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Abstract

These years, a field of study derived from artificial intelligence makes a lot of noise. It is
the deep learning. These methods revolutionizes various domains due to its robustness when
treating unstructured data such as images, sounds or video. Applying those new methods
to sign language recognition could be valuable for the integration of deaf or hard of hearing
people in our societies. To do that, the laboratories of french Belgian sign language (LSFB-lab)
shared its expertise and provided us an important corpus of sign language.

This work aims to identify all the methods useful for solving this task and test them. The
output of this research is a software architecture facilitating the setup of experimentation and
the reuse of their components in order to create more easily other experimentation. This
architecture may be used in the future to build and compare the various methods identified.

Keywords : sign-language - deep learning - video recognition

Résumé

Depuis quelques années, une discipline liée à l’intelligence artificielle fait beaucoup parler
d’elle : Il s’agit du deep learning. Cette méthode a révolutionné de nombreux domaines grâce
à sa robustesse quant au traitement de données non structurées tel que les images, le son ou la
vidéo. Appliquer ces nouvelles méthodes à la reconnaissance de la langue des signes pourrait
s’avérer utiles pour l’intégration des personnes sourdes ou malentendantes dans notre société.
Pour ce faire, nous bénéficions de l’expertise du laboratoire de la langue des signes de Belgique
francophone (LSFB-lab) qui a constitué un important corpus au cours des dernières années.

L’objectif de ce travail est de recenser les méthodes pouvant aider à accomplir cette tâche et
de les tester. Cette recherche a mené à la conception d’une architecture logicielle permettant
de plus facilement mettre en place des expérimentations et réutiliser les divers composants de
celle-ci afin d’en créer de nouvelles plus facilement. Cette méthodologie pourra être appliquée
lors de la suite de ce travail afin de tester et comparer diverses approches.

Mots-clés : Langage des signes - deep learning - reconnaissance vidéo
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Chapter 1

Introduction

For people with impaired hearing and speech, sign language is the primary means of communi-
cation [36]. However, the sign language is not a common skill in our society. Thus, interpreters
are often needed during medical appointments, legal procedures or education. The develop-
ment of a software able to translate sign language to text could empower the disabled people
and increase their autonomy.

A translation algorithm is also necessary in order to create a dictionary allowing to search a
word based on a video of the associated sign. The conception of such a dictionary could be
critical for deaf born children for learning to read and write.

Since 2013, the laboratory of French Belgian Sign Language (LSFB-lab) based at the Univer-
sity of Namur decided to record a large amount of conversations in order to create a corpus
useful to analyze the language and its usage. They recorded 150 hours of videos. 15 hours of
them have been annotated: the annotation process is really slow and the amounts of people
skilled enough to perform this task is very low. The LSFB-lab hopes that the creation of a
translation software could help them to annotate their corpus.

This work is the continuation of the master thesis elaborated by Jeremy Lebutte and Anne
Smal [29] in 2017. In their work they investigated the feasibility of a piece of software able to
translate sign language automatically. They developed a solution and tested it on the LSFB
corpus. By analyzing all the errors made by their software they were able to highlight some
issues in the video captured and to propose some improvements for the capture of future
videos in order to ease the creation of a recognition algorithm.

The current work goes further by investigating the new methods developed in the past few
years for video recognition due to the popularization of machine learning techniques. The main
contribution is the development of a framework allowing us to setup and evaluate a method
with few code modification in order to quickly perform experiments with various different
methods. This work is divided into four parts :

The first part presents the advantages of deep learning in our case and describes all the
methods developed in the field of video recognition.

The second focuses on the contributions made. The requirements of the tools needed by the
LSFB-lab are presented and the infrastructure needed in order to support the creation of such
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a software is discussed.

The third chapter shows a concrete implementation of the proposed framework and the first
results thus obtained.

Finally, the last chapter provides insights about the future work that needs to be done in order
to build a reliable algorithm for sign language recognition.

1.1 Machine Learning Background

When a developer wants to design an algorithm his first task is to identify the issues the algo-
rithm should solve and then acquire the necessary knowledge to complete the task. Problems
could be as simple as sorting a list of numbers or computing the distance between two points.
It could also be more complex such as recommending products to customers based on their
previous purchases or making sure that all the systems of a rocket are ready for launch.

Even if those tasks are different, the creation process of algorithms solving them is always sim-
ilar. The engineer has to identify all the steps and conditions required in order to complete the
task and transcribe them into source code. In order to make an algorithm able to distinguish
apples from oranges or bananas, a developer could have written the following code :

If color is green:
result = "apple"

If color is orange:
result = "orange"

If color is yellow:
result = "yellow"

This simple algorithm may be enough to complete the task. But, sometimes, apples can be
red, if we want to handle this case we need to add another condition in our code. Another
annoying case is a green unripe banana. Currently, the algorithm will classify it as an apple.
To handle this case a condition looking at the shape of the fruit must be added, complicating
drastically our algorithm.

For very complex tasks, identifying and writing all the possibilities is so difficult that it became
more costly to design and maintain the algorithms than doing its process by hand.

Machine learning approaches are different. As indicated by the name the purpose of those
methods is to let the computer learn the rules and conditions required to complete a task.
To do that a lot of examples must be provided to the machine. Showing the examples to the
machine is called the training of the algorithm. The resulting representation of the problem
constructed by the machine is called a model. During this phase the algorithm will try to
predict the name of the fruit based on the information given. By comparing the predicted
output and the true label the machine learning algorithm can adjust its model in order to get
a behavior leading to less missclassifications.

Fig 1.1 shows an example for our fruit detection algorithm. There are plenty of different
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Figure 1.1: Training of a machine learning model for fruits recognition based on some criterion

algorithms available and selecting the best algorithm in order to train a correct model is often
the key to success.

Once the model is trained, it will be used in production in a real system where it will be
confronted to data that were not present in the training set. It should be able to handle
them as efficiently as the training data. This robustness to new data is called the model
generalization.

The model could be in three different state :

• Underfitting : The representation of the model is too simple and the model will not
generalize to new data. This state happen in the early step of the training when the
model have not seen enough data or if the data he saw was not representative of the
whole set. It could also mean that the chosen machine learning algorithm is too simple
for the manipulated data.

• Good fit : The model performs well and can generalize to new data.

• Overfitting : The representation of the model is too complex, this state happen when
the model trained too much on the same data. It can perfectly classify data from the
training set but its performance drops when confronted to other data. This could also
be the chosen machine learning algorithm. The number of parameters to optimize could
be too high making the model too complex for the data.

A graphical representation of these states is shown in fig 1.2. In order to detect and prevent
these phenomena the data available for creating a machine learning algorithm are divided into
two set. The training set, which will be used during the training of the model, and the test
set, which will be used in order to evaluate the model on data it never encountered during
its training. Comparing the two could help us identify the moment when the model reaches a
perfect fit. Over or under fitting cases should be examined in order to determine the cause of
this behavior.

The quality of a machine learning model is highly dependent of the quantity and diversity of
data used for the training. These data should be representative of what the model will handle
during its time in production and the quality of the data and their annotations is the corner
stone of a good model.
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Figure 1.2: Graphical representation of the over and under fitting state and the good fit repro-
duced from https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-
learning-and-how-to-deal-with-it-6803a989c76

1.2 Results Visualisation

This section aims to explain the visualisation used in this work to evaluate the machine
learning models developed. There are two of them. The first one is the confusion matrix, it is
a classical way to show the prediction of a model. The other visualisation is a plot that shows
how the data are distributed in a 2D space. Those visualisations are useful to diagnostic a
machine learning model.

1.2.1 Confusion Matrix

A confusion matrix is a visualisation of the test set comparing the true label of the data to
the prediction made by the model. Looking at a confusion matrix make it easier to figure
out which classes are often miss-classified. Fig 1.3 show examples of confusion matrix for our
machine learning model classifying bananas, oranges, and apples.

(a) InceptionV3 (b) VGG16

Figure 1.3: The image on the left is an imperfect confusion matrix. The image on the right is
a perfect confusion matrix
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A perfect confusion matrix means that the model always predicts the correct label. It is easily
recognizable because only the diagonal of the matrix contains values. This is the case for
the right image of the fig 1.3. Miss-classified data are represented by the value outside of the
diagonal. In the left image of the fig 1.3, an apple was classified as a banana. This information
is valuable when designing machine learning models.

1.2.2 Plotting the Data

The various parameters of a dataset could be displayed on a 2D scatter plot. This visualisation
could show us if the data are already separated or if some of them are mixed. Mixed data
requires a pre-processing or more powerful model to be classify correctly.

Fig 1.4 shows a scatter plot of the pedagogical dataset iris. This dataset contains information
about three different variety of iris flower. Each variety is associated with a colour. The blue
one is distinguishable from the other two. The green and orange one are mixed at some points,
making them difficult to predict.

Figure 1.4: 2D plot of the iris dataset. The green and orange points are mixed. This make them
difficult to classify. Illustration reproduced from https://www.datacamp.com/community/
tutorials/machine-learning-in-r

This kind of visualisation helps to determine which classes are more likely to be confused
before the training of a machine learning model. In order to plot a dataset with more than
two information on a 2D scatter plot, there is a popular dimension reduction called t-sne [33].
The algorithm reduces the dimension of a dataset by making sure that the distances of two
points in high dimension are preserved in the 2D representation. Making it a good choice for
visualizing datasets.
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Chapter 2

State of the Art : Video Recognition

The recent advances in image recognition allowed the automation of a lot of tasks that we
thought impossible to solve by a machine. Deep learning algorithms prove to be very good
at processing unstructured data, such as text, images and sound. Surprisingly, few works are
applying those new deep learning methods to the sign language recognition.

This chapter provides more insight about what is deep learning and why it could be useful to
try those methods in our case. An inventory of the methods developed for video recognition
will be made and a comparison of those methods will help us to chose which way to go when
experimenting those approaches on our sign language dataset.

In our case, the dataset use contains few data compared to the datasets used in other fields
of study, that is why we are also going to investigate approaches developed in order to train
an algorithm with few data. Those methods are referred to as one-shot learning.

We will also discuss all the evaluation metrics that could be use and why it is important to
chose it wisely.
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2.1 Deep Learning and Image Recognition

The creation of algorithms able to classify images from raw pixels is challenging. The classical
approaches for this task was to extract information from the images with techniques such as
SIFT [22] which detect keypoints in the image and their location, HoG [7] which use gradient
difference in the images to characterize it, etc. Then use these information, called features, to
predict the actual content of the images.

