (1) are given by the boundary flow variable
f∂ and the boundary effort variable e∂ , defined here as(

f∂
e∂

)
= R0

(
(H x)(b)
(H x)(a)

)
(4)

with R0 := 1√
2

(
P1 −P1

I I

)
, where I ∈ Kn×n denotes the

identity matrix. Additionally, we specify the boundary

conditions associated to the PDE (1) as W̃B

[
(H x)(b)

(H x)(a)

]
=

0. As a matter of fact, the best choice is to express them
through the boundary variables, i.e.,

WB

[
f∂
e∂

]
= 0, (5)

where WB = W̃BR
−1
0 . Notice that the invertibility of R0

follows from the invertibility of P1. Considering x(t) ∈
L2([a, b];Kn) as system state, the PDE (1) can be rewrit-
ten as the differential equation ẋ(t) = Ax(t) by defining
the differential operator

Ax = P1
d

dζ
(H x) + P0(H x) (6)

with domain

D(A) =
{
x ∈ L2([a, b];Kn) : H x ∈ H1([a, b];Kn),

WB

[
f∂
e∂

]
= 0

}
.

(7)

The necessary and sufficient condition stated in the fol-
lowing theorem will be assumed to hold throughout.

Theorem 2. (Jacob and Zwart, 2012, Theorem 7.2.4)
Consider the operator A with domain D(A) given by
(6)-(7), associated to a port-Hamiltonian system (1)-(5).
Assume that WB is a n × 2n matrix of full rank. Then
A is the generator of a contraction C0-semigroup on
L2([a, b];Kn) if and only if WBΣW ∗B ≥ 0 where Σ =[
0 I

I 0

]
∈ K2n×2n.

3. RIESZ BASIS PROPERTY

In this section we shall prove that under some assumptions
on the spectrum of the dynamical operator A described
by (6)-(7), the eigenfunctions (φn)n∈N of an auxiliary
eigenvalue problem form a Riesz basis.

Definition 3. A vector sequence (φn)n∈N on a Hilbert
space X is a Riesz basis if it satisfies the following
conditions:

(1) span{φn} = X;
(2) there exist positive constants M1 and M2 such that

for any N ∈ N and for any cn ∈ K, n = 1, 2, ..., N ,

M1

N∑
n=1

|cn|2 ≤ ||
N∑
n=1

cnφn||2X ≤M2

N∑
n=1

|cn|2. (8)

Any vector x ∈ X is uniquely decomposed in a Riesz basis
(φn)n∈N as

x =

∞∑
n=1

cnφn, (9)

where the scalars cn are uniquely determined by x.

Remark 4. It is well-known that any Riesz basis is an
orthonormal basis with respect to an equivalent inner
product, which means that (φn)n∈N is a Riesz basis if and
only if there exists an invertible bounded linear operator
U that transforms (φn)n∈N into some orthonormal basis
(en)n∈N, i.e.,

∀n ∈ N, en = Uφn. (10)

For details of the proof of this result, see (Young, 2001,
Theorem 7).

Definition 5. Consider a closed linear operator A on a
Hilbert space X with a discrete spectrum consisting of
simple eigenvalues σp(A) := {λn : n ∈ N} and correspond-
ing eigenvectors (φn)n∈N. If the closure of {λn : n ∈ N} is
totally disconnected and if (φn)n∈N is a Riesz basis on X,
then A is said to be a Riesz-spectral operator.

Recall that the set D := {λn : n ∈ N} ⊂ C is totally
disconnected if every point in D cannot be joined with
any other point in D by a segment lying entirely in D.
In order to establish the Riesz-basis property, we shall use
(Tretter, 2000, Theorem 3.11). To do so, we shall follow
the approach developed in (Villegas, 2007, Section 4.2).

Assumption 6. The multiplication operator P−11 H −1 is
assumed to be diagonalizable, i.e.,

P−11 H −1(ζ) = S(ζ)A1(ζ)S(ζ)−1, ζ ∈ [a, b], (11)

where A1 is a diagonal matrix-valued function whose
diagonal entries are the eigenvalues (rν)nν=1 of P−11 H −1,
whereas S is a matrix-valued function whose columns are
corresponding eigenvectors. S and A1 are continuously
differentiable on [a, b].

