
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Abstract Interpretation of full Prolog

Chabot, Francois; Joucken, Patrick

Award date:
1995

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/cbe1e174-c309-49ae-8f2c-7ac57ebfe2aa

Abstract lnterpretation

of full Prolog

François CHABOT

Patrick JOUCKEN

Promoteur: Baudouin LE CHARLIER

Mémoire présenté en vue del' obtention du grade de

Licencié et Maître en lnf ormatique

Facultés Universitaires
Notre-Dame de la Paix
Institut d'Informatique
N a m u r

FACULTES
UNIVERSITAIRES
N.-D. DE LA PAIX

NAMUR

Bibliothèque

f h Y» 1~
J\q~~)Y.

Abstract lnterpretation

of full Prolog

Abstract

Abrégé

Abstract Interpretation is a general methodology for building tools performing static analy
sis of programs.

We present in this report a new abstract interpretation framework for full Prolog - i.e.
taking into account the system predicates asserta, assertz and retract. The Prolog pro
grams can thus modify themselves dynamically, what is at the origin of new difficulties. We
expose the methodological aspects of our solution which consists of a general approach
widely applicable and that was shown very effective for quite large logic programs. The
new framework still allows to integrate traditional analyses (e.g. mode and type), determi
nacy analysis, functionality analysis and cardinality analysis.

To achieve it, we propose a new approach where the abstract domain captures informa
tion about not only modes, types, number of solutions, eut and termination, but also about
the 'dynamic context' upon which a literai is executed.

L'interprétation abstraite constitue une méthode générale pour construire des outils qui
analyse statiquement des programmes.

Dans ce rapport, nous présentons un nouveau système d'interprétation abstraite pour
l'entièreté du Prolog, c'est-à-dire tenant compte des prédicats systèmes asserta, assertz
et retract. Tout programme Prolog est alors à même de se modifier durant son exécution,
ce qui est à l'origine de nouvelles difficultés. Nous présentons les aspects méthodologiques
de notre solution, consistant en une approche générale largement applicable et ayant prouvé
son efficacité d'analyse sur des programmes logiques relativement long. Le nouveau mo
dèle permet toujours d'intégrer les traditionnelles analyses (telles que l'analyse du mode et
du type), le déterminisme, l'analyse fonctionnelle et l'analyse de la cardinalité.

Pour y parvenir, nous proposons une nouvelle approche où le domaine abstrait synthétise
non seulement des propriétés concernant les modes, les types, le nombre de solutions, le eut
et la terminaison mais aussi des informations concernant le 'contexte dynamique' dans le
quel s'exécute les littéraux.

Part I

Part Il

Introduction 11

Background

Chapter 1 Prolog Computational Mode/ 15
Logie Programming 16
Prolog Execution Model: SLD-Detivation 17
Cut System Predicate 18
Program Manipulation 19
Operational Semanties of Assert and Retraet 21
Alternative View of Prolog Operational Semanties 22
References 22

Chapter 2 Abstract lnterpretation 23
Mathematical Requirements 24
Statie Analysis and Abstraet lnterpretation 26
References 32

Contents

Chapter 3 Generic Abstract lnterpretation 33
Design of Abstraet Interpretation Frameworks 34
Prolog Abstraet Interpretation 36
References 37

Prolog Abstract lnterpretation

Chapter 4 Pure Prolog Abstract lnterpretation 41
Conerete Semanties 42
Abstraet Semanties 45
Genetie Abstraet Interpretation Algorithm 51
Example 58
References 59

Chapter 5 Abstract lnterpretation of Prolog with Cut 61
Conerete Semanties 62
Abstraet Semanties 64
Genetie Abstraet Interpretation Algorithm 70
Generic Algotithm Revisited 75
Examples 78
References 81

Chapter 6 Abstract lnterpretation of Full Prolog 83
Conerete Semanties 84
Abstraet Semanties 90
Genetie Abstraet Interpretation Algorithm 110
Examples 119
Experimental results 127
References 129

Conclusion 131

Introduction

Abstract interpretation is a general methodology to obtain, in a systematic way, tools to
analyze programs statically (at compile time). The basic idea behind abstract interpretation
is to approximate (usually undecidable) properties by using an abstract domain instead of
the actual domain of computation. As a consequence, the program as a whole can be given
an approximated meaning, hopefully capturing interesting properties while leaving out ir
relevant details as much as possible.

Abstract interpretation was originally designed by P. and R. Cousot as a general meth
odology for building static analyses of programs. The original ideas have been subse
quently developed by many researchers and mainly applied to declarati've languages, more
amenable to optimizations.

Recently, much attention bas been devoted to the abstract interpretation of logic pro
grams and abstract interpretation of Prolog is a very active field of research. This effort is
motivated by the need of optimization in logic programming compilers to be competitive
with procedural languages and the declarative nature of the languages which makes them
more amenable to static analysis. Considerable progress bas been realized in this area in
terms of the frameworks, the algorithms, the abstract domains and the implementations.
Recent results indicate that abstract interpretation can be competitive with specialized data
flow algorithms and could be integrated in industrial compilers. However relatively little
attention bas been devoted to the abstract interpretation of full Prolog with eut, built-ins and
the system predicates asserta, assertz and retract.

The purpose of this report is to describe a new abstract interpretation framework, and its
implementation, suited for the system predicates asserta, assertz and retract. The key
idea of the new framework is to split the set of predicates of a logic program in a static part
and a dynamic part whereas the definition of dynamic predicates can be modified dynami
cally, i.e. during the execution of the program. Clauses for a dynamic predicate can be
added or removed using the system predicates asserta, assertz and retract respectively.

The aim of the new framework is not to allow a new kind of analysis nor to increase ac
curacy, but to extend the class of programs that can be analyzed by the abstract interpreta
tion algorithm to programs using the system predicates asserta, assertz and retract. To
our knowledge, there is no existing framework that can deal with this class of programs.
Thus, the challenge was to design a new framework not only suited for treating .mJ1 Prolog,
but also providing a good tradeoff between accuracy and performance of the analysis. We
consider having fulfilled the challenge.

This report is divided in two parts. In the three chapters of the first part, we try to give
to the reader the background necessary to understand the rest of the report. Chapter one
makes a comprehensive recall of the computational model of Prolog and details the opera
tional semantics of system predicates asserta, assertz and retract to fix the thinking
background. Chapter two explains the main concepts of abstract interpretation and chapter
three exposes a general methodology for the design of abstract interpretation frameworks.

The three other chapters of the second part present an evolutionary approach leading the
reader through successive refinements from a quite simple abstract interpretation frame
work suited for mode and type analysis of pure Prolog to a considerably more complex
framework allowing cardinality analysis for full Prolog, i.e. Prolog programs including any
kind of system predicates. Chapter four introduces the first generic abstract interpretation

11

12 Abstract lnterpretation of Full Pro/og

algorithm capable to collect information about pure Prolog programs. In chapter five, we
explain an enhanced version of the first one suited to deal with the Prolog SLD-Resolution
and eut primitive. Finally, in chapter six, we detail the last version of the algorithm which
can handle the system predicates asserta, assertz and retra.ct. The second part thus
presents, one at a time, the frameworks and the algorithms getting more and more refined.
The aim is to get a framework with its algorithm capable to analyze full Prolog programs
according to the SLD-Resolution.

Remerciements

Nous tenons tout particulièrement à remercier Baudouin Le Charlier pour nous avoir per
mis, grâce aux contacts qu'il a établis, d'effectuer notre stage de maîtrise à Brown Universi
ty, ainsi que pour ses conseils utiles à la rédaction du mémoire. Nous remercions également
Pascal Van Hentenryck pour nous avoir suivi durant notre visite à Brown et pour la motiva
tion qu'il a su nous insuffler.

Part

I Background

The chapters of this first part contain a comprehensive introduction to logic programming,
and Prolog in particular. They also develop the prerequisite concepts necessary to the ab
stract interpretation. We mainly insist on the methodology used to build the later frame
works but also on the theoretical, mathematical aspects. We wanted this first introduction
part to be as comprehensive as possible. Therefore, ail the aspects detailed are done almost
independently of the others, in order to be as clear and complete as possible.

13

Chapter

1 Prolog Computations/ Mode/

« Programming in Prolog opens the minli to a new way of looking at com
puting. There is a change of perspective every Prolog programmer expe
riences whenfirst getting to know the language. »

D.H.D. Warren

As the abstract interpretation algorithm can process any Prolog program we believe a com
prehensive recall of the computational model of Prolog could be necessary to fix the think
ing background. Moreover, it is justified since few books give a comprehensive insight of
the system predicates assert and retract. As a matter of fact, we will see that the operational
semantics of the system predicate retract is not the intuitive one. In order to clarify this, the
fondamental mechanisms underlying the computational model of Prolog need to be recon
sidered.

Prolog is a logic programming language, that is a high-level declarative language. The
main idea in logic programming is that deduction can be viewed as a form of computation,
and that a declarative statement P if Q and R and S can also be interpreted procedurally
as "to solve P, solve Q and R and S". Under these assomptions, a logic program is a set of
axioms, or rules, defining relations between objects and a computation of a logic program is
a deduction of consequences of the program.

However, Prolog is nota logic programming language in its ultimate and purest form!
We will try to give a clear insight about what this involves.

We should have said first and foremost that the major part of this chapter is quoting
[LLO87] and [STE94]. In fact, the first four sections have almost entirely their origins in
these two books. For the sake of the account, we preferred to borrow someone else's words
instead of giving descriptions surely not so accurate and complete that the borrowed ones.

Contents of thls chapter

Logic Programming 16
Prolog Execution Model: SLD-Derivation 17
Cut System Predicate 18
Program Manipulation 19

Memo-functions 20
Operational Semantics of Assert and Retract 21
Alternative View of Prolog Operational Semantics 22
References 22

15

16 Chapter 1 Prolog Computational Mode/

Logic Programming

Logic programming began in the early 1970's as a direct outgrowth of earlier work in
automatic theorem proving and artificial intelligence. Logic programming departs radically
from the mainstream of computer languages. Rather then being derived, by a series of ab
straction and reorganizations, from the VON NEUMANN machine model and instruction set,
it is derived from an abstract model which bas no direct relation to or dependence onto one
machine model or another. lt's based upon the belief that instead of the human learning to
think in terms of the operations of a computer, the computer should perform instructions
that are easy for humans to provide. In its ultimate and purest form, logic programming
suggests that even explicit instructions for operation not be given but rather that the
knowledge about the problem and assumptions sufficient to solve it be stated explicitly, as
logical axioms. Such a set of axioms constitutes an alternative to the conventional pro
gram. The program can be executed by providing it with a problem, formalized as a logical
statement to be proved, called a goal statement or a query. The execution is an attempt to
solve the problem, that is to prove the goal statement, given the assomptions in the logic
program.

The idea was that First Order Logic could be used as a programming language. This
was revolutionary, because, until 1972, logic had only ever been used as a specification or
declarative language in computer science.

Definitions. A term is defined inductively as follows:
1. A variable is a term.
2. A constant is a term.
3. If/ is a n-ary fonction symbol and t 1, •• • , tu are terms, then /(t1, • • • , tu) is a term.

If p is an n-ary predicate symbol and t 1, ••• , tu are terms, then p(t1, • •• , tu) is an atom. A
literal is an atom or the negation of an atom. A goal is a sequence of literais.

Definition. A logic pro gram is a finite set of clauses. A clause or rule is a logical sentence
of the form A~ B 1, ... , Bk. (k ~ 0) where A and the B1 are atoms.

Such a sentence is read declaratively "Ais implied by the conjonction of the Bi". A is
called the head of the clause and the conjonction of the B1 the body of the clause. If k = 0,
the clause is known as afact and written A ..

Definition. A query is a conjonction of the form ~ A 1, ... , Au, (n > 0) where the Ai. are
goals.

Moreover it was shown that logic bas a procedural interpretation which makes it very
effective as a programming language. Briefly, a program clause A ~ Bi, ... , En. is re
garded as a procedure definition. If~ 0 1, ••• , ½· is a query, then each OJ is regarded as a
procedure call. A logic program is run by giving it an initial goal, a query. If the current
goal, called the resolvent, is ~ 0 1, ••• , ½, a step in the computation involves unifying
some OJ with the head A of a program clause A ~ B 1, • • • , En. and thus reducing the cur
rent goal to the goal~ (01, ... , 0J-t• B1, . .. , En, 0J+t• ... , ½)0, where 0 is the unifYing
substitution. Unification is at the heart of the resolution proof procedure and thus becomes
a uniform mechanism for parameter passing, data selection and data construction. The
computation terminates when the empty goal is produced.

Prolog Execution Mode/: SLD-Derivation 17

Informally, a unifier of two terms is a substitution making the terms syntactically identi
cal . Similarly, if two terms have a unifier, we say they unify.

Definition. A substitution e is a finite set (possibly empty) of the form {X1=t1, •• • , Xn=¾.},
where each Xi is a variable, each t 1 is a term distinct from Xi and the variables X 1, ••• , Xn_
are distinct. A pair Xi=ti is called a binding.

For any substitution e = {X1 =t1, • •• , Xn=¾.} and term S, the term se denotes the result of
simultaneously replacing in S each occurrence of the variable Xi by t 1; the term se is called
an instance of S.

A computation of a logic program P thus finds an instance of a given query logically
deducible from P. A goal Gis deducible from a program Pif there is an instance A of G
where A ~ B 1, ••• , Bn. (n ~ 0), is a ground - i.e. where variables do not occur - in
stance of a clause in P , and the B1 are deducible from P.

Prolog Execution Mode/: SLD-Derivation

One of the main ideas of logic programming is that an algorithm consists of two disjoint
components: the logic and the control. Prolog is an approximate realization of the logic
programming computation model on a sequential machine. This section discusses the exe
cution model of Prolog in contrast to logic programming.

Two major decisions must be taken to convert the computational model of logic pro
grams into a form suitable for a concrete programming language. First, the arbitrary choice
of which goal in the resolvent to reduce must be specified. Second, the non deterministic
choice of the clause from the program to effect reduction must be stated. Hence we now
define the notion of a Prolog program as a logic program in which an order is defined both
for the clauses in the program and for the goals in the body of a clause.

This order of the clauses and goals is in fact the order in which the Prolog interpreter
selects clauses and goals to reduce. In the execution model of Prolog, the leftnwst goal is
chosen, instead of an arbitrary one, and the non deterministic choice of a clause is made by
sequential searchfor a unifying clause and backtracking.

When attempting to reduce a goal, the first clause whose head unifies with the goal is
chosen. If no unifying clause is found for the goal to be reduced, the computation is un
wound - i.e. backtracks - to the last choice made, and the next unifying clause is chosen.

A computation of a goal G with respect to a Prolog program P is the generation of all
solutions of G with respect to P. In terms of logic programming concepts, a Prolog compu
tation of a goal Gis a complete depth-first traversa! of a particular search tree of G obtained
by always choosing the leftmost literal. A search tree is also called a derivation tree in
Prolog jargon and is obviously unique with respect to a program.

Definition. A search tree of a goal G with respect to a program P is a tree whose root is G.
Nodes of the tree are (possibly conjunctive) goals with one selected goal. There is an edge
leading from a node to each clause in the program whose head unifies with the selected
goal. Each branch in the tree from the root is a computation of G by P. Leaves of the tree
are success nodes, where the empty goal □ has been reached, or failure nodes, where the
selected goal cannot be further reduced - that is where unification failed. Success nodes
correspond to solutions of the root of the tree.

18

Figure 1.1
Appending two
lists.

Figure 1.2
The derivation
tree of the query
~ append([a,b],
[c,d],Ls). with
respect to the
program append ..

Chapter 1 Prolog Computational Mode/

#1. append((J,Ys,Ys).
#2. append([XIXs],Ys,[XIZs]) :

append(Xs,Ys,Zs) .

Let us illustrate this by an example. Given the program append depicted at Figure 1.1, let
us build the derivation tree of the query ~ append([a,b] ,[c,d] ,Ls). The derivation tree
is depicted at Figure 1.2. The edges of the tree are labeled with two components: the num
ber of the clause being selected in the program append, and the (possibly) unifying substi
tution. Each time a clause is selected all the variables appearing in it are renamed, this is
an inherent mechanism in the computation model of Prolog. This renaming is the logical
counterpart of the classic notion of reentrant code.

<- ap:~•=~_'[c,d],Ls).

{[]a"[&/ l 81 ={.X,=&, Xs,=[b], Ys,=[o,d], Ls=[.X,IZs,]}

f&ilure. *'~~([b] ,[c,d] ,Zs,).

{[]""/ 181={:X.=b, :XS.=[], Ys1 =[0,d], Zs,=C:X.IZs.]}

f&ilure. #l~:nd([], [c,d],Zs,).

8,={[]=[], Ys,=[o,d), 7 l {[X.IXs.]*[) , .. . }

D fallure.

The solution to the query is given by the composition of the substitutions 8 18283 = 84 • The
resulting substitution 84 tells us that Ls = [a,b,c,d], which is after all what we expected.

As you can see on Figure 1.2, a Prolog program, which does not enter an infinite loop,
always finitely faits . This will be the case when one wants to compute all the possible solu
tions to a given query, since all the derivation tree will have to be thoroughly searched.
This 'finitely failing assumption' is an important feature of Prolog and will play a central
part in our original framework for full Prolog abstract interpretation.

Cut System Predicate

The eut system predicate, !, affects the procedural behavior of programs. Its main function
is to reduce the search space of Prolog computations by dynamically pruning the search
tree. The eut can be used to prevent Prolog from following fruitless computation paths that
the programmer knows could not produce solutions. The eut can also be used to prune
computation paths that do contain solutions; by doing so, a weak form of negation can be
effected.

Operationally, the eut is handled as follows:

• a eut prunes all clauses below it,

Program Manipulation 19

Figure 1.3
Appending two
lists with eut.

Figure 1.4
The derivation
tree of the query
~ append([a,b],
[c,d],Ls) . with
respect to the
modified program
append ..

• a eut prunes ail alternative solutions to the conjunction of goals appearing to its left in
the clause,

• a eut doesn't affect the goals toits right in the clause.

Let us restate more formally the effect of a eut in a general clause C = A f- Bi, ... , Bk, !,
Bk+t, ... , En. in a procedure defining A If the current goal G unifies with the head of C,
and B 1, ••• , Bk further succeed, the eut bas the following effect. The pro gram is committed
to the choice of C for reducing G; any alternative clauses for A that might unify with Gare
ignored. Furtber, should Bi fail for i>k+l , backtracking goes back only so far as the eut.
Other choices remaining in the computation of Bi (i :=; k) are pruned from the search tree.
If backtracking actually reaches the eut, then the eut fails and the search proceeds from the
last choice made before the choice of G.

#2. append((XjXs],Ys,[X IZs]) :- 1,
append(Xs,Ys,Zs).

#1. append((J,Ys,Ys).

Let us illustrate this with an example. Suppose we have the same program append as de
picted at Figure 1. 1, but with the two clauses permuted and a eut inserted in the second
clause. We obtain the program depicted at Figure 1.3. Suppose also we compute the same
query as the one at the root of the derivation tree illustrated at Figure 1.2. Then the deriva
tion tree of this goal with respect to the modified version of the program append is the one
at Figure 1.4 - we labeled the edges with the clause number only.

~ a.ppend([a.,b],(c,d],Ls).

1#2
~ append([b], [c,d] ,Zs1).

1#2
~ a.ppend([], [c,d] ,Zs8).

~
fa.Hure. 0

Program Manipulation

Prolog programs can be modified at runtime, i.e. programs can modify themselves during
computation. However, we require that the user clearly distinguish of user-defined predi
cates1 : that is the dynamic ones and the static ones. Built-in predicates are assumed to be
static. The dynamic predicates are obviously the ones handled by the assert and retract
system predicates. For the sake of the account and to make the distinction clear, we adopt
the following syntactical convention: the dynamic predicates can only be called through a
meta-call predicate.

1 This is a choice we have made: we wanted to have a sound conceptual model that can
ease formai reasoning about programs. If we had chosen to allow dynamic modifications
of either static or dynamic user-defined predicates, there would be nothing certain upon
which we could rely.

20 Chapter 1 Prolog Computational Mode/

The basic predicate for adding clauses is assertz(Clause) which adds Clause as the
last clause of the corresponding procedure. There is a variant of this system predicate,
asserta, that adds the clause at the beginning of a procedure.

The predicate for removing clauses from a program is retra.ct(Clause) . Intuitively,
retra.ct removes from the program all the clauses unifying with Clause, and it removes
them one by one. This is true to a certain extent, but there are some restrictions to this in
tuitive principle as we will see in the next section. At the operational level, a call to
retra.ct may only mark a clause for removal, rather than physically removing it, and the
actual removal would occur only when the top-level query is solved.

« The predicates assert and retra.ct introduce to Prolog the possibility of program
ming with side effects. Code depending on side effects for its successful execution is hard
to read, hard to debug and hard to reason about formally. Bence these predicates are
somewhat controversial, and using them is sometimes a result of intellectual laziness or in
competence. They should be used as little as possible when programming. Many of the
programs can be written using assert and retra.ct, but the results are less clean and less
efficient. Further, as Prolog compiler technology advances, the inefficiency in using
assert and retra.ct will become more apparent.

It is possible, however, to give logical justification for some limited uses of assert and
retra.ct. Asserting a clause is justified, for instance, if the clause already logically follows
from the program. In such a case, adding it will not affect the meaning of the program,
since no new consequences can be derived. Perhaps program efficiency will improve, as
some consequences could be derivedfaster.

Similarly, retracting a clause is justified if the clause is logically redundant. In this
case, retracting constitutes a kind of logical garbage collection, whose purpose is to reduce
the size of the pro gram. » [STE94]

Memo-functions

Memo-functions save the results of subcomputations to be used later in a computation. Re
membering partial results is impossible within Prolog, so memo-functions are implemented
using side effects to the program.

The prototypical memo-function is lemma(Goal). Operationally, it attempts to prove
the goal and, if successful, stores the result of the proof as a lemma. It is implemented as

lemma(P) ~ call(P), !.
lemma(P) ~ P, !, asserta(P) .

The next time the goal P is attempted, the new solution will be used and there will be no
unnecessary recomputation. The eut is present to prevent the more general program from
being used; its use is justified only if P does not have multiple solutions.

Let us define a program which computes the Fibonacci function for any given number
and which is supported by a memo-function. The program is depicted at Figure 1.5. No
particular comment about the program is necessary beyond the fact that the second recur
sive call does not need to be implemented as a memo-function. It is due to the fact that the
first recursive call encompasses all the number that will be computed by the second call.
Tberefore if both calls were implemented as memo-functions, there would be redundant as
serted lemmas which would be moreover exclusive because of the presence of a eut within
the asserted clauses.

Operational Semantics of Assert and Retract 21

Figure 1.5
Example of the
lemma technique
to compute the
Fibonacci func
tion.

fibonacci(O,l).
fibonacci(1, 1).
fibonacci(N ,R): -

N>l,
Nl is N-1,
lemma(fibonacci(Nl ,Rl)),
N2 is N-2,
call(fibonacci(N2 ,R2)),
Ris Rl+R2.

Operational Semantics of Assert and Retract

When a literai assert(Clause) is executed, the system predicate aiways succeeds. From
that moment, the asserted clause is visible to the whole program. Moreover we can con
sider, from a conceptuai point of view, that each asserted clause is given a unique number
that identifies it among all the other asserted clauses; the clause is aiso marked as visible or
aiive.

On the event of backtracking, when an assert is reached it fails. Therefore, the predi
cate assert succeeds always and only once.

Definition. The logical view is the list of all the asserted clauses that are visible at the lime
a literai retract(Clause) is first executed. The clauses taken into account unify with the
argument Clause of the predicate retract. We can consider that each clause in the logical
view is distinct from any other one since a unique number was considered to be assigned to
at the asserting lime.

When a literai retract(Clause) is executed the first lime, it builds its own logicai view.
After doing so, the first clause in the logicai view is retracted and marked as invisible - or
dead - to the whole program. The retract knows exactly which clause bas just been re
moved since a unique number identifies it. The operation also instantiates by the unifica
tion the variable arguments of the retract literai.

On the event of backtracking, if the retract is reached it removes the next clause in its
logicai view. Note that this clause could already have been marked as invisible by another
retract. Anyway it is not the case that the clause is marked as invisible in this logical
view since every retract manages ils own logicai view independently from any other
retract predicate. So each lime a retract is reached during backtracking, the next clause
in its logicai view, regardless the fact it could already be marked as invisible, is removed.
And so on until no more clause is left in the logicai view. When this latter becomes empty
and a retract is reconsidered, it fails .

Therefore a retract succeeds always as many limes as they are visible asserted clauses
unifying with its argument at the lime it is first executed. The retract is thus a deterministic
operation as every other system predicate.

Note also that the operational semantics of the meta-call predicate, call, is exactly the
same as the one of the retract except that instead of removing a clause it executes it.

22 Chapter 1 Prolog Computational Mode/

Alternative View of Prolog Operational Semantics

References

The presentation given so far is classic in the literature, as a matter of fact it is taken from
two classic authors in the Prolog community. Albeit classic, this view is still sometimes
intricate, that is why we will try to restate things in a more intuitive way, which is moreover
the way the operational semantics is understood and considered in the abstract interpreta
tion framework. Hence, intuition does not obligatory hamper formai thinking.

Rather than being considered within its context, as was formerly presented, a literai or a
goal can be seen independently from it, as if it was abstracted from its context. Recall that
the context is the path in the derivation tree leading from the root to the current literai.

Such an abstraction is possible if we consider a goal only in terms of its input and output
substitutions. Indeed, for a given input substitution a literai is susceptible to yield a series
of output substitutions due to the non determinism of Prolog - later on we will speak of
sequence of substitutions because the substitutions are ordered following the computation
rules of Prolog. Moreover, each of these output substitutions can be in tum an input substi
tution of the next literai, that is the next to the right. This mode! is the static counterpart of
the one presented before, which was described under the dynamics of Prolog. You already
see the point of this approach, it follows the 'spirit' of the abstract interpretation, that is
static considerations of a Prolog program.

Let us restate this more formally. 8 ~ (8 1, • •• , 8n) denotes the fact that a literai f ,
with the given input substitution 8, can produce the sequence of output substitutions
(8 1 , •• . , 8n). For instance, it is now much easier to restate the effect of the eut primitive

under these assomptions. Consider that the literai f is followed by a eut, then the effect of
the eut after the execution of the literai will be:

[STE94]

[LL087]

L. Sterling and E. Shapiro; The art of Prolog: Advanced programming
techniques; MIT Press, Cambridge Ma.; Second edition, 1994.

J.W. Lloyd; Foundation of Logic Programming; Springer-Verlag; Second
edition, 1987.

Chapter

2 Abstract lnterpretation

The general abstract interpretation methodology consists of associating with every program
a monotonie mapping which plays a very important role in the theory. The first section in
troduces the requisite concepts conceming monotonie mappings and their fixpoints . Next,
we intuitively show the part these notions can play in the abstract interpretation methodol
ogy. This second is greatly based on [LEC91].

Contents of thls chapter

Mathematical Requirements 24
Partial Order and Complete Partial Order 24
Complete Lattice : 24
Monotonicity and Continuity 25
Fixpoint 25

Static Analysis and Abstract Interpretation ... 26
The mathematical theory ... 27
The algorithms 29
Approximation, termination and convergence 31

References 32

23

24 Chapter 2 Abstract lnterpretation

Mathematical Requirements

Partial Order and Complete Partial Order

Definition. Let S be a set. A relation R on Sis a subset of SxS.

Infix notation is usually used, so we write (x, y) E Ras xRy.

Definition. A relation R on a set S is a partial order if the following conditions hold:
1. Vx E S, xRx reflexivity
2. Vx, y E S, xRy /\ yRx ⇒ x = y anti-symmetry
3. Vx, y, z E S, xRy /\ yRz ⇒ xRz transitivity

Examples. The set of natural numbers IN under ~ is partial order. Let S be a set and ~ S)
be the power set of S, that is the set of ail subsets of S. Then set inclusion ç; is a partial or
der on ~S).

Definition. Let S be a set with a partial order ~- Then x E S is an upper bound of a subset
W ç; S if w ~ x for ail w E W. Similarly, y ES is a lower bound ofW if y~ w for ail w E
W.

Definition. Let S be a set with a partial order ~- Then x E S is the least upper bound of a
subset W ç; S if xis an upper bound of W and, for ail upper bounds x' of W, x ~ x' holds.
Similarly, y E S is the greatest lower bound of a subset W ç; S if y is a lower bound of W
and for all lower bounds y' of W, y' ~ y holds.

If it exists, the least upper bound of W is unique and is denoted lub(W). Similarly, if it
exists, the greatest lower bound of W is unique and is denoted glb(W).

Definition. Achain of the partial order (S, ~) is an infinite increasing sequence x0 ~ x1 ~

... ~xi~ ...

Definition. The partial order (S, ~) is a complete partial order - cpo for short - if the
set S owns a bottom element, denoted 1-5, and if any chain of S have a least upper bound
denoted u:0 Xj.

Complete Lattice

Definition. A lattice is a partially ordered set S, in which any two elements x1 and x2 have
a least upper bound and a greatest lower bound in S.

Mathematical Requirements 25

Definition. A lattice L is a complete lattice if lub(W) and glb(W) exist for every subset
Wç;L.

Let T denote the top element lub(L) and ..l denote the bottom element glb(L) of the com
plete lattice L. We can therefore deduce that any two elements of a lattice L have a common
'ancestor' and a common 'descendant'.

Examples. The Figure 4.4 is an example of a complete lattice, where T = any. In the
previous example, 9'\S) under ç; is a complete lattice. In fact the lub of a collection of
subsets of S is their union and the glb is their intersection. The top element is S and the
bottom one is the empty set {}.

Monotonicity and Continuity

Definition. Let L1, Li be complete lattices and T:~L be a mapping. T is monotonie iff
T(x) ~ T(y) whenever x ~ y.

Definition. Let L be a complete lattice and T:L➔L be a mapping. We say W is directed if
every fmite subset of W bas an upper bound in W.

Definition. Let L be a complete latlice and T:L➔L be a mapping. T is continuous if
T(lub(W)) = lub(T(W)), for every directed subset W of L. Note that the composition of
two continuous mappings is still a continuous mapping.

In parlicular, T is continuous if for every chain Xn E L (n ;;c: 0), T(U: 0 xJ = u:0 T(x1).

We can also verify that a continuous mapping is monotonie. Assume we have a set
W = {w1, w 2 }, the least upper bound ofW is defined as follows:

Assume in this case that 1:"i ~ w 2, under the continuity assumption the following relation
holds: T(w2) = T(lub(W)) = lub(T(W)). Hence we deduce T(w1) ~ lub(T(W)) =
T(w2). This is true in either a complete lattice or a complete partial order. The difference
between a complete latlice and a complete partial order lies in the fact that the latter bas
only one least upper bound for ail the chains while it must be true for each subset of a com
plete lattice.

Fixpoint

Definition. Let L be a complete lattice and T:L ➔L be a mapping. We say that a. E L is
the least fixpoint of T if a. is a fixpoint (that is T(a.) = a.) and for ail fixpoints ~ of T, we
have a.~ ~-

26 Chapter 2 Abstract lnterpretation

Fixpoint theorem. If D is a complete partial order and /:D ➔ D is a continuous mapping,
/ bas a least fixpoint denoted µ(/) E D . Moreover, the least fixpoint µ(/) can be defined
by:

µ(/) = u:o /1(J_)

where / 0(x) = x, and

The continuity guarantees the existence of a fixpoint. The proof of the fixpoint theorem
consists mainly of two steps.

• We prove by induction that {rC-l)} is a chain thanks to the monotonicity off.

• Thanks to thecontinuity, wededuce/(lt-o /1(1-)) = u:0 /
1
+

1(1-) = u:0 /1(1-) . So that u:0 /
1(1-) is a fixpoint off.

The fixpoint theorem will allow us to interpret recursive definitions like x = /(x) as least
fixpoints . It also forms the basis of the abstract interpretation algorithms described later on
through this report.

Static Analysis and Abstract lnterpretation

Static analysis of programs encompasses ail the treatments a pro gram can undergoes except
its execution. The information collected this way serves as a basis either to transform the
program in order to optimize it - for instance, during compilation - or to verify it fulfills
some correction criteria.

Different techniques of static analysis have been used for a long time in compilers with
out requiring a theoretical basis. However the correctness of such techniques is essential,
for before being optimized, a program bas essentially to be correct. Due to the complexity
of the programming languages, proving that a static analysis method is correct is an intri
cate and tedious task.

Abstract interpretation was introduced by P. and R. Cousot [COU77] as a general
mathematical framework to express current methods and to prove more systematically their
correctness. The main idea of the method is to execute the program over an abstract do
main instead of the standard one. Nevertheless two conditions have to be satisfied:

1. elements of the abstract domain captures interesting and useful properties of elements
of the standard domain,

2. computation over the abstract domain should be efficient and converge in afinite num-
ber of steps.

There exist well-known rules which are applications of this idea. For instance, algebraic
multiplication can be abstracted by the signs rule which amounts to reduce the set of nom
bers to the abstract set of signs: { +, -}. The algebraic multiplication can this way be sum
marized by the four rules: + x + = +, + x - = - , - x + = -, - x - = +. With these rules, it is
easy to know the sign of any product of any length without having to actually effect it.

Abstract interpretation was first introduced to systematize static analysis effected in
classical programming with Algol-like languages. However we assisted to a real break
through of abstract interpretation with the quite recent development of declarative pro-

Static Analysis and Abstract lnterpretation 27

gramming and most particularly of logic programming. Indeed, as it was said before, a de
clarative program is of a higher level of formalism and, in its ideal form, should just specify
the results without mentioning how to compute them. Such high-level languages harbors
much more opportunities of optimizations and hence static analysis.

