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Abstract

Nowadays, mathematics explain most biological and natural phenomena. Amongst
them, chemical reactions in particular remain a field of research that mathematicians have
studied for ages. The chemical reaction networks theory was developed in the twentieth
century, and allows to understand how reactions work. The stoichiometric compatibility
classes especially provide the subspace in which species circulate. Therefore, each initial
condition of species concentrations matches with a class. Thus, the initial dimension of
the system can be reduced. This theory can especially be applied to enzymatic reactions,
glycolysis being one of the most famous examples of them. In parallel with this theory,
F. Forni developed the theory of p-dominance a few years ago. This new tool provides
the dimension of the asymptotic behaviour of any dynamical system, which reduces the
initial dimension of the system as well. The main advantage of this theory lies in the fact
that an algorithmic approach has been developed. Both theories can then be applied to
reduce the dimension of the system.

This work aims to use both theories to reduce the initial dimension of the system
as much as possible. This amounts to computing the p-dominance of the system within
each stoichiometric compatibility class. This new theory is applied to several enzymatic
reactions, and a preliminary analysis of the glycolysis is provided.

Keywords: p-dominance theory, algorithmic test, differential equations, chemical reac-
tions, enzymatic reactions, glycolysis, glycolic oscillations
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Introduction
Natural, biological or even astronomical phenomena happen in everyday life. Fortu-

nately, chemistry and physics can help us understand most of them. Chemical reactions
in particular appear to be the key to all processes that occur in the body. We can for
example mention the digestion, i.e. the metabolism of food in the body, during which
a lot of chemical reactions occur. Furthermore, everybody knows that mathematics is
used as a powerful tool to explain a lot of phenomena in the world and beyond. Then it
could be interesting to take into account these both spheres of competence to improve the
knowledge. In this work, we introduce and develop two theories: a chemical theory that
constraints the concentration of the species in the reaction, and the p-dominance theory
that constraints the asymptotic behaviour of a dynamical system.

The three first sections of this work focus on chemical theory, and are mainly based
on Martin Feinberg’s lectures [1] and on James keener and James Sneyd’s book [7] called
Mathematical Physiology. Some other references [2], [6], [8], [9], [10] and [11] are used to
better understand all the notions. First, we have to introduce and explain what kind of
reaction we deal with, and develop some famous theorems about them, i.e. the deficiency
theorems. Among all the notions introduced in the first chapter, the stoichiometric com-
patibility classes particularly interest us since they describe the subspace in which the
concentration of each species of the reaction wanders. This can be useful when the di-
mension of this subspace is much smaller than the initial dimension of the system. In the
second chapter, our study will be confined on the enzymatic reactions, i.e. reactions that
are accelerated thanks to molecules called enzymes. Different reactions are then studied,
and we apply the theory of the first chapter to each of them. Finally, the third chapter
describes one of the most studied metabolic pathway that provides energy (ATP) from
glucose, which means the glycolysis and it is regulated by enzymes.

The fourth section of this report defines what p-dominance theory is. This theory
is used to understand the asymptotic behaviour of a dynamical system by finding the
dimension p of this behaviour. For example, a 0-dominant system admits a unique fixed
point since the asymptotic behaviour is 0-dimensional. This concept can be extended to
a p-dimensional behaviour for any p ≥ 0. The p-dominance is described via a dissipation
inequality and it can be proved by using linear matrix inequalities. An algorithmic test
is besides provided in the second section of the fourth chapter with some examples. This
chapter is mainly based on Fulvio Forni’s publications [3], [4] and [5].

Both theories can severally be used to better understand and study a system since sto-
ichiometric classes can reduce the dimension of the system, and p-dominance as well. The
purpose of this work consists of mixing both theories to know the asymptotic behaviour
inside each stoichiometric class. The fifth and last chapter focuses on this goal, and we
apply this new theory on different examples that we have introduced in the previous
chapters. A preliminary analysis is also performed for glycolysis.
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Chapter 1

Chemical reaction networks theory

In this section, we provide a formal frame to study chemical reactions daily used by
chemists. Everything is based on lectures [1] delivered by Martin Feinberg and on the first
volume of James Keener and James Sneyd’s book [7] Mathematical Physiology. First of
all, we should clarify which type of reaction we deal with and what we mean by chemical
reaction network. First of all, let us use an example to introduce some notions. Given
the following chemical reaction diagram:

A+ B −−→ C. (1.1)

This reaction diagram shows that one mole of the species A can react with one mole of
the species B to form one mole of the species C. This reaction generally involves three
different species: A, B and C. Thanks to these species, it is possible to form some com-
plexes, i.e. some linear combinations that appear in the diagram, either on the right of
the arrow or on the left. For example, the reaction (1.1) involves two complexes: A + B
and C. However, they play two distinct roles. The complex A+B will be defined as the
reactant of the reaction and C as the product since A and B react to finally form C. Let
us define formally what a chemical reaction network is.

A chemical reaction network consists of three sets:

1. a finite set S of m elements which are called species of the network;
2. a finite set C of n distinct vectors in IRm such that⋃

y ∈C

supp(y) = S,

where supp(y) means the set of the species involved in the complex y. Elements
of C are called the complexes of the network;

3. a relation R ⊂ C × C such that

(a) no complex reacts to itself, i.e. ∀ y ∈ C, (y, y) /∈ R,
(b) no complex is isolated, i.e. for each y ∈ C, ∃ y′ ∈ C such that (y′, y) ∈ R

or (y, y′) ∈ R.

Elements of R are called reactions and (y′, y) ≡ y → y′, where y is the
reactant complex and y′ is the product complex.

Definition 1.1

3



4 CHAPTER 1. CHEMICAL REACTION NETWORKS THEORY

In other words, this definition means that each element of each complex has to belong to
the set of species and each complex of the set C has to interact with another complex,
either being the reactant of the reaction or the product. Let us also notice that we have
introduced the notion of supp of a complex y through the definition of chemical reaction
network as the set of all the species involved in the complex y. So, if we denote by ys the
number of species s involved in y, the support of a complex can easily be defined as

supp(y) = {s ∈ S | ys 6= 0} . (1.2)

For example, we have that supp(A + B) = {A,B}. In this report, we can either use ys
with s ∈ S, or the notation yi with i = 1, · · · ,m to appoint the ith component of the
vector complex y ∈ C which is associated to the species s. In other words, we can express
a concentration vector or a complex in two different ways: either a combination of the
species s ∈ S, or a m-dimensional vector for which we have defined an order and one
component is associated to one species.

Example 1.1. Let us consider a reaction diagram similar to the diagram (1.1), given by

A+ B −−⇀↽−− C. (1.3)

We can define each of the sets defined in the previous definition. First, the set of species
S is given by {A,B,C}, so m = 3. Secondly, the set of complexes C is {A + B,C}
and n = 2. Each complex here is expressed with a combination of species but we can
also express them with vectors of three components. If we consider that the first com-
ponent is associated with the species A, the second component with B and the third one
with C, then the complex A + B is equivalent to the vector (1, 1, 0)t and the complex C
is related to (0, 0, 1)t. Finally, the set of reactions R is given by {A+B → C,C → A+B}.

Let us mention that the definition of chemical reaction network enables to write open
systems. For example, it includes network with supply of a species, so that we will have
a reaction given by

0 −−→ A.

If we remove one species from the network, we can also formalize it, and then write

A −−→ 0.

This kind of networks are particularly studied at the end of the second lecture of [1].

Within this chapter, we would like to study the evolution of the concentration of each
species of the chemical reaction network over time. This means that, assuming that we
put some molecules into a test tube, we wonder what the result product could be, whether
there will be an equilibrium or whether the solution will always oscillate, and so on. To do
this we will first induce differential equations from a diagram and a kinetics, i.e. the way
that species react and reactions occur. We will particularly focus on one kinetics: the law
of mass action. Then, we will show that the diagram implies restrictions on trajectories
of concentration by limiting movement inside a subset, called a stoichiometric class.
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1.1 Differential equations

As we said before, we want to investigate the evolution of the concentration of each
species, knowing that these concentrations change with the chemical reactions. Therefore,
if we want to write the differential equations induced from the diagram, we have to know
how rapidly these reactions occur. This idea leads to the following concept.

A kinetics for a reaction network {S, C,R} is an assignment to each reaction y → y′

in R of a continuous rate function, denoted by Ky→y′ : IRm
+ → IR+, such that

Ky→y′(c(t)) > 0 ⇔ supp(y) ⊂ supp(c(t)). (1.4)

Then, we will call a reaction system {S, C,R,K} a reaction network {S, C,R}
endowed with a kinetics K.

Definition 1.2

The equivalence (1.4) means that the reaction y → y′ can happen if and only if at that
time its reactants are present in the composition c(t), which means that the non-null
components of the complex y are also different from 0 in the concentration vector c(t).
However, we still have to define some things to be able to write down the differential
equations.

The species formation rate function f : IRm
+ → IRm is defined by

f(c) ≡
∑

y→y′∈R

Ky→y′(c) (y′ − y), (1.5)

where the vector y′ − y is called the reaction vector.

Definition 1.3

The differential equation for a reaction system is given by ċ = f(c), and then, for a
species s ∈ S, the equation is

ċs =
∑

y→y′∈R

Ky→y′(y′s − ys).

Let us take an example to see exactly how it works.

Example 1.2. Given the previous example (1.3), we can write down the differential equa-
tions. For the concentration of A, B and C, we have

ċA =
∑

y→y′∈R
Ky→y′ (y′A − yA) ,

= KC→A+B(1− 0) +KA+B→C(0− 1),

ċB = KC→A+B(1− 0) +KA+B→C(0− 1),

ċC = KA+B→C(1− 0) +KC→A+B(0− 1).

(1.6)
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What we need to find out now is the nature of the kinetics function. Most of the
times, we assume that the kinetics is of mass action type.

A kinetics K for a reaction network {S, C,R,K} is mass action if, for each reaction
y → y′ ∈ R, there exists a positive number ky→y′ such that

Ky→y′(c) ≡ ky→y′
∏
s∈S

cs
ys

︸ ︷︷ ︸
:=
not

cy

,

where the numbers ky→y′ are called the rate constants. We will then talk about
elementary reactions and we will denote this reaction system by {S, C,R, k}.

Definition 1.4

This comes from the fact that for each reaction, the rate of the reaction is the product of
the number of collisions per unit time, and the probability that a collision is sufficiently
energetic to overcome the free energy of activation. This probability is proportional to
the product of each reactant. If we consider the previous example and we denote the
forward and backward rate constants by k+ and k− respectively, we can find that at the
equilibrium,

k−

k+
=

cAcB
cC

:= Keq,

where Keq is called the equilibrium constant. If Keq is small, this means that at steady-
state, the forward reaction is preferred and most of A and B are transformed to give the
product C. This constant can be related to Free Gibbs energy via the formula of ideal
dilute solutions, which is

G = G0 +RT ln(c),

where T is the temperature and R is the ideal gas constant. The change in chemical
potential ∆G is the difference between GC and the sum of GA and GB, i.e.

∆G = GC − (GB +GA) ,

= ∆G0 +RT ln

(
cC
cBcA

)
.

We can easily show that

Keq = e∆G0/RT . (1.7)

This relation is logical as the more negative ∆G0 is, the greater the reaction goes from
left to right, and the smaller the equilibrium constant is. This relation can be generalized
to a more complex reaction diagram given by

αA+ βB −−⇀↽−− γC + δD

for which the relation is the same as before (1.7).
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1.2 Network restrictions
Now that we have differential equations, we can compute the concentration trajecto-

ries from an initial condition. In this section, we will see that these trajectories cannot
wander in IRm

+ ; only some directions are allowed to go through. If we look at the definition
(1.5) of the species formation rate function, we can see that this is a combination of the
reaction vectors (y − y′). It motivates us to define the following concept.

The stoichiometric subspace S is the linear subspace of IRm defined by

S = span {y′ − y such that y → y′ ∈ R} . (1.8)

The dimension s of this subspace is called the rank of the reaction network.

Definition 1.5

We can now establish a lemma that constraints the concentration trajectories.

Lemma 1.1.
Let {S, C,R,K} be a reaction system, and let c : I → IRm be the solution of the differential
equation

ċ =
∑
R

Ky→y′(c)(y′ − y),

where I ⊂ IR is an interval. Then, for each time t1 < t2 ∈ I, there exists α : R → IR+

such that

c(t2)− c(t1) =
∑
R

αy→y′(y
′ − y). (1.9)

y

The equality (1.9) shows that a vector concentration c′ can belong to the same trajectory
as a concentration c only if the difference between them lies in the stoichiometric subspace:
we will say that c and c′ are stoichiometrically compatible. In this case, if we consider
that c0 is the initial concentration vector and that c is the solution of the differential
equation, it means that for every time t ∈ I, we must have

c(t) ∈ (c0 + S) ∩ IRm
+ ,

where S denotes the stoichiometric subspace and

c0 + S := {c0 + s such that s ∈ S} .

Stoichiometric compatibility is an equivalence relation that induces a partition of IRm into
equivalence classes called the stoichiometric compatibility classes for the network.
Geometrically, these classes are obtained by translation from the stoichiometric subspace.
The concept is quite important because if we want to study the stability of this kind of
networks, we have to study it for each class. Thus several questions can be asked: is there
an equilibrium for each class? Is the stability always the same for each class? All these
questions will be answered via the following theorems but let us illustrate this concept
with an example beforehand.
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(a) Phase space (b) Trajectory evolution

Figure 1.1: Illustration of the stoichiometric subspace and compatibility classes of the
system (1.3) for x0 = (0.1, 0.1, 0.8), k+ = 1.2 and k− = 0.4

Example 1.3. If we consider the previous example (1.3), we can find the stoichiometric
subspace to be

S = span {A+B − C, C − A−B} ,
= span {A+B − C} ,
= span

{
(1, 1,−1)t

}
. (1.10)

So, the rank of the reaction is one, and this means that the concentration trajectory issued
from an initial condition has to stay on a straight line in IR3. As shown in Figure 1.1a,
there is always a negative concentration if we consider the stoichiometric subspace, so the
only feasible point is the origin, i.e. when there is no molecule of species. But if we con-
sider some parallel to this line, we can find stoichiometric compatibility classes in which
concentration trajectories have to stay as illustrated in the figure. The evolution of each
concentration is shown in Figure 1.1b and we can see that the concentration vector keeps
constant after some integration steps meaning that there is a stable equilibrium point in
this stoichiometric class.

This subspace can be found with another method when we assume that the system
follows the law of mass action. Let us introduce this method first for linear systems and
then, extend it with a differential approach. Let us assume that we have the following
diagram

A
k+−−⇀↽−−
k−

B (1.11)

which leads to a linear differential system of equations, given by(
ȧ

ḃ

)
=

(
−k+ k−,

k+ −k−.

)(
a

b

)
.

It is obvious that we have only one restriction ȧ+ ḃ = 0, i.e. the sum of the first and the
second rows. This can be rewritten with matrices since we have a linear system and a
combination of rows can be written as the product between a row vector and the matrix,
i.e.
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(
1

1

)t( −k+ k−,

k+ −k−.

)
=

(
0

0

)t

.

In a more general way, the combination of derivatives that are null can be found by
looking for the vector v such that vtA = 0. Then, each vector vi that we can find can
be associated to a constant amount. The stoichiometric subspace is the space of vectors
that satisfy all constraints. In other words, this is the set of vectors u such that for all vi,
we have vitu = 0. For the example (1.11), we have(

1 1
)( u1

u2

)
= 0,

that implies that u1 = −u2, and the stoichiometric subspace is then the set spanned by
the vector (1, −1)t. Using the definition (1.8) gives us the exact same result. In general,
we have that

S =
{
u ∈ IRm | vtu = 0 ∀v : vtA = 0

}
where A is the matrix of the linear system ẋ = Ax. If we have a nonlinear system of
differential equations, we can do exactly the same thing with the Jacobian matrix. In a
nutshell, the method consists in first finding the Jacobian matrix J of the system, then
computing the vectors vi such that vitJ = 0 and finally computing the vectors u such that
for every vector vi, we have vitu = 0. In other words,

S = {u ∈ IRm | vtu = 0 ∀v : vtJ = 0} ,

= {u ∈ IRm | W tu = 0} .
(1.12)

where J is the Jacobian matrix of the nonlinear system ẋ = f(x), and W is the matrix
formed with the vectors v. Let us use this method to find the stoichiometric subspace
again for the first example that we have introduced.

Example 1.4. Let us take the first example of chemical diagram (1.3) and apply the
differential method to find the stoichiometric subspace. We know that for the law of mass
action, the differential equations induced from this diagram are given by

dcA
dt

= k−cC − k+cAcB,

dcB
dt

= k−cC − k+cAcB,

dcC
dt

= k+cAcB − k−cC .