Observe that this assumption is not very strong and will
almost always be satisfied in practice if H is continu-
ously differentiable. Moreover, P−11 H −1 may have eigen-
values that are not simple. Therein, we shall consider that
P−11 H −1 has l different eigenvalues such that l ≤ n.

Lemma 7. The eigenvalue problem

P1
d

dζ
((H x)(ζ)) + P0((H x)(ζ)) = λx(ζ), (12)

where λ ∈ σp(A) and x ∈ D(A) is a corresponding
eigenfunction can be formulated under the form:

df

dζ
(ζ) = (λA1(ζ) +A0(ζ))f(ζ), ζ ∈ [a, b],

Wb(Sf)(b) +Wa(Sf)(a) = 0,
(13)

where Wb := W1P1 + W2 and Wa := −W1P1 + W2

with WB := [W1 W2 ] and f ∈ W 1,2([a, b];Kn×n) :={
f ∈ L2([a, b];Kn) : dfdζ ∈ L

2([a, b];Kn)
}

with coefficients

A0, A1 ∈ L∞([a, b]; Kn×n).

Proof. Let us consider the eigenvalue problem

P1
d

dζ
((H x)(ζ)) + P0((H x)(ζ)) = λx(ζ),

where λ ∈ σp(A) and x ∈ D(A) is a corresponding
eigenfunction satisfying the boundary conditions:



W̃B

[
(H x)(b)
(H x)(a)

]
= 0. (14)

By using the basis transformation S(ζ) that diagonalizes
P−11 H −1, this eigenvalue problem becomes

df

dζ
(ζ) = (λA1(ζ) +A0(ζ))f(ζ), ζ ∈ [a, b], (15)

where A1 = S−1(H P1)−1S, A0 = −S−1(P−11 P0S + d
dζS)

and f(ζ) = (S−1H x)(ζ). Furthermore, the boundary

condition W̃B

[
H (b)x(b, t)

H (a)x(a, t)

]
= 0 becomes W̃B

[
(Sf)(b)

(Sf)(a)

]
=

0, which finally yields the boundary condition:

Wb(Sf)(b) +Wa(Sf)(a) = 0, (16)

where Wb := W1P1 + W2 and Wa := −W1P1 + W2 with
WB := [W1 W2 ].

Related to the eigenvalue problem (13), we define the
operator Af as

Aff = A−11

d

dζ
f −A−11 A0f

= S−1H P1
d

dζ
(Sf) + S−1H P0(Sf)

(17)

with domain

D(Af ) = {f ∈ L2([a, b];Kn) : Sf ∈ H1([a, b];Kn),

Wb(Sf)(b) +Wa(Sf)(a) = 0}. (18)

Lemma 8. Consider the operator A with domain D(A)
given by (6)-(7) and the operator Af with domain D(Af )
defined by (17)-(18). Then,

S−1H Ax = AfS
−1H x, x ∈ D(A), (19)

and x ∈ D(A) if and only if f = S−1H x ∈ D(Af ).
Moreover, the eigenvalues of A that are given by (12),(5)
are the same as those of the operator Af . If λ is an
eigenvalue of Af with a corresponding eigenfunction f ∈
D(Af ), then λ is an eigenvalue of A with eigenfunction
x = H −1Sf ∈ D(A).

Proof. (19) is a direct consequence of (6) and (17).
Let x be in D(A). Thus x must satisfy Wb(H x)(b) +
Wa(H x)(a) = 0 and by setting f = S−1H x, we get that
f ∈ D(Af ) from (18). Let us now consider an eigenvalue
λ ∈ σp(Af ) with corresponding eigenfunction f . From the
definition of Af , it follows that

λf = Aff = S−1H P1
d

dζ
(Sf) + S−1H P0(Sf)

and from the identity Sf = H x we get λx = Ax.

In order to use (Tretter, 2000, Theorem 3.11), we have to
make a further assumption.