The mathematical theory

Let D denotes the domain of values handled by a language we want to analyze by means of
abstract interpretation. In general, D will have a complex structure to take into account the
different basic types of the languages: scalars, structured types, files... Assume that D is
unstructured, this will not change the nature of results but will simplify the account. Note
that other simplifica ·ons will be made in the following ,without ever be mentioned. As you
will see later, all this can be extended to the case of actual languages but not without over
head.

Suppose we want to analyze the following procedure of our language, written in a func
tional style. The procedure computes values of a function from D to D:

/(x) = [if x > 100 then x-100 else /(/(x+ll)) J

This is the 91-function which computes values from Z to Z (the set of integers). An inter
esting property that we could try to analyze about this function amounts to know which val
ues will take the variables at different points2 of the execution.

To capture such global information we have to replace individual values of D by sets of
values, i.e. elements of :o/(D). This set will be denoted C, as the concrete domain of all
possible properties. The function calculating over D can now be replaced by a function cal
culating over C. So we get the following functional 'expression':

/(X) = {x-1 : x >100 and x E X} u /(/({x+l l: x ~ 100 and x EX})) (1)

Basic operations, operating on individual values, can generally be replaced - lifted - by op
erations handling sets of values. Functions transformed this way compute the set of possi
ble results corresponding to the set of possible data. Actually those 'procedures' are not
useful for two reasons.

Any sets of value are not workable, it is moreover theoretically impossible. The con
crete domain C will be replaced by an abstract domain A conserving oniy some elements of
C such that any element of C can be approximated by an element of A Technically it is of
ten demanded that A be a complete lattice and that two monotonie functions, cx.:C ➔ A, and
y:A ➔ C, exist and verify these two conditions:

• 'i/ c E C: y(cx.(c)) :::2 C;
• 'i/ a E A:. cx.(y(a)) = a.

The abstraction function ex. associates each set of values with its best approximation. The
concretization functioo y associates each element of A with the set of values it represents.
In the above example, C = :o/(Z) . An example of abstract domain A would be the set of
intervals 3: an interval [i..s] where i,s E Z u {-oo, +oo} is the set of integers e such that
i ~ e ~ s. The set 3 is a complete lattice for the set inclusion ç. {} is the least element.

2 We call "granularity" the notion which consists of establishing the program points
where information about all possible executions is collected.

28 Chapter 2 Abstract lnterpretation

[-oo, +<io] is the greatest element. a.(x) is the interval [min(x) .. ma.x(x)]. y is the in
clusion of 3 in EP(Z).

It is possible to rewrite the former fonction such that it maps an interval of data to an
interval of results.

/([i..s]) = [ma.x:(91, i-10) .. (s-10)] U /(f([(i+ll) .. min(s+ll, 111)])) (2)

where U approximates the union of two intervals by the smallest interval that includes both
of them, that is to say their glb. From this definition, let us try to approximate the set of
values produced by the fonction. We obtain the following two equations:

/([-oo .. +<io]) = [91..+<io] U /(f([-oo .. 111])),

/([-oo .. 111]) = [91..101] U /(f([-oo .. 111])).

These equations demonstrate that the usual computation method is impossible, it would en
tail an infini te loop sin ce /([-oo .. 111]) recursively triggers off the computation of itself. We
have just pointed out the second difficulty. Computations over the abstract domain cannot
blindly simulate computations over the standard domain. We separate the difficulty in two
levels. On the one band, we will give an accurate - mathematical - sense to the procedures
such that (1) and (2) thanks to the least fixpoint of a monotonie transformation. On the
other band, we will expose in the next section the problem of calculating least fixpoints.

We will reason over the abstract domain of intervals 3, but the same process could be
applied over any abstract domain. Let 3 ➔ 3 be the set of monotonie and continuous
fonctions from 3 to 3 , i.e. such that:

• '<:f l, I' E 3: l ç; I' ⇒ /(I) ç; / (I'),

• for ail infinite series of embedded intervals 11 ç; ... ç; 11 ç; .. .

The conditions express that f is well an abstraction of a fonction from Z to Z. The set
3 ➔ 3 can be endowed with an order:

f ~ g iff '<:/ l e 3: /(l) ç; g(I).

This order means that the procedure corresponding to g produces at least as much results as
the procedure corresponding to f. The fonctional definition (2) can be replaced by a trans
formation of fonction:

't: (3 ➔3) ➔ (3 ➔ 3)

with

('t/) ([i..s]) = [max(91, i-10) .. (s-10)] U /(f([(i+l l) .. min(s+l 1, 111)])).

Hence, the equation (2) simply means that the fonction f is a fixpoint of the transformation
't, that is to say ('tf) = f .

We can show the following results.

Static Analysis and Abstract lnterpretation 29

1. Provided that the concrete and abstract domains verify the formerly mentioned proper
ties, every fixpoint of,: gives a correct approximation of the properties of the associated
procedure.

2. The transformation,: bas necessarily a least fixpoint (the most accurate one).

3. The least fixpoint of,: is equal to the limit of an increasing series of approximations:

fo Ç . .. Ç fk Ç ...

where / 0(!) = {} V I E :3 ,

The algorithms

Fixpoints computations of some transformations associated with the programs according to
an abstract semantics are close to recurrent procedures computations in a programming
language. There are however two major differences:

• computation must terminale in all possible cases;
• it is generally sufficient to compute an approximation of the fixpoint itself.

Bottom-up and top-down evaluation of recursive definitions

Fixpoint algorithms are derived from the methods allowing to evaluate recurrent definitions
of functions. That's why we first expose these methods before generalizing them for ab
stract interpretation. Consider the following recursive definition:

f(x) = [if x E {0, 1}
thenx
else /(x-1) + /(x-2)].

To compute a particular value /(v), we could firs t evaluate the function bottom-up, starting
from the "smalt" values 0 and 1 for which the value of / is immediate, and next, by pro
gressively propagating these results to 2, 3, 4 .. . until we obtain the desired value. If we
wanted to compute f (4), this would look like:

f(0) = 0
/(1)=1
/(2) = /(1) + f(0) = 1 + 0 = 1
f (3) = f (2) + /(1) = 1 + 1 = 2
f (4) = /(3) + f (2) = 2 + 1 = 3

We could also evaluate the function top-down, starting from the expression /(v) to
compute and by further developing it until we obtain an expression easily computable.
Again for f (4) , this would look like:

/(4) = /(3) + /(2)
= (/(2) + /(1)) + (f(l) + /(0))
= ((f(l) + f(0)) + /(1)) + (f(l) + /(0))
= ((1 + 0) + 1) + (1 + 0)
= (1 + 1) + 1 = 2 + 1
=3

30 Chapter 2 Abstract lnterpretation

The bottom-up method seems to be more efficient on the above example. However, it is
difficult to systematize it for it needs to find the right series of values to compute and which
moreover always rely on values previously processed. lt is not always possible. The top
down method bas the advantage to be systematic. Unfortunately it is very inefficient be
cause the same value could be often reevaluated. On the example 1(2) is computed twice,
and generally, top-down computation are exponential in lime, when the bottom-up method
is generally linear.

Fortunately the top-down method can be systematically improved to be generally as ef
ficient as the bottom-up one. This improvement, known as memo-ization, will be enhanced
for the abstract interpretation algorithms. It consists to record in a table the values already
computed in order to prevent them from being evaluated twice: they will be simply picked
up in the table. The former example would this lime give:

1(4) = 1(3) + 1(2)
= (/(2) + 1(1)) + 1(2)
= ((/(1) + l(0)) + 1(1)) + 1(2)
= ((1 + l(0)) + 1(1)) + 1(2)
= ((1 + 0) + 1(1)) + 1(2)
= (1 + 1(1)) + 1(2)
= 2 + 1(2)
=3

{l(l) = l}
{1(0) = O}
{1(2) = l}
{1(3) = 2}
{/(4) = 3}

Now, the algorithm is linear, since every expression l(v) is only evaluated once.

Abstract interpretation algorithms

Suppose we want to compute the least fixpoint of the abstract transformation

-c: (A ➔ A) ➔ (A ➔ A).

Recall that we want an algorithm capable of computing l(a) for ail abstract value a .
Moreover we do not want to compute the whole set of pairs (a, l(a)), although this is what
would do the simplest algorithm: to compute the series of approximations

l. l o(a) = 1-
2. I k+l = c(/k)

3. I = ln

V a E A,
Vk~O,
such thatln+l = ln-

This bottom-up method, demanding the domain A be finite, is much too inefficient: at the
first iterate we obtain all the values directly computable, at the second one, those values that
are only depending on the previous ones and so on. This method can be easily improved by
trying to dynamically de termine the values that are strictly necessary to compute I (a) for
the particular value a in which we are interested.

On the other band, a top-down method consists in memorizing intermediate and partial
results of a computation, this is an enhancement of the memo-ization. We start with the re
cursive definition of the fixpoint and we try to recursively compute the value I (a). During
the computation, we keep up-to-date an array of values Bi for which a recursive call bas al
ready been initiated (whether terminated or not) together with its associated lower ap
proximation I (Bt). When the same recursive call is reconsidered, it is not developed but its
current approximation in the array is returned. At the end of each call, the content of the
array is updated with the value just computed. As this latter is generally an approximation
- since the values in the array are so - we repeat the same computation until the result
cannot be further improved.

Static Analysis and Abstract lnterpretation 31

Let us illustrate this top-down algorithm with the fixpoint computation of the 91-
function, so we have to compute/([-oo .. +oo J) for the transformation

('t/)([i..s]) = [max(91, i-10) .. (s-10)] U /(/([(i+ll) .. min(s+ll, 111)])).

Each time a recursive call is initiated, a value is added in the array, representing the current
approximated result: {}. Hence, when we start the computation, the approximated value of
/([-oo .. +oo]) in the array is {}. After a first iterate we get:

/([-oo .. +oo]) = [91..+oo] U /(/([-oo .. 111])).

Thus a call for /([-ao .. 111) - whose current approximation is {} - is initiated. This call
can be further developed in

/([-oo .. 111]) = [91..101] U /(/([-oo .. 111])).

The same recursive call should be initiated, but we rather pick up its current approximated
result in the array; it would have otherwise entails an infinite loop. Recall that
/([-ao .. 111 J) is associated with {} in the array. Hence we get:

/([-oo .. 111]) = [91..101] U /({})
= [91..101].

This new result is updated within the array, and next the same computation is reconsidered
just in case we could improve the current result thanks to the new information just obtained.

/([-ao .. 111]) = [91..101] U /(/([-oo .. 111]))

= [91..101] U /([91..101]).

This new iterate triggers off the computation off ([91..101]). Again the same method is
applied to compute/([91..101]). As being quite long, it is not mentioned. The least fix
point computation terminates with the best possible result

/([-oo .. +oo]) = [91..+oo].

This algorithm can be systematically implemented for any kind of language, provided it
bas been endowed with an abstract semantics allowing to associate with any program a
transformation 't. This is theoretically always possible.

Approximation, termination and convergence

The abstract domain 3 of intervals is infinite. With such a domain, the algorithm presented
can loop. It will be the case if an infinity of different calls are initiated; it will not be the
case if the same call is recursively repeated, this is avoided by the array. The previous ex
ample was not concemed with this eventuality, but this is not always the case. To avoid
such problems we could limit ourselves to tïnite abstract domains, but it is not always pos
sible to find a better finite domain approximating the infinite domain we wish to use. A
ip.uch clever approach consists in dynamically choosing those approximations, according to
the particular example. The idea is to replace the virtually infinite set of values to consider
by a finite set which covers them. Results obtained this way will generally be safe - consis
tent - approximations of the fixpoint values. The use of these approximations moreover en
ables to fasten convergence. We can illustrate this again with the computation of
/([-oo .. +oo]). We first compute

32

References

Chapter 2 Abstract lnterpretation

/([-oo .. -t<Xl]) = [91..-t<Xl) U /(f([-oo .. 111])).

As [-oo .. 111) ç [-oo .. -t<Xl], we can replace /([-oo .. 111]) by /([-oo .. -t<Xl]) -with a risk
of losing precision - that will give us

/([-oo .. -t<Xl]) = [91..-t<Xl) U /(f([-oo .. -t<Xl]))

= [91..-t<Xl) U /({})
= [91..-t<Xl)

When reconsidering the computation we finally get

/([-oo .. -t<Xl]) = [91..-t<Xl) U /(/([-oo .. -t<XJ]))
= [91..-t<Xl] U /([91..-t<XJJ)
= [91..-t<Xl) U /([-oo .. -t<Xl])
= [91..-t<Xl] U [91..-t<Xl]
= [91..-t<Xl)

The result is obtained after two iterations with the best possible result, when the exact
algorithm would have required tens iterations. Of course the example is well tailored for
the account. The design of operations allowing to speed up the convergence without losing
too much precision is an intricate task, strongly depending on the specific abstract domain.

[COU77]

[LEC91]

[LL087]

P. Cousot and R. Cousot; Abstract Interpretation: A unified Lattice Madel
for Static Analysis of Programs by Construction or Approximation of Fix
points; In Conf. Record of Fourth ACM Symposium on POPL, pp. 238-
252, Los Angeles, CA, 1977.

B. Le Chartier; L'analyse statique des programmes par l' interprétation
abstraite; Nouvelles de la Science et des Technologies, vol. 9, N°4, 1991,
pp. 19-25.

J.W. Lloyd; Foundation of Logic Programming; Springer-Verlag; Second
edition, 1987.

Chapter

3 Generic Abstract lnterpretation

In this chapter we discuss a number of important issues for the design of aostract interpre
tation frameworks. In the first section we give a methodological overview of our approach
- we insist of its wide applicability and theoretical soundness. The next section present
the general approach we follow to design the frameworks presented in the second part of
this report.

Contents of this chapter

Design of Abstract lnterpretation Frameworks 34
Abstract fixpoint semantics ... 34

Pro log Abstract Interpretation 36
References 37

33

34 Chapter 3 Generic Abstract lnterpretation

Design of Abstract lnterpretation Frameworks

We present an approach to the design of abstract interpretation framework that is

• theoretically sound: it encompasses systematic methods for proving correctness of ap
plications;

• widely applicable: it is not restricted to a particular class of languages or analyses;
• effective: it bas been used to design practical systems that have shown efficient and ac-

curate for static analysis of Prolog.

A first idea is that packages for static analysis should consist of one or several generic ab
stract interpretation algorithms parametrized on an abstract domain and of one or more
implemented abstract domains with respect to which the algorithms can be instantiated.

Abstract fixpoint semantics

Static program analyses aim at deriving information about the actual behavior of programs.
This information is in fact completely determined by the operational semantics of the pro
gramming language. It is nevertheless convenient to use another non standard semantics as
a basis for performing the analyses, because it is in practice impossible to 'generate and
analyze' all possible execution traces for a given program.

There are several approaches to the choice of the non standard semantics. We basically
follow the original approach of P. and R. Cousot. Their so-called collecting semantics pro
vides a fixpoint characterization of the relevant information.

Let us sketch the approach from a general point of view. The operational semantics of
any programming language consists of

• a set of states r (states are denoted cr);
• an immediate transition relation between states denoted ➔, where cr ➔ cr' means that

cr ' is a possible successor state of cr;
• an unary predicate on states, denoted final(cr), meaning that execution terminates in

state cr.

From this semantics one can derive several fixpoint semantics, that collect different kinds of
relevant information. For example the following semantics characterizes the set
Output(S) of final states reachable from an initial set of states S:

Output(S) = {cr: cr ES /\ finaJ.(cr)} U Output({cr ' : cr ES /\ cr ➔ cr'}).

As we said in the previous chapter, such a recursive definition is not computable by usual
recursive evaluation for two reason at least:

• Scan be infinite;
• sequences of transitions can be infinite.

However it can given a mathematical meaning as the least fixpoint of a transformation 't
such that

('tf)(S) = {cr: cr ES /\ finaJ.(cr)} U /({cr ' : cr ES /\ cr ➔ cr'}).

It is straighûorward to show from the operational semantics that this definition correctly
maps each set of states onto the set of final states reachable from them. The exact and un-

Design of Abstract lnterpretation Frameworks 35

computable fixpoint semantics can then be approximated as follows. First we define a set A
of abstract states. An abstract state a is a fmite representation of a set S of 'concrete' states.
We note Cc the fonction that maps abstract states on their meaning (therefore S = Cc(a)).
The next step is to derive an 'abstract' version -cA of -c that maps monotonie fonctions from
A ➔ A to A ➔ A. This transformation correctly abstracts -c if the following consistency, or
safeness, condition holds:

V/: P(I:) ➔ P(I:) }
V/ A: A ➔ A : (Va' E A: /(Cc(a')) ç Cc(/A(a')))

Va E A

JJ

(-c/)(Cc(a)) ç Cc((-cJA)(a)).

Consistency simply means that -cJA safely approximates -cf provided that f A safely ap
proximates / . If -cA is furtbermore monotonie its least fixpoint exists and safely approxi
mates the collecting semantics:

Va E A: µ-c(Cc(a)) ç Cc(µ-cA(a)) .

An abstract semantics for the language L is a set of rules to derive transformation -cA for
any program of L. It is basically defined by mimicking the collecting semantics defmition
and replacing 'concrete' operations by 'abstract' ones. In the case of our simplified lan
guage, we define two global operations:

FS(S) = {cr: cr ES /\ final(cr)},

DR(S) = {cr: :lcr' ES: cr' ➔ cr} .

FS stands for 'Final States' and DR for 'Directly Reachable'. We can rephrase the defini
tion of-c:

(-c/)(S) = FS(S) U /(DR(S)).

The abstract semantics is identical to the concrete one except that concrete operations are
replaced by their abstract counterpart, FSA, DRA, UA:

-cA is consistent provided that the abstract operations are. That is:

Va E A : FS(Cc(a)) ç Cc(FSA(a))

Va E A : DR(Cc(a)) ç Cc(DRA(a))

Va1, C½ E A: Cc(a1) U Cc(C½) ç Cc(a1 UA C½)

Such an abstract semantics is generic with respect to the abstract domain: it does not de
pend on the particular choice of A, FSA, DRA, UA. This is an important feature because it
allows to reuse the same semantics (and therefore all the algorithms derived from it) for
many different applications. Note that the collecting semantics is a particular instance of
the abstract semantics. Altematively it is possible to define a generic abstract semantics
without relying on an explicit collecting semantics. This requires only to modify the consis
tency definitions for abstract operations. FSA, DRA and UA are now consistent iff:

36 Chapter 3 Generic Abstract lnterpretation

cr E Cc(ex.) }
Vcr E I:: Vcx. E A: finaJ.(cr) ⇒ cr E Cc(FSA(cx.))

cr E Cc(cx.)} Vcr, cr' E I:: Vcx. E A: , ⇒ cr' E Cc(DRA(cx.))
cr ➔ cr

Basic operations from the standard operational semantics are now used instead of the
'collecting' ones: FS, DR. Relying on basic operations allows for simpler definitions in
practice. However the later approach can look less systematic because consistency defini
tions do no longer fit in the same formal scheme. It must be noticed that a collecting se
mantics still exists implicitly: it can be defined as the more precise (or 'concrete') instan
tiation of the generic semantics. Simplicity stems from the fact that it is no longer explic
itly defined.

The above presentation looks very simple because it was assumed that a relation ➔ and
a predicate final are primitive operations of the language. ln real size applications those
(complex) operations are defined by means of simpler primitives and the abstract semantics
uses operations abstracting those simpler primitives. Real size abstract semantics are
therefore more complex but the design principle is entirely the same.

Prolog Abstract lnterpretation

The approach we follow consists mainly of three steps:

• the definition of a fixpoint semantics of the programming language, called the concrete
semantics;

• an abstraction of the concrete semantics to produce a particular semantics;
• the design of an algorithm to compute relevant parts of the smallest fixpoint of the ab-

stract semantics (or of a conservative approximation of it) .

The concrete semantics may be different from the standard semantics of the language.
However the concrete semantics should enable to observe the properties which have to be
inferred. It also needs not to be unique for all applications but can be tailored for a class of
applications.

An abstract semantics is an abstraction of the concrete semantics on some abstract do
main for a given application. There can be a variety of abstract semantics derived from a
single concrete semantics, each of them being suited for a specific application.

The link between the concrete and the abstract semantics is given by a concretization
function from the abstract domain to the concrete one. The concretization function speci
fies which concrete objects are represented by one abstract object.

Moreover, each of the concrete operations is associated with a consistent abstract opera
tion. The consistency condition mak.es sure the abstract operation is a safe approximation
of its concrete counterpart.

References

References

37

Definition. Let Oa be an abstract operation of arity n and Oc be the corresponding concrete
one. Let also a.1, ••• , ~ be abstract elements. Oa is consistent with respect to Oc iff if satis
fies the following property:

Y1 E Cc(a.1), ••• , Yn E Cc(~)}
0 () ⇒ y E Cc(Oa(a.1, . •• , ~))

Y E c Y1, · · ·, Yn

Consistency of the abstract operations ensures that the abstract semantics only represents
correct properties of the concrete program.

Any fixpoint of the abstract transformation safely approximates the least fixpoint of the
concrete transformation when either the concretization fonction or the abstract transforma
tion are monotonie.

We apply the above approach to the abstract interpretation of Prolog programs. The
concrete semantics is a fixpoint characterization of SLD-Resolution. The concrete seman
tics is defined in terms of tuples (E>1n, p, E>out) where E>1n, E>out are sets of substitutions on
{X1, ••• , Xn} and p/n is a predicate symbol. The purpose of the semantics is to character
ize the tuples (E>1n, p, E>out) for a program P such that E>out represents the substitutions
obtained by solving p(X1, ••• , Xn)0 with respect to P for ail 0 E E>1n. The concrete se
mantics is abstracted by replacing sets of substitutions by abstract substitutions and replac
ing the concrete operations by abstract ones.

Since a concrete semantics can yield various abstract semantics, we present a generic
abstract semantics based on [LCMVH91], i.e. a semantics parametrized by an abstract do
main and a number of abstract operations. A particular application is obtained by instan
tiating the abstract domain and operations. Finally a top-down algorithm to compute the
least fixpoint of the abstract semantics is given. The algorithm is query directed - i.e. it
computes only the part of the fixpoint relevant to the query - and uses optimizations such
as early detection of termination and dependencies between procedure calls.

[COU77]

[LCVH92]

[LCMVH91]

P. Cousot and R. Cousot; Abstract Interpretation: A unified Lattice Mode[
for Static Analysis of Programs by Construction or Approximation of Fix
points; In Conf. Record of Fourth ACM Symposium on POPL, pp. 238-
252, Los Angeles, CA, 1977.

B. Le Charlier and P. Van Hentenryck; On the design of generic abstract
interpretation frameworks; In M. Billaud and all, editors, Proceedings of
the Worksbop on Static Analysis (Y,/SA'92), Bordeaux, France, September
1992. Bigre 81-82.

B. Le Charlier, K. Musumbu and P. Van Hentenryck; A generic abstract
interpretation algorithm and its complexity arzalysis; In K. Furukawa,
editor, Proceedings of the Eighth International Conference on Logic Pro
gramming (ICLP'91), Paris, France, June 1991, MIT Press.

Part

Il Prolog Abstract lnterpretation

In this part we will present different abstract interpretation frameworks. These frameworks
keep to be enhanced througb the following cbapters and have been designed accordingly to
the principles presented in the previous part. Moreover almost eacb of these frameworks
bas been actually implemented and tested on a large variety of Prolog programs and bave
proved to be very efficient.

The first framework is designed to analyze statically pure Prolog programs. The second
one, besides the functionality of the previous one, pays special attention to the control
mecbanisms of Prolog and more particularly to the eut. The last one is capable of analyzing
full Prolog programs, that is to say programs containing virtually any kind of predicates,
and especially asserta., assertz and retract.

39

Chapter

4 Pure Prolog Abstract lnterpretation

The genetic abstract interpretation framework and algorithm presented in t.iiis chapter were
first exposed in [LCVH94]. They are designed to capture information about pure Prolog
programs, that is Prolog programs that could be considered as pure logic programs, without
taking into account the control issue of the Prolog computational model. Furthermore, the
algorithm is designed to take advantage of early detection of termination and redundant
computations thanks to a dependency graph, and designed to foil the infinite nature of the
abstract domain by means of a widening technique ...

The approach is presented here in great details and therefore will serve as a basis for the
future enhancements of the abstract interpretation algotithm. Nowhere else the approach
will be such detailed, only the enhancements will be mentioned and explained.

Contents of this chapter

Concrete Semantics 42
Normalized programs and substitutions 42
Concrete operations 43
Sets of concrete tuples 44
Fix point Concrete Semantics 44

Abstract Semantics 45
Abstract tuples 45
Abstract operations 45
Abstract semantics 47
Abstract domains .. 48

Genetie Abstract Interpretation Algotithm 51
Definitions 51
Overview of the approach .. 52
Sets of abstract tuples manipulations 53
Procedure call dependencies 53
Genetie abstract interpretation algorithm 55
Termination 56

Example 58
References 59

41

42 Chpater 4 Pure Pro/og Abstract lnterpretation

Concrete Semantics

Normalized programs and substitutions

Figure 4.1
The norma/ized
version of the
program append.

append(X1 ~.X3) :

X1 = [J,
X3=~.

append(X1 .~,X3) : -

X1 = cx.i IXs],
X3=(x.il~J.
append(X5,~~).

The generic abstract interpretation semantics and algorithm are defined on normalized
logic programs. The use of normalized programs, first suggested in [BJCD87], greatly
simplifies the semantics, the algorithm and its implementation. The normalized version of
the classical list appending program generated by our implementation is depicted at Figure
4.1.

Assume the existence of the sets IF1 and IP1 (i ~ 0) denoting sets of function and predi
cate symbols of arity i and an infinite set IPW of pro gram variables. Variables in IPW are
ordered and denoted by X 1 , X 2 , ••• , Xi, ... Normalized programs are built from IPW. A
normalized program is a set of clauses of the form:

where p(X1 , ... , Xi) is the head and 1\, ... ,.en the body. If a clause con tains n variables,
they are necessary X 1 , ... , Xo. The literais in the body of a clause can be either a procedure
call (the first form below) or built-ins enabling to achieve unification (the last two forms
below):

• q(Xi1, ... , ~) where Xi
1

, ... , ~ are distinct variables and q E IP n;

• Xi1 = /(Xi2 , ... , ~) where / E IF m - i and Xi1, .• • • ~ are distinct variables.

The rationale of normalized programs cornes from the fact that an input/output substitution
for a procedure p/n is always expressed in terms of variables X 1 , ... ,Xo. This greatly
simplifies all the traditional problems encountered with renaming.

We also assume the existence of another infinite set IRW of renaming variables. Terms
and substitutions are constructed using program and renaming variables. We distinguish
two kinds of substitutions: program variable substitutions (ps for short) whose domain and
codomain are subsets of IP\V and IR\V respectively, and renaming variable substitutions - or
standard substitutions - (rs for short) whose domain and codomain are subsets of IRW. In
the following, IPS denotes the set of ps and IRS the set of rs.

Let 0 be a substitution and D ç dom(0). The restriction of 0 to D, denoted 0 10, is the
substitution cr such that dom(cr)=D and X0=Xcr VX E D.

The definition of substitution composition is slightly modified to take into account the
special role held by program variables. The modification occurs when 0 E IPS and cr E

IRS for which 0cr E IPS is defined by dom(0cr) = dom(0) and X(0cr) = (X0)cr for all X

Concrete Semantics 43

E dom(0). The notion ofjree variable is non-standard to avoid clashes between variables
during renaming. A free variable is represented by a binding to a renaming variable that
appears nowhere else. Unifiers are defined as usual but only belongs to IRS. We use
mgu(t1, ti) to denote the set of most general unifiers of t 1 and ti. Let e be a subset of IPS.
e is complete if and only if for all e E e, e and 0' being variant implies that 0' E e. Be
ing complete formalizes the fact that variant program substitutions are somehow the
"same".

Let D be a subset of IPW. CSn = {e: '17'0 E e, dom(0)=D and e is complete}. CSn is
a complete lattice with respect to set inclusion ç;;.

Concrete operations

Union of Sets of Substitutions. Let e 1, ... , en E CSn and D ç;; IPW.

Unification of Two Variables. Let D = {X1 , X 2 } and e E CSn.

AI_ VAR(e) = {0cr: e E e, cr E IRS and cr E mgu(X18, X28)}

Unification of a Variable and a Function. This operation unifies X1 with f (X2 , ... , X,,) .
LetD={X1, ... ,X,,},e E CSnand/ E IFn-1·

AI_FUNC(e, f) = {0cr: e E e, cr E IRS and cr E mgu(X18,/(X2, .. . , X,,)0)}

Restriction and Extension of a Set of Substitutions for a Clause. The RESTRC opera
tion restricts a set of substitutions on ail the variables occurring in a clause to the variables
occurring only in the head. The EXTC operation extends a set of substitutions on variables
occurring in the head of a clause with ail the variables occurring in the body of the clause.
Let c be a clause, DH be the set of variables in the head and De be the set of ail the variables
occurring in c.

EXTC(c, e) = {0: dom(0) = De, 0
1
nH E e and VX E De\DH, Xis free in 0}

Restriction and Extension of a Set of Substitutions for a Cali. The RESTRG operation
expresses a set of substitution e in terms of the formai parameters X1, ... , X,, of a call f.
The EXTG operation extends a set of substitutions e with a set of substitutions et repre
senting the result of executing a cal! f on e. Let D0 be the domain of e, Dt = {~1, ... ,
Xi,,} the set of variables appearing in f exactly in that order, and D = {X1 , . . . , X,,}.

RESTRG(f, e) = {0: dom(0) = D, 30' E e: ~e =~0' (1 ~j ~ n)}

EXTG(f, e, e l)= {0cr: 0 E e, cr E IRS, 0'cr E e t, dom(cr) ç;; codom(0 '),

(codom(0)\codom(0')) n codom(cr) = 0 ,
dom(0') = D, ~0' = ~Je (1 ~ j ~ n)}

44 Chpater 4 Pure Prolog Abstract lnterpretation

Sets of concrete tuples

We assume in the following an underlying program P . The semantics of P is captured by a
set of concrete tuples of the form (E>1n, p, E>0 ut) where E>0 ut is intended to represent the set
of output substitutions obtained be executing p(X1 , ... , X,,) on the set of input substitu
tions E>1n; E>1n, E>out E CSn with D = {X1 , ... , X,,}. We only consider functional sets of
concrete tuples, set, implying that for all (E>1n, p) there exist at most one set E>out such that
(E>1n, p, E>0 ut) E set. This tuple is denoted set(E>1n, p). dom(set) is the set of pairs
(E>1n, p) for which there exists a E>out such that (E>1n, p, E>out) E set. We call underlying
do main UD the set of pairs (E>1n, p) where p is a predicate symbol of arity n in P and E>1n
E CSn where D = {X1, •• • , X,,}. We also denote SOT the set of ail monotonie set, i.e.
those satisfying 0 1 ç 0 2 ⇒ set(E>1 , p) ç set(E>2 , p), each time set(E>1 , p) and set(E>2

, p) are defined.

We denote SCTT the set of ail total and continuous set, i.e. those for which any non de
creasing chain 0 1 ç 0 2 ç . . . ç en ç ... satisfies set(LJ:10 1, p) = LJ:1{set(E>1 ,p)}.
SCTT is endowed with a structure of complete partial order by defining:

• J_ = {(0, p, 0): (0, p) E UD},
• set~ set'<=> V(E>, p) E UD: set(E>, p) ç set'(E>, p).

Fixpoint Concrete Semantics

Figure 4.2
A concrete fixpoint
semantics.

The concrete semantics is defined in terms of three fonctions and one transformation given
at Figure 4.2. We assume an underlying program P and let b and c be respectively a se
quence of atoms and a clause using only predicate symbols from P.

The transformation and fonctions are monotonie and continuous with respect to SCOT
and the canonical ordering on the Cartesian product CSn x SCOT respectively. Since SCOT
is a complete partial order, the semantics of logic programs is the least fixpoint of the
transformation TSCT, denoted µ(TSCT). This fixpoint can be shown to be equivalent to
SLD-Resolution.

TSCT(set) = {(0, p, 0'): (0, p) E UD and 0' = Tp(E>, p, set)}

Tp(E>, p, set)= UNION(E>1, . . . , E>n)
where 0 1 = Tc(E>, Ct, set)

c1, . . . , On are the clauses of p

Tc(E>, c, set)= RESTRC(c, 0')
where e• = Tb(EXTC(c, 0), b, set)

b is the body of c

Tb(E>, (),set)= e
Tb(E>, R.gs, set)= Tb(03 , gs, set)

where 0 3 = EXTG(R. , e, 0 2)

0 2 = set(E>1, P)
AI_VAR(E>1)
AI_FUNC(E>1, f)

01 = RESTRG(R., e)

if R. is p(. ..)
if f! is~ = ~
if f! is~ = /(. ..)

Informally speaking, the fonction Tp(E>, p, set) executes ail clauses defining p on substi
tution ~ and takes the union of the results. The fonction Tc executes one clause by extend
ing the substitution, executing the body and restricting the substitution. The fonction Tb

Abstract Semantics 45

executes the body of a procedure by considering each literai in turn. When the literai is a
procedure cail, this result is simply picked up in the sat, otherwise the operation AI_ V AR
or AI_ FUNC is executed. Operation RESTRG is used before cailing any literai and op
eration EXTG is performed after each call.

Theorem 1. Let P be a program, f = p(X1 , .. . , x,j be a predicate, 8in be a program sub
stitution with dom(8in) = {X1 , ... , Xn}, set be µ(TSCT) and 0in = {8 E IPS: 8 and 8in
are variant}. The following two statements are true (we assume that SLD-Resolution uses
renaming variables belonging to IRS):

• If cr is an answer substitution of SLD-Resolution applied to P U { +- f8in}, then there
exists a substitution eout e sct(E>in, p) such that 8out = 8incr,

• If 80 ut E sct(E>in, p), then there exists an answer substitution cr of SLD-Resolution
applied to P U { +- f8in} such that 8incr is more generai than 8 0 ut, i.e. 80 ut = 8incrcr' for
some cr' E IRS.

