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Band-structure and electronic transport calculations in cylindrical wires : the
issue of bound states in transfer-matrix calculations

Alexandre Mayer1, a)

Department of Physics, University of Namur, Rue de Bruxelles 61, 5000 Namur,
Belgium

(Dated: 16 July 2019)

The transfer-matrix methodology is used to solve linear systems of differential equations, such as those that
arise when solving Schrödinger’s equation, in situations where the solutions of interest are in the continuous
part of the energy spectrum. The technique is actually a generalization in three dimensions of methods used
to obtain scattering solutions in one dimension. Using the layer-addition algorithm allows one to control the
stability of the computation and to describe efficiently periodic repetitions of a basic unit. This paper, which
is an update of an article originally published in Physical and Chemical News 16, 46-53 (2004), provides a
pedagogical presentation of this technique. It describes in details how the band structure associated with an
infinite periodic medium can be extracted from the transfer matrices that characterize a single basic unit.
The method is applied to the calculation of the transmission and band structure of electrons subject to cosine
potentials in a cylindrical wire. The simulations show that bound states must be considered because of their
impact as sharp resonances in the transmission probabilities and to remove unphysical discontinuities in the
band structure. Additional states only improve the completeness of the representation.

Keywords: electronic transport, transfer matrix methodology, S matrices, band structure calculation, bound
states, quantum wires

I. INTRODUCTION

The transfer-matrix methodology is one of the tech-
niques used to solve linear systems of differential equa-
tions, such as those that arise when solving Schrödinger’s
equation, in situations where the solutions of interest are
in the continuous part of the energy spectrum. For this
numerical scheme to be relevant, the physical system con-
sidered should be located between two separate bound-
aries (standing for the regions of incidence and transmis-
sion). Given a set of basis states used for the expansion
of the wave function, the transfer matrices provide, for
each state incident on one boundary of the system, the
coefficients of the corresponding reflected and transmit-
ted states.

The advantage of this technique is that it does not
require the storage of the wave function in the inter-
mediate part of the system (where solutions are only
propagated through). Its storage space requirements
therefore depend essentially on the number N of ba-
sis states used for the expansion of the solutions (more
precisely on N3), and not directly on the dimensions
of the system. This technique was first developed by
Pendry1–3 for Low Energy Electron Diffraction simula-
tions. It was used and developed by other authors,4–14

including Mayer et al.15–17 for the simulation of the
Fresnel projection microscope,18–21 for the modeling of
field electronic emission,22–25 for the modeling of photon-
stimulated field emission26,27 and finally for the model-
ing of optical rectification by geometrically asymmetric
metal-vacuum-metal junctions.28–31

a)Electronic mail: alexandre.mayer@unamur.be

An interesting feature of the method is that it can
easily handle periodic repetitions of a basic unit. From
the transfer matrices associated with a single unit of the
structure, it is indeed straightforward (using the layer-
addition algorithm1,2) to derive those corresponding to
an arbitrary number of units. The band structure that
characterizes the infinite repetition of these units can also
be extracted from the transfer matrices.

It is the objective of this paper to provide a peda-
gogical presentation of the transfer-matrix methodology
and to describe how band structures can be derived in
this approach. The theoretical aspects of this scheme are
developed in Sec. II. The technique is then applied in
Sec. III to the study of electrons that are confined in
a cylindrical wire and subject to cosine potentials. The
simulations show how fast band structure effects appear
with the number of periods. The features of the transmis-
sion diagram are related to those of the band structure
and interpreted in terms of quantum conductance and
band-gap effects. The issue of bound states is also con-
sidered. It is found that they need to be considered in
order to reproduce sharp resonances in the transmission
probabilities and to remove unphysical discontinuities in
the band structure. Additional states only improve the
completeness of the representation.

II. THEORY

Let us consider three regions: Region I (z ≤ 0), Region
II (0 ≤ z ≤ D) and Region III (z ≥ D). We consider the
scattering strengths to be in the intermediate Region II
and we want to compute how electronic states incident
on one side of Region II are scattered towards the other
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FIG. 1. Schematic representation of the situation considered.
Region I and Region III are the regions of incidence and trans-
mission. The intermediate Region II contains a cylindrical
wire with cosine potentials.

side.

