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Les aspects non-gravitationelles and chaotiques dans la dynamique des petites
corps du Systeme Solaire

par Magda Murawiecka

Résumé : Cette thèse comprend plusieurs sujets liés au domaine du mouvement orbi-
tal des débris spatiaux et de la dynamique rotationnelle des astéroïdes. Les débris spa-
tiaux ont récemment reçu une attention considérable car ils représentent une menace
pour les satellites actifs et les missions humaines. Par conséquent, des perturbations
de plus en plus petites sont considérées dans les modèles de determination précise
de leurs orbites. L’effet thermique Yarkovsky-Schach, développé dans cette thèse, en
est un exemple, et des simulations numériques des orbites de débris spatiaux, tenant
compte de cet effet, ont été réalisées pour un ensemble pertinent de conditions ini-
tiales. L’importance relative de cette force a été mise en évidence sur des échelles
de temps très longues. Par ailleurs, ce travail a également considéré le mouvement
d’objets en orbite terrestre sous l’influence de résonances tesserales et lunisolaires.
Plusieurs cartes de stabilité ont été réalisées grâce à un indicateur de chaos variation-
nel, le MEGNO, et elles ont été comparées avec celles publiées dans la littérature.
Des structures stables, qui apparaissent plus nettement grâce au MEGNO, y ont été
identifiées et discutées. Cette étude a permis de détecter et d’étudier un problème lié
à l’integration numérique des orbites chaotiques ; en effet, en utilisant un intégrateur
numérique avec un pas de temps fixe, plusieurs "observables" ne sont pas calculés
de manière correcte, et dépendent clairement du pas choisi, rendant leurs estimations
contestables. La dernière partie s’intéresse au problème de la stabilité de la rotation
autour de l’axe principal d’inertie pour les astéroïdes soumis à l’effet YORP et à une
dissipation d’énergie inélastique. La thèse propose un modèle approximatif décrivant
les petits déplacements de l’axe principal dans l’angle de nutation et détermine les
conditions à satisfaire pour que l’axe instantané de rotation atteigne un équilibre.

Non-gravitational and chaotic aspects of dynamics of small Solar System bodies
by Magda Murawiecka

Abstract: This thesis has taken on several subjects related to the orbital dynamics
of space debris and rotational dynamics of asteroids. Space debris have received a
considerable attention in recent years due to the threat they pose to active satellites
and manned missions. As a result, smaller and smaller perturbations are taken into
account for precise orbit determination. The Yarkovsky-Schach effect is an example
of such small perturbation. We have performed numerical simulations with the ef-
fect with various initial conditions. The force relative significance is only revealed
over long timescales. Furthermore, we also considered the motion of an object un-
der the tesseral and lunisolar resonances. With the application of a variational chaos
indicator, MEGNO, several stability maps were constructed and compared with lit-
erature. Some stable structures were singled out and discussed. A related problem
of numerical integration issues in case of chaotic orbits was also examined. If a nu-
merical integrator with a fixed time step is used, several observables are shown to be
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inaccurately computed, and to depend on the chosen time step. Lastly, in case of as-
teroids, we investigated the question of stability of principal axis rotation under the
YORP torque and inelastic energy dissipation. We developed an approximate model
for small departures from the principal axis in nutation angle and searched for condi-
tions that should be met so that the instantaneous rotation axis is driven back to the
stable position.
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Introduction

60 years of space exploration has brought forth a multitude of new possibilities and
technological advancements, as well as great progress in scientific knowledge. We
are now able to determine the Earth gravity field with high precision, whereas place-
ment of the telescopes on orbit has allowed to eliminate the atmospheric effects and
to explore new radiation bands. However, the space around the Earth has been conse-
quently filled with pieces of debris, and the process is hard to control. The protection
against collisions and impacts require precise knowledge on the multitude of minus-
cule forces that affect their motion. Some of these forces and phenomenons had al-
ready been explored quite thoroughly in the domain of small natural bodies dynamics:
asteroids, comets, meteoroids. The uniformity of dynamics of all small bodies allows
the transfer of expertise between these domains.

0.1 Space debris
The term ”space debris” covers a multitude of objects. Initially referring to natural
bodies, like meteoroids, it is mainly used nowadays to describe artificial objects on
the orbit around the Earth that serve no function. Quoting ESA Space Debris Office,
these objects are classified as follows:

• ”Payloads, space object designed to perform specific function in space exclud-
ing launch functionality. This includes operational satellites as well as calibra-
tion objects.

• Payload mission related objects, space objects released as space debris which
served a purpose for the function of a payload. Common examples include
covers for optical instruments or astronaut tools.

• Payload fragmentation debris, space objects fragmented or unintentionally re-
leased from a payload as space debris for which their genesis can be traced back
to a unique event. This class includes objects created when a payload explodes
or when it collides with another object.

1
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• Payload debris, space objects fragmented or unintentionally released from a
payload as space debris for which the genesis is unclear but orbital or physical
properties enable a correlation with a source.

• Rocket body, space object designed to perform launch related functionality;
This includes the various orbital stages of launch vehicles, but not payloads
which release smaller payloads themselves.

• Rocket mission related objects (RM), space objects intentionally released as
space debris which served a purpose for the function of a rocket body. Common
examples include shrouds and engines.

• Rocket fragmentation debris, space objects fragmented or unintentionally re-
leased from a rocket body as space debris for which their genesis can be traced
back to a unique event. This class includes objects created when a launch vehi-
cle explodes.

• Rocket debris, space objects fragmented or unintentionally released from a
rocket body as space debris for which the genesis is unclear but orbital or phys-
ical properties enable a correlation with a source.”

(ESA, b). The very beginning of space exploration is also the beginning of accumula-
tion of space debris. The fourth man-made object that was sent in space, Vanguard 1
launched from Cape Canaveral on March 17, 1958, remains on its orbit to this date,
along with upper stage of its launch vehicle, and is expected to stay there for at least
200 more years (NASA, a). Together with two other Vanguard satellites, launched
in 1959, they remain the oldest artificial objects orbiting the Earth. Since then, the
number of debris has only grown. In June 1961, the first unintended explosion in
space created almost 300 pieces of debris when Ablestar launch vehicle blew up after
deploying its payload (Portree and Loftus Jr, 1999). The tests of anti-satellite systems
(ASAT in short) conducted by the Soviet Union between 1968 and 1982 created about
700 pieces of debris big enough to be tracked, almost half of which still remain in
orbit. The US ASAT test in 1985 created thousands of debris, although due to low
altitude of target object, they have already burnt in the atmosphere (Portree and Loftus
Jr, 1999). In 2007, China conducted an anti-satellite missile test by shooting down a
defunct weather satellite, Fengyun 1C, on a Sun-synchronous orbit at an altitude of
around 850 km. The collision led to the biggest single-event space debris creation in
history, resulting in at least 4 000 pieces of trackable size, half of which still remain in
orbit, and an estimated 40 000 smaller debris particles (Lambert, 2018). They quickly
spread around the satellite original orbit, and over time, they also scattered in altitude,
ranging from around 700 km up to 3000 km. In 2009, the high velocity collision
between an active US commercial satellite Iridium 33 and a defunct Soviet Kosmos-
2251 satellite created almost 1 900 pieces of debris. Some of them already decayed
and burnt in the atmosphere, but most of Iridium fragments is expected to stay on
orbit for at least 100 years, while Kosmos pieces should be gone in 10-20 years (Wee-
den, 2010). Tracking these fragments revealed a much greater dispersion of Kosmos
fragments than expected, showing that the methods put in work are still inaccurate. In
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Figure 0.1 – Space debris population since 1960. One can see that the majority of debris are
defunct satellites and tools, the products of their fragmentation, or products of rocket trans-
formation. In recent years, the ”unknown” category has emerged to contain all the objects of
unkown characteristics. Image credit: ESA

2012, Russian Briz-M upper stage exploded on-orbit, creating almost a hundred pieces
of debris on an eccentric orbits, crossing the ISS orbit (Celestrak). An explosion of
an US weather satellite, DMSP-F13, in 2015 created around a hundred small and over
50 000 milimeter-size pieces (Space.com, a). As recently as in March this year, an
Indian ASAT test created around 400 trackable debris on low orbits (Space.com, b).
Since 1961, around 290 in-orbit explosions took place, creating more than 750 000
pieces of debris larger than 1 cm (ESA, d). The main cause is the fuel or other en-
ergy sources left in rocket stages or satellites. During many manned missions to ISS,
various objects were lost in space, e.g. tools, or even a Hasselblad camera. Droplets
of fuel or flakes of paint, detached from old satellites surface due to its erosion by
micro particles, are among the most numerous pieces of debris. Rocket bodies and
upper stages were commonly left in space after they served their purpose. Fig. 0.1
summarizes the growth of space debris population since the beginning of the space
age.

In an attempt to control the population, various space debris catalogues have been
established. Since the appearance of Sputnik on the night sky, the US Department
of Defense has maintained a catalogue of all man-made objects on the orbit around
the Earth. NASA maintains a civilian database of orbital elements in the format of
two-line elements set (TLE). These catalogues allow to predict and possibly prevent
future collisions or atmospheric re-entries. Many laws and measures were also set up
through the years. For example, after the 1996 explosion of HAPS upper stage rocket
that produced around 700 pieces of debris and was caused by excess fuel left in the
tank, a new procedure was implemented: spent stages perform a propellant depletion
maneuver, which allows them to both use up the remaining fuel and attain a decaying
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Figure 0.2 – Solar array of Hubble Space Telescope penetrated by a small piece of debris. The
size of the hole is 2.5 mm. Image credit: ESA

orbit, on which they will burn in atmosphere in a (relatively) short time (ESA, a).
It is recommended to move defunct satellites to graveyard orbits at their end of life,
where they will not pose a danger to active satellites. Nonetheless, despite all the
efforts to reduce the risk, collisions still occur. In 1996, a French military satellite
Cerise was hit by a piece of debris from an Ariane rocket, and severely damaged
(Johnson et al., 2008). The ISS performs debris avoidance maneuvers once per year
on average (NASA, b). Due to high speeds at which objects travel through space, the
consequences of an impact of even a very small piece of debris on an active satellite
or space station can be very serious (e.g. Fig. 0.2).

Space debris can be found in any of the usually discriminated orbital regimes:
Low Earth Orbits (LEO, below 2 000 km of altitude), Medium Earth Orbits (MEO,
2 000-35 786 km from Earth surface), or around the Geostationary Earth Orbits alti-
tude (GEO, around 35 786 km). The current number of tracked space debris is about
22 300, but the estimations by statistical models put this number around 34 000, if
only pieces big enough to be detected are considered (> 10 cm); in addition, there
are around 129 000 000 objects of smaller size (ESA, c). Most of them occupy the
orbits between 800 and 1 000 km of altitude, and around 1 400 km (ESA, d), therefore
remaining in the crowded LEO regime. The current predictions say that the number of
space debris will steadily increase, which will in turn lead to more collisions between
them, or them and active satellites. The pieces created in such events will then further
raise the probability of subsequent collisions and the whole phenomenon may become
self-sustained; this scenario is known as the Kessler syndrome (ESA, d). Its avoid-
ance is necessary for the future of space missions and technologies. For this reason,
several active debris removal strategies have been proposed, including laser methods
and remotely controlled vehicles, but the costs of such undertakings are very high.

In order to be able to anticipate a collision in space, orbits of the objects have to be
determined with highest possible precision. Most important forces acting on a body
revolving around the Earth include:

• Earth gravity field – Earth gravitational field is far from being regular. The
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asymmetries give rise to the geopotential perturbations, which are usually mod-
elled in terms of spherical harmonics expansion. The biggest influence comes
from the second degree harmonic J2, related to planet oblateness, but for the
model to be realistic, many high degree harmonics need to be included. The
most advanced gravitational models nowadays contain spherical harmonics co-
efficients up to degree 2190 and order 2159 (EGM2008; NGA). In general, the
higher the altitude of the object, the smaller the effect of the geopotential.

• atmospheric drag – as most of the debris orbit the Earth on relatively low alti-
tudes, they pass through the higher levels of the atmosphere, which causes them
to experience a drag-like force, depending on their speed relative to the medium.
This leads to the altitude loss and eventual re-entry of an object in LEO. The
density of the air depends on solar activity and geomagnetic storms, and can be
described by several models in place (Petit and Lemaitre, 2016).

• other bodies attraction – the Sun and the Moon exert a substantial gravitational
pull, the importance of which raises with altitude. Various timescales involved
in their relative motion lead to an emergence of lunisolar resonances, which
can stabilize an orbit or inspire chaotic behaviours. Out of the Solar System
planets, Jupiter gravity should also be considered, although its magnitude is
several orders smaller.

• solar radiation pressure – particularly relevant for pieces of debris with high
area-to-mass ratio, the pressure of the Sun photons is small, but accumulates
over the years and can generate large changes in the orbit.

Additionally, a multitude of smaller forces come in play when a higher precision of
orbit determination is required. Some of them are the Poynting-Robertson effect (a
braking effect the forward-coming solar radiation has on small particles), solar wind,
the magnetic forces and, last but not least, the Yarkovsky effect, which is mainly
considered in this thesis. The Yarkovsky effect consists of a small thrust that a body
receives when it reradiates the solar radiation absorbed beforehand. This tiny force
does not average to zero over one orbit if the object crosses Earth shadow, and instead
accumulates over longer timescales. A more detailed description of the effect and its
consequences are the subject of the first chapter of this thesis.

The dynamics of space debris is additionally complicated by orbital resonances.
The Earth vicinity is transected by a net of lunisolar and tesseral resonances. Var-
ious orbital perturbations, including small forces, can drive space debris into these
resonances, which can have ambivalent consequences. Some resonances have a stabi-
lizing effect and could be therefore used as graveyard orbits, ensuring that the debris
will stay in the region for a very long time; contrarily, other ones are chaotic, and the
debris that arrive inside of them are reset on a distinct orbit, which may put them in
more occupied regions of space, raising the threat to operating satellites. The analysis
of the problem of resonances around the Earth is provided in the second chapter of
this thesis.

The chaotic character of the resonances slips into numerical tools applied to their
investigation. With the sensitivity of orbit calculation to the initial conditions, the nu-
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merical uncertainties inherent to any orbit propagation scheme may lead to erroneous
determination of the trajectory. It is therefore important to recognize which quantities
can be evaluated accurately despite this issue. These considerations are developed in
the third chapter of the thesis.

Within the space debris considerations of this thesis, the NIMASTEP software
(Numerical Integration of Motion of Artificial Satellites orbiting a TElluric Planet)
– the UNamur in-house numerical orbit propagation software, created by N. Del-
sate during his PhD thesis (Delsate, 2011; Delsate and Compère, 2012) – was used
and upgraded. The software allows to track the motion of a satellite or a piece of
space debris in the gravity field of a terrestial planet, an asteroid, or an arbitrary shape
approximated by a triaxial ellipsoid, and to take into account a number of forces:
the non-homogeneity of the gravitational potential, the gravity of a third body (Sun,
Moon or any of the planets), the solar radiation pressure (including the effects of the
shadow), the atmospheric drag (contribution of A. Petit as part of his PhD thesis (Petit,
2017)). The osculating equations of motion are integrated in Cartesian coordinates,
and a number of integrators with either a constant step size (Runge-Kutta of order 4,
Adams-Bashforth-Moulton of order 10) or a variable one (Runge-Kutta-Fehlberg of
order 4(5), Runge-Kutta of order 8(5,3), Bulirsch-Stoer method) can be used. Two
tools for the analysis of chaotic orbits are available: MEGNO indicator and frequency
analysis (discussed more in Ch. 2). Software parallelization that allows for a simulta-
neous propagation of a large number of space debris was realized by A. Petit (Petit,
2017).

In the course of this thesis, we improved the capabilities of the software by imple-
menting the Yarkovsky-Schach effect into it (vide Ch. 1).

The second UNamur internal software, SYMPLEC, developed by Ch. Hubaux in
his PhD thesis (Hubaux et al., 2012; Hubaux, 2013), was also used (Ch. 3). The
software uses symplectic algorithms in order to accurately propagate the dynamics
over long timescales, considering central body harmonics of the potential, third body
attraction, and solar radiation pressure.