Assumption 9. For ν ∈ {1, ..., l}, let us define Rν(z) :=∫ z
a
rν(ζ)dζ, where (rν(ζ))

l
ν=1 are the l different eigenval-

ues of P−11 H −1(ζ) and Eν(z, λ) := eλRν(z)Inν , where
nν is the multiplicity of rν(·) and Inν denotes the nν-

dimensional unit matrix such that

l∑
ν=1

nν = n. We set

E(z, λ) = diag(E0(z, λ), . . . , El(z, λ)), z ∈ [a, b]. We shall
assume that the eigenvalue problem (13) is normal, i.e.,
for sufficiently large λ, the asymptotic expansion of the
characteristic determinant of (13) given by

p(λ) =
∑
c∈E

(bc + {o(1)}∞)eλc (20)

has non-zero minimum and maximum coefficients, where

E =

{
l∑

ν=1

δνRν(b) : δν ∈ {0, 1}

}
⊂ R (21)

and {o(1)}∞ means that for each c ∈ E the remaining
part depending on z ∈ [a, b] divided by λ tends to 0 in the
uniform norm when |λ| → ∞.

From (Villegas, 2007, Theorem 4.10), it follows that the
non-zero coefficients are given by∑

c∈E

bce
λc = det(WbS(b)Φ0(b)E(b, λ) +WaS(b)), (22)

where Φ0 ∈W 1,∞([a, b];Kn×n) is determined by

Φ0(ζ)A1 = A1Φ0(ζ), Φ0(a) = I,

dΦ0,νν

dζ
−A0,ννΦ0,νν = 0, ν = 1, ..., l

(23)

where A0,νν and Φ0,νν are the elements of the νth row
and the νth column of A0 and Φ0 respectively. For more
details, see (Mennicken and Möller, 2003, Section § 2.8).

Theorem 10. Assume that the eigenvalue problem (13)
is normal with A0, A1 ∈ W 2,∞([a, b];Kn×n) and A1 is
a diagonal matrix with the eigenvalues of P−11 H −1 as
diagonal elements with H ∈ W 2,∞([a, b];Kn×n). If the
eigenvalues have a uniform gap, i.e., inf

m 6=p
|λm − λp| > 0,

then there exists a sequence of eigenfunctions of Af that
forms a Riesz basis of L2([a, b];Kn).

Proof. This is a direct consequence of (Tretter, 2000,
Theorem 3.11) applied to the eigenvalue problem (13).
Notice that the canonical system of eigenfunctions in
(Tretter, 2000, Theorem 3.11) corresponds to the eigen-
functions of the operator Af . In (Tretter, 2000, The-
orem 3.11) the eigenvalue problem is also assumed to
be non-degenerate, i.e. ρ(T ) 6= ∅, where T is a linear
pencil T (λ) = T0 − λT1 of bounded operators T0, T1 ∈
L(H1([a, b];Kn), L2([a, b];Kn)× Cn) given by

T0f :=

 d

dζ
f −A0f

Wb(Sf)(b) +Wa(Sf)(a)

 , T1f :=

[
A1f

0

]
.

From (Villegas, 2007, Theorem 4.2), we have that C+ ⊂
ρ(T ). Eventually, since the eigenvalue problem (13) is
assumed to be normal and the eigenvalues of Af are
assumed to have a uniform gap, we conclude that there
exists a sequence of eigenfunctions (fn)n∈N of Af that
forms a Riesz basis.

4. MAIN RESULT

In this section we prove the Riesz-spectral property of
port-Hamiltonian systems satisfying the assumptions of
Theorem 10. First we need the following definition.

Definition 11. A dynamical system

ẋ(t) = Ax(t) (24)

where A : D(A) ⊂ X → X is a linear operator on a Hilbert
space X is said to be a Riesz-spectral system if it satisfies
the following conditions:



(1) A is a Riesz-spectral operator;
(2) A is the infinitesimal generator of a C0-semigroup

(T (t))t≥0 on X.

Definition 12. A nice port-Hamiltonian system is a port-
Hamiltonian system (according to Definition 1) which
satisfies the condition WBΣW ∗B ≥ 0 and Assumptions 6
and 9, and whose generator A given by (6) has a uniform
gap of eigenvalues, i.e., inf

m6=p
|λm − λp| > 0.