Let us consider two sets of basis states in the bound-
ary regions, namely {ΨI,±

j } in Region I and {ΨIII,±
j } in

Region III. These states are used to expand the wave
function in Region I and Region III, for a given value of
the energy E. The subscript j enumerates the allowed
values of {kρ,m} in cylindrical coordinates or {kx, ky}
in cartesian coordinates, considering applicable bound-
ary conditions and the energy E. The ± signs refer to
the propagation direction relative to the z axis, which is
oriented from Region I to Region III (see Fig. 1).

We assume our boundary states to be separable in the
following way:

ΨI,±
j (ρ, φ, z) = ψj(ρ, φ) exp(±ikz,jz), (1)

ΨIII,±
j (ρ, φ, z) = ψj(ρ, φ) exp(±ikz,jz), (2)

where ψj(ρ, φ) refers to analytical basis functions that
account for the (ρ, φ)-dependence of the wave functions
(see Sec. III for specific expressions in cylindrical co-
ordinates). These relations will be used to derive band
structures from transfer-matrix calculations; they are ac-
tually only required for this specific application.

We will describe in this section how scattering solu-

tions that correspond to single incident states ΨI,+
j in

Region I or ΨIII,−
j in Region III can be derived. We will

describe shortly the layer-addition algorithm and finally
explain how the band structure associated with the infi-
nite repetition of a basic unit can be extracted from these
solutions.

A. Basic formulation of the transfer-matrix technique

The first step of the technique consists in establishing

solutions associated with single outgoing states ΨIII,+
j or

incoming states ΨIII,−
j in Region III. Since the wave func-

tion and its derivatives are entirely defined in Region III,
one can propagate these states numerically from z = D
to z = 0, where the solutions are expanded in terms of

incident states ΨI,+
j and reflected states ΨI,−

j . The nu-
merical techniques that enable the propagation of the
wave functions through Region II can be found in Refs
19, 22 and 25. The expansion coefficients of these solu-
tions are stored in T±± matrices and we end up with the
following set of solutions:

Ψ
+

j
z≤0
=
∑
i

T++
i,j ΨI,+

i +
∑
i

T−+i,j ΨI,−
i

z≥D
= ΨIII,+

j , (3)

Ψ
−
j
z≤0
=
∑
i

T+−
i,j ΨI,+

i +
∑
i

T−−i,j ΨI,−
i

z≥D
= ΨIII,−

j . (4)

In the second step of the procedure, these solutions are
combined linearly in order to derive new solutions satis-
fying the scattering boundary conditions, namely solu-

tions associated with either a single incident state ΨI,+
j

in Region I or a single incident state ΨIII,−
j in Region III

(with this time reflected states in the region of incidence
and transmitted states in the other region). Formally,
these solutions are expressed in terms of scattering S±±

matrices in the following way:

Ψ+
j

z≤0
= ΨI,+

j +
∑
i

S−+i,j ΨI,−
i

z≥D
=
∑
i

S++
i,j ΨIII,+

i , (5)

Ψ−j
z≤0
=
∑
i

S−−i,j ΨI,−
i

z≥D
= ΨIII,−

j +
∑
i

S+−
i,j ΨIII,+

i . (6)

The S±± matrices, which contain the expansion coef-
ficients of these scattering solutions are related to the

T±± matrices of Eqs 3 and 4 by S++ = T++−1,

S−+ = T−+T++−1, S−− = T−−−T−+T++−1T+− and

S+− = −T++−1T+−.

B. The layer-addition algorithm for the control of
accuracy and the description of periodic systems

To control the numerical instabilities that appear with
large distancesD (when inverting T++ to obtain the S±±

matrices) or to treat efficiently periodic systems, it is use-
ful to use the layer-addition algorithm.1,2 Given a sub-
division 0 = z0 < z1 < z2 < · · · < zn−1 < zn = D of
the interval [0, D] and referring by S++

zi,zj , S−+zi,zj , S−−zi,zj
and S+−

zi,zj to the S matrices associated with the interval

[zi, zj ], one can derive those associated with the entire
interval [0, D] from the recursive application of the fol-
lowing relations:
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S++
z0,zi = S++

zi−1,zi

[
I− S+−

z0,zi−1
S−+zi−1,zi

]−1
S++
z0,zi−1

, (7)

S−−z0,zi = S−−z0,zi−1

[
I− S−+zi−1,ziS

+−
z0,zi−1

]−1
S−−zi−1,zi , (8)

S−+z0,zi = S−+z0,zi−1
+ S−−z0,zi−1

S−+zi−1,zi

[
I− S+−

z0,zi−1
S−+zi−1,zi

]−1
S++
z0,zi−1

, (9)