Therefore, the Jacobian matrix is

J =

 −k+cB −k+cA k−

−k+cB −k+cA k−

k+cB k+cA −k−

 .

So we have to find the vectors v such that vtJ = 0. After some computation, we find that
the vector has to belong to the set spanned by two vectors v1 and v2 defined by
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v1 = (1, 0, 1)t and v2 = (0, 1, 1)t .

Finally, if we look for the vectors u that satisfy vitu = 0 for i = 1, 2, we have{
uA + uC = 0,

uB + uC = 0.

It implies that the vector u has to belong to the space spanned by the vector (1, 1,−1)t,
like we have previously found (1.10) with the definition (1.8).

We already know that the character s is used to denote the dimension of the stoi-
chiometric subspace, and n to denote the number of complexes present in the reaction
diagram. Let us now give a signification for the character l. We could instinctively intro-
duce the following concept since it could be seen as the number of sets of reactions that
we find in a reaction diagram, i.e. the number of reactions that we can isolate from each
other in a diagram. For example, we can only find one reaction in the previous example,
so l should be equal to one. In a more formal way, we can define an equivalence relation
and induce a partition of the complexes.

Two complexes y and y′ ∈ C are directly linked, denoted by y ↔ y′, if y → y′ or
y′ → y.

Definition 1.6

Two complexes are then directly linked if there exists a reaction between both of them,
whatever the direction of this reaction. As few complexes are directly linked, we can
define another notion that is less demanding.

Two complexes y and y′ ∈ C are linked if and only if one of the following conditions
are satisfied:

1. y = y′,

2. y ↔ y′,

3. C contains a sequence {y1, y2, · · · , yk} such that

y ↔ y1 ↔ y2 ↔ · · · ↔ yk ↔ y′.

In this case, we write y ∼ y′. The equivalence relation ∼ induces a partition of C with
a family of equivalence classes denoted by {Lθ}θ = 1,...,l called the linkage classes of
the network. We reserve the symbol l for the number of theses classes.

Definition 1.7

The deficiency of a network can now be defined. We will not define it in a formal
way here, but this non-negative number is actually the dimension of the positive space
that makes the differential equations equal to zero, i.e. the dimension of the equilibrium
points (see lectures 3, 4, 5 of [1] for more information). In practice, the deficiency is the
non-negative number defined by
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δ = n− (l + s), (1.13)

and it allows us to classify reaction networks depending on their deficiency index. More-
over, the definition above does not take account of the direction of the arrows between
complexes. Nonetheless we can define a similar notion, with respect to the direction.

A complex y ∈ C ultimately reacts to a complex y′ ∈ C if any of the following
conditions is satisfied:

1. y = y′,

2. y → y′,

3. the set of complexes C contains a sequence {y1, y2, · · · , yk} such that

y → y1 → y2 → · · · → yk → y′.

We will write y ⇒ y′. We will say that two complexes y and y′ ∈ C are strongly
linked if y ⇒ y′ and y′ ⇒ y, and we will write y ≈ y′.

Definition 1.8

It appears that the two notions are really similar but the difference lies in the fact that
we take the direction of the arrows (y and y′ strongly linked) into account, or we do not
(y and y′ linked). This notion can thus be used to define reversible and weakly reversible
networks.

A reaction network is reversible if, for that network, the "react to" relation (→) is
symmetric, i.e. if y → y′, then y′ → y.

Definition 1.9

This first concept is quite logical because every reaction should be reversible. In practice,
if the reverse reaction is much slower than the initial reaction, we can consider that it does
not exist. However, as few reaction diagrams admit only reversible reactions, a weaker
but similar concept will be defined.

A reaction network is weakly reversible if, for that network, any of the following
(equivalent) conditions is satisfied:

1. the "ultimately react to" relation (⇒) is symmetric, i.e. whenever y ⇒ y′, we
also have y′ ⇒ y,

2. each reaction is contained in a directed cycle, i.e. whenever y → y′, we also
have y′ → y,

3. each linkage class is a strong linkage class.

Definition 1.10
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Now that we have defined all the necessary tools to study the equilibria and their sta-
bility, we can establish the following theorem. It only concerns networks whose deficiency
is zero, the existence (or not) of fixed points and their stability.

Let {S, C,R} be a reaction network of deficiency zero.

1. If the network is not weakly reversible, then for arbitrary kinetics K, the dif-
ferential equations of the network {S, C,R,K} can admit neither a positive
equilibrium, nor a cycle composition trajectory containing a positive composi-
tion.

2. If the network is weakly reversible, then for any mass action kinetics k, the
differential equations for the network {S, C,R, k} have the following properties:

- there exists one and only one equilibrium within each positive stoichio-
metric compatibility class,

- this equilibrium is asymptotically stable,

- and it cannot exist a non trivial cyclic composition trajectory.

Theorem 1.1

This theorem is called the Deficiency Zero Theorem, and comes from [1, Theorem
3.1]. In fact, there are not lots of deficiency zero reaction networks in real life. Then we
would like to find a similar theorem but for other indexes of deficiency. Actually, we can
do it if we compute the deficiency of each linkage class Lθ of the diagram, denoted by δθ.
Let us assume that for each class θ = 1, · · · , l, we denote by nθ the number of complexes
in this class and by sθ the dimension of the stoichiometric subspace related to this linkage
class. Obviously, we can denote lθ as the number of linkage classes but we know that this
is equal to one. Then, the deficiency of linkage class is

δθ = nθ − (1 + sθ).

Using this new notion, we can establish another theorem whose name, i.e. Deficiency
One Theorem, could be unclear and ambiguous because it concerns networks of defi-
ciency bigger than one, but the deficiency of each linkage class is 1 at most.

Let {S, C,R} be a reaction network with l linkage classes and let δ denote the defi-
ciency of the network and δθ the deficiency of each linkage class θ. Let us suppose
then that both of the following conditions are satisfied:

1. δθ ≤ 1 ∀θ = 1, · · · , l,

2. δ =
∑

θ δθ.

If the network is weakly reversible, then for any mass action kinetics k, the dif-
ferential equations for {S, C,R, k} admit precisely one equilibrium in each positive
stoichiometric class.

Theorem 1.2
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This theorem comes from [1, Theorem 3.2]. Even if both theorems seem really powerful,
we usually cannot use them with real reaction networks. We will see in what follows that
when the system becomes more complex, it is impossible to use it because the assump-
tions are not satisfied any more. Let us illustrate both theorems with examples though.

Example 1.5. Let us consider the example (1.3) that we deal with since the beginning. It
is clear to see that there is only one linkage class (l = 1) and we have already found that the
dimension of the stoichiometric subspace is one (s = 1) and there are two complexes (n =
2). This allows us to say that this network is of deficiency zero and the previous theorem
can be applied because it is also reversible (and then weakly reversible). Whatever the
initial condition that we take and consequently, whatever the stoichiometric compatibility
class in which we are, there will always be one asymptotically stable equilibrium point.
We can even compute the expression of the equilibrium points. Indeed, if we assume that
it follows the law of mass action, then the differential equations are equal to zero when
k+cAcB = k−cC. Given k+ and k−, we can find an infinity of equilibria. This is shown in
Figure 1.2 where different initial conditions are used and each of them leads to a parallel
trajectory to the stoichiometric subspace with a stable equilibrium point. Indeed, if we look
at the space of fixed points, we have

P =

{
(cA, cB, cC)

t ∈ IR3
+ such that cC =

k+
k−
cAcB

}
, (1.14)

that is illustrated in Figure 1.3. However, we know that each trajectory belongs to a
stoichiometric compatability class whose expression is

Figure 1.2: Illustration of the Deficiency Zero Theorem
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Figure 1.3: Set (1.14) of fixed points in IR3 and the black set is the restriction to IR3
+

S = x0 + span{(1, 1, −1)} ∩ IR3
+,

= {x = x0 + α(1, 1, −1) | x ≥ 0, α ∈ IR}.

Thanks to the Deficiency zero theorem, we expect that the intersection of S and P for an
initial condition x0 is 0-dimensional, and then is only one point. This is illustrated in
Figures 1.4a and 1.4b. We would like to show this result in a formal way. If we want to
show that the intersection of these two sets contains one unique point, we have to show
that there exists one and only one α ∈ IR such that

(a) View from the bottom
(b) View from the top

Figure 1.4: Illustration of the unique intersection (×) between the set of fixed points
(blue) and some stoichiometric classes (green when Ka0b0 > c0, pink when Ka0b0 < c0
and red when Ka0b0 = c0) for some initial conditions (∗)
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c0 − α = K(a0 + α)(b0 + α),

⇔ c0 − α = K(a0b0 + α(a0 + b0) + α2),

⇔ 0 = α2K + α[K(a0 + b0) + 1] +Ka0b0 − c0,

where K denotes k+/k−, and such that a0 + α, b0 + α and c0 − α are non-negative. This
equation can be solved for α. First of all, we have to be sure that the solutions α1,2 will
be real, i.e. the discriminant has to be non negative. If we compute it, we have

∆ = [K(a0 + b0) + 1]2 − 4K(Ka0b0 − c0),

= K2(a0 + b0)
2 + 2K(a0 + b0) + 1− 4K2a0b0 + 4Kc0,

= K2(a0 − b0)2 + 2K(a0 + b0) + 1 + 4Kc0,

> 0.

So the solutions α1,2 are real. Three different cases can be distinguished in function of the
sign of the expression Ka0b0 − c0.

(i) If the initial condition is already in the space of fixed points (orange case in Fig-
ure 1.5 and red case in Figure 1.4), this means that Ka0b0 = c0. Then, the
discriminant becomes

∆ = [K(a0 + b0) + 1]2,

and the solutions are given by

α1,2 =
−[K(a0 + b0) + 1]±

√
[K(a0 + b0) + 1]2

2K
.

In other words, either we have α1 =
−[K(a0 + b0) + 1]

K
, or α2 = 0. This last value

of α reminds that the initial condition is in the set of fixed points. Let us show
now that α1 does not work, meaning that there is a unique solution. Indeed, if we
compute the first component of the vector x, we have

xA = a0 + α1,

= a0 −
[K(a0 + b0) + 1]

K
,

=
−(Kb0 + 1)

K
,

< 0.

Since the component is negative, the vector x cannot belong to the stoichiometric
compatibility class and then, it does not belong to the intersection with the set of fixed
points. We can conclude that if the initial condition already belongs to the set of fixed
points, it will be the only point along the trajectory issued from this point. This seems
logical since the trajectory will be stable and will not move from the initial condition.
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Figure 1.5: Illustration of the intersections between the set of fixed points and the stoi-
chiometric compatibility classes for the three different cases

(ii) If the initial point is over the space of fixed point (green case in Figure 1.5 and
pink case in Figure 1.4), i.e. Ka0b0 < c0, then we have that

Ka0b0 − c0 < 0,

⇔ −4K(Ka0b0 − c0) > 0,

⇔ [K(a0 + b0) + 1]2 − 4K(Ka0b0 − c0) > [K(a0 + b0) + 1]2.

By using the monotonicity of the square root function, we can conclude that the
square root of the left-hand side is bigger than the square root of the right-hand side.
This implies that

α1 <
−[K(a0 + b0) + 1]−

√
[K(a0 + b0) + 1]2

2K
,

⇒ α1 < − [K(a0 + b0) + 1]

K
,

⇒ a0 + α1 < a0 −
[K(a0 + b0) + 1]

K
,

⇔ xA < −Kb0 + 1

K
,

⇒ xA < 0.

This is in contradiction with the stoichiometric compatibility class, since it contains
only non-negative components. Then, the first solution α1 does not work. What
about the second solution α2 ? Thanks to the assumption, we know that
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α2 >
−[K(a0 + b0) + 1] +

√
[K(a0 + b0) + 1]2

2K
,

⇔ α2 > 0.

It implies that xA and xB are positive, and xC can only be positive since α2 has been
computed to have the relation

c0 − α2︸ ︷︷ ︸
xC

= K (a0 + α2)︸ ︷︷ ︸
xA>0

(b0 + α2)︸ ︷︷ ︸
xB>0

.

We have then found one and only one solution for this second case, where α2 > 0.
This result seems logical since the initial condition c0 is bigger than the value Ka0b0
obtained at the fixed point. Therefore, α has to be positive in order to reduce the
value of xC.

(iii) Let us finally consider the third and last case, that assumes that Ka0b0 > c0 (red
case in Figure 1.5 and green case in Figure 1.4). In other words, this means
that the initial point is under the space of fixed points and that the third component
has to increase. This is consistent with the assumption since it implies that both
solutions α1 and α2 are negative, increasing then the third component of the vector.
We know that the solutions α1 and α2 are given by

α1,2 = −K(a0 + b0) + 1

2K
±
√

[K(a0 + b0) + 1]2 − 4K(Ka0b0 − c0)
2K

.

Since K > 0, we know that α1 (obtained with the minus) will be smaller than half
of the sum of α1 and α2. Then, we have

α1 < −K(a0 + b0) + 1

2K
,

⇒ a0 + α1 < a0 −
K(a0 + b0) + 1

2K
,

⇔ a <
K(a0 − b0)− 1

2K
.

We can do exactly the same thing with b, and we have

b <
K(b0 − a0)− 1

2K
.

So one of them will always be negative since either a0 < b0 or b0 < a0. This solution
is then impossible. However, the solution α2 will provide a positive solution.

It has been demonstrated that, for each case, there exists one and only one solution. This
result is consistent with the Deficiency zero theorem.
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As we said before, this theorem cannot be applied to most of the chemical reaction dia-
grams. Let us take an example to illustrate that statement.

Example 1.6. Given the following diagram

3A
0.1−−→ A+ 2B

1 ↑ ↓ 1 (1.15)
2A + B

0.1←−− 3B

It seems logical that the number of linkage classes is one, i.e. l = 1, and that there are
four different complexes: 3A, A + 2B, 3B and 2A + B. Finally, the dimension of the
stoichiometric subspace is defined by

S = span {A+ 2B − 3A, 3B − A− 2B, 2A+B − 3B, 3A− 2A−B} ,
= span {A−B} .

Then, its dimension is one and the deficiency of the system is 4 − 1 − 1 = 2. It is then
impossible to apply any of both theorems. Instead, let us induce differential equations from
it, given by

da

dt
= −0.2a3 − ab2 + 0.2b3 + a2b,

= (a− b)[−0.2a2 + 0.8ab− 0.2b2],

db

dt
= 0.2a3 + ab2 − 0.2b3 − a2b,
= (a− b)[0.2a2 − 0.8ab+ 0.2b2].

Figure 1.6: Phase space of the diagram (1.15)
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We know that trajectories are kept in a 1-dimensional space, meaning that we cannot have
cycles, but only one or several fixed points. After some examples, it seems that in each
stoichiometric class, there are several fixed points. If we are looking for the fixed points,
we find that

P = {(a, a) | a ≥ 0} ∪ {(a, 3.7321a) | a ≥ 0} ∪ {(a, 0.2679a) | a ≥ 0}.

The Figure 1.6 displays the set of fixed points. There are definitely three fixed points
within a stoichiometric class.
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Chapter 2

Enzymatic reaction

In this section, we will keep on studying the diagram of particular reactions because we
will focus on enzymatic reactions, i.e. reactions that are accelerated with a big molecule
called an enzyme. Indeed, enzymes lower the free energy of activation of the reaction,
but the reaction does not modify the enzyme molecule. The substrate, i.e. the molecule
that interacts with the enzyme becomes then the product. This type of reactions have
important features. First of all, they are highly specific because an enzyme can usually
catalyzes only one reaction thanks to its three-dimensional shape. Then, they are regu-
lated by a complicated set of positive and negative feedback loops. This allows that the
activity of enzyme is precisely controlled. Finally, enzymatic reactions are not elementary
reactions, i.e. they do not follow the law of mass action in accordance with the real data.
In 1913, Michaelis-Menten proposed a two-step process to explain the deviation from the
law of mass action. If we denote S for the substrate, E for the enzyme and P for the
product, we have

S + E
k1−−⇀↽−−
k−1

C
k2−−→ P + E. (2.1)

So the enzyme binds the substrate to form a complex denoted by C and then it breaks
down into the product P , releasing the enzyme as illustrated in Figure 2.1. Let us
notice that one reaction is not reversible, but this is explained by the fact that the reverse
reaction is very slow. We can use the previous theory to study this reaction network
diagram. We can easily see that it contains three complexes (n = 3) and only one linkage
class (l = 1). The stoichiometric subspace, given by

S = span{S + E − C, P + E − C},

= span{(1, 1, −1, 0)t, (0, 1, −1, 1)t},

Figure 2.1: Illustration of an enzymatic reaction (2.1)

21
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is two-dimensional. The deficiency is then equal to zero. Unfortunately, the diagram is
not weakly reversible, so we can only conclude that the differential equations can admit
neither a positive equilibrium (meaning that a species has to disappear) nor a cycle
composition trajectory containing a positive composition. Let us then write down the
differential equations induced from this enzymatic diagram. We find

ds

dt
= k−1c− k1es, (2.2)

de

dt
= (k−1 + k2)c− k1es, (2.3)

dc

dt
= k1es− (k−1 + k2)c, (2.4)

dp

dt
= k2c. (2.5)

With this kind of equations, we will consider that the velocity of the reaction is the rate
of production of the product, i.e. the equation (2.5). Let us also notice that a quantity is
conserved because

d (e+ c)

dt
=

de

dt
+
dc

dt
,

= 0.