Abstract Semantics

Abstract tuples

The abstract fixpoint semantics is defined in the same way as the concrete semantics, with
abstract tuples and abstract operations replacing concrete ones. Abstract tuples are tuples of
the form (Pin, p, Pout) where pis a predicate symbol of arity n and Pin, Pout are abstract
substitutions on variables {X1 , ... , Xn}. It bas the informai interpretation that "the execu
tion of p(X1 , ... , Xn)8 , 8 being a substitution satisfying the property expressed by Pin,
will produce substitutions 8 1, • •• , 8n which all satis/y the property expressed by Pout"·

The purpose of the abstract semantics is to define precisely the relationships between Pin
and Pout for each predicate symbol p in the program. To define the semantics, we denote by
UD the underlying domain of the program, that is the set of pairs (Pin, p) where p is a
predicate symbol of arity n and Pin is an abstract substitution on variables {X1 , ... , Xn}.
We also denote .AS as the set of abstract substitutions. The abstract substitutions on variable
D = {X1 , ... , Xn} are elements of a complete partial order (.AS0 , :-::;), which is unique for
each set of variables.

To each of the concrete operations, we also associate an abstract operation with the same
name and signature except that abstract substitutions replace complete sets of substitutions.
Moreover, ail abstract operations should be consistent versions of the concrete operations to
ensure correctness of the abstract semantics. If ail abstract operations are consistent, then
any fixpoint of the abstract transformation is consistent. Finally ail abstract operations are
also required to be continuous.

Abstractoperations

EXTC(c, P) where pis an abstract substitution on {X1 , ... , Xn} and c is a clause contain
ing variables {X1 , ... , X,,,} (m ~ n). This operation retums the abstract substitution ob
tained by extending p to accommodate the new free variables of the clause. It is used at the
beginning of a clause to include the variables in the body not present in the head. The
specification is given hereafter.

46 Chpater 4 Pure Prolog Abstract lnterpretation

Let D == {X1, • • • , ~} be the set of variables occurring in the head of c, dom(/3) == D
and D' = {X1, •• • , ~ +k} be the set of all variables in c. EXTC(13, c) produces a substitu
tion 13' == (sv', mo', frm', ps') such that

Cc(/3') == {0: dom(0) == D'
/\ e lD E Cc(/3)
/\ ~ +! e' ~ +ke are distinct renaming variables
/\ ~ +J ~ codom(01n) (1 ~j ~ k)}.

BESTRC(c, 13) where 13 is an abstract substitution on {X1 , ... , X.X,} and {X1 , ... , ~} (n
~ m) are the head variables of clause c. This operation retums the abstract substitution
obtained by projecting 13 on variables {X1 , ..• , ~}. It is used after the execution of a
clause to restrict the substitution to the head variables only. The specification is given
hereafter.

Let D be the domain of 13 and D' be the set of variables in the head of c (D ç D').
RESTRC(/3, c) produces a substitution 13' == (sv', mo', frm', ps') such that

Cc(/3') == {01n: 0 e Cc(/3)}.

UNION{l31 , ... ,l3n} where /3 1 , ... ,f3n are abstract substitutions from the same cpo. This
operation retums an abstract substitution representing all the substitutions satisfying at least
one !31• It is used to compute the output of a procedure given the outputs of its clauses. The
abstract semantics makes use of this n-ary operation which is derived from a binary abstract
operation as follows:

where the operation UNION(/31 ,/32) is implemented the same way as the operation
LUB(/3 1 ,/32) . This implementation is also likely to be the most accurate one . These two
operations are specified hereafter.

Let /3 1,/32 be two abstract substitutions such that dom(/3 1) == dom(/32) == D.
UNION(/31 ,/32) produces an abstract substitution 13 such that

Under the same hypotheses, LUB(/3 1 ,/32) produces an abstract substitution 13 such that

BESTRG(.e, 13) where 13 is an abstract substitution on D == {X1 , ... , ~} and .e is a literai
P(Xi

1
, ... , Xi,,,) (or Xi

1
== Xi

2
or Xi

1
== /(Xi

2
, ... , Xi,,,)) . This operation retums the ab

stract substitution obtained by

1. projecting 13 on {Xi
1

, . .. , Xi,,,} obtaining 13';
2. ex pressing 13' in terms of {X1 , . . . , X.X.} by mapping Xik to Xk.

It is used before the execution of a literai in the body of a clause. The resulting substitution
is expressed in terms of {X1 , ... , X.X,}, i.e. as an input abstract substitutions for p/m. The
specification of this operation can be deduced from the specification of the RESTRC opera
tion.

EXTG(.e, 13, 13') where f3 is an abstract substitution on D == {X1 , . .. , ~}, the variables of
the clause where .e appears, .e is a literai P(Xi

1
, ... , Xi,,,) (or Xi

1
== Xi2 or Xi1 ==

Abstract Semantics 47

/(Xi2, ... , Xi,,,)) with {Xi1, ... , Xi,,,} ç D and W is an abstract substitution on {X1, ... ,
Xm} representing the result of p(X1 , ... , XmW" where W' = RESTRG(f, p). This op
eration retums the abstract substitution obtained by extending p to take into account the re
sult W of the literai l. It is used after the execution of a literai to propagate the results of
the literai to ail the variables of the clause. The specification is given hereafter.

Let Xi
1

, ••• , Xik be the sequence of variables occurring in the literai l. Let us define
D = {Xi

1
, ... , Xik}. Let P1 be an abstract substitution such that {Xi

1
, ... , Xik} ç {X1, ... ,

Xn,} = dom(P 1). Let P2 be an abstract substitution such that {X1, ... , Xk} = dom(P2) .

Let 0 1 and 02 such that dom(01) = dom(p1) (i =l, 2). Let cr be a renaming substitution.
The followings holds:

AI_VAR(P)=P' where Pis an abstract substitution on {X1 , X 2 } . This operation retums
the abstract substitution obtained from P by unifying X 1 and X 2 . It is used for literais of the
form Xi =~in normalized programs. The specification is given hereafter.

Let P such that dom(P) = {X1, X 2 } . The following holds for any program substitution
0 and any renaming substitution cr:

AI_FUNC(P, f)=W where pis an abstract substitution on {X1 , ... ,~}and/ is a func
tion symbol of arity n-1 . This operation retums the abstract substitution obtained from p
by unifying X 1 and /(X2 , ... , ~). 1t is used for literais of the form x,

1
=/(x,

2
, .•. , x,n) in

normalized programs. The specification is given hereafter.

Let p such that dom(P) = {X1, ••• , XJ. The following holds for any program substi
tution 0 and any renaming substitution cr:

0 E Cc(P) A cr E m.gu(X18, /(Xi, ... , ~)0) ⇒ 0cr e Cc(W).

Abstract semantics

The abstract semantics is defined as the least fixpoint of the transformation TSAT; it is de
noted µ(TSAT) . It is simply the same transformation as TSCT but working with abstract
substitutions instead of complete sets of concrete substitutions. The transformation is re
called at Figure 4.3 .

48

Figure 4.3
An abstract fix
point semantics.

Chpater 4 Pure Prolog Abstract lnterpretation

TSATCsat) = {CP, p, P'): CP, p) E UD and P' = TpCP, p, sat)}

TpCP, P, sat) = UNIONCP1, ... , Pn)
where p1 = TcCP, c;, sat)

c1, ... , ;. are the clauses of p

TcCP, c, sat) = RESTRCCc, P')
where P' = TbCEXTCCc, p), b, sat)

b is the body of c

TbCP, (), sat) = p.
TbCP, .e.gs, sat) = TbCP3 , gs, sat)

where P3 = EXTGC.e, P, P2)
P2 = satCP1, P)

AI_VARCP1)
AI_FUNCCP1, f)

P1 = RESTRGC.e, P)

if .e is PC---)
if fis Xi=~
if .e is Xi = f C .. .)

sat is a set of abstract tuples; it is functional - i.e. there exists at most one Pout for each
pair CP1n, p) such that C~1n, p, Pout) E sat, Pout is denoted satCP1n, p)- total and mono
tonie. The set of functional, total and monotonie sets of abstract tuples, SAT, is endowed
with the structure of a complete partial order by defining:

• 1- = {CP, p, 1-n)I CP, p) E UD and 1-n is the smallest element in CASn, ~) };
• sat ~ sat' <=> VCP, p) E UD: satCP, p) ~ sat'CP,p) .

Abstract domains

An abstract domain is the association of a complete partial order CASn, ~) with each fmite
set of variables D. Elements of ASn are called abstract substitutions. The correspondence
between abstract and concrete domains is established by a concretization function
Cc: ASn ➔ CSn.

We use sat to denote the set of abstract tuples; we also denote SAT the set of ail func
tional and monotonie sat, SATT the subset of SAT whose elements are total and continu
ous. As the generic algorithm works on partial sat, we define an ordering on SAT. Let
sat1, sati E SAT, sat1 ~ sati <=> VCP, p) E domCsat1), CP, p) E domCsati) /\
sat1CP, p) ~ satiCP, p).

Theorem 2. Let P be a program, TSAT and TSCT the associated transformations, sat =
µCTSAT) and set = µCTSCT). Let p be a predicate and D = {X1 , . . . , Xn} where n is the
arity ofp. For each P E ASn: sctCCcCP),p) ç CcCsatCP,P)).

We give here an informai description of the abstract domain, that is we will try to show
its expressiveness; a comprehensive discussion of the abstract domain is given in
[LCVH94].

Abstract substitutions

The key concept in the representation of the substitutions in this domain is the notion of
subterm. Given a substitution on a set of variables, an abstract substitution associates the
following information with each subterm appearing in the substitution:

Abstract Semantics 49

Figure 4.4
The ordering of
modes as an
HASSE diagram.

• its nwde taken from {-l, greund, var, ngv, nova.r, gv, negreund, any}3
;

• its pattern which specifies the main fonctor as well as the subterms which are its argu-
ments;

• its possible sharing with other subterms.

The pattern is optional; if it is omitted then the pattern is said to be undefined. Besides the
above information, each variable in the domain of the substitution is associated with one of
the subterms. This information even enables to express that two arguments have the same
value - and hence that two variables are bound together - by associating two arguments
with the same subterm. To identify the subterms unambiguously, an index is associated
with each of them. If there are n subterms, indices from 1 through n are used; let In be the
set of indices { 1, ... ,n}. For instance, the substitution

{X1 ~ [a,b], X,:i ~ [c,d], X3 ~ Ls}

will have 7 subterms. The association of indices to them could be for instance

{(1,[a,b]) , (2,a), (3,b), (4,[c,d]), (5,c), (6,d), (7,Ls)}.

As mentioned previously, each index is associated with a mode taken from {1-,
greund, var, ngv, novar, gv, negreund, any}. In the above example, we have the
following mode associations:

{ (l,greund), (2,greund), (3,greund), (4,greund), (5,greund),
(6,greund), (7,var)}.

Formally, the mode component is a total fonction me: In ➔ MODES from the set of indices
to the set of modes which associates to each subterm of a substitution a mode from the set
MODES. The set MODES satisfy the ordering depicted in the HASSE diagram at Figure 4.4.
Bach node in the diagram is a mode. An oriented vertex between the nodes n 1 and n 2 de
notes the ordering relation between modes, that is me(n1) > me(n2) . The ordering rela
tion between modes is simply the transitive closure of the ordering described in the dia
gram. Moreover, the semantics of me is given by the concretization fonction:

Cc(me) = {(t1, ... , ~) 1 Vi: 1 ~ i ~ n, t 1 E Cc(me(i))} .

3 ngv stands for "nor variable nor ground", gv stands for "ground or variable" and any is
the top element.

50 Chpater 4 Pure Pro!og Abstract lnterpretation

The pattern component possibly assigns to an index an expression / (i 1, • •• , i,,) where f
is a function symbol of arity n and i 1, ••• , i,, are indices. In our example, the pattern com
ponent will make the following associations:

{(1,.(2,3)), (2,a), (3,b), (4, .(5,6)), (5,c), (6,d)}

where . (head _of_ list, tail _of_ list) is the lis t cons tructor.

Formally, the pattern component is a partial function frm: In --1--+ IF m from the set of indi
ces to the set of ail patterns on In, i.e. elements of the form /(i 1, • •• , i,,,) where f is a func
tor symbol and i 1, ... , i,,, E ~ - An undefined pattern is denoted frm(i) = undef. The
semantics of frm is given by:

Cc(frm) = {(t1, ••• , ~) 1 Vi, i 1, ••• , i,,, E In: frm(i)=/(i1, •• • , i,,,) ⇒ 1ii.=/(ti_
1

, ••• , \,,)}

The same value component is a total function sv: D ➔ In from the substitution domain to
the set of indices, D = {X1, ••• , Xn}. The concretization function of sv is:

Cc(sv) = {8 I dom(8) = D /\ V Xi,,~ E D: sv(Xi.) = sv(~) ⇒ Xi,8 = ~8} .

Finally the sharing component specifies which indices, not associated with a pattern,
may possibly share variables. We only restrict our attention to indices without pattern since
the patterns already express some sharing information and we do not want to introduce in
consistencies between the components. The actual sharing relation can de computed from
the two previous components. In the example, the only sharing is the couple (7,7) express
ing that variable Ls shares a variable with itself.

Formally, the sharing component specifies the possible sharing of variables between unde
fined pattern subterms. The sharing component is a binary and symmetrical relation ps: In
x In. Therefore, ps satisfy the property:

Vi, j E In: ps(i, j) ⇒ frm(i) = undef = frm(j).

And the semantics of ps for a given pattern component is given by the following concreti
zation function -var(t) denotes the set of variables in the syntactical abject t:

Cc(ps, frm) = {(t1, •• • , tn): Vi, j E In: frm(i) = frm(j) = undef

/\ var(ti_) nvar(tJ) :;t; 0 ⇒ ps(ij)}.

In order to clarify the concepts, a more appealing representation is given for the predi
cate append instantiated with the above substitution:

append(ground(1): . (ground(2): a, ground(3): b),
ground(4) : .(ground(5):c, ground(6):d),
var(7))

together with the sharing information {(7,7)}. In the above representation, each argument
is associated with a mode, with an index (between parenthesis) and with an abstract sub
term after the colon.

We are now allowed to rewrite the definition of an abstract substitution as a 4-tuple (sv,
mo, frm, ps). In brief, the abstract domain contains the four components, mode, pattern,
same value and sharing. Formally, the meaning of an abstract substitution~ ::= (sv, mo,
frm, ps) is given by the following concretization function:

Generic Abstract lnterpretation Algorithm 51

Cc(l3) = {8: dom(8) = D
Î\ 3(t1, ... , tp) E Cc(mo) n Cc(frm) n Cc(ps, frm):Vx ED, x8 = tsvc:d

where D is a fini te set of program variables.

Ordering on abstract substitutions

It remains to define the ordering relation on substitutions. Consider two substitutions 13 1, 132

E AS1n and assume in the following that ew1, mo1, fr~, ps1 are the components of a substi
tution l3i, p 1 is the number of indices in the domains of mo1, fr~. ps1 and ~ is the number
of indices in the codomain of ew1 - whereas the domain of the substitution is implicitly de
fined by the substitution. Conceptually, 131 ~ 132 should hold iff Cc(l31) ç Cc(l32) . But for
implementation purpose, we need a syntactic definition. To provide such a definition, it is
necessary to use a function that relates the indices of 13 1 and 132 since the same indices do not
necessarily refer to corresponding terms. This leads to the following definition where the
function t is responsible for mapping the indices of 132 into those of 13 1•

13 1 ~ 132 iff there exists a function t: IP2 ➔ IP
1

satisfying:

• \fi, i1, ... , ig E IP2: frID.i(i) = /(i1, ... , ig) ⇒ frmi(t(i)) = /(t(i1), ... , t(ig));

• \fi, j E IP2: frm2(i) = fr1ni(j) = undef: psi(t(i), t(j)) ⇒ ps2(i, j).

Generic Abstract lnterpretation Algorithm

The overall approach is first presented. The next section highlights two high-level opera
tions to manipulate the set of abstract tuples. The third section discusses the dependency
graph structure and its specific operators. The last section exposes the algorithm.

Definitions

The following definitions aim at characterizing the set of abstract tuples needed to compute
Tp(l3, p, sat). A more formai approach is brought to light in [LCMVH90].

Let D ç UD and sat be a set of abstract tuples. The restriction of sat to D, denoted
sat

1
n, is the set {(13, p, sat(l3, p)): (13, p) E D n dom(sat)}. Let 13 be an abstract

substitution and p be apredicate symbol. (13, p) is based in sat iff, informally, for any total
set of abstract tuples sat' such that sat ç sat', the computation of Tp(l3, p, sat') does
not require values of sat' not belonging to sat. Hence the notation Tp(b, p, sat) can be
extended to such partial set of abstract tuples. We denote by base(b, p, sat) the smallest
set D such that (~, p) is based in sat1n. This set is defined iff (~. p) is based in sat.

Let 13 be an abstract substitution, p be a predicate symbol and sat a partial set of ab
stract tuples. (13, p) isfounded in sat iff 3D: (13, p) E D A V(o., q) E D: (o., q) is
based in sat

1
n. We denote by foundation(l3, p, sat) the smallest set D such that (13, p)

is founded in sat
1
n, when it exists.

52 Chpater 4 Pure Prolog Abstract lnterpretation

Overview of the approach

A straightforward approach to compute the output substitution Pout for a pair CP1n, p) con
sists in computing the least fixpoint of TSAT - µ(TSAT) for short - entirely and picking
up the value sat(P1n, p) in the fixpoint. This is possible using a bottom-up approach pro
vided that some restrictions are imposed on the abstract domain to guarantee termination.
The main drawback of this approach is that many elements in µ(TSAT) are not relevant to
the computation of Pout and hence most of the computation is unnecessary.

The approach described through our algorithm does its best to focus on the relevant
elements in computing a postfixpoint of µ(TSAT). Of course, it's impossible to know a pri
ori which subset of the postfixpoint will be strictly necessary. The algorithm was therefore
tailored to avoid as much as possible the irrelevant computations; its purpose is to converge
towards a partial set of abstract tuples sat including CP1n, p, Pout) E µ(TSAT).

To achieve its goal, the algorithm computes a series of lower approximations sat0 , ••• ,

satn such that sati < sat1+1 and such that s~ contains CP1n, p, Bout)- The first approxi
mation is the empty set. The algorithm then moves from one partial set to another by se
lecting:

• an element (a.,,,, q) which is not present in the sat but needs to be computed, or
• an element (a.,,,, q) whose value sat(a.,,,, q) can be improved because the values of

some elements upon which it is depending have been updated.

It is important to notice at this point that within this approach we never fully apply
TSAT to a complete sat but we are rather constantly improving the current sat and work
ing with the most accurate one.

Within this framework, there are still many decisions to consider, as detection of termi
nation and the choice of the element to work on. Here is an informal description of the way
the algorithm works. Given an input pair CP1n, p) it executes the function Tp of the ab
stract semantics. At some point, the computation may need the value of (a.,,,, q) which
may not be defined or is just (lower) approximated at this stage of the computation. In this
situation, the algorithm starts a new subcomputation to obtain the value of (a.,,,, q) or a
lower approximation of it. This computation is carried out in the same way as the primary
one except in the case where a value for CP1n, p) is needed. In that case, instead of starting
a new computation (that may generate an infinite loop), the algorithm simply looks up the
current value of CP1n, p) in the sat. The execution of the initial pair CP1n, p) is only re
sumed once the computation of (a.,,,, q) is completed. Note that if the computation of (a.,,,,
q) bas required the value of CP1n, p) then its resulting substitution may only be lower ap
proximated (with respect to its fixpoint value) and hence (a.,,, , q) will have to be reconsid
ered if the value of CP1n, p) is updated. In the algorithm, a dependency graph is used to
detect when an element needs to be reconsidered.

More formally, the series of approximation is such that:

• sat0 = {CP1n, p, 1-)};
• sat1+1 is obtained from sati by computing a new tuple (a.,,,, q, a.out) such that either

(a.,,,, q) is not based in sati or Tp(a.,,,, q, sat1) :s; sati(a.,,,, q) does not hold;
• satn such that V(a.,_,, , q) E satn, Tp(a.,_,,, q, satn) :$ satn(<X.in, q) and (a.,,,, q) is

based in sa~.

Generic Abstract lnterpretation Algorithm 53

Sets of abstract tuples manipulations

The abstract semantics does not need operations on sets of abstract tuples besides the ability
to pick up a value in one of them. The algorithm however needs to construct a subset of the
fixpoint containing the solution of the query. Hence it needs a number of operations on sets
of abstract tuples.

There are mainly two operations that need to be defined: EXTEND and ADJUST. The
purpose of the first operation is to extend a set of abstract tuples with a brand new element,
while ADJUST is intended to update the result of a particular pair (131n, p) . Let us specify
these two operations:

• EXTEND(l31n, p , sat) = sat'. Given a set of abstract tuples sat and a kind of access
key to this sat constituted by a predicate symbol p and an abstract substitution 131n, it
retums a new set of abstract tuples sat' containing (131n, p) in its domain. sat was
supposed not to already contain the pair (131n, p) . Actually, this operation inserts in
sat a new pair with its default approximation, that is (131n, p, 13) where 13 =
lub{sat(l3',p): 13' ~ 131n A (13',P) E dom(sat) }

• ADJUST(l31n, p, 13out, sat) = sat'. Given the substitution 13out which represents a
new result coniputed for the pair (131n, p) , it retums a new set of abstract tuples sat'
which is the sat updated with this new result. Actually, this operation retums:
sat' U {(13 , p, lub{l3out, sat(l3, p)}): 13;::,: 131n A (13, p) E dom(sat)} where sat' =
sat \ {(13, p , sat(l3, p)): 13;::,: 131n A (13, p) E dom(sat)}.

Note that a slightly more general version of ADJUST is used in the algorithm, it re
tums in addition to the new set of abstract tuples the set of pairs (131n, p) whose values have
been updated.

Procedure cal/ dependencies

The purpose of a dependency graph is mainly the detection of redundant computations.
Such a computation may occur in a variety of situations. For instance, the value of a pair
(au,, p) may have reached its definitive value - i.e. the value of (au,, p) E µ(TSAT) -
and hence subsequent considerations of (au,, p) should only look up its value instead of
starting a new subcomputation. Another efficiency concem is the mutually recursive pro
grams. For those programs, it would be interesting that the algorithm reconsiders a pair
(au,, p) only when some elements upon which it depends have been updated.

Therefore, keeping track of the procedure call dependencies may substantially improve
the efficiency on some pr'ogram classes. The algorithm includes obviously specific data
structure to handle procedure call dependencies. However, we only introduce the basic no
tions.

Definition. A dependency graph is a partial fonction dp: UD -/4- Pl(UD), i. e. a set of tu
ples of the form (Cl31n, p), lt) where lt is a set { (a.1 , 41), ... , (On, q,,)} (n ;::,: 0) such that
for each (131n, p) there exists at most one lt such that ((131n, p) , lt) E dp.

We denote by dp (l31n, p) the set lt such that ((131n, p), lt) E dp if it exists. We also de
note by dom(dp) the set of ail Cl31n, p) such that (Cl31n, p) , lt) E dp and by codom(dp)
the set of all (au,, q) such that there exists a tuple ((131n, p), lt) E dp satisfying (au,, q)
E lt.

54

Figure 4.5
Schematic view of
the dependency
graph.

Chpater 4 Pure Prolog Abstract lnterpretation

The basic intuition is that dp(P1n, p) represents at some point the set of pairs which
CP1n, p) depends directly upon. This is why we also need to define the transitive closure of
the dependency graph.

Definition. Let dp be a dependency graph and assume that CP1n, p) E dom(dp). The set
trans_dp(P1n, p, dp) is the smallest subset of codom(dp) closed by the following two
rules:

1. if (ex.in, q) E dp(P1n, p) then (<X.in, q) E trans_dp(P1n, p, dp);

2. if (ex.in, q) E dp(P1n, p), (ex.in, q) E dom(dp) /\ Cain, q') E trans_dp(cx.in, q, dp)
then Cain, q') E trans_dp(P1n, p, dp).

trans _ dp(P1n, p, dp) represents all the pairs which if updated would require reconsider
ing CP1n, p). Hence CP1n, p) will not be reconsidered unless one of these pairs is updated.

The main intuition is that the algorithm makes sure that the elements CP1n, p) needing
to be reconsidered are such that (P1n, p) ~ dom(dp). Conversely, elements of dom(dp)
do not require reconsideration. It's now possible to specify the last three operations needed
to expose the algorithm.

• EXT_DP(P1n, p, dp): extends the domain of the dependency graph by inserting a
new tuple ((P1n, p), 0) in dp;

• ADD_DP(P1n, p, ex.in, q, dp): updates dp to include the dependency of CP1n, p) upon
(ex.in, q), i.e. after this operation (ex.in, q) E dp(P1n, p) ;

• BEMOVJ!l_DP({(a.~, q 1
), ••• , (a.~, qn)}, dp): removes from the dependency

graph all elements (CP1n, p), lt) E dp as soon as one element they depend upon bas
been updated, i.e. removes ail elements ((P1n, p), lt) E dp for which there is a
(Cl.in, q1

) E trans_dp(P1n, p, dp).

Let us schematically summarize the concepts of the procedure calls dependency graph,
let us depict an imaginary dp(p1, p):

- ---- -►

Generic Abstract lnterpretation Algorithm 55

Generic abstract interpretation algorithm

Given an input substitution Pin and a predicate symbol p, the top-level procedure solve
retums the final dependency graph and the set of abstract tuples sat containing (P1n, p,
Pout) E µ(TSAT). From these results, it is straightforward to compute the set of pairs (a,
q) used by (Pin, p), their values in the postfixpoint as well as the abstract input/output
substitutions at any program point. A formal characterization of such a postprocessing al
gorithm is described in [LCMVH91].

The set suspended received by solve_call contains all pairs (a, q) for which a
subcomputation bas been initiated and not completed yet. The procedure considers or re
considers the pair CP1n, p) and updates sat and dp accordingly. The core of the procedure
is only executed when CP1n, p) is not suspended and not in the domain of the dependency
graph. If CP1n, p) is suspended, no subcomputation should be initiated. If CP1n, p) is in
the domain of the dependency graph, this means that none of the elements upon which it is
depending have been updated. Otherwise, a new computation with CP1n, p) is started. This
subcomputation may ex.tend sat if it is the first time (Pin, p) is considered.

The core of the procedure is a repeat-until loop which computes the lower approxi
mation of CP1n, p) given the elements of the suspended set. Local convergence is
reached when (Pin, p) belongs to the domain of the dependency graph, meaning that
dp(P1n, p) = base(P1n,P). One iteration of the loop amounts to execute each of the
clauses defining the procedure p and computing the union of the results. If the result pro
duced is greater or not comparable to the current value of sat(P1n, p), then the set of ab
stract tuples is updated by the operation ADJUST. The dependency graph is also updated
accordingly by removing all elements which depend (directly or indirectly) on CP1n, p).
Note that the calls to the salve_ clause are done with an extended suspended set since a
subcomputation bas been started for CP1n, p). Note also, that before calling salve_ clause,
the dependency graph bas been brought up to date to include CP1n, p) - which is guaran
teed not to be in the domain of the dependency graph before that update. CP1n, p) can be
removed from the domain of the dependency graph during the computation of the loop if a
pair it is depending upon is updated. The very first statement of solve _ call, the widening
operation, is explained later on.

solve_clau.se executes a single clause on an input pair and retums an abstract substi
tution representing the execution of the clause on that input pair. The procedure first ex
tends the input substitution with the variables occurring in the body of the clause. After
wards it executes the body of the clause further decomposed in literais J\ and terminales by
restricting the resulting substitution to the variables occurring in the head of the clause.
The execution of a literai consists in choosing the right operation to perform accordingly to
its form; this requires three main steps.

• The computation of an abstract substitution representing all the concrete substitutions
of the extended input substitution, Pext• restricted to the variables occurring in the lit
erai: this is done by the operation RESTRG, giving P .. ux-

• The execution of the literai on Paux· If the literai is concemed with unification, the op
eration AI_ V AR or AI_ FUNC is performed, depending on the form of the literai. If it
is a sub-goal then procedure solve _ call is recursively called and the result is after
wards retrieved in sat. Moreover, if (Pin, p) is in the domain of the dependency graph it
is necessary to add a new dependency; otherwise it means that (Pin, p) needs to be re
considered anyway and no dependency needs to be recorded.

• The propagation of the result of the literai to the variables occurring in the body of the
clause: this is why EXTG is made for.

56 Chpater 4 Pure Prolog Abstract lnterpretation

procedure salve (in Pin, p; out sat, dp)
begin

sat:= 0;
dp:=0;
salve_call(Pin, p, 0, sat, dp)

end;

procedure salve_call(in Pin, p, suspended; inout sat, dp)
begin

Pin:= WIDEN(Pin, p, suspended);

if (Pin, p) ~ (dam(dp) U suspended) then begin
if (Pin, p) ~ dam(sat) then sat:= EXTEND(Pin, p, sat);
repeat

Pout:= .l;
EXT_DP(Pin, p, dp);
for i:=l ton with prac(p) being c1 , 0 2 , •.• , c;, in p do begin

salve_clause(Pin, p, c;, suspended U {CPin, p)}, Paux• sat, dp);

Pout:= UNION(Pout• Paux)
end
(sat, madified):= ADJUST(Pin, P, Pout• sat);
REM OVE_ DP(madified, dp)

until (Pin, p) E dam(dp)
end

end;

procedure salve_ clause(in Pin, p, c, suspended; out Pout; inout sat, dp)
begin

Pen:= EXTC(C, Pin);

for i:=1 tom with .e1, ••• , .em body-of c do begin

Paux:= RESTRG(f1, Pen);

switch .e1 of
case X:i = xk :

P:= AI_VAR(Paux);
CaSe:Je:i=/(.. .):

P:= AI_FUNC(Paux• /);
case q(.. .):

salve_ call(Paux• q, suspended, sat, dp);
P:= sat(Paux, q);
if (Pin, p) E dam(dp) thenADD_DP(Pin, p, Paux• q, dp)

end;
P.xt:= EXTG(.e1, Pext, p)

end;
Pout:= RESTRCS(C, Pen)

end;

Termination

The use of widening is useful to limit the number of abstract inputs to be considered. In the
case of an infinite domain, the algorithm may not terminale. To guarantee the termination,

Generic Abstract lnterpretation Algorithm 57

the algorithm is enhanced with a widening technique. The intuition behind this is that an
element cannot be refined infinitely often.

Each time a call CP1n, p) is encountered, the last element of the form (p;.,_, p) inserted
in the suspended set (which should be considered as a stack4

) is searched. If such an ele
ment exists, the computation continues with (p;.,_ U P1n, p) instead of CP1n, p) ; otherwise
the computation proceeds normally.

This processing takes place at the beginning of the procedure selve_ call and guaran
tees that the elements in the suspended stack with the same predicate are always increasing.
The WIDEN operation can be defined as follows:

function WIDEN(in Pnew• p, suspended): .AB
begin

Poid:= GET_PREVIOUS(p, suspended);

WIDEN:= Pold V Pnew
end;

Figure 4.6
Schematic view of
how the abstract
operation inter
acts.

The function GET_PREVIOUS returns the substitution P of the last pair CP, p) inserted
in the stack suspended or 1- if there is no such pair. V is the widening operator on substitu
tions which does, in this case, nothing more than computing the upper bound of the two
abstract substitutions.

After having presented in detail the algorithm, let us summarize it with an intuitive and
schematic view highlighting how ail the abstract operations interact. Assume we are com
puting the fixpoint of the predicate p(.. .).

solve_call

EXTC RESTRC EXTC RESTRC EXTC RESTRC

4 Since the order of the elements is important for widening.

58 Chpater 4 Pure Prolog Abstract lnterpretation

Example

Let us illustrate the algorithm with the trace of an execution of its implementation upon the
append program, depicted at Figure 1.1, with the query:

~ append(Var,Var,Ground).

The first iteration is shown at lines 1 to 30 . In the abstract substitutions, the first three
positions represent the arguments of the procedure while the remaining ones represent the
variables in the body.

The first clause first extends the substitution (it bas no effect since all the variables ap
pear in the head) - line 4. It then binds the first argument to [] - lines 5, 6 - and the sec
ond to the third - lines 7, 8. At this point - line 8 -, note that both the second and the third
argument refer to the same subterm. The result of the first clause is thus the projection on
the head variables - line 9 . Finally the UNION of the result with the current 13out (equal to
.l) is effected - line 10. It is worth mentioning that the traces shown in this paper do not
show the RESTRG and EXTG operations for built-ins. The second clause first extends the
input substitution to include the new variables - lines 13, 14. It then performs a number of
unifications and calls itself recursively with the same input substitution - line 24. Since the
same computation is pending, that is already initiated but not yet terminated, its current
value, i.e . .l, is simply picked up in the abstract domain sat. The whole clause then retums
.l and the first iteration produces the same result as the one of the first clause.

