
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE PROFESSIONAL FOCUS IN DATA SCIENCE

Deep Learning Applied to Code Analysis

Genin, Simon

Award date:
2019

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Jul. 2025

https://researchportal.unamur.be/en/studentTheses/71d58d66-19f3-45f2-ae8f-238dda16e5dc

Université de Namur
Faculté d’informatique

Année académique 2018–2019

Deep Learning Applied to Code Analysis

Simon Genin

Mâıtre de stage : Prof. Benoit Frenay

Promoteur : (Signature pour approbation du dépôt - REE art. 40)

Prof. Benoit Frenay

Co-promoteur : Prof. Benoit Vanderose

Mémoire présenté en vue de l’obtention du grade de
Master en Sciences Informatiques.

Acknowledgements

I would like to thank my promoters for their help, patience and pieces of advice
as well as my family for their support.

2

Contents

1 Introduction 8

I Machine Learning 10

2 Introduction 11

3 Deep learning 12

4 Neural Networks 14

4.1 The Learning Process . 17

4.2 The Architecture . 17

5 Convolutional Neural Networks 18

5.1 Introduction . 18

5.2 Images as Input . 19

5.3 Kernel . 20

5.4 Pooling . 21

5.5 Conclusions . 21

6 Embeddings 22

6.1 One-hot Encoding . 22

6.2 Learned Embeddings . 23

3

II Contribution 26

7 Research Focuses 27

7.1 Clone Detection . 27

7.2 Code Generation and Summarization 27

7.3 Code Suggestion and Completion 28

7.4 Code Optimisation . 29

7.5 Embeddings . 29

7.5.1 Embeddings of Tokens . 29

7.5.2 Embeddings of Functions or Methods and Embeddings of
Sequences or Sets of Methods Calls 30

7.5.3 Embedding of Binary Code 30

8 Tree and Graph Architectures 31

8.1 Tree-based Convolutional Neural Network 31

8.1.1 Convolution . 31

8.1.2 The Network Input . 32

8.1.3 The Network Process . 33

8.1.4 Advanced Architectures 35

8.2 Graph-based Convolution Neural Network 35

9 Deeper Dive into the TBCNN 39

9.1 Hypothesis . 39

9.2 Experience . 39

9.2.1 Dataset . 39

9.2.2 Data Preparation . 40

9.2.3 Embedding . 40

9.2.4 Network Implementation 41

9.3 Validity . 42

4

10 Conclusion 45

A TBCNN Implementations 46

A.1 Using Tensorflow and Vectors with High Dimensions, adapted
from crestonbunch on Github . 46

A.2 Using Pytorch and Graph Architecture 54

B TBCNN raw saliency data 63

5

List of Figures

3.1 Deep learning seen as automatic feature extraction, reproduced
from https : //www.datavisitor.com/important−deep−learning−
algorithms . 12

4.1 Basic neural network architecture, reproduced from http://www.

shivambansal.com/blog/neural_network_1 15

4.2 A representation of a perceptron, reproduced from https://www.

lucidarme.me/simplest-perceptron-update-rules-demonstration 16

5.1 A convolutional net architecture, reproduced from https://vinodsblog.

com/2018/10/15/everything-you-need-to-know-about-convolutional-

neural-networks/ . 19

5.2 The features more and more identifiable being extracted by the
network. 20

5.3 The kernel sliding over the top-right part of the image, adapted
from ”Deep Learning” by Adam Gibson, Josh Patterson 20

5.4 Two different pooling methods, adapted from https://medium.

com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb 21

6.1 One-hot encoding, reproduced from https://www.tensorflow.

org/guide/feature_columns . 23

6.2 z is a embedding of X ∼= X ′, reproduced from https://ayearofai.

com/lenny-2-autoencoders-and-word-embeddings-oh-my-576403b0113a 24

6.3 Property of word2vec, from [Mikolov et al., 2013] 25

6.4 Embedding of C# tokens, reproduced from [A. Harer et al., 2018] 25

8.1 An example of abstract syntax tree. 32

6

http://www.shivambansal.com/blog/neural_network_1
http://www.shivambansal.com/blog/neural_network_1
https://www.lucidarme.me/simplest-perceptron-update-rules-demonstration
https://www.lucidarme.me/simplest-perceptron-update-rules-demonstration
https://vinodsblog.com/2018/10/15/everything-you-need-to-know-about-convolutional-neural-networks/
https://vinodsblog.com/2018/10/15/everything-you-need-to-know-about-convolutional-neural-networks/
https://vinodsblog.com/2018/10/15/everything-you-need-to-know-about-convolutional-neural-networks/
https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb
https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb
https://www.tensorflow.org/guide/feature_columns
https://www.tensorflow.org/guide/feature_columns
https://ayearofai.com/lenny-2-autoencoders-and-word-embeddings-oh-my-576403b0113a
https://ayearofai.com/lenny-2-autoencoders-and-word-embeddings-oh-my-576403b0113a

8.2 Convolution on a tree, reproduced from [Mou et al., 2016] 33

8.3 Max pooling on a tree . 34

8.4 A bi-TBCNN simplified architecture. 35

8.5 AST comes with blue arrows and adding the orange arrows makes
it graph, reproduced from https://miltos.allamanis.com/files/

slides/2019fosdem.pdf . 37

8.6 Graph including the flow of the source code, reproduced from
https://miltos.allamanis.com/files/slides/2019fosdem.pdf 37

9.1 Example of the nearest neighbour query results on the C pro-
gramming language, reproduced from [Peng et al., 2014] 40

9.2 Graph depicted the importance of each token of the tree towards
the decision of the classification. 43

7

https://miltos.allamanis.com/files/slides/2019fosdem.pdf
https://miltos.allamanis.com/files/slides/2019fosdem.pdf
https://miltos.allamanis.com/files/slides/2019fosdem.pdf

Chapter 1

Introduction

Throughout the last couple of years, the frontier of what can be achieved with
machine learning has expended tremendously. Many subjects have seen break-
throughs with smart usage of deep learning. One of them, still shy amongst
other more pro-eminent topics, is the application of those kind of methods to
improve the quality of work of the software engineering community. Natural
Language processing (NLP) has seen great ways of dealing with textual data
and show great promises. Very naturally, the idea of applying the same princi-
ples on code emerged. After all, source code is text and it is only fair to assume
NLP techniques would dominate the field of code analysis. Alas, when it comes
to reveal the semantic of a piece of code by shoving it into an NLP typical neural
net architecture, it does not go that well. Many bits and pieces of NLP are still
relevant though. For instance, the analysis of method and variables names to
try and guess the purpose of a method. But these struggles have lead to the
research of new innovative use of deep learning adapted for source code.

In this thesis, the goal is to introduce methods to analyse source code using
deep learning. This work is meant for an informed reader in software engineering
who wish for some deep learning insights and opportunities in this field. A deep
understanding of machine learning is therefore not required. The reader should
get a sense of what is currently done in code analysis with deep learning and be
able to grab the fundamental principles and where to seek for further study.

Some of the questions this document tries to approach are:

• Can one interpret the features yield by the deep neural network ?

• How much of the semantic can be understood by a neural network ?

• Are the known neural network architecture relevant in this field ?

• How can code be embedded ?

• How does the tree-based convolutionnal neural network perform ?

8

In the first part, a brief introduction to the machine learning concepts re-
quired for a good understating of this thesis is proposed. Then, the second
part contains first a chapter which is an overview of the themes of the litera-
ture and the second chapter are the tree-based convolutional network and the
graph-based convolutional neural network architecture description. Then, an
experience using the tree-based convolutional network is conducted.

9

Part I

Machine Learning

10

Chapter 2

Introduction

This part is meant to be a brief introduction to deep learning for a reader with
very little knowledge of the field. It also only mainly mention things that matter
in the code analysis. It definitively aims at being more at the reach of the average
student rather than being a rigorous introduction. All the following subjects are
explained because they are used in a way or another into the software analysis
domain. Whether it is in an architecture which is going to be reviewed or simply
relevant to understand a paper abstract in the field.

11

Chapter 3

Deep learning

The difference between machine learning and deep learning can be quite blurry.
Some call deep learning any neural networks. Some will only use the term if
their facing a truly deep network, because of many layers.

An other way to separate the two in an elegant way is displayed in figure
3.1, where the important part is the feature extraction. It assumes that deep
learning is used when the features are found by the network, and not before like
it is typically done in traditional machine learning.

Figure 3.1: Deep learning seen as automatic feature extraction, reproduced from
https : //www.datavisitor.com/important− deep− learning − algorithms

The second description is actually the one that fit the best the goal of code

12

analysis. Finding new features defining a piece of code.

Whatever the preferred description, the analysis of code will be based on
deep learning. In truth, the goal of the researches in the field is often to find
new features depicting programs behaviors and/or qualities that are different
than those software engineers currently use.

13

Chapter 4

Neural Networks

A basic understanding of neural networks is expected for whoever reads this
thesis. However, this chapter will briefly explain what it is. Feel free to skip
over this chapter.

Fundamentally, a neural network defines a function. The goal being finding
an approximation of another function which depicts some data. In other words,
using a deep learning method just mean that somebody tries to find a close
enough function to a real mathematical model. To understand how this network
can be seen as a function, a closer look is needed to its structure. First, the net
is a graph. Most of the time, an directed acyclic (DAG) one as seen in figure
4.1

14

Figure 4.1: Basic neural network architecture, reproduced from http://www.

shivambansal.com/blog/neural_network_1

The nodes are called perceptrons. The edges have a direction, obviously,
and hold a weight. More on that later. Perceptrons can be seen as made out of
three parts: the inputs, the algorithmic operation and the activation function.
See in figure 4.2. Its inner working is rather simple, each perceptron calculates
the linear combination of the inputs and then add non-linearity by applying the
activation function.

15

http://www.shivambansal.com/blog/neural_network_1
http://www.shivambansal.com/blog/neural_network_1

Figure 4.2: A representation of a perceptron, reproduced from https://www.

lucidarme.me/simplest-perceptron-update-rules-demonstration

Ignore for now the wn variables in figure 4.2. Then we clearly see the output
of the perceptron being y = f(

∑
i xi) where xn are the inputs, i the number of

inputs and f the activation function.