0.2 Asteroids
Asteroids share many dynamical characteristics with space debris or satellites. They
are located primarily in the Main Belt between Jupiter and Mars orbits, where another
planet could have formed. They range in size from meters to hundreds of kilometers,
the biggest one being Vesta at around 530 km in diameter. Their motion is governed
by Sun central attraction and perturbed by Jupiter and, to lesser extent, other planets.
The many resonances with Jupiter mean motion either accumulate the bodies around
certain values of semi-major axis or push them onto more eccentric orbits, forming
several groups of bodies that cross trajectories with Mars or Earth. Some of them
may end up on collision course with the Earth. Two other mechanisms that deliver
asteroids into resonant zones are collisions and the Yarkovsky effect. Working over
sufficiently big timescales, the Yarkovsky effect is particularly influential on the dy-
namics of bodies from meter-sized meteoroids up to around 40 km in diameter.
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The Yarkovsky effect depends on rotational parameters which in turn are not con-
stant. The rotation of an asteroid on an orbit around the Sun undergoes variations due
to several factors. Collisions between bodies and close approaches with the planets
are important aspects, but the most prominent one is the YORP effect, a rotational
counterpart of the Yarkovsky effect. The solar radiation, reflected off the object sur-
face and absorbed and then re-emitted in infrared wavelengths, creates a tiny torque,
which can substantially affect the rotation period and the obliquity of the spin axis.
While tiny, the effect has already been observed for several asteroids (e.g. Taylor et al.
(2007); Ďurech et al. (2012)). The YORP effect creates clusters of asteroids in sim-
ilar spin-orbit resonant states within families (so-called Slivan states; Vokrouhlický
et al. (2003)). It is the phenomenon that shapes the distribution of spin rates and pole
orientations of small asteroids – it pushes the obliquities towards the limit values of
0◦or 180◦(although this is less obvious for prograde rotators as many spin-orbit res-
onances perturb their distribution) (Vokrouhlický et al., 2015). On Fig. 0.3, the spin
rate distribution of 462 Main Belt and Mars-crossing asteroids, ranging in size from 3
to 15 kilometers, is presented. It is visibly uniform, except for a large amount of slow
rotators; this is because the YORP effect drives bodies towards extreme values of the
rotation period. At the other limit, when size-dependent fission values of the rotation
period are reached, mass shedding or break-up slows down the angular momentum
gain. This process may lead to creating binary asteroids (Walsh et al., 2008) or as-
teroids pairs. Observational evidence confirms this to be the most ubiquitous manner
in which the binary systems emerge, as for most of binaries, the primary rotates very
fast, and the total angular momentum of the system is close to fission value (Walsh
and Jacobson, 2015). The similar case are the split pairs of asteroids – pairs of indi-
vidual asteroids that do not have a common center orbiting the Sun, but show enough
dynamical similarities to conclude that they once formed one object.

If the YORP effect produces a slowdown of the asteroid rotation, its period may
become long enough for the body to enter tumbling rotation. Most asteroids rotate
in the principal axis mode, i.e. their spin axis is aligned with the biggest inertia axis.
This is a stable state of minimal rotational energy. Besides the YORP effect, close
approaches to inner planets and collisions can disrupt this spin state and set bodies up
on non-principal axis rotation, when the energy is excited, and the angular momen-
tum vector drifts away from any of the body axes. The vast majority of asteroids is
observed to rotate in a principal axis mode, which is in contradiction with models that
indicate that the YORP effect tends to sustain tumbling rotation rather than mitigate it
(e.g.Vokrouhlický et al. (2007); Breiter et al. (2011)). Although some part of the prob-
lem can be explained by observational inability to differentiate between mild tumbling
(with the angle between the angular momentum vector and body shortest axis smaller
than around 15◦) and principal axis rotation, the amount of non-principal axis rotators
that we detect should still be much higher. It is possibly due to some simplifications
made in modelling the YORP effect; for example, many models assume zero thermal
conductivity. Another probable explanation involves the damping mechanism result-
ing from inelastic energy dissipation. In short, the centrifugal acceleration that arises
in wobbling rotation periodically exerts some tension on each body fragment. As the
related deformations are not perfectly elastic (meaning that the body element does not
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Figure 0.3 – Spin rate values for 462 asteroids in the Main Belt and on Mars-crossing orbits,
in the size range between 3 to 15 kilometers. The excess on the left side are the bodies with
the period of 1 day or longer, whereas the linear decrease on the right are bodies attaining
rotational rates high enough to break down. The black line provides the values obtained with a
simple YORP model. from Vokrouhlický et al. (2015)

retain its previous form and position once the deforming force ceases), some portions
of energy are dissipated in form of heat in every cycle. This causes a decrease of
the kinetic energy of rotation. The instantaneous rotation axis evolves towards the
principal axis, where the tensions and deformations do not induce any energy loss.

The joint action of energy dissipation and the YORP effect is the subject of the
fourth chapter of this thesis.

0.3 Subject of this thesis
While the knowledge about space debris motion advances quickly, there are still many
unaswered questions. The dynamics inside resonant zones is complicated and not fully
understood yet, with chaotic behaviours obscuring our comprehension, and addition-
ally undercutting the applicability of some tools. At the same time, these zones have
an important application and can provide a valid solution to the increasingly urgent
problem of space debris and the threat they pose to active satellites.

Many aspects of the dynamics are common among the asteroids and satellites or
space debris. The Yarkovsky effect is a major factor in case of small natural bodies;
the fact that its influence on space debris orbit is rather small only stems from the
relevance of different timescales in the two cases. It is still significant in applications
requiring precisely determined orbits. The YORP effect also exists in the rotational
motion of satellites or space debris, although the lack of data on their shapes and
rotation states is a major hindrance. However, in the domain of asteroids, it plays a
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substantial role, with more and more aspects to consider. Its interplay with energy dis-
sipation needs to be clarified in order to explain some contradictions between current
models and observational data.



10 INTRODUCTION



Chapter 1
Yarkovsky effect on space debris

The Yarkovsky effect seems to be a relatively new problem in the dynamics of as-
teroids and satellites, but it was first proposed over a century ago. In 1901 Ivan O.
Yarkovsky, a Russsian civil engineer of Polish origin, described in a self-published
pamphlet how heating a prograde-rotating planet should produce a transverse accel-
eration in its motion (Yarkovsky, 1901). Back then, the ether hypothesis was still
popular, so he was not able to calculate this effect accurately. Nevertheless, his idea
was rediscovered and reintroduced after 50 years by E. Öpik (Öpik, 1951). The effect
was studied in the following years, but some major developments were achieved in
the 1980s and the 1990s, largely in the field of space geodesy. It was first detected
by French accelerometer CACTUS on-board the slowly spinning CASTOR satellite
(Boudon et al., 1979). A lot of progress was made in the framework of analysis of
LAGEOS orbit residuals (e.g. Farinella et al. (1990); Métris et al. (1997)). The pro-
gram involved two spherical satellites that served as laser ranging benchmarks for
Earth geodynamical studies, and that were placed on very stable orbits in the MEO
region. The precision with which the orbits were known is what allowed to study
their tiny perturbations. A large part of LAGEOS orbit variations was associated to
the Yarkovsky effect that occurs when the body crosses Earth shadow; this variant is
usually referred to as the Yarkovsky-Schach effect. The shadow passage is crucial as,
without it, the force averages to zero on one orbit. The Yarkovsky-Schach effect is the
subject of this chapter.

Because the effect is weak, but systematic, it finds its applicability mainly in
the domain of dynamics of natural small Solar System bodies, considering the long
timescales that are customary in this context. It provided an explanation to several
dynamical issues (e.g. dispersion of asteroid families (e.g. Bottke et al. (2001)), mete-
orite delivery (e.g. Farinella et al. (1998))). Most of the studies nowadays continue to
focus on asteroids. However, the arising technological applications and challenges in
the domain of satellite and space debris dynamics call for more rigorous orbit deter-
mination and recognition of small forces. Some proposed solutions to the space debris

11
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Figure 1.1 – Illustration of the Yarkovsky effect mechanism. Source: NRAO

problem also rely on very high precision of established orbits.
In this chapter, we discuss the modelling and consequences of the Yarkovsky-

Schach effect on satellites and space debris.

1.1 The Yarkovsky effect
When solar radiation travelling through space hits the surface of a rotating body, two
processes take place: it is either absorbed or reflected by this surface. The momentum
of reflected photons is partially transferred to the body. The absorbed particles deposit
the whole of their momentum in the body, but also heat it, causing it to emit thermal
radiation. Neither the absorption nor the scattering of solar radiation produces any
long-term dynamical effects in orbital motion that can be attributed to the recoil force
resulting from thermal reemission. As the body thermal properties cause it to reemit
absorbed heat after some time (usually referred to as ”thermal lag”), the direction
of this emission differs from the direction to the Sun. The orbital effect depends on
whether the body exhibits a prograde or retrograde rotation. In the first case, the
emission occurs in the same direction in which the body moves along its orbit, and
has thus a braking effect on body motion. This leads to a decrease of the semi-major
axis and shrinking of the orbit (Fig. 1.1). A reversed result can be observed in case of
retrograde rotation – the body receives an additional thrust from the reemission and
its orbit expands as the semi-major axis grows. While small, this change in semi-
major axis can alter the orbit significantly if enough time is allowed, which is what
makes this secular effect important in studies exploring long-term dynamics or aiming
at precise orbit determination.

To calculate the Yarkovsky effect, the net radiation energy and momentum ex-
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change for all parts of the body need to to be considered. This is achieved by com-
puting these components on a small surface element and then integrating over the
whole surface of the body. The energy budget is necessary for the surface temperature
solution and serves as a boundary condition. It can be written, in general, as

ε σ T 4 +K n̂ ·∇T = (1−A)max(0, n̂ · r̂s)Φ, (1.1.1)

with the following physical parameters: ε is the emissivity, σ is the Stefan-Boltzmann
constant, T is the temperature and ∇T its surface gradient, K is the surface thermal
conductivity, A – the albedo, and Φ the solar flux. n̂ is an outward-oriented normal
vector to the surface element d~S = n̂dS, whereas r̂s is the unit vector directed towards
the Sun. The right-hand side of the above equation is the total energy absorbed by the
given surface element; the first expression on the left represents the thermally emit-
ted energy, and the second – the energy carried away by conduction. In general, the
emissivity and albedo coefficients are functions of the scalar product (n̂ · r̂s). How-
ever, most models adopt the Lambert’s law to describe the emissivity and reflection
processes, which removes this dependance and renders ε and A constant.

One of the main issues in computing the Yarkovsky effect is the determination of
the surface temperature of the given body, which requires solving the heat diffusion
problem. The heat conduction theory provides a description of the energy change in
a volume element resulting from the heat flux through its boundary, in the form of
Fourier heat equation in the body frame:

ρ Cp
∂ T
∂ t

= ∇ · (K ∇T ), (1.1.2)

with ρ being body density and Cp its specific heat capacity. These parameters, along
with K, are generally dependent on temperature and position of the considered volume
element in the body, but can be approximated as constant (calculated at body mean
temperature) in case of small temperature variations.

The periodicity of the temperature changes with the fundamental frequency ν (due
to the orbital motion with frequency n or rotation with frequency ω) allows for sim-
plification of the problem by introducting the scale length lν =

√
K/(ρ Cp ν), which

expresses the characteristic penetration depth of the temperature variations. Sec-
ondly, the boundary condition (1.1.1) can be linearized by assuming that the tem-
perature variations can be described as a small increment ∆T from the mean value
T0. Then T = T0 +∆T , with |∆T |� T0, can be substituted into (1.1.1), producing
T 4 ≈ T 4

0 + 4T 3
0 ∆T , where the terms of O(∆T 2) are neglected. With these simplifi-

cations, an analytical solution can be found provided the shape of considered body is
simple. If the aim is to study the Yarkovsky effect on more realistic shapes, one needs
to refer to numerical modelling in order to ensure the temperature regularity over the
entire volume of the body.

The temperature variations depend mainly on thermal properties of the body in
question - namely, the heat capacity and thermal conductivity of surface material. The
asteroids, covered mainly with regolith, will heat up differently than space debris,
made of metal and artificial materials; various types of space debris will also heat up
differently.



14 CHAPTER 1. YARKOVSKY EFFECT ON SPACE DEBRIS

Once the temperature can be evaluated, one can proceed to calculate the Yarkovsky
force. As mentioned above, the impinging or reflected photons do not generate any
long-term orbital effects, and therefore we only consider the contribution from the
thermal reemission. With the assumption of Lambert’s law for ε, the force is given,
for an infinitesimal surface element dS, by

d~fther =−
2
3
ε σ T 4

c
n̂dS, (1.1.3)

(c is the speed of light) (Vokrouhlický and Bottke, 2010). The surface integral (over
the whole body) of this infinitesimal force gives the net effect for the entire body. As
far as the Yarkovsky effect is considered, simple shape models, including spherical
ones, already produce a good approximation of the orbital evolution.

The most important consequence of the Yarkovsky force is the secular change in
semi-major axis. The usual approach is to distinguish between two components of
~fther: one aligned with spin axis direction (the fundamental frequency of which is the
orbital motion), usually called the seasonal part, and one in the equatorial plane of
the body (depending on the rotation rate), referred to as diurnal effect. They have a
general form (

da
dt

)
seasonal

=
4
9
(1−A)π R2

mc
ΦFn sin2

ε, (1.1.4)(
da
dt

)
diurnal

=−8
9
(1−A)π R2

mc
ΦFω cosε, (1.1.5)

(Vokrouhlický and Bottke, 2010), where R is the radius of the body, m its mass and
ε the obliquity of its spin axis (angle between the orbit normal and the spin axis di-
rection). The Fn and Fω functions depend on the thermal parameters and the size of
the body; more precisely, on the ratio of the radius to the penetration depth, which is
different for seasonal and diurnal parts as it depends on the frequency of temperature
change. Since the rotation rate is generally higher than the orbital one, the seasonal
wave penetrates deeper than the diurnal one. The F functions scale in such a way that
the total effect is generally proportional to 1/R. It is negligible for asteroids bigger
than approx. 30 km of radius and disappears for small particles (below millimeter
size), where the Poynting-Robertson effect (related to the isotropic re-emission of the
absorbed solar radiation) dominates the dynamics.

The important feature of equations (1.1.4) and (1.1.5) is the spin axis obliquity de-
pendence. The diurnal component of the effect is proportional to cosε , which means,
considering that the F functions are always negative, that da

dt can be either negative
(for ε < 90◦) or positive (in case of retrograde rotation), reaching the maximum when
the spin axis is perpendicular to the orbit plane, ε ≈ 0◦ and ε ≈ 180◦, and virtually
disappearing in case of ε ≈ 90◦. The seasonal effect always produces an inward secu-
lar migration of the orbit due to proportionality to sin2

ε ( da
dt negative), with maximum

in case of spin axis laying in the orbital plane and minimum for ε = 0◦ and ε = 180◦.
For the asteroids, the diurnal component is usually more significant than the sea-

sonal one. In artificial satellite studies, it is common to use the so-called fast-rotation
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approximation, which ignores diurnal components completely, even though the torques
present in the near-Earth environment may slow down the rotation to the values that
would violate this assumption.

In satellite motion, the secular perturbations in semi-major axis only arise if the
satellite or space debris crosses the shadow of the Earth (or the central body in gen-
eral). This causes a disruption in the solar flux arriving on the object surface, where
it has time to cool down and heat up again once the body exits the shadow. Without
this variation in the thermal force, it would average out during one orbit. This vari-
ant of the Yarkovsky effect was proposed as an explanation of eclipse-related spikes
in semi-major axis residuals of LAGEOS satellite, and was dubbed the Yarkovsky-
Schach effect.

The Yarkovsky effect is a minuscule force, but its cummulative character allows
it to have a substantial impact on the orbit. The Yarkovsky-Schach variant, that is
the main point of interest in this chapter, is of magnitude of several picometers per
second squared. Fig. 1.2 demonstrates how it compares to other forces acting on
satellites and space debris. Nevertheless, along with the technical advancement and
a growing need for more precise determination of the artificial satellites orbits, such
tiny forces become more and more relevant. They can be important for some of the
space debris removal strategies or in geodynamical studies. Also, slow orbit decay or
growth can, given enough time, put inactive satellites and debris in resonant zones,
where they could stay for centuries (on the so-called ”graveyard orbits”) or, on the
contrary, end up on chaotic orbits (as demonstrated by Lhotka et al. (2016) for the
Poynting-Robertson effect).

1.2 Method
The model that was used in our numerical simulations is that of Farinella and Vokrouh-
lický (1996). This choice was dictated by the fact that, as opposed to others (to the
author’s best knowledge), it does not rely on the fast rotation assumption. It was devel-
oped mainly to predict the orbital elements variations of the LAGEOS orbit once the
fast rotation approximation becomes invalid, as the rotation slows down rapidly due
to the magnetic dissipation effects. The authors show that in this case, the equatorial
components that are no longer negligible have a significant impact on the semi-major
axis residuals and therefore should not be ignored. They also produce an effect on the
orbital inclination, though the variations in eccentricity are already explained by the
spin-axis component of the force.