S+−
z0,zi = S+−

zi−1,zi + S++
zi−1,ziS

+−
z0,zi−1

[
I− S−+zi−1,ziS

+−
z0,zi−1

]−1
S−−zi−1,zi . (10)

These relations enable a straightforward derivation of
the S±± matrices associated with the periodic repetition
of an arbitrarily large number of units once the trans-
mission through a single unit has been established. Even
in the case of non-periodic systems, it is generally use-
ful to use this algorithm since the relative error on the
transfer-matrix calculations increases exponentially with
the distance D if it is considered in a single step. The
number of subdivisions to consider in order to achieve a

given accuracy is given, with other considerations on the
stability of transfer-matrix calculations, in Ref. 15.

For the derivation of band structures in the next sub-
section, we will use the T±± matrices. These matrices
keep stable when considering large distances D (only the
inversion of T++ is unstable when D is too large). When
these matrices are obtained for subdivisions of the [0, D]
interval, they can be updated according to the following
formula:

(
T++
z0,zi T+−

z0,zi
T−+z0,zi T−−z0,zi

)
=

(
T++
z0,zi−1

T+−
z0,zi−1

T−+z0,zi−1
T−−z0,zi−1

)(
T++
zi−1,zi T+−

zi−1,zi

T−+zi−1,zi T−−zi−1,zi

)
. (11)

C. Derivation of band structures from transfer matrices

Let us now consider a basic unit, of length a in the z
direction. One can compute the transfer matrices associ-
ated with this structure, for given values of the energy E.

Our objective is to extract from these matrices the band
structure characterizing the infinite, periodic repetition
of this unit.

For this purpose let us first reconsider the solutions of
Eqs 3 and 4, which are recast in the following way:

(Ψ
+

j . . .Ψ
−
j )

z≤0
= (ΨI,+

j . . .ΨI,−
j )

(
T++ T+−

T−+ T−−

)
z≥a
= (ΨIII,+

j . . .ΨIII,−
j ). (12)

We want to find combinations (Ψ
+

j . . .Ψ
−
j )x of these

solutions that satisfy the relation:

(Ψ
+

j . . .Ψ
−
j )x|z=a = eikza (Ψ

+

j . . .Ψ
−
j )x|z=0, (13)

where x is a vector that contains the coefficients of these
combinations. These combinations describe particular
states that keep unchanged after propagation through
one period of the system except for a phase factor λ =
exp(ikza). These states are therefore Bloch states asso-
ciated with a wave vector kz in the first Brillouin zone
[−π/a, π/a] of the periodic system, for the energy E con-
sidered. The couples of all possible points (kz, E) will

represent the band structure of the system.

In order to establish a matricial equation for the calcu-
lation of a complete set of Bloch-state solutions, we will
write Eq. 13 like

(Ψ
+

j . . .Ψ
−
j )X|z=a = (Ψ

+

j . . .Ψ
−
j )X|z=0 Λ, (14)

where Λ is a diagonal matrix containing elements of the
form λ = exp(ikza) and X is a matrix whose columns
contain the coefficients x of each Bloch-state solution.

We have from Eq. 12 that

(Ψ
+

j . . .Ψ
−
j )X|z=a = (ΨIII,+

j . . .ΨIII,−
j )|z=a X, (15)

(Ψ
+

j . . .Ψ
−
j )X|z=0 = (ΨI,+

j . . .ΨI,−
j )|z=0

(
T++ T+−

T−+ T−−

)
X. (16)
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If we remember the expression of the basis states ΨI,±
j and ΨIII,±

j (see Eqs 1 and 2), we can actually relate them by

(ΨI,+
j . . .ΨI,−

j )|z=0 = (ΨIII,+
j . . .ΨIII,−

j )|z=a diag[e−ikz,ja, . . . , eikz,ja], (17)

where diag[] stands for a diagonal matrix containing the
elements in brackets.

By accounting for Eqs 15, 16 and 17 in Eq. 14, we
obtain

X = diag[e−ikz,ja, . . . , eikz,ja]

(
T++ T+−

T−+ T−−

)
X Λ

(18)

or equivalently

XΛ−1X−1 = diag[e−ikz,ja, . . . , eikz,ja]

(
T++ T+−

T−+ T−−

)
.