The weights, are their name implies, are a way to regulate each input value
and to a greater extend, the perceptron. If at first sight, it doesn’t bring a lot
to the model, it is actually the core of the deep learning algorithms.

The number of nodes, the depth of the graph, these are all variables for the
model to be found to make the model as efficient as possible.

16

https://www.lucidarme.me/simplest-perceptron-update-rules-demonstration
https://www.lucidarme.me/simplest-perceptron-update-rules-demonstration

4.1 The Learning Process

At the heart of the learning process stands an algorithm: the back-propagation.
It is an application of the chain rule, a formula for computing the derivative of
the composition of two or more functions.

The way it works will not be discussed in details as it is not the goal of
this work. All there is to understand is that there is an error function defined
to calculate how wrong the neural network output is. Through the process of
backpropagation, the weights are getting updated by a value given by the error
function. Applied many times, neural network shall converge towards a good
approximation. In theory as it is highly simplified in our explanation and there
are plenty of loopholes to avoid.

4.2 The Architecture

For its structure, the neural net is simply a stack of layers, each one containing a
certain number of perceptrons. The depth of the net (stack size) and the width
of each layer to give the best results is to be find by tweaking and experimenting
and also depends on technical and time based limitation. This is of course for
its simplest forms as many different and much more complex ways of building
up neural networks are possible, all aimed and optimized for specific tasks.

17

Chapter 5

Convolutional Neural
Networks

5.1 Introduction

Convolutional Neural Networks [Goodfellow et al., 2016], depicted in figure 5.1,
are very similar to ordinary neural networks except they are used for images 1:
they are made up of perceptrons that have learnable weights and biases. Each
neuron receives some inputs, performs a dot product and optionally add a non-
linear operation, often called the activation function. The whole network still is
one function taking matrices to a result: from the raw image pixels on one end
to class scores to the other end, for classification by example. So what are the
differences with a typical neural network ?

Convolution net architectures make the explicit assumption that the inputs
are images, which allows to encode certain properties into the architecture of
the network. These then make the forward function more efficient to implement
and can vastly improve the results given in a reasonable time.

1In truth, it is used fro plenty of other things, but it is simple to stick to this extend while
learning.

18

Figure 5.1: A convolutional net architecture, reproduced from
https://vinodsblog.com/2018/10/15/everything-you-need-to-know-

about-convolutional-neural-networks/

5.2 Images as Input

First, the image need to be transformed into a matrix, each value depicting
a pixel. Each of these value will be an input to the network. If it can be
that simple to insert an image inside a neural network, why even bother trying
special kinds of architectures like convolution ? Because a fully connected layer
is awfully time consuming. Working with a picture with shape 200x200px means
there is already 40000 input values. This is huge, since everything will then be
combined many times inside the network. Furthermore, the network would need
to be deep and wide enough to capture best the features of the images. That’s
why more clever methods are required.

The convolution process is a way to find features from the images, that
will help the network taking decisions. Figure 5.2 shows how features can be
progressively found going through the network. The way the figure represents
the network itself should be ignored as it is an overly simplified representation.

19

https://vinodsblog.com/2018/10/15/everything-you-need-to-know-about-convolutional-neural-networks/
https://vinodsblog.com/2018/10/15/everything-you-need-to-know-about-convolutional-neural-networks/

Figure 5.2: The features more and more identifiable being extracted by the
network.

5.3 Kernel

To find features, kernels (also called masks or filters) are defined. They are used
to slide across the input to generate several new images based on local part of
the original. The kernels are made up of values so that the convolution applies
transformations to help find features. Which values to put in the kernels is
found by past researches.

Figure 5.3: The kernel sliding over the top-right part of the image, adapted
from ”Deep Learning” by Adam Gibson, Josh Patterson

20

5.4 Pooling

Even if the convolution is less expensive than a fully connected layer, we still
encounter a problem. At each convolution, we generate more sub-images. This
once again can quickly drain all the calculation resources as soon as the input
image is not tiny. The solution to this problem is called pooling.

It simply consists in a size reduction, from several numbers to one. Averaging
the values, taking the maximum or other, there are several ways to apply a
pooling. Which one to use is up to the developer. He may try some of them or
just pick one from experience.

Figure 5.4: Two different pooling methods, adapted from https://medium.

com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb

The pooling being done, another convolution layer could be coming next.

5.5 Conclusions

Convolutions is really what made it possible to work with images using neural
networks. Extracting efficiently features from somewhat structured data. But
convolution shouldn’t be too tightly linked to images anymore. Indeed, the idea
behind it can work with many things. Even source code as this will be zoomed
in later in this thesis.

21

https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb
https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb

Chapter 6

Embeddings

An embedding is a mapping from a categorical variable to a vector of continuous
numbers. In the context of neural networks, learned continuous vector repre-
sentations of discrete variables. Neural network embeddings are useful because
they can reduce the dimensionality of categorical variables and meaningfully
represent categories in the transformed space [Koehrsen, 2018]

This concept is very important for the code analysis. Indeed, a neural net-
work cannot accept raw code as input. With images, it was easy. The pixels
had RGB color values that could be used. But for any input that doesn’t fit
the requirements of a neural net, embeddings is a solution.

6.1 One-hot Encoding

The simplest one is the one-hot encoding. It is very useful in traditional machine
learning to transform several categorical labels into a single discrete one. But
in the case of embeddings for deep learning, it is a rather dummy one.

The one-hot encoding is used to transform categorical values to a sequence
of discrete values without any consideration for any possible semantic. It is
therefore a straightforward way to make the inputs valid, but there is a loss of
information about the input data.

22

Figure 6.1: One-hot encoding, reproduced from https://www.tensorflow.

org/guide/feature_columns

The figure 6.1 depicts 4 categorical values that are transformed into an
identical format. The 4 categorical values are a bit deceiving, but it could very
much be: ”plus”, ”minus”, ”mul”, ”div”. Those would be likely inputs working
with source code, that would need such embedding to be used in a net.

But as said before, the one-hot encoding just lose any meaning from the
data, making it just impractical in deep learning application.

6.2 Learned Embeddings

The typical way to create an embedding is a very clever trick in deep learning.
First, each input get assigned some kind a valid input of a neural network. By
example, the one-hot encoding. Then, a neural network is used to encode the
input to a defined sized vector, and another to decode it back to the original
input. Figure 6.2 sheds light on how this process work. Like any other neural
net, this gets trained until the error gets minimal, meaning that the weights in
the encoder and decoder are such that X = X ′.

23

https://www.tensorflow.org/guide/feature_columns
https://www.tensorflow.org/guide/feature_columns

Figure 6.2: z is a embedding of X ∼= X ′, reproduced from https://ayearofai.

com/lenny-2-autoencoders-and-word-embeddings-oh-my-576403b0113a

The inner structure of the network in the encoder and decoder is a task in
itself, and there are many different architectures done for many different use
cases. What is great about this embedding is it holds enough information so
that the decoder can reconstruct the correct input. Which infers the semantic
has been kept, despite the embedding being often way more condensed than
the origin input. This is actually a great new way to compress things. What is
great is that some properties can be retrieved from these embeddings. One on
the most famous embedding, word2vec (transforming words into vectors), is a
great demonstration. In figure 6.3 can be observed the ability to arithmetically
combines vectors to find others that are semantically making sense. It would be
very interesting to observe such behaviors with source code related embeddings.

24

https://ayearofai.com/lenny-2-autoencoders-and-word-embeddings-oh-my-576403b0113a
https://ayearofai.com/lenny-2-autoencoders-and-word-embeddings-oh-my-576403b0113a

Figure 6.3: Property of word2vec, from [Mikolov et al., 2013]

It is important to note that while the behavior depicted in figure 6.3 tends
to be observed, it has never actually been proven to be true and systematic.
Also, it has never such a convenient accuracy. It is therefore a phenomenon nice
to take note of but nothing to rely on.

In figure 6.4 is a concrete example of what a 2D dimensionality reduction
of an high dimensional embedding on the C programming language looks like,
done by Harer et al. [A. Harer et al., 2018]

Figure 6.4: Embedding of C# tokens, reproduced from [A. Harer et al., 2018]

25

Part II

Contribution

26

Chapter 7

Research Focuses

Is proposed now an overview of different topics brought by research recently.
It contains quite a wide variety of application in software analysis and quality.
Here are a few of them to get a glance of where the state-of-art methods currently
stand.

7.1 Clone Detection

Clone detection can be of great use in education. How much a program dif-
fers from another semantically, perhaps even with compiling errors. Automatic
grading could rise from this field of study and counter plagiarism at the same
time.

Ding et al work on a system that detects clones using only assembly code.
With their tool Asm2Vec, they aim at getting a good semantic understanding
and bypassing the many compilers optimisation and code obfuscation that can
occur. [Ding et al., 2019]

Bch and Andrzejak studied more the impact to the results of the machine
learning model used and propose some good practices. [Büch and Andrzejak,
2019]

7.2 Code Generation and Summarization

Code generation is a very broad field. Generating code from a domain specifi-
cation in natural language looks promising. Simply giving a text depicting the
application domain could generate a working SQL code and related ORM. And
much more can be thought of. It is also one of the hardest subject as it means
that the semantic of the text, extracted via NLP, must then be ported to a valid

27

model performing code generation. Matching these two is a non-trivial task.

Sun et al propose to use a convolutional neural net (CNN) instead of a
recurrent neural net (RNN) to generate code as it contains much more tokens
than a natural language sentence. Their network predicts the grammar rules of
the programming language and then generates a program. [Sun et al., 2019]

Gao et al use an encoder-decoder with attention to help naming method
names and other software artifacts. It is hard for developers to name properly
things, especially beginners. They use natural language functional description
to infer results. [Gao et al., 2019]

Kacmajor and Kelleher explain it is hard to create new solution for code
generation as there is not really a lot of good code that is fully annotated 1.
But it is widely adopted to name test functions in a very self-documentation way
(Example: itvalidatestheuserpassword). They propose to make dataset from
them and observed good results generating code from quasi-natural language
description. [Kacmajor and Kelleher, 2019]

Similar to code generation, there is also the opposite. Generating comments
or annotation from code. Or making a summary of the code.