In order to compare the results of each methods, a challenge called Imagenet [8] was set up.
Imagenet is a dataset made of 14 millions annotated images distributed in more than 22.000
classes. Fig 2.1 show the performance reached by the top-5 algorithms on the Imagenet
challenge in the past few years.

Figure 2.1: Performance for the image net challenge. Each dots represent one method and its
score. Image reproduced from https://en.wikipedia.org/wiki/ImageNet

We can clearly see, in 2012, that one team beats all the others significantly. It was the first
time that deep learning algorithms were successfully used during this competition. No classical
methods was able to compete with these kind of algorithm and, since then, all the top team
at the Imagenet challenge use deep learning algorithms.

Now the question is how does deep learning methods vary from classical methods and why
are they so effective for image classification ?

Designing an algorithm using handcrafted features requires a lot of domain specific knowledge.
The features to extract in order to classify a tumor scan as cancerous or benign are not the
same used to classify images of cats or dogs. Thus, a lot of effort was put into feature extraction
and, despite these efforts, it was easy to miss some important features or to extract irrelevant
ones. Doctors may be able to tell if a tumor is cancerous but it is more difficult for them to
explain which observation led to this conclusion and it is even more difficult to translate their
reasoning into an algorithm.

To avoid these issues, there is a method called representation learning. Raw inputs are fed
to the representation model and it discovers the best features needed to perform a given
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classification task. These representations are usually called embedding. Deep learning networks
perform representation learning at various level [21]. The networks will learn which feature to
extract from the raw data. The extracted features will be used to determine the class of the
data.

The downside of this method is the computing power and the amount of data needed in
order to determine the correct feature to extract. Also, even if we do not have to focus on
the feature engineering anymore, a lot of work should be done in order to optimize the deep
learning architecture for our problem.

2.1.1 Convolutional Neural Network

Figure 2.2: Architecture of LeNet proposed by Yann Lecun and copied from [20]

The purpose of a convolution layer is to extract patterns from the images. A sliding window
called kernel is moved through the images and extract relevant information from it. The
application of a kernel on the input pixels is called a feature map. The parameters of the
kernel determine which feature it will extract. Those parameters are learned during the
training phase of the network. The only choices left to the designers of the network are the
number of kernels to apply and the size of the kernels. In LeNet, the first Convolution layer
consists of 6 kernels having a size of 5*5 pixels. Thus, the output of the first layer of LeNet
will give 6 features map having the same size than the input images and containing relevant
information extracted by the kernels. During the training phase, each kernel will learn to
extract different useful features. But the output is 6 times larger than the input. If we
perform directly another convolution, the size of the network will dramatically grow. That is
why each convolution layer is followed by a subsampling layer in the LeNet. The subsampling
layer will resume the information by reducing the resolution of the input images. Doing this
will affect the precise position of detected features in the images but the exact position of each
feature are not relevant to take a decision [20]. The subsampling layer also use a kernel for
reducing the resolution. In LeNet the first subsampling layer use a 2*2 kernel. It means that
the value of each pixel of the input images will be averaged in one pixel of the output images.

By stacking multiple layers of convolution and subsampling, the LeNet can learn which features
to extract. The network ends with classical fully connected layers to classify the image based
on these features. This approach is still the most used in the field of image recognition. The
AlexNet network had a similar architecture and modern image recognition model are still
made of a succession of convolution layer and Subsample layer (called Pooling layer)[28].
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2.2 Action Recognition and Sign Language Recognition with
Deep Learning

The problems of image recognition were quickly overcome by deep learning methods once the
hardware became powerful enough to handle complex convolutional neural networks. Video
recognition seems to be a natural extension of image recognition, but the progress made in
this field are much slower. Two factors could explain the difficulty gap between image and
video recognition

• Computational cost : 2D images are much lighter than a video which is a succession
of images (called frames). Processing video data take inevitably more time than process-
ing an image. A neural network designed for handling 2D images has less parameters
to optimize than a network that should handle multiple frames of a video to make a
prediction. These two aspects combine made the video data much more cumbersome to
manipulate.

• Temporal aspect : The order of the event is key information when it comes to in-
terpreting a video. The features extracted by the network should encode the motion
in addition to the 2D features characterizing each frame of the video. This constraint
makes it more difficult to design a network for video than for images.

To evaluate and train video recognition networks, various datasets have been created. The
most popular are :

• UCF-101[30] : It consists of 27 hours of videos. 13 000 clips are present in the dataset
and 101 classes are represented. It is one of the most popular datasets for benchmarking
model.

• Kinetics[15] : This dataset is made of 400 classes with 400 examples for each class. The
total number of video clips is 160 000 and each clip could have a length of 10 seconds
more or less. An extension of this dataset was proposed. It is called Kinetics-600 and
contains 600 classes with 600 examples for each[4].

Various approaches have been tried on this kind of datasets their results are used to compare
them. The existing architecture for video recognition could be separated into five categories
[5] as depicted in Fig 2.3

2.2.1 LSTM-based Approach

To capture temporal information, some network architecture uses LSTM layers. LSTM stand
for Long Short-Term Memory and was first introduced in 1997 [12] by Sepp Hochreiter. These
layers are useful when processing longs sequence of data. They are used in the various models
for speech recognition, writing recognition, etc. Therefore, it is not surprising that researchers
are trying to include them in solution tackling the problem of action recognition. LSTM layers
can retain information between two evaluations. Fig 2.4 show the flow of data in an LSTM
network A is an LSTM cell, Xt the input value and ht the output of the network. the A
layer has an output looping on itself allowing it to conserve a state between two evaluations.
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Figure 2.3: Classification proposed by J.Carreira and A.Zisserman reproduced from [5]

This loop allows the network to keep contextual data in a long sequence and, thus, use these
contextual data to provide better predictions.

Figure 2.4: Recurrent Neural Network illustration reproduced from colah’s blog http://
colah.github.io/posts/2015-08-Understanding-LSTMs/

For action recognition, Donahue and Hendricks[10] proposed an approach using LSTM coupled
with classical CNN methods. Each frame of the video passing through a classical CNN network
to produce an embedding of the image. This embedding passes through two LSTM layers that
will capture the sequence information and produce an output. This method allows us to reuse
a trained CNN model from image recognition challenge with pre-trained weight.

The Long-term Recurrent Convolutional Networks proposed by Donahue [10] was tested on
the UFC-101 dataset and achieved an accuracy of 68.2%.

2.2.2 Two Stream Approach

The idea behind these techniques is to divide the problem into two networks. Each network
focuses on a particular aspect of the action identification. The Simonyan and Zisserman
approach [27] uses one network to identify spatial features based on few full resolution images
and another network inspect the temporal flow of the video based on features extracted during
a pre-processing phase. The high-level architecture is shown in fig 2.5. This approach was
designed to reduce the computational complexity of the network while conserving enough
property of the temporal dimension to classify actions. As mentioned, the temporal stream of
the network use features as an input. Those features are obtained by using various classical
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pre-processing methods extracting different metrics from the raw video. Recently, a team
of researchers from Facebook released an architecture called SlowFast Networks [11]. One
network called the slow pathway work on full resolution images selected in the video frames
at a rate of 1 frame every 15 frames. The fast pathway will proceed more frames, typically 1
frame out of 2, at a lower resolution in order to focus on the temporal features. Only classical
convolution layers are used. They will learn during the training which features to extract
for classifying videos. The Facebook paper did not use the same metrics than the Simonyan
paper for the evaluation of their model. Thus, it is hard to tell which methods are the most
effective at the classification task.

Figure 2.5: Two stream network architecture proposed by Simonyan and Zisserman at NIPS
2014 reproduced from [27]

The accuracy obtained by the Two-Stream Convolutional Network proposed by Simonyan [27]
is 88% on UCF-101.

The Slow-Fast Network proposed by Feichtenhofer [11] was not evaluated on UFC-101. Its
accuracy on the Kinetics-400 dataset is 79%.

2.2.3 3D Convnet

The success of deep learning in image recognition is linked to the development of convolutional
layers. Thus, when it was time to focus on video recognition, a lot of researcher tries to find
a way to design a 3D convolutional layers performing the convolution on the temporal flow
too. As mentioned, the naive approach was not efficient and require a lot of computing power.
Effort has been made for reducing the complexity of these layers and they were able to achieve
competitive performances. In 2015, Du Tran [32] have developed C3D : A convolutional layer
able to extract information from a series of 2D images and conserving the sequence information
during the convolution.

The main advantages of the C3D layer is its versatility. Other techniques describe a whole
architecture, this technique is only a layer that could be placed in all the other architectures.
Therefore, it is possible to take the 427 layers of Resnet V2 and replace all the 2D convolution
by C3D layers. Doing so will have a catastrophic impact on the performances of the Resnet
network as C3D layers are inevitably more complex than classical convolution. No benchmark
comparing the C3D and classical 2D convolution performance were found.
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In a paper from 2017 [5], Carreira and its team made an important discovery. They prove
that it was possible to reuse the weights of models trained on 2D images to the same model
inflated with C3D. They took the Inception V1 model used for image recognition and replaced
all the 2D convolution by C3D. Then, they were able to take the weight of the model trained
on imagenet and reuse them in the C3D layer proposed by Tran [32]. This trick makes the
inflated Inception V1 model easier to train as it use the knowledge acquired when training on
imagenet.

It could be useful to add C3D layers in the architecture to improve the performance on video.
In term of accuracy performance, a model made of C3D built by Du Tran achieve a 82%
accuracy on the UFC-101 dataset [32]. On their side, Carreira achieved an accuracy of 95.6%
on UCF-101 by inflating pre-trained imagenet weight into C3D layers [5].

2.2.4 Conclusion

Since 2012 the landscape of machine learning applied on complex unstructured data was
disrupted by deep learning techniques. They have been very successful in various tasks such
as image recognition. More and more works are done in this field in order to solve challenges
always more complex.

Thus, a wild range of architecture and approach were developed each of these techniques
being more suited for some kind of problem. However, it is often challenging to determine
which method will be optimal for our case. A lot of iteration should be performed during
the design of the solution before reaching the correct architecture. These iterations are not
free. It requires man and computer power in order to design and train the algorithm. The
computation power needed in the case of video analysis is not negligible. The difficulty to
find correct video dataset and the power needed to get some good results are the two main
difficulties in the field of video classification. Reviewing the existing methods enable us to
identify the most successful approach. As shown in fig2.6 the Two-stream approach and the
inflated C3D are the ones leading to the best results. This approach should be tried in priority
when designing the architecture for our problem before considering the others.