Even though there is not much data on space debris attitude, one can assume that
most of them experience tumbling rotation due to either their origin in crashes be-
tween debris, or the multitude of torques present in the space environment (Earth,
Sun, Moon gravitation, interactions with the atmosphere, outgassing or leakages, im-
pact of micrometeoroids, eddy currents, or the YORP effect). However, as the model
we use is based on the assumption of sphericity of the considered body, we do not
consider this problem here. The satellite is assumed to possess homogeneous phys-
ical properties, and to reside on a low-eccentricity orbit. There are three essential
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Figure 1.2 – Order of magnitude of several major Earth satellite perturbations as a function
of orbit semi-major axis a (in order as listed in plot legend: GM, J2− J6 geopotential harmon-
ics, Sun, Moon and Jupiter gravitational attraction, solar radiation pressure (with A/m set to
0.1 m2/kg) and the Yarkovsky-Schach effect). The plot was created using simplified formulae
from Montenbruck and Gill (2000).

timescales in the problem: the period of rotation Prot , the orbital period Porb and the
thermal relaxation time τr (the time between the absorption and re-emission of the
sunlight). If the spin period is shorter than the thermal relaxation time, there are no
diurnal components of Yarkovsky acceleration and the force is always directed along
the spin axis. However, as shown by Farinella and Vokrouhlický (1996), when the
rotation is slow enough, these components may be significant.

The problem of calculating the temperature variations distribution on the satellite
surface is approached as follows. The linearization of temperature variations is used
in the heat diffusion equation and the energy budget equation. Therefore, (1.1.2) takes
the form

K∇
2
∆T = ρ Cp

∂∆T
∂ t

, (1.2.1)

and the energy conservation

4 ε σT 3
0 ∆T +Kn̂ ·∇∆T = (1−A)∆Φ, (1.2.2)
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where ∆Φ is used in place of max(0, n̂ · r̂s)Φ. The authors further proceed to use
the method proposed by Rubincam (1987) to solve the above equations by the use of
Fourier transform and get ∆T as an integral of the flux change

∆T (t, n̂) =
3(1−A)

ρ Cp R

∫
t ′<t

∆Φ(t ′)e−νR(t−t ′)dt ′, (1.2.3)

evaluated over time span between a retarded moment of time t ′ and t, related to the
rotational motion of the object. The idea is that the surface element dS′ at moment
t ′ eventually becomes identical with dS at moment t, for which the ∆T is calculated.
The exponential factor characterizes the thermal relaxation process, where νr is the
inverse of the thermal relaxation time:

νr =
1
τr

=
12 ε σ T 3

0
ρ Cp R

. (1.2.4)

Knowing the temperature field on the surface, the acceleration~a is derived as (with
the assumption of Lambert’s emission law)

~a(t) =−8
3
ε σ

mc
T 3

0

∫
t ′<t

∆T (t, n̂) n̂dS, (1.2.5)

integrated over the whole surface.
The local reference frame is defined with~ez along the spin axis of the object,~ex in

such a way that it is perpendicular to~ez and the xz plane contains the direction to the
Sun~rs, and ~ey complements the orthogonal right-handed system. Then, θr describes
the angle between the spin axis and ~rs in the body-centered frame. Using satellite
longitude along the orbit λ instead of the time, λ = nt +λ0, the force components in
the defined reference frame are

ax = γ
sinθr

1+ r2σ2
r
(Ĉ(r, ē)ΨC(λ ,r)− Ŝ(r, ē)ΨS(λ ,r)), (1.2.6)

ay = γ
sinθr

1+ r2σ2
r
(Ĉ(r, ē)ΨS(λ ,r)+ Ŝ(r, ē)ΨC(λ ,r))), (1.2.7)

az = γ cosθrΨz(λ ). (1.2.8)

r is the ratio between the orbital and rotational periods, r = Porb/Prot , and σr – the
ratio between the thermal relaxation time and the orbital period, σr = τr/Porb. All the
physical constants are encapsulated in the parameter γ:

γ =−16π

3
σ Φ(1−A) ε Rτr T 3

0
mcρ Cp

. (1.2.9)

The auxiliary constants are

Ĉ =
1− ēcos(2π r)

1−2ēcos(2π r)+ ē2 , (1.2.10)
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Ŝ =
ēsin(2π r)

1−2ēcos(2π r)+ ē2 , (1.2.11)

with ē = exp(− 2π

σr
). The Yarkovsky acceleration depends explicitly on the orbital

longitude through the so-called ”shadow factors” – functions related to entry into and
exit from Earth shadow:

ΨC(λ ) =(1− ē(cos(2πr)− rσr sin(2πr)))ψshad(λ )

+ e∆1/σr(ξ−1 cos(r∆1)+ξ
+
1 sin(r∆1))

− e∆2/σr(ξ−2 cos(r∆2)+ξ
+
2 sin(r∆2)), (1.2.12)

ΨS(λ ) =(rσr− ē(sin(2πr)+ rσr cos(2πr)))ψshad(λ )

− e∆1/σr(ξ−1 cos(r∆1)−ξ
+
1 sin(r∆1))

+ e∆2/σr(ξ−2 cos(r∆2)−ξ
+
2 sin(r∆2)), (1.2.13)

where

∆1 =

{
λ1−λ , for λ1 < λ ,

λ1−λ −2π, for λ1 > λ ,
∆2 =

{
λ2−λ , for λ2 < λ ,

λ2−λ −2π, for λ2 > λ ,

(1.2.14)

with λ1 and λ2 being the orbital longitudes corresponding to the entry into Earth
shadow and the exit from it, respectively. ψshad is the usual shadow function and
is equal to 0 when the satellite is in the shadow and to 1 outside of it. Lastly, we also
have

ξ
−
i =

{
cos(2πr)− rσr sin(2πr), for λi > λ ,

1, for λi < λ ,
(1.2.15)

ξ
+
i =

{
sin(2πr)+ rσr cos(2πr), for λi > λ ,

rσr, for λi < λ .
(1.2.16)

az coincides, as expected, with the Yarkovsky effect in the fast rotation approxi-
mation, when the equatorial components disappear.

We programmed the above equations for the acceleration in the NIMASTEP soft-
ware, described in the Introduction, and tested the code against the results presented
in Farinella and Vokrouhlický (1996). The implementation also required the compu-
tation of λ1 and λ2. Following the approach of Afonso et al. (1989), it amounts to
solving the eclipse equation

tan2
λ

(
R2

2 +
1
a2 −1

)
+ tanλ (2R1R2)+

(
R2

1 +
1
a2 −1

)
= 0, (1.2.17)

where the two auxiliary quantities are R1 =~r1 ·~s, R2 =~r2 ·~s – scalar products of unit
vectors~r1 from the Earth to satellite orbit ascending node and~r2 perpendicular to it
in the orbital plane, and~s pointing from the Earth to the Sun. The discriminant of the
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Figure 1.3 – Variation in semi-major axis due to the Yarkovsky effect, depending on its initial
value and the rotation period. The orbits were propagated over 400 y timespan.

above equation bigger than 0 gives four solutions for λ , but two of them should be
discarded as they correspond to the pseudo-shadow (the shadow around~s rather than
−~s).

Most of the sparse studies dealing with the Yarkovsky effect on artificial satellites
aim to explain the orbital residuals found in the observational data of LAGEOS and
similar satellites. The point of this study was therefore to invert this trend and try to
carry out numerical simulations for various orbits and rotational states.

1.3 Results
In the following, we adopted the value of γ/Prot = −8.85× 10−10. It corresponds to
a spherical satellite of radius R = 0.3 m with ρ = 2.7 g/cm3. The obliquity of the
spin axis is set to 45◦unless stated otherwise; similarly, the initial values of the orbital
elements are: e = 0.01, i = 0.01◦, Ω = ω = M = 0.0. All integrations were performed
with the Runga-Kutta-Fehlberg integrator of order 5 with variable stepsize.

In Fig. 1.3, the variations of the semi-major axis ∆a are shown, as well as the
way they depend on the initial semi-major axis a0. The integration time was 400 y,
and various rotation periods were used, ranging from 1000 s to 20 h (the first one
basically corresponding to the fast rotation approximation). As the orbital inclination
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Figure 1.4 – Temporal evolution of space debris on a geostationary orbit, depending on rotation
rate.

is close to 0, various semi-major axes a0 are indicative of the portion of orbit that
the body spends in Earth shadow, with bigger a0 values meaning shorter relative time
of incoming solar radiation cut. The only perturbations that are considered are the
gravitational attraction of the Sun and the Yarkovsky-Schach effect, as the two forces
cannot be separated within our implementation. The Sun-only-related curve is also
plotted for reference (in black). This clarifies that the increase of semi-major axis
change with a0 is due to Sun gravity. Slower rotation produces bigger ∆a, due to
the fact that reducing the rotation rate leads to the appearance of diurnal components
and overall stronger perturbation. The effect is small for lower orbits, with biggest
values for longest rotation periods. The maximum of ∆a = 2.76 km is reached at
a0 = 22 700 km for the rotation period of 9 h; this is attributed to a longer shadow
passage than at a0 around 40 000 km (the peak of 20 h period curve).

The time evolution of a sample orbit close to the geostationary altitude is shown
in Fig. 1.4, on a timescale of 200 y. The black curve is again due to Sun gravity
only. The differences between the trajectories result solely from different rotation
periods taken for the object; they were chosen to span a wide range of values. The
curves representing shorter rotation periods (6 h – green and 3 h – blue) take longer to
diverge from the Sun-related one, starting after around 120 y; differences for objects
of approx. 9 h rotation period can be noted already after approx. 70 y, whereas those
with slowest rotation (20 h) start to deviate almost immediately after the beginning
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Figure 1.5 – Analogous as in Fig 1.3 but with colors decoding the obliquity ε of the object
spin axis. The rotation period is 20 h.

of the integration. At this distance from the Earth, the rotation period of 20 h is the
closest to the orbital one, it is therefore expected to be associated with the biggest ∆a,
in light of Fig. 1.3. This effect is again related to the diurnal components.

The differences in the spin axis obliquity also have an impact on the thermal force
(Fig. 1.5). The most considerable departure from reference trajectory is observed for
an obliquity equal to 30◦. As the inclination is close to zero and the orbit is in the
equator plane, the values of ε close to that of the Earth obliquity would maximize
the value of sinθr in (1.2.6)-(1.2.7), leading to elevated values of diurnal components
ax, ay. The opposite can be said about ε = 60◦ and ε = 90◦: the contribution of the
equatorial part decreases and the overall perturbation is weaker.

The inclination of the satellite or space debris orbit play a significant role. Fig. 1.6
shows that the biggest impact on the semi-major axis occurs at i ≈ 15◦− 35◦, with
the maximum of ∆a ≈ 5.8 km at i ≈ 23◦. This result is related to the Sun – Earth
– satellite orbit geometry – an object on the orbit with this inclination spends a sig-
nificant amount of time in the shadow, which causes highest temperature amplitudes
on its surface. Nevertheless, most space debris are accumulated in orbit regions of
lower or higher inclinations, where the Yarkovsky-Schach effect has a minimal im-
pact. For higher inclinations, the object does not cross the shadow at all, so the effect
is irrelevant in long-term considerations.

Some variations arise in other orbital elements. Farinella and Vokrouhlický (1996)
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Figure 1.6 – Variations in the semi-major axis vs. orbit inclination. The initial value of semi-
major axis is 42 164 km, and the rotation period is 20 h. The integration time is 200 y.

pointed out that the equatorial components do not modify the results obtained for
eccentricity with fast rotation approximation; nevertheless, the overall effect is still
observed (Fig. 1.7). Similarly to Sun-perturbed-only case, the change in eccentricity
depends weakly on the initial semi-major axis after some distance is reached. The
situation is similar when the thermal force is introduced, but this semi-major axis
value is smaller. There is no difference between various rotation periods as the only
significant component of the force is the one aligned with spin axis, independent of
rotation. There is no effect on eccentricity for larger orbits. The generated ∆e is of
the order of 10−3 after 200 y. A significant effect can be observed in inclination if
enough time is allowed (200 y again, Fig. 1.8), although it seems to be due to the
seasonal part only. The Yarkovsky-Schach force produces an additional variation of
several degrees. Some small variations can also be detected in the argument of perigee
(Fig. 1.9).

1.4 Conclusions
The results presented in this chapter confirmed the tiny magnitude of the Yarkovsky-
Schach effect on space debris or satellite orbits. Extensively large integration timescales
need to be used in order to clearly distinguish the impact of the force in the results.
With that in mind, some variations of several kilometers in semi-major axis are de-
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Figure 1.7 – Variations in eccentricity as a function of the initial value of the semi-major
axis, plotted for various rotation periods of the debris. The curve representing the Sun-induced
motion coincides with that of Prot = 20 h.

Figure 1.8 – Same as above, but for variations in inclination. All the thermal force-perturbed
trajectories are gathered together.
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Figure 1.9 – Variations in the argument of perigee, calculated as residuals in respect to Sun-
only trajectory. The integration time is 200 y, the rotation period is 20 h, and the initial semi-
major axis is 42 164 km.

tectable on such long timescales. Similarly, there is also a relatively significant change
in inclination. Nonetheless, this effect belongs to the class of small nongravitational
forces that could be important for high-precision orbit determination applications or
studies interested in very long-term dynamics, where they produce discrepancies with
models based on gravitational perturbations only. Such missions have already been
carried out (the already discussed LAGEOS satellites are a good example, another
one being the GRACE program), and will surely continue to appear in the future. In
the domain of space debris, there are proposed strategies of removal that could also
benefit from precise orbit determination, such as technologies focusing on laser illumi-
nation of debris. Current estimations of the Yarkovsky-Schach effect are still impaired
by our lack of knowledge on actual physical parameters and exact shape of the debris
in space; should such data emerge in the future, the precision of the force evaluation
could be further corroborated.



Chapter 2
Resonances in MEO region

The resonances are one of the most important and widespread features in the dynamics
of small bodies in the Solar System. They occur wherever there is a commensurabil-
ity between the orbital or rotational motion of two bodies. They play a huge part in
shaping the Main Belt of asteroids, producing gaps in semi-major axis distribution
around the values corresponding to mean motion resonances with Jupiter’s orbit, as
well as grouping objects in stable resonances in other areas. Similarly, the mean mo-
tion resonances with Neptune form many populations among trans-Neptunian objects.
The moons within Saturn’s rings sweep away the ice and dust at some values of semi-
major axis. Likewise, the objects on orbits around the Earth may fall into a resonance
with planet’s tesseral harmonics of the gravitational potential. Additionally, the dis-
turbing gravitational pull of the Sun and the Moon produces a network of lunisolar
resonances, depending on the inclination and eccentricity of the object.

All these phenomenons form a mesh of resonances in the vicinity of the Earth that
may hold a great importance for the problem of space debris. The orbits located in
stable regions could serve as graveyard orbits, where retired satellites would stay for
very long periods of time without posing any danger to those that are active. On the
other hand, space debris entering the chaotic regions (e.g. due to the consequent action
of small perturbations) could quickly end up on eccentric orbits that could traverse
zones populated with active spacecrafts.

In this chapter, we discuss the two types of resonances in space debris environ-
ment: tesseral and lunisolar resonances, focusing on MEO region. We create an atlas
of stability maps for these resonances, compare them with the literature, and consider
some potential secondary resonances, based on features visible on the maps.

2.1 Resonances: essentials
Assuming we have a system that can be described by a main force and a small pertur-
bation, the resonance is said to occur when in the development of such a perturbation,

25
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there are terms containing an angle which vary very slowly (so that the time derivative
is close to zero). This occurs when two angles in the system have commensurable
frequencies ν1,ν2:

k1

k2
=

ν2

ν1
, (2.1.1)

where k1,k2 are two integers.
The Hamiltonian of a problem involving a resonance can be expressed in action-

angle variables and reduced to pedulum-like form (the First Fundamental Model of
resonance (Breiter, 2003)) through averaging and expansion techniques. The phase
space is then divided into circulation and libration zones, with chaotic motions devel-
oping along the separatrices between the two regimes. Along with the growth of the
perturbation, the chaotic motion propagates and disrupts the stable zones within the
libration region, allowing the chaotic orbits the possibility to explore extensive parts
of the phase space, and effectively reducing the predictability of motion in the region.

2.1.1 Tesseral resonances
In this thesis, two classes of resonances will be considered: tesseral and lunisolar
resonances. The tesseral resonance arises when there is a commensurability between
the orbital period of an object revolving around the Earth and the rotational period
of the planet. The most well-known example of this kind of resonance is the 1:1
resonance, corresponding to the geostationary altitude. The MEO region is, however,
intersected with other tesseral resonances of higher orders.

The potential of the Earth has the form

Ugeo =U0 +UP, (2.1.2)

where U0 is the potential of a sphere and UP could be considered its perturbation,
resulting from the non-sphericity of the Earth. It is usually described with the use of
spherical harmonics

UP =−µ

r ∑
n≤

n

∑
m=0

( rE

r

)n
Pm

n (sinφ)(Cn,m cosmλ +Sn,m sinmλ ) . (2.1.3)

The indices n,m are the order and degree of the development, respectively. The rest
of the symbols are: r – geocentric distance of the object, µ = GM – gravitational
parameter, rE – Earth’s radius, Pm

n – Legendre function of degree n and order m.
(φ ,λ ) are the longitude and latitude of the object in the reference frame rotating with
the Earth, and Cn,m and Sn,m are the coefficients of the geopotential. Coefficients with
m = 0 correspond to the effects independent of the longitude λ ; in this case, Sn,0 = 0
and the terms with Jn = −Cn,0 are referred to as zonal harmonics. J2, related to the
Earth’s flattening, is the most dominant effect, responsible for secular drift in ω and
Ω:

ω̇ =
3
4

J2 r2
E n

a(1− e2)2 (5cos2 i−1), (2.1.4)



2.1. RESONANCES: ESSENTIALS 27

Ω̇ =−3
2

J2 r2
E n

a(1− e2)2 cos i (2.1.5)

(Murray and Dermott, 2000), from which it is clear that polar orbits (with i = 90◦) do
not experience any effect in the longitude of the ascending node, and the perturbations
in the argument of perigee disappear for the so-called critical inclinations equal to
63◦26′ and 116◦34′.