Yao et al propose the authors use reinforcement learning to annotate pieces
of code. It is interesting as reinforcement learning is rarely used for those kind
of feats. This proposed tool is specifically generating annotation for later code
retrieval. It is therefore making sentences optimized for natural language search.
Services like Github or any code bank would benefit from these. [Yao et al., 2019]

Xu et al discuss about the important of commit message for a code base
comprehension. And yet they’re often neglicted. They point that existing sum-
marization methods tend to ignore the code structure information and suffer
from the out-of-vocabulary issue. They propose another method that will both
extract code structure and semantic and use all of this along some tweaks to
generate commit messages that perform better than state-of-the-art. [Xu et al.,
2019]

7.3 Code Suggestion and Completion

Code suggestion and completion are very nice features that can empower IDE.
As a matter of fact, more and more IDE try to include statistical analysis and
some machine learning to try and improve the experience of the developer. It
is interesting in education as it often proposes code the student mightn’t have
thought of. The subject probably targets intermediate students as beginners
must first learn to think properly before completion does the work for them.
Here are a few works done in that domain.

Natural language used to infer types in non-strongly typed languages such as

1Machine learning loves labeled data

28

JavaScript. The idea is to understand enough of the comments and the function
signature to bring more help to the IDE. [Rabee Sohail Malik et al.,]

Rabee et al propose Smart code snippet pasting. It is also part of the
program repair field. When lines of code are being pasted, the surrounding
or/and inner code gets modified to make it immediately syntactically correct. It
doesn’t sound like much at first, but could actually be a big productivity boost.
How many times one does not copy and paste code from some website and then
spent the next 10 minutes making it work with the current code. Changing
variables names, language level (API version by example) and others. It is a
very interesting topic, that can be declined in many little improvements. [Rabee
Sohail Malik et al.,]

Bhoopchand et al introduce a neural language model with a sparse pointer
network aimed at capturing very long range dependencies. Is it a optimised use
of a pointer network which is itself an architecture that relies on the attention
mechanism used in NLP methods. It can yield better results for application that
needs to look for tokens much further back in the source code. [Bhoopchand
et al., 2016]

7.4 Code Optimisation

Cummins et al propose a way to learn to build heuristic to optimize complex
programs without any hand crafted features like it is usually done. The learned
heuristics can be then passed to others programs to apply optimisation and
learn more. On heterogeneous parallelism and GPU thread coarsening factors,
they come up with solutions that match and beat the state-of-the-art methods
that use engineered features. [Cummins et al., 2017]

7.5 Embeddings

There are plenty of different methods deep learning can be applied to source
code. But one of the most important step is the embedding. A good and
relevant embedding tend to yield better results than whichever neural net used
with a wrongly chosen embedding. Which one to use is the heart of the problem
of course. Chen et al discussed the matter in a nice structured way [Chen and
Monperrus, 2019]. This paper points back to many others and is a great study
of the current state of embedding in the field. Four main categories are put
forward.

7.5.1 Embeddings of Tokens

Code can be seen as a bunch of tokens. The idea is to map every one of those
to a vector. It is the most intuitive idea. It can still be declined into more

29

advanced methods though. Like taking into account the context of a token. Its
vector embedding could be generated not only from the token data, but also by
its neighborhood.

7.5.2 Embeddings of Functions or Methods and Embed-
dings of Sequences or Sets of Methods Calls

Gathering two categories in one. Those two methods share a same idea: a
many-to-one mapping. It can be a complete method path generated walking
an AST. Or a node coupled with metadata about it such as its depth, its type
and its relationship between the node and its parent. Or simply a whole piece
of code 2. In other words, any mapping taking several elements 3 to be embed
as a single vector. In comparison to the one-to-one token technique, the way to
create the embedding will heavily depend on what results are sought.

7.5.3 Embedding of Binary Code

Using binary code to create an embedding is pretty self-explanatory. It is mainly
used to observe similarity between codes with perhaps a different architecture
or another programming language.

2Still composed of tokens of course, not just plain text.
3tokens, nodes, metadata, etc.

30

Chapter 8

Tree and Graph
Architectures

Code can be quite well represented as a tree or a graph. In this document, we
are therefore interested in how it might work to use neural networks with these
kind of data structure for code. It is good to note that these two are not the
only methods used.

8.1 Tree-based Convolutional Neural Network

A tree-based convolutional neural network is a neural network that accepts a tree
like structure as input, in opposition with the more traditional way of accepting
only a matrix of values. Tree structures are a great way to have relations
amongst the data modeled as edges relying nodes. It is handy for source code
as we cannot imagine a way to put code directly into a traditional net. Indeed,
each source code will have a completely different length and structure. Resizing,
padding and other manipulation as we see with images is therefore not an option.
And converting code to a tree is not difficult.

8.1.1 Convolution

Convolution has proven its usefulness, mainly with images but not only. It is
therefore not crazy to think of convolutions on source code. If a convolution
operation takes a piece of a whole image and try to extract a feature from i, it
could maybe be used to take a piece of code from a program and do the same.

Comparing image and source code with convolution is fine, but whereas
images are easily inserted into a neural net as a matrix of values, code don’t
have this chance. So there comes a crucial part in the tree-based convolutional

31

neural network: match the source code to a valid input. A valid input is tree
based as the name suggests. Source code needs to be transformed into a tree.

8.1.2 The Network Input

Abstract Syntax Tree

One of the source code strength can be used: its structural formality. The
abstract syntax tree (AST), defining the syntax of the code becomes a precious
ally in automatic software analysis. It gives exactly what the TBCNNs want as
input. An AST can be seen in figure 8.1.

Figure 8.1: An example of abstract syntax tree.

Nodes and Embeddings

The interesting part is now what to put in each node of the AST. It is not as
simple as generating the AST and feed it in. Each node should contain a vector.
And this vector should be the embedded data of what it desired in this particular
node. By example, every node could simply be done using a dummy one-hot
encoding, so that there is a clear but simple distinction between each node. Of
course this one would be useless, but with a relevant embedding on relevant
data, this AST filled with embeddings is now made of vectors and contains the
wanted data.

Custom Abstract Tree

AST seems like a general solution. But the only important thing is that the
final structure is a tree. So, there is no necessary need of using a default AST.
Actually, ASTs tend to be differently generated from one library to the other
and with a great amount of clutter information. A cleaning process before the
embedding to remove all unwanted miscellaneous data will always be required.
Also, an AST often means we care about the tokens of the code more than

32

anything else. But a tree made with different data, like method names and such
is perfectly viable. It really depends on the end goad of the task to perform
using the network. In a way, it is the dataset cleaning and preparing phase like
any other machine learning workflow.

8.1.3 The Network Process

The TBCNN is conceptually rather simple. It holds in three main steps.

The Network Convolution Step

With the input being a tree, a convolution operation on it needs to be defined.
It still has a kernel (or mask), it still slides over the different values, and it still
will need pooling later. The goal is to keep it as familiar as possible.

For a node, the convolution is going to be an aggregate of that node and its
neighbors, that will generate a new node in another tree of the same size and
shape. To make that more clear, here is a figure of the phenomenon 8.2.

Figure 8.2: Convolution on a tree, reproduced from [Mou et al., 2016]

The triangle window the figure 8.2 shows is the kernel (or mask), that will
slide on every node. Its depth and other possible coefficients are parameters of
the convolution step.

The Network Pooling Step

The convolution step took a tree of a certain size and generate a new one of
the same size. Pooling could seem useless. And it would between several layers
of convolution. But to get back to a fully connected layer, a pooling layer is

33

required. Indeed, any program varies in size, therefore its AST will too. But
the fully connected layer has a fixed size.

Pooling with TBCNN is quite rough. The max pooling is working like show
in figure 8.3.

Figure 8.3: Max pooling on a tree

The result in the figure 8.3 is the value that is going through to the fully
connected layer, taking the final decision. It means that a lot of the data infor-
mation has been lost during the pooling process. Hopefully, more performing
methods will emerge. Note that there are already alternatives to the max-
pooling, but they work in a similar fashion by not taking into account most of
the tree.

The Network Decision

After the pooling, there is a regular fully connected layer and softmax. At this
point, the network works on vector and not trees, so there is nothing special to
add.

34

8.1.4 Advanced Architectures

More advanced derived architectures exists, such as the bi-TBCNN [Bui et al.,
2018]. It gets the perks of the TBCNN and improve upon it. What it does is
accepting two inputs alongside and working just as two normal separate TBCNN
instances all the way up to the fully connected layer, where they merge. It’s
like double checking a result. A nice use case would be to better capture the
semantic of a piece of code by sending it to the network coded in two distinct
languages. It would force the network to care less about the syntax and more
about the semantic. Figure 8.4 depicts the phenomenon.

Figure 8.4: A bi-TBCNN simplified architecture.

8.2 Graph-based Convolution Neural Network

Code can be represented as an AST. But if trees are great to use because they
are so easy to generate from code, they sure have also limitations. They contain

35

nodes and only one relationship: the child nodes. It is enough to depict the
simple raw syntax syntax of source code, but what if one wants more ? The
difference between a tree and a graph is that the graph can have as many
relations from and towards any nodes. Those relations are data:

• A relation from a token towards the next token in the source code

• A relation from a variable towards the place it got declared

• A relation from a variable towards the place it got assigned

• And so on

There are as many possibilities as one can think of. It’s only a matter of
what information can be relevant for a certain task. Put in the graph, any nodes
and relations would be part of the embedding.

It also is more general. After all, a tree is a sub-part of a graph. Something
standardized is better as it often serves as a base and the future technologies are
built on top of it. A developer will spend less time searching how to implement
a neural network based on graphs if those are well defined in the frameworks.
As a matter of fact, the pytorch (one of the top deep learning library) ecosystem
recently welcomed a library just to work with graph structures in neural net-
works. This will prevent anyone from trying to create again and again a decent
implantation and focus more on the actual problems.

Working of such structure instead of a TBCNN implies some differences in
the actual implementation concepts. The convolution would now need to not
to only be an aggregate of the children nodes, but all the neighbours node. If
there are several links between the nodes that represent different relations, those
should be taken into account and weighted (for the most important ones have
more impacts). The pooling though would still face the same problem of being
harsh since the fully connected layer would still be of fixed size.