Figure 2.6: Comparison of the accuracy score on the UFC-101 dataset [30]. The model shown
on this graph are: The C3D Network developped by Du Tran [32], the Inflated C3D model
proposed by Carreira [5], The Long-term Recurrent Convolutional Network from [10] and the
two-stream network of Simonyan [28].
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2.3 One-Shot Learning Methods

The main limitation of deep-learning methods is the amount of data needed to train a useful
network. Data gathering often requires the insight of an expert in the domain. This could lead
to extra-cost when designing a solution. In the LSFB context, we have a lot of annotated signs
instances but we also have a lot of different classes. Consequently, the number of examples
per sign is not huge.

These issues are well known and several methods have been developed to help deep learning
network to learn useful features to classify data based on few examples. In this chapter, we
are going to focus on relevant one-shot learning methods for deep learning.

2.3.1 Siamese Network

This method was introduced in 1993 by Jane Bromley [3] in the context of handwritten
signature recognition. The method developed can learn if two signatures are the same or
different based on various information such as the velocity of the pen, raw pixels, etc. The
training data is made of genuine signatures and forgeries made by relatives of the original
signer or total strangers. They achieved to detect 80% of the forgery with their architecture.
The high-level concept of the approach is illustrated by fig 2.7. There are two identical neural
networks trained to analyze the signatures passed as an input. The neural networks have
linked weight which means that the parameters are shared between the two models. This
ensures that each model constructed by the two networks are strictly the same and will react
the same way to a given input. The output of the model is an embedding of the signature in a
different feature space. In this feature space, we want all the matching signatures to be close
to each other. Each set of genuine signatures will create one cluster in the feature space, the
forgeries will be outliers in the space. The siamese network learns the feature space during the
training phase. The training consists to feed the siamese network with a pair of signatures.
The loss function will force the network to maximize the distance between the embedding of
two different signatures and minimize the spacing between two genuine signatures from the
same person.

Siamese network approach artificially increases the size of the training set by constructing a
pair of elements. The fact that the network does not predict a label but position the input
element in a feature space allows us to extend more easily the number of classes that the
network should be able to discriminate. Another happy side effect of the method is that we
can compute the embedding of a signature and store it in a database. The embedding could
later be used for comparison with a new signature.

Another paper used a siamese architecture with a deep-learning network[16] to solve a recog-
nition challenge based on the Omniglot Dataset[18]. It contains 1623 characters from 50
alphabets with 20 handwritten examples for each character. The authors reached the human
performance level with their approach. They also pointed out that an existing model could
be extended to take into account new classes with minimal retraining.

Applied on a more complex task such as face recognition, siamese networks needs to be coupled
with transfer learning methods to reuse an existing model to boost their performance.
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Figure 2.7: The idea behind siamese network reproduced from https://hackernoon.com/
one-shot-learning-with-siamese-networks-in-pytorch-8ddaab10340e

2.3.2 Triplet Loss

Triplet loss is an extension of the siamese network approach. The finality is the same as
the siamese network approach, a triplet loss architecture will build a feature space where it
is easier to discriminate the different classes. In a triplet loss architecture, there are three
identical networks with shared weight. The approach was first introduced in 2015 [26] to
create a feature space for face recognition applications. The network is trained with triplets of
input. In the case of face recognition, we will have 3 images. There is the anchor image, the
positive image which represents the same face then the anchor image and finally, the negative
image which represents a different face. During the training, the loss function will force the
algorithm to minimize the distances between the anchor and the positive while maximizing
the distances between the anchor and the negative. Thus, each iteration the neural network
learn how to differentiate and match faces. The training process is illustrated by Fig 2.8

During the training, a metric is used to determine the performance of the model and to
converge to the best solution. This metric is called the Loss function. In the case of triplet
loss the loss function is the following[26] :

Loss =
N∑
i

[‖f(xai )− f(x
p
i )‖

2
2 − ‖f(xai )− f(xni )‖22 + α]

where f is a function representing the neural network. f(x) gives the embedding computed
by the neural network for the input x, xa is the anchor image, xp is the positive image and xn
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Figure 2.8: Triplet loss training reproduced from Schroff’s paper[26]

is the negative image for each triplet i. The α is the margin allowed between the anchor and
the positive example. The margin ensures that each class of data will be correctly separated
in the embedding space.

To train our model, we need to create triplets of input. But, if the triplets created already
respect the constraint forcing the positive example to be closer to the anchor than the negative
one, the triplet will not be useful for training the model. If we create our triplets randomly,
during the early stage of the training, a lot of them will provide a useful example of negatives
instances too close to the anchor. But, as the training progress and the model is getting good
at separating some class, more and more of our random triplets will not help to train the
model.

A better algorithm for the triplet generation should be designed. This algorithm must use
the most advanced version of our model to only keep the triplet that it failed to separate
correctly. This will only keep the triplets helping the neural network to learn how to separate
the different classes effectively. The triplet selection could be done :

• After each epoch: The computation of the triplets occurs each time the model has
seen all the data provided in the training set. The model used to compute the triplets
is not the most advanced.

• After each batch: After each update of the model, the triplets are computed again to
benefit from the latest results.

Creating triplets after each batch is the most popular approach and helps the model to converge
faster [26][2].

During the conception of their facenet network, Schroff and his team [26] selected 40 faces from
the same person and construct pair of positive and anchor based on all the combination of
those 40 faces. Then, for each of these (xa, xp) duet they select the hardest negative example
define by :

argminxn
i
‖f(xai )− f(xni )‖22

But, after some experimentation, Schroff concludes that selecting only the hardest negative
could lead to premature convergence to local minima. Also the hardest negative is likely to
be the result of an error of labelling in the dataset. Finding the argminxn

i
also require to look

at all the negative examples present in the dataset which is time and resource consuming.
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To avoid all these issues, it is a better idea to chose the negative example according to this
formula [2] :

[‖f(xai )− f(x
p
i )‖

2
2 − ‖f(xai )− f(xni )‖22 + α] > 0

The formula ensures that the chosen negative example is inside the α margin of the anchor
example. Even if the negative is not closer to the anchor than the positive example, the
separation is not yet correctly done and requires more training of the algorithm to, hopefully,
occurs. Also, the formula allows us to create triplets without having to look at all the negatives
examples of our dataset.

Once the triplet model is trained, the evaluation is just a binary problem where the model
determines if a duet of input data represent the same or different signs. For each duet of test
data, the embedding is computed and each element are compared them to define if they are
the same or different. We have to choose a comparison metric and a threshold of distance
to classify correctly the duet. Classical metrics found in the literature[26][2] are Euclidean
distance or Cosinus Similarity.

Another way to evaluate the model without using is to predict the class of an embedding by
associating the evaluated sign to the label of the closest neighbour. If the clusters are well
defined, the closest neighbour should be another example of the same sign. By doing this, it
is easier to identify which signs are miss labelled.
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2.4 Evaluating Models

To compare the models produced, we need to agree on an evaluation metric that will be used
for each of our experiments. These metric musts be chosen carefully depending on what is
expected from the model and will univocally characterize the performance of our solutions.

There is 4 types of metrics enabling us to evaluate a model: The accuracy, the precision,
the recall and the F1 score. To explain the differences between each of these, we will take
look at a dummy example representing the predictions of a model on 100 instances from the
test set. These tables are called confusion matrix 2.1. The diagonal of the matrix represent
the correct predictions. The other cells are the ones containing the mistakes committed by
the model.

Predicted value
negative positive

Actual value negative 98 0
positive 1 1

Table 2.1: Result of the evaluation of a dummy model on the test set inspired by [13]

To compute the accuracy score of this model it is straightforward. The formula of the
accuracy score is [13] :

accuracy =
#Correctly classified instances

#Total instances

in our case, the accuracy of the model is 99%. The accuracy is not the perfect metric for all the
cases. If the negative and positive classes are not balanced, like in our dummy example, or if
the positives label is more critical to detect than the negatives one. For instance, if the model
is aimed to detect a deadly virus, you do not want the model to miss a positive example. The
other metrics provide solutions for each of these problems. To clarify the following formulas,
a name is given a to all the cells of the confusion matrix:

Predicted value
negative positive

Actual value negative True Negative False Positive
positive False Negative True Positive

Table 2.2: Confusion matrix nomenclature

First, we will talk about the Precision score. It is computed with the following formula[13]
:

precision =
#True positive

#False positive+#True positive
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This metric focuses only on the miss-classified negative. It is a perfect metric if the cost of
a false positive is high. A classical example is spam detection where a false positive is an
important email that was labeled as a spam. In our dummy example, the precision score is
100%

The Recall score is computed with this formula :

recall =
#True positive

#False negative+#True positive

Here we are calculating how many positive instances were detected by our model. This is
typically the kind of metrics used if it is critical to identify a positive instance. This is the
perfect metric for medical exams. In our dummy model, the Recall score is 50%.

The last traditional metric is the F1 score. It is a mix between the recall and the precision.
On the website of scikit learn the formula is the following :

F1 = 2 ∗ precision ∗ recall
precision+ recall

By applying this formula to the dummy example, we obtain an F1 score of 67%. The main
advantage of the F1 score compared to the accuracy is its robustness when the classes are not
balanced. As we see, in our dummy example we had a lot more negative than positive. The
accuracy value gives us a 99% accuracy even if the model had only correctly classified one
positive. The F1 score is more reliable in this case as it penalises more the poor performance of
the model on the positive class. All these formulas can be extended for a multi-class problem.

Each video of a sign is associated with one and only one label. It is possible to use those
classical metrics during future experiments run on them. The most useful metrics for the sign
language case are the accuracy when experimenting on a balanced dataset or the F1 score.

2.5 Conclusion

Action recognition in video is still considered to be a difficult challenge, mainly due to the
computational complexity of the task. Many methods were developed and none of them are
significantly better than the others, we will have to try them to see which ones are the best
in our case.

Another difficulty is the small number of examples available in the LSFB corpus. Deep
learning methods require a lot of data in order to train the model properly. Even if methods
were developed to train models with few data they does not converge quickly making them
time and resource consuming.
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Chapter 3

Sign Language Datasets

Leveraging the state of the art algorithms for video processing requires a lot of data. The
LSFB-lab was able to provide a dataset made of 15 hours of annotated video. To determine
if their dataset is the most suited for the task, a list of all the open sign language dataset is
made in this chapter.

The possibility to merge multiple sign language datasets into one is also investigated.

3.1 LSFB Dataset

Since 2015, the LSFB-lab of the University of Namur builds a corpus for the French Belgian
sign Language (LSFB)[23].

The LSFB corpus is made of two kinds of data :

• Single sign videos : Videos containing only one sign perform from, and to, a neutral
position. Those signs are performed by 3 different signers in front of a green screen.
There is only one example for each sign of the dataset.

