

RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Validation of an original ETP-based APC resistance assay for the evaluation of prothrombotic states

Morimont, Laure; Bouvy, Céline; Dogné, Jean-Michel; Douxfils, Jonathan

Publication date: 2019

Document Version Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (HARVARD):

Morimont, L, Bouvy, C, Dogné, J-M & Douxfils, J 2019, 'Validation of an original ETP-based APC resistance assay for the evaluation of prothrombotic states', ISTH 2019 : The XXVII Congress of the International Society on Thrombosis and Haemostasis, Melbourne, Australia, 6/07/19 - 10/07/19.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

VALIDATION OF AN ORIGINAL ETP-BASED APC RESISTANCE ASSAY FOR THE EVALUATION OF PROTHROMBOTIC STATES

Céline Bouvy¹, Laure Morimont², Jean-Michel Dogné², Jonathan Douxfils^{1,2}

¹ Qualiblood s.a., Namur, Belgium

² University of Namur, Department of Pharmacy, Namur Thrombosis and Hemostasis Center (NTHC), Namur Research Institute for Life Sciences (NARILIS), Namur, Belgium

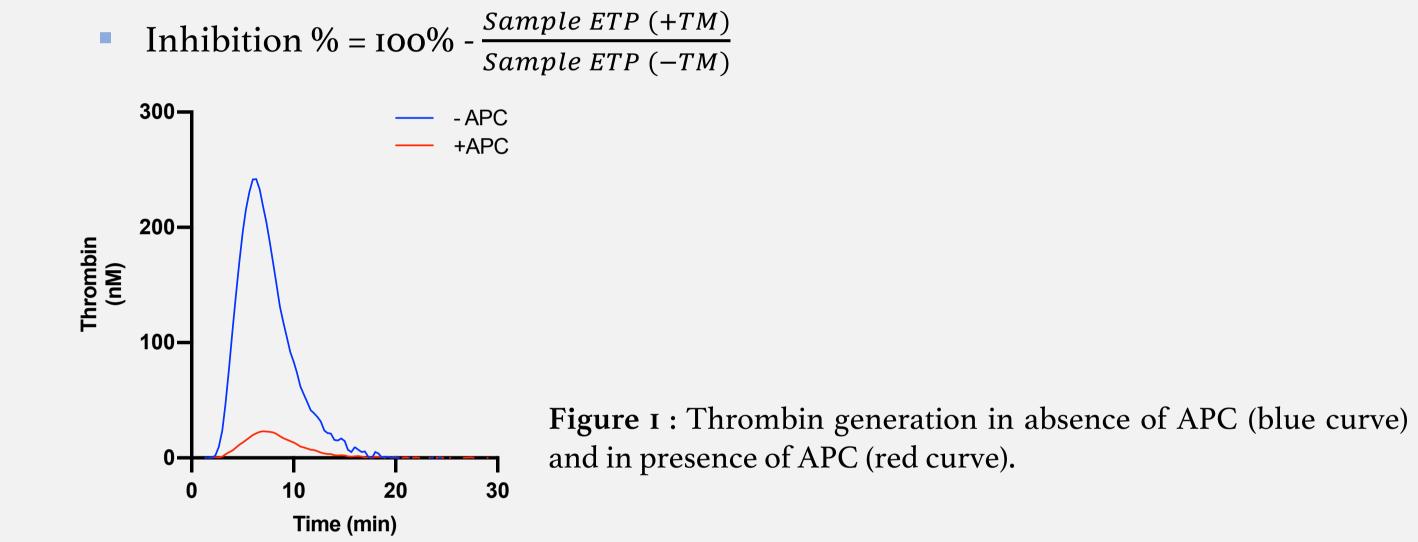
BACKGROUND

- The activated protein C resistance assay based on the endogenous thrombin potential (ETP-based APCr assay) is recommended in guidance from medicines regulatory authorities (e.g. EMA and FDA) for the investigation of steroid contraceptives.¹
- The results are usually "normalized" with a reference plasma to provide the "normalized APC sensitivity ratio" (nAPCsr).²
- * However, the methods described in the literature are home-made and mostly without standardization of the method, the reagents, the reference plasma and the quality controls.