Use Cases

In figure 8.5, we have an example of a simple line of source code Assert.NotNull(clazz)
being transformed in as AST. The benefit in comparison with an typical tree
comes up. There is now a ”next token” property for the leaf tokens, represented
as the orange arrow. It means that this added link can be used by the network
to find features. With just this little work, the model now is aware of the order
of the element, which wasn’t the case before. It might seem insignificant, but
in some case, be a crucial information for the network to work properly.

36

Figure 8.5: AST comes with blue arrows and adding the orange arrows makes
it graph, reproduced from https://miltos.allamanis.com/files/slides/

2019fosdem.pdf

In figure 8.6 can be seen a piece of code to which three kind of relations
were added. The later generated graph structure of this code will contain much
more information because of the ”last write”, ”last use” and ”computed from”
properties. Before, with just a tree structure, there was no real way to obtain
such information.

Figure 8.6: Graph including the flow of the source code, reproduced from https:

//miltos.allamanis.com/files/slides/2019fosdem.pdf

The graph structure is therefore very useful to add quickly and simply a
lot of features. And it is not so much harder to implement. Indeed, the graph
structure is getting used in several fields of deep learning. Because of that,
libraries slowly start to support those by default. And since a tree can be
considered as a graph, it is fair to say that graphs are a preferred approach over

37

https://miltos.allamanis.com/files/slides/2019fosdem.pdf
https://miltos.allamanis.com/files/slides/2019fosdem.pdf
https://miltos.allamanis.com/files/slides/2019fosdem.pdf
https://miltos.allamanis.com/files/slides/2019fosdem.pdf

the tree-based convolutionnal network.

38

Chapter 9

Deeper Dive into the
TBCNN

The tree-based convolutional neural network was greatly defined by Mou et
al [Mou et al., 2016]. Some parts are quite vague and it is therefore important
to try and reproduce the work to this if it actually performs well.

9.1 Hypothesis

Tree-based convolutional neural network provides good results for code classi-
fication. More accurately, it is able to differentiate programs that are different
based on a label.

9.2 Experience

An experience to see the results of an application of the TBCNN is conducted.

9.2.1 Dataset

The data to work with are 6 sorting algorithms. For each one, there is roughly
more than a hundred piece of code that each implements it. All of this data
is scraped from Github repositories. It is good measure to ensure there are
the least amount of duplicates as it tends to happen a lot with Github data
scrapping.

39

9.2.2 Data Preparation

The data preparation step is where the programs are transformed into abstract
syntax trees. There are a few tools to do that, including one from the official
python API. The tree retrieved from the AST generation needs cleaning. ASTs
can hold a lot of data and only some of it matter for our experiment. Only the
tokens matter, the raw syntax of the program. After this step, there are hun-
dreds of clean ASTs. It is of course required to still keep what is the algorithm
in question, thus a label is applied for each AST.

9.2.3 Embedding

The original Mou et al’s paper reference back to another one of their paper [Peng
et al., 2014] where they generate embedding actually using a complete TBCNN
architecture. They get decent results, and similarities can be observed between
tokens just like in figure 9.1.

Figure 9.1: Example of the nearest neighbour query results on the C program-
ming language, reproduced from [Peng et al., 2014]

But from their tests, this embedding do not work better or barely than other
ones that are much simpler to implement. Therefore, the implementation of the
experiment uses an embedding called ast2vec.This trains a vector embedding
of an AST using a strategy similar to word2vec, but applied to the context of
ASTs. The ast2vec networks need to be trained with all python tokens and after
using it, the result is an AST with the nodes embedded. It is quite complicated
to make it work properly as code written in python 2 and python 3 have different
tokens names. Here is the final list of existing tokens used for training:

TOKEN_LIST = [

'Module','Interactive','Expression','FunctionDef','ClassDef','Return',

'Delete','Assign','AugAssign','Print','For','While','If','With','Raise',

'TryExcept','TryFinally','Assert','Import','ImportFrom','Exec','Global',

'Expr','Pass','Break','Continue','attributes','BoolOp','BinOp','UnaryOp',

40

'Lambda','IfExp','Dict','Set','ListComp','SetComp','DictComp',

'GeneratorExp','Yield','Compare','Call','Repr','Num','Str','Attribute',

'Subscript','Name','List','Tuple','Load','Store','Del',

'AugLoad','AugStore','Param','Ellipsis','Slice','ExtSlice','Index','And',

'Or','Add','Sub','Mult','Div','Mod','Pow','LShift','RShift','BitOr','BitXor',

'BitAnd','FloorDiv','Invert','Not','UAdd','USub','Eq','NotEq','Lt',

'LtE','Gt','GtE','Is','IsNot','In','NotIn','comprehension','ExceptHandler',

'arguments','keyword','alias', 'arg', 'NameConstant', 'JoinedStr',

'FormattedValue', 'withitem', 'Try', 'Starred'

]

This will accept python 2 and python 3 syntax from the dataset.

9.2.4 Network Implementation

Information were scarce for this part. No example and some steps hard to un-
derstand. Here are a few of the things encountered during the implementation.

Network input

There is two paths possible here. The first one, to actually work with a tree
like structure, manipulating it through all the network. This is basically how
it should be and how it was presented in the TBCNN part. This method is
way better for understanding and maintaining the code. But libraries support
for graph like structures only start to come up, and doing it yourself with a
typical pytorch or tensorflow workflow is awfully complicated. They are not
made for tree structures at all, but just vectors. Our personal implementation
using this method suffered heavy performances issues, making the model very
neatly written but totally unpractical. It can be seen in appendix B. The second
one is to transform this structure into a high dimension vector. Conceptually,
there is a tree, but the network input is a vector. It is hard to understand unless
perhaps with the habit of working in the field. It is basically a huge tensor of
4 or more dimensions, that contains all of the same information than the graph
but in a completely different way. Working with such data is overwhelming. But
the bright side is that the performance are great, since current deep learning
libraries are optimized for this kind of data structures.

Whatever the chosen methods, the network will keep the same mathematical
description. But every bits of the implantation will change. Using the second
method is somewhat annoying though, as it loses many of the advantages cited
for the TBCNN. Recent coming libraries are the answer to this problem.

41

9.3 Validity

The results are good. It can say with a 95% accuracy what the sort algorithm
was. Here is an example with a bubble sort. The code is:

def bubble_sort(data):

swap_flag = True

index = 0

swap_count = 0

while swap_flag == True:

while index < len(data)-1:

if data[index] > data[index+1]:

data[index], data[index+1] = data[index+1],data[index]

swap_count += 1

index += 1

if swap_count == 0:

swap_flag = False

else:

swap_count = 0

index = 0

return data

assert bubble_sort([6,4,7,8]) == [4,6,7,8]

assert bubble_sort([4,3,1,2]) == [1,2,3,4]

The network successfully class this as a bubble sort implementation. Note
that it doesn’t read the names of the functions and variables in our case, so it is
not cheating by looking up the bubblesort identifier. Each token have an impact
on the final decision. Here is a graph in figure 9.2 showing this importance,
from most impact top-left to the least bottom-right.

42

Figure 9.2: Graph depicted the importance of each token of the tree towards
the decision of the classification.

It is normal that many tokens are duplicates. The same token type can have
different importance depending its position. In appendix 2, more data about
the experiment is available.

We can though say that it did extract some new features. But it is hard
to tell if they are relevant. After all, this version of the TBCNN just look for

43

the existances of some tokens to classify code. It doesn’t feel like this network
learned much of the semantic of our program. It is hard to interpret them as
well, because there is nothing to really interpret here.

But adding more relations to the data structure like it has been discussed in
the GBCNN chapter might be a good solution towards the right direction.

44

Chapter 10

Conclusion

Deep learning applied to code analysis is definitely a field in expansion. Studies
on all fronts of the software quality and analysis domain are being done.

For the TBCNN, good results with small pieces of code are common but
there is still work on full length programs. Indeed, it was shown that the
features extracted do not seem to truly have a semantic meaning. It is now
interesting to see what the future can bring, with new rising more complex
network architectures.

For future work, a very interesting direction to take for all this would be
education. Grading a lot of students is a lot of work. And it can be hard to
get it properly done as beginner programmers can use wrong syntax but have a
valid semantic and vice-versa. Using deep learning, one could possibly get out
how far from a default source code a student is. It would greatly help giving
students feedback on how their thinking process might be wrong. It also could
bring some nice visualisations on how the class perform a certain task or see the
programming patterns students follow. Another interesting topic is the actual
analysis of code depots and not just source code. Code depots are services like
PyPi, NPM, Composer and alikes. It is the places where developers upload
the librairies they build so others can have them as dependencies. An exam-
ple comes from Bommarito and Bommarito proposing an empirical study on
”PyPi”, python library services. It brings insight not just from the source code,
but from other data types such as how often they update their packages, how
they version their packages, how many actually never make it to a production
stage, and so on. [Bommarito and Bommarito, 2019].

45

Appendix A

TBCNN Implementations

Here are the codes for the networks used. Of course, the projects contain more
than just the network implementation but this is the part of interest.

A.1 Using Tensorflow and Vectors with High
Dimensions, adapted from crestonbunch on
Github

1 """Build a CNN network that learns a convolution over a tree

structure as↪→

2 described in Lili Mou et al. (2015)

https://arxiv.org/pdf/1409.5718.pdf"""↪→

3

4 import math

5 import tensorflow as tf

6

7

8 def init_net(feature_size, label_size):

9 """Initialize an empty network."""