(19)

Eq. 19 implies that the eigenvalues λ of the matrix on
the right-hand side of this expression will provide the
wave vectors kz that characterize Bloch states associated

with the energy E [through λ = λ
−1

= exp(ikza)]. Note
that in most techniques the values of E are obtained as
a function of kz and that the restriction of kz in the
first Brillouin zone [−π/a, π/a] of the periodic system is
automatically verified.

It has to be noted that the values of λ = λ
−1

are not
always in the form exp(ikza), especially in situations in-
volving tunneling processes or in band-gap regions. Many
if not all of them can indeed exhibit an exponential de-
pendence exp(Ka) and are therefore not relevant to the
band structure. One distinguishes the values λ to con-
sider for the representation of the band structure by the
condition |λ| = 1 (within numerical precision).

A numerically more stable technique was formulated
by Pendry in Ref. 1 and used by Mayer in Ref. 32 to com-
pute the band structure of carbon nanotubes. It consists
in solving the generalized eigenvalue problem

(
S++ 0
−S−+ I

)
x = λ

(
I −S+−

0 S−−

)
diag[e−ikz,ja, . . . , eikz,ja] x, (20)

where λ and x are here generalized eigenvalues and eigen-
vectors (see Appendix A for a demonstration). The λ
values that are relevant to the band structure are again
those that satisfy |λ| = 1 (within numerical precision).
They define individual points (kz, E) of the band struc-
ture through λ = eikza. The restriction of kz in the first
Brillouin zone [−π/a, π/a] of the periodic system is again
automatically verified.

For a given problem, these techniques provide a par-
ticular representation of the band structure, since its
structure in the three-dimensional reciprocal space is pro-
jected on the kz axis. This is a consequence of formulat-
ing the three-dimensional scattering of the wave function
as the one-dimensional propagation of its components.
In general this representation is appropriate in situations
where a treatment by transfer matrices is relevant.

III. APPLICATION: BAND STRUCTURE AND
TRANSPORT PROPERTIES OF CYLINDRICAL WIRES

The applications considered in this paper will focus on
the scattering of electrons subject to cosine potentials
in a cylindrical wire. We will compute the transmission
through a finite number of periods and compare these
results with the band structure that characterizes the
infinite medium. We will also study the impact of bound
states in the intermediate region and discuss the necessity
to consider them or not in a transfer-matrix calculation.

We assume that the radius R of the wires is identical to
the period a in the z direction. Using cylindrical coordi-
nates, the boundary states we use for the representation
of the wave function in Region I and Region III are given
by:

Ψ
I/III,±
m,j (ρ, φ, z) =

RJm(km,jρ) exp(imφ)√
2
∫ R
0
dρρ[Jm(km,jρ)]2

exp(±i
√

2m

~2
E − k2m,jz). (21)

The radial wave vectors km,j that characterizes these
states are solutions of J ′m(km,jR) = 0. This condition
of vanishing radial derivative of the wave function on the

border of the cylinder is imposed in the entire system
(Region II included). It enables the wire to allow for at
least one solution, namely k0,0=0, for any value of the
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FIG. 2. Values of dI/dE after 2 (solid), 4 (dotted), 8 (dot-
dashed) and 16 (dotted) periods of a V (z) = 0.4 cos( 2π

a
z) eV

potential in a cylinder with radius a=0.434 nm.

energy E. The way the electronic states are propagated
through Region II is explained with details in Refs 19, 20,
22 and 25. In order to improve the clarity of the results,
only axially symmetric states will be considered.

A. Transmission and band structure for a
V (z) = V0 cos( 2π

a
z) potential

The first potential we consider is given by V (z) =
V0 cos( 2π

a z), with V0= 0.4 eV and a=0.434 nm. These
parameters are chosen so that a 0.4 eV-wide band gap

appears at an electron energy of ~2

2m (πa )2 = 2 eV. After
calculation of the transfer matrices associated with a sin-
gle period a of the potential and using the layer-addition
algorithm presented in Sec. II B, it is straightforward
to compute how the electronic transmission in the wire
changes as the number of periods increases.