Intermediate precision passed the acceptance criteria : standard deviation <10% and</p> no significant difference between operators. [> Table 3]

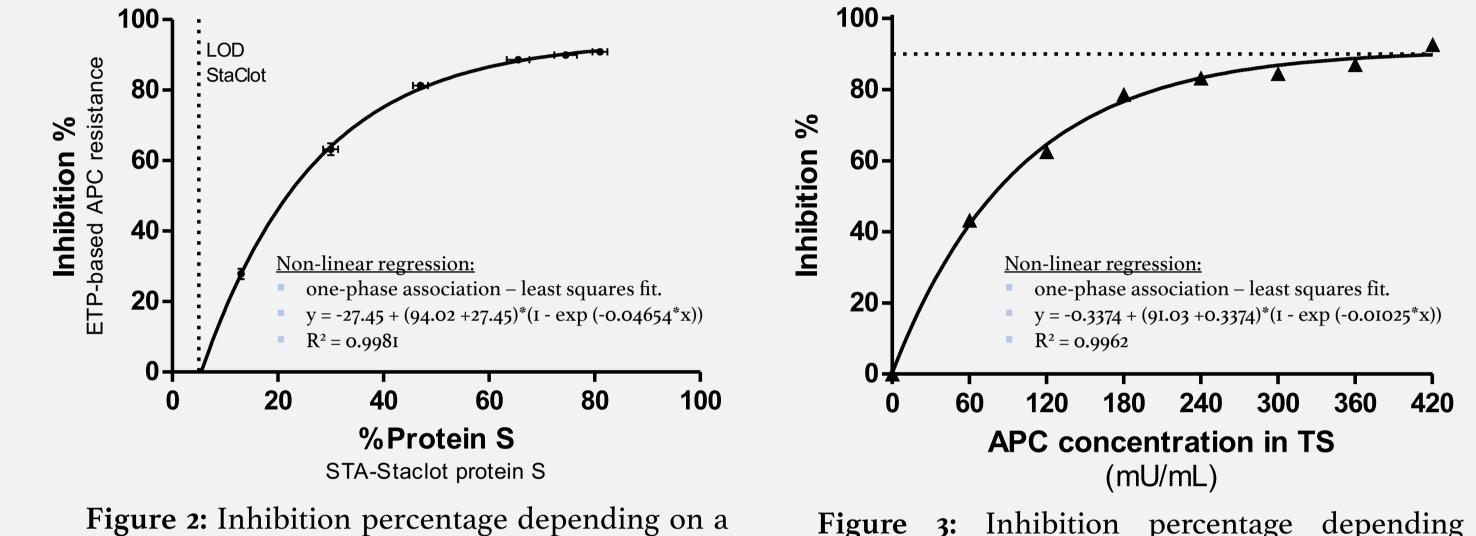
	Operator I [SD]	Operator 2 [SD]	Operator 3 [SD]	p-value
QC low (hypocoagulable)	о%	о%	о%	0.8503
QC intermediate (intermediate coagulable)	4%	5%	2%	0.6969
QC high (hypercoagulable)	3%	4%	о%	0.8253
Reference plasma	2%	2%	1%	0.9459

Table 3 : Intermediate precision (expressed in SD and p-value) based on 3 runs measuring



To validate the analytical procedure of an ETP-based APCr assay according to the regulatory standard ICHQ2R1 and CLSI guidelines.³

AIM


METHOD

- Three quality controls (QCs) representing plasmas with different levels of coagulation and one reference plasma (Ref plasma) were used.
- The method targets a 90% inhibition of the ETP in a pool of plasma from healthy donors (10 men and 10 women not using hormonal contraception, with no coagulation abnormalities [i.e. FV Leiden nor G20210A mutation carrier)] in presence of APC compared to the same condition in absence of APC. [> Figure I]

* As the pool of healthy donors is not produced at large scale, specific algorithms are applied to the commercial reference plasma to correlate with the pool.