The Kaula development provides the expression of the geopotential in terms of the
orbital elements (Kaula, 1966):

UP =−µ

a ∑
l≥2

n

∑
m=0

n

∑
p=0

∞

∑
q=−∞

( rE

a

)n
Jn,mFnmp(i)Gnpq(e)Snmpq(M,ω,Ω,θ⊕), (2.1.6)

where the indices l,m, p,q identify the terms in the inclination and eccentricity func-
tions Fnmp(i) and Gnpq(e). Their full forms can be found in Kaula (1966), let us only
note that Gnpq(e)≈ O(e|q|). Furthermore, we have

Jnm =
√

C2
nm +S2

nm, (2.1.7)

Snmpq =Cnm cosΨnmpq +Snm sinΨnmpq, (2.1.8)

Ψnmpq = (n−2p+q)M+(n−2p)ω +m(Ω−θ⊕)+ εnm
π

2
−mλnm. (2.1.9)

θ⊕ is the sidereal time and depends explicitly on time.
The two fast angles of the problem are M and θ⊕. The resonance occurs when

(n−2p+q)Ṁ−m θ̇⊕ ' 0. (2.1.10)

The indices (n,m, p,q) that satisfy this condition are called the resonant indices, and
the resonance is identified by the natural indices n1,n2 satisfying

n1

n2
=

m
n−2p+q

. (2.1.11)

Eq. (2.1.10) gives a condition for the resonant semi-major axis

µ
1
2 a−

3
2

θ̇⊕
' m

n−2p+q
⇒ ares '

(
m

n−2p+q
θ̇⊕µ

− 1
2

)− 2
3
. (2.1.12)

The order of the resonance is defined as

|k|≡ n−2p+q+m. (2.1.13)

The smaller the order, the more important the resonance. Tab. 2.1 gathers the most
eminent resonances in the Earth’s vicinity.

In order to use the Hamiltonian formalism, one needs to know the form of the
potential in canonical variables. The action-angle Delaunay variables have simple
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expressions in terms of Keplerian elements:

L =
√

µ a,

G = L
√

1− e2,

H = G cos i,

l = M,

g = ω,

h = Ω.

(2.1.14)

In these variables, the Hamiltonian of the problem becomes

H =− µ2

2L2 +Hsec(L,G,H, l,g,h)+Hres(L,G,H, l,g,h)+Hnonres(L,G,H, l,g,h).
(2.1.15)

The secular part Hsec corresponds to n−2p+q = 0 and m = 0 and has the form, up
to the second order of eccentricity and third order of spherical harmonic expansion:

Hsec =
µ r2

E J2

a3

(
3
4

sin2 i− 1
2

)
(1− e2)−

3
2

+
2µ r3

E J3

a4

(
15
16

sin3 i− 3
4

sin i
)

e(1− e2)−
5
2 sinω (2.1.16)

(Celletti and Galeş, 2014). The tesseral resonance discussed the most in this thesis is
the 2:1 resonance. The resonant part of its Hamiltonian, truncated to e4 and sin4 i, is

Hres =
µ r2

E J22

a3

(
3
4
(1+ cos i)2(− e

2
+

e3

16
)cos(M−2θ⊕+2ω +2Ω−2λ22)

+
3
2

sin2 i
(

3
2

e+
27
16

e3
)

cos(M−2θ⊕+2Ω−2λ22)

+
3
4
(1− cos i)2 67

48
e3 cos(M−2θ⊕−2ω +2Ω−2λ22)

)
+

µ r3
E J32

a4

(
15
8

sin i(1+ cos i)2
(

e2

8
+

e4

48

)
sin(M−2θ⊕+3ω +2Ω−2λ32)

+
15
8

sin i(1−2cos i−3cos2 i)
(

1+2e2 +
239
64

e4
)

sin(M−2θ⊕+ω +2Ω−2λ32)

−15
8

sin i(1+2cos i−3cos2 i)
(

11
8

e2 +
49
16

e4
)

sin(M−2θ⊕−ω2Ω−2λ32)

Table 2.1 – Most prominent resonances close to the Earth.

order (n1,n2) ares (km)
2 (1,1) 42 164
3 (2,1) 26 561
4 (3,1) 20 270
5 (4,1) 16 732
5 (3,2) 31 177



2.1. RESONANCES: ESSENTIALS 29

Figure 2.1 – Exemplary superposition of resonances corresponding to three various multiplets
of 2:1 resonance for i = 55◦. Each resonance is traced with its width calculated as if it was
isolated. From Daquin (2015).

−15
8

sin i(1− cos i)2 131e4

128
sin(M−2θ⊕−3ω +2Ω−2λ32)

)
, (2.1.17)

with λ22 and λ32 being the phases. In most cases, we are interested in long-term
dynamics, therefore the Hamiltonian is averaged and the non-resonant part, Hnonres,
is dropped.

Celletti and Galeş (2014) show that in case of 2:1 resonance, there are three
terms from the above expansion that dominate the dynamics and have comparable
magnitude, but none of them prevails over the others. These are the terms with
resonant angles being (M − 2θ⊕ + 2ω + 2Ω− 2λ22), (M − 2θ⊕ + 2Ω− 2λ22) and
(M− 2θ⊕+ω + 2Ω− 2λ32). The presence of several sets of resonant indices means
that the resonance actually splits into multiple resonances satisfying the condtion
(2.1.10), which have different values of resonant semi-major axis. As they are sep-
arated by only several kilometers, they may overlap with each other (Fig. 2.1) if the
distance between them is smaller than their respective widths (Chirikov, 1979). The
interactions between harmonics lead to the formation of chaotic zones.

2.1.2 Lunisolar resonances
The lunisolar resonances are related to the disturbing potential of a third body – the
Sun or the Moon. They have a much longer timescales than tesseral resonances, which
may be a reason why they were largely overlooked since early works (Hughes (1980);
Ely and Howell (1997); Breiter (2001)). The general form of the perturbing potential
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in the geocentric reference frame is

U3b =−
µ3b

||~r−~r3b||
+µ3b

r r3b

||~r3b||
, (2.1.18)

with~r being the position vector of the satellite from the centre of the Earth,~r3b – from
the centre of the Earth to the perturbing body, and µ3b is the gravitational parameter
of the third body. Expressing this potential in terms of Fourier series with the use of
Keplerian elements, we have for the Moon

UM =
2

∑
m+0

2

∑
s=0

2

∑
p=0

hM
2−2p,m,±s(a,e, i)cosψ

M
2−2p,m,±s, (2.1.19)

with the critical angle

ψ
M
2−2p,m,±s = (2−2p)ω +mΩ± s(ΩM−

π

2
− ysπ), (2.1.20)

with ys being equal to 0 for s even and to 1/2 otherwise (Daquin, 2015).
Similarly, the potential related to the Sun’s gravity is

US =
2

∑
m=0

2

∑
p=0

hS
2−2p,m(a,e, i)cosψ

S
2−2p,m, (2.1.21)

with
ψ

S
2−2p,m = (2−2p)ω +m(Ω−ΩS) (2.1.22)

(Daquin, 2015). The full expressions of hM and hS harmonics can be found in Kaula
(1966).

The resonance emerges when the critical angle is constant:

ψ̇
M
2−2p,m,±s = (2−2p)ω̇ +mΩ̇± sΩ̇M = 0, (2.1.23)

in case of the Moon; as Ω̇S = 0, the resonance with the Sun appears when

ψ̇
S
2−2p,m = (2−2p)ω̇ +mΩ̇ = 0. (2.1.24)

As the mean anomaly is absent from the equations, the value of semi-major axis is not
affected by these resonances.

Within the MEO region, the tesseral perturbations due to J2 are at least an order of
magnitude bigger than the lunisolar effects (Daquin et al., 2016). It is therefore possi-
ble to approximate ω̇ and Ω̇ with (2.1.4) and (2.1.5), respectively, ignoring the varia-
tions due to the lunisolar perturbations. With that in mind, eqs. (2.1.23) and (2.1.24)
define the curves of the lunisolar resonances in the (e, i) phase space (Fig. 2.2). The
shaded areas indicate the width of a resonance. It is visible that some of these reso-
nances (specifically, at the inclinations equal to 46.4◦, 56.1◦, 63.4◦, 69.0◦, 73.2◦and
90◦) are independent of the orbit eccentricity. Each of these splits into multiplet-like
structure with s∈ {1,2}, and the curves intersections indicate the regions where multi-
ple resonances dominate the dynamics. These superpositions produce chaos and may
lead to large drifts in eccentricity (Daquin et al. (2016); Gkolias et al. (2016)).
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Figure 2.2 – Centers (solid lines) and widths (shaded areas) of lunisolar resonances for ex-
emplary semi-major axes within the MEO region. At lower altitudes, the widths are narrow
and therefore, the dynamics should be dominated by regular orbits. At bigger values of a, the
libration regions are wider and the resonances overlap, creating chaotic domains. From Daquin
et al. (2016).

2.1.3 Chaos indicators
In efforts to identify the chaotic behaviours in the system, two kinds of indicators
come into play: variational and spectral methods. Variational indicators rely on anal-
ysis of behaviour of a tangent vector assosciated with the orbit under consideration.
The spectral methods, on the other hand, focus on one specific orbit and inspect the
frequency spectrum drawn from its numerical approximation. Calculation of such
chaos indicators over a grid of initial conditions allows to form stability maps, which
clearly depict the domains of existence of stable or chaotic motions.
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2.1.3.1 MEGNO

The indicator primarily used during this thesis is MEGNO. It was first described by
Cincotta and Simó (2000), and was proven to be a robust tool in the study of dynamical
problems (e.g. Goździewski et al. (2001); Breiter et al. (2005); Valk et al. (2009)). The
acronym stands for Mean Exponential Growth of Nearby Orbits, and it belongs to the
variational methods based on the use of Lyapunov exponents.

Let ~δφ be a deviation vector, representing a distance between two close trajecto-
ries. Its evolution is described by

~̇δφ =
d
dt
~δφ (t) = ~J(φ(t))~δφ (t), with ~J(φ(t)) =

∂~f
∂~x

(φ(t)) (2.1.25)

(terms of O(~δ 2) are omitted), where ~J(φ(t)) is the Jacobian matrix of the differential
equations system. MEGNO is defined as

Yφ (t) =
2
t

∫ t

0

δ̇φ (s)
δφ (s)

sds, with δφ = ||~δφ (t)|| (2.1.26)

(Cincotta and Simó, 2000). To ensure convergence and remove oscillations, the mean
value of Yφ (t) is used:

Ȳφ (t) =
1
t

∫ t

0
Yφ (s)ds. (2.1.27)

For quasi-periodic orbits, Ȳφ (t) converges to 2, while in case of chaotic motion, δ

grows linearly towards infinity. For orbits close to stable periodic ones, Ȳφ (t) tends
asymptotically to 0 (Cincotta et al., 2003).

MEGNO was implemented in the NIMASTEP software by its author, N. Delsate
(Delsate, 2011). The initial tangent vector is chosen randomly, in order to avoid arti-
ficial formation of low MEGNO zones due to the proximity of ~δφ (0) to the minimum
Lyapunov exponent direction.

2.1.3.2 FLI

Similarly to MEGNO, the Fast Lyapunov Indicator (FLI; first introduced in Froeschlé
et al. (1997)) is a variational method based on the analysis of the tangent vector evolu-
tion. It can be defined as the largest Lyapunov characteristic exponent at a fixed time
t = T :

FLI(t) = sup
0<t≥T

lnδφ (t). (2.1.28)

The character of the orbit is then distinguished in comparison with its vicinity (the
higher the value, the more chaotic the motion).

2.1.3.3 Frequency analysis

The idea is based on the KAM theory stating that in case of regular motion, the solu-
tions of the system are confined to invariant tori, therefore having constant frequen-
cies. The variation of these frequencies is an indication of chaos. The method consists
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of approximating the signal with N harmonics, starting from numerical data of f (t)
on a finite time interval

f (t) =
∞

∑
k=1

akeiνkt , f ′(t) =
N

∑
k=1

a′keiν ′kt , (2.1.29)

where f ′(t) is the approximation of the signal, and νk and ν ′k are the frequencies. The
frequencies ν ′k are found with the use of FMA (Frequency Map Analysis) algorithm,
detailed in Laskar (1993). The code that was used in this thesis was developed by
B. Noyelles.

2.2 Numerical investigations of the chaotic MEO zones
With the use of NIMASTEP software, described in the Introduction, and the MEGNO
indicator implemented in it, we were able to integrate the osculating Cartesian equa-
tions of motion in order to produce several stability maps, considering gravitational
perturbations due to the geopotential only (Sec. 2.2.1), or the geopotential and Sun and
Moon attraction (Sec. 2.2.2). The work was facilitated by the use of clusters, belong-
ing to the CÉCI consortium of high-performance computing centers of several Belgian
universities. The first step in this analysis is to compare these maps with those existing
in the literature. All the numerical simulations in the following were performed with
the use of Adams-Bashforth-Moulton method of order 10 (the next chapter contains
more information regarding the numerical integration).

2.2.1 Tesseral resonances
In Celletti and Galeş (2014), the authors use the Hamiltonian formalism and the equa-
tions averaged over short periods to present a cartography of 1:1 and 2:1 tesseral reso-
nances with the use of FLI indicator. In Fig. 2.3a, drawn from the article, they plot the
FLI values for the Hamiltonian (2.1.15), with the geopotential developed till degree 3,
retaining only the dominant terms in (2.1.17), as described at the end of Sec. (2.1.1).
The plot demonstrates how the chaotic zones occupy big portions of space when the
resonances overlap, even for non-elevated eccentricity values as e = 0.1. Fig. 2.3b is
a recreation of this map with the use of MEGNO, where the whole system was inte-
grated. 108 000 orbits were propagated on a 40 y timescale. All the important features
obtained with the main terms only are clearly distinguishable; the shape of the chaotic
zone is preserved, as well as the stable regions within it. Moreover, the precision of
our results with MEGNO is much higher compared to the results presented in Celletti
and Galeş (2014), due to a higher number of orbits that were integrated; more detailed
structures are clearly discernible in Fig. 2.3b. The stable regions within the chaotic
sea are probably to be associated with secondary resonances in the system, but further
study would be required to determine their nature.

Fig. 2.4 presents the stability maps for e = 0.5. Only the harmonics with order and
degree 2 were used here. Fig. 2.4a was taken from Daquin et al. (2015), where the
authors’ aim is to test the robustness of tesseral chaos to the averaging procedure. The
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(a) From Celletti and Galeş (2014).

(b) Recreation of the above with the use of MEGNO.

Figure 2.3 – Comparison of FLI and MEGNO maps for the 2:1 tesseral resonance, with only
the dominant terms of the geopotential (a), or the geopotential described by all the spherical
harmonics till degree 3 (b). Initial conditions: e = 0.1, i = 20◦, ω = Ω = 0◦. Integration time
was 40 y. The angle σ is σ = M−2θ⊕+ω +2Ω.
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(a) From Daquin et al. (2015).

(b) Recreation of the above with the use of MEGNO.

Figure 2.4 – Tesseral chaos around the 2:1 resonance as obtained in terms of FLI by Daquin
et al. (2015) (a) and with MEGNO (b). The initial conditions are: e = 0.5, i = 23◦, ω = 90◦,
Ω = 270◦. The simulation time is 40 y. ξ0 = λ0 = M+ω +Ω.
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Figure 2.5 – MEGNO values in semi-major axis – eccentricity phase space for 2:1 tesseral
resonance, with the force model being limited to 2nd order of geopotential expansion. The
initial conditions are: i = 23◦, ω = 90◦, Ω = 270◦, M = 300◦. 4 800 orbits were propagated
over 100 y. A stable zone being preserved along with eccentricity growth is evident.

map was produced in terms of FLI values, with the osculating equations propagated
over 40 y, but is presented in terms of the mean variables to allow for a comparison
with that obtained with the averaged system. Fig. 2.4b is our version of it, made with
the use of MEGNO and osculating theory, hence the difference in shape. We integrated
77 900 orbits over 40 y. Again, the precision obtained in the MEGNO map is much
better than that in the FLI map. Some additional stable structures are noticeable, e.g.
the thin line of low MEGNO (close to 0) below the main chaotic zone. Nonetheless,
the same conclusions can be drawn from both graphs: the maximum width of the
resonant zone is evidently bigger than in case of e = 0.1, presented above. This point
is further corroborated in our Fig. 2.5, which shows (in terms of MEGNO values) how
the resonance width becomes larger with the eccentricity increasing, as well as on
Fig. 2.6, similar to Fig. 2.4, but calculated with e= 0.1 (77 900 orbits). A stable region
is preserved within the chaotic zone regardless of the eccentricity. This same region
is also apparent to occupy a big portion of space in Fig. 2.4. A possible secondary
resonance within the system could be a plausible explanation for this structure; while
the superposition of resonant multiplets creates chaos, a secondary resonance may
produce such stable region within the chaotic sea. What is more, the addition of other
perturbations, such as Sun or Moon attraction, does not abolish it. The Hamiltonian
that describes the problem has the form

H =− µ2

2L2 +
µ2r2

E J2

a3

(
3
4

sin2 i− 1
2

)
(1− e2)−3/2
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Figure 2.6 – MEGNO map of tesseral chaos for initial conditions e = 0.1, i = 23◦, ω = 90◦,
Ω = 270◦, with 77 900 orbits propagated over 40 y.