Theorem 13. Under the regularity assumptions on the
matrix-valued functions A0, A1 and H in Theorem 10, any
nice port-Hamiltonian system (1)-(5) is a Riesz-spectral
system.

Proof. First observe that, by Theorem 2, A generates a
C0-semigroup since it is assumed that WBΣW ∗B ≥ 0. It
follows that A is closed.
Besides, the closure of the set of the eigenvalues is totally
disconnected. Indeed, from (Villegas, 2007, Theorem 2.28),
it is known that the resolvent operator of A is compact
and thus, the spectrum σ(A) is only made of eigenvalues
of finite multiplicity such that σ(A) = σp(A). Since we are
counting the eigenvalues with multiplicity, the uniform gap
between them entails that they are in fact all simple.
The set of corresponding eigenfunctions is a Riesz basis
of L2([a, b];Kn), i.e., it is an orthonormal basis with
respect to an equivalent inner product, see Remark 4. From
Theorem 10, it is known that the operator Af has a Riesz
basis and, in view of Lemma 8 its eigenfunctions (fn)n∈N
are isomorphic to the eigenfunctions (xn)n∈N of A. Indeed,
fn = S−1H xn for n ∈ N. Therefore, the operator A has
a Riesz basis of eigenfunctions.

Remark 14. In order to prove the exponential stability of
a C0-semigroup on a finite dimensional space, it suffices
to compute the eigenvalues of the operator (matrix) which
generates the C0-semigroup. In infinite dimensional spaces,
this is not so obvious since there is a distinction between
the spectral bound and the growth bound. To understand
the issue better, we refer the reader to (Curtain and Zwart,
1995). However from (Curtain and Zwart, 1995, Theorem
2.3.5), it is known that the spectral bound determines the
growth bound for Riesz-spectral systems. Thus Theorem
13 implies that the exponential stability of a nice port-
Hamiltonian system is checkable through its eigenvalues.

5. EXAMPLE: VIBRATING STRING

In this section we investigate the exponential stability of
a vibrating string. This example is based on (Jacob and
Zwart, 2012, Example 7.2.5). The dynamic is governed by
the following PDE:

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
, (25)

where w(ζ, t) is the vertical position of the string at
place ζ and time t. T (ζ) and ρ(ζ) are respectively the
Young’s modulus and the mass density at place ζ. We
define x1(ζ, t) = ρ(ζ)∂w∂t (ζ, t) (momentum) and x2(ζ, t) =
∂w
∂ζ (ζ, t) (strain). Thus, the PDE (25) can be rewritten as:

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=

[
0 1
1 0

]
∂

∂ζ

 1

ρ(ζ)
0

0 T (ζ)

[ x1(ζ, t)
x2(ζ, t)

]
= P1

∂

∂ζ

(
H (ζ)

[
x1(ζ, t)
x2(ζ, t)

])
, (26)

The boundary conditions T (b)∂w∂ζ (b, t) +∂w
∂t (b, t) = 0 and

T (a)∂w∂ζ (a, t) = 0 are under consideration. For this example

the boundary flow and effort are respectively given by

f∂(t) =
1
√

2

 T (b)
∂w

∂ζ
(b, t)− T (a)

∂w

∂ζ
(a, t)

∂w

∂t
(b, t)−

∂w

∂t
(a, t)

 ,
e∂(t) =

1
√

2

 ∂w

∂t
(b, t) +

∂w

∂t
(a, t)

T (b)
∂w

∂ζ
(b, t) + T (a)

∂w

∂ζ
(a, t)

 .
The boundary conditions become in these variables

[
0
0

]
=

 T (a)
∂w

∂ζ
(a, t)

T (b)
∂w

∂ζ
(b, t) +

∂w

∂t
(b, t)

 = WB

[
f∂(t)
e∂(t)