It implies that e(t)+ c(t) is always constant. We will denote this quantity by e0, the total
amount of enzyme. There are two different ways to study these equations: the equilibrium
approximation and the quasi-steady-state approximation. Let us describe them in details
in the following sections.

2.1 The equilibrium approximation

As the title indicates, this method is an approximation. Hence, it is based on an
assumption. According to this assumption, the substrate is instantaneously in equilibrium
with the complex, which means that

k1se ≈ k−1c. (2.6)

Nevertheless, this relation cannot be a real equality, otherwise any product will not be
formed. Actually, this assumption amounts to saying that the product will rather decom-
pose to give back enzyme and substrate, than decompose to form the product, i.e.

k−1 � k2.

Under the initial assumption (2.6), we can isolate and express the concentration of complex
c in function of the substrate concentration s and the total amount of enzyme e0. The
velocity of the reaction can then be expressed by
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V =
Vmaxs

K1 + s
,

where Vmax = k2e0, as this is the maximal reaction velocity reached when all the enzyme
is complexed with the substrate. When the substrate concentration is low, then the re-
action rate is more or less linear (as a function of total amount of enzyme e0). On the
contrary, when the substrate concentration becomes higher, the reaction velocity satu-
rates to Vmax. The velocity is then limited by the total amount of enzyme and the rate
constant of formation of product. The K1 value can give an idea of the efficiency of an
enzyme molecule, because at this value the velocity is half of its maximum. Then, if K1

is small, we have an efficient enzyme, otherwise the enzyme is much less efficient while
K1 is high.

According to the initial assumption behind this approximation, k−1 is much bigger
than k2. It would be therefore interesting to see the evolution of the accuracy of the
approximation while this assumption is wrong. We can see the results in Figure 2.2
where k2 is 0.1 and k−1 goes from 0.1 to 100. The result seems quite strange because
when the rate constant k−1 is smaller than 100, the error is always the same for high
substrate concentrations, but as far as small concentrations are concerned, the bigger k−1
is, the smaller the error is. Then, this behaviour changes when k−1 = 100 as the error is
smaller and it gets bigger when substrate concentration increases.

Figure 2.2: Illustration of equilibrium approximation with k1 = 1, k2 = 0.2, e0 = 0.1
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2.2 The quasi-steady-state approximation
Even if the initial assumption behind this method differs completely from the previous

one, a similar expression for the reaction velocity will be found. Indeed, the purpose of
this method is to use dimensionless variables1 to show that some reactions are faster
than the other ones, which allows then to consider that the concentration is constant. In
practice, let us consider the following dimensionless variables σ and x defined by

σ =
s

s0
and x =

c

e0
,

and we also define some parameters : τ = k1e0t, K =
k−1 + k2
k1s0

, ε =
e0
s0

and α =
k−1
k1s0

.

Two differential equations are obtained:

dσ

dτ
= −σ + x(σ + α), (2.7)

ε
dx

dτ
= σ − x(σ +K). (2.8)

As you can see, in the equation (2.8), the derivative of x is multiplied by the parameter
ε. However this parameter is assumed to be really small because one of the features of
an enzyme, is that the amount of enzyme needed in a reaction is much lower than the
amount of substrate. Then, under this assumption, we can suppose that the reaction (2.8)
is really fast and equilibrates rapidly. The quasi-steady-state approximation assumes that

ε
dx

dτ
≈ 0,

and that amounts to saying that
dc

dt
≈ 0. Actually, this assumption can be justified by

introducing asymptotic expansion of the solution and keeping the lowest order.

Under the quasi-steady-state assumption, the complex concentration can be expressed
as a function of the other ones, and finally express the reaction velocity as

V =
Vmaxs

s+Km

, (2.9)

where Km =
k−1 + k2

k1
plays the same role as K1 in the equilibrium approximation, and

allows us to describe the efficiency of an enzyme. As we have announced before, we can
clearly see the similarity between both expressions of velocity but let us keep in mind that
they come from different assumptions. Though, it seems logical that we obtain similar
results, but we can notice that it would not have been the case if we had assumed that the
reaction was reversible. As we did with the equilibrium approximation, we can study this
approximation when the initial assumption is wrong. As illustrated with Figure 2.3, it
is clear that when the enzyme concentration becomes higher, the approximation is wrong
with sometimes an error of the order of 101. However it is logical that at low substrate
concentration, the error seems bigger since the ratio ε is bigger.

1See the appendix of the first chapter of [7] for more information about some methods to find out
these dimensionless variables.
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Figure 2.3: Illustration of quasi-steady-state approximation with k1 = 1, k−1 = 10 and
k2 = 0.1

2.3 Enzyme inhibition

Sometimes, the activity of an enzyme can be stopped or reduced with some substances
called inhibitors. This inhibition is crucial because it enables to regulate the enzymes.

An enzymatic inhibitor is a substance that inhibits the catalytic action of the
enzyme by binding the enzyme.

Definition 2.1

There exists a lot of different types of enzymatic inhibitors, but we will only focus on two
of them: the competitive inhibitor and the allosteric inhibitor. Before anything else, we
have to keep in mind that enzyme molecules are most of the time larger proteins than
the substrate molecules and that an enzyme catalyzes a single reaction of substrate with
similar structure. Moreover it is noteworthy that an enzyme contains different sites: the
active site where the substrate molecule can bind, and other sites called allosteric sites
(or regulatory sites) for other bindings.

2.3.1 Competitive inhibitors

Since the enzymatic reaction is a three-dimensional system, if another molecule with
a similar shape binds the enzyme molecule, then it prevents the substrate from binding
the enzyme. This can be modeled by the following diagram, illustrated in Figure 2.4:
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S + E
k1−−⇀↽−−
k−1

C1
k2−−→ P + E.

E + I
k3−−⇀↽−−
k−3

C2.

As we did with the simplest enzymatic reaction, we can study this diagram with using
the previous theory. Obviously, the number of linkage classes is two (l = 2) and there
are five complexes in the diagram (n = 5). The dimension of the stoichiometric subspace
is three because it corresponds to the linear subspace built on three linear independent
vectors:

S = span{S + E − C1, P + E − C1, E + I − C2},

= span{(1, 1, −1, 0, 0, 0)t, (0, 1, −1, 0, 0, 1)t, (1, 0, 0, −1, 1, 0)t}.

Therefore the deficiency of the diagram is zero but it is not weakly reversible. The same
conclusion can be made as for the previous diagram. Under the assumption of the law of
mass action, differential equations can be written down, given by

ds

dt
= k−1c1 − k1se, (2.10)

de

dt
= k−1c1 − k1se− k3ei+ k−3c2 + k2c1, (2.11)

dc1
dt

= k1se− (k−1 + k2)c1, (2.12)

dc2
dt

= k3ei− k−3c2, (2.13)

di

dt
= k−3c2 − k3ei, (2.14)

dp

dt
= k2c1. (2.15)

Figure 2.4: Illustration of competitive inhibition
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If we add the derivatives of the concentrations of enzyme e and complexes c1 and c2, we
will have zero. It means that the total amount of enzyme is always constant over time;
this quantity will be denoted by e0. We can use one of the two approximations that we
have developed before. Let us take for example the quasi-steady-state approximation. It
states that the derivative of complexes can be approximated by zero, so if we solve both
equations for c1 and c2, we will find

c1 =
Kie0s

Kmi+Kis+KmKi

,

c2 =
Kme0i

Kmi+Kis+KmKi

,

where Km =
k−1 + k2

k1
and Ki =

k−3
k3

. Then, the velocity of the reaction is given by

V =
Vmaxs

s+Km(1 + i/Ki)
, (2.16)

with Vmax = k2e0. If we compare this expression to the reaction velocity (2.9) without
inhibition, we can see that the introduction of inhibition increases the index of efficiency
of the enzyme because the equilibrium constant is now Km(1+ i/Ki) compared to Km be-
fore. The velocity decreases but the maximum velocity remains unchanged, as illustrated
in Figure 2.5a. It also seems logical that the more the inhibitor works i.e. the bigger k3
is and therefore the smallerKi is, the more the velocity decreases since (1+i/Ki) increases.

(a) Competitive inhibitor (b) Allosteric inhibitor

Figure 2.5: Illustration of reaction velocity with inhibition
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2.3.2 Allosteric inhibitors

Beside the active site binding the substrate molecules, it is noteworthy that an enzyme
displays several other sites capable of binding different molecules. These bindings can af-
fect the activity of the enzyme (increasing or reducing the enzymatic activity). These
binding sites are called allosteric sites or regulatory sites because they allow the regula-
tion of the enzyme.

An effector (or modifier) is the ligand that binds the allosteric site. If it increases the
activity of the enzyme, it is called allosteric activator. If it decreases the activity
of the enzyme, it is called allosteric inhibitor.

Definition 2.2

The allosteric change is linked to a conformational change of the molecule. This is illus-
trated in Figure 2.6: the allosteric inhibitor will modify the three-dimensional shape of
the enzyme molecule, which will prevent it from binding a substrate molecule for example,
or will reduce its activity. This behaviour can be modelled by assuming that there exist
four possible binding states: the enzyme on its own denoted by E, the enzyme with the
inhibitor denoted by Y , the enzyme with a substrate molecule denoted by X and finally
the enzyme with both molecules denoted by Z. It seems logical that, to go from one state
to another, the enzyme molecule has to bind either the inhibitor or the substrate. The
diagram is then

E + S
k1−−⇀↽−−
k−1

X
k2−−→ P + E.

E + I
k3−−⇀↽−−
k−3

Y.

X+ I
k3−−⇀↽−−
k−3

Z.

Y + S
k1−−⇀↽−−
k−1

Z.

If we use the equilibrium approximation, and we assume that each of the four transitions
is at equilibrium, we have

Figure 2.6: Illustration of allosteric inhibition
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(e0 − x− y − z)s−Ksx = 0,

(e0 − x− y − z)i−Kiy = 0,

ys−Ksz = 0,

xi−Kiz = 0,

where Ks = k−1/k1, Ki = k−3/k3 and e0 = e + z + y + z is the constant total amount
of enzyme that we can easily demonstrate using the differential equations, as we did
before. These four equations can be rewritten as a linear system of rank three, and we
can therefore express x as a function of i and s

x =
e0Ki

i+Ki

s

Ks + s
.

Finally, the reaction velocity is given by the following formula

V =
Vmax

1 + i/Ki

s

Ks + s
, (2.17)

where Vmax = k2e0. Thanks to the allosteric inhibition, we can see that the maximal
reaction velocity decreases but the equilibrium constant remains unchanged as illustrated
in Figure 2.5b.

We could have studied the diagram of the allosteric inhibitors with the theory of
chemical reaction networks. In this case, the number of linkage classes is four, as it
is easily shown, and there are eight complexes in the diagram. Then, we can find the
dimension of the stoichiometric subspace, defined by

S = span{E + S −X, ,E + P −X, E + I − Y, Y + S − Z, X + I − Z},

= span{E + S −X, ,E + P −X, Y + S − Z, X + I − Z},

= span{(1, 1, 0, −1, 0, 0, 0)t, (0, 1, 0, −1, 0, 0, 1)t, (1, 0, 0, 0, 1, −1, 0)t,
(0, 0, 1, 1, 0, −1, 0)t}.

The dimension is then four. The system is of zero deficiency because δ = n− (l+ s), but
it is not weakly reversible.

2.4 Cooperativity

The theory that we have developed so far cannot explain some behaviours like the
shape of the reaction velocity. Actually, in real experimentations, the curve is not a
simple hyperbolic curve but often has a sigmoidal character. This can be explained via
cooperative effects though.
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We talk about cooperative effects when an enzyme can bind more than one sub-
strate molecule, and the binding of one substrate affects the binding of the subse-
quent(s).

Definition 2.3

We can illustrate this concept with an enzyme with two active sites, i.e. the enzyme can
bind two substrate molecules. Then, the diagram looks like

S + E
k1−−⇀↽−−
k−1

C1
k2−−→ P + E

S + C1
k3−−⇀↽−−
k−3

C2
k4−−→ P + C1

where E denotes the enzyme without any binding, C1 denotes the complex of enzyme
bound at one substrate molecule and C2 the complex with two substrate molecules. The
value of rate constants can express positive cooperativity or negative cooperativity as
well. Before anything else, let us study this diagram. We can clearly identify two linkage
classes, so l = 2, and six different complexes, hence n = 6. Finally, we can compute the
dimension of the stoichiometric subspace described by

S = span {S + E − C1, P + E − C1, S + C1 − C2, P + C1 − C2} ,

= span {S + E − C1, P + E − C1, S + C1 − C2} ,

= span {(1, 1, −1, 0, 0)t, (0, 1, −1, 0, 1)t, (1, 0, 1, −1, 0)t} .

The dimension of this subspace is then three, and the deficiency is one but unfortunately,
the diagram is not weakly reversible. Thanks to the assumption of the law of mass action,
we can write down the differential equations

ds

dt
= k−1c1 − k1se− k3sc1 + k−3c2, (2.18)

de

dt
= (k−1 + k2)c1 − k1se, (2.19)

dc1
dt

= k1se− (k−1 + k2)c1 − k3sc1 + (k−3 + k4)c2, (2.20)

dc2
dt

= k3sc1 − (k−3 + k4)c2, (2.21)

dp

dt
= k2c1 + k4c2. (2.22)

As always, the total amount of enzyme is constant, and we denote this quantity by e0.
We can use for example the quasi-steady-state approximation, and then find
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c1 =
K2e0s

K1K2 +K2s+ s2
,

c2 =
e0s

2

K1K2 +K2s+ s2
,

where K1 =
k−1 + k2

k1
and K2 =

k4 + k−3
k3

. Then, the reaction velocity can be expressed

as a function of the substrate concentration s and the total amount of enzyme e0

V =
(k2K2 + k4s)e0s

K1K2 +K2s+ s2
. (2.23)

As announced before, the values of the rate constants can change the cooperative
effects. Let us consider three different particular cases. First of all, we can assume that
the binding sites act independently and identically. In terms of rate constants, this
be can expressed by the following relations between constants

k1 = 2k3 :=
not

2k+ and k−3 = 2k−1 :=
not

2k−,

and 2k2 = k4. Then, the reaction velocity can be rewritten as

V = 2

(
Vmaxs

K + s

)
,

whereK =
k− + k2
k+

. So we find back the double of reaction velocity (2.3, page 25) without
any inhibition, since this behaviour is the behaviour of two binding sites. Secondly, we

Figure 2.7: Illustration of independence, positive and negative cooperativity
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Figure 2.8: Illustration of the conformational changes

can talk about (large) positive cooperativity. This means that the binding of the first
substrate molecule is slow, but enables the second binding to occur rapidly. In terms of
rate constants, this is modelled by the following rules: k3 →∞, k1 → 0 but the product
k1k3 is constant. This is equivalent to K2 → 0, K1 → ∞ and K1K2 is constant. Then,
the reaction velocity is given by

V =
Vmaxs

2

K2
m2 + s2

,

where K2
m = K1K2 and Vmax = k4e0. Negative cooperativity can also be expressed

by decreasing the value of k1, and increasing the value of k3. If we plot the graph of the
velocity for each of these three different cases, as we did in Figure 2.7, we can see that
positive cooperativity can explain the sigmoidal behaviour of this curve.

Some models can explain these cooperative effects. Let us introduce one of them:
the Monod-Wyman-Changeux model. This model makes some assumptions. The
first one concerns the shape of the molecule: it is assumed that cooperative proteins are
composed of several identical reacting units called subunits and each of them contains one
binding site. Then, the overall protein has two different conformational states denoted
by R and T , which differ in their ability to bind ligands. Finally, the individual change
impacts the overall change, as illustrated in Figure 2.8. This means that if the binding
of a ligand to one subunit induces a conformational change in that subunit, then an
identical conformational change is induced in every subunit of the protein. In practice,
cooperative effects are obtained by the difference between the binding affinity of R and
T conformation.



Chapter 3

Glycolysis and glycolic oscillations

We would like to use chemical reaction networks theory to explain and understand
some chemical systems and metabolism. This chapter is mainly based on James Sneyd
and James Keener’s book Mathematical Physiology 1: Cellular Physiology [7].