We illustrated in Fig. 2 the electronic transmission
(more precisely the values of dI/dE) for tube lengths
corresponding to 2, 4, 8 and 16 periods of the potential
and electron energies ranging from 0 to 15 eV. One can
observe the apparition of gaps, which tend to be more
pronounced as the number of periods increases. Besides
the gaps, the transmission tends to its maximal value and
exhibits oscillations that are related to stationary waves
in the structure. Indeed their number and the sharp-
ness of their contribution in the transmission diagram
increase with the number of periods. Similar observa-
tions were made when studying the conduction and field-
emission properties of the semiconducting (10,0) carbon
nanotube.33

These non-zero values of the transmission at energies
where a band-gap exists when the medium is infinite is
due to the finite length of the structures considered here
and to the existence of exponentially decaying solutions
in these regions. It is only in truly infinite structures that

FIG. 3. Top: values of dI/dE after 32 periods of a V (z) =
0.4 cos( 2π

a
z) eV potential in a cylinder with radius a=0.434

nm. Bottom: band structure characterizing the infinite
medium.

these solutions are prohibited because of their exploding
behavior at either z = +∞ or −∞. The existence of
decaying solutions in band-gaps was invoked in Ref. 27 to
justify the presence of photon-excited electrons in the gap
of a nanometer-size (10,0) carbon nanotube in a context
of field emission.

The values of the transmission after 32 periods of the
potential and the band structure characterizing the infi-
nite medium are represented in Fig. 3. The gaps in the
transmission diagram are now well pronounced and in
agreement with those in the band structure. There is a
step in the transmission each time the energy is sufficient
to allow for a new state in the radial direction. The oc-
currence of these steps coincide with the beginning of new
bands in the band structure. The height of the steps is
given by 2e2/h (7.74×10−5Ω−1), which is twice the value
of the conductance quantum since each basis state is rep-
resentative of two electrons with opposite spins. Because
of the value of the period a, the gaps follow always by 2
eV the steps in the transmission diagram, which reflects
the fact that the band-gaps are always 2 eV higher in



6

energy than the beginning of the new bands.
It is interesting to notice that the energy where all

transitions or gaps appear are close to integer values in
eV ! In particular, the steps associated with new solu-
tions appear at 3 and 10 eV. This peculiarity can be
explained by the fact that the solutions of the boundary
condition J ′0(k0,ja) = 0 are given in a first approxima-
tion by k0,ja = (j + 1/4)π.34 If we remember that a was

chosen so that ~2

2m (πa )2 = 2 eV, it can easily be shown
that the energy associated with the lateral wave vectors
k0,j is given approximately by E0,j = (2j2 + j+ 1/8) eV,
which explains our observations and predicts the position
of the next steps.

B. The issue of bound states with a V (ρ) = V0 cos( 2π
T
ρ)

potential

We will now address the issue of bound states in the
intermediate Region II and the related question of the
number of basis states to consider in this region when
doing a transfer-matrix calculation. In the boundary Re-
gion I and Region III, the number of basis states is fixed
by the condition ~2k2m,j/2m ≤ E. Indeed basis states
with higher km,j values would be real exponentials in the
z direction, carrying no current and causing only instabil-
ities (we assume the potential energy to be zero in Region
I and Region III). Since however the potential energy in
the intermediate Region II can take negative values, the
condition on km,j inside Region II must be relaxed to
~2k2m,j/2m ≤ E+∆E and there is the possibility for this
region to accommodate additional states, which are ex-
ponentially decreasing outside this region but not inside.

This raises an issue on the necessity to consider these
bound states or not when doing a transfer-matrix calcu-
lation. A first technical difficulty arises from the fact
the number of states in Region II is different from that
in Region I and Region III. Because of that, connecting
the solutions at z = 0 and z = D involves the inver-
sion of non-square matrices.35 All techniques required to
deal efficiently with this point were however developed in
Ref. 16. Another point is that, according to the litera-
ture and for different formulations of the transfer-matrix
methodology,8,9 these bound states are likely to cause
numerical instabilities. Our objective was therefore to
create artificially bound states in our system and study
their effect as well as the necessity to consider them or
not.

Let us first consider a V (ρ) = V0 cos( 2π
T ρ) potential,

with V0=1 eV. The length D and radius R = 2T of
the cylinder are increased to 1 nm. Because of its ρ-
dependence - and unlike the previous case - this potential
introduces a coupling between the basis states in Region
II, which is a necessary condition to observe any effect
associated with bound states. Since the potential is in-
dependent of z, its effect is actually to redefine the elec-
tronic states that propagate independently in the wire
from the original ones (i.e., states characterized by given

FIG. 4. Top: values of dI/dE after D=1 nm of a V (ρ) =
cos( 2π

T
ρ) eV potential in a cylinder with radiusR = 2T=1 nm.