1 SOLVE_GALL ITERATION#l : append/3
2 EXTEND ((Var(l),Var(2),Ground(3)),bottom)
3 SOLVE CLAUSE#l
4 EXIT EXTC: (Var(l),Var(2),Ground(3)) ps: {l,1}{2,2}
5 GALLA! FUNC: (Var(l),Var(2),Ground(3)) ps: {l,1}{2,2}
6 EXIT AI_FUNC: (Ground(l):[J,Var(2),Ground(3)) ps: {2,2}
7 GALL AI_VAR: (Ground(l):[J,Var(2),Ground(3)) ps: {2,2}
8 EXIT AI_VAR: (Ground(l):[J,Ground(2),Ground(2)) ps: {}
9 EXIT RESTRC: (Ground(1) : [] ,Ground(2),Ground(2)) ps: {}
10 EXIT UNION: (Ground(l):[J,Ground(2),Ground(2)) ps: {}
11 EXIT CLAUSE#l
12 SOLVE CLAUSE#2
13 EXIT EXTC: (Var(l),Var(2),Ground(3),Var(4),Var(5),Var(6))
14 ps: {l,1}{2,2}{4,4}{5,5}{6,6}
15 GALL AI_FUNC: (Var(l),Var(2),Ground(3),Var(4),Var(5),Var(6))
16 ps: {l,1}{2,2}{ 4,4}{5,5}{6,6}
17 EXIT AI_FUNC: (Ngv(l): .(Var(2),Var(3)),Var(4),Ground(5),Var(2) ,
18 Var(3),Var(6)) ps: {2,2}{3,3}{ 4,4}{6,6}
19 GALL AI_FUNC: (Ngv(l):.(Var(2),Var(3)),Var(4),Ground(5),Var(2) ,
20 Var(3),Var(6)) ps: {2,2}{3,3}{ 4,4}{6,6}
21 EXIT AI_FUNC: (Ngv(l):.(Ground(2),Var(3)),Var(4),
22 Ground(5):.(Ground(2),Ground(6)),Ground(2),Var(3),
23 Ground(6)) ps: {3,3}{4,4}
24 GALL GOAL: append(Var(l),Var(2),Ground(3)) ps: {l,1}{2,2}
25 EXIT GOAL: append bottom
26 EXIT EXTG: bottom
27 EXIT RESTRC: bottom
28 EXIT UNION: (Ground(l):[J,Ground(2),Ground(2)) ps: {}
29 EXIT CLAUSE#2
30 ADJUST: (Ground(l):[J,Ground(2),Ground(2)) ps: {}

References 59

A second iteration is necessary since C~1n, append) depends on itself and sat(~1n,
append) bas been updated by the first clause. The second iteration is shown below, note
that the first clause produces the same result. The interesting point is that the look-up in
the sat now produces a result - line 24 - and that this result is propagated through all vari
ables in the clause by the EXTG operation - line 25, 27. The union operation accumulates
the results produced so far - line 30. Consequently, the analysis yields Ground for all ar
guments. A third iteration is in fact necessary to ensure termination but it will not add any
new information.

1 SOLVE_GALL ITERATION#2: append/3
2 SOLVE CLAUSE#l
3 EXIT EXTC: (Var(l),Var(2),Ground(3)) ps: {l,1}{2,2}
4 GALL AI_F"CJNC: (Var(l),Var(2),Ground(3)) ps: {l,1}{2,2}
5 EXIT AI_FUNC: (Ground(l):[J,Var(2),Ground(3)) ps: {2,2}
6 GALLAI_VAR: (Ground(l):[J,Var(2),Ground(3)) ps: {2,2}
7 EXIT AI_VAR: (Ground(l):[J,Ground(2),Ground(2)) ps: {}
8 EXIT RESTRC: (Ground(l) :[J,Ground(2),Ground(2)) ps: {}
9 EXIT UNION: (Ground(l) :[J,Ground(2),Ground(2)) ps: {}
10 EXIT CLAUSE#l
11 SOLVE CLAUSE#2
12 EXIT EXTC: (Var(l),Var(2),Ground(3),Var(4),Var(5),Var(6))
13 ps: {l,1}{2,2}{4,4}{5,5}{6,6}
14 GALL AI_FUNC: (Var(l),Var(2),Ground(3) ,Var(4),Var(5),Var(6))
15 ps: {l,1}{2,2}{4,4}{5,5}{6,6}
16 EXIT AI_FUNC: (Ngv(l):.(Var(2),Var(3)),Var(4),Ground(5),Var(2),
17 Var(3),Var(6)) ps: {2,2}{3,3}{4,4}{6,6}
18 GALL AI_FUNC: (Ngv(l):.(Var(2),Var(3)),Var(4),Ground(5),Var(2),
19 Var(3),Var(6)) ps: {2,2}{3,3}{ 4,4}{6,6}
20 EXIT AI_FUNC: (Ngv(l):.(Ground(2),Var(3)),Var(4),
21 Ground(5) :. (Ground(2),Ground(6)),Ground(2),Var(3),
22 Ground(6)) ps: {3,3}{ 4,4}
23 GALL GOAL: append(Var(l),Var(2),Ground(3)) ps: {l,1}{2,2}
24 EXIT GOAL: append(Ground(l):[J,Ground(2),Ground(2)) ps: {}
25 EXIT EXTG: (Ground(1): . (Ground(2) ,Ground(3): []) ,Ground(4),
26 Ground(5): . (Ground(2),Ground(4)) ,Ground(2),
27 Ground(3): [],Ground(4)) ps: {}
28 EXIT RESTRC: (Ground(l):.(Ground(2),Ground(3):[J),Ground(4),
29 Ground(5):.(Ground(2),Ground(4))) ps: {}
30 EXIT UNION: (Ground(l),Ground(2),Ground(3)) ps: {}
31 EXIT CLAUSE#2
32 ADJUST: (Ground(l),Ground(2),Ground(3)) ps: {}

References

[BJCD87] M. Bruynooghe, G. Janssens, A. Callebaut and B. Demoen; Abstract In
terpretation: Towards the global optimization of Prolog programs; In Pro
ceedings of the 1987 Symposium on Logic Programming, pp. 192-204,
San Fraricisco, Califomia, August 1987; Computer Society Press of the
IEEE.

60 Chpater 4 Pure Prolog Abstract lnterpretation

[ELCRVH92] V. Englebert, B. Le Chartier, D. Roland and P. Van Hentenryck; Generic
abstract interpretation algorithms for Prolog: Two optimizations tech
niques and their experimental evaluation; In M. Bruynooghe and M.
Wirsing, editors, Proceeding of the Fourth International Workshop on
Programming Language Implementation and Logic Programming
(PLILP'92), Lecture Notes in Computer Science, Leuven, August 1992,
Springer-Verlag.

[LCMVH90] B. Le Chartier, K. Musumbu and P. Van Hentenryck; Efficient and accu
rate algorithms for the abstract interpretation of Prolog programs; Tech
nical Report 37/90, Computer Science Institute of Namur, Belgium, 1990.

[LCMVH91] B. Le Chartier, K. Musumbu and P. Van Hentenryck; A generic abstract
interpretation algorithm and its complexity analysis; In K. Furukawa,
editor, Proceedings of the Eighth International Conference on Logic Pro
gramming (ICLP'91), Paris, France, June 1991, MIT Press.

[LCVH94] B. Le Chartier and P. Van Hentenryck; Experimental evaluation of age
neric abstract interpretation for Prolog; TOPLAS, January 94.

Chapter

5 Abstract lnterpretation of Prolog with Cut

This chapter is mainly based on [LCR94], and also on [BLCMVH94], [BM94] and
[LCRVH94]. It presents a novel framework for the abstract interpretation of Prolog in
which a particular attention bas been devoted to Prolog control including the treatment of
the eut primitive. The new framework is more accurate than the previous one and relies on
the concept of abstract sequence of substitutions. It collects information about Prolog pro
grams executing accordingly to the leftmost selection rule and the depth-first search strat
egy. That is why it is now adequate for determinacy analysis, detection of unending proce
dures and cardinality analysis.

It is thus a generic abstract interpretation algorithm for almost full Pro log. It just cannot
handle the system predicates assert and retra.ct and of course it cannot cope with the dy
namic predicates, that is the asserted ones.

The operational semantics for Prolog with eut is derived from the one for pure Prolog by
augmenting it with the eut. And so are the generic abstract semantics and algorithm.

Contents of this chapter

Concrete Semantics 62
Substitutions sequence 62
Concrete operations 63

Abstract Semantics 64
Abstract tuples 65
Abstract operations 65
Abstract semantics 68
Abstract domains 69

Generic Abstract Interpretation Algorithm 70
Overview of the approach 70
Sets of abstract tuples manipulations 71
Procedure call dependencies 71
Generic abstract interpretation algorithm 72

Generic Algorithm Revisited 75
Rationale of the new algorithm 77

Examples 78
References 81

61

62 Chapter 5 Abstract lnterpretation of Prolog with Gut

Concrete Semantics

This section presents a new operational semantics for Prolog with eut which can be proved
equivalent to the well-accepted operational semantics exposed in the first chapter. Basi
cally, the semantics maps procedure calls on sequences of answer substitutions, assuming an
empty context for the calls. In a non empty context, subsequent literals can introduce loops
and cuts can shorten the sequence. Therefore, in a empty context the sequence will be as
complete as possible. In actual Prolog computations, some sequences will not be computed
completely, but for the sake of abstract interpretation it is acceptable to assume a complete
computation because infinite sequences are abstracted by fïnite abjects. On the other band,
considering the eut at the abstract level remains desirable for optimizations purposes. This
framework cornes with the necessary materials to achieve this. The purpose of defining this
concrete semantics is not to provide a better semantics for understanding Prolog but rather
to define stuff easier to abstract

The definition of a normalized program is enhanced to take into account the eut primi
tive beyond the already existing three litera! forms. Recall that a normalized program is a
sequence of clauses of the form p(X1, .•. , X,,) ~ g where n ~ 0 , p E IP n and g is a se
quence .e 1, •• • , .em (m ~ 0). Each .e1 is either an atom of the form p(Xi

1
, ••• , ~), where

Xi1, ••. , ~ are all distinct variables and p E IP n, or a built-in. A built-in is either Xi = ~
(i ,te j), or Xi = f (~

1
, ••• , ~n) where ~

1
, ••• , ~n are all distinct variables and / E IF n• or

the control primitive eut(!).

Substitutions sequence

A sequence of substitutions is derived from the previous notion of substitution; such a se
quence is either:

• afinite sequence of the form (8 1, ••• , 8n) (n ~ 0),
• an incomplete sequence of the form (8 1, ••• , 8n, _i) (n ~ 0),
• an infinite sequence of the form (8 1, .. . , 81, ...) (i E IN)

where the 81 are substitutions, and J_ models non termination. We also denote the empty
sequence as ().

The usual concatenation of two sequences S1 and ~ is denoted S1::~. subst(S) de
notes the set of all substitutions occurring in the sequence S. dom(S) denotes the domain
of the sequence S, that is the union of the domains of 8 for every 8 E subst(S); the codo
main of S, codom(S), is similarly defined. In the following, IPSS will denote the set of
all program substitutions sequences whose domain and codomain are subsets of IPW and
IR\V respectively. IRSS will denote the set of all standard substitutions sequences whose
domain and codomain are subsets of IR\V.

Let D be a finite subset of IP\V. A program substitutions sequence S on D is a substitu
tions sequence such that for every 8 E subst(S), 8 e IPS and dom(q) = D. IPSS0 de
notes the set of all substitutions sequences on D. Let S1, ~ E IPSS0 , IPSS0 can be en
dowed with a structure of complete partial order by defining:

• J_PSSD = (_l_);

• S1 ç S2 iff either S1 = ~ or there exists S, S' E IPSS0 such that S1 = S::(_i) and S2 =
S::S'.

Concrete Semantics 63

Let S1 (i E IN) be an increasing chain in IPSSn, i.e. S0 ç S1 ç ... ç S1 ç ... The least
upper bound sequence u:1s 1 E IPSSn can be constructed as follows:

u:0s1 = ~
(81, ... , 81, ...)

if :lk E IN such that S1 =~('di ~ k)
if Vi e IN :lk, s ·k: ~ = (81, ... , 01)::s·k·

In the following, nsub(S) denotes the number of substitutions in S, whereas leng(S) de
notes the number of elements in S counting also the ..l element when it occurs. If S is in
finite then nsub(S) = leng(S) = oo.

Concrete operations

Concatenation. This operation extends the usual concatenation operation in order to prop
erly handle incomplete and infinite sequences. For instance if S is incomplete or infinite,
SOS' should be equal to S because, intuitively, the computation of S never terminates; hence
the computation of S' will never start. Concatenation of an infinite number of sequences is
also adequately defined. For example, □:1 O = (..l) because the computation of an infinite
number of sequences (although empty) never terminates. Let S1, Bi E IPSSn.

Observe that D is associative and that (..l)DS = (..l). We also define:

~=l~= O,
□1;~ 1~ = cct= 1 ~)□s1+ 1 Ci~ o),
0;=1~ = □:aecct= 1 ~)□<1->).

First Element Sequence. This operation is useful to model the behavior of the eut primi
tive. Let S, S' E IPSSn.

first(S) = 0
(..l)
(0)

ifS= O
ifs= (..l)
if S = (0)::S'

Restriction to a Set of Variables. This operation is used to model calls to literais: S stands
for a sequence of call substitutions. All substitutions will be restricted to the variables in
the call. Let S, S' E IPSSn and D' ç D.

Sin· = 0
(..l)

ifS= O
ifs= (..l)

(0
1
n,): :S jn• if S = (0)::S'

Projection. This operation allows to extract each element from a substitutions sequence in
order to apply it to a literai and execute it. Let S E IPSSn and k E IN\{0}.

ifS= (81, ... ek, ...)
if S = (81 , ... ek-1• _l)

Composition with a Substitutions Sequence. This operation will be used to redefine op
eration EXTG, renamed EXTGS, which extends the sequence of output substitutions pro
duced by a literai to all the variables in the clause. Let 8 E IPS and S, S' E IRSS.

64 Chapter 5 Abstract lnterpretation of Prolog with Gut

8S= ()
(l_)
(8cr)::8S'

1-S = (1-)

ifS=()
ifs= (l_)
if S = (cr): :S'

Extension and Restriction for a Clause. The EXTC operation is used to extend a substi
tution over the variables in the head of a clause to ail the variables in the clause. The
RESTRC operation restricts a substitutions sequence over ail the variables in a clause to the
variable in the head. Let c be a clause, var(c) = D and var(head(c)) = D' .

EXTC(c, 8) = {8': dom(8') = D, 8'in- = 8 /\ VX E D\D', Xis free in 8'}

RESTRC(c, S) = {S10,}

Restriction and Extension for a Cali. The RESTRG operation expresses a substitution 8,
on the parameters ~

1
, ••• , ~ of a call f , in terms of its formai parameters X 1, ••• , X,,.

The EXTGS operation extends a substitution 8 with a substitutions sequence S representing
the result of executing a call f on 8.

RESTRG(l, 8) = {8': dom(8') = {X1, .. . , X,,} Î\ ~8' = ~8 (1 $;j s; n)}

EXTGS(l, 8, S) = {8S': S' E IRSS /\ 38' E RESTRG(l, 8) / 8 '8 ' = S
where dom(S') ç codom(8'),

(codom(8)\codom(8')) n codom(S') = 0}

Unification operations. Operations AI_ V AR and AI_ FUNC have the same functionality
than before, that is AI_V.AR unifies X 18 with ~8 and AI_FUNC unifies X18 with
/(X2 , .. . , X,,)8 . Recall that these operations do not have the~ as arguments because the
RESTRG operation bas been performed before. However, besides returning an abstract
substitution these operations now return an abstract substitutions sequence.

AI_V.AR(8) = [if m.gu(X18, X28) = 0
then{ () }
else { (8cr): cr E m.gu(X18, X28)}]

AI_FUNC(8, /) = [if m.gu(X18, /(X2 , •• . , X,,)8) = 0
then{ () }
else { (8cr): cr E m.gu(X18, /(X2 , . .. , X,,)8)} J

Abstract Semantics

In the following, let IPS denote the set of abstract substitutions, IPSS denote the set of ab
stract substitutions sequences and IPSSC denote the set of abstract substitutions sequences
with eut information. We assume the existence of three complete partial orders: AS, ASS
and ASSC. Elements of AS are called abstract substitutions and denoted by p. Elements of
ASS are called abstract substitutions sequences and denoted by S. Elements of ASSC are
called abstract substitutions sequences with eut information and denoted by C. The mean
ing of these objects will be given later through monotonie concretization fonctions, Cc:AS
➔ CS, Cc:ASS ➔ CSS and Cc:ASSC ➔ esse. CS= :o/(IPS) and CSS= :o/(IPSS)
where ail elements of CSS are upper-closed. OSSO is similarly defined but increasing
chains only contain substitutions sequences with identical eut information . CS, CSS and
esse are complete Iattices with respect to set inclusion ç .

Abstract Semantics 65

In the following, all sets that are considered are supposed to be complete. Let D be a
subset of IPW and e be a subset of IPS0 - the set of abstract substitutions restricted to D.
We denote CS0 the set of es. CS0 is a complete lattice with respect to set inclusion ç;.

Definition. Let I be a subset of IPSS. We say that I is upper-closed iff, for all increasing
chains, S0 ç; S1 ç; ... ç; S1 ç; ...

Abstract tuples

The abstract semantics of a program Pis defined as a set of abstract tuples (Pin, p, Bout)
where p is a predicate symbol of arity n occurring in P, D is the set of program variables
{Xi, ... , X,,.}, Pin E AS10, Bout E ASS10. AS 10 is the set of abstract substitutions defined
on D and ASS 10 is the set of abstract substitutions sequences defined on D. The underlying
domain UD of the program Pis the set of all (Pin, p) such that Pin E AS 10 and p occurs in
P. We only consider sets of abstract tuples which are functional, total and monotonie, i.e.
the sets satisfying:

2. (Pin, p), (p;,,, p) E UD: Pin~ p;,, ⇒ sat(Pin, P) ~ sat(p;,,, p).

We note Bout = sat(Pin, p) iff (Pin, P, Bout) E sat. We denote SATT the set of all those
sets; it is endowed with the following ordering:

Abstract operations

Many of these operations are identical or simple generalizations of operations described
previously. Others are simple 'conversion' operations between the three different objects
manipulated, i.e. the abstract substitutions, the abstract substitutions sequences and the ab
stract substitutions sequences with eut information. The brand new operations are CONC,
AI_ OUT, EXTGS. Sorne of these operations are first or only presented as rewritten forms
of the actual abstract operations in order to make their comprehension more intuitive; in
deed, they should be considered as concrete versions of the actual abstract operations.

Substitutions Sequence from a Substitutions Sequence with Cut Information: SEQ(C)
= B'. This operation forgets the eut information of a substitutions sequence. It is applied to
the result of the last clause of a procedure before combining this with the result of the other
clauses.

(S, cf> E Cc(C) ⇒ S E Cc(B').

Sets of Substitutions from a Substitutions Sequence. This operation unmakes the se
quential structure of a substitutions sequence. lt is applied before the execution of a literal
in a clause. Let (S, cf> E IPCSS0 .

Formal]y the operation denoted SUBST(C) = p, and its consistency _condition
is the following one:

66 Chapter 5 Abstract lnterpretation of Prolog with Gut

(S, cf) E Cc(C) }
0 is an element of S ⇒ 8 E Cc(~).

Concatenation of two Substitutions Sequences. This operation combines the result of a
clause in a procedure with the results of the remaining clauses. If a eut was executed in the
first clause, other clauses are ignored. Otherwise the results are combined. Let (S, cf) E

IPCSSn and S' E IPSSn,

CONC((S, cf), S') = [if cf =eut then {S} aise {SOS'}]

We could also extend our operation CONC with a third argument wbicb is the value of
the input abstract substitution for the procedure. This new operation sbould be able to de
tect incompatibility betwœn abstract sequences wben they result from different abstract in
put substitutions. Therefore, the analysis would also detect determinacy. Let us give thé
consistency condition of the new version of CONC(~, C, B) = B':

0 E Cc(~) }
(S1, cf) E Cc(C)
~ E Cc(B) ⇒ (Si, cf)□~ E Cc(B') .

"i 0' E SUEST(S1) U SUEST(~): 0' :o; 0

Since ~ represents many different input substitutions, C and B may contain incompatible
substitution sequences, i.e. sequences containing substitutions wbicb are not all instances of
the same input substitution. Concatenation of incompatible substitution sequences are re
moved by the last condition, since they do not correspond to any actual execution. (0 ' :o; 0
means that 0' is more instantiated than 0.)

An usual way to implement efficiently multi-directional procedures consists in designing
several specialized versions wbicb are called by the general "multi-directional" one. The
clauses of the later contain test predicates followed by a eut and a call to the appropriate
specialized version. Sucb procedures can be analyzed more accurately in this latest frame
work. The accurate bandling of the eut will limit the analysis to a single specialized ver
sion. Test predicates are exposed in a comprebensive way in [BM94].

Extension of a Substitution to a Sequence. The abstract version of this operation is used
at the beginning of a clause. It expresses the fact that the empty prefix (of the clause body)
produces a one element sequence and that no eut bas been executed so far. Let 0 E IPSn.

EXT_NOCUT(0) = { ((0), nocu.t) }

Formally the operation is denoted EXT_NOCUT(~) = C, and its consistency
condition is the following one:

0 E Cc(P) ⇒ ((0), nocu.t) E Cc(C) .

Extension at a Clause entry: EXTC(c, ~) = p '. Assume that P is an abstract substitution
on {X1 , • • • ,X,,} and c is a clause containing variables {X1 , ••• ,X,,,} (m ~ n).

Abstract Semantics 67

Restriction at a Clause exit: RESTRC(c, C) = C'. With the same notations as above,
the exeeution of the body of c, for the input 13', produces the abstraet sequence with eut in
formation C. Operation RESTRC simply restriets C to the variables in D = {X1,Kn}:

((01, ... ,81, ••.) , cf> E Cc(C) ⇒ ((0 11n,···,0~n,··· >, cf> E Cc(C').

Restriction before a Cali: RESTRG(.e, 13) = 13'. Assume that 13 is an abstraet substitution
on D = {X1, ... ,X,,,}, and R. is a literai p(~1, ... ,Xi,,) (or any other built-in using variables

~1•···,Xi.i). '

Extension of a Sequence with a Set of Sequences: EXTGS(R., C, B) = C' . The EXTGS
operation extends a pair (S, cf> with a set of sequences L representing the results of execut
ing a eall R. with all substitutions in S. (At the abstraet level, L is abstraeted by a single ab
stract sequence.)

EXTGS(R., (S, cf>, L) =
{ (S', cf>: 3 S1,··•,BieD((S) EL, s ·1, ···,S'10Il((S) E IRSS:

S' = []:eD((S) proi (S)S' " Q = 0 s · " k=l .ik k "'k k k
0k E RESTRG(R., projk(S)) (1 ~ k ~ leng(S)) "

dom(S'k) ç codom(0k) "

(codom(projk(S)) \ codom(0k)) n codom(S'k) = 0}

Abstract Execution of the Cut. The abstract operation AI_ CUT is executed when a eut is
called with input (S, cf> representing the result of the prefix leading to the eut. Let (S, cf> E

IPCSSn. Formally, the operation can be specified as AI_CUT(C) = C' where the compo
nents of C' are defined as follows:

13' = 13
m' = min(l, m)
M' = min(l, M)
t' = [if M=O and t=snt then snt

else if t=st or ~1 then st
else pt]

cf' = [if cf =eut or ~l then eut
else if af-=noeut and M=O then noeut
else weakeut J

Let gs be the sequence of literais before a eut(!) in a clause. Execution of gs for a given
input substitution 0 either fails or loops without producing any result, or produces one or
more results before failing, looping or producing results forever. Execution of the goals
gs,! also fails or loops wiehout producing results in the first case but in the second case, it
produces exaetly one result (the first result of gs) and then stops. At the abstract level, C
represents a set of substitutions produced by gs, while C' represents the corresponding set
of substitution sequences produced by gs,!. Clearly the sequence in Cc(C') should be ob
tained by cutting the sequences in Cc(C) after their first element if it is a substitution.
Hence the following specifieation:

(0, cf> E Cc(C) ⇒ (0, cf> E Cc(C');

((1-), cf> E Cc(C) ⇒ ((1-) , cf> E Cc(C') ;

((0)::S, cf> E Cc(C) ⇒ ((0), eut) E Cc(C').

68 Chapter 5 Abstract lnterpretation of Prolog with Gut

Abstract Unification of two Program Variables: AI_VAR(P) = B. This operation is
similar to the operation presented in the previous chapter but retums an abstract substitu
tions sequence instead of an abstract substitution. As the concrete unification may only fail
or succeed, Cc(B) should only containfinite sequences of length O or 1:

8 e Oc(P), }
cr e mgu(X18, Xi8) ⇒ (8cr) e Oc(B),

8 e Oc(P), }
0 = mgu(X18, Xi8) ⇒ () e Oc(B).

Abstract Unification of a Variable and a Functor: AI_FUNO(P, /)=B. This operation
is similar to the one above.

8 e Oc(P), }
cr e mgu(X18, /(Xi, ... ,Xn.)8) ⇒ (8cr) e Oc(B),

8 e Oc(P), }
0 = mgu(X18, /(Xi, ... ,Xn.)8) ⇒ () e Oc(B).

Abstract semantics

The main difference with the abstraet semanties proposed in the previous chapter is that an
swer abstract substitutions are replaced by abstract substitutions sequences. Abstraet opera
tions are modified aceordingly. For example, formerly we used an operation UNION to
eollect the results of the clauses: This operation bas been replaeed by a more elaborate one:
OONO. Moreover a new operation is introduced: AI_ OUT.

In the following we assume an underlying program P, Bout to be an abstraet sequence
and C0 u, to be an abstract sequenee with eut information. The abstraet semantics is defined
by means of four functions and one transformation depicted at Figure 5.1.

The first function Tp bas the purpose to solve a predicate. It receives the input substitu
tion pin, the predicate symbol p, the set of abstraet tuples sat and it returns the substitutions
sequence being the result of the predicate.

The next function Tpr, is called by Tp to process ail the clauses defining the procedure
p on Pin- This function reeursively eoneatenates the result of the first clause with the results
of the remaining parts of the procedure. This is effected by the OONO operation which
takes into account the possible non termination of the first clause or the fact that it could
have been 'eut'. In these cases, the others remaining clauses are ignored. In the defini
tion of Tpr, we assume c to a be one clause and c.pr to be a sequence of clauses where c is
the head of the sequence and pr its tail, that is the 'remaining procedure' .

Tc is the third funetion. It processes clauses and returns an abstract substitutions se
quenee with eut information. It first extends, EXTO, the abstraet substitution to take into
account the free variables of the body of the clause. Then the body of the clause is solved
and ultimately the solution is restrieted, RESTRC, to the variables oecurring in the head of
the clause.

The fourth funetion executes the body of a clause by considering each literai in turn,
from the first to the last, that is from left to right accordingly to the SLD-Resolution. The
empty prefix of the body produces a one element abstract sequence furthermore meaning
that no eut bas been executed. When the next literai to execute is a eut, operation AI_ OUT
is executed. Otherwise the next literai R. is executed with input p2 approximating ail substi-

Abstract Semantics

Figure 5.1
The abstract se
mantics.

69

tutions in the concretization of Cout· Operation RESTRG expresses p2 in terms of the for
mal parameters off.. If f. is a procedure call, then only a lookup in sat is performed, oth
erwise either operation AI_VAR or AI_FUNC is executed. Operation EXTGS is per
formed after each call in order to obtain the result of the full goal.

TSAT(sat) = {(P1n, p, Bout): (P1n, p) E UD and Bout= Tp(P1n, p, sat)}

Tp(P1n, p, sat) = Tpr(P1n, pr, sat)
where pr is the procedure defining p

Tpr(P1n, c, sat) = SEQ(Cout)
where Cout= Tc(P1n, c, sat)

Tpr(P1n, c.pr, sat) = CONC(C0 ut, B0 ut)
where Bout= Tpr(P1n, pr, sat)

Cout= Tc(P1n, c, sat)

Tc(P1n, c, sat) = RESTRC(c, Cout)
where Cout= Tg(EXTC(c, P1n), g, sat)

g is the body of c

Tg(P1n, () , sat) = Cout
where Cout= EXT_NOCUT(P1n)

Tg(P1n, gs::!, sat) =AI_CUT(Cout)
where Cout= Tg(P1n, gs, sat)

Tg(p1n, gs:: .e , sat) = EXTGS(.e, Cout, B)
where B = sat(p1, p)

AI_VAR(P1)
AI_FUNC(p1, f)

P1 = RESTRG(.e, P2)
P2 = SUBST(Cout)
cout= Tg(P1n, gs, sat)

if f. is p(...)
if fis~=~
if fis~=/(...)

Abstract domains

It is possible to define abstract domains for substitutions sequences simply by enhancing the
domains designed for abstract substitutions with information typical of sequences such as
minimal and maximal length, information about eut execution and information about ter
mination or non termination. Note that the framework does not allow to infer sure termi
nation of recursive procedures.

Abstract sequences

Let us assume that an abstract domain of abstract substitutions, AS1n, is given for any set of
program variables D = {X1, ... , X.,}. This domain is endowed with an ordering ~ and a
concretization fonction Cc. An abstract substitutions sequence, on domain D, is a 4-tuple
B = (P, m, M, t) such that P E AS1n, m E IN, ME IN U {oo} and t E {st, pt, snt}.

Intuitively, p is the abstract substitution representing ail the substitutions in the abstract
sequence, m is the minimum length - or the minimum number of solutions - , M is the
maximum length and t is a termination information. The sequence is finite if t = st and
incomplete or infinite if t = snt - st stands for 'sure termination' , pt for 'possible termi
nation' and snt for 'sure non termination' . Formally, the meaning of Bis defined by the
concretization fonction Cc: ASS1n ➔ CSS1n defined as follows:

70 Chapter 5 Abstract lnterpretation of Prolog with Gut

Cc(B) = Sse4i(B) n Sse(h(m, M) n Sseq3(t)

where Sseq1(B) = {S: Subst(S) ç Cc(B)},
Sse(h(m, M) = {S: m ~ nsub(S) ~ M},
Sseq3(snt) = {S: Sis incomplete or infinite},
Sseq3(pt) = IPSS0 .

An abstract sequence with eut information, on the domain D, is a pair C = (B, cf> where
B E ASS 10 and cf E CF= {eut, noeut, weakeut}. Intuitively, eut means that for all
possible executions (of a goal) a eut bas been executed, noeut means that no eut bas been
executed, weakeut means that it was executed for all non empty sequences and undef
means that all cases are possible. Formally the meaning of C is given by the concretization
function Cc: ASSC10 ➔ CSSC10 defined as follows:

Cc((B, eut)) = {(S, eut): SE Cc(B)},
Cc((B, noeut)) = {(S, noeut): SE Cc(B)},
Cc((B, weakeut)) = {(S, eut): SE Cc(B)} U {((), noeut), ((1-), noeut)}.

Ordering on abstract substitutions sequences

where the ordering on the B;, ~ . Mi are the usual ones and t 1 ~ ti is defined as

st} snt < pt.

Generic Abstract lnterpretation Algorithm

The abstract semantics is computed by a generic abstract interpretation algorithm very
similar to the algorithm proposed in the previous chapter. The main difference with the
previous algorithm is the following one. The novel algorithm uses enhanced abstract op
erations which return abstract sequences instead of abstract substitutions - it does not
make necessarily a big difference from a computational standpoint because the abstract do
main for abstract sequences are simply derived from the abstract domain for substitutions.
This algorithm keeps using a dependency graph, it also bas enhanced versions of the opera
tions managing the set of abstract tuples.. . This is thus basically the same algorithm with
enhanced abstract operations.

Overview of the approach

Recall that the purpose of the algorithm is to compute a subset of a post-fixpoint of the
transformation TSAT that includes a tuple of the form CB1n, p, Bout) but as few other ele
ments as possible. To achieve this, the algorithm computes a series of sets sat0 , ••• , sa.t,,

Generic Abstract lnterpretation Algorithm 71

such that sat1 < sa~+t and such that s&.n contains Cl3m, p, Bout)- The first approximation
sat0 contains a tuple (13, p, B0) such that { (1-)} E Cc(B0). The algorithm then moves
from one partial set to another by selecting:

• an element (<X.in, q) which is not yet present in the sat but needs to be computed, or
• an element (<X.in, q) whose value sat(<X.in, q) can be improved because the values of

some elements upon which it is depending have been updated.

The detection of termination and the choice of the element to work on are important
choices to be made. The same strategy as before is adopted. The algorithm thus works the
same way, that is to say, given an input pair Cl3m, p) it executes the fonction Tp of the ab
stract semantics.

Sets of abstract tuples manipulations

Recall that at the contrary of the abstract semantics which does not need operations on the
set of abstract tuples, the algorithm does need operations to construct a subset of the fix
point containing the solution of the query. There are two operations that need to be defined:
EXTEND and ADJUST. These two operations are almost unchanged, but however re
fined to cater for the requirements of the new framework.

• EXTBND(l3m, p, sat) = sat'. Given a set of abstract tuples sat, a predicate symbol
p and an abstract substitution 13m, it retums a new set of abstract tuples sat' containing
Cl3m, p) in its domain. Cl3m, p) was supposed not to already belong to sat. This op
eration simply inserts a new pair together with 1-8 as its value, where 1-8 denotes the
smallest abstract sequence such that { (1-)} E Cc(1-8).

• ADJUST(l3m, p, B0 • 1, sat) = sat'. This operation is responsible to update the set of
abstract tuples. It relies on a special form of widening to do so (see Termination later
on). Given the substitutions sequence Bout which represents the new result for sat(l3m,
p), this operation retums a new set of abstract tuples sat' which is the sat updated in
such a way that sat'Cl3m, p) = sat(l3m, p) 'v Bout and all other values stand un
changed.

Recall that a slightly more general version of ADJUST is used in the algorithm, it re
tums besides the new set of abstract tuples, the set of pair (13m, p) whose values have been
updated.

Procedure cal/ dependencies

The purposes of a dependency graph are mainly the detection of redondant computations
and efficient processing of mutually recursive programs. We still use the same concepts of
dependency graph and transitive closure of the dependency graph, which were defined in
the previous chapter.

Recall that the basic intuition is that the dependency graph dp(l3m, p) represents at
some point the set of pairs which (13m, p) depends directly upon. This is also why we need
to define the transitive closure, trans _ dp(bin, p, dp), which represents all the pairs
which if updated would require reconsidering (l3in, p). The same three operations -
EXT _ DP, ADD _ DP and REMOVE _ DP - can be reused, without having to be altered.