• Conversational videos : Videos of a conversation between three people. Two people tell
a story in sign language and the third one moderates the conversation. Three cameras
capture each of the speaker’s moves.

The single sign video dataset is made of signs who are cleanly performed. Unfortunately,
there is not enough example for a deep learning approach. The Fig 3.1 shows samples from
the single sign dataset. The speakers are starting from a static position, performing the sign
and get back to the static position.

We looked at the conversational video data to enrich the single sign video. There are 150
hours of video picturing 100 different speakers. 10 hours out of the 150 are annotated. The
annotation contains the starting time of a sign in the video, the ending time and the label
associated with the performed sign. This format allows us to easily retrieve signs from the
conversational video to use them in our classification algorithm. The downside of this dataset
is its quality. The signs are captured in a conversation, therefore, the starting position of
the sign depends on the previous sign performed. Also, some speakers make different signs
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Figure 3.1: Sample of sign from the single sign video. Each row depict one sign being per-
formed.

to express the same idea depending on their region and their age. Each rows of Fig 3.2
shows speaker performing the sign for give. Despite that, there is a lot of examples for the
common signs and the variety of speakers makes us confident about our ability to identify
signs using modern techniques. Also, the fact that signs are performed naturally way during a
conversation will allow the construction of an algorithm that could be used naturally by sign
language speakers and that will be robust to the little variation brought by the performer of
the sign.

Figure 3.2: Sample from the conversational dataset. All the speaker perform the word give.

As explained before, the file format used to annotate conversational video is really easy to
exploit and well documented. But, after the extraction, we also need to clean the data we
are going to manipulate. During a conversation, there are three kinds of signs that can be
encountered.

• Classic sign : Signs with a known meaning

• Descriptive sign: Signs or set of signs with no particular meaning use to mimic a
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complex situation. They are used when there is no classic sign available to describe the
object or the concept or when the signer wants to mimic a visual situation like walking
in front of a car, etc.

• Proper noun signs : In order to express the name of a person, countries, and cities. In
order to do that they reuse classic signs and associate them with entities. For instance,
the city of Bastogne in Belgium is represented by the sign meaning "star" due to its
famous monument The Mardasson Memorial. The understanding of this kind of sign
relies highly upon the context of the conversation and the knowledge of the interlocutor.

In this work, we will only try to translate classic signs with fix and known translation. The
descriptive signs will be discarded, the proper noun signs could be used to enrich the classic sign
data. It is possible to use all the "star" signs used to say Bastogne to have more occurrences
of this sign in the corpus.

After this processing we obtain the following statistics.

• 4660 signs with, at least, 1 occurrence

• 627 signs with more than 10 occurrences

• 52 different signers

3.2 Other Datasets

To choose the best dataset to train our model, All the available datasets should be consid-
ered. The finality of the LSFB project is to provide an application allowing hearing impaired
to search the signification of a sign by using only the webcam on their laptop. Thus, we
voluntarily discard datasets using additional capture methods such as colored gloves or hand
sensors. The datasets captured with the Microsoft Kinect, a camera able to capture the depth
of the filmed objects, are kept as we can use only the regular video from the Kinect and discard
the depth video associated. The table 3.1 summarize the content of the biggest sign language
datasets.

It is quite hard to obtain true numbers about the content of each dataset. Some of them lack
statistics about there contents but, overall, the LSFB dataset is quite good compared to the
others. The Chinese dataset has more sign with more than 10 examples but the speakers are
less diversified. It could be interesting to use it to train a model or to test if transfer learning
could work in the SLR field.

The reader could also wonder why we didn’t mix the various dataset to create a single big
dataset for the training. The reason is that sign languages are local construction and there is
no such thing as an international sign language. Each country have its sign language and the
same sign could have a different meaning depending on the country. If we mix the dataset,
there is a high risk to have examples of the same sign associated with different labels. It could
be possible to discard these kinds of signs to keep only the original sign of each Sign Language
over the world but the cost of doing so will be greater than the gain.
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Description Sample size Different
signs

Examples per
sign

Number of
signers

DGS Kinect
40[24] German
sign language

2800 40 70 14

American
sign language
lexicon[1]

3800 3000 at least 1 2

Auslan Sign-
bank

7797 unknown unknown 100

DEVISGN[34]
Chinese Sign
Language
dataset

24 000 2000 12 8

Signum[17]
German Sign
Language

unknown 450 unknown 25

Table 3.1: Content of the biggest sign languages dataset

3.3 Conclusion

The sign language corpus provided by the LSFB-lab is one of the biggest datasets available
currently. It is the perfect candidate for testing and comparing the various models produced
by our experiments. Despite that, the amount of data available is low. This will make the
creation of a robust model challenging.
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Chapter 4

Solution Design

This chapter focuses on explaining the needs of the LSFB-lab. Identifying which software will
use our intelligent system will allow us to determine which type of data will be provided as
an input to our system.

There is a lot of different methods for video recognition. Choosing the best one for the LSFB-
lab case will require to perform a lot of tests on their data. To perform them efficiently, an
architecture enabling us to run experiments quickly and keep track of the results must be
designed.

Finally, finding a platform where experiments can be run is one of the critical aspects of the
future of this work. Video datasets take a lot of disk space and it requires a lot of time and
computing power to apply a pre-processing to each video or to train an algorithm on them.
It is hard to find good enough hardware to run such heavy processes. A section discusses the
existing platforms providing such hardware with their advantages, and weaknesses.

4.1 Requirements Analysis

This section aims to identify and present the needs of the LSFB-lab. An algorithm able to
translate sign language into text could be useful in the various tools of the laboratory and
knowing which product will use it could give us insight about the type and shape of data the
algorithm will receive once in production.

4.1.1 The Annotation Process

The LSFB lab gathered 150 hours of video involving 100 signers to study the French Sign
Language of Belgium. Currently, only 10 hours of these videos have been annotated. This
may seem like a small amount but knowing that, on average, one sign takes less than a second
to be performed. 10 hours of video contains already a huge amount of signs and are tedious
to annotate.
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The videos are recorded in a studio owned by the LSFB-lab. There is two cameras, one for
each interlocutor. They are placed to capture all the upper body of each speaker. They did
not use 3D cameras able to capture the depth information and they did not equip the speakers
with gloves for recording additional movement information.

To annotate the video, the LSFB-lab staff uses a software called ELAN. This software allows
them to indicate the starting time and ending time of each sign, those isolated signs are
associated with a label called a gloss. Each gloss is unique for a particular sign and represents
roughly its french translation. All this information is stored in an XML file.

The annotation process requires two team members. The first one will annotate the raw video,
the second one will check that all the signs were labeled correctly. To be more efficient, the
LSFB-lab would be interested in a solution capable to replace the first team member. Anno-
tating sign video requires the uncommon skills of being fluent in the two language[29]. There
is few people able to translate the video of the LSFB-lab slowing the process of annotating
the video gathered.

In summary, the high-level requirements should be :

• The algorithm must be able to determine the start and end of a sign,

• The algorithm must associate all the isolated sign with the correct gloss,

• The algorithm must use images from a classical camera,

• The speakers should not be expected to follow a dress code or wear particular gloves

The algorithm will not work alone on the annotation process. A team member of the LSFB-lab
will still perform a check of the annotated video to correct the mistakes left by the algorithm.
Thus, even if the algorithm is only able to annotate 60% of the signs correctly it will still be
useful.

4.1.2 The Corpus Website

The LSFB corpus is not just used by the LSFB-lab to analyze the language. It is also a public
corpus available on a website enabling anyone to search for a translation from French to sign
language. This website is a unique tool helping people to learn more about the French Sign
Language of Belgium but, on the other hand, the impaired users could not use the website
intuitively. To find the French word associated with a sign, they have to search it by gloss but
those gloss were arbitrarily chosen by the team of the LSFB-lab during the annotation phase.
To query more naturally the website, the more natural option will be to let the user perform
the sign in front of a webcam.

Every modern laptop is equipped with a webcam. Using this capture method is the best way
to bring all the functionalities for as many people as possible.

In this case, we can only focus on the top-5 accuracy of the model. It means that, when
evaluating the model, we will ask the algorithm to provide us five gloss who are the most
likely to be associated with the video of the sign and if the correct gloss is in this list of five
gloss we consider that the prediction was correct.
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We can use the top-5 accuracy in this case as the five results could be displayed to the user
of the dictionary and he can choose the correct one himself.

The system allowing this should respect those high-level requirements :

• The algorithm must associate the correct gloss with the performed sign,

• The algorithm must use raw video from a webcam,

• The user should not be expected to follow a dress code or wear particular gloves,

• The top-5 accuracy could be use in order to evaluate the model,

As we can see, these two cases share a lot of high-level requirements. This encourages us in the
idea that the algorithm could be shared by the two use case. The priority of the LSFB-lab is to
make this feature work on their website. The rest of this work will focus on the signed search
but special attention will be given to the modularity of the solution to maximize the shared
elements between the two systems. If the models created could provide good performance in
the two tasks of the LSFB-lab it would be a big plus.

4.1.3 Requirements

We will mainly focus on the creation of the algorithm shared by the two use cases of the
LSFB-lab. Namely the algorithm that will be able to associate a gloss to a clip showing a
single sign performed.

We can extract a more exhaustive list of requirements for this module. The requirements can
be divided into two categories :

• The functional requirements : Element describing the behavior of the system,

• The non functional requirements: Additional constraint put on the behavior

Functional Requirements

The input of the machine learning model will be a video clip showing only a single person in
the video frame performing only one sign. The video sequence should start at the beginning
of the sign and end when the sign is completed. The upper body of the person should be
visible and centered in the video clip. The hand should never go offscreen.

The top-1 accuracy will be used when evaluating the model. Having a good top-1 accuracy is
beneficial for the two use cases of the LSFB lab.

The machine learning model should easily be deployed in production and provide interface
enabling other systems to query it.

Non functional requirements

The machine learning system should be able to classify a sign captured by a laptop webcam.
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The system should be able to provide an answer within 3 seconds in order to keep the navi-
gation on the website as fluid as possible.

Scope of This Work

It is utopian to think that it is possible to create a model able to annotate perfectly signs
from raw video in just 3 months. Video recognition is still a challenge in the machine learning
community and there is a lot of different methods developed in order to solve this problem.
To find which methods is the best for this case, we will need to create and evaluate a lot of
different models.

During this internship, the focus will be on the creation of an architecture facilitating the
setup and evaluation of various experiments to reduce the time spent between each iteration
and to maximize the reusability of the code developed for each experiment.
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4.2 Project Architecture

The challenge of this architecture is to make it versatile enough to test various machine learning
workflow and train various models. Each element from the experiment pipeline should be easily
replaced by another implementation. Fig 4.1 show all the main steps we have to care about
to select, train and test the best model for our case.