3.1 The glycolysis

First and foremost, let us give a precise definition of the word "metabolism".

A metabolism is the process of extracting useful energy from chemical bonds.

Definition 3.1

In other words, the metabolism is the way that human beings stay alive and grow. Actu-
ally, it occurs thanks to metabolic pathways.

A metabolic pathway is the sequence of enzymatic reactions that take place in
order to transfer chemical energy from one form to another.

Definition 3.2

One of the common carriers of energy in the cell is the chemical adenosine triphosphate
(ATP) and glycolysis is the source of the production of ATP. Indeed, the hydrolysis1 of
ATP in chemical adenosine diphosphate (ADP) releases a large amount of energy, while
the phosphorylation (the process of adding an inorganic phosphate group) of ADP to
ATP requires a considerable amount of energy. In practice, the energy is made available
to the cell by the oxidation of glucose to carbon dioxide and water, with a net release of
energy (∆θ = −2878.41 kJ/mol). The diagram is

C6H12O6 + 6O2 −−→ 6CO2 + 6H2O+ energy.

Obviously, this reaction is not elementary but it takes place in a series of enzymatic
reactions where glycolysis plays a role. In this report, we will only focus on the first
three steps of this metabolism, illustrated in Figure 3.1. At the beginning, glucose

1The hydrolysis is any chemical reaction in which a molecule of water ruptures one or more chemical
bonds [12]

33
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Figure 3.1: Illustration of the first three steps of glycolysis

molecules are outside the cell, and cannot enter by their own: they need transporters.
The problem is that transporters can make glucose enter the cell, and can make it go
out of the cell as well. It is then necessary to add something on glucose to prevent it
from crossing the cell membrane. So, the first step of glycolysis is the phosphorylation
of glucose into glucose-6-phosphate. This step consists in adding a molecule of
phosphate on glucose. This molecule would have come from the release of the hydrolysis
of ATP to ADP. This reaction releases a lot of energy which allows the attachment of
phosphate onto glucose in order to form the glucose-6-phosphate. Moreover, this reaction
is accelerated by a particular enzyme called hexokinase. The second step only consists in
an isomerization of glucose-6-phosphate to fructose-6-phosphate, i.e. the atoms
remain exactly the same, but their arrangement as well as their properties are altered.
This new molecule can convert into another molecule called fructose-2,6-bisphosphate and
this conversion is accelerated by the enzyme phosphofructokinase 2 (PFK2). The third
step of glycolysis is similar to the first one since it consists in the phosphorylation
of fructose-6-phosphate to fructose-1,6-bisphosphate. A phosphate molecule that
results from the hydrolysis of ATP to ADP is added to the fructose-6-phosphate. This
reaction is accelerated by the phosphofructokinase 1 (PFK1) enzyme, which is an allosteric
enzyme because it is allosterically inhibited by ATP (that is also a substrate) and this
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inhibition is removed by AMP (adenosine monophosphate). Then, the activity of PFK1
increases as the ratio of ATP to AMP decreases. In practice, if ATP levels fall, then
PFK1 activity increases and thus the production of ATP increases as well. Otherwise,
if ATP levels become high, the PFK1 activity decreases and the production of ATP is
shut down. There exist other feedback loops. Let us give two examples, a positive one
and a negative one. We know that the PFK1 enzyme phosphorylates fructope-6-P while
ATP converts to ADP at the same time. Then, ADP converts back to ATP and ADP
(adenosine monophosphate) via the reaction

2ADP −−⇀↽−− ATP + AMP.

This reaction increases the activity of the PFK1 enzyme because it decreases the ATP/ADP
ratio. We also know that the molecule of fructose-2,6-BP, formed from fructose-6-P thanks
to the PFK2 enzyme, increases the activity of PFK1. Then, if the activity of PFK1 falls
down, the level of fructose-6-P rises. Obviously, the same happens with fructose-2,6-BP,
which increases the activity of PFK1.

Real experimentations and data have shown that under some conditions, the rate of
glycolysis is sometimes oscillatory and even chaotic. The purpose is then the understand-
ing of this oscillatory behaviour and the building of a model in accordance with real data.
In the following pages, we will focus on two models: the Sel’kov model and its improve-
ment, the Goldbeter-Lefever model.

3.2 Sel’kov scheme
In 1968, Sel’kov established a model, which Goldbeter and Lefever modified/improved

in 1972. This model makes some assumptions and only considers the positive feedback
that we have described above. However, the conversion of ADP to AMP and ATP is
ignored and it is assumed that ADP activates directly the enzyme. Finally, in this model,
PFK1 remains inactive as long as it is unbounded, but the binding with some ADP
molecules activates it. The related reaction is given by

γS2 + E
k3−−⇀↽−−
k−3

ES2
γ.

where E denotes the PFK1 enzyme, S2 refers to ADP molecule and γ is the number of
ADP molecules needed to activate the enzyme. Then, ATP, that is denoted by S1, can
bind the activated form of PFK1 to product ADP. This is modelled by

S1 + ES
γ
2

k1
�
k−1

S1ES
γ
2

k2−→ ES
γ
2 + S2.

Finally, as it is commonly assumed, there is a steady supply rate of ATP and ADP is
irreversibly removed from reaction. In terms of diagram, we have

ν1−−→ S1,

S2
ν2−−→ .

By applying the law of mass action, we can easily write down the differential equations
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ds1
dt

= ν1 − k1s1x1 + k−1x2, (3.1)

ds2
dt

= k2x2 − γk3s2γe+ γk−3x1 − ν2s2, (3.2)

de

dt
= k−3x1 − k3s2γe, (3.3)

dx1
dt

= (k−1 + k2)x2 + k3s2
γe− k1s1x1 − k−3x1, (3.4)

dx2
dt

= k1s1x1 − (k−1 + k2)x2, (3.5)

with x1 = [ESγ2 ] and x2 = [S1ES
γ
2 ]. If we add the differential equations (3.3), (3.4) and

(3.5) related to the concentration of enzyme, we will obtain zero. Then, the quantity
e+x1+x2 is constant and denoted by e0. In order to study this system, we would like to
use the quasi-steady-state approximation. Let us then introduce dimensionless variables:

σ1 =
k1s1

k2 + k−1
, σ2 =

(
k3
k−3

)1/γ

s2,

u1 =
x1
e0
, u2 =

x2
e0
, t =

k2 + k−1
e0k1k2

τ.

Then, the equations (3.1), (3.2), (3.4) and (3.5) can be rewritten with these new variables,
and we get

dσ1
dτ

= ν − k−1 + k2
k2

u1σ1 −
k−1
k2

u2, (3.6)

dσ2
dτ

= α

(
u2 − σ1u1 − γ

k−3
k2

σ2
γ(1− u1 − u2) + γ

k−3
k2

u1

)
− ησ2, (3.7)

ε
du1
dτ

= u2 − σ1u1 +
k−3

k2 + k−1
[σ2

γ(1− u1 − u2)− u1], (3.8)

ε
du2
dτ

= σ1u1 − u2, (3.9)

where ε =
e0k1k2

(k2 + k−1)2
, ν =

ν1
k2e0

, η =
ν2(k2 + k−1)

k1k2e0
and α =

k2 + k−1
k1

(
k3
k−3

)1/γ

.

Under the assumption of quasi-steady-state, we have to put the equations (3.8) and (3.9)
at zero. Then, we obtain u1 and u2 as functions of σ1 and σ2 described as

u1 =
σ2γ

σ2γσ1 + σ2γ + 1
,

u2 =
σ1σ2γ

σ2γσ1 + σ2γ + 1
:=
not

f(σ1, σ2).

Now, we can express the evolution of σ1 and σ2 as functions of themselves only, and these
equations are
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dσ1
dτ

= ν − f(σ1, σ2), (3.10)

dσ2
dτ

= αf(σ1, σ2)− ησ2. (3.11)

Since σ1 is related to the concentration of ATP and σ2 to the concentration of ADP,
we would like to demonstrate that both equations admit oscillatory solutions for some
range of the supply rate ν. Let us notice that no solution can be bounded if ν > 1, so we
will only consider values of ν between 0 and 1. The nullclines of the system are given by

σ1 =
ν

1− ν
1 + σ2γ

σ2γ

(
dσ1
dτ

= 0

)
,

σ1 =
1 + σ2γ

σ2γ−1(p− σ2)

(
dσ2
dτ

= 0

)
,

where p = α/η. Then, the unique steady-state solution can easily be found and satisfies
σ2 = pν,

σ1 =
ν (1 + σ2γ)

(1− ν)σ2γ
.

We now have to study the stability of this point. In order to do so, we use the characteristic
equation of the linearized system, given by

λ2 − (αf2 − η − f1)︸ ︷︷ ︸
:=
not

H(ν)

+f1η = 0

where fi denotes
∂f

∂σi
for i = 1, 2. Since f1η is positive, the stability is governed by the

sign of the expression H(ν). Indeed, if H is negative, the system admits two negative
eigenvalues and is then stable. Otherwise, if H is non negative, the system is unstable
when H > 0 and there is an Hopf bifurcation while H = 0. If we compute the derivatives
of the function f , the function H(ν) can be rewritten as

H(ν) =
(1− ν)
(1 + y)

[ηγ + (ν − 1)y]− η,

with y = (pν)γ. Since the value of the function H equals to −η when ν = 1 and η(γ − 1)
when ν = 0, by continuity the curve has to change sign if γ is bigger than 1. This is
exactly what we can see in Figure 3.2.

Example 3.1. Let us take an example to show the oscillotary solutions that we obtain
with this model. We assume that γ is 2, α is 1, η is 0.1 and we take two different values
of ν: one when H(ν) is positive (0.0285), and another one when it is negative (0.0315).
If we consider that η = 0.0285, then the function H is positive, which means that steady-
state is unstable and we have a limit cycle. In the example illustrated in Figure 3.3, we
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Figure 3.2: Illustration of the function H(ν) for different values of γ

have taken the initial condition (0.3 , 0.3) that leads to oscillatory trajectories as shown in
Figure 3.3a. Figure 3.3b reveals the same behaviour. We can do the same thing with
ν = 0.0315, leading to a negative value of H, meaning that the steady-state is stable. As
shown in Figure 3.4, we can clearly see that the trajectory goes closer and closer to the
steady-state when time increases. The phase space related to this behaviour is shown in
Figure 3.4a and the trajectories are illustrated in Figure 3.4b.

(a) Phase space (b) Trajectory evolution

Figure 3.3: Illustration of Sel’kov model when γ = 2 (> 1) when H(ν = 0.0285) > 0
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(a) Phase space (b) Trajectory evolution

Figure 3.4: Illustration of Sel’kov model when γ = 2 (> 1) when H(ν = 0.0315) < 0

Unfortunately, the model of Sel’kov does not fit with the real data since we should have
two Hopf bifurcation points. Indeed, in experimental results, there is a stable steady-state
solution for high and low substrate injection rates.

3.3 Goldbeter and Lefever scheme

In 1972, Goldbeter and Lefever improved the Sel’kov model using a model of Monod-
Wyman-Changeux type. They assume that the PFK1 enzyme is a dimer that can exist
in two different states: an active one denoted by R, and an inactive one denoted by T .
Other assumptions are made in their model. First, the substrate S1 can bind both forms
of the enzyme, but the product S2 can only bind the active form. Moreover, the product
S2 can be produced thanks to an irreversible reaction where the R-form decomposes and
loses one substrate molecule. Then, as we commonly do, the substrate is assumed to
be supplied to the system at a constant rate, and the product to be removed from the
system at a rate proportional to its concentration. In what follows, we will denote by Tj
the inactive T form of the enzyme bound to j molecules of substrate and the active R
form of the enzyme bound to i substrate molecules and j product molecules by Rij. On
the one hand, the reaction diagram for the T-form is

T0 + S1
2 k3−−⇀↽−−
k−3

T1.

T1 + S1
k3−−−⇀↽−−−

2 k−3

T2.

On the other hand, the reaction diagram for R-form is given by

R00 + S2
2 k2−−⇀↽−−
k−2

R01,
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R01 + S2
k2−−−⇀↽−−−

2 k−2

R02,

and
R0i + S1

2 k2−−⇀↽−−
k−2

R1i,

for i = 0, 1, 2. Finally, we can go from one state to the other with only one reaction given
by

T0

k−1−−⇀↽−−
k1

R00.

In addition, the enzyme complex can dissociate to form the product S2

Rij
k−−→ Ri−1,j + S2,

for i ≥ 1. Under the assumption of the law of mass action, we can use the quasi-steady-
state assumption and then find a linear system of equations to solve. The solution of
this system can be substituted into the differential equations for the substrate and the
product, and we find

ds1
dt

= ν1 − F (s1, s2),

ds2
dt

= F (s1, s2)− ν2s2,

where

F (s1, s2) =

(
2k2k−1e0
k + k−2

)
s1

(
1 +

k2
k + k−2

s1

)
(s2 +K3)2

K2
2k1

(
k3
k−3

s1 + 1

)2

+ k−1

(
1 +

k2
k + k−2

s1

)2

(K2 + s2)2

 ,
with K2 = k−2/k2. Let us now introduce dimensionless variables

σ1 =
s1
K2

σ2 =
s2
K2

t =
τ

τc
and the parameters

ν =
k2ν1
k−2τc

η =
ν2
τc

τc =
2k2k−1ke0
k1(k + k−2)

.

The differential equations can then be rewritten in terms of these new variables and
parameters, and we find similar equations to the equations (3.10) and (3.11) with α = 1
and a different function f(σ1, σ2). We can even find a simple expression for this function
thanks to three new assumptions. First, the substrate cannot bind the T-form of the
enzyme, which is equivalent to say that the rate constant k3 is zero. Secondly, the inactive
T-form is preferred to the active R-form which, in terms of rate constants, means that
k1 � k−1. Finally, if the substrate S1 binds the R-form, then formation of product S2 is
preferred to dissociation, i.e. k � k−2. Then, under these assumptions, the function is
given by

f(σ1, σ2) = σ1(1 + σ2)
2.
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As we did for the Sel’kov model, we can find the steady-state solutions after having
determined the nullclines of the system, described by

σ1 =
ν

(1 + σ2)2

(
dσ1
dτ

= 0

)
,

σ1 =
ησ2

(1 + σ2)2

(
dσ2
dτ

= 0

)
.

Then, the steady-state solution is given by

σ2 =
ν

η
,

σ1 =
ν

(1 + σ2)2
.

The stability of the steady-state points can be determined by the characteristic equation
of the linearized system, given by λ2−H(ν)λ+f1η = 0, where the function H is given by

H(ν) = f2 − f1 − η,

= 2σ1(1 + σ2)− (1 + σ2)2 − η.

Then, the Hopf bifurcation points will be found by putting the function H to zero. To
study the roots of this function, it is easier to define another variable y = 1 +

ν

η
. Then

we have
H(ν) = 0,

⇔ 1

η
y3 − y + 2 = 0, (3.12)

We can study the roots of this function for different values of the parameter η. In Figure
3.5a, we can see that η has to be high enough to have two roots, as the experimental data
require. Actually, Hess and Boiteux (1973) have discovered that there are two stable
steady-state solutions: one for high substrate injection rate and another one for the low
substrate injection. This is exactly what we can see in Figure 3.5a since we know that
(y − 1)η = v with η high enough. Then, small values for y can actually be big values for
η. So they also found two Hopf bifurcation points: one at v = 20 mM/hr2 flow rate, and
another one at v = 160 mM/hr. In order to fit with these data, we assume that

y2 − 1

y1 − 1
=

v2
v1

=
160

20
= 8. (3.13)

Then, if we solve the equation (3.12) under the assumption (3.13), we finally find that
y1 = 2.08, y2 = 9.61 and η = 116.7. This leads to the values ν1 = 126 and ν2 = 1005. As
we did above, let us illustrate this model with two different values of ν such that H has
different sign, and then a different behaviour.

2"mM" is a symbol used in chemistry to appoint a concentration unit equals to one mmol per litre,
i.e.10−3 mol per litre.
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(a) H(y) for different values of the parameter η (b) Graph of the function H(ν) when η = 120

Figure 3.5: Illustration of the function H of the Goldbeter and Lefever scheme

Example 3.2. Assuming that η = 120, the function H admits two roots as Figure
3.5b shows. This means that for small and big values of ν, the steady-state is stable.
Otherwise, for values of ν of 130 to 1050 (more or less), the steady-state is unstable. If
we take ν = 135, the function H is positive and the steady-state is unstable. Then, the
limit cycle should be stable. This is exactly what we can see in Figure 3.6, with the
evolution of the trajectories in the phase space in Figure 3.6a and the evolution over

(a) Phase space (b) Evolution of the trajectories

Figure 3.6: Illustration of the Goldbeter-Lefever model for η = 120 and ν = 135
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(a) Phase space (b) Evolution of the trajectories

Figure 3.7: Illustration of the Goldbeter-Lefever model for η = 120 and ν = 125

time in Figure 3.6b. The behaviour described in Figure 3.7 concerns the stable case
because ν = 125. We can clearly see that trajectories become closer and closer to the
steady-state. We could have done the same thing near ν = 1050.
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Chapter 4

p-dominance theory

Most of time, high-dimensional linear systems are quite difficult to analyse. We try
then to simplify them, and to focus only on a few dominant poles that capture the main
properties of the initial system. The analysis is even more complex when the initial sys-
tem is nonlinear because phase plane analysis can only be done in two dimensions. In
this section, we will build a new tool to know the dimension of the dominant behaviour
of either a linear or a nonlinear system. An algorithm to test this new concept will also
be developed. We base our work on Fulvio Forni and Rodolphe Sepulchre’s article [3] of
2017 and its previous version [4].