The solid curve corresponds to ∆E = 20 eV and the dashed
one to ∆E = 0. Bottom: band structure characterizing the
infinite repetition of Region II.

values of m and j) to combinations of them and one can
already understand the necessity to a have enough basis
states to represent these new states correctly.

We represented in Fig. 4 the values of dI/dE obtained
at z = D as well as the band structure characterizing the
infinite repetition of Region II. These results were ob-
tained by considering ∆E=20 eV, i.e. nine basis states
within Region II while there are only four of them in Re-
gion I and Region III. These additional states serve es-
sentially to remove unphysical discontinuities in the band
structure, which appear when the degree of completeness
of the basis is poor. The role of ∆E is identical to the
”cut-off energy” in plane-waves calculations and there
is no effect associated with bound states, which are not
present here. We checked that these results keep un-
changed when considering higher values of ∆E (up to 50
eV). For the purpose of comparison we represented the
values of dI/dE obtained with ∆E=0 (showing that the
currents are less sensitive to the completeness of the basis



7

FIG. 5. Top: values of dI/dE after D=1 nm of a V (ρ) =
cos( 2π

T
ρ)-1 eV potential in a cylinder with radius R = 2T=1

nm. The solid curve corresponds to ∆E = 20 eV, the dashed
one to ∆E = 0 and the dot-dashed one to ∆E=1 eV. Bottom:
band structure characterizing the infinite repetition of Region
II.

than the band structures).
Let us now consider the V (ρ) = V0 cos( 2π

T ρ) − 1 eV
potential. We represented in Fig. 5 the corresponding
values of dI/dE as well as the band structure that would
characterize Region II if repeated periodically. As ex-
pected, the band structure is shifted down by 1 eV. This
means that the two bands that stood between 0 and 1 eV
in Fig. 4 now give rise to discrete energy levels, charac-
terizing bound states. The position of these energy levels
is given by the intersection of the former bands with the
limits ±π/D of the first Brillouin zone (namely at -0.71
and -0.28 eV), since the length D of Region II is then an
integer multiple of half the electronic wave length in the
z direction. For the same reason, quasi-bound states in
the continuum part of the spectrum (E ≥ 0) will exist
each time the bands of Fig. 5 meet the limits ±π/D of
the first Brillouin zone.

Despite the fact these bound states only exist in Re-
gion II, they have an impact on the propagative solutions

in the E ≥ 0 range. As observed in previous work,8,12–14

this impact is essentially limited to localized resonances
in the dI/dE values, at energies where the interaction
between propagative states and (quasi-)bound states is
stronger. Indeed the two resonances in Fig. 5 appear at
energies where bands meet the border of the first Bril-
louin zone for the first time (the electronic wave length
in the z direction is then identical to that of the bound
states, which enhances the interactions).

The results presented here were obtained by taking ∆E
= 20 eV, as required for the completeness of the basis.
In particular it is necessary to consider the two bound
states (which are part of the solution within Region II).
Neglecting them by taking ∆E=0 has indeed a strong im-
pact on both the band structure (all bands are truncated
at their beginning on the first eV) and the dI/dE values
(the resonances disappear). As illustrated in Fig. 5, tak-
ing ∆E = 1 eV is sufficient to include the bound states
and therefore reproduce the resonances and complete the
bands. The additional states introduced by taking higher
values of ∆E only improve the completeness of the basis
and serve essentially to remove unphysical discontinuities
in the bands.

The relation between resonances in the transmission
currents and quasi-bound states in the system was well
described by Price,12–14 who actually relates them to
poles of the S matrix (whose elements are considered as
functions of the energy). The present simulations show
that these effects are addressed properly, provided addi-
tional basis states are considered in the intermediate Re-
gion II (through ∆E > 0). The ”interior states” do not
need to be computed explicitly, nor treated differently
from ”open states”.8,9 The specificity of our approach is
to use non-square transfer matrices16 to prevent instabil-
ities when making the connection between the different
regions.

IV. CONCLUSIONS

This paper was a pedagogical presentation of the
transfer-matrix technique, with an extension to extract
the band structure of periodic materials from the T or S
matrices associated with a single unit. Because of the
transfer-matrix formulation of the scattering problem,
the band structure is projected on the kz axis, which is
often appropriate in situations where this technique can
be applied.