Figure 4.1: The dataflow pipeline used in order to run experiments in Machine Learning
project.

• Data pre-processing : During this step, the raw data will be transformed to be fed in
the model. This step could be very complex and involve a lot of inner steps as it could
require to apply various normalization process, filtering the outliers, etc.

• Train/Test generation: Once the data are ready to be used, we have to separate them
in a test and training set. The separation should be deterministic in order to have the
same training and test set for all the experiments. Comparing two models that were not
trained and evaluated on the same data could be misleading. As we are working with
video the train and test set could not be load entirely in memory. We have to set up
a mechanism enabling us to load only the video when needed to avoid to saturate the
memory. If we are working with a siamese network or a triplet loss, the train and test
set should be composed of duet or triplet correctly formed. The code of this step should
handle all these behaviors.

• Model Training : The model will receive the training and test data generated and will
begin its training phase. There is a lot of variability at this step, we need to be able to
change the architecture of the model, to determine how many layers should be frozen in
order to make some transfer learning and we also need to determine criterion that will
indicate when the model ends his training phase. All these parameters should be easily
modified. The model weight and architecture should be saved at the end of the training
to continue it later or to load the model again for further evaluations.

• Model Testing : The model will be applied to the test data and various metrics will
be extracted from the predictions. The test data prediction should be saved in a file
in order to investigate them more easily later or to run an additional script on them
without having to reuse the model to generate the raw predictions.

• Result Analysis: This step will generate various evaluation metrics or visualizations
based on the prediction of the model on the test set.

Executing the whole pipeline could be time-consuming, especially in our case were we are
working with a lot of videos. The data pre-processing phase alone is expected to last several
hours. The pipeline designed should be able to skip some processes if the results have already
been computed earlier. The fig 4.2 shows with more details how all the different steps from
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the classical machine learning pipeline are connected.

Figure 4.2: Diagram showing how all the different step of a classical Machine Learning pipeline
are connected and the checkpoint system that should be provided by the framework.

The result of each step is saved in a database. The saved data could be seen as checkpoints for
our experiments. The data from the checkpoints could be reused in different experiments or
when reproducing a previous one saving us time when running multiple experiments relying
on the same pre-processed data.

The data flow depicted in fig 4.2 is the following: The raw data are stored in a database
accessible by the pipeline. The data are loaded into the pre-processing module to be cleaned
or to extract some information from them. The pre-processing results are saved and could be
reused for other experiments saving us precious time. Those pre-processed data are loaded
and split into a test set and a training set. The training set is sent to a machine learning
algorithm to train a model. The model trained is, then, saved. The test data are sent into
the testing module. This module loads the model to test (usually, the one who was trained at
the previous step). The raw predictions of the model are saved and could be load by a results
analysis module who compute evaluation metrics based on the raw predictions.

The principal output of the pipeline is the model saved by the training module. If the perfor-
mances of the model are good enough, it can be selected and put in various tool requiring its

30



predictions. The model saved could be copied and reused everywhere.

4.2.1 Strategy Pattern

The machine learning pipeline proposed is made many steps and the behavior of each step
should be replaced easily in order to run a different experiment. We need to decouple the
behavior of each step.

We can take advantage of the Strategy design pattern. This pattern is useful when dealing
with classes having multiple choice of algorithms to perform the same behavior.

To explain the concept behind the Strategy pattern we will take the example of a thermometer
display. The software receives a raw value from a sensor and must display it in a human-
readable format. There are different units possible, therefore, there are different algorithms
to transform the raw data into one of the units and display it. All this could be done in the
thermometer class like this :

class thermometer is
private chosen_unit

method display() is
if chosen_unit == "fahrenheit" then

self.display_fahrenheit
else

self.display_celsius

method display_fahrenheit() is
something()

method display_celsius() is
something_else()

Figure 4.3: UML representation of the strategy pattern with the thermometer example

That will work but as the number of algorithms used to compute the temperature increase,
the display method will become messier. Also, depending on the complexity of the algorithm
the length of the class could significantly increase. Too long classes are often considered to be
a bad smell in software engineering. To avoid that the Strategy pattern propose to decouple
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the algorithms and the class using those algorithms. The algorithms will be encapsulated into
a Strategy class. The user of the thermometer class could select one of those strategies in
order to display the temperature in the appropriate unit. Fig 4.3 show the UML hierarchy of
the various class involved in this method. It is the role of the user of the class to provide the
strategy to use.

In our case, we will have various types of strategy. One for each step of the pipeline. The
configuration will provide information about the strategy to use and its parameters. Setting
this structure will allow us to simply change the pipeline between experiments.

4.2.2 Builder Pattern

The strategy pattern is useful to address the issue of variability inside each step of the pipeline.
With it we will be able to change the algorithm used in each step effortlessly.

But our framework allows the user to run just the task he wants and not all of them. The
concrete pipeline executed could change from one experiment to another. We need to find a
pattern that enables us to modify the pipeline to execute.

The builder design pattern could offer us an easy way to address this issue. This pattern
enables us to build a complex object step by step. A classical example to illustrate the
behavior of this pattern is a house configurator software. Houses are made of various rooms,
could have a garden, a pool, etc. Usually, this variability is handled by the constructor of the
class but, when the number of parameters is too high, the constructor becomes unreadable
for a developer as shown in this pseudo code example

class House is
private number_rooms
private pool
private garden
private sauna
private number_walls
private number_windows

method constructor(nb_rooms, nb_walls, nb_windows, pool,
garden, sauna) is

// Generate the correct house instance

house = new House(4, 4, 6, false, true, false)

The call to the constructor is quite long and it is hard to guess the meaning of each parameter
without looking to the class declaration. This also lead to the existence of a lot of useless
parameters. House having a sauna are quite uncommon but we still have to specify it during
the construction of the object

The builder class will handle all the construction of the object and provide a more friendly
way to design the object needed by our use case. A simple builder architecture is shown in fig
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4.4

Figure 4.4: Simple builder class handling the construction of a new house instances

The user could now use the HouseBuilder class in order to generate a house instance like this :

builder = HouseBuilder()

builder.add_rooms(4)
builder.add_walls(4)
house = builder.get_house()

The code above is more readable than the version using a constructor for the house. This
pattern will be useful to create a custom pipeline containing only the steps needed for our
experiments. The different builders could be designed in order to handle the creation of the
pipeline for various tasks.

For instance, we could have the PipelineBuilder who will configure a pipeline that could be
run on a local computer but we could also design a CloudPipelineBuilder able to start all the
needed resources in the cloud.

4.2.3 Experiment Configuration

One of the key requirements of the framework is to be able to set up quickly an experiment
or to quickly reproduce a previous experiment.

To do that, the user will have to describe his experiment in a single file. The framework will
follow the description in order to set up and run the correct experiment pipeline.

This file will, therefore, contain all the information needed to fully characterize the pipeline.
For each step, the following information should be provided :

• The input data: Where the current step should read the data needed to perform its
task,

• The process to execute: Give the name of a function or a class to use to perform its
task,

• Where to persist the output : Describe in which format and where to store the
result of the process for the current step.

The user could specify that information for all the steps he wants to run during its experiment.
He also has to specify some global information such as the name of the experiment in order
to identify it later more easily.
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The actual content and the language used for this configuration file will be highly dependent
of the implementation of the conceptual framework and the format required should be well
documented. In some advanced use cases, it could be useful to investigate the creation of a
Domain Specific Language for the configuration of the pipeline but such methods are beyond
the scope of this work.

In our implementation, we will reuse a standard format for configuration files such as XML
or JSON.

4.2.4 Full architecture

All the useful concepts identified are merged in a single UML diagram 4.5 representing the
proposed architecture for our conceptual framework.

Figure 4.5: Representation of the architecture for the proposed framework

The main elements of this architecture are :

• PipelineBuilder : This class is the conductor of the whole system. Its purpose is to
read the configuration file provided by the user and to load all the needed classes required
for building the correct pipeline. Once the pipeline is constructed its role is over and the
pipeline is ready to be executed. In a classical builder pattern, the building steps and
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parameters are hardcoded in the builder class itself. In our case, these are externalized
in the configuration file making the whole process more flexible but, if the configuration
file syntax becomes too verbose or is not well documented, it could be more difficult to
read and to write.

• Pipeline : This class will take care of the execution of the whole process. It should be
able to execute the different steps in the correct order and to skip the unnecessary steps
if needed.

• Base interfaces : Each step in the machine learning pipeline is represented by an interface
providing all methods needed by the pipeline in order to run the experiment. Two steps
have been merged in a single class: model training and model testing. This choice is
motivated by the fact that the model uses in the training phase is the same than the
one uses during the test phase.

Implementing this architecture require to answer some questions highly dependent of the
technologies used by the user and its team. However, once the core of the framework is
implemented, it is possible for a team to easily share and create new steps for their experiments.
They just have to implement the right interface to make it compatible with the experiment
pipelines.
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4.3 Infrastructure

To train and test various versions of our machine learning model, we need a server infrastruc-
ture powerful and available enough to run quick experiments. One of the first tasks was to
find and set-up such an infrastructure.

Training huge deep learning model requires specific infrastructure. Fortunately, the popularity
of deep learning encouraged the various providers to adapt their offer to support these kinds
of techniques. The price is one of the key factors when choosing a platform, the other one is
the quality and power of the GPU. For my task the GPU needs to :

• Be compatible with the python library Tensorflow 8.0. This constraint us to use
NVidia GPU with a compute capability of 3.5 of higher,

• Having at least 12 Go of cache. To load data in the GPU, the memory cache should
be consequent when working with video or images,

• The GPU should always be available for us. We cannot afford to wait for a GPU
to be available. The training is a big bottleneck for this work if we add another one by
waiting for the availability of the platform the advancement will be too slow

GPUs are not the only requirement for our infrastructure. Raw video data took a lot of hard
drive space. Besides the raw data, we will have to store pre-processed data that will also
increase the disk usage. The system should have at least 1.5 To of hard drive.

Having those criteria in mind, there is plenty of option available we will compare them to
choose the best for our case.

4.3.1 Online Infrastructure

Recently, leading companies in the IT world developed cloud platform. These platform promise
to reduce the IT cost of businesses by providing easy to set up servers in a distant data center.
The purpose of this section is not to discuss if they kept their commitments but if their offer
for deep learning is good enough for my work.

The Walloon universities of Belgium also set up a cluster of computers to run resource consum-
ing experiments. Each university has a server that is open to every researcher. This cluster
of servers is called CECI.

Cloud platforms and the CECI cluster provide us IT support for managing the servers. We
do not need extended system administrator knowledge to use them.