4.1 Differential approach

Let us begin to formalize the property that a linear system admits a low-dimensional
dominant behaviour, whose dimension is denoted by p. For example, if a system has a
0-dimensional dominant behaviour, this will mean that there exists a unique fixed point.
No major difference could be spotted between this concept and the contractive systems.
Moreover, 1-dominance will signify that there is at least one equilibrium point and it can
be associated to differentially positive systems. This notion can be defined for the general
case of p-dominance.

A linear system ẋ = Ax with A ∈ IRn×n is p-dominant with rate λ ≥ 0 if there
exists a symmetric matrix P with inertia (p, 0, n− p) such that

AtP + PA ≤ −2λP − εI, (4.1)

for some ε ≥ 0. The property is strict if ε > 0.

Definition 4.1

Let us remind that a matrix with inertia (p, 0, n − p) means that it admits p negative
eigenvalues and n − p positive ones. Moreover, let us notice that for simplicity in what
follows, we will denote a matrix with inertia (p, 0, n− p) by a matrix of inertia p. We can
reformulate this notion in terms of a quadratic differential storage. Indeed, if we define
V (x) = xtPx, then the dissipation inequality (4.1) gives

45
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V̇ (x) = ẋtV x+ xtV ẋ,

= xt(AtP + PA)x,

≤
(4.1)

−2λV (x)− ε |x|2.

It implies that for positive ε, the two cones defined by

K− = {x ∈ IRn | V (x) ≤ 0} and K+ = {x ∈ IRn | V (x) ≥ 0}

are strictly contracting, i.e.

∀t > 0 : e−AtK+ ⊂ K+ and eAtK− ⊂ K−.

Let us notice that the values of p and λ ≥ 0 are closely related to each other. Actually,
the parameter λ measures the shift on the spectrum and p is the number of eigenvalues
that are non-negative after this shift. This could seem quite easy for a linear system, but
we will see thereafter that it becomes more complicated with nonlinear systems since the
Jacobian matrix depends on the variables, and then the eigenvalues can differ.

Furthermore, some characterizations of the concept of p-dominance can be found.
Some of them are provided in the following proposition (see [3, Proposition 1]) whose
proof is not developed in this piece of work but can be found in the previous paper [4] of
[3].

Proposition 4.1. For ε > 0, the linear matrix inequality (4.1) is equivalent to any of the
following conditions

(1) The matrix A + λI has p eigenvalues with strictly positive real part, and n − p
eigenvalues with strictly negative real part,

(2) There exists an invariant subspace splitting IRn = H ⊕ V such that AH ⊂ H and
AV ⊂ V, and moreover the dimension of H is p, and the dimension of V is n − p.
Furthermore, there exist constants 0 ≤ c ≤ 1 ≤ c and λ > λ > λ such that

∀x ∈ H :
∣∣eAtx∣∣ ≥ c e−λt |x| t ≥ 0,

∀x ∈ V :
∣∣eAtx∣∣ ≤ c e−λt |x| t ≥ 0.

y

Then, if a linear system is p-dominant, it ensures that we can consider n − p transient
modes and p dominant modes that dictate alone the asymptotic behaviour of the system.
Let us notice that for 0-dominant, the quadratic form V (x) is a Lyapunov function since
it is positive, the derivative is strictly negative along the trajectories, and V (0) = 0. In a
more general way, V (x) is a Lyapunov function for the restriction of flow in the transient
space V . Finally, the matrix inequality (4.1) is equivalent to the conic constraint[

ẋ

x

]t [
O P

P 2λP + εI

][
ẋ

x

]
≤ 0. (4.2)
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For your information, we can extend p-dominance to open systems using dissipativity
theory, and augment the internal dissipation inequality with an internal supply. This is
done is the seventh section of [3].

Now that the concept is defined for linear system, we can study nonlinear systems
differentially. Let us consider the nonlinear system

ẋ = f(x), x ∈ X .

Then dominance for nonlinear systems is defined through the linear dissipation inequality[
˙δx

δx

]t [
O P

P 2λP + εI

][
˙δx

δx

]
≤ 0, (4.3)

for every δx ∈ TxX , and where P is a matrix with inertia p and ε ≥ 0. We would like to
have a metric on the space X , then we assume that this subspace is a smooth Riemannian
manifold of dimension n, where |δx| denotes the Riemannian metric.

A nonlinear system ẋ = f(x) is p-dominant with rate λ ≥ 0 if there exists a
symmetric matrix P with inertia p such that (4.3) is satisfied by the solutions of the
prolonged system {

ẋ = f(x),

˙δx = ∂f(x)δx,

where ∂f(x) is the differential of f at x, for some ε ≥ 0.

Definition 4.2

We can use the same approach as for the linear systems, which means that we will refor-
mulate the notion in terms of the quadratic function V (δx) := δxtPδx. Then, we have

V̇ (δx) = δxt [∂f(x)tP + P∂f(x)] δx,

≤ −2λV (δx)− ε|δx|2.

For positive ε, the two cone fields

K+(x) := {δx ∈ TxX | V (δx) ≥ 0} and K−(x) := {δx ∈ TxX | V (δx) ≤ 0}

are strictly contracting either in forward time or in backward time respectively

∀ t > 0 : ∂ψ−t(x)K+(x) ⊂ K+(ψ−t(x)),

∀ t > 0 : ∂ψt(x)K−(x) ⊂ K−(ψt(x)).

Proposition 4.1 can be reformulated in a differential way and an invariant splitting in the
linearized flow can be demonstrated. The following result is given by [3, Theorem 1].
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Let A ⊆ X be a compact invariant set and let ẋ = f(x) be a strictly p-dominant with
rate λ ≤ 0. Then, for each x ∈ A, there exists an invariant splitting TxX = Hx⊕Vx
such that

∀ t ∈ IR, ∂ψt(x)Hx ⊆ Hψt(x),

∀ t ∈ IR, ∂ψt(x)Vx ⊆ Vψt(x).

Hx and Vx are distributions of dimension p and n − p respectively. Furthermore,
there exist constants c ≤ 1 ≤ c and λ < λ < λ, such that

∀x ∈ A, ∀ δx ∈ Hx : |∂ψt(x)δx| ≥ c e−λt |δx|,

∀x ∈ A, ∀ δx ∈ Vx : |∂ψt(x)δx| ≤ c e−λt |δx|.

Theorem 4.1

Then, as we did it with the linear systems, we can conclude that there is an invariant
splitting between n− p transient modes and p dominant modes. Likewise, these p modes
dictate the asymptotic behaviour and the quadratic form V (δx) can be seen as a differ-
ential Lyapunov function in Vx. For the space X = IRn, the asymptotic behaviour of the
dominant system can be defined in the following theorem (see [3, Theorem 2]).

For X = IRn, let ẋ = f(x) be a strictly p-dominant system with rate λ ≥ 0. Then,
the flow on any compact ω-limit set is topologically equivalent to a flow on a compact
invariant set of a Lipschitz system in IRp.

Theorem 4.2

All this theory is interesting when p is much smaller than n, otherwise it does not really
help. The following corollary treats the best cases, i.e. when p is zero, one or two (see [3,
Corollary 1]).

Corollary 4.1.
Under the assumptions of Theorem 4.1, every bounded solution asymptotically converges
to

- a unique fixed point if p = 0,

- a fixed point if p = 1,

- a simple attractor if p = 2, that is a fixed point, a set of fixed points and connecting
arcs, or a limit cycle. y

Further information about this corollary and the Theorem 4.2 can be found in the refer-
ences [3], [4] and [5]. In particular, the difference between 0-dominance and contraction
is discussed, and between the differential positivity and the 1-dominance as well.
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4.2 Algorithmic test for p-dominance

In this section, we try to build an algorithmic process to establish p-dominance for a
given nonlinear system. This method, which is introduced in [3, section VI], is a two-step
process based on different results. The following theorem provides the first step.

Let the nonlinear system ẋ = f(x) with x ∈ X , be a strictly p-dominant system.
Then, there exists a maximal interval (λmin, λmax) such that ∂f(x)+λI has p unstable
eigenvalues and n− p stable eigenvalues for each λ ∈ (λmin, λmax), for every x ∈ X .

Theorem 4.3

This theorem implies that the spectrum of the families of Jacobian matrices ∂f(x) + λI
has to admit a uniform splitting. Since this is a necessary condition, it has to be tested in
first. Then, the first step of this algorithmic process consists in analysing the spectrum of
the Jacobian matrix and, from this analysis, assigning relevant values for the parameters
p and λ. Unfortunately, this condition is not sufficient to have dominance. Actually, it is
provided by the inequalities

∂f(x)tP + P∂f(x) + 2λP + εI ≤ 0, (4.4)

for every x ∈ X , and for some ε ≤ 0. Let us remind that the matrix P also has to satisfy
an inertia constraint. However, it seems in fact that this assumption can be dropped
after having checked it was at least satisfied for one λ. In the end, we have to solve
an infinite family of LMIs that we can actually reduce to a finite family through convex
relaxation. Let A = {A1, · · · , AN} be a family of matrices such that the Jacobian matrix
∂f(x) belongs to the convex hull1 of A for all x. We can write

∂f(x) =
N∑
i=1

ρi(x)Ai,

at each x, for a given set {ρi(x)}i of parameters whose sum is one. Then, we can rewrite
the right-hand side of the relation (4.4) as

∂f(x)TP + P∂f(x) + 2λP + εI =

(
N∑
i=1

ρi(x)Ai
t

)
P + P

(
N∑
i=1

ρi(x)Ai

)
+ 2λP + εI,

=
N∑
i=1

ρi(x)
(
Ai

tP + PAi + 2λP + εI
)
.

Then, any solution P to

Ai
tP + PAi + 2λP + εI ≤ 0 (4.5)

is also a solution to (4.4). Let us use this algorithmic test on simple examples.

1The convex hull of a finite point set is the set of all convex combinations of its points
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Example 4.1. Let us first consider a one degree of freedom mechanical system with
nonlinear spring actuated by a DC motor with a PI feedback control. At the beginning, we
consider the mechanical system given by{

ẋp = xv,

ẋv = −α(xp)− cxv + u,
(4.6)

where xp denotes the position and xv the velocity, u denotes the force input, c the damping
coefficient and α(xp) derives from a mechanical potential U : IR→ IR. If we assume that
c = 5 and 1 ≤ ∂α(xp) ≤ 5, we can study the spectrum of the Jacobian matrix of this
system, shown in Figure 4.1a. We can either use λ = 0 and then find the 0-dominance,
or use λ = 2 for example and then find 1-dominance. Nevertheless, the idea is to find the
smallest p such that the system is p-dominant. For example, we can find (via CVX and
SeDuMi) the matrix

P =

(
0.5074 0.2675

0.2675 0.4926

)
,

whose inertia is 0 that satisfies the convex relaxation (4.5) for the matrices

A1 =

(
0 1

−1 −5

)
and A2 =

(
0 1

−5 −5

)
.

Sometimes, the configuration of the Jacobian matrix prevents from using small values of
p. Let us take for example the assumption that as before c = 5 but −2 ≤ ∂α(xp) ≤ 5. We
can find the spectrum shown in Figure 4.1b where we can see that some eigenvalues are
sometimes positive, which prevents us from finding a rate λ ≥ 0 such that p = 0. If we
try to find a matrix P for λ = 2 and

(a) under the assumption that 1 ≤ ∂α(xp) ≤ 5
(b) under the assumption that −2 ≤ ∂α(xp) ≤
5

Figure 4.1: Spectrum analysis of the first system (4.6)
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A1 =

(
0 1

2 −5

)
and A2 =

(
0 1

−5 −5

)
,

then we will find the matrix

P =

(
−2.0873 1.6137

1.6137 3.0873

)
,

whose eigenvalues are −2.5492 and 3.5492. Then, we can conclude that for λ = 2, the
system is 1-dominant, i.e. the dimension of the asymptotic behaviour is one. We can now
suppose that the mechanical system is driven by a DC motor modelled by the equation

u = kfxi,

where kf is a static approximation of the current and xi is the current of the circuit whose
evolution is given by

Lẋi = −Rxi − kexv + V,

where L and R are inductance and resistance respectively, ke is the back electromotive
force coefficient, and the voltage V is an additional input. Let us assume that L = 0.1,
R = 1, kf = 1 and ke = 1 and then the complete system is given by

ẋp = xv,

ẋv = −α(xp)− 5xv + xi,

ẋi = −10xi − 10xv + 10V.

(4.7)

The Jacobian matrix related to this system is

J =

 0 1 0

−∂α(xp) −5 1

0 −10 −10

 .

After studying the spectrum of this matrix under the assumption that −2 ≤ ∂α(xp) ≤ 5, we
can easily conclude that we cannot find a rate λ ≥ 0 such that the system is 0-dominant,
but for λ = 2 we can find 1-dominance. Indeed, the matrix

P =

 −8.4990 −0.6691 −1.0525−0.6691 3.4540 0.0442

−1.0525 0.0442 1.0926


whose inertia is 1, satisfies the linear matrix inequalities (4.5) for the matrices

A1 =

 0 1 0

−5 −5 1

0 −10 −10

 and A2 =

 0 1 0

2 −5 1

0 −10 −10

 .

Finally, we can express the voltage V as
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V = kP (r − xp) + kIxc,

where kP and kI are proportional and integral gains respectively, and xc is the integrator
variable whose evolution is governed by the expression

ẋc = r − xp,

with r the reference. The final differential equations are then given by
ẋp = xv,

ẋv = −α(xp)− 5xv + xi,

ẋi = −10xi − 10xv + 10kP (r − xp) + 10kIxc,

ẋc = r − xp.

(4.8)

The behaviour of the system depends on the values of the parameters kI and kP . Let us
assume that kI = 5 and that kP can either be 1 or 5. The spectrum analysis of each case
can be seen in Figure 4.2, where the first case (Figure 4.2a) suggests 2-dominance with
rate λ = 2 while the second case (Figure 4.2b) suggests 0-dominance with rate λ = 0.
Indeed, for kP = 1 we can find the matrix P defined by

P =


−34.3935 −1.6337 −5.3284 30.4221

−1.6337 8.2615 0.9390 −1.6074
−5.3284 0.9390 1.1741 8.2117

30.4221 −1.6074 8.2117 −225.6082

 ,

(a) kI = 5 and kP = 1 (b) kI = 5 and kP = 5

Figure 4.2: Spectrum analysis of the system with a DC motor and a PI control (4.8)
under the assumption that −2 ≤ ∂α(xp) ≤ 5
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whose inertia is 2, and that satisfies the linear matrix inequalities (4.5) for the matrices

A1 =


0 1 0 0

2 −5 1 0

−10 −10 −10 50

−1 0 0 0

 and A2 =


0 1 0 0

−5 −5 1 0

−10 −10 −10 50

−1 0 0 0

 . (4.9)

We can do exactly the same thing for the second case where kP = 5 and then find a matrix
P of inertia 0 given by

P =


224.0874 37.1648 3.7895 −76.5634
37.1648 21.9257 0.2444 −17.6387
3.7895 0.2444 0.4136 −1.2192

−76.5634 −17.6387 −1.2192 193.3991

 .

Obviously, this matrix satisfies the linear matrix inequalities related to the matrices A1

and A2. The same definitions as (4.9) are used, but the element (3,1) equals to −50
rather than −10. This result can be illustrated in Figure 4.3b where we can see that the
trajectory tends to a fixed point, in contrast to Figure 4.3a where the trajectory oscillates
for kP = 1. So, it will be interesting to study how much variation the parameters of the
system can undergo without changing the dominance of the system, i.e. the robustsness
of the system.

(a) kI = 5 and kP = 1 (b) kI = 5 and kP = 5

Figure 4.3: Example of trajectory with x0 = (0.05, 0, 0, 0) of the system with a DC motor
and a PI control (4.8) under the assumption that −2 ≤ ∂α(xp) ≤ 5
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The p-dominance theory can be applied to any any differential equations. In particular
we can use it for differential equations induced from chemical reaction system we talked
about a few chapters ago. However, we already know that we can establish constraints
from the chemical diagram. Let us illustrate both notions with the simplest chemical
reaction (1.3) that we have previously studied, and try to guess the link that can exist
between these two concepts.