We provided calculations of the transmission and band
structure of electrons confined in a cylindrical wire and
subject to cosine potentials. We observed how fast the
transmission diagram exhibits characteristics predicted
by the band structure (namely gaps and steps associated
with the opening of new bands), while keeping features
associated with their finite length. Comparisons could be
made with results obtained for a semiconducting (10,0)
carbon nanotube, confirming and providing an insight on
processes observed in complex structures.
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The issue of bound states was considered. Although
they exist only in the intermediate region, they need to
be included in the representation because of their im-
pact on propagative solutions (as localized resonances in
the transmission) and to avoid unphysical truncations
of the band structure. Considering additional states es-
sentially improves the completeness of the representation
and removes discontinuities in the bands. The connec-
tion between the intermediate region (which may con-
tain ”interior states”) and the boundary regions (which
contain only propagative states) is achieved using non-
square transfer matrices, making the technique perfectly
stable.
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Appendix A: Derivation of band structures from the S±±

matrices

An alternative method for extracting a band structure
from the S±± matrices that characterize the basic unit of
a periodic system was derived by Pendry.1 This method
is adapted in this Appendix to our formulation of the
transfer-matrix technique.

The idea consists in considering the infinite, periodic
repetition of a basic unit of length a. We will consider
that the interfaces between adjacent units are situated at
z = n.a, with n an integer.

A wave function Ψ can be developed at these interfaces
as

Ψ(z = n.a) =
∑
j

c+j [n] Ψ+
j (z = n.a) +

∑
j

c−j [n] Ψ−j (z = n.a), (A1)

where Ψ±j (z = n.a) refers to the basis states used at

z = n.a for the expansion of the wave function. c±j [n]
refers to the coefficients of this expansion at z = n.a.

From the physical interpretation of the S±± matrices
that describe the basic unit cell in the interval z ∈ [0, a],
we can write that

c+[1] = S++ c+[0] + S+− c−[1], (A2)

c−[0] = S−+ c+[0] + S−− c−[1], (A3)

where c± refers to vectors that contain the coefficients
c±j . We can reorganize these relations and write them
like (

S++ 0
−S−+ I

)(
c+[0]
c−[0]

)
=

(
I −S+−

0 S−−

)(
c+[1]
c−[1]

)
. (A4)

We are looking for Bloch-state solutions that satisfy
Ψ(z = a) = eikza Ψ(z = 0).

In the context of this paper, we can write that

Ψ(z = 0) =
∑
j

c+j [0] ΨI,+
j (z = 0) +

∑
j

c−j [0] ΨI,−
j (z = 0)

= (ΨI,+
j . . .ΨI,−

j )|z=0

(
c+[0]
c−[0]

)
(A5)

and

Ψ(z = a) =
∑
j

c+j [1] ΨIII,+
j (z = a) +

∑
j

c−j [1] ΨIII,−
j (z = a)

= (ΨIII,+
j . . .ΨIII,−

j )|z=a
(

c+[1]
c−[1]

)
. (A6)

We have also that

(ΨIII,+
j . . .ΨIII,−

j )|z=a = (ΨI,+
j . . .ΨI,−

j )|z=0 diag[eikz,ja, . . . , e−ikz,ja]. (A7)

By using Eqs A4 and A7, we can develop Ψ(z = a) as

Ψ(z = a) = (ΨI,+
j . . .ΨI,−

j )|z=0 diag[eikz,ja, . . . , e−ikz,ja]

(
I −S+−

0 S−−

)−1(
S++ 0
−S−+ I

)(
c+[0]
c−[0]

)
. (A8)

By using Eqs. A5 and A8 in the equation Ψ(z = a) = eikza Ψ(z = 0), we finally obtain that

diag[eikz,ja, . . . , e−ikz,ja]

(
I −S+−

0 S−−

)−1(
S++ 0
−S−+ I

)(
c+[0]
c−[0]

)
= eikza

(
c+[0]
c−[0]

)
(A9)
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or equivalently the generalized eigenvalue system(
S++ 0
−S−+ I

)
x = λ

(
I −S+−

0 S−−

)
diag[e−ikz,ja, . . . , eikz,ja] x, (A10)

where the generalized eigenvalue λ will provide the factor eikza and the corresponding eigenvector x actually provides
the coefficients c±j [0] of the Bloch-state solution at z = 0.

Eq. A10 was used by Mayer in Ref. 32 to compute
the band structure of carbon nanotubes. The approach
described in this Appendix turns out to be numerically
more stable than Eq. 19 of the text, which relies on the
T±± matrices.
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