10

11 with tf.name_scope('inputs'):

12 """

13 Notes:

14 Number of nodes is decided by the biggest tree in the

batch↪→

15 children number is decided by the max number of

children there are↪→

16 """

17

18 # shape is (batch_size, number_of_nodes, feature_size)

46

19 nodes = tf.placeholder(tf.float32, shape=(None, None,

feature_size), name='tree')↪→

20

21 # shape is (batch_size, number_of_nodes, child_number)

22 children = tf.placeholder(tf.int32, shape=(None, None,

None), name='children')↪→

23

24 with tf.name_scope('network'):

25 conv1 = conv_layer(10, 50, nodes, children, feature_size)

26 # conv2 = conv_layer(1, 10, conv1, children, 100)

27 pooling = pooling_layer(conv1)

28 hidden = hidden_layer(pooling, 500, label_size)

29

30 with tf.name_scope('summaries'):

31 tf.summary.scalar('tree_size', tf.shape(nodes)[1])

32 tf.summary.scalar('child_size', tf.shape(children)[2])

33 tf.summary.histogram('logits', hidden)

34 tf.summary.image('inputs', tf.expand_dims(nodes, axis=3))

35 tf.summary.image('conv1', tf.expand_dims(conv1, axis=3))

36 # tf.summary.image('conv2', tf.expand_dims(conv2,

axis=3))↪→

37

38 return nodes, children, hidden

39

40

41 def conv_layer(num_conv, output_size, nodes, children,

feature_size):↪→

42 """Creates a convolution layer with num_conv convolutions

merged together at↪→

43 the output. Final output will be a tensor with shape

44 [batch_size, num_nodes, output_size * num_conv]"""

45

46 with tf.name_scope('conv_layer'):

47 nodes = [

48 conv_node(nodes, children, feature_size, output_size)

49 for _ in range(num_conv)

50]

51 return tf.concat(nodes, axis=2)

52

53

54 def conv_node(nodes, children, feature_size, output_size):

55 """Perform convolutions over every batch sample."""

56 with tf.name_scope('conv_node'):

57 std = 1.0 / math.sqrt(feature_size)

58 w_t, w_l, w_r = (

59 tf.Variable(tf.truncated_normal([feature_size,

output_size], stddev=std), name='Wt'),↪→

60 tf.Variable(tf.truncated_normal([feature_size,

output_size], stddev=std), name='Wl'),↪→

47

61 tf.Variable(tf.truncated_normal([feature_size,

output_size], stddev=std), name='Wr'),↪→

62)

63 init = tf.truncated_normal([output_size,],

stddev=math.sqrt(2.0 / feature_size))↪→

64 # init = tf.zeros([output_size,])

65 b_conv = tf.Variable(init, name='b_conv')

66

67 with tf.name_scope('summaries'):

68 tf.summary.histogram('w_t', [w_t])

69 tf.summary.histogram('w_l', [w_l])

70 tf.summary.histogram('w_r', [w_r])

71 tf.summary.histogram('b_conv', [b_conv])

72

73 return conv_step(nodes, children, feature_size, w_t, w_r,

w_l, b_conv)↪→

74

75

76 def children_tensor(nodes, children, feature_size):

77 """Build the children tensor from the input nodes and child

lookup."""↪→

78 with tf.name_scope('children_tensor'):

79 max_children = tf.shape(children)[2]

80 batch_size = tf.shape(nodes)[0]

81 num_nodes = tf.shape(nodes)[1]

82

83 # replace the root node with the zero vector so lookups

for the 0th↪→

84 # vector return 0 instead of the root vector

85 # zero_vecs is (batch_size, num_nodes, 1)

86 zero_vecs = tf.zeros((batch_size, 1, feature_size))

87 # vector_lookup is (batch_size x num_nodes x

feature_size)↪→

88 vector_lookup = tf.concat([zero_vecs, nodes[:, 1:, :]],

axis=1)↪→

89 # children is (batch_size x num_nodes x num_children x 1)

90 children = tf.expand_dims(children, axis=3)

91 # prepend the batch indices to the 4th dimension of

children↪→

92 # batch_indices is (batch_size x 1 x 1 x 1)

93 batch_indices = tf.reshape(tf.range(0, batch_size),

(batch_size, 1, 1, 1))↪→

94 # batch_indices is (batch_size x num_nodes x num_children

x 1)↪→

95 batch_indices = tf.tile(batch_indices, [1, num_nodes,

max_children, 1])↪→

96 # children is (batch_size x num_nodes x num_children x 2)

97 children = tf.concat([batch_indices, children], axis=3)

98 # output will have shape (batch_size x num_nodes x

num_children x feature_size)↪→

48

99 # NOTE: tf < 1.1 contains a bug that makes backprop not

work for this!↪→

100 return tf.gather_nd(vector_lookup, children,

name='children')↪→

101

102

103 def eta_t(children):

104 """Compute weight matrix for how much each vector belongs to

the 'top'"""↪→

105 with tf.name_scope('coef_t'):

106 # children is shape (batch_size x max_tree_size x

max_children)↪→

107 batch_size = tf.shape(children)[0]

108 max_tree_size = tf.shape(children)[1]

109 max_children = tf.shape(children)[2]

110 # eta_t is shape (batch_size x max_tree_size x

max_children + 1)↪→

111 return tf.tile(tf.expand_dims(tf.concat(

112 [tf.ones((max_tree_size, 1)),

tf.zeros((max_tree_size, max_children))],↪→

113 axis=1), axis=0,

114), [batch_size, 1, 1], name='coef_t')

115

116

117 def eta_r(children, t_coef):

118 """Compute weight matrix for how much each vector belongs to

the 'right'"""↪→

119 with tf.name_scope('coef_r'):

120 # children is shape (batch_size x max_tree_size x

max_children)↪→

121 children = tf.cast(children, tf.float32)

122 batch_size = tf.shape(children)[0]

123 max_tree_size = tf.shape(children)[1]

124 max_children = tf.shape(children)[2]

125

126 # num_siblings is shape (batch_size x max_tree_size x 1)

127 num_siblings = tf.cast(

128 tf.count_nonzero(children, axis=2, keep_dims=True),

129 dtype=tf.float32

130)

131 # num_siblings is shape (batch_size x max_tree_size x

max_children + 1)↪→

132 num_siblings = tf.tile(

133 num_siblings, [1, 1, max_children + 1],

name='num_siblings'↪→

134)

135 # creates a mask of 1's and 0's where 1 means there is a

child there↪→

136 # has shape (batch_size x max_tree_size x max_children +

1)↪→

49

137 mask = tf.concat(

138 [tf.zeros((batch_size, max_tree_size, 1)),

139 tf.minimum(children, tf.ones(tf.shape(children)))],

140 axis=2, name='mask'

141)

142

143 # child indices for every tree (batch_size x

max_tree_size x max_children + 1)↪→

144 child_indices = tf.multiply(tf.tile(

145 tf.expand_dims(

146 tf.expand_dims(

147 tf.range(-1.0, tf.cast(max_children,

tf.float32), 1.0, dtype=tf.float32),↪→

148 axis=0

149),

150 axis=0

151),

152 [batch_size, max_tree_size, 1]

153), mask, name='child_indices')

154

155 # weights for every tree node in the case that

num_siblings = 0↪→

156 # shape is (batch_size x max_tree_size x max_children +

1)↪→

157 singles = tf.concat(

158 [tf.zeros((batch_size, max_tree_size, 1)),

159 tf.fill((batch_size, max_tree_size, 1), 0.5),

160 tf.zeros((batch_size, max_tree_size, max_children -

1))],↪→

161 axis=2, name='singles')

162

163 # eta_r is shape (batch_size x max_tree_size x

max_children + 1)↪→

164 return tf.where(

165 tf.equal(num_siblings, 1.0),

166 # avoid division by 0 when num_siblings == 1

167 singles,

168 # the normal case where num_siblings != 1

169 tf.multiply((1.0 - t_coef), tf.divide(child_indices,

num_siblings - 1.0)),↪→

170 name='coef_r'

171)

172

173

174 def eta_l(children, coef_t, coef_r):

175 """Compute weight matrix for how much each vector belongs to

the 'left'"""↪→

176 with tf.name_scope('coef_l'):

177 children = tf.cast(children, tf.float32)

178 batch_size = tf.shape(children)[0]

50

179 max_tree_size = tf.shape(children)[1]

180 # creates a mask of 1's and 0's where 1 means there is a

child there↪→

181 # has shape (batch_size x max_tree_size x max_children +

1)↪→

182 mask = tf.concat(

183 [tf.zeros((batch_size, max_tree_size, 1)),

184 tf.minimum(children, tf.ones(tf.shape(children)))],

185 axis=2,

186 name='mask'

187)

188

189 # eta_l is shape (batch_size x max_tree_size x

max_children + 1)↪→

190 return tf.multiply(

191 tf.multiply((1.0 - coef_t), (1.0 - coef_r)), mask,

name='coef_l'↪→

192)

193

194

195 def conv_step(nodes, children, feature_size, w_t, w_r, w_l,

b_conv):↪→

196 """Convolve a batch of nodes and children.

197

198 Lots of high dimensional tensors in this function.

Intuitively it makes↪→

199 more sense if we did this work with while loops, but

computationally this↪→

200 is more efficient. Don't try to wrap your head around all the

tensor dot↪→

201 products, just follow the trail of dimensions.

202 """

203 with tf.name_scope('conv_step'):

204 # nodes is shape (batch_size x max_tree_size x

feature_size)↪→

205 # children is shape (batch_size x max_tree_size x

max_children)↪→

206

207 with tf.name_scope('trees'):

208 # children_vectors will have shape

209 # (batch_size x max_tree_size x max_children x

feature_size)↪→

210 children_vectors = children_tensor(nodes, children,

feature_size)↪→

211

212 # add a 4th dimension to the nodes tensor

213 nodes = tf.expand_dims(nodes, axis=2)

214 # tree_tensor is shape

215 # (batch_size x max_tree_size x max_children + 1 x

feature_size)↪→

51

216 tree_tensor = tf.concat([nodes, children_vectors],

axis=2, name='trees')↪→

217

218 with tf.name_scope('coefficients'):

219 # coefficient tensors are shape (batch_size x

max_tree_size x max_children + 1)↪→

220 c_t = eta_t(children)

221 c_r = eta_r(children, c_t)

222 c_l = eta_l(children, c_t, c_r)

223

224 # concatenate the position coefficients into a tensor

225 # (batch_size x max_tree_size x max_children + 1 x 3)

226 coef = tf.stack([c_t, c_r, c_l], axis=3, name='coef')

227

228 with tf.name_scope('weights'):

229 # stack weight matrices on top to make a weight

tensor↪→

230 # (3, feature_size, output_size)

231 weights = tf.stack([w_t, w_r, w_l], axis=0)

232

233 with tf.name_scope('combine'):

234 batch_size = tf.shape(children)[0]

235 max_tree_size = tf.shape(children)[1]

236 max_children = tf.shape(children)[2]

237

238 # reshape for matrix multiplication

239 x = batch_size * max_tree_size

240 y = max_children + 1

241 result = tf.reshape(tree_tensor, (x, y,

feature_size))↪→

242 coef = tf.reshape(coef, (x, y, 3))

243 result = tf.matmul(result, coef, transpose_a=True)

244 result = tf.reshape(result, (batch_size,

max_tree_size, 3, feature_size))↪→

245

246 # output is (batch_size, max_tree_size, output_size)

247 result = tf.tensordot(result, weights, [[2, 3], [0,

1]])↪→

248

249 # output is (batch_size, max_tree_size, output_size)

250 return tf.nn.tanh(result + b_conv, name='conv')

251

252 \begin{lstlisting}[language=Python]

253 def pooling_layer(nodes):

254 """Creates a max dynamic pooling layer from the nodes."""