Example 4.2. Let us consider the first chemical reaction diagram (1.3) that we remind
here below

A+ B −−⇀↽−− C

Under the assumption of the law of mass action with k+ and k− the forward and backward
rate constants respectively, we can write down the differential equations induced from this
diagram. Then, we have equations similar to (1.6), i.e.

dcA
dt

= k−cC − k+cAcB,

dcB
dt

= k−cC − k+cAcB,

dcC
dt

= k+cAcB − k−cC .

First of all, we can compute the Jacobian matrix of this system. We have

J =

 −k+cB −k+cA k−

−k+cB −k+cA k−

k+cB k+cA −k−

 . (4.10)

We assume for example that 0 ≤ cA ≤ 10 and 0 ≤ cB ≤ 10, and study therefore the
spectrum of the Jacobian matrix. It results from this analysis (Figure 4.4) that we
expect 2-dominance for the rate λ = 0.2 and ε = 0.001. Indeed, we find the matrix P

P =

 −152.0349 84.2339 −69.9704
84.2339 −152.0349 −69.9704
−69.9704 −69.9704 −137.6682

 ,

Figure 4.4: Spectrum analysis of the Jacobian matrix (4.10) of the chemical reaction
diagram (1.3) under the assumption that 0 ≤ cA, cB ≤ 10
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whose inertia is 2. Nevertheless, we did not expect this result because we have already
shown that this system satisfies the assumption of the Deficiency zero theorem. Then,
we know that the trajectory always tends to a unique fixed point. The dominance of the
system is however 2. It appears that the p-dominance theory is less restrictive than the
chemical reaction networks theory. One way to explain this concerns the stoichiometric
classes: the p-dominance theory does not take them into account. In this case, this means
that the set of all the fixed points forms a 2-dimensional set.

Remark: as we have already said, the first step of the algorithmic test consists in studying
the spectrum of the Jacobian matrix. Therefore, it could be interesting to make it simpler
without changing the spectrum. For example, if we consider the Jacobian matrix (4.10)
and we want to simplify it, we can isolate the parameter k+ like

J = k+

 −cB −cA K

−cB −cA K

cB cA −K


︸ ︷︷ ︸

J∗

,

with K = k−/k+. Then, the structure of the spectrum of the Jacobian matrix J is sim-
ilar to the spectrum of the new matrix J∗ since the eigenvalues will only be divided by
the positive parameter k+. This operation does not change the order of the eigenvalues.
The interest of this modification also lies in the reduction of the number of parameters.
Indeed, there is only one parameter K left. The robust analysis of the following chemical
diagrams could be easier.

We can finally apply the p-dominance theory to the chemical reaction diagram (1.15) on
which it is impossible to apply deficiency theorems since the deficiency is different from
zero.

Example 4.3. Let us remind the chemical reaction diagram, i.e.

3A
0.1−−→ A+ 2B

1 ↑ ↓ 1

2A + B
0.1←−− 3B

and let us induce differential equations from it, given by

da

dt
= −0.2a3 − ab2 + 0.2b3 + a2b,

= (a− b)[−0.2a2 + 0.8ab− 0.2b2],

db

dt
= 0.2a3 + ab2 − 0.2b3 − a2b,

= (a− b)[0.2a2 − 0.8ab+ 0.2b2].

We know that from an initial condition x0 = (a0, b0), the trajectory will stay in the subspace
spanned by the vector (1,−1)t. If we want to find the dimension of the dominant subspace,
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Figure 4.5: Spectrum analysis of the diagram (1.15)

we have to make the analysis of the spectrum (Figure 4.5) of the Jacobian matrix given
by

J =

(
−0.6a2 − b2 + 2ab −2ab+ 0.6b2 + a2

0.6a2 + b2 − 2ab 2ab− 0.6b2 − a2

)
.

It does not seem that we can divide the eigenvalues of the spectrum, so if we take λ = 40,
we will find 2-dominance with the matrix P defined by

P =

(
−1.3935 −0.0094
−0.0094 −1.3935

)
,

whose inertia is 2, and ε = 0.001. This matrix has been computed under this assumption
that 0.1 ≤ a, b ≤ 5. This result does not really help us, and the dimension of the stoichio-
metric classes is finally more useful than the p-dominance.

It seems that the p-dominance theory and the chemical reaction networks theory can
help to understand a system independently. After using them for the previous examples,
it seems that a new index could be interesting if it takes both notions of stoichiometric
classes and p-dominance into account. Thus we would have a kind of dominance within
each stoichiometric class. This will be discussed in the following chapter.



Chapter 5

Asymptotic behaviour of chemical
reaction networks

In the previous chapters, we have introduced different concepts; two of which are the
stoichiometric compatibility classes and the dominant behaviour. Let us remind that
the first notion has been developed for the chemical reaction networks, and describes the
space in which the concentration trajectories will wander over time. The dimension of this
space, previously denoted by s, is always the same no matter the initial concentrations
but the space itself is different. This value can already give some information about the
asymptotic behaviour of the system. Indeed, the dimension of this behaviour will be
smaller than s necessarily. For example, if the dimension of the stoichiometric subspace is
one, it prevents the system from having limit cycles, and the only asymptotic behaviour
will be one unique or more than one fixed points. Since trajectories will always stay in
the same stoichiometric class than that one that the initial condition belongs to, i.e.

W tx = c = W ty,

⇔ W t (x− y) = 0.

It means that the difference between those two trajectories will belong to the stoichiomet-
ric subspace. However, the difference between two trajectories can help us to know the
asymptotic behaviour of a system. This is the reason why we will use the stoichiometric
subspace, i.e.

∆S =
{
δx | W tδx = 0

}
. (5.1)

The dominance theory on the other hand gives information about the dimension of
the asymptotic space. We can find a matrix P such that

∂f(x)tP + P∂f(x) + 2λP < 0,

meaning that the function V (x) = xtPx is decreasing along the trajectories, either be-
coming negative at a moment, or it will tend to 0. So we can define the space

K− =
{
δx | δxt P δx ≤ 0

}
. (5.2)

57
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5.1 Theoretical results
It seems that the two notions we talked about are quite different but could be used

together to have an idea of the asymptotic behaviour of the trajectory in each stoichiomet-
ric class. We could for example find conclusions similar to the deficiency theorems from
two parameters s and p, or something similar to the theorem 4.1 about the dimension of
the asymptotic behaviour within each stoichiometric class. Actually, we will look at the
intersection between ∆S and K− denoted by Q. Let us first show a simple result about
the nature of this intersection.

Lemma 5.1. If ∆S and K− denote the stoichiometric subspace and the p-cone as defined
in (5.1) and (5.2) respectively, then the intersection Q := ∆S ∪K− is still a cone. y

Proof. We have to show that for any α, β ≥ 0, and any δx, δy ∈ Q, either α δx+ β δy or
α δx− β δy belongs to Q. It is obvious that any linear combination always belongs to ∆S,
so let us demonstrate that it also belongs to K−. If we compute V (α δx± β δy) we find

α2 δxtP δx ± αβ
(
δxtP δy + δytP δx

)
+ β2 δy2P δy (5.3)

Since δx and δy ∈ K−, we know that V (δx) and V (δy) are non-positive. So one of
the expressions (5.3) will be non-positive since the sum δxtP δy + δytP δx will either be
positive or negative.

Let us notice that K− is not a convex pointed cone, as we usually see. This is the reason
why we do not prove that the intersection between K− and −K− is the null vector. We
could say that K− already contains its opposite. Finally, the next theorem allows us to
conclude about the existence and the uniqueness of the fixed points thanks to the dimen-
sion of the space Q.

If the system ẋ = f(x) is strictly p-dominant with the rate λ ≥ 0 and the matrix P
of inertia p, and the intersection between K− and ∆S is 0-dimensional, then there
exists a unique fixed point within each stoichiometric class.

Theorem 5.1

Proof. Let us take two initial conditions x1 and x2 in the same stoichiometric compatibility
class, i.e.

W tx1 = c = W tx2,

⇒ W t(x1 − x2) = 0,

implying that the difference between these two points belongs to the stoichiometric sub-
space ∆S. Since the trajectories issued from x1 and x2 will always stay in the same
stoichiometric class, it means that for every positive time t, we have

W t
(
ϕt(x1)− ϕt(x2)

)︸ ︷︷ ︸
:= δx(t)

= 0,

meaning that the vector δx(t) belongs to the stoichiometric subspace for every t ≥ 0. We
know that the system is strictly p-dominant so the derivative of V (δx) = δxP δx is
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V̇ (δx) = δxt
(
∂f(x)tP + P∂f(x)

)
δx,

< −2λV (δx).

This implies that either there exists time T > 0 such that V (δx) < 0, or V (δx)→ 0 when
t→ +∞. So it means that δx belongs to K− asymptotically, and then

δx(t) ∈
(
K− ∩∆S

)
,

when time t tends to infinity. However this intersection only contains the null vector,
meaning that δx(t) converges to 0. It follows that there exists a unique fixed point.

Let us illustrate this theorem with a linear example and the first nonlinear example
that we have introduce at the beginning.

Example 5.1. At the beginning, we have introduced the differential approach of the stoi-
chiometric subspace via a linear example (1.11) given by

A
k+−−⇀↽−−
k−

B

We have already shown that the stoichiometric subspace is given by the set spanned by the
vector (1,−1)t, and then the stoichiometric classes are parallel to this space as we can
see in the Figure 5.1a. Moreover, the Jacobian matrix admit two eigenvalues: 0 and
−(k++k−), preventing us from having 0-dominance. Let us assume for example that both
rate constants are one. We can obviously have 1-dominance with a rate λ = 1, between 0
and (k+ + k−) = 2, and the matrix P given by

P =

(
0 −1
−1 0

)

(a) Some stoichiometric classes in black and the
set of fixed points in red

(b) Stoichiometric subspace ∆S in black and
K− in green

Figure 5.1: Illustration of the linear example (1.11)
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whose eigenvalues are ±1, i.e. the inertia is one. Then, the set K− illustrated in Figure
5.1b is given by

K− =
{
δx | δxt P δx ≤ 0

}
,

= {δx | −2δa δb ≤ 0} ,

= {δx | δa δb ≥ 0} .

It is then obvious that the intersection Q between the two sets is the origin, and then the
dimension of this set is 0, meaning that each stoichiometric class admits a unique fixed
point.

Let us now see what happens with the first example that we deal with.

Example 5.2. Let us recall that the first example (1.3) was

A+ B −−⇀↽−− C,

and we already know that we can apply the deficiency zero theorem, and then conclude
that there is a unique fixed point in each stoichiometric class themselves defined by

S =

u ∈ IR3 such that
(

1 0 1
0 1 1

) u1
u2
u3

 =

(
0
0

) ,

= span {(1, 1, −1)t} .

We have already shown that there is a unique intersection between the set of fixed points
and a stoichiometric class, and we have also demonstrated that the system is 2-dominant
for the rate λ = 0.2 with the matrix P defined by

P =

 −152.0349 84.2339 −69.9704
84.2339 −152.0349 −69.9704
−69.9704 −69.9704 −137.6682

 .

Let us now consider the two sets of vectors ∆S and K−, and find the intersection between
them. We know that in the stoichiometric class, the components have to satisfy that
u1 = u2 and u1 = −u3. We can then see and find what we have when we compute utPu
when the vector u satisfies the previous property. We finally find that

utPu = (−2 ∗ 152.0349− 137.6682 + 4 ∗ 69.9704 + 2 ∗ 84.2339) u12,

= 6.6114 u12,

and this expression is never non-positive expect when u = 0, meaning that the intersection
Q between ∆S and K− is only the null vector, i.e.

Q = ∆S ∩K−,
= {0} .
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Then, the dimension of this space is 0, and this is consistent with the result that we found
with the deficiency zero theorem and the previous theorem.

We can easily extend this theorem for any dimension of Q since p-dominance guarantees
that trajectories will belong to the set K−, and we know that we always stay in a space
of the dimension of the stoichiometric subspace.

If the system ẋ = f(x) is strictly p-dominant with rate λ ≥ 0, then the flow on
any compact ω-limit set is topologically equivalent to a flow on a compact invariant
set of a Lipschitz in IRpq , where pq is the dimension of the largest subspace that
Q = K− ∩∆S can contain.

Theorem 5.2

This theorem can help us to know the asymptotic behaviour of the system, since we can
establish the same corollary than the corollary 4.1 with pq instead of p.

Corollary 5.1.
Under the assumptions of Theorem 5.1, every bounded solution asymptotically converges
to

- a unique fixed point if pq = 0,

- a fixed point if pq = 1,

- a simple attractor if pq = 2, that is a fixed point, a set of fixed points and connecting
arcs, or a limit cycle. y

5.2 Simplest reaction diagrams
For each previous reaction diagram, we computed the deficiency of the system and

we studied whether the deficiency theorems could be applied to these systems. Unfor-
tunately, we have seen that even if most of diagrams admit a zero deficiency, they are
all not weakly reversible. It is then impossible to conclude about the existence of fixed
points via these theorems. However, we can conclude that there doesn’t exist a positive
fixed point, meaning that a species at least will always disappear from the reaction if we
tend to a fixed point. This result cannot be ignored since we will have to keep it in mind
when we will study the spectrum of the Jacobian matrices. However, we have introduced
a new theorem that can help us to know the asymptotic behaviour of the system by using
both chemical reaction networks theory and p-dominance theory. Let us try to apply it
in the few next chemical examples.

5.2.1 Enzymatic reaction

First of all, let us focus on the simplest enzymatic reaction

S + E
k1−−⇀↽−−
k−1

C
k2−−→ P + E, (5.4)
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and assume that it follows the law of mass action. We have already found that the
dimension of the stoichiometric subspace is two, so the dimension of the stoichiometric
classes is two, and they are defined by

S =


s0
e0
c0
p0

+ span




1
1
−1
0

 ,


0
1
−1
1


 . (5.5)

We can also find it via the differential approach. Before, we have to induce some differ-
ential equations (2.2-2.5) from this diagram (5.4), and then we will also be able to study
the dominance of this differential system using the algorithmic test. The Jacobian matrix
is given by

J =


−k1e −k1s k−1 0

−k1e −k1s k−1 + k2 0

k1e k1s −(k−1 + k2) 0

0 0 k2 0

 . (5.6)

Let us compute the vectors v ∈ IR4 such that vtJ = 0, or equivalently J tv = 0. We
have 

−k1e −k1e k1e 0

−k1s −k1s k1s 0

k−1 k−1 + k2 −(k−1 + k2) k2

0 0 0 0




v1

v2

v3

v4

 =


0

0

0

0

 ,

This matrix equality leads to a three-equation system defined by
0 = k1e(−v1 − v2 + v3),

0 = k1s(−v1 − v2 + v3),

0 = k−1(v1 + v2 − v3) + k2(v2 − v3 + v4).

It is easy to conclude from these equations that the matrix W will be like

W t =

(
1 0 1 1

0 1 1 0

)
.

Then, the stoichiometric subspace can be rewritten like the set of vectors s such that
W ts = 0, which is exactly the same space than that we have defined before.

Let us now focus on the p-dominance analysis. The first step consists of studying the
spectrum of the Jacobian matrix. As we can see, this matrix depends on the variables
of enzyme and substrate concentrations, and it is defined with the rate constants k1, k−1
and k2. Moreover, we can assume that the study of this system will be done with initial
concentration of complex and product equal to zero. This implies that the concentrations
of enzyme and substrate cannot increase too much, and be greater than the initial values.
Let us take for example some values for the rate constants given by
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k1 = 1.2, k−1 = 0.8 and k2 = 1.5, (5.7)

and let us see what the trajectories will be for different initial conditions (with c0 and
p0 assumed to be equal to zero). The result can be seen in the Figure 5.2. It seems
clear that at the beginning, the concentration of the complex increases, decreasing then
the concentrations of substrate and enzyme. The product is obtained, decreasing the
concentration of the complex but increasing back the concentration of enzyme. It is then
necessary to consider that the concentration of substrate can be zero. Moreover, we know
from the deficiency zero theorem that it is impossible to neither have a positive fixed
point nor a cycle trajectory with a positive concentration. Actually, we can try to make
the same thing that we did for the example 4.2, i.e. we can find the fixed points within a
stoichiometric class. The first step consists of finding the set of fixed points. We find

P = {(0, e, 0, p) | c, p ≥ 0} ∪ {(s, 0, 0, p) | e, p ≥ 0} .