+
µ2r2

E J22

a3

(
3
4
(1+ cos i)2

(
− e

2
+

e3

16

)
cos(M−2θ⊕+2ω +2Ω)

+
3
2

sin2 i
(

3
2

e+
27
16

e3
)

cos(M−2θ⊕+2Ω)

+
3
4
(1− cos i)2 67e3

48
cos(M−2θ⊕−2ω +2Ω)

)
. (2.2.1)

Within the portion of space that contains the stable region, (M− 2θ⊕ + 2ω + 2Ω)
is the resonant angle that librates, whereas the two remaining ones circulate. How-
ever, the frequency analysis of these angles performed on the stable orbits shows that
(M−2θ⊕+2ω +2Ω) and (M−2θ⊕+2Ω) have very similar periods (see Table 2.2),
meaning that there may be a secondary resonance between them. However, the fact
that the three terms are of comparable magnitude makes the problem more difficult, as
none of them can be seen as a perturbation to the others. Thus, the usual perturbation
approach cannot be applied, and the question remains open.

The comparison of FLI and MEGNO maps, and the finer details found with the
latter could be in itself published in an article form. As for now, these results were
presented at the CelMec conference in 2017.

En route to a more realistic model, Fig. 2.7 and 2.8 present the broadening of
chaotic regions with the addition of higher terms of geopotential (2 and 3, respec-
tively). As the coefficients of spherical harmonics diminish with the order, further
expansion does not affect the stability in any significant way (Fig. 2.9). The eccentric-
ity growth on the other hand can lead to destruction of the stable zones and extension
of the resonant region (Fig. 2.10). All four of the above mentioned graphs were created
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Figure 2.7 – MEGNO stability map for 2:1 tesseral resonance. Initial conditions: e = 0.3,
i = 23◦, ω = 0◦, Ω = 0◦, with geopotential expanded till degree 2. The integration time was
40 y.

Figure 2.8 – Similarly as above, but with the order of the highest terms of included harmonics
being 3.
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Figure 2.9 – 2:1 resonant zone under the influence of the geopotential modeled by a spherical
harmonics expansion up to order 5, with initial conditions: e = 0.2, i = 23◦, ω = 0◦, Ω = 0◦.

Figure 2.10 – Similar as in previous graph, but with e = 0.4.
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by propagating 36 100 orbits over 40 y.

2.2.2 Lunisolar resonances
Lunisolar resonances form a dense network of chaotic bands in the e− i phase space,
where many regular orbits persist within considerable stable regions. Fig. 2.11 and
2.12 present an example of such a mesh at a0 = 29 600 km. Both figures were ob-
tained by propagating 25 000 orbits over 200 y. As demonstrated by Daquin et al.
(2016), even the very basic model of geopotential perturbations described by oblate-
ness (J2) only and the Moon as a sole third-body perturber suffices to detect the preva-
lent features of the secular resonances. As the phase space is in fact of six dimensions,
the stability maps are difficult to present; hence the only difference between two sets
of maps is the value of initial argument of perigee. This kind of mesh and overlap-
ping of resonances dominate the dynamics at bigger values of semi-major axis, as per
Fig. 2.2 (Daquin et al., 2016), and it allows the orbits of satellites or space debris
that find themselves in such resonances to undergo a significant eccentricity growth
on relatively short timescales – the orbits can traverse large portions of eccentricity
range through the chaotic zones. They are however confined within several degrees in
inclination. It is worth noting that on the verge of these resonances, we can find the
Galileo navigational satellites - the inclination and semi-major axis of the constella-
tion corresponds to the resonant values. The resonances are therefore considered as
disposal regions for this system (Rosengren et al., 2017).

Table 2.2 – Dominant periods (in years) of angles σ1 = (M− 2θ⊕+ 2ω + 2Ω) and
σ2 = (M−2θ⊕+2Ω).

σ1 σ2
9.7555 4.5572
8.5537 3.1062

11.3632 8.5518
4.5561 2.9731

13.5979 4.8794
69.2139 69.2576
34.5340 1.1789
17.0311 2.3560
4.8739 7.6071

22.9327 9.7536
3.1092 3.2519

4.2785
34.5279
2.4386
5.2436
9.7740

11.3323
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(a) From Daquin et al. (2016).

(b) Recreation of the above with the use of MEGNO.

Figure 2.11 – FLI (from Daquin et al. (2016)) and MEGNO stability maps of lunisolar reso-
nances at a0 = 29 600 km. The remaining initial conditions are: ω = 30◦, Ω = 120◦. The initial
epoch is March 2, 1969, and the integration time is 200 y.
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(a) From Daquin et al. (2016).

(b) Recreation of the above with the use of MEGNO.

Figure 2.12 – Similarly as in Fig. 2.11, but with initial ω = 75◦.
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2.3 Conclusions
With the use of the in-house NIMASTEP integrator and the MEGNO chaos indicator,
we produced several stability maps of tesseral and lunisolar resonant zones. Some of
them are reproductions of previous work found in literature, but with much better res-
olution (due to the higher number of considered orbits), which allows to identify more
features, and reveals further complexity of the dynamics in the region. We also dis-
cussed some supposed secondary resonances in tesseral case, identifying the potential
angles that could correspond to this phenomenon. To our knowledge, this was the first
attempt at recognizing these resonances in MEO (some secondary resonances between
the geostationary resonant angle and the longitude of the Sun, related to the solar ra-
diation pressure, were identified in GEO, see Lemaitre et al. (2009)); however, due
to the comparable magnitude of perturbing terms, the problem requires some more
advanced analytical methods to be applied. Both tesseral and lunisolar resonances
could be important in space debris management, as they may serve as reservoirs of
graveyard orbits, or as a basis for deorbiting strategies in case of eccentricity growth
(see e.g. Rossi et al. (2009); Radtke et al. (2015)).
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Chapter 3
Numerical integration of chaotic
orbits

In recent decades, numerical integration has become a powerful tool in Celestial Me-
chanics. Due to the technological advancements that allowed to reduce computational
costs and time, it is now regularly used wherever analytical methods cannot be applied.
It provides an approximate solution when the equations are not possible to solve in an
exact manner, or gives the opportunity to explore long-term effects of the problem at
hand. Many important results could not have been obtained without referring to nu-
merical methods. This is notably valid in the field of Orbital Dynamics. As seen in the
previous chapter, numerical methods help to identify the regions of chaotic and regu-
lar motions throughout a six-dimensional phase space by computing chaos indicators
and composing stability maps and atlases.

Nevertheless, the sensitive dependence on initial conditions of chaotic systems
means that, due to inevitable numerical noises (such as truncation and round-off er-
rors), some quantities cannot be accurately computed. The emerging question of
which quantities we can still estimate with a relative reliability remains unaswered.

3.1 Motivation
The orbits that we consider are mainly those close to 2:1 tesseral resonant surface,
with a small detour into lunisolar resonances. As discussed in the previous chapter,
the interactions between neighbouring resonances generate chaotic regions, where the
predictability of the orbital evolution is limited. With the use of numerical integration
and chaos indicators, stability maps can be produced. However, if a single orbit is
considered, one can notice that different trajectories are obtained if various integra-
tion time steps are used. Fig. 3.1 presents an example of this effect: plotting semi-
major axis resulting from simulations performed with the Adams-Bashforth-Moulton
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Figure 3.1 – Long-term evolution of a chaotic orbit close to 2:1 tesseral resonance, traced with
three different time steps (red – 30s, green – 60s, blue – 100s). The integration was performed
with the use of ABM10 scheme. Initial conditions are: a = 26 569 km, e = 0.5, i = 23◦,
ω = 90◦, Ω = 270◦. The geopotential was developed till degree 2. The graphs were smoothed
to remove oscillations so that the general trends are visible. The divergence of orbits is apparent
already after around 15 y.

integrator of order 10, with time steps of 30, 60 and 100 s, we have three differ-
ent evolutions, diverging already after around 15 y. It is clear that a trajectory is
not accurately computed and it depends on its integration parameters. Reducing the
time step seems to prolonge the interval on which the trajectory is well computed.
However, 30 s is already a very small time step, especially on timescales as long
as 400 y. Nevertheless, the information regarding stability, calculated with different
variational indicators, remains valid, as visible when comparing maps generated by
different groups of researchers (cf. graphs in previous chapter). Despite the fact that
these groups would probably obtain different numerical orbits with their own orbital
propagators, their variational maps would still be identical. Therefore, some ‘observ-
ables’ seem to be more robust to perturbations than others. The same applies to the
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information extracted from their time series. A similar problem exists in the realm of
Molecular Dynamics: even though the numerical trajectories are correct for only very
short times, the statistical information derived from these simulations is still accurate
(Tupper, 2008). It is therefore important to know what quantities can be computed
accurately in case of chaotic orbits.

The work described in this chapter was carried out in collaboration with Dr Jérôme
Daquin. The issue was first identified during the conduction of numerical simulations
described in the previous chapter, when the use of too big of a stepsize produced
erroneous stability maps of tesseral chaos.

In the following, we mainly performed simulations with two ’popular’ constant
time step integrators, the single-step classical Runge-Kutta method of order 4 (RK4)
and the multi-step Adams-Bashforth-Moulton method of order 10 (ABM10). RK4
is one of the most widely used algorithms. However, it is only conditionally stable,
and might require a very small time step in order to keep the error at intended level.
Furthermore, RK4 requires 4 evaluations of the derivative per one step of integration.
ABM10 is a faster and more precise integrator. It is a multi-step predictor-corrector
algorithm, with Adams-Bashforth method used to predict the first value and an implicit
Adams-Moulton scheme used to further correct it. With half a number of function
evaluations of RK4, the method allows to obtain high precision of integration. As we
integrate the full (osculating) system and not the averaged one, this choice allows to
reduce computational costs and integration time. The symplectic schemes are also
briefly discussed.

3.2 Numerical experiments
The disparities discussed above hold for other resonances as well. Fig. 3.2 gives two
examples of 3:2 and 5:3 tesseral resonances, whereas Fig. 3.3 shows the evolution of
a trajectory starting within a chaotic sea related to a lunisolar resonance. In all these
cases, the ABM10 integrator was used. The divergencies are clearly visible in all three
graphs.

First of all, an important issue is the conservation of energy, which is a first integral
of the system. Fig. 3.4 demonstrates its variations over 200 y when ABM10 is used
– it is preserved up to 4%, even though the scheme is not symplectic. An error on a
similar level was produced with RK4 integrator.

Following some ideas from the realm of Molecular Dynamics (see e.g. Tupper
(2008); however, we consider only a single initial condition and discard the spatial
averaging idea), an observable that could be expected to be conserved regardless of
a time step is the distribution of the semi-major axis. The histograms of such a dis-
tribution are calculated by first dividing the range of values that the semi-major axis
achieves during its evolution into “baskets” of 1 km span. Then, we count the num-
ber of appearances of values falling into a specific “basket” range. Fig. 3.5 presents
three such histograms that were computed for the three trajectories of Fig. 3.1. It is
apparent that the distribution of the semi-major axis does not converge. Any statisti-
cal information extracted from the histograms is thus not accurate either. The same
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(a) 3:2 tesseral resonance

(b) 5:3 tesseral resonance.

Figure 3.2 – Examples of the problem in case of other tesseral resonances: 3:2 (a) and 5:3 (b).
Initial conditions: (a): e= 0.1, i= 10◦, ω =Ω= 0◦, M = 83◦; (b): e= 0.3, i= 45◦, ω =Ω= 0◦,
M = 57.6◦, all chosen within the chaotic sea of a relevant resonance. The geopotential was
expanded till degree 5. The orbits were propagated with ABM10 integrator over 200 y. The
discrepancies between trajectories obtained with various time steps are evident.
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Figure 3.3 – Eccentricity evolution of a trajectory in a chaotic region of lunisolar resonance.
Effects of J2, Sun and Moon were taken into account. Initial conditions are: a = 29 600 km,
e = 0.43, i = 64.8◦, ω = 30◦, Ω = 120◦, M = 0◦. Integration time is 500 y, and the integrator
is ABM10.

kinds of experiment conducted for other initial conditions known to be chaotic do not
invalidate this observation (Fig. 3.6).

The analysis of Lyapunov times could provide an insight into the limits of the pre-
dictability of the system. We have examined their values for three different timesteps
for several initial conditions known to belong to the tesseral chaotic sea, and each
time we have obtained different values for different h. They remain of the same order
though, that is, of just a couple of years (3-8 y). Similarly, the correlation time τC
could also serve as a good indicator of predictability horizon. For practical applica-
tions, the correlation decay of a particular observable of interest for the problem is
monitored (Wiggins and Ottino, 2004). As it was mentioned, the macroscopic vari-
able of interest for the tesseral problem is related to the semi-major axis; we thus turn
to monitoring its correlation decay.

The autocorrelation relates quantities that are θ -apart. We introduce the follow-
ing time-average notation: 〈 fν〉 = limt→+∞

1
t
∫ t

0 f (τ + ν)dτ . The (normalized) auto-
correlation coefficient C(θ) for the semi-major axis then reads

C(θ) =
〈(a0−〈a0〉)(aθ −〈aθ 〉)〉

σ2(a)
. (3.2.1)
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Figure 3.4 – The Hamiltonian first integral for the three time steps used in Fig. 3.1. The energy
is conserved up to 4% over a period of 200 y when ABM10 integrator is used.

Looking at limθ→+∞ C(θ) for various known chaotic initial conditions, we find a fast
decay of the correlation coefficient as a function of the lag-time θ . The correlation
time τC is then obtained as the smallest time t? for which the absolute value of the
correlation coefficient is smaller than 1/e for all t ≥ t? (Tsiganis et al., 2002). Al-
ternatively (e.g. Allen (2004)), we may estimate τC from the exponential correlation
decay as the characteristic time over which the decay occurs

C(θ) ∝ e−θ/τC . (3.2.2)

We estimated τC to be typically around 10 years (i.e. ∼ 7× 103 orbital revolutions).
This means that the experiments conducted in Figs. 3.5 and 3.6 satisfy

τrun ∼ 40τC, (3.2.3)

which can be considered much larger than one. Let us note that from this estimation,
it follows that τC is of similar magnitude as the Lyapunov time (strong chaos).

Even with the Lyapunov times being inconsistent, the stability maps computed
with three different time steps agree perfectly well. Fig. 3.7 presents zoomed-in por-
tions of maps of Fig. 2.4b of previous chapter. The chosen region contains the ‘main‘
separatrix, the border between stability island of secondary resonance and chaotic sea,
and a high number of chaotic orbits. Fig. 3.7a and 3.7b were traced with a time step
of 30 and 100 s, respectively, and the ABM10 integrator, whereas Fig. 3.7c and 3.7d
with 30 and 60 s plugged into the RK4 integrator (100 s is already too big for RK4).
All four graphs are in excellent agreement.

As far as lunisolar resonances are considered, the direct integration of osculating
equations yields some differences when compared to the maps calculated with aver-
aged theory. In Fig. 3.8, we plot a zoomed portion of the phase space of Fig.2.12a,
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(a) h = 30s. (b) h = 60s.

(c) h = 100s.

Figure 3.5 – Distributions of the semi-major axis for three chaotic trajectories of Fig. 3.1,
calculated over 400 y. Simulations were performed with the ABM10 integrator.
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Figure 3.6 – Overlayed histograms as in Fig. 3.5 for three other sets of initial conditions: (a):
a = 26 572.4 km, e = 0.5, i = 23◦, Ω = 270◦, ω = 90◦, M = 336◦; (b): a = 26 572.4 km,
e = 0.5, i = 23◦, Ω = 270◦, ω = 90◦, M = 338◦; (c): a = 26 572.4 km, e = 0.5, i = 23◦,
Ω = 270◦, ω = 90◦, M = 340◦. The J2 and J22 harmonics of geopotential were considered.
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(a) h = 30 s. (b) h = 100 s.

(c) h = 30 s. (d) h = 60 s.