255 with tf.name_scope("pooling"):

256 pooled = tf.reduce_max(nodes, axis=1)

257 return pooled

258

259

52

260 def hidden_layer(pooled, input_size, output_size):

261 """Create a hidden feedforward layer."""

262 with tf.name_scope("hidden"):

263 weights = tf.Variable(

264 tf.truncated_normal(

265 [input_size, output_size], stddev=1.0 /

math.sqrt(input_size)↪→

266),

267 name='weights'

268)

269

270 init = tf.truncated_normal([output_size,],

stddev=math.sqrt(2.0 / input_size))↪→

271 # init = tf.zeros([output_size,])

272 biases = tf.Variable(init, name='biases')

273

274 with tf.name_scope('summaries'):

275 tf.summary.histogram('weights', [weights])

276 tf.summary.histogram('biases', [biases])

277

278 return tf.nn.tanh(tf.matmul(pooled, weights) + biases)

279

280

281 def loss_layer(logits_node, label_size):

282 """Create a loss layer for training."""

283

284 labels = tf.placeholder(tf.int32, (None, label_size,))

285

286 with tf.name_scope('loss_layer'):

287 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(

288 labels=labels, logits=logits_node,

name='cross_entropy'↪→

289)

290

291 loss = tf.reduce_mean(cross_entropy,

name='cross_entropy_mean')↪→

292

293 return labels, loss

294

295

296 def out_layer(logits_node):

297 """Apply softmax to the output layer."""

298 with tf.name_scope('output'):

299 return tf.nn.softmax(logits_node)

53

A.2 Using Pytorch and Graph Architecture

1 from torch import nn

2 import torch

3 from torch.nn import init

4 import torch.nn.functional as F

5

6 from network.convolutional_layer import ConvolutionalLayer

7

8

9 class TBCNNMaxPooling(nn.Module):

10

11 def __init__(self):

12 super(TBCNNMaxPooling, self).__init__()

13

14 def forward(self, nodes):

15 return nodes.max(1)[0]

16

17 class TBCNN(nn.Module):

18 """

19 Tree-Based Convolutional Neural Network (TBCNN)

20 """

21

22 def __init__(self, convolutional_features, output_size,

target_classes_number):↪→

23 super(TBCNN, self).__init__()

24

25 # Grab the info we need

26 self.convolutional_features = convolutional_features

27 self.hidden_size = output_size

28 self.target_classes_number = target_classes_number

29

30 self.conv_layer = ConvolutionalLayer(30,

self.hidden_size)↪→

31

32 self.pooling_layer = TBCNNMaxPooling()

33

34 self.layer_linear_1 = nn.Linear(self.hidden_size,

self.hidden_size)↪→

35 self.layer_relu = nn.LeakyReLU()

36 self.layer_linear_2 = nn.Linear(self.hidden_size,

self.target_classes_number)↪→

37

38 self.features = [self.conv_layer, self.pooling_layer,

self.layer_linear_1, self.layer_relu,

self.layer_linear_2]

↪→

↪→

39

40 # Define the convolutional layer

41

54

42 # Initialize the network

43 self._initialization()

44

45

46 def _initialization(self):

47 for m in self.modules():

48 if isinstance(m, nn.Linear):

49 init.xavier_normal_(m.weight.data)

50 if m.bias is not None:

51 init.normal_(m.bias.data)

52

53 def forward(self, nodes, children):

54

55 conv = self.conv_layer(1, nodes, children)

56

57 pooling = self.pooling_layer(conv)

58

59 features = self.layer_linear_1(pooling)

60

61 features = self.layer_relu(features)

62

63 features = self.layer_linear_2(features)

64

65 return features

1 from typing import List, Any

2

3 import torch

4 from torch import nn

5

6 from network.convolutional_node import ConvolutionalNode

7

8

9 class ConvolutionalLayer(nn.Module):

10

11 def __init__(self, num_features, output_size):

12 super(ConvolutionalLayer, self).__init__()

13

14 self.num_features = num_features

15 self.output_size = output_size

16

17 self.conv_node = ConvolutionalNode(num_features,

output_size)↪→

18

19 def forward(self, num_conv, nodes, children):

20

21 nodes = [

22 self.conv_node(nodes, children, self.num_features)

23 for _ in range(num_conv)

55

24]

25

26 result = torch.cat(nodes, 2)

27

28 return result

1 import torch

2 from torch import nn

3

4 from network.convolutional_step import ConvolutionalStep

5

6

7 class ConvolutionalNode(nn.Module):

8

9 def __init__(self, num_features, output_size):

10 super(ConvolutionalNode, self).__init__()

11

12 self.num_features = num_features

13 self.output_size = output_size

14 self.conv_step = ConvolutionalStep(num_features)

15

16 self.w_t =

torch.nn.Parameter(data=torch.Tensor(self.num_features,

self.output_size), requires_grad=True)

↪→

↪→

17 self.w_t.data.uniform_(-1, 1)

18

19 self.w_r =

torch.nn.Parameter(data=torch.Tensor(self.num_features,

self.output_size), requires_grad=True)

↪→

↪→

20 self.w_r.data.uniform_(-1, 1)

21

22 self.w_l =

torch.nn.Parameter(data=torch.Tensor(self.num_features,

self.output_size), requires_grad=True)

↪→

↪→

23 self.w_l.data.uniform_(-1, 1)

24

25 self.b_conv =

torch.nn.Parameter(data=torch.Tensor(self.output_size),

requires_grad=True)

↪→

↪→

26 self.b_conv.data.uniform_(-1, 1)

27

28 # self.w_t = torch.randn(self.num_features,

self.output_size, requires_grad=True)↪→

29 # self.w_l = torch.randn(self.num_features,

self.output_size, requires_grad=True)↪→

30 # self.w_r = torch.randn(self.num_features,

self.output_size, requires_grad=True)↪→

31 # self.b_conv = Variable(torch.randn(self.output_size))

32

56

33 def forward(self, nodes, children, feature_size):

34 """Perform convolutions over every batch sample."""

35

36 batch_size = children.shape[0]

37

38 max_tree_size = children.shape[1]

39

40 max_children = children.shape[2]

41

42 conv_result = self.conv_step(nodes, children,

feature_size, self.w_t, self.w_r, self.w_l,

self.b_conv)

↪→

↪→

43

44 return conv_result

1 import torch

2 from torch import nn

3

4 from network.childrentensor import ChildrenTensor

5 from function_util import tensordot, tile

6

7

8 class ConvolutionalStep(nn.Module):

9 def __init__(self, num_features):

10 super(ConvolutionalStep, self).__init__()

11

12 self.num_features = num_features

13 self.children_tensor = ChildrenTensor(num_features)

14

15 def eta_l(self, children, coef_t, coef_r):

16 """Compute weight matrix for how much each vector belongs

to the 'left'"""↪→

17 # creates a mask of 1's and 0's where 1 means there is a

child there↪→

18 # has shape (batch_size x max_tree_size x max_children +

1)↪→

19 batch_size = children.shape[0]

20 max_tree_size = children.shape[1]

21 max_children = children.shape[2]

22

23 mask = torch.cat((

24 torch.zeros((batch_size, max_tree_size, 1)),

25 torch.min(children, torch.ones((batch_size,

max_tree_size, max_children))))↪→

26 , 2)

27

28 # eta_l is shape (batch_size x max_tree_size x

max_children + 1)↪→

57

29 result = torch.mul(torch.mul((1.0 - coef_t), (1.0 -

coef_r)), mask)↪→

30 return result

31

32 def eta_t(self, children):

33 """

34 Compute weight matrix for how much each vector belongs to

the 'top'↪→

35

36 This part is tricky, this implementation only slide over

a window of depth `, which means a child node in a window↪→

37 always has depth = 1, according to the formula in the

original paper, top-coefficient in this case is alwasy 0/1 =

1

↪→

↪→

38 """

39

40 batch_size = children.shape[0]

41 max_tree_size = children.shape[1]

42 max_children = children.shape[2]

43

44 # eta_t is shape (batch_size x max_tree_size x

max_children + 1)↪→

45 eta = torch.cat((torch.ones((max_tree_size, 1)),

torch.zeros((max_tree_size, max_children))), 1)↪→

46 eta = eta.unsqueeze(0)

47 eta = tile(eta, 0, batch_size)

48 return eta

49

50 def eta_r(self, children, coef_t):

51 """Compute weight matrix for how much each vector belogs

to the 'right'"""↪→

52 # children is batch_size x max_tree_size x max_children

53 batch_size = children.shape[0]

54 max_tree_size = children.shape[1]

55 max_children = children.shape[2]

56

57 # num_siblings is shape (batch_size x max_tree_size x 1)

58 num_siblings = max_children - (children == 0).sum(dim=2,

keepdim=True)↪→

59

60 # num_siblings is shape (batch_size x max_tree_size x

max_children + 1)↪→

61 num_siblings = tile(num_siblings, 2, max_children +

1).float()↪→

62

63 # creates a mask of 1's and 0's where 1 means there is a

child there↪→

64 # has shape (batch_size x max_tree_size x max_children +

1)↪→

65 mask = torch.cat((

58

66 torch.zeros((batch_size, max_tree_size, 1)),

67 torch.min(children.float(), torch.ones((batch_size,

max_tree_size, max_children)))↪→

68), 2)

69

70 # child indices for every tree (batch_size x

max_tree_size x max_children + 1)↪→

71 child_indices = torch.arange(-1.0, float(max_children),

1.0)↪→

72 child_indices = child_indices.unsqueeze(0)

73 child_indices = child_indices.unsqueeze(0)

74 child_indices = tile(child_indices, 0, batch_size)

75 child_indices = tile(child_indices, 1, max_tree_size)

76 child_indices = torch.mul(child_indices, mask)

77

78 # weights for every tree node in the case that

num_siblings = 0↪→

79 # shape is (batch_size x max_tree_size x max_children +

1)↪→

80 """

81 singles = torch.cat((torch.zeros((batch_size,

max_tree_size, 1)),↪→

82

torch.tensor(()).new_full((batch_size, max_tree_size, 1),

0.5),

↪→

↪→

83 torch.zeros((batch_size,

max_tree_size, max_children - 1))), 2)↪→

84 """

85

86

87

88 # eta_r is shape (batch_size x max_tree_size x

max_children + 1)↪→

89 num_siblings = torch.where(

90 torch.eq(num_siblings, 1),

91 torch.ones(num_siblings.shape) + 1,

92 num_siblings

93)

94

95

96 result = torch.mul((1.0 - coef_t),

torch.div(child_indices, num_siblings - 1.0))↪→

97

98 return result

99

100 def forward(self, nodes, children, feature_size, w_t, w_r,

w_l, b_conv):↪→

101 """Convolve a batch of nodes and children.