This means that to be a fixed point, it has to be no complex concentration and at
least no enzyme or no substrate concentration (or even both). Let us assume that
x0 = (e0, s0, c0, p0) is the initial condition, and that x = (x0+S)∩ IR4

+ is in the stoichio-
metric class, i.e.

x =


s0
e0
c0
p0

+ α


1
1
−1
0

+ β


0
1
−1
1

 ,

belongs to the set of fixed points. We have two different cases.

Figure 5.2: Examples of concentration trajectories for the initial conditions: x0 =
(0.5, 0.1, 0, 0) in blue, x0 = (1.3, 0.4, 0, 0) in red, x0 = (0.4, 1.5, 0, 0) in yellow, x0 =
(1.3, 1.2, 0, 0) in violet and x0 = (0.3, 0.8, 0, 0) in green
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(i) If e0 = c0 = 0, i.e. there is neither enzyme nor complex at the beginning of the
reaction, it seems logical that we find a fixed point since any of the reaction cannot
be done without enzyme and a complex. We have that{

s = 0

c = 0
⇔

{
s0 + α = 0

−α− β = 0

We finally find that α = −s0 and β = s0. The concentration vector becomes then

x∗ = (0, 0, 0, p0 + s0) .

On other hand, if we assume that e = 0 and c = 0, we find that α = −β and that
the point becomes

x∗ = (s0 + α, 0, 0, p0 − α) .

The solutions that we get can only be possible under the assumption that e0 = c0 =
0. But, the initial condition x0 is a fixed point under this condition.

(ii) If e0 and c0 are non null, then it is impossible to have e = 0 and c = 0 at the same
time. So, the only solution is when s = 0 and c = 0. Then, we have that

x∗ = (0, e0 + c0, 0, p0 + s0 + c0) ,

which seems quite logical and is exactly what we got with the examples (Figure
5.2).

We can make the assumption that the concentrations of enzyme and substrate will be
between two values, i.e.

0 ≤ s(t) ≤ 5 and 0.05 ≤ e(t) ≤ 5.

Under these assumptions, the spectrum of the Jacobian matrix gives the Figure 5.3
where we can see that there are actually four groups of eigenvalues. For each Jacobian

Figure 5.3: Spectrum analysis of the Jacobian matrix (5.6) of (5.4)
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matrix, we have two null eigenvalues (0 and a value of order 10−14) that prevent us from
having 0 or 1-dominance. The two other eigenvalues are either between −14 and −2.3, or
between 0.005 and −1.3. This means that theoretically we can find 2-dominance with rate
λ = 0.01 and 3-dominance with rate λ = 2. In practice, we can use CVX with SeDuMi
to find the matrix P that we are looking for. Let us demonstrate the 3-dominance of the
system by finding a symmetric matrix P of inertia (3, 0, 1) that satisfies the linear matrix
inequalities (4.4) for λ = 2 and some ε. Convex relaxation can be used with four matrices
defined as the Jacobian matrix evaluated at four different points:

p1 = (0, 0.05, 0, 0)t , p2 = (5, 0.05, 0, 0)t ,

p3 = (0, 5, 0, 0)t , p4 = (5, 5, 0, 0)t .

The matrix P given by

P =


−9.4312 1.6198 −6.9794 −2.2823
1.6198 −6.8292 −5.5176 1.5575

−6.9794 −5.5176 −8.1448 −1.1252
−2.2823 1.5575 −1.1252 −3.1467


of inertia (3, 0, 1) satisfies then the linear matrix inequalities of the convex relaxation
for λ = 2 and ε = 0.001. The system is then 3-dominant. We would like to know the
intersection of the two spaces that we have defined before, i.e.

Q =
{
δx | δxt P δx < 0

}
∩
{
δx | W tδx = 0

}
.

To do this, we can consider some combinations of the two vectors that spanned the
stoichiometric subspace, and then check the sign of the expression δxt P δx. Let us then
take a vector δx that belongs to the set ∆S, i.e. this vector can be written as a linear
combination of two vectors

δx = α


1
1
−1
0

+ β


0
1
−1
1

 =


α

α + β
−(α + β)

β

 ,

where α and β are real parameters. We can now compute the expression δxt P δx under
this assumption. We find a second degree expression given by

δxt P δx = −1.7201 β2 + 10.1216αβ + 3.8284α2,

= −1.7201 (β + 0.3566α) (β − 6.2403α),

and that allows us to say that the expression will be negative either when β is bigger
than −0.3556α and 6.2409α, or when β is smaller than the same values. These conditions
define two zones that are shown Figure 5.4, where we have developed the vectors in the
basis formed by the vectors that spanned the stoichiometric subspace, described in (5.5).
This space actually contains a 1-dimensional subspace, meaning that we can conclude
that there exists at least one fixed point within each stoichiometric class.
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Figure 5.4: Set of vectors q in Q where q = α(1, 1,−1, 0)t + β(0, 1,−1, 1)t

Besides, it is impossible to find a matrix P with the rate λ = 0.001 because there is
always a positive eigenvalue among those of the matrices

AtiP + PAi + 2λP.

It seems that the method has not enough accuracy to be able to find this matrix, even if
it could be actually possible.

Remark: in a previous example, we have suggested that we could slightly modify the
Jacobian matrix to make the spectrum analysis easier. For this system (5.6), we can
rewrite it like

J = k1


−e −s K1 0

−e −s K1 +K2 0

e s −K1 −K2 0

0 0 K2 0

 (5.8)

with K1 = k−1/k1 and K2 = k2/k1. The spectrum analysis of this matrix is done in
Figure 5.5, where we can see that we have the same disposition but different values. For
example, 3-dominance could be found with a rate λ = 1.7, rather than 2 for the initial
matrix. This new matrix will be even more useful for robust analysis since the number of
parameters is reduced.

We know that the fixed points look like x∗ = (0, e, 0, p), with e and p, two non-
negative values. We also know that the Jacobian matrix only depends on the value of the
substrate and the enzyme concentrations. So, if we assume that e = 1, we can evaluate
the Jacobian matrix at this point and look for a matrix P that would satisfy the linear
inequality. We find then a matrix P of inertia 2 such that the intersection with the
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Figure 5.5: Spectrum analysis of the Jacobian matrix (5.8)

stoichiometric subspace is 0-dimensional, meaning that there exists a unique fixed point
obviously. What happens if we move away from the fixed point? Let us assume that the
substrate concentration is between 0 and 0.6, and the enzyme concentration between 0.4
and 1.6. Then, we can find a matrix P defined by

P =


−15.3769 19.5308 −1.6252 −24.4335
19.5308 −42.7626 −31.4748 10.8809

−1.6252 −31.4748 −37.1094 −12.5295
−24.4335 10.8809 −12.5295 −22.1929


of inertia 2 for the rate 0.2 and ε = 10−4, and if we look at the intersection with ∆S, we
only find the vector null. Indeed, if we do exactly the same thing than before, we find
that the expression V (δx) becomes

δxt P δx = 10.0128α2 + 6.4213αβ + 7.7057β2.

This expression is always non-negative whatever the values of α and β we take. It is only
null when both α and β are 0, meaning that the intersection Q is 0-dimensional.We can
then conclude that there exists a unique fixed point thanks to the theorem demonstrated
before.

5.2.2 Competitive inhibitors

Let us now focus on the reaction diagram of competitive inhibitor, that is

S + E
k1−−⇀↽−−
k−1

C1
k2−−→ P + E,

E + I
k3−−⇀↽−−
k−3

C2,

and we assume that this system follows the law of mass action. We have already shown
that the stoichiometric classes are defined by
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S =


s0
e0
c10
c20
i0
p0

+ span




1
1
−1
0
0
0

 ,


0
1
−1
0
0
1

 ,


1
0
0
−1
1
0




whose dimension is then s = 3. As we did before, we would like to find the stoichiometric
subspace thanks to the differential approach and to study the dominance of this system.
To do this, we will use the differential equations (2.10-2.15) to find the Jacobian matrix
and analyse the spectrum of this matrix. The Jacobian matrix is given by

J =



−k1e −k1s k−1 0 0 0

−k1e −k1s− k3i k−1 + k2 k−3 −k3e 0

k1e k1s −(k−1 + k2) 0 0 0

0 k3i 0 −k−3 k3e 0

0 −k3i 0 k−3 −k3e 0

0 0 k2 0 0 0


, (5.9)

and depends on the variables e, s and i. First of all, let us find the vectors v ∈ IR6 such
that vtJ = 0. This leads to a 6-dimensional system of equations given by

0 = k1e (−v1 − v2 + v3),

0 = k1s (−v1 − v2 + v3) + k3 (−v2 + v4 − v5),
0 = k−1 (v1 + v2 − v3) + k2 (v2 − v3 + v6),

0 = k−3 (v2 − v4 + v5),

0 = k3e (−v2 + v4 − v5),

and it could be reduced to three equations. Finally, we can find a matrix W defined by

W t =

 1 0 1 0 0 1

0 1 1 0 −1 0

0 0 0 1 1 0

 .

Then, we can find the stoichiometric subspace as the set of vector s such that W ts = 0.
In this way, we can find exactly the same space than by the previous definition.

Now, given some values for the rate constants, we can analyse the spectrum of this
matrix but before all, let us observe some trajectories to know which assumptions we
have to make for the study of the spectrum of the Jacobian matrix. We can see in
Figure 5.6 that the substrate and the first complex disappear from the reaction and
each concentration tends to a constant value after a few integration time. This allows us
to know which type of assumption that we can make. The substrate concentration will
be between zero and five for example, the enzyme concentration will be between 0.05 and
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Figure 5.6: Examples of trajectories for some initial conditions for the equations (2.10-
2.15)

5 and the inhibitor concentration as well. If we assume that the rate constants have the
following values:

k1 = 1.2, k−1 = 0.8, k2 = 1.5, k3 = 0.9 and k−3 = 0.7,

we can finally study the spectrum of the Jacobian matrix (5.9) under these assumptions.
The result is illustrated in Figure 5.7, where we can see that, at first glance, there is no
value that can divide the eigenvalues. If we look into the details, we can see that there is
no eigenvalues between −0.01 and 0. This means that we could find a matrix P with the
rate λ = 0.01 theoretically. Unfortunately, it is more complicated in fact since it is not
possible do to it numerically. However, we can do it for the rate λ = 18 for example, and
we find the matrix

Figure 5.7: Spectrum analysis of the Jacobian matrix (5.9) of the competitive inhibitor
diagram under the assumptions that 0 ≤ s(t) ≤ 5 and 0.05 ≤ e(t), i(t) ≤ 5
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P =



−2.0154 −0.3262 0.1077 −0.0413 −0.0426 0.0081

−0.3262 −2.2948 0.1362 0.0568 −0.2571 0.0158

0.1077 0.1362 −1.7268 0.0543 −0.0311 0.0575

−0.0413 0.0568 0.0543 −1.6415 0.1035 −0.0055
−0.0426 −0.2571 −0.0311 0.1035 −1.9047 0.0063

0.0081 0.0158 0.0575 −0.0055 0.0063 −1.6260


,

of inertia 6, which doesn’t really help us. So the most interesting information for this
system is the dimension of the stoichiometric classes, since it allows us to know that the
asymptotic behaviour will be at most in a 3-dimensional space. Let us notice that if we
could find a matrix P for the rate λ = 0.01, it would imply that the system is 3-dominant.
So, at first, this result doesn’t really help us. Moreover, it seems stupid to compute the
intersection between the two spaces defined by W and P since the matrix P will define
the whole space of IR6 actually.

Since our last assumptions seem to lead to an unexpected result, let us reduce the
space of convex relaxation. Let us assume for example that the species concentrations
belong to a smaller space, i.e.

0 ≤ s(t) ≤ 1 and 0.05 ≤ e(t), i(t) ≤ 1. (5.10)

This allows us to get a similar spectrum than that one illustrated in Figure 5.7, but with
a separation for λ = 0.7 as illustrated with the figure 5.8. We can then finally search
for a matrix P that will satisfy the linear matrix inequalities for the Jacobian matrix
evaluated at 8 different points given by

p1 = (0, 0.05, 0, 0, 0.05, 0)t, p2 = (1, 0.05, 0, 0, 0.05, 0)t,

p3 = (0, 1, 0, 0, 0.05, 0)t, p4 = (0, 0.05, 0, 0, 1, 0)t,

p5 = (1, 1, 0, 0, 0.05, 0)t, p6 = (0, 1, 0, 0, 1, 0)t,

p7 = (1, 0.05, 0, 0, 1, 0)t, p8 = (1, 1, 0, 0, 1, 0)t,

and find the matrix P given by

Figure 5.8: Spectrum analysis of the Jacobian matrix (5.9) of the competitive inhibitor
diagram under the assumptions (5.10)
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P =



−14.1891 4.9762 −8.8110 4.2838 0.5737 −3.8729
4.9762 −9.0783 −10.9088 −7.5788 3.3762 2.2770

−8.8110 −10.9088 −18.2386 −7.3771 3.7771 −4.9351
4.2838 −7.5788 −7.3771 −1.6662 −9.4954 1.1452

0.5737 3.3762 3.7771 −9.4954 −11.5518 −1.3223
−3.8729 2.2770 −4.9351 1.1452 −1.3223 −6.6078


whose inertia is 4, meaning that the system is 4-dominant in the space that we have
defined via the convex relaxation. It seems then that neither the dominance of the system
nor the dimension of the stoichiometric subspace can help us to know the asymptotic
behaviour of the system. Let us then focus on the intersection of these two spaces. Since
the stoichiometric subspace is 3-dimensional, it will be more difficult than for the previous
system obviously. Let us consider a vector δx that belongs to ∆S, it means that it can be
expressed like

δx = α


1
1
−1
0
0
0

+ β


0
1
−1
0
0
1

+ γ


1
0
0
−1
1
0

 ,

and let us compute the expression δxP δx to check the sign of this expression. We find

δxt P δx = 7.8859α2 + 2.3169β2 − 15.8366γ2 + 23.2538αβ − 8.6225αγ + 14.4949βγ.

It is not as easy as before to know the sign of this expression, but it seems that the sign
can change. First of all, if we take each basis vector and we check the sign, we find that
they are all positive, but this doesn’t mean that any linear combination of these three
vector will lead to a positive value since V (δx) is not a linear function. For example, the
vector v1−v2 leads to a negative value, and then belongs to the intersection Q. In a more
general way, we can see in the Figures 5.9a and 5.9b the intersection Q expressed in the
basis of the three vectors of ∆S.

(a) (b)

Figure 5.9: Set of vectors q in Q expressed in the basis of the stoichiometric subspace, i.e.
q = α(1, 1,−1, 0, 0, 0) + β(0, 1,−1, 0, 0, 1) + γ(0, 1, 0,−1, 1, 0)
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5.2.3 Allosteric inhibitors

After the diagram of the competitive inhibitor, we can naturally care about the reac-
tion diagram of allosteric inhibitors given by

E + S
k1−−⇀↽−−
k−1

X
k2−−→ P + E,

E + I
k3−−⇀↽−−
k−3

Y,

X+ I
k3−−⇀↽−−
k−3

Z,

Y + S
k1−−⇀↽−−
k−1

Z.

We have already studied the stoichiometric subspace of this diagram in the section 2.3.2.
From this analysis, we can easily say that the stoichiometric compatibility classes are
defined by

S =



s0
e0
i0
x0
y0
z0
p0


+ span





1
1
0
−1
0
0
0


,



0
1
0
−1
0
0
1


,



1
0
0
0
1
−1
0


,



0
0
1
1
0
−1
0




,

and that their dimension is four. As always, we can find this subspace with the Jacobian
matrix. First, we can induce differential equations from this diagram by using the law of
mass action that are given by

ds

dt
= k−1(x+ z)− k1s(e+ y), (5.11)

de

dt
= (k−1 + k2)x− (k1s+ k3i)e+ k−3y, (5.12)

di

dt
= k−3(y + z)− k3i(e+ x), (5.13)

dx

dt
= −(k−1 + k2)x+ k1es− k3xi+ k−3z, (5.14)

dy

dt
= −(k−3 + k1s)y + k3ei+ k−1z, (5.15)

dz

dt
= −(k−1 + k−3)z + k1ys+ k3xi, (5.16)

dp

dt
= k2x, (5.17)

Obviously, since the reaction diagram becomes more difficult, the differential equations
induced become also more difficult and more complicated to study. This difficulty can
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be notably seen in the Jacobian matrix since it will depend on more and more variables,
implying that the analysis spectrum is more and more difficult. By the way, the Jacobian
matrix of the system is given by

J =



−k1(e+ y) −k1s 0 k−1 −k1s k−1 0

−k1e −(k1s+ k3i) −k3e k−1 + k2 k−3 0 0

0 −k3i −k3(e+ x) −k3i k−3 k−3 0

k1e k1s −k3x −(k−1 + k2)− k3i 0 k−3 0

−k1y k3i k3e 0 −(k−3 + k1s) k−1 0

k1y 0 k3x k3i k1s −(k−1 + k−3) 0

0 0 0 k2 0 0 0


,

The search for vector v ∈ IR7 such that J tv = 0 is more difficult as well. Without going
into the details, we can finally find the matrix W defined by

W t =

 1 0 0 1 0 1 1

0 1 0 1 1 1 0

0 0 1 0 1 1 0

 .