72 Chapter 5 Abstract lnterpretation of Prolog with Gut

Generic abstract interpretation algorithm

The top-level procedure solve receives an input substitution P1n and a predicate symbol p
and returns the final dependency graph and the set of abstract tuples sat containing CP1n, p,
Bout) E µ(TSAT). From these results, it is straightforward to compute the set of pairs (ex.,
q) used by CP1n, p), their values in the post-fixpoint as well as the abstract substitutions at
any program point.

The procedure solve_call receives as inputs an abstract substitution Pin, its associated
predicate symbol p, a set suspended of pairs (ex., q), a set of abstract tuples sat and a de
pendency graph dp. The set suspended con tains ail pairs (ex., q) for which a subcompu
tation bas been initiated and not been completed yet. The procedure considers or reconsid
ers the pair CP1n, p) and updates sat and dp accordingly. The core of the procedure is only
executed when CP1n, p) is not suspended and not in the domain of the dependency graph.
If CP1n, p) is suspended, no subcomputation should be initiated. If CP1n, p) is in the do
main of the dependency graph, this means that none of the elements upon which it is de
pending have been updated. Otherwise, a new computation with CP1n, p) is started. This
subcomputation may extend sat if it is the first time CP1n, p) is considered. It is important
to mention that the EXTEND operation always assumes that a procedure loops when first
met, i.e. itadds CP1n, p, (1-, 0, 0, snt)) in sat.

The core of the procedure is a repeat-until loop which computes the lower approxi
mation of CP1n, p) given the elements of the suspended set. Local convergence is
reached when CP1n, p) belongs to the domain of the dependency graph. One iteration of the
loop amounts to execute selve __precedure with the same inputs and the procedure
prec(p) consisting of ail the clauses defining p. If the result produced, B00 1, is greater or
incomparable to the current value sat(P1n, p), then the set of abstract tuples is updated.
The dependency graph is also updated accordingly by removing ail elements which depend
(directly or indirectly) on CP1n, p). Note that the calls to selve __precedure are done with
an extended suspended set since a subcomputation bas been started with CP1n, p). Note
also, that before calling selve __precedure, the dependency graph bas been brought up to
date to include CP1n, p) (which is guaranteed not to be in the domain of the dependency
graph before that update). CP1n, p) can be removed from the domain of the dependency
graph during the execution of the loop if a pair it is depending upon is updated. The very
first statement of selve_ call, the widening operation, remains unchanged.

The procedure solve_procedure executes a procedure accordingly to the abstract
semantics. The condition clause(pr) means that pr consists only of one clause. The
statement c .sfx: := pr decomposes pr into its head and tail (suffix). Finally the procedure
contains an important optimization which amounts to test sure non termination or sure exe
cution of a eut in the firs t clause. In that case, the remaining part of the procedure is not
executed. This optimization does not change the accuracy of the result but can speed up the
computation.

The procedure solve_clause executes a single clause for an input pair and retums an
abstract sequence with eut information representing the execution of the clause on that in
put pair. The procedure first extends the substitution with the clause variables, then exe
cutes the body of the clause and terminates by restricting the abstract sequence to the head
variables. The execution of a eut is simply performed by the abstract operation AI_ OUT.
The execution of another literai requires three steps.

• The computation of an abstract substitution representing ail the concrete substitutions
in Cout furthermore restricted to the variables occurring in the literai: this is done by the
operation RESTRG, giving Paux·

Generic Abstract lnterpretation Algorithm 73

• The execution of the literai on Paux, producing B0 u,• If the literai is concemed with uni
fication, the operation AI_ V AR or AI_ FUNC is performed, depending on the form of
the literai. If it is a goal then procedure salve_ call is recursively called and the result
is retrieved in sat. Moreover, if (Pin, p) is in the domain of the dependency graph it is
necessary to add a new dependency; otherwise it means that (Pin, p) needs to be re
considered anyway and no dependency needs to be recorded. If the literai is of none of
these three forms, then salve_ builtin _ literal is called and does the same job as all
the procedures appended to salve_ clause to handle the system predicates (see
[BM94]).

• The propagation of the result of the literai to the variables occurring in the body of the
clause is made by the operation EXTGS.

procedure salve (in Pin, p; out sat, dp)
begin

sat:= 0 ;
dp:= 0;
salve_call(Pin, p, 0, sat, dp)

end;

procedure salve_call(in Pin, p, suspended; inout sat, dp)
begin

Pin:= WIDEN(P1n, p, suspended);

if (Pin, p) ~ (dam(dp) U suspended) then begin
if (Pin, p) ~ dam(sat) then sat:= EXTEND(Pin, p , sat);
repeat

EXT_DP(Pin, p, dp);

salve_pracedure(Pin, p, prac(p), suspended U {(Pin, p)}, Bout, sat, dp);
(sat, madified):= ADJUST(Pin, p, Bout• sat);
REM OVE_ DP(madified, dp)

until (Pin, p) E dam(dp)
end

end;

procedure salve_pracedure(in Pin, p, pr, suspended; out Bout; inout sat, dp)
begin

if clause(pr) then begin
salve_clause(Pin, p , pr, suspended, cout, sat, dp);

Bout:= SEQ(Cout)
end else begin

c.sfx:= pr;
salve_clause(Pin, P, C, suspended, cout, sat, dp);
if cut_ar_nt(Cout) then

Bout:= SEQ(Cout)
elsebegin

salve_pracedure(Pin, p , sfx, suspended, Bout, sat, dp);

Bout:= CONC(Pin, Cout• Bout)
end

end
end;

74 Chapter 5 Abstract lnterpretation of Prolog with Gut

procedure selve_ clause(in Pin, p, c, suspended; out Cout; inout sat, dp)
begin

Cout:= EXT _ NOCUT(c, P1n);

for i:=1 ton with f 1, ••• , ,en body-of c do
if f 1 is ! then

Cout:= AI_ OUT(Cout)
elsebegin

Paux== RESTRGCf1, SUBST(Cout));
switch f1 of

case :x;i = xk:

B:= AI_VAR(Paux);
case:x;i=/(...):

B:= AI_FUNC(Paux• /);
case q(...):

selve_call(Paux• q, suspended, sat, dp);

B:= sat(Paux• q);
if CP1n, p) E dem(dp) then ADD_DP(P1n, P, Paux, q, dp);

otherwise:
selve_ builtin _ literaJ.(Paux• f1, cout)

end;
Cout== EXTGS(fi, Cout• B)

end;
Cout:= RESTRC(c, Cout)

end;

Termination

Definition. Let sat E SATT. satis said pre-consistentiff for ail CP, p) E UD and for ail
0 E Cc(P), (0 , p) ----+ S implies that there exists S' ç Sand S' E Cc(sat(p, p)) .

The major problem for the algoritbm is to ensure termination without loosing accuracy of
the analysis. In the previous algoritbm termination was ensured by computing, for eacb re
quired input pair CP1n, p), an increasing sequence P1 ~ ••• ~ P •. This sequence was guaran
teed to be fmite because a widening technique was used. The ordering ~. on abstract substi
tutions, reflects, at the abstract level, the inclusion relation between sets of concrete substi
tutions, i.e. Cc(P 1) ç ... ç Cc(Pn). In this framework, the same technique is still safe,
provided that the computation is started with pre-consistent values, but entails an unaccept
able loss of precision because eacb iterate sbould include ail incomplete sequences corre
sponding to previous iterates and, in particular, the wlwle incomplete sequence (_l_) - it is
reasonable to assume that (_l_) belongs to the concretization of the initial abstract sequence.
Tberefore it sbould not be possible to compute for instance accurately the minimum length
of the sequences of answer substitutions. To cape with that problem, a widening technique
bas been introduced. We assume that it is possible to define on the abstract domain ASS10
an ordering -<, not related to inclusion, and a widening operation

sucb that for every sequence B0 , ••• , B1, ... and B; , ... , B;, ... wbere B;+i = B1+1 V B; (i ~ 0),
the following bolds:

Generic Algorithm Revisited 75

• B; -< ... -< B;-< ... ;
• the above sequence is stationary.

Tbanks to the new ordering and operation we can achieve termination as follows. Let
CP, p) be an input pair for wbicb we want to compute the corresponding abstract sequence.
We compute two sequences B0 , ••• ,B1, ••• and B; , ... ,B;, ... as follows:

• B0 is such that (..l) E CcCB0) and is stored in the initial sat as the output for CP, p);
• B1 results from the i-th abstract execution of procedure p, with abstract input p;
• B; = B1 V BL1 is put in the current sat after the i-th abstract execution of procedure p ;
• execution stops when B1+1 ~ B;.

Termination of this process is ensured because a sequence B;, ... ,B;, ... is guaranteed to be
stationary and because it cannot be the case if condition B1+1 ~ B; never bappens. A sample
widening is defined bereafter.

Widening. The basic idea of the widening strategy is to iterate on the transformation TSAT
as long as the abstract substitution part of the abstract sequence keeps increasing. Wben
only the remaining parts continue to change, we set M to oo and build an increasing se
quence (with respect to ~) in order to reacb a post-fixpoint in a finite number of steps -
since the domain of abstract sequences is infinite.

B1 V B2 = (LUBCP1,P2), m1, M1, t1)
= (P2, m1, M 1, LUBCt1, ~))

= <P2, mmCm1, 1ni), oo, ~>
= B2

lmplementation

if P1 i P2
if P1 ~ P2 and t1 i ~
if P1 ~ P2 and t 1 ~ ~ and B1 /, B2
if B1 ~ B2

Actually, the implementation differs from the algoritbm exposed bere. The changes are due
to loss of precision within this framework. A comprehensive discussion of the actual im
plementation is given in [BLCMVH94], [BM94] and [LCRVH94].

Generic Algorithm Revisited

The algoritbm presented previously is sligbtly modified in order to introduce the next one
capable of handling the system predicates assert and retract. Of course, it keeps the
same features: early detection of termination and redundant computations, foiling the infi
nite nature of the abstract domain. .. And it bas still the same functionality: determinacy
analysis, detection of unending procedures ...

We can also see the following algoritbm as a simplified version of the algoritbm pre
sented in the next chapter. Indeed, the algorithm is exactly the same except that all the
statements, procedures and other features handling the dynamic predicates - that is the as
serted ones - bave been removed. Hence this version of the algoritbm is best tailored to
present incrementally the transition towards a generic framework and algoritbm for full
Pro log. Note that it does exacùy the same job, nothing more and nothing less.

In the following algoritbm, we only specify the procedures wbich bave been modified.
The procedures selve, selve_ call and selve _precedure remain uncbanged, only the
procedure selve_ clause is different. In fact it bas been split in three different procedures.

76 Chapter 5 Abstract lnterpretation of Prolog with Gut

The procedure solve_clause executes a single clause on an input pair and retums an
abstract sequence with eut information representing the execution of the clause on that in
put pair. The procedure first transforms the substitution to an abstract sequence whose
substitution part is the input substitution extended with the variables occurring in the body
of the clause. Afterwards it executes the body of the clause further decomposed in a series
of prefixes and terminates by restricting the resulting sequence to the variables occurring in
the head of the clause.

The procedure solve _ body calls itself recursively in order to execute selve_ literal
with each of the literals forming the body of the clause, accordingly to the execution model
of Prolog, from left to right. That is exactly what is done, salve _body calls recursively it
self with smaller and smaller prefixes of literals. When only the leftmost litera! remains,
salve_ literal is called with the extended sequence Cout as input parameter. And then each
of the following literals is processed by salve_ literal when unwinding the recursive calls,
getting in input the sequence resulting from the execution of the previous literals. These
executions of salve_ literal - except the very first one, the base inductive case - are
however submitted to a conditional test: if the result from the previous literals is bottom, we
already know that the current clause fails and there is no need to process the literals left.
The condition literal(body) is true if body is constituted of a single litera!; the statement
pfx.f :=body decomposes body into its rightmost litera! and its prefix.

The procedure solve_literal executes a litera! by choosing the right operation to
perform accordingly to its form. If the litera! is a eut primitive, only the AI_ OUT operation
is performed, otherwise the execution of a litera! requires tbree main steps.

• The computation of an abstract substitution representing all the concrete substitutions
in Cout furtbermore restricted to the variables occurring in the litera!: this is done by the
operation RESTRG.

• If the litera! is concemed with unification, the operation AI_ V AR or AI_ FUNC is
performed, depending on the form of the litera!. If it is a goal then procedure
selve_ call is recursively called and the result is retrieved in sat. Moreover, if (P1n, p)
is in the domain of the dependency graph it is necessary to add a new dependency; oth
erwise it means that CP1n, p) needs to be reconsidered anyway and no dependency
needs to be recorded. If the litera! is of none of these tbree forms, then
salve_ builtin _ liter al is called and does the same job as all the procedures appended
to selve_ clause to handle the system predicates (see [BM94]).

• The propagation of the result of the litera! to the variables occurring in the body of the
clause is made by the EXTGS operation.

procedure solve_clause(in P1n, p, c, suspended; out Cout; inout sat, dp)
begin

Cout:= EXT_NOCUT(c, P1n);
solve_body(P1n, p, body(c), suspended, Cout• sat, dp);
Cout:= RESTRC(c, Cout)

end;

Generic Algorithm Revisited

procedure salve_ body (in P1n, p, body, suspended; out Cout; inout sat, dp)
begin

if literal(body) then
solve_literal(P1n, p, body, suspended, Cout• sat, dp)

elsebegin
pôU:=body;
solve_body CP1n, p, pfx, suspended, Cout, sat, dp);
if C0 ut..!,.p =1= 1- then

solve_literal(P1n, p, f, suspended, Cout• sat, dp)
end

end;

procedure solve_literal(in Pin, p, f, suspended; out Cout; inout sat, dp)
begin

if f. is ! then
Cout:= AI_ CUT(Cout)

elsebegin
Paux:= RESTRG(f, SUBST(Cout));

switch f. of
case Xj = Xk:

B:= AI - VAR(Paux);
case Xj = /(...):

B:= AI_FUNC(Paux• /);
case q(...) :

solve_call(Paux• q, suspended, sat, dp);

B:= sat(Paux• q);
if CP1n, p) E dom(dp) then ADD_DP(P1n, p, Paux, q, dp);

otherwise:
. solve_builtin_literal(Paux• f , cout)

end;
Cout:= EXTGS(f., Cout• B)

end
end;

Rationale of the new algorithm

77

We insist on the same functionality between the two version of the algorithm. The revisited
one is just anotber way of doing the same task. Initially salve_ clause, salve_ body and
salve_ literal were grouped together into one procedure wbose purpose was to process
eacb of the literals forming the body of the clause. The extension and restriction operations
were part of that procedure.

Now we bave split it in tbree distinct procedures. The first one copes only with the exe
cution of a bead of the clause. It first extends the input substitution, afterwards calls a
specific procedure in charge of executing that clause and more specifically its body and fi
nally restricts the resulting sequence to the variables occurring in the bead of the clause. In
short, wbat the procedure does is specific to the bead of a clause, leaving the body to a
specific procedure salve_ body.

The key idea of salve_ body is not to iterate over the literals in the body of the clause
by the means of recursive calls - this would be an overcomplicated way of doing so. The

78 Chapter 5 Abstract lnterpretation of Prolog with Gut

aim of salve_ body is to execute a literai in the context resulting from the execution of the
literais before it, that is its prefix. We will see that this is an important concept to be ex
ploited later when we present the full Prolog abstract interpretation aigorithm. To put it
another way, we could consider each literai as a fixpoint immediately reached, since the un
derlying program is supposed to remain unchanged. Moreover, the embedding of the liter
ais inside the recursive calls allows to enforce the dependency of a literai to its prefix. That
is to enforce execution of a literai within the context resulting from the execution of its pre
fix.

The purpose of salve_ literal was to ease the execution of a literai in the resulting
context of its prefix by interacting with salve_ body.

Examples

On this first example, we reconsider the example exposed in the previous chapter. The pro
gram is depicted at Figure 1. 1. No comment is necessary, since it is exactly the same trace,
except that here, the length of each of the resulting sequences is given. Note that the substi
tutions are no longer given, since they are the same as in the previous execution trace. Note
aiso that the trace for the first clause bas been removed in the second iteration, since it was
the same at the first iteration. The point of this example is that without the eut information,
the output sequence bas an infinite length. An actual computation of a query •~
append(Var,Var,Ground)' would give ail pairs of sub-lists which, when concatenated,
form a list equal to the third argument; there is actuaily more than one solution in generai
depending, on the length of the third argument.

SOLVE_ CALL ITERATION# 1: append/3
SOLVE PROCEDURE

SOLVE CLAUSE#l
EXIT EXTC: <min=l, Ma.x:=1, ST>
CALL AI_FUNC: <min=l, Ma.x:= l, ST>
EXIT AI_FUNC: <min=l, Ma.x:=1, ST>
CALL AI_VAR: <min=l, Ma.x:=l, ST>
EXIT AI_VAR: <min=l, Ma.x:=l, ST>
EXIT RESTRC: <min=l, Ma.x:=l, ST>

EXIT CLAUSE#l: <min=l, Ma.x:=l, ST>
EXIT CONC: (Ground(l): [] ,Ground(2),Ground(2))

<min=l, Ma.x:=l, ST>
SOLVE CLAUSE#2

EXIT EXTC: <min=l, Ma.x:=l, ST>
CALLAI_FUNC: <min=l, Ma.x:=1, ST>
EXIT AI_FUNC: <min= l, Ma.x:=l, ST>
CALLAI_FUNC: <min=l, Ma.x:=l, ST>
EXIT AI_FUNC: <min=O, Ma.x:=l, ST>
CALL GOAL append: (Var(l),Var(2),Ground(3))
EXIT GOAL append: bottom

<min=O, Ma.x:=O, SNT>
EXIT EXTG: <min=O, Ma.x:= O, PT>
EXIT RESTRC: <min=O, Ma.x:=O, PT>

EXIT CLAUSE#2: <min=O, Ma.x:=O, PT>
EXIT CONC: <min=l, Ma.x:=l, PT>

EXIT UNION: (Ground(l):[J,Ground(2),Ground(2))
<min=O, Ma.x:=l, PT>

Examples

Figure 5.2

SOLVE_GALL ITERA.TION#2: append/3
SOLVE PROCEDURE

SOLV1!l_CLAUSE#2
EXIT EXTC: <min=l, Max=l, ST>
GALLAI_FUNC: <min=l, Max=l, ST>
EXIT AI_FUNC: <min=l, Max=l, ST>
GALLAI_FUNC: <min=l, Max=l, ST>
EXIT AI_FUNC: <min=0, Max=l, ST>
GALL GOAL: append(Var(l),Va.r(2),Ground(3))
EXIT GOAL: append(Ground(1): [] ,Ground(2) ,Ground(2))

<min=0, Max=l, PT>
EXIT EXTG: <min=0, Max= 1, PT>
EXIT RESTRC: <min=0, Max=l, PT>

EXIT CLAUSE#2: <min=0, Max= 1, PT>
EXIT CONC: (Ground(1),Ground(2) ,Ground(3))

<min=2, Max=2, PT>
(Ground(1): [J , Ground(2), Ground(2))
<min=l, Max=l, PT>

EXIT UNION: (Ground(l),Ground(2),Ground(3))
<min=l, Max=2, PT>

Execution completed:

append(Ground(1) ,Ground(2) ,Ground(3))
<min=l, Max=Infinite, PT>

79

Let us consider the append program first presented at Figure 1.3, and now being depicted
in normalized format Figure 5.2. With this framework, we can infer that this version of the
program is deterministic. We could also detect with our operation CONC that the abstract
sequences resulting from the two clauses are incompatible with respect to the input abstract
substitution, if the first argument is ground. Therefore, the analysis will also detect deter
minacy. Moreover, if the first and third arguments are bound to a variable, our system in
fers that no result at all is returned. Under the same assumptions and if the two clauses are
permuted, our system detects sure non termination.

Recall that the actual implementation is sligbtly different from wbat bas been exposed in
this cbapter - see [BLCMVH94], [BM94] and [LCRVH94]. Tbat is wby, there are two
kinds of sequences processed by the CONC operation in the execution trace.

append(X1, ~. X 3):- !,
a deterministic
program for ap
pending two lists.

X 1 = [~IXs],
X2 = [~l~J.
append(X5 , X2, ~).

append(X1, X2 , X3) :
X1 = [],
X3 =X2.

SOLVE_ GALL ITERATION# 1: append/3
SOLVE PROCEDURE

SOLVE CLAUSE#l
EXIT EXTC: <min=l, Max=l, ST>
GALLAI_FUNC: <min=l, Max=l, ST>
EXIT AI_FUNC: <min=l, Max=l, ST>
GALLAI_FUNC: <min=l, Max=l, ST>

80 Chapter 5 Abstract lnterpretation of Prolog with Gut

EXIT AI_FUNC: <min=O, Max= l, ST>
CALL OUT: (Ngv(l) :.(Ground(2),Var(3)),Var(4),

Ground(5): . (Ground(2) ,Ground(6)),Ground(2) ,Var(3) ,Ground(6))
<min= O, Max= 1, ST>

EXIT OUT: (Ngv(l) :. (Ground(2),Var(3)),Var(4) ,
Ground(5): .(Ground(2),Ground(6)),Ground(2),Var(3),Ground(6))
<min= O, Max= l, ST>

CALL GOAL append/3: (Var(l),Var(2),Ground(3))
EXIT GOAL append/3: bottom

<min= O, Max=O, SNT>
EXIT EXTG: <min=O, Max=O, PT>
EXIT RESTRC: <min=O, Max= O, PT>

EXIT CLAUSE#l : <min=O, Max=O, PT>
EXIT CONC: SEQ without OUT: bottom

<min= O, Max= O, PT>
SEQ with OUT: bottom

<min= O, Max= O, PT>
SOLVE CLAUSB#2

EXIT EXTC: <min= l , Max=l , ST>
CALL AI_FUNC: <min=l, Max= l , ST>
EXIT AI_FUNC: <min= l, Max= l, ST>
CALLAI_VAR: <min= l, Max= l, ST>
EXIT AI_VAR: <min= l, Max= l , ST>
EXIT RESTRC: <min= l , Max= l, ST>

EXIT CLAUSE#2: (Ground(l):[J,Ground(2),Ground(2))
<min= l , Max= l, ST>

EXIT CONC: SEQ without OUT: (Ground(l) :[J ,Ground(2),Ground(2))
<min= l , Max= l , ST>

SEQ with OUT: bottom
<min= O, Max= O, PT>

EXIT UNION: (Ground(l) :[J ,Ground(2),Ground(2))
<min= O, Max= l , PT>

SOLVE_ CALL ITERATION#2: append/3
SOLVE PROCEDURE

SOLVE CLAUSB#l
EXIT EXTC: <min= l , Max=l , ST>
CALLAI_FUNC: <min= l, Max= l , ST>
EXIT AI_FUNC: <min= l, Max= l , ST>
CALLAI_FUNC: <min= l , Max= l, ST>
EXIT AI_FUNC: <min= O, Max= l , ST>
CALL OUT: (Ngv(l) :. (Ground(2),Var(3)),Var(4),

Ground(5):.(Ground(2) ,Ground(6)) ,Ground(2),Var(3),Ground(6))
< min= O, Max= l, ST>

EXIT OUT: (Ngv(l) :.(Ground(2) ,Var(3)),Var(4),
Ground(5) :.(Ground(2),Ground(6)) ,Ground(2),Var(3),Ground(6))
<min= O, Max= 1, ST>

CALL GOAL: append(Var(l),Var(2),Ground(3))
EXIT GOAL: append(Ground(1): [] ,Ground(2) ,Ground(2))

< min= O, Max= l , PT>
EXIT EXTG: <min= O, Max=l, PT>
EXIT RESTRC: <min= O, Max= l, PT>

EXIT CLAUSE# 1: (Ground(1): .(Ground(2) ,Ground(3): []) ,Ground(4),
Ground(5) : .(Ground(2),Ground(4)))

References

<min=O, Ma.x:= l, PT>
EXIT OONO: SEQ without OUT: bottom

<min=O, Ma.x:=0 , PT>
SEQ with OUT(Ground(1):. (Ground(2) ,Ground(3) : []),

Ground(4) ,Ground(5): .(Ground(2) ,Ground(4)))
<min=O, Ma.x:= l, PT>

SOLVE CLAUSE#2
EXIT EXTC: <min=l, Ma.x:=l, ST>
CALLAI_FUNO: <min= l, Ma.x:=l, ST>
EXIT AI_FUNO: <min=l, Ma.x:= l , ST>
CALLAI_VAR: <min= l, Ma.x:= l, ST>
EXIT AI_VAR: <min=l, Ma.x:=l, ST>
EXIT RESTRC: <min= l , Ma.x:=l , ST>

EXIT OLAUSE#2: (Ground(1): [] ,Ground(2),Ground(2))
<min=l, Ma.x:=1 , ST>

EXIT CONO: SEQwithout OUT: (Ground(l):[J,Ground(2),Ground(2))
<min=l, Ma.x:=1 , ST>

SEQ with OUT: (Ground(l): .(Ground(2) ,Ground(3): []),
Ground(4) ,Ground(5): . (Ground(2),Ground(4)))
<min=O, Ma.x:=l, PT>

EXIT UNION: (Ground(1) ,Ground(2) ,Ground(3))
<min= O, Max= 1, PT>

Execution completed:

append(Ground(1),Ground(2) ,Ground(3))
<min= O, Ma.x:=l, PT>

81

References

[BLCMVH94] C. Braem, B Le Charlier, S. Modart and P. Van Hentenryck; Cardinality
analysis of Prolog; Proc. of International Logic Programming Symposium
(ILPS'94), Ithaca NY, November 1994, MIT Press.

[BM94] C. Braem, S. Modart; Abstraet interpretation for Prolog with eut: eardi
nality analysis; Mémoire de licence et maîtrise en informatique, June
1994.

[LCR94] B. Le Charlier and S. Rossi; An aeeurate abstraet interpretation frame
work for Prolog with eut; Rapport Interne, Institut d'Informatique, Fac
ultés Universitaires Notre-Dame de la Paix, Namur, 1993.

[LCRVH94] B. Le Charlier, S. Rossi and P. Van Hentenryck; An abstraet interpretation
framework whieh aeeurately handles Prolog seareh ru le and the eut; Proc.
of International Logic Programming Symposium (ILPS'94).

Chapter

6 Abstract lnterpretation of Full Prolog

« Se[f-modi.fying programs are a bygone concept in computer science.
Modern programming languages preclude this ability, and good assembly
language practice also avoids such programming tricks. It is ironie that a
programming language attempting to open a new era in computer pro
gramming opens the front door to such arcane techniques, using the
predicate assert and retra.ct. »

L Sterling

The framework and algorithm exposed in this cbapter are enbanced versions of the two
landmark frameworks and algorithms developed in the previous cbapters. The generic ab
stract interpretation algorithm, bereafter presented, bas been designed to analyze full Prolog
programs, that is to say programs possibly containing system predicates assert or retra.ct,
but also arithmetic or meta-logical predicates - see [BM94]. It takes still advantage of the
same features that make the previous algorithms efficient: early detection of termination,
detection of redundant computations thanks to a dependency grapb and it overcomes the
infmite nature of the abstract domains by means of widening techniques.

Sorne of the operations used previously are enbanced to fit in the new framework.
Tberefore, this cbapter sketches these enbancements but also describes comprebensively the
new abstract operations, together with the new algorithm making the originality of our
framework.

Contents of this chapter

Concrete Semantics 84
Dynamic context 84
Concrete domains 87
Concrete operations 89

Abstract Semantics 90
Dynamic contexts 90
Abstract domains 91
Abstract operations .. 95

Generic Abstract Interpretation Algorithm .. 110
Overview of the approacb 110
Sets of abstract tuples manipulations 111
Procedure call dependencies 111
The generic abstract interpretation algorithm 112

Examples 118
References 127

83

84 Chapter 6 Abstract lnterpretation of Full Prolog

Concrete Semantics

Abstract interpretation of Prolog would bave been complete if we bad allowed general
clauses to be asserted or retracted. However, this broad approacb would bave induced se
vere limitations on the analyzing capacity of the abstract interpreter. Indeed dynamic
clauses could themselves contain assert or ret r act predicates; therefore asserted clauses
could recursively assert or retract other clauses. Sucb programming techniques are of
course not common place in computer science. Tbat is wby we took a simpler approacb by
preventing general clauses to be asserted or retracted, only facts can be.

To put it another way, without this limitation the semantic analysis would bave been
mucb more intricate, or even impossible for there would be nothing we could be sure about
to reason. A broader approacb would bring perverse effects in the analytic precision, since
nothing could be sure and abstract interpretation ai.ms at collecting information about all
possible executions in once.

Moreover this restriction is not so severe that it could appear at first. lndeed most of the
programs asserting 'trivial clauses' can be rewritten to assert facts, sucb that they can be
processed by the abstract interpreter. For instance, you will see later bow the lemma con
struct could be rewritten ·to comply with the requirements of our generic abstract interpreta
tion framework. Consequently, if we try to analyze a program wbicb asserts general
clauses, the analysis fails because of a syntactical error.

In the following, references to dynamic clauses sbould be understood as references to
dynamic facts.

Dynamic context

It sbould be clear by now that the difficulty in static analysis of Prolog programs constructed
with assert or retract predicates lies in the fact that these predicates can modify the un
derlying program during execution. Hence the point of this framework is to capture this
dynamically cbanging information.

We introduce the concept of dynamic context to ease the comprebension of the abstract
semantics. Note that thougb being a 'pedagogic' aid, dynamic context is not for all that an
artificial concept in Prolog area. Similar concepts exist in debugging environment. The
dynamic context ai.ms at pointing out bow a dynamically cbanging program interacts with
the SLD-Resolution mecbanisms.

Intuitively the context symbolizes the universe of discourse. We bad not stressed the
existence of sucb contexts in the previous frameworks because the context was considered to
be an implicit data; indeed it consisted of the program text wbicb remains uncbanged at
eacb execution point. Tberefore we could so far implicitly rely on a 'static' context. ..

Within our perspective, the context may change at any moment of the execution. This
'ever-changing' nature brings out two problems. The first one is simply the question of
bow to know the latest context at every moment. This is not a relevant question for it can
be solved at the implementation level and the solution amounts to build a kind of repository
wbere the context could be recorded - you will see later that the abstract versions of this
context will be collected in the set of abstract tuples together with the input substitution and
output substitutions sequence. The second problem is the most relevant; it considers the
context under the execution perspective: at wbich program point sbould this context be
available. Of course under the concrete semantics perspective, it is at the litera! level.

Concrete Semantics 85

Moreover, the operational semantics of the retract predicate tells us that the context
should be considered under different aspects. Recall that the operational semantics of the
predicate is mainly based on four components. The list of asserted clauses which are alive
at the lime of its first execution - these clauses are recorded in what we called the logical
view. Afterwards further reconsiderations of the predicate will simply remove one at a lime
ail the clauses recorded in its logical view. When there is no more clause left in its view the
predicate fails. It could also have failed because none of the alive dynamic clauses unified
with its argument at the lime of its first execution. Therefore the literal to its left, and more
generally the previous resolvent, should be reconsidered in this particular context that made
it fail.

To enlighten the ideas, several context components can be derived from this brief sum
mary. There is obviously the first context, the input one, which is unique. The predicate
when executed within it will produce another context, the output one. When this predicate
is reconsidered on the event of backtracking, it will always be in a unique context; let us
call it the redo context. As there might be several reconsiderations, there will be a sequence
of redo contexts. Each of them will produce a different output context. Hence there is also
a sequence of output contexts. There is ullimately the context in which the predicate fails -
let us call it the failure context - and in whicb the previous resolvent sbould be reconsidered
on backtracking. These ideas can be easily generalized to any literai. And hence to any
procedure, for a literai is generally resolved by a procedure which defines it - at this point
the distinction between procedure and clause is important.

lndeed we cannot state exactly the same facts for any clause of a Prolog program. Let us
consider the case of a procedure p defined by the clauses c 1, Ci, ... , c;, in that order in the
program. Wben the procedure p is first executed, this is the clause c 1 wbich is executed
and its input context is the output one of the previous resolvent. As we are considering the
first execution of the procedure - that is the first node developed for p in the derivation
tree - it is impossible to be in a redo context, for redo contexts are only associated with
backtracking events. These events concem only the remaining clauses c; (2 ~ i ~ n) of p,
since they will be considered only as an alternative for c;_1, that is to say wben this latter
fails. Therefore Ci will be executed in the failure context of c 1, similarly ~ will be consid
ered in the failure context of Ci, and so on ...

Let us summarize the contexts, or the situations, in wbich clauses could be considered
during SLD-Derivation. There is only one input context and no redo context associated
with a clause, for it was said that backtracking will never lead to reconsider the same
clause, it will rather lead to consider the others clauses defining the procedure which is be
ing executed. Tbere is also a sequence of output contexts, for it was demonstrated previ
ously that among the literais defining a clause, backtracking could happen, and therefore
retum a series of outputs. There is ullimately the context in wbicb the clause fails and in
which the following one will be considered. The fondamental reason for which there is
only tbree context components - the dynamic contexts - associated with clauses and four
with literais is intrinsic to them: the body of a clause is a conjunction of literais, and the
definition of a procedure is a disjunction of clauses.

The dynamic contexts will be later formalized by the concept of dynamic programs. For
now, let us present bow this four components interact with the SLD-Resolution mecba
nisms. Consider the program depicted at Figure 6.1. This is a counter implementation
supported by the predicates assert and retract. They allow to have a counter 'variable'
which is a kind of simulation of a for-loop control variable in an imperative language,
thougb our counter does not actually control the loop. The counter variable is modeled by
the dynamic functor c/1. We give at Figure 6.2 a trace of the program execution for the
query •~ count(V).' .

86

Figure 6.1
A counter pro
gram example of
the predicates
assert and
retract.

Chapter 6 Abstract lnterpretation of Full Prolog

p(l). p(2).

count(_):-
asserta(c(0)),
p(_),
retract(c(N)),
Mis N+l,
asserta(c(M)),
fail.

count(X):-
call(c(X)).

p(3).