Figure 3.7 – Comparison of zoomed portions of the boundary between chaotic and regular
regions of the stability maps for 2:1 tesseral resonance (Fig. 2.4). (a) and (b) were traced
with ABM10 integrator, whereas (c) and (d) with RK4. For each graph, 18 600 orbits were
propagated over 40 y. The maps agree perfectly well for various time step entries.

(a) MEGNO values. (b) Crash orbits.

Figure 3.8 – A zoomed in portion of Fig. 2.12a from previous chapter – MEGNO values (a)
and orbits that eventually end up being collisional (b). Integration time was 200 y, 50 200 orbits
were calculated.
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Figure 3.9 – A chaotic trajectory within the 2:1 tesseral sea traced with a symplectic scheme.
No discrepancies between the trajectories obtained with various time steps were obtained. Initial
conditions: a = 26 569 km, e = 0.5, i = 23◦, Ω = 270◦, ω = 90◦, M = 230◦.

taken from Daquin et al. (2016). Whereas in the original map, there are both chaotic
orbits and crash orbits, we obtain a much higher volume of crashing orbits – in fact,
all initial conditions found to be chaotic end up having a perigee smaller than Earth’s
radius. It should be emphasized that while the original map was obtained with an av-
eraged system, our rendition is, to our knowledge, the first time that a full system of
osculating equations was propagated in case of lunisolar resonances. The change in
integration time step does not influence this result. However, if we consider an esti-
mated time of crash with the Earth’s surface, we obtain a one day difference between
the trajectories determined with 30 and 100 s of time step, which is still not much
considering a long integration time (200 y).

As expected, no discrepancies depending on the time step are found when a sym-
plectic scheme is used. We performed some tests with the use of SYMPLEC software,
created by Ch. Hubaux (described in the Introduction). We used the SABA scheme of
order 4, and the time steps of 0.01 day (864 seconds) and 0.001 day (86.4 seconds).
Fig. 3.9 presents an exemplary trajectory with initial conditions in the tesseral chaotic
sea. As visible, all trajectories, regardless of the time step that was used, coincide.

3.3 Conclusions
Performing numerical simulations of chaotic orbits in MEO region, whether within
the tesseral or lunisolar resonances, with a constant time step method requires par-
ticular vigilance due to orbit dependance on a chosen time step. In fact, most of the
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semi-major axis related quantities that we considered are not preserved and show that
no information related to it can be trusted. Despite these discrepancies, the variational
indicators are computed correctly, so the stability distinction is valid. It seems that
some observables are more robust to numerical errors than others. These results sug-
gest that some “good computational practices” should be defined and constrained. The
symplectic scheme is the most reliable in this respect.
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Chapter 4
Tumbling rotation of asteroids
with YORP effect and energy
dissipation

The YORP effect is based on a similar principle as the Yarkovsky effect, but affects
the rotational motion of the body. The abbreviation was coined by Rubincam (2000)
and honors the first scientists who, after Yarkovsky, proposed that the phenomenon
may affect the body rotation (Radzievskii, 1952) and identified the thermal reemis-
sion and surface irregularities as the main factors (Paddack, 1969; Paddack and Rhee,
1975; O’Keefe, 1976). Since the work of Rubincam, various aspects of the YORP
effect have been studied. The main application is the rotational dynamics of asteroids
(although some initial studies in the domain of space debris have also emerged, see
Albuja (2015)). However, most studies admit the simplifying assumption of princi-
pal axis rotation; few works investigated the mechanism in case of tumbling aster-
oids. Moreover, some of these results seem to be in contradiction with observational
data, revealing flaws in present models. The process of dissipation of inelastic energy,
mostly neglected so far, needs to be accounted for, as it might provide a remedy to the
conundrum (initial work on this matter was done in Breiter and Murawiecka (2015)).
In this last chapter, we provide an analytical model of the YORP effect on both prin-
cipal axis and non-principal axis rotators, combined with inelastic energy dissipation,
searching to identify the conditions for the principal axis rotation to act as an attractor.
This time, the main bodies of interest are asteroids. We first introduce the reader to
the YORP effect and nutation damping related to energy dissipation in Sections (4.1)-
(4.4), before discussing the results in Sec. (4.5). The work was done in collaboration
with Prof. S. Breiter.
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4.1 YORP effect
The same mechanism of absorption and reemission of solar radiation as in Yarkovsky
effect is at the basis of the YORP effect. However, the important difference between
the two is the fact that the momentum of the reflected photons also contributes to sec-
ular changes in rotation (the absorption itself is still negligible (Rubincam, 2010)).
Therefore, besides considering d~fther as expressed in Eq. (1.1.3), one also needs to
take into account the related scattering part of the force, expressed as (assuming Lam-
bert’s law for scattering again)

d~fsc =−
2
3

A
c

max(0, n̂ · r̂s)Φ n̂dS. (4.1.1)

The total force is then d~f = d~fsc +d~fther, and the YORP torque

~M =
∫
~r×d~f , (4.1.2)

integrated over the whole body surface. The effect depends on the rotation direction
and produces changes in rotation rate and obliquity of the angular momentum vector.

An important distinction of the YORP effect with respect to the Yarkovsky effect
is the possibility to assume that the thermal conductivity K is null. This so-called
Rubincam’s approximation (Rubincam, 2000; Vokrouhlický and Čapek, 2002) means
that there is no time lag between absorption and reemission of the thermal wave. It
allows to drop the second member in the energy conservation equation (1.1.1) and
calculate the temperature without the requirement to solve the heat diffusion problem,
according to

T 4 =
(1−A)Φ

εσ
max(0, n̂ · r̂s). (4.1.3)

The simplification is often used in YORP models. However, one needs to keep in
mind that it is a rather strong assumption that may not be applicable in case of very
small bodies, as they may have high values of thermal conductivity (they may even be
isothermal if enough heat is conducted). What is more, it has been shown (Čapek and
Vokrouhlický, 2004; Nesvorný and Vokrouhlický, 2008) that a non-zero K is important
for the evolution of the obliquity, whereas the rotation rate is insensitive to it (as long
as small surface features that can produce the so-called tangential YORP, TYORP, are
ignored (Golubov and Krugly, 2012)).

The models with K = 0 are useful when applied to observational detection of the
YORP effect, as the uncertainties in the determination of the asteroid pole position are
already bigger then the estimates of the YORP effect in obliquity. The secular drift in
rotation rate due to the YORP torque is very small and requires lengthy and precise
observational campaigns.

The strong dependence of the effect on the shape of the body is also in contrast
with the Yarkovsky force. As the reemission occurs in the direction normal to the
surface, there is no torque in the limit of a spheroid; an object needs to have some
‘windmill’-kind of asymmetry. A more detailed characterization of the shape will
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usually diminish the error in YORP estimations. It has been shown that the effect
is sensitive to small-scale surface features such as craters or boulders (Statler, 2009).
What is more, such fine topography characteristics may require the treatment of heat
diffusion problem in full three-dimensional form (Golubov et al., 2014; Ševeček et al.,
2015). While this is computationally expensive, the consequences may be significant.
Also, if the shape of an asteroid is not convex, the effects of shadowing must be
considered, as the cut-off of the solar flux increases the temperature contrast on the
surface.

The YORP effect is important for small bodies. Usually, R≈ 10 km is regarded as
the limit on the size, above which the effect is negligible. The torque is proportional
to the inverse of the radius square, therefore the smaller the object, the easier it is to
detect it. It has been so far identified to affect the rotation rate of several asteroids,
including 1862 Apollo (Kaasalainen et al., 2007), 54509 YORP (Lowry et al., 2007;
Taylor et al., 2007), 3103 Eger (Ďurech et al., 2012), or 25143 Itokawa (Lowry et al.,
2014), all of which are shorter than 2 km in their longest axes.

4.2 YORP on non-principal axis rotators
A vast majority of asteroids rotate around their principal axis. This means, as ex-
plained below, that their angular momentum is aligned with the axis of maximum
inertia. A body on an orbit can experience various phenomenons that could poten-
tially cause it to enter tumbling rotation: close encounters with planets, spin down by
the YORP effect, or subcatastrophic impacts. Objects created in a disruption event of a
parent body often exhibit tumbling rotation as well. The identified tumblers are mostly
small and slowly rotating objects, relatively difficult to classify through photometry –
numerous repeated observations are required in order to cover the long period (Pravec
et al., 2014). Nevertheless, the observational data seem to suggest that the process of
energy dissipation due to inelastic deformations in such bodies is efficient enough to
overcome these triggers.

4.2.1 Non-principal axis rotation
The non-principal axis rotation is a state of excited rotational energy. If we define the
axes of the body frame B = (b̂1, b̂2, b̂3) to be aligned with the principal axes of inertia
tensor, it will have a form of a diagonal matrix

I=

I1 0 0
0 I2 0
0 0 I3

 , with I1 ≤ I2 ≤ I3. (4.2.1)

We will further use the moments of inertia inverses ai = 1/Ii.
The angular momentum vector is defined as ~G = I~Ω. In a non-perturbed case,

its modulus ||~G||= G is a first integral, so the tip of ~G describes a sphere as G2 =
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Figure 4.1 – Trajectories of the angular momentum vector in the body reference frame. Sepa-
ratrix is marked with a dashed line. From Breiter and Murawiecka (2015).

G2
1 +G2

2 +G2
3. The second first integral is the kinetic energy of the system,

H =
1
2
~Ω · ~G =

1
2
(a1 G2

1 +a2 G2
2 +a3 G2

3), (4.2.2)

defining the surface of an ellipsoid. The trajectories of ~G in the body frame are de-
fined as level contours of constant energy surface on the angular momentum sphere
(Fig. 4.1). In case of principal axis rotation, the angular momentum vector is aligned
with one of the body principal axes as well as the angular velocity vector ~Ω:

~G = I3~Ω, or ~G = I1~Ω. (4.2.3)

Otherwise, its components Gi evolve in the body frame according to (in an unper-
turbed problem)

Ġ1 =−(a2−a3)G2G3, (4.2.4)

Ġ2 = (a1−a3)G1G3, (4.2.5)

Ġ3 =−(a1−a2)G1G2, (4.2.6)

and the solution is expressed in terms of elliptic functions. ~G circulates around ±b̂1
or ±b̂3, and the two regimes are divided by a separatrix, marked in Fig. 4.1 with a
dashed curve.

If the angular momentum vector is aligned with one of the principal axes, the
system is in an equilibrium. Six equilibria points can be identified, two for each axis.
Those related to the shortest axis b̂3 or the longest one b̂1 are stable and correspond to
the minimum or maximum energy state, respectively, whereas the intermediary axis
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b̂2 is associated with an unstable equilibrium. The energy on the axes is H = 1
2 aiG2.

In case of a non-principal axis rotation, its value is constrained by those limits

0<
1
2

a3G2 ≤H ≤ 1
2

a1G2. (4.2.7)

Introducing A = 2H /G2, this reads

0< a3 ≤A ≤ a1 (4.2.8)

(Deprit and Elipe, 1993), and we can differentiate between two regimes of motion:

• a1 > A > a2 > a3 – so-called long-axis mode, LAM, where the angular mo-
mentum vector circulates around the longest axis b̂1;

• a1 > a2 > A > a3 – short-axis mode, SAM, where ~G circulates around the
shortest axis b̂3.

One can discriminate between SAM+ and SAM– depending on the sign of the product
~G · b̂3; the same applies to LAM (see Fig. 4.1). In case of A = a2, the trajectory
of ~G coincides with the unstable equilibrium corresponding to b̂2 axis, or with the
separatrix. In the presence of perturbations, chaotic region arises in its vicinity, and
the motion is unpredictable.

The position of the angular momentum vector in the body frame is described by
its angle with the given body axis. Further, we will use

θs = max(arccos|Ĝ · b̂s|), (4.2.9)

with the subscript s=1 in case of LAM and 3 for SAM (see Fig. 4.1). It is related to
the variable A through

A = a2− (a2−as)cos2
θs (4.2.10)

(Breiter et al., 2012).

4.2.2 YORP on tumbling objects
The YORP effect has the tendency to sustain tumbling. This fact exposes the need for
a more general model that would not suffer from the limiting assumption of princi-
pal axis (hereinafter abbr. PA) rotation. The first step in this direction was made by
Vokrouhlický et al. (2007) and was entirely numerical. They found the existence of
asymptotic tumbling states with an infinite growth of the angular momentum, locked
around the obliquities of 55◦or 125◦. The first semi-analytical model was developed
by Cicalò and Scheeres (2010), where the perturbation was averaged over precession
and nutation cycles. Within the first-order approximation of the illumination func-
tion, they found first integrals of motion and closed cycles around equilibria where
Vokrouhlický et al. (2007) found their asymptotic states. The angular momentum in
their solution remains bounded. Both of these results were confirmed by the semi-
analytical theory of Breiter et al. (2011), based on a more accurate description of the
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illumination function. We here proceed to shortly describe this model as it is the one
that we further use.

The model assumes zero thermal conductivity. The YORP torque in the body
frame is described as

~M =−κ

(
a
rs

)2

∑
n>1

n

∑
m=−n

~vn,mYn,m(r̂s), (4.2.11)

where rs is the length of the Sun position vector and r̂s its unit vector. Yn,m are spher-
ical harmonics of degree n and order m, and ~vn,m are dimensionless complex vector
coefficients depending on the distribution of the optical and thermal recoil force on
the body surface. The physical constants are encapsulated in

κ =
2
3

V Φ0

c

(
d0

a

)2

, (4.2.12)

with V the body volume and Φ0 the solar flux at d0 = 1 AU. The torque is then aver-
aged over the orbital and rotational motion. The resulting equations of motion are

Ġs =−
κ

1− e2
π

2Ks
∑
n=1

Θ
0
2n(cosε)Gs,n, (4.2.13)

ε̇s =−
κ

(1− e2)G
π

2Ks
∑
n=1

Θ
1
2n(cosε)Es,n, (4.2.14)

∆̇s =−
κ∆

(1− e2)G
π

Ks
∑
n=1

Θ
0
2n(cosε)∆s,n, (4.2.15)

depending on the rotation mode (hence the subscript s). Ks = K(ks) is the complete
elliptic integral of the first kind, and its modulus ks depends on θs and ai. Θm

2n are nor-
malized associated Legendre functions (of degree 2n and order m). The full expres-
sions of the functions Gs,n,Es,n,∆s,n are quite extensive and can be found in Breiter
et al. (2011); they depend on θs and ai. The variable ∆ = 1/A is called dynamical
inertia and is often used in rigid body problems.

The averaging assumptions exclude long rotation periods (comparable to orbital
period) as well as motion in the vicinity of separatrix, where the chaotic zone arises.

Simulations performed by Breiter et al. (2011) confirmed the asymptotic states in
ε and θs with the growth or decrease of the rotation rate. They also corroborated the
presence of first integrals found by Cicalò and Scheeres (2010) in case of quadrupole
approximation of the illumination function, and additionally identified some limit cy-
cles in (ε,θs) space in the LAM (Fig. 4.2). In a general rotation case, the principal
axis rotation seems to be unstable under the YORP effect. Being in contradiction with
observational evidence, those states should not persist in reality as the process of en-
ergy dissipation should drive the angular momentum vector back to the shortest body
axis.



4.3. NUTATION DAMPING 63

Figure 4.2 – Evolution of the instantaneous rotation axis for an exemplary shape of 3103 Eger,
a 1.5 km-sized asteroid for which the YORP effect was measured (Ďurech et al., 2012). The
trajectories are displayed in the (ξ ,As/a2) space, with ξ = cosε and As/a2 = 1− a2−as

a2
cos2 θs.

The grey and white colors mark the areas of decrease and growth of G, respectively. The value
of As/a2 = 1 corresponds to the separatrix. For principal axis rotation, As/a2 depends on
axes ratios and is equal to 0.8173 for b̂3 and 2.1154 for b̂1 for Eger. SAM+ and SAM– modes
are labeled as SP and SM, respectively, and likewise for LAM+ and LAM–. The limit cycles
are visible in both LAM planes; stable in LAM+ and unstable in LAM–. The trajectories that
originate inside them remain in LAM. The loss of angular momentum causes the chaotic zone
around the separatrix to expand and eventually disrupt the asymptotic cycles and points. From
Breiter et al. (2011).

4.3 Nutation damping

The circulation of ~G around b̂1 or b̂3 in NPA rotation means that there is a centrifugal
force that results in internal stresses and displacements that are inelastic. This phe-
nomenon leads to the dissipation of energy in form of heat. The draining of kinetic
energy damps the instantaneous axis of rotation to the principal axis of maximum
inertia, which is the minimum energy state.

The calculation of the effect is rather challenging. Most models approximate the
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(a) LAM (b) SAM

Figure 4.3 – Dependence of nutation excitation (a) and damping (b) times on body shape for
exemplary ellipsoids with h = h1 = h2. From Breiter et al. (2012).

body shape as a spheroid. Two exceptions are the rectangular prism in the model of
Efroimsky (2000) and a triaxial ellipsoid of Breiter et al. (2012), but the latter is better
suited for the application to asteroids.