We will compare each of these platforms to identify their strengths and weaknesses and their
prices.

CECI Cluster

The inter-university cluster is the first platform we investigate because it is free to use for
every researcher in the university. The cluster is made of 7 servers hosted by each Walloon
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university. Only 3 of these 7 servers provide GPU. The GPU provided by the clusters are too
old for the Tensorflow version we aimed to use. The cluster is currently not an option for this
work.

However, the UMons university will soon upgrade his server with brand new GPUs. Could
we migrate the project on their server once it is done?

After further investigation, we conclude that CECI cluster is not an option due to its lack of
disk space and the number of jobs who run on the cluster.

Once a job is submitted it enters a queue and have to wait that all the preceding job finishes
before being run. A job could be queued for 2 days before being run. This delay between
submission and launch is too high to conduct quick experiments in order to chose the most
suitable model. The cluster is not made for machine learning project.

Amazon Web Service

This is currently the leader in cloud platforms. AWS is well known and provides a lot of
services to help companies to deploy their app, store their data, manage the identity of their
employee, etc.

The AWS ecosystem is well documented but the diversity of service could make the platform
cumbersome to use. For Machine Learning, three services could be useful :

• EC2 : Elastic Computing Cloud is a service enabling us to rent server in the cloud.
Amazon provides different type of instances with different kind of RAM, CPU, and GPU.
The instance could be started at any time and take 2-3 minutes to be set up. The instance
is billed per hour of usage. The price depends on the usage and demand. During the
configuration of the instance, Amazon proposes an OS made for Deep-Learning with the
latest tensorflow installed, all the GPU drivers setup and pre-installed python libraries.

• S3 : Simple Storage Service is a product enabling permanent storage of data. Amazon
takes care of the replication and availability of the, so-called, S3 bucket and promise a
99.99% durability of the file stored. The pricing depends on the amount of data stored
and the number of call to the S3 API for retrieving or pushing data.

• Sagemaker : Sagemaker is a high-level service enabling to train, evaluate and deploy
machine learning models on their cloud platform. Sagemaker could be seen as an ab-
straction of the EC2 and S3 services, it will allocate S3 space and run EC2 instance to
store the raw data and execute the models. The code should respect a given architecture
to be executed. Fig 4.6 show the workflow to follow when constructing a sagemaker app.
This service also provides a Jupyter-lab environment for experiments.

Quickly, we decided to not use the Sagemaker service. Even if the tool looks well designed and
guarantees that our code will be well structured, using the SageMaker way of doing machine
learning will trap us on the platform. We do not want to rely heavily on a cloud provider as
the code is likely to be moved to another platform or to a local server. But it could be a good
idea to take some inspiration from the code architecture of sagemaker to design our Machine
Learning pipeline.
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Figure 4.6: The SageMaker workflow imposed by amazon. Reproduced from http://docs.
aws.amazon.com/sagemaker/latest/dg/sagemaker-dg.pdf

If we use AWS it will be on an EC2 instance. The GPU instance of EC2 provides an NVidia
Tesla K80 which is compatible with the latest version of tensorflow and provides 12Go of GPU
memory. The price of such an instance is around 1$ per hour.

The pricing of the S3 storage is a bit more obscure as they bill the number of API call without
specifying if one call fetching several files cost the same price than a call fetching only one file.
The price is set to 0.023$ per Go stored and 0.02$ per API call. With wise use of the space
and data transfer, the cost could stay reasonably low.

Google Cloud

Google cloud is one of the main competitors of AWS. Their offer is comparable. The platform
is well documented. It proposes less diverse services than AWS the platform is then much
more readable and it is easier to spot the services useful for our case. Developers with really
specific needs will not find the perfect service for their case and will prefer AWS. For our case,
google cloud propose these services :

• Compute Engine : This service is comparable to Amazon EC2. It allows us to start
a custom server. The OS installed on them does not provide any by default support
for tensorflow and python. We will need to install them once the instance is started.
Google allows us to add NVidia Tesla K80 to the instance.

• Cloud Storage : This is the equivalent to Amazon S3.

• ML Engine : This service provides a server pre-configured to run machine learning

38

http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-dg.pdf
http://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-dg.pdf


model and a command line too to push the model on the server. The training process is
described in a configuration file that will be read by the server in order to perform the
training. A dashboard allows us to monitor the progression of the model. Once again
the code needs to be formatted in a particular way if we want to use this service at full
potential. It is also possible to run jupyter notebooks with that service.

• TPU unit : Tensor Processing Unit is custom GPU developed by google. They are
optimized for tensor computation which is used in for deep learning algorithms. Their
speed is 15 to 30 times faster than classical GPU[14].

Google Cloud Platform is very close to the AWS offers. Their compute engines are a bit
cheaper. A GPU instance cost, on average, 0.70$ per hour. And the storage is a little bit
more expensive from 0.026$ to 0.036$ per Go.

In my opinion, Google services need a bit of work after being launched to accomplish their
task. You need to install python and all the needed libraries. On the Amazon platform, a lot
of software are pre-installed allowing us to directly use their services out of the box.

The TPUs are still in bêta and the pricing is secret. To access them you need to negotiate with
their sales. If one day they become available directly from the Compute Engine configurator
at a reasonable price it could be interesting to try them.

Floydhub

Floydhub is branded as the Github of Machine Learning. Their platform provides a git server,
jupyter notebooks and their system support all the main python deep learning library. To use
their GPUs we have to subscribe to their platform for 9$ per month. This gives access to 7
days of NVidia Tesla K80 per month. It is also possible to rent GPUs for 1.20$ per hour. The
big limitation of the platform is the storage. It is not possible to store more than 100Go of
data.

Google Colab

Google Colab is a free jupyter notebooks environment running on GPU. Data could be fetched
from a google drive account. This platform is made for researchers and runs on the unused
GPU of the Google cloud platform. If there is no GPU available the model train on a standard
CPU. The availability of this platform is very low and the training could be cut at any moment.

4.3.2 offline GPU

Another option is to buy some GPU for the faculty of computer science and to use them freely.
But will this solution be cheaper than renting GPU in the cloud? As we have seen, the most
popular GPU for deep learning is the NVidia Tesla K80. But this product is not produced
anymore in favor of a new generation architecture. Also, GPUs from the Tesla family are
expensive GPU designed for data centers.
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For private usage, there is another GPU developed by NVidia: the RTX 2080 Ti. The RTX
architecture is optimized for matrix calculation making them a perfect choice for Machine
Learning development. Fig 4.7 shows a benchmark of various NVidia GPU on various deep
learning architecture types. The 2080 Ti is one of the top GPU available. The price of this
card is around 1000$.

Figure 4.7: Benchmark of various NVidia GPU performed by Tim Dettmers[9]

Adding GPU to a Server

The GPUs could be added to a server owned by the faculty to make them accessible by every
researcher. This solution assumed that there is a server compatible with the GPU acquired.
If not, it is still possible to construct a compatible server for 4000$. The cost of such a server
is equivalent to 4000 hours of GPU on AWS, 5700 hours on Google Cloud or 3500 hours on
Floydhub.

Once the server is acquired, it needs to be installed and managed. An employee will be
assigned to those tasks increasing the cost of the infrastructure. Finally, a system must be set
up to avoid two people to use the GPU at the same time as it could badly affect the overall
performance of a training task.

Building a GPU server is a good idea in the long run if the usage is intensive.

External GPU

Another solution is to build GPUs and an external bay. The GPU can be plug to a USB
C port of the researcher computer and he can use it as a normal GPU. The main flaw of
this method is the performance drop due to the slower data transfer rate of the USB C. The

40



performance drop is between 15% and 40% depending on the external bay used. The price of
this configuration is between 1300$ and 1800$. This solution is much more affordable than a
server and does not require someone to manage the infrastructure. Each user configures their
environment and can use the GPU to accelerate their computation when needed assuming
that they have a USB C connector on their computer.

4.3.3 Retained solution

The internship during only three months, we decided to begin with cloud solution to quickly
train and test or firsts models. our choice stopped on AWS because we had already some
experience with that platform enabling us to start rapidly the project. A budget request was
made to buy some external GPU.

Once we have the External GPU, I suggest to keep them to test the complete pipeline and to
estimate the quality of the model and to launch big compute instances on a cloud platform in
order to train the final model and to evaluate it.

4.4 Conclusion

The system required by the LSFB-lab is complex and will be made of multiple subsystems.
Future works should focus on one of the most complex subsystem consisting of a machine
learning algorithm able to associate a sign to its French translation. Experiments will be run
in order to design the best algorithm for the task.

The quantity of experiments required to design a robust model is time-consuming and compar-
ing or managing the various models created during these experiments could be cumbersome.
A conceptual framework assessing these issues was created. This framework highlights the
important step of a machine learning pipeline and suggest a code architecture facilitating the
modification of the behavior of each experiment’s step and encouraging to save the resulting
output of each step in order to be able to reuse some intermediate results for later experiments.
It could also be the backbone for a team project allowing each team to enrich a library of
module compatible with the experiment pipeline used by all.

Due to the increasing popularity of deep learning, finding a platform proposing GPU to train
our model is not as challenging as it was. But this kind of equipment is still expensive and it
is difficult to identify if it is much worse to rent GPU on one of the various cloud platforms
available or if it is better to buy our GPUs for our private use.
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Chapter 5

Implementation

This chapter presents more our implementation of the conceptual framework discussed previ-
ously. This implementation includes the creation of the core of the experiment system and the
development of modules that could be reuse in order to create a pipeline with real behavior.

We are also going to talk about the firsts experiments run on the implemented framework.
Before running experiments an exploration of the LSFB-lab data was made in order to know
the manipulated data a little bit better and to see what is its content. Then we move to the
actual experiments for building a sign recognition system.

The various experiment and their results will be presented.

5.1 Data Exploration

When starting a data science project, the first action to take is to acquire knowledge about
the data we are going to manipulate. In our case, the data consist of 975 Go of raw video
along with ELAN annotation files. The first action was to extract each labeled sign from the
raw video using the annotation file provided.

Since a lot of tools for data science are written in python, It was decided to use this language
for this project. The tokenization of the video was done by using an existing python library
facilitating the manipulation of the ELAN format.

Each extracted sign was saved as a GIF in a folder named as the gloss associated with this
sign. The id of the speaker performing the sign is put in the filename to keep this information.
Nevertheless, the information of the hand performing the sign is lost. It is intentional as we
want to build a model agnostic of the hand used for the sign. However, if we find out that this
is not possible, it is possible to modify the tokenization in order to keep more meta-information
about the performed sign.