In fact, we only give some fragments of the trace produced during a debugging session.
You immediately see the 'existence' of the four contexts. The number in front of each line
is the derivation tree depth at which the goal is solved. The '[system]' tag means that the
litera! is a system predicate. We expose just the first 'iteration' and a few lines more of the
second one in order to stress the existence of the counting variable. The existence of the
logical view of the retract predicate is also clearly manifested; the predicate can only re
move one predicate at a time though other ones have been asserted in the meantime. The
propagation of the failure from the fail system predicate to the others above it is also clearly
demonstrated. This propagation goes so far as the latest choice point, that is the predicate
p(_) in the source program.

The last three lines of the trace highlight the fact that the first clause finitely fails and
that the second one is chosen - last but one line - to return the content of the 'control vari
able'. In this trace is also obvious the fact that a switch of context is operated within the
SLD-Derivation. lndeed the context in which a literal fails is the one in which the previous
literal will be reexecuted. Similarly, the output context of a predicate such as
assert(c(O)) is its input one augmented with the new dynamic fact c(0) which is moreo
ver the input one of the next litera!.

The context in which a litera! is executed bas been added to the right of the trace. Note
that only the dynamic clauses that are alive are detailed in these contexts. This is not a
problem because at most only one clause is alive during the computation. As presented
hereafter we notice that only one context is necessary. This is true in an actual computation
because only one execution is performed at a time, and consequently the 'same physical'
context can be independently used whatever the situation. But remember that the four con
texts were presented as a pedagogic instrument to ease the transition towards the abstract
semantics. Simply recall that the purpose of abstract interpretation is to collect information
about all possible executions at the same time. That is why we will have to consider all the
situations in which the literals could be considered during an actual execution.

Concrete Semantics 87

Figure 6.2 0 CALL: count(_64) {}
Some fragments 1 CALL: asserta(c(O)) [system] {}
of the trace given 1 EXIT: asserta(c(O)) {c(O)}
by a debugging
session of the 1 CALL: p(_726) {c(O)}

'counter' program. 1 EXIT: p(l) {c(O)}
1 CALL: retract(c(_ 790)) [system J {c(O)}
1 EXIT: retract(c(O)) {}
1 CALL: _1304 is 0+ 1 [system] {}
1 EXIT: 1 is o+ 1 {}
1 CALL: asserta(c(1)) [system J {}
1 EXIT: asserta(c(1)) {c(l)}
1 CALL: fail [system J {c(l)}
1 FAIL: fail {c(l)}
1 REDO: asserta(c(1)) {c(l)}
1 FAIL: asserta(c(1)) {c(l)}
1 REDO: 1 is o+ 1 {c(l)}
1 FAIL: 1304 is o+ 1 {c(l)} -
1 REDO: retract(c(O)) {c(l)}
1 FAIL: retract(c(_ 790)) {c(l)}
1 REDO: p(l) {c(l)}
1 EXIT: p(2) {c(l)}
1 CALL: retract(c(_ 790)) [system J {c(l)}
1 EXIT: retract(c(l)) {}
1 CALL: _1304 is 1 + 1 [system] {}
1 EXIT: 2 is 1 + 1 {}
1 CALL: asserta(c(2)) [system J {}
1 EXIT: asserta(c(2)) {c(2)}

1 CALL: c(_64) {c(3)}
1 EXIT: c(3) {c(3)}
0 EXIT: count(3) {c(3)}

Concrete domains

A concrete dynamic program can be seen as a sequence of facts, which evolves dynamically
with the execution of the Prolog program. The system predicate assert adds facts to the
sequence. A fact can be removed from the concrete dynamic program by the system predi
cate retract. The same fact can be present more than once in a concrete dynamic pro
gram.

Clause substitution

To be able to make use of the work that bas been done previously on abstract interpretation
of Prolog, we will introduce the notion of concrete clause substitution and its abstract coun
terpart. This allows us to define almost ail operations on abstract dynamic programs in
terms of operations on abstract substitutions, hence reusing the previous abstract domain.

A concrete substitution 0 is a concrete clause substitution iff it is of the form

where p is a predicate of arity n and t 1, ••• , tn are terms. We say that p/n, denoted by
pred(0), is the predicate of the concrete clause substitution.

88 Chapter 6 Abstract lnterpretation of Full Prolog

A concrete clause substitution represents one concrete fact, which we obtain by applying the
concrete clause substitution simply to the variable X1:

Dynamic program

We will now suggest a formalism for concrete dynamic programs, but let us first introduce
an informai view of concrete dynamic programs.

A concrete dynamic program is a sequence of facts. With each fact of this sequence is
associated a unique identification (called the time stamp) and a mark indicating whether the
fact is 'alive' or not in the dynamic program. As explained in the first chapter, facts will
never be actually removed from the dynamic program by a retract operation, but the mark
will simply be set to 'not alive' . The use of the time stamp is the following; it is somewhat
comparable to the dynamic fact identificator. When a retract is first executed, it looks for
all the facts in the dynamic program which match the retracted pattern, and inserts their
time stamps in a list -its logical view. Then the fact associated with the first time stamp
in the list is unified with the argument of the retract, the fact is marked 'not alive' and the
time stamp is removed from the list. At each backtracking step on the retract, the same
procedure is executed (unification with the fact associated with the first time stamp in the
list, set the mark of the fact to 'not alive' , remove the time stamp from the list) . Moreover
it does not matter if the facts associated with the time stamps in the logical view are already
marked 'alive' or not. In fact another retract could have marked them 'not alive' before
they are treated at some backtracking step. New facts, which have been added to the dy
namic program in the meantime, that is after the first execution of the retract, will not be
considered at any backtracking step because they were not recorded in the logical view of
this particular retract predicate. Backtracking ends when the list of stamps is empty, that
is when the retract fails.

Essentially, we will model a concrete dynamic program by a sequence of tuples of the
form (/1, i, alive1), where / 1 is a fact, i is the time stamp and alive1 is a Boolean which is
true iff / 1 is 'alive' in P . To this sequence we add some information about the next time
stamp to assign. Hence, a concrete dynamic program P is a couple

where n+ 1 is the next time stamp to assign.

The domain of a concrete dynamic program P, denoted dom(P), is the set of all the
couples (/i, i) for which alive; is true. Formally dom(P) = { (/1, i): (/1, i, alive1) E p-J,.1
A alive1}.

The predicate of a concrete fact /, denoted pred(/), is formally defined by the follow
ing:

pred(/) = p/n

Let us define the function facts(P), which extracts of P the sequence of facts that are
'alive'. We need this function in the formalism of the concretization function of dynamic
programs. Formally, letPbe (((/1, 1, alive1) , ... , <ft, t, alivet)), t+l), then

Concrete Semantics

where m = #(dom (P))
1 :;;; j 1 < . . . < jm :;;; t
Vk: 1:;;; k:;;; m, (/Jk, Jk) e dom(P),
#(S) denotes the cardinal of the set S, i.e. the number of its elements.

Dynamic procedure

89

The concrete dynamic procedure of predicate p/n occurring in a dynamic program P is the
sequence of all the facts corresponding to predicate p/n and 'alive' in P. To define this
concept formally, we introduce the function proc(P, p/n) which returns the concrete dy
namic procedure for predicate p/n of program P . The function proc(P, p/n) extracts of P
the longest sub-sequence of facts with predicate p/n.

Formally, let P = (((/1, 1, aJive1) , ... , Ut, t, aJivet)) , t+l) be a concrete dynamic pro
gram, then

proc(P, p/n) = (/Ji , .. . , /Jm)

with m = #{(/1, i) e dom (P): pred(/i)=p/n}
l:;;;jl< ... <jm:;;;t
pred(/Jk) = p/n, (/Jk' Jk) e dom(P), for 1 :;;; k:;;; m

Note that the sub-sequence (fit , ... , /im) is empty if (and only if) there is no fact f i 'alive' in
P with pred(/1) = p/n and that aliveik is implicitly true for 1 :;;; k :;;; m., since in dom(P)
there are only elements that are 'alive' .

Concrete unification sequence

For the specification of operation AI_ RETRACT we will need the concept of concrete uni
fication sequence of a dynamic program. A concrete unification sequence of a dynamic
program P for a fact / is the sequence of all the facts unifying with / and 'alive' in P . To
define this concept formally, we introduce the function seq__ unif(P, /) , which returns the
concrete unification sequence for fact / of program P . The function seq__ unif(P, /) ex
tracts from P the long est sub-sequence of facts, which unify with / .

Formally, let P = (((/1 , 1, aJive1) , ... , Ut, t , aJivet)) , t + l) be a concrete dynamic
program, then

with n = #{(/1, i) e dom (P) : :3 m.gu(/,/1)},

1 :;;; j 1 < ... < jn :;;; t,

O'Jk = m.gu(/ ,/ %) '
(/Jk.Jk) e dom(P), for 1 :;;; k :;;; n .

Concrete operations

Asserting and Retracting Clauses. To be able to specify the abstract operations
AI_ASSERT and AI_RETRACT, it is convenient to introduce two more operators <1 and
t> . Let us specify these two operators. The first operator is used to add a fact at the end of a

90 Chapter 6 Abstract lnterpretation of Full Prolog

concrete dynamic program. Assume f is a fact and P is a concrete dynamic program of the
form (((/1, 1, allve1) , ... , <fn, n, allven)), n+l), then P' = P <l { f }.

P' = (((/1, 1, allve1), ... , <fn, n, allven), (/, n+l, true)), n+2).

The second operator is used to retract a fact from a concrete dynamic program. Recall
that a fact is never actually removed, it is just marked 'not alive' independently from the
fact it could already be marked 'not alive'. Assume (/1, i, allvei) E P, and P is a concrete
dynamicprogram of the form (((/1, 1, allve1) , ... , <fn, n, allven)), n+l), then P' = Pt>
{(/i, i)}

P' = (((/1, 1, allve1) , ... , (/1, i, faJ.se), ... , <fn, n, allven)), n+l).

Abstract Semantics

Notations

In the following, let Kin E dom(sat) - i.e. the input 'K'ontext - be the tuple (Pin, 'ltin,
'ltredo) and Kout E codom(sat) be the tuple (Bout• 7tout• 1ti&uure); similarly Kout denotes the
tuple (Cout• 1tout• '1tta11ure• 1tcut>· Moreover, we use the ..i-notation. For instance". Kin ..!,Pin de
notes the value of the Pin component of Kin· The ..i-notation is easily extended to the other
components of Kin, and so on... Similarly K~ut denotes the tuple (B'out, n 'out, 1t'1a11ure). 1.,.
denotes {(..l, 0, O)}.

The notation K'out := Kout {7tout ~ l.,.} means that K'out is assigned Kout where its 1tout
component bas been °replaced by 1.,.. ln other words all the components ~f K,out will be

C

identical to their corresponding component of Koutc except for 1t'0 ut which becomes 1.,..
Moreover, ail the components of Koutc remain unchanged.

Dynamic contexts

Recall that the basic idea of the previous frameworks was to consider each predicate defined
in the analyzed program as a 'functional mapping'. So a predicate was mapping an input
substitution first to an output substitution and next to an output substitutions sequence. We
will obviously keep this idea as the basic principle of this new framework. Consequently we
will also keep the same granularity, that is to say the analyzed program is still considered at
the procedure level.

However, this functional view of the predicates bas to be enriched to take into account
the fact that the 'universe of discourse' is changing. As in the concrete semantics this is the
aim of the dynamic contexts. These are abstractions of the concrete contexts, whose four
components - input, redo, output and failure - will be abstracted by the concept of "abstract
dynamic program". As before, two of these components are entry contexts, these are the in
put and redo dynamic program, and the two others are result contexts, these are the output
andfailure dynamic program. Recall that two of these components are singletons and that
the two others are sequences. However all of them will be abstracted by the same object, a
set of abstract clauses which is the most general abstraction - see later on at the subsection
'Abstract clause'. It remains us to determine the program points where the contexts will be
associated with. Because we keep for simplicity the same granularity, they will be associ
ated with each procedure, that is to say with each predicate symbol defined in the program.
Each of the abstract programs bas therefore to be seen as a way of remembering the dy
namically changing universe of discourse at each stage of the computation by giving access

Abstract Semantics 91

to the "sequence" of dynamic clauses - which precisely constitute the dynamic context -
upon which the current literai is being executed.

These four components present another advantage. As abstract interpretation aims at
collecting information about numerous executions, a predicate can be analyzed more accu
rately under these four 'situations'. Indeed, we can derive properties about the first execu
tion of a predicate, as about its series of reexecutions. We can therefore collect information
about all of its possible results and even know what makes it fail. We are that way capable
to synthesize information about the four relevant SLD-Resolution mechanisms we pointed
out in the previous section. We will now expose precisely how the concrete contexts are
abstracted.

Abstract domains

The abstract domains used in this abstract interpreter are derived from the previous ones.
Besides handling abstract substitutions and abstract substitutions sequences, they moreover
handles abstract dynamic programs.

As was said before, the current algorithm can only handle dynamic facts. A set of dy
namic facts can either define a particular dynamic procedure p if all the facts are defined
upon the same predicate symbol p or can define a dynamic procedure which is not defining
any particular procedure. This undefmed procedure is thus susceptible to contain informa
tion about any particular dynamic procedure since we do not have accurate information on
it. We clearly see now that an abstract dynamic program must contain a set of abstract dy
namic procedures relevant to a particular predicate symbol or not. First of all let us intro
duce the notion of abstract clause.

Abstract clause

An abstract substitution p = (sv, frm, mode, ps) is an abstract clause substitution - an
abstract clause for short - iff

Note that given the usual concretization function for abstract substitutions, we have that
every concrete clause substitution belongs to the concretization of at least one abstract
clause substitution and that an abstract clause substitution represents a set of concrete clause
substitutions.

An abstract clause substitution is head-defined iff its head is known. More formally, let
p = (sv, frm, mode, ps) be an abstract clause substitution. Then p is head-defined iff
frm(sv(X1)) -;t; undef. It is head-undefined otherwise.

Let p = (sv, frm, mode, ps) be a head-defined abstract clause substitution. Its predi
cate, denoted pred(P), is p/n iff there exist t 1, ••• , tn such that frm(sv(X1)) = p(t1, ••• ,

tn) . If pis a head-undefined abstract clause substitution, we define the value of pred(P)
asundef.

Abstract dynamic program

An abstract dynamic program is essentially a set of abstract substitutions, which satisfy
some properties. Each abstract substitution represents one or more abstract facts represent
ing on their turn sets of concrete facts. Before defining more formally dynamic programs,
we need a number of concepts. Assume an abstract domain of abstract substitutions is given

92 Chapter 6 Abstract lnterpretation of Full Prolog

for any set D of program variables and let us denote it AS
1
n. Assume also that this domain

is endowed with an ordering ~ and a concretization function Cc. Then we can define an
abstract dynamic pro gram 1t as being either a set

or a pair

(Yundef• {yi, • • • • Yn})

where the yi (l ~ i ~ n) are tuples of the form

and Yundef is a tuple of the form

where P1, P E AS1n,

Ini., m E IN,
Mi, ME IN u {oo}
m~M,
IDi. ~ Mi-

(P, m, M).

Each Yi describes an head-defmed abstract dynamic procedure whose facts are described
by the pi, which are head-defined abstract clause substitutions. The number of these facts
is not less than IDi. and not greater than Mi- Yunœt describes the head-undefined abstract dy
namic procedure whose facts are described by p, which is a head-undefined abstract clause
substitution, also called the general substitution. The number of these facts is not less than
m and not greater than M. Moreover we have that

and

pred(p) = undef.

The upper bounds Mi and M can become infinite. This is necessary for our widening op
eration. Of course, we loose some accuracy because of the widening operation, but the
really interesting values of the upper bounds are O and 1. If you have an upper bound supe
rior to 1, then -in most cases- it does not matter if this upper bound is 2, 3 or infinite.
Anyway, you cannot deduce determinism nor sure failure.

Formally, the meaning of an abstract dynamic procedure is given by the following con
cretization function. Consider an abstract dynamic procedure y = (P, m, M), either head
defined or head-undefined. Its concretization function Cc(y) defines a set of facts se
quences, i.e. a set of concrete dynamic procedures:

Note that if the lower bound m is 0, n can be O too, what means that in that case the empty
sequence belongs to the set Cc(y). Note also that the ei do not need to be different.

The domain of an abstract dynamic program, denoted dom(n), is the set of predicates
of ail the head-defined abstract clause substitutions. The definite part of an abstract dy-

Abstract Semantics 93

namic program, denoted definite(n), is set of all head-defined dynamic procedures of the
abstract dynamic program. Formally

dom(n) = {p/r: 3! i, pred(P1) = p/r (1 ~ i ~ n)},

definite(n) = fo: 1 ~ i ~ n}.

Note that in an abstract dynamic program we do not have information on the ordering of
facts, nor time stamps, nor a Boolean 'alive'. All this information is abstracted. Our ex
perimental results show that an abstract domain built on this abstraction of concrete dy
namic programs leads to a good compromise between performance and accuracy.

Formally, the meaning of an abstract dynamic program is given by the following con
cretization function Cc(n). This function defines for every abstract dynamic program 1t a
set of concrete dynamic programs. We distinguish three cases according to the form of the
abstract dynamic program:

• 1t = {Y1, ... , Yn},

Cc(1t) = Cc({y1, ... , Yn}) = {P: '<;/ y edefinite(n), proc(P, pred(y)) E Cc(y)
"'<;/ p/n !t dom(n): proc(P, p/n)=0}

• 7t = (Yundef• {Y1, ... , Yn}),

Cc(1t) = Cc({y1, ... , Yn}) u {P: facts(P) E Cc(yundet)}

• 7t = -1,.,

Cc(n) = {}

We introduced the special value -1,. to describe in the abstract domain situations, that the
concrete execution of the Prolog program will never reach. For instance, if Prolog executes
the dynamic predicate assert with a variable as its argument, then the execution of the
program fails, but our abstract interpretation algorithm will continue its execution and as
sign to the abstract dynamic output program the value -1,., meaning that everything after the
as sert would never be executed by a Prolog interpreter.

Note that the existence of the head-undefined dynamic procedure implies a big loss of
information. Consequently, the interesting cases for our analysis are the ones where the
head-undefined dynamic procedure is not present. In practice, many tests of Prolog pro
grams from different sources, have demonstrated this tradeoff between complexity and àccu
racy of the abstract domain on the one band, and performance of the abstract interpretation
on the other band, to be satisfying.

Notations. Let us introduce some convenient notations. If 1t is an abstract dynamic pro
gram and p e dom(p), then we denote by n(p) the head-defined abstract dynamic proce
dure in 1t corresponding to the predicate p . Formally this means,

n(p) = Y1 = (P1, Int, Mi) iff y1 E definite(1t) and pred(P1) = p/n

We also denote by n(undef) the head-undefined abstract dynamic procedure of 1t when
1t is a pair. Moreover, let y = (P, m, M) be an abstract dynamic procedure. We denote by
y...l,p the substitution part of y, i.e. p. Similarly we denote by y...l,m and y...l,M, the second and
third components of tuple y. When combining these two notations, we obtain a quite pow
erful formalism. For instance, to designate the substitution part of the head-defined abstract

94

Figure 6.3
First illustration
example.

Chapter 6 Abstract lnterpretation of Full Prolog

dynarnic procedure corresponding to predicate p/n in the abstract dynarnic prograrn 1t, we
can simply write 1t(p/n).J..~.

Ordering on dynamic programs

wbere

{

dom(1t1) ç dom('!½)

1t1 ~ 1½ <=> 'lip E dom(1t1), 1t1(P) ~ '!½(P)

Y~def ~ iunde! if either or both exist

Assertion of a new abstract dynamic procedure

We define now the operation INSERT_DYN_PROC(1t, p/n), wbicb inserts a new ab
stract dynarnic procedure with predicate p/n in prograrn 1t. The inserted procedure is
empty. This operation is just used for the manipulation of our abstract data structure. For
mally it is specified as follows. Assume p/n ~ dom(1t) , then

1t' = INSERT_DYN_PROC(1t, p/n)
iff dom(1t') = dom(1t) U {p/n},

1t'(p/n) = (J_, 0, 0),
1t'(undef) = 1t(undef),
V p/n E dom(1t): 1t'(p/n) = 1t(p/n).

Let us now illustrate the useful concepts of abstract and concrete dynarnic programs.
Consider the Prolog program depicted at Figure 6.3.

p :- assert(f(a,b,c)),
assert(a),
assert(f(d,b,c)),
assert(a).

If we execute this clause with an empty dynamic program at the entry point, then at the end
of execution, we get the following concrete dynarnic program:

P = (((f(a,b,c), 1, true), (a, 2, true), (f(d,b,c), 3, true), (a, 4, true)), 5)

The concrete dynamic program P is abstracted by the following abstract dynamic program:

1t = {(ground:a, 2, 2), (ground: f(ground,ground:b,ground:c), 2, 2)}

Note that, des pite that f(a, b , c) and f(d , b, c) are different facts, there is only one entry
for both in the abstract dynamic program, since both terms bave the same principal functor.
Abstraction implies for both facts a loss of information: we loose the information about the
pattern of their first argument; we only retain that the first argument of both facts is a
ground term.

Consider now the Prolog program depicted at Figure 6.4, illustrating the use of the
bead-undefined abstract dynarnic procedure.

Abstract Semantics 95

Figure 6.4 p(a) . p(b) .
Second illustration

example. q :- p(X),

assert(X) .

When executed with the query •~ q', the program will give us a first solution {X/a} and a
first dynamic program P = (((a, l, tru.e)), 2). Then, on the event of backtracking, the
second solution {X/b} will be computed and the concrete dynamic pro gram will become,
after the execution, P = (((a, 1, tru.e), (b, 2, tru.e)), 3).

If we execute the abstract interpretation algorithm with the query •~ q', the execution
of the goal p(X) will produce the following substitution: {X~ ground}. As we see the
mode is ground, but there is no pattern associated with the substitution for variable X: the
pattern of the substitution is undef (it can be a or b). After the execution of the goal
assert(X), this undefined pattern will appear in the abstract dynamic program. The exe
cution result of the query will be the following abstract dynamic program:

n = «P. 2, 2), {})

with pred(p) = undef and mode(sv(X1)) = ground..

Abstract operations

AI_VAR, AI_FUNC and AI_CUT have been enhanced to handle dynamic programs in
addition to substitutions sequences. Furthermore, a UNION and a WIDENING operation
were specifically designed to handle dynamic programs while the AI_ASSERT,
AI_RETRACT, COMBINE and MAKEFUNC operations are brand new ones.

Abstract Unification Operatlons

These operations are derived from the previous ones and have exactly the same functional
ity, except that some case analysis bas been appended to compute the resulting output con
texts ?tout and 1îtauure· They moreover rely on the previous versions of the operations
AI_VAR, AI_FUNC as defined at page 43.

where Kin::= <Pin, ?tin, "ltredo)

Kout: := (Bout• 7tout, ?tia11ure)
Bout::= (P, m, M, t)

(Bout• success) = AI_ VAR(R., P1n)

?tout= [if P=..l then ..l,, else ?tin]

?tia11ure = [if P=..l then ?tin

else if success then "ltredo

else ?tin u "ltredo]

AI_FUNC(f. , K1n) = Kout

96 Chapter 6 Abstract /nterpretation of Full Pro/og

where (Bout, success) = AI_FUNC(.e, P1n)
7tout = [if P=l. then 1.,, else 1tin]
'1tta.uure = [if P=l. then 7tin

else if success then 'ltredo

el58 7îin U 'ltredo]

Recall that one of the key idea of abstract interpretation is that we try to approximate
undecidable properties. However Boolean logic is not capable to support approximation of
undecidability since we cannot be sure of the approximation in all the cases. That is why in
the particular case of static analysis of Prolog programs, we have to distinguish three kinds
of computations. There are ones where we are always sure of either a success or a failure of
the execution, and more particularly of all possible executions since abstract interpretation
wants us to consider an infinite number of executions. And there are ones where we cannot
be sure of neither the success nor the failure for all the executions, that is to say that there
can be some actual concrete executions where failures will be derived or some others where
successes will be derived.

That is what is done in the small case analysis performed at the end of the these opera
tions. In the case where all possible executions fail - that is when the resulting abstract
substitution is bottom - the dynamic context must reflect this failure. Therefore the output
dynamic program will be assigned bottom and the failure dynamic program will be identical
to the input one, reflecting this way that the execution fails in the context given in input.
On the other band if executions always succeed, the output dynamic program has to be
simply the one upon which the litera! is executed and the failure the same as the redo dy
namic program - recall the 'finitely failing assumption' 5

: later failure could only happen
within the redo context, since in the input one, the litera! surely succeeds. And finally
when there is nothing sure, the most general context must be considered. That is, each of
the context for either success or failure has to be taken into account. The output context
will thus be the union of both the contexts produced in the case of success and failure.
Similarly the failure dynamic program is assigned the union of the input and redo contexts.
Note that the result of the union of 1.,, and 7tin is 7tin, that is why the output context is once
more assigned 7tin in the operations implementation.

Execution of the eut

This operation still makes use of the previous version defined at page 43.

AI_ OUT(.e , Kin) = Kout

where (Bout• success) = AI_CUT(.e, P1n)
7tout = [if P=l. then 1.. else 1tin]
'Ttta.uure = [if P=l. then 7tin else 'ltredo]

Here, the case analysis is simpler because the eut predicate, if reached, will always suc
ceed, otherwise, we simply propagate the failure.

Unification of two Abstract Clause Substitutions

It is used in operation S _ COMBINE to compute the unification of two abstract clause
substitutions. We only give its forma! specification. The implementation is quite close to
the implementation of the unification operation already used in previous frameworks.

5 See page 18 . .

Abstract Semantics 97

Specification: COMBINE(P,, P2) = (P3, suc_unif). Assume dom(P,) = dom(P2) =
{XI}.

The Boolean suc_ unif is true when the unification surely succeeds. In other words, it
is true iff every pair of concrete substitutions 01 and 02, respectively abstracted by the clause
substitutions P, and p2, bas got a most general unifier. Otherwise unification may succeed
or not, and thus suc_ unif is false.

After a COMBINE, we always need to perform the same sequence of operations: com
puting the resulting substitutions sequence. That is why we define this new operation
S _ COMBINE, which is called in AI_ RETRACT operation and salve_ dyna.mic _proce
dure procedure to combine an abstract clause substitution with an abstract procedure, that
is to abstract the concrete unifications performed when a dynamic predicate is either exe
cu ted or retracted.

S _ COMBINE receives an abstract clause substitution Pin and an abstract dynamic pro
cedure y which both can be head-defined or not and retums an abstract substitutions se
quence Bout with three Boolean suc_ unif, fa.il ure and success. Bout is the substitutions
sequence resulting of the unification of Pin and the substitution part of the procedure y. The
Boolean suc_ unif 1s true iff the unification of Pin and the substitution part of y surely suc
ceeds. The Boolean success is true iff the unification of Pin and the substitution part of the
procedure is a sure uccess and concrete executions will produce at least one solution, i.e.
there is at least one fact defining the procedure. The Boolean failure is true iff the unifi
cation of Pin and the substitutions part of the procedure is a sure failure, i.e. it produces no
solution.

Let us just exptain the sequence of operations performed in our implementation.
S _ COMBINE app · es operation COMBINE to Pin and yJ..p, which gives us a resulting
substitution and the Boolean suc_ unif (see operation COMBINE). This substitution will
be the substitution art of the substitutions sequence Bout· failure is true iff the substitu
tion computed by COMBINE is .l or the procedure y is empty (i.e. the upper bound M is
0). success is true iff the unification in the COMBINE always succeeds (suc_ unif is
true) and the procedure y contains at least one element (i.e. the lower bound mis greater or
equal than 1).

For the computation of the bounds of the substitutions sequence, we use the two Boo
leans failure and success. In case of a sure success, we are sure that there are at least as
many solutions as e minimum number of facts in the procedure y. Otherwise we cannot
be sure that there is a solution and we have to assign O to the lower bound of the substitu
tions sequence. In c se of a sure failure, we are sure, that there is no solution and the upper
bound of the sequen e is O. Otherwise there are at most as mucb solutions as there can be
facts in the procedure y.

98 Chapter 6 Abstract lnterpretation of Full Prolog

procedure S_COMBINE(in Pin, y; out Bout• suc_unif, fa.ilure, success)

let Bout be (P, m, M, st) do begin
P:= COMBINE(P1n,Y.J..P, suc_unif);
fa.ilure:= CP = ..l or y.J..M = 0);
success:= (suc_unif and y.J..m ~ 1);
m:= [if success then y.J..m else 0J;
M:= [if fa.ilure then O else y.J..MJ

end;

Speclal/zatlon of a Substitut/on by a Predlcate

This operation bas no co11crete counterpart, since we need it only because of a particularity
of our abstract domain, which is the possibility to have an bead-undefined abstract proce
dure.

The operation builds a head-defined abstract clause substitution from a predicate symbol
and a head-undefined abstract clause substitution. Thus, it specializes the bead-undefined
abstract clause substitution with the predicate.

Operation MAKEFUNC is used in AI_ RE TRACT operation eacb time COMBINE
computes the unification of a bead-defined abstract clause substitution with the bead
undefined abstract procedure. Furthermore, il is used in AI_ ASSERT operation before
taking the union between the head-undefined procedure and a head-defined procedure, be
cause otherwise all the head-defined procedures would become bead-undefined.

Specification: MAKEFUNC(P1, p/n) = p2. We just give the formal specification of op
eration MAKEFUNC, the implementation is quite obvious. Assume p1 = (sv1, frm1,
mode1, ps1) is a head-undefined abstract clause substitution, then

where dom(P2) = {X1},
dom(frID.:i) = dom(mod92) = dom(ps2) = {l, . .. , n+l},

SV2(X1) = 1,
frID.:i(l) = p(2, ... , n+l) , frID.:i(i) = undef (2 ~ i ~ n+l),
mod92(1) = modei(l), mod92(i) = ExtrMode(modei(l)) (2 ~ i ~ n+l),

PS2 = {(i, j): 2 ~ i, j ~ n+l}
0

ExtrMode(m) = ..l
ground
noground
any

if ExtrMode(mode1(1)) et:- ground
otherwise,

if m E {..l, var}
if m E {ground, gv}
if m E { noground, ngv}
otherwise.

Union of two Abstract Dynamic Programs

Union of two Dynarnic Procedures. Let y1 and y2 be two dynamic clauses.

where the components of y are defined as follows:

Abstract Semantics

13 = 131 u 132,
m = min(m1, mi),
M = max(M1, M2)-

Union of two Dynamic Programs. Let n1 and n2 be two dynamic programs.

7tl u n2 = 7t

where the components of 1t are defined as follows:

dom(n) = dom(n1) U dom(n2),

if :l y~det V :l lundel then Yundef = Y~def u lundet

Vp E dom(1t1) n dom(n2), 1t(p) = 1t1(p) u n2(p)

Vp E dom(n1
) \ dom(n2), 1t(p) = 1t1(p) U Yundet {l3~MAKEFUNC(l3, p)}

Vp E dom(n2) \ dom(1t1
), 1t(p) = n2(p) U y~det {l3~MAKEFUNC(l3, p)}

W/dening of two Abstract Dynamic Programs

Widening of two Dynamic Proceclures. Let y01d and Ynew be two dynamic clauses.

Yold y' Ynew = Y

where the components of y are defined as follows:

13 = 1301d U l3new•
m = min(filold, Illuew),

M = [if ~ew > Mold then 00 else ma.x(~ew, Mo1d)J.

Widening of two dynamic programs. Let 1t01
d and ~ew be two dynamic programs.

where the components of 1t are defined as follows:

dom(7t) = dom(7t01d) U dom(~ew)

if :l Y~det V :l ~.=.1 then Yundet = Y~del V ~.=.1
Vp E dom(1told) n dom(~ew), 1t(p) = 7told(p) V ~ew(p)

99

Vp E dom(n°1d) \ dom(~ew), 1t(p) = 1t01d(p) V ~,=.1{l3~MAKEFUNC(l3,p)}

Vp e dom(~ew) \ dom(1t01d), 1t(p) = Y~de1{13~MAKEFUNC(l3,p)} v ~ew(p)

Assertion of an Abstract Dynamic Clause

First, we give an example of a concrete dynamic program to show, how Prolog treats the
system predicate assert. Then we present a case analysis, which models the behavior of
assert. This case analysis allows us to explain the formai specification of our abstract op
eration AI_ ASSERT which is called by the abstract interpretation algoritbm each time, the
system predicate assert is encountered during the execution. After the specification, we
explain, how the behavior of assert can be abstracted using our abstract domain and give
the complete implementation of the AI_ ASSERT operation.

Consider the following Prolog clause :

q:- ... , assert(X),

100 Chapter 6 Abstract lnterpretation of Full Prolog

When execution reaches the goal assert(X), the variable X will be associated with a
substitution 0 depending on the previous unifications in the clause. Two cases are possible:
either X0 is a variable or not. In the first case, the execution will fail, since the argument of
a dynamic predicate cannot be a variable. In the second case, the goal assert(X) will suc
ceed and add the fact X0 to the dynamic program.

Specification: AI - .ASSERT(K1n) = Kout· Recall that Kin and Kout are respectively tuples of
the form (P1n, '1tm, 1tredo) and (Bout, 1tout, 1ti&uure>· Pin is an abstract clause substitution repre
senting the argument of the goal assert. nin and 7trcdo are respectively the input and redo
abstract dynamic programs. The operation generates an abstract substitutions sequence,
Bout, which represents the solutions of the goal and also computes the output and failure
abstract dynamic programs, 1t0 " 1 and 7tiai!urc· (Remember that we adopta functional view of
the execution of a clause, and a literal in particular, hence the AI_ .ASSERT operation de
fines a mapping between its input arguments and its output arguments.)