Within this model, the rate of energy loss is

Ė =−a4
eρ mG5a5

s

µ Q
Ψs (4.3.1)

(Breiter et al., 2012), which translates into the change in θs as

dθs

dt
=

a4
eV G3a5

s

µQ(as−a2)

Ψs

sinθs cosθs
. (4.3.2)

The function Ψs depends on the current θs value and on the principal moments of
inertia of the reference ellipsoid through the ratios of the ellipsoid semi-axes ae,be,ce

h1 =
be

ae
, h2 =

ce

be
, ce ≤ be ≤ ae. (4.3.3)

ν and µ are respectively the Poisson ratio and Lamé modulus – quantities describing
the stiffness and compressibility of the material, and Q is its quality factor. Their
values are further assumed to be ν = 0.25, µ = 109 Pa (pascals), Q = 100.

From (4.3.1), one can see that the dissipation is faster for quickly rotating objects.
Bigger bodies also experience stronger effect and reach the principal axis rotation
faster.

If the body starts its evolution in LAM, θ1 grows and the angular momentum
vector is pushed towards the separatrix. In SAM, θ3 decreases and ~G is driven towards
the principal axis b̂3, where it should remain in an unperturbed case. The evolution in
SAM is much longer than that in LAM (Fig. 4.3, plotted for h = h1 = h2).
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Figure 4.4 – Evolution of Eger rotation in SAM as in Fig. 4.2, but including the effects of
energy dissipation, in (ξ ,θ3) plane. From Breiter and Murawiecka (2015).

4.4 YORP torque and inelastic energy dissipation
The first (and so far only) work that considered the joint action of the YORP effect and
energy dissipation was that of Breiter and Murawiecka (2015). The fully numerical
study consisted of integrating the equations for Ġs, ε̇s, θ̇s for some exemplary shapes
of asteroids. As the energy dissipation affects only the nutation angle, equations for
Ġs and ε̇s remain the same as in (4.2.13) and (4.2.14), respectively, whereas the one
for θ̇s becomes

θ̇s =
a4ρ mG3a5

s

µQ(as−a2)

Ψs

sinθs cosθs

+
κ π

2GK
√

1− e2

a2− (a2−as)cos2 θs

(a2−as)sinθs cosθs
∑
n≥1

Θ
0
2n(cosε)∆s,n. (4.4.1)

Nevertheless, the variations in θs affect the evolution of rotation rate and obliquity
through the dependence of equations (4.2.13) and (4.2.14) on nutation. Generally
speaking, the results showed that the pure YORP cycles from Breiter et al. (2011) are
destroyed under the action of nutation damping related to energy dissipation, though
some new asymptotic states of stationary tumbling were detected. The number of
initial conditions that are driven towards the principal axis is too small compared to
observational data. We briefly describe the details of these results below.

Fig. 4.4 is an analogue of Fig. 4.2a and b, but with nutation damping. The shape of
3103 Eger was chosen as an example in order to allow for comparison with the results
of Breiter et al. (2011). The main effect of energy dissipation is to push the trajecto-
ries to the principal axis on the left, therefore any migration in ξ or to the right of the
plot is due to YORP only. The integration was limited to 0.1◦ < θs < 85◦ in order to
stay away from the chaotic zone around the separatrix (the upper limit) and to avoid
a singularity in (4.4.1) at θs = 0◦(θs < 0.1◦is therefore considered as principal axis
rotation). The grey area marks the region of θ3 < 15 ◦that is observationally indistin-
guishable from the principal axis rotation (Henych and Pravec, 2013). Stable points
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Figure 4.5 – Maps of final states for three exemplary objects. Color code: white – separatrix
zone; light grey – rotational period below 10 y; dark grey – stationary tumbling with fixed
period; black– principal axis rotation. Initial conditions were sampled with a 5◦step in θ3 ∈
(2◦,82◦) and ε ∈ (0◦,180◦). Initial rotation periods were 5.7 h for Eger, 3 h for ”fast Apophis”
and 30 h for Apophis. From Breiter and Murawiecka (2015).

visible in Fig. 4.2a, b are gone, but a new asymptotic state is identified – stationary
tumbling with a fixed rotation rate and obliquity ε = 90◦. Other than that, the trajecto-
ries are either driven towards the principal axis (for |ξ |& 0.8 in SAM+ and |ξ |. 0.5 in
SAM–), hit the separatrix in SAM+ or are driven towards the former unstable points
(see Fig. 4.2b) and then towards ξ = 0 in SAM–, though they lose so much angular
momentum that the rotation period becomes too long. All the orbits in both LAM
cases are driven towards the separatrix; the limit cycles and equilibrium points do not
persist. This is due to the fact that the dissipation effects are much stronger in LAM
than in SAM. Smaller bodies were considered as well and more YORP-like evolution
was detected, as the energy dissipation is much weaker. The trajectories do not remain
in the stable points as they are related to angular momentum growth, which increases
the dissipation. The stable cycles are also destroyed.

In general, there are four final states that are possible: exit from a mode through
the separatrix, unlimited angular momentum growth (to the point where it violates
the assumptions of the model), drive towards the principal axis and stationary tum-
bling state with stable period. Fig. 4.5 presents the distribution of these outcomes on
a (5◦× 5◦) grid of initial conditions for three different objects: 3103 Eger as earlier,
a much smaller 99942 Apophis (as an example of a body that is actually a tumbling
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asteroid (Pravec et al., 2014)) and ”fast Apophis” with a rotational period 10 times
shorter than the actual one (as an instance of a smaller body, like Apophis, but with
a faster rotation rate). Although there is no contradiction with the observational data
for Eger (θ3 < 15◦and ε ≈ 175◦in SAM+), the percentage of initial conditions result-
ing in principal axis rotation is too small for the spin rate-size ratio of an Eger-like
object; most of the initial conditions remain in the tumbling zone. Smaller bodies
like Apophis experience a stronger YORP effect and weaker nutation damping, so
the four graphs represent this trend very well. Especially in SAM–, many stationary
tumbling states were observed. Again, this is in accordance with the currently ob-
served rotational state of 99942 Apophis. There are more trajectories ending up on
the principal axis in case of faster Apophis since the energy dissipation is stronger
for higher rotation rates, whereas YORP effect in θs is weaker. However, all things
considered, the ratio of this end state to those of sustained tumbling is still too low
when compared with observations (Pravec et al., 2014). Either the energy dissipation
is underestimated, either the YORP effect overestimated, or – both. Some simplifying
assumptions could also be to blame, e.g. the zero thermal conductivity, or the convex
shape approximation.

4.5 Stability of the principal axis rotation
So far, we summarized the general understanding of the processes related to tumbling
rotation of asteroids when both the YORP effect and the nutation damping due to en-
ergy dissipation are present. Here, we proceed to describe the new, analytical approach
and results that were developed in the course of this thesis. As it was shown, the dis-
cussion presented so far raises the question of the stability of motion in close vicinity
to the principal axis. Below, we first develop an approximated model for YORP ef-
fect on the principal axis rotators and then proceed to consider small departures from
θ3 = 0.

4.5.1 Principal axis YORP
In the principal axis rotation, the variables Ω = G/I3 and ξ = cosε evolve due to the
YORP effect according to

Ω̇ =−κ
∗
∑
n>1

P2n(0)P0
2n(ξ )Z2n,0, (4.5.1)

ξ̇ =−κ∗
√

1−ξ 2

Ω
∑
n>1

P2n(0)P1
2n(ξ ) (X2n,1−Y2n,1) , (4.5.2)

with
κ
∗ =

κ

I3
√

1− e2
, (4.5.3)

and Pn an unnormalized Legendre polynomial. The unnormalized values of the torque
coeffcients are related to the real and imaginary parts of~vn,m through

Xn,m = σn,m ℜ(~vn,m) · b̂1, Yn,m = σn,m ℑ(~vn,m) · b̂2,
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Zn,m = σn,m ℜ(~vn,m) · b̂3, (4.5.4)

with

σn,m =

√
(2n+1)(n−m)!

4π (n+m)!
. (4.5.5)

The system in the first approximation with n = 1 (the quadrupole approximation)
has the form

Ω̇ =−κ
∗P2(0)P0

2 (ξ )Z2,0, (4.5.6)

ξ̇ =−κ∗
√

1−ξ 2

Ω
P2(0)P1

2 (ξ ) (X2,1−Y2,1) . (4.5.7)

Dividing Ω̇ by ξ̇ , we have

dΩ

dξ
=

ΩP0
2 (ξ )Z2,0√

1−ξ 2 P1
2 (ξ )(X2,1−Y2,1)

, (4.5.8)

where the variables can be separated. After rearrangements, we obtain

dΩ

Ω
=

1−3ξ 2

ξ (1−ξ 2)

dξ

2ζ
, (4.5.9)

where

ζ = 3
(

X2,1−Y2,1

Z2,0

)
, (4.5.10)

equal to 1 in case of convex bodies within Rubincam’s approximation. Considering
that the values ξ = 0 and ξ 2 = 1 are stationary points of the equation for ξ̇ and there-
fore ξ = 0 cannot be crossed, the first integral is therefore found to be

CΩ =
√
|ξ |(1−ξ 2). (4.5.11)

The sign of C is fixed to C > 0, or C = 0 for initial conditions ξ = 0 or ξ 2 = 1 with
Ω> 0; in such case, Ω varies at a constant obliquity.

With this integral, Ω can be eliminated from (4.5.7), giving

dξ

dt
=−
√

2Cw
√
|ξ |(1−ξ 2), (4.5.12)

where
w =

3κ∗

2
√

2
(X2,1−Y2,1) . (4.5.13)

The solution for ξ is then found in terms of Jacobi elliptic cosine:

ξ (t) =±cn2
(

u, 1√
2

)
, (4.5.14)
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where
u =Cwt +ϕ. (4.5.15)

ϕ is the initial argument, given by

ξ (0) =±cn2
(

ϕ, 1√
2

)
, or ϕ = F

(
arccos

√
|ξ (0)|, 1√

2

)
. (4.5.16)

Since ξ = 0 cannot be crossed, the sign σξ = sgn(ξ ), remains the same during the
evolution. Therefore, the choice in (4.5.14) should be the same as the sign of initial
ξ (0).

Knowing ξ (t), we find Ω(t) with the use of the first integral C to be

Ω(t) =

√
2

C
sn
(

u, 1√
2

)
cn
(

u, 1√
2

)
dn
(

u, 1√
2

)
. (4.5.17)

Although these two solutions seem to be periodic, they are not as the propagation
should end at the limits of ξ 2(t) = 0 and ξ 2(t) = 1.

Adding further terms in the insolation expansion can be seen as perturbing the
quadrupole system. We thus have

Ω̇ =−κ
∗P2(0)P0

2 (ξ )Z2,0 +FΩ, (4.5.18)

ξ̇ =−κ∗
√

1−ξ 2

Ω
P2(0)P1

2 (ξ )
1
3

Z2,0 +Fξ , (4.5.19)

with FΩ and Fξ the perturbations to (4.5.6, 4.5.7). This system can be solved with the
variation of constants approach, in which C and ϕ become functions of time in the
unchanged solutions (4.5.14, 4.5.17). Then, the first order solution will be

C(t) =C0+ ε C1(t), (4.5.20)
ϕ(t) = ϕ0+ ε ϕ1(t). (4.5.21)

The new u(t) is found using

u = w
∫ t

0
Cdt ′+ϕ, (4.5.22)

in place of (4.5.15), in order to avoid an explicit presence of time in the equation of
motion. The meaning of ϕ = u(0) is preserved, but this definition is better suited when
C is variable. Therefore, we have

u(t) = wC0 t +ϕ0+ ε

(
w
∫ t

0
C1(t ′)dt ′+ϕ1(t)

)
= u0(t)+ ε u1(t). (4.5.23)

For linear perturbations, we have

Ċ0 = 0, ϕ̇0 = 0, u̇0 = wC0, (4.5.24)

and

Ċ1 =−
C0

Ω0
FΩ(ξ0)−σξ

P2(ξ0)

C0Ω2
0

Fξ (Ω0,ξ0), (4.5.25)
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ϕ̇1 =−
σξ Fξ (Ω0,ξ0)√

2C0Ω0
. (4.5.26)

The perturbed system with the terms of n = 2 and n = 3 is

FΩ =−
3κ∗Z4,0

8
P0

4 (ξ )+
5κ∗Z6,0

16
P0

6 (ξ ), (4.5.27)

Fξ =−κ∗
√

1−ξ 2

Ω

(
3(X4,1−Y4,1)

8
P1

4 (ξ )−
5(X6,1−Y6,1)

16
P1

6 (ξ )

)
. (4.5.28)

Integration of equations (4.5.25, 4.5.26) yields

C1(t) =
C0 κ∗√

2w
(
(
ln
(
1−ξ

2
0 (t)

)
− ln

(
1− (ξ 2

0 (0)
))

A1 + (ln(|ξ0(t)|)− ln(|ξ0(0)|))A2

+
(
ξ

2
0 (t)−ξ

2
0 (0)

)
A3 +

(
ξ

4
0 (t)−ξ

4
0 (0)

)
A4), (4.5.29)

ϕ1(t) =
5κ∗C0

2w

(√
2A5wt +(Ω0(t)−Ω0(0))A6 +

(
ξ

2
0 (t)Ω0(t)−ξ

2
0 (0)Ω0(0)

)
A7

)
,

(4.5.30)

with coefficients

A1 =
1

32
(−60(X4,1−Y4,1)+105(X6,1−Y6,1)+ 6Z4,0−5Z6,0) , (4.5.31)

A2 =
1

256
(360(X4,1−Y4,1)+525(X6,1−Y6,1)− 36Z4,0−25Z6,0) , (4.5.32)

A3 =
105
128

(−6(X4,1−Y4,1)−6(X6,1−Y6,1)+ Z4,0 +Z6,0) , (4.5.33)

A4 =
1155
1024

(9(X6,1−Y6,1)−Z6,0) , (4.5.34)

A5 =
1
8

(
(X4,1−Y4,1)+

15
4
(X6,1−Y6,1)

)
, (4.5.35)

A6 =
1
8

(
−7(X4,1−Y4,1)−

45
8
(X6,1−Y6,1)

)
, (4.5.36)

A7 =
99
64

(X6,1−Y6,1) . (4.5.37)

Fig. 4.6 compares this analytical solution for C(t) and ϕ(t) with the results of numer-
ical integration of equations (4.5.1, 4.5.2) with n = 3.

Calculation of u(t) is not straightforward as it requires integrating C1, which in-
volves logarithms. Their integrals produce hypergeometric functions∫

ln
(
1−ξ

2
0 (t)

)
dt =− Ω0(t)√

2|ξ0(t)|w

(
2 3F2

(
1
2
,

1
2
,

3
4

;
3
2
,

3
2

;1−ξ
2
0 (t)

)
−2F1

(
1
2
,

3
4

;
3
2

;1−ξ
2
0 (t)

)
ln(1−ξ

2
0 (t))

)
, (4.5.38)
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Figure 4.6 – Trajectories obtained with analytical solution (dashed line) of C(t) and φ(t) as
compared with numerical integration results (solid line). Plotted with κ∗ = 1, Ω0 = 1, ξ0 =

1√
3

.

∫
ln(|ξ0(t)|)dt =

2
√

2 |ξ0(t)|
C0 w

(
3F2

(
1
4
,

1
4
,

1
2

;
5
4
,

5
4

;ξ
2
0 (t)

)
−2F1

(
1
4
,

1
2

;
5
4

;ξ
2
0 (t)

)
ln
(√
|ξ0(t)|

))
. (4.5.39)

The 2F1
( 1

4 ,
1
2 ; 5

4 ;x2
)

function can be identified with the elliptic integral of the first kind
1
2

√
2
x F
(

arccos
(√

1−x
1+x

))
, whereas 2F1

( 1
2 ,

3
4 ; 3

2 ;x
)

with
√

2
x F
(

arcsin
(√

1−
√

1− x
))

,
which in our case simplifies to√

2|ξ0(t)|
Ω0(t)C0

F(am(u0)) =

√
2|ξ0(t)|

Ω0(t)C0
u0. (4.5.40)

To calculate the two 3F2 functions, their hypergeometric series,

3F2

(
1
2
,

1
2
,

3
4

;
3
2
,

3
2

;1−ξ
2
0 (t)

)
=

∞

∑
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(( 1
2

)
i

)2 ( 3
4

)
i(( 3

2

)
i

)2

(
1−ξ 2

0 (t)
)i

i!
, (4.5.41)
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4
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2
0 (t)
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=

∞
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4
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)2 ( 1
2

)
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4
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i

)2
ξ 2i

0 (t)
i!