Once all the signs are isolated, it is easier to explore them to acquiring some knowledge
about the manipulated data. Some basic metrics were extracted from the raw sign files.
Those metrics are stored in a JSON file to be reused during the statistical analysis. This file
contains, for each set of signs the following information :
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• Number of examples : The number of video clip showing the sign performed,

• Number of signers : The number of unique signer performing the sign,

• Max frames : The number of frames of the longest sign in the sample,

• Min frames : The number of frames of the shortest sign in the sample,

• Average frames : The average number of frames required to perform the sign,

• Signers : Set of IDs for each signers present in the clip,

• Name : The gloss associated with the performed sign

Due to the quantity and the nature of the data, generating such a file took 6 hours. If simple
processing like that already takes so long, we could conclude that it will be too time-consuming
to process all the data at runtime when executing the pipeline. We will need to save all the
pre-processing in a database to reuse them between experiments.

By observing which signs are the most common, we were able to identify signs who are
irrelevant for the training. The identified signs were the following :

• PALM-UP : This label is associated with a shrug. This sign is highly dependant of
the context and is like punctuation in sign language. This could be interpreted as a
question mark, an exclamation point or invite the interlocutor to answer to the previous
sentence. Therefore, this sign is present everywhere making it the most common in the
dataset. Its presence could bias our model. As it is not a critical sign for the search in
the dictionary, we decided to discard it from the training data.

• INDECIPHERABLE : It is another common label in the dataset. This label is only
there to identify all the signs for which the meaning could not be established. Therefore,
we can have to discard this class before training the model.

The duration of a sign is also a piece of important information that could be explored, the
observations were :

• Average duration : Between 55 and 5 frames

• Max duration : Between 700 and 6 frames

• Min duration : Between 20 and 1 frames

As expected, all the signs cannot be performed in the same amount of time. The video clips
are encoded at a rate of 24 images per second, this means that a sign is, on average, performed
in less than 2 seconds. Some of them taking only a few milliseconds.

The observation made on the max duration and the min duration of a set of signs is highly
valuable when cleaning our dataset. We can identify some outliers in the data. The longest
sign in the dataset takes nearly 30 seconds, Fig 5.1 shows clearly that the sign labeled
LBUOY(7):DEUX contains outliers when compared to the other signs duration. there is
also a significant amount of sign clip taking 12 seconds to be performed which is surprising
when we know that other clips of the same signs take only milliseconds. After discussing
with the annotator, it seems that these long during signs are instances of holded sign. When
speakers are interrupted during their explanations or wonder about the next sign to perform
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before continuing their story, they tend to keep their hands in the final configuration of the
last sign performed. This explains why these signs could last a significant amount of time.

Figure 5.1: The signs taking the most time to be performed

Holded signs could be an issue as the actual action is made at the very beginning of the video
clip and the majority of the clip only contains a static sign position. During the pre-processing
phase, special treatment should be done for normalizing these signs.

Finally, the last important metric is the number of different signers represented in the corpus.
We already discuss the importance of the variability of the speakers when it comes to applying
deep learning algorithms to the dataset. We only analyze the 627 signs having more than 10
examples. In this subsample, less than 50% of the signs are performed by more than 10
different speakers and more than 85% of the signs are performed by more than 5 speakers.
At this point, it is hard to say if this variability is enough but we are not in a catastrophic
situation where a majority of signs are performed by one or two speakers.

Even if those statistics are simple, they allow us to acquire knowledge about our dataset and
to highlight some issues about it. The observations will help us to avoid some pitfalls during
the pre-processing stage.

5.2 Framework Implementation and Module Development

Earlier, this work introduced a conceptual framework aimed to facilitate the setup and replica-
tion of experiments for Machine Learning workflow. It is time to implement it. The technology
chosen was Python due to the number of libraries for machine learning and data manipulation
available for this language.

In this work, it was chosen to use a popular library for deep learning called Keras[6]. Our
implementation will be highly dependent of the object and workflow defined by Keras thus,
a module developed with other frameworks (Tensorflow, Pytorch) will have lower chances to
be compatibles. This is not an issue in teams using always the same technology. Teams using
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multiple technologies should be careful if they want to see their developed module reuse in
various projects.

The following sections will present the different modules created in order to run the first
experiments on the LSFB corpus. However, this section will not cover all the details of my
implementation and how to reuse the developed module. If you are interested in more precise
documentation explaining how to build or reuse module in the python architecture is available
on this github repository : https://github.com/Jefidev/LSFB-experiment

5.2.1 Data Pre-processing

To exploit the raw sign video provided by the LSFB-lab and to test the first iteration of the
pipeline, a simple data pre-processing module was designed. This module takes as an input a
folder containing all the raw GIF video sorted by sign and the output of the process is a new
folder containing only one image for each sign performed in our corpus. The image is taken
in the middle of the raw GIF.

The main idea behind this operation is to design, at first, a simpler version of the problem
allowing us to test all the developed modules and to have a baseline result enabling us to
situate the performance of our future model. Taking the image in the middle of the video
was not a random guess. Members of the LSFB-lab tells us that seeing a static image of a
sign being performed could be enough to determine the meaning of the sign in some cases.
By choosing the middle frame, we make sure that the sign is actually performed and not in a
transition phase with the previous or next sign.

Running this pre-processing phase took 6 hours. The results of this step were stored in a
database. This will allow us to run multiple experiments on these data without having to
re-run this phase each time.

5.2.2 Train Test Generation

Loading and splitting the pre-processed data into two different sets requires particular atten-
tion. The whole dataset does not fit in memory, we should then load the images only when
needed during training and test. Fortunately, Keras already provides a solution to this issue:
Sequence.

Keras models could receive a Sequence in parameter for the training and the testing. Objects
inheriting from a sequence must implement a callback function that will load data in memory
progressively during the training. Keras optimize the training of the model with the data
loading by running them in two different threads making the whole process as efficient as
possible.

In our implementation, the Train Test Generation step is expected to return two sequences.
One for the train set and one for the test set.

Currently, one module was developed for splitting the data and two Sequence objects were
created for loading the sign language images. The split module filters the input data by drop-
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ping the irrelevant signs identified during the data exploration phase and split the remaining
data into two sets used in the train sequence and test sequence object.

The two sequences created are the following :

• ImageSequence : It is a simple object that load a batch of images when required by
the model. The loaded image is in RGB and are normalized in order to ease the model
training.

• TripletSequence : This sequence generates a batch of triplet to train a model using
the triplet loss methods explained in the stat of the art part of this work. The triplet
are generated following the semi-hard formula.

5.2.3 Model

The module created is a triplet loss model using transfer learning. It was the hardest module
to create and to test as it needed several experiments before working properly and each
experiment took a large amount of time before revealing if the modifications made caused
some issues or improvement. This is also one of the modules with the most variability with a
lot of parameters and meta parameters. Some of these meta parameters could be set in the
configuration file. We can change the value for the input size of the image and the size of the
embedding space.

The model also uses transfer learning approach to reuse the weight of an InceptionV3 model
trained on imagenet. Fig 5.2 show the constructed model. The InceptionV3 layers are frozen,
it means that their weight will not be updated during the training phase. The one learned on
imagenet will be kept. D1 is a Dense layer having an output size of 2048, D2 is another Dense
layer with an output size of 1048 and finally D3 is the last Dense layer having the output size
specified in the configuration file and an linear activation function (a.k.a identity function).
Usually, the activation function forces the neural layer to output values between 0 and 1. The
linear function is not limited to a range of value enabling the last layer to properly separate
each point of the embedding space.

Figure 5.2: Architecture of the triplet loss module implemented during this work

The network receives a triplet of images as input. Each image is evaluated by the network,
the embedding produced are merged and sent to a loss function that will penalize the network
if the negative image is closer to the anchor than the positive image using the formula cited
by Schroff in his Facenet paper[26].
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5.2.4 Analysis

The only thing produced by our model is an embedding point for each image in the test set.
The module developed will analyze the quality of this embedding will produce two outputs.

First it will generate a confusion matrix. The predicted label of a test image will have
the value of the true label of its closest neighbor in the embedding. This process was time-
consuming when working with a large amount of test data. This step could be optimized in
order to find more quickly the predicted label of an image. The metric used to compute the
distance between the different point is the euclidean distance. The confusion matrix has the
advantage to be easy to read and provides interesting insight about the performance of the
model for each class. If there is too many different class the confusion matrix could become
unreadable that’s why we compute the f1 score and the accuracy on the results used to build
the matrix.

Another output is a 2D visualization of the embedding. To project the points produced by
the deep learning model from a 128 dimensions space to a 2-dimensional space, we used a
reduction dimension methods called t-SNE [33]. compared to other dimensional reduction
methods, t-SNE tries to conserve the structure present in the high dimensional space when
building the 2D representation. This means that if two points are close to each other in the
embedding space they will be put close to each other in the 2D representation constructed
by t-SNE which is interesting in our case. Other algorithms are not made to conserve those
properties.

Visualizing all the class present in our dataset on a 2D graph is not possible. There will be
too much point and there are not enough different colors to represent each of the classes.
That’s why we only keep the 10 most common class when building this visualization. A lot
of information us, therefore, lost but the visualization could be read by a human and we can
quickly see if the triplet loss model makes a good job at separating the different classes.

5.3 Conducted Experiments

All the modules described in the previous section were developed during the various experi-
ments made for designing a baseline model for sign language recognition. The purpose of these
early steps was to test and improve the structure of the project and to have a first reference
model that could be used to compare the future ones

5.3.1 Whole Corpus Experiment

During the first iteration of experiments, all the relevant signs from the corpus were taken.
Signs with less than 10 examples were also removed from the data. The dataset contains 627
different signs.

The chosen approach is a triplet loss for generating an embedding where each cluster of distinct
signs could be easily identified. This approach was proven successful on small datasets [35]

The pipeline instantiated by this experiment is shown in fig 5.3
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Figure 5.3: Instantiation of the experiment pipeline for the full data experimentation

The input data are fetched from a database where were stored the result of the pre-processing
process isolating a single image from the middle of each sign video. From there, the pipeline
runs as follow :

• Train Test Split : Will read the data from the database and filter them to keep only
the one having more than 10 examples. Then, it split those data. 80% of them go in the
train sequence and the remaining to the test sequence, respectively a triplet sequence
and an image sequence.

• The model : The model uses the concepts of triplet loss and transfer learning. Inception
V3 [31] was use in the architecture. It is currently the visual recognition model with the
best result on ImageNet provided with its weights by Keras. This part of the process
was revised a lot of times in order to find the most effective architecture in this case.

The model was trained with the data generated by the triplet loss sequence. The training
phase was considered completed if the model does not improve since 3 iterations over
the training dataset.