Let us now specify the AI_ .ASSERT operation in terms of the concretization function of
abstract dynamic programs. Recall that two cases are possible for the computation of the
output tuple, Kout, of the operation. If the substitution Pin represents a variable, then we
have a special situation: the actual execution fails. Hence Pfallure is the same dynamic pro
gram than before the assert -i.e. Pin- and the output sequence becomes 1-. For the
same reason, we can ignore Pout in this case, what means that Cc(1t0 ut) = Cc(1-,,) = {}.
Formally, if 0 E Cc(P1n) and X 10 is a variable

P 1n E Cc(1tm) } p out E Cc(1tout)
Predo E Cc(n,.edo) {p E Cc(,,,..)

p p ⇒ fallure "'?allure
!allure = ln L E Cc(B)

L = (_l_) out

If the substitution does not represent a variable, then the assert succeeds and produces
exactly one solution. Therefore the output sequence will contain this solution (i.e. the sub
stitution), Pout will be assigned Pin augmented with the asserted fact and since we succeed,
pfallure is the same than Predo· Formally, if 0 E Cc(P1n) and X18 is nota variable

P 1n E Cc(1tm)

Predo E Cc(n,.edo)

Pout= Pin <I {X18}
p fallure = p redo

I = (0)

lmplementation. We will now distinguish the different cases, that have to be considered in
the implementation of the AI_ .ASSERT according to the arguments. Since in the imple
mentation we have to deal with the abstract domain and in particular have to cope with
head-undefined abstract procedures, the case analysis is somewhat more complicated than
in the formal specification, but we try to show, that essentially it remains the same - in the
following informa} case analysis, we follow the same order as in the implementation so that
the reader should be able to associate the lines of our implementation to the corresponding
explanations of our informai analysis.

Our abstract interpretation algorithm continues its execution, even in cases, where
Prolog would have failed (when for instance a variable is asserted). In this cases, we do not
really compute a substitutions sequence and dynamic programs, but we simply pass through
bottom values for the arguments. So the very first case to consider for AI_ .ASSERT is
when the input context 1tin is 1-,,: we just have to generate bottom outputs.

Abstract Semantics 101

If nin :;:. 1..,. then the computations depend on the fact whether 131n, the substitution repre
senting the asserted fact, is a head-undefined or a head-defined clause substitution. Let us
consider the latter case first. Since 131n is head-defined, we are sure that the argument of
system predicate assert is not a variable. Hence, according to our formal specification, we
generate a substitutions sequence Bout = (131n, 1, 1, st) and a program 1ti&11ure = 'Itz.edo• What
remains to do is to approximate safely the abstract operation <1 to compute nout•

For the implementation of the abstract version of this operation, we distinguish two
cases. The first (simple) case is if there exists already a dynamic procedure in 1tm with the
same predicate than the one defined by the abstract clause substitution 131n: to obtain nout

from 1tin, we only have to take the union of the clause substitution in the existing dynamic
procedure with 131n and to increment the lower and upper bounds of the dynamic procedure.

If there is no dynamic procedure in 1tin with predicate pred(l31n), then to obtain n0 ut

from 1tin we have to do the following. First we insert a new dynamic procedure for
pred(131n) using INSERT _ DYN _ FROC. Then we look at the head-undefined abstract
dynamic procedure of 7tin. If it does not exist we do the same than in the previous case
(union of substitutions and incrementing of bounds). Otherwise, this means, that there may
already exista procedure for pred(l31n) - since the head of the head-undefined procedure
is not known, we cannot be sure that it is different from pred(l31n)- Consequently, to make
a safe abstraction of operator <1, we must include the head-undefined procedure in the pro
cedure for pred(l31n)- The MAKEFUNC operation constructs a clause substitution with
predicate pred(l31n) from the head-undefined clause substitution. We assign this substitu
tion to the substitution part of the newly created procedure for pred(l31n)- After having
included by this way the information of the head-undefined procedure in the new procedure
for pred(l31n), we can proceed exactly in the same way than in the previous cases.

There remains the case, when the substitution 131n is a head-undefined clause substitu
tion. The first thing to do is to test the mode of l31n- If its intersection with novar is bot
tom, this means, that the mode of 131n is var or bottom. In both cases we generate - ac
cording to the specification - a bottom substitutions sequence, a bottom program nout and
the pro gram 1ti&11ure becomes the same than 7tin.

If the intersection is not bottom, then the mode is possibly different from var. We avoid
a longer case analysis6 and assign O to the lower bound of the substitutions sequence, since
we cannot be sure a priori that the mode is not var - it can still be gv for instance. For the
same reason, the program n 1ailure becomes the union between n in and 7trecto·

The concrete operator <1 is abstracted by the following. First we take the union between
the new head-undefined clause substitution and the existing one (if any exists) and then we
increment the upper bound by 1. We do not increment the lower bound, since we are not
sure, that the clause substitution is different from var. What remains to dois to propagate
the new information in the head-undefined procedure to all the head-defined procedures,
since the head-undefined procedure could be a procedure for every head-defined procedure.
This is done by the combination of the union operator with the MAKEFUNC operator and
by incrementing the upper bound of each head-defined procedure.

Note, that the implementation of AI_ ASSERT makes sure, if a head-undefined proce
dure exists, that the information it contains is also included in all the head-defined proce-

6 We could distinguish some more cases to increase accuracy, but this is not very useful,
since anyway the presence of a head-undefined procedure is source of a big loss of accu
racy.

102 Chapter 6 Abstract lnterpretation of Full Prolog

dures 7, since the head-undefined procedure could be a procedure for every head-defined
procedure. This property is exploited during the implementation of the operation
AI RETRACT.

procedure AI_ASSERT(in JCin; out K0 ut)

let Kin be (Pin, 1tin, '1tredo) and Kout be (Bout, 1tout, ~ure) do
if 7tin = l..,. then {in this case, only pass bottom lhrough}

Kout:= ((_l_, 0, 0, st), 1..,., 1..,.)
else if pred(Pin) -::t= undef then begin {head-defined clause substitution}

Kout:= ((Pin, 1, 1, st), 1tin, '1tredo);
if pred(Pin) ~ dom(7tin) then begin {abstraction of <1: predicate exists not yet in n;n}

1t0 ut:= INSERT_DYN_PROC(1t0 ut, pred(Pin));
if 3 1tin (undef) tll.en

1t0 utCpred(Pin))-!-P:= MAKEFUNC(7tin(undef)J-p, pred(Pin))
end;
let 7t0 ut be{ ... , yp, ... } where pred(yp) = pred(Pin) do

let Yp be (P, m, M) do

yP:= (PU Pin, m+l, M+l)
endelse

if Pin-!-mode n nova.r = J_ then
Kout:= ((_l_, 0, 0, St), 1..,., 7tin)

elsebegin
Bout:= (Pin, 0, 1, st);

1tiaUure:= '1tin LJ '1tredo;
1tout:= 7tin;
1tout(undef):=7tout(undef) u Pin;
1t0 utCundef)J-M:= 7t0 ut(undef)J-M+l;
forall p E dom(7t0ut) do begin

{head-undefined clause substitution}

{begin of abstraction of operator <1}

7tout(P)J-P:= 1tout(P)J-p U MAKEFUNC(7tout(undef)J-p, p);
1toutCP)-!-M:= 7toutCP)-!-M+l

end
end;

Abstract Retractlon of an Abstract Dynamlc Clause

As for the AI_ RE TRACT operation, we first give an example using concrete dynamic pro
grams to show, how Prolog treats the dynamic predicate retract. Then we present a case
analysis, which models the behavior of retract and allows to explain the formai specifica
tion of our abstract operation AI_ RETRACT. This operation is called by the abstract in
terpretation algorithm each time, the system predicate retract is encountered during the
execution and abstracts its behavior. After the specification, we explain, how the behavior
of retract can be abstracted using our abstract domain and give our implementation of the
operation.

Consider the following Prolog clause :

7 If a new procedure is created and the head-undefined procedure exists, then we initialize
the new procedure with the MAKEFUNC of the head-undefined procedure and the new
predicate. If the head-undefined procedure is modified, we take the union between ail the
head-defined procedures and the new head-undefined procedure.

Abstract Semantics 103

q: - ... , retract(X),

Wbat will bappen wben execution reacbes the litera! retract(X)? With variable X will be
associated a certain substitution 0 depending on the previous unifications in the clause.
Again, two cases are possible: either X0 is a variable or not. In the first case, the execution
will fail, since the argument of a dynamic predicate cannot be a variable. In the second
case, the execution of the litera! retract(X) will bave the following effects: a list of all the
facts, that are 'alive' in the dynamic program and unify with the fact xe, will be con
structed as explained before. If this list is empty, then the retract fails and the dynamic
program does not change. If it contains at least one element, then the retract succeeds a
first lime, the substitution for X is unified with the first fact in the list, this fact is removed
from the list and it is marked 'not alive' in the dynamic program. If later backtracking
reacbes the predicate, the same process is executed.

Specification: AI_ RE TRACT(K1n) = Kout· Exactly as for the AI_ ASSERT operation, ~1n
is an abstract clause substitution representing the argument of the system predicate retract.
¾i and 1tredo are respectively the input and redo abstract dynamic programs, wbicb we bave
already explained.

The operation generates an abstract substitutions sequence Bout wbicb represents the
solutions of the goal, and computes the resulting output and failure abstract dynamic pro
grams. Remember that we adopta functional view of the execution of a clause (and a litera!
in particular). Hence the AI_ RETRACT operation defines a mapping between its input ar
guments and its output arguments.

Let us now specify formally the AI_ RE TRACT operation in terms of the concretization
function of abstract dynamic programs. For the tbree outputs computation, three cases bave
to be distinguisbed. If the substitution ~1n represents a variable, then we bave a special
situation: the execution fails.. Tberefore the output sequence becomes 1- and the failure dy
namic program is the same than the input program (the execution fails without any manipu
lation of the dynamic program). For the same reason, we can ignore Pout in this case, wbat
means that Cc(1t0 ut) = Cc(__L,,) = {}. Formally, if 0 E Cc(~1n) and X 10 is a variable, then

P1n E Cc(1ti,,)} Pout E Cc(nout)
Predo E Cc(n,,edo) { p E Cc(-rr.) p p ⇒ f&llure •-x&llure

lailure - ID I: E Cc(B)
L = (l_) out

If the substitution does not represent a variable, then we bave to look in the input dy
namic program for the facts that are unifying with the argument of the retract. If sucb a
fact is found, the retract succeeds producing as many solutions as there are unifying facts
in the input program. Hence the output sequence bas to contain all these solutions. The
first unifying fact in P1n bas to be marked 'not alive' to obtain P0u1 and since we succeed,
pf&llure is the same than predo· Formally, if

• e E Cc(~1n),
• :l (/1, i) E dom(P1n): m.gu(X,0,/1) -:t- 0,
• X 10 is nota variable

then

104 Chapter 6 Abstract lnterpretation of Full Prolog

P 1n E Cc(1tin)

Predo E Cc('1tredo)

Pout= Pin t> { <f1, i) }

p!&ilure = predo
L = seq_unif(P1n, X 10)

If the substitution does not represent a variable, but if there is no fact in the input dy
namic program unifying with the argument of retract, then the retract fails. So the substi
tutions sequence becomes .l, since a concrete execution would not proceed further than the
retract, but would backtrack to the last cboice point. For the same reason, we can ignore
Pout in this case, wbat means that Cc(nout) = Cc(.l,,) = {}. The failure dynamic program
is the same than the input program, because execution fails without any manipulation of the
dynamic program. Formally, if

• 0 E Cc(P1n)
• X 10 is nota variable
• îl <fi, i) E dom(P1n): m.gu(X,0, /1) "#- 0

then

P 1n E Cc(1tin) } Pout E Cc(1tout)
Predo E Cc('1tredo) { p E Cc(7T.)

p p ⇒ !&il ure "'I&ilure
!allure - ID L E Cc(B)

L = (.l) out

lmplementation. We will now distinguisb the different cases that bave to be considered in
the implementation of the AI_ RE TRACT according to the arguments. Since in the im
plementation we bave to deal with the abstract domain and in particular bave to cope with
bead-undefined procedures, the case analysis is somewbat more complicated than in the
forma! specification, but we try to show that it essentially remains the same.

ln the following informa! case analysis, we follow once more the same order than in the
case analysis of the implementation so that the reader sbould be able to associate the lines of
our implementation to the corresponding explanations of our informa! analysis. For the
AI_ RETRACT operation, we bave split the code in two procedures RE TRACT_ DEF and
RE TRACT_ UNDEF wbicb respectively treat the case of a bead-defined and of a bead-
undefined abstract clause substitution Pin- ·

The first thing we do in procedure AI_ RE TRACT is the treatment of the common case
of a bottom input dynamic program. As already explained for AI_ ASSERT, our abstract
interpretation algorithm continues its execution, even in cases, wbere Prolog would not (for
instance, if a variable is asserted/retracted). In this cases, we do not really compute a substi
tutions sequence and dynamic programs, but we simply pass through bottom values for the
arguments. So, as for the AI_ASSERT, the very first case to consider for AI_RETRACT
is wben we enter with nin = .l,,: we just bave to generate bottom outputs.

If nin -:1- .l..,, then the computations depend on wbether Pin, the substitution representing
the argument of the retract, is a bead-undefined or a bead-defined clause substitution.

Abstract Semantics 105

procedure AI_RETRACT(in Kin; out Kout)

let Kin be <Pin, 1tin, 1tredo) and Kout be (Bout• 1tout, 'ltt&llure) do
if 1tin = 1-,, then

K0ut:= ((_l_, 0, 0, St), _l_,,, _l_,,)

else if pred(P) =1- undef then
RE TRACT_ DEF(Kin, Kout)

else
RETRACT_UNDEF(Kin, Kout);

Let us consider the latter case first. It is implemented by procedure RETRACT_DEF.
Since Pin is head-defined, we are sure that the argument of retract is not a variable. Thus,
according to our format specification, we have to look for the facts in the dynamic input
program, that are unifying with Pin- The only possibly unifying facts are the ones repre
sented by the procedure for pred(Pin) and the head-undefined procedure.

If there is neither a head-defined procedure for pred(Pin) nor a head-undefined proce
dure, then we are sure that there is no unifying fact in the dynamic input program. So, the
retract bas to fail: we generate a bottom sequence, the output program is bottom and the
failure program is the same as the input one, since the concrete execution does not proceed
further than the retract.

If there exists a procedure for pred(Pin) then we do not worry about the existence of the
head-undefined procedure, since we have the property that all the information contained in
the head-undefined procedure is already included in the procedure for pred(Pin) (see the
implementation of the AI_ .ASSERT). We then perform the unification operation S _ COM
BINE upon both Pin and the procedure for pred(Pin)- This operation computes the sub
stitutions sequence and three Booleans we explained at the implementation paragraph of
operation S _ COMBINE. Remember that the Booleans success and failure model a
situation of sure success and sure failure respectively, whereas suc_ unti' stands for the suc
cess of the unification only.

The programs 1t0u1 and 1t1ai!ure are calculated by the procedures Camp_ Dyn _ Out _Def
and Comp_Dyn_Fail_Defrespectively, which are explained hereafter.

If there is no procedure for pred(Pin), but a head-undefined procedure, we create a new
procedure for pred(P), since the head-undefined procedure could be a procedure for
pred(Pin). This new procedure is created in a copy of nin, i.e. n~. After this, we continue
in the same way than in the previous case, but working with the copy of nin.

106 Chapter 6 Abstract lnterpretation of Full Prolog

procedure RETRACT_DEF(in Kin; out kout)

let Kin be <Pin, 1tm, 1tredo) and Kout be (Bout, 7tout, 1ti&Uure) do
li pred(Pin) 1t dom(1tm) and ~ 1tm (undef) then

Kout:= ((1-, 0, 0, st), l.,., 7tin)
elsebegin

7tin:= 7tin;
li pred(Pin) 1t dom(1tm) then begin {pattern not asserted yet, but head-undefined exists}

¾,:= INSERT_DYN_PROC(¾,, pred(Pin));
¾,(pred(Pin)).,!,P:= MAKEFÙNC(1tm(undef).,!,p, pred(P));
¾,(pred(Pin)).,!,M:= 7tin(undef),I..M

end;
Bout:= S_COMBINE(Pin,¾i(Pred(Pin)), suc_unif, failure, success);
1tout:= Comp_Dyn_ Out_Def(failure, ¾,, pred(Pin), 1tredo);
1ti&Uure:= Comp_Dyn_Fail_Def(failure, success, suc_unif, ¾,, pred(Pin), 1tredo);

end;

The procedure Camp_ Dyn _Out_ Def computes the output dynamic program. It re
ceives four input arguments: the Boolean failure already explained above, the predicate
symbol of the argument of the retra.ct (remember that we are in the case where Pin is a
head-defined clause substitution), the input and redo dynamic programs.

According to our specification, we have to distinguish two cases for the computation of
the output dynamic program depending on whether there exists or not at least one unifying
fact in the input program.

Let us take a look to the latter case. Remember that we treated already the case where
there is no procedure for pred(Pin) and no head-undefined procedure in the procedure
RETRACT _ DEF. Remains the case, of an existing head-defined or head-undefined proce
dure for pred(Pin) which is surely not unifying with Pin- ln this situation the Boolean
failure is true and we just generate a bottom output dynamic program.

In every other case, there is at least one unifying fact in the input program. So we have
to abstract the behavior of operation t>. To do so, we build a dynamic program n~ from nm
by decrementing the upper and lower bounds of the procedure for pred(Pin)- The program
n~ is the most accurate output program we can calculate in the case, where we retra.ct at
most one fact of the input program. This case is described by the condition 1tm(P)tM ~ 1
v 1tredo = l.,.. The first part of the condition is quite obvious: if there is at most one fact in
the input program, we cannot retract more than one fact. The second part of the condition,
1tredo = 1-, corresponds to an execution context within backtracking is impossible and,
therefore without backtracking we cannot retract more than one fact.

If we possibly retract more than one fact, then we can distinguish two more cases for the
computation of the lower bound of the procedure for pred(Pin) in 1t0u1 depending on
whether there exists or nota procedure for pred(Pin) in the redo dynamic program. In the
first of these two cases, we can improve the accuracy on the lower bound, since we are sure
that the retra.ct will succeed at least two times.

Abstract Semantics 107

function Comp_Dyn_Out_Def(in failure, 1tin, P, 1tredo): 1tout
begin

if failure then
1tout:= .l,,

elsebegin
1tin: = 1tin;

end;

¾,(p)-l-M:= Ma.ximum(0, 1tiz,(p)-l-M-l);

¾,(P)-l-m:= Ma.ximum(0, 1tiz,(p)-l-m-l);

if 1tin(P)-l-M :,;; 1 or 1tredo = .l,, then
1tout:= 1tin

else
if p E dom(1tredo) then begin

7t redo: = 1tredo;
n'redo(P)-l-m:= Ma.ximum(O, 1tredo(P)-l-m - (7tin(p)-l-M - 2));

7tout:= 1t
0

redo LJ ¾,
endelse

1tout:= 1tredo LJ ¾i
end

The procedure Comp _ Dyn _ Fail _ Def computes the failure dynamic pro gram if Pm is a
head-defined abstract clause substitution. It receives six arguments: the Booleans
suc_ unif, failure and success, returned by the operation S _ COMBINE, the predicate
symbol of the argument of retract, the input and redo dynamic programs.

According to our specification, we have to distinguish three cases for the computation of
the failure dynamic program. The first case (Pm represents a variable) does not have to be
considered here since Pm is head-defined. We are in presence of the second case if there
exists at least one unifying fact in the input program and the third case is simply the re
maining one.

If the Boolean failure is true, then we are sure that there is no unifying fact in 7tm.
Hence, according to our specification, the failure program becomes the same as the input
one. If the Boolean success is true, then we are sure that there is at least one unifying fact
in nin. Hence, according to our specification, the failure program becomes the same as the
redo one. If neither failure nor success is true, then we cannot be sure to be in one of the
two last cases of the specification. So we must assign to the failure program the union of
the input and redo programs. But if the Boolean suc_unif is true, we have to replace the
procedure for p by (..l, 0, 0), since the retract possibly succeeds with the effect of retracting
the complete procedure for p .

108 Chapter 6 Abstract lnterpretation of Full Prolog

function Comp_Dyn_Fail_Def(in failure, success, suc_unif, ¾i, P, '1tredo) : '7tt..uure

begin
if failure then

'7tt..uure: = 1ti.n
else if success then

'7tt..uure:= '1tz.edo
else if suc_ unif then begin

1ti.n: = 1ti.n;

¾i(P):= (1-, 0, 0) ;

'7tt..uure: = ¾i LJ '1tz.edo
endelse

'7tt..uure:= 1ti.n LJ '1tz.edo
end;

We will not explain in detail the case wbere 131n is a bead-undefined abstract clause
substitution. This case is very similar to the one wbere 131n is bead-defined. For the sake of
completeness we give the implementation of procedure RETRACT _ UNDEF.

procedure RETRACT_UNDEF(in K1n;out Kout)

let Kin be (131n, 'ltin, '1tredo) and Kout be (Bout• nout• '7tt..uure) do
if 131n,l..mode n novar = 1- or 1! 1ti.n(undef) then

K0 ut:= ((_l_, 0, 0, St), _l,,, 7ti.n)

elsebegin
Bout:= S_COMBINE(l31n,¾i(undef), suc_unif, failure, success) ;

nout:= Comp_Dyn_Out_Undef(failure, ¾i, 1tredo) ;

'7tt..uure:= Comp_Dyn_Fail_Undef(failure, success, suc_unif, 'ltin, '1tredo);

forall p E dom(7ti.n) do begin
RETRACT_DEF(MAKEFUNC(l31n, p), ¾i, '1tredo• B', n 'eut• n 't&llure);

Bout:= Bout LJ B' ;

nout:= nout u n 'eut;

'7tt..uure:= '7tt..uure u n 't&llure
end

end;

function Comp_Dyn_Out_Undef(in failure, ¾i, P, '1tredo) : nout

begin
if failure then

nout: = 1-,.
elsebegin

n;,,:= 1tin {1tin(undef) +- (13, max(0, m-1), max(0, M - 1))};

if 7ti.n(undef)tM ~ 1 or '1tredo = 1-,. then
nout:= 1ti.n

elsebegin
n 'redo:= '1tredo {'1tredo(undef) +- (13, max:(0, m- (7tin(undef),l..M - 2)), M);

nout:= n 'redo LJ ¾,
end;

nout:= nout LJ 1ti.n
end

end;

Abstract Semantics 109

function Comp_Dyn_Fail_Undef(in failure, success, suc_unif, ¾,, p, 1tredo): 'lttauure
begin

if failure then
'lttauure:= '1tin

else if success then
'ltt&!lure:= 1tredo

else if suc_ unif then begin
n;,,:= '1tin {1tin(undef) +- (1-, 0, O)};

'ltt&!lure: = n;,, U 1tredo
endelse

'ltt&!lure:= '1tin U 1tredo
end;

Enhancement of the meta-cal/

The system predicate call/1 bas already been implemented in a previous version of the ab
stract interpreter (see [BM94]). Now the implementation bas to deal with the call of dy
namic facts. We give the specification and the implementation of the enhanced abstract op
eration META GALL.

Specification: META_CALL(in Kin, B; inout sat, dp) = Kout· We distinguish two
cases for the specification of the meta-call. If the argument of the meta-call is static, the re
sult is the same as the resolution of the literai represented by its argument. If the argument
is a dynamic predicate, the behavior of the meta-call is the same as the one of retract, ex
cept the fact that the dynamic output program is not computed in the same way. If there
exists at least one fact in '1tin which is unifying with ~in, then the dynamic output program is
just a copy of '1tin (the operation t> is thus not performed). Otherwise, as for the retract,
the dynamic output program is ignored.

Formally, if X 18 is a variable, then

Pin E Cc(1tin)

P redo E Cc(1tredo)
e E Cc(~)
Pout = Pin

p f&llure = p redo
L = seq__unif(Pin, X 18)

{

Pout E Cc(7tout)

⇒ P1&11ure E Cc('ltt&11ure)
LE Cc(B)

110 Chapter 6 Abstract lnterpretation of Full Prolog

P 1n E Cc(1tin)

p redo E Cc(1tredo)

8 E Cc(~)
p fallure = p ln

{

Pout E Cc(1tout)

⇒ p fallure E Cc('ltta.11ure)

I E Cc(B)
I = (_l_)

lmplementation. Let us now consider the implementation of the meta-call8
• According to

our specification, the first case to treat is the one where the argument of the call is a vari
able term. In this case, we only bave to generate bottom outputs. Otherwise we just make a
call to the procedure salve_ call. But prior to this, we must restrict the substitution to the
variable occurring only in the head - operation RESTRG. After the call we add the input
pair to the dependency graph since its value bas been updated. Then we extend the result
ing sequence to obtain th~ output sequence - EXTG.

procedure META_CALL(in Kin, B; inout sat, dp; out Kout)

let Kin be (P1n, 1tin, 1tredo) and Kout be (Bout• 1tout• 'ltta.llure) and B be (P, m, M, t) do
begin

if p-!--mode n var :t= _l_ then
Kout:= ((_l_, 0, 0, t) , J..., Jtin)

else if pred(~) :t= undef then begin
W:= RESTRG(X1, P);
solve_call(P', Jtin, 1tredo• p, suspended, sat, dp);

IÇ,ut:= Sat(p', Jtin, 1tredo• p);
if (K1n, p) E dom(dp) then

ADD_DP(K1n, P, p', Jtin, 1tredo• P, dp);

Bout:= EXTG(X1' Bout)
endelse

{pattern is undef; this case has net been implemented}

Generic Abstract lnterpretation Algorithm

Overview of the approach

Recall that the purpose of the algorithm is to compute a subset of a post-fixpoint of a trans
formation TSAT that includes a tuple of the form (Kin, p, Kout) but as few other elements as
possible. To acbieve this, the algorithm computes a series of sets sat0 , • • • , satn such that
sati < sati+! and such that satn contains (Kin, p, Kout). The algorithm moves from one
partial set to another by selecting:

• an element (ex.in, q) which is not yet present in the sat but needs to be computed, or
• an element (ex.in, q) whose value sat(ex.in, q) can be improved because the values of

some elements upon which it is depending have been updated.

Moreover, the algorithm bas now to take into account the eventual changes of the under
lying program. Let us present intuitively the approach of the algorithm to achieve this.

8 We implemented the meta-call only for a defined pattern, since the execution of the
meta-call with an unknown pattern entails a big loss of accuracy and needs a complex
case analysis. Anyway, all the examples treated did not use a meta-call with unknown
pattern.

Generic Abstract lnterpretation Algorithm 111

The principle is, essentially, simple. The computation of the fixpoint values necessary to
solve the directing query is driven by a series of local fixpoints over the contexts - this is
reflected in the algorithm by a series of fixpoints computed at different granularity level.
The rationale of these fixpoints are the following one. When we start the computation we
make the hypothesis we know everything which is possible to know - though we know
nothing -, until we remark that our knowledge can be improved. We thus reconsider the
computation in order to learn everything we can learn until the amount of our knowledge
cannot be further improved, that is when the contexts change no more. In this case, we
could consider we know everything that is possible to know... This is just a question of
precision!

Sets of abstract tuples manipulations

Before specifying the two operations, the part played by the dynamic programs in the ab
stract interpretation algorithm vis-à-vis the set of abstract tuples must be clear. They do not
directly represent in themselves a solution to the query directing the computation. Rather
they support the computation, and hence they play a central part in the set of abstract tuples.
So these sat-updating operations must take them into account

Recall that at the contrary of the abstract semantics which does not need operations on
the set of abstract tuples, the algorithm does need operations to construct a subset of the fix
point containing the solution of the query. Hence it needs a number of operations on sets of
abstract tuples. We keep the same two operations, EXTEND and ADJUST. Each of them
is however refined to cater for the requirements of the new framework.

• EXTEND(Kin, p, sat) = sat'. Given a set of abstract tuples sat, a predicate symbol
p and a tuple Kin, it retums a new set of abstract tuples sat' containing (Kin, p) -
supposed not to already belong to sat - in ils domain. This operation simply inserts a
new pair together with _l_K as its value, where _l_K denotes the 3-tuple (_le, _L,, , _L,,) with
_le being the smallest abstract sequence such that { (_i) } E Cc(_le) and _L,, being the
smallest abstract dynamic program such that {} = Cc(_L,,).

• ADJUST(Kin, p, Kout, sat) = sat'. This operation is responsible to update the sat of
abstract tuples and to apply the widening operation - denoted v' - to the previous and
latest result. Given Kout which represents the new result for sat(Kin, p) , this operation
retums a new set of abstract tuples sat' which is the sat updated in such a way that
sat'(Kin, p) = sat(Kin, p) y' Kout and an other values stand unchanged.

A slightly more general version of ADJUST is used in the algorithm, it retums besides
the new set of abstract tuples, the set of pair (Kin, p) whose values have been updated.

Initially, the algorithm was exploiting as much information as available in the set of ab
stract tuples when performing those operations. Its latest version neglects these informa
tion. At the beginning, the set was implemented as a complete partial order associated to
each predicate symbol, as it was presented in the fourth chapter. The complete partial order
structure now evolves towards a hash-table structure, for efficiency needs.

Procedure cal/ dependencies

The purposes of a dependency graph is mainly the detection of redundant computations and
efficient processing of mutually recursive programs. That is why we keep the same con
cepts of dependency graph and transitive closure of the dependency graph.

112 Chapter 6 Abstract lnterpretation of Full Prolog

Recall that the basic intuition is that the dependency graph dp(Pin, p) represents at
some point the set of pairs which (Pin, p) depends directly upon. This is also why we need
to define the transitive closure, tra.ns _ dp(bin, p, dp) , which represents all the pairs
which if updated would require reconsidering (Pin, p). The same three operations -
EXT _ DP, ADD _ DP and REM OVE_ DP - can be reused, without having to be altered.

The generic abstract interpretation algorithm

The top-level procedure solve bas two input arguments, a tuple Kin and a predicate symbol
p. It retums the final dependency graph dp and the set of abstract tuples sat containing
CPin, p, Bout) E µ(TSAT). From these results it is straightforward to compute the set of
pairs (a., q) used by (Pin, p), their values in the postfixpoint as well as the abstract substi
tutions at any program point.

The input tuple Kin contains a substitution Pin which together with the predicate symbol
p form the initial query directing the computation. Moreover, the two other components of
Kin, i.e. 7tizi and 1tredo• are respectively initialized to the empty set and to the bottom element
- l.,,. The bottom value of the 1tredo associated with 7tizi means simply that on the event of
backtracking, reconsideration of dynamic predicates should always fail because they have
not even been executed once, since their input context is empty.

The core of the procedure is a repeat-until loop whose termination depends on the
stability of the redo dynamic context. In fact we consider that at each stage we know the
dynamic context, but we cannot be sure to know it exactly, i.e. we cannot be sure it will not
change. That is why we have to iterate until it changes no more. Note that only the redo
dynamic program can change. lndeed the input dynamic program is always empty for the
top goal, but it is possible that some clauses will be asserted, so the output context may
change and further reconsideration of this predicate should take into account these changes.
That is why the redo context is updated in order to take into account the eventual latest
changes of the output context. Note that this updating is performed by a widening opera
tion because the abstract domain of dynamic programs is infinite.

The procedure solve_call receives an abstract substitution and input and redo dy
namic contexts embedded in the tuple Kin, its associated predicate symbol p, a set
suspended of pairs (a., q), the set of abstract tuples sat and a dependency graph dp.
The set suspended contains all pairs (a., q) for which a subcomputation bas been initi
ated and not been completed yet The procedure considers or reconsiders the pair (Kin, p)
and updates sat and dp accordingly. The core of the procedure is only executed when (Kin,
p) is not suspended and not in the domain of the dependency graph. If (Kin, p) is sus
pended, no subcomputation should be initiated. If (Kin, p) is in the domain of the depend
ency graph, this means that none of the elements upon which it is depending have been up
dated. Otherwise, a new computation with (Kin, p) is started. This subcomputation may
ex tend sat if it is the first time (Kin, p) is considered.

The core of the procedure is a repeat-until loop which computes the lower approxi
mation of (Kin, p) given the elements of the suspended set. Local convergence is reached
when (Kin, p) belongs to the domain of the dependency graph. One iteration of the loop
amounts to execute solve_procedure with the same inputs and proc(p) consisting of all
the clauses defining the procedure p. If the result produced, that is the components of Kout•

is greater or incomparable to the current value sat(Kin, p), then the set of abstract tuples is
updated. The dependency graph is also updated accordingly by removing all elements
which depends (directly or indirectly) on (Kin, p).