, (4.5.42)

can be used. Eventually, the new u(t) is

u(t) = u0 +
κ∗

w

(
2A2

(√
|ξ0(t)|3F2(ξ

2
0 (t))−

√
|ξ0(0)|3F2(ξ

2
0 (0))

)
−C0 A1

(
Ω0(t)√
|ξ0(t)|

3F2
(
1−ξ

2
0 (t)

)
− Ω0(0)√

|ξ0(0)|
3F2
(
1−ξ

2
0 (0)

))

+

√
2

2
A1
(
u0 ln(1−ξ

2
0 (t))−ϕ0 ln(1−ξ

2
0 (0))

)
−
√

2A2

(
F

(
arccos

(√
1−|ξ0(t)|
1+ |ξ0(t)|

))
ln
(√
|ξ0(t)|

)
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Figure 4.7 – Analytical solution (dashed line) for Ω(t) and ξ (t) compared with numerical
integration results (solid line). The initial conditions that were used are the same as in Fig. 4.6.

−F

(
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(√
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+
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−A3ξ

2
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2
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A4

+
1
3

A3 +5A5

)
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(

10
21

A4 +
2
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A3 +5A6

)
(Ω0(t)−Ω0(0))

+

(
6
21

A4 +5A7

)(
ξ

2
0 (t)Ω0(t)−ξ

2
0 (0)Ω0(0)

)))
, (4.5.43)

where we skip the parameters of 3F2 hypergeometric functions for brevity.
The new u(t) and C(t) can be plugged into the quadrupole approximation solution

(4.5.17, 4.5.14). The resulting analytical solution for Ω(t) and ξ (t) yields trajectories
very similar to that obtained numerically with the integration of (4.5.1, 4.5.2) with
n = 3 (Fig. 4.7).

4.5.2 Small wobble model
A small departure of the angular momentum vector from the principal axis already re-
sults in tumbling. Hereinafter, we keep Ω=G/I3 as a purely formal quantity, differing
from the actual angular velocity by O(η2).

We are interested in the dynamics in the vicinity of the principal axis. Using

η = sinθ , (4.5.44)

with θ defined as in (4.2.9), we expand the equations (4.2.13)-(4.2.15) with n = 1
around θ = 0, keeping the terms up to η3:

dΩ

dt
=

κ∗P2(ξ )

2
(
Z2,0 +η

2 (−3Z2,0 +α0 (3X2,1 +Z2,0−3Z2,2))
)
, (4.5.45)

dξ

dt
=

2ξ
(
1−ξ 2

)
Ω(1−3ξ 2)

dΩ

dt
, (4.5.46)



4.5. STABILITY OF THE PRINCIPAL AXIS ROTATION 73

dη

dt
=−2η

Ω

(
dΩ

dt
+

κ∗P2(ξ )η2Z2,0

2β

)
, (4.5.47)

where
α0 =

a1−a2

a1−a3
, (4.5.48)

and

β
−1 =

10−3α0

8
−

3α0 (X2,1−Z2,2)

2Z2,0
. (4.5.49)

The integral C remains valid in tumbling rotation (assuming Ω as defined above).
The second integral is obtained by dividing (4.5.47) by (4.5.45),

dη

dΩ
=−2η

Ω
−

κ∗η3P2(ξ )Z2,0

βΩΩ̇
, (4.5.50)

and neglecting the terms of O(η2) in Ω̇

dη

dΩ
=−2η

Ω

(
1+

η2

β

)
, (4.5.51)

with the accuracy of O(η5). After integration, this gives

Ω4η2

β +η2 = const, (4.5.52)

which can be approximated for small η as

B = Ω
4

η
2
(

1− η2

β

)
. (4.5.53)

The arbitrary constant B is the same integral as the one found by Breiter et al. (2011)
without truncation in η .

Unfortunately, elimination of two of the three variables in any of the equations
(4.5.45), (4.5.46) or (4.5.47) does not lead to a sufficiently simple solution.

4.5.3 YORP and inelastic energy dissipation
Adding the energy dissipation, the equation for η becomes

dη

dt
= ηE1(ξ ,Ω)+η

3E3(ξ ,Ω), (4.5.54)

whereas those for Ω̇ and ξ̇ remain as in (4.5.45) and (4.5.46), respectively. E1 and E3
above are

E1 =−
κ∗P2(ξ )Z2,0

Ω
− γ

[
dΨ̃3

dη

]
η=0

, (4.5.55)
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E3 =−
κ∗P2(ξ )

Ω

((
−3+

1
β

)
Z2,0 +α0 (3X2,1 +Z2,0−3Z2,2)

)
− γ

6

[
d3Ψ̃3

dη3

]
η=0

,

(4.5.56)

with

γ =
a4V Ω3a2

3
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=
a4V Ω3a3
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1h2
2

h2
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(
1−h2

2
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(as in Eq. (4.3.2)). Hereinafter, we use

Ψ̃3 =
Ψ3

η
. (4.5.58)

The derivatives of odd orders at η = 0 of Ψ̃3 are
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, (4.5.59)
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whereas those of even orders vanish. M012 and M123 are

M012 =
(
1−h4

1
)2
(M0 +M12) , (4.5.61)

M123 =
(
1−h4

1
)
(M13 +M23) , (4.5.62)

with M0,M12,M13 and M23 the positive functions of h1, h2 from Breiter et al. (2012).

4.5.4 Local stability criterion
The question is, what is the condition for the process of energy dissipation to over-
come the tumbling-driving influence of the YORP effect? To answer this within the
considered model assumptions, we set two limits: since we study small departures
from the principal axis, we set ηmax = 1/4, which coincides with θ ≈ 15 ◦, the value
below which tumbling rotation is observationally indistinguishable from the principal
axis rotation. The other limit is related to averaging limits in the YORP model – the
rotation cannot be slow enough to approach spin-orbit resonances. We therefore take
Ωmin = 10n (with n being the mean motion).

We can rewrite dη

dt as a product of a common positive factor extracted from E1 and
E3 and the remaining parts now labeled D1 and D3,

dη

dt
=

a3V Φ0d2
0η

Ωca2 (1− e2)
1
2

(
D1 +η

2D3
)
, (4.5.63)
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Figure 4.8 – Conditions for a local attractor.
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The shape-related functions introduced above are
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and the positive coefficient R encapsulates all the constants

R =
a4

eρ2c
(
1− e2

) 1
2

µQΦ0

(
a
d0

)2

. (4.5.68)

The idea of stability that we employ here is illustrated in Fig. 4.8. In short, two
attractors for η can exist in 0 ≤ η < ηmax. The two roots for dη

dt are η = 0 and

ηr =
√
−D1

D3
(D1 and D3 need to have opposite signs).

The first local stability criterion (Fig. 4.8, left) could be formulated as the require-
ment that for all 0< η < ηmax and Ω>Ωmin, we have

η̇ < 0. (4.5.69)

Therefore, the derivative of (4.5.63) needs to be negative at η = 0. This is fullfilled if
D1 < 0 and D3 < 0, but also, in case of D3 > 0, we need to add D3 < −D1/η2

max, so
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that the basin of attraction covers the whole postulated interval. We have thus

D1 < 0, and D3 <−
D1

η2
max

. (4.5.70)

The first of them implies (
1−3ξ

2) Z2,0 < 3RH1Ω
4. (4.5.71)

Substituting Ω = Ωmin, we have a constant, positive factor on the right-hand side of
the equation, but (1− 3ξ 2) on the left side still varies during the evolution. As long
as Z2,0 and (1− 3ξ 2) have opposite signs, the requirement is met unconditionally;
otherwise, we need further restrictions. We can majorize or minorize the (1− 3ξ 2)
factor by 1 or −2, respectively, depending on the sign of Z2,0. We then have

−3
2
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4
min < Z2,0 < 3RH1Ω

4
min, (4.5.72)

as the first part of the condition. D3 <−D1/η2
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which, similarly to previous case, leads to
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where
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1
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4
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5α0
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with a sign that is not predetermined.
The second condition (Fig. 4.8, right) corresponds to the other root of η̇ , and

requires that for all η < ηmax and Ω > Ωmin, η̇ > 0, the root ηr exist and be smaller
than ηmax. Accordingly, we need D1 > 0, D3 < 0, and D1 <−D3/η2

max. However, the
first among these conditions, which translates to(

1−3ξ
2) Z2,0 > 3RH1Ω

4, (4.5.76)

already excludes the applicability of this attractor due to the positive sign of the right-
hand side. This means that it cannot be satisfied because (1−3ξ 2) changes sign during
its evolution.

Therefore, there is only one possible attractor to consider – the one related to
η = 0. If we now try to evaluate the first condition, we have

3RH1Ω
4
min ≈

[
1.04×10−17]( a

aau

)4
ρ2

µQ

√
1− e2

s H1, (4.5.77)
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where aau is the semi-major axis expressed in astronomical units, and the remaining
physical quantities are given in the SI units. Similarly, the second condition yields

3
p

R
(
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η2
max

+H3

)
Ω

4
min ≈
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1.04×10−17] 1
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(
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µQ

√
1− e2

s (16H1 +H3) .

(4.5.78)
Let us adopt the typical values of H1 and H3 of order 10−2, and consider an exemplary
irregularly shaped asteroid with Z2,0 = 0.01, X2,1 = 0.0005, Z2,2 = 0.001, α0 = 0.85
and ρ = 2000 kgm−3, on an orbit with aau = 3au and eS = 0. If we want to keep
the commonly adopted value of µ Q = 1011 Pa, the effective semi-axis of the ellipsoid
corresponding to the asteroid would have to be as large as 1000 km in order to satisfy
either of the conditions. For typical sizes of asteroids, a≈ 104 m, the damping factor
µ Q would have to be smaller than 104 Pa. These results seem to yet again be in
disagreement with the observational evidence, as they suggest that the principal axis
rotation is not stable.

4.6 Conclusions
In this chapter, we developed a perturbative theory of the YORP effect in both prin-
cipal and non-principal axis rotation, including also the impact of nutation damping
due to the dissipation of inelastic energy. The criterion for the stability of the principal
axis rotation in presence of both factors that we formulated shows the PA rotation to
be unstable if we consider the values of physical asteroid parameters that are regarded
as typical; a body would have to be of improbable size to fulfill that stability require-
ment. This is clearly in disagreement with observational data which strongly suggest
that most of Main Belt asteroids rotate around the shortest axis of their body figure.
Therefore, we are not able to resolve this conundrum within the frame of the assumed
model. One possibility is that the Rubincam’s approximation is too restrictive in this
case; including thermal conductivity would reduce the strength of the YORP effect in
obliquity. Unfortunately, no YORP model with nonzero thermal conductivity in case
of non-principal axis rotation exists so far.
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Conclusions

Over the course of this thesis, several different topics were tackled, all belonging
to the domain of the dynamics of small Solar System bodies – asteroids or space
debris (clearly, space debris dynamics is also applicable to artificial satellites). More
specifically, the considered problems could be divided into two domains: thermal
effects and dynamics close to resonant tesseral and lunisolar surfaces, along with short
discussion of the numerical integration issues related to the latter. One thing all these
effects have in common is that they are mostly consequential on long timescales. As
far as space debris studies are concerned, such problems are often overlooked as the
nature of the subject focuses the attention on short-scale problems.

Long-term influence of the Yarkovsky-Schach effect was studied numerically on
some exemplary orbits. Even though the effect is known to be minuscule, it should
be accounted for in precise orbit determination studies, as well as on long timescales.
It could be particularly relevant for objects on orbits close to resonant zones, where,
much like the Poynting-Robertson effect described by Lhotka et al. (2016), it could
slowly drive them inside the chaotic regions. With some favorable rotation periods,
the effect in semimajor axis could be of several kilometers, or several degrees in orbit
iclination, on such long timescales as 200 y.

In the region of medium Earth orbits, we studied several tesseral and lunisolar res-
onances. A set of MEGNO maps covering various initial conditions was produced,
displaying nets of overlapping resonances and chaotic regions of limited predictabil-
ity. The results were shown to be in accordance with some FLI maps drawn from
literature. Better resolution of some of our MEGNO maps allows to discriminate
more subtle features within the chaotic seas. Some stable regions that were previously
found in Daquin et al. (2015) were also detected; they are most probably related to
secondary resonances between overlapping harmonics. The issue is complicated as
the amplitudes of these harmonics are of similar magnitude. Therefore, the problem
cannot be attacked by measures of usual perturbation approach. Some methods that
deal with such 2 degree-of-freedom Hamiltonian problems need to be applied.

The numerical simulations in MEO conducted for single orbits show that numer-
ical trajectories are not accurately computed in long term and depend on the chosen
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timestep. Some statistical features were considered and were shown to follow this
tendency as well. This is the case for vicinities of both tesseral and lunisolar reso-
nances. However, there is no discrepancy when stability information derived with the
use of variational indicators is considered. This result confirms the robustness of the
MEGNO criterion.

Lastly, we were interested in the rotational dynamics of asteroids under the YORP
torque. The work presented in this thesis aimed to resolve some discrepancies between
observational evidence and previous semi-analytical and numerical results. Consider-
ing both the YORP effect and inelastic energy dissipation in a tumbling motion, we
developed an approximated model for small nutation angles. With it, we formulated
some conditions for the principal axis rotation to be a local attractor, although its ap-
plication to realistic physical parameters of asteroids did not allow for a resolution of
the disagreement between observations and models. Most probably, a model of the
non-principal axis rotation with the YORP effect and non-zero thermal conductivity
could provide a further insight in this problem.

Each of these topics leaves open questions and perspectives. The Yarkovsky-
Schach effect could be further developed in terms of more realistic rotation models
that would evolve with time, possibly including rotational effects acting on space de-
bris in Earth environment (including, among others, the YORP effect). The considered
stability regions within the tesseral chaotic zones require some more advanced analyt-
ical treatment that could reveal interesting dynamics. The same could be said about
some structures visible in lunisolar maps – some secondary resonances could prob-
ably be identified. This shows the complexity of motion in the behaviour of space
debris and satellites. Finally, the YORP effect, now considered to be one of the main
mechanisms to shape small Solar System bodies evolution of rotation state, is still
at the early stages of its advancements, with many efforts still relying on consider-
able approximations. More realistic asteroids shapes and thermal properties could be
considered in the future.
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P. Pravec, P. Scheirich, Ď. J., J. Pollock, P. Kušnirák, K. Hornoch, A. Galád,
D. Vokrouhlický, A. Harris, E. Jehin, J. Manfroid, C. Opitom, M. Gillon, F. Co-
las, J. Oey, J. Vraštil, D. Reichart, K. Ivarsen, J. Haislip, and A. LaCluyze. The
tumbling spin state of (99942) Apophis. Icarus, 233:48–60, 2014.

J. Radtke, R. Domınguez-Gonzalez, S. Flegel, N. Sanchez-Ortiz, and K. Merz. Im-
pact of eccentricity build-up and graveyard disposal Strategies on MEO navigation
constellations. Advances in Space Research, 56:2626–2644, 2015.

V. Radzievskii. A mechanism for the disintegration of asteroids and meteoroids. As-
tronomicheskii Zhurnal, 29:162–170, 1952.



88 BIBLIOGRAPHY

A. J. Rosengren, J. Daquin, K. Tsiganis, E. M. Alessi, F. Deleflie, A. Rossi, and G. B.
Valsecchi. Galileo disposal strategy: stability, chaos and predictability. Monthly
Notices of the Royal Astronomical Society, 464:4063–4076, 2017.

A. Rossi, L. Anselmo, C. Pardini, and R. Jehn. Effectiveness of the de-orbiting prac-
tices in the meo region. In E. S. Publication, editor, Fifth European Conference on
Space Debris, volume 672, page 16, 2009.

D. P. Rubincam. LAGEOS orbit decay due to infrared radiation from Earth. Journal
of Geophysical Research, 92:1287–1294, Februat 1987.

D. P. Rubincam. Radiative Spin-up and Spin-down of Small Asteroids. Icarus, 148:
2–11, Nov. 2000. doi: 10.1006/icar.2000.6485.

D. P. Rubincam. Zero secular torque on asteroids from impinging solar photons in the
YORP effect: a simple proof. Icarus, 209:863–865, 2010.

Space.com. US Military satellite explosion caused by battery-
charger problem, a. URL https://www.space.com/
29996-us-military-satellite-explosion-dmspf13-cause.html. Ac-
cessed: 19.04.2019.

Space.com. India’s Anti-Satellite Test Created Dangerous De-
bris, NASA Chief Says, b. URL https://www.space.com/
nasa-chief-condemns-india-anti-satellite-test.html. Accessed:
10.08.2019.

T. Statler. Extreme sensitivity of the YORP effect to small-scale topography. Icarus,
202:502–513, 2009.

P. A. Taylor, J.-L. Margot, D. Vokrouhlický, D. J. Scheeres, P. Pravec, S. C. Lowry,
A. Fitzsimmons, M. C. Nolan, S. J. Ostro, L. A. M. Benner, J. D. Giorgini, and
C. Magri. Spin Rate of Asteroid (54509) 2000 PH5 Increasing Due to the YORP
Effect. Science, 316, 2007.

K. Tsiganis, H. Varvoglis, and J. Hadjidemetriou. Stable chaos in high-order Jovian
resonances. Icarus, 155(2):454–474, 2002.

P. Tupper. A conjecture about molecular dynamics. In Mathematics and Computation,
a Contemporary View, pages 98–105. Springer, 2008.
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