When testing the model, it only computes the embedding of all the images in the test
set and saves each embedding with the true label allowing us to inspect them later.

• t-SNE plot and Confusion matrix : To visualize the embedding created by our
model, the test data are loaded and the dimension of the latent space is reduced to 2.
This enables us to plot each instance on a scatter plot graph facilitating the inspection
of the embedding.

A confusion matrix was also plot but the high number of different class make it unread-
able.

This experiment was the first using the framework build and suffer from all the bugs at each
level of the architecture. It is during this experiment that the architecture of the framework
improved. Also, when implementing each module, a few pitfalls came up.

The most critical one was the tendency of the triplet loss to collapse. This means that the
model tended to map all the images to the same point in the latent space. Using semi-hard
triplet instead of hard triplet to train our model should have made disappear this issue. Un-
fortunately, it persists and after some experiments, it turns out that the number of dimension
of the latent space was probably too high and that seems to lead to a collapsing. The latent

49



space was set to 1024 dimensions. The models created for face recognition by Schroff [26] have
a latent space of 128 dimensions. Reducing the latent space seems to have resolved, or at least
drastically mitigated the issue.

Even with this issue solved, the resulting models were not able to create a useful embedding.
By watching at some example from the dataset we can measure the difficulty of the task. Fig
5.4 shows one of the many conflicting signs present in the dataset.

Figure 5.4: Hard examples from the dataset.

Even a human is not able to distinguish the different signs. The information enabling to
discriminate those signs is held by the movement.

Working on the dataset does not give us interesting results. However, during this process,
a lot of module for the pipeline was created and optimized for handling the large amount of
data provided by the LSFB-lab.

5.3.2 Most Represented Signs

Analysing the results on the whole dataset is not easy, there are too many signs and too much
confusion between them. In order to better understand the behaviour of the model, it was
decided to train it on a subset of the LSFB-lab dataset. Naturally, the chosen signs were the
one with the most examples in the corpus. We decided to take all the signs with more than
200 examples. Once again, the irrelevant signs were dropped. This reduced dataset is made
of 9 different signs an example of each sign is shown in fig 5.5.

As you can see, the sign for FALLOIR is blurry due to the movement. It is not uncommon
to see the most severe blur on extracted images. This could affect the ability of the model to
classify the blurred signs.

Once again the results were not compelling as shown in fig 5.6. The clustering produced
shows that the various signs are not correctly separated into distinct clusters indicating that
the triplet loss is not able to find a solution based on the data provided. The confusion
matrix confirms this observation. The number of correct prediction is close to zero. The
pre-processing phase should be changed to get better results on these data.

Our basic model is not able to predict correctly the label associated with a sign by looking at
only one image. The movement information seems mandatory to differentiate these signs.
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(a) AUSSI (b) AVOIR (c) C-EST

(d) FALLOIR (e) GSIGN (f) MAIS

(g) OUI (h) QUOI (i) SOURD

Figure 5.5: The most represented signs of the dataset

5.3.3 LSFB MNIST

The last experiment made was to test the model upon a specific category of signs: The
numbers.

In contrary to the other signs, numbers are always executed in the same way whatever the
signers. It consists of showing the number we want to express with the fingers of the hand.

The signs used to train the model goes from 1 to 5. We limited to these numbers for two main
reasons :

• To limit the examples to signs performed with only one hand,

• There are too few examples for signs 6,7,8 and 9 are

By looking at the fig5.7 we can see that, even if all the signs could easily be distinguish by
a human, the task is not trivial. There is some motion blur on the images, it could be hard
to distinguished the hand when the sign is performed to close to the head, the camera angle
could mask some fingers of the images. The limited number of example is also a challenge.

These signs are static, the movement performed by the hand during their execution is not
essential for differentiate a 1 from a 5. We can expect to have better results with a single
image on this subset than on the subsets used in the other experiments.

The main purpose of this test is to find out if a transfer learning model can identify the number
of fingers raised on a hand.

It turns out that this experiment was much faster to run, this allows us to test more config-
uration than on the previous experiments and that lead to an interesting observation. Since
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(a) t-SNE (b) Confusion Matrix

Figure 5.6: Confusion matrix and 2D plot of the embedding

the beginning of the process, the transfer learning model was created upon an inceptionV3
model. It is the more powerful model for image recognition provided by Keras. It turns out
that, in our case, it was not the best one for transfer learning. We tested to train a model
based on a VGG16 model. This model is older than InceptionV3 and is less performant on
challenges like imagenet. But the results given by VGG16 are better as shown in fig 5.8. The
confusion matrix constructed with the results of our model using inception V3 is discouraging.
There is no correct classification and the model always predict the most represented label in
the corpus. The model using VGG16 is more encouraging and seems to be able to recognize
some signs from the test set. For instance: 25% of the number 4 are correctly labeled.

Unfortunately, this improvement is not enough to make a model able to classify the five
different signs.

5.4 Conclusion

Working with a large amount of data is challenging. As it is impossible to review each piece of
information by hand, it is critical to explore the data by doing simple but systematic statics
analysis upon them. Those analyses able us to identify outliers and make us gain some insights
about the manipulated data.

The framework designed revealed to be very convenient to use. The first experiment takes a
lot of time to set up due to the number of modules written and tested but once they were
ready it took only a couple of minutes to modify the configuration file allowing to run other
experiments.

Unfortunately, the results of those experiments are not conclusive but the result analysis allows
us to improve and debug the module used and to gain more knowledge about the case we have
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(a) 1 (b) 2 (c) 3

(d) 4 (e) 5

Figure 5.7: LSFB MNIST subset. The name MNIST is a reference to the famous handwritten
digit corpus use by the Data Science community.

to solve. This knowledge will be useful when designing more powerful models.

By after, it became clear that using the whole dataset when designing the framework and the
first module was not optimal. It would have been more effective to use a known dataset such
as MNIST[19] for creating and testing all the modules in a more controlled way. Using an
unknown dataset was, sometimes, miss leading. It was hard to figure out if a bad result comes
from an error in the implementation of the triplet loss or from the dataset.
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(a) InceptionV3 (b) VGG16

Figure 5.8: Confusion matrix computed on the test set of the MNIST LSFB data
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Chapter 6

Conclusion and Future Work

In the past few years, video recognition methods have benefited from a renewed interest due
to the success of deep learning methods. This lead to the creation of new methods for this
task. These methods have shown their superiority over the classical ones.

These advances could be applied in our use case: The Belgian Sign Language recognition. But
the process is not straightforward and require a lot of experimentation before giving results.
The low number of examples force us to associate new advances in video recognition with
one-shot learning methods to get better results.

This works is the first step leading to an algorithm able to translate sign language into text or
speech. This chapter presents the work already done and the next steps needed for reaching
our goal.

6.1 Conclusion

The current work could be divided into two parts: first, there was the design and imple-
mentation of an architecture for deep learning experiments. Then, experiments using the
proposed architecture were run. Those steps were not sequential. The issue identified during
the experiments set up helps to improve the architecture.

6.1.1 Architecture

The conceptual framework designed was implemented in python to profit from its ecosys-
tem. The conception of the project architecture represents the majority of the time spent
on this work. Having a good code organisation and making sure that all the steps could be
reproducible will help for the next steps of the LSFB project.

Currently, the project contains several modules ready to be used in an experiment. They were
tested and debugged during the first experimentations conducted. The full documentation of
the python implementation and the existing modules is available on the GitHub repository of
the project (https://github.com/Jefidev/LSFB-experiment/).
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Working with our implementation is an investment. When designing a new experiment, it takes
more time to write the code for each step of the process. The developer have to think about
all the parameters required by the new module, he also has to think about the modularity of
the piece of software he is building to make sure that it is reusable for future experiments.
But this cost comes with its lot of benefits. The first one is the presence of a configuration
file. To change the behaviour of the experiments, the developer just has to change parameters
in this file instead of having to search the correct class to modify. Being able to reuse the
existing module also save a lot of time.

The first experiment designed following the architecture took about two weeks. During this
time all the modules were created and tested. The failures in the conceptual architecture were
spot and corrected. Once it was done, it took only about two hours to set up a new experiment
reusing a majority of existing modules. From this point of view, the implementation proposed
is a success and could increase the number of experiments run in the same amount of time.

The conceptual architecture could be adapted for other use cases and languages making the
approach flexible and technology agnostic. There is plenty of tools for machine learning and
data science but, usually, they are too complex and only compatible with few technologies
making them unsuited for medium-sized projects or companies using specific or homemade
technologies. Our conceptual architecture is much more versatile but requires to be imple-
mented by developers.

6.1.2 Experiments

These experiments enable us to test the python implementation developed. They provide us
with more insight about the manipulated data and forces us to investigate the LSFB dataset
in depth.

This teaches us that the chosen approach was not optimal, trying to create a first model for
the whole dataset was utopian and analyzing the mistakes committed by the model on the
627 classes was hard. The first iteration on the whole corpus allowed to gain more knowledge
about the data and how to manipulate them. But it was harder to figure out what was wrong
with the model generated by this experiment.

The subset of the dataset picturing the signs for numbers was much more valuable as the
results could be more easily analyze and that more experiments could be run on them in the
same amount of time. It could be useful to design a model for this task before extending it
for the whole dataset.

It is more useful, to begin with a simpler task and than move on to the more complex one
than trying to solve directly the complex one. This was the main learning of the experiments
conducted during this work.

6.2 Future Work

This master’s thesis lay the groundwork of the LSFB project. But there is a lot more to do
to get a model able to translate sign language into text. In the future, more module should
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be build to enrich the existing project and construct more complex experiments. The next
step should be to take the time information into account. Until now, all the experiments
were run on fix images. The information encoded in the time flow of the executed sign is lost
when observing just one image. The model identified in the state of the art chapter should
be implemented and tested for our case. Other approaches could be investigated (e.g hidden
Markov model[25]).

The pre-processing applied to the raw data could also be improved. In its two-stream
approach[28], Simonyan applies various methods of pre-processing methods on the video for
extracting more information from them. It could be interesting to apply those process in our
case. Once again, other methods exist an need to be investigated.

6.3 Final Words

The task of sign language recognition is far from trivial. As all the natural languages, sign
language is complex and evolve in time. Signs could have various meanings or interpretations
this variability is very confusing for a computer. Additionally, video recognition is a hard task
that requires a lot of power.

A zoo of methods exists for tackling each aspect of the problem. The difficult and time-
consuming part is to assemble and test these methods to construct a piece of software able
to identify and translate signs robustly. This work aims to ease the process of trial and error
and facilitate the job of the developer.
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