This matrix can allow us to find the set of vectors s such that W ts = 0, which is exactly
the same space than the stoichiometric subspace. As we did since the first system, we will
have to assume that the concentrations are bounded by some values and we are going to
define them thanks to some examples of trajectories illustrated in Figure 5.10. We can
clearly see that the substrate and two of the complexes concentrations tend to zero after
a few integration time. Then, let us assume that

Figure 5.10: Examples of trajectories for some initial conditions for the equations (5.11-
5.17)
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0 ≤ s(t), x(t), z(t) ≤ 1 and 0.05 ≤ e(t), i(t), y(t), p(t) ≤ 1.

We can then study the spectrum of this matrix under the assumptions that we have
described above, and let assume for example that the rate constants are given by

k1 = 1.2, k−1 = 0.8, k2 = 1.5, k3 = 0.9 and k−3 = 0.7.

Finally we can find a matrix P defined by

P =



−13.8297 3.1660 2.5724 −10.8362 6.4841 −12.3751 −3.3247
3.1660 −12.3800 6.1796 −12.6305 −8.3768 −4.5150 3.8360

2.5724 6.1796 −14.6764 9.7243 −12.7364 −9.4237 −1.9176
−10.8362 −12.6305 9.7243 −18.8445 −2.6980 −12.4721 −4.0430

6.4841 −8.3768 −12.7364 −2.6980 −3.9768 −1.7910 3.1947

−12.3751 −4.5150 −9.4237 −12.4721 −1.7910 −8.0958 −0.1065
−3.3247 3.8360 −1.9176 −4.0430 3.1947 −0.1065 −10.2015


,

whose inertia is 4 since the eigenvalues are −42.3150, −27.3926, −25.0047, −9.3426,
3.5301, 5.1748 and 13.3454. This means that the system is 4-dominant in the space de-
fined by the convex relaxation. We could now look at the intersection between K− and
∆S, but the problem is that in this case, it is impossible de see what the intersection
looks like since ∆S is 4-dimensional. This example raises a question about the way that
we can find the dimension pq.

5.2.4 Cooperativity

Finally, we can study the last theoretical reaction diagram that we have introduced,
which is the cooperativity reaction diagram given by

S + E
k1−−⇀↽−−
k−1

C1
k2−−→ P + E,

S + C1
k3−−⇀↽−−
k−3

C2
k4−−→ P + C1.

Hopefully it seems that this system is easier than the last ones. The analysis of the stoi-
chiometric subspace has already been done, and that allows us to define the stoichiometric
compatibility classes by

S =


s0
e0
c10
c20
p0

+ span




1
1
−1
0
0

 ,


0
1
−1
0
1

 ,


1
0
1
−1
0


 ,

whose dimension is three. This will allow us to illustrate the intersection Q in what
follows, in contrast to the previous example. This subspace can also be found via the
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differential approach. First, some differential equations (2.18-2.22) can be induced from
this diagram, and the Jacobian matrix is

J =



−k3c1 − k1e −k1s k−1 − k3s k−3 0

−k1e −k1s k−1 + k2 0 0

−k3c1 + k1e k1s −(k−1 + k2 + k3s) k−3 + k4 0

k3c1 0 k3s −(k−3 + k4) 0

0 0 k2 k4 0


, (5.18)

which depends on the concentrations of substrate, enzyme and the first complex denoted
by s, e and c1 respectively. We can look for the vector v ∈ IR4 such that J tv = 0, and
we find the 4-dimensional system of equations given by

0 = k3c1 (−v1 − v3 + v4) + k1e (−v1 − v2 + v3),

0 = k1s (−v1 − v2 + v3),

0 = k−1 (v1 + v2 − v3) + k3s (−v1 − v3 + v4) + k2 (v2 − v3 + v5),

0 = k−3 (v1 + v3 − v4) + k4 (v3 − v4 + v5).

These equations can lead to a set of solutions, and to the matrix W defined by

W t =

(
1 0 1 2 1

0 1 1 1 0

)
.

Finally, the stoichiometric subspace can be defined as the set of vector s such that
W ts = 0, and this leads to the same set than with the previous definition.

Let us now focus on the study of dominance of this system. We know that the Jacobian
matrix depends on three variables, i.e. the substrate, enzyme and complex concentrations.
We would like to know which bound we have to define to study the spectrum of the
Jacobian matrix. Let us take some initial conditions and see what happens with time
in Figure 5.11. We can clearly see that the substrate concentrations and the complex
concentrations tend to be zero after a few integration time, while the enzyme and product
concentrations are never zero. This allows us to define the following bounds:

0 ≤ s(t), c1(t), c2(t) ≤ 5 and 0.05 ≤ e(t), p(t) ≤ 5.

It is now possible to study the spectrum of the Jacobian matrix under these assumptions
if we assume that the rate constants have some fixed values. For example, we take

k1 = 1.2, k−1 = 0.8, k2 = 1.5, k3 = 0.9, k−3 = 0.7 and k4 = 1.

We can guess via the Figure 5.12 that we could divide the eigenvalues with a rate of
λ = 1.4. It seems that three of the eigenvalues are bigger than −λ = −1.4, and two other
ones are smaller meaning that we should expect 3-dominance. Indeed, the first eigenvalue
is between −13 and −2, the second one belongs to the interval ]− 13,−1.5], the third one
sits between −1.3 (not included) and −0.01 more or less, the fourth and fifth ones are
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Figure 5.11: Examples of trajectories for some initial condition for the equations (2.18-
2.22)

between 0 (included) and 0.4. Unfortunately, it is numerically impossible to find such a
matrix P . We decide then to reduce the space that we consider, and we assume that

0 ≤ s(t), c1(t), c2(t) ≤ 2.2 and 0.05 ≤ e(t), p(t) ≤ 2.2.

Under these assumptions, we can study the spectrum analysis which is just a small part

Figure 5.12: Spectrum analysis of the Jacobian matrix (5.18)
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of the big one, illustrated in Figure 5.12. Then if we consider λ = 1.1, we can find a
matrix P given by

P =



−7.2832 3.8387 −3.8839 −13.4568 −2.4906
3.8387 −9.7814 −5.8967 −5.4280 3.3850

−3.8839 −5.8967 −6.2872 −13.9224 0.2015

−13.4568 −5.4280 −13.9224 −15.2119 −1.4400
−2.4906 3.3850 0.2015 −1.4400 −3.8533


,

whose inertia is 3, meaning that the system is 3-dominant. Let us now look at the
intersection between the set K− and the stoichiometric subspace ∆S. In practice, let us
consider a vector δx that belongs to ∆S, i.e.

δx = α


1
1
−1
0
0

+ β


0
1
−1
0
1

+ γ


1
0
1
−1
0

 =


α + γ
α + β

−α− β + γ
−γ
β

 ,

and let us now compute the expression δxP δx. We find

δxt P δx = 3.8868α2 − 1.7615β2 + 18.2084γ2 + 8.2806αβ + 3.8166αγ − 2.4610βγ.

As we could expect, this expression is quite complicated to study. It seems easier to look
at the Figure 5.13 where we can see the vectors that belong to Q, expressed in the
vector basis of ∆S. Unfortunately, we have the same problem as before since we can not
find the dimension pq of the biggest subspace that Q can contain. This question could be
answered with a following work.

Figure 5.13: Set of vectors q in Q expressed in the basis of the stoichiometric subspace,
i.e. q = α(1, 1,−1, 0, 0) + β(0, 1,−1, 0, 1) + γ(1, 0, 1,−1, 0)
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5.3 Preliminary analysis of glycolic oscillations

In this section, we would like to explain the oscillatory behaviour of glycolysis with
the p-dominance theory and the space K− = {δx | δtxPδx < 0}, and the stoichiometric
subspace ∆S. Let us remind that the Sel’kov diagram is given by

γS2 + E
k3−−⇀↽−−
k−3

X1,

S1 +X1
k1−−⇀↽−−
k−1

X2
k2−−→ X1 + S2,

0
ν1−−→ S1,

S2
ν2−−→ 0,

whereX1 denotes the complex ESγ2 formed with the enzyme and γ molecules of S2, andX2

denotes the complex S1ES
γ
2 formed with X1 and S1. There are eight different complexes,

so n = 8. Finally, the stoichiometric subspace is given by

S = span{γS2 + E −X1, S1 +X1 −X2, S2 +X1 −X2, S1,−S2},

= span{γS2 + E −X1, S2 +X1 −X2, S1,−S2},

= span




0
γ
1
−1
0

 ,


0
1
0
1
−1

 ,


1
0
0
0
0

 ,


0
−1
0
0
0


 .

This means that s = 4. We can even check this result using the differential approach
related to the differential equations (3.1-3.5) induced from the chemical diagram. The
Jacobian matrix is given by

J =



−k1x 0 0 −k1s1 k−1

0 −γ2k3esγ−12 − ν2 −γk3sγ2 γk−3 k2

0 −γk3esγ−12 −k3sγ2 k−3 0

−k1x γk3es
γ−1
2 k3s

γ
2 −k1s1 − k−3 k−1 + k2

k1x 0 0 k1s1 −(k−1 + k2)


. (5.19)

We can then compute the set of vectors v such that vtJ = 0, or equivalently J tv = 0.
We have 

0 = k1x (−v1 − v4 + v5),

0 = γk3es
γ−1
2 (−γv2 − v3 + v4)− ν2v2,

0 = k3s
γ
2 (−γv2 − v3 + v4),

0 = k1s1 (−v1 − v4 + v5) + k−3 (γv2 + v3 − v4),
0 = k−1 (v1 + v4 − v5) + k2 (v2 + v4 − v5).



5.3. PRELIMINARY ANALYSIS OF GLYCOLIC OSCILLATIONS 79

These equations imply that v1 = v2 = 0, and the three other components have to be
the same. This means that the vector v has to belong to the set spanned by the vector
(0, 0, 1, 1, 1)t. Then, if we are looking for the vectors u such that vtu = 0, we find that

u ∈ span




1
0
0
0
0

 ,


0
1
0
0
0

 ,


0
0
−1
0
1

 ,


0
0
0
−1
1


 ,

and this space is the same than the stoichiometric subspace.

As we did before, we can assume for example that the rate constants are given by

k1 = 1.2, k−1 = 0.8, k2 = 1.5, k3 = 0.9,

k−3 = 0.7, ν1 = 0.5 and ν2 = 2.

We have learned in the third chapter that under some assumptions, we could have oscil-
lations or fixed points. One of them tells us that γ has to be greater than 1, so we can
assume for example that γ = 2. Furthermore, the analysis of the system is done thanks
to the quasi-steady-state approximation, meaning that some dimensionless variables are
defined. Then, we can use the value of the parameter to know exactly the values of these
new variables and parameters. We have

ε =
e0k1k2

(k2 + k−1)2
, η =

ν2(k2 + k−1)

k1k2e0
, p =

α

η
,

=
1.8

(2.3)2
e0. =

2.3

0.9e0
. =

3 ∗ 0.9
1.2 ∗

√
7
e0.

ν =
ν1
k2e0

, α =
k2 + k−1

k1

(
k3
k−3

)1/γ

, y = (pν)γ ,

=
1

3e0
. =

3 ∗ 2.3
1.2 ∗

√
7
. =

(0.75)2

7
.

We can then study the function H with these parameters, and express it as a function of
e0, the initial amount of enzyme. For example, the assumption that ν as to be between 0
and 1 is equivalent to say that e0 has to be strictly greater than 1/3. The analysis of the
function H(e0) tells us that when e0 is bigger than 0.7303 than we have an unstable fixed
point and then a limit cycle, and otherwise we have a fixed point. Since the dimension
of ∆S is 4, we know that it will be impossible to represent the intersection Q with K−.
So, let us try to study the dominance around a fixed point. Actually, if we try to find the
fixed points of the equations (3.1-3.5), we will easily find that y = ν1/k2 and s2 = ν1/ν2.
Then, we have to use that e0 = e+ x+ y to find that

s1 =
(ν1 + k−1y)

k1x
and x =

k3(e0 − y)s2γ

k−3 + k3s2γ
.

Let us assume for example that the initial amount of enzyme e0 is 0.72. Then, the fixed
point is given by
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Figure 5.14: Spectrum analysis of the Jacobian matrix of the Sel’kov diagram when
0.7304 ≤ e0 ≤ 0.8304, 0.15 ≤ s2 ≤ 0.35 and 0.2333 ≤ y ≤ 0.4333

x? = ( 22.2142, 0.2500, 0.3579, 0.0288, 0, 3333 ) .

If we look at the eigenvalues of the Jacobian matrix evaluated at this point , denoted by J ,
we find four eigenvalues with a negative real part and one null eigenvalue. This suggests
that at this point, the system can be 1-dominant. Indeed, we can find a matrix P of
inertia 1 such that the matrix A′P +PA−2λP admits five negative real part eigenvalues.
This result is consistent with the previous result since we have a fixed point. We can also
look at the result when the initial amount of enzyme is bigger than 0.7303. We know that
the variables x, s1 and e depend on the values of e0, s2 and y. So, let us see what happens
when we slightly modify their values. Let us assume for example that e0 is between 0.7304
and 0.8304, s2 is between 0.15 and 0.35 and finally, y is between 0.2333 and 0.4333. In
this case, the spectrum of the Jacobian matrix is given by the Figure 5.14, where we
can see that we can expect 3-dominance. This is still consistent with the system since the
initial amount of enzyme is bigger than 0.7303, meaning that the fixed point is unstable
and there is a limit cycle.



Conclusion and prospects

All along this work, we have tried to build a new tool that we could use to explain the
oscillatory trajectories of glycolysis. To that end, we have first looked at some notions and
results that already exist in mathematics and in science, to finally establish a new theorem.

We have begun by looking for interesting results in the chemical reaction networks
theory in the first chapter. We have pointed out two notions. The first one is the stoi-
chiometric subspace and the stoichiometric compatibility classes in which the trajectories
always have to stay. Then the dimension of this space is already a good way to reduce the
dimension we have to deal with, and to learn some information about the asymptotic be-
haviour of the system. We have particularly worked with examples with a 1-dimensional
stoichiometric subspace, meaning that only fixed points can be reached. The second one
is the deficiency. Two theorems are besides based on its value, and allow us to conclude
about the existence and the uniqueness of a fixed point. Unfortunately, we cannot apply
these theorems to any systems. The second chapter is used as an introduction for the
third chapter since we explain a lot of chemical reactions. Along this chapter, we have
applied the theory developed in the previous chapter to each chemical diagram we have
encountered. Then, we have finally been able to talk about the glycolysis and the feedback
loops that interest us. The three first sections have been realised on basis of the book [7]
of J. Keener and J. Sneyd, and the lectures [1] delivered in 1980 by M. Feinberg.

However, the dimension of the stoichiometric subspace usually becomes bigger when
the dimension of the system increases, meaning that it is impossible to draw conclusions
about trajectories. We have then looked into another tool that could help us: the p-
dominance. Developed by F. Forni and R. Sepulchre in the article [3] of 2017, this notion
tells us the dimension of the space the asymptotic trajectories belong to. It has been first
illustrated with an ordinary example where we have pointed out some properties of this
concept. And then, it has been applied to some easy chemical diagram that we have used
all along the work to illustrate every concept. Nevertheless, sometimes the p-dominance
that we find doesn’t seem to fit with the reality. For example, we could find 2-dominance
for a system even if a previous theorem has concluded that there exists a unique fixed
point. Actually, this concept doesn’t take into account the stoichiometric compatibility
classes.

It seems that these two notions cannot always help us, used alone. This observation
has led us to combine these two concept to finally have a more accurate information about
the asymptotic behaviour, and to be able to apply this new tool to any kind of chemical
diagram. Then some new theorems have been established in the fifth chapter of this work,
and we have applied them to the chemical reactions that we had introduced before, in
the second ans third chapters. Furthermore, these examples have raised some questions
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and problems, including the way to find the dimension of the largest subspace that the
intersection Q can contain. The space on which we compute the dominance is also a
question to ask.

This work could be easily carried on actually. First of all, we have already talked
about the problem of finding the right pq involved in the new theorems. So it would be
important to know how to find it. Then, we have also seen that a lot of computations
cannot be done due to a lack of machine accuracy. Rather than trying to improve this
accuracy, we could find another method. Until now, the matrice P of p-dominance is
constant. But it could be really interesting to find a matrix field P (x) that satisfy the
linear matrix inequalities, and then a cone field. All this work could finally lead to a
publication with Fulvio Forni.
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