]
, (27)

where WB = 1√
2

[
−1 0 0 1

1 1 1 1

]
has rank 2 and WBΣW ∗B =[

0 0
0 2

]
≥ 0. The eigenvalues and eigenfunctions of

P−11 H −1 :=

[
0

1

T (ζ)
ρ(ζ) 0

]
are given by λ(ζ) = ±

√
ρ(ζ)
T (ζ)

and

[√
ρ(ζ)

T (ζ)

ρ(ζ)

]
,

[
−

√
ρ(ζ)

T (ζ)

ρ(ζ)

]
respectively. In addition,

Wa =
√

2

[
0 1
0 0

]
and Wb =

√
2

[
0 0
1 1

]
. (28)

The verification that this application satisfies the nor-
mality assumption is straightforward but requires some
computations left to the reader, see Assumption 9.

E =

{∫ b

a

√
ρ(ζ)

T (ζ)
dζ,−

∫ b

a

√
ρ(ζ)

T (ζ)
dζ, 0

}

det(WbS(b)Φ0(b)E(b, λ) +WaS(b))

= 2
√

(Tρ)(b)(1 +
√

(Tρ)(b))E1(b, λ)

+2
√

(Tρ)(b)(1−
√

(Tρ)(b))E2(b, λ),
(29)

where E(z, λ) = diag(exp
(
λ
∫ z
a

√
ρ(ζ)
T (ζ)dζ

)
, exp

(
−λ
∫ z
a√

ρ(ζ)
T (ζ)dζ

)
) with λ ∈ σ(A). The system is normal if and

only if 1 6=
√

((Tρ)(b)).
It is acknowledged that the roots of the characteristic
determinant (20) given by

p(λ) = {o(1)}∞ + [2
√

(Tρ)(b)(1 +
√

(Tρ)(b)) + {o(1)}∞]

E1(b, λ) + [2
√

(Tρ)(b)(1−
√

(Tρ)(b)) + {o(1)}∞]E2(b, λ)

are the eigenvalues of A. The roots are approximated
by (29) and by Rouché’s theorem, the eigenvalues are
approximated as λn = λ∗n + o( 1

n ) for n ∈ N, where



λ∗n =



−1

2
∫ b
a

√
ρ(ζ)
T (ζ)

ln

∣∣∣∣∣
√

(Tρ)(b) + 1√
(Tρ)(b)− 1

∣∣∣∣∣− i πn∫ b
a

√
ρ(ζ)
T (ζ)dζ

,

−1

2
∫ b
a

√
ρ(ζ)
T (ζ)

ln

∣∣∣∣∣
√

(Tρ)(b) + 1√
(Tρ)(b)− 1

∣∣∣∣∣− i π(2n+ 1)

2
∫ b
a

√
ρ(ζ)
T (ζ)dζ

,

(30)

if
√

(Tρ)(b) > 1 or
√

(Tρ)(b) < 1 respectively. Observe
that the uniform gap property is satisfied. Therefore, (26)
and (27) describe a nice port-Hamiltonian system and
thus, from Theorem 13, define a Riesz-spectral system.
Besides, since w0 is given by

w0 = sup
n∈N

Reλn =
−1

2
∫ b
a

√
ρ(ζ)
T (ζ)

ln

∣∣∣∣∣
√

(Tρ)(b) + 1√
(Tρ)(b)− 1

∣∣∣∣∣ < 0,

the Riesz-spectral property entails the exponential stabil-
ity of the system.

6. CONCLUSION AND REMARKS

In this note, nice port-Hamiltonian systems on infinite-
dimensional spaces were considered. It was shown that
they are a subclass of Riesz-spectral systems, which con-
stitute a class of systems with useful properties. Moreover,
as explained in Remark 14, in the case of nice port-
Hamiltonian systems, the spectral bound characterizes the
exponential stability utterly.
As far as known, whether nice port-Hamiltonian systems
are Riesz-spectral was not clearly stated in the literature.
Thus, this note may be considered as an attempt to sum-
marize the available literature and to fill this blank left in
the literature.
A natural extension would be to consider dissipative effects
in the port-Hamiltonian framework in order to see if the
Riesz-spectral property still holds. Even though the answer
seems intuitively to be positive, the proof of such extension
is not straightforward and is still being investigated.
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