102

59

103 Lots of high dimensional tensors in this function.

Intuitively it makes↪→

104 more sense if we did this work with while loops, but

computationally this↪→

105 is more efficient. Don't try to wrap your head around all

the tensor dot↪→

106 products, just follow the trail of dimensions.

107 """

108

109 # nodes is shape (batch_size x max_tree_size x

feature_size)↪→

110 batch_size = children.shape[0]

111 max_tree_size = children.shape[1]

112 max_children = children.shape[2]

113

114 # children is shape (batch_size x max_tree_size x

max_children)↪→

115 # children_tensor = CHILDREN_TENSOR(self.max_children,

self.batch_size, self.max_tree_size, feature_size,

self.opt)

↪→

↪→

116 children_vectors = self.children_tensor(nodes, children,

feature_size)↪→

117 # add a 4th dimension to the nodes tensor

118 nodes = nodes.unsqueeze(2)

119 # tree_tensor is shape (batch_size x max_tree_size x

max_children + 1 x feature_size)↪→

120

121 tree_tensor = torch.cat((nodes, children_vectors), 2)

122

123 c_t = self.eta_t(children)

124 c_r = self.eta_r(children, c_t)

125 c_l = self.eta_l(children, c_t, c_r)

126 # coef = self.coefficients(children)

127 coef = torch.stack((c_t, c_r, c_l), 3)

128

129 weights = torch.stack([w_t, w_r, w_l], 0)

130

131 # reshape for matrix multiplication

132 x = batch_size * max_tree_size

133 y = max_children + 1

134

135 result = tree_tensor.view(x, y, feature_size)

136

137 coef = coef.view(x, y, 3)

138

139 result = torch.matmul(torch.transpose(result, 1, 2),

coef)↪→

140 result = result.view(batch_size, max_tree_size, 3,

feature_size)↪→

141

60

142 # # output is (batch_size, max_tree_size, output_size)

143 result = tensordot(result, weights, [[2, 3], [0, 1]])

144 # # output is (batch_size, max_tree_size, output_size)

145

146 return torch.tanh(result + b_conv)

1 import torch

2 from torch import nn

3

4 from function_util import tile

5

6

7 class ChildrenTensor(nn.Module):

8

9 def __init__(self, num_features):

10 super(ChildrenTensor, self).__init__()

11

12 self.num_features = num_features

13

14 def forward(self, nodes, children, feature_size):

15

16 # children is batch x num_nodes

17 batch_size = children.shape[0]

18 num_nodes = children.shape[1]

19 max_children = children.shape[2]

20

21 # replace the root node with the zero vector so lookups

for the 0th↪→

22 # vector return 0 instead of the root vector

23 # zero_vecs is (batch_size, num_nodes, 1)

24 zero_vecs = torch.zeros((batch_size, 1,

self.num_features))↪→

25

26 # vector_lookup is (batch_size x num_nodes x

feature_size)↪→

27 # print("Shape zero vec : " + str(zero_vecs.shape))

28 vector_lookup = torch.cat((zero_vecs, nodes[:, 1:, :]),

1)↪→

29

30 # print("Vector look up : " + str(vector_lookup.shape))

31 # children is (batch_size x num_nodes x num_children x 1)

32 children = children.unsqueeze(3)

33

34 # prepend the batch indices to the 4th dimension of

children↪→

35 # batch_indices is (batch_size x 1 x 1 x 1)

36 batch_indices = torch.arange(0, batch_size)

37 batch_indices = batch_indices.view(batch_size, 1, 1, 1)

38

61

39 # batch_indices is (batch_size x num_nodes x num_children

x 1)↪→

40 batch_indices = tile(batch_indices, 1, num_nodes)

41 batch_indices = tile(batch_indices, 2, max_children)

42

43 # children is (batch_size x num_nodes x num_children x 2)

44 children = torch.cat((batch_indices.float(), children),

3)↪→

45

46 # output will have shape (batch_size x num_nodes x

num_children x feature_size)↪→

47 # NOTE: tf < 1.1 contains a bug that makes backprop not

work for this!↪→

48

49 result = vector_lookup[children[:, :, :, 0].long(),

children[:, :, :, 1].long(), :]↪→

50

51 return result

62

Appendix B

TBCNN raw saliency data

1 Expr +0.050902309826 : '\nThe bubble sort algorithm

compares every two items which are next to each other, \nand

swaps them if they are in the wrong order. \nAn array of n

elements can be sorted within n-1 passes. \n\nFor example, in

this array of 4 items:\n\nFirst pass\n(4, 3, 1, 2) > (3, 4,

1, 2)\n(3, 4, 1, 2) > (3, 1, 4, 2)\n(3, 1, 4, 2) > (3, 1, 2,

4)\n\nSecond pass:\n(3, 1, 2, 4) > (1, 3, 2, 4)\n(1, 3, 2, 4)

> (1, 2, 3, 4)\n(1, 2, 3, 4) > (1, 2, 3, 4)\n\nThird

pass:\n(1, 2, 3, 4) > (1, 2, 3, 4)\n(1, 2, 3, 4) > (1, 2, 3,

4)\n(1, 2, 3, 4) > (1, 2, 3, 4)\n\n\n'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

2 FunctionDef -0.222295941589 : def bubble_sort(data):

3 swap_flag = True

4 index = 0

5 swap_count = 0

6 while (swap_flag == True):

7 while (index < (len(data) - 1)):

8 if (data[index] > data[(index + 1)]):

9 (data[index], data[(index + 1)]) = (data[(index +

1)], data[index])↪→

10 swap_count += 1

11 index += 1

12 if (swap_count == 0):

13 swap_flag = False

14 else:

15 swap_count = 0

16 index = 0

17 return data

18 Assert +0.048353655056 : assert (bubble_sort([6, 4, 7,

8]) == [4, 6, 7, 8])↪→

19 Assert +0.048353655056 : assert (bubble_sort([4, 3, 1,

2]) == [1, 2, 3, 4])↪→

63

20 Str +0.051473548412 : '\nThe bubble sort algorithm

compares every two items which are next to each other, \nand

swaps them if they are in the wrong order. \nAn array of n

elements can be sorted within n-1 passes. \n\nFor example, in

this array of 4 items:\n\nFirst pass\n(4, 3, 1, 2) > (3, 4,

1, 2)\n(3, 4, 1, 2) > (3, 1, 4, 2)\n(3, 1, 4, 2) > (3, 1, 2,

4)\n\nSecond pass:\n(3, 1, 2, 4) > (1, 3, 2, 4)\n(1, 3, 2, 4)

> (1, 2, 3, 4)\n(1, 2, 3, 4) > (1, 2, 3, 4)\n\nThird

pass:\n(1, 2, 3, 4) > (1, 2, 3, 4)\n(1, 2, 3, 4) > (1, 2, 3,

4)\n(1, 2, 3, 4) > (1, 2, 3, 4)\n\n\n'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

21 arguments +0.042746567113 : data

22 Assign -0.035972142407 : swap_flag = True

23 Assign -0.052940859930 : index = 0

24 Assign -0.052940859930 : swap_count = 0

25 While -0.115974933376 : while (swap_flag == True):

26 while (index < (len(data) - 1)):

27 if (data[index] > data[(index + 1)]):

28 (data[index], data[(index + 1)]) = (data[(index +

1)], data[index])↪→

29 swap_count += 1

30 index += 1

31 if (swap_count == 0):

32 swap_flag = False

33 else:

34 swap_count = 0

35 index = 0

36 Return +0.042530625347 : return data

37 Compare -0.145189321499 : (bubble_sort([6, 4, 7, 8]) ==

[4, 6, 7, 8])↪→

38 Compare -0.145189321499 : (bubble_sort([4, 3, 1, 2]) ==

[1, 2, 3, 4])↪→

39 arg +0.045342837831 : data

40 Name +0.016020464230 : swap_flag

41 NameConstant +0.058632828971 : True

42 Name +0.016020464230 : index

43 Num +0.044367977678 : 0

44 Name +0.016020464230 : swap_count

45 Num +0.044367977678 : 0

46 Compare -0.139545036217 : (swap_flag == True)

47 While -0.115558239599 : while (index < (len(data) -

1)):↪→

48 if (data[index] > data[(index + 1)]):

49 (data[index], data[(index + 1)]) = (data[(index + 1)],

data[index])↪→

50 swap_count += 1

51 index += 1

52 If -0.195986491735 : if (swap_count == 0):

53 swap_flag = False

54 else:

55 swap_count = 0

64

56 index = 0

57 Name +0.040657457101 : data

58 Call -0.058420679766 : bubble_sort([6, 4, 7, 8])

59 Eq +0.054043814823 : ==

60 List -0.164477496848 : [4, 6, 7, 8]

61 Call -0.058420679766 : bubble_sort([4, 3, 1, 2])

62 Eq +0.054043814823 : ==

63 List -0.164477496848 : [1, 2, 3, 4]

64 Store +0.039619160410 : Memory operation

65 Store +0.039619160410 : Memory operation

66 Store +0.039619160410 : Memory operation

67 Name +0.040657457101 : swap_flag

68 Eq +0.054043814823 : ==

69 NameConstant +0.058632828971 : True

70 Compare -0.137680653876 : (index < (len(data) - 1))

71 If -0.175283048812 : if (data[index] > data[(index +

1)]):↪→

72 (data[index], data[(index + 1)]) = (data[(index + 1)],

data[index])↪→

73 swap_count += 1

74 AugAssign -0.173897925075 : index += 1

75 Compare -0.146076451541 : (swap_count == 0)

76 Assign -0.035972142407 : swap_flag = False

77 Assign -0.052940859930 : swap_count = 0

78 Assign -0.052940859930 : index = 0

79 Load +0.045631365260 : Memory operation

80 Name +0.040657457101 : bubble_sort

81 List -0.164477496848 : [6, 4, 7, 8]

82 Num +0.044367977678 : 4

83 Num +0.044367977678 : 6

84 Num +0.044367977678 : 7

85 Num +0.044367977678 : 8

86 Load +0.045631365260 : Memory operation

87 Name +0.040657457101 : bubble_sort

88 List -0.164477496848 : [4, 3, 1, 2]

89 Num +0.044367977678 : 1

90 Num +0.044367977678 : 2

91 Num +0.044367977678 : 3

92 Num +0.044367977678 : 4

93 Load +0.045631365260 : Memory operation

94 Load +0.045631365260 : Memory operation

95 Name +0.040657457101 : index

96 Lt +0.046764030796 : <

97 BinOp -0.150902470394 : (len(data) - 1)

98 Compare -0.120960774529 : (data[index] > data[(index +

1)])↪→

99 Assign -0.068009975267 : (data[index], data[(index +

1)]) = (data[(index + 1)], data[index])↪→

100 AugAssign -0.173897925075 : swap_count += 1

101 Name +0.016020464230 : index

65

102 Add +0.045801584061 : +

103 Num +0.044367977678 : 1

104 Name +0.040657457101 : swap_count

105 Eq +0.054043814823 : ==

106 Num +0.044367977678 : 0

107 Name +0.016020464230 : swap_flag

108 NameConstant +0.058632828971 : False

109 Name +0.016020464230 : swap_count

110 Num +0.044367977678 : 0

111 Name +0.016020464230 : index

112 Num +0.044367977678 : 0

113 Load +0.045631365260 : Memory operation

114 Num +0.044367977678 : 6

115 Num +0.044367981276 : 4

116 Num +0.044367981276 : 7

117 Num +0.044367977678 : 8

118 Load +0.045631365260 : Memory operation

119 Load +0.045631365260 : Memory operation

120 Num +0.044367977678 : 4

121 Num +0.044367977678 : 3

122 Num +0.044367977678 : 1

123 Num +0.044367977678 : 2

124 Load +0.045631365260 : Memory operation

125 Load +0.045631365260 : Memory operation

126 Call -0.043237801409 : len(data)

127 Sub +0.043407705019 : -

128 Num +0.044367977678 : 1

129 Subscript -0.167453723011 : data[index]

130 Gt +0.057127803132 : >

131 Subscript -0.167453723011 : data[(index + 1)]

132 Tuple -0.119074295875 : (data[index], data[(index +

1)])↪→

133 Tuple -0.107141554343 : (data[(index + 1)],

data[index])↪→

134 Name +0.016020464230 : swap_count

135 Add +0.045801584061 : +

136 Num +0.044367977678 : 1

137 Store +0.039619160410 : Memory operation

138 Load +0.045631365260 : Memory operation

139 Store +0.039619160410 : Memory operation

140 Store +0.039619160410 : Memory operation

141 Store +0.039619160410 : Memory operation

142 Name +0.040657457101 : len

143 Name +0.040657457101 : data

144 Name +0.040657457101 : data

145 Index +0.030521157554 : index

146 Load +0.045631365260 : Memory operation

147 Name +0.040657457101 : data

148 Index +0.031862087594 : (index + 1)

149 Load +0.045631365260 : Memory operation

66

150 Subscript -0.178836106945 : data[index]

151 Subscript -0.178836106945 : data[(index + 1)]

152 Store +0.039619160410 : Memory operation

153 Subscript -0.167453723011 : data[(index + 1)]

154 Subscript -0.167453723011 : data[index]

155 Load +0.045631365260 : Memory operation

156 Store +0.039619160410 : Memory operation

157 Load +0.045631365260 : Memory operation

158 Load +0.045631365260 : Memory operation

159 Load +0.045631365260 : Memory operation

160 Name +0.040657457101 : index

161 Load +0.045631365260 : Memory operation

162 BinOp -0.149667067717 : (index + 1)

163 Name +0.040657457101 : data

164 Index +0.030521157554 : index

165 Store +0.039619160410 : Memory operation

166 Name +0.040657457101 : data

167 Index +0.031862087594 : (index + 1)

168 Store +0.039619160410 : Memory operation

169 Name +0.040657457101 : data

170 Index +0.031862087594 : (index + 1)

171 Load +0.045631365260 : Memory operation

172 Name +0.040657457101 : data

173 Index +0.030521157554 : index

174 Load +0.045631365260 : Memory operation

175 Load +0.045631365260 : Memory operation

176 Name +0.040657457101 : index

177 Add +0.045801584061 : +

178 Num +0.044367977678 : 1

179 Load +0.045631365260 : Memory operation

180 Name +0.040657457101 : index

181 Load +0.045631365260 : Memory operation

182 BinOp -0.149667067717 : (index + 1)

183 Load +0.045631365260 : Memory operation

184 BinOp -0.149667067717 : (index + 1)

185 Load +0.045631365260 : Memory operation

186 Name +0.040657457101 : index

187 Load +0.045631365260 : Memory operation

188 Load +0.045631365260 : Memory operation

189 Name +0.040657457101 : index

190 Add +0.045801584061 : +

191 Num +0.044367977678 : 1

192 Name +0.040657457101 : index

193 Add +0.045801584061 : +

194 Num +0.044367977678 : 1

195 Load +0.045631365260 : Memory operation

196 Load +0.045631365260 : Memory operation

197 Load +0.045631365260 : Memory operation

67

Bibliography

[A. Harer et al., 2018] A. Harer, J., Kim, L., L. Russell, R., Ozdemir, O.,
R. Kosta, L., Rangamani, A., H. Hamilton, L., I. Centeno, G., R. Key, J.,
M. Ellingwood, P., W. McConley, M., M. Opper, J., Chin, S., and Lazovich,
T. (2018). Automated software vulnerability detection with machine learning.

[Bhoopchand et al., 2016] Bhoopchand, A., Rocktäschel, T., Barr, E., and
Riedel, S. (2016). Learning python code suggestion with a sparse pointer
network. arXiv preprint arXiv:1611.08307.

[Bommarito and Bommarito, 2019] Bommarito, E. and Bommarito, M. (2019).
An empirical analysis of the python package index (pypi). CoRR,
abs/1907.11073.

[Büch and Andrzejak, 2019] Büch, L. and Andrzejak, A. (2019). Learning-
based recursive aggregation of abstract syntax trees for code clone detection.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 95–104. IEEE.

[Bui et al., 2018] Bui, N. D., Jiang, L., and Yu, Y. (2018). Cross-language
learning for program classification using bilateral tree-based convolutional
neural networks. In Workshops at the Thirty-Second AAAI Conference on
Artificial Intelligence.

[Chen and Monperrus, 2019] Chen, Z. and Monperrus, M. (2019). A literature
study of embeddings on source code. arXiv preprint arXiv:1904.03061.

[Cummins et al., 2017] Cummins, C., Petoumenos, P., Wang, Z., and Leather,
H. (2017). End-to-end deep learning of optimization heuristics. 2017 26th In-
ternational Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 219–232.

[Ding et al., 2019] Ding, S. H., Fung, B. C., and Charland, P. (2019). Asm2vec:
Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In Asm2Vec: Boosting Static Repre-
sentation Robustness for Binary Clone Search against Code Obfuscation and
Compiler Optimization, page 0. IEEE.

[Gao et al., 2019] Gao, S., Chen, C., Xing, Z., Ma, Y., Song, W., and Lin,
S.-W. (2019). A neural model for method name generation from functional
description. In 2019 IEEE 26th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), pages 414–421. IEEE.

68

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep Learning. MIT Press. http://www.deeplearningbook.org.

[Kacmajor and Kelleher, 2019] Kacmajor, M. and Kelleher, J. D. (2019). Au-
tomatic acquisition of annotated training corpora for test-code generation.
Information, 10(2):66.

[Koehrsen, 2018] Koehrsen, W. (2018). Neural network embeddings explained.

[Mikolov et al., 2013] Mikolov, T., Yih, S. W.-t., and Zweig, G. (2013). Linguis-
tic regularities in continuous space word representations. In Proceedings of the
2013 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (NAACL-HLT-2013).
Association for Computational Linguistics.

[Mou et al., 2016] Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z. (2016).
Convolutional neural networks over tree structures for programming language
processing. In Thirtieth AAAI Conference on Artificial Intelligence.

[Peng et al., 2014] Peng, H., Mou, L., Li, G., Liu, Y., Zhang, L., and Jin, Z.
(2014). Building program vector representations for deep learning. ArXiv,
abs/1409.3358.

[Rabee Sohail Malik et al.,] Rabee Sohail Malik, Jibesh Patra, and Michael
Pradel. NL2type: Inferring JavaScript Function Types from Natural Lan-
guage Information.

[Sun et al., 2019] Sun, Z., Zhu, Q., Mou, L., Xiong, Y., Li, G., and Zhang, L.
(2019). A grammar-based structural cnn decoder for code generation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 7055–7062.

[Xu et al., 2019] Xu, S., Yao, Y., Hegde, S., Gu, T., Tong, H., and Lü, J. (2019).
Commit message generation for source code changes. In IJCAI.

[Yao et al., 2019] Yao, Z., Peddamail, J. R., and Sun, H. (2019). Coacor: Code
annotation for code retrieval with reinforcement learning. pages 2203–2214.

69

http://www.deeplearningbook.org