Generic Abstract lnterpretation Algorithm

procedure solve (in K1n, p; out sat, dp)
begin

sat:= 0;
dp:=0;
repeat

n;,edo: = K1n .J-n.edo;
solve_call(K1n, p, 0, sat, dp);

K1n: = K1n { 1tredo +-- 1tredo V sat(K1n, P)..J...nout}
until (K1n .J-n.edo = n;,edo)

end;

procedure solve_call(in K1n, p, suspended; inout sat, dp)
begin

Km:= WIDEN(K1n, p, suspended);
if (K1n, p) ~ (dom(dp) v suspended) then begin

if (K1n, p) ~ dom(sat) then
sat:= EXTEND(K1n, p, sat);

repeat
EXT_DP(K1n, p, dp);
if p is dynamic then

solve - dynamic _procedure(K1n, P, Kout)
else

113

solve_procedure(K1n, p, proc(p), suspended v {(Km, p)}, Kout,sat,dp);

(sat, moclified):= ADJUST(K1n, P, Kout• sat);
REM OVE_ DP(modified, dp)

until (K1n, p) E dom(dp)
end

end;

procedure solve _procedure(in K1n, p, pr, suspended; out Kout; inout sat, dp)
begin

if clause(pr) then begin
solve_clause(K1n, p, pr, suspended, Koutc• sat, dp);

let Koutc be (Cout• 7tout• 'Ttiauure• 1tcut) do

Kout:= (SEQ(Cout), 1tout• 'Ttiauure V 1tcut)
end else begin

c.sfx:= pr;
solve_clause(K1n, p, c, suspended, Koutc• sat, dp);

let Koutc be (Cout• 1tout• '1tta11ure• 1tcut) do
if cut_or_nt(C0 ut) then

Kout:= (SEQ(Cout), 1tout• 'Tttallure V 1tcut)
elsebegin

K:n:= 3 {7rm +-- 'Tttallure};
solve_procedure(K~, p, sfx, suspended, K~ut• sat, dp);

let K~ut be (B'out, 7t~ut• n 'tallure) do
Kout:= (CONC(~1n, Cout,B

0

out), 1tout V 7t~ut• 1t
0

tallure V 1tcut)
end

end
end;

114 Chapter 6 Abstract Jnterpretation of Full Prolog

To execute the procedure defining the predicate p , we now have to check whether the
predicate is dynamic or not. If it is dynamic then solve _ dyna.mic yrocedure is called,
otherwise the 'usual' solve yrocedure is called. Note that very few actual parameters
are passed to solve _ dyna.mic yrocedure because the execution of dynamic procedures
- as being formed only of facts - is almost immediate. Note also that the calls to

solve yrocedure are done with an extended suspended set since a subcomputation bas
been started with (Kin, p). Before calling solve yrocedure, the dependency graph bas
been brought up to date to include (Kin, p) (which is guaranteed not to be in the domain of
the dependency graph before that update). (Kin, p) can be removed from the domain of the
dependency graph during the execution of the loop if a pair it is depending upon is updated.
The very first statement of solve _ call, the widening operation, bas also been enhanced to

cape with the dynamic contexts; these changes will be explained later on.

The procedure solve_proced:are recursively salves each of the clauses defining the
procedure p. The condition clause(pr) is true when pr consists of only one single clause.
The statement c.s:êc := pr decomposes pr into its head and its tail. Recall that the proce
dure also contains an optimization which amounts to test sure non termination or sure exe
cution of a eut in the first clause. In that case the remaining part of the procedure is not
executed.

According to the SLD-Resolution mechanisms, a clause is always executed within the
failure context of the former one, except for the very first one which is executed within the
output context of the previous resolvent - it is obviously assumed that the clauses con
cemed define the same procedure. That is why, solve yrocedure recursively calls itself
with the tuple Kin whose dynamic input context nin bas been replaced by the failure of the
previous clause. Besides concatenating the output substitutions sequence of the current
clause with the output of the remaining ones, we also accumulate the output and failure
contexts of ail the clauses defining the current procedure. Note that, for accuracy purposes,
we distinguish from now on two kinds of failure context: the one before a eut bas been exe
cuted ncut and the one after the execution of a eut 71:rai!ure - see solve _ body.

The procedure solve_clause executes a single clause on an input pair (Kin, p) and
retums an abstract tuple 'with eut information' Koutc representing the execution of the
clause on that input pair. The procedure first transforms the substitution to an abstract se
quence whose substitution partis the input substitution extended with the variables occur
ring in the body of the clause. Afterwards it executes the body of the clause further decom
posed in a series of prefixes and terminales by restricting the resulting sequence to the vari
ables occurring in the head of the clause.

The procedure solve_body is an enhanced version of the procedure first presented in
the previous chapter. It now receives a tuple Kin instead of an abstract substitution and it
retums a tuple Koutc instead of an abstract substitutions sequence Cout· Recall that the pur
pose of the procedure is to process each literai in the body of the current clause accordingly
to the SLD-Resolution, i.e. from left to right. The condition literaJ.(body) is true if body
is constituted of a single literai; the statement p:êc.l:=body decomposes body into its
rightmost literai and its prefix. The condition nt(Cout) amounts to test sure non termina
tion, and in this case there is no need to consider the following literais.

Generic Abstract lnterpretation Algorithm

procedure solve_clause(in Kin, p, c, suspended; out Kout
0

; inout sat, dp)

let Kin be (Pin, '/tin, 1tredo) and Koutc be (Cout• 1tout, 1ti...uure• 1tcut) do begin

Cout:= EXT_NOCUT(c, Pin);

salve body(Kin, p, body(c), suspended, Kout, sat, dp);
- C

Cout:= RESTRC(c, Cout);
if first _ literaJ.(c) is ! then

end;

procedure solve_body(in Kin, p, body, suspended; inout K0 ut
0

, sat, dp)

let Kin be (Pin, '/tin, 1tredo) do begin
if literal(body) then begin

solve_literal(Kin, p, body, suspended, Kout
0

, sat, dp);

Kout
0
:= Kout

0
{7tcut ~ J..,,}

end else begin
pfx . .e := body;

~edo:= J..,,;
let Kout be (Cout• 1tout• 1ti...uure• 1îcut) and K~ut be (C~ut• 7t~ut• ~ure) do begin

C

repeat
7t~edo:= ~edo;
solve_body((Pin, 7tin, 7t~edo), p, pfx, suspended, Koutc• sat, dp);

if nt(Cout) then
K~ut:= (Cout, J..,,, J..,,)

elsebegin
C~ut:= Cout;

solve_literal((Pin, 1tout• 1tredo), P, .e , suspended, K~ut, sat, dp) ;

if .e is not ! then
~edo:= ~ure

end;
~edo:= 7t~do y' ~edo

until 7t~edo = ~edo;
1tcut:= [if previous _ liter al(.e) is ! then 1tcut u ~ure else 1tcut] ;

Kout
0

: = (C 'out, 7t~ut, 'ltt&llure • 1îcut)

end
end

end;

115

116 Chapter 6 Abstract lnterpretation of Full Prolog

This procedure must be seen as a support for executing the literals in the body of the
current clause p. Indeed you must understand clearly the interactions between this proce
dure and selve_ literaJ.. When a literal allers the context upon which it is executed, the
following one (the one to the right) must take into account this context change.
selve_ literaJ. will effect the change but, making a literal execute into the right context is
the job of selve_ body. A way to achieve this is to make each literal relying on the literal
to its left. That is what selve_ body does when recursively executing the literals one at a
lime. Each literal is 'embedded' inside its prefix of literals, enforcing this way dependen
cies between literals. This embedding allows to propagate the context from a literal to the
next one, i.e. the one to its right, when the recursive calls are unwound.

Moreover each literal is considered as a fixpoint. Indeed the core of the procedure is en
compassed within a repeat-until loop. The base inductive case, that is the last literal of
the body, is an exception to the 'local fixpoint rule' for no literal depends on it, so we can
consider that it reaches immediately its fixpoint value. Besides, as it is the last literal we
are sure there is no need to have an 'after eut failure'. Nevertheless, the purpose of the
repeat-until loop is the same as the one in the selve procedure: to know the most accu
rately as possible the contexts associated with each of the literals forming the body. Simi
larly to the top goal, a body must have been first considered before entailing any backtrack
ing. That is why all the literals are considered at first with a bottom dynamic contex4
meaning that we are collecting information about the first execution of the body and hence,
backtracking is still impossible. Once the last literal9 bas been reached, backtracking be
cornes an eventuality, we can therefore recover the backtracking context of the whole clause.
We are now able to collectas much information as possible about the sequence of redo con
texts of the clause. Note that the second call to selve_ literaJ. clearly demonstrates that
each literal is executed within the output context of ils immediate neighbor literal, that is
the one to its left

The final results of the clause are the substitutions sequence and the output context re
sulting from the whole body. The resulting failure context is more subtle. Recall that the
failure context is now split in two distinct elements: a 'before eut failure' n 1ai!un: and an 'after
eut failure' n cui· When a eut is executed, we will only backtrack as far as the eut, that is why
the failure context - the one that would induce backtracking - of the literal above the eut
can be forgotten, but must be propagated when it is not a eut. Hence the value of n~do is
submitted to a condition. Moreover, to prevent loosing the failure context existing at the
level of the eut literal, we collect it in 1t0u1 - after the repeat-until loop - so that, the
complete failure context of the clause could be computed in selve _procedure, by collect
ing each of fragments of the split failure dynamic program, i.e. 7trai!un: and 7tcui· Similarly, the
last condition in selve_ clause bas been added to prevent loss of the failure context asso
ciated with the eut literal, since selve_ body fails to do so in the case where the first literal
of a clause is a eut.

The procedure solve_literal executes a literal by choosing the right operation to
perform accordingly to its form . If the literal is a eut primitive, only the AI_ OUT operation
is performed, otherwise the execution of a literal requires three main steps.

• The computation of an abstract substitution representing all the concrete substitutions
in Cout furthermore restricted to the variables occurring in the literal: this is done by the
operation RESTRG.

9 In a concrete computation, maybe we would not have to reach the last literal before
backtracking, but at the abstract level, it is reasonable to do so, since we do not follow
the actual execution mode! of Prolog, but rather want to collect at the same lime as much
information as possible.

Generic Abstract lnterpretation Algorithm

procedure solve_hteral(in Kin, p, 1, suspended; inout Kout, sat, dp)

let Kin be (Pin, !tin, n,.edo) and Kout be (Cout, 1tout, '1ît&11ure) do begin
if i is ! then

Kout:= AI_ OUT(Kout)
elsebegin

K;,,:= Kin {Pin~ RESTRG(i, SUEST(CO\lt))};

switch i of
case~= Xk :

K~ut:= AI_ V AR(K;,,);

case~=/(...):
K~ut:= AI_FUNC(K;,,, /);

case asserta, assertz :
K~ut:= AI_ASSERT(K;,,);

case retract :
K~t:= AI_ RETRACT(~);

case q(...) :
solve_call(K;,,, q, suspended, sat, dp);

K~ut:= sat(K;,,, q);
if (Kin, p) E dom(dp) then

ADD_DP(Kin, p , K;,,, q , dp) ;

otherwise :
salve_ builtin _ liter al(K;,,, f. , K~ut)

end;
let K~ut be (C~ut• 7t~ut, ~ure) do

Kout:= (EXTGS(i, Cout, C~ut), 1t'out, 1t'lailure)
end

end;

procedure solve_dynamicyrocedure(in Kin, p ; out Kout)

begin
let Kin be (Pin, !tin, n,.edo) and Kout be (Bout, 1tout, '1ît&11ure) do

if 1tin = 1-,, then
Kout:= ((.1. , 0, 0, st), l_,,, l_,,)

else
if p E dom(7rin) then begin

Bout:= S_COMBINE(Pin, 7rin(p) , suc_unif, failure, success);
let yP E definite(7rin) and pred(yp)=p be (P, m, M) do begin

¾,:= 1tin {yp ~ (P, max:imum(l, m), M)};

1t0 ut:= [if failure then 1-,,

end;

else if M = 1 then n;,,
else ¾, u n,.edo]

n';,,:= ?tin {7rin(undef) ~ (.1., 0, 0)};
'1tt&Uure:= [if failure then 7tin

endelse

else if success then n,.edo

else if suc - unif then 7t~ u TI.,.edo

else 1tin u n,.edo]

Kout:= ((.1., 0 , 0, st) , l_,,, 7tin)

end;

117

118 Chapter 6 Abstract lnterpretation of Full Prolog

• If the litera! is concemed with unification, the operations AI_VAR or AI_FUNC are
performed, depending on the form of the litera!. The litera! can also be one of the sys
tem predicates asserta, assertz or retract. If it is a goal then procedure solve _ caJ.l
is recursively called and afterwards the result is retrieved in sat. Moreover, if (Kin, p)
is in the domain of the dependency graph it is necessary to add a new dependency; oth
erwise it means that (Kin, p) needs to be reconsidered anyway and no dependency
needs to be recorded. If the litera! is of none of these three forms, then
solve _ bu.iltin _ liter al is called and does the same job as all the procedures appended
to solve _ clause to handle the system predicates (see [BM94]).

• The propagation of the result of the litera! to the variables occurring in the body of the
clause is made by the EXTGS operation.

The procedure solve_dynamic_procedure is in charge to execute a dynamic fact
within its dynamic context, that is the input one. If the input context is bottom, that means
that we would face a problem in a concrete computation. Therefore, the dynamic clause
will surely not produce any result, we thus propagate this situation and return 1-.c, that is
((_l, 0, 0, st), l..,,, 1..,,). On the other band, if the fact bas not been asserted yet, that is does
not belong to the domain of ¾i, we are sure the execution will fail and will not produce any
result.

On the other band, if the fact bas already been asserted, the result that its execution will
produce is computed by the unification operation S _ COMBINE, and both its resulting fail
ure and output contexts depend upon this result. If the unification surely fails - see the
definition of S _ COMBINE -, it is obvious that the output context will be l..,, to reflect this
failure and that the failure context will be the one in which it fails, that is n in. If there is at
most one clause defining the fact, the execution will surely give one result. The output pro
gram will thus be the input one and will moreover reflect the fact that there is one and only
one result - the output program will contain at least and at most one clause defining p.
Otherwise, if there are more than one clause defining p, we have to take into account the
fact we could be in a backtrack.ing stage.

Similarly, if the clause will surely produce one and only one result, the failure context
has to be the redo one, for, only it could lead to a later failure. If we are not sure there will
always be a result, then we must take into account both contexts, 7tin and n,.do· However, if
there may be concrete computations where the dynamic fact fails, it should be stated that the
input context may not even contain a general clause, susceptible to define the procedure p .
lTitimately, if we can know nothing precisely, nor sure failure, nor sure success or even both,
we retum a failure context being the as general as possible.

Termination

The use of widening is useful to limit the number of abstract inputs to be considered. In the
case of infini te domain, the algorithm may not terminate. To guarantee the termination, the
algorithm relies on a widening technique. The intuition behind this is that an element can
not be refined infinitely often.

Each time a call (Kin, p) is encountered, the last element of the form (K~, p) inserted
in the suspended set (which should be considered as a stack) is searched. If such an ele
ment exists, the computation continues with (K'in V Kin, p) instead of (K'in, p) ; otherwise
the computation proceeds normally.

This processing takes place at the beginning of the procedure solve _ caJ.l and guaran
tees that the elements in the suspended stack with the same predicate are always increasing.
The WIDEN operation can be defined as follows:

Examples

function WIDEN(in K1n, p, suspended): (~\,,, n\n, 7t~edo)
begin

Kf,,:= GET_PREVIOUS(p, suspended);

let Kin be (~1n, 1tin, 1tredo) and KP,, be <~fn. n:>n. ~edo) do begin

P\n:= Pfn U P1n;
n\n:= n:>n V 7tin;

7t~edo:= ~edo V 1tredo
end

end;

119

The function GET _ PREVIOUS retums the tuple Kf,, of the last pair (Kf,,, p) inserted in
the stack suspended or (.l, .l.,,, .l.,,) if there is no such pair.

Examples

First example: counter implementation

Let us reconsider the program depicted at Figure 6.1. We now give some fragments of an
execution trace produced by our implementation. The program bas been analyzed with the
query '+- count(Va.r)'. The final result is first presented to give us an general idea. As
we could expect, we see that there is an empty input context, and that each of the three
other contexts contain one and only one dynamic fact, c/l. Moreover we also see that the
program will produce one and only one result and that it surely terminates. To give you an
idea of the number of iterations necessary to analyze this program, we also mention the
number of iterations performed by each procedure. Note that these numbers are that low
due to some optimizations which are unfortunately outside the scope of this report.

INPUT DYNAMIC: empty
REDO DYNAMIC:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min=l, max=l >

OUTPUT DYNAMIC:
<c/1>: (Ground(l):c(Ground(2)))

< min= l, max=l >
FAILURE DYNAMIC:

<c/1>: (Ground(l):c(Ground(2)))
< min=l, max=l >

count (Ground(1))
< min=l, max= l, ST>

loops selve :2
caJ.l :5
procedure :7
prefix : 34

Now, let us investigate the execution trace. ln the following, the 'DYNAMIC BAT' pro
grams denotes the programs such as they are stored in the set of abstract tuples. Each time
we enter the procedure selve_ body, the prefix of the current literai is displayed since, re
call, a clause body is decomposed in series of prefix in order to be executed. Note that the
current iteration of the procedure selve is mentioned.

120 Chapter 6 Abstract lnterpretation of Full Prolog

We skip the first series of embedded prefixes of literais until the second assert predi
cate; you clearly see that the fact asserted is ground. The next literai executed is obviously
the fail system predicate where you clearly see the effect of the failure: we fail in the input
context.

SOLVE: LOOP #1

DYNAMIC SAT INPUT: empty
DYNAMIC SAT REDO: bottom
DYNAMIC SAT OUTPUT: bottom
DYNAMIC SAT FAILURE: bottom

CALLIN:
DYNAMIC INPUT: empty
DYNAMIC REDO: bottom

PROCEDURE IN, CLAUSE #1 <count/1>:
DYNAMIC INPUT: empty
DYNAMIC REDO: bottom

CLAUSE/EXTC:
DYNAMIC INPUT: empty
DYNAMIC REDO: bottom

BODY IN:
DYNAMIC INPUT: empty
DYNAMIC REDO: bottom

asserta(c(0))
p(_)
retract(c(N))
M:=N+l
asserta(c(M))
fa.il

BODY IN:
DYNAMIC INPUT: empty
DYNAMIC REDO: bottom

asserta(c(O))
p(_)
retract(c(N))
M:=N+l
asserta(c(M))

CALL ASSERT:
DYNAMIC INPUT: empty
DYNAMIC REDO: bottom

EXIT ASSERT:
DYNAMIC OUTPUT:

<c/1> : (Ground(l):c(Ground(2)))
< min=l, max= l >

DYNAMIC FAILURE: bottom

BODY OUT:
DYNAMIC OUTPUT:

<c/1> : (Ground(l):c(Ground(2)))

Examples

< min=l, max:=l >
DYNAMIC FAILURE: bottom
DYNAMIC FAILURE eut: bottom

asserta(c(O))
p(_)
retract(c(N))
M:=N+l
asserta(c(M))

CALLFAIL:
DYNAMIC INPUT:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min=l, max:=l >

DYNAMIC REDO: bottom

EXIT FAIL: bottom
< min=O, max:=0, ST >

DYNAMIC OUTPUT: bottom
DYNAMIC FAILURE:

< c/1 > : (Ground(1):c(Ground(2)))
< min=l, max=l >

121

In the following, the body of the current clause is reconsidered since the redo context bas
changed. However, this iteration is basically the same as the previous one, that is why we
only give the output produced just before the execution of the system predicate fail.

BODY IN:
DYNAMIC AOC INPUT: empty
DYNAMIC AOC REDO:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min=l, max=l >

UNIF-FUNC 0
UNIF-FUNC c

asserta(c(O))
p(_)
retract(c(N))
M:=N+l
asserta(c(M))

BODY OUT:
DYNAMIC OUTPUT:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min=l, max=l >

DYNAMIC FAILURE:
< c/ 1 > : (Ground(1): c(Ground(2)))

< min=l, max=l >
DYNAMIC FAILURE eut: bottom

asserta(c(O))
p(_)
retract(c(N))
M: = N+l
asserta(c(M))

CALLFAIL:

122 Chapter 6 . Abstract lnterpretation of Full Prolog

DYNAMIC INPUT:
< c/1 >: (Ground(1):c(Ground(2)))

< min=l, max=l >
DYNAMIC REDO: bottom

EXIT FAIL:
DYNAMIC INPUT:

< c/1 >: (Ground(1):c(Ground(2)))
< min=l, max=l >

DYNAMIC REDO: bottom
DYNAMIC OUTPUT: bottom
DYNAMIC FAILURE:

BODY OUT:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min=l, max=l >

DYNAMIC INPUT: empty
DYNAMIC REDO: bottom
DYNAMIC OUTPUT: bottom
DYNAMIC FAILURE:

<c/1>: (Ground(l):c(Ground(2)))
< min=l, max=l >

DYNAMIC FAILURE eut: bottom
asserta(c(O))
p(_)
retract(c(N))
M:=N+l
asserta(c(M))
fail

CLAUSE/RESTRC: bottom
< min=O, max=O, ST >

DYNAMIC OUTPUT: bottom
DYNAMIC FAILURE:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min=l, max=l >

DYNAMIC FAILURE eut: bottom

lmmediately follows the result of the first clause after the first iteration. Obviously the
clause produces no result because of the fail system predicate.

PROCEDUBE OUT, CLAUSE #1 <count/1>: bottom
< min=O, ma.x=O, ST >

DYNAMIC OUTPUT: bottom
DYNAMIC FAILURE:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min=l, max= l >

DYNAMIC FAILURE eut: bottom

For the second clause, since it contains only one litera!, we immediately expose its execu
tion. The input context of this clause is obviously the failure of the previous one, and
therefore the clause surely succeeds since there is one asserted clause in the input context.

Examp/es

PROCEDURE IN, CLAUSE #2 <count/1>:
DYNAMIC INPUT:

< c/1 >: (Ground(1):c(Ground(2)))
< min=l, max= l >

DYNAMIC REDO: bottom

CALLGOAL: (Var(l))
< min=l , max= l , ST>

DYNAMIC INPUT:
<c/1 >: (Ground(1) :c(Ground(2)))

< min=l , max=l >
DYNAMIC REDO: bottom

EXIT GOAL: (Ground(l))
< min=l, max= l, ST>

DYNAMIC INPUT:
< c/ 1 > : (Ground(1): c(Ground(2)))

< min= l, max= l >
DYNAMIC REDO: bottom
DYNAMIC OUTPUT:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min= l , max=l >

DYNAMIC FAILURE: bottom

PROCEDURE OUT, CLAUSE #2 <count/1> : (Ground(l))
< min= l, max= l, ST>

DYNAMIC OUTPUT:
< c/ 1 > : (Ground(1) : c(Ground(2)))

< min=l, max= l >
DYNAMIC FAILURE: bottom
DYNAMIC FAILURE eut: bottom

ADJUST: (Ground(l))
< min= l, max=l , ST>

DYNAMIC OUTPUT:
< c/ 1 > : (Ground(1): c(Ground(2)))

< min=l , max=l >
DYNAMIC FAILURE: bottom

123

It is worth noticing that the redo context used in selve_ call is the previous redo widened
by the output context produced during the first iteration. Note that the firs t clause will pro
duce the same result, we therefore omit its execution trace. lndeed the same redo context
was taken into account previously.

SOLVE: LOOP #2
DYNAMIC SAT INPUT: empty
DYNAMIC SAT REDO: bottom
DYNAMIC SAT OUTPUT:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min= l, max= l >

DYNAMIC SAT FAILURE: bottom

CALLIN:
DYNAMIC INPUT: empty
DYNAMIC BEDO:

124 Chapter 6 Abstract lnterpretation of Full Prolog

< c/ 1 > : (Ground(1): c(Ground(2)))
< min=l, ma.x=l >

PROCEDURE IN, CLAUSE #1 <count/1> :
DYNAMIC INPUT: empty
DYNAMIC REDO:

<c/1>: (Ground(l) :c(Ground(2)))
< min=l, ma.x=l >

PROCEDURE OUT, CLAUSE #1 <count/1>: bottom
< min=O, ma.x=O, ST >

DYNAMIC OUTPUT: bottom
DYNAMIC FAILURE:

< c/1 >: (Ground(1):c(Ground(2)))
< min=l, ma.x=l >

DYNAMIC FAILURE eut: bottom

For this second clause, the input context bas cbanged, tberefore, we give, still briefly, its
execution trace. Note that the result is not fundamentally different, except the existence of a
failure context.

PROCEDURE IN, CLAUSE #2 <count/1>:
DYNAMIC INPUT:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min=l, ma.x=l >

DYNAMIC REDO:
< c/1 >: (Ground(1):c(Ground(2)))

< min=l, ma.x=l >

CALL GOAL: (Var(l))
< min=l, ma.x=l, ST>

DYNAMIC INPUT:
<c/1>: (Ground(l) :c(Ground(2)))

< min=l, ma.x=l >
DYNAMIC REDO:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min=l, ma.x= l >

EXIT GOAL: (Ground(l))
< min=l, ma.x=l, ST>

DYNAMIC OUTPUT:
< c/ 1 > : (Ground(1): c(Ground(2)))

< min= l , ma.x=l >
DYNAMIC FAILURE:

< c/ 1 > : (Ground(1): c(Ground(2)))
< min= l, ma.x= l >

PROCEDURE OUT, CLAUSE #2 <count/1> : (Ground(l))
< min=l, ma.x=l, ST>

DYNAMIC OUTPUT:
< c/ 1 > : (Ground(1): c(Ground(2)))

< min=l , ma.x=l >
DYNAMIC AOC FAILURE:

< c/ 1 > : (Ground(1): c(Ground(2)))

Examples

< min=l, max=l >
DYNAMIC AOC FAILURE eut: bottom

125

ADJUST: (Ground(l))

Figure 6.5
The Fibonacci
rewritten to com
ply with our
framework.

< min=l, max=l, ST>
DYNAMIC OUTPUT:

<c/1 >: (Ground(1):c(Ground(2)))
< min=l, max=l >

DYNAMIC FAILURE:
<c/1 >: (Ground(1):c(Ground(2)))

< min=l, ma.x=l >

Second example: Fibonacci function

Let us also reconsider the Fibonacci program first depicted at Figure 1.5, and now rewritten
to comply with our frameworks requirements, Figure 6.5. We do not give an execution
trace but only the final result of the abstract execution.

fibonacci(X,Y):-
call(lemma(X,Y)), !.

fibonacci(0, 1).
fibonacci(1, 1).
fibonacci(N,R):-

N >= 2,
Nl is N-1,
fibonacci(Nl ,Rl),
asserta(lemma(Nl ,Rl)),
N2 is N-2,
fibonacci(N2 ,R2),
Ris Rl+R2.

The abstract interpreter can concludes the program is deterministic since it produces zero or
one solution, whicb is moreover ground. Of course, there can be an infinity of asserted facts
because we cannot conclude exactly bow many facts will be asserted since it depends upon a
particular concrete execution.

DYNAMIC SAT INPUT: empty
DYNAMIC SAT REDO:

<lemma/2 >: (Ground(1):lemma(Ground(2) ,Ground(3)))
< min= O, infinite >

DYNAMIC SAT OUTPUT:
<lemma/2> : (Ground(1) :lemma(Ground(2),Ground(3)))

< min=O, infinite >
DYNAMIC SAT FAILURE:

<lemma/2 >: (Ground(1) :lemma(Ground(2),Ground(3)))
< min=O, infinite >

126

Table 6.1
Statistics about
the SAT.

Chapter 6 Abstract lnterpretation of Full Prolog

fibonacci (Ground(1), Ground(2))
< min=0, max= 1, PT> <Xl ,GEQ_ CST,O>

loops salve : 2
call : 41
procedure : 144
prefix : 634

time: 1.36

To demonstrate the accuracy of the analysis, let us present some figures detailing, among
other things, the number of items created in the sat, as the number of procedures or calls
which are deterministic, surely fails, surely succeeds and so on. .. In fact you will see that
we have the best results possible to have with respect to our framework.

predicates stable foundation SAT

fibonacci/2 13 4 14

totals 13 4 14

means 13 4 14

Table 6.2 Input predicates
Input/Output pat-

Output predicates

terns. fibonacci/2: (Ground, Var)

Table 6.3 Procedures
ProceduresCalls
statistics. deterministic 1

failing 0

successful 0

looping 0

sure terminating 0

inifinity of solutions 0

0

total procedures 1

Table 6.4 Input
Modes statistics.

Ground 1 Bottom

NoVar 0 Ngv

Var 1 NoGround

Gv

Any

Total 2 Total

fibonacci/2: (Ground, Ground)
< min=0, max=l , PT>

Calls

deterministic 4

failing 0

successful 0

looping 0

sure terminating 0

inifinity of solutions 0

0

total procedures 4

Output

0 Ground 2 Bottom 0

0 NoVar 0 Ngv 0

0 Var 0 NoGround 0

0 Gv 0

0 Any 0

0 Total 2 Total 0

Experimenta/ resu/ts 127

Experimental results

Figure 6.6
Comparison be
tween the Execu
tion times.

Let us now present some experimental results of the implementation of the new abstract in
terpretation framework. As mentioned, to our knowledge there exists no other framework
capable to analyze full Prolog (with system predicates assert and retract). We thus can
not compare the efficiency of our results with another framework. Nevertheless we try to
give an idea of the effect of the newly implemented features on the performance of the al
gorithm.

First we compare the performance of the previous version of the abstract interpretation
algorithm with the new one by executing both on logic programs that do not contain one of
the system predicates assert or retract.

1.8
1.6
1.4

'ii, 1.2
,s
GI 0.8
E
;i 0.6

0.4
0.2

0
u l - -lij C "§ "' ~ i C u .!!1 C •= (l)

.8
(l) ro o.. "' 3l :, ·c 8: () .:,,:_ tT :::, :::,

(li tT

benchmarks

L.'\1 Original algorithm ■ Algorithm for full Prolog

As you can see, the overhead in execution time is small for all benchmarks, except for
bayer. The explanation is that this benchmark uses the meta-call. Indeed, our algorithm
implements some optimization techniques and in particular detects pure predicates stati
cally before the execution of salve_ call, i.e. predicates which use neither directly nor indi
rectly the system predicates assert or retract. When a meta-call is used in a clause, the
static analysis automatically considers the predicate defined by this clause as not pure. For
this reason, the optimizations implemented for pure predicates do not work for Boyer.
Note, that a more refined static analysis of the program èould detect cases for which we are
sure that the meta-call will never have a dynamic predicate as its argument (for instance if
the program does not contain any assert or retract at all).

Consider now two Prolog programs computing the Fibonacci function. The first one is
depicted at Figure 1.5. It uses a memo-function to save the results of subcomputations and
avoid unnecessary computations. The second one is depicted at Figure 6.7. The only dif
ference between the first and the second program is that the latter does not make use of the
memo-function, what makes it Jess efficient.

128

Figure 6.7
Fibonacci program
without dynamic
predicates.

Table 6.5
Different execu-
tions on Fi-
bonacci.

Figure 6.8

Chapter 6 Abstract lnterpretation of Full Prolog

fibonacci(0,1).
fibonacci(l, 1).
fibonacci(N ,R): -

N>=2,
Nl := N - 1,
fibonacci(Nl, Rl),
N2 := N - 2,
fibonacci(N2, R2),
R:=Rl +R2.

We performed the following executions: the second program with the original version of
the algorithm described in [BM94]. (line FibOA), the second program with the new algo
rithm (line FibNA) and the first program with the new algorithm (line FibMem.NA). For
each execution, we show the number of iterations in the procedures selve, selve_ call,
selve _precedure, selve _prefix and the execution lime, respectively.

Benchmark solve call procedure prefix lime (ms)

FibOA 0.03

FibNA 1 3 9 27 0.03

FibMemNA 2 41 144 634 1.20

As you can see there is no difference between the execution limes of the program with
out memo-function for both versions of the algorithm. But the execution lime explodes for
the analysis of the program using the memo-function and this although the only difference
between both programs is the presence of system predicate assert. If we compare the
number of iterations in the different procedures, we discover the source of the important
execution lime overhead. ln procedure selve we have to iterate two limes now (since at the
first iteration we do not know the recto pro gram) and in procedure selve _prefix we have
to iterate much more to compute the local fixpoints, which are not immediately reached
anymore, since the recto program bas to be approximated by the successive iterations.

Let us tak:e a look to the two results depicted in figure Figure 6.8. cs is a benchmark
that was already performed on the original framework (see [BM94]). In fact, in cs we had
to simulate the system predicates assert and retract, since the original framework was
not able to treat them. ln cs _ real we use these system predicates instead of simulating
them. This allowed us to improve the precision of the results. Indeed, as you can see, for
es_ real the anal y sis concludes that there is at most one solution, where for cs it cannot
give an upper bound for the number of solutions. Note, that this gain in precision entails an
important consequence on the performance.

CS

pgenconfig (Ground(l))

cs_real

< min=0, infinite, PT >
lime: 1.75

pgenconfig (Ground(l))
< min=0, max=l , PT>
lime: 7.18

Consider now the Table 6.6. We give it just as an illustration, because we cannot com
pare it to other frameworks. It shows you for four benchmarks the number of iterations in
the procedures selve, selve_ call, selve _precedure, selve _prefix, the number of lin es

References

References

129

of the program and the execution lime. Mastermind is program taken from [STE94]. plm is
a compiler.

Benchmark

classy

mastermind

plm

tp

Table 6.6

[BM94]

solve call procedure prefix lines lime (ms)

2 149 350 1046 189 2.93

2 138 215 637 77 2.66

2 3021 14457 55289 1488 263.40

1 46 68 134 36 0.24

C. Braem, S. Modart; Abstract interpretation for Prolog with eut: cardi
nality analysis; Mémoire de licence et maîtrise en informatique, June
1994.

Conclusion

In this report, we bave described the implementation of a novel framework for the abstract
interpretation of full Prolog including not only the system predicates asserta, assertz and
retract, but also arithmetic and meta-predicates, other built-ins like abolish or
retractall and last but not least the eut primitive. The only limitation of our framework is
that it is notable to treat the assertion and retraction of general clauses. The main practical
and theoretical results related to this researcb are presented in this report. The framework
was instantiated to a new abstract domain allowing us to extend the class of programs that
can be analyzed by the abstract interpretation algorithm, to any kind of programs system
predicates.

The new framework bas a small execution overbead in comparison with the previous
one for pure programs, i.e. programs not using the system predicates asserta, assertz and
retract. For programs using these system predicates, the overbead of execution time is
more important but still acceptable. Indeed, the performance of the abstract interpretation
algorithm is reasonable even for large programs (counting up to 1500 lines and using in
tensively asserta, assertz and retract). But it could still be improved for some classes
of programs by some optimization techniques, wbicb we bad not the time to implement.
This could be the abject of future work.

Moreover the abstract domain keeps the same precision as the previous one for pure
programs. For the new class of programs that can be processed, the precision is also very
good: in many cases, we can derive groundness or determinacy.

IBtimately let us say, that it was very interesting to contribute to the researcb of Prolog
abstract interpretation. w_e never experienced as mucb motivation working on the resolu
tion of a problem in computer science.

131