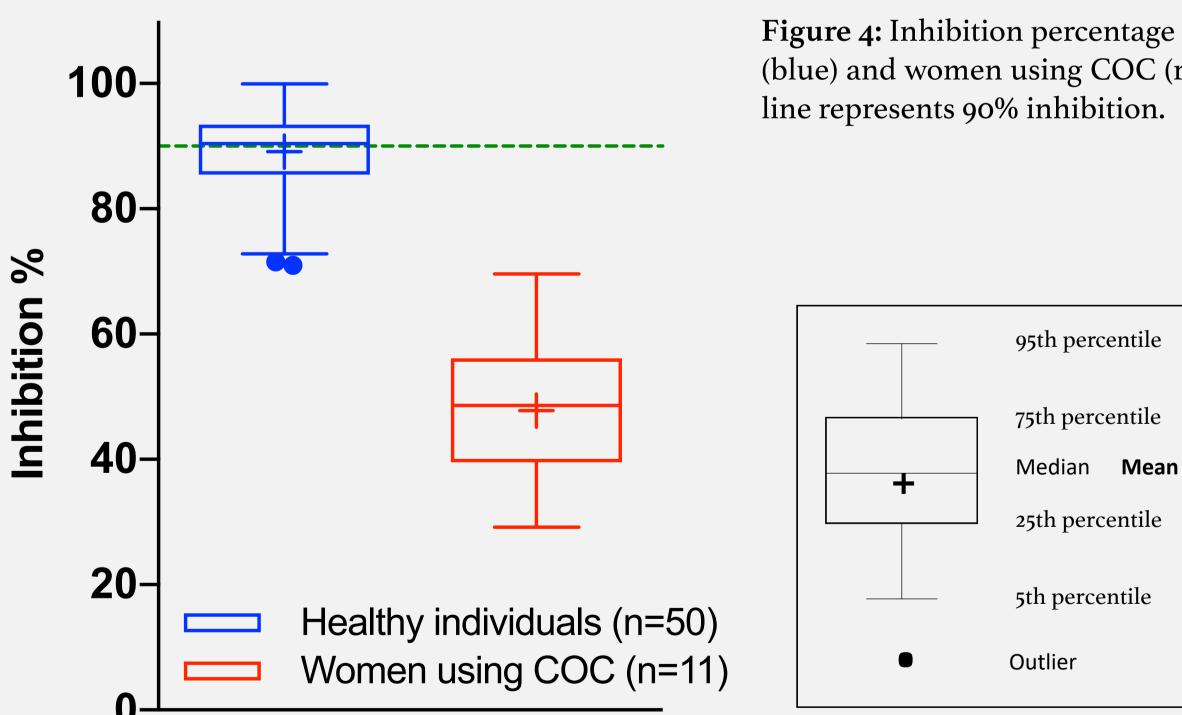
- the ref plasma and QCs and performed by 3 different operators.
- The assay demonstrated a curvilinear dose-response to protein S and APC concentrations (R^2 >0.99). [> Figure 2 and > figure 3]

protein S deficiency. Vertical dotted line represents the limit of detection of the STA®-Staclot[®] protein S kit.

Figure 3: Inhibition percentage depending on concentration of spiked APC. Horizontal dotted line represents 90% inhibition.

- Analysis of plasma samples from 50 healthy individuals (22 women not taking) combined oral contraceptive (COC) and 28 men, no FV Leiden carrier) confirmed the validity of the tests [acceptance criteria: mean = 90% (± 2,5%)] with a mean inhibition percentage of 89%.
- Investigations in women taking COC confirmed the good sensitivity of the assay.

RESULTS


- Limits of acceptability of QCs and Ref plasma [> Table I] were defined as
 - the mean of results obtained in the entire study (N=24) \pm 2*SD
 - SD = the highest CV of the accuracy study * the mean of the entire accuracy study

QC low (hypocoagulable)	$100 \pm 0\%$	
QC intermediate (intermediate coagulable)	45 ±15 %	
QC high (hypercoagulable)	$12 \pm 10\%$	
Ref plasma	$89\pm6\%$	Table 1 : Limits of acceptability (mean \pm 2*SD) of QCs and Ref plasma.

Intra-run (into a same plate) and inter-run (between plates) repeatability passed the acceptance criteria : <10% of standard deviation. [> Table 2]

	Intra-run variability [SD]	Inter-run variability [SD]	
QC low (hypocoagulable)	о%	о%	Table 2 : Intra- and inter-run repeatability (expressed in SD). Intra-run repeatability was based on 5 measurements of the Ref plasma and QCs and inter- run repeatability was based on 10 runs measuring the Ref plasma and QCs, performed by the same operator.
QC intermediate (intermediate coagulable)	1%	7%	
QC high (hypercoagulable)	3%	4%	
Reference plasma	о%	3%	

CONCLUSION

This study is the first describing the validation of ETP-based APCr assay according to regulatory standards.

It provides the stakeholders, the regulatory bodies and the physicians with a reproducible, sensitive and validated assay.

Figure 4: Inhibition percentage of healthy individuals (blue) and women using COC (red). The dotted green line represents 90% inhibition.

This will allow study-to-study comparison as well as perspectives for the establishment of specific thresholds to reflect the prothrombotic state in the individual patient.

Conflict of Interest :

Jonathan Douxfils reports personal fees from Daiichi Sankyo, Diagnostica Stago, Roche and Roche Diagnostics outside the submitted work. Jonathan Douxfils is the CEO and founder of QUALIblood s.a.

¹ Guideline on clinical investigation of steroid contraceptives in women -EMEA/CPMP/EWP/519/98 Rev I.

²Nicolaes GA, Thomassen MC, Tans G, Rosing J, Hemker HC. Effect of activated protein C on thrombin generation and on the thrombin potential in plasma of normal and APCresistant individuals. Blood Coagul Fibrinolysis. 1997; 8: 28-38 ³ CLSI. Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions. In: C24 CG, ed. Wayne, PA: Clinical and Laboratory Standards Institute, 2016.

Contact : Morimont Laure laure.morimont@unamur.be Tel. +3281724292

